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Abstract. We prove a thick subcategory theorem for the category of d-excisive
functors from finite spectra to spectra. This generalizes the Hopkins–Smith
thick subcategory theorem (the d = 1 case) and the C2-equivariant thick
subcategory theorem (the d = 2 case). We obtain our classification theorem
by completely computing the Balmer spectrum of compact d-excisive functors.
A key ingredient is a non-abelian blueshift theorem for the generalized Tate
construction associated to the family of non-transitive subgroups of products
of symmetric groups. Also important are the techniques of tensor triangular
geometry and striking analogies between functor calculus and equivariant
homotopy theory. In particular, we introduce a functor calculus analogue of the
Burnside ring and describe its Zariski spectrum à la Dress. The analogy with
equivariant homotopy theory is strengthened further through two applications:
We explain the effect of changing coefficients from spectra to HZ-modules
and we establish a functor calculus analogue of transchromatic Smith–Floyd
theory as developed by Kuhn–Lloyd. Our work offers a new perspective on
functor calculus which builds upon the previous approaches of Arone–Ching
and Glasman.
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1. Introduction

Goodwillie’s calculus of functors [Goo90, Goo92, Goo03] provides a powerful tool
for studying functors between categories of homotopical origin. It approximates a
homotopical functor F via a tower of simpler functors

F → . . .→ PdF → Pd−1F → . . . P2F → P1F

analogous to the Taylor tower in ordinary calculus which approximates a smooth
function f : R→ R by polynomials of increasing degree d. In the calculus of functors,
polynomials of degree d are replaced by so-called d-excisive functors which are
homotopical functors satisfying a certain weak form of excision. The functor PdF is
the best approximation of F by a d-excisive functor.

A prominent domain for this theory is the study of (homotopical) functors Sp→ Sp
from the category of spectra to itself. For technical reasons, we restrict attention
to functors that preserve filtered colimits, which can be equivalently regarded as
functors Spc → Sp from finite spectra to spectra. A fundamental problem then
is to understand the structure of the category Excd(Sp

c, Sp) of d-excisive functors
Spc → Sp; in other words, to understand what “polynomials” are in this context.

For example, a linear functor Spc → Sp is essentially the same thing as a
homology theory and we have an equivalence Exc1(Sp

c, Sp) ≃ Sp but the structure
of Excd(Spc, Sp) is considerably more complicated for d > 1. As in ordinary calculus,
one can define the derivatives ∂1F, . . . , ∂dF ∈ Sp of a d-excisive functor F : Spc → Sp
but, in contrast to ordinary polynomials, a d-excisive functor is far from being
determined by its derivatives when d > 1. Previous attempts to understand the
category Excd(Sp

c, Sp) have focused on describing the extra structure possessed by
the derivatives [AC15, AC16] or by the cross-effects [Gla18] of a d-excisive functor.

Here we take a different approach to analyzing Excd(Sp
c, Sp) by regarding it

as a tensor triangulated (“tt”) category under Day convolution. Our main result
is a computation of the Balmer spectrum of the subcategory of compact objects
in Excd(Sp

c, Sp) for any d ≥ 1. This leads to a complete classification of com-
pact d-excisive functors up to tt-equivalence. Two compact functors F and G are
tt-equivalent if they can be built from each other using triangles, retracts and Day
convolution with arbitrary compact functors; that is, F and G are tt-equivalent if
they generate the same thick tensor-ideal.

We proceed to describe our classification theorem. For simplicity, let us restrict
attention to p-local spectra Sp(p) for a given prime p. The type(x) ∈ N∞ =

{0, 1, 2, . . .}∪{∞} of a p-local finite spectrum x is the minimal h withK(p, h)∗(x) ̸= 0
if x is nonzero and ∞ otherwise; here K(p, h) is height h Morava K-theory at p.
This invariant extends to functors F : Sp→ Sp(p) by setting

type(F ) : N→ N∞, l 7→ type(∂lF ).

If F is d-excisive, then we may restrict the domain to {1, . . . , d}. We now can state
the p-local version of our main result (Theorem 12.5):

Main Theorem. The assignment F 7→ type(F ) induces a bijection{
tt-equivalence classes ⟨F ⟩ :
F ∈ Excd(Sp

c, Sp(p)) compact

} {
functions f : {1, . . . , d} → N∞ such that
f(k) ≤ δp(k, l) + f(l) if p− 1 |k − l ≥ 0

}
∼

where δp(k, l) is an explicit function depending on l and the base p expansion of k.
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To put this result into perspective, let us consider two special cases. If d = 1, then
Exc1(Sp

c, Sp) ≃ Sp and the above bijection is the content of the thick subcategory
theorem of Devinatz, Hopkins and Smith [DHS88, HS98] which we however take as
an input to our theorem. When d = 2, there is an equivalence Exc2(Sp

c, Sp) ≃ SpC2

with the category of genuine C2-equivariant spectra. In this case, our theorem
recovers the classification of compact C2-spectra due to Balmer and Sanders [BS17].
Generalizing from cyclic groups of order p to arbitrary finite abelian groups G, the
analogous classification problem for compact G-spectra has subsequently been settled
by Barthel, Hausmann, Naumann, Nikolaus, Noel and Stapleton in [BHN+19], but
the general case of a non-abelian finite group G remains elusive.

The theory we develop here in our study of d-excisive functors will demonstrate
that the categories Excd(Spc, Sp) behave a great deal like categories of Σd-equivariant
spectra indexed on the family of non-transitive subgroups of Σd. In light of the
ambiguity left in the tt-classification of compact G-spectra for general G, we view
the complete classification furnished by our main theorem as somewhat surpris-
ing. It requires precise control over the chromatic behaviour of generalized Tate
constructions with respect to families of non-transitive subgroups of products of
symmetric groups, i.e., non-abelian analogs of the blueshift theorems of [Kuh04]
and [BHN+19].

Further details. We will now say more about the techniques that go into proving
the main theorem. As mentioned above, our starting point is the observation that
Excd(Sp

c, Sp) is a tensor triangulated category via (localized) Day convolution,
and our first task is to show that it has excellent structural properties, making it
amenable to the ample toolkit of tt-geometry. The following is a summary of results
obtained in Corollaries 5.25 and 5.34 and Theorem 5.33.

Theorem A. The category of d-excisive functors Excd(Sp
c, Sp) is a compactly

generated presentably symmetric monoidal stable ∞-category whose compact and
dualizable objects coincide. A set of compact generators is given by the functors

PdhS(i)(−), X 7→ Pd(Σ
∞ MapSp(S, X)⊗ · · · ⊗ Σ∞ MapSp(S, X))

for 1 ≤ i ≤ d, where PdhS = PdhS(1) is the monoidal unit. Moreover, these
generators are self-dual separable commutative algebras.

We deduce most of this result from global statements about Fun(Spc, Sp) by
applying the (smashing) localization functor Pd : Fun(Spc, Sp) → Excd(Sp

c, Sp).
This leads in particular to a strong compatibility among the given sets of compact
generators for varying d. Indeed, we observe that for 1 ≤ i ≤ d − 1 the genera-
tors PdhS(i) of Excd(Spc, Sp) are mapped by Pd−1 to the generators Pd−1hS(i) of
Excd−1(Sp

c, Sp). One is then led to wonder if Pd−1 is the finite localization that
kills PdhS(d). We verify in Theorem 6.19 that this is indeed the case:

Theorem B. The induced functor Pd−1 : Excd(Sp
c, Sp) → Excd−1(Sp

c, Sp) is a
finite localization whose ideal of acyclics is generated by PdhS(d). In particular,
the category Homogd(Sp

c, Sp) ⊆ Excd(Sp
c, Sp) of d-homogeneous functors is the

localizing tensor-ideal generated by PdhS(d).

The combination of Theorem A and Theorem B puts us in the position to study
Excd(Sp

c, Sp) via tt-geometry and, in particular, to reason inductively over d. Recall
that tt-geometry as initiated by Balmer [Bal05, Bal10c] views a rigidly-compactly
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generated tt-category T as a sheaf of local tt-categories over a naturally associated
spectral space Spc(Tc), the Balmer spectrum of the full subcategory Tc of compact
objects in T. The spectrum (whose points are the prime ideals of Tc) plays a
dual role. On the one hand, it reveals the geometric structure of T and brings a
geometric set of methods to its analysis. On the other hand, its topology encodes
the classification of thick tensor-ideals of Tc. This leads us to:

Goal. Compute the spectrum of prime ideals Spc(Excd(Sp
c, Sp)c) for all d ≥ 1.

The first step is to determine its underlying set. We show that the Goodwillie
derivatives ∂i : Excd(Sp

c, Sp) → Sp for 1 ≤ i ≤ d form a collection of symmetric
monoidal and jointly conservative tt-functors (Lemma 6.32 and Lemma 6.34). There-
fore, one can find prime ideals of Excd(Spc, Sp)c by pulling back prime ideals of Spc

along ∂i. The prime ideals of Spc are well known by the tt-geometric form of the
thick subcategory theorem [HS98] as recalled in Figure 2. In this way we obtain in
Theorem 7.14 a description of Spc(Excd(Spc, Sp)c) as a set:

Theorem C. Every prime ideal in Spc(Excd(Sp
c, Sp)c) is of the form

Pd([i], p, h) =
{
F ∈ Excd(Sp

c, Sp)c
∣∣K(p, h− 1)∗∂i(F ) = 0

}
for some triple (i, p, h) consisting of an integer 1 ≤ i ≤ d, a prime number p or p = 0,
and a chromatic height 1 ≤ h ≤ ∞. Moreover, we have Pd([i], p, h) = Pd([j], p

′, h′)
if and only if [i] = [j] and h = h′ and if h = h′ > 1, then also p = p′.

It then remains to determine the topology of the space Spc(Excd(Spc, Sp)c), which
is a significantly more difficult problem. It turns out that it is enough to determine
all the inclusions Pd([i], p, h) ⊆ Pd([j], p

′, h′) among the primes (Proposition 11.1).
One general technique to get information about these inclusions is the comparison
map introduced by Balmer [Bal10b]. This is an inclusion-reversing continuous map

(1.1) ρ : Spc(K)→ Spec(EndK(1))

from the Balmer spectrum of any tt-category K to the Zariski spectrum of the
endomorphism ring of the unit in K. In order to apply this in our setting, we
introduce in Section 8 a commutative ring A(d) for each d ≥ 1 that we call the
Goodwillie–Burnside ring. It is a combinatorially defined ring constructed from the
category of finite sets of cardinality at most d and surjections. More specifically,
as an abelian group, it is free on d generators x1, . . . , xd and its multiplication is
determined by the formula

xixj =
∑

1≤l≤d

µ(i, j, l)xl,

where µ(i, j, l) counts the number of good subsets (Definition 4.9) of [i] × [j] of
cardinality l, where [i] is the set with i elements. Its relation to the category of
d-excisive functors is expressed by the following result (Theorem 9.23):

Theorem D. The endomorphism ring π0 End(PdhS) of the unit in Excd(Sp
c, Sp)

is isomorphic to the Goodwillie–Burnside ring A(d) introduced above.

In other words, Theorem D supplies a functor calculus analogue of the computation
of the Burnside ring in equivariant homotopy theory due to Segal [Seg71] and tom
Dieck [tD79]. We are then able to give (in Theorem 8.28 and Proposition 9.25) a
complete description of the Zariski spectrum of A(d) and the comparison map

(1.2) ρ : Spc(Excd(Sp
c, Sp)c)→ Spec(A(d)).
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This severely restricts which inclusions can possible occur, and altogether, we show
that to determine the topology, it suffices to compute the minimal ℶ ≥ 0, the
so-called geometric blueshift, such that

(1.3) Pd([k], p, h+ ℶ) ⊆ Pd([l], p, h)

whenever p− 1 | k − l ≥ 0 and for any 1 ≤ h ≤ ∞.
To facilitate this computation, we proceed inductively on the ambient degree d

with the base d = 1 case reducing to the classical thick subcategory theorem. At
the level of spectra, Theorem B induces an open embedding

(1.4) Spc(Pd−1) : Spc(Excd−1(Sp
c, Sp)c) ↪→ Spc(Excd(Sp

c, Sp)c)

which in particular implies that it suffices to consider the case k = d in (1.3).
The values of the corresponding geometric blueshift numbers are stated in the
following theorem, which forms the heart of the description of the topology of
Spc(Excd(Sp

c, Sp)c).

Theorem E. Let p, q be prime numbers, 1 ≤ k, l ≤ d integers, and suppose
1 ≤ h, h′ ≤ ∞. There is an inclusion Pd([k], p, h

′) ⊆ Pd([l], q, h) if and only if the
following three conditions hold:

(a) p− 1 | k − l ≥ 0;

(b) h′ ≥ h+ δp(k, l);

(c) if h > 1, then p = q,
where δp(k, l) :=


0 if k = l;

1 if p− 1 | k − l > 0 and l ≥ sp(k);
2 if p− 1 | k − l > 0 and l < sp(k);

∞ otherwise.

Here sp(k) denotes the sum of the coefficients of the base p expansion of k.

In particular, this result shows that, somewhat surprisingly, the geometric
blueshift ℶ is never greater than 2. Its proof occupies the bulk of Part III and
is summarized in the following subsection. It completes our computation of the
Balmer spectrum of compact d-excisive functor for all d ≥ 1. The d = 3 case is
depicted in Figure 1 below.

Spc(Exc3(Sp
c, Sp)c) =

Spec(A(3)) =

ρ

��

P([3],p,h) ...
(p 6=2,3, h≥2)

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

P([2],p,h) ...
(p 6=2, h≥2)

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

P([1],p,h) ...
(p 6=2,3h≥2)

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦P([1],2,∞)

P([1],2,2)

P([1],2,3)

P([1],2,4)

P([1],2,5)

P([3],2,∞)

P([3],2,2)

P([3],2,3)

P([3],2,4)

P([3],2,5)

P([3],3,∞)

P([3],3,2)

P([3],3,3)

P([3],3,4)

P([3],3,5)

P([1],3,∞)

P([1],3,2)

P([1],3,3)

P([1],3,4)

P([1],3,5)

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦ •◦ •◦
P([3],0,1) P([2],0,1) P([1],0,1)

︸︷︷︸
_

��

︸︷︷︸
_

��

p([1],2)=p([2],2)=p([3],2)

 GH
p([1],3)=p([3],3)

GH

p([3],p) ...
(p 6=2,3)

•◦ •◦ •◦ •◦ . . .
p([2],p) ...

(p6=2)

•◦ •◦ •◦ •◦ . . .
p([1],p) ...

(p6=2,3)

•◦ •◦ •◦ •◦ . . .

•◦ •◦ •◦
p([3],0) p([2],0) p([1],0)

Figure 1. The Balmer spectrum of 3-excisive functors, along with
the comparison map to the Zariski spectrum of A(3).



6 GREGORY ARONE, TOBIAS BARTHEL, DREW HEARD, AND BEREN SANDERS

Outline of the proof of Theorem E. The tt-geometric classification of compact
d-excisive functors stated at the beginning of the introduction is equivalent to
Theorem E; the translation between the two formulations follows from general
tt-geometric principles. In particular, the tt-classification theorem is extracted from
Theorem E in Theorem 12.5; see also Corollary 12.10.

The proof of Theorem E takes a number of steps, whose overall strategy is
modelled on the work of Balmer and Sanders [BS17] in equivariant homotopy theory.
First of all, the condition that p− 1 | k − l already appears in the Zariski spectrum
of the Goodwillie–Burnside ring while the requirement that k− l ≥ 0 follows from a
straightforward computation; thus it remains to determine the values of δp(k, l), as
explained above. This geometric blueshift function measures the chromatic shift
that occurs in inclusions among prime ideals, and it is essentially controlled by two
interacting pieces of structure, to be explained in more detail below:

• the chromatic blueshift behaviour of the Tate-derivatives; and
• the combinatorics of p-power partitions.

In order to explain our strategy, recall from (1.4) that Pd−1 induces an open
embedding on spectra. Reinterpreted tt-geometrically, this results in a categorical
open-closed decomposition of Excd(Spc, Sp), which on objects decategorifies to the
Kuhn–McCarthy pullback square [McC01, Kuh04] for d-excisive functors F :

(1.5)
PdF (−) (∂dF ⊗ (−)⊗d)hΣd

Pd−1F (−) (∂dF ⊗ (−)⊗d)tΣd .

Here, the Tate construction appearing in the lower right corner governs the gluing
data between (d− 1)-excisive and d-homogeneous functors needed to reconstruct
a d-excisive functor. The idea is then to argue inductively on d, where the in-
duction step requires us to glue Spc(Spc) and Spc(Excd−1(Sp

c, Sp)c) via the Tate
construction.

In order to understand the gluing, we first reduce to the p-local situation for a
given p and then consider the (p-local) Tate-derivatives defined as

∂ltdid : Sp(p) → Sp(p), A 7→ ∂l
(
X 7→ (A⊗X⊗d)tΣd

)
for any l < d. These functors exhibit a chromatic height-shifting behaviour—a
phenomenon generally known as blueshift—which determines what we call elementary
inclusions among prime ideals.

Theorem F. The p-local Tate-derivatives ∂ltdid are contractible unless d > l and
there exists a partition of d by powers of p of length l. If such a partition exists, then
the p-local Tate-derivatives exhibit a blueshift by 1, i.e., the kernel of the functor

∂l

(
(Lfp,hS⊗ (−)⊗d)tΣd

)
: Spc(p) Sp

consists precisely of the type h finite p-local spectra.

The proof of Theorem F proceeds by using work of Arone–Ching [AC15] to
translate the problem to stable equivariant homotopy theory. More precisely, we
express the Tate-derivatives in terms of generalized Tate constructions with respect
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to families Fnt of non-transitive subgroups of symmetric groups:

∂l

(
(Lfp,hS⊗ (−)⊗d)tΣd

)
≃ (Lfp,hS)tFnt(λ) := ΦFnt(λ)(inflΣλe Lfp,hS).

We are then able to determine the corresponding blueshift behaviour using the
main theorem of previous work [BHN+19] on the topology of Balmer spectrum of
finite abelian groups, see Theorem 10.33, which in turn extended Kuhn’s blueshift
theorem [Kuh04]. Since it involves generalized Tate constructions based on sym-
metric groups, we may view Theorem F as an instance of non-abelian blueshift. We
note that, in general, determining the blueshift behaviour for arbitrary families of
subgroups of symmetric groups would suffice to compute the Balmer spectrum of
compact G-spectra for all finite groups G, a problem that remains open for every Σd
with d ≥ 4.

Returning to the problem of computing the blueshift function δp(k, l), Theorem F
accounts only for part of the possible relations; indeed, in general there can (and
will!) be chains of inclusions

Pd([k], p, h) = Pd([k1], p, h1) ⊆ Pd([k2], p, h2) ⊆ . . . ⊆ Pd([kj ], p, hj) = Pd([l], p, h
′)

in which only the adjacent inclusions are captured by the Tate-derivatives. One
outcome of our analysis is that all inclusions among prime ideals are formed by
such chains, so it remains to find the minimal shift among all such chains, which is
precisely the value of δp(k, l). This is then translated into a combinatorial problem
on p-power partitions, which we are able to solve using some elementary number
theory (Proposition 11.38).

Parerga and paralipomena. We conclude our summary of the paper by men-
tioning some applications and further directions.

Change of categories. In this paper we focus on functors from the category of spectra
to itself. But the methods of functor calculus apply much more broadly. Indeed, one
can apply functor calculus to study the ∞-category of functors Fun(C,D) where C

and D are general∞-categories, perhaps satisfying some mild technical assumptions.
It is natural to wonder how our methods work for other categories. In order to use
tt-geometric techniques, we should require our categories to be symmetric monoidal
and stable; in addition, the theory is particularly effective and well-developed in the
rigidly-compactly generated case.

It is relatively straightforward to extend our methods from Excd(Sp
c, Sp) to

the study of Excd(Sp
c,D), where D is a rigidly-compactly generated symmetric

monoidal stable ∞-category. Indeed, we show in Proposition 12.21 that, as a set,
the primes are always obtained by pulling back primes along the derivatives as in
the case D = Sp. In contrast, it is likely that new ideas are needed to replace Spc in
the source with a more general category. In particular Lemma 7.5 and Lemma 7.7
seem to depend on the source being Spc.

As a proof of concept, when the target is ModHZ, we completely determine the
topology of Spc(Excd(Spc,ModHZ)

c) in Theorem 12.27, a computation analogous to
the work of Patchkoria–Sanders–Wimmer in equivariant homotopy theory [PSW22].
In this case, all primes are of the form PZ

d ([k], p) for 1 ≤ k ≤ d and p ∈ Spec(Z) and
the topology is given by:
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Theorem G. Let d ≥ k, l ≥ 1 be integers and consider two prime ideals p, q ∈
Spec(Z). Then there is an inclusion PZ

d ([k], p) ⊆ PZ
d ([l], q) if and only if one of the

following two conditions is satisfied:
(a) p = (p) for some prime p, q = (p) or q = (0), and p− 1 | k − l ≥ 0;
(b) p = (0) = q and k = l.

Moreover, Spc(Excd(Spc,ModHZ)
c) is noetherian, so that the topology is determined

by these inclusions. Base-change Sp→ ModHZ induces a map

Spc(Excd(Sp
c,ModHZ)

c)→ Spc(Excd(Sp
c, Sp)c)

which is a homeomorphism onto its image. It maps PZ
d ([k], (p)) to Pd([k], p,∞)

and maps PZ
d ([k], (0)) to Pd([k], 0, 1). Finally, Excd(Spc,ModHZ) is stratified and

costratified over its spectrum in the sense of [BHS23b] and satisfies the telescope
conjecture.

We refer the reader to Figure 5 for an illustration of the case d = 3. More
generally, it is possible to deduce an abstract description of the resulting spectrum
of the category Spc(Excd(Sp

c,D)c) for any rigidly-compactly generated symmetric
monoidal stable ∞-category D from Theorem E, but we will not pursue this here.

Another important example of change of coefficients is that of functors from
spectra to telescopically localized spectra, studied in depth by Kuhn in [Kuh04].
Using the aforementioned telescopic blueshift theorem proven in the same paper,
Kuhn deduced from (1.5) that the Taylor tower of any F ∈ Excd(Sp

c, Sp) splits
completely after telescopic localization. From this perspective, our main result is a
far-reaching delocalization of Kuhn’s splitting theorem.

Smith–Floyd theory in functor calculus. The geometric blueshift occurring between
inclusions of prime ideals in (1.3), as determined in Theorem E, is equivalent to the
implication:

(1.6) K(p, h− 1 + ℶ)∗∂kF = 0 =⇒ K(p, h− 1)∗∂lF = 0

whenever F ∈ Excd(Sp
c, Sp)c. Instead of a conditional vanishing result, it is

desirable to have quantitative control over the transchromatic relation between
different derivatives.

In equivariant homotopy theory, the analogous problem is to find relations between
the dimensions of Morava K-theories of geometric fixed points ΦH(x),ΦK(x) of
a given finite G-spectrum x, for various subgroups H,K of G. On the one hand,
since the geometric H-fixed points of a G-suspension spectrum of a G-space X
coincide with the G-suspension spectrum of the H-fixed points of X, at height ∞
this is the topic of classical Smith [Smi41] and Floyd [Flo52] theory for mod p
homology. On the other hand, non-equivariantly, Ravenel [Rav84] showed that the
dimension of K(h)∗(x) provides an upper bound for the dimension of K(n)∗(x) for
all n ≤ h and all finite spectra x; this is a transchromatic version of Floyd theory
for the trivial action. Simultaneously generalizing these theorems, Hausmann and
Kuhn–Lloyd [KL20] reinterpreted the results of [BS17, BHN+19] as transchromatic
Smith–Floyd theory.

In light of the strong analogy between excisive functors Spc → Sp and stable
equivariant homotopy theory, we can view the sought-after quantitative version
of (1.6) as a functor calculus analogue of transchromatic Smith–Floyd theory. As
one application of our main theorem, we show that this story indeed carries over to
the calculus context, see Corollary 12.19:
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Theorem H. For any compact F ∈ Excd(Sp
c, Sp)c, the following inequality holds:

(1.7) dimK(p,n)∗ K(p, n)∗(∂kF ) ≥ dimK(p,h)∗ K(p, h)∗(∂lF )

whenever p− 1 | k − l ≥ 0 and n ≥ h+ δp(k, l).

We refer to Proposition 12.16 for the precise equivalence between transchromatic
Smith theory (1.6) and transchromatic Floyd theory (1.7) in Excd(Sp

c, Sp)c.

Spectral Mackey functors. As witnessed repeatedly above, the abstract tt-geometry
of Excd(Spc, Sp) closely resembles that of SpG for G a finite group. The underlying
reason for why the two stories are parallel is given in the setting of spectral Mackey
functors on epiorbital categories developed by Barwick and Glasman [Bar17, Gla15].
Specifically, G-spectra can be modelled as spectral Mackey functors on the category
of finite G-sets [Bar17], while d-excisive functors can be modelled as spectral
Mackey functors on the free coproduct completion of the category of finite sets of
cardinality at most d and surjections [Gla18]. In fact, when d = 2, this induces
the aforementioned equivalence between 2-excisive functors and C2-spectra, as the
indexing categories are equivalent; however, the stories bifurcate as soon as d > 2.
For the benefit of the reader conversant in equivariant homotopy theory, we will often
indicate when a construction in Goodwillie calculus is the analog of a well-known
construction in equivariant homotopy theory; for example, the Goodwillie derivatives
correspond to geometric fixed points. We have also tabulated the most prominent
instances of this correspondence in Appendix A.

Spaces vs spectra. One aspect of this work that we find intriguing is that it is
particularly adapted to the study of functors from spectra to spectra — and, more
generally, to functors between rigidly-compactly generated symmetric monoidal
stable ∞-categories — but it does not readily apply to functors from spaces to
spectra, because the category of such functors is not rigidly-compactly generated.
This is in contrast to previous approaches to classification of excisive functors, where
functors from spaces to spectra tended to be easier to understand than functors
from spectra to spectra.

Frequently used notations. Here is some notation that will be used throughout:
• For any ∞-category C, Cc denotes the category of compact objects in C.
• Coproducts and smash product of spectra are denoted by ⊕ and ⊗ respec-

tively. Smash product of pointed spaces is denoted by ∧. Day convolution
is denoted by ⊛. Internal homs are denoted hom(−,−).

• In a tensor triangulated category T, the localizing ideal (resp. localiz-
ing subcategory) generated by a subcategory E ⊂ T is denoted Locid⟨E⟩
(resp. Loc⟨E⟩) while the thick ideal generated by E is denoted thickid⟨E⟩.
• If C and D are presentably symmetric monoidal stable ∞-categories, then

a geometric functor F : C → D is a symmetric monoidal functor which
preserves all colimits. A geometric equivalence is a geometric functor which
is an equivalence.

• For an integer n ≥ 0, the standard set with n elements will be denoted by
[n] := {1, . . . , n}

• surj(m,n) will denote the set of surjective functions from [m] to [n]. Accord-
ingly, | surj(m,n)| denotes the number of surjections from [m] to [n].

• We write N∞ = {0, 1, 2, . . .} ∪ {∞}.
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Part I. Categorical foundations

2. The tensor triangulated category of d-excisive functors

We begin with a treatment of Goodwillie calculus for functors from spectra to
spectra and introduce the tensor triangulated category of d-excisive functors. Most,
if not all, of the definitions are due to Goodwillie [Goo03]. For an ∞-categorical
treatment of Goodwillie’s work we refer the reader to [Lur17, Chapter 6]. A survey
of Goodwillie calculus can be found in [AC20].

d-cubes and d-excisive functors.

Definition 2.1. Let C be an ∞-category with finite limits and finite colimits. The
category of d-cubes in C is the functor category Fun(P([d]),C) where P([d]) denotes
the poset of subsets of a finite set of cardinality d. A d-cube X is said to be

(i) cartesian, if the canonical map

X(∅)→ lim
∅̸=S⊆[d]

X(S)

is an equivalence, and
(ii) cocartesian, if the canonical map

colimS⊊[d] X(S)→ X([d])

is an equivalence.
Finally, a d-cube X is strongly cocartesian if it is left Kan extended from subsets of
cardinality at most 1 (equivalently, any 2-face in the cube is a pushout).

Example 2.2. When d = 2 the conditions above reduce to the usual notions of
pushout and pullback squares. A 3-cube is of the form

X1 X12

X∅ X2

X13 X123

X3 X23

It is strongly cocartesian if every face is a pushout or, equivalently, if it is left Kan
extended from the diagram

X1

X∅ X2

X3

Remark 2.3. When C is a stable ∞-category, a cubical diagram in C is cocartesian
if and only if it is cartesian. For d = 2 this is essentially the definition of a stable
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∞-category, see [Lur17, Proposition 1.1.3.4], and for d > 2 it is proved by induction
on d, see [Lur17, Proposition 1.2.4.13].

Definition 2.4. A functor F : Spc → Sp is reduced if it preserves the zero object. We
let Fun(Spc, Sp) denote the stable ∞-category of reduced functors from Spc to Sp.

Remark 2.5. The category Fun(Spc, Sp) is a full subcategory of the category of
all functors from Spc to Sp. In fact, Fun(Spc, Sp) is strongly reflexive, i.e., it is
presentable, stable under equivalence in the category of all functors, and the inclusion
admits a left adjoint; see [Lur17, Remark 1.4.2.4]. Furthermore, for any functor F
there is a natural equivalence F ≃ F × F (0) where F (X) := fib(F (X)→ F (0)) is
the reduced part of F . It follows that there is no real loss of information in focusing
on reduced functors.

Definition 2.6. Let d ≥ 1 be an integer and let F : Spc → Sp be a functor from
finite spectra to spectra. We say that F is d-excisive if it takes strongly cocarte-
sian (d+ 1)-cubes in Spc to cartesian (or, equivalently, cocartesian by Remark 2.3)
(d+ 1)-cubes in Sp. We let Excd(Sp

c, Sp) ⊆ Fun(Spc, Sp) denote the full stable
subcategory of reduced d-excisive functors from Spc to Sp.

Example 2.7. A functor F : Spc → Sp is 1-excisive precisely when it carries pushout
squares in Spc to pushout squares in Sp. Reduced 1-excisive functors are called
linear. Evaluation at the sphere spectrum gives an equivalence Exc1(Sp

c, Sp)
∼−→ Sp

between the category of linear functors and the category of spectra, whose inverse
sends a spectrum A to the functor X 7→ A⊗X.

Remark 2.8. By taking Ind-completions, there is an equivalence Excd(Sp
c, Sp) ≃

Exccd(Sp, Sp) between d-excisive functors Spc → Sp and d-excisive functors Sp→ Sp
that preserve filtered colimits; see [Lur17, Proposition 6.1.5.4].

Proposition 2.9. There are inclusions

Exc1(Sp
c, Sp) ⊆ · · · ⊆ Excd(Sp

c, Sp) ⊆ Excd+1(Sp
c, Sp) ⊆ · · · ⊆ Fun(Spc, Sp).

Proof. Any d-excisive functor ism-excisive for eachm ≥ d by [Goo03, Corollary 1.11]
or [Lur17, Corollary 6.1.1.14]. □

Theorem 2.10. The inclusion Excd(Sp
c, Sp) ↪→ Fun(Spc, Sp) admits an exact left

adjoint Pd : Fun(Spc, Sp)→ Excd(Sp
c, Sp).

Proof. This is one of the main theorems of Goodwillie [Goo03, Section 1] and is
established for ∞-categories in [Lur17, Theorem 6.1.1.10]. □

Remark 2.11. By slight abuse of notation we will also write Pd for the composition
of Pd with the inclusion functor:

Fun(Spc, Sp)
Pd−−→ Excd(Sp

c, Sp) ↪→ Fun(Spc, Sp).

This agrees with the notation used in [Goo03]. Note that since Sp is stable, the
category Excd(Sp

c, Sp) is closed under all colimits; see [Lur17, Remark 6.1.5.10].
This means that the inclusion functor Excd(Spc, Sp) ↪→ Fun(Spc, Sp) commutes with
colimits. It follows that Pd commutes with colimits both when regarded as a functor
Fun(Spc, Sp)→ Excd(Sp

c, Sp) and as an endofunctor on Fun(Spc, Sp).
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Definition 2.12. For all k ≥ 0, we have PdPd+k ≃ Pd as functors Fun(Spc, Sp) →
Excd(Sp

c, Sp). Indeed, just observe that they are both left adjoint to the inclusion.
We therefore obtain natural transformations Pd → Pd−1. The Taylor tower (or
Goodwillie tower) of F : Spc → Sp is the following sequence of natural transformations
of functors Spc → Sp:

F → · · · → Pd+1F → PdF → Pd−1F → · · · → P1F → P0F ≃ 0.

Definition 2.13. The d-th layer in the Taylor tower is DdF := fib(PdF → Pd−1F ).
The functor DdF is both d-excisive (PdF ≃ F ) and d-reduced (Pd−1F ≃ 0). We
call such functors d-homogeneous. These functors form a full stable subcategory
Homogd(Sp

c, Sp) ⊆ Excd(Sp
c, Sp); see [Lur17, Corollary 6.1.2.8].

Remark 2.14 (Multi-variable calculus). There is also a multi-variable version of
Goodwillie calculus. In particular, we say that a functor F : (Spc)×n → Sp is
d⃗-excisive for d⃗ = (d1, . . . , dn) if, for all 1 ≤ i ≤ n and every sequence of objects
{Xj ∈ Spc}j ̸=i, the composite

Spc ↪→ Spc ×
∏
j ̸=i

{Xj} ↪→ (Spc)×n
F−→ Spc

is di-excisive. The inclusion of d⃗-excisive functors into the category of all functors
also has a left adjoint (see [AK98, Section 1] or [Lur17, Proposition 6.1.3.6]). We
will only need the following generalization of Example 2.7: There is an equivalence

(2.15) Exc(1,...,1)((Sp
c)×d, Sp)

∼−→ Sp

between multi-linear functors (that is, functors of d variables that are reduced and
1-excisive in each variable) and spectra, given by evaluating at (S, . . . ,S). This is
shown in [Goo03, Section 5.2] at the level of homotopy categories and in [Lur17,
Remark 6.1.3.3] at the level of ∞-categories.

The symmetric monoidal structure on d-excisive functors. We now explain
how to construct a symmetric monoidal structure on the category of d-excisive
functors. We begin with all functors from finite spectra to spectra.

Construction 2.16. Recall that the category of functors from finite spectra to spectra
obtains a symmetric monoidal structure via Day convolution (see [Gla16] or [Lur17,
Remark 4.8.1.13]): Given such functors F and G we define F ⊛G as the left Kan
extension in the following diagram:

Spc × Spc Sp× Sp Sp

Spc

⊗

F×G ⊗

F⊛G

Informally, we have

(2.17) (F ⊛G)(C) = colimC0⊗C1→C F (C0)⊗ F (C1).

The unit is the functor Σ∞
+ Map◦Sp(S,−) where Map◦Sp(−,−) denotes the (unpointed)

mapping space.
The category of reduced functors Fun(Spc, Sp) inherits a symmetric monoidal

structure from the category of all functors via the localization of Remark 2.5. This
follows, for example, by applying [CDH+23, Lemma 5.3.4] to the constant diagram
on 0. In fact, (2.17) implies that the Day convolution of two reduced functors is
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reduced. It follows that the localized Day convolution on Fun(Spc, Sp) actually
coincides with the ordinary Day convolution — all that changes is that the unit of
Fun(Spc, Sp) is the localization of the unit for ordinary Day convolution. This is
the reduced functor Σ∞ MapSp(S,−) corepresented by the sphere spectrum, where
MapSp(−,−) denotes the pointed mapping space; see [Chi21, Lemma 2.10]. That
is, it is the functor

Σ∞Ω∞ : Spc → Sp, M 7→ Σ∞Ω∞M.

Remark 2.18. The symmetric monoidal structure on Fun(Spc, Sp) is closed, since the
category Fun(Spc, Sp) is presentably symmetric monoidal by [Nik16, Proposition 3.3],
that is, it is a presentable symmetric monoidal ∞-category whose tensor product
commutes with colimits in both variables. In particular, it has an internal hom
object which can be computed via

homFun(Spc,Sp)(F,G)(x) ≃
∫
d∈Spc

homSp(F (d), G(x⊗ d))

≃ HomFun(Spc,Sp)(F,G(x⊗−)).
See [Nik16, Proposition 3.11] and [GHN17, Proposition 5.1].

Notation 2.19. For any x ∈ Spc let

hx := Σ∞ MapSp(x,−) ∈ Fun(Spc, Sp)

be the corresponding corepresentable functor (where again MapSp(−,−) denotes
the pointed mapping space). Note that

(2.20) homFun(Spc,Sp)(hx, F ) ≃ F (x⊗−).

Remark 2.21. There is a formula for Day convolution with a corepresentable functor
that we now describe. For any reduced functor F : Spc → Sp, there is a natural
assembly map

hx(y1)⊗ F (y2)→ F (homSp(x, y1 ⊗ y2))
which, by the universal property of Day convolution, induces a natural transformation

(2.22) (hx ⊛ F )(−)→ F (homSp(x,−))
of reduced functors Spc → Sp.

Lemma 2.23. The map (2.22) is an equivalence.

Proof. It is enough to show that for any reduced functorG : Spc → Sp, the map (2.22)
induces an equivalence

HomFun(Spc,Sp)(F (homSp(x,−)), G)→ HomFun(Spc,Sp)(hx ⊛ F,G).

This map factors as a composition of equivalences

HomFun(Spc,Sp)(F (homSp(x,−)), G)
≃−→ HomFun(Spc,Sp)(F,G(x⊗−))
≃−→ HomFun(Spc,Sp)

(
F, homFun(Spc,Sp)(hx, G)

)
≃−→ HomFun(Spc,Sp)(F ⊛ hx, G)

and so is itself an equivalence. The first equivalence follows from the following
observation: Given an adjunction L : C ⇆ D : R and functors F : C → Z and
G : D→ Z, there is a natural equivalence

HomFun(D,Z)(FR,G) ≃ HomFun(C,Z)(F,GL).
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The second equivalence uses (2.20) while the third equivalence is the closed monoidal
adjunction. □

Remark 2.24. It follows from Lemma 2.23 that hS is indeed the unit of Fun(Spc, Sp)
under the Day convolution monoidal structure of Construction 2.16.

The following corollary is a variant of [Chi21, Lemma 2.18].

Corollary 2.25. The canonical natural transformation

hx1
(y1)⊗ hx2

(y2)→ hx1⊗x2
(y1 ⊗ y2)

induces an equivalence
hx1

⊛ hx1

≃−→ hx1⊗x2
.

Remark 2.26. This corollary can also be proved by observing that x 7→ hx under
the stable Yoneda embedding

(2.27) Spc → Fun(Spc, Sp)op

which is the composite of the usual space-valued Yoneda embedding, followed by
composition with Σ∞

+ and then followed by the localization functor of Remark 2.5.
The usual Yoneda embedding is symmetric monoidal by [Gla16, Section 3], as is
post-composition with the symmetric monoidal functor Σ∞

+ . The localization functor
is symmetric monoidal by construction. This is another way of appreciating that hS

is the monoidal unit of Fun(Spc, Sp).

Day convolution of excisive functors. We now return to d-excisive functors. Our
goal is to show that Pd : Fun(Spc, Sp) → Excd(Sp

c, Sp) is a smashing localization
which is compatible with the Day convolution monoidal structure on Fun(Spc, Sp).

Definition 2.28. A functor F : C → D between ∞-categories is a localization if F
has a fully faithful right adjoint G.

Remark 2.29. It follows that there is an equivalence between D and the full subcat-
egory of C given by the essential image of G. We will sometimes abuse terminology
and refer to the endofunctor L := G ◦ F as the localization. A map f : X → Y in C

is said to be an L-local equivalence if Lf : LX → LY is an equivalence. For example,
the unit X → LX of the adjunction is an L-local equivalence for each X ∈ C.

Example 2.30. The d-excisive approximation Pd : Fun(Spc, Sp)→ Excd(Sp
c, Sp) is a

localization by Theorem 2.10; cf. Remark 2.11.

Definition 2.31. Suppose that C is a symmetric monoidal ∞-category. We say that
a localization L : C → C is compatible with the symmetric monoidal structure if,
whenever f : X → Y is a L-local equivalence and Z ∈ C is any object, the map
f ⊗ id : X ⊗ Z → Y ⊗ Z is also an L-local equivalence.

The following follows from [Lur17, Proposition 2.2.1.9]:

Proposition 2.32. Let (C,⊗,1C) be a symmetric monoidal ∞-category. Suppose
that L : C → C is a localization which is compatible with the symmetric monoidal
structure. Then LC inherits the structure of a symmetric monoidal ∞-category with
unit L(1C) and monoidal product L(−⊗−). In particular, the localization C→ LC
is a symmetric monoidal functor.

Definition 2.33. Let (C,⊗,1C) be a presentably symmetric monoidal stable ∞-
category. A localization L : C→ C is smashing if it preserves colimits.
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Remark 2.34. If a localization L : C→ C is compatible with the symmetric monoidal
structure, then the map X → L(1C)⊗X induced by the canonical map 1C → L(1C)
is a natural L-local equivalence. Hence we obtain a natural map αX : L(1C)⊗X →
L(X) as the composite

L(1C)⊗X → L(L(1C)⊗X) ≃ L(X).

Proposition 2.35. Let (C,⊗,1C) be a presentably symmetric monoidal stable
∞-category. Suppose that L : C→ C is a smashing localization which is compatible
with the symmetric monoidal structure. Then:

(a) The natural map αX : L(1C)⊗X → L(X) is an equivalence for all X ∈ C.
(b) LC inherits a symmetric monoidal structure with unit L(1C) and monoidal

product −⊗−.
(c) There is a symmetric monoidal equivalence of stable ∞-categories

ModC(L(1C)) ≃ LC
that exhibits LC as base change along the map 1→ L(1C).

Proof. The argument for part (a) is the same as the argument in [HPS97] which
establishes the equivalence of the three conditions in their Definition 3.3.2.1 Part (b)
then follows from part (a) and Proposition 2.32. Part (c) is a well-known consequence:
it follows, for example, by applying [MNN17, Proposition 5.29] to the adjunction
L : C ⇆ LC : ι where ι : LC ↪→ C is the inclusion. □

Remark 2.36. We now turn our attention back to d-excisive functors. In fact, we
work a little more generally, following [CDH+23] and [HR21]. To that end, let
J = {pα : K▷

α → Spc} be a small collection of diagrams in Spc. Let FunJ (Spc, Sp) ⊆
Fun(Spc, Sp) denote the full subcategory spanned by those functors which send
every diagram in J to a limit diagram. As explained in [CDH+23, p. 159] or [HR21,
Theorem 4.2], the subcategory FunJ (Spc, Sp) is a localization of Fun(Spc, Sp). In
fact, it is the collection of S-local objects for some set of maps in Fun(Spc, Sp)
which implies that FunJ (Spc, Sp) is presentable and that the inclusion has a left
adjoint LJ [Lur09a, Proposition 5.5.4.15].

Proposition 2.37. Suppose that the small set of diagrams J is closed under post
composition with x⊗ (−) : Spc → Spc for all x ∈ Spc. Then the localization

LJ : Fun(Spc, Sp)→ FunJ (Spc, Sp)

is a smashing localization which is compatible with Day convolution. In particular,
FunJ (Spc, Sp) is a presentably symmetric monoidal ∞-category with symmetric
monoidal structure given by Day convolution F ⊛G and with tensor unit LJ hS.

Proof. This is all contained in [CDH+23, Lemma 5.3.4] and [HR21, Theorem 4.5]
except for the fact that the localization is smashing, so that Proposition 2.35 applies.
However, the inclusion FunJ (Spc, Sp) ↪→ Fun(Spc, Sp) preserves filtered colimits
(and hence all colimits), since filtered colimits in Sp are left exact. □

Theorem 2.38. The d-excisive approximation Pd : Fun(Spc, Sp)→ Excd(Sp
c, Sp) is

a smashing localization on Fun(Spc, Sp) which is compatible with the Day convolution.
It follows that the category Excd(Sp

c, Sp) is a presentably symmetric monoidal stable

1Note that the definition of localization given in [HPS97] automatically assumes compatibility
with the symmetric monoidal structure.
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∞-category with the tensor product and internal hom both computed in Fun(Spc, Sp).
The monoidal unit is the functor PdhS : Sp

c → Sp. Moreover, PdhS = PdΣ
∞Ω∞.

Proof. This follows from Proposition 2.37, since Excd(Sp
c, Sp) ⊆ Fun(Spc, Sp) is

of the form FunJ (Spc, Sp) for an appropriate choice of J , namely the collection
corresponding to all strongly cocartesian cubes. The condition in Proposition 2.37
is satisfied because the functor x⊗ (−) preserves strongly cocartesian cubes (which
follows, for example, from the characterization in [Lur17, Proposition 6.1.1.15]). □

Remark 2.39. In Corollary 6.21 we show that Excd(Sp
c, Sp) is a finite localization

of Excd+k(Spc, Sp) for all k ≥ 0 and provide an explicit set of compact generators
for the kernel of the localization functor. However, we suspect that the smashing
localization Fun(Spc, Sp)→ Excd(Sp

c, Sp) is not a finite localization, i.e., its kernel
is not generated by compact objects. In Example 6.22 we show that the “obvious”
set of compact generators does not work.

Corollary 2.40. For any F ∈ Fun(Spc, Sp), there is a natural equivalence

(2.41) PdF
≃−→ F ⊛ PdΣ

∞Ω∞

Corollary 2.42. Suppose F and G are m-excisive and d-excisive, respectively.
Then F ⊛G is min(m, d)-excisive.

Proof. It follows from Corollary 2.40 that

PmΣ∞Ω∞ ⊛ PdΣ
∞Ω∞ ≃ Pmin(m,d)Σ

∞Ω∞

and hence

F ⊛G ≃ PmF ⊛ PdG ≃ F ⊛ PmΣ∞Ω∞ ⊛G⊛ PdΣ
∞Ω∞

≃ F ⊛G⊛ Pmin(m,d)Σ
∞Ω∞

≃ Pmin(m,d)(F ⊛G). □

Remark 2.43. Recall that if C is a symmetric monoidal stable∞-category then there
is an essentially unique symmetric monoidal colimit-preserving functor Sp→ C given
by A 7→ A⊗ 1C; see [Lur17, Corollary 4.8.2.19]. For example, if C = Fun(Spc, Sp),
then this is the functor A 7→ FA, where FA ∈ Fun(Spc, Sp) sends X ∈ Spc to
A⊗Σ∞Ω∞X. Applying Pd (or appealing to the universal property directly) we can
make the following definition:

Definition 2.44. The inflation functor id : Sp → Excd(Sp
c, Sp) is the (essentially

unique) symmetric monoidal colimit-preserving functor. It is given by A 7→ Pd(FA).

Example 2.45. Suppose d = 1. In this case, it is well-known that P1(FA) is equivalent
to the functor X 7→ A⊗X. For example, see [Lur17, Example 6.1.1.28] for a proof
in the language of ∞-categories (or see Remark 5.35). In particular, the equivalence
Exc1(Sp

c, Sp) ≃ Sp of Example 2.7 is an equivalence of symmetric monoidal stable
∞-categories. In fact, the same statement is true for the equivalence of (2.15) which
is given by the canonical symmetric monoidal functor Sp→ Exc(1,...,1)((Sp

c)×n, Sp)
that sends A ∈ Sp to the functor (X1, . . . , Xn) 7→ A⊗X1 ⊗ . . .⊗Xn.

Remark 2.46 (Change of target category). If D is a presentable symmetric monoidal
stable ∞-category, then we could also consider the category of reduced d-excisive
functors Excd(Sp

c,D). Much of what we have said thus far can be repeated for this
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category. Our present goal is to explain how this construction can be viewed in
terms of the Lurie tensor product of presentable ∞-categories.

Indeed, let PrL denote the ∞-category of presentable ∞-categories with the
colimit-preserving functors as morphisms. This category has a symmetric monoidal
structure constructed in [Lur17, Section 4.8.1] with the ∞-category of spaces S

serving as the unit. The full subcategory PrLst consisting of the presentable stable
∞-categories inherits the monoidal structure from PrL with the category of spec-
tra Sp now serving as the unit. Moreover, if C and D are symmetric monoidal, then
the Lurie tensor product C⊗D also inherits a symmetric monoidal structure.

We claim there is an equivalence of symmetric monoidal stable ∞-categories

Excd(Sp
c,D) ≃ Excd(Sp

c, Sp)⊗D

where the left-hand side has the localized Day convolution monoidal structure, and
the right-hand side has the symmetric monoidal structure coming from the Lurie
tensor product. Indeed, because D is stable, there is an equivalence D ≃ D⊗Sp⊗S.
Then we have an equivalence of presentable stable ∞-categories

Excd(Sp
c,D) ≃ Excd(Sp

c,D⊗Sp⊗S) ≃ Excd(Sp
c, S)⊗D⊗Sp ≃ Excd(Sp

c, Sp)⊗D

by applying [HR21, Theorem 4.2(2)] twice. Moreover, it follows from [HR21,
Lemma 4.8] that this is an equivalence of symmetric monoidal ∞-categories.

Example 2.47. Taking D = ModHZ in the previous example, we see that

Excd(Sp
c,ModHZ) ≃ Excd(Sp

c, Sp)⊗ModHZ .

This is the d-excisive version of Kaledin’s derived Mackey functors; cf. [PSW22].

3. Cross-effects and idempotents

The cross-effects play an important role in the study of polynomial and excisive
functors. In this section we will review several notions of cross-effect and show
that for functors with values in a stable ∞-category, the definition of the cross-
effect via idempotents, in the style of Eilenberg–Mac Lane [EML54], is equivalent
to the definition of the cross-effect via total homotopy (co)fibers introduced by
Goodwillie [Goo03]. The idempotent model is convenient for analyzing certain
operations with cross-effects that we will need. In particular, it is useful for
calculating natural transformations and Day convolutions of cross-effects.

Notation 3.1. Throughout this section D denotes a stable∞-category and F denotes
a (not necessarily reduced) functor from Spc to D.

Remark 3.2. If D is a stable ∞-category, then so is Dop. This means that the
material in this section applies both to covariant and contravariant functors from
Spc to D. In subsequent sections we will apply the cross-effect construction to a
contravariant functor (a version of the Yoneda embedding) from Spc to Fun(Spc, Sp).

Definition 3.3 (Goodwillie). The d-th cross-effect functor of F is the functor
crdF : (Spc)×d → D defined by

crdF (x1, . . . , xd) := tofibS⊆[d]

F
⊕
i̸∈S

xi

 ,
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the iterated (or total) fiber of a d-cube formed by applying F to the direct sums of
subsets of x1 . . . , xd. The morphisms in the cube are given by the relevant collapse
maps xi → 0. See [Lur17, Construction 6.1.3.20].

Dually, we define the d-th co-cross-effect crdF : (Spc)×d → D by

crdF (x1, . . . , xd) := tcofS⊆[d]

F
⊕
i ̸∈S

xi

 ,

the total cofiber of the cubical diagram with the same objects as before, but where
the morphisms are induced by the inclusions 0→ xi.

Remark 3.4. By permutation of variables, the (co-)cross-effect has a (naive) action
of Σd. At the ∞-categorical level, this corresponds to the fact that the d-th cross-
effect is a symmetric d-ary functor; see [Lur17, Section 6.1.4]. Using the coreduction
functor defined in [Lur17, Construction 6.2.3.6] one can also check that the d-th
co-cross-effect is a symmetric d-ary functor.

Example 3.5. The first cross-effect of F is the fiber

cr1F (x) = fib(F (x)→ F (0))

and the first co-cross-effect is the cofiber

cr1F (x) = cofib(F (0)→ F (x)).

The second cross-effect is the total fiber

cr2F (x1, x2) = tofib


F (x1 ⊕ x2) F (x2)

F (x1) F (0)


and the second co-cross-effect is the total cofiber

cr2F (x1, x2) = tcof


F (x1 ⊕ x2) F (x2)

F (x1) F (0)

 .

Lemma 3.6. For any functor F : Spc → D, there are natural transformations of
functors of d variables

(3.7) crdF (x1, . . . , xd)→ F (x1 ⊕ · · · ⊕ xd)→ crdF (x1, . . . , xd)

whose composition is an equivalence.

Proof. This is shown in [Heu21, Lemma B.1]. □

Remark 3.8. It follows from Lemma 3.6 that there is an idempotent endomorphism
in the homotopy category of functors of d variables:

(3.9) F (x1⊕· · ·⊕xd)→ crdF (x1, . . . , xd)
≃←− crdF (x1, . . . , xd)→ F (x1⊕· · ·⊕xd).

Remark 3.10. The notion of an idempotent endomorphism in an ∞-category is
somewhat involved, since it has to incorporate higher coherences; see [Lur09b,
Definition 4.4.5.4]. However, for a stable ∞-category, every idempotent in the
homotopy category lifts to an idempotent in the∞-category [Lur17, Proof of Lemma
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1.2.4.6 and Warning 1.2.4.8]; in other words, the existence of higher coherences
comes for free. In the sequel, when we say “idempotent”, we will mean “idempotent
endomorphism” in the relevant ∞-category, but when we say that idempotents
“commute” or are “orthogonal”, we will mean that they do so in the homotopy
category.

Remark 3.11. Suppose e : X → X is an idempotent in a stable ∞-category which
admits sequential colimits. We define

eX := colim(X
e−→ X

e−→ · · · ).
The map (1− e) is an idempotent as well, and there is a direct sum decomposition

X ≃ eX ⊕ (1− e)X
which is natural with respect to maps that commute with e; see [Nee01, Proposi-
tion 1.6.8], for example. More generally, if e1, . . . , ed : X → X are idempotents that
are pairwise orthogonal in the homotopy category and such that e1 + · · ·+ ed ≃ 1X
then there is an equivalence

X ≃ e1X ⊕ · · · ⊕ edX.
Remark 3.12. It follows from Remark 3.10 that the idempotent map (3.9) can be
thought of as an idempotent in the∞-category of functors (Spc)×d → D. We denote
this idempotent by cr(d). It follows that the d-th cross-effect crdF (x1, . . . , xd) is
a direct summand of F (x1 ⊕ · · · ⊕ xd), split off by the idempotent cr(d). In other
words, crdF (x1, . . . , xd) ≃ cr(d)F (x1, . . . , xd) using the notation of Remark 3.11.

Remark 3.13. Our next goal is to give a “formula” for the idempotent cr(d) which
expresses it in terms of more elementary idempotents. This formula was first
given in [EML54] for functors between abelian categories. We will adapt their
constructions to the setting of stable ∞-categories.

Definition 3.14. Let x1, . . . , xd ∈ Spc and U ⊆ [d]. Define

ψU : x1 ⊕ · · · ⊕ xd → x1 ⊕ · · · ⊕ xd
to be the sum of the identity morphisms xi

1−→ xi for all i ∈ U and the zero
morphisms xi

0−→ xi for i /∈ U . When U = {i} is a singleton, we denote ψU by ψi.

Remark 3.15. We regard ψU as a natural endomorphism of the functor⊕
d
: (Spc)×d → Spc

which sends (x1, . . . , xd) to x1 ⊕ · · · ⊕ xd. For any functor F : Spc → D, we then
obtain a natural endomorphism F ∗ ψU of F ◦

⊕
d.

Lemma 3.16. The morphisms {ψU | U ⊆ [d]} are pairwise commuting idempotents.
For every U, V ⊆ [d], ψU ◦ ψV = ψU∩V . For every U ⊆ [d], there is an equivalence

ψU ≃
∑
i∈U

ψi.

Proof. These are routine verifications which we leave to the reader. □

Remark 3.17. Given a functor F : Spc → D, it follows from Lemma 3.16 that{
F ∗ ψU

∣∣U ⊆ [d]
}

are pairwise commuting idempotents of the functor (x1, . . . , xd) 7→ F (x1 ⊕ · · · ⊕ xd).
Furthermore, (F ∗ ψU )(F ∗ ψV ) = F ∗ ψU∩V for all U, V ⊆ [d].
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Definition 3.18. For each subset U ⊆ [d], define the natural transformation

cr(U) : F ◦
⊕

d
→ F ◦

⊕
d

as follows:

cr(U) := F ∗ ψU ◦
(
⃝
i∈U

(1− F ∗ ψU\{i})

)
≃ ⃝
i∈U

(F ∗ ψU − F ∗ ψU\{i})

≃
∑
V⊆U

(−1)|U |−|V |F ∗ ψV .

Here ◦ and ⃝ denote composition. All maps of the form F ∗ ψU and 1− F ∗ ψU\{i}
commute with each other, so the order of composition is not important. That the
different formulas for cr(U) are equivalent is an exercise.

Example 3.19. When U = [d], we denote cr(U) by cr[d]. Thus we have

cr[d] = ⃝
i∈[d]

(1− F ∗ ψ[d]\{i}) ≃
∑
V⊆[d]

(−1)d−|V |F ∗ ψV .

Remark 3.20. The cr(U) are analogous to the maps Dσ in [EML54, (9.7), page 77].

Lemma 3.21 ([EML54], Proof of Theorem 9.1). The maps {cr(U) | U ⊆ [d]} are
pairwise orthogonal idempotents whose sum is the identity.

Proof. The fact that the ψU are pairwise commuting homotopy idempotents implies
that all maps of the form F ∗ ψU commute with each other and also with maps of
the form 1− F ∗ ψV . Therefore, the maps cr(U) commute with each other. Each
map cr(U) is a composition of commuting idempotents, so it is itself an idempotent.

To prove that the idempotents cr(U) are pairwise orthogonal, let U,U ′ be distinct
subsets of [d]. Without loss of generality we may assume that there exists an element
i ∈ U \ U ′. Then U ′ ⊆ [d] \ {i} and thus cr(U ′) = F ∗ ψ[d]\{i}cr(U

′). On the other
hand, since i ∈ U , F ∗ ψU − F ∗ ψU\{i} is a factor of cr(U). So we may write
cr(U) = c̄r(U) ◦ (F ∗ ψU − F ∗ ψU\{i}) for some map c̄r(U). It follows that there
are equivalences

cr(U) ◦ cr(U ′) ≃ c̄r(U) ◦ (F ∗ ψU − F ∗ ψU\{i})F ∗ ψ[d]\{i} ◦ cr(U ′)

≃ c̄r(U) ◦ (F ∗ ψU\{i} − F ∗ ψU\{i}) ◦ cr(U ′)

≃ 0.

Finally, we want to prove that
∑
U⊆[d] cr(U) ≃ 1. If we adopt the formula cr(U) =∑

V⊆U (−1)|U |−|V |F ∗ ψV , then it is clear that∑
U⊆[d]

cr(U) ≃
∑
V⊆[d]

∑
V⊆U⊆[d]

(−1)|U |−|V |F ∗ ψV .

For all V ⊊ [d],
∑
V⊆U⊆[d](−1)|U |−|V | = 0. So

∑
U cr(U) ≃ F ∗ ψ[d], which is the

identity. □

Notation 3.22. We will write cr(U)F (x1 ⊕ · · · ⊕ xd) for the direct summand of
F (x1⊕· · ·⊕xd) split off by the idempotent cr(U) : F (x1⊕· · ·⊕xd)→ F (x1⊕· · ·⊕xd).
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Remark 3.23. If U = {i1, . . . , is} ⊆ [d], then cr(U)F (x1 ⊕ · · · ⊕ xd) is denoted
by F (xi1 | · · · |xis) in [EML54]. We will see in Lemma 3.26 below that indeed
cr(U)F (x1 ⊕ · · · ⊕ xd) really only depends on xi1 , . . . , xis .

Corollary 3.24. Let FSpc → D be a functor and let x1, . . . , xd ∈ Spc. There is an
equivalence

F (x1 ⊕ · · · ⊕ xd) ≃
∏
U⊆[d]

cr(U)F (x1 ⊕ · · · ⊕ xd)

which is natural in x1, . . . , xd.

Proof. This is an immediate consequence of Lemma 3.21. It also is [EML54, Theo-
rem 9.1] lifted to functors between stable ∞-categories. □

The next two lemmas record some elementary properties of the idempotents cr(U).

Lemma 3.25. Let x1, . . . , xd ∈ Spc and suppose that xi ≃ 0 for some 1 ≤ i ≤ d.
Then for all subsets {i1, . . . , is} ⊆ [d] that contain i, cr(U)F (x1 ⊕ · · · ⊕ xd) ≃ 0.

Proof. Suppose xi ≃ 0 and i ∈ U . Then ψU = ψU\{i} and therefore

F ∗ ψU − F ∗ ψU\{i} : F (x1 ⊕ · · · ⊕ xd)→ F (x1 ⊕ · · · ⊕ xd)
is (homotopic to) the trivial map. But F ∗ ψU − F ∗ ψU\{i} is a factor of cr(U).
It follows that cr(U) acts trivially on F (x1 ⊕ · · · ⊕ xd) in this case, and therefore
cr(U)F (x1 ⊕ · · · ⊕ xd) ≃ 0. □

Lemma 3.26. Let y1, . . . yd ∈ Spc and suppose we are given maps xi → yi for
1 ≤ i ≤ d. Suppose there is a set U ⊆ [d] such that the map xi → yi is an equivalence
for all i ∈ U . Then the following induced map is an equivalence:

cr(U)F (x1 ⊕ · · · ⊕ xd)
≃−→ cr(U)F (y1 ⊕ · · · ⊕ yd).

Proof. Note that our assumptions imply that the map

x1 ⊕ · · · ⊕ xd → y1 ⊕ · · · ⊕ yd
induces an equivalence

ψV (x1 ⊕ · · · ⊕ xd)
≃−→ ψV (y1 ⊕ · · · ⊕ yd)

for all V ⊆ U . It follows that cr(U) =
∑
V⊆U (−1)|U |−|V |F (ψV ) also induces an

equivalence
cr(U)F (x1 ⊕ · · · ⊕ xd)

≃−→ cr(U)F (y1 ⊕ · · · ⊕ yd). □

Remark 3.27. Now we are ready to express the cross-effect of a functor F in terms
of the idempotents cr(U).

Proposition 3.28. Let x1, . . . , xd ∈ Spc and let F be a functor from Spc to D.
Consider the two d-dimensional cubical diagrams that both send a subset S ⊆ [d]
to F

(⊕
i/∈S xi

)
and whose morphisms are induced by the relevant collapse maps

xi → 0 for the first diagram and the relevant inclusion maps 0→ xi for the second
diagram. These diagrams are equivalent to the diagrams that send S to the product∏

U⊆[d]\S

cr(U)F (x1 ⊕ · · · ⊕ xd)

and whose maps are the obvious projections (for the first diagram) and the obvious
inclusions (for the second diagram).
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Proof. We can identify
⊕

i/∈S xi with
⊕d

i=1 yi where yi = 0 for i ∈ S and yi = xi for
i /∈ S. It follows that we may identify either one of the two versions of the cubical
diagram S 7→ F (

⊕
i/∈S xi) with a cubical diagram where F is evaluated at a wedge

sum of d spectra, and where the maps are induced by a wedge sum of d maps of
spectra.

By Corollary 3.24, F (y1 ⊕ · · · ⊕ yd) splits as a product of cr(U)F (y1 ⊕ · · · ⊕ yd),
where U ranges over subsets of [d], and the maps in either version of the cubical
diagram are compatible with the splitting. By Lemma 3.25, for each U that is not
contained in [d] \ S, cr(U)F (y1 ⊕ · · · ⊕ yd) ≃ 0, and so can be dropped from the
product. By Lemma 3.26, whenever S ⊆ S′ ⊆ [d], for any U ⊆ [d] \ S′ the factors
cr(U)F (

⊕
i/∈S xi) and cr(U)F (

⊕
i/∈S′ xi) are equivalent, and can be identified with

cr(U)F (x1 ⊕ · · · ⊕ xd). □

We now can state the precise relationship between crd, crd, cr[d] and cr(d).

Lemma 3.29. The idempotent cr[d] : F (x1 ⊕ · · · ⊕ xd) → F (x1 ⊕ · · · ⊕ xd) of
Example 3.19 is equivalent to the idempotent cr(d) : F (x1⊕· · ·⊕xd)→ F (x1⊕· · ·⊕xd)
of Remark 3.8. For any functor F there are natural equivalences

crdF (x1, . . . , xd) ≃ crdF (x1, . . . , xd) ≃ cr[d]F (x1 ⊕ · · · ⊕ xd).

Proof. We already saw in Lemma 3.6 that crdF (x1, . . . , xd) ≃ crdF (x1, . . . , xd), but
this also follows from Proposition 3.28. The proposition says that crdF (x1, . . . , xd)
(respectively, crdF (x1, . . . , xd)) is equivalent to the total fiber (respectively, cofiber)
of the cubical diagram that sends a subset S ⊆ [d] to

∏
U⊆[d]\S cr(U)F (

⊕
i/∈S xi)

where the maps are given by projections (respectively, inclusions). A straightforward
calculation shows that the factors corresponding to cr(U)F with U a proper subset
of [d] “cancel out”, and the total fiber/cofiber is equivalent to cr[d]F (x1 ⊕ · · · ⊕ xd).
It also follows that the map F (x1⊕· · ·⊕xd)→ crdF (x1, . . . , xd) is equivalent to the
projection F (x1⊕· · ·⊕xd)→ cr[d]F (x1⊕· · ·⊕xd), and the map crdF (x1, . . . , xd)→
F (x1, . . . , xd) is equivalent to the section of the projection map. It follows that cr[d]
is equivalent to the idempotent cr(d) of line (3.9) in Remark 3.8. □

We have one final lemma, which gives a kind of generalized converse of the
formula for cr(U) in Definition 3.18.

Lemma 3.30. For any U ⊆ [d], there are equivalences

(3.31) F ∗ ψU ≃
∑
V⊆U

cr(V )

and

(3.32) 1− F ∗ ψU ≃
∑
V ̸⊆U

cr(V ).

Moreover, for any collection of subsets U1, . . . , Ud ⊆ [d], there is an equivalence

(3.33) ⃝d
i=1(1− F ∗ ψUi) ≃

∑
V ̸⊆U1,...,Ud

cr(V )

where the sum on the right-hand side is over all subsets V ⊆ [d] that are not contained
in any of the sets U1, . . . , Ud.
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Proof. Observe that we have equivalences

1 ≃ ⃝i∈U
(
F ∗ ψ[d]\{i} +

(
1− F ∗ ψ[d]\{i}

))
≃
∑
V⊆U

F ∗ ψ[d]\V ◦ (⃝i∈U\V (1− F ∗ ψ[d]\{i})).

Therefore we have

F ∗ ψU ≃ F ∗ ψU
∑
V⊆U

F ∗ ψ[d]\V ◦ (⃝i∈U\V (1− F ∗ ψ[d]\{i}))

≃
∑
V⊆U

⃝i∈U\V (F ∗ ψU\V − F ∗ ψ(U\V )\{i}))

≃
∑
V⊆U

cr(U \ V ) =
∑
V⊆U

cr(V )

which proves (3.31). The equality (3.32) follows from (3.31) and the fact that∑
U⊆[d] cr(U) ≃ 1. Finally (3.33) follows from (3.32) and the fact that the cr(U) are

pairwise orthogonal idempotents. □

4. The cross-effects of representable functors

We now investigate the cross-effects of representable functors and show that they
provide a convenient set of generators for Excd(Sp

c, Sp). These generators will play
an important role in this work. The material in the previous section will help us
analyze the Day convolutions and natural transformations between these generators.

Remark 4.1. Recall from Notation 2.19 that hx ∈ Fun(Spc, Sp) is the reduced functor
corepresented by x ∈ Spc, i.e., hx(y) = Σ∞ MapSp(x, y). In this section we will
view the assignment x 7→ hx as a contravariant functor from Spc to Fun(Spc, Sp),
or equivalently as a functor from Spc to Fun(Spc, Sp)op. Let us formalize this in a
definition:

Definition 4.2. Let F : Spc → Fun(Spc, Sp)op be the functor defined by the formula

F (x) := hx.

One can view F as a stable and reduced variant of the Yoneda embedding.

Definition 4.3. Fix a finite spectrum x ∈ Spc. For each integer i ≥ 1, we define
hx(i) ∈ Fun(Spc, Sp) by

hx(i) := criF (x, . . . , x).

More generally, given a finite set U , we define

hx(U) := cr(U)F

(⊕
U

x

)
where the right-hand side uses Notation 3.22.

Remark 4.4. For each i ≥ 1, we thus have a bi-functor (x, y) 7→ hx(i)(y) which is
contravariant in x and covariant in y.

Remark 4.5. By Lemma 3.29, there are three equivalent models for hx(i): as the
cross-effect, the co-cross-effect, and as the image of the idempotent cr(i) acting on

hx⊕ · · · ⊕ x︸ ︷︷ ︸
i

.
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The co-cross-effect leads to a particularly simple description of hx(i). Recall that
the co-cross-effect of hx in the variable x is the total cofiber of the cubical diagram

S 7→ h( ∨
j∈[i]\S

xj

)(−) = Σ∞
∏

j∈[i]\S

MapSp (xj ,−)

where the maps are inclusions of factors. The total cofiber of this diagram is
hx1
⊗ · · · ⊗ hxi . This is just saying that n-fold smash product of spaces is equivalent

to the total cofiber of a cube of cartesian products of spaces, indexed by all subsets
of n. After substituting x for x1, . . . , xi, we conclude that

(4.6) hx(i)(y) ≃ hx(y)⊗ · · · ⊗ hx(y).
In other words, hx(i) is given by the pointwise tensor product of i copies of hx.

Remark 4.7. There is a natural equivalence hx(y ⊕ y)
∼−→ hx⊕x(y). It follows that

we could equivalently define hx(i) to be the i-th cross-effect in the covariant variable.
However, it suits our goals better to take the cross-effects in the contravariant
variable, as in Definition 4.3.

Remark 4.8. From now on we will mostly take x = S and consider the functors hS(i)
given by

hS(i)(y) ≃ hS(i)(y)
⊗i ≃ (Σ∞Ω∞y)⊗i ≃ Σ∞(Ω∞y)∧i.

Our next task is to calculate the Day convolutions of the functors hS(i) for various i.
We will use the notation

[i]+ ∧ x := x⊕ . . .⊕ x︸ ︷︷ ︸
i

.

We also need the following definition, which will show up again later in the paper.

Definition 4.9. Let i and j be positive integers, and write [i] = {1, . . . , i} for the
finite set with i elements. A subset of [i]× [j] is said to be good if its projections
onto [i] and [j] are both surjective.

Remark 4.10. Note that in order to be good, a subset must have cardinality between
max(i, j) and ij.

Proposition 4.11. There is an equivalence

hS(i)⊛ hS(j) ≃
⊕

U⊆[i]×[j]
U good

hS(|U |)

in Fun(Spc, Sp).

Proof. To prove the proposition, we will use the idempotent model of the cross-effect.
By Lemma 3.29, hS(i) is equivalent to cr(i)h[i]+∧S where

(4.12) cr(i) = ⃝
1≤s≤i

(1− hψ[i]\{s}).

Here ψ[i]\{s} : [i]+ ∧S→ [i]+ ∧S is the idempotent map obtained by collapsing copy
number s of S to a point. Thus

hψ[i]\{s} : h[i]+∧S → h[i]+∧S

is the idempotent map induced by ψ[i]\{s}.
Day convolution commutes with colimits in each variable, so there are equivalences

hS(i)⊛ hS(j) ≃ cr(i)h[i]+∧S ⊛ cr(j)h[j]+∧S ≃ cr(i)cr(j)
(
h[i]+∧S ⊛ h[j]+∧S

)
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where cr(i) and cr(j) act on [i]+ ∧ S and [j]+ ∧ S respectively. Next we need
to figure out the effect of cr(i) and cr(j) on h[i]+∧S ⊛ h[j]+∧S. Recall that hx =
Σ∞ MapSp(x,−). By Corollary 2.25 there is a natural equivalence

h[i]+∧S ⊛ h[j]+∧S
≃−→ h[i]×[j]+∧S.

It follows that given, say, an s ∈ [i], the action of hψ[i]\{s} on h[i]+∧S ⊛ h[j]+∧S can
be identified with the action of hψ([i]\{s})×[j]

on h[i]×[j]+∧S. Here

ψ([i]\{s})×[j] : [i]× [j]+ ∧ S→ [i]× [j]+ ∧ S

is the idempotent that collapses {s} × [j] to the basepoint.
It follows that hS(i)⊛ hS(j) is equivalent to

⃝
s∈[i]

(1− hψ([i]\{s})×[j]
) ◦ ⃝

t∈[j]

(1− hψ[i]×([j]\{t}))h[i]×[j]+S.

By formula (3.33) of Lemma 3.30, this is equivalent to∑
U

cr(U)h[i]×[j]+∧S

where U ranges over subsets U ⊆ [i]× [j] that are not contained in a subset of the
form ([i] \ {s})× [j] or [i]× ([j] \ {t}). But these are precisely the good subsets of
[i]× [j], and for each good subset U , cr(U)h[i]×[j]+∧S is precisely hS(|U |). □

Example 4.13. We have that

hS(2)⊛ hS(2) ≃ hS(2)
⊕2 ⊕ hS(3)

⊕4 ⊕ hS(4).

As a consequence of (4.6), we obtain the following.

Lemma 4.14. For each i ≥ 1 the functor hS(i) is a commutative algebra in
Fun(Spc, Sp).

Proof. We recall that commutative algebras with respect to Day convolution are
exactly the lax symmetric monoidal functors, as proven in the ∞-categorical setting
in [Lur17, Example 2.2.6.9] or [Gla16, Proposition 2.12]. If x is a cocommuta-
tive coalgebra spectrum, then the functor hx is lax symmetric monoidal via the
composition

hx(y1)⊗ hx(y2) = Σ∞ MapSp(x, y1)⊗ Σ∞ MapSp(x, y2)

Σ∞ MapSp(x⊗ x, y1 ⊗ y2)

Σ∞ MapSp(x, y1 ⊗ y2) hx(y1 ⊗ y2).=

In particular, it follows that the functor h[i]+∧S is lax symmetric monoidal, and thus
a commutative algebra with respect to Day convolution. Furthermore, if we have
an inclusion of finite sets U ↪→ V , the induced map U+ ∧ S→ V+ ∧ S is a map of
cocommutative coalgebra spectra. It follows that the induced natural transformation
hV+∧S → hU+∧S is symmetric monoidal. This implies that the total fiber of the
contravariant cubical diagram

U 7→ hU+∧S
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as U ranges over the subsets of [i], being a limit of a diagram of lax symmetric
monoidal functors and symmetric monoidal natural transformations, is lax symmetric
monoidal. This total fiber is equivalent to hS(i) and thus we conclude that hS(i) is
a commutative algebra with respect to Day convolution. □

Corollary 4.15. Each PdhS(i) is a commutative algebra in Excd(Sp
c, Sp).

Proof. This follows from Lemma 4.14 since Pd : Fun(Spc, Sp) → Excd(Sp
c, Sp) is

symmetric monoidal by Theorem 2.38. □

The following lemma describes the multiplication on hS(i) in terms of the splitting
of Proposition 4.11.

Lemma 4.16. The multiplication map hS(i)⊛ hS(i)→ hS(i) corresponds, under
the splitting of Proposition 4.11, to projection onto the summand corresponding to
the diagonal [i] ⊆ [i]× [i].

Proof. The map hS(i)⊛ hS(i)→ hS(i) is a retract of the restriction map

(4.17) h[i]×[i]+∧S → h[i]+∧S

induced by the diagonal inclusion [i] ↪→ [i] × [i]. By Corollary 3.24, there are
equivalences

h[i]×[i]+∧S ≃
∏

U⊂[i]×[i]

hS(U)

and
h[i]+∧S ≃

∏
U⊂[i]

hS(U).

It follows from the proof of Corollary 3.24 that under these splittings the restriction
map (4.17) sends a summand hS(U) of h[i]×[i]+∧S to itself if U ⊆ [i]× [i] is a subset of
the diagonal, and sends hS(U) to zero otherwise. By Proposition 4.11, hS(i)⊛ hS(i)
is the wedge of those summands of h[i]×[i]+∧S which correspond to good subsets of
[i] × [i]. The only good subset of [i] × [i] that is contained in the diagonal is the
diagonal itself, and it gets mapped to hS(i). □

Remark 4.18. An algebra A in a symmetric monoidal category C is separable if the
multiplication map A⊗A→ A has an A-A-bilinear section. Separable algebras have
been studied by Balmer [Bal11] in the context of additive and triangulated categories
motivated by the close connection between commutative separable algebras and the
notion of étale morphism in tensor triangular geometry; see [Bal16, BDS15, San22].
Recent work of Ramzi [Ram23, Theorem B] shows that a commutative separable
algebra in the homotopy category of an additive symmetric monoidal ∞-category C

admits an essentially unique lift to a commutative algebra object in C itself.

Lemma 4.19. The commutative algebra structure on hS(i) is separable.

Proof. We begin by noting that the algebra h[i]+∧S is separable. Indeed, the algebra
structure is induced by the coalgebra structure on the spectrum [i]+ ∧ S which is
determined by the diagonal map [i]+ ∧S→ [i]× [i]+ ∧S. This map has a retraction
[i]× [i]+ ∧ S→ [i]+ ∧ S. It is induced by the map of pointed sets [i]× [i]+ → [i]+
which sends (x, y) to x when x = y ∈ [i] and sends (x, y) to the basepoint if x ̸= y.
It is straightforward to check that this retraction is a map of bi-comodules over
[i]+ ∧ S. The retraction induces a map h[i]+∧S → h[i]×[i]+∧S which is the desired
section of the multiplication map.
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Next, consider the multiplication map hS(i) ⊛ hS(i) → hS(i). By the proof of
Lemma 4.14, this multiplication can be identified with a map between homotopy
fibers of the following form

tofibhU×V+∧S → tofibhW+∧S

where U, V,W range over subsets of [i], and the map is induced by the diagonal
functor W 7→W ×W . This map has a section

tofibhW+∧S → tofibhU×V+∧S.

The section is induced by the functor from the poset of subsets of [i]× [i] to the poset
of subsets of [i] that sends (U, V ) to U∩V , and the collapse maps U×V+ → (U∩V )+.
It is straightforward to check that the section is well-defined and that it is indeed a
map of bimodules as required. □

5. Compact generation of the category of d-excisive functors

In this section we prove that the functors PdhS(i), 1 ≤ i ≤ d, form a set of
compact generators for Excd(Sp

c, Sp). To this end, we first record some features of
cross-effects of excisive functors.

Remark 5.1. Recall that the m-th cross-effect crm(F ) of a functor F is a functor of m
variables (see Section 3). If F is d-excisive then for each 1 ≤ m ≤ d+1, the cross-effect
crm(F ) is (d−m+1)-excisive in each variable; see [Goo03, Proposition 3.3] or [Lur17,
Proposition 6.1.3.22]. In particular, the d-th cross-effect of a (d− 1)-excisive functor
is trivial. Therefore, by applying crd to the fiber sequence DdF → PdF → Pd−1F ,
we obtain

crd(DdF ) ≃ crd(PdF )

for any functor F .

Remark 5.2. Recall that hx is the corepresentable functor hx(y) = Σ∞ MapSp(x, y)
and that the i-th cross-effect of the contravariant functor x 7→ hx is equivalent to
hx1
⊗ · · · ⊗ hxi (see Section 4). The following lemma is well-known; for example,

see [Chi21, Lemma 2.11]:

Lemma 5.3. Let F ∈ Fun(Spc, Sp) and x1, . . . , xi ∈ Spc. There is an equivalence

HomFun(Spc,Sp)(hx1
(−)⊗ · · · ⊗ hxi(−), F (−)) ≃ criF (x1, . . . , xi).

In d-excisive functors, this implies:

Lemma 5.4. Let F ∈ Excd(Sp
c, Sp), 1 ≤ i ≤ d and x1, . . . , xi ∈ Spc. There is an

equivalence

HomExcd(Sp
c,Sp)(Pd(hx1(−)⊗ · · · ⊗ hxi(−)), F (−)) ≃ criF (x1, . . . , xi).

Proof. Since F is d-excisive, there is an equivalence

HomExcd(Sp
c,Sp)(Pd(hx1

(−)⊗ · · · ⊗ hxi(−)), F (−))
≃ HomFun(Spc,Sp)(hx1

(−)⊗ · · · ⊗ hxi(−), F (−))

and the lemma then follows from Lemma 5.3. □
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Remark 5.5. In terms of the analogy with equivariant stable homotopy theory, we
may regard the functors cri(−)(S, . . . ,S) : Excd(Sp

c, Sp)→ Sp as functor calculus
analogs of the categorical fixed point functors (−)H : SpG → Sp and we think of the
functors PdhS(i) ∈ Excd(Sp

c, Sp) as analogous to the G-spectra Σ∞
GG/H+ ∈ SpG.

From this perspective, Lemma 5.3 is a functor calculus version of the fact that the
G-spectrum Σ∞

GG/H+ represents H-fixed points in G-equivariant stable homotopy
theory. See Appendix A for a dictionary between functor calculus and equivariant
stable homotopy theory.

Example 5.6 (The first cross-effect). Let cr1(−)(S) : Excd(Sp
c, Sp) → Sp be the

functor that takes the first cross-effect and evaluates it at S. Since our Excd(Spc, Sp)
consists of reduced functors, this is the same as just evaluating a functor at S.
We observe that this functor is also right adjoint to the inflation functor id : Sp→
Excd(Sp

c, Sp) of Definition 2.44:

Lemma 5.7. The functor cr1(−)(S) is right adjoint to id : Sp→ Excd(Sp
c, Sp). In

particular, the functor cr1(−)(S) is lax symmetric monoidal.

Proof. Let α : Excd(Sp
c, Sp) → Sp be the right adjoint to id, which exists by the

adjoint functor theorem. Note that we have

HomExcd(Sp
c,Sp)(idS, F ) ≃ HomSp(S, α(F )) ≃ α(F )

by adjunction and the Yoneda lemma. Since idS ≃ PdhS (as id is symmetric
monoidal), this shows that α is corepresented by PdhS. By Lemma 5.3 this identi-
fies α with cr1(−)(S). Finally, as the right adjoint of a symmetric monoidal functor,
cr1(−)(S) is lax symmetric monoidal [Lur17, Corollary 7.3.2.7]. □

Remark 5.8. This matches the perspective of Remark 5.5 in which the categorical
fixed point functor (−)G is right adjoint to the canonical geometric functor Sp→ SpG
which equips a spectrum with the “trivial” G-action.

Definition 5.9. For any F : Spc → Sp and i ≥ 1, let ciF : Spc → Sp denote the
composite

Spc
∆−→ (Spc)×i

criF−−−→ Sp

where ∆ is the diagonal. That is, ciF is the functor X 7→ criF (X, . . . ,X). In
particular, note that there is an equivalence of functors cihx = hx(i) by Remark 5.2.

Lemma 5.10. If F : Spc → Sp is d-excisive, then cdF : Spc → Sp is d-homogeneous.

Proof. This follows from Propositions 3.1 and 3.3 of [Goo03]. □

Lemma 5.11. For each 1 ≤ i ≤ d, we have PdciF ≃ ciPdF .

Proof. In the case i = d this is shown in the proof of [Goo03, Theorem 6.1] (in
Goodwillie’s notation λcrd is what we write as cd); the same proof works for
arbitrary i. Indeed, ciF (x) is the total fiber of the i-dimensional cubical diagram
that sends a subset U ⊆ [i] to F (

⊕
[i]\U x). The functor Pd commutes with finite

limits and in particular commutes with total fibers of cubical diagrams [Goo03,
Proposition 1.7]. □

As a consequence of Lemma 5.11 we obtain the following.
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Lemma 5.12. For each 1 ≤ i ≤ d, there are natural equivalences

ciPdhS ≃ PdcihS ≃ PdhS(i)

of functors Spc → Sp.

Proposition 5.13. The functor PdhS(d) is d-homogeneous.

Proof. Since PdhS is d-excisive, Lemma 5.10 implies that cdPdhS is d-homogeneous.
The result then follows from Lemma 5.12. □

Corollary 5.14. We have PdhS(d)(X) ≃ X⊗d where Σd acts on X⊗d by permuting
the factors.

Proof. We have equivalences

PdhS(d)(X) ≃ cdPdhS(X) ≃ crd(PdhS)(X, . . . ,X) ≃ crd(DdhS)(X, . . . ,X).

The functor hS is the functor Σ∞Ω∞ whose Goodwillie tower is well-known. In
particular, we have DdhS(X) ≃ (X⊗d)hΣd . Computing d-th cross-effects (for
example, by a minor modification of the method used in the proof of [AC15,
Proposition 5.2]), we obtain the desired result. □

Corollary 5.15. If u > d, then PdhS(u) = 0.

Proof. Note that PdhS(u) ≃ PdPuhS(u), but PuhS(u) is u-homogeneous (Proposi-
tion 5.13). □

For the next statement, recall the notion of a “good” subset from Definition 4.9.

Proposition 5.16. For any i, j ≥ 1, there is an equivalence

(5.17) PdhS(i)⊛ PdhS(j) ≃
⊕

U⊆[i]×[j]
U good
|U|≤d

PdhS(|U|)

in Excd(Sp
c, Sp).

Proof. This follows from Proposition 4.11 and Corollary 5.15. □

Remark 5.18. We view this proposition as a functor calculus version of the Mackey
decomposition

Σ∞
GG/H+ ⊗ Σ∞

GG/K+ ≃
⊕

g∈H\G/K

Σ∞
GG/(H

g ∩K)+

that holds in the category of G-spectra.

Example 5.19. We have

PdhS(i)⊛ PdhS(d) ≃
⊕

|surj(d,i)|

PdhS(d),

where |surj(d, i)| denotes the number of surjections from a set of cardinality d to
a set of cardinality i. This follows from the observation that the only summands
in (5.17) correspond to those good subsets of [i]× [d] of cardinality exactly d, and
there are exactly | surj(d, i)| of them.
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Remark 5.20. It is useful to recall, for example using inclusion-exclusion (or al-
ternatively using the table on page 73 along with Equation 1.94(a) of [Sta12]),
that

(5.21) |surj(i, j)| ∼= ji +

j−1∑
s=1

(−1)s
(
j

s

)
(j − s)i.

Remark 5.22. The G-spectra Σ∞
GG/H+ are dualizable and in fact (for finite G)

self-dual in the category of G-spectra. Our next goal is to show that the same holds
for their functor calculus analogs PdhS(i); see Remark 5.5. In fact, this holds before
applying Pd.

Proposition 5.23. For each i ≥ 1 the functor hS(i) is a self-dual dualizable object
of Fun(Spc, Sp).

Proof. We first establish that hS(i) is dualizable in Fun(Spc, Sp) for each i ≥ 1.
Indeed, by Remark 2.26 if x ∈ Spc is dualizable, then hx ∈ Fun(Spc, Sp) is dualizable,
and the dual of hx is hDx, where Dx is the Spanier–Whitehead dual of x. In particular,
if x ∈ Spc is self-dual, then hx is self-dual. This implies that h⊕iS is self-dual, and
in particular hS(i) is dualizable, as it is a summand of a dualizable object.

Moreover, we will show that hS(i) is itself self-dual. Indeed, suppose F is a
dualizable object of a symmetric monoidal stable ∞-category and e : F → F is an
idempotent map. Recall that eF is the summand of F split off by e. Then the
object eF is dualizable, and furthermore the dual of eF is equivalent to De(DF ),
i.e., the summand of DF split off by the dual idempotent De. In particular, if F
and e are both self-dual, then eF is self-dual. Now recall from (4.12) that hS(i) is
split off the self-dual object h⊕iS by the idempotent

cr[i] = ⃝
1≤s≤i

(1− hψ[i]\{s}).

Here hψ[i]\{s} : h⊕iS → h⊕iS is the idempotent induced by the map ⊕iS→ ⊕iS that
collapses summand s to a point. This map is self-dual and therefore hψ[i]\{s} is
self-dual. It follows that cr[i] is self-dual and thus hS(i) is self-dual. □

Remark 5.24. In fact, since the commutative algebra hS(i) is separable (Lemma 4.19),
dualizability of hS(i) actually forces hS(i) to be self-dual; see [San22, Section 2].

Corollary 5.25. Each PdhS(i) is a self-dual dualizable object of Excd(Spc, Sp).

Proof. This follows from Proposition 5.23 and Theorem 2.38 since symmetric
monoidal functors preserve dualizable objects and their duals. □

Remark 5.26. In equivariant homotopy theory, restricting to the trivial subgroup
resG1 : SpG → Sp is strong symmetric monoidal, whereas (−)H : SpG → Sp is only lax
symmetric monoidal for e ≠ H ≤ G. The corresponding result in functor calculus is
the following:

Proposition 5.27. The functor

crd(−)(S, . . . ,S) : Excd(Sp
c, Sp)→ Sp

admits a symmetric monoidal refinement.
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Proof. The following is essentially the proof given for the d = 2 case on page 108
of [CDH+23]. Let ∆: Spc → (Spc)×d denote the diagonal functor, and consider
the induced functor ∆∗ : Fun((Spc)×d, Sp)→ Fun(Spc, Sp). This functor admits a
left adjoint, via the left Kan extension along ∆. Since the diagonal is symmetric
monoidal, so is the left Kan extension. Moreover, since the diagonal has a two sided
adjoint given by the direct sum functor q : (Spc)×d → Sp, this left Kan extension is
just given by restriction along q∗.

We note that by [Lur17, Corollary 6.1.3.5] the functor ∆∗ restricts to a functor
Exc(1,...,1)((Sp

c)×d, Sp)→ Excd(Sp
c, Sp). Moreover, as in Examples 2.7 and 2.45 we

can identify

(5.28) Exc(1,...,1)((Sp
c)×d, Sp) ≃ Sp

as symmetric monoidal∞-categories, given by evaluation at (S, . . . ,S). Using the uni-
versal property of the localization Pd (see [Lur09b, Proposition 5.5.4.20]), there then
exists a symmetric monoidal functor q : Excd(Sp

c, Sp) → Exc(1,...,1)((Sp
c)×d, Sp)

which fits in the commutative diagram:

Fun(Spc, Sp) Excd(Sp
c, Sp)

Exc(1,...,1)((Sp
c)×d, Sp)

Sp

Pd

p1,...,1◦q∗
q

ev(S,...,S)∼

The composite p1,...,1 ◦ q∗ is the d-th cross-effect by [Lur17, Remark 6.1.3.23]. Un-
winding the definitions, we see that the dashed arrow Excd(Sp

c, Sp)→ Sp is a sym-
metric monoidal functor whose underlying functor is exactly crd(−)(S, . . . ,S). □

Remark 5.29. For i < d the functor

cri(−)(S, . . . ,S) : Excd(Sp
c, Sp)→ Sp

is lax symmetric monoidal (for example, because it is corepresented by the commu-
tative algebra object PdhS(i)) but not symmetric monoidal. For example, one has
cr1PdhS(d) ≃ S but cr1(PdhS(d)⊛ PdhS(d)) ≃ S⊕d! as follows from Example 5.19.

Remark 5.30. In equivariant homotopy theory, the categorical fixed point functors
{(−)H}H≤G are jointly conservative on G-spectra. Our next goal is to show that the
same is true for the collection {cri(−)(S, . . . ,S)}1≤i≤d on the category of d-excisive
functors. We begin by working with d-homogeneous functors (Definition 2.13).

Lemma 5.31. Let F be a d-homogeneous functor. Then

F = 0 ⇐⇒ crdF (S, . . . ,S) = 0.

Proof. By [Goo03, Proposition 3.4] (see also [Lur17, Corollary 6.1.4.11]) we have
that F = 0 ⇐⇒ crdF (X1, . . . , Xd) = 0 for all X1, . . . , Xd ∈ Spc. Thus, it suffices
to show that

crdF (S, . . . ,S) = 0 =⇒ crdF (X1, . . . , Xn) = 0.

We first show that

crdF (S, . . . ,S) = 0 =⇒ crdF (X1,S, . . . ,S) = 0.
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Indeed, the collection C :=
{
X ∈ Spc

∣∣ crdF (X,S, . . . ,S) = 0
}

is a thick subcategory
(this uses that F is reduced to show that it is closed under extensions) which
contains S by assumption. Therefore, C = Spc. Repeating the argument in each
variable then gives the desired result. □

Proposition 5.32. The functor∏
1≤i≤d

cri(−)(S, . . . ,S) : Excd(Sp
c, Sp)→

∏
1≤i≤d

Sp

is conservative. In other words, a functor F ∈ Excd(Sp
c, Sp) is trivial if and only if

cri(F )(S, . . . ,S) = 0 for 1 ≤ i ≤ d.

Proof. We prove this by induction on d. For d = 1, under the identification
Exc1(Sp

c, Sp) ≃ Sp of Example 2.7, cr1(−)(S) is the identity functor, and so the
claim becomes a tautology. Next assume inductively that the statement is true
for (d− 1)-excisive functors, and let F be an d-excisive functor whose cross-effects
vanish. Recall that we have a fiber sequence

DdF → F → Pd−1F

where DdF is d-homogeneous and Pd−1F is (d−1)-excisive. By Remark 5.1 and our
hypothesis we have crd(DdF ) ≃ crd(F ) = 0, so that DdF = 0 by Lemma 5.31. In
particular, F ≃ Pd−1F and criPd−1F (S, . . . ,S) = 0 for 1 ≤ i ≤ d− 1. By induction,
F ≃ Pd−1F = 0, and we are done. □

Theorem 5.33. The category Excd(Sp
c, Sp) is compactly generated. Moreover, the

functors Pd(hS(i)) for 1 ≤ i ≤ d form a set of compact generators of Excd(Spc, Sp).

Proof. Let G ⊆ Fun(Spc, Sp) denote the full subcategory of corepresentable functors.
Ching [Chi21, Lemma 4.14] establishes that Fun(Spc, Sp) is compactly generated,
that its compact objects are precisely the retracts of finite colimits of diagrams
in G, and that these compact objects are closed under the objectwise smash product
of functors. By Remark 2.11, Pd is a smashing localization, so [Lur09b, Corollary
5.5.7.3] implies that the category Excd(Sp

c, Sp) is also compactly generated. In fact,
the same corollary shows that the functor Pd preserves compact objects and that a
functor G ∈ Excn(Sp

c, Sp) is compact if and only if there exists F ∈ Fun(Spc, Sp)c

such that G is a retract of PdF .
We now show that

{
Pd(hS(i))

∣∣ 1 ≤ i ≤ d} is a set of compact generators. Since
the objectwise smash product of compact functors in Fun(Sp,Sp) is still compact,
each hS(i) is compact in Fun(Spc, Sp) and hence is compact in Excd(Sp

c, Sp) after
applying Pd, as explained above. To show that this set of compact objects is a set
of generators, it suffices by [SS03, Lemma 2.2.1] to show that if

HomExcd(Sp
c,Sp)(Pd(hS(i)), F ) = 0 for all 1 ≤ i ≤ d

then F = 0. Applying Lemma 5.4, we see that this is equivalent to the statement
that if criF (S, . . . ,S) = 0 for 1 ≤ i ≤ d, then F = 0, which is precisely the content
of Proposition 5.32. □

Corollary 5.34. The category Excd(Sp
c, Sp) is rigidly-compactly generated; that is,

it is compactly generated and the compact and dualizable objects coincide.

Proof. We have already seen in Theorem 5.33 that Excd(Sp
c, Sp) is compactly

generated by
{
Pd(hS(i))

∣∣ 1 ≤ i ≤ d}. Moreover, each of these compact generators
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is dualizable by Corollary 5.25. In the language of [HPS97], we have shown that
Excd(Sp

c, Sp) is a unital algebraic stable homotopy category. It then follows from
[HPS97, Theorem 2.1.3(d)] that the compact and dualizable objects coincide. □

Remark 5.35. We can also deduce from the proof fo Proposition 5.27 that

crd(−)(S, . . . ,S) : Excd(Sp
c, Sp)→ Sp

has equivalent left and right adjoints, given by the composite Sp
i−→ Exc(1,...,1)

∆∗

−−→
Excd(Sp

c, Sp), i.e., sending a spectrum A to the d-excisive functor X 7→ A⊗X⊗d.
(This follows since the diagonal ∆: Spc → (Spc)×d has equivalent left and right
adjoints.) Let us denote this adjoint by κd. We then obtain the following, which is
the functor calculus analog of [BDS15, Theorem 1.1]:

Theorem 5.36. There is an equivalence of symmetric monoidal ∞-categories

ModExcd(Sp
c,Sp)

(
PdhS(d)

)
≃ Sp

under which crd(−)(S, . . . ,S) is identified with extension of scalars along the com-
mutative algebra PdhS(d). That is, we have a commutative diagram

Excd(Sp
c, Sp)

Sp ModExcd(Sp
c,Sp)

(
PdhS(d)

)crd(−)(S,...,S)

κd F

U

≃

where F and U denote extension and restriction of scalars along PdhS → PdhS(d).

Proof. Note that by Corollary 5.14 the functor κd sends the unit S to PdhS(d).
Moreover, crd(−)(S, . . . ,S) is symmetric monoidal by Proposition 5.27. The theorem
will then be a consequence of [MNN17, Proposition 5.29] if we can show the following:

(a) The adjunction crd(−)(S, . . . ,S) ⊣ κd satisfies the projection formula;
(b) κd preserves colimits; and
(c) κd is conservative.

The first follows formally from [BDS16, Proposition 2.16] using Corollary 5.34; the
second follows from the fact that κd is both a left and right adjoint; and the third
follows from the observation that crd(−)(S, . . . ,S) is essentially surjective (as the
d-th cross-effect of the functor X 7→ PdhS(A ⊗ X) evaluated at (S, . . . ,S) is A).
Here we are using the observation that κd is conservative if and only if the essential
image of crd(−)(S, . . . ,S) contains a family of generators. □

Remark 5.37. The commutative algebra PdhS(d) is separable, as a consequence of
Lemma 4.19. In other words, up to equivalence, the functor

crd(−)(S, . . . ,S) : Excd(Sp
c, Sp)→ Sp

is given by extension of scalars along a compact commutative separable algebra.
Such extensions are called finite étale; see [Bal16, San22].

6. Tensor idempotents and Goodwillie derivatives

We now recall some facts about tensor idempotents and their relation with
completeness, torsion and the Tate construction. We will utilize the geometric
perspective afforded by the Balmer spectrum. In the context of d-excisive functors,
these constructions will also lead naturally to the Goodwillie derivatives.
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Tensor idempotents and the Tate construction.

Definition 6.1 (The Balmer spectrum). Let T be a rigidly-compactly generated
tensor triangulated category such as (the homotopy category of) Excd(Sp

c, Sp). We
write Tc for the tensor triangulated subcategory of compact (=dualizable) objects.
The Balmer spectrum of Tc is the topological space Spc(Tc) whose points are the
prime tt-ideals of Tc and whose topology has {supp(a)}a∈Tc as a basis of closed
sets, where

supp(a) :=
{
P ∈ Spc(Tc)

∣∣ a ̸∈ P
}
.

This topology is spectral in the sense of [DST19] and the closure of a prime tt-ideal
P ∈ Spc(Tc) is given by {P} =

{
Q
∣∣Q ⊆ P

}
. See [Bal05] for more details.

Remark 6.2. The spectrum is contravariantly functorial. In particular, if F : T → U

is a tt-functor of rigidly-compactly generated tt-categories, then there is an induced
continuous map Spc(F ) : Spc(Uc) → Spc(Tc) given by P 7→

{
x ∈ Tc

∣∣F (x) ∈ P
}
.

Note that Spc(F ) preserves inclusions Q ⊆ P of prime tt-ideals by construction.

Definition 6.3. A subset Y ⊆ Spc(Tc) is a Thomason subset if it can be written as
a union ∪αYα in which each Yα is a closed set whose complement is quasi-compact.

Remark 6.4. By [Bal05, Theorem 4.10] there is a bijection{
thick ideals

of Tc

} {
Thomason subsets

of Spc(Tc)

}
∼

which sends a thick ideal J to supp(J) :=
⋃
a∈J supp(a) and with inverse given by

Y 7→ TcY :=
{
a ∈ Tc

∣∣ supp(a) ⊆ Y }.
Example 6.5. The Balmer spectrum of Spc is described in [Bal10b, Section 9] by
reinterpreting the work of Hopkins–Smith [HS98]. For a prime number p and
chromatic height 1 ≤ h ≤ ∞, we have a prime ideal Cp,h ∈ Spc(Spc) which consists
of those finite spectra annihilated by the p-local Morava K-theory K(p, h− 1):

Cp,h :=
{
x ∈ Spc

∣∣K(p, h− 1)∗(x) = 0
}
.

In particular, Cp,∞ is the kernel of Fp-homology HFp, while Cp,1 is the kernel of
rational homology HQ (that is, the finite torsion spectra), independently of p.
Consequently, we also write C0,1 := Cp,1 (for all p). With these definitions in hand,
Spc(Spc) is the topological space depicted in Figure 2 below. In this figure, inclusion
goes downwards, while closure goes upwards; in particular, the points Cp,∞ are
closed points, while C0,1 is a generic point. A more detailed explanation of the
topology may be found in [Bal10b, Corollary 9.5]. For later use, we also introduce
the notation Cp,0 := Spc(p) for the category of finite p-local spectra.

Remark 6.6. We now recall some constructions from [BF11] and [BS17, Section 5].
Let Y ⊆ Spc(Tc) be a Thomason subset and let V := Spc(Tc)\Y be its complement.
Then there is an associated idempotent triangle

(6.7) eY → 1→ fY → ΣeY

in T, i.e., an exact triangle with eY ⊗ fY = 0. Moreover, we have

TY := eY ⊗ T = ker(fY ⊗−) = Locid⟨eY ⟩ = Loc⟨TcY ⟩
and

T(V ) := fY ⊗ T ≃ T/Locid⟨eY ⟩ = T/Loc⟨TcY ⟩
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C2,∞ C3,∞ . . . Cp,∞ . . .

...
...

...

C2,h C3,h . . . Cp,h · · ·

...
...

...

C2,2 C3,2 · · · Cp,2 · · ·

C0,1

Figure 2. The Balmer spectrum Spc(Spc) of the category of finite
spectra

and
TY := hom(eY ,T) = Coloc⟨TcY ⊗ T⟩.

The three categories TY ,T(V ) and TY are related by taking right orthogonals:

T(V ) = (TY )
⊥ =

{
t ∈ T

∣∣ hom(s, t) = 0 for all s ∈ TY
}

and
TY = (T(V ))⊥ =

{
t ∈ T

∣∣ hom(s, t) = 0 for all s ∈ T(V )
}
.

Moreover, the categories TY and TY are equivalent via the functors hom(eY ,−)
and eY ⊗ −. Note in particular that T → T(V ) is a finite localization whose
compactly generated subcategory of acyclic objects is TY = Loc⟨TcY ⟩ ⊆ T. On
Balmer spectra, this finite localization induces the embedding

Spc(T(V )c) ∼= V ↪→ Spc(Tc)

which explains the notation T(V ); see [BHS23b, Remark 1.23].

Remark 6.8. We can represent the situation in the previous remark as follows:

(6.9)

T(V ) = fY ⊗ T

T

TY = eY ⊗ T hom(eY ,T) = TY

eY ⊗−

fY ⊗−

hom(eY ,−)

∼

∼

where the dashed arrows indicate orthogonality. In other words, we have a recolle-
ment; see [BS17, Section 5].

Example 6.10. For any compact object A ∈ Tc, we can consider the Thomason
closed subset Y := supp(A). Then the categories Tsupp(A),T(supp(A)

∁) and Tsupp(A)

are precisely the categories of A-torsion, A-local, and A-complete objects respec-
tively, in the sense of [HPS97, Theorem 3.35], [BHV18, Theorem 2.21], or [MNN17,
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Theorem 3.9]. In particular, we have that Tsupp(A) = Locid⟨A⟩ ⊆ T. However, these
categories only depend on the thick ideal in Tc generated by A or, equivalently
by Remark 6.4, the Thomason subset supp(A). Our approach emphasizes the
geometric perspective by regarding these constructions as associated to a Thomason
subset of the Balmer spectrum rather than to a collection of objects of the category.
Finally, note that T → T(supp(A)∁) is the finite localization away from the object A.
Geometrically it restricts to the open complement of supp(A).

The following definition is due to Greenlees [Gre01] in the axiomatic setting.

Definition 6.11. Let Y ⊆ Spc(Tc) be a Thomason subset. We define the Tate functor
with respect to Y to be

tY := fY ⊗ hom(eY ,−) : T → T.

Remark 6.12. Greenlees’ Warwick duality [Gre01, Corollary 2.5] shows that the
Tate construction satisfies tY ≃ hom(fY ,ΣeY ⊗−). Moreover, there is a pullback
square

(6.13)
X hom(eY , X)

fY ⊗X tY (X)

for any X ∈ T.

The following result is due to Balmer and Sanders [BS17, Proposition 5.11].

Proposition 6.14 (Balmer–Sanders). Let F : T → U be a coproduct-preserving
tensor triangulated functor and let ϕ : Spc(Uc) → Spc(Tc) be the induced map.
Let Y ⊆ Spc(Tc) be a Thomason subset and set Y ′ := ϕ−1(Y ) ⊆ Spc(Uc). Then
UcY ′ = thickid⟨F (TcY )⟩ and there is a unique isomorphism of idempotent triangles

F (eY → 1→ fY → ΣeY ) ≃ (eY ′ → 1→ fY ′ → ΣeY ′)

in U. If moreover F is closed monoidal, then F ◦ tY ≃ tY ′ ◦ F .

Example 6.15 (Chromatic truncation). Suppose that C is a symmetric monoidal
stable∞-category, so that it admits a unique symmetric monoidal colimit preserving
functor i : Sp→ C as in Remark 2.43. Let 1 ≤ h ≤ ∞ and consider the Thomason
subset

Yp,h :=
{
Cp,m

∣∣m > h
}
∪
{
Cq,m

∣∣ q ̸= p,m > 1
}
⊆ Spc(Spc)

with associated idempotent triangle ep,h → 1 → fp,h → Σep,h in Sp, as in [BS17,
Example 5.12]. The right idempotent fp,h is the finite localization Lfh−1S of the
sphere spectrum. By Proposition 6.14, the Thomason subset

Y ′
p,h := Spc(i)−1(Yp,h) ⊆ Spc(Cc)

has associated idempotent triangle

i(ep,h)→ 1→ i(fp,h)→ Σi(ep,h)

in C. The chromatic truncation of C below height h (at the prime p) is the finite
localization

Cp,≤h := i(fp,h)⊗ C.
It has the property that Spc((Cp,≤h)c) ∼= Spc(Cc) \ Y ′

p,h. Note that Cp,≤∞ is simply
the p-localization of C.
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Warning 6.16. Because of the way the primes Cp,h of Spc(Spc) are indexed (as the
kernel of K(p, h− 1)), there can be an off-by-one discrepancy in different usages of
the term “height” which can lead to confusion. For example, note that the prime Cp,h
has height h− 1 in the sense of Krull dimension. Geometrically, truncation below
height h is restriction to the open piece

Cp,h

Cp,h−1

...

Cp,2

C0,1.

This explains the notation Sp → Spp,≤h. However, note that this is the finite
localization associated to Morava E-theory E(h − 1) which is a ring spectrum
of height h − 1 in the sense of chromatic homotopy theory; see Definition 10.27
below. Nevertheless, it is convenient to use language like “consider a chromatic
height 1 ≤ h ≤ ∞” even if the construction associated to this choice of h results in
something that really has “height” h− 1.

Remark 6.17. In the situation of Proposition 6.14, if G denotes the right adjoint of
F : T → U then one readily checks that

Gtϕ−1(Y )(Ft) ≃ tY (t⊗G1)

for all t ∈ T by using the standard isomorphisms of [BDS16].

Completeness and torsion in d-excisive functors. We now specialize the
discussion to the category of d-excisive functors. Although we have not yet de-
termined its spectrum, we can proceed as in Example 6.10 with respect to the
compact d-excisive functor A = PdhS(d), that is, with respect to the Thomason
closed subset Y = supp(PdhS(d)). Our goal is to understand the recollement (6.9)
and the associated Tate construction in this example.

Notation 6.18. We will write td : Excd(Sp
c, Sp)→ Excd(Sp

c, Sp) for the Tate functor
associated to the Thomason closed subset Y := supp(PdhS(d)). That is, td :=
tsupp(PdhS(d)) in the notation of Definition 6.11.

Theorem 6.19. Let Y := supp(PdhS(d)) ⊆ Spc(Excd(Sp
c, Sp)c). Then

eY ⊗ Excd(Sp
c, Sp) = Homogd(Sp

c, Sp)

and the associated idempotent triangle in Excd(Sp
c, Sp) is

DdhS → PdhS → Pd−1hS → ΣDdhS.

In particular, Pd−1 : Excd(Sp
c, Sp)→ Excd−1(Sp

c, Sp) is the finite localization away
from PdhS(d).

Proof. We need to show that ker(Pd−1) = Locid(PdhS(d)). To see this, observe first
that Pd−1PdhS(d) ≃ Pd−1hS(d) = 0 because PdhS(d) is d-homogeneous (Proposi-
tion 5.13). It follows that PdhS(d) ∈ ker(Pd−1), so that Locid(PdhS(d)) ⊆ ker(Pd−1).
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On the other hand, let H ∈ ker(Pd−1) and note that H is d-homogeneous. Suppose
then that

HomExcd(Sp
c,Sp)(PdhS(d), H) = 0.

By Lemma 5.4 we have that crd(H)(S, . . . ,S) = 0 and hence H = 0 by Lemma 5.31.
We deduce that ker(Pd−1) coincides with the localizing ideal generated by the com-
pact object PdhS(d). Hence the localization Pd−1 : Excd(Sp

c, Sp)→ Excd(Sp
c, Sp)

coincides with the finite localization away from PdhS(d). □

Remark 6.20. This result shows that the category of d-homogeneous functors in
Goodwillie calculus is analogous to the category of free G-spectra in equivariant
homotopy theory.

Corollary 6.21. The functor Pd−i : Excd(Sp
c, Sp) → Excd−i(Sp

c, Sp) is a finite
localization whose ideal of acyclics is generated by

{
Pd(hS(j))

∣∣ d− i+ 1 ≤ j ≤ d
}
.

Proof. We prove this by induction on i. One can either start the induction at
i = 0, where the statement is vacuous, or at i = 1, where it is the content of
Theorem 6.19. In either case suppose the statement of the corollary holds for the
functor Pd−i. The localization Pd−i−1 : Excd−i(Sp

c, Sp)→ Excd−i−1(Sp
c, Sp) is the

finite localization that kills Pd−i(hS(d − i)). Noting that this is the image of the
generator Pd(hS(d− i)) under the localization Pd−i, the inductive hypothesis and
the evident ‘third isomorphism theorem’ for localizations gives the result. □

Example 6.22. The obvious extension of Corollary 6.21 obtained by letting d go
to ∞ is false. By this we mean that the kernel of the functor

Pk : Fun(Spc, Sp)→ Exck(Sp
c, Sp)

is not generated by
{
hS(j)

∣∣ k < j
}
. To see this, let us consider the case k = 0.

In this case P0 is the trivial functor and the kernel of P0 is all of Fun(Spc, Sp).
This category is not generated by

{
hS(j)

∣∣ 0 < j
}
. Indeed, consider the functor

F (X) = Σ∞Ω∞+1(HQ ∧ X). This functor has the property that F (X) ≃ 0
whenever X is a wedge of finitely many copies of the sphere spectrum. It follows
that all the cross-effects of F are trivial, i.e., crjF (S, . . . ,S) ≃ 0 for all j > 0. By
Lemma 5.3, this means that for all j > 0 we have

HomFun(Spc,Sp)(hS(j), F ) ≃ 0

but F is clearly not a trivial functor.
Going further, we suspect that Exck(Sp

c, Sp) is not a finite localization of
Fun(Spc, Sp), i.e., that the kernel of the localization is not generated by compact
objects.

With the torsion categories now identified, let us turn to the complete category.

Proposition 6.23. In the situation of Theorem 6.19, we have an equivalence of
symmetric monoidal ∞-categories

hom(eY ,Excd(Sp
c, Sp)) ≃ Fun(BΣd, Sp).

In particular, there is an equivalence of symmetric monoidal stable ∞-categories
Homogd(Sp

c, Sp) ≃ Fun(BΣd, Sp).
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Proof. Our proof is modeled on [MNN17, Proposition 6.17], which is the corre-
sponding statement in equivariant homotopy theory. For brevity, let us write C for
Excd(Sp

c, Sp). Because PdhS(d) is dualizable, we can apply [MNN17, Theorem 2.30]
to deduce that

hom(eY ,C) ≃ Tot
(
ModC(PdhS(d)) //// ModC(PdhS(d)⊛ PdhS(d)) //

//// · · ·
)
.

We have seen in Theorem 5.36 that ModC(PdhS(d)) ≃ Sp. Using Example 5.19 we
deduce moreover that

ModC(PdhS(d)
⊛k) ≃

∏
(Σd)×(k−1)

Sp.

Unwinding the definitions, we find that hom(eY ,C) is identified with a totalization

hom(eY ,C) ≃ Tot

 Sp ////
∏
Σd

Sp //
//// · · ·


which recovers the functor category Fun(BΣd, Sp) for the standard simplicial de-
composition of BΣd. The final claim then follows from the symmetric monoidal
equivalence of ∞-categories

eY ⊗ C ≃ hom(eY ,C)

as noted in Remark 6.6. □

Remark 6.24. The local duality diagram can then be written in the following form:

(6.25)

Excd−1(Sp
c, Sp)

Excd(Sp
c, Sp)

Homogd(Sp
c, Sp) Fun(BΣd, Sp)

Dd

Pd−1

∼

∼

The equivalence Homogd(Sp
c, Sp)

∼−→ Fun(BΣd, Sp) is Goodwillie’s classification
of d-homogeneous functors [Goo03, Theorem 3.5 and §5]:

Lemma 6.26 (Goodwillie). The equivalence Homogd(Sp
c, Sp)

∼−→ Fun(BΣd, Sp)
sends a d-homogeneous functor to crd(S, . . . ,S). Its inverse sends A ∈ Fun(BΣd, Sp)
to the functor GA with GA(X) = (A⊗X⊗d)hΣd .

Definition 6.27. Let F : Spc → Sp be a reduced functor. The d-th Goodwillie
derivative of F is defined by

∂dF := crd(DdF )(S, . . . ,S).

Remark 6.28. Note that Remark 5.1 implies that crd(DdF ) ≃ crd(PdF ), so we could
have alternatively defined ∂d in terms of its d-excisive approximation. In particular,
if F is d-excisive, then ∂d(DdF ) ≃ ∂d(F ). More generally, for any d-excisive functor
F , we have a natural equivalence

(6.29) ∂d(DdF (X ⊗−)) ≃ ∂d(F )⊗X⊗d.
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Indeed there are equivalences

∂d(DdF (X ⊗−)) ≃ crdDdF (X ⊗−)(S, . . . ,S)
≃ crdDdF (X, . . . ,X)

≃ ∂d(F )⊗X⊗d.

Remark 6.30. As a special case of the previous definition, we have d-derivatives
defined on the category of d-excisive functors:

Definition 6.31. For a d-excisive functor F , we define the k-th Goodwillie deriva-
tive ∂kF for each 1 ≤ k ≤ d by

∂kF := crk(PkF )(S, . . . ,S) ≃ crk(DkF )(S, . . . ,S).

Lemma 6.32. For each 1 ≤ k ≤ d, the functor ∂k : Excd(Sp
c, Sp)→ Sp is symmet-

ric monoidal and preserves colimits.

Proof. By definition, ∂k is the composite of Pk : Excd(Sp
c, Sp)→ Exck(Sp

c, Sp) and
crk(−)(S, . . . ,S) : Exck(Sp

c, Sp) → Sp, which are symmetric monoidal by Corol-
lary 6.21 and Proposition 5.27, respectively. That ∂k preserves colimits is already
clear from Goodwillie’s original constructions; alternatively, it also follows from the
fact that Pk and crk(−)(S, . . . ,S) both have right adjoints. For the latter, recall
Remark 5.35. □

Remark 6.33. The top derivative ∂d : Excd(Sp
c, Sp)→ Sp given by crd(−)(S, . . . ,S)

is finite étale (Remark 5.37).

Lemma 6.34. The collection of functors {∂k}1≤k≤d are jointly conservative on
Excd(Sp

c, Sp).

Proof. The equivalence of categories Homogd(Sp
c, Sp) ≃ Fun(BΣd, Sp) of Proposi-

tion 6.23 implies that DdF = 0 ⇐⇒ ∂dF = 0. Therefore, if ∂dF = 0, then F is
(d− 1)-excisive, and the result follows by induction. □

Remark 6.35. It is a consequence of Lemma 6.34 that every compact separable
algebra in Excd(Sp

c, Sp) has finite degree in the sense of [Bal14]. This follows from
the corresponding statement for Sp established in [Bal14, Corollary 4.8]. Indeed,
dk := deg(∂k(A)) < ∞ for each 1 ≤ k ≤ d implies that for d := max1≤k≤d dk we
have ∂k(A[d+1]) = ∂k(A)

[d+1] = 0 for all 1 ≤ k ≤ d by [Bal14, Theorem 3.7(a)].
Hence A[d+1] = 0 by Lemma 6.34 so that deg(A) ≤ d.

Example 6.36. The finite étale map ∂d : Excd(Sp
c, Sp) → Sp of Remark 6.33 has

finite degree.

Remark 6.37. We now give an explicit description of the completion functor
Excd(Sp

c, Sp)→ hom(eY ,Excd(Sp
c, Sp)) associated to Y = supp(PdhS(d)). In other

words, bearing in mind Theorem 6.19, we compute the internal hom hom(DdhS, F )
for a d-excisive functor F .

Proposition 6.38. Suppose that F is d-excisive. Then

homExcd(Sp
c,Sp)(DdhS, F )(X) ≃ (∂dF ⊗X⊗d)hΣd .
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Proof. Suppose that F and G are d-excisive functors. We recall from Theorem 2.38
that the internal hom in Excd(Sp

c, Sp) is computed in Fun(Spc, Sp) where it is given
by

homFun(Spc,Sp)(G,F )(X) ≃ HomFun(Spc,Sp)(G,F (X ⊗−))
≃ HomExcd(Sp

c,Sp)(G,F (X ⊗−))

where the last step follows because Excd(Spc, Sp) ⊆ Fun(Spc, Sp) is a full subcategory.
Therefore,

homExcd(Sp
c,Sp)(DdhS, F )(X) ≃ HomExcd(Sp

c,Sp)(DdhS, F (X ⊗−))
≃ HomHomogd(Sp

c,Sp)(DdhS, DdF (X ⊗−))

where we have used that Dd : Excd(Sp
c, Sp)→ Homogd(Sp

c, Sp) is right adjoint to
the inclusion.

By Proposition 6.23, there is an equivalence

Homogd(Sp
c, Sp) ⇆ Fun(BΣd, Sp)

given by assigning to a d-homogeneous functor F the Goodwillie derivative ∂dF
with Σd-action. Now we observe that ∂d(DdhS) ≃ S with trivial Σd-action, and
∂d(DdF (X ⊗−)) ≃ (∂d(F )⊗X⊗d) by (6.29).

We deduce from the above discussion that

homExcd(Sp
c,Sp)(DdhS, F )(X) ≃ HomSp(∂dDdhS, ∂dDdF (X ⊗−))hΣd

≃ HomSp(S, ∂dF ⊗X⊗d)hΣd

≃ (∂dF ⊗X⊗d)hΣd ,

as required. □

Remark 6.39. We can also identify the Tate square of (6.13). The existence of such
a pullback square was originally shown by McCarthy [McC01, Proposition 4]; see
also [Kuh04, Proposition 1.9].

Proposition 6.40 (Kuhn–McCarthy). For any reduced functor F : Spc → Sp there
is a pullback square of the form

PdF (X) (∂dF ⊗X⊗d)hΣd

Pd−1F (X) (∂dF ⊗X⊗d)tΣd .

The fiber of the vertical maps is DdF (X) ≃ (∂dF ⊗ X⊗d)hΣd . In particular, the
Tate construction associated to the Thomason closed subset Y = supp(PdhS(d)) ⊆
Spc(Excd(Sp

c, Sp)c) is given by

tY (F )(X) ≃ (∂dF ⊗X⊗d)tΣd .

Proof. By Proposition 6.23 and Lemma 6.26 we have DdF (X) ≃ (∂dF ⊗X⊗d)hΣd .
Using Remark 6.12, we can identify the bottom right-hand corner of the Tate square
as the (d− 1)-excisive approximation to the functor X 7→ (∂dF ⊗X⊗d)hΣd . A direct
computation shows that this functor is X 7→ (∂dF ⊗ X⊗d)tΣd (see, for example,
[Kuh07, Lemma 5.2] or [McC01, Proof of Proposition 4]) and the result follows. □
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Remark 6.41. We have already introduced the notation

td : Excd(Sp
c, Sp)→ Excd(Sp

c, Sp)

for the Tate construction associated to supp(PdhS(d)) ⊆ Spc(Excd(Sp
c, Sp)c); see

Notation 6.18. By Proposition 6.40, the d-excisive functor td(F ) has the following
explicit description:

td(F )(X) ≃ (∂dF ⊗X⊗d)tΣd .

Remark 6.42. The proof of Proposition 6.40 shows that td(F ) is actually (d− 1)-
excisive, but we are considering it as a d-excisive functor via the natural inclusion.

Remark 6.43. Combining the Tate construction td with the inflation functor id
(Definition 2.44) and the Goodwillie derivatives ∂k (Definition 6.31) yields:

Definition 6.44. The Tate-derivatives on the category of d-excisive functors are the
functors Sp→ Sp defined for each 1 ≤ k ≤ d as the composite

Sp
id−→ Excd(Sp

c, Sp)
td−→ Excd(Sp

c, Sp)
∂k−→ Sp.

Explicitly, a spectrum A is sent to the k-th derivative of the functor

X 7→ (A⊗X⊗d)tΣd .

Remark 6.45. Understanding the chromatic shifting behaviour of the Tate-derivatives
will play a crucial role in Part III.
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Part II. The primes of d-excisive functors

7. The Balmer spectrum of d-excisive functors as a set

We begin by computing the underlying set of the Balmer spectrum of Excd(Spc, Sp).

Remark 7.1. For each 1 ≤ k ≤ d, the k-th Goodwillie derivative

∂k : Excd(Sp
c, Sp)→ Sp

is a colimit-preserving symmetric monoidal functor (a.k.a. geometric functor) by
Lemma 6.32. Since Excd(Sp

c, Sp) is rigidly-compactly generated (Corollary 5.34), it
restricts to a functor

∂k : Excd(Sp
c, Sp)c → Spc

between compact objects. By pulling back prime ideals of Spc (whose spectrum was
described in Example 6.5), we produce a family of prime ideals of Excd(Spc, Sp):

Definition 7.2. Let Pd([k], p, h) := {x ∈ Excd(Sp
c, Sp)c | ∂k(x) ∈ Cp,h in Spc}.

The following lemma shows that these are all the prime ideals in Excd(Sp
c, Sp).

Lemma 7.3. Let ∂ :=
∏

1≤k≤d ∂k. The induced map

(7.4) Spc(∂) :
∐

1≤k≤d

Spc(Spc)→ Spc(Excd(Sp
c, Sp)c)

is surjective.

Proof. This follows from Lemmas 6.32 and 6.34 and [BCHS23a, Theorem 1.3]. □

Lemma 7.5. For each 1 ≤ k ≤ d, the composite

Sp
id−→ Excd(Sp

c, Sp)
∂k−→ Sp

is equivalent to the identity functor.

Proof. It suffices to prove the claim when k = d, since the composite

Sp
id−→ Excd(Sp

c, Sp)
Pk−−→ Exck(Sp

c, Sp)

is equivalent to ik. In other words, we must show that ∂d(id(A)) ≃ A. Recall that
id(A) ≃ Pd(FA), where FA(X) = A ⊗ hS(X) = A ⊗ Σ∞Ω∞X (Definition 2.44).
When A = S the claim is clear using, for example, that both functors are symmetric
monoidal. One then computes ∂d(PdFA) ≃ A ⊗ ∂d(PdFS) ≃ A and the result
follows. □

Lemma 7.6. The functor id : Sp→ Excd(Sp
c, Sp) induces a map

Spc(id) : Spc(Excd(Sp
c, Sp)c)→ Spc(Spc)

which sends Pd([k], p, h) to Cp,h for all 1 ≤ k ≤ d.

Proof. This follows from Lemma 7.5 and the definitions. □

Lemma 7.7. For each 1 ≤ k ≤ d, the functor ∂k : Excd(Sp
c, Sp)→ Sp induces an

embedding
Spc(∂k) : Spc(Spc) ↪→ Spc(Excd(Sp

c, Sp)c)

which sends Cp,h to Pd([k], p, h).
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Proof. The splitting ∂k ◦ id ≃ IdSp established by Lemma 7.5 implies by Remark 6.2
that Cp,n ⊆ Cq,m if and only if Pd([k], p, n) ⊆ Pd([k], q,m). It follows that the map
Spc(∂k) is injective and, in fact, an embedding. □

Proposition 7.8. Let 1 ≤ m ≤ d. The functor Pm : Excd(Sp
c, Sp)→ Excm(Spc, Sp)

induces an open embedding

Spc(Pm) : Spc(Excm(Spc, Sp)c) ↪→ Spc(Excd(Sp
c, Sp)c)

which sends Pm([k], p, h) to Pd([k], p, h) for each 1 ≤ k ≤ m.

Proof. By Corollary 6.21 the functor Pm is the finite localization on Excd(Sp
c, Sp)

whose kernel is the ideal generated by
{
PdhS(i)

∣∣m + 1 ≤ i ≤ d
}
. Any finite

localization induces an embedding on spectra by [Bal05, Proposition 3.11]. Moreover,
the complement of its image is the closed set⋃

m+1≤i≤d

supp(PdhS(i)) ⊆ Spc(Excd(Sp
c, Sp)c).

This establishes that Spc(Pm) is an open embedding. The fact that Pm([k], p, h)
maps to Pd([k], p, h) follows directly from the definitions. □

The following is our key computational result for determining the underlying set
of the spectrum of Excd(Spc, Sp).

Proposition 7.9. For 1 ≤ i ≤ d and j ≥ 1 we have

∂i(Pd(hS(j))) ∼= S⊕|surj(i,j)|

where the right-hand side is to be interpreted as 0 if j > i.

Proof. The map hS(j)→ Pd(hS(j)) induces an equivalence of ∂i for i ≤ d. So it is
enough to prove that

∂i(hS(j)) ∼= S⊕|surj(i,j)|.

Recall that hS(j) is the j-th cross-effect of the functor x 7→ hx, evaluated at
S,S, . . . ,S. It is well-known that for x ∈ Spc there is an equivalence ∂i(hx) ≃ D(x⊗i),
with Σi action given by permuting the factors of x; see, for example, [AC15,
Lemma 5.10]. In particular, we deduce that

(7.10) ∂i(hS⊕j ) ≃ S⊕ji .

The case of hS(j) follows by writing hS(j) as the total fiber of a j-cube. Let us
demonstrate this in the case i = j = 3, showing that ∂3(hS(3)) ≃ S⊕6. We can
write hS(3) as the total fiber of the 3-cube

hS⊕S hS

hS⊕S⊕S hS⊕S

hS 0

hS⊕S hS
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Applying ∂3 and using (7.10) gives the 3-cube

S⊕8 S

S⊕27 S⊕8

S 0

S⊕8 S

The total fiber of this diagram, which is ∂3(hS(3)), is S⊕(27−3·8+3·1) = S⊕6. In the
general case, the same type of argument gives that ∂i(hS(j)) is a sum of

ji−
(

j

j − 1

)
(j−1)i+

(
j

j − 2

)
(j−2)i+ · · ·+(−1)j−1j =

j−1∑
k=0

(−1)k
(

j

j − k

)
(j−k)i

copies of the sphere spectrum. But this is precisely the number of surjections from
i to j; see (5.21). The result then easily follows. □

Remark 7.11. Armed with Proposition 7.9, we have analogs of [BS17, Propositions
4.11 and 4.12]:

Proposition 7.12. Let 1 ≤ i, j ≤ d. Then Pd(hS(j)) ∈ Pd([i], p, h) if and only if
i < j.

Proof. By definition, Pd([i], p, h) = (∂i)
−1(Cp,h). Now recall that S ̸∈ P and 0 ∈ P

for every prime P = Cp,h in Spc(Spc) and invoke Proposition 7.9. □

Corollary 7.13. If Pd([i], p, h) ⊆ Pd([j], p
′, h′) then i ≥ j.

Proof. Invoking Proposition 7.12 twice, Pd(hS(j)) ̸∈ Pd([j], p
′, h′) implies that

Pd(hS(j)) ̸∈ Pd([i], p, h) by the hypothesis, so that i ≥ j. □

Theorem 7.14. The map Spc(∂) in (7.4) is a bijection: Every prime ideal in
Spc(Excd(Sp

c, Sp)c) is of the form Pd([i], p, h) for some triple (i, p, h) consisting of
an integer 1 ≤ i ≤ d, a prime number p or p = 0, and a chromatic height 1 ≤ h ≤ ∞.
Moreover, we have Pd([i], p, h) = Pd([j], p

′, h′) if and only if i = j and Cp,h = Cp′,h′

in Spc (i.e., h = h′ and if h = h′ > 1, then also p = p′).

Proof. We established that Spc(∂) is surjective in Lemma 7.3, so it remains to show
that it is injective, i.e., if Pd([i], p, h) = Pd([j], p

′, h′) then i = j and Cp,h = Cp′,h′ .
Indeed, Corollary 7.13 implies i = j while Lemma 7.6 implies Cp,h = Cp′,h′ . □

Corollary 7.15. Let 1 ≤ k ≤ d. Then

supp(Pd(hS(k))) =
{
Pd([i], p, h)

∣∣ i ≥ k }.
Proof. By definition,

supp(Pd(hS(k))) =
{
P ∈ Spc(Excd(Sp

c, Sp)c)
∣∣Pd(hS(k)) ̸∈ P

}
.

By Theorem 7.14 we know every prime is of the form P([i], p, h) and so the result
follows from Proposition 7.12. □
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Remark 7.16. It follows from Theorem 7.14 and Lemma 7.7 that Spc(Excd(Spc, Sp)c)
consists of d disjoint embedded copies of Spc(Spc). Understanding the topological
interactions between these d pieces will be the topic of Part III.

Remark 7.17. The p-localization Excd(Sp
c, Sp) → Excd(Sp

c, Sp)(p) is the finite
localization associated to id(fp,∞) in the notation of Example 6.15. It induces an
identification

Spc(Excd(Sp
c, Sp)c(p))

∼−→
{
Pd([k], p, h)

∣∣ all k, h
}
⊆ Spc(Excd(Sp

c, Sp)c)

on Balmer spectra. This readily follows from Lemma 7.6 and the definitions.
Moreover, it follows from Lemma 7.5 that if F is a p-local d-excisive functor then its
derivative ∂k(F ) ∈ Sp is also p-local for each 1 ≤ k ≤ d. This is almost tautological
if one makes the identification Excd(Sp

c, Sp)(p) ≃ Excd(Sp
c, Sp(p)) provided by

Remark 2.46. From this perspective, p-localization is just changing coefficients along
Sp→ Sp(p).

Remark 7.18. Via the abstract nilpotence theorem of [BCH+23, Theorem 2.25], the
joint conservativity of the derivatives on Excd(Sp

c, Sp) established in Lemma 6.34
implies the following nilpotence theorem:

Theorem 7.19. The collection of functors {∂k}1≤k≤d detects tensor-nilpotence of
morphisms with compact source in Excd(Sp

c, Sp): A map α : F → G in Excd(Sp
c, Sp)

with F compact satisfies α⊛m = 0 for some m ≥ 0 if and only if for all 1 ≤ k ≤ d
there exists mk ≥ 0 such that ∂k(α)⊗mk = 0.

Remark 7.20. The computation of Theorem 7.14 along with Theorem 7.19 show
that Balmer’s homological spectrum Spch(Excd(Sp

c, Sp)c) (see [Bal20]) agrees with
the tensor triangular spectrum. (Balmer has conjectured that this holds for any
rigidly-compactly generated category; see [Bal20, Remark 5.15].) More specifically,
we have the following:

Corollary 7.21. The natural comparison map

ϕ : Spch(Excd(Sp
c, Sp)c)→ Spc(Excd(Sp

c, Sp)c)

of [Bal20, Remark 3.4] is a homeomorphism.

Proof. We will verify the conditions of [Bal20, Theorem 5.6]. This will establish
that ϕ is a bijection and hence a homeomorphism by [BHS23a, Theorem A]. The
argument is analogous to the corresponding argument for the equivariant stable
homotopy category given in [Bal20, Corollary 5.10]. We must show that for every P =
Pd([k], p, h) ∈ Spc(Excd(Sp

c, Sp)c) there exists a coproduct-preserving homological
symmetric monoidal functor to a tensor abelian category AP satisfying the three
conditions of [Bal20, Theorem 5.6]. From the definition of the prime ideal Pd([k], p, h)
we take this to be the composite

Excd(Sp
c, Sp)

∂k−→ Sp
K(p,h)•−−−−−→ Ap,h := Fp[v

±1
h ] - grMod

where K(p, h) is Morava K-theory at the prime p and height h and the graded field
K(p, h)∗(S) = Fp[v

±1
h ] has vh in degree 2(ph − 1). When h = 0 we take K(p, h) to

be rational homology (for all primes p) and the target to be graded rational vector
spaces, while for h =∞ we take K(p, h) to be mod p homology and the target to
be graded Fp-vector spaces. Conditions (1) and (2) of [Bal20, Theorem 5.6] are
then straightforward to verify, while (3) follows from the nilpotence theorem of
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Theorem 7.19 together with the classical nilpotence theorem [DHS88, HS98] for the
stable homotopy category. □

8. The Goodwillie–Burnside ring

In this section we introduce, for each integer d ≥ 1, a commutative ring A(d)
which we call the Goodwillie–Burnside ring. The name is justified by Theorem 9.23
in the next section which identifies A(d) with the endomorphism ring of the unit in
the category Excd(Sp

c, Sp). It is the analog in Goodwillie calculus of the Burnside
ring in equivariant homotopy theory and, following Dress [Dre69], we are able to
completely describe its Zariski spectrum.

Remark 8.1. Yoshida [Yos87] introduces a Burnside ring for any finite category C

satisfying certain assumptions. For example, if C is the orbit category of a finite
group, then Yoshida’s abstract Burnside ring is the usual Burnside ring of a finite
group. Our construction of the Goodwillie–Burnside ring can be regarded as a special
case of Yoshida’s construction, namely as the abstract Burnside ring associated to
the following category.

Definition 8.2. Let Epi≤d denote the category of non-empty sets of cardinality at
most d and surjective maps.

Remark 8.3. Glasman [Gla18] has shown that the category of d-excisive functors
from finite spectra to spectra is equivalent to the category of spectral Mackey
functors on a category built from Epi≤d. This provides a conceptual reason for the
appearance of Epi≤d in the study of Excd(Spc, Sp).

Remark 8.4. Note that when d = 2, there is an equivalence of categories

Epi≤2 ≃ OC2

where the latter denotes the orbit category of the cyclic group C2. This is reflected
in the fact that the ring A(2) we construct in this section is isomorphic to A(C2),
the Burnside ring of the group C2.

Construction 8.5. Let d ≥ 1 be an integer. Let A(d) := ⟨x1, . . . , xd⟩ denote the
free abelian group on generators x1, . . . , xd and let Zd := ⟨y1, . . . , yd⟩ denote the
free abelian group on generators y1, . . . , yd. Thus A(d) and Zd are isomorphic as
abelian groups, but they will be endowed with different ring structures. The ring
Zd =

∏d
k=1 Z is the product of d copies of Z. Thus the product structure on Zd is

determined by the relations

(8.6) yiyj =

{
yi i = j
0 i ̸= j

.

To describe the ring structure on A(d) we first define a group homomorphism
ϕ : A(d)→ Zd by the following formula:

(8.7) ϕ(xi) :=

d∑
k=1

| surj(k, i)|yk =

d∑
k=i

| surj(k, i)|yk.

We call ϕ the Burnside homomorphism.

Remark 8.8. Recall from Definition 4.9 that a subset of [i]× [j] is called good if it
projects surjectively onto [i] and [j].
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Definition 8.9. Let µ(i, j, l) be the number of good subsets of [i]× [j] of cardinality l.

Theorem 8.10. The homomorphism ϕ of (8.7) is injective. Moreover, there is an
exact sequence

0→ A(d)
ϕ−→

∏
1≤i≤d

Z
ψ−→

∏
1≤i≤d

Z/i!Z→ 0.

The abelian group A(d) possesses a unique ring structure which makes ϕ a ring
homomorphism. The multiplication in A(d) is determined by the formula

(8.11) xixj =
∑

1≤l≤d

µ(i, j, l)xl.

Proof. This is a consequence of Yoshida’s work on abstract Burnside rings [Yos87],
but we will give a direct proof.

The formula (8.7) means that as a homomorphism from Zd to itself, with our
chosen bases, ϕ is represented by a lower triangular matrix, whose diagonal entries
are surj(i, i) = i! for i = 1, . . . , d. It follows that ϕ is injective, and the cokernel of ϕ
is isomorphic to

∏
1≤i≤d Z/i!Z.

From the injectivity of ϕ it follows that there exists at most one product structure
on A(d) for which ϕ is a ring homomorphism. It remains to find a formula for
multiplication in A(d) that is respected by ϕ. Since x1, . . . , xd form an abelian group
basis of A(d), for any ring structure on A(d) there exist unique integers ν(i, j, l)
such that

(8.12) xixj =

d∑
l=1

ν(i, j, l)xl.

The map ϕ is a ring homomorphism if and only if

ϕ(xi)ϕ(xj) = ϕ(xixj)

for all 1 ≤ i, j ≤ n. Substituting the formula for ϕ, and using the formulas for the
product in Zd (8.6) and the product in A(d) (8.12), we obtain the relations

d∑
k=1

| surj(k, i)|| surj(k, j)|yk =

d∑
k=1

(
d∑
l=1

ν(i, j, l)| surj(k, l)|

)
yk.

It follows that ϕ is a ring homomorphism if and only if the numbers ν(i, j, l) satisfy
the following relations, for all 1 ≤ i, j, k ≤ d:

| surj(k, i)|| surj(k, j)| =
d∑
l=1

ν(i, j, l)| surj(k, l)|.

Since the multiplication on A(d) is unique (if it exists), there is at most one set
of numbers ν(i, j, k) that satisfies these relations. So if we show that the numbers
µ(i, j, k) satisfy these relations, then µ(i, j, l) = ν(i, j, l) for all i, j, l, and we are
done.

We have to prove that for all i, j, k the following equality holds

| surj(k, i)|| surj(k, j)| =
d∑
l=1

µ(i, j, l)| surj(k, l)|.
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The number | surj(k, i)|| surj(k, j)| is the same as | surj([k], [i])× surj([k], [j])|. Let
[i][k] denote the set of all functions from [k] to [i]. Then surj([k], [i]) ⊆ [i][k] and

surj([k], [i])× surj([k], [j]) ⊆ [i][k] × [j][k] ∼= ([i]× [j])
[k]
.

A function α : [k] → [i] × [j], considered as an element of ([i]× [j])
[k], is in the

image of surj([k], [i]) × surj([k], [j]) if and only if the image of α is a good subset
of [i]× [j]. It follows that the number of elements of surj([k], [i])× surj([k], [j]) is
the sum, indexed by good subsets of [i]× [j], of the numbers of surjections from [k]
onto each good subset. Grouping the good subsets by cardinality, and recalling
that µ(i, j, l) is the number of good subsets with l elements, we obtain the desired
formula. □

Corollary 8.13. The ring A(d) is isomorphic to the quotient of the polynomial ring
Z[x1, . . . , xd] by the ideal I generated by the relations (8.11). Furthermore, x1 = 1,
so A(d) is also the quotient of Z[x2, . . . , xd] by the relations (8.11).

Proof. It follows from Theorem 8.10 that there is a surjective ring homomorphism
Z[x1, . . . , xd]/I ↠ A(d). It is easy to see from the definition of I that x1, . . . , xd
generate Z[x1, . . . , xd]/I as an abelian group. Since A(d) is a free abelian group of
rank d, it follows that the surjective homomorphism is in fact an isomorphism. □

Remark 8.14. There does not seem to be a closed formula for µ(i, j, k). Nevertheless,
we can make a few observations about these numbers, and also write some summation
formulas.

To begin with, clearly µ(i, j, k) ̸= 0 if and only if max(i, j) ≤ k ≤ ij. Moreover,
if i ≤ j then µ(i, j, j) = | surj(j, i)|. At the other end of the range, µ(i, j, ij) = 1.

Note that µ(i, j, k) can be characterized as the number of labelled bipartite
graphs with k edges and no isolated vertices, and with parts of size i and j. In this
guise, there are some formulas for this number, or closely related ones, scattered
in the literature [Har58, Lee61, AO18]. For example, one can use the inclusion-
exclusion principle to write a summation formula for µ(i, j, k). We learned the
following formula from Achim Krause. It can be found in [Lee61] as the Corollary
to Lemma 3.

Lemma 8.15. There is an equality

µ(i, j, k) =
∑

s≥0,t≥0

(−1)s+t
(
(i− s)(j − t)

k

)(
i

s

)(
j

t

)
.

Proof. There are altogether
(
ij
k

)
subsets of [i]× [j] of cardinality k. Let us say that a

subset of [i]×[j] is bad if it is not good. We are going to apply the inclusion-exclusion
principle to analyze the number of bad subsets, and ultimately arrive at the number
of good ones.

A subset U ⊆ [i]× [j] is bad if there exists a row or a column of the array [i]× [j]
that is disjoint from U . Suppose we have subsets S ⊆ [i] and T ⊆ [j]. Let BS,T be
the number of bad subsets of [i]× [j] with k elements with the property that their
projections onto [i] and [j] are disjoint from S and T respectively. In other words,
BS,T is the number of subsets of ([i] \ S)× ([j] \ T ) of cardinality k. It follows that
BS,T has

(
(i−|S|)(j−|T |)

k

)
elements.

It is clear that the union of BS,T where S, T range over all subsets of [i] and [j]
with S ∪ T ̸= ∅ is the set of bad subsets of [i] × [j] of cardinality k. It is also



THE SPECTRUM OF EXCISIVE FUNCTORS 51

clear that BS,T ∩ BS′,T ′ = BS∪S′,T∪T ′ . The maximal elements of the family of
subsets BS,T are those where S ∪ T consists of a single element. The set BS,T is
the intersection of |S|+ |T | maximal elements.

Applying the inclusion-exclusion principle to the family of subsets BS,T we obtain
that the number of elements in the complement of the union of all the sets BS,T ,
which is µ(i, j, k), is given by the following formula:

µ(i, j, k) =
∑

S⊆[i],T⊆[j]

(−1)|S|+|T ||BS,T |

=
∑

S⊆[i],T⊆[j]

(−1)|S|+|T |
(
(i− |S|)(j − |T |)

k

)

=
∑

s≥0,t≥0

(−1)s+t
(
(i− s)(j − t)

k

)(
i

s

)(
j

t

)
. □

Remark 8.16. For an explicit way to compute the ring structure, we define a d× d
matrix M by

Mij := | surj(i, j)|.
Then one can show that

(8.17) µ(i, j, k) =

d∑
m=1

Mmi ·Mmj ·M−1
km,

see for example [YOT18, Equation (1.6)]. Moreover, we can give an explicit descrip-
tion of the inverse matrix M−1. Indeed, recall that the number of surjections from
[i] to [j] can be expressed in terms of Stirling numbers of the second kind:

Mij = | surj(i, j)| = j!

{
i

j

}
,

see for example [Big89, Theorem 5.3.1]. We can therefore write M = LU where
Lij =

{
i
j

}
and U is the diagonal matrix with Uii = i!. The inverse of L is the matrix

L−1
ij = s(i, j) where s(−,−) denotes a Stirling number of the first kind (this follows

from [Sta12, Proposition 1.4.1]). Therefore,

M−1
ij =

1

i!
s(i, j).

This gives the formula

(8.18) µ(i, j, k) =

d∑
m=1

i!

{
m

i

}
j!

{
m

j

}
1

k!
s(k,m).

Note that the terms in the sum can only be non-zero for max(i, j) ≤ m ≤ k.

Example 8.19. We now give an explicit example of how to compute the ring structure
in the d = 3 case.

We can write this ring as a quotient of Z[x2, x3] by Corollary 8.13. The matrix
of Remark 8.16 for d = 3 is:

1 0 0
1 2 0
1 6 6
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The generators x2, x3 correspond to the second and third columns of the matrix,
and the product of two generators is given by component-wise multiplication of
column vectors, which are decomposed as a linear combination of the columns. In
particular, we see that A(3) is the quotient of Z[x2, x3] by the following relations:

(0, 0, 6) · (0, 0, 6) = (0, 0, 36) = 6 · (0, 0, 6) =⇒ x23 = 6x3

(0, 2, 6) · (0, 0, 6) = (0, 0, 36) = 6 · (0, 0, 6) =⇒ x2x3 = 6x3

(0, 2, 6) · (0, 2, 6) = (0, 4, 12) = 2 · (0, 2, 6) + 4 · (0, 0, 6) =⇒ x22 = 2x2 + 4x3.

Remark 8.20. We will now determine all the primes ideals in A(d) and describe
the Zariski spectrum Spec(A(d)). These ideas closely follow those for the classical
Burnside ring [Dre69, Dre73].

Definition 8.21. Let ϕi : A(d)→ Z denote the homomorphism defined by ϕi(xj) :=
| surj(i, j)|.

Remark 8.22. In other words, the map ϕ : A(d)→
∏

1≤i≤d Z from Construction 8.5
is the product of the maps ϕi for 1 ≤ i ≤ d. In particular, each ϕi is a ring
homomorphism by Theorem 8.10.

Definition 8.23. Let p([i], p) (for p a prime or 0 and 1 ≤ i ≤ d) be the preimage of
the prime ideal (p) under the map ϕi : A(d)→ Z.

Proposition 8.24. Every prime ideal of A(d) is of the form p([i], p) for some p
and 1 ≤ i ≤ d.

Proof. We observe that the injection ϕ : A(d) ↪→
∏

1≤k≤d Z of Theorem 8.10 is an
integral extension since

∏
1≤k≤d Z is additively generated by idempotent elements.

It then follows from the going-up theorem that Spec(
∏

1≤k≤d Z)→ Spec(A(d)) is
surjective; see e.g. [Kap74, Section 1.6]. □

Lemma 8.25. The maximal ideals of A(d) are p([i], p) for p > 0, while the minimal
prime ideals are p([i], 0). In particular, A(d) has Krull dimension 1. Moreover, we
have p([i], 0) ⊆ p([j], p) if and only if p([i], p) = p([j], p).

Proof. This is the same as the classical proof for the Burnside ring: If p > 0, then
the quotient of A(d) by p([i], p) is Z/p, so that p([i], p) is maximal. If p = 0, then
the quotient is Z, and there cannot be any containment among the ideals p([i], 0) for
varying i, as such an inclusion would correspond to a surjective ring homomorphism
Z→ Z. We deduce that p([i], 0) is minimal for each i. This then shows that A(d)
has Krull dimension 1.

Suppose then that p([i], p) = p([j], p). Then clearly p([i], 0) ⊆ p([i], p) = p([j], p).
Conversely, we will show that if p([i], p) ̸= p([j], p), then p([i], 0) ̸⊆ p([j], p). From
the previous paragraph, both p([j], p) and p([i], p) are maximal ideals; in particular,
there exists a ∈ A(d) with a ∈ p([i], p) and a ̸∈ p([j], p). Now consider the element
b = a− ϕi(a) · 1. We see that b ∈ p([i], 0) but b ̸∈ p([j], p), and so p([i], 0) ̸⊆ p([j], p),
as claimed. □

Proposition 8.26. Suppose p, q are primes and 1 ≤ i, j ≤ n. We have p([i], p) =
p([j], q) in A(d) if and only if p = q and p− 1 | j − i.

Proof. (⇐) Suppose first that p = q and p− 1 divides j − i. We claim that in this
case ϕi ≡ ϕj mod (p), so that p([i], p) = p([j], p). To prove that ϕi ≡ ϕj mod (p),
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we need to prove that ϕi(xℓ) ≡ ϕj(xℓ) mod (p), for all ℓ. This in turn means that
we need to prove that |surj(i, ℓ)| ≡ |surj(j, ℓ)| mod (p) for all ℓ. Note that the
symmetric group Σℓ acts freely on the set of surjections surj(−, ℓ). It follows that
both numbers |surj(i, ℓ)| and |surj(j, l)| are divisible by ℓ!. So if ℓ is at least p then
both numbers are divisible by p and we are done. It remains to prove the case when
1 ≤ ℓ ≤ p. In this case we use (5.21) to see that:

|surj(i, ℓ)| = ℓi −
(

ℓ

ℓ− 1

)
(ℓ− 1)i + · · · ±

(
ℓ

k

)
ki · · ·

|surj(j, ℓ)| = ℓj −
(

ℓ

ℓ− 1

)
(ℓ− 1)j + · · · ±

(
ℓ

k

)
kj · · ·

(8.27)

But if p− 1 divides j − i then ki ≡ kj mod (p) for all k and we are done.
(⇒) For the converse, suppose first that i and j are arbitrary, and p ̸= q are

distinct primes. Then ϕi(p) = ϕj(p) = p ̸≡ 0 mod (q). It follows that p ∈ p([i], p)
but p /∈ p([j], q), so p([i], p) ̸= p([j], q).

Now suppose that p = q and p− 1 ∤ j − i. Then there exists a positive integer a
such that ai ̸≡ aj mod (p). For example, a primitive root modulo p satisfies this.
Let ℓ be the smallest positive integer for which ℓi ̸≡ ℓj mod (p).

We claim that ℓ ≤ max(i, j) and therefore ℓ ≤ d. Indeed, suppose first that
p ≤ max(i, j). Then ℓ is bounded above by the primitive roots modulo p, which
are all smaller than max(i, j). Now suppose that p > max(i, j). Without loss of
generality, suppose i < j. For integers 0 < x < p, the condition xi ≡ xj mod (p)
is equivalent to xj−i ≡ 1 mod (p). This equation has gcd(j − i, p − 1) solutions
between 1 and p. It follows that among the numbers 1, . . . , j − i+ 1 there exists at
least one x for which xj−i ̸≡ 1 mod (p) and thus xi ̸≡ xj mod (p). It follows that
l ≤ j − i+ 1 ≤ j. This proves the claim. It follows that xℓ ∈ A(d).

Since ℓ is the smallest positive integer for which ℓi ̸≡ ℓj mod (p), it follows, using
the formulas in (8.27), that

|surj(i, l)| ̸≡ |surj(j, l)| mod (p).

Consider the expression xℓ − | surj(i, l)| ∈ A(n). Then

ϕi (xℓ − | surj(i, l)|) = | surj(i, l)| − | surj(i, l)| ≡ 0 mod (p),

while
ϕj (xℓ − | surj(i, l)|) = | surj(j, l)| − | surj(i, l)| ̸≡ 0 mod (p).

It follows that p([i], p) ̸= p([j], p). □

In summary:

Theorem 8.28. Let 1 ≤ i, j ≤ d. Then:
(a) The prime ideals of A(d) are precisely the p([i], p) defined in Definition 8.23.

The prime ideals p([i], p) for p > 0 are maximal prime ideals, and the prime
ideals p([i], 0) are minimal prime ideals.

(b) For p, q > 0 and i ̸= j we have p([i], p) = p([j], q) if and only if p = q and
p− 1 | j − i.

(c) We have an inclusion p([i], p) ⊆ p([j], q) if and only if any of the following
are satisfied:

(i) p = q > 0 and p([i], p) = p([j], p)
(ii) p = q = 0 and i = j
(iii) p = 0, q > 0 and p([i], q) = p([j], q).
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Remark 8.29. Since the ring A(d) is noetherian (Corollary 8.13), the Zariski topology
is completely determined by the inclusions among prime ideals. Thus, Theorem 8.28
provides a complete description of the Zariski spectrum of A(d). It consists of d
copies of Spec(Z) with certain closed points glued together, namely, the closed
point p in the i-th copy is glued together with the closed point p in the j-th copy
precisely when p− 1 | j − i.

Example 8.30. The Zariski spectrum of A(3) is shown in Figure 3.

p([1],2)=p([2],2)=p([3],2)

 GH
p([1],3)=p([3],3)

GH

p([3],p) ...
(p6=2,3)

•◦ •◦ •◦ •◦ . . .
p([2],p) ...

(p 6=2)

•◦ •◦ •◦ •◦ . . .
p([1],p) ...

(p 6=2,3)

•◦ •◦ •◦ •◦ . . .

•◦ •◦ •◦
p([3],0) p([2],0) p([1],0)

Figure 3. The Zariski spectrum of the ring A(3).

9. The comparison map to the Goodwillie–Burnside ring

We now investigate the endomorphism ring of the unit object in Excd(Sp
c, Sp)

and show that it is isomorphic to the Goodwillie–Burnside ring defined in Section 8.
This identification is significant due to the following comparison map constructed
by Balmer [Bal10b]:

Definition 9.1. For an essentially small tensor triangulated category K, the compar-
ison map

ρK : Spc(K)→ Spec(EndK(1))

is the continuous map defined by P 7→
{
f : 1→ 1

∣∣ cofib(f) ̸∈ P
}
.

Remark 9.2. This map is always inclusion-reversing : If P ⊆ Q are two primes of K,
then ρK(Q) ⊆ ρK(P).

Remark 9.3. Applied to (the homotopy category of) a symmetric monoidal stable
∞-category C, note that EndhC(1) = π0(HomC(1,1)).

Example 9.4. The comparison map

Spc(Spc)→ Spec(π0 HomSp(S,S)) ∼= Spec(Z)

sends Cp,h to (p) and C0,1 to (0); see Example 6.5.

Remark 9.5. Recall from Theorem 2.38 that the monoidal unit of Excd(Spc, Sp) is
the d-excisive functor PdhS. We are therefore interested in the following ring:

Definition 9.6. We let

R(d) := π0 HomExcd(Sp
c,Sp)(PdhS, PdhS)

denote the endomorphism ring of the unit object in the category of d-excisive
functors from finite spectra to spectra.

Remark 9.7. For typesetting reasons, we’ll sometimes drop or simplify the subscript
indicating the ambient category and just write, for example, Hom(PdhS, PdhS) or
HomExcd(PdhS, PdhS) instead of HomExcd(Sp

c,Sp)(PdhS, PdhS).
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Remark 9.8. By Lemma 5.4 and Example 5.6 we have

HomExcd(Sp
c,Sp)(PdhS, PdhS) ≃ PdΣ∞Ω∞(S).

A well-known theorem of Goodwillie shows that the Goodwillie tower of the functor
X 7→ Σ∞Ω∞(X) splits when evaluated on connected suspension spectra [Kuh07,
Example 6.1], with (DdΣ

∞Ω∞)(X) = X⊗d
hΣd

. In particular, we have the following
analog of the tom Dieck splitting in the functor calculus world:

PdΣ
∞Ω∞(S) ∼=

⊕
1≤i≤d

(Σ∞S0)hΣi .

This implies that R(d) ∼=
∏

1≤i≤d Z as an abelian group. Our next goal is to analyze
how this interacts with the derivatives, and then use this to determine R(d) as a
commutative ring.

Remark 9.9. Recall that ∂i(PdhS) ≃ S for 1 ≤ i ≤ d by Proposition 7.9. Hence, the
i-th derivative functor induces a map, which we also denote by ∂i:

∂i : HomExcd(Sp
c,Sp)(PdhS, PdhS)→ HomSp(∂ihS, ∂ihS) ≃ S.

Applying π0 we obtain a ring homomorphism θid : R(d) → Z. Taken together, we
obtain a ring homomorphism θd :=

∏d
i=1 θ

i
d:

θd : R(d)→
d∏
i=1

Z.

Similarly, the functor Pd−1 : Excd(Sp
c, Sp)→ Excd−1(Sp

c, Sp) induces a map, which
we also denote simply by Pd−1:

Pd−1 : HomExcd(Sp
c,Sp)(PdhS, PdhS)→ HomExcd−1(Sp

c,Sp)(Pd−1hS, Pd−1hS).

Applying π0 we obtain a ring homomorphism π0(Pd−1) : R(d)→ R(d− 1).

Proposition 9.10. There is an isomorphism of abelian groups R(d) ∼= Zd. The ring
homomorphism θd is injective and the ring homomorphism π0(Pd−1) is surjective
for all d. Furthermore, there is a commutative diagram, where the columns are split
short exact sequences of abelian groups:

(9.11)

Z Z

R(d)

d∏
i=1

Z

R(d− 1)

d−1∏
i=1

Z

d!

π0(Pd−1)

θd

θd−1

Here the vertical maps on the right are the inclusion of the last factor and projection
onto the first d− 1 factors respectively.

Proof. The homomorphism θd is defined by taking the first d derivatives of a natural
transformation PdhS → PdhS. Since ∂iPd−1 ≃ ∂i for i ≤ d− 1, and ∂dPd−1 ≃ 0, it
follows that the bottom square of (9.11) commutes. We will see that the top row of
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the diagram is the kernel of the vertical homomorphisms in the bottom square, so
the entire diagram commutes.

For each d ≥ 1, consider the following commutative diagram, where the vertical
maps are induced by the natural transformation pd−1 : Pd → Pd−1:

PdhS(S) Hom(PdhS, PdhS) Hom(hS, PdhS)

Pd−1hS(S) Hom(Pd−1hS, Pd−1hS) Hom(hS, Pd−1hS).

≃ ≃

≃ ≃

The horizontal maps are equivalences by the Yoneda lemma and the universal
property of Pd. In particular, R(d) ∼= π0 (PdhS(S)), and the homomorphism
π0(Pd−1) : R(d) → R(d − 1) can be identified with the natural homomorphism
π0(pd−1) : π0(PdhS(S))→ π0(Pd−1hS(S)).

Now consider the fiber sequence

(9.12) DdhS(S)→ PdhS(S)→ Pd−1hS(S).

Recall (for example via Proposition 6.23) that DdhS(X) ≃ X⊗d
hΣd

. Taking X = S,
we have DdhS(S) ≃ Σ∞BΣd+ and π0 (DdhS(S)) ∼= Z. Therefore, applying π0 to
the fibration sequence (9.12) yields an exact sequence

(9.13) Z→ R(d)
π0(pd−1)−−−−−−→ R(d− 1).

We claim that this sequence is in fact short exact. It will be the left column of (9.11).
We will provide two proofs that the sequence above is short exact. Recall that

hS ≃ Σ∞Ω∞, so hS(S) ≃ Σ∞Ω∞Σ∞S0. Since Σ∞ is a left adjoint, composing
with Σ∞ commutes with Pd. It follows that the Taylor tower of the functor hS

evaluated at S is the same as the Taylor tower of the functor Σ∞Ω∞Σ∞ evaluated
at the space S0.

It is well-known that the Taylor tower of the functor Σ∞Ω∞Σ∞ splits, because
of the Snaith splitting. It follows that the fiber sequence (9.12) splits, and therefore
it induces a split short exact sequence on π0.

We now give another proof that (9.13) is short exact which will, moreover,
establish that the homomorphism at the top of (9.11) is multiplication by d!.

The functor ∂d : Fun(Spc, Sp)→ Sp factors through the category of spectra with
an action of Σd. It follows that the map

∂d : Hom(PdhS, PdhS)→ HomSp(∂dhS, ∂dhS) ≃ HomSp(S,S) ≃ S

factors through HomSp(S,S)hΣd . The map fits into the following diagram

ShΣd ShΣd

Hom(PdhS, PdhS) HomSp(S,S)hΣd HomSp(S,S) ≃ S

Hom(Pd−1hS, Pd−1hS) HomSp(S,S)tΣd

≃

Here the square at the bottom is a special case of the Kuhn–McCarthy pullback
square (Proposition 6.40) applied to the functor PdhS and evaluated at S. To see this,
use the identification Hom(PdhS, PdhS) ≃ PdhS(S), and see [AC15, Proposition 4.14]
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which, together with its proof, shows that the top map in the Kuhn–McCarthy
square is indeed induced by our map ∂d.

It follows that the map ShΣd → S from the top left corner to the far right
spot in the diagram is the transfer map, whose effect on π0 is the homomorphism
Z

d!−→ Z. In particular, this homomorphism is injective. It follows that the map
ShΣd → Hom(PdhS, PdhS) induces a monomorphism on π0. But this is the same as
the map DdhS(S)→ PdhS(S) in (9.12). Note also that π−1(ShΣd) = 0, and it follows
that the map pd−1 : PdhS(S) → Pd−1hS(S) induces a surjective homomorphism
on π0. We have proved (for the second time) that the fibration sequence (9.12)
induces a short exact sequence on π0. Furthermore, we have proved that the map
∂d : Hom(PdhS, PdhS)→ S induces multiplication by d! from the kernel of π0(pd−1)
(as defined in (9.11)) to π0(HomSp(∂dhS, ∂dhS)) ∼= Z.

We have shown that the left column of (9.11) is a short exact sequence and that
the upper horizontal homomorphism is multiplication by d!. By induction on d it
follows that θd is a monomorphism for all d, and R(d) ∼= Zd. For the basis of the
induction one can take the case d = 0, in which case θ0 is the homomorphism from
the trivial group to itself. Or one can begin with d = 1, in which case θ1 is the
isomorphism π0(S)

∼=−→ Z given by degree. □

Remark 9.14. Now that we have shown that R(d) ∼= Zd, our next task is to
find an explicit basis for R(d). We have just defined an injective homomorphism∏d
i=1 θ

i
d : R(d)→ Zd. The following lemma will help us to identify a basis of R(d)

Lemma 9.15. Suppose that b1, . . . , bd are elements of R(d) that satisfy the following
for all i, j ≤ d:

θid(bj) =

{
i! i = j
0 i < j

.

Then b1, . . . , bd is a basis of R(d).

Proof. By Proposition 9.10 we have a split short exact sequence

0→ Z→ R(d)
π0(Pd−1)−−−−−−→ R(d− 1)→ 0.

It is enough to show that bd is in the image of a generator of Z and the images of
b1, . . . , bd−1 form a basis of R(d − 1). Let b̄i be the image of bi in R(d − 1). By
the commutativity of the bottom half of (9.11), θid−1(b̄j) = θid(bj) for i, j ≤ d− 1.
Arguing by induction on d, we can conclude that b̄1, . . . , b̄d−1 form a basis for
R(d− 1). Once again, for a basis of the induction one can take the case d = 0 or
d = 1, which are both immediate.

Now consider bd. By assumption, θid(bd) = 0 for i < d. It follows that bd ∈
ker(π0(pd−1)) and therefore bd is in the image of the homomorphism Z → R(d),
that is, in the upper left corner of (9.11). Furthermore, the assumption θd(bd) = d!
means that bd is the image of a generator of Z. □

Remark 9.16. Now we are ready to construct an explicit basis of R(d). Recall that
hS(m) is the value of the m-th cross-effect (or equivalently the mth co-cross-effect)
of the contravariant functor x 7→ hx at (S, . . . ,S); see Section 4.

Definition 9.17. Define λm : hS → hS to be the following composition

hS → hS⊕m → hS(m)→ hS⊕m → hS.
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Here the first and the last map are induced by the fold and the diagonal maps
between S and

⊕
m S. The second and the third map are a special case of the

natural map from F (x1⊕ · · · ⊕ xm) to crmF (x1, . . . , xm) and back, with F (x) = hx;
see (3.7).

Remark 9.18. By Lemma 3.29, λm is equivalent to the composition

hS → hS⊕m

⃝
t∈[m]

(1−hψ([m]\{t}))

−−−−−−−−−−−−−→ hS⊕m → hS.

Let us remind the reader that hψ([m]\{t}) is the idempotent map hS⊕m → hS⊕m

induced by collapsing to a point the t-th summand of S⊕ · · · ⊕ S︸ ︷︷ ︸
m

.

Remark 9.19. The maps λm are natural transformations from hS to itself. To
shorten notation, let us also denote by λm the induced map Pd(λm) : PdhS → PdhS

for all d ≥ m. Let us denote by [λm] the homotopy class of λm, considered as an
element of R(d).

We want to show that [λ1], . . . , [λd] form a basis of R(d). It follows from
Lemma 9.15 that to do this we need to analyze the induced maps ∂iλm : ∂ihS → ∂ihS.
We already observed that ∂ihS ≃ D(S⊗i) ≃ S and therefore the homotopy type
of ∂iλm is determined by a single integer — the degree.

Lemma 9.20. The degree of ∂iλm is | surj(i,m)|. In particular, ∂iλm is null for
i < m and ∂iλi has degree i!.

Proof. Using Remark 9.18 and the identification ∂ihx ≃ D(x⊗i), we see that the
map ∂iλm : hS → hS is the Spanier–Whitehead dual of the following composition of
maps

(9.21) S⊗i ∆⊗i
m−−−→ (S⊕m)⊗i

⃝
t∈[m]

(1−ψ([m]\{t})⊗i)

−−−−−−−−−−−−−−−→ (S⊕m)⊗i
∇⊗i
m−−−→ S⊗i

where ∆⊗i
m is the i-th smash power of the diagonal map S →

⊕
m S, ∇⊗i

m is the
i-th smash power of the fold map

⊕
m S → S, and the map in the middle is the

composition of maps of the form 1 − ψ([m] \ {t})⊗i, where 1 is the identity on
(S⊕m)⊗i and ψ([m] \ {t})⊗i is the i-th smash power of the self map of S⊕m that
collapses the t-th copy of S to a point.

There is an obvious identification (S⊕m)⊗i ∼= S⊕mi , where we identify mi with
the set of functions [i] → [m]. Under this identification, the map ∆⊗i

m in (9.21)
becomes the diagonal map S→ S⊕mi and the map ∇⊗m

i in the same line becomes
the folding map S⊕mi → S. Given a t ∈ [m], the map ψ([m] \ {t})⊗i becomes the
map S⊕mi → S⊕mi that collapses to a point all the copies of S that are labeled
by maps [i] → [m] whose image contains t. It follows that 1 − ψ([m] \ {t})⊗i is
equivalent to the map S⊕mi → S⊕mi that collapses to a point all the copies of S
that are labeled by maps [i]→ [m] whose image does not contain t. It follows that
⃝
t∈[m]

(
1− ψ([m] \ {t})⊗i

)
is equivalent to the map S⊕mi → S⊕mi that collapses to

a point all the copies of S that are labeled by non-surjective maps [i]→ [m].
We conclude that the composition of maps on line (9.21) is equivalent to the

composition
S→

⊕
mi

S→
⊕
mi

S→ S
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where the first map is the diagonal, the middle map collapses to a point all copies
of S labeled by non-surjective maps from [i] to [m], and the third map is the fold map.
It is clear that this composition has degree | surj(i,m)| and therefore ∂iλm, which is
the Spanier–Whitehead dual of this composition, also has degree | surj(i,m)|. □

The motivation for defining the elements [λi] stems from the following lemma.

Lemma 9.22. The elements [λ1] . . . , [λd] form an additive basis of R(d).

Proof. By Lemma 9.15 it is enough to prove that λj induces multiplication by j! on ∂j
and induces the zero map on ∂i for i < j. This is a special case of Lemma 9.20. □

Now we are ready to prove the main result of this section. Recall that µ(i, j, l) is
the number of good subsets of [i]× [j] of cardinality l.

Theorem 9.23. The ring R(d) is isomorphic to the quotient of the polynomial ring
Z[[λ2], . . . , [λd]] by the relations

[λi][λj ] =

d∑
l=1

µ(i, j, l)[λi][λj ].

In particular, there is an isomorphism R(d) ∼= A(d) between R(d) and the Goodwillie–
Burnside ring given by sending [λi] to xi.

Proof. We will show that there is an isomorphism R(d)
∼=−→ A(d) that takes [λi] to xi

for i = 1, . . . , d. The first part of the theorem then follows from Corollary 8.13.
By Lemma 9.22, R(d) is the free abelian group on the set [λ1], . . . , [λd]. Let Zd

denote the product ring, with generators y1, . . . , yd. Goodwillie derivatives induce a
ring homomorphism R(d)→ Zd. By Lemma 9.20, this homomorphism sends [λj ] to∑d
i=1 | surj(i, j)|yj . By Theorem 8.10, there is a unique ring structure on R(d) that

makes this map into a ring homomorphism, and this ring structure is isomorphic
to A(d). □

Remark 9.24. Because of this theorem, we will now cease to use R(d) and instead
only use the notation A(d).

Proposition 9.25. For each 1 ≤ k ≤ d, the comparison map of Definition 9.1

ρ : Spc(Excd(Sp
c, Sp)c)→ Spec(A(d))

sends P([k], 0, 1) to p([k], 0) and P([k], p, h) to p([k], p) for all h > 1.

Proof. It follows from Lemma 9.20 that the functor ∂k : Excd(Sp
c, Sp)→ Sp induces

the homomorphism ϕk : A(d)→ Z that satisfies ϕk([λm]) = | surj(k,m)|, which was
used to define the prime ideal p([k], (p)); see Definition 8.23.

By naturality of the comparison map ([Bal10b, Theorem 5.3(c)]) we deduce that
the diagram

Spc(Spc) Spc(Excd(Sp
c, Sp)c)

Spec(Z) Spec(A(d))

ρ

Spc(∂k)

ρ

Spec(ϕk)

commutes. The result then follows from Example 9.4 and the definitions of the
various prime ideals. □
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Part III. The spectrum of d-excisive functors

We determined the underlying set of the Balmer spectrum Spc(Excd(Sp
c, Sp)c)

for any d ≥ 1 in Theorem 7.14. Our next goal is to completely compute its
topology. Recall that each prime tt-ideal P ∈ Spc(Excd(Sp

c, Sp)c) is of the form
P = Pd([k], p, h) for some triple (k, p, h) consisting of an integer 1 ≤ k ≤ d, a
prime number p or p = 0, and a chromatic height 1 ≤ h ≤ ∞. As we will see in
Proposition 11.1, the topology of the Balmer spectrum is completely determined by
the inclusions among prime tt-ideals

Pd([k], p, h)
?
⊆ Pd([l], q, h

′).

Consequently, our primary goal is to describe precisely when such an inclusion
occurs in terms of a numerical formula involving the above variables.

We achieve this in three main steps, each of which requires a different set of
techniques:

(a) First, we study the chromatic blueshift behaviour of the Tate-derivatives
∂ktdid : Sp→ Sp introduced in Definition 6.44. Using results from [AC15],
this problem can be translated into an analogous blueshift question in stable
equivariant homotopy theory for the family Fnt of non-transitive subgroups
of products of symmetric groups Σn. While the spectrum Spc(SpcΣn) is not
known for any n ≥ 4, we are able to give a complete answer (Theorem 10.33)
by reducing to the main result of [BHN+19].

(b) We then explain how the blueshift behaviour of the Tate-derivatives pro-
vides “elementary” inclusions among the prime tt-ideals of Excd(Spc, Sp)c;
see Lemma 11.15. Combining general tt-geometric techniques developed
in [BS17] together with our computation of the spectrum of the Goodwillie–
Burnside ring (Theorem 8.28), we then show in Theorem 11.22 that all
inclusions among prime tt-ideals are given by certain minimal chains of
elementary inclusions.

(c) It then remains to understand the nature of these minimal chains, a combi-
natorial problem that is—in light of Remark 8.3—ultimately controlled by
the structure of the poset Epi≤d. This in turn translates into an elementary
number-theoretic problem about the existence of p-power partitions, whose
solution is given in Proposition 11.38. The final answer which precisely
describes the inclusions among the prime tt-ideals of Excd(Spc, Sp)c is then
assembled in Theorem 11.39.

In Section 12, we express the topology of Spc(Excd(Spc, Sp)c) more explicitly
in terms of type functions and state the resulting classification of tt-ideals (Theo-
rem 12.5). We then conclude with two further results: a calculus analogue (Corol-
lary 12.19) of transchromatic Smith–Floyd theory inspired by [KL20] and a compu-
tation (Theorem 12.27) of the Balmer spectrum of the category Excd(Sp

c,ModHZ)
obtained by changing coefficients along Sp→ ModHZ which is inspired by [PSW22].

10. Blueshift of Tate-derivatives

In this section we study the chromatic behaviour of the Tate-derivatives on the
category of d-excisive functors, which were introduced in Definition 6.44:

(10.1) ∂ltdid : Sp→ Sp, A 7→ ∂l(X 7→ (A⊗X⊗d)tΣd).
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Our goal is to determine the precise blueshift at each prime p, i.e., the extent to
which the functor (10.1) shifts chromatic height. We can summarize our approach
in two steps:

(a) We use results in [AC15] to express the Tate-derivatives in terms of geometric
fixed point functors for families of non-transitive subgroups of products of
symmetric groups. This translates our question to a problem in stable
equivariant homotopy theory.

(b) We reduce the problem further to the case of cyclic groups, for which we can
apply the main theorems of [Kuh04] and [BHN+19] to resolve the analogous
blueshift question.

The answer is given in Theorem 10.33 below.

Preliminaries on stable equivariant homotopy theory.

Notation 10.2. For a finite group G, we denote the symmetric monoidal stable
∞-category of genuine G-spectra by SpG. It is rigidly-compactly generated by the
orbits Σ∞G/H+ associated to the (conjugacy classes of) subgroups H ≤ G. For
a construction of SpG and further discussion of its basic properties, see [MNN17]
and [BS17]. Each group homomorphism f : H → G induces a geometric functor
f∗ : SpG → SpH which has a lax symmetric monoidal right adjoint f∗. In particular,
for the unique homomorphism p : G→ e to the trivial group, we have the inflation
functor inflGe := p∗ : Sp → SpG whose right adjoint (−)G := p∗ is the (categorical)
fixed points functor.

Definition 10.3. Let G be a finite group. A family of subgroups F is a collection of
subgroups of G which is closed under conjugation and passage to subgroups.

Example 10.4. Let G = Σd be the symmetric group on d letters. A subgroup
H ⊆ Σd is called non-transitive if the induced permutation H-action on a set of
d-elements is non-transitive. The collection of non-transitive subgroups of Σd forms
a family Fnt(d) which will play a distinguished role in what follows.

Remark 10.5. Let d =
∑m
i=0 aip

i be the expansion of d in base p, so that 0 ≤ ai < p
for all i. Let C ≀i

p := Cp ≀ . . . ≀Cp denote the i-fold wreath product of cyclic groups of
order p. The p-Sylow subgroups of Σd are of the form

Sd,p ∼=
m∏
i=0

(C ≀i
p )

×ai .

(See [Rot95, p. 176] or [Kal48].) It follows that Σd has a transitive p-Sylow subgroup
if and only if d is a power of p. This is the underlying reason for the sparsity of
blueshift numbers we will encounter in the description of the topology later on.

Remark 10.6. We can pull back a family F of subgroups of G along any homomor-
phism f : H → G to obtain a family

f−1F :=
{
K ⊆ H

∣∣ f(K) ∈ F
}

of subgroups of H. One also readily observes that a union or intersection of a
collection of families of subgroups of G is again a family of subgroups of G.
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Definition 10.7. We let EF denote the universal G-space for the family F , which is
characterized (up to homotopy equivalence) by

EFH ≃

{
∗ H ∈ F
∅ H /∈ F .

We define the pointed G-space ẼF via the cofiber sequence of pointed spaces

(10.8) EF+ → S0
G → ẼF .

It is characterized by

ẼFH ≃

{
S0 H /∈ F
∗ H ∈ F .

Example 10.9. If Ftriv is the family consisting of only the trivial subgroup of G,
then we obtain the familiar universal G-space EFtriv ≃ EG. If Fall is the family of
all subgroups of G, then EFall ≃ S0

G and ẼFall ≃ ∗.

Example 10.10. Let ρd denote the reduced standard (d− 1)-dimensional real repre-
sentation of Σd and write Sρd for the corresponding Σd-representation sphere, i.e.,
the one-point compactification of ρd with induced Σd-action. Let Snρd be its n-fold
smash power. The spaces Snρd form a directed system as n varies, and

S∞ρd := colimn S
nρd

is a model for the Σd-space ẼFnt(d) for the family Fnt(d) of Example 10.4.

Lemma 10.11. Let G and H be finite groups.
(a) Let f : H → G be a group homomorphism and F a family of subgroups of G.

Then there are equivalences of H-spaces

f∗(EF+) ≃ (Ef−1F)+ and f∗(ẼF) ≃ (Ẽf−1F).

(b) Consider two families F1,F2 of subgroups of G. Then there are equivalences
of G-spaces

(EF1)+ ∧ (EF2)+ ≃ E(F1 ∩ F2)+ and (ẼF1) ∧ (ẼF2) ≃ Ẽ(F1 ∪ F2).

Proof. Both pairs of identities can be readily checked by testing on fixed points. □

Remark 10.12. Applying Σ∞ to the cofiber sequence (10.8) we obtain an exact
triangle

Σ∞EF+ → Σ∞S0
G → Σ∞ẼF

in SpG which can be identified with the idempotent triangle (Remark 6.6)

eY → 1→ fY

associated to the Thomason subset Y :=
⋃
H∈F supp(Σ∞G/H+) ⊆ Spc(SpcG);

cf. [BS17, Example 5.14]. By slight abuse of notation, we will drop the Σ∞ and
write EF+ and ẼF for the corresponding suspension spectra in SpG. Note that the
stable versions of the identities of Lemma 10.11 hold as well, since Σ∞ commutes
with the smash product ∧ and change of groups f∗. Alternatively, they follow from
the general behaviour of Balmer–Favi idempotents using the above identification;
cf. Proposition 6.14 and [BHS23b, Lemma 1.27].
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Remark 10.13. We now define geometric fixed points with respect to a family of
subgroups. When applied to the family F = P(G) of all proper subgroups of G, the
definition recovers the usual geometric fixed points for G.

Definition 10.14. The geometric fixed points of a G-spectrum X with respect to a
family F of subgroups of G is the non-equivariant spectrum

ΦF (X) := (X ⊗ ẼF)G.

Lemma 10.15. Suppose F1 ⊆ F2 are families of subgroups of G. There is a
monoidal natural transformation ΦF1 → ΦF2 of lax symmetric monoidal functors.

Proof. The desired natural transformation is obtained from the map ẼF1 → ẼF2

of equivariant commutative ring spectra by applying the lax symmetric monoidal
functor of fixed points. □

Definition 10.16. Let F be a family of subgroups of G. The F-Tate construction
on a G-spectrum X is defined as the F-geometric fixed points

XtF := ΦF (X)

of the Borel-completion X := F (EG+, X) of X. For a non-equivariant spectrum Y ,
we write

Y tF := (inflGe Y )tF

for the F-Tate construction on Y equipped with a trivial G-action via inflation.

Example 10.17. Taking the trivial family F = Ftriv, we obtain the usual Tate
construction XtG := (X ⊗ ẼG)G.

Lemma 10.18. Let f : H → G be a group homomorphism and F a family of
subgroups of G. Then:

(a) There is a monoidal natural transformation

ΦF → Φf
−1F ◦ f∗

of symmetric monoidal functors SpG → Sp.
(b) There is a monoidal natural transformation

(−)tF → f∗(−)t(f
−1F)

of lax symmetric monoidal functors SpG → Sp.
(c) In particular, precomposing with inflGe , there is a monoidal natural transfor-

mation
(−)tF → (−)t(f

−1F)

of lax symmetric monoidal functors Sp→ Sp.

Proof. The natural transformation in part (a) is given by the composite

ΦF (X) = (ẼF⊗X)G → (f∗f
∗(ẼF⊗X))G ≃ (f∗(ẼF)⊗f∗(X))H ≃ Φf

−1F (f∗(X))

where the middle map is the unit of the (f∗, f∗)-adjunction, the first equivalence
follows from the relation (f∗X)G ≃ XH for any X ∈ SpH , and the last from
Lemma 10.11(a). For part (b), let N := ker f denote the kernel of f and observe
that f∗(EG+) ≃ EF [≤N ]+ is the universal H-space for the family of all subgroups
contained in N , again by Lemma 10.11(a). Since Ftriv ⊆ F [≤N ], Lemma 10.11(b)
implies there is a canonical morphism θ : EH+ → EF [≤N ]+ given by

EH+ ≃ EH+ ⊗ EF [≤N ]+ → 1⊗ EF [≤N ]+ ≃ EF [≤N ]+
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which induces a map

hom(EF [≤N ]+, Y )
hom(θ,1)−−−−−→ hom(EH+, Y )

for any H-spectrum Y . The natural transformation in (b) is then induced from the
one in part (a) using the natural transformation

(10.19) f∗hom(EG+, X)→ hom(f∗(EG+), f
∗(X))

hom(θ,1)−−−−−→ hom(EH+, f
∗(X)).

We note in passing that when f : H ↪→ G is the inclusion of a subgroup, the first
map in (10.19) is an equivalence by [BDS16, (3.12)] and the second map is also
an equivalence since in this case f∗(EG+) ≃ EH+ (i.e., F [≤N ] = Ftriv). Part (c)
follows from part (b) since f∗ ◦ inflGe ≃ inflHe . □

Remark 10.20. Let F be a family of subgroups of G and consider some H ∈ F of
index [G : H] in G. If X is a G-spectrum on which [G : H] is invertible, then a
standard transfer argument shows that XtF = 0. Indeed, we may apply [GL20,
Corollary A.9] with F ′ = Fall to see that XtF ≃ XtFall = 0. For example, if X is a
p-local G-spectrum (such as X = inflGe Y for a p-local spectrum Y ) and p does not
divide [G : H] then XtF = 0.

Derivatives of the Tate construction. Let d > l > 0 be positive integers. Our
next goal is to express the Tate-derivative ∂ltdid : Sp → Sp of Definition 6.44 in
terms of the equivariant Tate constructions of Definition 10.16. This will be based
on a description of the Tate-derivatives due to [AC15]. We first introduce some
notation.

Definition 10.21. For a partition λ = (d1, . . . , dl) ⊢ d of d of length l, we let

Σλ := Σd1 × . . .× Σdl

denote the corresponding product of symmetric groups. The projection onto the
i-th factor will be denoted by πi : Σλ ↠ Σdi . Furthermore, we write

(10.22) Fnt(λ) := π−1
1 Fnt(d1) ∪ . . . ∪ π−1

l Fnt(dl)

for the family of subgroups K of Σλ with the property that at least one of the
projections πiK ⊆ Σdi is non-transitive. Note that Fnt(λ) does indeed form a family
by Remark 10.6.

Example 10.23. Consider λ = (2, 2) ⊢ 4. Then Fnt(λ) consists of the three subgroups
e,Σ2 × e, e×Σ2 in Σ2 ×Σ2. In particular, the diagonal Σ2 is not part of the family.

We now recall a construction from [AC15] that appears in their description of
the Tate-derivatives.

Definition 10.24. Let λ = (d1, . . . , dl) ⊢ d be a partition of d of length l. Continuing
Example 10.10, we define the Σλ-space

S
∞(d−l)
(λ)

:= colimL→∞ SLρd1 ∧ . . . ∧ SLρdl

where Σλ acts on each smash factor SLρdi through its projection to Σdi . We also
write S∞(d−l)

(λ) for the associated Σλ-suspension spectrum.
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Lemma 10.25. Let λ = (d1, . . . , dl) ⊢ d be a partition of d of length l. Then we
have an equivalence of Σλ-spectra

S
∞(d−l)
(λ) ≃

⊗l
i=1 S

∞ρdi ≃ ẼFnt(λ)

where Fnt(λ) is the family (10.22) of Σλ.

Proof. The first equivalence holds because the equivariant suspension spectrum func-
tor is symmetric monoidal. The second equivalence then follows from Example 10.10
and Lemma 10.11. □

Proposition 10.26. Let A be a spectrum. Then there is an equivalence

∂l(X 7→ (A⊗X⊗d)hΣd) ≃
∏

λ⊢d : |λ|=l

AtFnt(λ)

where the product ranges over partitions of d of length l and Fnt(λ) is the family
defined in (10.22).

Proof. This result is essentially a reformulation of [AC15, Proposition 5.2 and
Remark 5.3]. There the authors write KlA for the l-th derivative of the functor
X 7→ (A⊗X⊗d)hΣd and describe it by the formula

∂l(X 7→ (A⊗X⊗d)hΣd) ≃
∏

λ⊢d : |λ|=l

colimL→∞(A⊗ SL(d−l))hΣλ .

Here, SL(d−l) is the spectrum with Σd-action constructed in [AC15, Definition 5.1].
Restricting the action along Σλ ⊆ Σd for some partition λ = (d1, . . . , dl) ⊢ d, we
may identify SL(d−l) with SLρd1 ⊗ . . .⊗ SLρdl as spectra with Σλ-action. To obtain
the proposition, we can thus rewrite the factors in the product as follows:

colimL→∞(A⊗ SL(d−l))hΣλ ≃ colimL→∞ hom(EΣλ+, (infl
Σλ
e A)⊗

⊗l
i=1 S

Lρdi )Σλ

≃ colimL→∞(hom(EΣd+, infl
Σλ
e A)⊗

⊗l
i=1 S

Lρdi )Σλ

≃ (hom(EΣd+, infl
Σλ
e A)⊗ S∞(d−l)

(λ) )Σλ

≃ (A⊗ ẼFnt(λ))
Σλ

≃ ΦFnt(λ)(A) = AtFnt(λ)

where the penultimate equivalence substitutes the identification of Lemma 10.25. □

Blueshift. If M is a spectrum, we can restrict the homology theory represented
by M to p-local finite spectra. Its kernel will then be a thick subcategory of Spc(p),
so we can use the thick subcategory theorem to define a notion of height for M :

Definition 10.27. If M is a spectrum, then its height at the prime p is defined as

heightp(M) := inf
{
h ∈ N ∪ {−1,∞}

∣∣M ⊗ Cp,h+1 = 0
}

where Cp,h+1 is the prime given by the vanishing of K(p, h), as in Example 6.5.

Example 10.28. By definition, we have heightp(0) = −1 and heightp(S) =∞ for all
primes p. In fact, any spectrum that is not p-local has infinite p-height using the
convention that inf(∅) =∞.
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Remark 10.29. Let Lfp,h be the finite localization on Sp which localizes away
from Cp,h+1 (Example 6.15). If we further set Lfp,−1X := 0 and Lfp,∞X := X(p) for
all X ∈ Sp, we can rewrite Definition 10.27 as

heightp(M) := inf
{
h ∈ N ∪ {−1,∞}

∣∣M ≃ Lfp,h(M)
}
.

This implies that the notion of height defined here is compatible with, and in
fact extends, the one appearing in [BHN+19] using the fact that the telescope
conjecture holds for ring spectra ([LMMT22, Lemma 2.3]). In particular, we see
that heightp(L

f
p,hS) = h and heightp(K(p, h)) = h for all h.

Lemma 10.30. Let p be a prime. Height has the following properties:
(a) If R→ S is a map of ring spectra, then heightp(R) ≥ heightp(S).
(b) If M,N are spectra, then heightp(M ⊕N) = sup(heightp(M),heightp(N)).

Proof. Both statements follow from unwinding the definitions. For instance, for the
first one, observe that S is an R-module, so R⊗X = 0 implies S ⊗X = 0 for any
spectrum X. □

Definition 10.31. Let d ≥ 1 be an integer and p a prime. For any h ≥ 0, we define
a d-excisive functor via inflation (Definition 2.44) from the finite local sphere of
height h:

Lfp,h := idL
f
p,hS.

Definition 10.32. A p-power partition of d of length l is a partition

λ = (d1, . . . , dl) ⊢ d

of d of length l such that each di is a power of p. In this definition, we include
p0 = 1 as a power of p. We will write Pp(d; l) for the set of such partitions.

We are ready to state and prove the main theorem of this section, which captures
the chromatic behaviour of the Tate-derivatives.

Theorem 10.33. Let p be a prime and fix integers d ≥ l > 0 and h ≥ 0. Then
∂ltdLfp,h is contractible unless d > l and there exists a p-power partition of d of
length l. If such a partition exists, then

heightp(∂ltdL
f
p,h) = h− 1.

Proof. Let λ = (d1, . . . , dl) be a partition of d of length l. The Tate construc-
tion td(F ) of any d-excisive functor F is (d − 1)-excisive, so the theorem holds
for d = l. Therefore, we may assume l < d for the remainder of the proof. The
vertical maps in the Tate square of Proposition 6.40 are ∂i-equivalences for all i < d,
so we may replace the Tate fixed points by homotopy fixed points in our formula. In
light of Proposition 10.26 and Lemma 10.30(b), it then suffices to verify the claim
for

(Lfp,hS)tFnt(λ) := ΦFnt(λ)(inflΣλe Lfp,hS)

in place of the Tate-derivative ∂ltdLfp,h.
We begin with the vanishing claim. To this end, suppose λ is not a p-power

partition, so that there exists some di which is not a power of p, say d1. Let S
be a p-Sylow subgroup of Σd1 , which is then a non-transitive subgroup of Σd1 by
Example 10.4. It follows that S′ := S ×

∏l
i=2 Σdi ⊆ Σλ is contained in Fnt(λ).
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Since Lfp,hS is p-local and [Σλ : S′] is prime to p, it follows from Remark 10.20 that
(Lfp,hS)tFnt(λ) = 0. This proves the vanishing part of the theorem.

For the rest of this proof, we will assume that λ is a p-power partition of d of
length l, say di = pei for some ei ≥ 0. Note that, since l < d by assumption, at least
one of the ei must be positive. Write Ftriv for the family on Σλ consisting only of
the trivial subgroup and recall that XtFtriv = XtΣλ is the usual Tate construction
(Example 10.17). Lemma 10.15 therefore supplies a map of commutative ring spectra

(Lfp,hS)tΣλ = (Lfp,hS)tFtriv → (Lfp,hS)tFnt(λ).

Kuhn’s blueshift theorem [Kuh04, Theorem 1.5] shows that the height of the domain
is at most h− 1, so via Lemma 10.30(a) we get the upper bound

(10.34) heightp((L
f
p,hS)tFnt(λ)) ≤ h− 1.

As for the lower bound, let σi be the long cycle in Σpei and consider the cyclic
p-subgroup ⟨σ⟩ of Σλ generated by σ = (σ1, . . . , σl) ∈ Σλ. In particular, the order
of ⟨σ⟩ is the maximum of the pei . By construction, πi⟨σ⟩ = ⟨σi⟩ is a transitive
subgroup in Σpei and, as at least one of the ei’s is positive, ⟨σ⟩ is not the trivial
group. Therefore, ⟨σ⟩ /∈ Fnt(λ).

With this preparation in hand, we can apply Lemma 10.18 once more to obtain a
map of commutative ring spectra

(Lfp,hS)tFnt(λ) → (Lfp,hS)t(Fnt(λ)∩⟨σ⟩).

The projection of every proper subgroup of ⟨σ⟩ has order less than pei and thus
cannot act transitively on Σpei , so it is not a member of Fnt(λ). We conclude that
Fnt(λ) ∩ ⟨σ⟩ is precisely the family of proper subgroups of ⟨σ⟩. Hence

(Lfp,hS)t(Fnt(λ)∩⟨σ⟩) = Φ⟨σ⟩(infl⟨σ⟩e Lfp,hS).

By [BHN+19, Theorem 1.5], the height of the latter ring spectrum is h− 1, so

(10.35) heightp((L
f
p,hS)tFnt(λ)) ≥ h− 1

using Lemma 10.30(a) again. Combining (10.34) and (10.35), we obtain the desired
formula for the height of (Lfp,hS)tFnt(λ) and hence for the height of ∂ltdLfp,h. □

Remark 10.36. The theorem shows that the height-shifting behaviour of ∂ltdid is
independent of the input height h.

11. The topology of the Balmer spectrum

We now determine the topology of the spectrum of Excd(Spc, Sp)c. The archi-
tecture of our proof is modelled on the strategy given in the context of equivariant
stable homotopy theory in [BS17]. First we establish that the topology is entirely
determined by the inclusions among prime tt-ideals and then proceed to under-
standing this poset structure. The key idea is that these inclusions are controlled
by the blueshift behaviour of the Tate-derivatives computed in the previous section,
together with the combinatorics of chains of p-power partitions.

Proposition 11.1. Every closed subset of Spc(Excd(Sp
c, Sp)c) is a finite union

of irreducible closed subsets. In particular, the topology of Spc(Excd(Spc, Sp)c) is
determined by the inclusions among prime tt-ideals.
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Proof. The proof that every closed subset is a finite union of irreducible closed subsets
is similar to the proof of [BS17, Proposition 6.1]. The key ingredient (Lemma 7.3) is
that Spc(Excd(Spc, Sp)c) is covered by finitely many spectra for which the statement
is correct; see [Bal10a, Corollary 9.5(e)]. The second statement follows from the
first because the irreducible closed subsets correspond to the tt-primes and are given
by {P} =

{
Q
∣∣Q ⊆ P

}
. □

Remark 11.2. In the proofs of the following results, we will repeatedly use the
fact that the map Spc(F ) on Balmer spectra induced by a tt-functor F preserves
inclusions among prime tt-ideals; see Remark 6.2.

Proposition 11.3. For every pair of integers 1 ≤ l ≤ d, primes p, q, and chromatic
integers 1 ≤ h, h′ ≤ ∞, the following are equivalent:

(a) Pd([l], q, h
′) ⊆ Pd([l], p, h);

(b) Cq,h′ ⊆ Cp,h;
(c) h′ ≥ h and, either h = 1 or q = p.

Proof. (a) ⇐⇒ (b) follows from Lemma 7.7 and Lemma 7.6 while (b) ⇐⇒ (c)
follows from the computation of the spectrum of Spc. □

Corollary 11.4. Suppose Pd([k], q, h
′) ⊆ Pd([l], p, h) for integers 1 ≤ l, k ≤ d,

primes p, q and chromatic integers 1 ≤ h, h′ ≤ ∞. Then Cq,h′ ⊆ Cp,h in Spc and so
h′ ≥ h. If h > 1, then p = q.

Proof. This is an immediate consequence of Lemma 7.6 and Proposition 11.3. □

Remark 11.5. For any pair of primes p, q, we have Pd([l], p, 1) = Pd([l], q, 1) in
Excd(Sp

c, Sp)c since Cp,1 = Cq,1 in Spc. Hence, to determine the inclusions

Pd([k], q, h
′) ⊆ Pd([l], p, h)

among tt-primes, Corollary 11.4 allows us to restrict attention to the case p = q.

Remark 11.6. We now bring to bear the constraints on such inclusions supplied by
the comparison map to the spectrum of the Goodwillie–Burnside ring (studied in
Sections 8 and 9):

Proposition 11.7. Fix a prime number p. Suppose that Pd([k], p, h′) ⊆ Pd([l], p, h)
for integers 1 ≤ k, l ≤ d and chromatic integers 1 ≤ h, h′ ≤ ∞. Then:

(a) p− 1 | k − l ≥ 0; and
(b) if h′ = 1 then h = 1 and k = l, so that the two tt-primes are equal.

Proof. Corollary 7.13 implies k ≥ l while Proposition 9.25 implies that we have an
inclusion p([k], p) ⊇ p([l], q) in the Goodwillie–Burnside ring and hence p−1 | k−l by
Theorem 8.28. This verifies (a). For (b), note that Pd([k], p, 1) ⊆ Pd([l], p, h) implies
h = 1 by Corollary 11.4. It follows from Proposition 9.25 that p([k], 0) ⊇ p([l], 0)
and hence k = l by Theorem 8.28. □

Remark 11.8. In summary, to determine the topology of Spc(Excd(Spc, Sp)c), it is
enough to determine the minimal number ℶ ≥ 0 such that

(11.9) Pd([k], p, h+ ℶ) ⊆ Pd([l], p, h)

whenever p− 1 | k − l ≥ 0 and for any 1 ≤ h ≤ ∞. Moreover, since the map

Spc(Pk) : Spc(Exck(Sp
c, Sp)) ↪→ Spc(Excd(Sp

c, Sp))
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is an open embedding (Proposition 7.8), the inclusion (11.9) is equivalent to the
inclusion

Pk([k], p, h+ ℶ) ⊆ Pk([l], p, h).

This leads to:

Definition 11.10. For each p− 1 | k − l ≥ 0 and h ≥ 1, define

ℶgeom
p (k, l;h) := min

{
ℶ
∣∣Pd([k], p, h+ ℶ) ⊆ Pd([l], p, h)

}
.

It will follow from Proposition 11.19 below that the collection of such inclusions is
nonempty, so that it is a well-defined natural number. Moreover, as noted above, it
doesn’t depend on the ambient d ≥ k. These geometric blueshift numbers determine
the topology of the spectrum.

Example 11.11. It follows from Proposition 11.3 that ℶgeom
p (l, l;h) = 0 for all l.

Remark 11.12. Our next goal is to relate the geometric blueshift to the blueshift of
the Tate-derivatives.

Definition 11.13. For each prime number p, integers k ≥ l ≥ 1 and h ≥ 1, the Tate
blueshift number is defined as

ℶTate
p (k, l;h) := heightp(L

f
p,h−1)− heightp(∂ltkL

f
p,h−1)

with heightp(0) = −1. (Recall Definition 10.27.) Thus:

ℶTate
p (k, l;h) =

{
(h− 1)− heightp(∂ltkL

f
p,h−1) if ∂ltkLfp,h−1 ̸= 0;

h if ∂ltkLfp,h−1 = 0.

By definition, we have

(11.14) Cp,h−ℶTate
p (k,l;h) = ker(−⊗ ∂ltkLfp,h−1 : Spc(p) → Sp)

with the convention that Cp,0 is the whole category of finite p-local spectra.

The next lemma establishes the first relation between the two types of blueshift:

Lemma 11.15. If h > ℶTate
p (k, l;h), then

Pd([k], p, h) ⊆ Pd([l], p, h− ℶTate
p (k, l;h)).

Proof. Let x ∈ Pd([k], p, h), i.e., ∂k(x) ∈ Cp,h, meaning K(p, h − 1)∗∂k(x) = 0.
Equivalently, we have

0 = Lfp,h−1S⊗ ∂k(x) ≃ ∂k(id(Lfp,h−1S)⊛ x),

hence Dk1⊛ id(L
f
p,h−1S)⊛x = 0. Since tk(−) ≃ hom(Pk−11,ΣDk1⊛−), we deduce

that tk(id(L
f
p,h−1S)⊛ x) = 0. Consequently,

0 = ∂ltk(idL
f
p,h−1S ⊛ x) ≃ ∂l(tk(idLfp,h−1S)⊛ x) ≃ ∂l(tk(idLfp,h−1S))⊗ ∂l(x).

It follows that ∂l(x) ∈ Ch−ℶTate
p (k,l;h) by the definition of Tate blueshift num-

bers (11.14). In other words, x ∈ Pd([l], h− ℶTate
p (k, l;h)). □

Remark 11.16. We computed the Tate blueshifts in Theorem 10.33; namely,

ℶTate
p (k, l;h) =

{
1 if there exists a p-power partition of k of length l
h otherwise
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In particular, it does not depend on h when there exists a p-power partition of k of
length l and, in such a situation, we will drop the h from the notation. Although
the reader may wish to substitute the value 1 in what follows, we have opted to keep
the discussion in terms of ℶTate

p (k, l) for conceptual clarity. In any case, in order to
amplify the connection between the geometric blueshift and the Tate blueshift we
need to introduce the following auxiliary notion:

Definition 11.17. Let p be a prime number and pick integers k > l ≥ 1. A chain of
p-power partitions between k and l is a sequence of integers

(k = ls > ls−1 > · · · > l1 > l0 = l)

with s > 0 such that for each consecutive pair (lα, lα−1) there exists a p-power
partition of lα of length lα−1 in the sense of Definition 10.32. We call s the length of
the chain. We write Chp(k, l) for the set of chains of p-power partitions between k
and l; in symbols:

Chp(k, l) =
{
k = ls > ls−1 > . . . > l1 > l0 = l

∣∣ s > 0 and ∀α : Pp(lα; lα−1) ̸= ∅
}
.

Remark 11.18. If there exists a p-power partition of k of length l then p−1 | k−l > 0.
The converse is not true, in general. (Consider, for example, p = 2, k = 3, l = 1.)
However, if p− 1 | k − l > 0 then there exists a chain of p-power partitions from k
to l, that is, Chp(k, l) ̸= ∅. Indeed, the statement is true when k − l = p− 1, since
we can write k = p +

∑l−1
α=1 p

0. The general case follows from this, by using the
chain

(k > k − (p− 1) > . . . > k − a(p− 1) = l) ∈ Chp(k, l)

where a the natural number such that k − l = a(p− 1).

Proposition 11.19. If (k = ls > · · · > l0 = l) ∈ Chp(k, l) is a chain of p-power
partitions, then

Pd(k, p, h+

s∑
α=1

ℶTate
p (lα, lα−1)) ⊆ Pd(l, p, h)

for each h ≥ 1.

Proof. By definition, for each α = 1, . . . , s, there exists a p-power partition of lα
of length lα−1, hence by Theorem 10.33, ℶTate

p (lα, lα−1;h) is independent of h; see
Remark 11.16. It then follows from Lemma 11.15 that we have an inclusion of prime
ideals

Pd(lα, p, h
′ + ℶTate

p (lα, lα−1)) ⊆ Pd(lα−1, p, h
′)

for all 1 ≤ α ≤ s and all heights h′ ≥ 1. Iteratively combining these inclusions, we
deduce that

Pd(k, p, h+

s∑
α=1

ℶTate
p (lα, lα−1)) ⊆ Pd(l, p, h)

as desired. □

Remark 11.20. It follows from Remark 11.18 and Proposition 11.19 that the set
of inclusions in Definition 11.10 is nonempty, hence the geometric blueshift is
well-defined for all h ≥ 1. Although we have not defined the geometric blueshift
for h = ∞, it follows that Pd([k], p, n) ⊆ Pd([l], p,∞) if and only if n = ∞ and
p− 1 | k − l ≥ 0.
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Definition 11.21. Define the p-distance δp(k, l) between k > l as the smallest length
of a chain of p-power partitions between k and l, or ∞ if no such chain exists; in
symbols:

δp(k, l) := inf(
{
s
∣∣ (ls > . . . > l0) ∈ Chp(k, l)

}
).

We also set δp(l, l) := 0.

Theorem 11.22. For each p− 1 | k − l ≥ 0 and h ≥ 1, we have

(11.23) ℶgeom
p (k, l;h) = δp(k, l).

In particular, the geometric blueshift ℶgeom
p (k, l;h) does not depend on h.

Proof. The k = l case is immediate from Example 11.11, so we may assume k > l.
Recall from Remark 11.18 that p− 1 | k − l > 0 implies Chp(k, l) ̸= ∅, so δp(k, l) is
a well-defined natural number. By Proposition 11.19 and Theorem 10.33, we have

ℶgeom
p (k, l;h) ≤

s∑
α=1

ℶTate
p (lα, lα−1) = s

for any (ls > · · · > l0) ∈ Chp(k, l). Hence

ℶgeom
p (k, l;h) ≤ δp(k, l).

It remains to prove that ℶgeom
p (k, l;h) ≥ δp(k, l) or, in other words, to prove that if

n < δp(k, l) then Pd([l], p, h+n) ̸⊆ Pd([k], p, h). Due to the vertical inclusions among
tt-primes (Proposition 11.3), it suffices to consider the extremal case n = δp(k, l)−1.
Moreover, recall that we can assume d = k (Remark 11.8). In other words, it suffices
to prove the following claim:
(P(d)) For all p− 1 | d− l ≥ 0 and 1 ≤ h <∞,

Pd([d], p, h+ δp(d, l)− 1) ̸⊆ Pd([l], p, h).

We prove this by strong induction on d. The base case d = 1 holds trivially, so
let d > 1 and suppose (P(i)) has been verified for all 1 ≤ i < d. Set n := δp(d, l)− 1

for notational convenience and write Excd = Excd(Sp
c, Sp). Recall that Lfh+n−1 :=

idL
f
p,h+n−1S ∈ Excd is the right idempotent for the finite localization

(11.24) (−)≤h+n : Excd → Lfh+n−1 ⊛ Excd =: (Excd)≤h+n

which truncates below height h+ n; see Example 6.15 and Definition 2.44. That is,

Spc((Excd)
c
≤h+n) ↪→ Spc(Exccd)

is a homeomorphism onto V≤h+n :=
{
Pd([k], p,m)

∣∣ 1 ≤ m ≤ h+ n
}
⊆ Spc(Exccd).

Since the space V≤h+n is finite, it follows that there exists z ∈ Exccd such that

(11.25) supp(z) ∩ V≤h+n = {Pd([l], p, h)} ∩ V≤h+n.

Indeed, the complement W of {Pd([l], p, h)} ∩ V≤h+n in V≤h+n is finite and open,
hence also finite and open when viewed as a subset of Spc(Exccd). It follows from
[Bal05, Proposition 2.14] that there exists z ∈ Exccd with supp(z) =W c in Spc(Exccd).
Intersecting with V≤h+n then gives Equation (11.25).

In order to prove (P(d)) we will first prove the following auxiliary claim:

(11.26) td(Lfh+n−1 ⊛ z) = 0.
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We can test this on derivatives (Lemma 6.34). In fact, since the Tate construction
td of a d-excisive functor is (d− 1)-excisive, it is enough to establish

∂i(td(Lfh+n−1 ⊛ z)) = 0

for 1 ≤ i ≤ d− 1. Since ∂i is symmetric monoidal and z is dualizable, we need to
show

(11.27) ∂i(td(Lfh+n−1))⊗ ∂iz = 0

in Sp for each 1 ≤ i ≤ d − 1. This is trivially true if d does not have a p-power
partition of length i by Theorem 10.33. Thus, assume d has a p-power partition of
length i. Then, also invoking Theorem 10.33, we have

ker(−⊗ ∂itdLfn+h−1) ∩ Spc(Spc(p)) = Cp,n+h−ℶTate(d,i) = Cp,n+h−1

and (11.27) would follow from the claim that

(11.28) ∂iz ∈ Cp,n+h−1.

In order to verify (11.28) and hence (11.26), we distinguish two cases. Suppose first
that Pd([i], p, n+ h) ̸⊆ Pd([l], p, h). Then

Pd([i], p, n+ h) /∈ {Pd([l], p, h)} ∩ V≤h+n = supp(z) ∩ V≤h+n,

so in particular Pd([i], p, n+ h) /∈ supp(z). This is equivalent to the statement that
z ∈ Pd([i], p, n+ h), hence ∂iz ∈ Cp,h+n ⊆ Cp,h+n−1, as desired.

On the other hand, if Pd([i], p, n+ h) ⊆ Pd([l], p, h) then Proposition 11.7 implies
p− 1 | i− l ≥ 0. Then, invoking the inductive hypothesis (P(i)), we have

(11.29) Pi([i], p, h+ ∂p(i, l)− 1) ̸⊆ Pi([l], p, h).

The desired claim (11.28) is equivalent to z ∈ Pd([i], p, n+ h− 1) or, in other words,
to Pd([i], p, n+ h− 1) ̸∈ supp(z). If this were not the case then we would have

Pd([i], p, n+ h− 1) ∈ supp(z) ∩ V≤n+h
which would imply

Pi([i], p, n+ h− 1) ⊆ Pi([l], p, h).

This would then imply that

Pi([i], p, h+ δp(i, l)− 1) ̸⊆ Pi([i], p, n+ h− 1)

because of (11.29), so that h+δp(i, l)−1 < n+h−1 by Proposition 11.3. Substituting
the definition n = δp(d, l)− 1 this would mean that

δp(i, l) + 1 < δp(d, l) ≤ δp(d, i) + δp(i, l).

Hence 1 < δp(d, i) = 1 which is a contradiction. This completes the verification
of (11.26).

Recall that Tate construction td : Excd → Excd is the Tate construction associated
to the Thomason closed subset supp(PdhS(d)) whose open complement is Xd−1 :={
Pd([k], p,m)

∣∣ 1 ≤ k ≤ d − 1
}
⊆ Spc(Exccd). We can also consider the Tate

construction tY : (Excd)≤h+n → (Excd)≤h+n on the truncated category associated
to the preimage Y := supp(PdhS(d)) ∩ V≤h+n = supp(PdhS(d)≤h+n). Since the
right adjoint of the localization (11.24) is conservative, the Tate vanishing (11.26)
implies the vanishing

(11.30) tY (z≤h+n) = 0
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by Remark 6.17. By [PSW22, Proposition 2.29], the Tate vanishing (11.30) translates
into a disconnectedness statement for supp(z≤h+n): namely, we have a decomposition

supp(z≤h+n) = Z1 ⊔ Z2

in Spc((Excd)
c
≤h+n)

∼= V≤h+n with Z1 ∩ Xd−1 = ∅ and Z2 ⊆ Xd−1. Therefore,
we have Pd([l], p, h) ∈ Z2. If Pd([d], p, n + h) ⊆ Pd([l], p, h) then we would have
Pd([d], p, n+ h) ∈ Z2 which contradicts Z2 ⊆ Xd−1. This establishes (P(d)) for each
l < d, and it is trivially true for l = d. □

The combinatorics of p-power partition chains.

Remark 11.31. Armed with Theorem 11.22, we see that the task of giving an explicit
description of the topology of the Balmer spectrum reduces to understanding the
combinatorics of chains of p-power partitions. We have already seen (Remark 11.18)
that such a chain between k > l exists (that is, Chp(k, l) ̸= ∅) if and only if k − l is
divisible by p− 1. We will discover the surprising fact that in this case there always
exists a chain of length at most 2 (see Proposition 11.38 below).

Definition 11.32. Let p be a prime and consider integers k ≥ l ≥ 1. We define the
weight of a p-power partition k =

∑r
i=0 aip

i of k (with ai ≥ 0 for all i) as the sum
of the coefficients: w(a) :=

∑r
i=0 ai for a = (a0, . . . , ar).

Remark 11.33. The weight has the following two properties:
(a) Since pi ≡ 1 mod (p− 1), it follows that

∑r
i=0 aip

i ≡ w(a) mod (p− 1).
(b) Among all p-power partitions of k, the expansion in base p is the unique one

that minimizes its weight. Indeed, suppose k =
∑r
i=0 aip

i is some p-power
partition of k. If one of the coefficients aj ≥ p, then the p-power partition
k =

∑r
i=0 a

′
ip
i with

a′i :=


aj − p if i = j

aj + 1 if i = j + 1

ai otherwise

has smaller weight. Because the base p expansion of any integer is unique,
the claim follows.

Motivated by the second property, we define:

Definition 11.34. For any prime p and integer k ≥ 1, let sp(k) be the weight of the
base p expansion of k, i.e., the sum of the coefficients of the base p expansion of k.

Remark 11.35. The following two lemmas provide the number-theoretic input to
our formula for the geometric blueshift numbers ℶgeom

p (k, l), treating separately
the cases when l ≥ sp(k) and l < sp(k). Moreover, the first lemma completes our
observations in Remark 11.18.

Lemma 11.36. There exists a p-power partition of k of length l (that is, one can
write k as a sum of l powers of p) if and only if p− 1 | k − l ≥ 0 and l ≥ sp(k).

Proof. (⇒): Suppose k can be written as a sum of l powers of p, say k =
∑l
j=1 p

e(j)

for some e(j) ≥ 0. We have k ≥ l and k − l =
∑l
j=1(p

e(j) − 1) is divisible by p− 1.
Property (b) of Remark 11.33 implies that l ≥ sp(k).

(⇐): For the converse, let k =
∑r
i=0 aip

i be the expansion of k in base p.
Property (a) of Remark 11.33 shows that 0 ≡ k − l ≡ sp(k) − l mod (p − 1). If
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l = sp(k), then the expansion in base p gives a p-power expansion of length l.
Consider then the case l > sp(k). Starting from the expansion of k in base p, we
have to argue that we can increase the length of the corresponding p-power partition

(pr, . . . , pr︸ ︷︷ ︸
ar

, pr−1, . . . , pr−1︸ ︷︷ ︸
ar−1

, . . . , p0, . . . , p0︸ ︷︷ ︸
a0

) ⊢ k

by multiples of (p − 1) until we reach l. The case k = l is clear, so assume k > l
and pick some j > 0 with aj > 0, which exists because k > p− 1 by our divisibility
assumption on k − l. Setting

a′i :=


aj − 1 if i = j

aj−1 + p if i = j − 1

ai otherwise

gives a presentation k =
∑r
i=0 a

′
ip
i of k whose corresponding p-power partition is of

length sp(k) + (p− 1). Continuing this process if necessary until we reach weight l,
we obtain the claim. □

Lemma 11.37. If 0 < l < sp(k) and p− 1 divides k− l, then there exists an integer
i < k that is congruent to k and l modulo p− 1 and which satisfies i ≥ sp(k) and
l ≥ sp(i).

Proof. Consider k =
∑r
i=0 aip

i, the expansion of k in base p with ar ̸= 0. If k < p,
then sp(k) = k and p− 1 cannot divide k − l, so we may assume k ≥ p, i.e., r > 0.
Let 1 ≤ x ≤ p − 1 be the integer that is congruent to k modulo p − 1 and set
i := pr + (x− 1). We will verify that this choice of i satisfies the conditions given in
the statement. Since r > 0, we have

i ≡ x ≡ k ≡ l mod p− 1.

Next, sp(i) = x is the smallest positive integer congruent to l modulo p− 1, hence
l ≥ sp(i). By construction, k ≥ i; in fact, since k ̸= i as sp(k) > l ≥ sp(i), we get
k > i. It remains to see that i ≥ sp(k), for which we introduce a case distinction.
Suppose first that r ≥ 2. Then i ≥ pr ≥ (r + 1)(p − 1) ≥ sp(k). If r = 1 instead,
then sp(k) ≤ 2(p − 1). If sp(k) < p, then x = sp(k) and thus i = p + x > sp(k).
Finally, if p ≤ sp(k) ≤ 2(p− 1), then x = sp(k)− (p− 1), so i = p+ (x− 1) = sp(k).
We have shown that i ≥ sp(k) in all cases. □

Proposition 11.38. Let p be a prime and consider integers k ≥ l ≥ 1. Then:

δp(k, l) =


0 if k = l;

1 if p− 1 | k − l > 0 and l ≥ sp(k);
2 if p− 1 | k − l > 0 and l < sp(k);

∞ otherwise.

Proof. This follows from Lemma 11.36 and Lemma 11.37. □

Combining everything together we have:

Theorem 11.39. Let p, q be prime numbers, 1 ≤ k, l ≤ d integers, and suppose
1 ≤ h, h′ ≤ ∞. There is an inclusion Pd([k], p, h

′) ⊆ Pd([l], q, h) if and only if the
following conditions hold:

(a) p− 1 | k − l ≥ 0;



THE SPECTRUM OF EXCISIVE FUNCTORS 75

(b) h′ ≥ h+ δp(k, l); and
(c) if h > 1, then p = q.

Proof. This is the culmination of Theorem 11.22, Proposition 11.38, Corollary 11.4,
and Proposition 11.7 bearing in mind Remark 11.20 for the h =∞ case. □

Remark 11.40. A complete depiction of the spectrum for d = 3 is displayed in
Figure 1 on page 5. For larger d such pictures start to become unwieldy and are
more easily drawn one prime at a time. For example, the d = 4 case is displayed in
Figure 4 below. The mathematical justification for working p-locally is as follows:
Recall from Remark 7.17 that the p-localization Excd(Sp

c, Sp)→ Excd(Sp
c, Sp)(p)

is a finite localization which induces an identification

Spc(Excd(Sp
c, Sp)c(p))

∼−→
{
Pd([k], p, n)

∣∣ all k, n
}
⊆ Spc(Excd(Sp

c, Sp)c).

Moreover, since all nontrivial inclusions occur p-locally (Remark 11.5), the spectra
of the p-localizations completely describe the spectrum of the unlocalized category.

Spc(Exc4(Sp
c, Sp)c(p)) =

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦•◦ •◦ •◦
[4] [3] [2] [1]

if p = 2

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦•◦ •◦ •◦
[4] [3][2] [1]

if p = 3

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦•◦ •◦ •◦
[4] [3] [2] [1]

if p 6= 2, 3

Figure 4. The p-local part of the Balmer spectrum of 4-excisive
functors from finite spectra to spectra.

12. Applications

The classification of tt-ideals. We can now give the classification of thick ideals in
Excd(Sp

c, Sp)c. Throughout this section we fix d ≥ 1 and abbreviate Excd(Sp
c, Sp)c

by Exccd when convenient.

Proposition 12.1. Let Z = {P1} ∪ · · · ∪ {PN} be a closed subset of Spc(Exccd)
(see Proposition 11.1). Assume that this is irredundant, that is, Pi ̸⊆ Pj for all
1 ≤ i ≠ j ≤ N . Let Pi = Pd([ki], pi,mi) for all i = 1, . . . , N . Then the complement
of Z is quasi-compact if and only if all the chromatic integers m1, . . . ,mN are finite.

Proof. We follow the approach of [BS17, Proposition 10.1].
(⇐) Suppose the m1, . . . ,mN are finite. We claim that Z has a quasi-compact

complement. Since the supports of compact objects form a basis of closed sets,
it suffices to prove that whenever Z = ∩i∈I supp(xi) for a collection {xi}i∈I of
objects in Exccd, there exists a finite subset J ⊆ I such that Z = ∩i∈J supp(xi).
For each l ∈ [d] = {1, . . . , d}, let φl : Spc(Spc)→ Spc(Exccd) be the map on spectra
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induced by the lth derivative ∂l : Excd → Sp. Since Spc(Exccd) = ∪1≤l≤d imφl by
Lemma 7.3, it suffices to prove that for each l there exists a finite subset Jl ⊆ I
such that

∩j∈Jl supp(xj) ∩ imφl ⊆ Z ∩ imφl

(since we can then take J := ∪1≤l≤dJl). Moreover, since φl is an embedding of
Spc(Spc) onto imφl (Lemma 7.7), this reduces to the claim that

φ−1
l (∩j∈Jl supp(xj)) ⊆ φ

−1
l (Z).

Now it follows from Theorem 11.39 that φ−1
l ({Pd([ki], pi,mi)}) is either empty or

of the form {Cpi,ni} for some finite ni ≥ mi. This closed subset of Spc(Spc) has
quasi-compact complement by [Bal10b, Corollary 9.5(d)]. We conclude that indeed
there is a finite Jl ⊆ I such that

∩j∈Jl supp(∂lxj) ⊆ φ
−1
l (Z)

as desired.
(⇒) Conversely, suppose that one of the mi =∞. Write Z = Z ′ ∪{Pd([k], p,∞)},

regrouping the other irreducibles under Z ′. Since Cp,∞ = ∩1≤n<∞Cp,n, it follows
that Pd([k], p,∞) = ∩1≤n<∞Pd([k], p, n). Hence Z = ∩1≤n<∞(Z ′ ∪ {Pd([k], p, n)}).
If the complement of Z is quasi-compact then there is a finite n such that Z = Z ′ ∪
{Pd([k], p, n)}. But since Pd([k], p, n) ̸⊆ Pd([k], p,∞), it follows that Pd([k], p, n) ∈ Z ′

and hence that Pd([k], p,∞) ∈ Z ′. But this implies that Pd([k], p,∞) is contained in
one of the other irreducibles of Z, contradicting the assumption that the P1, . . . ,PN
were irredundant. □

Corollary 12.2. The Thomason subsets of Spc(Exccd) are the arbitrary unions of
{Pd([k], p,m)} =

{
Q
∣∣Q ⊆ Pd([k], p,m)

}
for arbitrary 1 ≤ k ≤ d, p prime and finite

chromatic integer 1 ≤ m <∞.

Proof. This is an immediate consequence of Proposition 12.1, Proposition 11.1 and
Theorem 7.14. □

Notation 12.3. Let P denote the set of prime numbers and let

N∞ := {0, 1, 2, . . .} ∪ {∞}
with the natural strict ordering < with the understanding that ∞ ≮ ∞ and
∞+ n =∞ for any finite n.

Definition 12.4. Let d ≥ 1 be an integer. Say that a function f : [d]× P→ N∞ is
admissible if it satisfies the following two conditions:

(a) f(k, p) ≤ δp(k, l) + f(l, p) for all p− 1 | k − l ≥ 0; and
(b) if f(k, p) = 0 for some prime p then f(k, q) = 0 for every prime q.

Recall that the function δp(k, l) was computed in Proposition 11.38.

Theorem 12.5 (Classification of tt-ideals). Let d ≥ 1 be an integer. There is a
one-to-one correspondence between the set of admissible functions [d] × P → N∞
and the Thomason subsets of Spc(Excd(Spc, Sp)c) which maps f to

Yf :=
{
Pd([k], p,m)

∣∣m > f(k, p)
}
.

Consequently, there is a one-to-one correspondence between admissible functions and
tt-ideals in Excd(Sp

c, Sp)c which maps f to

If :=
{
x ∈ Exccd

∣∣ ∂k(x) ∈ Cp,f(k,p) for each (k, p) ∈ [d]×P such that f(k, p) > 0
}
.
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Proof. We will use repeatedly that Thomason subsets are closed under specialization.
With this in mind, let Y ⊆ Spc(Exccd) be a Thomason subset. Then

(12.6) Y =
⋃

(k,p)∈[d]×P

X(k, p)

where X(k, p) :=
{
Pd([k], p, n)

∣∣Pd([k], p, n) ∈ Y
}
. The nontrivial inclusion ⊆

in (12.6) follows from Theorem 7.14. Then consider a pair (k, p) ∈ [d]× P. If X(k, p)
is nonempty then Pd([k], p,∞) ∈ X(k, p). Since Y is Thomason, Corollary 12.2
implies that Pd([k], p,∞) ⊆ Pd([l], q, h) ∈ Y for some (l, q) ∈ [l] × P and finite h.
It then follows from Theorem 11.39 that Pd([k], p, h + δp(k, l)) ⊆ Pd([l], q, h) and,
moreover, that h + δp(k, l) is finite. This establishes that if X(k, p) is nonempty
then there is a finite n ≥ 1 such that Pd([k], p, n) ∈ X(k, p). It follows that every
nonempty X(k, p) is of the form

{
Pd([k], p, n)

∣∣nk,p ≤ n ≤ ∞} for some (uniquely
determined) finite nk,p ≥ 1.

We then define a function f : [d] × P → N∞ by setting f(k, p) = ∞ when
X(k, p) = ∅ and f(k, p) = nk,p − 1 when X(k, p) is nonempty. With this definition,
X(k, p) =

{
Pd([k], p, n)

∣∣n > f(k, p)
}
. We claim that the function f is admissible.

Indeed, condition (b) follows simply from the fact that Pd([k], p, 1) = Pd([k], q, 1) for
any two primes p and q. On the other hand, condition (a) follows from Theorem 11.39,
including the cases where one side of the inequality is equal to infinity.

In this way we obtain an injective map from the set of Thomason subsets to the
set of admissible functions. We claim that every admissible function arises in this
way. Indeed, given an admissible function f , consider the subset

Y :=
⋃

(l,q)∈[d]×P:
f(l,q)<∞

{Pd([l], q, f(l, q) + 1)}.

It is Thomason by Corollary 12.2. We claim that Pd([k], p, n) ∈ Y if and only if
n > f(k, p). The (⇐) direction is immediate from the definition of Y . On the
other hand, if Pd([k], p, n) ∈ Y then Pd([k], p, n) ⊆ Pd([l], q, f(l, q)+1) for some (l, q)
such that f(l, q) <∞. Theorem 11.39 then implies that p− 1 | k − l ≥ 0 and that
n > f(l, q) + δp(k, l) and, moreover, that p = q if f(l, q) ̸= 0. Since f is admissible,
it follows that n > f(k, p) as desired.

This establishes the claimed bijection between admissible functions and Thomason
subsets. The translation from Thomason subsets to tt-ideals is [Bal05, Theorem 4.10]
just unravelling the definitions. □

Remark 12.7. The above bijective correspondence is order-preserving when the set
of admissible functions [d]× P→ N∞ is endowed with the pointwise order induced
from the order on N∞.

Remark 12.8. Following the perspective of [BGH20], we can define the type function
of a compact d-excisive functor x ∈ Excd(Sp

c, Sp)c as the function which collects
the types of the derivatives ∂kx ∈ Spc of x at each prime p, i.e., the function
typex : [d]× P→ N∞ defined by

typex(k, p) := inf{h ∈ N∞ | K(p, h)∗∂kx ̸= 0}
with the convention that inf ∅ =∞. We can extend the notion from objects x to
tt-ideals I ⊆ Excd(Sp

c, Sp)c as follows:

typeI : [d]× P→ N∞, (l, p) 7→ inf{typex(l, p) | x ∈ I}.
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One readily checks from the proof of Theorem 12.5 that the function I 7→ typeI
which sends a tt-ideal to its type function is the inverse of the bijection f 7→ If .

Definition 12.9. The classification of tt-ideals simplifies p-locally. Say that a function
f : [d]→ N∞ is p-admissible if

f(k) ≤ δp(k, l) + f(l)

for all p− 1 | k − l ≥ 0.

Corollary 12.10. Let d ≥ 1 be an integer and p a prime. There is a one-to-one
correspondence between the set of p-admissible functions [d]→ N∞ and the Thomason
subsets of Spc(Excd(Spc, Sp)c(p)) which maps f to Yf :=

{
Pd([k], p,m)

∣∣m > f(k)
}
.

Example 12.11. Note that the empty Thomason subset corresponds to the constant
p-admissible function f ≡ ∞ while the whole space corresponds to the constant
function f ≡ 0.

Remark 12.12. In the situation of Corollary 12.10, we observe that Thomason
subsets are automatically closed. Hence every every tt-ideal of Excd(Spc, Sp)c(p) is
generated by a single compact object; see [San13, Lemma 2.3]. Since Remark 2.46
supplies a geometric equivalence

Excd(Sp
c, Sp)(p) ≃ Excd(Sp

c, Sp(p))

we thus obtain the statement of our main theorem on page 2.

Remark 12.13. The behaviour of the function δp(k, l) depends on the behaviour
of the function sp(k) which can be quite erratic. Further information about the
latter function can be found in [AS03, Section 3.2]. Its generating function has a
remarkable closed form formula; see [AWR09].

Transchromatic Smith and Floyd theory in functor calculus. A famous
theorem of P.A. Smith [Smi41] states that if H is a subgroup of a p-group G and X
is a finite-dimensional based G-CW-complex, then

H̃∗(X
H ;Fp) = 0 =⇒ H̃∗(X

G;Fp) = 0.

This was later extended by Floyd [Flo52], who showed that if H is a subgroup of
a p-group G and X is a finite-dimensional G-CW complex with dimFp H∗(X

H ;Fp)
finite, then

dimFp H∗(X
H ;Fp) ≥ dimFp H∗(X

G;Fp).

Noting that mod p homology corresponds to K(p,∞), i.e., Morava K-theory at
height ∞, Hausmann and Kuhn–Lloyd [KL20] considered versions of the Smith and
Floyd theorems for Morava K-theory K(p, n). They showed that understanding
such “transchromatic” Smith and Floyd theorems is equivalent to understanding the
topology of the Balmer spectrum of the category of compact G-spectra. Our aim in
this section is to relate the topology of the Balmer spectrum of compact d-excisive
functors to analogs of the Smith and Floyd inequalities in functor calculus.

Definition 12.14. Let d ≥ 1 be an integer and p a prime. For each 1 ≤ k, l ≤ d and
0 ≤ n, h ≤ ∞, we say that

• Smithd,p(k, l;n, h) holds if: for all x ∈ Excd(Sp
c, Sp)c, we have

K(p, n)∗(∂kx) = 0 =⇒ K(p, h)∗(∂lx) = 0;
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• Floydd,p(k, l;n, h) holds if: for all x ∈ Excd(Sp
c, Sp)c, we have

dimK(p,n)∗ K(p, n)∗(∂kx) ≥ dimK(p,h)∗ K(p, h)∗(∂lx).

Remark 12.15. Recall from Remark 7.17 that p-localization

Excd(Sp
c, Sp)→ Excd(Sp

c, Sp)(p)

is the finite localization associated to id(fp,∞). Hence Lemma 7.5 implies that
the Goodwillie derivative ∂k commutes with p-localization. Since K(p, n) is it-
self p-local, it follows that K(p, n)∗(∂kx) ≃ K(p, n)∗(∂k(x(p))) where x(p) denotes
the p-localization of x. Thus, the statements in Definition 12.14 could be equiv-
alently formulated by instead letting x range over all compact p-local functors
x ∈ Excd(Sp

c, Sp)c(p). To see this, just recall that if x ∈ Excd(Sp
c, Sp)c(p) then x⊕Σx

is the p-localization of a compact x′ ∈ Excd(Sp
c, Sp)c.

Proposition 12.16. For all 1 ≤ k, l ≤ d and 0 ≤ n, h ≤ ∞, we have

Smithd,p(k, l;n, h) ⇐⇒ Floydd,p(k, l;n, h).

Proof. The (⇐=) implication is clear. In order to establish the converse, we will
prove the contrapositive: Suppose there exists some x ∈ Excd(Sp

c, Sp)c with

dimK(p,n)∗ K(p, n)∗(∂kx) < dimK(p,h)∗ K(p, h)∗(∂lx).

We may replace x with its p-localization (Remark 12.15). We will employ the
methods of J. Smith [Rav92, Appendix C], as expanded upon in the work of Kuhn–
Lloyd [KL20], to construct a compact p-local d-excisive functor y from x which
falsifies the corresponding statement Smithd(k, l;n, h). Note that, for any m ≥ 1,
the symmetric group acts on x⊛m by permuting the factors, giving rise to a map of
rings

Z(p)[Σm]→ π0 End(x
⊛m).

In particular, any idempotent e ∈ Z(p)[Σm] induces a self-map e : x⊛m → x⊛m, and
we write ex⊛m for the corresponding retract of x⊛m. The monoidality of ∂l(−) and
K(p, h)∗(−) imply that this construction is compatible with its algebraic counterpart:

K(p, h)∗(∂l(ex
⊛m)) ∼= e(K(p, h)∗(∂lx))

⊗m.

Set V∗ := K(p, h)∗(∂lx) as a graded module over K(p, h)∗ and similarly W∗ :=
K(p, n)∗(∂kx) as a graded K(p, n)∗-module. The results of [KL20, Section 6.4]
provide a choice of integer m and idempotent em ∈ Z(p)[Σm] such that1

emV
⊗m
∗ ̸= 0 and emW

⊗m
∗ = 0.

It follows that y := emx
⊛m witnesses the failure of Smithd(k, l;n, h), as desired. □

Remark 12.17. The relation with the topology of the Balmer spectrum is the
following:

Proposition 12.18. Let 1 ≤ k, l ≤ d and 0 ≤ n, h ≤ ∞. Then Smithd,p(k, l;n, h)
holds if and only if Pd([k], p, n+ 1) ⊆ Pd([l], p, h+ 1) in Excd(Sp

c, Sp)c.

1There is a subtlety at the prime p = 2 related to the exotic multiplicative structure of K(n),
which however can be ‘filtered away’ as in [KL20, Section 6.3].
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Proof. Unravelling the definitions one sees that Smithd,p(k, l;n, h) is equivalent
to the statement that for every compact x, Pd([l], p, h + 1) ∈ supp(x) implies
Pd([k], p, n+ 1) ∈ supp(x). This is equivalent to Pd([k], p, n+ 1) ⊆ Pd([l], p, h+ 1)
since the supports of compact objects form a basis of closed sets for the Balmer
topology. □

Corollary 12.19. Consider integers 1 ≤ l ≤ k ≤ d satisfying p− 1 | k − l, a height
0 ≤ h ≤ ∞, and let n ≥ h + δp(k, l). For any compact x ∈ Excd(Sp

c, Sp)c, the
following inequality holds:

dimK(p,n)∗ K(p, n)∗(∂kx) ≥ dimK(p,h)∗ K(p, h)∗(∂lx).

Proof. This is a direct consequence of Proposition 12.16, Proposition 12.18 and
Theorem 11.39. □

Calculus with coefficients. The aim of this subsection is to explain how our
computation of the spectrum of Excd(Spc, Sp)c can be extended to other coefficient
categories D with a particular focus on the case D = ModHZ. In the context of stable
equivariant homotopy theory, this is the subject of [PSW22, BHS23b, BCH+23].

Remark 12.20. Let D be a rigidly-compactly generated tt-∞-category and fix some
integer d ≥ 1. The category Excd(Sp

c,D) of reduced d-excisive functors from finite
spectra to D may then again be equipped with the symmetric monoidal structure
afforded by localized Day convolution, and as such forms a rigidly-compactly gener-
ated tt-∞-category. As explained in Remark 2.46, there is a canonical symmetric
monoidal equivalence Excd(Sp

c,D) ≃ Excd(Sp
c, Sp) ⊗ D and we obtain D-linear

derivatives ∂Dk : Excd(Sp
c,D)→ D for all k ∈ [d].

Let id : Sp→ Excd(Sp
c, Sp) be the functor defined in Definition 2.44 and write iDd

for its D-linear analogue. For any 1 ≤ k ≤ d, we thus obtain a commutative diagram

Sp Excd(Sp
c, Sp) Sp

D Excd(Sp
c,D) D

F

id

Fd

∂k

F

iDd ∂D
k

in which the vertical functors are induced by base-change along the canonical
geometric functor F : Sp → D (Remark 2.43). Since the top composite is an
equivalence (Lemma 7.5), by base-change the bottom horizontal composite is one as
well. This setup allows us to generalize Theorem 7.14:

Proposition 12.21. Suppose D is a rigidly-compactly generated tt-∞-category.
The (D-linear) derivatives induce a bijection

φD := Spc((∂Dk )1≤k≤d) :
∐

1≤k≤d

Spc(Dc)
∼−→ Spc(Excd(Sp

c,D)c)

whose restriction to each component is an embedding.

Proof. By induction on the D-linear Taylor tower, we see that the functors ∂Dk are
jointly conservative, so φD is surjective by [BCHS23a, Theorem 1.3]. Consider the
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following commutative diagram∐
1≤k≤d Spc(D

c) Spc(Excd(Sp
c,D)c)

Spc(Dc) Spc(Dc).

φD

Spc(iDd )jk

Here jk denotes the inclusion of the k-th component and the bottom map is the
identity because ∂Dk ◦iDd ≃ id by Remark 12.20. This implies that Spc(∂Dk ) = φD◦jk
is an embedding (as in the proof of Lemma 7.7) and it remains to show that the
images of the different components are disjoint.

To this end, consider the following commutative diagram

(12.22)

∐
1≤k≤d Spc(D

c) Spc(Excd(Sp
c,D)c)

∐
1≤k≤d Spc(Sp

c) Spc(Excd(Sp
c, Sp)c).

φD

∐
Spc(F ) Spc(Fd)

φ

∼

Since the composite through the lower left corner separates components, so does φD

as desired. □

Remark 12.23. Since a finite union of noetherian subspaces is a noetherian space,
Proposition 12.21 implies that Spc(Excd(Spc,D)c) is noetherian whenever Spc(Dc) is.

Remark 12.24. We now completely determine the topology of Spc(Excd(Spc,D)c)
in the special case that D = ModHZ. This argument is meant as a proof of concept;
we will return to a more systematic discussion elsewhere.

Remark 12.25. Repeating the arguments given in, and leading up to, [PSW22,
Corollary 4.11], one can show that there is a geometric equivalence

Excd(Sp
c,ModHZ) ≃ ModExcd(Sp

c,Sp)(idHZ),

induced by base-change along S→ HZ.

Notation 12.26. Henceforth, in functors such as ∂ and id, we will abbreviate super-
scripts ‘ModHZ’ by ‘Z’. Let 1 ≤ k ≤ d and write PZ

d ([k], p) for the prime tt-ideal
in Excd(Sp

c,ModHZ)
c that corresponds to p ∈ Spec(Z) ∼= Spc(ModcHZ) under the

bijection of Proposition 12.21. Explicitly, this means that

PZ
d ([k], p) = {x ∈ Excd(Sp

c,ModHZ)
c | κ(p)⊗ ∂Z

k (x) = 0},
where κ(p) denotes the residue field of Z at p.

Theorem 12.27. Let 1 ≤ k, l ≤ d be integers and consider two prime ideals
p, q ∈ Spec(Z). Then there is an inclusion PZ

d ([k], p) ⊆ PZ
d ([l], q) if and only if one

of the following two conditions is satisfied:
(a) p = (p) for some prime p, q = (p) or q = (0), and p− 1 | k − l ≥ 0;
(b) p = (0) = q and k = l.

Moreover, Spc(Excd(Spc,ModHZ)
c) is noetherian, so the topology is determined by

these inclusions. Finally, base-change Sp→ ModHZ induces a map

Spc(Excd(Sp
c,ModHZ)

c)→ Spc(Excd(Sp
c, Sp)c)

which is a homeomorphism onto its image. It maps PZ
d ([k], (p)) to Pd([k], p,∞) and

maps PZ
d ([k], (0)) to Pd([k], 0, 1).
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Proof. The spectrum of Excd(Spc,ModHZ)
c is noetherian by Remark 12.23, so in

order to understand its topology, it is enough to determine all inclusions among prime
tt-ideals. Suppose first that we are given an inclusion PZ

d ([k], p) ⊆ PZ
d ([l], q). The

commutative square (12.22) shows that Spc(F ) : Spc(ModcHZ)→ Spc(Spc) satisfies

Spc(F )(PZ
d ([k], p)) = Pd([k],Spc(F )(p)),

where Spc(F )(p) can be identified with a pair (p, h) ∈ P× {1,∞}. Since Spc(Fd)
preserves inclusions (Remark 6.2), we thus obtain an inclusion

Pd([k],Spc(F )(p)) ⊆ Pd([l],Spc(F )(q))

of prime tt-ideals in Excd(Sp
c, Sp)c. Our classification theorem1 Theorem 11.39 then

implies that either condition (a) or (b) must hold.
For the converse, assume first that (b) is satisfied. In this case, we have an

equality PZ
d ([k], p) = PZ

d ([l], q) as desired. Similarly, if (a) holds with q = (0), then
PZ
d ([l], q

′) ⊆ PZ
d ([l], q) for any q′ ∈ Spec(Z), in particular for p = (p). In order

to show PZ
d ([k], p) ⊆ PZ

d ([l], q), we are therefore reduced to verifying the following
claim:

p− 1 | k − l ≥ 0 =⇒ PZ
d ([k], p) ⊆ PZ

d ([l], p).

To this end, suppose first that there exists a p-power partition λ ⊢ k of length l.
Consider some x ∈ PZ

d ([k], p), i.e., a compact functor x ∈ Excd(Sp
c,ModHZ) with

(12.28) 0 = Fp ⊗ ∂Z
k (x) ≃ ∂Z

k (i
Z
d (Fp)⊛ x).

Let tZk be the Tate construction (Definition 6.11) internal to Excd(Sp
c,ModHZ) with

respect to the subset

Yk :=
{
PZ
d ([i], p)

∣∣ i ≥ k } = Spc(Fd)
−1(
{
Pd([i], p, h)

∣∣ i ≥ k }).
Note that Yk is a Thomason subset since it is the pullback of a Thomason subset
along a spectral map. As in the proof of Lemma 11.15, we then deduce formally
from (12.28) that tZk (i

Z
d (Fp)⊛x) = 0. Using the compatibility of the Tate construction

with base-change (Proposition 6.14) as well as Remark 12.20 and the dualizability
of x, we compute

0 = ∂Z
l t

Z
k (i

Z
d (Fp)⊛ x) ≃ (∂Z

l t
Z
k i

Z
d (Fp))⊗ ∂Z

l (x)

≃ (∂Z
l t

Z
k i

Z
d (Z⊗ S/p)))⊗ ∂Z

l (x)

≃ (∂Z
l t

Z
kFdid(S/p))⊗ ∂Z

l (x)

≃ F (∂ltk(id(S/p)))⊗ ∂Z
l (x)

≃ (Fp ⊗ ∂ltkid(S))⊗ ∂Z
l (x).

In order to show that x ∈ PZ
d ([l], p), it thus suffices to prove that Fp ⊗ ∂ltkid(S) is

non-trivial, so that it contains Fp as a retract. To this end, observe that we have
ring maps

∂ltkid(S)→ ∂ltkid(Fp) and Fp
tFnt(λ) → Fp

tC ,

where C is a non-trivial cyclic p-group and the second map is the one we constructed
in the proof of Theorem 10.33. On the one hand, the target of the second map is
non-zero, hence Fp

tFnt(λ) is also non-zero. On the other hand, Proposition 10.26

1In fact, we do not require the full strength of this theorem; it is enough to combine Corol-
lary 11.4, Remark 11.5, and Proposition 11.7.
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implies that Fp
tFnt(λ) is a retract of ∂ltkid(Fp), so the target of the first map is

non-zero and Fp-linear, and we conclude that Fp ⊗ ∂ltkid(S) ̸= 0, as claimed.
This finishes the proof under the assumption that there is a p-power partition

of k of length l. In general, our assumption that p− 1 | k − l ≥ 0 guarantees the
existence a chain of p-power partitions (see Remark 11.18) and we conclude by
concatenating the inclusions just established. □

Remark 12.29. The d = 3 case is shown in Figure 5. Observe that it is homeomorphic
to the top and bottom chromatic layers of Figure 1. The relations between these
spaces are completely analogous to the situation in equivariant stable homotopy
theory established in [PSW22].

•◦ •◦ •◦
PZ([3],3) PZ([1],3)

•◦ •◦
PZ([3],p) ...

(p 6=2,3)

•◦ •◦ •◦ •◦ . . .
PZ([2],p) ...

(p 6=2)

•◦ •◦ •◦ •◦ . . .
PZ([1],p) ...

(p6=2,3)

•◦ •◦ •◦ •◦ . . .

•◦ •◦ •◦
PZ([3],0) PZ([2],0) PZ([1],0)

PZ([1],2)PZ([2],2)PZ([3],2)

Figure 5. The Balmer spectrum Spc(Exc3(Sp
c,ModHZ)

c).

Corollary 12.30. Let d ≥ 1. Say that a subset Y ⊆ [d]× Spec(Z) is admissible if
it satisfies the following closure properties:

(a) If (l, 0) ∈ Y then (k, p) ∈ Y for all p− 1 | k − l ≥ 0.
(b) If (l, p) ∈ Y then (k, p) ∈ Y for all p− 1 | k − l ≥ 0.

There is an inclusion-preserving bijection between the set of admissible subsets of
[d]× Spec(Z) and the collection of tt-ideals of Excd(Spc,ModHZ)

c given by

Y 7→
{
x ∈ Excd(Sp

c,ModHZ)
c
∣∣ ∂Z
k (x) ∈ p if (k, p) ̸∈ Y

}
with inverse

C 7→
{
(k, p) ∈ [d]× Spec(Z)

∣∣ ∂Z
k (x) ̸∈ p for some x ∈ C

}
.

Proof. As a set, we can identify Spc(Excd(Sp
c,ModHZ)

c) with [d] × Spec(Z) by
Proposition 12.21. Since the space is noetherian, a subset is Thomason if and only
if it is specialization closed. According to Theorem 12.27, a subset is specialization
closed precisely when it has the closure properties (a) and (b). In other words, the
admissible subsets are precisely the Thomason subsets. With this in hand, the rest
is just a formulation of the correspondence between Thomason subsets and tt-ideals
[Bal05, Theorem 4.10]. □

Remark 12.31. By base-change along the initial geometric functor F : Sp→ ModHZ,
we have that PZ

d−1 : Excd(Sp
c,ModHZ) → Excd−1(Sp

c,ModHZ) is a finite localiza-
tion, while ∂Z

d : Excd(Sp
c,ModHZ) → ModHZ is finite étale (this follows either by

direct verification, or from Remark 6.33 and [San22, Example 5.7]). We are thus
in a situation where we can apply the techniques of [BHS23b] and [BCHS23b] to
show that Spc(Excd(Sp

c,ModHZ)
c) is stratified and costratified over its spectrum

and that the telescope conjecture holds for Excd(Sp
c,ModHZ).

Example 12.32. We can also consider Excd(Spc,ModHF) for a field F. It follows from
the above techniques that Spc(Excd(Sp

c,HQ)c) is the discrete space with d points,
and can be identified via Z → Q with the subspace of Spc(Excd(Sp

c,ModHZ)
c)
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consisting of
{
PZ
d ([k], 0)

∣∣ 1 ≤ k ≤ d}. On the other hand, Spc(Excd(Spc,ModHFp)
c)

identifies with the subspace
{
PZ
d ([k], p)

∣∣ 1 ≤ k ≤ d} of Spc(Excd(Spc,ModHZ)
c). In

other words, it is the set {1, 2, . . . , d} equipped with the topology given by k ∈ {l}
if and only if p− 1 | k− l ≥ 0. Finite spectral spaces correspond to finite posets (via
the map which sends a space to its specialization poset, see [DST19, 1.1.16]). From
this perspective, it is the poset ([d],≤p) where k ≤p l means that p− 1 | k − l ≥ 0.
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Appendix A. Equivariant homotopy and Goodwillie calculus dictionary

For readers familiar with equivariant homotopy theory, we include here a ‘dictionary’ for translating between equivariant homotopy
theory and Goodwillie calculus. When d = 2 there is an equivalence of categories SpC2

≃ Exc2(Sp
c, Sp) [Gla18] and in this case the

analogies described by the table are genuine correspondences.

Equivariant homotopy Goodwillie calculus

SpG Excd(Sp
c, Sp)

Burnside ring A(G) Goodwillie–Burnside ring A(d)
Conjugacy class of subgroups H ≤ G Integer 1 ≤ i ≤ d
Compact generator Σ∞G/H+ Compact generator Pdhs(i)
Fixed points functor (−)H : SpG → Sp Cross-effect cri(−)(S, . . . ,S) : Excd(Sp

c, Sp)→ Sp
Restriction to the trivial group resGe : SpG → Sp d-th cross-effect crd(−)(S, . . . ,S) : Excd(Sp

c, Sp)→ Sp

‘Partial’ geometric fixed points Φ̃H : SpG → SpWGH Pi : Excd(Sp
c, Sp)→ Exci(Sp

c, Sp)

Geometric fixed points ΦH = resWGH
e ◦Φ̃H : SpG → Sp i-th derivative ∂i = criPi(−)(S, . . . ,S) : Excd(Sp

c, Sp)→ Sp

Inflation infG1 : Sp→ SpG id : Sp→ Excd(Sp
c, Sp)

Free G-spectra d-homogeneous functors
Tom Dieck splitting: (S0

G)
G ≃

⊕
(H)

Σ∞(S0)hWGH Snaith splitting: cr1PdhS ≃
⊕

1≤i≤d

Σ∞(S0)hΣi

Double coset formula:
Σ∞G/H+ ⊗ Σ∞G/K+ ≃

⊕
g∈H\G/K

Σ∞G/(Hg ∩K)+

Good subset decomposition:
PdhS(i)⊛ PdhS(j) ≃

⊕
U⊆[i]×[j]
U good
|U|≤d

Pdhs(|U |)

Tate square:

X ẼG⊗X

F (EG+, X) ẼG⊗ F (EG+, X)

⌜

Kuhn–McCarthy square:

PdF (X) (∂dF ⊗X⊗d)hΣd

Pd−1F (X) (∂dF ⊗X⊗d)tΣd

⌜
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