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Quillen introduced higher algebraic K-theory
in [27] and computed the K-groups K, (F,) in [26].
Except in low degrees, the computation of the K-
groups of closely related rings, for example Z/4, has
remained out of reach. In this paper, we announce
new methods for computations of K-groups of such
rings and outline new results. A full account will be
given in [3].

We are interested in rings of the form Og/w"
where K is a finite extension of Q, of degree d, Ox
is its ring of integers, and w” is the nth power of a
uniformizer w. In particular, p € (w*®) where e is the
degree of ramification of K over Q,. When n = 1,
Or /@™ is the residue field k = F, of Og, where
q = pf for some f, called the residual degree of the
extension.

The problem of computing the K-groups of such
rings, and of finite rings in general, was raised by
Swan in the Battelle proceedings [13, Prob. 20].

1 History

For any field k, Ko(k) 2 Z and K; (k) = k*. Quillen
showed in [26] that if F is the finite field with ¢ = p/
elements, then for » > 1,

0 if r is even and
K"‘(Fq) = {

Z/(¢" —1) ifr=2i—1.

Note in particular that there is no p-torsion in the
K-groups of Fy,.

For each prime ¢ and ring R, K(R, Z¢) denotes the
£-completion of the K-theory spectrum of R. In the
main case of interest to us, namely when R = Ok /w",
K, (R) is finitely generated torsion for r > 0 and
K, (R,Zy) is the subgroup of ¢-primary torsion in
K. (R).

Gabber’s rigidity theorem [12] implies that if R is
a commutative ring which is henselian with respect
to an ideal I and if ¢ is invertible in R, then

K(R, Zg) >~ K(R/I, Z[)
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Examples of such henselian pairs are the rings of inte-
gers Ok as above with the ideal () or the quotients
O/w™, again with the ideal (w). It follows that for
£ # p we have

K*(O7 Z@) = K*(O/wnv Z@) = K*(Fq; Zé)

so that these f-adic K-groups are all determined by
Quillen’s computation.

The situation of the p-adic K-theory of Og
or Og/w"™ is very different. A result of
Dundas—Goodwillie-McCarthy [11] implies that
K(O/w™ Z,) ~ 150TC(O/w™;Z,), while work of
Hesselholt—Madsen [17] and of Panin [25] implies that
K(OK;Z:D) ~ T>0TC(OK;ZP). Here, TC(OK;ZP)
and TC(Ok/w™;Z,) denote the p-adic topological
cyclic homology spectra of O and Og/w™, re-
spectively. This theory is built from topological
Hochschild homology and is closely connected to p-
adic cohomology theories thanks to the work of [6].
These results make the p-adic K-groups amenable to
calculation using so-called trace methods.

Hesselholt and Madsen determine the structure of
TC.(Ok;Z,) = K. (Ok;Zy) in [18] and thereby ver-
ify the Quillen—Lichtenbaum conjecture for Og. This
conjecture now follows in general from the proof of
the Bloch—Kato conjecture due to Rost and Voevod-
sky; see for example [14], although the p-adic ranks
of the groups K. (Ok;Z,) had previously been com-
puted by Wagoner [31].

The Hesselholt-Madsen approach uses logarithmic
de Rham-Witt forms and TR, i.e., the classical ap-
proach to trace method computations. These have re-
cently been revisited by Liu—-Wang [21] who describe
K. (Ok; Fp), the K-groups with mod p coefficients, us-
ing new cyclotomic techniques from [6, 24].

The result is that

Z;D if r =0,
K, (0k;Zp) = { HL (Spec K, Zy,(i)) if r =2i—1, and
HZ, (Spec K, Z,(i)) if r = 2i — 2,

where Z,(7) is the ith Tate twist. These cohomology
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groups are determined by Iwasawa theory: for ¢ > 0,

H;, (Spec K, Z,(i)) = Zg D Z/w;,
HE, (Spec K, Zy (i) = Z/w; 1,

where d is the degree of K over Q, and where wj is the
largest pth power p” such that the exponent of the cy-
clotomic Galois group Gal(K (pp»)/K) divides i. The
number w; is the p-part of a number introduced by
Harris—Segal [15], Quillen, and Lichtenbaum in the
setting of the Quillen—Lichtenbaum conjecture. See
Weibel’s book [32, Chap. VI] for more details.

Much less is known about the K-theory of the inter-
mediate rings O /@™ for 1 < n < co. As for fields,
Ko(Og/w™) = Z and K;(Ox/w™) is isomorphic to
the group of units in O /w™.

In [10], Dennis and Stein determined the structure
of K2(Og /w™). No other work we are aware of has
addressed the K-groups of general rings of the form
OK/ZU".

In special situations, more is known. First, every
ring Fy[z]/2™ is of the form Ok /w™ for K of ram-
ification degree at least n. The algebraic K-groups
of these truncated polynomial rings have been stud-
ied by Hesselholt—Madsen in [16] using classical trace
method techniques, by Speirs in [28] using the new
approach to TC due to Nikolaus—Scholze [24], and by
Sulyma in [29] using the approach to TC via syntomic
cohomology due to Bhatt—Morrow—Scholze [6] and as
outlined by Mathew in [23].

Second, for unramified extension there are some
results in low degrees. In the unramified case, where
e =1, Ok is the ring W(F,) of p-typical Witt vectors
of the residue field. Brun [8] determined the K-groups
of Z/p™ (i.e., when e = 1 and f = 1) up to degree
p — 3 and Angeltveit [2] determined the K-groups of
Win(Fy) = W(F,)/w" = W(F,)/p" up to degree
2p — 2.

Angeltveit also proved an important quantitative
result:

#Koi 1 (Wr(Fy); Zyp)
#Koi oW, (Fy); Zp)

— qi(n—l) )

Both Brun and Angeltveit use classical trace methods
and the p-adic filtration on the truncated Witt vec-
tors to translate part of the problem to the cases of
truncated polynomial rings where a complete answer
is known.

The cases of K3 of Z/p™ or F,[z]/2? were also con-

sidered earlier in [1] using group homology calcula-
tions.

2 New results

As K(O/w";Z,) ~ 150TC(0/w";Z,) by [11, 18],
it is enough to determine TC of these rings. To
do so, we use the filtration on TC constructed by
Bhatt-Morrow—Scholze in [6]. If R is a quasisyn-
tomic ring, there is a complete decreasing filtration
FZ1TC(R; Z,) with associated graded pieces

syn

FSL.TC(R; Z,) ~ Z,(i)(R)[2i],

syn

where Z,(7)(R) is the weight ¢ syntomic cohomology
of R introduced in [6]. The syntomic complexes pro-
vide a p-adic analogue of the motivic filtration on
K-theory.

As shown in [4], the weight ¢ syntomic cohomology
Z,(i)(R) is concentrated in [0,% + 1], independent of
R; this means that H"(Z,(i)(R)) = 0 for r ¢ [0, +1].
In the special case of Ok or O /@™, an argument us-
ing the w-adic associated graded implies that in fact
the weight ¢ syntomic cohomology is in [0, 2]; more-
over, for i > 1, H%(Z,(i)(Ox /@™)) = 0 so the com-
plex has cohomology concentrated in degrees 1 and
2.

One checks that H*(Z,(1)(Ox/@")) = 0, so the
spectral sequence associated to the syntomic filtra-
tion on TC collapses at the E;-page for O/@™ (or the
Es-page in the reindexing in [6, Thm. 1.12]). Hence,

TCsi-1(Ok /@™ Zp) = HY(Z(i)(0k /w™))
for ¢ > 1 and
TCai—2(Ok /@™ Zp) = H*(Z(i)(0k /w™))

for i > 2. Thus, it makes sense to speak of the syn-
tomic weights of the K-groups of Ok /w™.

Theorem 2.1. For i > 1, if the residue field of Ok
has ¢ = p! elements, then there is an explicit cochain
complex

(in—1) Syn 2f(in—1) Syn in—1
(Z£< ) 2o, Z2f(in=1) I, g4 >)

quasi-isomorphic to Z,(i)(Ox /w™). The terms are
free Z,-modules of the given ranks in cohomological
degrees 0, 1, and 2.

The proof of the existence of this explicit cochain
complex model of the syntomic complex will be dis-
cussed in Sections 4 and 5.

The groups K.(Og/w™) are torsion for * > 0.
In particular, the complex above is exact rationally.
Thus, to find the cohomology of Z,(i)(Ox /w"), and
hence the p-adic K-groups of O /w™, it is enough
to compute the matrices syn, and syn; and their ele-
mentary divisors.



3. Computations

Theorem 2.2. The matrices syn, and syn, are ef-
fectively computable. Specifically, they can be deter-
mined with enough p-adic precision to guarantee com-
putability of the effective divisors.

We have implemented our algorithm in SAGE [30]
in the case where f = 1, i.e., when the residue field is
F,. Future work will include an implementation for
general f.

Corollary 2.3. There is an algorithm to determine
the structure of K,.(O /™) for any K, n, and .

Along the way, we extend the result of Angeltveit
on the quotients of the orders from the unramified
case to any Ok /w™.

Corollary 2.4. For any Ok /@™,
#Koi 1(Ok /@™ Zy)

— 4i(n=1)

#Koi—2(Ok /=™ Zyp) ,
where ¢ = pf is the order of the residue field of O.

This corollary is especially powerful thanks to the
following theorem.

Theorem 2.5 (Even vanishing theorem). If

’L) ﬁ(pl—%“ — 1),

then H%(Z,(i)(Ok /™)) = 0 and hence
Kai—2(Ok /@") =0

if additionally © > 2.

Corollary 2.6. If

{ = (p821)2 (p[%—‘ - 1)7

then #Ko; 1(0x /w®) = ¢V . (¢¢ — 1).

Corollary 2.7. There is an algorithm to compute the
orders of all of the K-groups of O/w".

Indeed, Theorem 2.5 and Corollary 2.6 reduce the
problem to the computation of the cohomology of the
syntomic complexes Zy(i)(0/w") for finitely many i
those satisfying

(re1-1).

This number grows rather quickly, but improve-
ments are possible and will be described in our forth-
coming work [3].

1<

p2
(p—1)2

3 Computations

We present here four example calculations.

3.1 Z/4

The even vanishing theorem holds in syntomic
weights ¢ > 12. In fact, machine computations show
in this case that Ko;_2(Z/4) = 0 for all i > 3,
while Ko(Z/4) = Z/2. Corollary 2.4 together with
Quillen’s calculation implies that

#K3(Z/4) = 8-(22—1) and #Ko; _1(Z/4) = 2"-(2°~1)

for ¢+ > 3. This gives the complete calculation of the
orders of all K-groups of Z/4.

The precise structure of the decomposition of p-
primary part of the K-groups into cyclic groups re-
mains unknown to us. Figure 1 displays a table of
the output of our machine computations giving the
groups in syntomic weights ¢ < 16.

3.2 Chain rings of order 8

A chain ring is a commutative ring whose ideals are
totally ordered with respect to inclusion. Examples
include valuation rings or quotients of valuation rings.
Every finite chain ring is of the form O g /w™ for some
1 < n < oo. There are four chain rings of order
8, namely Z/8, Z[2'/?]/23/% (so n = 3 in our nota-
tion), Fa[2]/2%, and Fg; see [9]. The 2-adic K-groups
K, (Fg;Zs) vanish for n > 1. Figure 2 displays the
low-degree 2-adic K-groups of the other three chain
rings of order 8.

3.3 Quotients of degree 2 totally ram-
ified 2-adic fields

The 1mfdb [22] provides tables of p-adic fields based
on work of Jones—Roberts [19]. There are 6 totally
ramified degree 2 extensions of Qq. In Figure 3, we

give low-degree p-adic K-groups of the quotients of
these fields.

3.4 Z/9

The even vanishing theorem holds in syntomic
weights ¢ > 18. Figure 4 displays a table of the out-
put of our machine computations in syntomic weights
i < 18. In particular, K4(Z/9) = Z/3 and all other
positive even K-groups vanish. In odd degrees,

#K5(Z/9) = 81-(3°—1) and #Kq;_1(Z/9) = 3°-(3'—1)

for ¢ > 1, i # 3. This gives the complete calculation
of the orders of all K-groups of Z/9.
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K, 772 || Kis
Ko 7/2 | Kis
K 7/8 | Kig
Ks Z/8 Ko
Kg 0| Koo
K? Z/2 D Z/8 K23
Ko (Z/2)? ©Z/8 || Kas
Kio 0| Ko
K 723 2/32 || Koy
Ki2 0| Kos
Kis | Z/20Z/4®Z/16 | Kag
Kia 0 | Kso
Kis (2/2)* ®Z/32 || Ks
Kie 0| Ks2

(Z2/2)° & (Z/8)°

Z/A®Z/8® Z/3g

(Z/2)? ® (Z/4)* @ Z/3g
(Z/2)* o Z/4a Z/GZ

(Z/2)* DZ/ADZ/8 D Z/1g
Z/20Z/8®Z/16® Z/1zg
(Z/2)3 @ (Z/4)? ©Z/8 ® Z/Bg
(2/2)°®Z/8a Z/12§

Figure 1: The 2-adic K-groups of Z/4 for syntomic weights 1 < ¢ < 16; the final zero, K32(Z/4;Z5) = 0, is

a (null) contribution from syntomic weight 17.

| K, | Z/8 | Fylz]/2° | Zo[21 772577 |
K, Z/4 Z/4 Z/4
K Z/2 0 0
K Z/A®Z/8 Z/2®7Z/3 Z/2®Z/8
Ky Z/2 0 0
Ks Z/2®7/64 (Z/2)*> ®Z]16 (Z/2)*>®Z/16
K 0 0 0
K- (Z/4)? (Z/2)? ©Z/ADZ]/16 (Z/2)* DZ/ADZ/16
K 0 0 0
Kz Z/20Z/ADZ/128 (Z/2)? © (Z/4)*> ® Z/16 (Z/2)? @ (Z/4)? ® Z/16
K, 0 0 0
Kl(l) Z/8®Z/512 (Z)2)3 @ (Z/4)* ® Z/32 (Z/2)3 @ (Z/4)? ® Z/32
Ko 0 0 0
Ki; || (Z/2)?®Z/8 Z/512 (Z/2)'®Z/ADZ/8 Z/32 (Z/2)'®Z/ADZ/8®Z/32
Kiy 0 0 0
Kis || (Z/2)? @ Z/64®Z/256 | (Z/2)" & (Z/4)? ©Z/8Z/32 | (Z/2)' & (Z/4)> ® Z/8 © Z/32

Figure 2: The 2-adic K-groups of the displayed chain rings of order 8 for syntomic weights 1 < i < 8. Note
that the second and third columns agree. We do not know at present if this continues in all higher weights.
The second column agrees with the calculations of [16] (see for example [28, Lem. 2]).

4 Prismatic cohomology over ¢-
rings

Our proofs are motivated by previous work of Krause—
Nikolaus [20] and the approach of Liu-Wang [21].
There are two main new ideas: the notion of pris-
matic cohomology relative to a d-ring and the system-
atic use of the filtration on the syntomic complexes
induced by the w-adic filtration on O /w™. Similar
filtrations have also been used by Angeltveit [2] and
Brun [8] in the topological context.

Let A = W(F,)[z] be the é-ring with §(z) = 0

and hence ¢(z) = 2P. If E(z) is an Eisenstein
polynomial for O, then the pair (A%, (E(z))) is a
prism. Bhatt and Scholze show that Ao, /on) /a0 is
discrete and admits a description as a prismatic en-
velope AO{%Z)}A in the sense of [7, Prop. 3.13]; the
prismatic envelope is an explicit pushout in (p, E(z))-
complete 6-rings over A°.

The main idea is to determine the syntomic
complexes Z,(:)(O/@w™) by descent along the map
Ao jon — Do jmny a0 from absolute prismatic coho-
mology to relative prismatic cohomology. To make
sense of this, we introduce prismatic cohomology rel-
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ative to a d-ring. Let us outline the definition.

Given an arbitrary derived p-complete d-ring A and
a derived p-complete A-algebra R, let X = Spf R
and let (X/A), be the opposite of the category of
commutative diagrams

A——B

|

R——>B/J,

where (B, J) is a bounded prism and A — B is a map
of d-rings.

By definition, Ag/4 = RI'((X/A)a, On), where Op
is the prismatic structure sheaf, which sends a com-
mutative diagram as above to B. Warning: this
site-theoretic definition should be derived in general,
but gives the correct answer under additional assump-
tions on R, in particular in the case of R = Ok /w"
over the multivariable Breuil-Kisin prisms appearing
in this paper.

Example 4.1. If A = Z, is the initial (derived p-
complete) -ring, then ARz, recovers absolute pris-
matic cohomology as introduced in [6, 7] and studied
further in [5]. More generally, this is true if A is re-
placed by the ring of p-typical Witt vectors of any
perfect F-algebra.

Example 4.2. If (A,T) is a prism and R is an A/I-
algebra, then Ag/4 agrees with derived relative pris-
matic cohomology as studied in [7].

Now, consider the augmented cosimplicial diagram
A® where A=! = W(F,), A° = W(F,)[z], and
As =W (F)[zo0,-..,2s]. Thisis a completed descent
complex for W(F,) — W(F,)[z].

In the cosimplicial diagram

W(F,) A° Al A%

the arrows are all §-ring maps and the entire diagram
admits a map to Ox sending each generator z; to
w. As a result, for any Og-algebra R, there is an
induced augmented cosimplicial diagram in prismatic
cohomology of R relative to the d-rings A°.

Theorem 4.3. The augmented cosimplicial diagram

AR““‘>AR/AU§EEEE§AR/A1%%%%%%AR/A2'”

is a limit diagram for R = O /w".

Thus, the absolute prismatic cohomology of an O -
algebra, such as Ok /w™, can be computed by descent
using the cosimplicial diagram above.

This does not make sense when speaking of pris-
matic cohomology as defined in [7] because there is
no compatible way to equip the entire cosimplicial di-
agram with the structure of a cosimplicial prism. For
example, if E(z) is an Eisenstein polynomial making
A = W(F,)[#] into a prism, both E(z) and F(z)
are distinguished elements in A' = W(F,)[z0,21]
making it into a prism in two different ways.

Proposition 4.4. For any s > 0, the relative pris-
matic cohomology Do, jwn) a5 is discrete and is iso-
21 — 20

morphic to a prismatic envelope
A
s { 2] Zn — 20 }
E(z0)" E(z0) = E(z0)

The proposition follows immediately from Exam-
ple 4.2. Note that while prismatic cohomology rel-
ative to J-rings is functorial in arbitrary maps of J-
rings, the presentation of a given term Ag 4 as a
prismatic envelope depends on the choice of a prism
structure J on A® making R into an A°/J-algebra.
In the theorem above, we choose to make A® into a
prism with respect to the ideal (E(zp)).

It follows that the cosimplicial diagram appearing
in Theorem 4.3 gives a resolution of Ay, /o~ as the
limit of a cosimplicial diagram of discrete d-rings.

To give the main idea of the rest of the argument,
we illustrate it here for prismatic cohomology instead
of the syntomic complexes. The absolute prismatic
cohomology of a quasisyntomic ring R admits a Ny-
gaard filtration NZ*Ag; Nygaard completion of pris-
matic cohomology is written Ag.

Proposition 4.5. The Nygaard-complete absolute
prismatic cohomology groups H" (Ao, jen) vanish for

r#0,1.

The proposition can be proved by computing di-
rectly with a Nygaard-complete, Frobenius-twisted
variant of the cosimplicial diagram in Theorem 4.3 us-
ing the prismatic envelopes of Proposition 4.4. Alter-
natively, one can argue as follows: the w-adic filtra-
tion on O /™ induces a filtration on Ay, /= Whose

completion agrees with lo x /=, and whose associ-
ated graded is the same as that of the corresponding
filtration on Ap [.]/.». This associated graded can be
described using crystalline cohomology and vanishes
away from cohomological degrees 0, 1. Thus, by dévis-
sage and completeness, the same vanishing holds for
Doy joom -

It follows from the proposition that the cochain
complex A — A' — A® — ... associated to the
cosimplicial abelian group A /mn)/4¢ is exact in de-

grees > 2. This reduces the computation of Ay, jeon
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to a much smaller computation involving prismatic
envelopes of Ok /w™ relative to A%, A!, and A2

However, we are interested not in the absolute pris-
matic cohomology of Ok /@™ but rather in its syn-
tomic cohomology. Relative syntomic cohomology is
defined in the setting of prismatic cohomology rela-
tive to a d-ring. We first have to explain the Nygaard
filtration and the Breuil-Kisin twist, following [7, 5].

The Frobenius twist A%}A is defined to be A4 ® 4
oA, the base-change of Ap /4 along the Frobenius
map on A. The Frobenius twist admits a map
Ag}A — Agya and the Nygaard filtration N>*Ag/)A
is a filtration which is taken by this map to the I-
adic filtration on Ag 4. If Ag/4 is discrete (as in our
examples of interest) then the Nygaard filtration is
simply the preimage of the I-adic filtration.

Given a prism (A, I), let I. be the invertible A-
module I - o(I)--- "~ 1(I). If (A,I) is transversal,
meaning that A/I is p-torsion-free, then the canoni-
cal map I,./I> — I,_1/I?_ is divisible by p and the

induced map I,./I? REN I,_1/I? | is surjective. The

Breuil-Kisin twist is defined to be
A{l} = lim ( _>IS/ 2 1/p I2/ 2 1/17 I/I2>

This is an invertible A-module. For a general A-
module M, let M{1} = M ®4 A{1}.

The relative syntomic cohomology of R over a 6-
ring A is

Z,(i) (R/A) = fib (N'8) {i} <=5 8) ,{i}) .

where ¢ is a Frobenius which exists on N>%R/A{z}
Note that in [6], the syntomic complexes are defined
using Nygaard complete prismatic cohomology; how-
ever, the two definitions agree by [6, Lem. 7.22] or [4,
Cor. 5.31].

It follows along the lines of Theorem 4.3 that, for
each i > 0, the limit of the cosimplicial diagram

Z,(i)(R/AY) ==} Z,(i)(R/A") B -

is equivalent to Z,(i)(R) when R = O /w".

The fact that the Nygaard-complete absolute pris-
matic cohomology Ag, /o is concentrated in coho-
mological degrees 0,1 implies that Z,(i)(Ox /@w™) is
concentrated in cohomological degrees 0,1, 2. In fact,
it is not hard to show that, for i > 1, each rela-
tive syntomic complex Z,(i)((Ox /w™)/A?) is concen-
trated in cohomological degree 1. Thus, the spectral
sequence associated to the limit diagram

Z,(i)(Ox /@") = lim Zy,(1)(Ok /") /A*)

implies that Z,(i)(Ox /@w™) is concentrated in coho-
mological degrees 1,2 for i > 1.

By the same spectral sequence, to determine
Z,(i)(Ok/@™), and hence Ko 2(Ok/w";Z,) and
Koi—1(Or /@w™; Z,), it is enough to compute the co-
homology of the complex

H' (Z, (i) (R/A")

— ker (H'(Z,(i)(R/A")) = H'(Z,(i)(R/A?)))

where R = Ok /@”. In the next section, we explain
how to use the w-adic filtration to reduce this to a
finite problem.

5 The syntomic matrices

In the cosimplicial diagram A®, each term is a fil-
tered d-ring, where in A° = W(k)[zo,...,2s] the
weight of z; is 1. A filtered d-ring is a d-ring A
with a complete and separated decreasing filtration
F>*A such that §(F>'A) C F?PiA.  Since each
A®* — Ok /w" is afiltered map where Ok /@™ is given
the w-adic filtration, all resulting invariants, such as
prismatic or syntomic cohomology complexes admit
induced filtrations, which we will write for instance
as T2, (i) (O /") /A*).

Theorem 5.1. Forb >
maps

in—1andi > 1, the natural

FUHZ,(0) (0 f7")

Z,(1)(Ox /w") ——= FOMZ, (i) (O /")

are equivalences.

The right-hand arrow is easy to handle because
F=0Z,(i)(Ok /™) ~ Zy(i)(Fy) ~ 0 for i > 0. For
the left hand arrow, we argue by an explicit study of
the interaction between the F-filtration and the Ny-
gaard filtration on each A /) as-

The entire problem has now been reduced to a fi-
nite computation. Set R = Ok /w™ and consider the
commutative diagram

FUANZIB) o {i} — FLANZIA) (i)

| l

St’[l b) A(l/AU{ } - o St’[l b A(l/Al{ }

All four terms are finitely generated free Z,-modules.
The vertical fibers are Z,(i)(R/A%) and Z,(i)(R/A'),
respectively.
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Our approach to the computation avoids the
more traditional approach of computing either
TR(Ok /™)'= or computing TC(Ox/w™) as the
fiber of TC™ (Og/w") % TP(Ok/w™). It
would nevertheless be very interesting to understand
TP(Ok /™).

Since the complexes JFIUNZ'AR{i}  and
FUAR{i} are torsion for i > 1 by another use
of the w-adic filtration, one can replace

ker (FIINZIAG) | (i} - FINZAG) L (i} )

with the saturation of the image of the top hor-
izontal map, where by saturation we mean the
sub-Z,-module consisting of elements x such that
pNx is in the image for some N, and similarly for

ker (5"[1713%5%1;141 {i} — ?[1’b]A§%;A2 {z}) Write S° and

S for the saturations. The resulting commutative
square

FLANZiAG) o {i} —= S°

I

SN i)

consists of free Zj,-modules of rank bf and the to-
tal cohomology computes F1YZ,(i)(R) and hence
Z,(i)(R) = Z,(1)(Og /w") for i > 1.

To conclude, we use explicit polynomial presenta-
tions of the relevant prismatic envelopes as well as
Breuil-Kisin orientations to give explicit bases of all
four terms and to compute the maps between them.
Taking b = in — 1, the result is the matrices syn, and
syn; and the complex appearing in Theorem 2.1.
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2.2.2.1 22+22+2

K \n || Ox/@* | Ox/@" | Ok /m" | Ok /@ | Ok /@" | O /@ | Ok /@®
K, 1 2 1,2 11,2 1,22 2.2,2 2.2.3
K, 1 1 2 2 2
Ks 1,1 1,3 1,2,4 2,3,4 1,3,3,5 1,1,3,3,6 1,1,3,4,7
Ky 1 1 2
K || L,1,1| 1,14 1,2,2,4 2,2,2,6 1,2,2,4,7| 1,1,2,2,4,9 1,2,2,2,6,10
Ks 1 1

K| 1,1,1,1|1,1,2,4|1,1,1,2,3,4 | 1,1,1,4,4,5 | 1,1,1,2,5,5,5 | 1,1,2,3,4,7,7 | 1,1,1,2,3,4,8,9

2.2.2.2 [ 224+22z-2

K,v\n OK/wz OK/ZU:j OK/W4 OK/‘W5 OK/wﬁ OK/T7 OK/TS
K1 1 2 1,2 1,1,2 1,2,2 1,2,3 1,3,3
K, 1 1 1 1 1
Ks 11 1,3 1,2,4 2,3,4 1,3,3,4 1,1,3,3,5 1,1,3,4,6
Ky 1 1 2
Ks ,I,1| 1,14 1,2,2,4 2,2,2,6 1,2,2,4,7] 1,1,2,2,4,9 1,2,2,2,6,10
Ks 1 1

K, | 1,1,1,1 | 1,1,2,4]1,1,1,2,3,4 | 1,1,1,4,4,5 | 1,1,1,2,5,5,5 | 1,1,2,3,4,7,7 | 1,1,1,2,3,4,8,9

2.2.3.1 [ 22414

K\n || Ox/=? ‘ Ok /=® | Ok /ot ‘ Ok /@ ‘ Ok /=" | Ok /@’ | Ok /w
K, 1 2 1,2 11,2 1,1,3 1,2,3 1,2,4
Ko 1 1 1 1 1
K, T,1 L3 1,2,4 2,3,4 1,3,3,4 1,1,3,4,4 1,2,4,4,4
Ky 1 1 2
K| Lii1| 114 1,2,2,4 2,2,2,6 1,2,3,3,7| 1,1,2,3,3,9 1,1,3,3,5,10
Ks 1 1

K; | L,L,1,1 | 1,1,2,4 | 1,1,2,2,2,4 | 1,1,2,3,4,5 | 1,1,2,2,4,5,5 | 1,2,2,3,5,5,7 | 1,1,2,2,3,5,6,9

2.2.3.2[ 22+6

K \n || Ox/@* | Ox/@" | Ok /w* | Ok /@ | Ok /@ | Ok /@" | Ok /w
K 1 2 1,2 11,2 11,3 1,2,3 1,2,4
Ko 1 1 1 1 1
K, 11 1.3 1,2,4 2.3,4 1,3,3,4 1,1,3,4,4 1,2,3,4,5
Ky 1 1 2
K || LLi| Li4 1224 3.2.2.6 12337 11,2339 1133510
K¢ 1 1
K, | L1,1,1 | ,1,2,4 | 1,1,2,2,2,4 | 1,1,2,3,4,5 | 1,1,2,2,4,5,5 | 1,2,2,3,5,5.7 | 1,1,2,2,3,5,6,9

2.2.3.3[[ 22+2

K\n || Ox/=? ‘ O /@ | Ok /ot ‘ Ok [ ‘ Ok /o® | O /" | O /o
K, 1 2 1,2 11,2 1,13 1,2,3 1,2,4
Ky 1 1 1 1 1
K, 1 1.3 1,2.4 2.3,4 1,3.3.4 1.1,3,4.4 1,2.3.4.5
Ky 1 1 2
K, || LLi1| 1,14 1,2,2,4 2,2,2.6 1,2,3,3,7]| 1,1,2,3,3,9 1,1,3,3,5,10
Ksg 1 1
K, | LL1,1 | L,1,2,4 | 1,1,2,2,2,4 | 1,1,2,3,4,5 | 1,1,2,2,4,5,5 | 1,2,2,3,5,5,7 | 1,1,2,2,3,5,6,9

2.2.3.4 [ 22410

KA\n || Ox/=? ‘ Ok /=® | Ok /ot ‘ Ok /= ‘ Ok /= | Ok /=" | Ok /=®
K 1 2 1,2 11,2 11,3 1,23 1,2.4
Ko 1 1 1 1 1
K3 1,1 1,3 1,2,4 2,3,4 1,3,3,4 1,1,3,4,4 1,2,3,4,5
Ky 1 1 2
K || 1,1,1| 1,14 1,2,2,4 2,2,2,6 1,2,3,3,7| 1,1,2,3,3,9 1,1,3,3,5,10
Ksg 1 1

K| 1,1,1,1 | 1,1,2,4 ] 1,1,2,2,2,4 | 1,1,2,3,4,5 | 1,1,2,2.4,5,5 | 1,2,2,3,5,5,7 | 1,1,2,2,3,5,6,9

Figure 3: The 2-adic K-groups in syntomic weights i = 1,2, 3,4 for the totally ramified degree 2 extensions
of Zs. The 1mfdb [22] label is given in the top left corner together with an Eisenstein polynomial. The data
gives the exponents of the elementary divisors in each degree: for example, the entry 1,3 in the K3 row of
the O/ column means that K3(O /w?;Zo) 2 Z/2 ® Z/8.
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Z/3
0

(Z/3)?

Z/3

Z/81

0

Z/3®Z/27

0

Z/3®7Z/81

0

(Z/27)?

0

(Z/3)* ®Z/243
0

(Z/3)? & Z/729
0

Z/9® Z/2187
0

Kig
Ko
Ko
Koo
Koz
Kas
Kos
Kag
Ko7
Kag
Kag
Ko
Kai
Kas2
K3
Kss
Kss
Kag

(Z/3)3 ®Z/9® Z/243

(Z/3)° ®Z/9® Z/728
Z/3®ZL/2T® Z/6562

(Z/3) ' Z/9a Z/218(7)
(Z/3) ' Z/9a Z/656?
Z/3®Z/IDZL/2TD Z/19682>
(Z/3)* & (Z/9)* & Z/656(1)
(Z/3)* @ (Z2/9)* ® Z/1968g
(Z/9)? ©Z/243 ® Z/1968§

Figure 4: The 3-adic K-groups of Z/9 for syntomic weights 1 < 7 < 18. The contribution of K34(Z/9;Z3) =0
is a (null) group from weight 19.
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