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CHROMATIC COMPLEXITY OF ALGEBRAIC K-THEORY OF y(n)

GABRIEL ANGELINI-KNOLL AND J.D. QUIGLEY

Abstract. The family of Thom spectra y(n) interpolate between the sphere spectrum and the
mod two Eilenberg-MacLane spectrum. Computations of Mahowald, Ravenel, and Shick and the
authors show that the E1 ring spectrum y(n) has chromatic complexity n. We show that topo-
logical periodic cyclic homology of y(n) has chromatic complexity n+1. This gives evidence that
topological periodic cyclic homology shifts chromatic height at all chromatic heights, supporting a
variant of the Ausoni–Rognes red-shift conjecture. We also show that relative algebraic K-theory,
topological cyclic homology, and topological negative cyclic homology of y(n) at least preserve
chromatic complexity.
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1. Introduction

The Lichtenbaum-Quillen conjectures [26][39] describe the relationship between étale coho-
mology and algebraic K-theory and consequently the relationship between orders of algebraic K-
groups and special values of Dedekind zeta functions. Following Waldhausen [46], the Lichtenbaum-
Quillen conjectures can be phrased homotopy theoretically, for odd primes p, as the question of
whether the map

S/p ∧K(A)→ v−1
1 S/p ∧K(A)

is an isomorphism in homotopy in sufficiently high degrees, where A is a nice enough ring with
1/p ∈ A (see [36] for a nice survey). Here S/p denotes the mod p Moore spectrum for an odd prime
p and v−1

1 S/p is the telescope of the periodic self-map v1 : Σ
2p−2S/p→ S/p. These conjectures have

recently been proven as a consequence of the Norm Residue Theorem of Rost-Voevodsky (see [21]
for a self-contained proof).

The chromatic red-shift conjectures of Ausoni and Rognes [10] generalize the Lichtenbaum-
Quillen conjectures to higher chromatic complexities. To discuss the red-shift conjectures, we need
to introduce precise notions of chromatic complexity. We say that a p-local finite spectrum V has
type n if

n = min{m : K(m)∗(V ) 6= 0},

where K(n) is the n-th Morava K-theory. By the periodicity theorem [24, Thm. 9] any type n
spectrum V has a periodic vn-self map

vdn : Σ
(2pn−2)dV → V

1
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2 GABRIEL ANGELINI-KNOLL AND J.D. QUIGLEY

so we can define the telescope v−1
n V . The chromatic red-shift problem of Rognes [41] (predating

[10]), states that if A is an E1 ring spectrum with pure fp type n then the p-completion of K(A) has
pure fp type n + 1.1 This generalizes the Lichtenbaum-Quillen conjectures since if K(A) has pure
fp type n+ 1 then

V ∧K(A)→ v−1V ∧K(A)

is an isomorphism in homotopy in sufficiently high degrees for some finite spectrum V of type n+1.
The spectrum HFp has pure fp type −1 by convention, so Quillen’s computation [38] that

K(Fp)p ≃ HZp shows that K(Fp)p has pure fp type 0. If A is the ring of integers in a finite extension
of Qp then the Eilenberg-MacLane spectrum HA has pure fp type 0 and a special case of the
chromatic red-shift problem is the Lichtenbaum-Quillen conjecture. Ausoni and Rognes computed
the algebraic K-theory of the connective covers of the Adams summand and complex K-theory mod
(p, v1) and showed that each have pure fp type 2 [9][8]. Since the Adams summand and complex
K-theory have pure fp type 1, this gives further evidence for the chromatic red shift problem. The
red-shift conjectures have been further investigated in recent work of Clausen-Mathew-Naumann-
Noel [15], Land-Meier-Tamme [25], and the first author [4].

In this paper, we make the case for formulating the red-shift conjecture using vanishing of
Morava K-theory as our notion of chromatic complexity when the input R is an E1 ring spectrum
that does not have finitely presented mod p homology. In this case, R will not have pure fp type m
for any finite m by [31] (cf. Corollary 2.4) so shifts in chromatic complexity would not be visible
using the notion of pure fp height. In particular, we consider a family of E1 ring spectra

S = y(0)→ y(1)→ . . . y(∞) = HF2

defined by Mahowald [29]. It is known by Proposition 2.22 at p = 2 and [30] at odd primes that

n = min{m : K(m)∗(y(n)) 6= 0}

so y(n) may be considered type n even though it is not a finite spectrum.
We also make the case for studying the red-shift conjecture, not just for algebraic K-theory

and topological cyclic homology, but also for topological periodic cyclic homology and topological
negative cyclic homology. Indeed, a shift in chromatic height is already detected in these approxi-
mations to algebraic K-theory in many examples where red-shift phenomena has been detected (eg.
[9, 4]), so this idea is certainly not new. One of our goals is to give evidence at all chromatic heights
for the following red-shift question for topological periodic cyclic homology.

Question 1.1. If A is an E1 ring spectrum such that K(m)∗(A) = 0 for 0 ≤ m ≤ n− 1 then

K(m)∗(TP (A)) ∼= 0 for 1 ≤ m ≤ n.

The main result of this paper answers this question affirmatively at all chromatic heights
for the family of E1 ring spectra y(n).

Theorem 1.2. For 1 ≤ m ≤ n, there are isomorphisms

K(m)∗(TP (y(n))) ∼= 0.

The key case here is the case m = n, which demonstrates an increase in chromatic complex-
ity. We also prove that relative algebraic K-theory at least preserves vanishing of Morava K-theory.
Note that the map y(n) → HF2 is a K(m)-equivalence for 0 ≤ m ≤ n − 1, since y(n) has type n
and HF2 has type ∞. Given a map of E1 ring spectra f : A→ B, we write K(A,B) := fib(K(f)).

1Following [41], X has pure fp height n if there is a finite spectrum V of type n with vn-self map vdn such that π∗(V ∧X)
is a finitely generated free P (vdn)-module. In [41], the red-shift conjecture is phrased for p-typical topological cyclic
homology, but we phrase it this way to ease exposition. This does not pose a problem in most cases of interest by
[16, Thm 2.2.1].
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Theorem 1.3. There are isomorphisms

K(m)∗(K(y(n);HF2)) ∼= 0

for 0 ≤ m ≤ n− 1.

Since the first draft of this paper appeared, Land-Meier-Tamme [25] have also proven the theorem
above by different methods.

The results above follow from analyzing the homological Tate and homotopy fixed point
spectral sequences [14] arising from the Greenlees filtration of TP (y(n)), denoted {TP (y(n))[i]}i∈Z,
and the skeletal filtration of TC−(y(n)), denoted {TC−(y(n))[i]}i∈N (Sections 4.2 and 5.1). We
define continuous Morava K-theory as

K(m)c∗(TP (y(n))) := lim
i
K(m)∗(TP (y(n))[i]), and

K(m)c∗(TC
−(y(n))) := lim

i
K(m)∗(TC

−(y(n))[i]).

We first prove vanishing results for continuous Morava K-theory of topological periodic
cyclic homology and topological negative cyclic homology of y(n).

Theorem 1.4 (Theorems 4.17 and 5.8). For all 1 ≤ n ≤ ∞, there are isomorphisms

K(m)c∗(TP (y(n)))
∼= 0

for 1 ≤ m ≤ n. Further, there are isomorphisms

K(ℓ)c∗(TC
−(y(n))) ∼= 0

for 1 ≤ ℓ ≤ n− 1.

We then show that in Example 5.10 that

K(1)c∗(TC
−(y(1))) 6= 0.

Along with the previous theorem, this suggests that topological periodic cyclic homology may be
better suited for studying shifts in chromatic complexity using vanishing of Morava K-theory than
topological negative cyclic homology, topological cyclic homology, and algebraic K-theory.

1.1. Outline. In Section 2, we recall the construction and basic properties of the spectra y(n). We
compute vanishing of Morava K-theory of y(n) using Margolis homology and the localized Adams
spectral sequence. We also construct Thom spectra z(n) which are integral analogs of y(n), i.e.
they are spectra which interpolate between S and HZ. We show that the spectra z(n) have a self
map vn and, again using Margolis homology, we compute vanishing of Morava K-theory of z(n)
and the cofiber z(n)/vn of this self map. We believe that the spectra z(n) are of independent
interest. In Section 3, we analyze the Bökstedt spectral sequence converging to the mod two ho-
mology of THH(y(n)). We also prove a key technical proposition (Proposition 3.8) about the map
H∗(THH(y(n)))→ H∗(THH(HF2)) which we use in subsequent sections. In Section 4, we analyze
the topological periodic cyclic homology TP (y(n)) := THH(y(n))tT. The key tool is the homo-
logical Tate spectral sequence of Bruner-Rognes [14]. In Section 5, we carry out a similar analysis
for topological negative cyclic homology TC−(y(n)) := THH(y(n))hT. In Section 6, we study the
topological cyclic homology TC(y(n)) and algebraic K-theory K(y(n)).

1.2. Conventions. Throughout, we write H∗(X) (resp. H∗(X)) for homology (resp. cohomology)
of a space or spectrum X with coefficients in Fp. We write A := H∗(HF2) for the Steenrod algebra,

which is a Hopf algebra with generators Sq2
i

and relations given by the Adem relations. The dual
of the Steenrod algebra will be denoted A∗ := H∗(HF2) and it is isomorphic to P (ξ̄i | i ≥ 1) where
ξ̄ := χ(ξi) is the image of the usual Milnor generators under the antipode χ of the Hopf algebra A∗.
The coproduct ψ : A∗ → A∗ ⊗A∗ is given by the formula

(1) ψ(ξ̄k) =
∑

i+j=k

ξ̄i ⊗ ξ̄
2i

j .
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We will let E(n) := E(Q0, . . . , Qn) denote the subalgebra of the Steenrod algebra generated by the
first n+ 1 Milnor primitives and we denote by

E := E(∞) = E(Q0, Q1, . . .)

the subalgebra generated by all of the Milnor primitives. As usual, E(n)∗ and E∗ will be the Fp-linear
duals of these subalgebras, respectively. As is customary, there is often an implicit prime p in our
notation (for example the notation H∗(X), y(n), and K(m)) and this implicit prime will be p = 2
unless otherwise stated. Given a functor from the category of E1 ring spectra to the category of
spectra E and a map f : A→ B of E1 ring spectra, we will write E(A,B) := fib(E(f)).

1.3. Acknowledgements. The authors thank Vigleik Angeltveit, Mark Behrens, Teena Gerhardt,
Mike Hill, John Rognes, Andrew Salch, and Sean Tilson for helpful discussions. The authors further
thank John Rognes and an anonymous referee for helpful comments on a previous version. The
second author was partially supported by NSF grant DMS-1547292.

2. Families of Thom spectra

In this section, we recall the Thom spectra y(n) which interpolate between the sphere
spectrum and the mod two Eilenberg-MacLane spectrum. We also introduce a family of spectra
z(n) which interpolate between the sphere spectrum and the integral Eilenberg-MacLane spectrum.
Basic properties of both families, such as their homology and multiplicative structure, are discussed in
Section 2.1. In Section 2.2, we recall Margolis homology and the localized Adams spectral sequence,
and in Section 2.3, we apply them to compute the chromatic complexity of the spectra y(n), z(n),
and z(n)/vn (Proposition 2.22).

2.1. Construction of the Thom spectra y(n) and z(n). We begin with Mahowald’s construction
of HF2 and HZ as Thom spectra [29]. Let f = Ω2w : Ω2S3 → Ω2B3O ≃ BO be the two-fold looping
of the generator w : S3 → B3O of π3(B

3O) ∼= π0(O) ∼= Z/2. Recall that for an E∞ ring spectrum
R, one can construct the group-like E∞ space GL1R [3][33]. When R = S is the sphere spectrum,
its delooping BGL1S is a model for the classifying space of stable spherical fibrations. The classical
J homomorphism then gives a map of group-like E∞-spaces J : O → GL1S. In [29, Sec. 2.6],
Mahowald showed that

(2) HF2 ≃ Th(Ω
2S3 f
−→ BO

BJ
−→ BGL1S)

where Th(−) is the Thom spectrum construction. We refer the reader to [2] for a modern treatment
of the Thom spectrum construction.

Similarly, Mahowald [29, Prop. 2.8] proved that

HZ ≃ Th(Ω2(S3〈3〉)→ Ω2S3 f
−→ BO

BJ
−→ BGL1S)

where S3〈3〉 is the fiber of the map S3 → K(Z, 3) and ι : S3〈3〉 → S3 is the inclusion of the fiber.
We now produce the spectra y(n) following [29, Sec. 4.5]. The James splitting gives an

equivalence ΩΣS2 ≃ J∞S
2 where J∞X is the James construction of the space X , so we can rewrite

(2) as HF2 ≃ Th(ΩJ∞S
2 → BGL1S). By truncating the James construction, one can define spectra

JkS
2, and there is an obvious inclusion ik : JkS

2 →֒ J∞S
2. Taking k = 2n − 1, one defines

y(n) := Th(ΩJ2n−1S
2 fn
−→ BGL1S)

where fn = BJ ◦ f ◦ Ωi2n−1. (Note that one needs to p-localize in order to construct y(n) at odd
primes, but this is not necessary at the prime 2.)

The fiber sequence J2n−1S
2 → ΩS3 → ΩS2n+1+1 implies that the map J2n−1S

2 → ΩS3

is (2n+1 − 1)-connected. Thus there is a map J2n−1S
2 → K(Z, 2) given by truncating homotopy

groups which is compatible with the map J∞S
2 → K(Z, 2).



CHROMATIC COMPLEXITY OF ALGEBRAIC K-THEORY OF y(n) 5

Construction 2.1. Let n ≥ 1. Write J2n−1S
2〈2〉 for the fiber of the map J2n−1S

2 → K(Z, 2) given
by truncating homotopy groups. Define

z(n) := Th(Ω(J2n−1S
2〈2〉)

gn
−→ BGL1S)

where gn = fn ◦ Ωi2n−1 ◦ Ωι2n−1 with ιk : JkS
2〈2〉 → JkS

2 is the inclusion of the fiber. There is a
commutative diagram

Ω(J2n−1S
2〈2〉) //

Ωι2n−1

��

Ω2S3〈3〉

ι

��

g

%%❑
❑

❑

❑

❑

❑

❑

❑

❑

❑

Ω(J2n−1S
2)

Ωi2n−1
//

��

Ω2S3 fn
//

��

BGL1S

S1 =
// S1

where the left two columns are fiber sequences, all the maps in the upper right triangle are 2-fold
loop maps, and all the maps in the upper left square are 1-fold loop maps.

Lemma 2.2. The spectra z(n) are E1 ring spectra and the diagram

z(n) //

��

HZ

��

y(n) // HF2

is a commutative diagram in the category of E1 ring spectra for n ≥ 1.

Proof. This immediately follows from Lewis’s theorem [18, Ch. IX] and Construction 2.1. �

The homology of the spectra y(n) interpolate between the homology of the sphere spectrum
S ≃ y(0) and the homology of the mod 2 Eilenberg-MacLane spectrum HF2 ≃ y(∞). Similarly, the
homology of the spectra z(n) interpolate between the homology of z(1) and the homology of the
integral Eilenberg-MacLane spectrum z(∞) = HZ. More generally, we have the following ladder of
interpolations between the sphere spectrum and the mod 2 and integral Eilenberg-MacLane spectra:

z(1) z(2) · · · z(∞) = HZ

S = y(0) y(1) y(2) · · · y(∞) = HF2.

Note that the structure of A∗ as an A∗-comodule is given by the coproduct ψ, and more
generally, the coaction on any sub-Hopf algebra ofA∗ is defined to be the restriction of the coproduct.

Lemma 2.3. There are isomorphisms

H∗(y(n)) ∼= P (ξ̄1, ξ̄2, . . . , ξ̄n),

H∗(z(n)) ∼= P (ξ̄21 , ξ̄2, . . . , ξ̄n)

of sub-A∗-comodule algebras of H∗(HF2) and H∗(HZ), respectively, for n ≥ 1. The map z(n)→ y(n)
induces the evident inclusion in homology.

Proof. By the Thom isomorphism, there are isomorphismsH∗(y(n)) ∼= H∗(ΩJ2n−1S
2) andH∗(z(n)) ∼=

H∗(Ω(J2n−1S
2〈2〉)). The Serre spectral sequence arising from the path-loops fibration has the form

E2 = H∗(J2n−1S
2;H∗(ΩJ2n−1S

2))⇒ H∗(PJ2n−1S
2) = F2{1}.

The homology H∗(J2n−1S
2;F2) can be computed by induction on k from the long exact sequence

associated to the cofiber sequence

Jk−1S
2 → JkS

2 → JkS
2/Jk−1S

2 ≃ (S2)∧k
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as in [23, Lect. 3]. We have an additive isomorphism

H∗(J2n−1S
2;F2) ∼= P2n(x)

where |x| = 2. In order for the relevant classes to die in the spectral sequence, we must have

H∗(ΩJ2n−1S
2) ∼= P (ξ̄1, . . . , ξ̄n).

Thus H∗(y(n)) ∼= P (ξ̄1, . . . , ξ̄n). In the analogous Serre spectral sequence

E2 = H∗(J2n−1S
2〈2〉;H∗(Ω(J2n−1S

2〈2〉)))⇒ H∗(PJ2n−1S
2) = F2{1},

only difference is that H∗(J2n−1S
2〈2〉) ∼= F2{1, x

2, . . . , x2
n+1−1} so the computation is the same

except instead of ξ̄1 and its powers we only observe the powers of ξ̄21 . Thus, we have H∗(z(n)) ∼=
P (ξ̄21 , ξ̄2, . . .).

Finally, we claim that the maps H∗(y(n)) → H∗(HF2) and H∗(z(n)) → H∗(HZ) are
monomorphisms of A∗-comodule algebras and this implies the desired A∗-coaction. This claim
may easily be deduced by the map of Serre spectral sequences induced by the map of fiber sequences
in Construction 2.1. �

Corollary 2.4. The spectra y(n) and z(n) are not fp type m for any finite m.

Proof. The cokernels of the inclusions H∗(y(n))→ A∗ and H∗(z(n))→ A∗ are not finitely generated
as A∗-comodules, so y(n) and z(n) are not finitely presented as comodules over the dual Steenrod
algebra. The result then follows by [31, Prop. 3.2]. �

From the homology calculation above, we can also determine that y(n) and z(n) are not
highly structured ring spectra in the following sense.

Corollary 2.5. The E1 algebra structure on y(n) and z(n) cannot be extended to an E2 algebra
structure.

Proof. We give the proof for y(n); the proof for z(n) is similar. An extension of the E1 algebra
structure to an E2 algebra structure implies an extension of the H1 algebra structure to an H2

algebra structure. If this is the case, then the top operation may be identified with the Dyer-Lashof
operation Q|x|+1(x) [13, p. 65].2 Suppose the E1 algebra structure of y(n) extends to an E2 algebra
structure. Then we may form a Postnikov truncation in the category of E2 algebras to produce a
map y(n)→ Hπ0(y(n)) = HF2. This map induces an inclusion H∗(y(n)) →֒ A and therefore sends
ξ̄n ∈ H∗(y(n)) to ξ̄n ∈ A. This inclusion must be compatible with Q|x|+1. However, we know that

Q|ξ̄n|+1(ξ̄n) = ξ̄n+1 in H∗(HF2) by [13, Thm. 2.2], but ξ̄n+1 is not in the image of the inclusion.
We can conclude that the E1 ring structure of y(n) cannot be extended to an E3 ring structure
compatible with the E3 ring structure on HF2. For z(n), the argument is the same except that we
consider the Postnikov truncation in E2 algebras z(n) → Hπ0(z(n)) = HZ, which also induces an
inclusion in homology H∗(z(n)) →֒ (A//E(Q0))∗ and the rest of the argument is the same. �

The fact that y(n) is not an E2 algebra will play a key role in Section 3.

Convention 2.6. We will often use the unit map S → y(n) as well as the map y(n) → HF2

induced by the inclusion J2n−1S
2 →֒ J∞S

2 ≃ ΩS3. From this point on, any map y(n) → HF2

without decoration refers to the latter.

Lemma 2.7. The map y(n)→ HF2 is (2n+1 − 2)-connected.

Proof. The Adams spectral sequence converging to y(n)∗ has the form

Ext∗∗A∗

(F2, P (ξ̄1, ξ̄2, . . . , ξ̄n))⇒ y(n)∗

2There is also a typo in line (1) of [13, p. 65] and Hn+1 should read Hn. This is evident by comparing [13, Thm.
3.3] to [13, Thm. 3.1]. See [43, Thm. 1.8] where this is stated correctly in the literature at odd primes.
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and the Adams spectral sequence converging to (HF2)∗ has the form

Ext∗∗A∗

(F2, P (ξ̄1, ξ̄2, . . .)) ∼= F2 ⇒ (HF2)∗ = F2.

Let C•(n) denote the E1 page of the Adams spectral sequence for y(n) and let C•(∞) denote the
E1 page for the Adams spectral sequence for HF2. These two E1 pages differ only in stems above
the degree of ξ̄n+1. Since |ξ̄n+1| = 2n+1− 1, the resulting E2-terms agree up to stem 2n+1− 2. Since
the second spectral sequence collapses at E2, we conclude that πi(y(n)) = 0 for i ≤ 2n+1 − 2. �

2.2. The localized Adams spectral sequence. In this section, we recall the localized Adams
spectral sequence [30][35] and discuss its applications to the study of chromatic complexity. Recall
that the m-th connective Morava K-theory k(m) has homology H∗(k(m)) ∼= A∗�E(ξ̄m+1)F2 where

ξ̄m+1 is dual to them-th Milnor primitiveQm. The Adams spectral sequence converging to k(m)∗(X)
has the form

E2 = Ext∗∗E(ξ̄m+1)
(F2, H∗(X))⇒ k(m)∗(X)

by the Künneth isomorphism and the change-of-rings isomorphism. The spectral sequence collapses
for degree reasons when X is the sphere spectrum to show that k(m)∗ ∼= F2[vm] with |vm| = 2n+1−2.

Morava K-theory K(m) with K(m)∗ ∼= F2[v
±1
m ] can then be constructed as the telescope

K(m) = k̂(m) = hocolim
(
k(m)

vm−→ Σ−(2m+1−2)k(m)
vm−→ · · ·

)
.

Since smash product commutes with filtered colimits, K(m) ∧ X is the telescope of the self-map
vm ∧ idX on k(m) ∧X .

The homotopy groups of a telescope can sometimes be computed using the localized Adams
spectral sequence introduced in [35]. Our recollection follows [30].

Construction 2.8. [35][30] Let Y be a spectrum with with a vn-self map f : Y → Σ−dY , let Ŷ be
the telescope of f , and let

Y = Y0 ← Y1 ← Y2 ← · · ·

be an Adams resolution of Y . Suppose there is a lifting f̃ : Y → Σ−dYs0 for some s0 ≥ 0. This

lifting induces maps f̃ : Ys → Ys+s0 for each Ys in the Adams resolution above. Iterate these maps

to define telescopes Ŷs for s ≥ 0 and set Ys = Y for s < 0 to produce a tower

· · · ← Ŷ−1 ← Ŷ0 ← Ŷ1 ← · · · .

The resulting conditionally convergent full plane spectral sequence

v−1
m Ext∗∗A (H∗(Y ),F2)⇒ π∗(Ŷ )

is the localized Adams spectral sequence.

Theorem 2.9. [30, Thm. 2.13] For a spectrum Y equipped with maps f and f̃ as above, in the

localized Adams spectral sequence for π∗(Ŷ ) we have

• The homotopy colimit hocolim
s

Ŷ−s is the telescope Ŷ .

• The homotopy limit holim
s

Ŷs is contractible if the original (unlocalized) Adams spectral se-

quence has a vanishing line of slope s0/d at Er for some finite r, i.e. if there are constants
c and r such that

Es,t
r = 0 for s > c+ (t− s)(s0/d).

(In this case, we say f has a parallel lifting f̃ .)

• If f has a parallel lifting, this localized Adams spectral sequence converges to π∗(Ŷ ).

Remark 2.10. Mahowald, Ravenel, and Shick compute v−1
n E2 for the localized Adams spectral

sequence converging to π∗(ŷ(n)) in [30, Sec. 2.3]. Their computations show that the localized

Adams spectral sequence for π∗(ŷ(n)) converges.
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As suggested by the notation, the E2-page of the localized Adams spectral sequence can be
computed by inverting vm at the level of Ext-groups as in [30, Section 2.5] and [17].

We now specialize to the case Y = k(m) ∧ X and f = vm ∧ idX so that Ŷ ≃ K(m) ∧ X .
By applying the Künneth isomorphism and a change-of-rings isomorphism, we see that the localized
Adams spectral sequence takes the form

v−1
m E2 := v−1

m Ext∗∗E(Qm)(H
∗(X),F2)⇒ K(m)∗(X).(3)

Note that we have only used the vm-map on k(m), so there is no decoration on X .
In order to compute v−1

m E2, we will use Margolis homology [32, Ch. 19] which encodes
the action of the Milnor primitive Qm on H∗(X). For our purposes, it will be easier to work with
homology and since all the examples we consider have finite type homology the distinction is minor
as we note in Lemma 2.12.

Definition 2.11. Let M be a module over E(Qm). Since Q2
m = 0, we obtain a complex

. . .
Qm
−→M

Qm
−→M

Qm
−→M

Qm
−→ . . .

The homology

H(M ;Qm) := ker(Qm|M)/ im(Qm) ∩M

is the Margolis homology of M with respect to Qm. If X is a spectrum, then the Margolis homology
of X with respect to Qm, denoted H(X ;Qm), is defined by taking M = H∗(X).

The following lemma says that we could equivalently define H(X ;Qm) by taking M =
H∗(X) in Definition 2.11 and then dualizing.

Lemma 2.12. Let X be a spectrum with H∗(X) finite type. There is a natural isomorphism of
(left) E(Qm)-modules

H(H∗(X);Qm) ∼= D(H(X ;Qm))

where D(−) is the dual A-module.

Proof. The result follows from [32, Ch. 19, Prop. 12] by letting M = H∗(X) since in this case there
is an isomorphism D(M) ∼= H∗(X). �

The following lemma is well known, so we omit the proof.

Lemma 2.13. Suppose H∗(X) is bounded below and finite type. There is an isomorphism

Ext∗,∗
E(Qm)∗

(F2, H∗(X)) ∼= H(X ;Qm)⊗ F2[vm]⊕ T

where |vm| = (1, 2m+1− 1) and T is a simple vm-torsion module concentrated in bidegrees (0, t) with
t ≥ min{i : Hi(X) 6= 0}.

Corollary 2.14. Let m ≥ 1 and suppose X is a bounded below spectrum and H∗(X) is finite type.
The following statements hold:

(1) If H(X ;Qm) = 0, then v−1
m E2 = 0.

(2) The E2 page of (3), denoted v−1
m E2, has a vanishing line of slope 1/|vm|.

(3) The localized Adams spectral sequence associated to k(m) ∧ X with the self-map vm ∧ idX
converges to K(m)∗(X).

Proof. Parts (1) and (2) are clear from Lemma 2.13. Also see Step 2 of the proof [5, Thm. 3.5].
Statement (3) follows by applying Theorem 2.9. �

When all the hypotheses for Corollary 2.14 hold including H(X ;Qm) = 0 then it is a
consequence that K(m)∗X ∼= 0 and this result also appears in [5, Thm. A.6].
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2.3. Chromatic complexity of y(n), z(n), and z(n)/vn. We now apply the localized Adams
spectral sequence to determine the chromatic complexity of y(n), z(n), and a spectrum we define in
this section z(n)/vn.

The action of Qm on the generator ξ̄k ∈ A∗ can be computed using the coproduct ψ : A∗ →
A∗ ⊗A∗ defined in (1). In particular, we have

(4) Qm(ξ̄k) =

{
ξ̄2

m+1

k−m−1 k ≥ m+ 1,

0 else,

where ξ̄0 = 1. This action can be extended to all of A∗ using the fact that Qm acts as a derivation.
As a warm-up for later computations, we compute the Margolis homology of the dual

Steenrod algebra. The chain complexes defined in the proof will be used in our computation of
H(y(n);Qm) below.

Lemma 2.15. The Margolis homology of the dual Steenrod algebra H(A∗;Qm), or equivalently the
Margolis homology of HF2, vanishes for all m ≥ 0.

Proof. This is [32, Ch. 19, Prop. 1], but our proof is modeled after [1, Lem. 16.9]. We begin with
H(A∗;Q0), which is somewhat exceptional. Express A∗ as the tensor product of the chain complexes
(with differential Q0)

(e0) F2{1} ← F2{ξ̄1},

(cr) F2{1, ξ̄
2
r} ← F2{ξ̄r+1, ξ̄

4
r} ← F2{ξ̄

2
r ξ̄r+1, ξ̄

6
r} ← F2{ξ̄

4
r ξ̄r+1, ξ̄

8
r} ← · · · ,

where r ≥ 1. Each chain complex (cr) has homology F2{1} and the chain complex (e0) has vanishing
homology, so by the Künneth isomorphism for Margolis homology [32, Ch. 19, Prop. 18], we have
H(A∗;Q0) ∼= 0.

Now we compute H(A∗;Q1). Decompose A∗ as the tensor product of the chain complexes
(with differential Q1)

(e0) F2{1} ← F2{ξ̄2},

(cr) F2{1, ξ̄
4
r} ← F2{ξ̄r+2, ξ̄

8
r} ← F2{ξ̄

4
r ξ̄r+2, ξ̄

12
r } ← F2{ξ̄

8
r ξ̄r+2, ξ̄

16
r } ← · · · ,

(d1) F2{1, ξ̄1, ξ̄
2
1},

(ds) F2{1, ξ̄
2
s},

where r ≥ 1 and s ≥ 2. The chain complex (e0) has vanishing homology, so by the Künneth
isomorphism we have H(A∗;Q1) ∼= 0.

The computation of H(A∗;Qm) for m ≥ 2 is similar. Decompose A∗ into chain complexes
as above; the chain complex

(e0) F2{1} ← F2{ξ̄m+1}

has vanishing homology, so H(A∗;Qm) = 0. �

Corollary 2.16. The Margolis homology of (A//A(0))∨ ∼= F2[ξ̄
2
1 , ξ̄2, . . .], or equivalently the Margolis

homology of HZ, is given by

H(HZ;Qm) ∼=

{
F2 m = 0,

0 else.

Proof. We begin with m = 0. The only difference between this computation and the computation
for H∗(HF2, Q0), is that we remove the chain complex (e0). Since the homology of the remaining
complexes (cr) is F2 in each case, H∗(HZ, Q0) ∼= F2.

For m > 0, we can use the same complexes as in the previous proof after replacing (d1) by
the chain complex F2{1, ξ̄

2
1}. �
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We compute the Margolis homology of y(n) and z(n) by modifying these complexes further.

Lemma 2.17. The Margolis homology of P (ξ̄1, . . . , ξ̄n), or equivalently the Margolis homology of
y(n), is given by

H(y(n);Qm) ∼=

{
0 if 0 ≤ m ≤ n− 1,

H∗(y(n)) if m ≥ n.

Proof. When m = 0, the first r for which the complex (cr) cannot be defined is (cn) since ξ̄n+1 /∈
H∗(y(n)). Therefore we replace (cn) by the complex

(c′n) F2{1} ← F2{ξ̄
2
n} ← F2{ξ̄

4
n} ← F2{ξ̄

6
n} ← · · · .

Then H∗(y(n)) decomposes as the tensor product of the complexes (e0), (cr)1≤r≤n−1, and (c′n). The
homology of (c′n) is nontrivial but the homology of (e0) vanishes, so H(y(n);Q0) ∼= 0.

When 1 ≤ m ≤ n − 1, we make a similar change. We end up with redefined chain com-
plexes (c′r) for n − m ≤ r ≤ n. Since we still tensor with the acyclic complex (e0), we still have
H(y(n);Qm) = 0.

When m ≥ n, we no longer include the chain complex (e0) since ξ̄n+1 /∈ H∗(y(n)). Since
Qn(ξ̄i) = 0 for all 1 ≤ i ≤ n, we see that H∗(y(n)) is generated by cycles and obtain the desired
isomorphism. �

The same techniques adapted to the complexes used to compute H(HZ;Qm) give the fol-
lowing:

Corollary 2.18. The Margolis homology of P (ξ̄21 , ξ̄2, . . . , ξ̄n), or equivalently the Margolis homology
of z(n), is given by

H(z(n);Qm) ∼=





P (ξ̄2n) if m = 0,

0 if 1 ≤ m ≤ n− 1,

H∗(z(n)) if m ≥ n.

Proof. We do the same alterations to Lemma 2.17 as we did to produce the proof of Corollary 2.16
from Lemma 2.15, so we will just describe the case m = 0. We use the same chain complexes as in
Lemma 2.17 except we do not include the acyclic complex (e0). Thus, the Margolis homology is a
tensor product of copies of F2 with the homology of (c′n). Thus, H∗(z(n);Q0) ∼= P (ξ̄2n). �

The following lemma will be useful for further describing the chromatic complexity of z(n).

Lemma 2.19. The spectrum z(n) has a self map

vn : Σ
2pn−2z(n)→ z(n)

that induces the zero map on K(m)∗ for 1 ≤ m < n and on mod p homology H∗. Moreover, we have
an isomorphism of A∗-comodules

H∗(z(n)/vn) ∼= H∗(z(n))⊗ E(ξ̄n+1).

Proof. We analyze the Adams spectral sequence for z(n) in a range. First we describe the input of
the Adams spectral sequence. Following [30], write B(n)∗ for the Hopf algebra in the extension

H∗(y(n))→ A∗ → B(n)∗

and let C(n)∗ be the Hopf algebra in the extension

H∗(z(n))→ A∗ → C(n)∗.

We also have a Hopf algebra extension

E(ξ̄1)→ C(n)∗ → B(n)∗

and an associated Cartan-Eilenberg spectral sequence

ExtsB(n)∗(F2,Ext
t
E(ξ̄1)∗

(F2,F2)) ∼= ExtsB(n)∗(F2, P (h0)t)⇒ Exts+t
C(n)∗

(F2,F2).
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The Cartan-Eilenberg spectral sequence collapses to the (s, 0)-line because |h0| = |ξ1|− 1 = 0. Since

there are no classes in ExtkB(n)(F2,F2) in adjacent degrees for k ≤ 2n+1 and the Adams spectral

sequence for y(n) collapses in this range by [30, Lem. 3.5], the Adams spectral sequence for z(n)
also collapses in this range. Again, by [30, Lem. 3.5] there is an element vn in Adams filtration one
in Ext∗,∗

C(n)∗
(F2,F2) and we observe that it supports a h0-tower. Consequently, there is an element

vn ∈ π2n+1−2(z(n)2) generating Z2.
Since z(n) is an E1 ring spectrum we can produce a self map as the composite

S2n+1−2 ∧ z(n)
vn∧idz(n)
−−−−−−→ z(n) ∧ z(n)→ z(n).

This is also the map obtained by taking the adjoint to vn : S
2n+1−1 → z(n) in the category of (right)

z(n)-modules. By Lemma 2.17 this map induces the zero map on K(m)∗ for 1 ≤ m < n. It also
induces the zero map on H∗ because vn is detected by an element in Adams filtration one.

Therefore we have an extension

0→ H∗(z(n))→ H∗(z(n)/vn)→ Σ2n+1−1H∗(z(n))→ 0

of A∗ comodules. The group of possible A∗-comodule extensions is given by

Ext1A∗

(Σ2n+1−1H∗(z(n)), H∗(z(n))) ∼= Ext1C(n)∗(Σ
2n+1−1H∗(z(n)),F2),

using a change of rings isomorphism and the isomorphism H∗(z(n)) ∼= A∗�C(n)∗F2.
We are therefore reduced to examining the possible C(n)∗-comodule extensions

0→ F2 → E → Σ2n+1−1H∗(z(n))→ 0,

but all such extensions of C(n)∗-comodules are trivial by examination of the grading preserving
coaction. This implies H∗(z(n)/vn) ∼= H∗(z(n))⊗ E(x) where |x| = 2n+1 − 1.

We now use the Adams spectral sequence to determine the A∗-coaction on x. Note that
z(n)/vn was obtained by coning off the element in homotopy detected by the permanent cycle ξ̄n⊗1
in the Adams spectral sequence with

E2 = Ext∗,∗
C(n)∗

(F2, E(x)).

The only element that can kill ξ̄n ⊗ 1 is x, so we have

d1(x) = ξ̄n+1 ⊗ 1.

On the other hand, d1-differentials in the Adams spectral sequence can be calculated using the
formula for differentials in the cobar complex, so d1(x) = 1⊗ x−ψn(x) where ψn(x) is the coaction
of x in H∗(z(n)/vn). We therefore see that

ψn(x) = ξ̄n+1 ⊗ 1 + 1⊗ x+ d1 boundaries.

Finally, since the composite Σ2n+1−2z(n)
vn→ z(n)→ z(∞) = HZ is null-homotopic, there is

a map z(n)/vn → HZ. This map sends ξ̄n+1⊗1 to the class with the same name in the cobar complex
for HZ. In the latter cobar complex, ξ̄n+1⊗1 is killed by a differential on ξ̄n+1 ∈ H∗(HZ). Therefore
x maps to ξ̄n+1 under the map of spectral sequences. Since the map H∗(z(n)/vn) → H∗(HZ) is a
map of A∗-comodules, the coaction on x coincides with the coaction on ξ̄n+1. Note also that there
is no room for hidden comodule extensions because |x| > |y| for all generators y of H∗(z(n)/vn). �

Remark 2.20. In fact, z(n)/vn may be constructed as the Thom spectrum of the map

S2pn−1 → BGL1(z(n))

adjoint to vn ∈ π2pn−2(GL1(z(n))) ∼= π2pn−2(z(n)). The first author would like to thank Jeremy
Hahn for pointing this out.

We now determine the chromatic complexity of z(n)/vn.
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Corollary 2.21. The Margolis homology of P (ξ̄21 , ξ̄2, . . . , ξ̄n)⊗E(ξ̄n+1), or equivalently the Margolis
homology of z(n)/vn, is given by

H(z(n)/vn;Qm) ∼=





F2 if m = 0,

0 if 1 ≤ m ≤ n,

H∗(z(n)/vn) if m ≥ n+ 1.

Proof. The proof in the case m = n follows by tensoring the complexes from the previous corollary
with the complex

F2{1} ← F2{ξ̄n+1}.

Since this complex is Qn-acyclic, we observe that H(z(n)/vn;Qn) ∼= 0. For m = 0, we make the
following adjustment. Rather than replacing (cn) with (c′n) as in Lemma 2.17, we keep the complex
(cn) and remove (cr) for r > n. This has the consequence that H∗(z(n)/vn, Q0) ∼= F2. In the case
0 < m < n, we only replace (cr) with (c′r) for n−m < r ≤ n. The Margolis homology is still trivial
because we are tensoring with the acyclic complex F2{1} ← F2{ξ̄m}. The case m > n is exactly the
same as in Lemma 2.17 �

We can assemble these Margolis homology computations to study K(m)∗(X) for X = y(n),
z(n), and z(n)/vn.

Proposition 2.22. The chromatic complexity of y(n), z(n) and z(n)/vn may be described as follows:

• The spectrum y(n) is K(m)-acyclic for 0 ≤ m ≤ n− 1, and K(n)∗(y(n)) 6= 0.
• The spectrum z(n) is K(m)-acyclic for 1 ≤ m ≤ n− 1, and K(m)∗(z(n)) 6= 0 for m = 0, n.
• The spectrum z(n)/vn is K(m)-acyclic for 1 ≤ m ≤ n, and K(m)∗(z(n)/vn) 6= 0 for m = 0.

Proof. We give the proof for y(n); the proofs for z(n) and z(n)/vn are similar. Since y(n) is
connective, the localized Adams spectral sequence converges to K(m)∗(y(n)) by Lemma 2.14. By
the same lemma, we have

v−1
m E2 = v−1

m ExtE(Qm)(H
∗(y(n)),F2) ∼= 0

whenever H(y(n);Qm) vanishes. Therefore Lemma 2.17 proves the K(m)-acyclicity of y(n) for
0 ≤ m ≤ n− 1.

It remains to show that K(m)∗(y(n)) 6= 0 and K(m)∗(z(n)) 6= 0 for m = 0, n. The m = 0
cases follow from examination of the maps z(n) → HZ and z(n)/vn → HZ, which allow us to
resolve the h0-tower in the zero stem in the Adams spectral sequence. Consequently, HQ0(z(n)) ∼=
HQ0(z(n)/vn) ∼= Q.

The proofs that K(n)∗(y(n)) 6= 0 and K(n)∗(z(n)) 6= 0 are essentially the same, so we
just describe the y(n) case. Since K(n) and y(n) are both E1 ring spectra, the Atiyah-Hirzebruch
spectral sequence

H∗(y(n),K(n))⇒ K(n)∗(y(n))

is multiplicative, with multiplicative generators all either on the zero line or the zero column using
Serre grading. The spectral sequence is a right half plane spectral sequence so the generators on the
zero column cannot support differentials. The generators in the zero line are all in degrees less than
or equal to 2n − 1 and since |vn| = 2n+1 − 2 the E2-page is isomorphic to the E2n+1−1 page and
therefore the spectral sequence collapses. Consequently, there is an isomorphism

K(n)∗(y(n)) ∼= K(n)∗ ⊗H∗(y(n)).

�
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3. Homology of topological Hochschild homology of y(n)

We now turn to the study of the topological Hochschild homology of y(n). We begin by
computing H∗(THH(y(n))) using the Bökstedt spectral sequence [12]. We then analyze the map
φn : H∗(THH(y(n)))→ H∗(THH(HF2)).

Remark 3.1. The calculations in this section and the sequel are complicated by two facts:

(1) The spectrum THH(y(n)) does not admit a ring structure since y(n) is an E1 ring spectrum,
but not an E2 ring spectrum. Therefore we will only prove additive isomorphisms throughout
the remaining sections since there is no multiplicative structure a priori onH∗(THH(y(n))).

(2) There is indeterminacy in the names of many classes. For example, we only understand
classes in H∗(THH(y(n))) up to lower Bökstedt filtration. This does not complicate the
additive presentations in our calculations, but it does affect our understanding of deeper
structure such as the coaction of the dual Steenrod algebra A∗.

Proposition 3.2. There is an isomorphism of graded A∗-comodules

H∗(THH(y(n))) ∼= H∗(y(n))⊗ E(σξ̄1, σξ̄2, . . . σξ̄n)

where the coaction

νn : H∗(THH(y(n)))→ H∗(THH(y(n)))⊗A∗

on elements x ∈ H∗(y(n)) is determined by the restriction of the coproduct on A∗ to H∗(y(n)) ⊂ A∗,
the coaction on σξ̄i is determined by the formula νn(σξ̄i) = (1⊗σ)νn(ξ̄i), and the coaction on symbolic
products xy is determined by νn(xy) = νn(x)νn(y).

Proof. The E2-term of the Bökstedt spectral sequence

E∗,∗
2
∼= HH∗(H∗(y(n))) ∼= P (ξ̄1, . . . , ξ̄n)⊗ E(σξ̄1, . . . , σξ̄n)

maps injectively to the E2-term of the Bökstedt spectral sequence for HF2. The latter spectral
sequence is multiplicative and all the algebra generators are concentrated in Bökstedt filtration zero
and one. Consequently, the Bökstedt spectral sequence for HF2 collapses and the injective map of
spectral sequences implies that the Bökstedt spectral sequence for y(n) also collapses.

The Bökstedt spectral sequence is a spectral sequence of A∗-comodules and the formula
νn(σx) = (1⊗σ)νn(x) holds because the operator σ is induced by a map of spectra T∧R→ THH(R)
(see e.g. [7, Eq. 5.11]) and this determines the A∗-coaction modulo lower Bökstedt filtration. �

We will use the fact that the Bökstedt spectral sequence computing H∗(THH(y(n))) agrees
with the Bökstedt spectral sequence computing H∗(THH(HF2)) up until degree 2n+1−2 = |ξ̄n+1|−
1. We will also frequently use the map

φn : THH(y(n))→ THH(HF2)

induced by the map y(n)→ HF2. The rest of this section is dedicated to studying the induced map
on homology

(φn)∗ : H∗(THH(y(n)))→ H∗(THH(HF2)).

Lemma 3.3. Let x ∈ H∗(THH(y(n))). The induced map on homology

(φn)∗ : H∗(THH(y(n)))→ H∗(THH(HF2))

has the form

(φn)∗(x) = x+ (classes of lower Bökstedt filtration).

Proof. The linearization map y(n) → HF2 induces a map of Bökstedt spectral sequences. The
lemma follows from the construction of the Bökstedt spectral sequence. �
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The spectrum THH(y(n)) has a canonical circle action T+ ∧THH(y(n)) → THH(y(n))
compatible with a structure map σ : T∧y(n)→ THH(y(n)). Though THH(y(n)) may not be a ring
spectrum, the map σ acts as though it were a derivation on H∗(THH(y(n))), at least symbolically,
as in [34, Prop. 3.2]. Indeed, the proof of [34, Prop. 3.2] only relies on R being an E1 ring spectrum.
This behavior will be important for our analysis in the next section since the structure map σ
determines the d2-differentials in the homological T-Tate spectral sequence.

If x ∈ H∗(THH(y(n))) satisfies σ(x) = 0, we will refer to x as a σ-cycle. If x = σ(y) for
some y ∈ H∗(THH(y(n))), we will refer to x as a σ-boundary. The A∗-coaction on H∗(THH(y(n)))
will be denoted

νn : H∗(THH(y(n)))→ A∗ ⊗H∗(THH(y(n)))

for 0 ≤ n ≤ ∞ with the convention that y(∞) = HF2.

Lemma 3.4. The induced map on homology (φn)∗ : H∗(THH(y(n)))→ H∗(THH(HF2)) is a map
of A∗-comodules; i.e. the formula (id⊗(φn)∗) ◦ νn = ν∞ ◦ (φn)∗ holds.

Proof. This is true for any map in homology induced by a map of spectra. �

We are now ready to prove the main result of this section, Proposition 3.8. Before that, we
include the following example to illustrate some subtleties in understanding (φn)∗.

Example 3.5. We will fully describe the map

P (ξ̄1)⊗ E(σξ̄1) ∼= H∗(THH(y(1)))
(φ1)∗
−→ H∗(THH(HF2)) ∼= P (ξ̄1, ξ̄2, . . .)⊗ P (σξ̄1)

induced by the map φ1 : THH(y(1))→ THH(HF2) as a map of E(σ)-modules in the category of
A∗-comodules. We first describe this map as map of E(σ)-modules.

By Lemma 3.3, we have (φ1)∗(ξ̄
i
1) = ξ̄i1 since ξ̄i1 ∈ Hi(THH(y(1))) has Bökstedt filtration

zero. In general, the map (φ1)∗ sends classes in H∗(THH(y(n))) in Bökstedt filtration zero to the
classes with the same name in H∗(THH(HF2)).

Moving on to Bökstedt filtration one, we know that either

(φ1)∗(σξ̄1) = σξ̄1 or (φ1)∗(σξ̄1) = σξ̄1 + ξ̄21

for degree reasons. If the latter formula holds, we may simply change our basis for the vector space
H2THH(y(1)) ∼= F2{σξ̄1, ξ̄

2
1} to account for this, so we may assume the former.

We now analyze the key case. Consider the class ξ̄1σξ̄1 ∈ H3(THH(y(1))). We claim that
(φ1)∗(ξ̄1σξ̄1) 6= ξ̄1σξ̄1. In fact, we know that σ(ξ̄1σξ̄1) = 0 in H∗(THH(y(1))) and therefore ξ̄1σξ̄1
must map to a σ-cycle in H∗(THH(HF2)). By Lemma 3.3, we know that ξ̄1σξ̄1 maps to the class of
the same name modulo classes in lower Bökstedt filtration. We also know that in H∗(THH(HF2))
σ(ξ̄1σξ̄1) = σξ̄2. Therefore, (φ1)∗(ξ̄1σξ̄1) = ξ̄1σξ̄1 + y where y is in Bökstedt filtration zero and
σy = σξ̄2. The only such element in H∗(THH(HF2)) with these properties is ξ̄2 itself. Thus,

(φ1)∗(ξ̄1σξ̄1) = ξ̄1σξ̄1 + ξ̄2.

We then claim that (φ1)∗(ξ̄
2k
1 σξ̄1) = ξ̄2k1 σξ̄1. We know that σ(ξ̄2k1 σξ̄1) = 0 in both the

source and target. Therefore, the only possibility is that we add σ-cycles in either the source or
target of the map. Since this does does not affect the map up to isomorphism of E(σ)-modules, we
may assume (φ1)∗(ξ̄

2k
1 σξ̄1) = ξ̄2k1 σξ̄1.

We also claim that (φ1)∗(ξ̄
2k+1
1 σξ̄1) = ξ̄2k+1

1 σξ̄1+ ξ̄
2k
1 ξ̄2. Again, we know σ(ξ̄2k+1

1 σξ̄1) = 0 in

H∗(THH(y(1))) whereas ξ̄2k+1
1 σξ̄1 = ξ̄2k1 σξ̄2 in H∗(THH(HF2)). Therefore, we must add a term y

in Bökstedt filtration zero such that σy = ξ̄2k1 σξ̄2 and the only possibility is ξ̄2k1 σξ̄2. This completely
determines the map up to isomorphism of E(σ)-modules.

We now describe the map as a map of E(σ)-modules in the category of A∗-comodules up

to some indeterminacy. First, note that there are no σ-cycles in the degree of ξ̄2k+1
1 σξ̄1 in lower
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Bökstedt filtration and thus we know the answer for ξ̄2k+1
1 σξ̄1 completely as a map of A∗-comodules.

This also forces the A∗-comodule structure on these elements. For example, since

ν∞(ξ̄2k+1
1 σξ̄1 + ξ̄2k1 ξ̄2) = (ξ̄1 ⊗ 1 + 1⊗ ξ̄1)

2k+1(1⊗ σξ̄1)+
(ξ̄2k1 ⊗ 1 + 1⊗ ξ̄2k1 )(ξ̄2 ⊗ 1 + ξ̄1 ⊗ ξ̄

2
1 + 1⊗ ξ̄2)

= (ξ̄1 ⊗ 1 + 1⊗ ξ̄1)
2k+1(1⊗ σξ̄1) + ξ̄2k1 ξ̄2 ⊗ 1+

ξ̄2 ⊗ ξ̄
2k
1 + ξ̄2k+1

1 ⊗ ξ̄21 + ξ̄2k+3
1 ⊗ 1 + ξ̄2k1 ⊗ ξ̄2 + 1⊗ ξ̄2k1 ξ̄2,

we know that

ν1(ξ̄
2k+1
1 σξ̄1) = (ξ̄1 ⊗ 1 + 1⊗ ξ̄1)

2k+1(1⊗ σξ̄1) + ξ̄2k+1
1 ⊗ ξ̄21 + ξ̄2 ⊗ ξ̄

2k
1 + ξ̄2k+3

1 ⊗ 1 + ξ̄2k1 ξ̄2 ⊗ 1.

In the case of ξ̄2k1 σξ̄1, adding σ-cycles of the form ξ̄j1 does not affect the comodule structure on

the source up to a change of basis, since ξ̄j1 is also in the target. However, if we add a σ-cycle in
H∗(THH(HF2)) that is not in the source, then this affects the comodule structure on the source.
We therefore determine φ∗ up to this indeterminacy. In summary, ξ̄2k1 σξ̄1 maps to ξ̄2k1 σξ̄1 up to
σ-cycles in H∗(THH(HF2)) that are not in the image of H∗(THH(y(1))). In Proposition 3.8, we
will describe (φn)∗ up to the same type of indeterminacy.

Remark 3.6. In fact, we can actually avoid indeterminacy in the previous example because ξ̄2k1 σξ̄1
is a σ-boundary. Since we know that ξ̄2k+1

1 maps to the element of the same name, we see that
ξ̄2k1 σξ̄k must map to the element of the same name without any indeterminacy. This argument no
longer applies when studying (φn)∗ for n ≥ 2 since there will typically be additional elements in
lower Bökstedt filtration.

We may choose a basis of H∗(THH(y(n))) so that σ behaves as a derivation at the level
of symbols, i.e. there is an equality up to higher Bökstedt filtration σ(xy) = σ(x)y + xσ(y) for
x, y ∈ H∗(y(n)). Indeed, we may apply [34, Prop. 3.2] to see that class σ(xy) is detected by σ∗(xy)
in the E2-page of the Bökstedt spectral sequence (where σ∗ : H∗(y(n))→ HH∗(H∗(y(n))) is defined
by z 7→ 1⊗ z). We have σ∗(xy) = σ∗(x)y + xσ∗(y) since σ∗ is a derivation in Hochschild homology
of the graded commutative ring H∗(y(n)) [34, Pg. 7], and σ∗(x)y + xσ∗(y) detects the element we
call σ(x)y + xσ(y) in H∗(THH(y(n))).

The coaction on σξ̄k is given by

νn(σξ̄k) = (1⊗ σ)


 ∑

i+j=k

ξ̄i ⊗ ξ̄
2i

j


 .

Since σ behaves like a derivation symbolically, we see that the only term that is nontrivial in the
formula for νn(σξ̄k) is 1⊗ σξ̄k. We therefore conclude that σξ̄k is a comodule primitive for all k.

We now proceed to the main result of this section. We thank Vigleik Angeltveit for discus-
sions which led to a simplification of the proof of Proposition 3.8; we use some notation from [6,
Prop. 4.12]. We also note once and for all that elements in H∗(THH(y(n))) are only well-defined
up to lower Bökstedt filtration as in [6, Sec. 5].

Definition 3.7. Let bfilt(x) be the Bökstedt filtration of an element x. Define

Jn = (x ∈ H∗(THH(HF2)) \ im(φn)∗ : bfilt(x) ≤ n and σ(x) = 0)

to be the ideal generated by all σ-cycles x in H∗(THH(HF2)) in Bökstedt filtration less than or
equal to n that are not in the image of (φn)∗. We refer to these elements as the complementary
σ-cycles in the proof of the following proposition.

Proposition 3.8. Let xi = σξ̄iσξ̄i+1 . . . σξ̄n The map

(φn)∗ : H∗(THH(y(n)))→ H∗(THH(HF2))

is determined by

(5) (φn)∗(ξ̄ixi) = ξ̄ixi + ξ̄n+1
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and for y ∈ H∗(y(n)) or y ∈ E(σξ̄1, σξ̄2, . . . , σξ̄n)

(6) (φn)∗(y) = y.

For all remaining products of elements, the map (φn)∗ is symbolically multiplicative modulo comple-
mentary σ-cycles.

Proof. We begin with the proof of (5). The elements ξ̄ixi are σ-cycles in H∗(THH(y(n))), but in
H∗(THH(HF2)) we know that σ(ξ̄ixi) = σξ̄n+1. Since ξ̄nσξ̄n maps to ξ̄nσξ̄n + z for z in lower
Bökstedt filtration, we know that σ(ξ̄ixi + z) = 0 and therefore that σ(z) = σξ̄n+1. In this case, the
only element z in lower Bökstedt filtration such that σz = σξ̄n+1 is ξ̄n+1 itself. We now proceed by
downward induction on i to show ξ̄ixi maps to ξ̄ixi+ ξ̄n+1 for all i ≤ n. By our inductive hypothesis,
ξ̄jxj maps to ξ̄jxj + ξ̄n+1 up to elements in lower Bökstedt filtration for all j > i. Now, ξ̄ixi maps
to ξ̄ixi + z where either z = ξ̄n+1 or

z ∈ {ξ̄nxn, ξ̄n−1xn−1, . . . , ξ̄i+1xi+1}

up to σ-cycles in H∗(THH(y(n))). If the former holds, then we are done. If the latter holds, then we
can add z to the source and we know that ξ̄ixi + z maps to ξ̄ixi + ξ̄n+1 by the inductive hypothesis.
Thus we have proven that (5) holds.

We now turn to (6). For y ∈ H∗(y(n))) it is clear that (φn)∗(y) = y because all such y are
in Bökstedt filtration zero. For y ∈ E(σξ̄1, σξ̄2, . . . , σξ̄n), we know that after a possible change of
basis, each of these elements y is a comodule primitive in H∗(THH(y(n))) and therefore each such
y maps to the element of the same name in H∗(THH(HF2)).

We now prove the last sentence of the proposition. We first begin with products of the form
yξ̄ixi.

Case 1: If y is a σ-cycle, then

(7) (φn)∗(yξ̄ixi) = yξ̄ixi + yξ̄n+1

by the same proof as the one given for ξ̄ixi. Note that all σ-cycles y are in even degree so yξ̄1xi
must be in an odd degree. We therefore know that formula (7) holds.

Case 2: Suppose y ∈ H∗(THH(y(n))) is not a σ-cycle and therefore σ(yξ̄ixi) = σ(y)ξ̄ixi in
H∗(THH(y(n))). Since σ(yξ̄ixi) = σ(y)ξ̄ixi+yσξ̄n+1 in H∗(THH(HF2)), we must add a correcting
term z in the target such that σ(z) = yσξ̄n+1. The only possibility is an element of the form yξ̄n+1+c
where c is a σ-cycle.

We note that this seems to add additional terms that cause a further discrepancy since
σ(yξ̄n+1) = σ(y)ξ̄n+1 + yσξ̄n+1, but this extra term is accounted for since σ(y)ξ̄ixi is also of the
form we are currently handling in Case 2 and thus σ(y)ξ̄ixi maps to σ(y)ξ̄ixi + σ(y)ξ̄n. Thus, we
also have that yξ̄ixi maps to yξ̄ixi + yξ̄n + c where c is a σ-cycle. We can restrict to c ∈ Jn by
changing the element in the source of this map by a change of basis where we add on terms in lower
Bökstedt filtration.

This covers all products that are divisible by ξ̄ixi. Let y ∈ H∗(y(n)) and let

w ∈ E(σξ̄1, σξ̄2, . . . σξ̄n).

Case 1: Suppose y, and consequently yw, is a σ-cycle. Then yw maps to yw + c where c is
a σ-cycle. By the same argument as earlier, we may assume c ∈ Jn. This completes this case.

Case 2: Suppose y is not a σ-cycle. Then σ(yw) = σ(y)w 6= 0 in H∗(THH(y(n))), but
σ(yw) = σ(y)w in H∗(THH(HF2)). Therefore, if yw maps to the class of the same name, then the
map is well defined as a map of E(σ)-modules. Therefore we may only possibly add σ-cycles to yw
in the target, and as above, we only need to consider complementary σ-cycles. �

We now note that (φn)∗ is also a map of E(σ)-modules in A∗-comodules. Since (φn)∗ is
exotic in some cases, there is an exotic A∗-coaction on some elements in H∗(THH(y(n))).



CHROMATIC COMPLEXITY OF ALGEBRAIC K-THEORY OF y(n) 17

Corollary 3.9. The E∗-coaction on H∗(THH(y(n))) is determined by the formula

(8) νn(ξ̄ixi) = 1⊗ ξ̄ixi +
∑

0<j+k=i

ξ̄j ⊗ ξ̄
2j

k xi + ξ̄i ⊗ xi +
∑

j+k=n+1

ξ̄j ⊗ ξ̄
2n+1

k

for 1 ≤ i ≤ n the usual coaction on H∗(y(n)) and primitivity of the coaction on E(σξ̄1, . . . σξ̄n).

4. Topological periodic cyclic homology of y(n)

In many classical trace methods computations, topological periodic cyclic homology is un-
derstood using the homotopical Tate spectral sequence described by Greenlees-May [20]. In Section
4.1, we explain why this method of understanding TP (R) is not tractable when R = y(n) for n <∞.
In Section 4.2, we apply an alternative approach to understanding TP (R) inspired by foundational
work of Bruner and Rognes [14], the homological Tate spectral sequence. We analyze this spectral
sequence to compute the continuous homology Hc

∗(TP (y(n))) in Proposition 4.5.
In Section 4.3, we use the localized Adams spectral sequence to compute the Morava K-

theory of certain truncations of TP (y(n)). In Section 4.4, we show that the continuous Morava
K-theory K(m)c∗(TP (y(n))) vanishes for 1 ≤ m ≤ n.

4.1. Limitations of the homotopical Tate spectral sequence. Let R be an E1 ring spectrum.
The topological periodic cyclic homology spectrum TP (R) arises in many classical trace methods
computations. For example, when p is an odd prime, the spectrum TP (HFp) appears in Hesselholt
and Madsen’s computation of the algebraic K-theory of finite algebras over the Witt vectors of perfect
fields [22]. Similarly, it plays an important role in the computation of TC(Z2;Z/2) by Rognes [40].
In both cases, they analyze the mod p homotopical Tate spectral sequence

Ê2 = Ĥ−∗(T;π∗(THH(R));Z/p))⇒ π∗(TP (R);Z/p)

defined in [20]. We will review the filtration used to define this spectral sequence when we define
the homological Tate spectral sequence in Subsection 4.2.

When R = y(∞) = HF2, this spectral sequence is fairly simple. By Böksedt periodicity [12],
π∗(THH(HF2)) ∼= P (u) with |u| = 2, so one has a familiar checkerboard pattern on the E2-page
and the spectral sequence collapses. On the other hand, when R = y(n) for n < ∞, this spectral
sequence appears to be intractable.

Example 4.1. We have y(0) = S and THH(S) ≃ S as T-spectra. There is an equivalence of
spectra

TP (S) ≃ Σ2CP∞
−∞

by [20, Thm. 16.1]. The homotopy groups of CP∞
−∞ are less well understood than the homotopy

groups of spheres.

Moreover, [11, Thm. 1] implies that

THH(y(n)) ≃ Th(Lη(Bf))

where f : ΩJ2n−1(S
2)→ BGL1S is the map defining y(n) as Th(f) = y(n) and Th(Lη(Bf)) is the

Thom spectrum of the composite map Lη(Bf) defined as

LBΩJ2n−1(S
2)

L(Bf)
−→ LB2F ≃ BGL1S ×B

2GL1S
BGL1S×η
−→ BG1S ×BGL1S → BGL1S.

This spectrum has homotopy groups at least as complicated as π∗(y(n)), which are only known in a
finite range. Since we want to understand large-scale phenomena in these homotopy groups, we will
adopt a different approach.
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4.2. Homological Tate spectral sequence for THH(y(n)). In notes from a talk by Rognes
[42], it is shown using the homological homotopy fixed point spectral sequence and the inverse limit
Adams spectral sequence [27] that there is an isomorphism of graded abelian groups

π∗(TC
−(HF2)) ∼=

∏

i∈Z

Σ2iZ2.

We recall this calculation further in Proposition 5.1. A similar argument shows that there is an
isomorphism of graded abelian groups

π∗(TP (HF2)) ∼=
∏

i∈Z

Σ2iZ2.

Our goal in this section is to obtain similar results for TP (y(n)) when n <∞.

Definition 4.2 (Homological Tate spectral sequence [14]). Let R be an E1 ring spectrum. The
homological Tate spectral sequence has the form

Ê2 = Ĥ−∗(T;H∗(THH(R)))⇒ Hc
∗(TP (R)).

It arises from the Greenlees filtration of THH(R)tT = [F (ET+, THH(R))∧ Ẽ T]T defined for i ≥ 0
by setting (cf. [14, Sec. 2])

TP (R)[i] := [F (E T+, THH(R)) ∧ Ẽ T/Ẽ Ti]
T

where Ẽ Ti is the cofiber of the map E T
(i)
+ → S0, where E T(i) is the i-th skeleton of E T, if i > n

and Ẽ Ti is the Spanier-Whitehead dual of Ẽ T−i−1 if i < 0 [19, p.46]. The limit

Hc
∗(TP (R)) := lim

i
H∗(TP (R)[i])

is called the continuous homology of TP (R). For 0 ≤ n ≤ ∞, we will denote the Er-page of the

homological Tate spectral sequence converging to Hc
∗(TP (y(n))) by Ê

r(n).

Lemma 4.3. There is an additive isomorphism

Ê2(n) ∼= P (t, t−1)⊗H∗(THH(y(n))) ∼= P (t, t−1)⊗ P (ξ̄1, ξ̄2, . . . , ξ̄n)⊗ E(σξ̄1, . . . , σξ̄n)

where |t| = (−2, 0), |ξ̄i| = (0, 2i − 1), and |σξ̄i| = (0, 2i).

In [14, Prop. 3.2], Bruner and Rognes show that d2(x) = t · σ(x) in the homological Tate

spectral sequence. Therefore in order to compute Ê3(n), we need to understand the T-action on
H∗(THH(y(n))). This can be understood using Proposition 3.8 and the relation (φn)∗(σ(x)) =
σ((φn)∗(x)) which follows from naturality of σ.

Definition 4.4. [14, Prop. 6.1.(a)] Let k ≥ 1. Define ξ̄′k+1 ∈ H∗(THH(HF2)) by

ξ̄′k+1 := ξ̄k+1 + ξ̄kσξ̄k.

Proposition 4.5. There is an isomorphism of graded F2-vector spaces

Hc
∗(TP (y(n)))

∼= P (t, t−1)⊗ P (ξ̄21 , ξ̄
′
2, . . . , ξ̄

′
n)⊗ E(ξ̄nσξ̄n)

with |t| = (−2, 0), |ξ̄i| = (0, 2i − 1), and |σξ̄i| = (0, 2i).

Proof. First, Ê2
∗∗(n) was computed in Lemma 4.3. The homological Tate spectral sequence is not

a multiplicative spectral sequence since THH(y(n)) is not a ring spectrum, but it is a module over

the spectral sequence for the sphere {Êr
∗,∗(0)}r. Consequently dr(t) = 0 and the differentials are

t-linear. We have differentials d2(ξ̄k) = tσξ̄k and thus d2(tmξ̄k) = tm+1σξ̄k for m ∈ Z by t-linearity.
Recall that xi = σξ̄i · · ·σξ̄n. Any class of the form yξ̄ixi, where y is a σ-cycle, is a d2-cycle

in the homological Tate spectral sequence converging to Hc
∗(THH(y(n))tT). Many of these classes

are also d2-homologous; in particular,

d2(yξ̄iξ̄nσξ̄i · · ·σξ̄n−1)) = tyξ̄ixi + tyξ̄nxn.
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Using these relations and the fact that this spectral sequence is a module over the spectral
sequence for the sphere, we obtain an additive isomorphism (cf. [14, Proposition 6.1])

Ê3
∗∗(n)

∼= P (t, t−1)⊗ P (ξ̄21 , . . . , ξ̄
2
n)⊗ P (ξ̄

′
2, ξ̄

′
3, . . . , ξ̄

′
n)⊗ E(ξ̄nσξ̄n).

To see that there are no further differentials, we use the map of spectral sequences induced
by the T-equivariant map THH(y(n)) → THH(HF2). The homological Tate spectral sequence

converging to Hc
∗(THH(HF2)

t T) has Ê3-page

Ê3
∗∗(∞) ∼= P (t, t−1)⊗ P (ξ̄21 , ξ̄

2
2 , . . .)⊗ E(ξ̄′2, ξ̄

′
3, . . .).

All of the generators are permanent cycles by [14, Thm. 5.1], so there are no further differentials.

The map Ê3
∗,∗(n)→ Ê3

∗,∗(∞) is injective by Proposition 3.8 so we can conclude that there is also an

isomorphism Ê3(n) ∼= Ê∞(n). �

A similar proof can be used to compute the homology of the spectra TP (y(n))[i] which
were used to define the filtration of TP (y(n)) giving rise to the homological Tate spectral sequence.
Indeed, one may truncate the homological Tate spectral sequence to obtain a spectral sequence
which converges strongly to H∗(TP (y(n))[i]).

Notation 4.6. When computing the truncated homological Tate spectral sequence or the truncated
homological homotopy fixed point spectral sequence, we denote the left-most column (using Serre
grading) by

V (i) :=
(
H∗(THH(y(n))/ im(d2i−2,∗

2 )
)
{ti}

where the integer n is understood from the context.

We study V (i) further in Corollary 4.15. See Example 5.10 where V (i) is calculated for
n = 1.

Corollary 4.7. There is an isomorphism of graded F2-vector spaces

H∗(TP (y(n))[i]) ∼=
[
P (t−1){ti−1} ⊗ P (ξ̄21 , ξ̄

′
2, . . . , ξ̄

′
n)⊗ E(ξ̄nσξ̄n)

]
⊕ V (i)

with |t| = (−2, 0), |ξ̄i| = (0, 2i−1), |σξ̄i| = (0, 2i), and P (t−1){ti−1} is viewed as a P (t−1)-submodule
of P (t, t−1).

If X = limiXi is the homotopy limit of bounded below spectra Xi of finite type, then the
inverse limit Adams spectral sequence

E∗,∗
2 = Ext∗∗A∗

(F2, H
c
∗(X))⇒ π∗(X)

arises from the filtration of X obtained by taking the inverse limit of compatible Adams filtrations
of the spectra Xi, where the left-hand side is computed using the continuous A∗-coaction on Hc

∗(X).
For details, see [28, Sec. 2]. Taking X = TP (y(n)) gives a method for calculating π∗(TP (y(n))).
In view of Rognes’ computation of π∗(TC

−(HF2)) [42], one might suspect that the inverse limit
Adams spectral sequence could be used to compute the homotopy groups π∗(TP (y(n))) directly.
However, this approach is significantly less tractable for n < ∞ since A∗ coacts nontrivially on
P (t, t−1) ⊂ Hc

∗(TP (y(n))). This problem is avoided when n = ∞ as follows. There is an A∗-
comodule isomorphism

Hc
∗(TP (HF2)) ∼= P (t, t−1)⊗H∗(HZ2) ∼= P (t, t−1)⊗ (A//E(0))∗.

A change-of-rings isomorphism then gives

E∗,∗
2
∼= Ext∗,∗

E(ξ̄1)
(F2, P (t, t

−1)).

Since ξ̄1 is in an odd degree and P (t, t−1) is concentrated in even degrees, the E(ξ̄1)-coaction on
P (t, t−1) is trivial. Therefore

E∗,∗
2
∼= P (t, t−1)⊗ Ext∗,∗

E(ξ̄1)
(F2,F2)
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and the spectral sequence collapses for degree reasons. The key simplification in the sequel is that
we can replace the functor Ext∗,∗A∗

(F2,−) by the functor Ext∗,∗
E(ξ̄n)

(F2,−) if we compute connective

Morava K-theory instead of stable homotopy because of the change of rings isomorphism.

4.3. Morava K-theory of truncations of TP . To determine the chromatic complexity of TP (y(n)),
we need to compute K(m)∗(TP (y(n))).

Lemma 4.8. The A∗-coaction (resp. continuous A∗-coaction)

νn : H∗(TP (y(n))[i])→ A∗ ⊗H∗(TP (y(n))[i]) (resp. νn : Hc
∗(TP (y(n)))→ A∗⊗̂H

c
∗(TP (y(n))))

satisfies
(φn)∗(νn(x)) = ν∞((φn)∗(x))

where (φn)∗ is the map in homology (resp. continuous homology) induced by φn : TP (y(n))[i] →
TP (HF2)[i] (resp. φn : TP (y(n)) → TP (HF2)) and ν∞ is the A∗-coaction (resp. continuous
A∗-coaction) on H∗(TP (HF2)[i]) (resp. H

c
∗(TP (HF2))).

We can identify a piece of the continuous homology Hc
∗(TP (y(n))) computed in Proposition

4.5 with the homology H∗(z(n)/vn). Our identification may not hold as A∗-comodules due to the
possibility of complementary σ-cycles in the image of (φn)∗, but if we restrict to a smaller sub-Hopf-
algebra of A∗, it does. Recall the definition of E∗ from Section 1.2.

Proposition 4.9. There is an isomorphism of continuous E∗-comodules

Hc
∗(TP (y(n)))

∼= P (t±1)⊗H∗(z(n)/vn).

Proof. First, note that the E∗-coaction on P (t±1) is trivial because |t| = −2 and each ξ̄i is in an odd
degree for all i ≥ 0. The desired isomorphism is therefore given by a map

P (ξ̄21 , . . . , ξ̄
2
n)⊗ E(ξ̄′2, . . . , ξ̄

′
n)⊗ E(ξ̄nσξ̄n)→ H∗(z(n)/vn)

which is determined by

ξ̄2i 7→ ξ̄2i , 1 ≤ i ≤ n, ξ̄′i 7→ ξ̄i, 2 ≤ i ≤ n, ξ̄nσξ̄n 7→ ξ̄n+1.

This is clearly an additive isomorphism, so it only remains to calculate the action of Qi.
By Lemma 4.8, we can compute the continuous A∗-coaction

νn : H
c
∗(TP (y(n))→ A∗⊗̂H

c
∗(TP (y(n))

by comparison with the known coaction

ν∞ : Hc
∗(TP (HF2))→ A∗⊗̂H

c
∗(TP (HF2)).

We have (φn)∗(x) = x for x ∈ P (ξ21 , . . . , ξ
2
n) since bfilt(x) = 0, so νn(x) = ν∞(x). We then

calculate νn(ξ̄
′
i) as follows. We have (φn)∗(ξ̄

′
i) = ξ̄′i + y where y is a σ-cycle with bfilt(y) = 0. If

y /∈ Jn, then we have νn(ξ̄
′
i) = ν∞(ξ̄′i) up to the addition of elements in lower Bökstedt filtration. If

y ∈ Jn, then y is divisible by ξ̄2n+r or σξ̄n+r for r ≥ 1. In both cases, ν∞(y) does not contain any

terms of the form ξ̄i ⊗ z for any i, so Qi acts trivially on y for all i and the action of Qi on ξ̄′i is
unaffected by y. Finally, we have (φn)∗(ξ̄nσξ̄n) = ξ̄nσξ̄n + ξ̄n+1. Therefore

νn(ξ̄nσξn) = ν∞(ξ̄nσξ̄n) +

n+1∑

i=1

ξ̄i ⊗ ξ̄
2i

n+1−i

so Qi(ξ̄nσξ̄n) = Qi(ξ̄
′
n+1) for all i. �

Corollary 4.10. For any m ≥ 0, there is an isomorphism

Ext∗,∗
E(ξ̄m+1)

(F2, H
c
∗TP (y(n)))

∼= Ext∗,∗
E(ξ̄m+1)

(F2, H
c
∗((z(n)/vn)

t T)

between the E2-page of the inverse limit Adams spectral sequence converging to k(m)c∗(TP (y(n)))
and the E2-page of the inverse limit Adams spectral sequence converging to k(m)c∗((z(n)/vn)

t T).
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One may ask if this isomorphism of E2-pages is, in fact, an isomorphism of spectral se-
quences. Note that z(n)/2 ≃ y(n). When n = 0 we see that z(0)/v0 = y(0) = S and there is an
equivalence

TP (S) ≃ StT.

On the other hand, when n = ∞ we use the convention that z(∞)/v∞ = HZ and then there is an
equivalence

(HZ)t T2 ≃ TP (HF2).

Conjecture 4.11. There is an equivalence (z(n)/vn)
t T
≃ TP (y(n)) after 2-completion.

Remark 4.12. To prove this conjecture, we would need to construct a T-equivariant map z(n)/vn →
THH(y(n)) inducing a map

(z(n)/vn)
t T
2 → TP (y(n))

and consequently a map of inverse limit Adams spectral sequences. Then the isomorphism on E2-
pages gives an isomorphism of E∞-pages, and after resolving extensions, the result would follow.

In the case n = ∞, it is known that K(HFp)p ≃ HZp and therefore there is a map of T-
equivariant E∞ ring spectra HZp → THH(Fp) [37, Cor. IV.4.13]. The case n = 0 is trivial because
there is a T-equivariant equivalence THH(S) ≃ S induced by tensoring the sphere spectrum with
the collapse map from T to a point.

By essentially the same proof as that of Proposition 4.9, we have the following corollary.

Corollary 4.13. There is an isomorphism of E∗-comodules

H∗(TP (y(n))[i]) ∼= H∗(z(n)/vn)⊗ P (t
−1){ti−1} ⊕ V (i).

4.4. Chromatic complexity of TP (y(n)). We now compute the Margolis homology of TP (y(n))[i]
using the computations from Section 2.

Lemma 4.14. The Margolis homology of TP (y(n))[i] is given by

H(TP (y(n))[i];Qm) ∼=





P (t−1){ti+1} ⊕H(V (i);Q0) if m = 0,

H(V (i);Qm) if 1 ≤ m ≤ n,

H∗(TP (y(n))[i]) if m ≥ n+ 1.

Proof. We have an isomorphism of E∗-comodules

H∗(TP (y(n))[i]) ∼= P (t−1){ti} ⊗H∗(z(n)/vn)⊕ V (i)

by Proposition 4.9, so we can compute H(TP (y(n))[i];Qi) in terms of H(z(n)/vn;Qi) and V (i) for
all i. We have Qn(t

i) = 0 for all i ∈ Z for degree reasons. Therefore H(P (t, t−1);Qm) ∼= P (t, t−1)
for all m ≥ 0. The Künneth isomorphism and Corollary 2.21 then prove the lemma for m ≤ n.
When m ≥ n+ 1, the proof is similar to the proof in Corollary 2.21. �

Theorem 4.15. For 1 ≤ m ≤ n <∞, there are isomorphisms

lim
i
H(H∗(TP (y(n))[i]);Qm) ∼= 0

and the continuous Morava K-theory of TP (y(n)) vanishes, i.e.

K(m)c∗(TP (y(n))) = 0.

Proof. Let 1 ≤ m ≤ n. Since H∗(TP (y(n))[i]) and therefore H∗(TP (y(n))[i]) is bounded below, we
may apply Lemma 2.14 to see that the localized Adams spectral sequence

E2 = v−1
m Ext∗∗E(Qm)∗(F2, H∗(TP (y(n))[i]))⇒ K(m)∗(TP (y(n))[i])

converges strongly. Since H∗TP (y(n))[i] is finite type, we can apply Lemma 4.14 and observe that
the E2-page has the form

v−1
m Ext∗∗E(Qm)(F2, H∗(TP (y(n))[i])) = H(V (i);Qn)⊗ F2[v

±1
m ].
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We claim that the map

K(m)∗(TP (y(n))[i])→ K(m)∗(TP (y(n))[i− 1])

is zero for all i ∈ Z. To prove the claim, we show that the map is zero on the E2-page of the localized
Adams spectral sequence. It suffices to prove that no elements in the summand H∗(V (i − 1);Qm)
are in the image of the map H(TP (y(n))[i];Qm)→ H(TP (y(n))[i− 1];Qm) for 1 ≤ m ≤ n. To see
this, we note that the map

H∗(TP (y(n))[i])→ H∗(TP (y(n))[i− 1])

is induced by the map of truncated Tate spectral sequences which is defined on the (i−1)-st column
(using Serre grading) byH∗(z(n)/vn){t

i−1} → V (i−1). However, on Margolis homology this induces
the zero map

0 = H(H∗(z(n)/vn){t
i−1};Qm)→ H(V (i− 1);Qm)

for 1 ≤ m ≤ n. Therefore, the induced map on homotopy groups

K(m)∗TP (y(n))[i]→ K(m)∗TP (y(n))[i− 1]

is trivial. �

4.5. Chromatic complexity of relative topological periodic cyclic homology. In this sub-
section we will compute the continuous Morava K-theory of relative topological periodic cyclic ho-
mology. In the proof of the previous theorem, we computed K(m)∗(TP (y(n))[i]) for 0 ≤ m ≤ n+1.
We will need the following specialization to the case n =∞.

Lemma 4.16. For 1 ≤ m <∞, there is an isomorphism

lim
i
K(m)∗(TP (HF2)[i]) ∼= 0.

Proof. We saw above that

H∗(TP (HF2)[i]) ∼= H∗(HZ){. . . , t−2, t−1, 1, t, . . . , ti−1} ⊕ V (i){ti}.

Applying Lemma 2.18 with n =∞ shows that the Margolis homology of HZ is given by

H(HZ;Qm) ∼=

{
F2 if m = 0,

0 if m > 0.

As above, Qm acts trivially on ti for all i, so we have

H(TP (HF2)[i];Qm) ∼=

{
P (t−1){ti+1} ⊕H(V (i);Q0) if m = 0,

H(V (i);Qm) if m > 0.

Since TP (HF2)[i] is bounded below, Lemma 2.14 implies convergence of the localized Adams spectral
sequence computing K(m)∗(TP (HF2)[i]) for m > 0. The remainder of the proof of the lemma
proceeds exactly as in Theorem 4.15. �

Theorem 4.17. For 1 ≤ m ≤ n, the m-th continuous Morava K-theory of TP (y(n), HF2) vanishes,
i.e. there is an isomorphism

K(m)c∗(TP (y(n), HF2)) ∼= 0.

Proof. Clearly we have TP (y(n), HF2) = lim
i
TP (y(n), HF2)[i]. For each i we obtain a long exact

sequence in Morava K-theory

(9) . . . // K(m)∗(TP (y(n), HF2)[i]) // K(m)∗(TP (y(n))[i]) BECD
GF��

K(m)∗(TP (HF2)[i]) // K(m)∗−1(TP (y(n), HF2)[i]) // . . .

which we use to compute relative continuous topological periodic cyclic homology.
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When 1 ≤ m ≤ n, we have shown

lim
i
K(m)∗(TP (y(n))[i]) ∼= 0 ∼= lim

i
K(m)∗(TP (HF2)[i])

so we see that

K(m)c∗(TP (y(n), HF2)[i]) ∼= 0.

�

5. Topological negative cyclic homology of y(n)

In this section, we mimic the analysis from Section 4 in order to calculate the (continuous)
Morava K-theory of the topological negative cyclic homology of y(n). We analyze the homological
homotopy fixed point spectral sequence in Section 5.1 and use the results to calculate Margolis
homology and continuous Morava K-theory in Section 5.2. The main result is Theorem 5.8.

5.1. Homological T-homotopy fixed point spectral sequence for THH(y(n)). We now ana-
lyze the homological homotopy fixed point spectral sequence converging to the continuous homology
of topological negative cyclic homology of y(n). This spectral sequence has the form

E2(n) := H−∗(T;H∗(THH(y(n))))⇒ Hc
∗(TC

−(y(n)))

where

Hc
∗(TC

−(y(n))) = lim
i
H∗TC

−(y(n))[i]

and TC−(y(n))[i] := F (E T
(i)
+ , THH(y(n)))T so that lim

i
TC−(y(n))[i] = TC−(y(n)).

We will first discuss the case n =∞. This computation is entirely contained in [42], but we
review it here and fill in some details for later use.

Proposition 5.1. [42] There is an equivalence

TC−(HFp)p ≃
∏

i∈Z

Σ2iHZp

In [42], Rognes proves that TC−
∗ (HFp) ∼=

∏
i∈Z

Σ2iZp. The theorem follows from the fact

that TC−(HFp)p is a commutative K(Fp)p-algebra where K(Fp)p ≃ Zp. We will just prove the case
p = 2, but the case p odd is the same up to a change in notation.

Proof for p = 2. The input of the homological homotopy fixed point spectral sequence E2(∞) is
isomorphic to

P (t)⊗A∗ ⊗ P (σξ̄1).

As in the homological Tate spectral sequence, the differentials are t-linear and are determined by
those of the form d2(x) = tσx given by [14, Prop. 3.2]. Since η is trivial in THH∗(HF2), σ is a

derivation and therefore the only nontrivial differentials are d2(ξ̄i) = tσξ̄i. Recall that (σξ1)
2i =

σξ̄i+1. Then E
3(∞) is isomorphic to

P (t)⊗ P (ξ̄21 , ξ̄
′
2, . . . )⊕ P (ξ̄

2
1 , ξ̄

′
2, . . . ){(σξ1)

k|k ≥ 1}

and the spectral sequence then collapses by [14, Thm. 5.1].
There is an isomorphism of A∗-comodules

P (t)⊗ P (ξ̄21 , ξ̄
′
2, . . . )⊕ P (ξ̄

2
1 , ξ̄

′
2, . . . ){(σξ1)

k|k ≥ 1} ∼= H∗(Z)⊗ P (t)⊕H∗(Z){(σξ1)
k|k ≥ 1}.

The isomorphism sends ξ̄′i to ξ̄i for i ≥ 2 and so in order for the coaction to be consistent, it must

send ξ̄2j1 to ξ̄2j1 + (σξ̄1)
j . Similarly, ξ̄2jn must map to ξ̄2jn + (σξ̄1)

j(2n−1−1) for all 1 ≤ n ≤ ∞.
The inverse limit Adams spectral sequence then has E2-page

Ext∗,∗A∗

(F2, H∗(Z) ⊗ P (t)⊕H∗(Z){(σξ1)
k|k ≥ 1}) ∼= Ext∗,∗

E(Q0)∗
(F2, P (t)⊕ F2{{(σξ1)

k|k ≥ 1}).
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Since t and σξ̄1 are in even degrees, the Q0-action is trivial and we see that this E2-page is isomorphic
to

P (v0)⊗ P (t)⊕ F2{(σξ1)
k|k ≥ 1}

The usual calculation for resolving extensions in this spectral sequence produces an isomorphism

π∗(TC
−(HF2)) ≃

∏

iZ

π∗(Σ
2iZ2)

and the the result follows by the remarks before this proof. �

Remark 5.2. The case n = 0 is not hard to compute. The map THH(S)→ S induced by collapsing
T to a point is an T-equivariant equivalence and consequently the T-action on THH(S) ≃ S is trivial.
This implies that

TC−(S) ≃ F (CP∞
+ , S)

We thus expect TC−(y(n)) to interpolate between the Spanier-Whitehead dual ofCP∞
+ and

∏
i∈Z

Σ2iZ,
and indeed, our computations are consistent with this expectation.

We now discuss the case 0 < n <∞. The key difference between the T-Tate and T-homotopy

fixed point spectral sequences is the presence of t−1, which greatly simplified Ê3(n) in Section 4.4.

Proposition 5.3. There is an isomorphism of graded F2-vector spaces

Hc
∗(TC

−(y(n))) ∼=P (ξ̄21 , ξ̄
′
2, . . . ξ̄

′
n)⊗ E(ξ̄nσξ̄n)⊗ P (t)⊕ T

where T is the simple t-torsion module T := P (ξ̄21 , ξ̄
′
2, . . . , ξ̄

′
n)⊗F2

{∏n

i=1(σξ̄i)
ǫi : ǫi ∈ {0, 1},

∑
ǫi ≥ 1

}

where |t| = (−2, 0), |ξ̄i| = (0, 2i − 1), and |σξ̄i| = (0, 2i).

Proof. The homological homotopy fixed point spectral sequence has E2-term

E2(n) = H−∗(T;H∗(THH(y(n)))) ∼= P (t)⊗ P (ξ̄1, . . . , ξ̄n)⊗ E(σξ̄1, . . . , σξ̄n)

where |t| = (−2, 0), |ξ̄i| = (0, 2i− 1) and |σξ̄i| = (0, 2i). As in the Tate case, E2(n) is a module over
E2(0) ∼= P (t). Therefore dr(t) = 0 for all r ≥ 1 and all differentials are t-linear.

The d2-differentials in the homological homotopy fixed point spectral sequence are of the
form d2(x) = tσx by [14, Prop. 3.2], and σ acts as a derivation symbolically as in the Tate case. We
therefore obtain an additive isomorphism

ker d2 ∼= P (t)⊗ P (ξ̄21 , ξ̄
′
2, . . . , ξ̄

′
n)⊕ T

where T := P (ξ̄21 , ξ̄
′
2, . . . , ξ̄

′
n)⊗ T0 and

(10) T0 = F2{

n∏

i=1

σξ̄ǫii : ǫi ∈ {0, 1},
∑

i

ǫi ≥ 1}.

We therefore just need to compute im d2 ⊂ ker d2 to identify E3(n). First, note that tσξ̄i is in im d2

for all 1 ≤ i ≤ n since d2(ξ̄i) = tσξ̄i. Also, no element of the form x ∈ P (t) ⊗ P (ξ̄21 , . . . , ξ̄
2
n) ⊗

P (ξ̄′2, ..., ξ̄
′
n) is in im d2. Finally, observe that tξ̄ixi + tξ̄jxj ∈ im d2 for 1 ≤ i < j ≤ n as in the proof

of Proposition 4.5. We conclude that

im d2 =
[
P (t)⊗ E(σξ̄1, . . . , σξ̄n)⊗ F2{y · ξ̄ixi + yξ̄jxj : 1 ≤ i < j ≤ n and y ∈ ker d2}

]
{t}.

Thus, up to a change of basis, tξ̄nxn survives to E3(n). We can therefore identify the
E3-page as

E3
∗∗(n)

∼= P (ξ̄21 , ξ̄
′
2, . . . ξ̄

′
n)⊗ E(ξ̄nxn)⊗ P (t)⊕ T

with T := P (ξ̄21 , ξ̄
′
2, . . . , ξ̄

′
n)⊗ T0 and T0 defined in (10).

To see that there are no further differentials, we use the map of homological T-homotopy
fixed point spectral sequences induced by the T-equivariant map THH(y(n))→ THH(HF2). The
homological homotopy fixed point spectral sequence converging to Hc

∗(TC
−(HF2)) has E

3-page

E3(∞) ∼= P (t)⊗ P (ξ̄21 , ξ̄
′
i+1 : i ≥ 1)⊕ P (ξ̄21 , ξ̄

′
i+1 : i ≥ 1)⊗ F2{(σξ̄1)

k : k ≥ 1}.
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By Proposition 3.8 and the fact that all d2-differentials in the source also occur in the target, the
map is injective on E3-pages. Since there is an isomorphism E3(∞) ∼= E∞

∗,∗(∞) by [14, Thm. 5.1],

there are isomorphisms E3(n) ∼= E∞(n) for all n > 0. �

Corollary 5.4. There is an isomorphism of graded F2-vector spaces

H∗(TC
−(y(n))[i]) ∼=V (i)⊕ [P (ξ̄21 , ξ̄

′
2, . . . , ξ̄

′
n)⊗ E(ξ̄nσξ̄n)⊗ P (t)/(t

i−1)]⊕ T

with the same bidegrees, where T is defined in Proposition 5.3 and V (i) is defined in Notation 4.6.

5.2. Chromatic complexity of TC−(y(n)). We now modify our analysis from Section 5.1 to study
the chromatic complexity of the topological negative cyclic homology TC−(y(n)).

Lemma 5.5. There are isomorphisms of continuous E∗-comodules

Hc
∗(TC

−(y(n))) ∼=(H∗(z(n)/vn)⊗ P (t))⊕H∗(z(n))⊗ T0

where T0 is defined as in the statement of Proposition 5.3. Also, there are isomorphisms of E∗-
comodules

H∗(TC
−(y(n))[i]) ∼=V (i)⊕ [H∗(z(n)/vn)⊗ P (t)/(t

i−1)]⊕ [H∗(z(n))⊗ T0]

where the simple t-torsion classes σξ̄i are E∗-comodule primitives and the coaction on ξ̄nσξ̄n has the
form

νn(ξ̄nσξ̄n) = ν∞(ξ̄nσξn) +

n+1∑

i=1

ξ̄i ⊗ ξ̄
2i

n+1−i.

The A∗-comodule V (i) is defined in Notation 4.6.

Proof. A straightforward modification of the proof of Lemma 4.9 can be used to calculate the E∗-
coaction onHc

∗(TC
−(y(n))). The only classes which were not discussed in Lemma 4.9 are monomials

of the form σξ̄i1 · · ·σξ̄ik , the class ξ̄nσξ̄n, the elements ξ̄′n and nontrivial products of these elements.
The classes σξ̄i1 · · ·σξ̄ik are comodule primitives in H∗THH(y(n)) by the formula νn(σξ̄i) =

(1 ⊗ σ)(νn(ξ̄i)) and there are no possible hidden E∗-comodule extensions in the homotopy fixed
point spectral sequence because the degree of t is even. The class ξ̄nσξ̄n maps to ξ̄nσξ̄n + ξ̄n+1 by
Proposition 3.8, which implies the stated coaction. The coaction on ξ̄′i is

1⊗ ξ̄′i + ξ̄i−1 ⊗ σξ̄i−1 +
∑

0<j+k≤i

ξ̄j ⊗ ξ̄
2j

k + ξ̄i ⊗ 1.

by direct computation.
We now specify the isomorphism. The map P (ξ̄21 , ξ̄

′
2, ..., ξ̄

′
n) ⊗ E(ξ̄nσξ̄n) → H∗(z(n)/vn)

sends ξ̄′i to ξ̄i for 2 ≤ i ≤ n and ξ̄nσξ̄n to ξ̄n+1. It sends ξ̄21 to ξ̄21 + σξ̄1, ξ̄
4
1 to ξ̄41 + σξ̄2, ξ̄

6
1 to

ξ̄61 + σξ̄1σξ̄2, and so on, until ξ̄
2(m+1)
1 where m = |

∏n

i=1 σξi| which maps to the element with the
same name in H∗(z(n)/vn). �

Lemma 5.6. The Margolis homology of TC−(y(n)) is isomorphic to

H(TC−(y(n))[i];Qm)





P (t)⊕ P (ξ̄2n)⊗ T0 ⊕H(V (i);Q0) if m = 0

H(V (i);Qm) if 1 ≤ m ≤ n− 1,

H(V (i);Qn)⊕H∗(z(n))⊗ T0 if m = n,

H∗(TC
−(y(n))[i]) if m ≥ n+ 1.

where the A∗-comodule V (i) is defined in Notation 4.6.

Proof. The decomposition in Corollary 5.4 is a splitting as E(Qm)-modules since t does not appear
in the coaction of any class in the second summand and Qm(t) = 0. Thus

H(TC−(y(n))[i];Qm) ∼=H(V (i);Qm)⊕H(H∗(z(n)/vn)⊗ P (t)/(t
i−1){t};Qm)⊕H(T ;Qm).
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The Margolis homology of V (i) is not computed in our calculation, but it will not affect the con-
tinuous Margolis homology. The Margolis homology of M := H∗(z(n)/vn) ⊗ P (t)/(t

i−1){t} can be
computed the same way that H(TP (y(n))[i];Qm) was computed in Section 5.1, giving

H(M ;Qm) ∼=

{
0 if 1 ≤ m ≤ n,

P (ξ̄21 , ξ̄2, . . . , ξ̄n)⊗ E(ξ̄n+1)⊗ P (t)/(t
i+1) if m = n+ 1.

Finally, the Margolis homology of T can be computed as follows. For 1 ≤ m ≤ n, we have
H(H∗(z(n));Qm) = 0 by Corollary 2.21, soH(T ;Qm) = H(H∗(z(n)⊗T0), Qm) ∼= 0 if 0 < m < n and
H(H∗(z(n))⊗T0), Qn) ∼= H∗(z(n))⊗T0 by the Margolis homology and we computedH(H∗(z(n)), Qn)
earlier. Similarly, H(T ;Q0) = H(H∗(z(n)) ⊗ T0, Q0) ∼= P (ξ̄2n) ⊗ T0 for the same reasons. For
m ≥ n+ 1, we observe that there are no terms of the form ξ̄m ⊗ y in the coproduct of any classes.
Indeed, these terms could only come from the coproducts of complementary σ-cycles, but the co-
product of any complementary σ-cycle z contains only terms of the form ξ̄2j ⊗y where j ≥ 0; compare
with the proof of Lemma 4.9. �

Corollary 5.7. There are isomorphisms

lim
i
H(TC−(y(n))[i];Qm)





P (t)⊕ P (ξ̄2n)⊗ T0 if m = 0

0 if 1 ≤ m ≤ n− 1,

H∗(z(n))⊗ T0 if m = n,

H∗(TC
−(y(n))[i]) if m ≥ n+ 1.

Theorem 5.8. There are isomorphisms

lim
i
K(m)∗(TC

−(y(n), HF2)[i]) ∼= 0

for 1 ≤ m ≤ n− 1.

Proof. Let TC−(y(n), HF2)[i] be the fiber in the fiber sequence

TC−(y(n), HF2)[i]→ TC−(y(n))[i]→ TC−(HF2)[i].

Smashing with Morava K-theory produces a fiber sequence

K(m) ∧ TC−(y(n), HF2)[i]→ K(m) ∧ TC−(y(n))[i]→ K(m) ∧ TC−(HF2)[i].

and then taking the limit again produces a fiber sequence

lim
i
K(m) ∧ TC−(y(n), HF2)[i]→ lim

i
K(m) ∧ TC−(y(n))[i]→ lim

i
K(m) ∧ TC−(HF2)[i].

By Corollary 5.7 and the localized Adams spectral sequence, we know the filtered abelian groups
{K(m)∗(TC

−(y(n))[i])}, {K(m)∗(TC
−(HF2)[i])}, and {K(m)∗(TC

−(y(n), HF2)[i])} are pro-equivalent
to the constant trivial group for 1 ≤ m ≤ n− 1. This immediately implies the result. �

Remark 5.9. In an earlier draft, a mistake in our homotopy fixed point spectral sequence calculation
led us to claim K(n)c∗(TC

−(y(n))) ∼= 0. In the corrected calculation of H(TC−(y(n))[i];Qm),
the factor T0 contributes nontrivial classes in the localized Adams spectral sequence, as we will
see in a special case in Example 5.10. These can be viewed as obstructions to the vanishing of
K(n)c∗(TC

−(y(n)).

Example 5.10. We completely calculate K(1)c∗(TC
−(y(1))). The calculations above give an iso-

morphism of A∗-comodules

Hc
∗(TC

−(y(1))) ∼= H∗(z(1)/v1)⊗ P (t)⊕ P (ξ̄
2
1){σξ̄1}

and we know H(H∗(z(1)/v1), Q1) ∼= 0. The input of the Adams spectral sequence computing
K(1)c∗(TC

−(y(1))[i]) is

v−1
1 Ext∗,∗

E(Q1)∗
(F2, H∗TC

−(y(1))[i]) ∼= P (v±1
1 )⊗

(
P (ξ̄21){σξ̄1} ⊕H(V (i), Q1)

)
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where V (i) =
(
P (ξ̄21)⊕ P (ξ̄

2
1){ξ̄1σξ̄1}

)
{ti} andQ1(ξ̄

2k+1
1 σξ̄1t

i) = ξ̄2k1 ti for all k ≥ 0, soH(V (i), Q1) ∼=
0. Since all the elements in the E2-page of the spectral sequence are concentrated in even columns,
the spectral sequence collapses. Therefore

K(1)∗(TC
−(y(1))[i]) ∼= K(1)∗ ⊗ P (ξ̄

2
1){σξ̄1}.

Since the sequence is constant and all maps are the identity map, we see

K(1)c∗(TC
−(y(1))) = lim

i
K(1)∗(TC

−(y(1))[i]) ∼= K(1)∗ ⊗ P (ξ̄
2
1){σξ̄1} 6

∼= 0.

We emphasize that this does not imply (non-continuous) Morava K-theory is nontrivial.
Indeed, if we consider the cofiber sequence

K(1) ∧ TC−(y(1))→ lim
i
K(1) ∧ TC−(y(1)))[i]→ C,

then it is still possible that K(1)∗(C) ∼= K(1)∗ ⊗ P (ξ̄
2
1){σξ̄1}.

3

With that said, there would be some surprising consequences if K(1)∗(TC
−(y(1))) 6= 0.

Consider the fiber sequence

ΣTHH(y(1))hT → TC−1(y(1))
can
−−→ TP (y(1))

In the sequel, we will see that K(1)∗(TP (y(1))) ∼= 0. This implies that

K(1)∗(ΣTHH(y(1))hT) ∼= K(1)∗(TC
−(y(1)))

and since homology commutes with homotopy colimits,

K(1)∗(ΣTHH(y(1))hT) ∼= π∗(Σ(K(1) ∧ THH(y(1)))hT).

If this were nonvanishing, we would need either the K(1)-based Adams spectral sequence

HH
K(1)∗
∗ (K(1)∗y(1))⇒ K(1)∗THH(y(1))

or the homotopy orbit spectral sequence

H∗(T,K(1)∗THH(y(1)))⇒ π∗ ((K(1) ∧ THH(y(1))hT)

to have a pattern of differentials that kills everything in sight. We have not been able to rule out
this interesting possibility.

6. Topological cyclic homology and algebraic K-theory of y(n)

In this section, we prove that K(y(n), HF2) has chromatic complexity at least n using a
recent theorem of the first author and Andrew Salch [5]. We proceed in three steps. First, we will
show that the filtered spectra {TP (y(n))[i]} satisfy the hypotheses of [5, Thm. 3.5] and consequently
continuous and ordinary Morava K-theory K(m) agree for TP (y(n)) when 1 ≤ m ≤ n. This implies
an analogous result for TC−(y(n)) when 1 ≤ m ≤ n − 1. Second, the Nikolaus-Scholze description
[37, Prop. II.1.9] of TC(y(n), HF2) as the fiber of a map from TC−(y(n), HF2) to TP (y(n), HF2)
yields a long exact sequence in Morava K-theory which implies vanishing for TC. Finally, the
Dundas-Goodwillie-McCarthy Theorem [16, Thm. 7.0.0.2] is used to deduce vanishing for algebraic
K-theory from vanishing for TC.

3Since K(1)c(TC−(y(1)) is non-vanishing, the main theorem of [5] does not apply.
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6.1. Passage to ordinary Morava K-theory. We first recall the main theorem of [5]. We will
write τ<MX to indicate a Postnikov truncation of X with πj(X) ∼= πj(τ<MX) for j < M and
πj(τ<MX) = 0 for j ≥M .

Theorem 6.1. [5, Thm. 3.5] Fix m > 0. Suppose M is an integer and

· · · → Y [2]→ Y [1]→ Y [0]→ . . .

is a sequence of bounded below finite-type spectra which are HFp-nilpotently compete, such that the
largest grading degree of a comodule primitive in H∗(Y [i]) is strictly less than M , the homology
groups H∗(Y [i]) and H∗(τ<MY [i]) are finitely generated for each i, and the limit

lim
i→∞

H(H∗(Y [i]), Qm)

of the Margolis homologies vanishes. Then the m-th Morava K-theory of holim i Y [i] is trivial. That
is, we have an isomorphism

K(m)∗(holim i Y [i]) ∼= 0.

We will show that the filtered spectra {TP (y(n))[i]} satisfy the hypotheses of Theorem 6.1
in the following lemmas.

Lemma 6.2. The homotopy groups π∗(TP (y(n))[i]) are bounded below finite type graded Ẑ2-modules.

Proof. First, we note that the vanishing line in the truncated Tate spectral sequence converging
to π∗(TP (y(n))[i]) implies that only finitely many bidigrees contribute to each homotopy degree in
the abutment, and moreover, the abutment is bounded below. It therefore suffices to show that
π∗(THH(y(n))) is a finite type graded F2-vector space. To see that the graded F2-vector space
π∗(THH(y(n)) is finite type, we consider the Künneth spectral sequence

Tor
π∗(y(n)∧y(n)op)
∗,∗ (y(n)∗, y(n)∗)⇒ π∗(THH(y(n))).

By the Thom isomorphism, we have that π∗(y(n) ∧ y(n)
op) ∼= y(n)∗(ΩJ2n−1(S

2)) is a connective
graded F2-algebra, so there is a resolution of y(n)∗ by free graded π∗(y(n)∧y(n)

op)-modules that gives

a vanishing line in Tor
π∗(y(n)∧y(n)op)
∗,∗ (y(n)∗, y(n)∗). Thus, the spectral sequence strongly converges

and has a vanishing line so that only finitely many bidegrees contribute to πk(THH(y(n)) for each
k. Since y(n)∗ is finite type by [30],4 and consequently y(n)∗(ΩJ2n−1(S

2)) is finite type, we know
that

Tor
π∗(y(n)∧y(n)op

∗,∗ (y(n)∗, y(n)∗)

is finite type as a bigraded F2-module. Therefore, π∗(THH(y(n))) is a finite type F2-module and
consequently π∗(TP (y(n)[i]) is a finite type bounded below Z2-module. �

Corollary 6.3. The homology groups H∗(TP (y(n))[i]) and H∗(τ<ℓTP (y(n))[i]) are finitely gener-
ated for each i, ℓ ∈ Z.

Proof. The previous lemma implies that both π∗(TP (y(n))[i]) and π∗(τ<ℓTP (y(n))[i])) are finite
type bounded below Z2-modules. In general, when π∗(X) is bounded below and finite type as a
Z2-module, a simple argument using the Tor spectral sequence

Tor
π∗(S)
∗,∗ (F2, π∗(X))⇒ H∗(X)

implies that H∗(X) is a finite type graded F2-module as well. �

We now prove that the filtered spectra {TP (y(n))[i]} satisfy the main technical hypothesis
needed for Theorem 6.1.

Lemma 6.4. For all n ≥ 0 and i ∈ Z, the largest grading degree of a comodule primitive in
H∗(TP (y(n))[i]) is strictly less than 2n+1. In particular, this upper bound depends only on n.

4In [30], they show that the Adams spectral sequence for y(n) has a vanishing line of slope 1/|vn| and their description
of the E2-page of the Adams spectral sequence is clearly finitely generated in each bidegree.
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Proof. We note that even though H∗(TP (y(n))[i];F2) is not necessarily a ring, it is a module over
Hc

∗(TP (S);F2) in the category of (continuous) A∗-comodules, and therefore the coaction

νn : H∗(TP (y(n))[i];F2)→ A∗ ⊗H∗(TP (y(n))[i];F2)

satisfies νn(tx) = νn(t)νn(x) where |t| = −2. Also, as long as i < −1 the element t is not a comodule
primitive. In particular, if we write

ψ : H∗(BT)→ H∗(BT) ⊗A∗

for the A∗-coaction on H∗(BT) = H∗
gp(T;F2) then

ψ(t) = 1⊗ t+ ξ̄21 ⊗ t
2 + ξ̄22 ⊗ t

4 + . . .

by [44, Lem. 2.5]. So in the truncated Tate spectral sequence

P (t−1){ti} ⇒ π∗(TP (S)[i])

for the sphere spectrum, the A∗-cocaction on the abutment is given by the formula

ψ(t)ψ(t−1) = 1⊗ 1

and by

ψ(ta) = ψ(t)a mod (ti+1)

ψ(t−a) = ψ(t−1)a mod (ti+1)

for a ≥ 0 as well.
In particular, note that ξ̄2k and ta are not zero divisors for any k ≥ 1 or a ∈ Z. So by the

formula
νn(tx) = ψn(t)νn(x)

we note that whenever x 6= 0 there will always be a term

ξ̄21 ⊗ xt
2

in the coaction of tx. Consequently tx cannot be a comodule primitive. The same argument applies
to tax for any a 6= 0 such that 2a < i. If 2a ≥ i, then we could have comodule primitives of the
form tax, but since in that case |xta| = |x| − 2a, these comodule primitives will be in degrees less
than over equal to |x|. Note that we need to choose a final sequence such that elements that are not
divisible by t always appear, but this is possible.

We now show that the comodule primitives in H∗(THH(y(n))) are bounded above. By
Proposition 3.2, there is an isomorphism

H∗(THH(y(n))) ∼= H∗(y(n))⊗ E(σξ̄j |0 ≤ j ≤ n)

of A∗-comodules. Since H∗(y(n)) is a sub-Hopf algebra of A∗ and the coaction is the restriction of
the coproduct on the dual Steenrod algebra, the only nonzero comodule primitive is 1. The elements
in H∗(y(n))⊗ E(σξ̄j |0 ≤ j ≤ n) that are comodule primitives must be of the form of an element in
E(σξ̄j |0 ≤ j ≤ n) plus an element in H∗(y(n)) ⊗ E(σξ̄j |0 ≤ j ≤ n) of the same degree. Therefore,
the degree of the comodule primitives is bounded above by 2n+1 − 1 = |

∏n

j=1 σξ̄j |.
It remains to show that no additional comodule primitives can be obtained by adding terms

in different filtrations in the truncated Tate spectral sequence converging to H∗(TP (y(n))[i]). To
prove this we split into two cases. When

x ∈ H∗(y(n)) ⊗ E(σξ̄j |0 ≤ j ≤ n)

is not a comodule primitive, then we know

νn(x) = 1⊗ x+ x
(1)
1 ⊗ x

(2)
1 +

∑

j>1

x
(1)
j ⊗ x

(2)
j

where x
(1)
1 ⊗ x

(2)
1 is nontrivial and t does not divide x

(2)
1 . Then we claim that we cannot add terms

in higher filtration to tax and get a comodule primitive. In particular, there will always be a term of
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the form x
(1)
1 ⊗ t

ax
(2)
2 and this cannot be canceled by the coaction on an element of the form ta+by

for some element y and b > 0. On the other hand, if

x ∈ H∗(y(n)) ⊗ E(σξ̄j |0 ≤ j ≤ n)

is a comodule primitive, then we note that if a > 0 such that 2a < i, then tax has a term of the form
ξ̄2a1 ⊗ t

2ax and this cannot be canceled by the coaction on an element ta+by for b > 0 because the
comodule primitives are of the form x = z + w where z ∈ E(σξ̄j |0 ≤ j ≤ n) and there are no other
coactions that have this same z in their coaction which are in a higher degree than x. Therefore,

there are no comodule primitives above degree 2ℓ+1 − 1 = |
∏ℓ

j=1 σξ̄j |. Since this is the case for all

ℓ ≤ n, we see that M := 2n+1 is a uniform upper bound on the degree of the comodule primitives
in H∗(TP (y(n))[i]). �

Theorem 6.5. There are isomorphisms

K(m)c∗TP (y(n))
∼= K(m)∗TP (y(n)) ∼= 0 and(11)

K(ℓ)c∗TC
−(y(n)) ∼= K(ℓ)∗TC

−(y(n)) ∼= 0(12)

for 1 ≤ m ≤ n and 1 ≤ ℓ ≤ n− 1.

Proof. To prove isomorphism (11) it suffices to prove that the filtered spectra {TP (y(n))[i]}i∈Z

satisfy the hypotheses of Theorem 6.1. This was the content of Lemma 6.2, Corollary 6.3, and
Lemma 6.4 and Theorem 4.15.

By Theorem 5.8, the isomorphism (12) follows if we can show that K(ℓ)∗TC
−(y(n)) ∼= 0

for 1 ≤ ℓ ≤ n− 1. By the fiber sequence

ΣTHH(y(n))hT → TC−(y(n))→ TP (y(n)),

it suffices to show that K(ℓ)∗(ΣTHH(y(n))hT) ∼= 0 for 1 ≤ ℓ ≤ n − 1. Since smashing with K(ℓ)
commutes with homotopy colimits, it suffices to show thatK(m)∗(THH(y(n))) ∼= 0 for 1 ≤ ℓ ≤ n−1.
SinceK(ℓ)∗y(n) ∼= 0 for 1 ≤ ℓ ≤ n−1 by Proposition 2.22, theK(ℓ)-based Bókstedt spectral sequence

HH
K(ℓ)∗
∗ (K(ℓ)∗(y(n)))⇒ K(ℓ)∗THH(y(n))

implies that K(ℓ)∗THH(y(n)) vanishes for 1 ≤ ℓ ≤ n− 1. �

Corollary 6.6. There are isomorphisms

K(m)∗(TP (y(n), HF2)) ∼= 0 ∼= K(ℓ)∗(TC
−(y(n), HF2))

for all 1 ≤ n <∞, 1 ≤ m ≤ n, and 1 ≤ ℓ ≤ n− 1.

Proof. The result follows easily from Theorem 6.5. �

6.2. Chromatic complexity of TC(y(n)). We now apply a result of Nikolaus-Scholze [37] to
analyze topological cyclic homology. If A → B is a map of p-complete connective E1 ring spectra,
then [37, Prop. II.1.9] implies that there is a fiber sequence

TC(A,B)→ TC−(A,B)→ TP (A,B)

in the ∞-category of spectra, where TC here is implicitly p-complete topological cyclic homology.

Theorem 6.7. If 0 ≤ m ≤ n − 1, then the relative topological cyclic homology TC(y(n), HF2) is
K(m)-acyclic, i.e.

K(m)∗(TC(y(n), HF2)) ∼= 0.

Proof. The cases 1 ≤ m ≤ n− 1 follow from the long exact sequence in K(m)-homology associated
to the homotopy fiber sequence

TC(y(n), HF2)→ TC−(y(n), HF2)→ TP (y(n), HF2)

along with Corollary 6.6.
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The case m = 0 follows from two classical results. By the Dundas-Goodwillie-McCarthy
theorem [16, Thm. 7.0.0.2], there is a weak equivalence TC(y(n), HF2) ≃ K(y(n), HF2). By a
theorem of Waldhausen [45, Prop. 2.2], the map K(y(n))→ K(HF2) is a rational equivalence since
y(n)→ HF2 is a rational equivalence. Combing these two theorems produces isomorphisms

HQ∗(TC(y(n), HF2)) ∼= HQ∗(K(y(n), HF2)) ∼= 0.

�

6.3. Chromatic complexity of K(y(n)). We can now show that relative algebraic K-theory pre-
serves chromatic complexity for y(n).

Theorem 6.8. For 0 ≤ m ≤ n − 1, the m-th Morava K-theory of the relative algebraic K-theory
K(y(n), HF2) vanishes, i.e.

K(m)∗(K(y(n), HF2)) ∼= 0

Proof. This follows from Theorem 6.7 and the equivalence TC(y(n), HF2) ≃ K(y(n), HF2) implied
by the Dundas-Goodwillie-McCarthy theorem [16, Thm. 7.0.0.2]. �
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