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DERIVED MACKEY FUNCTORS AND Cpn-EQUIVARIANT COHOMOLOGY

DAVID AYALA, AARON MAZEL-GEE, AND NICK ROZENBLYUM

Abstract. We establish a novel approach to computing G-equivariant cohomology for a finite

group G, and demonstrate it in the case that G = Cpn .

For any commutative ring spectrum R, we prove a symmetric monoidal reconstruction theorem

for genuine G-R-modules, which records them in terms of their geometric fixedpoints as well

as gluing maps involving their Tate cohomologies. This reconstruction theorem follows from a

symmetric monoidal stratification (in the sense of [AMGR]); here we identify the gluing functors

of this stratification in terms of Tate cohomology.

Passing from genuine G-spectra to genuine G-Z-modules (a.k.a. derived Mackey functors)

provides a convenient intermediate category for calculating equivariant cohomology. Indeed, as

Z-linear Tate cohomology is far simpler than S-linear Tate cohomology, the above reconstruction

theorem gives a particularly simple algebraic description of genuine G-Z-modules. We apply

this in the case that G = Cpn for an odd prime p, computing the Picard group of genuine G-Z-

modules (and therefore that of genuine G-spectra) as well as the RO(G)-graded and Picard-graded

G-equivariant cohomology of a point.
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0. Introduction

0.1. Overview. Let G be a finite group. LetX be a topological space equipped with an action byG.

There is a natural notion of G-equivariant cohomology of X , whose output is a collection of Mackey

functors of abelian groups (see e.g. [GM95a] for a motivated account of equivariant cohomology; see

also Observation 1.9 below for a recollection of Mackey functors that is particularly suited to our

purposes):

HV
G(X) ∈ MackG(Ab) ,

indexed by a virtual representation V ∈ RO(G).1 (The RO(G)-grading is of central importance. For

instance, it plays a key role in equivariant duality [Wir74, LMM81, CW92].) Equivariant cohomology

is quite difficult to compute, even in the case that X is a single point.

In this paper, we establish a novel approach to computing equivariant cohomology. To explain

our approach, let us briefly outline a perspective on why equivariant cohomology is more difficult

than non-equivariant cohomology.

Recall that ordinary cohomology of a space takes values in abelian groups; it can be computed

as the cohomology of a cochain complex of abelian groups. From the point of view of∞-categories,

this can be explained by the identification of the Z-linearization of the stable homotopy∞-category

as the derived ∞-category of its heart:

ModZ := Z⊗ Sp ≃ D(Ab) ≃ D
(
(Z⊗ Sp)♥

)
.

As a result, standard homological algebra tools are directly applicable for computations of ordinary

cohomology.

Now, consider the Z-linearization Z⊗SpgG of the equivariant stable homotopy∞-category SpgG;

following Observation 1.9, we denote this by the equivalent ∞-category

MackG(ModZ) ≃ Z⊗ SpgG .

Now, equivariant cohomology takes values in the category MackG(Ab) of Mackey functors of abelian

groups, which is the heart of MackG(ModZ):

MackG(Ab) ≃ MackG(ModZ)
♥ .

1The usual integer grading is given by multiples of the trivial representation.
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However, MackG(ModZ) is not the derived ∞-category of its heart:

MackG(ModZ) := Z⊗ SpgG 6≃ D
(
MackG(Ab)

)
≃ D

(
MackG(ModZ)

♥
)
.

In this sense, given an equivariant spectrum, it is not possible to systematically associate a cochain

complex of Mackey functors that computes its equivariant cohomology. Therefore, standard homo-

logical algebra tools do not obviously apply for computations of equivariant cohomology.

The triangulated category corresponding to the stable ∞-category MackG(ModZ) was first con-

sidered by Kaledin purely algebraically in [Kal11], under the name derived Mackey functors. He

suggested that it should receive a functor from SpgG compatible with both geometric and categorical

fixedpoints; this is essentially the content of [Kal11, Conjectures 8.10 and 8.11]. The work in this

paper may be seen as resolving and applying those conjectures.

From our point of view, it is MackG(ModZ) that is a natural intermediate target for equivariant

cohomology. While it is not the derived ∞-category of its heart, we prove as Theorem A below

that it can be constructed (in a precise sense) from finitely many ∞-categories that are the derived

∞-categories of their hearts. Using this, we can import tools from standard homological algebra for

computations in the equivariant stable homotopy category.

Specifically, we apply the theory of stratifications as developed in [AMGR]: for X a presentable

stable∞-category, a stratification of it over a poset P is a collection {Zp ⊆ X}p∈P of full subcategories

satisfying certain natural conditions. Given a stratification of X, we can consider the “associated

graded” stable∞-categories {Xp}p∈P. We prove as [AMGR, Theorem A] that, in favorable situations

such as when the poset P is finite, X can be reconstructed from its associated graded ∞-categories

together with, for each p < q in P, a gluing functor

Xp

Γp
q
−→ Xq ,

as well as coherence data.

In [AMGR, Theorem E], we constructed a stratification of the ∞-category SpgG of genuine G-

spectra by the poset PG of conjugacy classes of subgroups ofG, called the geometric stratification .

There, we identified the associated graded ∞-categories as

(SpgG)[H] ≃ Fun(BW(H), Sp) ,

where W(H) := N(H)/H is the Weyl group (i.e. the normalizer of H in G modulo H). Moreover,

the projection functors to the associated gradeds

SpgG
ΦH

−−→ (SpgG)[H] ≃ Fun(BW(H), Sp)

are given by geometric H-fixedpoints. In particular, it follows that categorical fixedpoints can be

expressed in terms of geometric fixedpoints and gluing data.

In fact, the stratification of SpgG is a symmetric monoidal stratification, so that we are also able

to describe the symmetric monoidal structure of SpgG in terms of those of its strata and gluing

functors [AMGR, Theorem C].

However, in [AMGR], we did not give an explicit general formula for the gluing functors of this

stratification. Such a general formula is supplied by Theorem A below in terms of a variant of Tate

cohomology.
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In fact, we prove Theorem A in somewhat more generality. For R a presentable stable∞-category,

consider the tensor product in PrL

R
gG := R⊗ SpgG ≃ MackG(R)

(again see Observation 1.9 for the equivalence). The stratification of SpgG over PG induces a

stratification of RgG over PG, with associated graded ∞-categories

MackG(R)[H] ≃ Fun(BW(H),R) .

In particular, taking R = ModZ, we have that the Z-linearization of the stable equivariant homotopy

∞-category MackG(ModZ) has a stratification by PG, with associated graded∞-categories given by

MackG(ModZ)[H] ≃ Fun(BW(H),ModZ) ≃ D(RepW(H)(Ab)) ,

the derived ∞-category of abelian groups with an action by W(H).

Now, equivariant cohomology is by definition the cohomology of categorical fixedpoints of genuine

G-spectra. By definition, the Z-linearization functor

SpgG −→ MackG(ModZ) (0.1)

is compatible with both geometric and categorical fixedpoints. In practice, geometric fixedpoints

are much easier to compute than categorical fixedpoints. In particular, the equivariant suspension

spectrum functor takes fixedpoints to geometric fixedpoints, and moreover the geometric fixedpoints

functors are symmetric monoidal.

The compatibility of the Z-linearization functor with both types of fixedpoint functors implies

that the passage from geometric fixedpoints to categorical fixedpoints can be performed in the much

simpler context of derived Mackey functors. Ultimately, this yields an algebraic description of the

equivariant cohomology of a genuine G-space in terms of cochains on its fixedpoint spaces.

By contrast, a standard technique in equivariant homotopy theory is to compute equivariant

cohomology using resolutions of Mackey functors (see e.g. [Lew88, Gre92, Zen]). This is tantamount

to performing homological algebra in the derived∞-categoryD(MackG(Ab)) of the abelian category

MackG(Ab) of Mackey functors, which does not enjoy the favorable properties of MackG(ModZ).

Our first main result explicitly identifies the gluing functors of this stratification of MackG(R)

in the case that R is presentably symmetric monoidal and rigidly-compactly generated2 (such as

R = ModZ and R = Sp).

Theorem A (Theorem 6.6). For any containment H ⊂ K between subgroups of G, the correspond-

ing gluing functor

Fun(BW(H),R)
ΓH
K−−−→ Fun(BW(K),R)

of the stratification of MackG(R) evaluates as

ΓH
K : E 7−→

⊕

[g]∈W(H)\C(H,K)/W(K)

Ind
W(K)

(N(H)∩N(gKg−1))/(gKg−1)E
τ(gKg−1/H) ,

where

• C(H,K) denotes a certain subset of G/K that carries a natural (W(H),W(K))-bimodule

structure (Notation 6.4),

2That is, R is a compactly generated presentably symmetric monoidal stable ∞-category whose compact and

dualizable objects coincide.
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• (−)τ(gKg−1/H) denotes a variant of Tate cohomology (Definition 4.5), and

• we implicitly use the isomorphism W(gKg−1)
∼=
−→W(K).

Remark 0.1. If the finite groupG is abelian, the above gluing functors simplify as ΓH
K : E 7→ Eτ(K/H).

Note that the functors (−)τ(gKg−1/H) do not preserve colimits, and as a result the gluing functors

of the stratification of MackG(R) are not given by tensoring those of SpgG with R.

The decisive advantage of working with Mod
gG
Z is that its stratification is dramatically simpler

than that of SpgG. In addition to the associated gradeds being the derived ∞-categories of their

hearts, the gluing functors are substantially simpler. Indeed, the failure of the gluing functors of

Mod
gG
Z to be tensored up from those of SpgG is a feature, and not a bug: Tate cohomology in ModZ

is far simpler than Tate cohomology in Sp. In the case that G = Cpn , this simplicity is especially

pronounced, due additionally to the Tate vanishing results of Nikolaus–Scholze [NS18].3 All in all,

we obtain the following.

Theorem B (Theorem 7.2). The stratification of Mod
gCpn

Z determines an equivalence between pre-

sentably symmetric monoidal stable ∞-categories:

Mod
gCpn

Z

∼
−→ lim




ModZ[Cpn ] Ar
(
ModZ[Cpn−1 ]

)
· · · · · · Ar (ModZ)

ModZ[Cpn−1 ] ModZ[Cpn−2 ] · · · ModZ

(−) tCp

ev1 (−) tCp
◦ev0

ev1
(−) tC

p
◦ev

0

ev1




,

where ModZ[C
pk

] is the derived ∞-category D(RepC
pk
(Ab)). In particular, a genuine Cpn-Z-module

E ∈ Mod
gCpn

Z is equivalent to the data of

• its geometric Cps -fixedpoints

Es := ΦCps (E) ∈ ModZ[Cpn−s ]

for all 0 ≤ s ≤ n, along with

• its gluing maps

Es

γE
s−1,s
−−−−→ (Es−1)

tCp

in ModZ[Cpn−s−1 ] for all 1 ≤ s ≤ n.

Moreover, this description is compatible with symmetric monoidal structures.

Theorem B is closely related to [NS18, Corollary II.4.7] (see also [NS18, Remark II.4.8]).

3Whereas in general the gluing functors of a stratification only laxly compose, in that of Mod
gCpn

Z
they strictly

compose. More than that, all of its nontrivial composite gluing functors are zero. Neither of these facts is the case for

the stratification of SpgCpn . These facts support a relatively simple description of the ∞-category Mod
gCpn

Z
, which

we articulate as Theorem B.
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0.2. Computations. As a demonstration of our general machinery, for G = Cpn with p an odd

prime, we compute:

(1) the Picard group Pic(MackG(ModZ)) and the homomorphism

RO(G) −→ Pic(MackG(ModZ)) ,

as well as

(2) the Pic(MackG(ModZ))-graded cohomology of a point (and hence in particular the RO(G)-

graded cohomology of a point).

In fact, the recent paper [Kra] proves that the homomorphism

Pic(SpgG)
Pic(0.1)
−−−−−→ Pic(MackG(ModZ))

is an isomorphism. Consequently, our computations explicitly identify the Picard group of SpgCpn .

For comparison, we survey some analogous existing computations in §0.4.

Although the RO(G)-grading of equivariant cohomology has become standard in the literature,

it is more natural to grade over the Picard group Pic(Mod
gG
Z ) of genuine G-Z-modules.4 Let X be

a G-space. For a Picard element L ∈ Pic(Mod
gG
Z ) and a subgroup H ⊆ G, we write

CL
G(X)(H) := hom

Mod
gG
Z

(Σ∞
G (X ×G/H)+ ⊗ Z, L ⊗Z Z) ∈ ModZ

for the indicated hom-Z-module (where we consider Z ∈ MackG(Ab) ⊂ MackG(ModZ) ≃ Mod
gG
Z ).

Using this, we define Pic(Mod
gG
Z )-graded equivariant cohomology as

Hi+L
G (X)(H) := π−i(C

L
G(X)(H)) ∈ Ab .

This recovers RO(G)-graded equivariant cohomology via pullback along the composite abelian group

homomorphism

RO(G)
V 7−→SV

−−−−−→ Pic(SpgG)
(−)⊗Z
−−−−→ Pic(Mod

gG
Z ) . (0.2)

We have the following two computational results. First, we compute the Picard group of genuine

Cpn -Z-modules.

Theorem C (Theorems 8.4 and 9.6). Let p be an odd prime. There is an isomorphism between

abelian groups:

Z⊕(n+1) ⊕

(
n⊕

s=1

(Z/pn−s+1)×/{±1}

)
∼=
−−→ Pic(Mod

gCpn

Z ) .

Furthermore, the resulting homomorphism

RO(Cpn)
(0.2)
−−−−→ Pic(Mod

gCpn

Z ) ∼= Z⊕(n+1) ⊕

(
n⊕

s=1

(Z/pn−s+1)×/{±1}

)

is given on irreducibles (which freely generate RO(Cpn)) by

ρtriv 7−→ (e0,~1) and ρj 7−→

(
2e0 − eν(j)+1 ,

(
j

pν(j)

)

ν(j)+1

)
,

where

4Recall the isomorphism Pic(SpgG)
∼=
−→ Pic(Mod

gG
Z

) of [Kra], which implies that this is equivalent to grading over

Pic(SpgG).
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• ρtriv denotes the trivial (1-dimensional) representation,

• ρj denotes the 2-dimensional representation in which the generator of Cpn acts by rotation

by 2πj/pn (for 1 ≤ j < pn),

• {e0, . . . , en} ⊂ Z⊕(n+1) is the standard basis,

• ~1 ∈
⊕n

s=1(Z/p
n−s+1)×/{±1} is the identity element,

• ν(j) is the p-adic valuation of j (i.e., ν(j) is the largest integer such that pν(j) divides j),

•
(

j
pν(j)

)
ν(j)+1

∈
⊕n

s=1(Z/p
n−s+1)×/{±1} is the image of the element j

pν(j) under the canon-

ical homomorphism (Z/pn−(ν(j)+1)+1)× →
⊕n

s=1(Z/p
n−s+1)×/{±1}.

Additionally, we compute the Pic(Mod
gCpn

Z )-graded cohomology of a point.

Theorem D (Theorem 11.5). Let p be an odd prime. Denote by D(Ab) the (ordinary) derived

category of abelian groups. For each L ∈ Pic(Mod
gCpn

Z ), there is an explicit chain-level description

of the D(Ab)-valued Mackey functor

CL
Cpn

(pt) ∈ MackCpn
(D (Ab))

whose ith cohomology is the (ordinary) Mackey functor Hi+L
Cpn

(pt).

Even in the special case that n = 1 (and restricting to RO(Cp)), Theorem D gives a new proof

of Stong’s classical calculation of the RO(Cp)-graded cohomology of a point. We refer the reader to

§0.4 for a discussion of related literature.

0.3. Miscellaneous remarks.

Remark 0.2. A key ingredient in the proof of Theorem D is an explicit description of the constant

Mackey functor Z ∈ Mod
gCpn

Z in terms of Theorem B, i.e. in terms of its geometric Cpr -fixedpoints

and gluing maps (Proposition 10.4). As a consequence of this computation, we obtain an equivalence

ΦCp(Z) ≃ THH(Fp) ,

of which we would be very interested to have a conceptual description (see Corollary 10.8 and

Remark 10.9).

Remark 0.3. Fix any 1 ≤ s ≤ n. The summand (Z/pn−s+1)×/{±1} ⊆ Pic(Mod
gCpn

Z ) appearing in

Theorem C arises from the homogeneous invertible elements of the ring π∗(Z
tCp )hCpn−s . Indeed, for

any commutative ring R, there is a commutative monoid homomorphism

Z×

n∏

s=1

(π∗(R
tCp)hCpn−s )×homog −→ π0(ι0(Mod

gCpn

R ))

given by the evident generalization of Notation 8.6 (see also Observation 8.7). In the case that

R = Z, this surjects onto the Picard group Pic(Mod
gCpn

Z ) ⊆ π0(ι0(Mod
gCpn

Z )) as a result of the fact

that every Picard element of Mod
hCpn−s

Z is trivial up to de/suspension.
7



Remark 0.4. Our methods allow for the computation of Pic(Mod
gG
R ) for more general finite groups

G and commutative ring spectra R ∈ CAlg(Sp) (generalizing Theorem C).5 For instance, in the case

that R = Q, we have that

Pic(Mod
gCpn

Q ) ∼=

n∏

s=0

Pic(Mod
hCpn−s

Q ) ∼= Z⊕(n+1)

as a result of the fact that the Tate construction vanishes on Q-modules.

Likewise, our methods allow for more general computations in equivariant cohomology (general-

izing Theorem D). Specifically, one can vary the (finite) group G, the G-space, and the coefficients.

Moreover, we expect that one can use our techniques to describe the multiplicative structure (i.e.

the Green functor) on equivariant cohomology. This would involve a more careful analysis of the

multiplicative structure of Tate cohomology than is done in this paper.

We would be very interested to see any such computations along these lines.

Remark 0.5. Although the theory of stratifications developed in [AMGR] is a crucial ingredient in

our work here, it does not play a major role from an expositional point of view: its main consequence

that we use here is the explicit description of genuine Cpn -Z-modules (as a symmetric monoidal ∞-

category) of Theorem B. So, we use the theory freely here, and refer the interested reader to [AMGR,

§1] for a more detailed overview.

Remark 0.6. As explained above, our work applies to the geometric stratification of RgG. However,

there exist other interesting stratifications of RgG. For instance, by [AMGR, Theorem D], RgG

also admits an adelic stratification over its Balmer spectrum (which is also a symmetric monoidal

stratification). The Balmer spectra of SpgG and Mod
gG
Z are respectively studied in [BS17] and

[PSW].

0.4. Relations with existing literature. As mentioned in §0.1, the importance of derived Mackey

functors (i.e. genuine G-Z-modules) goes back to Kaledin [Kal11], who (in different terms) studied

its geometric stratification. The idea that genuine G-objects can be expressed in terms of their

geometric fixedpoints stems from the work of Greenlees and May; see in particular [Gre, GM95b].

There is also much work on similar expressions of rational G-spectra (which are simpler because

the relevant Tate constructions vanish rationally), notably the reconstruction results of Greenlees–

Shipley [GS18]. More recent works in this direction include [MNN17, Gla]; see also [NS18, Remark

II.4.8].

The first computation of RO(G)-graded cohomology was for G = Cp, due to Stong (see [Lew88]).

The works [HHR16, HHR17] of Hill–Hopkins–Ravenel give partial computations for G = C2n , which

play an essential role in their resolution of the Kervaire invariant one problem. Further computations

include the works [Zen, Geo] of Zeng and Georgakopoulos for G = Cp2 , as well as the works

[HK17, HK] of Holler–Kriz for G = (Cp)
×n (with coefficients in Z/p and restricting to actual (not

virtual) representations). Georgakopoulos also gives a computer program for G = Cpn .

As mentioned previously, in [Kra] Krause proves the isomorphism Pic(SpgG)
∼=
−→ Pic(Mod

gG
Z ) for

any finite group G, and gives a partial computation of this Picard group in a number of examples:

Cp, (Cp)
×2, D2p, and A5.

6 Moreover, Fausk–Lewis–May [FLM01] give an algebraic description of

5In the notation of [AMGR, §1.7], this may be seen as the Picard group of the fiber product BG×Spec(S) Spec(R).
6Namely, Krause computes Pic(SpgG) in these cases up to unaddressed extension problems, which arise due to the

inductive nature of the approach.
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Pic(SpgG) in terms of the Picard group of the Burnside ring. Using this and the results of tom

Dieck–Petrie [tDP82], one can also compute the Picard group Pic(SpgCpn ), and hence (by Krause’s

theorem) deduce Theorem C. Our approach is more direct; in particular, it produces an explicit

construction of the Picard elements of Mod
gCpn

Z , which is needed for Theorem D.

0.5. Outline. This paper is divided into two parts. In Part I, we study the geometric stratification

of RgG, culminating with the proof of Theorem A; it is organized as follows.

§1: For a compact Lie group G and a presentable stable ∞-category M, we introduce the ∞-

category MgG of genuine G-objects in M, and lay out some basic notations and conventions

surrounding it. Taking M = R to be a presentably symmetric monoidal stable ∞-category,

the ∞-category RgG is also presentably symmetric monoidal.

§2: We introduce the geometric stratification of MgG, which is inherited from that of SpgG. The

geometric stratification of RgG is a symmetric monoidal stratification.

§3: We establish some technical results regarding the interplay between small and presentable

stable ∞-categories.

§4: We introduce the proper Tate construction for objects of RhG := Fun(BG,R) (in a way

making no reference to genuine equivariant homotopy theory).

§5: We establish a formula for the proper Tate construction in terms of RgG. Starting here, we

make the assumption that R is rigidly-compactly generated.

§6: We prove Theorem A, which describes the gluing functors of the geometric stratification of

RgG under the further assumption that G is finite.

In Part II, we apply the results of Part I to the case that G = Cpn and R = ModZ, proving Theorems

B-D; it is organized as follows.

§7: We prove Theorem B, which gives a simple and explicit description of the geometric strati-

fication of Mod
gCpn

Z .

§8: We prove the first part of Theorem C, our computation of the Picard group of Mod
gCpn

Z .

Starting here, we make the assumption that the prime p is odd.

§9: We prove the second part of Theorem C, which describes the Picard elements of Mod
gCpn

Z

that underlie (virtual) representation spheres.

§10: We study the gluing diagram of the constant Mackey functor Z ∈ Mod
gCpn

Z (the coefficients

for equivariant cohomology).

§11: We prove Theorem D, our computation of the Pic(Mod
gCpn

Z )-graded cohomology of a point,

based on the results of §A.

§A: We record some auxiliary results in homological algebra.

Remark 0.7. Most of the work in this paper takes place at the homotopical (i.e. ∞-categorical)

level. However, we work at the point-set (i.e. chain) level as well. We compartmentalize the
9



latter as §A, in which we produce various chain-level data (chain complexes, chain maps, and chain

homotopies) and prove that they are presentations of our desired corresponding homotopical data.7

The primary purpose of the material in §A is as input to §11 (in which we prove Theorem D), and

indeed the remainder of the paper (i.e. §§1-10) can largely be read without reference to it. However,

a single straightforward computation made in §A (Lemma A.35) is used in §8, and in §9 we make use

of some basic techniques in homological algebra (our conventions for which are recorded in §A.1).

0.6. Notation and conventions.

(1) We work within the context of ∞-categories, taking [Lur09] and [Lur] as our standard ref-

erences. We work model-independently (for instance, we make no reference to the simplices

of a quasicategory), and we omit all technical uses of the word “essentially” (for instance,

we shorten the term “essentially surjective” to “surjective”).

(2) We use the following decorations for our functors.8

• The arrow in the notation

C −֒→ D

denotes a monomorphism, i.e. the inclusion of a subcategory: a functor which is fully

faithful on equivalences and induces inclusions of path components (i.e. monomor-

phisms) on all hom-spaces.

• The arrow in the notation

C
f.f.
−֒→ D

denotes a fully faithful functor. (However, the notation “f.f.” is merely emphasis: one

should not take its absence to mean that the indicated monomorphism is not fully

faithful.)

• The arrow in the notation

C −→−→ D

denotes a surjection.

• The arrow in the notation

C ↓ D

denotes a functor C→ D considered as an object of the overcategory Cat/D of its target

(which will often be some sort of fibration).

More generally, we use the notation X ↓ Y to denote a morphism in any∞-category C that

we consider as defining an object in the overcategory C/Y .

(3) Given some datum in an ∞-category (such as an object or morphism), for clarity we may

use the superscript (−)◦ to denote the corresponding datum in the opposite ∞-category.

7In fact, these chain complexes are all quite simple: for the most part they are levelwise free of rank 0 or 1. This

simplicity is ultimately afforded by certain Tate vanishing results (Observation 7.5).
8These are only for emphasis: the absence of such a decoration should not be taken to imply that the corresponding

adjective does not apply.

10



(4) Given a functor F , we write F ∗ for pullback along it, and we respectively write F! and F∗

for left and right Kan extension along it.

(5) We write Cat for the ∞-category of ∞-categories, S for the ∞-category of spaces, and Sp

for the ∞-category of spectra. These are related by the various adjoint functors

Cat S Sp

|−|

ι0

⊥

⊥

Σ∞
+

⊥

Ω∞
.

(6) Let R ∈ Alg(PrLst) be a presentably monoidal stable ∞-category. Then, every left R-

module M ∈ LModR(Pr
L
st) is canonically enriched over R. In this context we simply write

homM(−,−) for this enrichment: it is defined as a presheaf on R by the formula

homR(T, homM(X,Y )) := homM(T ⊙X,Y )

(where we write ⊙ for the action of R on M), which is representable by the adjoint functor

theorem.

(7) Since we will refer to it regularly, we use the letter S to indicate a reference to [AMGR]: for

example, we will refer to [AMGR, Theorem A(2)] simply as Theorem S.A(2).

Warning 0.8. In this paper, we study generalizations of a number of notions introduced in §S.5.1.

We occasionally reappropriate our notation without additional decoration.

0.7. Acknowledgments. It is our pleasure to acknowledge our intellectual debt to Kaledin, which

is clear from the discussion of §0.1; much of the material in this paper arose from thinking about

the paper [Kal11]. We thank Akhil Mathew for a number of helpful conversations regarding the

Tate construction, and in particular for pointing out Proposition 5.10 to us.

DA gratefully acknowledges the support of the NSF under awards 1507704, 1812055, and 1945639.

AMG gratefully acknowledges the support of the NSF Graduate Research Fellowship Program (grant

DGE-1106400), the NSF grant 2105031, and the hospitality of Montana State University. Addi-

tionally, all three authors gratefully acknowledge the superb working conditions provided by the

Mathematical Sciences Research Institute (which is supported by NSF award 1440140), where DA

and AMG were in residence and NR was a visitor during the Spring 2020 semester.

Part I. A symmetri
 monoidal stratifi
ation of derived Ma
key fun
tors

1. Genuine G-objects in presentable stable ∞-categories

In this section, we introduce the∞-categories of genuine and homotopyG-objects in a presentable

stable ∞-category as well as various basic notions surrounding them.

Notation 1.1. We assume a basic familiarity with equivariant homotopy theory; we refer the reader

to §S.5.1 for a rapid review. In general, we use the notation and terminology laid out there (which

is largely quite standard). Here we highlight a few conventions of particular interest in the present

work.

(1) We fix an arbitrary compact Lie group G (which will sometimes be assumed to be finite).
11



(2) We write PG for the poset of conjugacy classes of closed subgroups of G ordered by sub-

conjugacy. We denote relation of subconjugacy by ≤. When we wish to indicate literal

containment, we use the notation ⊆.

(3) We write H and K for arbitrary closed subgroups of G. When discussing closed subgroups

that are related by subconjugacy, we will always take H to be subconjugate to K.

Local Notation 1.2. In this section, we fix a presentable stable ∞-category M ∈ PrLst.

Definition 1.3.

(1) We define the presentable stable ∞-category of genuine G-objects in M to be the tensor

product

M
gG := SpgG ⊗M

in PrLst. Given an associative ring spectrum R ∈ Alg(Sp), we refer to Mod
gG
R as the pre-

sentable stable ∞-category of genuine G-R-modules.

(2) We define the presentable stable ∞-category of homotopy G-objects in M to be

M
hG := Fun(BG,M) .

Given an associative ring spectrum R ∈ Alg(Sp), we refer to ModhGR as the presentable stable

∞-category of homotopy G-R-modules.

Observation 1.4. Suppose that C ∈ PrLst is a presentable stable ∞-category. If C is compactly

generated, then there is a canonical equivalence

C⊗ (−) ≃ Funex((Cω)op,−)

in Fun(PrLst,Pr
L
st). In particular, we have a canonical equivalence

C⊗M ≃ Funex((Cω)op,M) .

Observation 1.5. Note that SphG ≃ LModΣ∞
+ G(Sp) is compactly generated. Hence, by Observa-

tion 1.4, the presentable stable ∞-category of homotopy G-objects in M admits an identification

M
hG := Fun(BG,M) ≃ Funex(((SphG)ω)op,M) ≃ SphG ⊗M .

We use this fact without further comment.

Notation 1.6. We simply write

U : MgG := SpgG ⊗M
U⊗M
−−−−→ SphG ⊗M ≃M

hG

for the tensor product with M of the forgetful functor SpgG
U
−→ SphG from genuine G-spectra to

homotopy G-spectra (a morphism in PrLst). Moreover, we simply write

M
gG

M
hG

U
⊥
β

for the indicated right adjoint (which is fully faithful because the functor (−)⊗M preserves colimits

(in particular the quotient SpgG
U
−→ SphG)).9

9This right adjoint may be referred to as the inclusion of the “Borel-complete” genuine G-objects in M.
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Remark 1.7. A morphism A
F
−→ B in PrLst is the data of an adjunction

A B
F
⊥

FR

in Cat. Tensoring this morphism with any object C ∈ PrLst therefore determines an adjunction

A⊗ C B⊗ C

F⊗C

⊥

(F⊗C)R
. (1.1)

In general, there is no straightforward description of the right adjoint (F ⊗C)R (e.g. in terms of the

right adjoint FR). However, if C is compactly generated, then by Observation 1.4 we may identify

the adjunction (1.1) as the adjunction

A⊗ C ≃ Funex((Cω)op,A) Funex((Cω)op,B) ≃ C⊗M

Funex((Cω)op,F )

⊥

Funex((Cω)op,FR)

(because right adjoints are unique when they exist).

Notation 1.8. We simply write

(−)H : MgG := SpgG ⊗M
(−)H⊗M

−−−−−−→ SpgW(H) ⊗M =: MgW(H) ,

(−)H : MgG := SpgG ⊗M
(−)H⊗M

−−−−−−→ SphW(H) ⊗M ≃M
hW(H) ,

ΦH
g : MgG := SpgG ⊗M

ΦH
g ⊗M

−−−−−→ SpgW(H) ⊗M =: MgW(H) ,

and

ΦH : MgG := SpgG ⊗M
ΦH⊗M
−−−−−→ SphW(H) ⊗M ≃M

hW(H)

for the tensor product with M of the various indicated H-fixedpoints functors on genuine G-spectra

(all of which are morphisms in PrLst).

Observation 1.9. Suppose that G is a finite group. Then, by [GM, Bar17] we have an equivalence

SpgG ≃ MackG(Sp) := Fun⊕(BurnG, Sp)

where BurnG denotes the (2, 1)-category of spans among finite G-sets, which is preadditive and so is

canonically enriched in commutative monoid spaces. It follows that the idempotent-complete stable

envelope of BurnG (i.e. that of its homwise ∞-group completion) admits a canonical identification

Envidem(BurnG) ≃ ((SpgG)ω)op .

Hence, using Observation 1.4 and the fact that SpgG is compactly generated, we obtain a composite

equivalence

M
gG ≃ Funex(((SpgG)ω)op,M) ≃ Funex(Envidem(BurnG),M) ≃ Fun⊕(BurnG,M) =: MackG(M) .

By construction, evaluating a genuine G-object E ∈ MgG on the finite G-set G/H ∈ BurnG yields

its categorical H-fixedpoints EH ∈ M, with the homotopy W(H)-action coming from its action on

G/H ∈ BurnG: in other words, this equivalence extends to a commutative diagram

MgG MackG(M)

MhW(H)

∼

(−) H
evG

/H
.
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Definition 1.10. Suppose that G is a finite group. Given subgroups H ≤ K ≤ G, we obtain a

morphism G/H → G/K between finite G-sets, which determines morphisms in both directions in

BurnG. Via Observation 1.9, evaluating a genuineG-object E ∈MgG on these morphisms determines

natural morphisms

EH incKH (E)
−−−−−→ EK and EK trfKH (E)

−−−−−→ EH

in M in both directions between its categorical H- and K-fixedpoints, which we respectively refer

to as the inclusion and transfer morphisms. As E, H , and K will always be clear from context,

we will generally simply write

inc := incKH(E) and trf := trfKH(E) .

Remark 1.11. In Definition 1.10, we use the term “inclusion” instead of the more familiar term

“restriction” because the latter is already quite overloaded. However, note that this morphism is not

generally a monomorphism (indeed, in a stable ∞-category, all monomorphisms are equivalences).

Observation 1.12. Suppose that G is a finite group. Given subgroups H ≤ K ≤ G, in the case

that H and K are both normal in G (e.g. when G is abelian), the morphisms incKH and trfKH admit

canonical lifts from M to Mh(K/H).10 We use this fact without further comment.

Notation 1.13. In line with the notation introduced in Definition 1.10, we simply write inch for

any inclusion morphism on homotopy fixedpoints.

Observation 1.14. The equivalence MgG ≃ MackG(M) of Observation 1.9 is compatible with

restriction, in the sense that the diagram

MgG MackG(M)

MgH MackH(M)

∼

ResGH (IndGH)
∗

∼

commutes. It is also compatible with categorical fixedpoints, in the sense that the diagram

MgG MackG(M)

MgN(H) MackN(H)(M)

MgW(H) MackW(H)(M)

∼

ResGN(H)

(−)H

(IndGN(H))
∗

∼

(−)H
(
Res

W(H)

N(H)

)∗

∼

commutes. We use these facts without further comment.

Notation 1.15. We denote by ⊙ the action on MgG of SgG∗ (via that of SpgG).

10More generally, these morphisms are equivariant for the relative Weyl group (Definition S.5.4.8).

14



Observation 1.16. It follows directly from the definitions that the diagram

M
gG

M
gG

MgW(H)

ẼF6≥H
⊙(−)

Φ H
g

(−)H

commutes (see Definition S.5.1.12).

2. The geometric stratification of genuine G-objects

In this brief section, we introduce the geometric stratification of genuine G-objects (Defini-

tion 2.4). Throughout it, we refer freely to the notions introduced in [AMGR] (recall Remark 0.5).

Observation 2.1. Let X be a presentable stable ∞-category. A closed subcategory Z ∈ ClsX is

precisely the data of an adjunction

Z X

iL
⊥
y

in PrLst whose unit is an equivalence. It follows that taking the tensor product in PrLst with any

presentable stable ∞-category M determines a functor

ClsX ClsX⊗M

∈ ∈

Z Z⊗M

−⊗M

. (2.1)

Observe further that the functor (2.1) preserves colimits and finite products. It follows that for any

stratification P
Z•−−→ ClsX, postcomposition determines a stratification

P ClsX ClsX⊗M

∈ ∈

p Zp ⊗M

Z• −⊗M

(2.2)

of X⊗M: the factorizations guaranteed by the stratification condition define commutative squares in

PrLst, and so persist upon tensoring with M. Moreover, because the functor PrLst
−⊗M
−−−−→ PrLst preserves

colimits, for each p ∈ P we may identify the pth stratum of the stratification (2.2) as

(X⊗M)p ≃ Xp ⊗M .

It follows immediately that for each p ∈ P we may identify the pth geometric localization functor of

the stratification (2.2) as

X⊗M
Φp⊗M

−−−−→ Xp ⊗M .

Remark 2.2. In the situation of Observation 2.1, if M is compactly generated then by Observa-

tion 1.4 we may identify the pth localization adjunction of the stratification (2.2) as

X⊗M ≃ Fun((Mω)op,X) Fun((Mω)op,Xp) ≃ Xp ⊗M

Funex((Mω)op,Φp)

⊥

Funex((Mω)op,ρp)

.
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In fact, in this case the entire gluing diagram of X⊗M is tensored up from that of X, in the sense

that it is given by the composite

G (X⊗M) : P Prst Prstl.lax
G (X) Funex((Mω)op,−)

.

Observation 2.3. Let X and M be presentably symmetric monoidal stable ∞-categories. Then,

X⊗M is canonically a presentably symmetric monoidal stable ∞-category as well, and the functor

(2.1) admits a refinement

ClsX ClsX⊗M

IdlX IdlX⊗M

−⊗M

−⊗M

.

Definition 2.4. The geometric stratification of the presentable stable ∞-category MgG of gen-

uine G-objects in M is the composite functor

PG ClsSpgG ClsMgG

∈ ∈

H Sp
gG
≤H
⊗M

Sp
gG
≤• −⊗M

,

where the first functor is the symmetric monoidal geometric stratification of genuine G-spectra of

Theorem S.E (cf. Definition S.5.1.8); the fact that this composite functor is a stratification follows

from Observation 2.1. In the case that M is a presentably symmetric monoidal stable ∞-category,

we use the same name to refer to the symmetric monoidal stratification

PG

Sp
gG
≤•−−−→ IdlSpgG

−⊗M
−−−−→ IdlMgG (2.3)

guaranteed by Observation 2.3.

3. Some algebra and analysis of stable ∞-categories

In this section, we establish a number of technical results regarding the interplay between small

and presentable stable ∞-categories, which we use in our proof that the gluing functors for the

geometric stratification of genuine G-objects are proper Tate constructions (Proposition 5.9).

Definition 3.1. The stable quotient of an exact functor

A
F
−→ B

between (small or large) stable ∞-categories is the cofiber

B/StA := cofib
(
A

F
−→ B

)
,

considered among (resp. small or large) stable ∞-categories. (Stable quotients always exist, by

Observations 3.3 and 3.4.)

Warning 3.2. We will be taking stable quotients of functors between presentable (and in particular,

large) stable ∞-categories.
16



Observation 3.3. The stable quotient of an exact functor between stable ∞-categories only de-

pends on its image, because it is merely a condition (as opposed to additional data) for an exact

functor among stable ∞-categories to be zero. In other words, to understand stable quotients it

suffices to understand stable quotients by full stable subcategories. Likewise, it suffices to consider

stable quotients by full stable subcategories that are closed under retracts.

Observation 3.4. Suppose that

A B
i

is a fully faithful exact functor between small stable ∞-categories. Applying the functor

St
Ind
−−→ PrLst ,

we obtain a fully faithful functor

Ind(A) Ind(B)
Ind(i)=i!

between presentable stable ∞-categories. In fact, this is the inclusion of a closed subcategory: the

functor i! preserves colimits, as does its right adjoint i∗. Hence, we obtain a recollement

Ind(A) Ind(B) Ind(B)/Ind(A)

i!
⊥

⊥
i∗

i∗

pL

⊥

⊥
ν

pR

(see e.g. Definition S.1.1.1). Observe that the functor pL preserves compact objects (because the

functor i∗ preserves filtered colimits). From here, it is straightforward to see that the composite

A B (Ind(B)/Ind(A))ωi p

is a cofiber sequence among small stable∞-categories after idempotent completion, where p denotes

the restriction of pL to B ⊆ Ind(B), and thereafter that the stable quotient of i itself is the full

stable subcategory

B/StA = p(B) ⊆ (Ind(B)/Ind(A))ω ,

the image of p (which is automatically stable).11 Moreover, by enlarging our Grothendieck universe,

we can apply this same construction to exact functors between not-necessarily-small stable ∞-

categories.

Remark 3.5. Let X be a presentable stable ∞-category and let Z ⊆ X be a full presentable stable

subcategory. Then, the stable and presentable quotients of X by Z coincide: the canonical morphism

X/StZ −→ X/Z

is an equivalence. Indeed, the presentable quotient satisfies the universal property of the stable

quotient: writing

Z X X/Z
i
⊥

iR

jL

⊥
j

for the resulting diagram in Cat (see Definition S.2.3.6 and Observation S.2.3.5), given any stable

∞-category C and any exact functor X
F
−→ C such that Fi ≃ 0, the morphism

F −→ FjjL

11In particular, (Ind(B)/Ind(A))ω is the idempotent completion of B/StA.
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is an equivalence (because for each X ∈ X the cofiber sequence iiRX → X → jjLX is carried by F

to a cofiber sequence).

Definition 3.6. Let C be a stably symmetric monoidal ∞-category. A full stable subcategory

I ⊆ C is a thick ideal if it is closed under retracts and contagious under the symmetric monoidal

structure.

Notation 3.7. Let C be a stably symmetric monoidal ∞-category. Given a set {Ks ∈ C}s∈S of

objects of C, we write 〈Ks〉
St,⊗
s∈S ⊆ C for the thick ideal that they generate.

Observation 3.8. Suppose that C ∈ CAlg(St) is a stably symmetric monoidal ∞-category and

I ⊆ C is a thick ideal. Then, Ind(I) ⊆ Ind(C) is an ideal (see Definition S.4.2.5). Moreover, for any

set of objects {Ks ∈ C}s∈S we have

Ind(〈Ks〉
St,⊗
s∈S ) = 〈Ks〉

⊗
s∈S

(see Notation S.4.2.6).

4. The proper Tate construction

In this section, we introduce the proper Tate construction (Definition 4.5) and study its basic

features. In fact, we introduce a generalization of the proper Tate construction, which makes

reference to a family of closed subgroups; this is no more difficult to study, and has the added benefit

of recovering the ordinary Tate construction as a special case (Observation 4.8 and Remark 4.9).

Local Notation 4.1. In this section, we fix a family F ∈ DownPG of closed subgroups of G (i.e.

a collection of closed subgroups of G that is closed under subconjugacy), and we fix a presentably

symmetric monoidal stable ∞-category R.

Notation 4.2. Given an object E ∈ R and a homotopy G-space X ∈ ShG, we write

Eh 〈X〉 := (Σ∞X+ ⊗ E) ∈ SphG ⊗ R ≃ R
hG .

Warning 4.3. We write G/H both for the object of SgG and its image under the forgetful functor

SgG
U
−→ ShG. However, it will always be clear from context which object is being referred to.

Notation 4.4. We write

I
h
F :=

〈
1

h
R 〈G/H〉

〉St,⊗
H∈F

⊆ R
hG

for the thick ideal of RhG generated by the objects {1h
R 〈G/H〉 ∈ RhG}H∈F .

Definition 4.5. For any closed subgroup H ∈ PG, the F -H-Tate construction is the composite

functor

(−)τFH : RhG p
−→ R

hG/StIhF
hom(p(1h

R
〈G/H〉),−)

−−−−−−−−−−−−−→ R
hW(H) ,

where p denotes the canonical functor to the stable quotient. In the special case where F = (6≥H),

we simply write

(−)τH := (−)
τ
(6≥H)

H

and refer to this functor as the proper H-Tate construction .

Remark 4.6. We refer the reader to Proposition 5.9 for the relationship between the F -H-Tate

construction and genuine G-objects, and to Proposition 5.10 for an explicit formula for the proper

G-Tate construction.
18



Remark 4.7. If G is a finite group that is not of prime-power order, then (−)τG is zero. This

follows from the argument of [Kal11, Lemma 7.15(i)] (see also [NS18, Lemma II.6.7]).

Observation 4.8. Suppose that G is a finite group and that R = ModR for some commutative ring

spectrum R ∈ CAlg(Sp). Then, the {e}-G-Tate construction recovers the usual G-Tate construction

(−)τ{e}G ≃ (−)tG := cofib
(
(−)hG

NmG−−−→ (−)hG
)

.

This is proved as [NS18, Lemma I.3.8(iii)] in the case that R = S (so that R = ModS(Sp) ≃ Sp),

and the same proof applies verbatim in general.

Remark 4.9. In fact, for a finite group G, the {e}-G-Tate construction recovers the usual G-Tate

construction for any presentably symmetric monoidal stable ∞-category R.12 To verify this, it

suffices to prove the analog of the first equivalence of [NS18, Lemma I.3.8(iii)], namely that for any

object X ∈ RhG the morphism (
colimY ∈(RhG

Ind
)/X

Y
)
−→ X

is an equivalence, where we write RhG
Ind ⊆ RhG for the stable subcategory generated by the image

of the induction functor R
IndGe−−−→ RhG. To see this, observe first that this subcategory is the stable

envelope of the Kleisli ∞-category associated to the monadic adjunction

R RhG
IndGe

⊥

ResGe

.

Hence, the claim follows from the spectrally-enriched analog of Lemma 4.10 and the fact that for

any stable ∞-category C and any spectrally-enriched ∞-category I the diagram

Funex(Env(I),C) Fun(I,C)

C

∼

colim
Env(I)

co
lim

I

commutes (where Env(I) denotes the stable envelope of I and the underlines signify the analogous

enriched notions).

Lemma 4.10. Let C be an ∞-category and let T ∈ Alg(Fun(C,C)) be a monad on C. Let us write

C AlgT (C)
F
⊥
U

for the corresponding free/forget adjunction (so that T ≃ UF ), and let us write

KlT (C) ⊆ AlgT (C)

for the Kleisli ∞-category of T (i.e. the full subcategory on the free T -algebras). Then, for any

T -algebra X ∈ AlgT (C) the canonical morphism

colimFY ∈KlT (C)/XFY −→ X (4.1)

in AlgT (C) is an equivalence.

12We do not need this fact, and so we do not prove it. Nevertheless, we include the present discussion in order to

motivate Definition 4.11.
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Proof. It suffices to observe that the morphism (4.1) extends to a commutative diagram

colimFY ∈KlT (C)/X |(FU)•+1(FY )| |(FU)•+1X |

colimFY ∈KlT (C)/XFY X

∼ ∼
in AlgT (C). �

Definition 4.11. In view of Observation 4.8 and Remark 4.9, in the special case where F = {e},

we simply write

(−)tH := (−)τ{e}H

and refer to this functor as the H-Tate construction .

Notation 4.12. Suppose that G is a finite group. We write

(−)hG
NmG−−−→ (−)hG

QG−−→ (−)tG

for the cofiber sequence in Funex(RhG,R) that defines the G-Tate construction.13

Observation 4.13. Let G be a finite group and let H ≤ G be a normal subgroup. We record the

following facts for future use.

(1) Parametrizing the norm map (−)hH
NmH−−−→ (−)hH in Fun(RhH ,R) over the BH-bundle BG→

B(G/H), we obtain a homotopy (G/H)-equivariant norm map, i.e. a morphism

(−)hH
NmH−−−→ (−)hH

in Fun(RhG,Rh(G/H)). Hence, we obtain a cofiber sequence

(−)hH
NmH−−−→ (−)hH

QH−−→ (−)tH (4.2)

in Fun(RhG,Rh(G/H)) lifting the analogous cofiber sequence in Fun(RhG,R) (because the

forgetful functor Rh(G/H) fgt
−→ R is exact). In particular, we obtain a residual homotopy

(G/H)-equivariant structure on theH-Tate construction. We use these facts without further

comment.

(2) Consider the morphism

(−)hH
QH−−→ (−)tH (4.3)

in Fun(RhG,Rh(G/H)), the second morphism in the cofiber sequence (4.2). Evidently, the

source of the morphism (4.3) is canonically right-laxly symmetric monoidal. Thereafter,

there exists a canonical enhancement of the morphism (4.3) to one of right-laxly symmet-

ric monoidal functors, obtained by working fiberwise over B(G/H) and applying [NS18,

Theorem I.3.1] (which guarantees that there is in fact a unique such enhancement when

H = G).

13We have chosen the notation “Q” to invoke the idea that this the map to the quotient (of homotopy G-fixedpoints

by homotopy G-orbits).
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(3) Suppose that H ≤ K ≤ G. Then, for any E ∈ RhG, by [HL, Proposition 4.2.2] we have the

following natural commutative diagram in Rh(G/K):

(EhH)h(K/H) (EhH )h(K/H)

EhK

EhK

(EhH)h(K/H) (EhH )h(K/H)

NmH(E)h(K/H)

NmK/H(EhH) NmK/H(EhH)

∼

N
m
K (E

)

NmH(E)h(K/H)

∼

.

5. The proper Tate construction from genuine G-objects

In §4, we introduced the F -H-Tate construction for homotopy G-objects (Definition 4.5). Our

main goal in this section is to show that this functor can also be described in terms of genuine

G-objects (Proposition 5.9); this description will be a key ingredient of our proof of Theorem A

in §6. We also use it to give an explicit formula for the proper G-Tate construction (Proposi-

tion 5.10), which we state and prove directly after stating Proposition 5.9. We then make a number

of preliminary observations before proving Proposition 5.9 at the end of the section.

Local Notation 5.1. In this section, we fix a compact Lie group G, a family F ∈ DownPG , and a

rigidly-compactly generated presentably symmetric monoidal stable ∞-category R.

Notation 5.2. We define the subcategory

IF := Sp
gG
F
⊗ R := 〈Σ∞

G (G/H)+〉H∈F
⊗ R ⊆ SpgG ⊗ R =: RgG .

Observation 5.3. By Observations S.5.1.15 and 2.3, the subcategory IF ⊆ RgG is a closed ideal.

Notation 5.4. Given an object E ∈ R and a genuine G-space X ∈ SgG, we write

E 〈X〉 := (Σ∞
G X+ ⊗ E) ∈ SpgG ⊗ R =: RgG .

Observation 5.5. Notation 5.4 is compatible with Notation 4.2, in the sense that for any genuine

G-space X ∈ SgG and any object E ∈ R we have an equivalence

U(E 〈X〉) ≃ Eh 〈U(X)〉

in R
hG (due to the equivalence U(Σ∞

G X+) ≃ Σ∞U(X)+ in SphG).

Observation 5.6. There is an identification

IF = 〈1R 〈G/H〉〉
⊗
H∈F

among ideals of RgG.
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Definition 5.7. For any closed subgroup H ∈ PG, the F -H-geometric fixedpoints functor is

ΦH
F : RgG pL

−→ R
gG/IF

hom
RgG/IF

(pL(1R〈G/H〉),−)

−−−−−−−−−−−−−−−−−−−→ R
hW(H) .

Observation 5.8. Definition 5.7 generalizes the functor RgG ΦH

−−→ RhW(H) of Notation 1.8, as we

now explain. Given a presentable stable ∞-category C ∈ PrLst and a compact object X ∈ Cω, we

obtain an adjunction

Sp C

(−)⊗X

⊥

hom
C
(X,−)

in PrLst. When tensored with R, this gives an adjunction

R C⊗ R

X⊗(−)

⊥

hom
C
(X,−)⊗R

in ModR(Pr
L
st), which yields a commutative triangle

C⊗ R Sp⊗ R

R

hom
C
(X,−)⊗R

hom
C⊗R (X⊗

1

R ,−)

∼ .

We apply this in the case that C = SpgG/SpgG
F

and X = pL(Σ
∞
G (G/H)+) (which is compact because

pL preserves compact objects since ν preserves colimits). Using the fact that the functor (−) ⊗ R

preserves colimits, we find that the F -H-geometric fixedpoints functor may be described as the

tensor product
(
SpgG

pL
−→ SpgG/SpgG

F

hom
SpgG/Sp

gG
F

(pL(Σ∞
G (G/H)+),−)

−−−−−−−−−−−−−−−−−−−−−−→ SphW(H)

)
⊗ R .

In particular, in the case that F = (6≥H), we obtain an equivalence

ΦH
( 6≥H) ≃ ΦH

in Fun(RgG,RhW(H)). We use this fact without further comment.

Proposition 5.9. For any closed subgroup H ≤ G, we have a canonical commutative triangle

RhG RgG

RhW(H)

β

(−) τ

F H Φ
H
F

.

We learned the following result from Akhil Mathew.

Proposition 5.10. Assume that G is a finite group, and fix any homotopy G-object E ∈ RhG in R.

(1) There is a canonical equivalence

EτG ∼
←− colimn∈N

(
(Snρ̃ ⊙ E)hG

)

in R, in which

• ⊙ denotes the action of ShG∗ on RhG,

• ρ̃ denotes the reduced (real) regular representation of G,
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• SV denotes the representation sphere corresponding to a representation V , and

• the morphisms in the colimit are induced by the inclusion {0} → ρ̃.

(2) Suppose that R = ModR for some commutative ring spectrum R ∈ CAlg(Sp). Then, a

complex orientation of R (e.g. a Z-algebra structure) determines an element

e ∈ π−2(|G|−1)(R
hG) ,

the Euler class of the reduced complex regular representation (via the complex orientation),

with respect to which the canonical morphism EτG ← EhG in R exhibits EτG as the local-

ization at e; that is,

EτG ≃ EhG[e−1] .

Proof. We begin with part (1). Observe the equivalences

EτG ≃ ΦGβ(E) ≃ (ẼF 6≥G ⊙ β(E))G , (5.1)

the first by Proposition 5.9. By [MNN19, Proposition 2.7], we have an equivalence

ẼF 6≥G ≃ colimn∈N(S
nρ̃) (5.2)

in S
gG
∗ . Combining the equivalences (5.1) and (5.2), we obtain the first equivalence in the composite

equivalence

EτG ≃ ((colimn∈N(S
nρ̃)) ⊙ β(E))G

∼
←− colimn∈N((S

nρ̃ ⊙ β(E))G) . (5.3)

On the other hand, since Σ∞
G Snρ̃ ∈ SpgG is dualizable, we have an equivalence

Snρ̃ ⊙ β(E)
∼
−→ β(Snρ̃ ⊙ E) (5.4)

in RgG. Therefore, combining equivalences (5.3) and (5.4), we obtain an equivalence

EτG ≃ colimn∈N(β(S
nρ̃ ⊙ E)G) ≃ colimn∈N((S

nρ̃ ⊙ E)hG) ,

as asserted.

Now, part (2) follows from part (1) along with the observation that 2ρ̃ is precisely the reduced

complex regular representation. �

Notation 5.11. We write

Ind(RhG) RhG
colim

⊥
i

for the canonical adjunction resulting from the fact that RhG admits filtered colimits: its right

adjoint is the canonical fully faithful inclusion, and its left adjoint is given by taking colimits of

filtered diagrams.

Observation 5.12. Because the functor

R
gG U
−→ R

hG

preserves colimits (being a left adjoint) and the presentable stable ∞-category RgG is compactly

generated (because both SpgG and R are), there exists a canonical factorization

RgG RhG

Ind(RhG)

U

Ũ
co
lim

, (5.5)
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namely the functor

Ũ := Ind
(
(RgG)ω −֒→ R

gG U
−→ R

hG
)

.

Observation 5.13. By construction, the functor RgG Ũ
−→ Ind(RhG) preserves compact objects:

given a compact object E ∈ (RgG)ω ⊆ RgG, there is a canonical equivalence

Ũ(E)
∼
−→ i(U(E)) .

Observation 5.14. Both the source and target of the functor RgG Ũ
−→ Ind(RhG) are compactly

generated. Combining this fact with Observation 5.13, we see that it admits a colimit-preserving

right adjoint, which we denote by

RgG Ind(RhG)
Ũ
⊥

β̃

.

Observation 5.15. Passing to right adjoints in the commutative diagram (5.5), we obtain a com-

mutative diagram

RgG RhG

Ind(RhG)

β

iβ̃
.

Observation 5.16. The presentably symmetric monoidal stable ∞-category RgG := SpgG ⊗ R is

rigidly-compactly generated (since the functor St
Ind
−−→ PrLst is symmetric monoidal).

Observation 5.17. The functor RgG Ũ
−→ Ind(RhG) is canonically symmetric monoidal, because the

composite (RgG)ω →֒ RgG U
−→ RhG is symmetric monoidal by Observation 5.16.

Observation 5.18. Because RgG is rigidly-compactly generated by Observation 5.16 and Ũ is

symmetric monoidal by Observation 5.17, by [GR17, Chapter 1, Lemma 9.3.6] the right adjoint β̃

is RgG-linear: in other words, for any E ∈ R
gG and F ∈ Ind(RhG) we have the projection formula

β̃(Ũ(E)⊗ F ) ≃ E ⊗ β̃(F ) .

Observation 5.19. By Observation 5.3 and Corollary S.4.2.15, the ideal
〈
Ũ(IF )

〉⊗
⊆ Ind(RhG)

is a closed ideal and moreover

ν
(
1

Ind(RhG)/〈Ũ(IF )〉
⊗

)
≃ Ũ(ν(1SpgG/IF

)) .

Observation 5.20. We have the string of identifications
〈
Ũ(IF )

〉⊗
=
〈
Ũ(1R 〈G/H〉)

〉⊗
H∈F

(5.6)

= 〈iU(1R 〈G/H〉)〉
⊗
H∈F

(5.7)

=
〈
i(1h

R 〈G/H〉)
〉⊗
H∈F

(5.8)

= Ind(IhF ) (5.9)

among subcategories of Ind(RhG), where identification (5.6) follows from Observation 5.6, identifi-

cation (5.7) follows from Observation 5.13, identification (5.8) follows from Observation 5.5, and

identification (5.9) follows from Observation 3.8.
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Proof of Proposition 5.9. Our proof takes place within the context of the diagram in Figure 1, in

Ih
F

RhG RhG/StIh
F

Ind(Ih
F
) Ind(RhG) Ind(RhG)/Ind(Ih

F
)

≃ ≃ ≃

〈
Ũ(IF )

〉⊗
Ind(RhG) Ind(RhG)

/〈
Ũ(IF )

〉⊗

IF RgG RgG/IF

(RgG)ω

p

i

βU

i′

p′

pL

⊥
ν

Ũ ⊥ β̃

pL

⊥
ν

Figure 1. The proof of Proposition 5.9 takes places within this diagram.

which

• the upper row is a stable quotient sequence,

• the functor i′ is the fully faithful inclusion into Ind(RhG/StIh
F
) ≃ Ind(RhG)/Ind(Ih

F
) (note

that the functor St
Ind
−−→ PrLst preserves colimits),14

• the lower two rows are presentable quotient sequences in which the kernels are closed ideals

by Observations 5.19 and 5.3,

• the back triangles commute by Observations 5.15 and 5.13, and

• the equivalences in the middle row follow from Observation 5.20.

Namely, for any E ∈ RhG, we have natural equivalences

EτFH := homRhG/StIh
F

(p(1h
R 〈G/H〉), pE)

≃ homInd(RhG)/Ind(Ih
F
)(i

′p(1h
R 〈G/H〉), i′pE)

≃ homInd(RhG)/Ind(Ih
F
)((p

′i(1h
R 〈G/H〉)), p′iE)

≃ homInd(RhG)(i(1
h
R 〈G/H〉), νpLiE)

≃ homInd(RhG)(iU(1R 〈G/H〉), νpLiE) (5.10)

14By Remark 3.5, the functor i′ can also be seen as the induced functor on stable quotients.
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≃ homInd(RhG)(Ũ(1R 〈G/H〉), νpLiE) (5.11)

≃ homInd(RhG)(Ũ(1R 〈G/H〉), (νpL 1Ind(RhG))⊗ (iE))

≃ homInd(RhG)(Ũ(1R 〈G/H〉), (ŨνpL 1RgG)⊗ (iE)) (5.12)

≃ homRgG(1R 〈G/H〉 , β̃((ŨνpL 1RgG)⊗ (iE)))

≃ homRgG(1R 〈G/H〉 , (νpL 1RgG)⊗ (β̃iE)) (5.13)

≃ homRgG(1R 〈G/H〉 , (νpL 1RgG)⊗ (βE))

≃ homRgG(1R 〈G/H〉 , νpLβE)

≃ homRgG/IF
(pL(1R 〈G/H〉), pLβE)

=: ΦH
FβE

in RhW(H), in which

• equivalence (5.10) follows from Observation 5.5,

• equivalence (5.11) follows from the fact that 1R 〈G/H〉 ∈ RgG is compact (because 1R ∈ R

and Σ∞
G (G/H)+ ∈ SpgG are compact),

• equivalence (5.12) follows from Observation 5.19, and

• equivalence (5.13) follows from Observation 5.18. �

6. Gluing functors for the geometric stratification of genuine G-objects

In this section, we prove Theorem A as Theorem 6.6.

Local Notation 6.1. In this section, we fix a finite group G and a rigidly-compactly generated

presentably symmetric monoidal stable ∞-category R.

Notation 6.2. Given subgroups K,H ⊆ G, we define the subset

C̃(H,K) := {g ∈ G : H ⊆ gKg−1 ⊆ N(H)} ⊆ G

of those elements of G that conjugate K to lie between H and the normalizer of H .

Observation 6.3. Considering G as a (G,G)-bimodule set by left and right multiplication, the

subset C̃(H,K) ⊆ G inherits a (N(H),N(K))-bimodule structure: that is, it is carried into itself by

left multiplication by elements of N(H) and by right multiplication by elements of N(K). We use

this fact without further comment.

Notation 6.4. We write

C(H,K) := C̃(H,K)/K

for the set obtained by quotienting C̃(H,K) by its right K-action.

Observation 6.5. Of course, C(H,K) naturally inherits a (N(H),W(K))-bimodule structure.

Moreover, its left H-action is trivial, so that this descends to a (W(H),W(K))-bimodule struc-

ture.15 We use these facts without further comment.

15See Lemma 6.16 for a more conceptual description of the double quotient W(H)\C(H,K)/W(K).
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Theorem 6.6. For any morphism H ≤ K in PG, the gluing functor

R
hW(H) ΓH

K−−→ R
hW(K)

of the geometric stratification (2.3) of RgG is given by the formula

E 7−→
⊕

[g]∈W(H)\C(H,K)/W(K)

Ind
W(K)
(N(H)∩N(gKg−1))/(gKg−1)E

τ(gKg−1)/H (6.1)

(where we implicitly use the isomorphism W(gKg−1)
∼=
−→W(K) given by conjugation by g−1).

Remark 6.7. The set C(H,K) is empty unless we have H ≤ K ≤ N(H) in PG. At the other

extreme, if we have H ⊆ K ⊆ G with H normal in K and K normal in G, then C(H,K) = G/K.

In this case, it is not hard to see that the formula (6.1) reduces to the formula

E 7−→ Ind
G/K
N(H)/KEτ(K/H) .

If furthermore H is normal in G, then the formula (6.1) reduces to the even simpler formula

E 7−→ Eτ(K/H) .

Remark 6.8. While the description of the functor ΓH
K given by Theorem 6.6 is fairly explicit, it

has the drawback of making reference to specific representatives of objects of PG (i.e. conjugacy

classes of subgroups of G). Here are two alternative descriptions that are more invariant.

(1) If we replace the double quotient appearing in formula (6.1) with the groupoid double

quotient, we obtain a span

BW(H)←− C(H,K)h(W(H)×W(K)) −→ BW(K) ,

from which ΓH
K may be obtained as a sort of pull-push operation: ordinary pullback along

the leftwards functor followed by the fiberwise proper Tate construction and the indicated

induction.

(2) A variant of the argument used to prove Proposition 5.9 shows that ΓH
K can also be described

as the composite

R
hW(H) p

−→ R
hW(H)/StIhF

hom(p(1R〈(G/H)K〉),(−))
−−−−−−−−−−−−−−−−−→ R

hW(K) ,

where F ∈ DownPW(H)
denotes the family defined in Local Notation 6.11(3). (Lemmas 6.14

and 6.19 below can be applied to give an explicit description of the object p(1R

〈
(G/H)K

〉
) ∈

RhW(H)/StIh
F
.)

Example 6.9 (genuine A4-spectra). Let A4 denote the alternating group on four letters. We

describe the reconstruction theorem for genuine A4-spectra that results from combining Theorem 6.6
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with Theorems S.A(2) and S.E.16 The poset of conjugacy classes of closed subgroups of A4 is

PA4 =





e C2

C3 V4

A4





=:





1 2

3 4

12





,

where V4
∼= C2×C2 denotes the Klein four-group and we label strata by cardinality. By Observation

S.5.2.6, the gluing functors Γe
A4

and ΓC2

A4
vanish. Moreover, by Observation S.5.2.2, the gluing functor

ΓC3

A4
also vanishes. Altogether, we obtain an equivalence

SpgA4
g
−→
∼

limr.lax




SphA4 SphC2

Sp SphC3

Sp

(−)tC2

(−)tC3
(−

) τ
V
4

⇑

(−)tC2

(−)tC3




.

So, a genuine A4-spectrum E ∈ SpgA4 is equivalently specified by the data of

• the objects

E1 := ΦeE ∈ SphA4 , E2 := ΦC2E ∈ SphC2 , E3 := ΦC3E ∈ Sp , E4 := ΦV4E ∈ SphC3 , and E12 := ΦA4E ∈ Sp ,

• the morphisms

E2
γ1,2
−−→ EtC2

1 , E3
γ1,3
−−→ EtC3

1 , EτV4
1

γ1,4
←−− E4

γ2,4
−−→ EtC2

2 , and E12
γ4,12
−−−→ EtC3

4 ,

and

• a homotopy making the square

E4 EtC2
2

EτV4
1 (EtC2

1 )tC2

γ2,4

γ1,4 γ
tC2
1,2

commute (in which the lower horizontal morphism is the canonical one).

Remark 6.10. We prove Theorem 6.6 at the end of this section, after some preliminary work.

These preliminaries decompose into three main logically distinct pieces, which are organized into

environments as follows.

16For brevity, we assume familiarity with the latter results. We refer the reader to §S.5.3 for a number of simpler

examples. (In particular, the present example has a number of similarities with Example S.5.3.10 of genuine S3-

spectra.)
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6.11-6.14: The proof of Theorem 6.6 will begin by applying a projection formula to replace the family

F6≥K ∈ DownPG with a certain family F ∈ DownPW(H)
. The relevance of the set C(H,K)

is that it is clearly a subset of (G/K)H , and it turns out to consist of precisely those orbits

that aren’t annihilated by the functor ẼF ∧ (−)+.

6.15-6.19: We decompose C(H,K) into (W(H),W(K))-orbits by identifying W(H)\C(H,K)/W(K)

with conjugacy classes of stabilizer subgroups in W(H) (with respect to the left action). We

then describe these orbits explicitly, in terms of elements g ∈ G.

6.20-6.21: We exhibit each (W(H),W(K))-orbit in C(H,K) as being itself induced from an orbit:

namely, it is induced up from WN(H)(gKg−1) = (N(H) ∩ N(gKg−1))/(gKg−1).

Local Notation 6.11. We use the following notation through the remainder of this section.

(1) We fix subgroups H ⊆ K ⊆ G.17

(2) We write N(H)
p
−→W(H) for the quotient homomorphism.

(3) We write

F := lim




F6≥K

PW(H) PN(H) PG
p−1



∼=

{
L ⊆W(H) :

K is not subconjugate

to p−1(L) in G

}
∈ DownPW(H)

for the indicated family of subgroups of W(H).

Warning 6.12. The functor PN(H) → PG is not generally fully faithful.18 (Whenever it is fully

faithful, the set W(H)\C(H,K)/W(K) is a singleton; see Lemma 6.16.)

Observation 6.13. The defining inclusion C̃(H,K) →֒ G extends to a diagram

C̃(H,K) G

C(H,K) G/K

(G/K)H

of (N(H),N(K))-bimodule sets: the dashed factorization arises from the defining fact that if gK ∈

C(H,K) then H ⊆ gKg−1. In particular, we obtain a canonical inclusion

C(H,K) −֒→ (G/K)H (6.2)

of (W(H),W(K))-sets. We regard this as a morphism of homotopy W(K)-objects in genuine W(H)-

spaces.

17It is clear that in proving Theorem 6.6 we may assume without real loss of generality that H is contained in K,

and doing so leads to some notational simplification.
18For example, take G = S4 to be the symmetric group on four letters, define elements h, j ∈ G by h = (12)(34)

and j = (13)(24) (using cycle notation), and define subgroups H = 〈h〉 and J = 〈j〉 of G. Then we have J ⊆ N(H),

and moreover J 6∼= H in PN(H) but J ∼= H in PG.
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Lemma 6.14. The morphism

ẼF ∧ (6.2)+ := ẼF ∧
(
C(H,K) −֒→ (G/K)H

)
+

in (S
gW(H)
∗ )hW(K) is an equivalence.

Proof. We check that the composite functor

OW(H) −֒→ S
gW(H) ẼF∧(−)+

−−−−−−→ S
gW(H)
∗

annihilates (i.e. carries to the zero object) all W(H)-orbits in (G/K)H that do not lie in the image

of the inclusion (6.2).

Consider an arbitrary element gK ∈ G/K. Observe that its stabilizer under the G-action is

gKg−1. Moreover, it is H-fixed if and only if H ⊆ gKg−1. In this case, the stabilizer of the element

gK ∈ (G/K)H under the W(H)-action is

(gKg−1 ∩ N(H))/H .

So, the orbit W(H) · gK ⊆ (G/K)H is annihilated by the functor ẼF ∧ (−)+ if (and only if) we

have

(gKg−1 ∩ N(H))/H ∈ F ∈ DownPW(H)
,

which by definition is equivalent to the assertion that

(gKg−1 ∩ N(H)) ∈ F6≥K ∈ DownPG ,

i.e. that K is not subconjugate to (gKg−1∩N(H)) in G. So, it suffices to show that gKg−1 6⊆ N(H)

implies that K 6≤ (gKg−1∩N(H)). We show the contrapositive, namely that K ≤ (gKg−1∩N(H))

implies that gKg−1 ⊆ N(H).

Suppose there exists some x ∈ G such that xKx−1 ⊆ (gKg−1 ∩ N(H)). On the one hand, this

implies that xKx−1 ⊆ gKg−1, which because K is finite implies that xKx−1 = gKg−1. On the

other hand, this implies that xKx−1 ⊆ N(H). Combining these two implications yields the desired

conclusion that gKg−1 = xKx−1 ⊆ N(H). �

Observation 6.15. Carrying each element of C(H,K) to its stabilizer under the left W(H)-action

determines a function

C(H,K) PW(H)

∈ ∈

gK (gKg−1)/H

(6.3)

on underlying sets. We note the following two properties of the function (6.3).

(1) It takes values in those conjugacy classes of subgroups of W(H) whose preimages in N(H)

are conjugate in G to K.

(2) It is invariant with respect to both the left W(H)-action and the right W(K)-action on

C(H,K).
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The function (6.3) therefore admits a factorization

C(H,K) PW(H)

W(H)\C(H,K)/W(K) PW(H) ×PG {K}

. (6.4)

We use these facts without further comment.

Lemma 6.16. The factorization (6.4) is an isomorphism

W(H)\C(H,K)/W(K)
∼=
−→ PW(H) ×PG {K}

among sets.

Proof. We first verify that the function (6.4) is surjective. For this, choose any subgroup J ⊆W(H)

such that gKg−1 = p−1(J) for some g ∈ G. Then, the function (6.4) carries the equivalence class of

the element gK ∈ C(H,K) to the equivalence class of J in PW(H)×PG {K}. So indeed, the function

(6.4) is surjective.

We now verify that the function (6.4) is injective. For this, consider a pair of elements g1, g2 ∈

C̃(H,K). Then, observe the equivalence of the conditions

(1) (g1Kg−1
1 )/H and (g2Kg−1

2 )/H are conjugate in W(H),

(2) g1Kg−1
1 and g2Kg−1

2 are conjugate in N(H),

(3) there exists some x ∈ N(H) such that xg1Kg−1
1 x−1 = g2Kg−1

2 ,

(4) there exists some x ∈ N(H) such that g−1
2 xg1 ∈ N(K),

(5) there exist some x ∈ N(H) and y ∈ N(K) such that g2 = xg1y,

and

(6) [g1] = [g2] in W(H)\C(H,K)/W(K).

The equivalence (1)⇔ (6) implies that the function (6.4) is injective. �

Observation 6.17. For each element [g] ∈W(H)\C(H,K)/W(K), the fiber

C(H,K)[g] C(H,K)

{[g]} W(H)\C(H,K)/W(K)

is a (W(H),W(K))-subbimodule of C(H,K).
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Observation 6.18. Fix an element g ∈ C̃(H,K). We have a commutative diagram

G G

N(H) · N(gKg−1) C̃(H,K)

(N(H) · N(gKg−1))/(gKg−1) C(H,K)

{[g]} W(H)\C(H,K)/W(K)

z 7−→zg

xy 7−→xyg

xy(gKg−1) 7−→xygK

(6.5)

of sets, in which

• all functions are left N(H)-equivariant,

• the left column is right N(gKg−1)-equivariant,

• the right column is right N(K)-equivariant, and

• the horizontal functions are globally right-equivariant with respect to the conjugation iso-

morphism N(gKg−1)
g−1(−)g
−−−−−→ N(K).

Hence, by considering the sets in the left column of diagram (6.5) as right N(K)-sets via the conju-

gation isomorphism N(K)
g(−)g−1

−−−−−→ N(gKg−1), we may consider the entire diagram (6.5) as one of

(N(H),N(K))-bimodule sets. In particular, we obtain an injective function

(N(H) · N(gKg−1))/(gKg−1) −֒→ C(H,K)[g] (6.6)

of (N(H),N(K))-bimodule sets, which using Observation 6.17 we consider as an injective function

of (W(H),W(K))-bimodule sets.

Lemma 6.19. For every g ∈ C̃(H,K), the function (6.6) is an isomorphism among (N(H),N(K))-

bimodule sets.

Proof. It remains to show that the function (6.6) is surjective. For this, we fix an element zK ∈

C(H,K), and study the condition

(1) zK ∈ C(H,K)[g].

By definition, condition (1) is equivalent to the condition

(2) (zKz−1)/H is conjugate to (gKg−1)/H in W(H),

which is equivalent to the condition

(3) zKz−1 is conjugate to gKg−1 in N(H),

which is equivalent to the condition

(4) there exists some x ∈ N(H) such that xzKz−1x−1 = gKg−1.

Because xzKz−1x−1 = (xzg−1)(gKg−1)(xzg−1)−1, condition (4) is equivalent to the condition
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(5) there exists some x ∈ N(H) such that xzg−1 ∈ N(gKg−1).

Now, we claim that condition (5) is equivalent to the condition

(6) zg−1 ∈ N(H) · N(gKg−1).

On the one hand, we have that (5)⇒ (6) via left multiplication by x−1 ∈ N(H). On the other hand,

if zg−1 ∈ N(H) · N(gKg−1), then there exist elements x−1 ∈ N(H) and y ∈ N(gKg−1) such that

zg−1 = x−1y, which implies that xzg−1 = y ∈ N(gKg−1). So indeed, (6)⇒ (5). Finally, condition

(6) is clearly equivalent to the condition

(7) z ∈ N(H) · N(gKg−1) · g ⊆ C̃(H,K).

So, via the composite equivalence (1)⇔ (7) and by inspection of diagram (6.5), we find that every

element zK ∈ C(H,K)[g] is indeed in the image of the function (6.6). �

Observation 6.20. Fix a subgroup L ⊆ G such that H ⊆ L ⊆ N(H). We have a commutative

diagram

N(H) N(H) · N(L)

N(H)/L (N(H) · N(L))/L

x 7−→x·e=x

xL 7−→(x·e)L=xL

(6.7)

of (N(H),N(H) ∩ N(L))-bimodule sets. Furthermore, the left H-actions on both sets in the lower

row of diagram (6.7) are trivial. So, we may consider the lower morphism of diagram (6.7) as a

morphism

N(H)/L −→ (N(H) · N(L))/L (6.8)

of (W(H), (N(H) ∩ N(L))/L)-bimodule sets. Moreover, the (W(H), (N(H) ∩ N(L))/L)-bimodule

structure on (N(H) · N(L))/L extends to a (W(H),W(L))-bimodule structure (via the inclusion

(N(H) ∩ N(L))/L ⊆ N(L)/L =: W(L)). Hence, via the adjunction

BiMod(W(H),(N(H)∩N(L))/L) BiMod(W(H),W(L))

Ind
W(L)

(N(H)∩N(L))/L

⊥

Res
W(L)

(N(H)∩N(L))/L

,

the morphism (6.8) upgrades to a morphism

N(H)/L −→ Res
W(L)
(N(H)∩N(L))/L((N(H) · N(L))/L)

in BiMod(W(H),(N(H)∩N(L))/L), which corresponds to a morphism

Ind
W(L)
(N(H)∩N(L))/L(N(H)/L) −→ (N(H) · N(L))/L (6.9)

in BiMod(W(H),W(L)).

Lemma 6.21. For any subgroup L ⊆ G such that H ⊆ L ⊆ N(H), the morphism (6.9) is an

isomorphism.
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Proof. As the forgetful functor BiMod(W(H),W(L)) → RModW(L) is conservative, it suffices to show

that the morphism (6.9) becomes an isomorphism in RModW(L). Now, note that we have a commu-

tative square

RModN(H)∩N(L) RModN(L)

RMod(N(H)∩N(L))/L RModW(L)

Ind
N(L)

N(H)∩N(L)

(−)/L (−)/L

Ind
W(L)

(N(H)∩N(L))/L

(which commutes because it clearly commutes upon passing to right adjoints). Therefore, it suffices

to observe the isomorphism

Ind
N(L)
N(H)∩N(L)N(H) ∼= (N(H)× N(L))/(N(H) ∩ N(L)) ∼= N(H) · N(L)

in RModN(L). �

Observation 6.22. Consider the composite adjunction

RgG RgN(H) RgW(H)
ResGN(H)

⊥

coIndGN(H)

ΦH
g

⊥

ρH
g

(6.10)

(compare with Observation S.5.1.22). Because R
gG is rigidly-compactly generated by Observa-

tion 5.16 and the composite left adjoint ΦH
g ◦ Res

G
N(H) is symmetric monoidal, by [GR17, Chapter

1, Lemma 9.3.6] the composite right adjoint coIndGN(H) ◦ ρ
H
g is RgG-linear: in other words, for any

E ∈ RgG and F ∈ RgW(H) we have the projection formula

coIndGN(H)

(
ρHg

(
ΦH

g

(
ResGN(H)(E)

)
⊗ F

))
≃ E ⊗ coIndGN(H)

(
ρHg (F )

)
.

Proof of Theorem 6.6. It is clear that we have an identification

ΦK ≃ homRgG

(
1R 〈G/K〉 , (−)⊗ 1R

〈
ẼF 6≥K

〉)

in Fun(RgG,RhW(K)) (see Definition S.5.1.20). It then follows from Observation S.5.2.1 that we may

identify the gluing functor ΓH
K as the composite

R
hW(H)

βW(H)

−֒−−−→ R
gW(H)

ρH
g

−֒−→ R
gN(H)

coIndGN(H)
−−−−−−→ R

gG
hom

RgG(1R〈G/K〉,(−)⊗1R〈ẼF 6≥K〉)
−−−−−−−−−−−−−−−−−−−−−−−−→ R

hW(K) .

In other words, for any E ∈ RhW(H) we have a natural equivalence

ΓH
K(E) ≃ homRgG

(
1R 〈G/K〉 , coIndGN(H)(ρ

H
g (βW(H)(E))) ⊗ 1R

〈
ẼF 6≥K

〉)
(6.11)

in RhW(K). By Observation 6.22, we have an equivalence

coIndGN(H)(ρ
H
g (βW(H)(E)))⊗1R

〈
ẼF 6≥K

〉
≃ coIndGN(H)

(
ρHg

(
βW(H)(E) ⊗ ΦH

g

(
ResGN(H)

(
1R

〈
ẼF 6≥K

〉))))

in RgG. Therefore, by the composite adjunction (6.10) we find that

(6.11) ≃ homRgW(H)

(
ΦH

g

(
ResGN(H) (1R 〈G/K〉)

)
, βW(H)(E)⊗ ΦH

g

(
ResGN(H)

(
1R

〈
ẼF 6≥K

〉)))

≃ homRgW(H)

(
1R

〈
(G/K)H

〉
, βW(H)(E)⊗ 1R

〈
ẼF

〉)
(6.12)

(recall Local Notation 6.11(3)). Thereafter, we find that

(6.12) ≃ homRgW(H)

(
1R

〈
ẼF

〉
⊗ 1R

〈
(G/K)H

〉
, βW(H)(E)⊗ 1R

〈
ẼF

〉)
(6.13)
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≃ homRgW(H)

(
1R

〈
ẼF

〉
⊗ 1R 〈C(H,K)〉 , βW(H)(E)⊗ 1R

〈
ẼF

〉)
(6.14)

≃ homRgW(H)

(
1R 〈C(H,K)〉 , βW(H)(E)⊗ 1R

〈
ẼF

〉)
, (6.15)

where equivalences (6.13) and (6.15) follow from the fact that ẼF ∈ S
gW(H)
∗ is idempotent and

equivalence (6.14) follows from Lemma 6.14. Then, using Lemma 6.19 we obtain an equivalence

(6.15) ≃ homRgW(H)



1R

〈
∐

[g]∈W(H)\C(H,K)/W(K)

C(H,K)[g]

〉
, βW(H)(E)⊗ 1R

〈
ẼF

〉



≃
⊕

[g]∈W(H)\C(H,K)/W(K)

homRgW(H)

(
1R

〈
C(H,K)[g]

〉
, βW(H)(E)⊗ 1R

〈
ẼF

〉)
. (6.16)

To simplify our notation, we fix an element [g] ∈W(H)\C(H,K)/W(K) and study the correspond-

ing summand

homRgW(H)

(
1R

〈
C(H,K)[g]

〉
, βW(H)(E)⊗ 1R

〈
ẼF

〉)
(6.17)

of (6.16). Then, we obtain equivalences

(6.17) ≃ homRgW(H)

(
1R

〈
(N(H) · N(gKg−1))/(gKg−1)

〉
, βW(H)(E)⊗ 1R

〈
ẼF

〉)
(6.18)

≃ homRgW(H)

(
1R

〈
Ind

W(gKg−1)
(N(H)∩N(gKg−1))/(gKg−1)(N(H)/(gKg−1))

〉
, βW(H)(E)⊗ 1R

〈
ẼF

〉)

(6.19)

≃ coInd
W(gKg−1)
(N(H)∩N(gKg−1))/(gKg−1)

(
homRgW(H)

(
1R

〈
N(H)/(gKg−1)

〉
, βW(H)(E)⊗ 1R

〈
ẼF

〉))

≃ Ind
W(gKg−1)
(N(H)∩N(gKg−1))/(gKg−1)

(
homRgW(H)

(
1R

〈
N(H)/(gKg−1)

〉
, βW(H)(E)⊗ 1R

〈
ẼF

〉))
,

(6.20)

where equivalence (6.18) follows from Lemma 6.19 and equivalence (6.19) follows from Lemma 6.21.

To simplify our notation, we study the object

homRgW(H)

(
1R

〈
N(H)/(gKg−1)

〉
, βW(H)(E)⊗ 1R

〈
ẼF

〉)
(6.21)

of Rh(N(H)∩N(gKg−1))/(gKg−1) (whose induction to W(gKg−1) is (6.20)). Specifically, we compute

that

(6.21) ≃ homRgW(H)

(
1R

〈
W(H)/((gKg−1)/H)

〉
, βW(H)(E)⊗ 1R

〈
ẼF

〉)

=: Φ
(gKg−1)/H
F

βW(H)(E) . (6.22)

Finally, observe that (gKg−1)/H ∈ PW(H)\F is a minimal element. Hence, by Observation S.5.1.22

we have an equivalence

Φ
(gKg−1)/H
F

≃ Φ
(gKg−1)/H
6≥(gKg−1)/H

=: Φ(gKg−1)/H

in Fun(RgW(H),Rh(N(H)∩N(gKg−1))/(gKg−1)). Therefore, by Proposition 5.9 we have equivalences

(6.22) ≃ Φ(gKg−1)/HβW(H)E ≃ Eτ(gKg−1)/H ,

completing the proof. �
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Part II. The Pi
ard-graded Cpn
-equivariant 
ohomology of a point

7. The geometric stratification of genuine Cpn-Z-modules

In this section, we apply the material of Part I to describe the symmetric monoidal geometric

stratification (see Definition 2.4) of the presentably symmetric monoidal stable ∞-category

Mod
gCpn

Z := SpgCpn ⊗ModZ ≃ MackCpn
(ModZ)

of genuine Cpn -Z-modules (see Definition 1.3(1) and Observation 1.9), where p is prime. This de-

scription (originally stated as Theorem B) is recorded as Theorem 7.2; its consequences are unpacked

more explicitly in Observation 7.10 (after its proof). We also describe categorical fixedpoints in these

terms as Proposition 7.19.

Notation 7.1.

(1) We fix a prime p and a nonnegative integer n ≥ 0; these determine a finite cyclic group Cpn

of order pn.

(2) To ease our notation, we use the identification PCpn
∼= [n] for the poset of subgroups of Cpn ,

and for any s ∈ [n] we may use the identification Cpn/Cps ∼= Cpn−s .19

(3) Given a genuine Cpn -Z-module E ∈ Mod
gCpn

Z , for any s ∈ [n] we may simply write

Es := ΦCps (E) ∈ Mod
hCpn−s

Z

for its Cps-geometric fixedpoints.

(4) We fix a generator σ ∈ Cpn . For any s ∈ [n], we also denote by σ ∈ Cpn−s its image under

the quotient homomorphism Cpn → Cpn−s .

(5) In the interest of brevity, we simply write ⊗ := ⊗Z for the symmetric monoidal structure of

ModZ.

(6) For any i ≥ 0, we simply write Z ∈ Mod
hCpi

Z for the trivial Cpi -action on Z ∈ ModZ.

Theorem 7.2. The symmetric monoidal geometric stratification

[n]
Sp

gCpn

≤•−−−−→ Idl
Sp

gCpn

−⊗ModZ−−−−−→ Idl
Mod

gCpn

Z

(7.1)

of Mod
gCpn

Z has the following features.

(1) Its underlying stratification is strict.20

(2) Its symmetric monoidal gluing diagram is the functor

[n]
G

⊗(Mod
gCpn

Z
)

−−−−−−−−−→ CAlgr.lax(Cat)

19We use the letter “s” because it stands for the word “stratum”.
20That is, the stratification is convergent (as guaranteed by Theorem S.A because the poset [n] is finite) and

moreover the gluing functors compose strictly (as opposed to left-laxly). See §S.6.3 for more discussion of this notion.
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selecting the diagram

Mod
hCpn

Z

(−)tCp
−−−−→ Mod

hCpn−1

Z

(−)tCp
−−−−→ · · ·

(−)tCp
−−−−→ ModZ . (7.2)

(3) All nontrivial composite gluing functors in its symmetric monoidal gluing diagram (7.2) are

zero.

Lemma 7.3. Let R be a rigidly-compactly generated presentably symmetric monoidal stable ∞-

category, let G = Cpn , and let K < H ≤ G be any strict containment among subgroups of G. Then,

the composite natural transformation in the diagram

RgG Rg(G/K)

R
g(G/H)

(−)K

⇓

ΦK
g

Φ H
g

ΦH/K
g

(in which the bottom triangle commutes) is an equivalence in Fun(RgG,RgG/H): in other words, for

any E ∈ R
gG the canonical morphism

ΦH/K
g

(
EK
)
−→ ΦH/K

g

(
ΦK

g (E)
)
≃ ΦH

g (E) (7.3)

is an equivalence.

Remark 7.4. In fact, Lemma 7.3 applies to the rigidly-compactly generated presentably symmetric

monoidal stable ∞-categories

SpgCp∞ := lim


· · ·

Res
C
p3

C
p2

−−−−→ SpgCp2
Res

C
p2

Cp
−−−−→ SpgCp Res

Cp
e−−−→ Sp


 and Spg

<pT :=
〈
Σ∞

T (T/Cpi)+
〉
i≥0
⊆ SpgT ,

both of which are stratified over the poset Z≥0 (under the requirement that the subgroupsK < H ≤

G be closed): the key point is that this poset is totally ordered. Alternatively, these statements can

be readily deduced from Lemma 7.3 itself: for SpgCp∞ this is immediate, and for Spg
<pT it suffices

to observe that the forgetful functor Spg
<pT → SpgCp∞ is conservative.

Proof of Lemma 7.3. We begin by observing the commutative diagram

Sg(G/K) SgG

R
g(G/K)

R
gG

Res
G/K
G

1R〈−〉
1R〈−〉

Res
G/K
G

in CAlg(PrL). We observe too that in the adjunction

Rg(G/K) RgG
Res

G/K
G

⊥

(−)K
,
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because Rg(G/K) is rigidly-compactly generated by Observation 5.16 and the left adjoint Res
G/K
G is

symmetric monoidal, by [GR17, Chapter 1, Lemma 9.3.6] the right adjoint (−)K is Rg(G/K)-linear:

in other words, for any F ∈ Rg(G/K) and E ∈ RgG we have the projection formula

F ⊗ EK ≃
(
Res

G/K
G (F )⊗ E

)K
.

Using these two observations, we respectively identify the source and target of the morphism (7.3)

as

ΦH/K
g

(
EK
)
≃
(
ẼF6≥H/K ⊙ EK

)H/K

(7.4)

≃
(
1R

〈
ẼF6≥H/K

〉
⊗ EK

)H/K

≃

((
Res

G/K
G

(
1R

〈
ẼF6≥H/K

〉)
⊗ E

)K)H/K

≃
(
Res

G/K
G

(
1R

〈
ẼF6≥H/K

〉)
⊗ E

)H

≃
(
Res

G/K
G

(
ẼF6≥H/K

)
⊙ E

)H

and

ΦH/K
g

(
ΦK

g (E)
)
≃

(
ẼF6≥H/K ⊙

(
ẼF6≥K ⊙ E

)K)H/K

(7.5)

≃

(
1R

〈
ẼF6≥H/K

〉
⊗
(
1R

〈
ẼF6≥K

〉
⊗ E

)K)H/K

≃

((
Res

G/K
G

(
1R

〈
ẼF6≥H/K

〉)
⊗ 1R

〈
ẼF6≥K

〉
⊗ E

)K)H/K

≃
(
Res

G/K
G

(
1R

〈
ẼF6≥H/K

〉)
⊗ 1R

〈
ẼF6≥K

〉
⊗ E

)H

≃
((

Res
G/K
G

(
ẼF6≥H/K

)
∧ ẼF6≥K

)
⊙ E

)H
,

where equivalences (7.4) and (7.5) follow from Observation 1.16. It is now clear that the morphism

(7.3) itself may be obtained by applying the composite functor

S
gG
∗

(−)⊙E
−−−−→ R

gG (−)H

−−−→ R
g(G/H)

to the evident morphism

Res
G/K
G

(
ẼF6≥H/K

)
≃ Res

G/K
G

(
ẼF6≥H/K

)
∧ S0 −→ Res

G/K
G

(
ẼF6≥H/K

)
∧ ẼF6≥K (7.6)

in S
gG
∗ , which it therefore suffices to show is an equivalence. For this, fix an arbitrary closed subgroup

J ≤ G. Now, for any genuine G/K-space X ∈ S
g(G/K)
∗ we have that

Res
G/K
G (X)J ≃ XJ/(K∩J)

(note that J/(K ∩ J) is the image of the composite J →֒ G ։ G/K). Hence, it suffices to observe

that if J/(J ∩K) ≥ H/K in PG/K then J ≥ K, which follows from the fact that the poset PG is

totally ordered. �
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Observation 7.5. For any E ∈ Mod
hCp2

Z , all three terms in the cofiber sequence
(
EhCp

NmCp (E)
−−−−−−→ EhCp

QCp (E)
−−−−−→ EtCp

)tCp

in ModZ are zero; this follows from [NS18, Footnote 9] (see also [NS18, Lemma I.2.7]). Equivalently,

the norm maps

(EhCp)hCp

NmCp (EhCp )
−−−−−−−→ (EhCp)

hCp , (EhCp)hCp

NmCp (E
hCp )

−−−−−−−−→ (EhCp)hCp , and (EtCp)hCp

NmCp (E
tCp )

−−−−−−−→ (EtCp)hCp

are equivalences.

Observation 7.6. For any E ∈ Mod
hCpn

Z and any 1 ≤ s ≤ n, if EtCps ≃ 0 then EtCpi ≃ 0 for all

s ≤ i ≤ n. To see this, by induction it suffices to verify the case that i = s + 1 (assuming that

s < n, otherwise the assertion is vacuously true). And indeed, we have that EtCps+1 ≃ 0 as a result

of the diagram

EhCps+1 EhCps+1

(EhCps
)hCp (EhCps )hCp

(EhCps
)hCp

NmC
ps+1

(E)

∼

Nm
Cp (E

hC
ps )

∼

∼

Nm
Cp

s
(E

)
hCp∼

in Mod
hCpn−s+1

Z , which commutes by Observation 4.13(3) and in which the lower left morphism is

an equivalence by Observation 7.5 (and the equivalence EhCps

∼
−→ (EhCps−1 )hCp) and the lower right

morphism is an equivalence by assumption.

Proof of Theorem 7.2. We note that the assertions only make reference to the underlying stratifi-

cation of the symmetric monoidal stratification (7.1), so it suffices to verify them at that level. For

each s ∈ [n], its sth stratum is given by

(Mod
gCpn

Z )s := (SpgCpn ⊗ModZ)s ≃ (SpgCpn )s ⊗ModZ ≃ SphCpn−s ⊗ModZ ≃ Mod
hCpn−s

Z ,

where the first equivalence follows from Observation 2.1 and the second equivalence follows from

Theorem S.5.1.27. Thereafter, it follows from Proposition 5.9 and Observation 1.4 (and the fact

that ModZ is compactly generated) that for each morphism i → j in [n] its corresponding gluing

functor

(Mod
gCpn

Z )i
Γi
j
−→ (Mod

gCpn

Z )j

is given by the proper Cpj−i -Tate construction

Mod
hCpn−i

Z

(−)
τC

pj−i

−−−−−−→ Mod
hCpn−j

Z .

Now, assuming j − i ≥ 1, then for any E ∈ Mod
hCpn−i

Z we have that

EτCpj−i ≃ ΦCpj−i (βE) (7.7)
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≃ ΦCp

(
(βE)Cpj−i−1

)
(7.8)

≃ ΦCp

(
β
(
EhCpj−i−1

))

≃
(
EhCpj−i−1

)
τCp

(7.9)

≃
(
EhC

pj−i−1

)tCp

, (7.10)

where

• equivalences (7.7) and (7.9) follow from Proposition 5.9,

• equivalence (7.8) follows from Lemma 7.3 when j− i > 1 and is trivially true when j− i = 1,

and

• equivalence (7.10) follows from Observation 4.8.

All three claims now follow from Observation 7.5. �

Notation 7.7. We define the full subcategory

Zign := {(i→ j) ∈ TwAr([n]) : j − i ≤ 1} ⊆ TwAr([n]) ,

which we depict as

Zign =




(0→ 0) (1→ 1) · · · · · · (n→ n)

(0→ 1) (1→ 2) · · · ((n− 1)→ n)


 .

Remark 7.8. When possible, we use the “sawtooth” depiction of Zign (as in Notation 7.7) and of

diagrams indexed thereover: the columns will correspond to the strata of the geometric stratification

of Mod
gCpn

Z of Theorem 7.2. However, in order to depict natural transformations between diagrams

indexed over Zign (such as in Proposition 7.19), we will use a more symmetric depiction.

Observation 7.9. The inclusion

Zign −֒→ TwAr([n])

is initial. We use this fact without further comment.

Observation 7.10. We unpack the following consequences of Theorem 7.2.

(1) At the macrocosm level, applying Theorems S.2.5.14 and S.4.5.1 along with Observation

S.6.3.5 to the strict symmetric monoidal stratification (7.1), we obtain an identification

Mod
gCpn

Z ≃ Glue⊗(Mod
gCpn

Z ) := limr.lax
[n]

(
G

⊗(Mod
gCpn

Z )
)
≃ Γ[n]op

(
G

⊗(Mod
gCpn

Z )
cocart
∨

)

≃ lim




Mod
hCpn

Z Ar
(
Mod

hCpn−1

Z

)
· · · · · · Ar (ModZ)

Mod
hCpn−1

Z Mod
hCpn−2

Z · · · ModZ

(−) tCp
t (−) tCp

◦s

t (−
) tC

p
◦s

t




,

where the limit is taken in CAlgr.lax(Cat).
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(2) We now proceed to the microcosm level.

(a) By Observations S.6.3.2 and S.2.7.4, the fact that the stratification (7.1) is strict implies

that for each object E ∈ Mod
gCpn

Z we have a natural diagram of equivalences

E
∼
−→ limTwAr([n])(g(E))

∼
−→ limZign

(g(E)) .

In particular, the object E ∈ Mod
gCpn

Z is recorded by the data of its gluing diagram



E0 E1 · · · · · · En

(E0)
tCp (E1)

tCp · · · (En−1)
tCp

γE
0,1

γE
1,2 γE

n−1,n


 .

(b) The fact that the stratification (7.1) is symmetric monoidal implies that for any objects

E,F ∈ Mod
gCpn

Z , their tensor product (E ⊗ F ) ∈ Mod
gCpn

Z has (E ⊗ F )s ≃ Es ⊗ Fs for

all s ∈ [n] and gluing morphisms the composites

γE⊗F
s−1,s : Es ⊗ Fs

γE
s−1,s⊗γF

s−1,s
−−−−−−−−−→ (Es−1)

tCp ⊗ (Fs−1)
tCp −→ (Es−1 ⊗ Fs−1)

tCp ,

where the second morphism arises from the fact that the functor

Mod
hCpn−s+1

Z

(−)tCp
−−−−→ Mod

hCpn−s

Z

is right-laxly symmetric monoidal by Observation 4.13(2).

(3) At the nanocosm level, again by Observation S.2.7.4, for each E,F ∈ Mod
gCpn

Z we have an

equivalence

hom
Mod

gCpn

Z

(F,E)
∼
−→ lim(i→j)∈Zign

hom
Mod

hC
pn−j

Z

(Fj , (Ei)
tCpj−i ) (7.11)

in ModZ, where (by definition of Zign) we have that j − i is either 0 or 1. More explicitly,

the diagram Zign → ModZ whose limit is the target of the equivalence (7.11) is



hom
Mod

hCpn

Z

(F0, E0) hom
Mod

hC
pn−1

Z

(F1, E1) · · · · · · homModZ
(Fn, En)

hom
Mod

hC
pn−1

Z

(F1, (E0)
tCp) hom

Mod
hC

pn−2

Z

(F2, (E1)
tCp) · · · homModZ

(Fn, (En−1)
tCp)




,

where for all 1 ≤ s ≤ n the sth diagonal morphism is the composite

hom
Mod

hC
pn−s+1

Z

(Fs−1, Es−1)
(−)tCp
−−−−→ hom

Mod
hC

pn−s

Z

((Fs−1)
tCp , (Es−1)

tCp)
γF
s−1,s
−−−−→ hom

Mod
hC

pn−s

Z

(Fs, (Es−1)
tCp)

and the sth vertical morphism is

hom
Mod

hC
pn−s

Z

(Fs, Es)
γE
s−1,s
−−−−→ hom

Mod
hC

pn−s

Z

(Fs, (Es−1)
tCp) .

Remark 7.11. In what follows, we record a number of basic facts about categorical fixedpoints of

genuine Cpn -Z-modules. In effect, we obtain these by applying the discussion of §S.5.4 (regarding

categorical fixedpoints of genuine G-spectra for an arbitrary finite group G). The present situation

is simpler both because Cpn is abelian and because we work Z-linearly.
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Observation 7.12. For any 0 ≤ a < n, the inclusion morphisms

ECpa+1 inc
−→ ECpa

for E ∈ Mod
gCpn

Z define a natural transformation

Mod
hCpn−a−1

Z

Mod
gCpn

Z

Mod
hCpn−a

Z

triv⇐

(−)
Cp

a+
1

(−) C
pa

. (7.12)

Indeed, the natural transformation in diagram (7.12) is corepresented by the morphism

Z
〈
Cpn/Cpa −→ Cpn/Cpa+1

〉

in Mod
gCpn

Z .

Observation 7.13. For any 0 ≤ a < n, the transfer morphisms

ECpa
trf
−→ ECpa+1

for E ∈ Mod
gCpn

Z define a natural transformation

ModhCpn−a−1

Mod
gCpn

Z

ModhCpn−a

triv⇒

(−)
Cp

a+
1

(−) C
pa

. (7.13)

Indeed, the natural transformation in diagram (7.13) is corepresented by the morphism

Z
〈
Cpn/Cpa+1

〉
−→ Z 〈Cpn/Cpa〉 (7.14)

in Mod
gCpn

Z obtained by applying the functor Mod
gCpa+1

Z

Ind
Cpn

C
pa+1

−−−−−→ Mod
gCpn

Z to the morphism

Z ≃ Z
〈
Cpa+1/Cpa+1

〉
−→ Z

〈
Cpa+1/Cpa

〉
≃ coInd

Cpa+1

Cpa
(Z 〈Cpa/Cpa〉)

corresponding to the identity morphism

Res
Cpa+1

Cpa
(Z
〈
Cpa+1/Cpa+1

〉
) −→ Z 〈Cpa/Cpa〉

in Mod
gCpa

Z .

Definition 7.14. The homotopy transfer (for Cp) is the morphism

id
Mod

hCp
Z

trfhCp
−−−→ triv ◦ (−)hCp

in Funex(Mod
hCp

Z ,Mod
hCp

Z ) that is corepresented by the morphism

Z −→ Zh 〈Cp/e〉 , (7.15)
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i.e. the morphism U(7.14) in the case that n = 1 and a = 0. We may simply write

trfh := trfhCp
(E)

for its component at an object E ∈ Mod
hCp

Z (in line with the notation introduced in Definition 1.10).

Observation 7.15. The morphism (7.15) is between discrete objects in Mod
hCp

Z (i.e. abelian groups

with Cp-action) which are cyclic as discrete Z[Cp]-modules, and it is characterized by the fact that

it carries 1 ∈ Z to the element

N := (1 + σ + · · ·+ σp−1) ∈ Zh 〈Cp/e〉

(see Definition A.20). So, for any object E ∈ Mod
hCp

Z , the morphism hom
Mod

hCp
Z

((7.15), E) is the

composite

E −→ EhCp

NmCp (E)
−−−−−−→ EhCp .

Observation 7.16. Fix any 0 ≤ a < n. We claim that for any s ∈ [n], applying the functor

Mod
gCpn

Z

Φ
Cps

−−−→ Mod
hCpn−s

Z

to the morphism (7.14) gives

• the morphism

0 −→ 0

when s > a+ 1;

• the morphism

Zh
〈
Cpn−s/Cpa+1−s

〉
−→ 0

when s = a+ 1; and

• the morphism

Zh
〈
Cpn−s/Cpa+1−s

〉
−→ Zh

〈
Cpn−s/Cpa−s

〉
(7.16)

when s ≤ a.

The only nontrivial case to verify is when s ≤ a. Then, the morphism (7.16) is between discrete

objects in Mod
hCpn−s

Z (i.e. abelian groups with Cpn−s-action) which are cyclic as discrete Z[Cpn−s ]-

modules, and it is characterized by the fact that it carries the element 1 ∈ Zh
〈
Cpn−s/Cpa+1−s

〉
to

the element

N := (1 + σ + · · ·+ σp−1) ∈ Zh
〈
Cpn−s/Cpa−s

〉
.

So by Observation 7.15, the morphism (7.16) corepresents the natural morphism

EhCpa−s
trfhCp (E)

hC
pa−s

−−−−−−−−−→ EhCpa+1−s (7.17)

in Mod
hCpn−a

Z for any object E ∈ Mod
hCpn−s

Z .

Notation 7.17. For any 0 ≤ s ≤ a < n and any E ∈ Mod
hCpn−s

Z , we may simply write

trfh := trfhCp
(E)hCpa−s

for the morphism (7.17).
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Observation 7.18. For any i ≥ 0 and any E ∈ Mod
hCpi+1

Z , we have a canonical commutative

diagram

E

EhCp EhCp

0 EtCp

trf h
C
p (E

)

NmCp (E)

QCp(E)

in Mod
hCpi

Z , in which the upper triangle commutes by Observation 7.15 and the square is the defining

pushout.

Proposition 7.19. Fix any genuine Cpn-Z-module E ∈ Mod
gCpn

Z .

(1) For any 0 ≤ a ≤ n, its Cpa-fixedpoints ECpa ∈ Mod
hCpn−a

Z is the limit of the diagram

Ziga
Da(E)
−−−−→ Mod

hCpn−a

Z

given by

(E0)
hCpa (E1)

hCpa−1 · · · · · · (Ea)
hCp0

((E0)
tCp)hCpa−1 ((E1)

tCp)hCpa−2 · · · ((Ea−1)
tCp)hCp0

Q
C
p (E

0 ) hC
pa−

1

Q
C
p (E

1 ) hC
pa−

2

(γE
0,1)

hC
pa−1 (γE

1,2)
hC

pa−2

Q
C
p (E

a−
1 ) hC

p 0

(γE
a−1,a)

hC
p0

.

(7.18)

Moreover, for any 0 ≤ a < n the functors Da(E) and Da+1(E) participate in a commutative

square

Ziga Ziga+1

ModhCpn−a ModhCpn−a−1

Zigi7→i

Da(E) Da+1(E)

(−)hCp

(7.19)

(in which the functor Zigi7→i is the evident fully faithful inclusion).

(2) For any 0 ≤ a < n, the inclusion morphism

ECpa+1 inc
−→ ECpa
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in Mod
hCpn−a

Z is the limit of the morphism

(E0)
hCpa+1 · · · (Ea)

hCp1 (Ea+1)
hCp0

· · · ((Ea−1)
tCp)hCp1 ((Ea)

tCp)hCp0

(E0)
hCpa · · · (Ea)

hCp0 0

· · · ((Ea−1)
tCp)hCp0 0

inch inch inch

inch inch

(7.20)

in Fun(Ziga+1,ModhCpn−a ) in which the nontrivial non-vertical morphisms are as in diagram

(7.18).21,22

(3) For any 0 ≤ a < n, the transfer morphism

ECpa
trf
−→ ECpa+1

21Recall from Notation 1.13 that inch denotes an inclusion morphism among homotopy fixedpoints.
22That is, it arises from the functoriality of limits for the diagram

Ziga Ziga+1

Mod
hC

pn−a

Z
Mod

hC
pn−a−1

Z

Mod
hC

pn−a

Z

Da(E)

Zigi7→i

Da+1(E)

(−)hCp

⇐

id
tri
v

consisting of the commutative square (7.19) and the counit of the adjunction triv ⊣ (−)hCp .
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in Mod
hCpn−a

Z is the limit of the morphism

(E0)
hCpa+1 · · · (Ea)

hCp1 (Ea+1)
hCp0

· · · ((Ea−1)
tCp)hCp1 ((Ea)

tCp)hCp0

(E0)
hCpa · · · (Ea)

hCp0 0

· · · ((Ea−1)
tCp)hCp0 0

trfh trfh trfh

trfh trfh

(7.21)

in Fun(Ziga+1,ModhCpn−a ), in which the nontrivial non-vertical morphisms are as in diagram

(7.18) and in which the second to rightmost square commutes by Observation 7.18.23

Proof. Part (1) is a special case of Observation 7.10(3) (with the commutative square (7.19) following

from its naturality in F ∈ Mod
gCpn

Z ). Part (2) then follows by applying Observation S.5.4.9, and

part (3) follows by applying Observations S.5.4.10, 7.13, and 7.16. �

8. The Picard group of genuine Cpn -Z-modules

In this section, we prove the first part of Theorem C: namely, we use our symmetric monoidal

stratification of Mod
gCpn

Z (as described in §7) to compute its Picard group (under the assumption

that p is odd). In order to help the reader appreciate the flow of the computation, we state its

output as quickly as possible as Theorem 8.4, and then proceed to unpack it; its proof appears at

the end of the section.

Local Notation 8.1. Through §11 (i.e. for the remainder of the paper except for §A), we assume

that the prime p that was fixed in Notation 7.1(1) is odd.

Notation 8.2. Given a symmetric monoidal∞-category C, we write π0(ι0(C)) for the commutative

monoid of equivalence classes of objects of C. We make no notational distinction between an object

of C and its equivalence class in π0(ι0(C)).

Definition 8.3. The Picard group of a symmetric monoidal ∞-category C is the maximal sub-

group

Pic(C) ⊆ π0(ι0(C)) ,

23That is, it arises from the functoriality of limits for a diagram

Ziga Ziga+1

Mod
hC

pn−a

Z
Mod

hC
pn−a−1

Z

Zigi7→i

Da(E) Da+1(E)

(Z
ig i7→

i
)∗
(D

a
(E

))

⇓

triv

in which upper triangle is a right Kan extension (i.e. extension by zero).
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i.e. the abelian group of those equivalence classes of objects c ∈ C such that there exist an object

c′ ∈ C and an equivalence c ⊗ c′ ≃ 1C. We refer to an object of C whose equivalence class lies in

Pic(C) as a Picard element .

Theorem 8.4. The abelian group homomorphism

Z⊕(n+1) ⊕

(
n⊕

s=1

(Z/pn−s+1)×

)
L•

−−→ Pic(Mod
gCpn

Z ) (8.1)

of Notation 8.13 is surjective, and descends to an isomorphism

Z⊕(n+1) ⊕

(
n⊕

s=1

(Z/pn−s+1)×/{±1}

)
∼=
−→ Pic(Mod

gCpn

Z ) .

Observation 8.5. For any s ∈ [n], the functors

Mod
gCpn

Z

Φ
Cps

−−−→ Mod
hCpn−s

Z

fgt
−→ ModZ

are symmetric monoidal, and therefore carry Picard elements to Picard elements. We use this to

make some basic deductions regarding Picard elements of Mod
gCpn

Z .

First of all, every Picard element of ModZ is equivalent to ΣαZ for some α ∈ Z. Moreover, as a

result of the equivalences autModZ(Σ
αZ) ≃ autModZ(Z) ≃ {±1} and the fact that p is odd, there are

no nontrivial Cpn−s-actions on ΣαZ ∈ ModZ for any α ∈ Z. So, every Picard element of Mod
hCpn−s

Z is

equivalent to ΣαZ for some α ∈ Z, where we simply write Z ∈ Mod
hCpn−s

Z for the trivial Cpn−s-action

on Z ∈ ModZ (as specified by Notation 7.1(6)).

So, given any Picard element E ∈ Mod
gCpn

Z , for each s ∈ [n] there must exist an equivalence

ΦCsE ≃ ΣαsZ for some αs ∈ Z. Choosing such equivalences, by Theorem 7.2 (and Observa-

tion 7.10(2)(a)), this Picard element is recorded by the data of a gluing diagram




Σα0Z Σα0+α1Z · · · · · · Σα0+α1+···+αnZ

Σα0ZtCp Σα0+α1ZtCp · · · Σα0+α1+···+αn−1ZtCp

γ1 γ2 γn


 . (8.2)

For all 1 ≤ s ≤ n, we consider the sth gluing morphism of the gluing diagram (8.2) as an element

γs ∈ π0hom
Mod

hC
pn−s

Z

(Σα0+α1+···+αsZ,Σα0+α1+···+αs−1ZtCp)

∼= π0hom
Mod

hC
pn−s

Z

(ΣαsZ,ZtCp )

∼= π0homModZ
(ΣαsZ, (ZtCp)hCpn−s )

∼= παs((Z
tCp)hCpn−s ) .

Notation 8.6. Given a pair of elements

~α = (α0, . . . , αn) ∈ Z⊕(n+1) and ~γ =
(
γs ∈ παs((Z

tCp )hCpn−s )
)
1≤s≤n

,

we write

K(~α,~γ) ∈ π0(ι0(Mod
gCpn

Z ))
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for the equivalence class of genuine Cpn -Z-module corresponding to the gluing diagram (8.2) via The-

orem 7.2 (and Observation 7.10(2)(a)). Evidently, such pairs (~α,~γ) may be equivalently considered

as elements of the product

(
α0 ∈ Z, (γs ∈ παs((Z

tCp )hCpn−s ))1≤s≤n

)
∈ Z×

n∏

s=1

π∗((Z
tCp )hCpn−s )homog

(where the subscript denotes the restriction to homogeneous elements), through which identification

this construction assembles as a function

Z×

n∏

s=1

π∗((Z
tCp )hCpn−s )homog

K•

−→ π0(ι0(Mod
gCpn

Z ))

between sets.

Observation 8.7. By Observation 4.13(2), for each 1 ≤ s ≤ n the object (ZtCp )hCpn−s ∈ ModZ

admits a canonical lift to an object of CAlg(ModZ), so that the graded abelian group π∗((Z
tCp )hCpn−s )

acquires the structure of a graded-commutative ring. Thereafter, the source of the function

Z×

n∏

s=1

π∗((Z
tCp )hCpn−s )homog

K•

−→ π0(ι0(Mod
gCpn

Z ))

obtained in Notation 8.6 naturally inherits the structure of a monoid. By Theorem 7.2 (and Obser-

vation 7.10(2)(b)), with respect to this structure the function K• is a monoid homomorphism. We

use these facts without further comment.

Observation 8.8. By Lemma A.35, for each 1 ≤ s ≤ n we have an isomorphism

π∗((Z
tCp )hCpn−s ) ∼= (Z/pn−s+1)[(cn−s+1)

±]

of graded-commutative rings, where |cn−s+1| = −2.

Notation 8.9. For each 1 ≤ s ≤ n, we define the commutative submonoid

Ms := {(α, γ) ∈ Z⊕Z/pn−s+1 : if α is odd then γ = 0} ⊆
(
Z⊕ Z/pn−s+1

)
:=
(
(Z,+)⊕ (Z/pn−s+1, · )

)

of the indicated commutative monoid (namely the direct sum of Z (considered as a commutative

monoid via addition) and Z/pn−s+1 (considered as a commutative monoid via multiplication)).

Projection to the first summand gives the commutative monoid Ms the structure of a graded-

commutative monoid. We also define the commutative monoid

M := Z⊕

(
n⊕

s=1

Ms

)
.

Via the injection

M := Z⊕ (
⊕n

s=1 Ms) ⊆ Z⊕
(⊕n

s=1 Z⊕ (Z/pn−s+1)×
)
∼= Z⊕(n+1) ⊕

(⊕n
s=1(Z/p

n−s+1)×
)

∈ ∈

(α0, (α1, γ1), . . . , (αn, γn)) ((α0, . . . , αn), (γ1, . . . , γn))

,

we denote an element in M as a pair of vectors (~α,~γ). We denote the identity element in this group

as (~0,~1).
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Observation 8.10. For each 1 ≤ s ≤ n, by Observation 8.8 we have an isomorphism

Ms π∗((Z
tCp)hCpn−s )homog

∈ ∈

(α, γ) (cn−s+1)
−α

2 γ

∼=

of graded-commutative monoids, where we take the convention that (cn−s+1)
−α

2 := 0 whenever α

is odd. Thereafter, we obtain a likewise isomorphism

M Z×
n∏

s=1

π∗((Z
tCp )hCpn−s )homog

∈ ∈

(~α,~γ)
(
α0, (cn)

−
α1
2 γ1, . . . , (c1)

−αn
2 γn

)

∼=

of monoids. We employ both of these isomorphisms – and in particular the fact that all monoids

under consideration are in fact commutative – without further comment.

Observation 8.11. For any 1 ≤ s ≤ n, the inclusion

Z⊕ (Z/pn−s+1)× Ms π∗((Z
tCp )hCpn−s )homog

∈ ∈ ∈
(β, γ) (2β, γ) (cn−s+1)

−βγ

∼=

is that of the subgroup of invertible elements. Thereafter, the inclusion

Z⊕(n+1) ⊕
(⊕n

s=1(Z/p
n−s+1)×

)
M Z×

∏n
s=1 π∗((Z

tCp)hCpn−s )homog

∈ ∈ ∈

(~β,~γ) := ((β0, . . . , βn), (γ1, . . . , γn)) ((β0, 2β1, . . . , 2βn), (γ1, . . . , γn))
(
β0, (cn)

−β1γ1, . . . , (c1)
−βnγn

)

∼=

is likewise that of the subgroup of invertible elements.

Notation 8.12. We define the abelian groups K, P̃, and P according to the commutative diagram

K := 0⊕(n+1) ⊕ (
⊕n

s=1{±1}
×)

{(
0 ∈ Z,

(
±1 ∈ π0((Z

tCp )hCpn−s )
))}

1≤s≤n

P̃ := Z⊕(n+1) ⊕
(⊕n

s=1(Z/p
n−s+1)×

)
M Z×

∏n
s=1 π∗((Z

tCp)hCpn−s )homog

P := Z⊕(n+1) ⊕
(⊕n

s=1(Z/p
n−s+1)×/{±1}

)

∼=

∼= , 24

in which the middle horizontal inclusion is that of the subgroup of invertible elements by Observa-

tion 8.11 and the left vertical composite is an exact sequence among abelian groups.

24Actually, P̃ and P were already implicitly introduced in the statement of Theorem 8.4.
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Notation 8.13. We write

P̃ Pic(Mod
gCpn

Z )

M π0(ι0(Mod
gCpn

Z ))

L•:=((~β,~γ) 7−→L(~β,~γ))

K•:=((~α,~γ) 7−→K(~α,~γ))

(8.3)

for the induced homomorphism on subgroups of invertible elements.

Lemma 8.14. The kernel of the commutative monoid homomorphism

M
K•

−→ π0(ι0(Mod
gCpn

Z ))

is the subgroup K ⊆M.

Proof. First of all, it is clear that we have an equivalence

K(~0,~1) ≃ 1

Mod
gCpn

Z

in Mod
gCpn

Z . To prove the claim, we will show that for any (~α,~γ) ∈ M there exists an equivalence

K(~α,~γ) −→ K(~0,~1) (8.4)

in Mod
gCpn

Z if and only if

αs = 0 ∈ Z

for all 0 ≤ s ≤ n and

γs = ±1 ∈ παs((Z
tCp)hCpn−s ) = π0((Z

tCp )hCpn−s )

for all 1 ≤ s ≤ n.

First of all, observe that for each s ∈ [n] there exists an equivalence

ΦCpsK(~α,~γ) ≃ Σα0+···+αsZ −→ Z ≃ ΦCpsK(~0,~1)

in Mod
hCpn−s

Z if and only if α0+ · · ·+αs = 0. Hence, in order for there to exist an equivalence (8.4),

it must indeed be the case that αs = 0 for all 0 ≤ s ≤ n. So we assume this, and proceed.

Now, by Theorem 7.2 (and Observation 7.10(3)), we have an equivalence

hom
Mod

gCpn

Z

(K(~0,~γ),K(~0,~1))
∼
−→ lim(i→j)∈Zign

hom
Mod

hC
pn−j

Z

(Z,ZtCpj−i )

in ModZ; more explicitly, the limit is of the diagram Zign → ModZ given by



hom
Mod

hCpn

Z

(Z,Z) hom
Mod

hC
pn−1

Z

(Z,Z) · · · · · · homModZ
(Z,Z)

hom
Mod

hC
pn−1

Z

(Z,ZtCp ) hom
Mod

hC
pn−2

Z

(Z,ZtCp ) · · · homModZ
(Z,ZtCp )

γ1 1 γ2
1 γ

n 1




,

(8.5)

where for all 1 ≤ s ≤ n we slightly abuse notation by writing

hom
Mod

hC
pn−s+1

Z

(Z,Z)
γs
−→ hom

Mod
hC

pn−s

Z

(Z,ZtCp )

for the composite

hom
Mod

hC
pn−s+1

Z

(Z,Z)
(−)tCp
−−−−→ hom

Mod
hC

pn−s

Z

(ZtCp ,ZtCp)
γs
−→ hom

Mod
hC

pn−s

Z

(Z,ZtCp) .
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Evidently, we may rewrite the diagram (8.5) more simply as




ZhCpn Z
hCpn−1 · · · · · · Z

(ZtCp)hCpn−1 (ZtCp )hCpn−2 · · · ZtCp

γ
1

1 γ2
1 γ

n
1


 . (8.6)

Hence, we obtain the composite isomorphism

π0(hom
Mod

gCpn

Z

(K(~0,~γ),K(~0,~1)))
∼=
−→ π0(limZign

(8.6))

∼=
−→ limZign

(π0(8.6)) (8.7)

∼= lim




Z Z · · · · · · Z

Z/pn Z/pn−1 · · · Z/p

γ
1

1 γ
2 1 γ

n
1




(8.8)

among abelian groups, in which

• isomorphism (8.7) follows from the fact that all of the Z-modules on the lower row of diagram

(8.6) have vanishing π1 by Observation 8.8, and

• isomorphism (8.8) follows from the evident isomorphisms π0(Z
hCpn−s ) ∼= Z for all s ∈ [n] as

well as the isomorphisms π0((Z
tCp)hCpn−s ) ∼= Z/pn−s+1 for all 1 ≤ s ≤ n of Observation 8.8.

By Theorem 7.2 (and Observation 7.10(1)), the functor

Mod
gCpn

Z

∏
s∈[n] Φ

Cps

−−−−−−−−→
∏

s∈[n]

Mod
hCpn−s

Z

is conservative. Hence, an element of π0(hom
Mod

gCpn

Z

(K(~0,~γ),K(~0,~1))) is an isomorphism in ho(Mod
gCpn

Z )

if and only if its image under the composite homomorphism

π0(hom
Mod

gCpn

Z

(K(~0,~γ),K(~0,~1)))
∼=
−→ π0(limZign

((8.6))) −→
∏

s∈[n]

Z

(in which the last morphism is the projection to the upper factors in the diagram appearing in

isomorphism (8.8)) lies in the subset
∏

s∈[n] Z
× ⊆

∏
s∈[n] Z. From here, we see inductively that

there exists an element of π0(hom
Mod

gCpn

Z

(K(~0,~γ),K(~0,~1))) that is an isomorphism in ho(Mod
gCpn

Z ) if

and only if γs = ±1 for all 1 ≤ s ≤ n. �

Proof of Theorem 8.4. By Observation 8.5, the image of the commutative monoid homomorphism

K• contains the Picard group. Moreover, by Lemma 8.14 its kernel is a subgroup of M (i.e. it only

contains invertible elements). Together, these two facts imply that the abelian group homomorphism

L• is surjective (and in fact that the commutative square (8.3) is a pullback). Appealing again to

Lemma 8.14 completes the proof. �
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9. From virtual Cpn-representations to Picard genuine Cpn-Z-modules

In this section, we describe the composite abelian group homomorphism

RO(Cpn)
V 7−→S

V

−−−−−→ Pic(SpgCpn )
(−)⊗Z
−−−−→ Pic(Mod

gCpn

Z )

in terms of the identification of the target Pic(Mod
gCpn

Z ) given by Theorem 8.4. More precisely, in

Theorem 9.6 (which is proved at the end of the section, and which was originally stated as the

second part of Theorem C) we describe in these terms its values on irreducible Cpn -representations,

which freely generate RO(Cpn) (as an abelian group).

Definition 9.1. We use the term Cpn-representation to mean a finite-dimensional real orthogonal

Cpn -representation (or equivalently a homomorphism Cpn → O(d) for some d ≥ 0). Isomorphism

classes of Cpn -representations form a commutative monoid under direct sum, whose group comple-

tion we denote by RO(Cpn). We refer to the elements of RO(Cpn) as virtual representations.

Notation 9.2. For any virtual Cpn -representation V ∈ RO(Cpn) we write

ZV := SV ⊗ Z ∈ Pic(Mod
gCpn

Z )

for the corresponding Picard element of Mod
gCpn

Z . Moreover, for any representation Cpn
ρ
−→ O(d) we

write

Zρ := Z(Rd,ρ) ∈ Pic(Mod
gCpn

Z ) .

Notation 9.3. Recall the abelian group

P̃ := Z⊕(n+1) ⊕

(
n⊕

s=1

(Z/pn−s+1)×

)

of Notation 8.12.

(1) We express elements of P̃ as ordered pairs, according to the indicated direct sum decompo-

sition.

(2) We write

{~e0, ~e1, . . . , ~en} ⊆ Z⊕(n+1) ⊆ P̃

for the standard basis of the torsionfree subgroup of P̃.

(3) For any 1 ≤ s ≤ n, we implicitly consider the inclusion

(Z/pn−s+1)× ⊆

(
n⊕

s=1

(Z/pn−s+1)×

)
⊆ P̃ ,

and in doing so, for γ ∈ (Z/pn−s+1)× we simply denote by γ the element (1, . . . , 1, γ, 1, . . . , 1) ∈ P̃

in which the sth coordinate is γ and every other coordinate is 1.

(4) We write

~1 ∈

(
n⊕

s=1

(Z/pn−s+1)×

)
⊆ P̃

for the identity element of the torsion subgroup of P̃.
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So for instance, given an element γ ∈ (Z/pn)×, we write

(3~e0 − 5~e2, γ) := ((3, 0,−5, 0, . . . , 0), (γ, 1, . . . , 1)) ∈ Z⊕(n+1) ⊕

(
n⊕

s=1

(Z/pn−s+1)×

)
=: P̃ .

Observation 9.4. Because p is odd, every Cpn -representation is orientable, and moreover every

irreducible Cpn -representation has dimension 1 or 2. We use these facts without further comment.

Notation 9.5.

(1) We write

Cpn
ρtriv
−−→ SO(1)

for the unique 1-dimensional Cpn -representation.

(2) For brevity, we use the identification

SO(2) ∼= U(1) .

(3) For each j ∈ {1, . . . , pn − 1}, we write

Cpn

ρj
−→ U(1)

for the 2-dimensional Cpn -representation characterized by the fact that ρj(σ) = e2πij/p
n

,

where σ ∈ Cpn is the standard generator.

(4) For each j ∈ {1, . . . , pn − 1}, we write ν(j) := νp(j) for the p-adic valuation of j, and

γ(j) :=
j

pν(j)
.25

We note that 0 ≤ ν(j) < n, and we often implicitly consider γ(j) ∈ (Z/pn−ν(j))×.

We prove the following result at the end of this subsection.

Theorem 9.6. The Picard elements of Mod
gCpn

Z determined by the irreducible Cpn-representations

are given by the formulas

Zρtriv = L(~e0,~1) and Zρj = L(2~e0−~eν(j)+1,γ(j)) .

Definition 9.7. We define the ∞-categories of naive Cpn-spectra and naive Cpn-Z-modules to

be

SpnCpn := Fun(Oop
Cpn

, Sp) and Mod
nCpn

Z := Fun(Oop
Cpn

,ModZ) .

Observation 9.8. We have equivalences

SpnCpn ≃ S
gCpn

∗ ⊗ Sp and Mod
nCpn

Z ≃ S
gCpn

∗ ⊗ModZ

in PrL (in fact in CAlg(PrL)).

25In other words, the positive integers ν(j) and γ(j) are characterized by the fact that j = pν(j) · γ(j) where γ(j)

is coprime to p.
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Notation 9.9. We define the functors ΨS, ΨZ, C̃(−), and Z̃ 〈−〉 as those appearing in the commu-

tative diagram

S
gCpn

∗ SpnCpn Mod
nCpn

Z

SpgCpn Mod
gCpn

Z

Σ∞

Σ∞
C
pn

C̃(−)

Z̃〈−〉

(−)⊗Z

ΨS ΨZ

(−)⊗Z

in PrL, in which the functors ΨS and ΨZ respectively arise from the adjunctions

PrL ModSp(Pr
L)

(−)⊗Sp

⊥
fgt

and PrL ModModZ(Pr
L)

(−)⊗ModZ

⊥
fgt

using Observation 9.8.

Notation 9.10.

(1) For any ∞-category C, we depict an object X ∈ Fun(Oop
Cpn

,C) by the diagram

Xn Xn−1 · · · X1 X0
δn

e

δn−1

Cp

δ2 δ1

Cpn−1 Cpn

, (9.1)

in which

• for every s ∈ [n], we write Xs := X((Cpn/Cps)◦) ∈ C,

• the curved arrows schematically depict actions of Weyl groups, and

• for every 1 ≤ s ≤ n, the morphism δs denotes the value of X on the distinguished

morphism

(Cpn/Cps)◦ −→ (Cpn/Cps−1)◦ (9.2)

in O
op
Cpn

opposite to the evident quotient homomorphism among quotient groups of Cpn .

(2) We take the convention that if the sth horizontal morphism (counting from the left) in

a diagram such as (9.1) is unlabeled, then it corresponds to the identity morphism on

underlying objects and moreover the Cps-action on its target is pulled back from the Cps−1-

action on its source via the quotient homomorphism.

(3) Given an object X ∈ Fun(Oop
Cpn

,C) as depicted in diagram (9.1), for any 1 ≤ s ≤ n we

denote by

(Xs−1)
hCp

Xs Xs−1

δ̃s

δs

the canonical factorization (determined by the fact that the morphism (9.2) is Cp-equivariant

with respect to the trivial Cp-action on its source), a morphism in C
hCpn−s := Fun(BCpn−s ,C).
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Observation 9.11. The functor

Mod
nCpn

Z

ΨZ−−→ Mod
gCpn

Z

carries the object (9.1) (with C = ModZ) to the genuine Cpn -Z-module whose gluing diagram via

Theorem 7.2 (and Observation 7.10(2)(a)) is




X0 X1 · · · · · · Xn

(X0)
hCp · · · · · · (Xn−1)

hCp

(X0)
tCp (X1)

tCp · · · (Xn−1)
tCp

δ̃1 δ̃n

QCp(X0) QCp(Xn−1)




.

Indeed, this follows from tom Dieck splitting along with the defining equivalence ΨZ ◦ C̃(−) ≃ Z̃ 〈−〉.

Proof of Theorem 9.6. It is clear that

Zρtriv := Sρtriv ⊗ Z = ΣZ = L(~e0,~1) ∈ Pic(Mod
gCpn

Z ) .

So, we fix an element j ∈ {1, . . . , pn−1} and turn our attention to the corresponding Picard element

Zρj ∈ Pic(Mod
gCpn

Z ) .

For convenience, we introduce the following notation.

• We simply write ρ := ρj , ν := ν(j), and γ := γ(j). So by definition, Zρ := Zρj .

• We respectively write Sρ ∈ S
gCpn

∗ and S(ρ) ∈ SgCpn for the representation sphere and unit

sphere of ρ.26 So by definition, Zρ := Z̃ 〈Sρ〉.

• We define τ ∈ Cpn−ν to be the unique element such that τγ = σ.27

Now, we begin by observing the equivalence

Sρ ≃ ΣS(ρ) (9.3)

in S
gCpn

∗ ,28 as well as the equivalence

S(ρ) ≃ colim

(
Cpn/Cpν Cpn/Cpν

id

τ

)
(9.4)

26That is, Sρ denotes the one-point compactification of R2 and S(ρ) denotes its unit circle, both considered as

genuine Cpn -spaces (the former pointed).
27Explicitly, we set τ := σγ−1

, where γ−1 denotes the multiplicative inverse of the unit γ in the commutative ring

Z/pn−ν .
28This follows from the fact that at the level of topological spaces with Cpn -action, the representation sphere is

the unreduced suspension of the unit sphere.
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in SgCpn .29 We use these to give an explicit presentation of the object C̃(Sρ) ∈ Mod
nCpn

Z . Namely,

we define an object C̃(Sρ) ∈ Fun(Oop
Cpn

,ChZ) as follows. First of all, we define the object

Y :=
(
· · · −→ 0 −→ Z[Cpn−ν ]

1−τ
−−→ Z[Cpn−ν ]

σ 7→1
−−−→ Z

✿

−→ 0 −→ · · ·
)
∈ ChZ[Cpn−ν ] ≃ Fun(BCpn−ν ,ChZ)

(where in degree 0 we endow Z with the trivial Cpn−ν -action). Moreover, we simply write

Z
✿

:=
(
· · · −→ 0 −→ Z

✿

−→ 0 −→ · · ·
)
∈ ChZ .

Now, consider the morphism

Z
✿

z
−→ Y

in ChZ that is the identity in degree 0, which is evidently Cpn−ν -equivariant with respect to the

trivial Cpn−ν -action on the source. We then define the functor

C̃(Sρ) : O
op
Cpn
−→ (BCpn−ν )⊳

z
−→ ChZ ,

where the first morphism is the right adjoint retraction onto the full subcategory on the objects

(Cpn/Cpn)◦, (Cpn/Cpν )◦ ∈ O
op
Cpn

.30

It is clear from the equivalences (9.3) and (9.4) that C̃(Sρ) is indeed a presentation of C̃(Sρ), i.e.

that we have the assignment

Fun(Oop
Cpn

,ChZ) Fun(Oop
Cpn

,ModZ)

∈ ∈

C̃(Sρ) C̃(Sρ)

.

In order to proceed, we introduce the following additional notation.

• We write Y := Π∞(Y) ∈ Mod
hCpn−ν

Z for the underlying object of Y ∈ ChZ[Cpn−ν ].

• We write Z
z
−→ Y for the underlying morphism in ModZ of the morphism Z

✿

z
−→ Y in ChZ,

which is likewise Cpn−ν -equivariant with respect to the trivial Cpn−ν -action on the source.31

29Indeed, the homomorphism Cpn
ρ
−→ SO(2) ∼= U(1) factors through the subgroup µpn−ν ⊆ U(1) of (pn−ν)th roots

of unity according to the formula σ 7→ e2πiγ/pn−ν
, and the unit circle has an evident µpn−ν -CW complex structure

that affords its description as the coequalizer

colim



 µpn−ν /e µpn−ν/e
id

e2πi/pn−ν



 ∈ S
gµ

pn−ν .

30So we may depict C̃(Sρ) ∈ Fun(Oop
Cpn

,ChZ) as the diagram

Z
✿

Z
✿

· · · Z
✿

Y · · · Y

e Cp

z

C
pn−ν−1

C
pn−ν Cpn

.

31So, we may depict C̃(Sρ) ∈ Mod
nCpn

Z
as the diagram

Z Z · · · Z Y · · · Y

e Cp

z

C
pn−ν−1 C

pn−ν Cpn

.
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Now, applying Observation 9.11, we find that the genuine Cpn -Z-module

Zρ := Z̃ 〈Sρ〉 ≃ ΨZ(C̃(S
ρ)) ∈ Mod

gCpn

Z

has gluing diagram



Y Y · · · Y Z Z · · · Z Z

Y hCp · · · · · · Y hCp ZhCp · · · · · · ZhCp

Y tCp Y tCp · · · Y tCp ZtCp ZtCp · · · ZtCp

ĩd z̃ ĩd ĩd

QCp (Y ) QCp (Y ) QCp (Z) QCp (Z)




.

Noting the equivalence Y ≃ Σ2Z ∈ Mod
hCpn−ν

Z , we find that

Zρ = L(2~e0−~eν+1,QCp (Y )◦z̃) ∈ Pic(Mod
gCpn

Z ) .

So it remains to show that

QCp(Y ) ◦ z̃ = γ ∈ (Z/pn−ν)× .

For this, we define a quasi-isomorphism

Y
≈
−→ Y

′

in ChZ[Cpn−ν ] as

· · · 0 Z[Cpn−ν ] Z[Cpn−ν ] Z
✿

0 · · ·

· · · 0 Z[Cpn−ν ] Z[Cpn−ν ] Z[Cpn−ν ]
✿✿✿✿✿✿✿

Z[Cpn−ν ] · · ·

1−τ

1

σ 7→1

1+τ+···+τγ−1
γN

1−σ N 1−σ N

.

From this, we see that the composite morphism

Z
✿

z
−→ Y

≈
−→ Y

′

in ChZ[Cpn−ν ] (where the source is endowed with the trivial Cpn−ν -action) selects the element

γ · cn−ν ∈ π−2(Z
hCpn−ν ) ∼= π0homModZ

(Z,Σ2Z
hCpn−ν ) ∼= π0hom

Mod
hC

pn−ν

Z

(Z,Σ2Z) ,

which proves the claim. �

10. The constant Mackey functor at Z

In this section, we describe the constant Mackey functor at Z (i.e. the coefficients for equivariant

cohomology) in terms of our stratification; this is given as Proposition 10.4. We also record a

resulting identification of THH(Fp) as Corollary 10.8.

Notation 10.1. We write

Z ∈ MackCpn
(Ab) ⊆ MackCpn

(ModZ) ≃ Mod
gCpn

Z

for the constant Mackey functor at Z, considered as a genuine Cpn -Z-module (using Observation 1.9):

its categorical fixedpoints for any subgroup Cps ≤ Cpn are

ZCps := Z ∈ Mod
hCpn−s

Z
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(i.e. the abelian group Z ∈ Ab ⊆ ModZ equipped with the trivial Cpn−s-action), and for any

morphism

Cpn/Cps −→ Cpn/Cpt

in OCpn
its corresponding restriction and transfer maps are respectively

Z
Cpt := Z

1
−→ Z =: ZCps and Z

Cps := Z
pt−s

−−−→ Z =: ZCpt .32

For convenience, more generally for any i ≥ 0 we also simply write

Z ∈ MackCpi
(Ab) ⊆ Mod

gCpi

Z

for the constant Mackey functor at Z.

Observation 10.2. For every s ∈ [n], there is an evident identification

Mod
gCpn

Z Mod
gCpn−s

Z

∈ ∈
Z Z

(−)
Cps

.

We use this fact without further comment.

Notation 10.3. Let C be a stable ∞-category equipped with a t-structure. We write C
τ≥0
−−→ C for

the connective cover functor, and for any object E ∈ C we write

τ≥0E
ε≥0(E)
−−−−→ E

for the canonical morphism to it from its connective cover. For simplicity, we write ε≥0 := ε≥0(E)

or even ε := ε≥0 when the meaning is clear from context.

Proposition 10.4. Via the geometric stratification of Mod
gCpn

Z of Theorem 7.2 (and Observa-

tion 7.10(2)(a)), the object Z ∈ Mod
gCpn

Z is recorded by the data of the gluing diagram

Z τ≥0Z
tCp τ≥0Z

tCp · · · · · · τ≥0Z
tCp

ZtCp ZtCp ZtCp · · · ZtCp

ε ε ε .

Observation 10.5. Fix any i ≥ 1. Consider the unit morphism

Z −→ βUZ ≃ βZ (10.1)

in Mod
gCpi

Z . Taking categorical Cp-fixedpoints of the morphism (10.1), we obtain the morphism

Z
Cp := Z

ε
−→ ZhCp ≃ (βZ)Cp

32The factor pt−s arises as the index |Cpt : Cpr |.

58



in Mod
hCpi−1

Z . Hence, on isotropy separation sequences the morphism (10.1) determines a commu-

tative diagram

Z
Cp ΦCpZ

=
:

≃

ZhCp Z τ≥0Z
tCp

ZhCp ZhCp ZtCp

≃ ≃

(βZ)Cp ΦCpβZ

ε ε

NmCp (Z) QCp (Z)

(10.2)

in Mod
hCpi−1

Z (and in particular the equivalence ΦCpZ ≃ τ≥0Z
tCp), in which both horizontal com-

posites are cofiber sequences and hence the middle right square is a pullback.

Notation 10.6. Fix any i ≥ 1. We write

ZhCp

ÑmCp (Z)
−−−−−→ Z

Q̃Cp (Z)
−−−−→ τ≥0Z

tCp

for the morphisms in the upper horizontal composite in diagram (10.2) in Mod
hCpi−1

Z .

Observation 10.7. Fix any i ≥ 2. By Observations 10.5 and 7.5, applying the Cp-Tate construction

to the morphism

Z
Q̃Cp (Z)
−−−−→ τ≥0Z

tCp

in Mod
hCpi−1

Z yields an equivalence

ZtCp
Q̃Cp (Z)

tCp

−−−−−−→
∼

(τ≥0Z
tCp)tCp

in Mod
hCpi−2

Z .

Proof of Proposition 10.4. We give the proof assuming that n ≥ 3, proving the cases 0 ≤ n ≤ 2

implicitly along the way. It is clear that the gluing diagram of Z ∈ Mod
gCpn

Z restricts as asserted

over 0 ∈ [n]. The fact that it restricts as asserted over 1 ∈ [n] follows from Observation 10.5 (in

the case that i = n). Thereafter, the fact that it restricts as asserted over 2 ∈ [n] follows from the

commutative diagram

ΦCpZ =: ΦCp(ZCp) ΦCp(Φ
Cp
g Z)

ZtCp =: (ZCp)tCp (ΦCpZ)tCp

∼

∼

in Mod
hCpn−2

Z , in which the upper horizontal morphism is an equivalence by Lemma 7.3 and the

lower horizontal morphism is an equivalence by Observations 10.5 and 10.7 (in the case that i =

n). Thereafter, the fact that it restricts as asserted over s ∈ [n] for any s ≥ 3 follows from the

commutative diagram

ΦCp2 (Z) =: ΦCp(Φ
Cp
g (ZCps−2 )) ΦCpsZ

(ΦCpZ)tCp =: (ΦCp(ZCps−2 ))tCp (ΦCps−1Z)tCp

∼

∼
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in Mod
hCpn−s

Z , in which both horizontal morphisms are equivalences by Lemma 7.3. �

Corollary 10.8. Considering Z as an object of the ∞-category

SpgCp∞ := lim


· · ·

Res
C
p3

C
p2

−−−−→ SpgCp2
Res

C
p2

Cp
−−−−→ SpgCp Res

Cp
e−−−→ Sp




in the evident way, there is an equivalence

ΦCp(Z) ≃ THH(Fp)

in SpgCp∞ .

Proof. This follows by combining Proposition 10.4 with [NS18, Corollary IV.4.16 et seq.]. �

Remark 10.9. In fact, the object Z ∈ SpgCp∞ naturally carries the structure of a p-typical topo-

logical Cartier module in the sense of [AN]; thereafter, Corollary 10.8 gives an equivalence of p-

cyclotomic spectra. We would be very interested in a conceptual explanation of this equivalence,

which would give a conceptual explanation for Bökstedt’s computation [Bök85] of π∗THH(Fp).

11. The Pic(Mod
gCpn

Z )-graded cohomology of a point

In this section, we establish our explicit chain-level description of equivariant cohomology (The-

orem D) as Theorem 11.5. We begin by recalling the notation established in §0.2 as Notation 11.2.

Remark 11.1. In this section, we freely use the material of §A. We refer the reader to Notations

A.22 and A.37 for Lemmas 11.7 and 11.8, and additionally to Notations A.25, A.29, and A.32 for

Lemma 11.9. Furthermore, we refer the reader to Remark A.18 for some mnemonics regarding these

various notations.

Notation 11.2. Given a finite group G, a genuine G-space X ∈ SgG, a subgroup H ≤ G, and a

Picard element L ∈ Pic(Mod
gG
Z ), we write

CL
G(X)(H) := hom

Mod
gG
Z

(Σ∞
G (X ×G/H)+ ⊗ Z, L ⊗ Z) ∈ ModZ .

This assembles as a ModZ-valued Mackey functor for G, i.e. an additive functor

BurnG
CL
G(X)
−−−−→ ModZ

carrying G/H ∈ BurnG to CL
G(X)(H) ∈ ModZ. Thereafter, for any integer i ∈ Z we write

Hi+L
G (X)(H) := π−i(C

L
G(X)(H)) ∈ Ab .

This assembles as an Ab-valued Mackey functor for G, i.e. an additive functor

BurnG
H

i+L
G (X)
−−−−−−→ Ab

carrying G/H ∈ BurnG to Hi+L
G (X)(H) ∈ Ab.

Observation 11.3. Let A be an additive category. Then, A-valued Mackey functors for G are

equivalent data to their values on G/H along with inclusion and transfer morphisms satisfying a

double coset formula. We use this fact without further comment.
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Local Notation 11.4. We fix a Picard element L ∈ Pic(Mod
gCpn

Z ), as well as a presentation

L = L(~β,~γ) for some (~β,~γ) ∈ P̃ as afforded by Theorem 8.4 (see Notations 8.12, 8.13, and 9.3). We

furthermore fix arbitrary lifts γ̃s ∈ Z of the elements γs ∈ (Z/pn−s+1)×.

Theorem 11.5. The ho(ModZ)-valued Mackey functor

BurnCpn

CL
Cpn

(pt)

−−−−−→ ModZ −→ ho(ModZ)

admits an explicit chain-level description as follows: its values, restriction maps, and transfer maps

are respectively as described in Lemmas 11.7, 11.8, and 11.9.

Proof. This follows from Lemmas 11.7, 11.8, and 11.9. �

Notation 11.6. For any 1 ≤ i ≤ n, we write

β≤i := β0 + 2(β1 + · · ·+ βi) ,

for simplicity.

Lemma 11.7. For any 0 ≤ a ≤ n, diagram (7.18) in Mod
hCpn−a

Z in the case that E = L(~β,~γ) ⊗Z is

presented by the diagram

Σβ0Za
n−a Σβ≤1C

a−1
n−a · · · · · · Σβ≤aC0

n−a

Σβ0T
a−1
n−a Σβ≤1T

a−2
n−a · · · Σβ≤(a−1)T0

n−a

q a−
1n

−
a

g a−
2n

−
a

g 0
n
−
a

(11.1)

in ChZ[Cpn−a ], in which for all 1 ≤ s ≤ a the sth vertical morphism is the composite

Σβ≤sC
a−s
n−a

e
a−s
n−a
−−−→ Σβ≤sT

a−s
n−a

γ̃s(c
a−s
n−a)

βs

−−−−−−−→ Σβ≤(s−1)T
a−s
n−a . (11.2)

In particular, by Proposition 7.19(1) the object

CL
Cpn

(pt)(Cpa) := (L(~β,~γ) ⊗ Z)Cpa ∈ ho(ModZ)

is the homotopy limit of the diagram (11.1).

Proof. The fact that the constituents and the diagonal morphisms of diagram (11.1) in ChZ[Cpn−a ]

present those of diagram (7.18) in Mod
hCpn−a

Z follows from Proposition 10.4 and Lemma A.24. So,

it remains to show that for any 1 ≤ s ≤ a the morphism (11.2) in ChZ[Cpn−a ] is a presentation of the

morphism

Σβ≤(s−1)

(
Σ2βsZ⊗ τ≥0Z

tCp
γsc

βs
s ⊗ε

−−−−−→ ZtCp ⊗ ZtCp
µ
−→ ZtCp

)hCa−s

(11.3)
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in Mod
hCpn−a

Z , in which the parenthesized morphism lies in Mod
hCpn−s

Z and µ denotes the multipli-

cation morphism resulting from Observation 4.13(2). For this, observe the commutative diagram

Σ2βsZ⊗ τ≥0Z
tCp ZtCp ⊗ ZtCp ZtCp

Σ2βsZ⊗ ZtCp

γsc
βs
s ⊗ε

γ̃
s⊗ε

µ

c
βs
s
⊗id Z

tCp

c
βs
s

(11.4)

in Mod
hCpn−s

Z (in which we use Notation A.36 for the dashed morphism). It follows from Lemmas

A.24 and A.39 that the lower composite in diagram (11.4) is presented by the morphism

Σ2βsC
0
n−s

γ̃se
0
n−s

−−−−−→ Σ2βsT
0
n−s

(c0n−s)
βs

−−−−−−→ T
0
n−s

in ChZ[Cpn−s ]. Hence, it follows from Lemma A.28 and Observations A.27, A.38, A.9(2)(a), and A.14

that the morphism (11.3) inModhCpn−a is indeed presented by the morphism (11.2) in ChZ[Cpn−a ]. �

Lemma 11.8. For any 0 ≤ a < n, the morphism of diagrams (7.20) in Mod
hCpn−a

Z in the case that

E = L(~β,~γ) ⊗ Z is presented by the morphism of diagrams

Σβ0Z
a+1
n−a−1 · · · Σβ≤aC1

n−a−1 Σβ≤(a+1)C0
n−a−1

· · · Σβ≤(a−1)T1
n−a−1 Σβ≤aT0

n−a−1

Σβ0Za
n−a · · · Σβ≤aC0

n−a 0

· · · Σβ≤(a−1)T0
n−a 0

inc
h

inc
h inc

h

inc
h

inc
h

(11.5)

in ChZ[Cpn−a ], in which the nontrivial non-vertical maps are as in diagram (11.1) and we implic-

itly apply Observation A.27. In particular, by Lemma 11.7 and Proposition 7.19(2), the inclusion

morphism

CL
Cpn

(pt)(Cpa+1)
inc
−→ CL

Cpn
(pt)(Cpa )

in ModZ is the induced map on homotopy limits.

Proof. Note that all terms in the lower zigzag of diagram (11.5) are adapted to homotopy Cp-

fixedpoints by Lemma A.28 and Observation A.9(2)(a). Hence, the claim follows from Observa-

tion A.17. �
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Lemma 11.9. For any 0 ≤ a < n, the morphism of diagrams (7.21) in Mod
hCpn−a

Z in the case that

E = L(~β,~γ) ⊗ Z is presented by the homotopy-coherent morphism of diagrams

Σβ0Z
a+1
n−a−1 · · · Σβ≤aC1

n−a−1 Σβ≤(a+1)C0
n−a−1

· · · Σβ≤(a−1)T1
n−a−1 Σβ≤aT0

n−a−1

Σβ0Za
n−a · · · Σβ≤a C̃n−a 0

· · · Σβ≤(a−1)T0
n−a 0

trf
h

trf
h trf

h
kn−a

h

trf
h

trf
h

(11.6)

in ChZ[Cpn−a ], in which

• in the lower zigzag we replace C0
n−a with C̃n−a via the quasi-isomorphism kn−a of Observa-

tion A.31(1), so that the nontrivial non-vertical morphism out of it is the composite

Σβ≤a C̃n−a
kn−a
−−−→

≈
Σβ≤aC

0
n−a

e
0
n−a
−−−→ Σβ≤aT

0
n−a

γ̃a(c
0
n−a)

βa

−−−−−−−→ Σβ≤(a−1)T
0
n−a ,

• the remaining nontrivial non-vertical morphisms are as in diagram (11.1), and

• we implicitly apply Observation A.27.

In particular, by Lemma 11.7 and Proposition 7.19(3), the transfer morphism

CL
Cpn

(pt)(Cpa)
trf
−→ CL

Cpn
(pt)(Cpa+1)

in ModZ is the induced map on homotopy limits.

Proof. Note that all terms in the lower zigzag of diagram (11.6) are adapted to homotopy Cp-

fixedpoints by Lemma A.28 and Observation A.9(2)(a). Hence, the claim follows from Observa-

tion A.17 and Lemma A.33. �

Appendix A. Some homological algebra

In this appendix, we collect the various results in homological algebra that underlie the work car-

ried out in the main body of the paper – primarily our cohomology computation of the Pic(Mod
gCpn

Z )-

graded cohomology of a point (Theorem D). It is organized as follows.

§A.1: We lay out our notations and conventions regarding homological algebra.

§A.2: We study the notion of adaptedness of chain complexes with respect to various homotopical

operations (a close analog of co/fibrancy in a model category).

§A.3: We introduce most of the chain complexes and chain maps that participate in our com-

putation of equivariant cohomology, and prove that they present the correct homotopical

data.
63



§A.4: We study the chain complexes introduced in §A.3 in more depth, towards establishing

chain-level data that presents the inclusion and transfer maps on equivariant cohomology.

§A.5: We compute a certain Tate cohomology ring, and we prove a related result identifying a

chain-level automorphism as a presentation of a resulting homotopical automorphism.

A.1. Basic notation and conventions. In this subsection, we establish the basic notation and

conventions that we use for chain complexes in this paper. (These are only used in §§A and 11.)

Warning A.1. In this section, we discuss chain complexes of discrete modules over discrete rings.

We simply use the word “module” to refer both to discrete modules and to module spectra; our

meaning will always be clear from context.

Notation A.2. Fix an associative ring R.

(1) We write ChR for the category of chain complexes of R-modules.

(2) We freely identify elements of R with endomorphisms of R-modules.

(3) In depicting a chain complex, we indicate its degree-0 term with a squiggled underline.

(4) We generally denote point-set objects (e.g. chain complexes and morphisms between them)

using typerwriter text font.

(5) For typographical reasons, we depict chain complexes horizontally and morphisms of chain

complexes vertically.

(6) When indexing a Z-indexed family of morphisms (e.g. the differentials in a chain complex,

the constituent morphisms in a chain map, or the constituent morphisms in a chain homo-

topy), we always number a morphism according to the degree of its source. So for example,

a complex M ∈ ChR may be depicted as a diagram

· · ·
∂M
2−→ M1

∂M
1−→ M0

✿✿

∂M
0−→ M−1

∂M
−1
−−→ · · · .

(7) Given a morphism M
f
−→ N in ChR, we take the convention that its cone is the complex

cone(f) ∈ ChR such that

cone(f)n :=




Mn−1

⊕

Nn


 and ∂cone(f)

n :=

(
∂Mn−1 0

(−1)n−1fn−1 ∂Nn

)
.

(8) We write ChR
Σ
−→ ChR for the autoequivalence given by shifting (even though it is not

literally the suspension functor on the category ChR).

(9) We do not notationally distinguish between a chain map and its shifts, since (given the

source and target of the shifted morphism) the meaning is unambiguous.

Remark A.3. Note that parts (7) and (8) of Notation A.2 are consistent: there is an evident

isomorphism Σ ∼= cone(idR → 0) in Fun(ChR,ChR).
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Notation A.4. Given a dg-algebra R ∈ Alg(ChZ), we write ChR := LModR(ChZ) for the category of

(left) dg-modules over it.

Observation A.5. By [DS07, Theorem 1.4], for any dg-algebra R ∈ Alg(ChZ), freely inverting the

quasi-isomorphisms in the category ChR yields the ∞-category ModΠ∞(R) := ModΠ∞(R)(ModZ). In

particular, for any finite group G, freely inverting the quasi-isomorphisms in the category ChZ[G]

yields the ∞-category ModZ[G] ≃ ModhGZ . We use these facts without further comment.

Notation A.6. For any dg-algebra R ∈ Alg(ChZ), we write ChR
Π∞−−→ ModΠ∞(R) for the localization

functor.

A.2. Adaptedness to homotopy fixedpoints and homotopy orbits. In this subsection, we

study the notion of adaptedness of chain complexes to homotopy fixedpoints and homotopy orbits.

The primary output is Observation A.17, which establishes that for a chain complex that is adapted

to homotopy fixedpoints, its point-set inclusion and transfer morphisms are presentations of its

homotopical inclusion and transfer morphisms.

Local Notation A.7. In this subsection, we fix a finite group G and a subgroup H ≤ G.

Definition A.8. Observe the canonical natural transformation

ChZ[G] ChZ

ModhGZ ModZ

Π∞

(−)G

⇐ Π∞

(−)hG

.

We say that a chain complex M ∈ ChZ[G] is adapted to homotopy G-fixedpoints if the morphism

Π∞(MG) −→ Π∞(M)hG

is an equivalence. More generally, we say that M ∈ ChZ[G] is adapted to homotopy H-fixedpoints if

its image under the forgetful functor ChZ[G]
fgt
−→ ChZ[H] is so.

Observation A.9.

(1) A free Z[G]-module concentrated in degree zero is adapted to homotopy G-fixedpoints.

(2) Complexes that are adapted to homotopy G-fixedpoints are stable under taking

(a) shifts,

(b) cones, and

(c) homotopy limits.

(3) Combining parts (1) and (2), it follows that a bounded-above levelwise-free complex of

Z[G]-modules is adapted to homotopy G-fixedpoints. Indeed, this follows by examining its

presentation as a homotopy limit of its truncations from below.
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Definition A.10. Observe the canonical natural transformation

ChZ[G] ChZ

ModhGZ ModZ

Π∞

(−)G

⇒ Π∞

(−)hG

.

We say that a chain complex M ∈ ChZ[G] is adapted to homotopy G-orbits if the morphism

Π∞(M)hG −→ Π∞(MG)

is an equivalence. More generally, we say that M ∈ ChZ[G] is adapted to homotopy H-orbits if its

image under the forgetful functor ChZ[G]
fgt
−→ ChZ[H] is so.

Observation A.11.

(1) A free Z[G]-module concentrated in degree zero is adapted to homotopy G-orbits.

(2) Complexes that are adapted to homotopy G-orbits are stable under taking

(a) shifts,

(b) cones, and

(c) homotopy colimits.

(3) Combining parts (1) and (2), it follows that a bounded-below levelwise-free complex of Z[G]-

modules is adapted to homotopyG-orbits. Indeed, this follows by examining its presentation

as a homotopy colimit of its truncations from above.

Lemma A.12. Consider a commutative square

D̃ C̃

D C

M

F̃

L

F

in Cat in which the functor L is a localization and the functors F̃ and F admit right adjoints. Then,

the resulting diagram

D̃ C̃ C

D

F̃R

M ⇐

L

F
R

:=
D̃ C̃

D C

F̃R

⇐M L

FR

is a left Kan extension diagram.

Proof. Consider the diagram

Fun(C̃,C) Fun(C,C)

Fun(D̃,C) Fun(D,C)

⊥

L∗

(F̃R)∗

⊤

F̃∗ (FR)∗

⊤

F∗

⊥

M∗
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in Cat, in which the right adjoints commute and the dashed horizontal left adjoints may only be

partially defined. It suffices to observe that we have assignments

L idC

L ◦ F̃R FR

,

by the uniqueness of (partially defined) left adjoints. �

Corollary A.13. Let R,S ∈ Alg(ChZ) be dg-algebras, let M ∈ BiMod(S,R)(ChZ) be a dg-bimodule,

and suppose that the functor

ChZ
M⊗Z(−)
−−−−−→ ChZ

preserves quasi-isomorphisms. Then, the canonical diagram

ChS ChR ModΠ∞(R)

ModΠ∞(S)

homChS
(M,−)

Π∞ ⇐

Π∞

homModΠ∞
(S)

(Π∞
(M),−

)

is a left Kan extension.

Proof. To simplify our notation, we write R := Π∞(R), S := Π∞(S), and M := Π∞(M).

Because the functor ModR
fgt
−→ ModZ is colimit-preserving and conservative, it suffices to show

that the diagram

ChS ChR ModR ModZ

ModS

homChS
(M,−)

Π∞ ⇐

Π∞ fgt

homModS
(M,−)

is a left Kan extension, which is equivalent to the condition that the diagram

ChS ChZ ModZ

ModS

homChS
(M,−)

Π∞ ⇐

Π∞

homModS
(M,−)

(A.1)

is a left Kan extension. Now, the canonical lax-commutative square

ChS ChZ

ModS ModZ

Π∞

M⊗Z(−)

⇐ Π∞

M⊗Z(−)

commutes by our assumption (e.g. by taking a projective resolution of M ∈ ChZ to compute the

derived tensor product (i.e. the tensor product in ModZ)). Hence, the fact that the diagram (A.1)

is a left Kan extension follows from Lemma A.12. �

Observation A.14. We apply Corollary A.13 in the case that S = Z[G],R = Z[W(H)] ∈ Alg(Ab) ⊂

Alg(ChZ) and M = Z[G/H ]. Then, we have identifications

homChZ[G]
(Z[G/H ],−) ≃ (−)H and homModhG

Z

(Z[G/H ],−) ≃ (−)hH .
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As Z[G/H ] ∈ Ab ⊂ ChZ is a free abelian group, we find that the canonical diagram

ChZ[G] ChZ[W(H)] Mod
hW(H)
Z

ModhGZ

(−)H

Π∞ ⇐

Π∞

(−)
hCj

(A.2)

is a left Kan extension. In particular, it follows that for any morphism M
f
−→ N in ChZ[G], if M and

N are adapted to homotopy H-fixedpoints then the morphism fH in ChZ[W(H)] is a presentation of

the morphism (Π∞(f))hH in Mod
hW(H)
Z .

Notation A.15. Consider the morphisms

Z[G/e]
17−→1
−−−−→ Z[G/H ] (A.3)

and

Z[G/H ]
17−→

∑
h∈H h

−−−−−−−−→ Z[G/e] (A.4)

in ModZ[G](Ab) ⊂ ModZ[G](ChZ). For any M ∈ ChZ[G], we write
(
M

inc
h

←−−− M
H

)
:= homChZ[G]

((A.3),M) and

(
M
H trf

h

←−−− M

)
:= homChZ[G]

((A.4),M)

for the indicated morphisms in ChZ[N(H)].
33

Observation A.16. Corollary A.13 (and in particular Observation A.14) is functorial in the dg-

bimodule M. That is, there is a natural transformation

(Π∞)!(Π∞(homChS
(−,=))) −→ homModΠ∞(S)

(Π∞(−),=)

in Fun(BiMod(S,R)(ChZ)
op × ChS,ModΠ∞(R)), which is an equivalence when restricting to those dg-

bimodules M such that the functor ChZ
M⊗Z(−)
−−−−−→ ChZ preserves quasi-isomorphisms.

Observation A.17. Fix a subgroup H ≤ G. Using Observation A.16, we apply Observation A.14

to the morphisms (A.3) and (A.4) to obtain for each M ∈ ChZ[G] natural commutative squares

Π∞(MH) Π∞(Me)

Π∞(M)hH Π∞(M)he

Π∞(inch)

∼

inch

and

Π∞(Me) Π∞(MH)

Π∞(M)he Π∞(M)hH

Π∞(trfh)

∼

trfh

in ModhGZ , in which all vertical morphisms are components of natural transformations of the form

(A.2). In particular, if M is adapted to homotopy H-fixedpoints, then we obtain canonical identifi-

cations inch ≃ Π∞(inch) and trfh ≃ Π∞(trfh) in Ar(Mod
hW(H)
Z ).

33Recall from Notations 1.13 and 7.17 that in the case that G = Cpi and H = Cp, for any M ∈ Mod
hC

pi

Z
we

likewise simply write
(

M
inch

←−−MhCp

)

:= hom
Mod

hC
pi

Z

((A.3),M) and

(

MhCp trfh

←−−M

)

:= hom
Mod

hC
pi

Z

((A.4),M)

for the indicated morphisms.
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A.3. Chain-level data for cohomology groups. In this subsection, we introduce and study

the specific chain complexes and most of the chain maps that participate in our computation of

the values of equivariant cohomology (Notation A.22). The main output is Lemma A.24, which

establishes the underlying homotopical content of these chain-level data.

Remark A.18. We have tried to make the notation that is introduced in the remainder of the

paper mnemonical, as we now describe.

• The number a is that appearing in §§7 and 11, where it participates in the categorical

fixedpoints functor (−)Cpa .

• The letter r stands for “residual equivariance”. This is generally recorded as a subscript.

• Superscripts generally record “the number of times that homotopy Cp-fixedpoints has been

taken”. Correspondingly, we use subscripts on the left to record “the number of times that

homotopy Cp-orbits has been taken”.

• The letter Z stands for “integers”, and the letter S is chosen because it is similar to Z.

• The letter T stands for “Tate”.

• The letter C stands for “connective cover of Tate”.

• The letter q stands for “quotient”, and the letter g is chosen because it is similar to q.

• The letter e is chosen because it is similar to ε.

• The letter c stands for “Chern class”.

Notation A.19. We fix nonnegative integers a, r ≥ 0.

Definition A.20. The norm element for the group Cpr is the element

N := Nr :=

(
pr∑

i=1

σi

)
=
(
1 + σ + · · ·+ σpr−1

)
∈ Z[Cpr ]

of its group ring.

Remark A.21. Notations A.22 and A.23 are formatted in a way that makes them well-suited for

application in §11. However, from a certain point of view this formatting is suboptimal: most of

the data defined therein is independent of the choice of a.

Notation A.22. We define a diagram

Za
r Ca−1

r Ca−2
r · · · · · · C0

r

Ta−1
r Ta−2

r Ta−3
r · · · T0

r

q a−
1r

g a−
2r

e
a−1
r

g a−
3r

e
a−2
r

g 0
r

e
0
r

(A.5)

in ChZ[Cpr ] (i.e. a functor Ziga → ChZ[Cpr ]) as follows.

(1) We define the objects in diagram (A.5) as follows; all are levelwise free Z[Cpr ]-modules of

rank 0 or 1.
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(a) We define the object

Z
a
r :=

(
· · · −→ 0 −→ 0 −→ Z[Cpr ]

✿✿✿✿✿

1−σ
−−−→ Z[Cpr ]

paN
−−−→ Z[Cpr ]

1−σ
−−−→ Z[Cpr ]

paN
−−−→ · · ·

)
.

(b) For any i ≥ 0, we define the object

C
i
r :=

(
· · ·

pi+1N
−−−−→ Z[Cpr ]

1−σ
−−−→ Z[Cpr ]

pi+1N
−−−−→ Z[Cpr ]

✿✿✿✿✿

1−σ
−−−→ Z[Cpr ]

piN
−−→ Z[Cpr ]

1−σ
−−−→ Z[Cpr ]

piN
−−→ · · ·

)
.34

(c) For any i ≥ 0, we define the object

T
i
r :=

(
· · ·

pi+1N
−−−−→ Z[Cpr ]

1−σ
−−−→ Z[Cpr ]

pi+1N
−−−−→ Z[Cpr ]

✿✿✿✿✿

1−σ
−−−→ Z[Cpr ]

pi+1N
−−−−→ Z[Cpr ]

1−σ
−−−→ · · ·

)
.

(2) We define the morphisms in diagram (A.5) as follows.

(a) Assuming that a ≥ 1, we define the morphism

Z
a
r

q
a−1
r−−−→ T

a−1
r

as

· · · 0 0 Z[Cpr ]
✿✿✿✿✿

Z[Cpr ] Z[Cpr ] · · ·

· · · Z[Cpr ] Z[Cpr ] Z[Cpr ]
✿✿✿✿✿

Z[Cpr ] Z[Cpr ] · · ·

1−σ

1

paN

1

1−σ

1

paN 1−σ paN 1−σ paN 1−σ

,

i.e. it is the identity in all nonpositive degrees.

(b) For any i ≥ 0, we define the morphism

C
i
r

e
i
r−→ T

i
r

as

· · · Z[Cpr ] Z[Cpr ]
✿✿✿✿✿

Z[Cpr ] Z[Cpr ] Z[Cpr ] Z[Cpr ] · · ·

· · · Z[Cpr ] Z[Cpr ]
✿✿✿✿✿

Z[Cpr ] Z[Cpr ] Z[Cpr ] Z[Cpr ] · · ·

1−σ pi+1N

1

1−σ

1

piN

1

1−σ

p

piN

p

1−σ

p2

1−σ pi+1N 1−σ pi+1N 1−σ pi+1N 1−σ

,

i.e. it is the identity in each positive degree and, for all j ≥ 0, in degree −j it is

multiplication by p⌊
j
2 ⌋.35

(c) For any i ≥ 0, we define the morphism

C
i+1
r

g
i
r−→ T

i
r

34Note that the differentials in nonnegative degrees differ from those in negative degrees.
35Here the exponent is the floor of j

2
, i.e. the largest integer that is at most j

2
.
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as

· · · Z[Cpr ] Z[Cpr ] Z[Cpr ] Z[Cpr ]
✿✿✿✿✿

Z[Cpr ] Z[Cpr ] · · ·

· · · Z[Cpr ] Z[Cpr ] Z[Cpr ] Z[Cpr ]
✿✿✿✿✿

Z[Cpr ] Z[Cpr ] · · ·

1−σ pi+2N

p2

1−σ

p

pi+2N

p

1−σ

1

pi+1N

1

1−σ

1

1−σ pi+1N 1−σ pi+1N 1−σ pi+1N 1−σ

,

i.e. it is the identity in each negative degree and, for all j ≥ 0, in degree j it is

multiplication by p⌈
j
2 ⌉.36

Notation A.23. We define a diagram

ZhCpa (τ≥0Z
tCp)hCpa−1 (τ≥0Z

tCp)hCpa−2 · · · · · · τ≥0Z
tCp

(ZtCp )hCpa−1 (ZtCp)hCpa−2 (ZtCp)hCpa−3 · · · ZtCp

q a−
1r g a−2r

ea−1
r

g a−3r

ea−2
r

g 0
r

e0r
(A.6)

in Mod
hCpr

Z (i.e. a functor Ziga → Mod
hCpr

Z ) as follows.

(a) Assuming that a ≥ 1, we define the morphism qa−1
r as

ZhCpa
∼
←− (ZhCp)hCpa−1

QCp (Z)
hC

pa−1

−−−−−−−−−→ (ZtCp)hCpa−1 ,

the homotopy Cpa−1 -fixedpoints of the canonical morphism from the homotopy Cp-fixedpoints

to the Cp-Tate construction for the object Z ∈ Mod
hCpn

Z .

(b) For any i ≥ 0, we define the morphism eir as

(τ≥0Z
tCp)hCpi

ε≥0(Z
tCp )

hC
pi

−−−−−−−−→ (ZtCp)hCpi ,

the homotopy Cpi -fixedpoints of the canonical morphism to the Cp-Tate construction on the

object Z ∈ Mod
hCpr+i+1

Z from its connective cover.

(c) For any i ≥ 0, we define the morphism gir as

(τ≥0Z
tCp)hCpi+1 ∼

←− ((τ≥0Z
tCp)hCp)hCpi

QCp (τ≥0Z
tCp )

hC
pi

−−−−−−−−−−−→ ((τ≥0Z
tCp )tCp)hCpi

(Q̃Cp(Z)
tCp )

hC
pi

←−−−−−−−−−−
∼

(ZtCp )hCpi ,

the composite of

• the homotopy Cpi -fixedpoints of the canonical map from the homotopy Cp-fixedpoints

to the Cp-Tate construction for the connective cover of the Cp-Tate construction on the

object Z ∈ Mod
hCpr+i+2

Z and

• the homotopy Cpi -fixedpoints of the inverse of the equivalence Q̃Cp(Z)
tCp in Mod

hCpr+i

Z

of Observation 10.7.

Lemma A.24. The diagram (A.5) in ChZ[Cpr ] presents the diagram (A.6) in Mod
hCpr

Z .

36Here the exponent is the ceiling of j
2
, i.e. the smallest integer that is at least j

2
.
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Proof. The case where a = 0 is trivial to verify, so let us assume that a ≥ 1. We also fix any i ≥ 0.

Then, we prove that the morphisms qa−1
r , gir, and eir in Mod

hCpr

Z are equivalent to other morphisms

that are manifestly presented by the morphisms qa−1
r , gi

r, and ei
r in ChZ[Cpr ], respectively. In

particular, this shows that the objects

Z
a
r ,C

i
r,T

i
r ∈ ChZ[Cpr ]

are indeed presentations of the objects

ZhCpa , (τ≥0Z
tCp)hCpi , (ZtCp)hCpi ∈ Mod

hCpr

Z ,

respectively.

We begin with the morphisms qa−1
r and ei

r. For these, note the commutative diagram in Mod
hCpr

Z

(ZhCp)
hCpi Z

hCpi (τ≥0Z
tCp)hCpi

(ZhCp)hCpi
(ZhCp)

hCpi (ZhCp)hCpi (ZtCp)hCpi

ZhCpi+1 Z
hCpi+1 Z

tCpi+1

ÑmCp (Z)
hC

pi Q̃Cp(Z)
hC

pi

ε≥0(Z
hCp )

hC
pi ε≥0(Z

tCp )
hC

pi=:eirNm
C p

i
(ZhCp

)

∼

NmC
pi

(ZhCp)

∼ NmCp (Z)
hC

pi QCp(Z)
hC

pi

∼ ∼

NmC
pi+1

(Z)

∼

QC
pi+1

(Z)

q
a−

1

r

(w
he

n i =
a−

1)

(A.7)

Figure 2. This commutative diagram in Mod
hCpn−a

Z contains the morphisms qa−1
r

and eir. All three horizontal composites are cofiber sequences.

of Figure 2, obtained as follows.

• The two upper commutative squares are obtained by applying the functor

Mod
hCpr+i

Z

(−)
hC

pi

−−−−−→ Mod
hCpr+i

Z

to (the middle two rows of) the commutative diagram (10.2), and so are cofiber sequences

by Observation 10.5.

• The lower left pentagon commutes by Observation 4.13(3).

• The morphism NmC
pi
(ZhCp) is an equivalence

– trivially if i = 0,

– by Observation 7.5 if i = 1, and

– by Observations 7.5 and 7.6 if i ≥ 2.

• The lower right vertical equivalence is the induced equivalence between cofibers.
72



We now argue as follows.

(a) In the case that i = a− 1, the morphism qa−1
r is evidently a presentation of the morphism

QCpa
(Z), which proves that it is indeed a presentation of the morphism qa−1

r by diagram

(A.7).

(b) Consider the morphism of cofiber sequences

ZhC
pi+1

Z
hCpi (τ≥0Z

tCp)hCpi

ZhCpi+1 Z
hCpi+1 Z

tCpi+1

ÑmCp (Z)
hC

pi ◦NmC
pi

(ZhCp) Q̃Cp (Z)
hC

pi

ε≥0(Z
hCp )

hC
pi eir

NmC
pi+1

(Z) QC
pi+1

(Z)

(A.8)

in Mod
hCpr

Z extracted from diagram (A.7). Noting that the middle vertical morphism in

diagram (A.8) induces an equivalence on connective covers (and that ZhC
pi+1
∈ Mod

hCpr

Z is

connective), we see that the morphism ei
r is indeed a presentation of the morphism eir.

We now proceed to the morphism gi
r. For this, note the commutative diagram in Mod

hCpr

Z of

((ZhCp)hCp)hCpi
(ZhCp)hCpi

((ZhCp)hCp)
hCpi (ZhCp)

hCpi ((τ≥0Z
tCp)hCp)

hCpi

((ZhCp)
hCp)hCpi (ZhCp)hCpi ((τ≥0Z

tCp)hCp)hCpi

0 ≃ ((ZhCp)
tCp)hCpi (ZtCp)hCpi ((τ≥0Z

tCp)tCp)hCpi

(ÑmCp (Z)hCp)hCpi

NmC
pi

((ZhCp )hCp )
∼ NmC

pi
(ZhCp )

∼

(ÑmCp (Z)hCp)
hC

pi

NmCp (ZhCp )
hC

pi

∼

(Q̃Cp (Z)hCp)
hC

pi

NmCp (Z)
hC

pi NmCp (τ≥0Z
tCp )

hC
pi

(ÑmCp (Z)
hCp)

hC
pi

QCp (ZhCp )
hC

pi

(Q̃Cp (Z)
hCp)

hC
pi

QCp (Z)
hC

pi QCp (τ≥0Z
tCp )

hC
pi

g
i
r

(ÑmCp (Z)
tCp )

hC
pi (Q̃Cp (Z)

tCp )
hC

pi

∼

(A.9)

Figure 3. This commutative diagram in Mod
hCpr

Z contains the morphism gir.

Omitting the top row, all three horizontal composites and all three vertical com-

posites are cofiber sequences.

Figure 3, obtained as follows.
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• The bottom three rows are obtained from the second row of diagram (10.2) by applying the

cofiber sequence

(−)hCp

NmCp
−−−→ (−)hCp

QCp
−−→ (−)tCp

in Funex(Mod
hCpr+1

Z ,Mod
hCpr

Z ) followed by the functor

Mod
hCpr+i

Z

(−)
hC

pi

−−−−−→ Mod
hCpr

Z .

So indeed, the three lower vertical composites are indeed cofiber sequences, and moreover

the lower three rows are cofiber sequences by Observation 10.5.

• The equivalence 0 ≃ ((ZhCp)
tCp)hCpi follows from Observation 7.5, and it implies that the

morphisms NmCp(ZhCp)
hCpi and (Q̃Cp(Z)

tCp )hCpi are both equivalences.

• The morphisms NmC
pi
((ZhCp)hCp) and NmC

pi
(ZhCp) are equivalences

– trivially if i = 0,

– by Observation 7.5 if i = 1, and

– by Observations 7.5 and 7.6 if i ≥ 2.

We now argue as follows.

(c) Consider the morphism of cofiber sequences

ZhCpi+2 Z
hCpi+1 (τ≥0Z

tCp)hCpi+1

ZhC
pi+1

ZhCpi+1 (ZtCp)hCpi

(ÑmCp (Z)
hCp )

hC
pi ◦NmC

pi+1
(ZhCp)

ÑmCp (Z)hCpi+1

Q̃Cp (Z)
hCi+1

p

gi
r

NmC
pi+1

(Z) QCp (Z)
hC

pi

(A.10)

in Mod
hCpr

Z extracted from diagram (A.9), where we have used Observation 4.13(3) to rei-

dentify the left two horizontal morphisms. Noting that the left vertical morphism in diagram

(A.10) induces an equivalence after coconnective truncation (and that Z
hCpi+1 ∈ Mod

hCpr

Z

is coconnective), we see that the morphism gi
r is indeed a presentation of the morphism

gir. �

A.4. Chain-level data for inclusion and transfer. In this subsection, we establish the results

that support our identification of the inclusion and transfer morphisms in equivariant cohomol-

ogy. These involve some new auxiliary chain complexes and chain maps introduced in Notations

A.25 and A.29, as well as a chain homotopy introduced in Notation A.32. The main results are

Lemma A.28 (which establishes the relevant adaptedness) and Lemma A.33 (which proves that the

chain homotopy of Notation A.29 presents the desired ∞-categorical homotopy).
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Notation A.25. For any i ≥ 0, we define the object iSr ∈ ChZ[Cpr ] as

iSr :=

(
· · ·

piN
−−→ Z[Cpr ]

1−σ
−−−→ Z[Cpr ]

piN
−−→ Z[Cpr ]

1−σ
−−−→ Z[Cpr ]

✿✿✿✿✿

−→ 0 −→ 0 −→ · · ·

)
.

Local Notation A.26. In this subsection, we henceforth assume that r ≥ 1.

Observation A.27. For any i ≥ 0, there are evident isomorphisms

(Za
r)

Cp ∼= Z
a+1
r−1 , (Ci

r)
Cp ∼= C

i+1
r−1 , and (Ti

r)
Cp ∼= T

i+1
r−1

in ChZ[Cpr−1 ], as well as evident isomorphisms

(qa−1
r )Cp ∼= q

a
r−1 , (gi

r)
Cp ∼= g

i+1
r−1 , and (ei

r)
Cp ∼= e

i+1
r−1

in Ar(ChZ[Cpr−1 ]).

Lemma A.28. For any i ≥ 0, the complexes Za
r ,C

i
r,T

i
r ∈ ChZ[Cpr ] are adapted to homotopy Cp-

fixedpoints.

Proof. It follows from Observation A.9(3) that Za
r is adapted to homotopy Cp-fixedpoints.

There is an evident diagram Zi
r ← i+1Sr → Zi+1

r in ChZ[Cpr ] given by

· · · 0 0 Z[Cpr ]
✿✿✿✿✿

Z[Cpr ] Z[Cpr ] · · ·

· · · Z[Cpr ] Z[Cpr ] Z[Cpr ]
✿✿✿✿✿

0 0 · · ·

· · · 0 0 Z[Cpr ]
✿✿✿✿✿

Z[Cpr ] Z[Cpr ] · · ·

1−σ piN 1−σ

1−σ pi+1N 1−σ

pi+1N

pi+1N

1−σ pi+1N 1−σ

(reading from top to bottom) such that we have isomorphisms

C
i
r
∼= cone(i+1Sr −→ Z

i
r) and T

i
r
∼= cone(i+1Sr −→ Z

i+1
r ) .

So by Observation A.9(2)(b), to show that Ci
r and Zi

r are adapted to homotopy Cp-fixedpoints it

suffices to show that i+1Sr, Z
i
r, and Zi+1

r are. We have just seen that the latter two are adapted to

homotopy Cp-fixedpoints, so it remains to prove that S := i+1Sr is as well. For this, let us write

N1 :=




p∑

j=1

(σpr−1

)j


 =

(
1 + σpr−1

+ · · ·+ σ(p−1)·pr−1
)
∈ Z[Cpr ]

for the image of the norm element for Cp under the ring homomorphism Z[Cp →֒ Cpn−a ]. Then,

consider the evident factorization

S S

SCp SCp

N1

N1
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in ChZ[Cpr ], which determines a commutative diagram

Π∞(S)hCp Π∞(S)hCp

Π∞(SCp) Π∞(SCp)

NmCp (Π∞(S))

Π∞(N1)

(A.11)

in Mod
hCpr

Z . We claim that the three morphisms in diagram (A.11) aside from the right vertical

morphism are equivalences.

• Its upper horizontal morphism is an equivalence due to the evident equivalence Π∞(S) ≃

ZhC
pi+1

in Mod
hCpr

Z and using Observation 7.5.

• Its left vertical morphism is an equivalence because S ∈ ChZ[Cpr ] is adapted to homotopy

Cp-orbits by Observation A.11(3).

• Its lower horizontal morphism is an equivalence because the morphism SCp

N1−−→ SCp in

ChZ[Cpr ] is evidently an isomorphism.

Hence, the right vertical morphism in diagram (A.11) is an equivalence, i.e. S is adapted to homotopy

Cp-fixedpoints. �

Notation A.29. We define the morphisms

1Sr
Ñm
−→ 0Sr

i
−→ Z

0
r

j
−→ Z

1
r−1

in ChZ[Cpn−a ] as

· · · Z[Cpr ] Z[Cpr ] Z[Cpr ] Z[Cpr ]
✿✿✿✿✿

0 0 0 · · ·

· · · Z[Cpr ] Z[Cpr ] Z[Cpr ] Z[Cpr ]
✿✿✿✿✿

0 0 0 · · ·

· · · 0 0 0 Z[Cpr ]
✿✿✿✿✿

Z[Cpr ] Z[Cpr ] Z[Cpr ] · · ·

· · · 0 0 0 Z[Cpr−1 ]
✿✿✿✿✿✿✿

Z[Cpr−1 ] Z[Cpr−1 ] Z[Cpr−1 ] · · ·

pN 1−σ

p

pN

p

1−σ

1
1

N 1−σ N 1−σ

N

1−σ

p

N

p

1−σ

p2

N

p2

1−σ pN 1−σ pN

.

Moreover, we define the chain complex

C̃r := cone
(
Ñm
)
∈ ChZ[Cpr ] ,

and we write

1Sr 0Sr C̃r

1Sr Z0
r C0

r

Ñm

i kr

i◦Ñm

for the induced morphism on cones.
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Local Notation A.30. For simplicity, we often omit the functor ChZ[Cpr ]
triv
←−− ChZ[Cpr−1 ] from

our notation. Moreover, we use the notation (−)† to denote passage to adjunct morphisms in the

adjunction

ChZ[Cpr ] ChZ[Cpr−1 ]

(−)Cp

⊥
triv

.

Observation A.31.

(1) There is a canonical isomorphism

cone
(
i ◦ Ñm

)
∼= C

0
r

in ChZ[Cpr ]. Moreover, the morphism

C̃r := cone
(
Ñm
) kr−→ cone

(
i ◦ Ñm

)
∼= C

0
r

is a quasi-isomorphism, because the morphism 0Sr
i
−→ Z0

r is a quasi-isomorphism.

(2) We have a canonical commutative diagram

(1Sr)Cp Z1
r−1 C1

r−1

(0Sr)Cp Z1
r−1 T0

r−1

(j◦i◦Ñm)†

ÑmCp g
0
r−1

(j◦i)†

in ChZ[Cpr−1 ] in which both rows are cone sequences and g0
r−1 is the induced morphism on

cones.

Notation A.32. We write h′ for the canonical nullhomotopy of the composite

(C̃r)Cp −→ C
1
r−1

g
0
r−1
−−−→ T

0
r−1

determined by the commutative triangle

(1Sr)Cp (0Sr)Cp

Z1
r−1

ÑmCp

(j◦i◦Ñm) † (j◦
i)

†

in ChZ[Cpr ] (using Observation A.31(2)), and we write h for its precomposition with the quotient

morphism C̃r → (C̃r)Cp . So explicitly, h is a sequence

h :=
(
(C̃r)n

hn−→ (T0
r−1)n+1

)
n∈Z

of maps of Z[Cpr ]-modules given as follows:

• for n < 0, hn is the zero map

(C̃r)n := 0 −→ Z[Cpr−1 ] =: (T0
r−1)n+1 ;

• h0 is the quotient map

(C̃r)0 := Z[Cpr ]
17−→1
−−−−→ Z[Cpr−1 ] =: (T0

r−1)n+1 ;
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• for n > 0, hn is the composite

(C̃r)n :=




Z[Cpr ]

⊕

Z[Cpr ]


 (0 1)
−−−→ Z[Cpr ]

17−→1
−−−−→ Z[Cpr−1 ] =: (T0

r−1)n+1

of the projection onto the second factor followed by the quotient map.

Lemma A.33. The homotopy-commutative diagram

C̃r

(C̃r)Cp C1
r−1

0 T0
r−1

trf h
◦k

r

g
0
r−1h

′

in ChZ[Cpr ] is a presentation of the commutative diagram

τ≥0Z
tCp

(τ≥0Z
tCp )hCp (τ≥0Z

tCp)hCp

0 (τ≥0Z
tCp)tCp

trf h
Cp (τ

≥0Z tCp
)

NmCp (τ≥0Z
tCp )

QCp (τ≥0Z
tCp )

(A.12)

in Mod
hCpr

Z of Observation 7.18 (applied to E = τ≥0Z
tCp ∈ Mod

hCpr

Z ). In particular, the homotopy-

commutative square

C̃r C1
r−1

0 T0
r−1

trf
h◦kr

g
0
r−1h

in ChZ[Cpr ] is a presentation of the commutative square

τ≥0Z
tCp (τ≥0Z

tCp)hCp

0 (τ≥0Z
tCp)tCp

trfhCp (τ≥0Z
tCp )

QCp (τ≥0Z
tCp )

in Mod
hCpr

Z .
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Proof. Consider the commutative diagram

ZhCp Z

ZhCp2
ZhCp ZhCp

ÑmCp (Z)

ÑmCp (Z)hCp
NmCp (Z)

(A.13)

in Mod
hCpr

Z . Passing to cofibers as indicated, this yields a commutative diagram

cofib(ÑmCp(Z))

cofib(ÑmCp(Z)hCp) cofib(NmCp(Z) ◦ ÑmCp(Z)hCp)

0 cofib(NmCp(Z))

(A.14)

in ModhCpr in which the square is a pushout. Moreover, it follows from the proof of Lemma A.24

that the commutative diagram (A.14) is precisely the commutative diagram (A.12). So to conclude,

it suffices to show that the commutative diagram (A.13) in Mod
hCpr

Z is presented by the commutative

diagram

1Sr 0Sr

(1Sr)Cp (0Sr)Cp Z1
r−1

Ñm

j◦i

ÑmCp

(j◦i◦Ñm)†

(j◦i)†

in ChZ[Cpr ]. For this, we note that it follows from Observation A.31(1) that the morphism Ñm

presents the morphism ÑmCp(Z) and moreover that 1Sr and 0Sr are adapted to homotopy Cp-orbits

by Observation A.11(3). �

A.5. Multiplicative structure of Tate cohomology. In this subsection, we study the multi-

plicative structure on Tate cohomology. Namely, in Lemma A.35 we compute the ring structure on

the homotopy groups of (ZtCp)hCpa−1 ∈ ModZ, and in Lemma A.39 we give a chain-level presenta-

tion of an endomorphism of ZtCp ∈ Mod
hCpr

Z given by multiplying by a Cpr -equivariant homotopy

element.

Notation A.34. We respectively write

c′a ∈ π−2(Z
hCpa ) and ca ∈ π−2((Z

tCp )hCpa−1 )
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for the elements represented by the cycles

1 ∈ Z =: (Za
0)−2 and 1 ∈ Z =: (Ta−1

0 )−2

(using Lemma A.24).37

Lemma A.35. The homomorphism

π∗(Z
hCpa )

π∗(q
a−1
0 )

−−−−−−→ π∗((Z
tCp )hCpa−1 ) (A.15)

of graded-commutative rings guaranteed by Observation 4.13(2) (which lifts qa−1
0 from a morphism

in ModZ to a morphism in CAlg(ModZ)) is the homomorphism

Z[c′a]/(p
ac′a) −→ (Z/pa)[c±a ] (A.16)

of graded-commutative rings characterized by the fact that it carries c′a to ca.

Proof. By Lemma A.24, the morphism q
a−1
0 in ChZ presents the morphism qa−1

0 in ModZ. From

this, we easily identify the morphisms (A.15) and (A.16) of graded abelian groups. Moreover, it is

clear that the isomorphism

π∗(Z
hCpa ) ∼= Z[c′a]/(p

ac′a)

of graded abelian groups is in fact one of graded-commutative rings. It follows that the homo-

morphism (A.15) of graded π∗(Z
hCpa )-modules must coincide with the homomorphism (A.16) of

graded Z[c′a]/(p
ac′a)-modules. Now, it suffices to observe that the commutative ring structure on

the graded abelian group (Z/pa)[c±a ] is the only one that lifts the homomorphism (A.16) of graded

Z[c′a]/(p
ac′a)-modules to one of graded-commutative rings. �

Notation A.36. Given a stably symmetric monoidal∞-category C, a commutative algebra object

A ∈ CAlg(C), an A-module M ∈ ModA(C), and a morphism 1C

f
−→ ΣkA in C for any k ∈ Z, we

simply write M
f
−→ ΣkM for the morphism given by multiplication by f , i.e. the composite

M ≃ 1C⊗M
f⊗idM
−−−−→ ΣkA⊗M −→ ΣkM .

In particular, we apply this to the commutative algebra objects ZhCp ,ZtCp ∈ CAlg(Mod
hCpr

Z ) (guar-

anteed by Observation 4.13(2)) and the morphisms

c′r+1 ∈ hom
Mod

hCpr

Z

(
Z,Σ2ZhCp

)
≃ Σ2Z

hCpr+1 and cr+1 ∈ hom
Mod

hCpr

Z

(
Z,Σ2ZtCp

)
≃ Σ2(ZtCp)hCpr

of Notation A.34.

Notation A.37. For any i, r ≥ 0 we write

T
i
r

c
i
r−→ Σ2

T
i
r

for the evident isomorphism in ChZ[Cpr ] that is the identity in all degrees.

37It is not hard to see that more generally these same elements are respectively represented by the cycles

N ∈ Z[Cpr ] =: (Zar )−2 and N ∈ Z[Cpr ] =: (Ta−1
r )−2

(again using Lemma A.24).
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Observation A.38. For any i ≥ 0 and r ≥ 1 we have an evident identification
(
T
i
r

c
i
r−→ Σ2

T
i
r

)Cp

∼=

(
T
i+1
r−1

c
i+1
r−1
−−−→ Σ2

T
i+1
r−1

)

in Ar(ChZ[Cpr−1 ]).

Lemma A.39. The morphism

T
0
r

c
0
r−→ Σ2

T
0
r

in ChZ[Cpr ] is a presentation of the morphism

ZtCp
cr+1
−−−→ Σ2ZtCp

in Mod
hCpr

Z (using Notation A.36).

Proof. For simplicity, we write

c′ := c′r+1 , c := cr+1 , and c := c
0
r .

It follows from Lemma A.35 (and Observation 4.13(2)) that we have a commutative square

ZhCp ZtCp

Σ2ZhCp Σ2ZtCp

QCp (Z)

c′ c′≃c

QCp (Z)

(A.17)

in Mod
hCpr

Z . By definition, the left vertical morphism in diagram (A.17) is given by

hom
Mod

hC
pr+1

Z

(
Z[Cpr ],Z

c′
−→ Σ2Z

)
≃ hom

Mod
hC

pr+1

Z

(
Z[Cpr ]⊗

(
Z

c′
−→ Σ2Z

)∨
,Z

)

≃ hom
Mod

hC
pr+1

Z

(
Z[Cpr ]⊗

(
Z

c′
←− Σ−2Z

)
,Z
)

. (A.18)

We give a chain-level presentation of the morphism (A.18). For this, consider the commutative

triangle

0Sr+1

Σ−2
0Sr+1 Z

✿

≈

(A.19)

in ChZ[Cpr+1 ], in which both morphisms to Z
✿

are characterized by the fact that they act as Z[Cpr+1 ]
σ 7→1
−−−→

Z in degree 0 and the diagonal morphism is characterized by the fact that it acts as the identity in

all nonnegative degrees (and the vertical morphism is evidently a quasi-isomorphism). Through the

evident isomorphism

Z
r+1
0
∼= homChZ[C

pr+1]
(0Sr+1,Z

✿

)

in ChZ, the horizontal morphism in diagram (A.19) in ChZ[Cpr+1 ] represents the morphism Σ−2Z
c′
−→ Z

in Mod
hCpr+1

Z . Therefore, the diagonal morphism in diagram (A.19) in ChZ[Cpr+1 ] represents the same

morphism in Mod
hCpr+1

Z . Hence, the morphism (A.18) in ModZ[Cpr ] is represented by the morphism

homChZ[C
pr+1]

(
Z[Cpr ]
✿✿✿✿✿

⊗
(
0Sr+1 ←− Σ−2

0Sr+1

)
,Z
✿

)
(A.20)

in ChZ[Cpr ] (using that 0Sr is levelwise free and concentrated in nonnegative degrees).
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We have just shown that the morphism (A.20) in ChZ[Cpr ] is a presentation of the left vertical

morphism in diagram (A.17) in Mod
hCpr

Z . Unwinding the definitions, we find that the former is the

morphism

Z
1
r

c
′

−→ Σ2
Z
1
r

in ChZ[Cpr ] characterized by the fact that it acts as the identity in all nonpositive degrees. To

proceed, we define the mapping telescopes

tel(c′) := colim
(
Z
1
r

c
′

−→ Σ2
Z
1
r

c
′

−→ Σ4
Z
1
r

c
′

−→ · · ·
)
∈ ChZ[Cpr ]

and

tel(c′) := colim
(
ZhCp

c′
−→ Σ2ZhCp

c′
−→ Σ4ZhCp

c′
−→ · · ·

)
∈ Mod

hCpr

Z .

Now, by Lemma A.35, the morphism ZtCp
c
−→ Σ2ZtCp in Mod

hCpr

Z is an equivalence. Therefore the

commutative square (A.17) in Mod
hCpr

Z extends to a commutative diagram

ZhCp tel(c′) ZtCp

Σ2ZhCp Σ2tel(c′) Σ2ZtCp

QCp (Z)

c′

∼

c′ c′≃c

QCp (Z)

∼

, (A.21)

in which the equivalences also follow from Lemma A.35. On the other hand, using Lemma A.24

(and the fact that the functor ChZ[Cpr ]
Π∞−−→ Mod

hCpr

Z commutes with filtered colimits) we see that

the diagram (A.21) in Mod
hCpr

Z is presented by the diagram

Z1
r tel(c′) T0

r

Σ2Z1
r Σ2tel(c′) Σ2T0

r

q
0
r

c
′

∼=

c
′ c

q
0
r

∼=

in ChZ[Cpr ], in which the square on the right commutes by inspection. In particular, the claim

follows. �
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