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Quillen introduced higher algebraic K-theory
in [27] and computed the K-groups K∗(Fq) in [26].
Except in low degrees, the computation of the K-
groups of closely related rings, for example Z/4, has
remained out of reach. In this paper, we announce
new methods for computations of K-groups of such
rings and outline new results. A full account will be
given in [3].

We are interested in rings of the form OK/̟n

where K is a finite extension of Qp of degree d, OK

is its ring of integers, and ̟n is the nth power of a
uniformizer ̟. In particular, p ∈ (̟e) where e is the
degree of ramification of K over Qp. When n = 1,
OK/̟n is the residue field k = Fq of OK , where
q = pf for some f , called the residual degree of the
extension.

The problem of computing the K-groups of such
rings, and of finite rings in general, was raised by
Swan in the Battelle proceedings [13, Prob. 20].

1 History

For any field k, K0(k) ∼= Z and K1(k) ∼= k×. Quillen
showed in [26] that if Fq is the finite field with q = pf

elements, then for r > 1,

Kr(Fq) ∼=

{
0 if r is even and

Z/(qi − 1) if r = 2i− 1.

Note in particular that there is no p-torsion in the
K-groups of Fq.

For each prime ℓ and ring R, K(R,Zℓ) denotes the
ℓ-completion of the K-theory spectrum of R. In the
main case of interest to us, namely when R = OK/̟n,
Kr(R) is finitely generated torsion for r > 0 and
Kr(R,Zℓ) is the subgroup of ℓ-primary torsion in
Kr(R).

Gabber’s rigidity theorem [12] implies that if R is
a commutative ring which is henselian with respect
to an ideal I and if ℓ is invertible in R, then

K(R;Zℓ) ≃ K(R/I;Zℓ).

∗Northwestern University
†Universität Münster

Examples of such henselian pairs are the rings of inte-
gers OK as above with the ideal (̟) or the quotients
O/̟n, again with the ideal (̟). It follows that for
ℓ 6= p we have

K∗(O;Zℓ) ∼= K∗(O/̟
n;Zℓ) ∼= K∗(Fq;Zℓ)

so that these ℓ-adic K-groups are all determined by
Quillen’s computation.

The situation of the p-adic K-theory of OK

or OK/̟n is very different. A result of
Dundas–Goodwillie–McCarthy [11] implies that
K(O/̟n;Zp) ≃ τ>0TC(O/̟

n;Zp), while work of
Hesselholt–Madsen [17] and of Panin [25] implies that
K(OK ;Zp) ≃ τ>0TC(OK ;Zp). Here, TC(OK ;Zp)
and TC(OK/̟n;Zp) denote the p-adic topological
cyclic homology spectra of OK and OK/̟n, re-
spectively. This theory is built from topological
Hochschild homology and is closely connected to p-
adic cohomology theories thanks to the work of [6].
These results make the p-adic K-groups amenable to
calculation using so-called trace methods.

Hesselholt and Madsen determine the structure of
TC∗(OK ;Zp) ∼= K∗(OK ;Zp) in [18] and thereby ver-
ify the Quillen–Lichtenbaum conjecture for OK . This
conjecture now follows in general from the proof of
the Bloch–Kato conjecture due to Rost and Voevod-
sky; see for example [14], although the p-adic ranks
of the groups K∗(OK ;Zp) had previously been com-
puted by Wagoner [31].

The Hesselholt–Madsen approach uses logarithmic
de Rham–Witt forms and TR, i.e., the classical ap-
proach to trace method computations. These have re-
cently been revisited by Liu–Wang [21] who describe
K∗(OK;Fp), the K-groups with mod p coefficients, us-
ing new cyclotomic techniques from [6, 24].

The result is that

Kr(OK ;Zp) ∼=





Zp if r = 0,

H1
ét(SpecK,Zp(i)) if r = 2i− 1, and

H2
ét(SpecK,Zp(i)) if r = 2i− 2,

where Zp(i) is the ith Tate twist. These cohomology
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groups are determined by Iwasawa theory: for i > 0,

H1
ét(SpecK,Zp(i)) ∼= Zd

p ⊕ Z/wi,

H2
ét(SpecK,Zp(i)) ∼= Z/wi−1,

where d is the degree of K over Qp and where wi is the
largest pth power pν such that the exponent of the cy-
clotomic Galois group Gal(K(µpν )/K) divides i. The
number wi is the p-part of a number introduced by
Harris–Segal [15], Quillen, and Lichtenbaum in the
setting of the Quillen–Lichtenbaum conjecture. See
Weibel’s book [32, Chap. VI] for more details.

Much less is known about the K-theory of the inter-
mediate rings OK/̟n for 1 < n < ∞. As for fields,
K0(OK/̟n) ∼= Z and K1(OK/̟n) is isomorphic to
the group of units in OK/̟n.

In [10], Dennis and Stein determined the structure
of K2(OK/̟n). No other work we are aware of has
addressed the K-groups of general rings of the form
OK/̟n.

In special situations, more is known. First, every
ring Fq[z]/z

n is of the form OK/̟n for K of ram-
ification degree at least n. The algebraic K-groups
of these truncated polynomial rings have been stud-
ied by Hesselholt–Madsen in [16] using classical trace
method techniques, by Speirs in [28] using the new
approach to TC due to Nikolaus–Scholze [24], and by
Sulyma in [29] using the approach to TC via syntomic
cohomology due to Bhatt–Morrow–Scholze [6] and as
outlined by Mathew in [23].

Second, for unramified extension there are some
results in low degrees. In the unramified case, where
e = 1, OK is the ring W (Fq) of p-typical Witt vectors
of the residue field. Brun [8] determined the K-groups
of Z/pn (i.e., when e = 1 and f = 1) up to degree
p− 3 and Angeltveit [2] determined the K-groups of
Wn(Fq) = W (Fq)/̟

n = W (Fq)/p
n up to degree

2p− 2.

Angeltveit also proved an important quantitative
result:

#K2i−1(Wn(Fq);Zp)

#K2i−2(Wn(Fq);Zp)
= qi(n−1).

Both Brun and Angeltveit use classical trace methods
and the p-adic filtration on the truncated Witt vec-
tors to translate part of the problem to the cases of
truncated polynomial rings where a complete answer
is known.

The cases of K3 of Z/pn or Fq[z]/z
2 were also con-

sidered earlier in [1] using group homology calcula-
tions.

2 New results

As K(O/̟k;Zp) ≃ τ>0TC(O/̟
k;Zp) by [11, 18],

it is enough to determine TC of these rings. To
do so, we use the filtration on TC constructed by
Bhatt–Morrow–Scholze in [6]. If R is a quasisyn-
tomic ring, there is a complete decreasing filtration
F>⋆
synTC(R;Zp) with associated graded pieces

F=i
synTC(R;Zp) ≃ Zp(i)(R)[2i],

where Zp(i)(R) is the weight i syntomic cohomology
of R introduced in [6]. The syntomic complexes pro-
vide a p-adic analogue of the motivic filtration on
K-theory.

As shown in [4], the weight i syntomic cohomology
Zp(i)(R) is concentrated in [0, i+ 1], independent of
R; this means that Hr(Zp(i)(R)) = 0 for r /∈ [0, i+1].
In the special case of OK or OK/̟n, an argument us-
ing the ̟-adic associated graded implies that in fact
the weight i syntomic cohomology is in [0, 2]; more-
over, for i > 1, H0(Zp(i)(OK/̟n)) = 0 so the com-
plex has cohomology concentrated in degrees 1 and
2.

One checks that H2(Zp(1)(OK/̟n)) = 0, so the
spectral sequence associated to the syntomic filtra-
tion on TC collapses at the E1-page for O/̟n (or the
E2-page in the reindexing in [6, Thm. 1.12]). Hence,

TC2i−1(OK/̟n;Zp) ∼= H1(Zp(i)(OK/̟n))

for i > 1 and

TC2i−2(OK/̟n;Zp) ∼= H2(Zp(i)(OK/̟n))

for i > 2. Thus, it makes sense to speak of the syn-
tomic weights of the K-groups of OK/̟n.

Theorem 2.1. For i > 1, if the residue field of OK

has q = pf elements, then there is an explicit cochain

complex

(
Zf(in−1)
p

syn
0−−−→ Z2f(in−1)

p

syn
1−−−→ Zf(in−1)

p

)

quasi-isomorphic to Zp(i)(OK/̟n). The terms are

free Zp-modules of the given ranks in cohomological

degrees 0, 1, and 2.

The proof of the existence of this explicit cochain
complex model of the syntomic complex will be dis-
cussed in Sections 4 and 5.

The groups K∗(OK/̟n) are torsion for ∗ > 0.
In particular, the complex above is exact rationally.
Thus, to find the cohomology of Zp(i)(OK/̟n), and
hence the p-adic K-groups of OK/̟n, it is enough
to compute the matrices syn0 and syn1 and their ele-
mentary divisors.
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Theorem 2.2. The matrices syn0 and syn1 are ef-

fectively computable. Specifically, they can be deter-

mined with enough p-adic precision to guarantee com-

putability of the effective divisors.

We have implemented our algorithm in SAGE [30]
in the case where f = 1, i.e., when the residue field is
Fp. Future work will include an implementation for
general f .

Corollary 2.3. There is an algorithm to determine

the structure of Kr(OK/̟n) for any K, n, and r.

Along the way, we extend the result of Angeltveit
on the quotients of the orders from the unramified
case to any OK/̟n.

Corollary 2.4. For any OK/̟n,

#K2i−1(OK/̟n;Zp)

#K2i−2(OK/̟n;Zp)
= qi(n−1),

where q = pf is the order of the residue field of OK .

This corollary is especially powerful thanks to the
following theorem.

Theorem 2.5 (Even vanishing theorem). If

i > p2

(p−1)2

(
p⌈

n
e ⌉ − 1

)
,

then H2(Zp(i)(OK/̟n)) = 0 and hence

K2i−2(OK/̟n) = 0

if additionally i > 2.

Corollary 2.6. If

i > p2

(p−1)2

(
p⌈

n
e ⌉ − 1

)
,

then #K2i−1(OK/̟k) = qi(n−1) · (qi − 1).

Corollary 2.7. There is an algorithm to compute the

orders of all of the K-groups of O/̟n.

Indeed, Theorem 2.5 and Corollary 2.6 reduce the
problem to the computation of the cohomology of the
syntomic complexes Zp(i)(O/̟

n) for finitely many i:
those satisfying

i < p2

(p−1)2

(
p⌈

n
e ⌉ − 1

)
.

This number grows rather quickly, but improve-
ments are possible and will be described in our forth-
coming work [3].

3 Computations

We present here four example calculations.

3.1 Z/4

The even vanishing theorem holds in syntomic
weights i > 12. In fact, machine computations show
in this case that K2i−2(Z/4) = 0 for all i > 3,
while K2(Z/4) ∼= Z/2. Corollary 2.4 together with
Quillen’s calculation implies that

#K3(Z/4) = 8·(22−1) and #K2i−1(Z/4) = 2i·(2i−1)

for i > 3. This gives the complete calculation of the
orders of all K-groups of Z/4.

The precise structure of the decomposition of p-
primary part of the K-groups into cyclic groups re-
mains unknown to us. Figure 1 displays a table of
the output of our machine computations giving the
groups in syntomic weights i 6 16.

3.2 Chain rings of order 8

A chain ring is a commutative ring whose ideals are
totally ordered with respect to inclusion. Examples
include valuation rings or quotients of valuation rings.
Every finite chain ring is of the form OK/̟n for some
1 6 n < ∞. There are four chain rings of order
8, namely Z/8, Z[21/2]/23/2 (so n = 3 in our nota-
tion), F2[z]/z

3, and F8; see [9]. The 2-adic K-groups
Kn(F8;Z2) vanish for n > 1. Figure 2 displays the
low-degree 2-adic K-groups of the other three chain
rings of order 8.

3.3 Quotients of degree 2 totally ram-

ified 2-adic fields

The lmfdb [22] provides tables of p-adic fields based
on work of Jones–Roberts [19]. There are 6 totally
ramified degree 2 extensions of Q2. In Figure 3, we
give low-degree p-adic K-groups of the quotients of
these fields.

3.4 Z/9

The even vanishing theorem holds in syntomic
weights i > 18. Figure 4 displays a table of the out-
put of our machine computations in syntomic weights
i 6 18. In particular, K4(Z/9) ∼= Z/3 and all other
positive even K-groups vanish. In odd degrees,

#K5(Z/9) = 81·(33−1) and #K2i−1(Z/9) = 3i·(3i−1)

for i > 1, i 6= 3. This gives the complete calculation
of the orders of all K-groups of Z/9.
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K1 Z/2 K17 (Z/2)3 ⊕ (Z/8)2

K2 Z/2 K18 0
K3 Z/8 K19 Z/4⊕ Z/8⊕ Z/32
K4 0 K20 0
K5 Z/8 K21 (Z/2)2 ⊕ (Z/4)2 ⊕ Z/32
K6 0 K22 0
K7 Z/2⊕ Z/8 K23 (Z/2)4 ⊕ Z/4⊕ Z/64
K8 0 K24 0
K9 (Z/2)2 ⊕ Z/8 K25 (Z/2)4 ⊕ Z/4⊕ Z/8⊕ Z/16
K10 0 K26 0
K11 Z/2⊕ Z/32 K27 Z/2⊕ Z/8⊕ Z/16⊕ Z/128
K12 0 K28 0
K13 Z/2⊕ Z/4⊕ Z/16 K29 (Z/2)3 ⊕ (Z/4)2 ⊕ Z/8⊕ Z/32
K14 0 K30 0
K15 (Z/2)3 ⊕ Z/32 K31 (Z/2)6 ⊕ Z/8⊕ Z/128
K16 0 K32 0

Figure 1: The 2-adic K-groups of Z/4 for syntomic weights 1 6 i 6 16; the final zero, K32(Z/4;Z2) = 0, is
a (null) contribution from syntomic weight 17.

Kr Z/8 F2[z]/z
3 Z2[2

1/2]/23/2

K1 Z/4 Z/4 Z/4
K2 Z/2 0 0
K3 Z/4⊕ Z/8 Z/2⊕ Z/8 Z/2⊕ Z/8
K4 Z/2 0 0
K5 Z/2⊕ Z/64 (Z/2)2 ⊕ Z/16 (Z/2)2 ⊕ Z/16
K6 0 0 0
K7 (Z/4)2 (Z/2)2 ⊕ Z/4⊕ Z/16 (Z/2)2 ⊕ Z/4⊕ Z/16
K8 0 0 0
K9 Z/2⊕ Z/4⊕ Z/128 (Z/2)2 ⊕ (Z/4)2 ⊕ Z/16 (Z/2)2 ⊕ (Z/4)2 ⊕ Z/16
K10 0 0 0
K11 Z/8⊕ Z/512 (Z/2)3 ⊕ (Z/4)2 ⊕ Z/32 (Z/2)3 ⊕ (Z/4)2 ⊕ Z/32
K12 0 0 0
K13 (Z/2)2 ⊕ Z/8⊕ Z/512 (Z/2)4 ⊕ Z/4⊕ Z/8⊕ Z/32 (Z/2)4 ⊕ Z/4⊕ Z/8⊕ Z/32
K14 0 0 0
K15 (Z/2)2 ⊕ Z/64⊕ Z/256 (Z/2)4 ⊕ (Z/4)2 ⊕ Z/8⊕ Z/32 (Z/2)4 ⊕ (Z/4)2 ⊕ Z/8⊕ Z/32

Figure 2: The 2-adic K-groups of the displayed chain rings of order 8 for syntomic weights 1 6 i 6 8. Note
that the second and third columns agree. We do not know at present if this continues in all higher weights.
The second column agrees with the calculations of [16] (see for example [28, Lem. 2]).

4 Prismatic cohomology over δ-

rings

Our proofs are motivated by previous work of Krause–
Nikolaus [20] and the approach of Liu–Wang [21].
There are two main new ideas: the notion of pris-
matic cohomology relative to a δ-ring and the system-
atic use of the filtration on the syntomic complexes
induced by the ̟-adic filtration on OK/̟n. Similar
filtrations have also been used by Angeltveit [2] and
Brun [8] in the topological context.

Let A0 = W (Fq)JzK be the δ-ring with δ(z) = 0

and hence ϕ(z) = zp. If E(z) is an Eisenstein
polynomial for OK , then the pair (A0, (E(z))) is a
prism. Bhatt and Scholze show that ∆(OK/̟n)/A0 is
discrete and admits a description as a prismatic en-
velope A0{ ̟n

E(z)}
∧ in the sense of [7, Prop. 3.13]; the

prismatic envelope is an explicit pushout in (p,E(z))-
complete δ-rings over A0.

The main idea is to determine the syntomic
complexes Zp(i)(O/̟

n) by descent along the map
∆O/̟n → ∆(O/̟n)/A0 from absolute prismatic coho-
mology to relative prismatic cohomology. To make
sense of this, we introduce prismatic cohomology rel-
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ative to a δ-ring. Let us outline the definition.
Given an arbitrary derived p-complete δ-ring A and

a derived p-complete A-algebra R, let X = Spf R
and let (X/A)∆ be the opposite of the category of
commutative diagrams

A //

��

B

��

R // B/J,

where (B, J) is a bounded prism and A → B is a map
of δ-rings.

By definition, ∆R/A = RΓ((X/A)∆,O∆), where O∆

is the prismatic structure sheaf, which sends a com-
mutative diagram as above to B. Warning: this
site-theoretic definition should be derived in general,
but gives the correct answer under additional assump-
tions on R, in particular in the case of R = OK/̟n

over the multivariable Breuil–Kisin prisms appearing
in this paper.

Example 4.1. If A = Zp is the initial (derived p-
complete) δ-ring, then ∆R/Zp

recovers absolute pris-
matic cohomology as introduced in [6, 7] and studied
further in [5]. More generally, this is true if A is re-
placed by the ring of p-typical Witt vectors of any
perfect Fp-algebra.

Example 4.2. If (A, I) is a prism and R is an A/I-
algebra, then ∆R/A agrees with derived relative pris-
matic cohomology as studied in [7].

Now, consider the augmented cosimplicial diagram
A• where A−1 = W (Fq), A0 = W (Fq)JzK, and
As = W (Fq)Jz0, . . . , zsK. This is a completed descent
complex for W (Fq) → W (Fq)[z].

In the cosimplicial diagram

W (Fq) A0 A1 A2 · · · ,

the arrows are all δ-ring maps and the entire diagram
admits a map to OK sending each generator zj to
̟. As a result, for any OK-algebra R, there is an
induced augmented cosimplicial diagram in prismatic
cohomology of R relative to the δ-rings A•.

Theorem 4.3. The augmented cosimplicial diagram

∆R ∆R/A0 ∆R/A1 ∆R/A2 · · ·

is a limit diagram for R = OK/̟n.

Thus, the absolute prismatic cohomology of an OK-
algebra, such as OK/̟n, can be computed by descent
using the cosimplicial diagram above.

This does not make sense when speaking of pris-
matic cohomology as defined in [7] because there is
no compatible way to equip the entire cosimplicial di-
agram with the structure of a cosimplicial prism. For
example, if E(z) is an Eisenstein polynomial making
A0 = W (Fq)JzK into a prism, both E(z0) and E(z1)
are distinguished elements in A1 = W (Fq)Jz0, z1K
making it into a prism in two different ways.

Proposition 4.4. For any s > 0, the relative pris-

matic cohomology ∆(OK/̟n)/As is discrete and is iso-

morphic to a prismatic envelope

As

{
zn0

E(z0)
,
z1 − z0
E(z0)

, . . . ,
zn − z0
E(z0)

}∧

.

The proposition follows immediately from Exam-
ple 4.2. Note that while prismatic cohomology rel-
ative to δ-rings is functorial in arbitrary maps of δ-
rings, the presentation of a given term ∆R/As as a
prismatic envelope depends on the choice of a prism
structure J on As making R into an As/J-algebra.
In the theorem above, we choose to make As into a
prism with respect to the ideal (E(z0)).

It follows that the cosimplicial diagram appearing
in Theorem 4.3 gives a resolution of ∆OK/̟n as the
limit of a cosimplicial diagram of discrete δ-rings.

To give the main idea of the rest of the argument,
we illustrate it here for prismatic cohomology instead
of the syntomic complexes. The absolute prismatic
cohomology of a quasisyntomic ring R admits a Ny-
gaard filtration N>⋆

∆R; Nygaard completion of pris-
matic cohomology is written ∆̂R.

Proposition 4.5. The Nygaard-complete absolute

prismatic cohomology groups Hr(∆̂OK/̟n) vanish for

r 6= 0, 1.

The proposition can be proved by computing di-
rectly with a Nygaard-complete, Frobenius-twisted
variant of the cosimplicial diagram in Theorem 4.3 us-
ing the prismatic envelopes of Proposition 4.4. Alter-
natively, one can argue as follows: the ̟-adic filtra-
tion on OK/̟n induces a filtration on ∆OK/̟n whose

completion agrees with ∆̂OK/̟n , and whose associ-
ated graded is the same as that of the corresponding
filtration on ∆̂Fq[z]/zn . This associated graded can be
described using crystalline cohomology and vanishes
away from cohomological degrees 0, 1. Thus, by dévis-
sage and completeness, the same vanishing holds for
∆̂OK/̟n .

It follows from the proposition that the cochain
complex A0 → A1 → A2 → · · · associated to the
cosimplicial abelian group ∆̂(OK/̟n)/A• is exact in de-

grees > 2. This reduces the computation of ∆̂OK/̟n
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to a much smaller computation involving prismatic
envelopes of OK/̟n relative to A0, A1, and A2.

However, we are interested not in the absolute pris-
matic cohomology of OK/̟n but rather in its syn-
tomic cohomology. Relative syntomic cohomology is
defined in the setting of prismatic cohomology rela-
tive to a δ-ring. We first have to explain the Nygaard
filtration and the Breuil–Kisin twist, following [7, 5].

The Frobenius twist ∆
(1)
R/A is defined to be ∆R/A⊗A

ϕA, the base-change of ∆R/A along the Frobenius
map on A. The Frobenius twist admits a map

∆
(1)
R/A → ∆R/A and the Nygaard filtration N>⋆

∆
(1)
R/A

is a filtration which is taken by this map to the I-
adic filtration on ∆R/A. If ∆R/A is discrete (as in our
examples of interest) then the Nygaard filtration is
simply the preimage of the I-adic filtration.

Given a prism (A, I), let Ir be the invertible A-
module I · ϕ(I) · · ·ϕr−1(I). If (A, I) is transversal,
meaning that A/I is p-torsion-free, then the canoni-
cal map Ir/I

2
r → Ir−1/I

2
r−1 is divisible by p and the

induced map Ir/I
2
r

1/p
−−→ Ir−1/I

2
r−1 is surjective. The

Breuil–Kisin twist is defined to be

A{1} = lim

(
· · · → I3/I

2
3

1/p
−−→ I2/I

2
2

1/p
−−→ I/I2

)
.

This is an invertible A-module. For a general A-
module M , let M{1} = M ⊗A A{1}.

The relative syntomic cohomology of R over a δ-
ring A is

Zp(i)(R/A) = fib
(
N

>i
∆
(1)
R/A{i}

can−ϕ
−−−−→ ∆

(1)
R/A{i}

)
,

where ϕ is a Frobenius which exists on N>i
∆
(1)
R/A{i}.

Note that in [6], the syntomic complexes are defined
using Nygaard complete prismatic cohomology; how-
ever, the two definitions agree by [6, Lem. 7.22] or [4,
Cor. 5.31].

It follows along the lines of Theorem 4.3 that, for
each i > 0, the limit of the cosimplicial diagram

Zp(i)(R/A0) Zp(i)(R/A1) · · ·

is equivalent to Zp(i)(R) when R = OK/̟k.
The fact that the Nygaard-complete absolute pris-

matic cohomology ∆̂OK/̟n is concentrated in coho-
mological degrees 0, 1 implies that Zp(i)(OK/̟n) is
concentrated in cohomological degrees 0, 1, 2. In fact,
it is not hard to show that, for i > 1, each rela-
tive syntomic complex Zp(i)((OK/̟n)/As) is concen-
trated in cohomological degree 1. Thus, the spectral
sequence associated to the limit diagram

Zp(i)(OK/̟n) ≃ lim
∆

Zp(i)((OK/̟n)/A•)

implies that Zp(i)(OK/̟n) is concentrated in coho-
mological degrees 1, 2 for i > 1.

By the same spectral sequence, to determine
Zp(i)(OK/̟n), and hence K2i−2(OK/̟n;Zp) and
K2i−1(OK/̟n;Zp), it is enough to compute the co-
homology of the complex

H1(Zp(i)(R/A0)

→ ker
(
H1(Zp(i)(R/A1)) → H1(Zp(i)(R/A2))

)

where R = OK/̟n. In the next section, we explain
how to use the ̟-adic filtration to reduce this to a
finite problem.

5 The syntomic matrices

In the cosimplicial diagram A•, each term is a fil-
tered δ-ring, where in As = W (k)Jz0, . . . , zsK the
weight of zj is 1. A filtered δ-ring is a δ-ring A
with a complete and separated decreasing filtration
F>⋆A such that δ(F>iA) ⊆ F>piA. Since each
A• → OK/̟n is a filtered map where OK/̟n is given
the ̟-adic filtration, all resulting invariants, such as
prismatic or syntomic cohomology complexes admit
induced filtrations, which we will write for instance
as F>⋆Zp(i)((OK/̟n)/A•).

Theorem 5.1. For b > in− 1 and i > 1, the natural

maps

F[1,b]Zp(i)(OK/̟n)

��

Zp(i)(OK/̟n) // F[0,b]Zp(i)(OK/̟n)

are equivalences.

The right-hand arrow is easy to handle because
F=0Zp(i)(OK/̟n) ≃ Zp(i)(Fq) ≃ 0 for i > 0. For
the left-hand arrow, we argue by an explicit study of
the interaction between the F-filtration and the Ny-
gaard filtration on each ∆(OK/̟n)/A• .

The entire problem has now been reduced to a fi-
nite computation. Set R = OK/̟n and consider the
commutative diagram

F[1,b]N>i
∆
(1)
R/A0{i} //

��

F[1,b]N>i
∆
(1)
R/A1{i}

��

F[1,b]
∆
(1)
R/A0{i} // F[1,b]

∆
(1)
R/A1{i}.

All four terms are finitely generated free Zp-modules.
The vertical fibers are Zp(i)(R/A0) and Zp(i)(R/A1),
respectively.
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Our approach to the computation avoids the
more traditional approach of computing either
TR(OK/̟n)F=1 or computing TC(OK/̟n) as the

fiber of TC−(OK/̟n)
can−̟
−−−−→ TP(OK/̟n). It

would nevertheless be very interesting to understand
TP(OK/̟n).

Since the complexes F[1,b]N>i
∆R{i} and

F[1,b]
∆R{i} are torsion for i > 1 by another use

of the ̟-adic filtration, one can replace

ker
(
F
[1,b]

N
>i

∆
(1)
R/A1{i} → F

[1,b]
N

>i
∆
(1)
R/A2{i}

)

with the saturation of the image of the top hor-
izontal map, where by saturation we mean the
sub-Zp-module consisting of elements x such that
pNx is in the image for some N , and similarly for

ker
(
F[1,b]

∆
(1)
R/A1{i} → F[1,b]

∆
(1)
R/A2{i}

)
. Write S0 and

S1 for the saturations. The resulting commutative
square

F[1,b]N>i
∆
(1)
R/A0{i} //

��

S0

��

F[1,b]
∆
(1)
R/A0{i} // S1

consists of free Zp-modules of rank bf and the to-
tal cohomology computes F[1,b]Zp(i)(R) and hence
Zp(i)(R) = Zp(i)(OK/̟n) for i > 1.

To conclude, we use explicit polynomial presenta-
tions of the relevant prismatic envelopes as well as
Breuil–Kisin orientations to give explicit bases of all
four terms and to compute the maps between them.
Taking b = in− 1, the result is the matrices syn0 and
syn1 and the complex appearing in Theorem 2.1.
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2.2.2.1 z2 + 2z + 2
Kr\n OK/̟2 OK/̟3 OK/̟4 OK/̟5 OK/̟6 OK/̟7 OK/̟8

K1 1 2 1, 2 1, 1, 2 1, 2, 2 2, 2, 2 2, 2, 3
K2 1 1 2 2 2
K3 1, 1 1, 3 1, 2, 4 2, 3, 4 1, 3, 3, 5 1, 1, 3, 3, 6 1, 1, 3, 4, 7
K4 1 1 2
K5 1, 1, 1 1, 1, 4 1, 2, 2, 4 2, 2, 2, 6 1, 2, 2, 4, 7 1, 1, 2, 2, 4, 9 1, 2, 2, 2, 6, 10
K6 1 1
K7 1, 1, 1, 1 1, 1, 2, 4 1, 1, 1, 2, 3, 4 1, 1, 1, 4, 4, 5 1, 1, 1, 2, 5, 5, 5 1, 1, 2, 3, 4, 7, 7 1, 1, 1, 2, 3, 4, 8, 9

2.2.2.2 z2 + 2z − 2
Kr\n OK/̟2 OK/̟3 OK/̟4 OK/̟5 OK/̟6 OK/̟7 OK/̟8

K1 1 2 1, 2 1, 1, 2 1, 2, 2 1, 2, 3 1, 3, 3
K2 1 1 1 1 1
K3 1, 1 1, 3 1, 2, 4 2, 3, 4 1, 3, 3, 4 1, 1, 3, 3, 5 1, 1, 3, 4, 6
K4 1 1 2
K5 1, 1, 1 1, 1, 4 1, 2, 2, 4 2, 2, 2, 6 1, 2, 2, 4, 7 1, 1, 2, 2, 4, 9 1, 2, 2, 2, 6, 10
K6 1 1
K7 1, 1, 1, 1 1, 1, 2, 4 1, 1, 1, 2, 3, 4 1, 1, 1, 4, 4, 5 1, 1, 1, 2, 5, 5, 5 1, 1, 2, 3, 4, 7, 7 1, 1, 1, 2, 3, 4, 8, 9

2.2.3.1 z2 + 14
Kr\n OK/̟2 OK/̟3 OK/̟4 OK/̟5 OK/̟6 OK/̟7 OK/̟8

K1 1 2 1, 2 1, 1, 2 1, 1, 3 1, 2, 3 1, 2, 4
K2 1 1 1 1 1
K3 1, 1 1, 3 1, 2, 4 2, 3, 4 1, 3, 3, 4 1, 1, 3, 4, 4 1, 2, 4, 4, 4
K4 1 1 2
K5 1, 1, 1 1, 1, 4 1, 2, 2, 4 2, 2, 2, 6 1, 2, 3, 3, 7 1, 1, 2, 3, 3, 9 1, 1, 3, 3, 5, 10
K6 1 1
K7 1, 1, 1, 1 1, 1, 2, 4 1, 1, 2, 2, 2, 4 1, 1, 2, 3, 4, 5 1, 1, 2, 2, 4, 5, 5 1, 2, 2, 3, 5, 5, 7 1, 1, 2, 2, 3, 5, 6, 9

2.2.3.2 z2 + 6
Kr\n OK/̟2 OK/̟3 OK/̟4 OK/̟5 OK/̟6 OK/̟7 OK/̟8

K1 1 2 1, 2 1, 1, 2 1, 1, 3 1, 2, 3 1, 2, 4
K2 1 1 1 1 1
K3 1, 1 1, 3 1, 2, 4 2, 3, 4 1, 3, 3, 4 1, 1, 3, 4, 4 1, 2, 3, 4, 5
K4 1 1 2
K5 1, 1, 1 1, 1, 4 1, 2, 2, 4 2, 2, 2, 6 1, 2, 3, 3, 7 1, 1, 2, 3, 3, 9 1, 1, 3, 3, 5, 10
K6 1 1
K7 1, 1, 1, 1 1, 1, 2, 4 1, 1, 2, 2, 2, 4 1, 1, 2, 3, 4, 5 1, 1, 2, 2, 4, 5, 5 1, 2, 2, 3, 5, 5, 7 1, 1, 2, 2, 3, 5, 6, 9

2.2.3.3 z2 + 2
Kr\n OK/̟2 OK/̟3 OK/̟4 OK/̟5 OK/̟6 OK/̟7 OK/̟8

K1 1 2 1, 2 1, 1, 2 1, 1, 3 1, 2, 3 1, 2, 4
K2 1 1 1 1 1
K3 1, 1 1, 3 1, 2, 4 2, 3, 4 1, 3, 3, 4 1, 1, 3, 4, 4 1, 2, 3, 4, 5
K4 1 1 2
K5 1, 1, 1 1, 1, 4 1, 2, 2, 4 2, 2, 2, 6 1, 2, 3, 3, 7 1, 1, 2, 3, 3, 9 1, 1, 3, 3, 5, 10
K6 1 1
K7 1, 1, 1, 1 1, 1, 2, 4 1, 1, 2, 2, 2, 4 1, 1, 2, 3, 4, 5 1, 1, 2, 2, 4, 5, 5 1, 2, 2, 3, 5, 5, 7 1, 1, 2, 2, 3, 5, 6, 9

2.2.3.4 z2 + 10
Kr\n OK/̟2 OK/̟3 OK/̟4 OK/̟5 OK/̟6 OK/̟7 OK/̟8

K1 1 2 1, 2 1, 1, 2 1, 1, 3 1, 2, 3 1, 2, 4
K2 1 1 1 1 1
K3 1, 1 1, 3 1, 2, 4 2, 3, 4 1, 3, 3, 4 1, 1, 3, 4, 4 1, 2, 3, 4, 5
K4 1 1 2
K5 1, 1, 1 1, 1, 4 1, 2, 2, 4 2, 2, 2, 6 1, 2, 3, 3, 7 1, 1, 2, 3, 3, 9 1, 1, 3, 3, 5, 10
K6 1 1
K7 1, 1, 1, 1 1, 1, 2, 4 1, 1, 2, 2, 2, 4 1, 1, 2, 3, 4, 5 1, 1, 2, 2, 4, 5, 5 1, 2, 2, 3, 5, 5, 7 1, 1, 2, 2, 3, 5, 6, 9

Figure 3: The 2-adic K-groups in syntomic weights i = 1, 2, 3, 4 for the totally ramified degree 2 extensions
of Z2. The lmfdb [22] label is given in the top left corner together with an Eisenstein polynomial. The data
gives the exponents of the elementary divisors in each degree: for example, the entry 1, 3 in the K3 row of
the OK/̟3 column means that K3(OK/̟3;Z2) ∼= Z/2⊕ Z/8.
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K1 Z/3 K19 (Z/3)3 ⊕ Z/9⊕ Z/243
K2 0 K20 0
K3 (Z/3)2 K21 (Z/3)3 ⊕ Z/9⊕ Z/729
K4 Z/3 K22 0
K5 Z/81 K23 Z/3⊕ Z/27⊕ Z/6561
K6 0 K24 0
K7 Z/3⊕ Z/27 K25 (Z/3)4 ⊕ Z/9⊕ Z/2187
K8 0 K26 0
K9 Z/3⊕ Z/81 K27 (Z/3)4 ⊕ Z/9⊕ Z/6561
K10 0 K28 0
K11 (Z/27)2 K29 Z/3⊕ Z/9⊕ Z/27⊕ Z/19683
K12 0 K30 0
K13 (Z/3)2 ⊕ Z/243 K31 (Z/3)4 ⊕ (Z/9)2 ⊕ Z/6561
K14 0 K32 0
K15 (Z/3)2 ⊕ Z/729 K33 (Z/3)4 ⊕ (Z/9)2 ⊕ Z/19683
K16 0 K34 0
K17 Z/9⊕ Z/2187 K35 (Z/9)2 ⊕ Z/243⊕ Z/19683
K18 0 K36 0

Figure 4: The 3-adic K-groups of Z/9 for syntomic weights 1 6 i 6 18. The contribution of K36(Z/9;Z3) = 0
is a (null) group from weight 19.
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