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THE GEOMETRY OF THE CYCLOTOMIC TRACE

DAVID AYALA, AARON MAZEL-GEE, AND NICK ROZENBLYUM

Abstract. We provide a new construction of the topological cyclic homology TC(C) of any

spectrally-enriched ∞-category C, which affords a precise algebro-geometric interpretation of the

cyclotomic trace map K(X) → TC(X) from algebraic K-theory to topological cyclic homology

for any scheme X. This construction rests on a new identification of the cyclotomic structure on

THH(C), which we find to be a consequence of (i) the geometry of 1-manifolds, and (ii) lineariza-

tion (in the sense of Goodwillie calculus). Our construction of the cyclotomic trace likewise arises

from the linearization of more primitive data.

Contents

0. Introduction 2

0.1. Overview 2

0.2. The geometry of the Dennis trace 3

0.3. Cocycles for topological Hochschild homology 4

0.4. The geometry of the cyclotomic trace 5

0.5. Main theorems 7

0.6. Miscellaneous remarks 13

0.7. Outline 17

0.8. Notation and conventions 17

0.9. Acknowledgments 19

Part I. The cyclotomic structure on THH 19

1. Stratified 1-manifolds 20

1.1. Stratified 1-manifolds 20

1.2. Disk-refinements 20

2. Factorization homology 22

2.1. Enriched ∞-categories 22

2.2. Categorified factorization homology 23

2.3. Enriched factorization homology 24

3. The unstable cyclotomic structure on THH×
V

25

3.1. The T-action on THHV 26

3.2. The W-action on THH×
V

26

3.3. The local structure of the functor
∏

27

3.4. Cartesian monodromy via cocartesian monodromy in families 28

3.5. The diagonal package 30

3.6. Unstable cyclotomic objects in V 30

Date: October 18, 2017.

1

http://arxiv.org/abs/1710.06409v1


3.7. The unstable cyclotomic structure on THH×
V

31

3.8. From fiberwise colimits to unstable cyclotomic structures 32

4. The cyclotomic structure on THH 35

4.1. Locating the Tate package 35

4.2. Auxiliary constructions 36

4.3. The Tate package 38

4.4. The cyclotomic structure on THH 42

Part II. The cyclotomic trace 44

5. The unstable cyclotomic trace 45

6. The cyclotomic trace 45

References 47

0. Introduction

0.1. Overview. The field of algebraic K-theory was initiated by Grothendieck in order to for-

mulate his relative Riemann–Roch theorem [SGA71, BS58], and it has since found deep connections

in such diverse areas as number theory, geometric topology, and motives [FG05]. Of course, pro-

found implications necessitate an inherent complexity, and indeed algebraic K-theory is notoriously

difficult to compute. The vast majority of known computations of algebraic K-theory result from

its infinitesimal behavior: it admits a cyclotomic trace map

K −→ TC

to topological cyclic homology due to Bökstedt–Hsiang–Madsen [BHM93], which is “locally

constant” by a celebrated theorem of Dundas–Goodwillie–McCarthy [Goo86, McC97, Dun97, DM94,

DGM13]. Indeed, the resulting techniques – collectively known as “trace methods” – have produced a

plethora of spectacular computations of algebraic K-theory [HM97b, HM97a, HM03, HM04, AGH09,

AGHL14, KR97, Rog03, BM].

However, despite the central and enduring importance of the cyclotomic trace, its geometric

nature – and indeed, that of TC itself – has remained mysterious. In this paper, we provide a new

construction of TC which affords a precise conceptual description of the cyclotomic trace at the level

of derived algebraic geometry. The broad idea can be summarized informally as follows.

Slogan 0.1. The formation of TC(X) from THH(X) ≃ O(LX) amounts to cutting out precisely

those functions on the free loopspace LX

• which are T-invariant, and

• whose value on any loop

(S1 γ
−→ X) ∈ LX

determines its values on all its iterates

(S1 r
−→ S1 γ

−→ X) ∈ LX
2



“up to universal indeterminacy”, subject to all possible universal compatibility relations

between iterates of these determinations.

Moreover, the cyclotomic trace – the factorization

K(X) THH(X)

TC(X)

of the Dennis trace – amounts to the recognition that the trace-of-monodromy function of any vector

bundle E ↓ X satisfies these conditions.

The concepts and assertions contained in Slogan 0.1 will be both explained and rigorized over the

course of this introductory section.

The present paper is the centerpiece of a trilogy, whose overarching purpose is to formulate

and prove a precise version of Slogan 0.1. However, in §0.6 we also speculate on some possible

applications and future directions of inquiry. The two supporting papers are [AMGRb], in which we

study cyclotomic spectra (of which THH is the primary example), and [AMGRa], in which we study

enriched factorization homology (of which THH is the primary example). Our work, particularly our

treatment of cyclotomic spectra, finds an important precedent in recent work of Nikolaus–Scholze

[NS]; for a discussion of the relationship, see [AMGRb, Remark 0.11].

0.2. The geometry of the Dennis trace. By definition, the cyclotomic trace arises as an iterated

factorization
K THH

THC− := THHhT

TC := THHhCyc

(1)

of the Dennis trace map to topological Hochschild homology . The latter carries a cyclotomic

structure, i.e. it is naturally an object of a certain ∞-category Cyc(Sp) of cyclotomic spectra. This

participates in an adjunction

Sp Cyc(Sp)

∈ ∈

TC THH

triv

⊥

(−)hCyc ,

whose right adjoint – which we refer to informally and notationally as the (homotopy) invariants of

the cyclotomic structure – takes THH to TC. Among other data which we will describe shortly, a

cyclotomic structure consists of an action of the circle group T, and we obtain topological negative

cyclic homology by taking the (homotopy) fixedpoints of the underlying T-action on THH.

In fact, it is well known how to geometrically interpret the entire upper triangle in diagram (1)

[MSV97, TV09]. To explain this, suppose that X is a scheme, and let us write PerfX for its stable

∞-category of vector bundles (i.e. perfect complexes).1 Then, its algebraic K-theory

K(X) := K(PerfX)

1In fact, X can be a spectral scheme, or more generally any (geometric entity incarnated through its sheaves of

some flavor (usually either perfect or coherent) as a) stable ∞-category. In particular, it is of course possible to take
3



has cocycles given by vector bundles over X , while we have an identification of its topological

Hochschild homology

THH(X) ≃ O(LX)

as the functions on the free loopspace ofX (a derived mapping stack).2 Under these identifications,

the Dennis trace is given by the association

K(X) THH(X)

∈ ∈




vector bundle

E ↓ X










free loop

S1 γ
−→ X


 7−→




trace of monodromy of

γ∗E ↓ S1







.3 (2)

From here, we observe further that the T-action on THH corresponds to rotation of loops. Hence,

the factorization of the Dennis trace through THC− in diagram (1) – which we refer to as the

cyclic trace – amounts to recognizing that for any vector bundle E ↓ X , the function obtained by

prescription (2) is invariant under precomposing the loop γ with a rotation of the circle.

0.3. Cocycles for topological Hochschild homology. Let us also take a moment to describe

the Dennis trace more directly.

First of all, by definition, THH(X) is given by the (enriched) factorization homology

THH(X) := THH(PerfX) :=

∫

S1

PerfX

of the spectrally-enriched ∞-category PerfX over the framed circle S1. Thus, informally speaking,

a cocycle for THH(X) is given by the data of

• a nonempty configuration of points p1, . . . , pn ∈ S1 on the framed circle (named cyclically),

• labelings of those points by vectors bundles Ei ↓ X , and

• labelings of the framed intervals between them by maps Ei → Ei+1.

The equivalence relation among cocycles comes from allowing points

• to disappear, in which case we compose the adjacent maps, and

• to anticollide, in which case we label the new interval by the identity map.

Somewhat more precisely, THH(X) is given by the colimit of a diagram indexed over such con-

figurations and point-labelings, with value the smash product spectrum
⊗

i∈Z/n

homPerfX
(Ei, Ei+1) . (3)

X to be an ordinary scheme, but it is only topological (i.e. S-linear) Hochschild homology which carries a cyclotomic

structure. (See [AMGRb, Remark 3.9] for more on this point.)
2Actually, the latter identification only holds when X is sufficiently nice (e.g. a perfect stack [BZFN10]).
3After choosing a basepoint of the circle, a vector bundle thereover is determined by its monodromy, an auto-

morphism of the fiber. Although different basepoints give different automorphisms, these will be conjugate to one

another, and hence extracting their trace yields a well-defined invariant.

4



(Of course the structure maps of this diagram are just as described above, only they use enriched

composition and unit maps of PerfX .)

Note that among these two heuristic descriptions of THH(X), the former would suggest that we

are simply taking a cartesian product of hom-spectra in PerfX ;4 by contrast, the smash product (3)

enforces multilinearity. This distinction will be crucial.

At the level of cocycles, the Dennis trace takes a vector bundle E ↓ X to the cocycle for THH(X)

given by a single point on the circle labeled by E, with the framed interval labeled by its identity

map. The identification THH(PerfX) ≃ O(LX) passes through Morita invariance, which yields an

equivalence

THH(PerfA) ≃ THH(BA)

for any ring spectrum A, where BA denotes its delooping to a one-object spectrally-enriched ∞-

category (see Remarks 0.11 and 0.12).

0.4. The geometry of the cyclotomic trace. Whereas the cyclic trace arises from automor-

phisms of the circle, the cyclotomic trace arises from endomorphisms of the circle – that is, from

the map

LX LX

∈ ∈
(
S1 γ
−→ X

) (
S1 r
−→ S1 γ

−→ X
)

r∗

given by precomposing with an r-fold self-covering map, for a natural number r ∈ N×. Namely,

given a vector bundle E ↓ X , there is a sense in which the value of its trace-of-monodromy function

on a loop γ determines its value on the loop r∗γ: not quite on-the-nose, but up to universal

indeterminacy.

In fact, this phenomenon already manifests itself in the case of a square matrixM ∈ Md×d(R) over

a ring R; if this matrix records the monodromy around γ, then its rth power records the monodromy

around r∗γ. Let us therefore illustrate this phenomenon by considering the two elements

tr
(
M⊗r

)
, tr(M)⊗r ∈ R⊗r (4)

of the tensor power of the base ring. We first observe that the elements (4) are both cyclically

invariant, the latter manifestly and the former by standard properties of traces of matrices; in other

words, they actually lie in the fixedpoints

(R⊗r)Cr ⊂ R⊗r

with respect to the action of the cyclic group Cr. Now, the elements (4) are not equal, but they

differ by norms. The first nontrivial example occurs when r = 2. In this case, we have the norm

map

(R⊗2)C2 (R⊗2)C2

∈ ∈

[x⊗ y]
∑

σ∈C2
σ(x⊗ y)

Nm

4In fact, this is really more of a description of unenriched factorization homology, which in place of the smash

product (3) of hom-spectra uses cartesian products of hom-spaces.
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from the orbits to the fixedpoints, and we can compute directly that the difference

tr
(
M⊗2

)
− tr(M)⊗2 =

∑

i,j

mi,j ⊗mj,i −
∑

k,l

mk,k ⊗ml,l

=
∑

i6=j

mi,j ⊗mj,i −
∑

k 6=l

mk,k ⊗ml,l

=
∑

i<j

Nm([mi,j ⊗mj,i])−
∑

k<l

Nm([mk,k ⊗ml,l])

does indeed land in its image. Thus, we obtain a canonical identification

tr(M⊗2) ≡ tr(M)⊗2

in the cokernel of the norm map. More generally, the elements (4) differ by norms not from just the

trivial subgroup of Cr but from all proper subgroups; this assertion categorifies the combinatorial

observation that for instance if

M =




m1,1 0

0 m2,2




is a 2 × 2 diagonal matrix, then the difference tr(M⊗r) − tr(M)⊗r is governed by the binomial

coefficients
(
r
i

)
for 0 < i < r, which are never coprime to r.5

Let us now return to considering THH(X), i.e. functions on the free loopspace of X . In this

setting, we would like to compare two elements of

THH(X)τCr ,

the (“generalized”, though we’ll omit this for brevity) Tate construction for the natural Cr-

action on THH(X) – a homotopical version of the “quotient the fixedpoints by norms from all

proper subgroups” operation.6,7 As we will soon see, this indeed receives two distinguished maps:

one running

THH(X)hCr −→ THH(X)τCr (5)

and corresponding to the construction “M 7→ tr(M)⊗r”, and another running

THH(X) −→ THH(X)τCr (6)

5For a more thorough and coordinate-independent treatment of these phenomena, we refer the reader to [NS].
6When r = p is prime, then the only proper subgroup of Cp is the trivial subgroup. Correspondingly, in this case

the generalized Tate construction (−)τCp reduces to the ordinary Tate construction, namely the cofiber

(−)hCp

Nm
−−→ (−)hCp −→ (−)tCp .

7For a justification of this description of the generalized Tate construction, see [AMGRb, Remark 2.13].
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and corresponding to the construction “M 7→ tr (M⊗r)”.8 These are suitably equivariant, in such a

way that they determine a pair of parallel maps

THH(X)hT
(
THH(X)τCr

)hT
;

unwinding the definitions, it follows that the equalizer of this pair picks out

T-equivariant functions on LX whose value on any loop γ determines its values on the

iterate r∗γ up to universal indeterminacy,

thus embodying much of the algebro-geometric description of TC(X) asserted in Slogan 0.1.

But much more is true: these structure maps will come equipped with an infinite hierarchy of

compatibilities, corresponding to all possible composable sequences of self-coverings of the circle as

well as a choice at each stage of whether to enact the operation “M 7→ tr(M)⊗r” or the operation

“M 7→ tr (M⊗r)”.9 Collectively, the limit over all of these structure maps will impose

all possible universal compatibility relations between iterates of these determinations,

which is the remaining assertion of Slogan 0.1 regarding the geometry of TC(X); these compatibilities

will be spelled out more explicitly in Remark 0.5. All in all, we will see that in an admittedly

revisionistic sense,

TC(X) is precisely built to encode all of the structure present on those functions on LX

that arise as trace-of-monodromy functions of vector bundles over X ,

completing the explanation of Slogan 0.1.

0.5. Main theorems. We now describe the four central theorems of the trilogy to which this paper

belongs, which collectively implement the geometric picture described in §0.4 above; the first and

third are proved in [AMGRb], while the second and fourth are proved here.

First of all, we reidentify the ∞-category Cyc(Sp) of cyclotomic spectra in terms of the Tate

construction.

8It follows from an analysis at the level of cyclic bar constructions that these maps do indeed behave as claimed.

The key observation is that the trace actually occurs in the equivalence THH(B(Md×d(R)))
∼
−→ THH(BR) coming

from Morita invariance (see e.g. [Lod98, Theorem 1.2.4]); then, we can see the map (5) as coming from the composite

(

Md×d(R)⊗r(•+1)
)hCr

−→
(

R⊗r(•+1)
)hCr

−→
(

R⊗r(•+1)
)

τCr

and the map (6) as coming from the composite

Md×d(R)⊗(•+1) −→
(

Md×d(R)⊗r(•+1)
)

τCr
−→

(

R⊗r(•+1)
)

τCr
.

(More generally we might consider arbitrary composable (not necessarily square) matrices, but this would only serve

to make the notation more complicated, and is itself rendered unnecessary by Morita invariance; the prior reduction

to free objects (instead of just their retracts) is likewise justified by Morita invariance.)
9In fact, there will be yet more compatibilities, accounting for the fact that the “quotienting by norms from

all proper subgroups” operation doesn’t strictly commute with multiplication of natural numbers (the orders of the

various cyclic groups); see Remark 0.2.
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Theorem A (A reidentification of cyclotomic spectra (proved in [AMGRb])). The endofunctors

Fun(BT, Sp) Fun(B(T/Cr), Sp) Fun(BT, Sp)

∈ ∈ ∈

(T y E)
(
T/Cr y EτCr

) (
T y EτCr

)

(T/Cr)≃T

∼

for r ∈ N× assemble into a left-lax right action

Fun(BT, Sp)
l.lax
x
τ

N
× .

Moreover, there is a canonical equivalence of ∞-categories

Cyc(Sp) ≃ limr.lax
(
Fun(BT, Sp)

l.lax
x
τ

N
×
)

with the right-lax limit of this left-lax right action. �

Remark 0.2. To say that the action is left-lax is to say that there are only comparison morphisms

(rather than equivalences) governing its associativity. For instance, for each pair of elements r, s ∈

N
× and any E ∈ Fun(BT, Sp), there is a canonical map

EτCrs
χr,s
−−→

(
EτCr

)τCs
.10 (7)

Then, an object of the right-lax limit of this left-lax right action – that is, a cyclotomic spectrum –

consists of the following data:

(0) an object

T ∈ Fun(BT, Sp) ,

namely the underlying T-spectrum of the cyclotomic spectrum;

(1) for every element r ∈ N×, a cyclotomic structure map

T
σr−→ T τCr

in Fun(BT, Sp);

(2) for every pair of elements r, s ∈ N
×, the data of a commutative square

T T τCs

T τCrs
(
T τCr

)
τCs

σs

σrs (σr)
τCs

χr,s

in Fun(BT, Sp), denoted σr,s;

10More generally, for any word W := (r1, . . . , rn) of elements of N×, writing |W | :=
∏

i ri for the product of its

elements, there is a canonical map

EτC|W |
χW−−−→ EτCW := EτCr1 ···τCrn .

These maps satisfy various compatibilities, a few of which will appear presently.

8



(3) for every triple of elements r, s, t ∈ N×, the data of a commutative 3-cube

T τCrst
(
T τCrs

)
τCt

T T τCt

(
T τCr

)
τCst

((
T τCr

)
τCs
)
τCt

T τCst
(
T τCs

)
τCt

χrs,t

χr,st

(χr,s)
τCtσt

σrst

σst

(σrs)
τCt

χs,t

χs,t

(σr)
τCst ((σr)

τCs)
τCt

(σs)
τCt

in Fun(BT, Sp), denoted σr,s,t,

• whose front, top, and left, and right faces are the commutative squares σs,t, σrs,t, σr,st,

and (σr,s)
τCt , respectively,

• whose bottom face is determined by the naturality of χs,t, and

• whose back face is determined by the compatibility of the various χ maps (7);

...

(n) in general, for each word W := (r1, . . . , rn) in N×, the data of a commutative n-cube σW in

Fun(BT, Sp), whose faces are given

• by previously specified data (inductively for all n ≥ 0) and

• by the various coherences enjoyed by the “χ” comparison maps (7).

These data are subject to certain compatibility relations that apply whenever the unit element

1 ∈ N× appears in a word.

Remark 0.3. The sorts of words in N× that are relevant to us are parametrized by the subdivision

category sd(BN×): its objects are precisely the equivalence classes of words in N× under the relation

that any instances of the element 1 ∈ N× may be freely inserted or omitted.11 In fact, this is not

a coincidence: subdivision plays a key role in the definition of a right -lax limit of a left -lax action

(i.e. it appears because these handednesses disagree), and it will reappear in our explicit formula

for TC (see Theorem C and Remark 0.5).

11Due to the equivalence relation, it doesn’t matter mathematically whether we allow the empty word ∅ or not,

since it’s equivalent to the word (1). However, it will be convenient to use the evident “normal form” where we simply

omit all 1’s, which leads us to choose to allow the empty word.

9



In order to state our next theorem, we introduce/recall the following notation:

• S and Sp respectively denote the ∞-categories of spaces and of spectra;

• Cat(S) ≃ Cat and Cat(Sp) respectively denote the ∞-categories of spatially-enriched (i.e.

unenriched) ∞-categories and of spectrally-enriched ∞-categories;

• THHS and THH := THHSp respectively denote spatially-enriched and spectrally-enriched

factorization homology over the circle;

• Cych(S) and Cyc(Sp) := Cycτ(Sp) respectively denote the ∞-categories of unstable cyclo-

tomic spaces (recalled in §3 below) and of cyclotomic spectra.

Theorem B (The cyclotomic structure on THH (proved in Part I)).

(1) There is a diagonal package for spaces, which induces a canonical lift

Cat(S) Cych(S)

S

THHS

fgt

through the forgetful functor, yielding the unstable cyclotomic structure on THHS.

(2) Via linearization (in the sense of Goodwillie calculus), the diagonal package for spaces gives

rise to the Tate package for spectra, which induces a canonical lift

Cat(Sp) Cyc(Sp)

Sp

THH
fgt

through the forgetful functor, yielding the cyclotomic structure on THH.

Remark 0.4. The term package is meant to emphasize that this object packages together the

named maps, along with all of their requisite functorialities: the diagonal package packages the

diagonal maps

V −→
(
V ×r

)hCr

for spaces V ∈ S (which are in fact equivalences), while the Tate package packages the Tate

diagonal maps

E −→
(
E⊗r

)
τCr

for spectra E ∈ Sp. The way in which diagonal maps for spaces induce the unstable cyclotomic

structure on THHS is described in §3.8; the Tate diagonal maps for spectra induce the cyclotomic

structure on THH in an essentially identical way.

Together, Theorems A and B go much of the way towards formalizing the assertions of Slogan 0.1

regarding TC. However, what still lacks is a concrete formula for the passage from THH to TC,
10



guaranteeing that it does indeed implement the asserted geometric description. Our next result fills

this gap.

Theorem C (The formula for TC (proved in [AMGRb])). There is a canonical factorization

Sp Cyc(Sp)

Fun(sd(BN×), Sp)

(−)hCyc

(−)hTlim
, 12

where the first functor takes a cyclotomic spectrum T ∈ Cyc(Sp) to the diagram

sd(BN×) Sp

∈ ∈

(r1, . . . , rk) =:W
(
T τCW

)hT
:=
(
T τCr1 ···τCrk

)hT

T hT

(8)

of spectra. �

Remark 0.5. The category sd(BN×) and diagram (8) are described in detail in [AMGRb, Re-

mark 3.35]. As described there, the morphisms in sd(BN×) are generated by the operations of

• adding a letter to the beginning of a word,

• adding a letter to the end of a word, and

• factoring a letter in a word.

In particular, the empty word

( ) ∈ sd(BN×)

is an empty object (i.e. it receives no nonidentity maps), and moreover it maps to every other object

in at least two distinct ways. Hence, the extraction of the limit

lim(8) =: T hCyc

amounts to cutting out equations inside of the value

T hT ∈ Sp

of the diagram (8) at the empty word.

Let us now specialize to our particular case of interest, namely when we take our cyclotomic

spectrum to be T = THH(X) for a scheme X . In this case, we have that

THH(X)hT ≃ (O(LX))
hT

consists of the T-invariant functions on the free loopspace LX . Then, the three operations described

above can be interpreted geometrically: they correspond to operations on such functions of the form

• “M 7→ tr (M⊗r)”,

12It would be slightly more correct to write sd
(

(BN×)op
)

instead of sd(BN×), but these two categories are canoni-

cally equivalent (due to the commutativity of the monoid N×) and so to simplify our notation we elide the distinction

here.

11



• “M 7→ tr(M)⊗r”, and

• “take a further quotient corresponding to the new universal indeterminacies that arise in

factoring an rs-fold covering map as an r-fold covering map followed by an s-fold covering

map”.

Thus, Theorem C shows that the passage from THH(X) to TC(X) afforded by Theorem B does

indeed implement the geometric description asserted in Slogan 0.1.

In order to state our final theorem, we introduce/recall the following notation.

• We write

TCS : Cat
THHS−−−−→ Cych(S)

(−)hW

−−−−→ S

for the unstable topological cyclic homology functor (recalled in §5). This is the composite

of spatially-enriched factorization homology over the circle with the “homotopy invariants

of the unstable cyclotomic structure” functor; the notation W is explained in §3.

• We write

TC : Cat(Sp)
THH
−−−→ Cyc(Sp)

(−)hCyc

−−−−→ Sp

for the topological cyclic homology functor. This is the composite of spectrally-enriched

factorization homology over the circle with the “homotopy invariants of the cyclotomic

structure” functor.

• For any enriching ∞-category V, we write

Cat(V)
ι
−→ S

for the “underlying ∞-groupoid” functor.

Theorem D (The cyclotomic trace (proved in Part II)).

(1) The contravariant functoriality of spatially-enriched factorization homology with respect to

the proper constructible bundle

D
0 ←− S1

induces an unstable Dennis trace

ι ≃

∫

D0

−→

∫

S1

=: THHS

in Fun(Cat, S), whose equivariance induces a factorization

ι THHS

TCS

through the unstable cyclotomic trace.

(2) Via linearization (in the sense of Goodwillie calculus) and the equivalence

Σ∞+ ι ≃

∫

D0

12



in Fun(Cat(Sp), Sp), the unstable Dennis and cyclotomic trace maps give rise to the Dennis

pre-trace and cyclotomic pre-trace maps

Σ∞+ ι THH

TC

in Fun(Cat(Sp), Sp), the latter of which when restricted to the subcategory

StCat ⊂ Cat(Sp)

of stable ∞-categories and exact functors between them induces the cyclotomic trace map

Σ∞+ ι THH

K TC

in Fun(StCat, Sp).

Remark 0.6. It is immediate that for a scheme X , the Dennis pre-trace

Σ∞+ ι(PerfX) −→ THH(PerfX) =: THH(X)

behaves as described in §0.3: it takes a vector bundle E ∈ PerfX to the cocycle for THH(X)

represented by a single point on the circle labeled by E, with the framed interval labeled by its

identity map. As under the identification

THH(X) ≃ O(LX)

this cocycle corresponds to the trace-of-monodromy function of E, the cyclotomic (pre-)trace indeed

amounts to the observation that such a function necessarily satisfies the conditions imposed by taking

the homotopy invariants of the cyclotomic structure. Thus, Theorem D completes the rigorization

of the assertions of Slogan 0.1.

0.6. Miscellaneous remarks.

Remark 0.7. There is an evident cardinality filtration

THH ≃ colim (THH≤1 −→ THH≤2 −→ THH≤3 −→ · · · )

of THH, obtained by restricting the number of points on the circle. This filtration is respected by

the T-action, and so it refines to a filtration

(THC−)≤n := (THH≤n)
hT

of THC− := THHhT.13 In fact, our construction provides for a further refinement to a filtration of

TC: for a word

W := (r1, . . . , rk) ∈ sd(BN×) ,

13This will not generally be “exhaustive” (i.e. it won’t generally recover THC− in the colimit), since directed

colimits don’t generally commute with homotopy T-fixedpoints.
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if we write

|W | :=
∏

i

ri ∈ N
×

for the product of its elements, then we set

TC≤n := limsd(BN×)

(
(THH≤n·|W |)

τCW
)hT

.14

Preliminary computations suggest that these filtrations should be closely related to the Goodwillie

towers of the relative versions of the respective theories. This would give purchase on nonconnective

and nonaffine generalizations of the Dundas–Goodwillie–McCarthy theorem, which at present only

applies in the somewhat restrictive case of connective ring spectra.

Remark 0.8. Whereas most previous work on THH and TC relies on simplicial methods (e.g.

the cyclic bar construction), our work uses the geometry of 1-manifolds. This brings conceptual

advantages: it clarifies the connection with loopspaces, and it suggests the appropriate higher-

dimensional generalization (see Remark 0.9). But it also brings an important technical advantage:

the desired symmetries are built into the framework, rather than having to be put back in by

hand (as e.g. an action of the simplicial circle). In effect, employing simplicial methods amounts

to choosing a basepoint on the circle (see [AMGRa, Remark 1.28]), which destroys much of its

symmetry.

Remark 0.9. Our work paves the way for higher-dimensional versions of TC, defined for any

spectrally-enriched (∞, d)-category: this should simultaneously involve all compact framed d-manifolds

and (framed) covering maps among them. One of our main technical results – the proto Tate pack-

age [AMGRb, Theorem 3.3], which mediates the passage from the diagonal package to the Tate

package of Theorem B – is already sufficiently general to apply in this situation, since it handles ar-

bitrary finite groups and their iterated extensions (appearing as the deck groups of covering maps).

We expect that this should reduce to the notion of “covering homology” [BCD10] in the case of a

connective commutative ring spectrum (viewed as a flagged (see Remark 0.11) spectrally-enriched

(∞, d)-category with a single k-morphism for all k < d).

Remark 0.10. We phrase our work in terms of ∞-categories enriched in spaces and spectra, but

in fact it applies word-for-word to the more general context of a (presentably) cartesian symmetric

monoidal ∞-category V and its stabilization Stab(V). On the other hand, much of our development

of enriched factorization homology is stated in terms of an arbitrary symmetric monoidal∞-category

V; we only specialize to spaces and spectra when we start to use their more particular features.

Remark 0.11. We work not just with V-enriched ∞-categories, but with flagged V-enriched ∞-

categories, i.e. “a V-enriched ∞-category with a chosen space of objects”.15 In particular, a ring

spectrum A determines a flagged spectrally-enriched ∞-category BA whose “space of objects”

consists of a single point.16 This added generality is useful (and requires no extra work), since

14Note that this filtration of TC does not arise from a filtration of THH by cyclotomic spectra.
15An enriched ∞-category C has a canonically defined maximal subgroupoid, but one can also present it as having

for its “space of objects” some other ∞-groupoid: to do so amounts to choosing a π0-surjection from the latter to

the former. Of course, taking this map to be an equivalence recovers the terminal such choice: this generalizes the

relationship between Segal spaces and complete Segal spaces (see [AMGRa, Remark 2.10]).
16Indeed, these two types of data are manifestly equivalent; see §2.1.
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it recovers the more classical definition of THH(A) via the cyclic bar construction (see [AMGRa,

Remark 1.28]).

Remark 0.12. Enriched factorization homology over the circle satisfies Morita invariance. To

illustrate this, we offer the following proof-by-picture. Let C and D be flagged V-enriched ∞-

categories, and suppose that

Cop ×D
P
−→ V

and

Dop × C
Q
−→ V

are bimodules determining a Morita equivalence between C and D. Then, we have the string of

equivalences∫
C ≃

∫
C •C ≃

∫
C •(Q⊗DP) ≃

∫
C D

•

•

P

Q

≃

∫
C D

•

•

P

Q

≃

∫
(P⊗CQ)• D ≃

∫
•D D ≃

∫
D

in V among the indicated values of “B-framed” factorization homology [AFT17], a generalization

of factorization homology that allows distinct strata to be labeled by distinct algebraic data.17

Remark 0.13. An arbitrary functor

C −→ D

of flagged V-enriched ∞-categories induces a (C,D)-bimodule

Cop ×D −→ Dop ×D
hom

D
(−,−)

−−−−−−−→ V .

This allows us to consider the ∞-category fCat(V) of flagged V-enriched ∞-categories as a full

subcategory of a certain Morita∞-category.18 Thus, bimodules can be considered as a generalization

of ordinary functors, and in particular it is meaningful to assert that a morphism in fCat(V) is a

Morita equivalence.

Let us note two examples of this phenomenon of particular interest.

(1) Let A ∈ Alg(Sp) be a ring spectrum, and write BA for its corresponding one-object flagged

V-enriched ∞-category. Then there is a canonical spectrally-enriched functor

BA −→ PerfA ,

17It would require a nontrivial amount of rigorously merge the formalism of B-framed factorization homology

developed in [AFT17] with the formalism of enriched factorization homology developed in [AMGRa]. On the other

hand, note that this assertion is proved in [BM12] (in the “set of objects” and spectrally-enriched setting).
18It is indeed merely a condition for a bimodule to be represented by an actual functor: this is the condition that

its adjunct factors through the Yoneda embedding, a monomorphism.
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which takes the unique object of BA to the object A ∈ PerfA and induces an equivalence

A
∼
−→ homPerfA

(A,A) on hom-objects. This is a Morita equivalence because PerfA is the

stable idempotent-completion of BA, and so the restriction

Fun(BA, Sp)
∼
←− Fun(PerfA, Sp) ≃ Funex(PerfA, Sp)

is an equivalence (where Fun denotes the ∞-category of spectrally-enriched functors and

Funex denotes the ∞-category of exact functors).

(2) Let C ∈ fCat(V) be any flagged V-enriched ∞-category, and write C ∈ Cat(V) for its com-

pletion (see Footnote 15). Then, the canonical functor

C −→ C

is a Morita equivalence: the restriction

ModC := Fun(C,V)
∼
←− Fun(C,V) =: Mod

C

is an equivalence since V itself is complete.19

In particular, combining example (2) with Remark 0.12 implies that our definition of THH (for

spectrally-enriched ∞-categories) agrees with those defined in terms of a set of objects, as e.g. in

[BM12].

Remark 0.14. The forgetful functor

Cyc(Sp)
fgt
−→ Sp

is conservative, as both functors in the composite

Cyc(Sp)
fgt
−→ Fun(BT, Sp)

fgt
−→ Sp

are easily seen to be conservative. In particular, for any ring spectrum A ∈ Alg(Sp), the canonical

functor

BA −→ PerfA

of Remark 0.13 induces an equivalence

THH(BA)
∼
−→ THH(PerfA)

of cyclotomic spectra, and thereafter an equivalence

TC(BA)
∼
−→ TC(PerfA) .

More generally, for any C ∈ fCat(Sp), the Yoneda embedding C→ PerfC (into the stable idempotent-

completion) is a Morita equivalence. Moreover, Morita equivalences between stable idempotent-

complete ∞-categories always arise from actual functors. Thus, all Morita equivalences in fCat(Sp)

can be realized as zigzags of enriched functors; hence, THH takes them to equivalences of cyclotomic

spectra, and TC takes them to equivalences of spectra.

19By passing from V to the ∞-category of presheaves on V equipped with Day convolution (and noting that the

Yoneda embedding is a monoidal monomorphism), one can assume without loss of generality that V is presentably

(and hence closed) monoidal.
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0.7. Outline. This paper is entirely self-contained: over the course of our proofs, we recall every-

thing that we need from the supporting papers [AMGRb, AMGRa]. It is organized as follows.

• In Part I, we prove Theorem B (the cyclotomic structure on THH). We begin with a review

of stratified 1-manifolds in §1, and of enriched factorization homology in §2. We then

study the unstable cyclotomic structure on spatially-enriched factorization homology over

the circle in §3, in a way that anticipates its stable analog. Finally, in §4 we construct

the cyclotomic structure on spectrally-enriched factorization homology over the circle (i.e.

THH).

• In Part II, we deduce Theorem D (the cyclotomic trace). In §6, we review the unstable

cyclotomic trace. Then, in §5 we use this to obtain the cyclotomic trace.

0.8. Notation and conventions.

(1) We work within the context of ∞-categories, taking [Lur09] and [Lur] as our standard ref-

erences. We work model-independently (for instance, we make no reference to the simplices

of a quasicategory), and we omit all technical uses of the word “essentially” (for instance,

we shorten the term “essentially surjective” to “surjective”). We also make some light use

of the theory of (∞, 2)-categories, which is developed in the appendix of [GR17].

(2) We use the following decorations for our functors.

• An arrow −֒→ denotes a monomorphism, i.e. the inclusion of a subcategory: a functor

which is fully faithful on equivalences and induces inclusions of path components (i.e.

monomorphisms) on all hom-spaces.

• An arrow
f.f.
−֒→ denotes a fully faithful functor.

• An arrow −→−→ denotes a surjection.

• An arrow ↓ denotes a functor considered as an object in the overcategory of its target

(which will often be some sort of fibration).

More generally, we use the notation ↓ to denote a morphism in any ∞-category that we

consider as defining an object in an overcategory.

(3) Given some datum in an ∞-category (such as an object or morphism), for clarity we may

use the superscript (−)◦ to denote the corresponding datum in the opposite ∞-category.

(4) We write Cat for the ∞-category of ∞-categories, S for the ∞-category of spaces, and Sp

for the ∞-category of spectra. These are related by the various adjoint functors

Cat S Sp

(−)gpd

(−)≃

⊥

⊥

Σ∞
+

⊥

Ω∞
.
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(5) For a base ∞-category B, we define the commutative diagrams of monomorphisms among

∞-categories

coCartB Catcocart/B

loc.coCartB Catloc.cocart/B

f.f. f.f. and

CartB Catcart/B

loc.CartB Catloc.cart/B

f.f. f.f.

as follows:

• objects in the upper rows are co/cartesian fibrations over B,

• objects in the lower rows are locally co/cartesian fibrations over B,

• morphisms in the left columns are functors over B which preserve co/cartesian mor-

phisms, and

• morphisms in the right columns are arbitrary functors over B.

(6) We make use of the theory of exponentiable fibrations of [AF] (see also [AFR, §5]), an ∞-

categorical analog of the “Conduché fibrations” of [Gir64, Con72]: these are the objects

(E ↓ B) ∈ Cat/B satisfying the condition that there exists a right adjoint

Cat/B Cat/B

−×
B

E

⊥

Funrel/B(E,−)

to the pullback; by the adjoint functor theorem, these can be equivalently characterized as

those objects for which the proposed left adjoint preserves colimits. We refer to this right

adjoint as the relative functor ∞-category construction; it is analogous to the internal

hom of presheaves. Thus, for any target object (F ↓ B) ∈ Cat/B and any test object

(K ↓ B) ∈ Cat/B, a lift

Funrel/B(E,F)

K B

is equivalent data to a functor

E|K F|K

B

between pullbacks over K. In particular, for

F := G×B −→ B

a projection from a product we simply write

Funrel/B(E,G) := Funrel/B(E,F)
18



(thinking of F as the “constant presheaf” at G). This special case – which in fact will be

the only case that we ever use – participates in the composite adjunction

Cat/B Cat

−×
B

E

⊥

Funrel/B(E,(−))
.

We write

EFibB
f.f.
−֒→−→ Cat/B

for the full subcategory on the exponentiable fibrations, and we note once and for all that

cocartesian fibrations and cartesian fibrations are exponentiable.

(7) In order not to overburden our language, at times we are slightly cavalier about exactly

which limits and colimits we require to exist the ∞-category V. This should not cause

concern, however, as ultimately we will be specializing to the case that V is one of the

∞-categories S or Sp.

(8) Since we will refer to them regularly, we use the letters C and F to indicate references to

[AMGRb] and [AMGRa], respectively: for example, we will refer to [AMGRb, Theorem 3.3]

simply as Theorem C.3.3.
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Part I. The 
y
lotomi
 stru
ture on THH

In this part of the paper, we prove Theorem B modulo certain technical details which are proved

in the papers [AMGRb, AMGRa], giving precise and specific references for all such details as we

proceed.

To begin, in §1 we describe the essential features of stratified 1-manifolds, which parametrize our

entire story.

Although THH is given specifically by spectrally-enriched factorization homology over the circle,

we will find its cyclotomic structure as a consequence of a more primitive structure on spaces-

enriched factorization homology over the circle. Thus, in §2 we discuss V-enriched factorization

homology over the circle for an arbitrary symmetric monoidal ∞-category (V,⊠), which we denote

by

THHV .

We write

THH×
V

when we specialize to the case that (V,⊠) = (V,×) is cartesian symmetric monoidal, and we simply

write

THH := THHSp
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when we specialize to the particular case that (V,⊠) = (Sp,⊗) is the ∞-category of spectra

(equipped with its smash product symmetric monoidal structure).

In §3 and §4, we proceed to incorporate additional symmetries via those of 1-manifolds. There

exists a canonical T-action on THHV for any symmetric monoidal enriching ∞-category V, and

THH×
V

carries additional contravariant functoriality for covering maps of circles via diagonal maps

in V; we distill this state of affairs in §3, taking an expositional detour to indicate how the unstable

cyclotomic structure arises in order to motivate the analogous construction in the stable case.

Finally, in §4 we show how the diagonal maps for spaces induce Tate diagonal maps for spectra,

which in turn endow THH with its cyclotomic structure.

1. Stratified 1-manifolds

Factorization homology in dimension 1 is parametrized by a certain ∞-category

M

of stratified 1-manifolds. We describe its essential features in §1.1, and in §1.2 we show how it

gives rise to various indexing categories of classical interest. The details omitted from this section

are contained in [§F.1].

1.1. Stratified 1-manifolds. The objects of M are simply finite disjoint unions of framed circles

and finite directed connected graphs and framed circles. For any stratified 1-manifold M ∈ M,

we write M (0) and M (1) for its 0- and 1-dimensional strata, which we’ll often identify with their

underlying spaces. The full subcategory

D ⊂M

of disk-stratified 1-manifolds then consists of those objects whose strata are both disjoint unions

of disks; equivalently, an object ofM is disk-stratified just when it doesn’t contain any (unstratified)

circles among its connected components.

While the morphisms in M are somewhat more complicated to describe, it will suffice to highlight

two distinguished classes thereof.

• The refinement morphisms correspond covariantly to homeomorphisms on underlying

topological spaces, but where in passing from the source to the target we’re allowed to forget

some of the marked points (while the framings on the 1-dimensional strata must coincide).

• The creation morphisms correspond contravariantly to surjective proper constructible

bundles.

We will generally denote an arbitrary object of M by M ; we will write S to specifically denote a

(smooth) circle, and R to denote an object of D (which will frequently be the source of a refinement

morphism).

1.2. Disk-refinements. Factorization homology over a stratified 1-manifold M ∈M will be given

by a colimit over the ∞-category D(M) of disk-refinements of M , an object of which is simply

a disk-stratified 1-manifold R equipped with a refinement morphism R→M : writing

D/refM ⊂ Ar(M)
20



for the full subcategory of the arrow ∞-category of M on the refinement morphisms with disk-

stratified source, this is given by the fiber

D(M) D/refM

{M} M

t .

In the special case that we take M = S1 to be the circle, we have an identification

D(S1) ≃∆
op
	

with the paracyclic indexing category . This carries a left action of the circle group T coming

from the functoriality of the construction D(−) for equivalences in M, and its quotient thereby

admits the further identification

(∆op
	 )hT ≃ Λop

with the cyclic indexing category . In fact, this – as well as a larger category of interest – can be

recovered directly as follows. Let us respectively write

BT −֒→−→ BW
f.f.
−֒→M

for the full subgroupoid and the full subcategory on the object S1 ∈ M; the monoid W can be

identified as the semidirect product

W ≃ T ⋊ N
×

classified by the right action of the monoid N× on the group T by positive-degree endomorphisms.20

Then, we have a diagram

∆
op
	 Λop Λ̃op D/refM

{S1} BT BW M

pt BN×

f.f.

t

f.f.

, (9)

in which

• all squares are pullbacks,

• among the upper vertical maps, all but the rightmost are cocartesian fibrations,21

• both lower vertical maps are right fibrations, and

• Λ̃op denotes the epicyclic indexing category .

20The notation W stems from the fact that this will keep track of Frobenius and Verschiebung operators, along

the lines of [HM97b].
21The rightmost map D/refM → M is not a cocartesian fibration, but it is when restricted to a fairly large

subcategory [Remark F.1.23].
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In particular, the epicyclic category is given by the left-lax quotient

Λ̃op ≃ (∆op
	 )hl.laxW ,

where the left action of the monoid W arises from the contravariant functoriality of the construction

D(−) for the positive-degree self-coverings of the circle: disk-refinements can be pulled back along

covering maps.

Whereas the paracyclic category ∆
op
	 might be thought of as being given by disk-refinements of

the circle, the cyclic and epicyclic categories Λop and Λ̃op might be thought of as being given by

disk-refinements of a circle: the point being that in the morphisms in these latter two categories

the underlying circle need not remain fixed, but can change either by an automorphism or an

endomorphism in M, respectively.

2. Factorization homology

In this section we define

THHV(C) ,

the enriched factorization homology over the circle of an arbitrary (flagged) V-enriched ∞-

category C. This definition is given in §2.3. It relies on a categorified form of factorization homology,

which we describe in §2.2. We begin in §2.1 by recalling the formalism of V-enriched ∞-categories

laid out in [GH15]. The details omitted from this section are contained in [§F.2 and §F.3].

2.1. Enriched ∞-categories. Let V := (V,⊠) be a monoidal ∞-category, and write

∆op BV
−−→ Cat

for itsmonoidal deloop – that is, its bar construction. This is a category object in Cat, i.e. a simplicial

object satisfying the Segal condition. Then, a V-enriched ∞-category C can be specified as follows.

First, we must specify its underlying ∞-groupoid, an object C≃ ∈ S. Let us write

∆op cd(C≃)
−−−−→ S

for the “codiscrete category object” on C≃: the category object in S ⊂ Cat whose space of objects is

C≃ and whose hom-spaces are all contractible. Then, C is specified by its enriched hom functor ,

a right-lax functor

cd(C≃)
hom

C−−−→ BV (10)

of category objects in Cat. In simplicial degree n, this is given by

(C≃)×(n+1) V×n

∈ ∈

(C0, . . . , Cn) (homC(C0, C1), . . . , homC(Cn−1, Cn))

,
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and the right-laxness determines the categorical structure maps; for instance, restricting to the

indicated morphisms in ∆op, this specifies the diagram

[2]◦ (C≃)×3 V×2

[1]◦ (C≃)×2 V

[0]◦ C≃ pt

∆op cd(C≃) BV

δ1
⇒

⇒σ0

hom
C

,

in which the upper square selects the composition maps

homC(C0, C1)⊠ homC(C1, C2) −→ homC(C0, C2) (11)

while the lower square selects the unit maps

1V −→ homC(C0, C0) . (12)

In fact, the above data merely specify a flagged V-enriched ∞-category; these assemble into an

∞-category

fCat(V) .

Among these, one can demand a completeness condition: there is an internally-defined “maximal

subgroupoid” which receives a π0-surjective map from the underlying ∞-groupoid C≃, and the

condition is that this map be an equivalence.22 These define a full subcategory

Cat(V) ⊂ fCat(V) ,

which admits a left adjoint when V is presentably monoidal. However, as mentioned in Remark 0.11,

we will have no reason to restrict our attention to this subcategory, and indeed when we take C≃ = pt

we recover the definition of the monoidal deloop C = BA of an algebra object A ∈ Alg(V) (and

thereafter the classical definition of THH(A)).

2.2. Categorified factorization homology. Now, we can take factorization homology of category

objects in Cat. In fact, we will only need this for disk-stratified 1-manifolds, and this is particularly

easy to describe: for a disk-stratified 1-manifold R ∈ D and a category object Y ∈ Fun(∆op,Cat),

the factorization homology ∫

R

Y ∈ Cat

is given by a limit of copies of Y|[0]◦ and Y|[1]◦ : one copy of Y|[0]◦ for each vertex, one copy of Y|[1]◦

for each edge, and with structure maps s = δ1 and t = δ0 determined by the incidence data of the

22This is analogous to the completeness condition for Segal spaces: the map from a Segal space to its completion is

always a π0-surjection in simplicial degree 0, and the Segal space is equivalent data to its completion (or equivalently

its corresponding ∞-category) along with this π0-surjection.
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directed graph R.23 This is suitably functorial for right-lax functors of category objects, so that a

V-enriched ∞-category C – that is, its enriched hom functor (10) – determines a morphism

∫
|D cd(C≃)

∫
|D BV

D

∫
|D

hom
C

(13)

in Catcocart/D.24 In particular, pulling back along the composite

∆
op
	 −→D/refM

s
−→D ,

we obtain a likewise morphism

∫
|∆op

	

cd(C≃)
∫
|∆op

	

BV

∆
op
	

∫
|∆

op
	

hom
C

(14)

in Catcocart/∆op
	
. Over a disk-refinement (R → S1) ∈∆

op
	 , an object of its source is simply given by

a labeling of its set of vertices R(0) by objects of the ∞-groupoid

C≃ =: cd(C≃)|[0]◦

(since the morphism-data in cd(C≃) are canonically determined), while an object of its target is

simply given by a labeling of its set of edges R(1) by objects of the ∞-category

V =: BV|[1]◦

(since the object-data in BV are canonically determined). In other words, over this object of ∆op
	

the map (14) restricts to a map

(C≃)×R
(0)

−→ V×R
(1)

.

Of course, this is given by nothing other than the enriched hom functor of C.

2.3. Enriched factorization homology. When V is additionally symmetric monoidal, there exists

a “tensor everything together” functor
∫

|∆op

	

BV
⊠−→ V .25

Then, we define the enriched factorization homology of C over S1 by the formula

THHV(C) :=

∫

S1

C := colim

(∫

|∆op
	

cd(C≃)

∫
|∆

op
	

hom
C

−−−−−−−→

∫

|∆op
	

BV
⊠−→ V

)
. (15)

23The composition in Y plays a role in the functoriality of this construction, and in particular in the definition of

the factorization homology
∫

M Y when M ∈ M is no longer disk-stratified.
24The morphism (13) does not lie in coCartD, but it does preserve cocartesian morphisms over a fairly substantial

class of morphisms in D [Observation F.2.27].
25In fact, in order to guarantee the existence of this functor, it suffices (definitionally) for V to be merely cyclically

monoidal.
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Note that this indeed precisely rigorizes the heuristic definition of §0.3. First of all, this colimit

is indexed over the data of collections of points p1, . . . , pn ∈ S1 labeled by objects C1, . . . , Cn ∈ C,

with value the monoidal product

⊠
i∈Z/n

homC(Ci, Ci+1) .

Moreover, its structure maps are given either by disappearances of points (i.e. refinement morphisms

among disk-refinements of S1), which are taken to composition maps (as map (11)), or by anticol-

lisions of points (i.e. refinement morphisms among disk-refinements of S1), which are taken to unit

maps (as map (12)).

This definition of enriched factorization homology has the key feature of being optimized for the

isolation of the various specific properties of the enriching ∞-category V: all natural operations

thereon have only to do with the factorization homology of BV, while the factorization homology

of cd(C≃) simply comes along for the ride.

3. The unstable cyclotomic structure on THH×
V

In this section, we obtain the unstable cyclotomic structure

Cych y THH×
V

in the case that (V,⊠) = (V,×) is cartesian symmetric monoidal. In fact, this structure is nothing

but an action of the monoid W, which we will obtain in §3.2 after obtaining its underlying T-action

in §3.1. These are both special cases of more general constructions: §3.1 is based on material in

[§F.3] while §3.2 is based on material in [§F.4], and all details omitted from these two subsections

can be found there.

In order to motivate our construction of the cyclotomic structure on THH := THHSp, we will

rederive the unstable cyclotomic structure on THH×
V

as a consequence of the diagonal package,

which packages the diagonal maps that exist in V. We accomplish this as follows. First, in §3.5, we

describe the diagonal package. Then, in §3.6, we reformulate our definition of unstable cyclotomic

objects in similar terms. Finally, in §3.7, we describe the way in which the diagonal package induces

the unstable cyclotomic structure on THH×
V
.

The diagonal package will be a global section of a certain cartesian fibration over BN×. So before

describing the diagonal package, we study this cartesian fibration: we provide a heuristic description

thereof in §3.3, and we give a careful analysis (as well as a useful generalization) thereof in §3.4.

Given the underlying T-action on THH×
V
, the extension to a W-action – that is, the data of its

unstable cyclotomic structure – is manifestly equivalent data to a family of unstable cyclotomic

structure maps

THH×
V
−→

(
THH×

V

)hCr
(16)

for all r ∈ N×, which are compatible in the sense that they compose in the evident way.26 For

expository purposes, in §3.8 we show explicitly how the unstable cyclotomic structure maps (16)

arise from diagonal maps in V.

26Note the similarity with our description of a cyclotomic structure on a T-spectrum in Remark 0.2.
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3.1. The T-action on THHV. For any symmetric monoidal ∞-category V, we can obtain a left

T-action on THHV by a direct extension of formula (15). Namely, rather than pulling the map (13)

all the way back along the composite

∆
op
	 −→ Λop −→ Λ̃op −→D/refM

s
−→D

(recall diagram (9)), we can instead pull it back only to the cyclic category Λop. We again have a

“tensor everything together” functor
∫

|Λop

BV
⊠−→ V . (17)

So, we obtain the desired action by taking the left Kan extension

∫
|Λop cd(C

≃)
∫
|Λop BV V

Λop

BT

∫
|Λop hom

C ⊠

TyTHHV(C)

; (18)

as the two vertical functors are cocartesian fibrations then so is their composite, and hence this

simply reduces to a fiberwise colimit.27

3.2. The W-action on THH×
V
. Now, one might hope to extend the construction of §3.1 yet further,

from the cyclic category Λop to the epicyclic category Λ̃op. However, one immediately runs into a

problem: there is only a “tensor everything together” functor
∫

|Λ̃op

BV
⊠−→ V

when V is cartesian symmetric monoidal;28 a simple case in which this issue arises is e.g. for the

morphism

•V −→ •

•

•

V

V

V (19)

27As the fiber of Λop over each point in BT is a copy of ∆op
	 , over each point in BT we’re taking a colimit over

the fiber
∫

|∆
op
	

cd(C≃) ;

thus, the underlying object is indeed THHV(C), as defined in formula (15).
28In fact, it suffices (definitionally) for V to be an augmented cyclically monoidal and cyclically comonoidal

bialgebra object in Cat: this is precisely the data of a suitable functor generalizing the one labeled
∏

in diagram (20).
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in
∫
|Λ̃op BV, which must be sent to a natural morphism

V −→ V ⊠3

in V. However, in this case, we can indeed obtain a W-action on THH×
V
(C) by taking the left Kan

extension
∫
|Λ̃op cd(C

≃)
∫
|Λ̃op BV V

Λ̃op

BW

∫
|Λ̃op hom

C

∏

WyTHH
×
V
(C)

, (20)

again a fiberwise colimit.29 This will turn out to be precisely the data of the unstable cyclotomic

structure on THH×
V
(C).

3.3. The local structure of the functor
∏
. To see more clearly what is going on, it is helpful

to work “locally” over BN×. First of all, to specify the functor
∏

in diagram (20) is equivalently to

specify a functor
∫
|Λ̃op BV V := V× BN×

Λ̃op

BW BN×

∏

over BN×. This, in turn, we can consider as a global section

Funrel/BN×

(∫
|Λ̃op BV,V

)

BN×

∏ (21)

of the relative functor ∞-category (recall item (6) of §0.8). Now, the fiber of the downwards functor

in diagram (21) over the unique object of BN× is given by

Fun

(∫

|Λop

BV,V

)
. (22)

Moreover, as we will see in §3.4, a core computation reveals that this downwards functor is in fact

a cartesian fibration: over a morphism [1]
r
−→ BN×, the cartesian monodromy is given heuristically

29An explicit description of the functoriality of this fiberwise colimit is given in §3.8.
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by the functor

Fun
(∫
|Λop BV,V

)
Fun

(∫
|Λop BV,V

)

∈ ∈




•

•

•

•

V1

V2

· · ·

Vn

· ·
·

7−→ F




•

•

•

•

V1

V2

· · ·

Vn

· ·
·

•

•

•

•
V1

V2

···

Vn
· · ·

•
• •

•

V1 V2

···

Vn

··
·




hCr



F

, (23)

which takes a functor F to the new functor that precomposes with pullback along an r-fold cover and

postcomposes with homotopy fixedpoints for the resulting Cr-action. In other words, this cartesian

fibration (the downwards functor in diagram (21)) is classified by a right N×-action on the fiber

(22), through which the element r ∈ N× acts as the endofunctor (23). To emphasize that this right

action involves homotopy fixedpoints, we denote it by

Fun

(∫

|Λop

BV,V

)
x
h
N
× . (24)

3.4. Cartesian monodromy via cocartesian monodromy in families. We now describe the

cartesian monodromy functor (23) more precisely. For this, let us first recall that an object of the

fiber
∫
|Λop BV

∫
|Λ̃op BV

pt BN×

is given by the data (
S ∈ BW , (R→ S) ∈D(S) , R(1) → V

)
(25)

of a circle, a disk-refinement thereof, and a labeling of the intervals of the latter by objects of V. As

both maps in the composite
∫
|Λ̃op BV

Λ̃op

BW

are cocartesian fibrations, then so is their composite. Hence, for any map S → S′ in BW of degree

r ∈ N
×, we obtain a cocartesian pushforward

(
S′ ∈ BW , (R′ → S′) ∈D(S) , R′(1) → R(1) → V

)
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of the object (25): the disk-refinement R′ is pulled back from R, and this induces an r-fold covering

map R′(1) → R(1) of discrete spaces (i.e. we pull back the labelings of intervals by objects of V from

R to R′ as well).30

Now, the space of degree-r maps in BW with source S is a copy of BCr. Hence, cocartesian

pushforward over all of these maps simultaneously defines a Cr-object

π∗r (25) : BCr −→

∫

|Λop

BV .

This construction assembles into a functor

π∗r :

∫

|Λop

BV −→ Fun

(
BCr,

∫

|Λop

BV

)
, (26)

and with this notation we can rewrite the cartesian monodromy functor (23) more formally as

Fun
(∫
|Λop BV,V

)
Fun

(∫
|Λop BV,V

)

∈ ∈

(F (π∗r (−)))
hCr F

. (27)

This identification of cartesian monodromy in a relative functor ∞-category via “cocartesian

monodromy in families” admits a useful generalization. Namely, let

(E ↓ BW) ∈ coCartBW

be an arbitrary cocartesian fibration over BW, and write

E0 E

BT BW

for the pullback (or equivalently, the fiber over the unique point in BN×). Let us repurpose our

notation π∗r for the “all the cocartesian monodromy over degree-r maps in BW at once” functor

(26) to still write

π∗r : E0 −→ Fun(BCr,E0)

in this more general setting. Then, by [Lemma C.3.22], the functor

Funrel/BN×(E,V)

BN×

(28)

is once again a cartesian fibration: its fiber is Fun(E0,V), and the cartesian monodromy functor over

the morphism [1]
r
−→ BN× is given by the formula

Fun(E0,V) Fun(E0,V)

∈ ∈

(F (π∗r (−)))
hCr F

.

30In fact, we have already seen an example of such a cocartesian pushforward, namely the morphism (19).
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We denote this right N×-module by

Fun(E0,V) x
h
N
× , (29)

extending the notation (24). Evidently, this construction assembles into a functor

Funrel/BN×(−,V) : (coCartBW)op −→ CartBN× . (30)

3.5. The diagonal package. Let us now return to the global section (21). By definition, this is

an object

(∏
, h
)
∈ limr.lax

(
Fun

(∫

|Λop

BV,V

)
x
h
N
×

)
:= Γ




Funrel/BN×

(∫
|Λ̃op BV,V

)

BN×



≃ Fun

(∫

|Λ̃op

BV,V

)

(31)

of the right-lax limit of the right N×-module (24): over the unique object of BN× this selects the

object
∏
∈ Fun

(∫

|Λop

BV,V

)
,

and over a morphism [1]
r
−→ BN× this selects the diagonal map

∏
−→

(∏
π∗r (−)

)hCr

.31

We include the “h” in the notation of the object (31) to emphasize that these structure maps take

place within the ambient context of a right N×-action involving homotopy fixedpoints. We refer to

the object (31) as the diagonal package, since as we will see in §3.7 it encodes diagonal maps in V

along with all of their requisite compatibilities necessary for defining the W-action (20) on THH×
V
.

3.6. Unstable cyclotomic objects in V. Consider the functor

Funrel/BN×(BW,V)

BN×

.

By the discussion of §3.4, this is a cartesian fibration, whose fiber over the unique object of BN× is

Fun(BT,V)

and whose cartesian monodromy over the morphism [1]
r
−→ BN× is

Fun(BT,V) Fun(BT,V)

∈ ∈

(
T ≃ (T/Cr) y V hCr

)
(T y V )

;

31In fact, this map is an equivalence: for any objects V1, . . . , Vk ∈ V, the map

∏

i

Vi −→

(

∏

i

(Vi)
×r

)hCr

is an equivalence. In other words, the global section (21) actually lands in the subcategory of cartesian morphisms,

and hence defines a point in the strict limit: the ∞-category of cartesian sections of the corresponding cartesian

fibration. However, this will not be relevant for us.
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according to our notational convention (29), we write

Fun(BT,V) x
h
N
× (32)

for the corresponding right N×-module. Then, we define the ∞-category of unstable cyclotomic

objects in V to be

Cych(V) := limr.lax

(
Fun(BT,V) x

h
N
×

)
:= Γ




Funrel/BN×(BW,V)

BN×



≃ Fun(BW,V) ,

the right-lax limit of the right N×-module (32).32,33 In analogy with our notation for cyclotomic

spectra, we denote an unstable cyclotomic structure on an object V ∈ V by

Cych y V .

3.7. The unstable cyclotomic structure on THH×
V
. We now explain how the diagonal package

(31) gives rise to the unstable cyclotomic structure on THH×
V
(C).

We begin by noting that the diagram

∫
|Λ̃op cd(C

≃)
∫
|Λ̃op BV

Λ̃op

BW

∫
|Λ̃op hom

C

defines a morphism in coCartBW [Observation F.2.27]. Trivially, we obtain a span

∫
|Λ̃op BV

∫
|Λ̃op cd(C

≃) BW

BW

∼
(33)

32One might alternatively refer to this as the ∞-category of cyclohomic objects, since an unstable cyclotomic

structure involves homotopy fixedpoints whereas a cyclotomic structure on a spectrum will involve Tate fixedpoints.
33The simplest example of an unstable cyclotomic object is a free loop object, i.e. the cotensoring

S1
⋔ V

of the circle into an arbitrary object V ∈ V (e.g. the free loopspace of a space); the unstable cyclotomic structure

arises from the identifications S1 ≃ (S1)hCr (compatibly for all r ∈ N×), so that its T-equivariant structure maps

S1
⋔ V −→ (S1

⋔ V )hCr ≃ (S1)hCr ⋔ V

are actually equivalences. When V = S, this is nothing but THH×
S
(V ), the spatially-enriched factorization homology

of the ∞-groupoid V ∈ S ⊂ Cat over the circle.
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in coCartBW. Applying the functor (30) to this span gives a cospan

Funrel/BN×

(∫
|Λ̃op BV,V

)
Funrel/BN×

(∫
|Λ̃op cd(C

≃),V
)

Funrel/BN×(BW,V)

BN×

(34)

in CartBN× .

Now, on fibers, the leftward functor of diagram (34) restricts to a functor admitting a left adjoint

Fun
(∫
|Λop cd(C

≃),V
)

Fun(BW,V)⊥ ,

namely the left Kan extension appearing in diagram (18). By completely general principles [Lemma C.1.36],

it follows that there exists a (necessarily unique) extension

Fun
(∫
|Λop cd(C

≃),V
)

Fun(BW,V)

Funrel/BN×

(∫
|Λ̃op cd(C

≃),V
)

Funrel/BN×(BW,V)

⊥

⊥

(35)

of this left adjoint, a morphism in Catcart/BN× . In fact, the lower row of diagram (35) defines an

adjunction in the (∞, 2)-category Catcart/BN× (which justifies the notation), i.e. a functor

Adj −→ Catcart/BN× (36)

of (∞, 2)-categories from the walking adjunction (which is actually just a 2-category). Then, post-

composing the functor (36) with the global sections functor

Catcart/BN×
Γ
−→ Cat

of (∞, 2)-categories yields an adjunction

Fun
(∫
|Λ̃op cd(C

≃),V
)

Fun(BW,V)⊥

in Cat, whose left adjoint is the left Kan extension appearing in diagram (20). Hence, we obtain

the unstable cyclotomic structure on THH×
V
(C) as the image of the diagonal package, as illustrated

in Figure 1.

In Figure 2, we summarize the constructions of this subsection in the language of modules of

[§C.1]; our method for obtaining the cyclotomic structure on THH will be closely analogous.

3.8. From fiberwise colimits to unstable cyclotomic structures. Purely for expository pur-

poses, we unwind here how the fiberwise colimit of diagram (20) gives rise to the unstable cyclotomic

structure maps

THH×
V
(C) −→ THH×

V
(C)hCr ; (37)

this is essentially just an exercise in the functoriality of fiberwise colimits along cocartesian fibrations.

For this, let

Ss
ϕ
−→ St
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Fun
(∫
|Λop BV,V

)
Fun

(∫
|Λop cd(C

≃),V
)

Fun(BT,V)

Fun
(∫
|Λ̃op BV,V

)
Fun

(∫
|Λ̃op cd(C

≃),V
)

Fun(BW,V)

≃ ≃ ≃

limr.lax

(
Fun

(∫
|Λop BV,V

)
x
h
N×

)
limr.lax

(
Fun

(∫
|Λop cd(C

≃),V
)
x
h
N×

)
limr.lax

(
Fun (BT,V) x

h
N×

)
=: Cych(V)

∏ (
T y THH×

V
(C)
)

∏ (
W y THH×

V
(C)
)

(
∏
, h)

(
Cych y THH×

V
(C)
)

⊥

⊥

⊥

(18)

(20)

Figure 1. Above: the diagram of ∞-categories housing the passage from the diagonal package to the unstable cyclotomic

structure on THH×
V
(C). All solid horizontal morphisms are given by pullback; the upwards functors are given by restriction to

underlying objects of right N×-modules, and the diagram commutes when omitting either all left adjoints or all right adjoints.

Below: the diagonal package gives rise to the unstable cyclotomic structure on THH×
V
(C), and the restriction of this passage

recovers its underlying T-action.
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[1]
∐

1,pt,1
[1] (LModW)

op
RModN×

[1]
∐

1,pt,l

Adj RModr.lax
N×

[2]

[1] Cat

(∫
|Λ̃op BV←

∫
|Λ̃op cd(C≃)→BW

)◦

id
∐
pt

r.adjt

(
Fun((−)0,V)x

h
N

×

)

∃! [Lemma C.1.36]

id
∐
pt

l.adjt

limr.lax

{0<2}

Figure 2. A diagram illustrating in the language of modules how to obtain the

lower rightwards composite functor in Figure 1, which takes the diagonal package

to the unstable cyclotomic structure on THH×
V
(C). Here, we write l ∈ Adj for the

source of the walking left adjoint.

be a morphism in BW corresponding contravariantly to an r-fold covering map of framed circles,

and write

D(Ss)
ϕ∗
−→D(St)

for the resulting functor on categories of disk-refinements (the r-fold subdivision functor on ∆
op
	 ).

Then, the map (37) is given by the composite

THH×
V
(C) :=

∫

Ss

C

:= colim
(Rs→Ss)∈D(Ss)

(Ci)∈(C
≃)×R

(0)
s




∏

i∈Z/R
(0)
s

homC(Ci, Ci+1)





−→ colim
(Rs→Ss)∈D(Ss)

(Ci)∈(C
≃)×R

(0)
s







∏

i∈Z/R
(0)
s

homC(Ci, Ci+1)
×r




hCr

 (38)

−→


 colim

(Rs→Ss)∈D(Ss)

(Ci)∈(C
≃)×R

(0)
s




∏

i∈Z/R
(0)
s

homC(Ci, Ci+1)
×r







hCr

(39)

−→


 colim

(Rt→St)∈D(St)

(Cj)∈(C
≃)×R

(0)
t




∏

j∈Z/R
(0)
t

homC(Cj , Cj+1)







hCr

(40)
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=:

(∫

St

C

)hCr

=:
(
THH×

V
(C)
)hCr

,

in which

• the map (38) arises from the diagonal maps in V (and is actually an equivalence),

• the map (39) arises from the universal property of colimits, and

• the map (40) arises from a map on colimits taking the term indexed by

(
Rs ∈D(Ss) , R(0)

s

(Ci)
−−−→ C≃

)

to the equivalent term indexed by
(
ϕ∗(Rs) ∈D(St) , (ϕ∗(Rs))

(0) −→ R(0)
s

(Ci)
−−−→ C≃

)
.

4. The cyclotomic structure on THH

In this section, we specialize to the case that (V,⊠) = (Sp,⊗) is the ∞-category of spectra

equipped with its smash product monoidal structure, and we obtain the cyclotomic structure

Cyc y THH .

We achieve this in §4.4, in a nearly identical way to how we obtained the unstable cyclotomic

structure on THH×
V
in §3.7. In particular, whereas the unstable cyclotomic structure on THH×

V
arose

from the diagonal package, the cyclotomic structure on THH will arise from the Tate package; we

explain this analogy further in §4.1. We will obtain the Tate package from the diagonal package via

linearization (in the sense of Goodwillie calculus); we achieve this in §4.3, after describing certain

auxiliary constructions that collectively accommodate this maneuver in §4.2.

4.1. Locating the Tate package. As described in §3.8, the unstable cyclotomic structure on

THH×
V
consists of a system of maps

THH×
V
−→ (THH×

V
)hCr

which are ultimately induced by the natural diagonal maps

∏
i Vi

∏
i(Vi)

×r

(
∏

i(Vi)
×r)

hCr

∼

that exist for any objects V1, . . . , Vk ∈ V. In §3.5, we organized these maps into the diagonal package,

an object

(∏
, h
)
∈ lim

(
Fun

(∫

|Λop

BV,V

)
x
h
N
×

)
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(originally (31)) in the limit of a certain right N×-action by homotopy fixedpoints in which the

element r ∈ N× acts as the endofunctor

Fun
(∫
|Λop BV,V

)
Fun

(∫
|Λop BV,V

)

∈ ∈

(F (π∗r (−)))
hCr F

(originally (27)).

By contrast, the cyclotomic structure on THH will be induced in a formally identical way by the

natural Tate diagonal maps

⊗
i Ei

⊗
i(Ei)

⊗r

(
⊗

i(Ei)
⊗r)

hCr

(
⊗

i(Ei)
⊗r)

τCr

6∃

6∃

that exist for any spectra E1, . . . , Ek ∈ Sp. But in fact, it turns out that the formula

Fun
(∫
|Λop BSp, Sp

)
Fun

(∫
|Λop BSp, Sp

)

∈ ∈

(F (π∗r (−)))
τCr F

only defines a left-lax right N×-action. Thus we find that the main ingredient in obtaining the

cyclotomic structure on THH will be the Tate package, an object

(⊗
, τ
)
∈ limr.lax

(
Fun

(∫

|Λop

BSp, Sp

)
l.lax
x
τ

N
×

)

of the right-lax limit of a certain left-lax right N×-action by Tate fixedpoints.

4.2. Auxiliary constructions. In order to obtain the Tate package, we make the following three

constructions; the first two follow from [Theorem C.3.3],34 while the third is simply a definition. As

in §3.4, we write (E ↓ BW) ∈ coCartBW for an arbitrary object, and we write E0 = E|BT.

34Using the language of [AMGRb], these two deductions are supported by the functor

coCartBW −→ Fun
(

(BN×)op, GSpan
)

which takes (E ↓ BW) ∈ coCartBW to the functor (BN×)op → GSpan defined as follows:

• it takes the unique object of (BN×)op to the object E0 ∈ GSpan, and

• it takes the morphism [1]
r◦
−−→ (BN×)op to the span

Γ
cocart/BW
[1]

(E)

Γ{0}(E) Γ{1}(E)

BCr-Kan

36



(1) We construct a left-lax right N×-action on

Fun (E0, Sp) ,

under which the element r ∈ N
× acts by the functor

Fun (E0, Sp) Fun (E0, Sp)

∈ ∈

(F (π∗r (−)))
τCr F

.

We denote this by

Fun (E0, Sp)
l.lax
x
τ

N
× . (41)

This defines a functor

(coCartBW)
op

(
Fun((−)0,Sp)

l.lax
x
τ

N
×

)

−−−−−−−−−−−−−−→ RModl.lax.N× . (42)

(2) We construct a right-lax N×-equivariant functor



Funrel/BN×(E, Sp)

BN×




=:

(
Fun (E0, Sp) x

h
N
×

)
r.lax
−−→

(
Fun (E0, Sp)

l.lax
x
τ

N
×
)

(43)

of left-lax right N×-modules. This is the identity functor

Fun(E0, Sp)
id
−→ Fun(E0, Sp)

on their common underlying ∞-category Fun(E0, Sp), and for an object

F ∈ Fun(E0, Sp)

(considered as living in the source), the right-laxness determines structure maps

id
(
F (π∗r (−))

hCr
)
≃ F (π∗r (−))

hCr −→ F (π∗r (−))
τCr ≃ id(F )(π∗r (−))

τCr

in Sp (where we use “id” in our notation only to clarify where these various constructions

are taking place).

from the full subcategory Γ
cocart/BW
[1]

(E) ⊂ Γ[1](E) on those sections

E

BW

[1] BN×
r

which select morphisms in E that are cocartesian over their images in BW.

(Note that this prescription respects composition since E ↓ BW is a cocartesian fibration, i.e. the cocartesian mor-

phisms are stable under composition.)
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(3) For any symmetric monoidal∞-category V admitting pushouts, we define a full subcategory

Lin

(∫

|Λop

BV, Sp

)
⊂ Fun

(∫

|Λop

BV, Sp

)
(44)

of fiberwise multilinear functors, as follows. Recall first that a functor is linear if it

takes pushouts to pullbacks, and a multifunctor is multilinear if it is linear separately in

each variable. Then, we define the full subcategory (44) to consist of those functors
∫

|Λop

BV
F
−→ Sp

that become multilinear when restricted to every fiber

V×R
(1) ∫

|Λop BV Sp

{(R→ S)} Λop

F

.

The subcategory (44) is stable under the left-lax right N×-action (41): this is immediate

from the fundamental calculus-theoretic feature of the Tate construction [Lemma C.2.19],

that the endofunctor

E 7−→
(
E⊗r

)
τCr

of Sp is linear. The construction of the subobject
(
Lin

(∫

|Λop

BV, Sp

)
l.lax
x
τ

N
×

)
⊂

(
Fun

(∫

|Λop

BV, Sp

)
l.lax
x
τ

N
×

)

is evidently contravariantly functorial in V for linear symmetric monoidal functors.

4.3. The Tate package. In order to construct the Tate package, we will first construct the finite

Tate package, i.e. its restriction to finite spectra, and then we will extend this to the Tate package

itself. This two-step process is necessary because the endofunctor

E 7−→
(
E⊗r

)
τCr

on Sp is linear but does not preserve filtered colimits [Remark C.2.20].

We construct the finite Tate package from the finite diagonal package (which is simply the re-

striction of the diagonal package to finite spaces) as in Figure 3. A number of comments are in

order.

(1) Perhaps unexpectedly, it is possible to take the left- or right-lax limit of any left- or right-lax

left or right N×-module (with all three instances of “or” interpreted independently); on the

other hand, a right-lax N×-equivariant morphism only induces a map on right-lax limits

(and dually), while a strict morphism induces maps on all limits [§C.1]. Thus, it is indeed

meaningful to apply the functor limr.lax to the diagram in Figure 3.

(2) The first morphism
(
Fun

(∫

|Λop

BS
fin, S

)
x
h
N
×

)
Σ∞

+ ◦−
−−−−→

r.lax

(
Fun

(∫

|Λop

BS
fin, Sp

)
x
h
N
×

)
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(
Fun

(∫
|Λop BS

fin, S
)
x
h
N×

) (
Fun

(∫
|Λop BS

fin, Sp
)
x
h
N×

) (
Fun

(∫
|Λop BS

fin, Sp
)

l.lax
x
τ

N×
) (

Fun
(∫
|Λop BSpfin, Sp

)
l.lax
x
τ

N×
)

(
Lin
(∫
|Λop BS

fin, Sp
)

l.lax
x
τ

N×
) (

Lin
(∫
|Λop BSpfin, Sp

)
l.lax
x
τ

N×
)

(
∏
, h)

fin
(⊗
◦
∫
|Λop BΣ∞+ , h

)fin

(⊗
◦
∫
|Λop BΣ∞+ , τ

)fin
(
⊗

, τ)fin

Σ∞
+ ◦−

r.lax

(43)

r.lax

−◦
(∫

|Λop BΣ∞
+

)

∼

Figure 3. Above: a commutative diagram of right-lax equivariant functors among left-lax right N×-modules. Below: upon

passage to right-lax limits, the finite diagonal package (
∏
, h)fin is sent to the finite Tate package (

⊗
, τ)fin.

3
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in Figure 3 is induced by the covariant functoriality of the relative functor∞-category in the

second variable. It is only right-lax N×-equivariant because the suspension spectrum functor

Σ∞+ doesn’t commute with the homotopy fixedpoints functors (−)hCr : given an object

F ∈ Fun

(∫

|Λop

BS
fin, S

)

of the source, the right-laxness of this morphism determines structure maps

Σ∞+

(
(F (π∗r (−)))

hCr

)
−→

(
Σ∞+ (F (π∗r (−)))

)hCr
,

which are induced by the universal property of limits.

(3) As the suspension spectrum functor is symmetric monoidal, the diagram

∫
|Λop BS

fin
S

∫
|Λop BSpfin Sp

∏

∫
|Λop BΣ∞

+
Σ∞

+

⊗

(45)

canonically commutes. This explains the first association

(∏
, h
)fin
7−→

(
Σ∞+ ◦

∏
, h
)fin
≃

(
⊗
◦

∫

|Λop

BΣ∞+ , h

)fin

of Figure 3.

(4) It is immediate that both (equivalent) composites in commutative square (45) lie in the

subcategory

Lin

(∫

|Λop

BS
fin, Sp

)
⊂ Fun

(∫

|Λop

BS
fin, Sp

)
,

as the upper functor
∏

is fiberwise multi-cocontinuous while the right functor Σ∞+ is linear.

Thus, the second association indeed factors as indicated.

(5) The restriction

Lin

(∫

|Λop

BS
fin, Sp

)
−◦

(∫
|Λop BΣ∞

+

)

←−−−−−−−−−−− Lin

(∫

|Λop

BSpfin, Sp

)
(46)

is an equivalence due to a multivariate elaboration of the universal property of Spfin as the

stabilization of Sfin, namely that the suspension spectrum functor

Sfin
Σ∞

+
−−→ Spfin
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is the initial linear functor from Sfin into a stable ∞-category (considered in StCat, i.e. with

respect to exact functors between stable ∞-categories).35 Moreover, the forgetful functor

RModl.lax.N× −→ Cat

from left-lax right N×-modules (and strict N×-equivariant functors) to their underlying

∞-categories is conservative.

Now, to obtain the Tate package from the finite Tate package, we observe that the functor (42)

takes the morphism
∫
|Λop BSpfin

∫
|Λop BSp

Λop

BW

f.f.

(47)

in coCartBW to a morphism
(
Fun

(∫

|Λop

BSpfin, Sp

)
l.lax
x
τ

N
×

)
←−

(
Fun

(∫

|Λop

BSp, Sp

)
l.lax
x
τ

N
×

)

in RModl.lax.N× which is a right adjoint on underlying∞-categories, and so extends to an adjunction

(
Fun

(∫
|Λop BSpfin, Sp

)
l.lax
x
τ

N×
) (

Fun
(∫
|Λop BSp, Sp

)
l.lax
x
τ

N×
)

⊥ (48)

in RModr.laxl.lax.N× [Lemma C.1.36]. Taking right-lax limits of this left adjoint, we obtain a functor

limr.lax
(
Fun

(∫
|Λop BSpfin, Sp

)
l.lax
x
τ

N×
)

limr.lax
(
Fun

(∫
|Λop BSp, Sp

)
l.lax
x
τ

N×
)

∈ ∈

(
⊗

, τ)
fin

(
⊗

, τ)

taking the finite Tate package to the Tate package.

To see that this object indeed overlies the “tensor everything together” functor (17), we first

observe that on underlying∞-categories, the adjunction (48) in RModr.laxl.lax.N× recovers an adjunction

Fun
(∫
|Λop BSpfin, Sp

)
Fun

(∫
|Λop BSp, Sp

)
⊥

35To see this multivariate elaboration, we work fiberwise over Λop. Namely, writing V simultaneously for Sfin and

Spfin, let us consider the full subcategory

Linrel/Λop

(

∫

|Λop
BV, Sp

)

⊂ Funrel/Λop

(

∫

|Λop
BV, Sp

)

on the multilinear functors. The restriction (46) arises as the global sections of a morphism

Linrel/Λop

(

∫

|Λop BSfin, Sp
)

Linrel/Λop

(

∫

|Λop BSpfin, Sp
)

Λop

in Cat/Λop , which it therefore suffices to show is an equivalence. But this morphism evidently lies in the subcategory

CartΛop ⊂ Cat/Λop , and so it suffices to show that it is an equivalence on fibers. But this is clear.
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in Cat. This left adjoint is given by left Kan extension along the functor (47) (i.e. along the image

in Cat of that morphism in coCartBW); considering that functor as a morphism in coCartΛop , we see

that this left Kan extension may be computed fiberwise over Λop. We then conclude by noting that

for any r ≥ 1, the commutative triangle

(
Spfin

)×r
Sp

Sp×r

⊗

f.f. ⊗

is a left Kan extension diagram: for any E ∈ Sp the ∞-category
(
Spfin

)

/E
:= Spfin ×

Sp
Sp/E

is sifted (in fact filtered), so for any (Ei) ∈ Sp×r the ∞-category
((

Spfin
)×r)

/(Ei)

:=
(
Spfin

)×r
×

Sp×r

(
Sp×r

)
/(Ei)

≃
∏

i

(
Spfin ×

Sp
Sp/Ei

)

is sifted as well, and the tensor product functor

Sp×r
⊗
−→ Sp

commutes with sifted colimits.

4.4. The cyclotomic structure on THH. By Theorem A, we can identify the ∞-category of

cyclotomic spectra as the right-lax limit

Cyc(Sp) ≃ limr.lax
(
Fun(BT, Sp)

l.lax
x
τ

N
×
)

.

Then, for any spectrally-enriched∞-category C, the Tate package is taken to THH(C) equipped with

its cyclotomic structure as illustrated in Figure 4. In analogy with Figure 2, we also summarize the

construction in Figure 5.

Unlike in Figure 1, the commutativity of the upper diagram in Figure 4 (after omitting either

both left adjoints or both right adjoints) – which guarantees that the underlying spectrum of the

cyclotomic spectrum that is constructed is indeed THH(C) – is not trivial. However, it can be

seen as follows. From [Definition C.1.26 and Observation C.1.27], we have a (nearly definitionally)

commutative diagram

RModr.laxl.lax.N× Cat

Fun
((
Cat/(BN×)op

)op
,Cat

)

limr.lax

f.f.
ev

sd((BN×)op)
.

Note that evaluating the image of a left-lax right N×-module on a morphism

pt sd((BN×)op)

(BN×)op

(49)
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Fun
(∫
|Λop BSp, Sp

)
Fun

(∫
|Λop cd(C

≃), Sp
)

Fun(BT, Sp)

limr.lax
(
Fun

(∫
|Λop BSp, Sp

)
l.lax
x
τ

N×
)

limr.lax
(
Fun

(∫
|Λop cd(C

≃), Sp
)

l.lax
x
τ

N×
)

limr.lax
(
Fun (BT, Sp)

l.lax
x
τ

N×
)
≃ Cyc(Sp)

⊗
(T y THH(C))

(
⊗

, τ) (Cyc y THH(C))

⊥

⊥

(18)

Figure 4. Above: the diagram of ∞-categories housing the passage from the Tate package to the cyclotomic structure on

THH(C). All solid horizontal morphisms are given by pullback; the upwards functors are given by restriction to underlying

objects of left-lax right N×-modules, and the diagram commutes with omitting either both left adjoints or both right adjoints.

Below: the Tate package gives rise to the cyclotomic structure on THH(C), and the restriction of this passage recovers its

underlying T-action.

4
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[1]
∐

1,pt,1
[1] (LModW)

op
RModl.lax.N×

[1]
∐

1,pt,l

Adj RModr.laxl.lax.N×

[2]

[1] Cat

(∫
|Λ̃op BSp←

∫
|Λ̃op cd(C≃)→BW

)◦

id
∐
pt

r.adjt

(
Fun((−)0,Sp)

l.lax
x
τ

N
×

)

∃! [Lemma C.1.36]

id
∐
pt

l.adjt

limr.lax

{0<2}

Figure 5. A diagram illustrating in the language of modules how to obtain the

lower rightwards composite functor in Figure 4, which takes the Tate package to

the cyclotomic structure on THH(C). Here, we write l ∈ Adj for the source of the

walking left adjoint.

in Cat/(BN×)op determines the canonical map from its right-lax limit to its underlying object – the

upwards functors in Figure 4. Then, the commutativity of the left square in Figure 4 is obtained

by precomposing the adjoint of the composite

[1]

(∫
|Λ̃op BSp←

∫
|Λ̃op cd(C≃)

)◦

−−−−−−−−−−−−−−−−−−→ (LModW)
op

(
Fun((−)0,Sp)

l.lax
x
τ

N
×

)

−−−−−−−−−−−−−−→ RModl.lax.N× −֒→ Fun
((
Cat/(BN×)op

)op
,Cat

)

to obtain the composite

[1]× [1]
id×(49)◦

−−−−−−→ [1]×
(
Cat/(BN×)op

)op
−→ Cat .

Similarly, the commutativity of the right square in Figure 4 is obtained by precomposing the adjoint

of the composite

Adj

(
Fun

(∫
|Λop cd(C

≃), Sp
)

l.lax
x
τ

N
×
) (

Fun(BT, Sp)
l.lax
x
τ

N
×
)

⊥

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ RModr.laxl.lax.N×

f.f.
−֒→ Fun

((
Cat/(BN×)op

)op
,Cat

)

to obtain the composite

Adj× [1]
id×(49)◦

−−−−−−→ Adj×
(
Cat/(BN×)op

)op
−→ Cat . �

Part II. The 
y
lotomi
 tra
e

In this part of the paper, we prove Theorem D modulo certain key maneuvers which are con-

tained in the papers [AMGRb, AMGRa]. To begin, in §5 we recall the unstable cyclotomic trace

for flagged spatially-enriched ∞-categories, as constructed in [§F.5]. Then, in §6, through a key
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maneuver which ultimately relies on the fundamental calculus-theoretic feature of the Tate con-

struction [Lemma C.2.19], we use this to obtain a cyclotomic pre-trace map for spectrally-enriched

∞-categories and thereafter the cyclotomic trace map for stable ∞-categories.

5. The unstable cyclotomic trace

Factorization homology enriched in a cartesian symmetric monoidal∞-category (V,×) assembles

into a bifunctor ∫

(−)

(−) : M× fCat(V) −→ V

[Definition F.4.12 and Proposition F.4.13]. Note the fully faithful embedding

BW⊳ f.f.
−֒→M

extending the defining inclusion BW →֒ M over the initial object D0 ∈ M. This determines the

unstable cyclotomic trace map
∫

D0

≃ ι −→ TC×
S
:=
(
THH×

V

)hW
, (50)

which assembles into a natural transformation

fCat(S) S

ι

⇓

TC
×
S

.

6. The cyclotomic trace

Given any flagged spectrally-enriched ∞-category C ∈ fCat(Sp), consider its underlying ∞-

groupoid

C≃ ∈ S ⊂ Cat ≃ Cat(S) ⊂ fCat(S)

as a flagged spatially-enriched ∞-category, with enriched hom functor

cd(C≃)
hom

C≃

−−−−→ BS .

The postcomposition

hom(BΣ∞
+ )(C≃) : cd(C

≃)
hom

C≃

−−−−→ BS
BΣ∞

+
−−−→ BSp

then determines the enriched hom functor of a flagged spectrally-enriched ∞-category

(BΣ∞+ )(C≃) ∈ fCat(Sp) ,

which is the initial flagged spectrally-enriched ∞-category whose underlying ∞-groupoid is C≃.36

Hence, we obtain a canonical functor

(BΣ∞+ )(C≃) −→ C (51)

in fCat(Sp). This determines the cyclotomic pre-trace, namely the composite morphism

Σ∞+ (C≃)
Σ∞

+ (50)
−−−−−→ Σ∞+ (TC×

S
(C≃))

36To see this, note first that C≃ is evidently the initial flagged spatially-enriched ∞-category with underlying

∞-groupoid given by C≃ (e.g. using the equivalence between flagged spatially-enriched ∞-categories and Segal spaces

[GH15, Theorem 4.4.7]). Then, observe that in the adjunction Σ∞
+ ⊣ Ω∞ the left adjoint is symmetric monoidal while

the right adjoint is left-lax symmetric monoidal, so that taking right-lax functors of category objects out of cd(C≃)

gives another adjunction, whose left adjoint (which preserves initial objects) takes C≃ to (BΣ∞
+ )(C≃).
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=: Σ∞+
(
THH×

S
(C≃)hW

)

−→
(
Σ∞+ THH×

S
(C≃)

)hW
(52)

−→
(
Σ∞+ THH×

S
(C≃)

)hCyc
(53)

≃
(
THHSp((BΣ∞+ )(C≃))

)hCyc
(54)

(THHSp(51))
hCyc

−−−−−−−−−−→ (THHSp(C))
hCyc

=: TC(C)

in Sp, as we now explain.37

• The morphism (52) arises from the universal property of limits.

• To obtain the morphism (53), recall first that THH×
S
(C≃) is an unstable cyclotomic space,

so that Σ∞+ THH×
S
(C≃) is an unstable cyclotomic spectrum: the composite

BW
THH×

S
(C≃)

−−−−−−−→ S
Σ∞

+
−−→ Sp .

By [Corollary C.3.23], this may also be identified as a cyclotomic spectrum with Frobe-

nius lifts [Definition C.3.16]: a cyclotomic spectrum T ∈ Cyc(Sp) equipped with suitably

equivariant lifts

T T hCr T

T τCr

σ̃r

σr

,

compatibly for all r ∈ N×. Then, the morphism (53) is guaranteed by [Observation C.3.34].

• The equivalence (54) results from the fact that the suspension spectrum functor

S
Σ∞

+
−−→ Sp

is symmetric monoidal and commutes with colimits.

This construction is natural in the variable C ∈ fCat(C), so that it determines the natural transfor-

mation in the diagram

StCat fCat(Sp) Sp

Σ∞
+ ι

⇒

TC

.

37A similar maneuver (or just postcomposition with the canonical map TC(C) → THH(C)) yields the Dennis

pre-trace, a morphism Σ∞
+ (C≃) → THH(C).
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By the universal property of algebraic K-theory for stable ∞-categories [BGT13], this induces a

unique factorization

StCat Sp

Σ∞
+ ι

K

⇓

⇓

TC

,

namely the cyclotomic trace. �
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no. 1, 1–43. 2

[KR97] John R. Klein and John Rognes, The fiber of the linearization map A(∗) → K(Z), Topology 36 (1997),

no. 4, 829–848. 2

[Lod98] Jean-Louis Loday, Cyclic homology, second ed., Grundlehren der Mathematischen Wissenschaften [Fun-

damental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1998, Appendix E by
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