Foling Zonl - GaARGE CODE *511 <enter>
The methods here are seed in the delection thm Recall the Adams ss

$$
\begin{aligned}
E_{2}^{j, t} & =\varepsilon_{x} t_{A_{p}, 1}^{1,}\left(\mathbb{F}_{p,} \mathbb{F}_{p}\right) \\
& \Rightarrow \pi_{1-s}\left(s^{0}\right) \otimes z_{p}
\end{aligned}
$$

$$
d_{\mu}: E_{\mu}^{\rho_{0} t} \rightarrow E_{\mu}^{0+M, A+M-1}
$$

$$
p=2 h_{i} \in Q_{x t}{ }^{1,2^{i i}} \longleftrightarrow A_{z} \in{a^{i}}_{2}
$$

Inm (Gdams) $F_{n} i \geq 4, d_{2}\left(h_{i}\right)=h_{0} h_{i-1}^{2}$
and h_{i} survives for $0 \leq i \leq 3$
Rulated to Hopg mivaunit 1
$p>2 h_{i} \in E x f^{\prime}, q p^{i} \longleftrightarrow p p^{i}, q=2 p-2$
Thm (Limevicius) Fon $i \geq 1, d_{2}\left(h_{i}\right)=a_{0} b_{i 1}$ wher
and ho survives, b_{i-1} is analogoses to h_{i-1}^{2}
The Anfumian elts fon $p=2$ ard h_{j}^{2} rolaled to θ_{j}
ly Browdiss thm.
For $p>2, b_{i}=\left\langle h_{i}, \cdots h_{i}\right\rangle=p \cdot$ fold Maseeyproduct
Gaide $H^{*}\left(C_{p} ; z / p\right)=\left\{\begin{array}{l}z / 2[h] \quad p=2 \\ E(h) \otimes P(b) \quad b \in H^{2} \\ \langle h, \cdots h\rangle\end{array}\right.$
The b_{i} conexponds to Adem relntion fors $p(p-1) p^{1} p p^{1}$
Fon $p>3$ we show $d_{2 p i 1}\left(b_{i}\right) \neq$ for $i \geq 1$ Not sure abont $p=3$

$$
\operatorname{Thm}(T o d a) \quad d_{2 p-1}\left(l_{1}\right)=h_{0} b_{0}^{p}
$$

May ahoweed $h_{0} b_{1}^{3}=0$ in E_{7} for $p=3$
We can hope for $\alpha_{2 p, 1}\left(b_{1+1}\right)=h_{0} b_{1}^{p}$
We will ine ANSS instend
Recall $B P_{x}=Z_{(p)}\left[v_{1}, w_{2} \cdots\right] \quad\left|v_{i}\right|=\left|x_{1}\right|=2\left(p^{i}-1\right)$

$$
\begin{aligned}
& B P_{x}(B P)=B P_{x}\left[x_{1}, x_{2}, \ldots\right] \\
& E_{2}^{1, t}=\Theta_{x t_{B P_{*}(B P)}^{1, t}}\left(B P_{*}, B P_{*}\right) \Rightarrow \pi_{A, B}\left(S^{0}\right) \otimes \mathbb{Z}_{(\phi)}
\end{aligned}
$$

The map $B P \rightarrow H Z / p \rightarrow A N S S \rightarrow A S S$
Thm Fon $p>3, i>0$ then b_{i} does not turuiel
Step 1: Find prewipel of b, in ANSS, namely

$$
\sum_{0<j<p^{i+1}} p^{-1}\left(p_{j}^{n+1}\right)^{y}\left[x_{1} y \mid x_{1}^{x^{i+1}-j}\right]
$$

Thm Fon $p \geq 3, d_{2 p-1}\left(b_{i+1}\right) \neq 0$ in ANSS
Stef $i_{n} 1$. Show $d_{2 p-1}\left(b_{i+1}\right)=h_{0} b_{1}^{p}$ mod kers $b_{0}^{a_{i}^{-}}$ Uee induction on Todas rowelt und relation

$$
h_{i+1} b_{1}^{b}=h_{1+2} b_{0}^{p}
$$

$$
a_{i}=\frac{p\left(p^{2}-1\right)}{p-1}
$$

Atep 1,2 Show target nontuival.
$b^{I}, h_{0} b^{I} \neq 0$ for any monomial b^{I} Loten Nee Monava stalumer gp

$$
\varepsilon_{x} t_{B P_{x} B P}\left(B P_{x}, B R_{x}\right) \rightarrow \varepsilon_{x A_{F_{p}}\left[S_{n}\right]}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right) \rightarrow \sum_{x t}\left(F_{n}, F_{p}\right)
$$

knownasalove
 ecalars $\neq 0$
STEP 2 Relate to Adam ss for $p \geq 5$. Gooume $x=b_{i, 1}$ owwives, so $x^{2} \mapsto x$ enwwes

Cosume $x=b_{i+1}$ mumives, so $x^{2} \leftrightarrows x^{\prime}$ omiwues in ANGS, lint \tilde{x} camotesist ly low filluetion

There is nothmpin filtration <2 of $\hat{x} \in E_{x t}{ }^{2}, \tilde{x}=b_{i, 1}+y$. The ap Ext ${ }^{2}$ is
known by MRW. Ny is generated by
$B_{a_{i, j}} / p^{i+3-2 j}, j=1,2 \cdots\left\lfloor\frac{n^{i}+3}{2}\right\rfloor$
$j=1 \quad B_{p i+1} / p^{i x} \mid \quad j>1$ noise
The elts for $j \rightarrow 1$ are in kernel of them reduction.

$\operatorname{Thm}(L . \operatorname{Lmith}) \exists$ sotiv(s) realigning $B R_{x} \rightarrow B R_{1} L_{3}$ far $p=5$

$\Gamma=B \times P D$

$$
\begin{aligned}
& E_{x} t_{\Gamma}\left(B P_{x}, B P_{x}\right) \longrightarrow E_{x} t_{F}\left(B P_{x}, w_{n}^{-1} B P_{x} / I_{n}\right) \\
& f(y)=0 \\
& \operatorname{Ex}_{r}\left(B P_{x}, B P_{x} I_{3}\right)
\end{aligned}
$$

DEAD BATTERY

