recall we have reduced
$\operatorname{TH}\left(S^{1}\right) \approx 2$, TO THE FOLLOWING? GIVEN MAP i) y', g, AS SHOWN

$$
\begin{aligned}
& \left(X, x_{0}\right) \times\{0\} \xrightarrow{\mathcal{L}}(\mathbb{R}, 0) \quad \exists!h: X \times I \longrightarrow \mathbb{R} \\
& \left.i \sqrt{h} \rightarrow 1 p \begin{array}{c}
w 1 T H \\
p h \\
h i=g
\end{array} \quad A N T\right) \\
& \left(X, X_{0}\right) \times(I, 0) \xrightarrow{g}\left(S^{I}, 1\right) \\
& h_{i}=j
\end{aligned}
$$

X is PATH CONVECTE 1)
WE CAN REPLACE p BY ANY

$$
\text { COVERING, } \underset{Y}{ } \rightarrow
$$

FOR Y Y $~ Y ~, ~ C H O O S E ~ A ~ N B D ~ U ~ W H I C H I ~$ IS EVENLY COVERED BY β (IDE.

$g^{-1}(U)$
CHOOSE $x \in X$ LET $y=g(x, 0)$
CHOOSE EVEN COVERED NBD U of Y
$p^{-1}(U) \approx$ MANY DISTORT COPIES OF U
CHOOSE THE ONE CONTAINING $j^{\prime}(x)$ CALL IT U U
WE CAN DEFINE h ON $g^{-1}(U)$

CHOOSE ANOTHER pT x iN $g^{-1}(U)$,
THEN CHOOSE AN EVENLY COVERED NBA U_{1} OF $g\left(x_{1}\right)$
AND EXTEND TO $g^{-1}\left(v_{1}\right)$
PROCEEDING IN THIS WE CAN EXTEND h TO ALL OF X. SEE HATCVER FOR MORE DETAILS
$Q E D$.
$\pi_{1}\left(S^{1}\right) \approx \mathbb{Z}$, AN INTEGER $n \in \mathbb{Z}$ is REPRESENTED BY
(1) $\supset S^{\prime} \xrightarrow{[n]} S^{I} \subset \mathbb{C}$ $z \longmapsto z^{n}$
COR THE IDENTITY MAP $S^{\prime} \rightarrow S^{I}$ IS NOT HOMOTOPK TO THE CONSTANT MAP.
SOME CONSEQUENCES
BROUWER FIXED POINT THEOREM (1910?) ANY MAP $D^{2} \xrightarrow{f} D^{2}$ HAS A FIXED POINT, ie. $\exists x \in D^{2}$ WITH $f(x)=x_{0}$
PROOF: ASSUME THERE IS NO FIXED POINT. DEFINE
$D^{2} \xrightarrow{g} S^{1}=\partial D^{2}$ AS FOLLOWS

NOTE

$$
h(x, 1)=x \text { AND } h(x, 0)=g(0)
$$

h is A HOMOTOPY THAT IS EXCLUDED BY THE COROLLARY. CONTRADICTION. GET
HiGHER DIMENSIONAL GENERALZN
REPLACE D^{2} BY D^{n} FOR $x>2$ WE GET A MAP $D^{n} \rightarrow \partial D^{n}=S^{n}$ AND HENCE A FORBIDDEN homotopyas above.

$$
\text { NEED TO KNOW } S^{n-1} \xrightarrow{S^{n-1}}
$$

IS ESSENTIAL, IE. NOT
HOMO TOPIC TO A CONSTANT MAP.

FUNDAMENTAL THEOREM OF ALGEBRA (GAUSS 21800)

LET $p(z) \in \mathbb{C}[z]$ BE A NONCONSTANT POLYNOMIAL
THEN $\exists z_{0}$ WII $p\left(z_{0}\right)=0$,
so $p(z)=\left(z-z_{0}\right) q(z)$
TOPOLOGICAL PROOF: ASSUME于 z_{0}

$$
\begin{aligned}
& n \neq 0 \\
& p_{n} \neq 0
\end{aligned}
$$

for is constant with value $\frac{p_{0}}{\left|p_{0}\right|}$
FOR $\quad M \gg 0$
THEN FOR $|z|=I$
$\left|p_{n}\right|$

$$
p(\mu z)=p_{n} M^{n} z^{n}+\underset{\text { TERMS }}{\operatorname{SMALL}^{\mid p_{n}}}
$$

SO fm is HOMOTOPLC
TO $~$ TH POWER MAP THIS IS A CONTRADICTION.

CAN ASSUME

$$
Q E D
$$

$$
p_{n}=1,
$$

POLYNOMIAL IS MONIC.

$$
\begin{aligned}
& \text { HAM SANDWICH THEOREM } \\
& \hline \text { CAN CUT A SANDWICH } \\
& \text { SO THAT HAM CHEESE } \\
& \text { BREAD ARE BISECTED. } \\
& \text { GIVEN } 3 \text { COMPACT SUBSETS } \\
& \text { OF } \mathbb{R}^{3} \text { D JA PLANE } \\
& \text { TAAT BISECTS ALL 3. }
\end{aligned}
$$

WILL DERIVE IT FROM
BORSUK-UCAM THEOREM.

$$
\text { GIVEN, A MAP } S^{2} h \rightarrow \mathbb{R}^{2}
$$

$$
\exists x \in S^{2} \text { SUCH THAT } f(x)=f(-x)_{0}
$$

"ADVENTURES OF A MATHEMATICIAN', MOVIE ABOUT ULAM.

