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1. Introduction

The notion of a cyclotomic spectrum was introduced in [BHM93]. The impor-
tance of cyclotomic spectra in arithmetic contexts was understood in the work
of Hesselholt and his collaborators (see for example [Hes96, GH99, HM03, Hes06,
Hes18]). The homotopy theory of cyclotomic spectra is more recent and was
developed by Kaledin [Kal10, Kal13], Blumberg–Mandell [BM15], and Barwick–
Glasman [BGa]. Using cyclotomic spectra, Bhatt, Morrow, and Scholze give in
[BMS19] a topological construction of (completed) prismatic cohomology theories,
which generalize crystalline and AΩ cohomology. Their work relies on work of
the second author with P. Scholze [NS18], which provides a simple description of
bounded below cyclotomic spectra. In this paper, we give another way to under-
stand cyclotomic spectra, which is better suited to answering the question: what
are the building blocks of a cyclotomic spectrum?

1.1. Statement of results. Fix a prime number p. A p-typical Cartier module
is an abelian group M equipped with endomorphisms V and F such that FV = p.
The building blocks of p-typical cyclotomic spectra are, in a precise sense, certain
p-typical Cartier modules.

Theorem 1 (See Theorems 2.1 and 3.26). The ∞-category (CycSpp)�0 of connec-
tive p-typical cyclotomic spectra is the connective part of a t-structure on CycSpp,
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2 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

the ∞-category of p-typical cyclotomic spectra. The heart CycSp♥
p is equivalent to

the abelian category of derived V -complete Cartier modules.

We say that a p-typical Cartier module M is derived V -complete if the natural
map M → limn M/V n is an equivalence in D(ℤ).1

The existence and uniqueness of such a t-structure is a formal consequence of the
fact that (CycSpp)�0 is presentable and is closed under colimits and extensions in
CycSpp. The difficult part of the theorem is the identification of the heart.

Recall Bökstedt’s theorem, which says that π∗THH(𝔽p) = 𝔽p[b], a polynomial
ring on a degree 2 generator. More generally, using the vanishing of the cotangent
complex, one deduces that π∗THH(k) = k[b] for any perfect ring k. Our interest in
the cyclotomic t-structure was piqued by the discovery of the next result.

Theorem 2 (See Theorem 6.14). If k is a perfect ring of characteristic p, then

THH(k) ∈ CycSp♥
p .

Despite the higher homotopy groups, THH(k) is discrete as a cyclotomic spec-
trum. On the Cartier module side of the story, when k is a perfect ring of character-
istic p, THH(k) corresponds to W (k), the ring of p-typical Witt vectors over k, with
its Witt vector Verschiebung and Frobenius operations. The fact that THH(k) is in

CycSp♥
p is consistent with the fact, due to Hesselholt–Madsen [HM97, Theorem B]

for perfect fields of characteristic p, that πiTC(k) = 0 for i > 0. However, the theo-
rem is much stronger. It says that for any cyclotomic spectrum X with πiX = 0 for
i < 0 one has HomCycSpp

(X[i],THH(k)) = 0 for i > 0. To reconcile the fact that

THH(k) is not at all discrete as a spectrum or even as a spectrum with S1-action
with the fact that it is discrete as a p-typical cyclotomic spectrum, observe that the
S1-equivariant map b : THH(k)[2] → THH(k) is not a map of cyclotomic spectra.

For any p-typical cyclotomic spectrum X, the homotopy groups with respect to
the t-structure of Theorem 1 are denoted by πcyc

i X. These are objects ofCycSp♥
p ⊆

CycSpp. Thus, they can be considered either as p-typical cyclotomic spectra, with

underlying spectrum with S1-action and Frobenius ϕ : πcyc
i X → (πcyc

i X)tCp , or as
derived V -complete p-typical Cartier modules under the equivalence of Theorem
1. We will typically not distinguish notationally between these two points of view.
Write CycSp[m,n] = (CycSpp)�m ∩ (CycSpp)�n. The objects of CycSp[m,n] are
p-typical cyclotomic spectra X, which are bounded with respect to the cyclotomic
t-structure, and such that πcyc

i X � 0 for i /∈ [m,n].
Now, we discuss some of the consequences for schemes, especially in characteristic

p. Recall the classical Hochschild–Kostant–Rosenberg theorem [HKR62], which
states that when k is a commutative ring and R is a smooth k-algebra, there is a
natural isomorphism HHi(R/k) ∼= Ωi

R/k. Say that a commutative k-algebra R is

ind-smooth if it is a filtered colimit of smooth k-algebras. If R is ind-smooth, then
LR/k is a flat R-algebra and the HKR theorem continues to hold. The next result
is a reinterpretation of a theorem of Hesselholt [Hes96, Theorem C] in the context
of the cyclotomic t-structure.

1Unless otherwise specified, all quotients M/V n are computed in the derived sense (and hence

are given as the cofiber of M
V n

−−→ M in the derived category) as are all limits.
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 3

Theorem 3 (See Theorem 6.18). Let k be a perfect ring of characteristic p. If R
is an ind-smooth commutative k-algebra, then for each i there is a natural isomor-
phism πcyc

i THH(R) ∼= WΩi
R of Cartier modules, where WΩi

R is the ith term in the
de Rham–Witt complex of R.

In particular, if R is smooth and has relative dimension d over a perfect ring of
characteristic p, then WΩi

R
∼= 0 for i > d and hence THH(R) ∈ CycSp[0,d].

Let k be a commutative ring. Then, CycSpTHH(k) = ModTHH(k)(CycSpp)

admits a t-structure with (CycSpTHH(k))�0 � ModTHH(k)((CycSpp)�0). We let

CycSp♥
THH(k) denote the heart, which we identify in Corollary 12.

Corollary 4 (See Proposition 6.12 and Theorem 6.18). If X is smooth and quasi-
compact over a perfect field k of characteristic p, then there is a convergent spectral
sequence

Es,t
2

∼= H−s(X,WΩt
OX

) ⇒ πcyc
s+tTHH(X)

in the abelian category CycSp♥
THH(k).

Corollary 5. Let C be a smooth and proper dg category over a commutative ring R
which itself is smooth of relative dimension d over a perfect ring k of characteristic
p. Then, THH(C) is bounded. Specifically, if THH(C) ∈ (CycSpp)�−e, then it is
in CycSp[−e,d+e].

Proof. Note that if C is smooth and proper over R, then THH(C) is a perfect
THH(R)-module spectrum and hence bounded below as a spectrum. It suffices to
show that if X ∈ (CycSpp)�d+e+1, then the mapping space

MapCycSpp
(X,THH(C)) � 0.

However, this is equivalent to MapCycSpTHH(R)
(X ⊗ THH(R),THH(C)) and hence

to MapCycSpTHH(R)
(X ⊗ THH(C),THH(R)) using that THH(C) is self dual over

THH(R). Now, X ⊗ THH(C) is contained in (CycSpp)�d+1, so the result follows
from the fact that THH(R) ∈ (CycSpp)�d. �

Let R be a quasi-syntomic ring in the sense of [BMS19, Definition 4.9], meaning
that R is p-complete with bounded p∞-torsion and the cotangent complex LR/ℤp

has p-complete Tor-amplitude contained in [0, 1]. Note that a characteristic p ring
R is quasi-syntomic if and only if LR/𝔽p

has Tor-amplitude contained in [0, 1].
For R quasi-syntomic, Bhatt–Morrow–Scholze [BMS19] use syntomic descent

to construct a filtration F�
BMSTP(R) on TP(R) whose graded pieces are given by

an absolute prismatic cohomology theory, suitably completed. In the special case
where R is smooth over a perfect field of characteristic p, the graded pieces are
given by crystalline cohomology RΓcrys(R/W ) by [BMS19, Theorem 1.10].

Again in the case of an ind-smooth algebra R over a perfect field k of charac-
teristic p, we can directly construct a filtration on TP(R) whose graded pieces are
given canonically by the de Rham–Witt complex of de Rham and Illusie (see [Ill79])
in the smooth affine case.

Corollary 6 (See Theorem 6.24). Let k be a perfect field of characteristic p, let
R be an ind-smooth k-algebra, and let TP(τ cyc�� THH(R)) be the filtration on TP(R)
induced by the cyclotomic Whitehead tower. The induced Whitehead tower with
respect to the Beilinson t-structure on filtered spectra defines a natural complete
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4 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

exhaustive multiplicative decreasing ℤ-indexed filtration F�
BTP(R) in filtered spectra

with graded pieces given by

griBTP(R) � WΩ•
R[2i]

for all i. Moreover, this filtration agrees with the BMS filtration on TP(R) after
forgetting the secondary filtration.

We call the filtration here the Beilinson filtration as it is constructed using
the Beilinson t-structure following an idea of [Ant19]. Both the BMS filtration
F�
BMSTP(R) and the Beilinson filtration F�

BTP(R) are equipped with secondary fil-
trations. For the BMS filtration, one obtains the Nygaard filtration N��RΓ(R/W )
as the residual filtration on the graded pieces, while for the Beilinson filtration,

one obtains the Hodge filtration WΩ��
R on the graded pieces. Forgetting these

secondary filtrations, the Beilinson and BMS filtrations agree on TP(R). By re-
membering the secondary filtration in F�

BTP(R), we recover a specific complex, the
de Rham–Witt complex, which computes crystalline cohomology.

Example 7. Let X be a K3 surface over a perfect field k of characteristic p, mean-
ing a smooth and proper surface over k such that the canonical bundle Ω2

X/k is

trivial and H1(X,OX) = 0. The formal Brauer group of X is, by the work of
Artin and Mazur [AM77], a commutative formal Lie group. The nature of the
formal Brauer group stratifies K3 surfaces over k into two types: the Hodge–

Witt K3 surfaces, for which B̂rX is a formal p-divisible group of height h where

1 � h � 10, and the supersingular K3 surfaces, where B̂rX is unipotent (and

even isomorphic to 𝔾a, the formal completion of the additive group). When X

is supersingular, the p-typical Cartier module H2(X,WΩ0
X) associated to B̂rX is

isomorphic to 𝔽p�x�, the p-typical Cartier module with F = 0, V xn = xn+1, and
ax = xap (see [Ill79, 7.2]). The spectral sequence of Corollary 4 implies that
πcyc
−2THH(X) ∼= H2(X,WΩ0

X) since there can be no differentials in or out. Now,
the spectrum underlying πcyc

−2 (THH(X)) has homotopy groups k in degree 0 and
k�x� in degrees � 2 by Figure 1 on page 6. In particular, it is not compact and
hence not dualizable as a THH(k)-module spectrum. Since the forgetful functor
CycSpTHH(k) → D(THH(k)) is symmetric monoidal, it follows that πcyc

−2THH(X)
is not dualizable as a cyclotomic spectrum when X is a supersingular K3 surface.
Thus, we see that the t-structure on CycSpTHH(k) does not restrict to a t-structure

onCycSpdual
THH(k), the full subcategory of dualizable objects inCycSpTHH(k). More-

over, as this example shows, THH(X) cannot be perfect in CycSpTHH(k). Indeed,

if it were perfect, then each cyclotomic homotopy group πcyc
i THH(X) would be a

finitely presented W (k)-module, which this example shows is not the case. This
recovers the counterexample of [AMN18].

In general, despite the coincidence of the filtrations on TP(R) when R is a
smooth ring over a perfect field k of characteristic p, the BMS filtration and the
cyclotomic Whitehead tower do not agree on THH(R) when R is quasi-syntomic.
In fact, even when R = k is a perfect field they differ. Indeed, the BMS filtration
is not a filtration by cyclotomic spectra. We have seen by Theorem 2 that the
cyclotomic Whitehead tower for THH(k) is concentrated in a single degree. But,
the BMS filtration is given by τ�2�THH(k), i.e., the classical Whitehead tower. The
maps τ�2�THH(k) → THH(k) cannot be given the structure of cyclotomic maps.
Nevertheless, we have the following result, which Scholze suggested to us.
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 5

Theorem 8 (See Theorem 6.23). The BMS filtration and the t-structure filtration
on TC(X) agree when X is a smooth quasi-compact scheme over a perfect field k
of characteristic p.

1.2. Idea of proofs: topological Cartier modules. To prove our theorems,
we introduce the stable ∞-category TCartp of p-typical topological Cartier
modules.2 These are spectra M equipped with an S1-action together with an
S1-equivariant factorization

MhCp

V−→ M
F−→ MhCp

of the Cp-norm

MhCp

NmCp−−−−→ MhCp .

Maps are defined as usual to be maps of spectra with S1-action which commute
with the V and F operations and the homotopy witnessing the factorization.

There is a t-structure on TCartp where an object M is in (TCartp)�0 (resp.,
(TCartp)�0) if and only if πiM = 0 for i < 0 (resp., πiM = 0 for i > 0). The heart
of this t-structure is the abelian category of p-typical Cartier modules introduced
above. Given a p-typical topological Cartier module M , the cofiber of V , which we
write as M/V , naturally admits the structure of a p-typical cyclotomic spectrum.
On bounded below objects with respect to this t-structure on TCartp and the
cyclotomic t-structure, we obtain the following theorem.

Theorem 9 (See Theorem 3.21). The functor (−)/V : TCart−p → CycSp−
p admits

a fully faithful t-exact right adjoint given by TR. The essential image of TR is the
full subcategory of bounded below p-typical topological Cartier modules M such that
πiM is derived V -complete for all i.

From Theorem 9, we can read off two things: first, that the heart of the t-
structure on cyclotomic spectra is given by derived V -complete p-typical topological
Cartier modules; second, that for a cyclotomic spectrum X, the cyclotomic homo-
topy groups πcyc

i X are given by πiTR(X) equipped with the canonical V and F
operations induced from transfer and inclusion of fixed points. This gives the proof
of Theorem 1. Previous calculations in TR of commutative rings of Hesselholt–
Madsen [HM97, Theorem 5.5] and Hesselholt [Hes96, Theorem C] then suffice to
establish Theorems 2 and 3 for smooth algebras over perfect fields, which we show
is enough to prove the general case of each theorem. The next three corollaries are
immediate consequences.

Corollary 10. If X is a bounded below p-typical cyclotomic spectrum, then the

natural S1-equivariant map TR(X) → X induces a p-adic equivalence TR(X)tS
1 →

XtS1

.

Proof. By Theorem 9, the counit map TR(X)/TR(X)hCp
→ X is an equivalence.

In particular, we have a cofiber sequence

TR(X)hCp
→ TR(X) → X.

Applying (−)tS
1

, we obtain a cofiber sequence p-adically equivalent to

((TR(X)hCp
)tCp)hS

1 → (TR(X)tCp)hS
1 → (XtCp)hS

1

2In early talks on this project, we called these topological Dieudonné modules.
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6 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

by [NS18, Lemma II.4.2]. But, (TR(X)hCp
)tCp � 0 by the Tate orbit lemma [NS18,

Lemma I.2.1]. �

Corollary 11. If X is a bounded below p-typical cyclotomic spectrum such that
TR(X) � 0, then X � 0.

Proof. Indeed, since TR: CycSp−
p → TCart−p is fully faithful, the adjoint

TR(X)/V → X is an equivalence, so X � 0. �

By [HM97, Theorem F], which says that π0TR(k) ∼= W (k) when k is a commu-
tative ring, and using Theorem 9, we obtain the following corollary.

Corollary 12 (See Theorem 6.1). For any commutative ring k, πcyc
0 THH(k) �

W (k). Moreover, CycSp♥
THH(k) is equivalent to the abelian category of derived

V -complete W (k)-modules in p-typical Cartier modules.

Example 13. The cyclotomic homotopy groups πcyc
i X of a cyclotomic spectrum

X are given by derived V -complete p-typical Cartier modules. In particular, any
derived V -complete p-typical Cartier module M has an underlying cyclotomic
spectrum M/V . Its homotopy groups are computed using the cofiber sequence

MhCp

V−→ M → M/V . They are given in Figure 1.

πiM/V ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
coker(M

V−→ M) if i = 0,

ker(M
V−→ M) if i = 1,

coker(M
p−→ M) if i � 2 is even, and

ker(M
p−→ M) if i � 2 is odd.

Figure 1. This table gives the homotopy groups of the cyclotomic
spectrum M/V if M is a p-typical Cartier module (i.e., an object

of TCart♥p ).

Example 14. The theory of p-typical Cartier modules arises in the study of com-
mutative formal groups over commutative ℤ(p)-algebras (see [Zin84]). We describe
briefly the connection in characteristic p. Let k be a perfect field of characteristic
p. Because V F = p on W (k), one finds that V F = p on any W (k)-module in

TCart♥p (see Remark 6.16). A Dieudonné module is an abelian group M with
endomorphisms F and V such that FV = V F = p. Let G be a finite flat group
scheme, and let M(G) denote the covariant Dieudonné module (the dual of the
construction in [Dem72, Chapter III]). We find that if G is infinitesimal (like αp) or
multiplicative (like μp), then V is nilpotent and thus M(G) is derived V -complete.
Similarly, if G is a formal p-divisible group, then M(G) is a derived V -complete
Dieudonné module. In particular, we obtain a functor

{formal p-divisible groups over k} → CycSp♥
THH(k).

We will see in [AN] that this functor induces an equivalence between the bounded
derived ∞-category of isogeny classes of p-divisible groups and isogeny classes of
dualizable cyclotomic spectra over perfect fields.
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 7

The t-structures on TCartp and CycSpp are compatible with the natural sym-
metric monoidal structures, so we obtain induced symmetric monoidal structures
on the abelian categories of p-typical Cartier modules and derived V -complete p-
typical Cartier modules, respectively. When k is a perfect field of characteristic
p, Goerss [Goe99] had previously constructed a symmetric monoidal structure on
W (k)-modules in p-typical Cartier modules. We prove in Section 4 that our sym-
metric monoidal structure agrees with his in this case. In future work we will study
these symmetric monoidal structures more closely and deduce generalizations of
the HKR theorem (Theorem 3) to non-perfect rings.

Remark 15. In Section 5, we show that p-typical topological Cartier modules are
to genuine fixed points as genuine cyclotomic spectra are to geometric fixed points.
Let 𝕋Spgenp denote the ∞-category of genuine S1-spectra with respect to the finite

p-subgroups of S1. The ∞-category TCartp is equivalent to Fix(−)Cp (𝕋Sp
gen
p ), the

∞-category of fixed points for the endofunctor (−)Cp of 𝕋Spgenp . In particular, an

equivalent way of defining an object of TCartp is to give a genuine S1-spectrum
M ∈ 𝕋Spgenp together with an equivalence MCp � M of genuine S1-spectra.

Outline. In Section 2, we prove the existence of the t-structure of Theorem 1. We
prove some basic, but important, properties of the cyclotomic t-structure. Sec-
tion 3 introduces p-typical topological Cartier modules and establishes Theorem 9.
In Section 4, we compare the natural symmetric monoidal structure on CycSp♥

p

with the monoidal structure previously constructed by Goerss [Goe99] on W (k)-
modules in p-typical Cartier modules when k is a perfect field of characteristic p.
We study some genuine equivariant homotopy-theoretic aspects of the story in Sec-
tion 5. Finally, Section 6 contains our applications to THH of rings and schemes.
Appendix A gives some background on t-structures.

Conventions. We will freely use the theory of ∞-categories developed by Lurie
in [Lur09,Lura,Lurb]. Unless otherwise mentioned, we work with cyclotomic spec-
tra as studied in [NS18]. We will make one important deviation from the notation

in op. cit. Namely, a p-typical cyclotomic spectrum will be a spectrum X ∈ SpBS1

with S1-action equipped with an S1-equivariant map ϕp : X → XtCp , where XtCp

carries the residual S1/Cp
∼= S1-action. See Remark 2.5 for more about this choice.

We write CycSpp for the stable ∞-category of p-typical cyclotomic spectra.

Notation. Let C be an ∞-category with objects x, y ∈ C. We will write MapC(x, y)
for the ∞-groupoid (space) of maps from x to y in C. If C is stable, we will write
MapC(x, y) for the mapping spectrum from x to y. Given an 𝔼∞-ring spectrum
R, let D(R) � ModR(Sp) denote the stable ∞-category of R-module spectra. If
R is connective, then we equip D(R) with the canonical Postnikov t-structure,
where D(R)♥ � Modπ0R, the abelian category of π0R-modules. Unless specified
otherwise, all limits, colimits, and tensor products are computed in D(R). This con-
vention holds even for discrete rings; thus, limits and colimits of abelian groups are
computed in D(ℤ) as opposed to Modℤ: quotients are given by cofibers, limits by
derived limits, and the tensor product by the derived tensor product. For example,

if M is an abelian group, then M/p is the cofiber of M
p−→ M . Hence, M/p is an ob-

ject of D(ℤ) with πiM/p = 0 for i �= 0, 1, π1M/p ∼= ker(M
p−→ M) ∼= Torℤ

1 (M,ℤ/p),

and π0M/p ∼= coker(M
p−→ M) ∼= Torℤ

0 (M,ℤ/p). Note that the objects of D(ℤ) can
be modeled by either chain complexes or ℤ-module spectra. We will typically write
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8 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

π∗M for the homotopy groups of M viewed as a spectrum; these are isomorphic to
the homology groups H∗M when M is viewed as a chain complex.

2. The cyclotomic t-structure

In this section we define the cyclotomic t-structure for integral and p-typical
cyclotomic spectra in their genuine and non-genuine flavors. With some difficulty,
one can prove some basic facts about truncations in the cyclotomic t-structure,
including for example the fact that THH(𝔽p) is in the heart. By working instead
with topological Cartier modules, introduced in Section 3, such computations are
more transparent. Hence, in this section, we restrict ourselves to discussing formal
properties of the cyclotomic t-structure.

For the necessary background on t-structures, see Appendix A.

2.1. The cyclotomic t-structure. There is a t-structure on SpBS1

, the ∞-
category of spectra with S1-action, where the connective objects are the connective
spectra with S1-action. This is reviewed in Proposition A.17. The heart is the
abelian category of abelian groups since BS1 is simply connected.

We let CycSpp be the lax equalizer

LEq(id, (−)tCp : SpBS1

⇒ SpBS1

).

(For background on lax equalizers, see [NS18, Section II.1].) An object of CycSpp

is a spectrum X with S1-action and an S1-equivariant map ϕ : X → XtCp , where
XtCp carries the residual S1 ∼= S1/Cp-action.

Let (CycSpp)�0 ⊆ CycSpp denote the full subcategory of p-typical cyclotomic
spectra X such that the underlying spectrum is connective. In this case, the cy-
clotomic structure map ϕ : X → XtCp factors canonically through the connective
cover τ�0(X

tCp).
Recall that a t-structure on a stable ∞-category C is compatible with a sym-

metric monoidal structure C⊗ on C if C�0 ⊆ C is closed under tensor products
and the unit object of C is in C�0. The purpose of this section is to prove the
following theorem.

Theorem 2.1. The ∞-category (CycSpp)�0 forms the connective part of an acces-
sible, left complete t-structure on CycSpp, which is compatible with the symmetric
monoidal structure on CycSpp.

Example 2.2. If X is a connective spectrum, then Xtriv ∈ (CycSpp)�0. Recall

from [NS18, Example II.1.2 and Section IV.4] that Xtriv is the cyclotomic spectrum
with trivial S1-action and cyclotomic Frobenius given by the composition X →
XhCp → XtCp . The cyclotomic sphere spectrum 𝕊triv is the unit object for the
natural symmetric monoidal structure on CycSpp (see [NS18, Section IV.2]).

Example 2.3. IfR is a connective 𝔼1-ring spectrum, then THH(R) ∈ (CycSpp)�0.

By construction, the forgetful functorCycSpp → SpBS1

is right t-exact. It is not
left t-exact or even left bounded: as we will see THH(𝔽p) is in the heart in CycSpp

but is not bounded above when viewed as an object of SpBS1

.
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 9

Variant 2.4. The same arguments that we will give to prove Theorem 2.1 will
work for CycSp, the ∞-category of global cyclotomic spectra, for CycSpR =
ModR(CycSp) where R is a connective 𝔼∞-algebra in cyclotomic spectra, and
for ModR(CycSpp) when R is a connective 𝔼∞-algebra in p-typical cyclotomic
spectra. In all of these cases the connective part of the t-structure consists of the
full subcategory of cyclotomic (or p-typical cyclotomic) R-modules X for which the
underlying spectrum with S1-action is connective.

Remark 2.5. In this paper we shall concentrate on the p-typical aspects of the
theory. The integral case will be pursued in future work. For this reason, we
write TC(X) and TR(X) for p-typical versions of TC and TR. Since our definition
of p-typical cyclotomic spectra differs slightly from that of [NS18], note that for
us, TC(−) is the theory representable by 𝕊triv in CycSpp; hence, TC(X) is the

equalizer of XhS1 ⇒ (XtCp)hS
1

, where the two maps are given by the canonical

map XhS1 → XtS1 → (XtCp)hS
1

and by ϕhS1

.
We let TRn+1(X) be defined as the iterated pullback

TRn+1(X) = XhCpn ×
(XtCp )

hC
pn−1 · · · ×(XtCp )hCp XhCp ×XtCp X,

where the maps to the left are induced by ϕ and the maps to the right are the
canonical maps. When X is bounded below, the methods of [NS18, Chapter II]
endow X with the structure of an S1-spectrum which is genuine with respect to
the subgroups Cpn for n � 0 and TRn+1(X) � XCpn . There are natural maps

R : TRn+1(X) → TRn(X) given by forgetting the first factor in the above pullback
and TR(X) � limTRn+1(X). In general, there is a map TC(X) → TR(X) which

induces a p-adic equivalence TC(X) → fib(TR(X)
1−F−−−→ TR(X)).

Warning 2.6. Note that TC(X, p) is typically defined as fib(TR(X)
1−F−−−→ TR(X)),

so our definition agrees with TC(X, p) only after p-completion. Rather,

fib(TR(X)
1−F−−−→ TR(X)) is equivalent to the equalizer of the canonical and Frobe-

nius maps XhCp∞ ⇒ (XtCp)hCp∞ .

Definition 2.7. For an object X ∈ CycSpp, we will write πcyc
i X ∈ CycSp♥

p

for the ith homotopy object of X. Note that this is a cyclotomic spectrum and
hence has an underlying spectrum with S1-action. The homotopy groups of this
underlying spectrum are π∗(π

cyc
i X).

Example 2.8. If X ∈ CycSpp, a necessary condition for X ∈ (CycSpp)�0 is

that πiTC(X) = 0 for i > 0 since 𝕊triv ∈ (CycSpp)�0 and TC(X) is the mapping

spectrum from 𝕊triv toX. Thus, ℤtriv is not inCycSp♥, because πiTC(ℤ
triv) ∼= ℤp

for all positive odd i.

Warning 2.9. This t-structure is not compatible with filtered colimits. In partic-
ular, the heart CycSp♥

p is not closed under filtered colimits in (CycSpp)�0. See
Example 3.27 for details.
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10 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

Lemma 2.10. The diagram

(SpBS1

)�0

id ��

τ�0(−)tCp

��

��

(SpBS1

)�0

��

SpBS1 id ��

(−)tCp

�� SpBS1

induces via the natural transformations of functors τ�0(−)tCp → (−)tCp an equiv-
alence

LEq
(
id, τ�0(−)tCp : (SpBS1

)�0 ⇒ (SpBS1

)�0

)
� (CycSpp)�0.

In particular, (CycSpp)�0 is presentable and the inclusion functor (CycSpp)�0 →
CycSpp preserves colimits.

Proof. The equivalence is clear given that for a connective cyclotomic spectrum
X the cyclotomic structure map determines and is determined by its factoriza-
tion through the connective cover. We can appeal to [NS18, II.1.5(3)] which
gives presentability (since τ�0(−)tCp is accessible). Now, both forgetful functors

(CycSpp)�0 → (SpBS1

)�0 and CycSpp → SpBS1

preserve and detect colimits.

Since (SpBS1

)�0 → SpBS1

is closed under colimits, the claim about preservation of
colimits follows. �

Proof of Theorem 2.1. By definition, (CycSpp)�0 is closed under extensions in
CycSpp. Combined with Lemma 2.10, it follows from [Lura, 1.4.4.11] that there ex-
ists a unique t-structure ((CycSpp)�0, (CycSpp)�0) on CycSpp. The cyclotomic
t-structure is accessible because (CycSpp)�0 is presentable by Lemma 2.10.

It is clear that CycSpp is left separated: an object in⋂
n∈ℤ

(CycSpp)�n

has contractible underlying S1-spectrum. We check that it is left complete by
showing that (CycSpp)�0 is closed under countable products in CycSpp and ap-
plying [Lura, 1.2.1.19], which says that under this hypothesis left completeness is
equivalent to left separatedness. In fact, we will show that (CycSpp)�0 is closed
under all products in CycSpp.

We already know that (SpBS1

)�0 is closed under products in SpBS1

by Proposi-

tion A.17. Thus, to conclude, it is enough to show that the functorCycSp → SpBS1

commutes with products of connective objects. By [NS18, II.1.5(v)], it is enough
to see that for a product

∏
i∈I Xi of connective spectra with S1-action the natural

map (∏
i

Xi

)tCp

→
∏
i

X
tCp

i

is an equivalence. This follows from Lemma 2.11 below.
To see that the cyclotomic t-structure is compatible with the symmetric monoidal

structure onCycSpp we simply note that 𝕊triv∈(CycSpp)�0 and that (CycSpp)�0
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 11

is closed under the tensor product, which follows from the fact that the tensor prod-
uct of two connective spectra with S1-action is again connective. This completes
the proof. �

We used the following lemma in the proof.

Lemma 2.11. Suppose that F : I → SpBS1

is an I-diagram in spectra with S1-
action with limit X = limi F (i).

(a) If I = ℤop, so that X is the limit of the tower · · · → F (i+1) → F (i) → · · · ,
and if the fiber of X → F (i) is ni-connective where ni → ∞ as i → ∞,
then XhCp

� limi

(
F (i)hCp

)
and XtCp � limi

(
F (i)tCp

)
.

(b) If there exists d such that limI : Sp
I → Sp sends SpI�0 to Sp�−d and there

exists N such that each F (i) is N-connective, then XhCp
� limi

(
F (i)hCp

)
and XtCp � limi

(
F (i)tCp

)
.

Example 2.12. If I = ℤop so that X is a sequential limit, then (b) applies since
d = 1. If I is discrete, so that X is a product, then (b) applies since d = 0.

Proof of Lemma 2.11. Each statement for the Tate construction follows from the
corresponding statement for homotopy orbits using the fiber sequence XhCp

→
XhCp → XtCp and the fact that XhCp commutes with all limits of spectra with
Cp-action.

The proof of (a) is the same as the proof of [NS18, Lemma I.2.6]. It is easy
enough to repeat here: the fiber of XhCp

→ F (i)hCp
is ni-connective since taking

homotopy orbits is right t-exact. Thus, the limit of the fibers vanishes.
For (b), consider for each n the map τ�nXhCp

→ limI τ�nF (i)hCp
. The functor

τ�n(−)hCp
is computed as a colimit over the skeleton of BCp on uniformly bounded

below objects, so it commutes with I-limits of uniformly bounded below objects.
Hence, limI τ�nF (i)hCp

� (τ�n(limI F (i))hCp
) � lim τ�nXhCp

. Taking the limit
over n on both sides, we obtain the desired equivalence. �
Remark 2.13. The heart CycSp♥

p is by definition (CycSpp)�0 ∩ (CycSpp)�0 and

it is an abelian category (by [BBD82, Théorème 1.3.6]). In fact, CycSp♥
p ⊆

(CycSpp)�0 is the full subcategory of 0-truncated objects (see [Lura, 1.2.1.9]), so

it is presentable because (CycSpp)�0 is presentable. Truncation τ�0 : C�0 → C♥

gives a left adjoint to the inclusion. See [Lur09, 5.5.6.21] for details.

Because (CycSpp)�0 is closed under the tensor product in CycSpp, and since

the unit 𝕊triv of CycSpp is connective, (CycSpp)�0 naturally inherits a symmetric
monoidal structure such that the inclusion (CycSpp)�0 → CycSpp is symmetric

monoidal. It is easy to see that CycSp♥
p inherits a symmetric monoidal structure

from (CycSpp)�0. For details, see A.2.

Corollary 2.14. The abelian category CycSp♥
p inherits a symmetric monoidal

structure ⊗♥ from (CycSpp)�0 such that the localization functor πcyc
0 : (CycSpp)�0

→ CycSp♥
p is symmetric monoidal. Moreover, ⊗♥ is compatible with colimits in

each variable.

Proof. The first claim follows from Lemma A.12. To prove the second, we use that
colimits in CycSp♥

p are obtained by computing colimits in (CycSpp)�0 and apply-

ing πcyc
0 . Since the tensor product of connective cyclotomic spectra commutes with
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12 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

colimits in each variable and since πcyc
0 : (CycSpp)�0 → (CycSpp)

♥ commutes
with colimits (being a left adjoint), the claim follows. �

Remark 2.15. Concretely, if A,B ∈ CycSp♥
p , then A⊗♥ B � πcyc

0 (A⊗B), the 0-
truncation of the tensor product of A and B when viewed as objects of (CycSpp)�0.

Example 2.16. The fiber F of 𝕊triv → ℤtriv in cyclotomic spectra is connected.
Hence, πcyc

0 F � 0 and it follows that πcyc
0 𝕊triv � πcyc

0 ℤtriv. In particular, every

object of CycSp♥
p is canonically a ℤtriv-module in CycSpp.

2.2. The genuine cyclotomic t-structure. In this section we introduce the t-
structure on genuine cyclotomic spectra after introducing the Mackey t-structure
on genuine S1-spectra. This will only become relevant for Section 5 and the reader
who does not want to get involved with the intricacies of genuine homotopy theory
can safely skip this section.

We will use genuine equivariant homotopy theory as a black box, but remind the
reader that there is a stable presentable ∞-category

𝕋SpgenF

of genuine S1-spectra with respect to a family F of subgroups of S1. Here we
write 𝕋 for S1 to distinguish it from the homotopical circle. A genuine spectrum
X ∈ 𝕋SpgenF has fixed points XH for all closed subgroups H ⊆ 𝕋 that lie in F . If

F is the family just consisting of the trivial group 1 ⊆ 𝕋, then 𝕋SpgenF � SpBS1

.
We will mostly be concerned with the family consisting of finite p-subgroups of 𝕋.
In this case we write 𝕋Spgenp for this ∞-category:

𝕋Spgenp := 𝕋Spgen{1,Cp,Cp2 ,...}
.

There are several equivalent ways of describing 𝕋Spp. A treatment using equivariant
orthogonal spectra is reviewed in [NS18] based on lecture notes by Schwede [Sch].
An elegant ∞-categorical model using spectral Mackey functors is due to Bar-
wick [Bar17] and Barwick–Glasman [BGa] based on a model of Guillou–May [GM11].
We assume the reader is familiar with basic constructions such as fixed points, geo-
metric fixed points, classifying spaces for families, the tom Dieck splitting, and
the isotropy separation sequence. For the remainder of the section we shall work
with genuine spectra X ∈ 𝕋Spgenp and for simplicity just refer to them as genuine

S1-spectra or even genuine spectra.
Let X be a genuine S1-spectrum. We say that X is connective if for each

n � 0 the fixed points spectrum XCpn is connective. Similarly we say that X is
coconnective if for each n � 0 the spectrum XCpn is coconnective. This defines two
full subcategories

(𝕋Spgenp )�0 and (𝕋Spgenp )�0

of 𝕋Spgenp .

Proposition 2.17. The pair ((𝕋Spgenp )�0, (𝕋Sp
gen
p )�0) defines a left and right com-

plete, accessible t-structure on 𝕋Spgenp which is compatible with filtered colimits.

Note that by construction the fixed point functor

(−)Cpn : 𝕋Spgenp → Sp

is t-exact for each n � 0.
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 13

Definition 2.18. We call this t-structure on 𝕋Spgenp the Mackey t-structure.

The terminology is motivated by the fact that the heart (𝕋Spgenp )♥ is equivalent
to the abelian category of Mackey functors. The notion of a Mackey functor might
not be entirely standard in this setting (since 𝕋 is not a finite group) but Mackey
t-structures exist for categories of genuine G-spectra where G is finite, in which
case the heart is equivalent to the abelian category of classical Mackey functors on
G. The construction and proof are the same as in Proposition 2.17.

Remark 2.19. One equivalent description of 𝕋Spgenp following Barwick [Bar17] is as
the ∞-category of product-preserving functors from the effective Burnside category

of the orbit category {S1/Cpn}n�0 ⊆ SBS1

to spectra. In this language, (𝕋Spgenp )�0

is equivalent to the ∞-category of product-preserving functors from the Burnside
category to Sp�0 and similarly for the ∞-category of coconnective objects. From
this description, the existence of the t-structure in Proposition 2.17 is clear. We
give, however, a presentation-independent proof.

Proof of Proposition 2.17. Consider the compact generators Σ∞
+ 𝕋/Cpn ∈ 𝕋Spgenp .

By [Lura, Proposition 1.4.4.11] the smallest subcategory C�0 ⊆ 𝕋Spgenp that con-
tains Σ∞

+ 𝕋/Cpn and is closed under colimits and extensions is the ∞-category of
connective objects for a t-structure (C�0, C�0) on 𝕋Spgenp . An object X ∈ 𝕋Spgenp

is then (−1)-truncated (i.e., in C�−1) if and only if the mapping spectrum

Map𝕋Spgen
p

(Σ∞
+ 𝕋/Cpn , X) � XCpn

is (−1)-truncated. We claim that an object X is connective precisely if for every
n the spectrum XCpn is connective. If X is connective, then it follows that XCpn

is connective since this is true for the generators. Conversely, assume that XCpn is
connective for each n. We consider the truncation X → τ�−1X. The fiber of this
map is given by τ�0X → X. We get a cofiber sequence

(τ�0X)Cpn → XCpn → (τ�−1X)Cpn

for each n � 0. The first two terms are connective spectra, thus so is the third.
But since τ�−1X is (−1)-truncated the last term is also (−1)-truncated as it is a
mapping spectrum from a connective object. Therefore it has to be zero. Since the
orbits are generators of 𝕋Spgenp , it follows that τ�−1X � 0. Thus, X is connective.

This establishes the existence of t-structure. The other claims now immediately
follow using the conservativity of family {(−)Cpn : n � 0} of functors 𝕋Spgenp → Sp
and the fact that fixed points preserve limits and colimits. �
Lemma 2.20. A genuine S1-spectrum X ∈ 𝕋Spgenp is connective in the Mackey

t-structure precisely if all geometric fixed points XΦCpn ∈ Sp are connective.

Proof. To see this we argue by induction over n. Assume that all spectra XCk

and XΦC
pk for k = 0, . . . , n − 1 are connective. Consider the isotropy separation

sequence
((EPropCpn)+ ⊗X)Cpn → XCpn → XΦCpn ,

where the left-hand side is a colimit of a diagram only involving fixed points of
proper subgroups of Cpn .3 Thus it is a connective spectrum. It follows that XCpn

is connective if and only if XΦCpn is connective. �
3In fact this can even be simplified in this case since the subgroup lattice of Cpn is very simple

but we prefer to write the proof in a form that also works for more complicated families.
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14 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

We recall the definition of genuine cyclotomic spectra.

Definition 2.21. The ∞-category CycSpgen
p of genuine p-typical cyclotomic

spectra is defined to be fixed points for the endofunctor (−)ΦCp :

CycSpgen
p := Fix(−)ΦCp (𝕋Sp

gen
p ).

In other words, a genuine p-typical cyclotomic spectrum is a genuine S1-spectrum
X equipped with an equivalence XΦCp � X of genuine S1-spectra.

By Lemma 2.20, the functor (−)ΦCp is right t-exact. Using that accessible t-
structures are closed under limits of right t-exact left adjoint functors, we obtain
the following corollary.

Corollary 2.22. There is an accessible t-structure on CycSpgen
p where

(CycSpgen
p )�0 � Fix(−)ΦCp ((𝕋Sp

gen
p )�0);

the forgetful functor to 𝕋Spgenp is right t-exact.

We call the induced t-structure on p-typical genuine cyclotomic spectra the gen-
uine cyclotomic t-structure.

Remark 2.23. With the same arguments one also gets a Mackey t-structure on
𝕋SpgenF , where F is the family of finite subgroups. This then induces also a t-
structure on the ∞-category of global genuine cyclotomic spectra CycSpgen. The
latter is defined as the ∞-category of homotopy fixed points

CycSpgen := (𝕋SpgenF )hℕ>0 ,

where the multiplicative monoid ℕ>0 acts on 𝕋SpgenF via n �→ (−)ΦCn . See [NS18,
Section 2.3].

The next result says that the t-structure of Corollary 2.22 reduces to the cyclo-
tomic t-structure of Section 2.1 when restricted to bounded below objects.

Theorem 2.24. The natural functors CycSpgen → CycSp and CycSpgen
p →

CycSpp are right t-exact and restrict to equivalences CycSpgen
�0 � CycSp�0 and

(CycSpgen
p )�0 � (CycSpp)�0.

Proof. This is simply a restatement of [NS18, Theorem II.3.8], once we note that an
object X in CycSpgen or CycSpgen

p is bounded below in the cyclotomic t-structure
if and only if the underlying spectrum of X is bounded below. This follows from
Lemma 2.20 and the fact that ΦCpnX � X for all n. �

In particular, we see that CycSpgen,♥
p � CycSp♥

p and similarly CycSpgen,♥ �
CycSp♥.

2.3. The cyclotomic t-structure and the generalized Segal conjecture.
Recall that the Segal conjecture for Cp (a theorem of Lin [Lin80] and Gunawar-
dena [Gun]) says that the Tate diagonal 𝕊 → (𝕊⊗p)tCp � 𝕊tCp is p-completion. This
map is also equivalent to the trivial map that factors through homotopy fixed points
𝕊hCp . We prove that every bounded above object in the cyclotomic t-structure sat-
isfies an analogue of the Segal conjecture.
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 15

Proposition 2.25. Suppose that M ∈ CycSpp. If M ∈
(
CycSpp

)
�d

, then the

cyclotomic Frobenius map M
ϕ−→ M tCp is d-truncated.4

Proof. Fix a point x ∈ BS1. We endow x!𝕊[d+1] with the structure of a p-typical
cyclotomic spectrum by letting x!𝕊[d+ 1] → (x!𝕊[d+ 1])tCp be the zero map. The
mapping spectrum MapCycSpp

(x!𝕊[d+ 1],M) is the equalizer of

MapS1(x!𝕊[d+ 1],M) ⇒ MapS1(x!𝕊[d+ 1],M tCp),

where the two maps are given by

(x!𝕊[d+ 1]
f−→ M) �→ (x!𝕊[d+ 1]

f−→ M
ϕ−→ M tCp)

and

f �→ x!𝕊[d+ 1]
0−→ (x!𝕊[d+ 1])tCp

ftCp

−−−→ M tCp .

Since MapS1(x!𝕊[d + 1],M) � M [−d − 1] and MapS1(x!𝕊[d + 1],M tCp) �
M tCp [−d − 1], we find that MapCycSpp

(x!𝕊[d + 1],M) is the fiber of M [−d − 1]

ϕ[−d−1]−−−−−→ M tCp [−d− 1]. Since M ∈
(
CycSpp

)
�d

, it follows that

πiMapCycSpp
(x!𝕊[d+ 1],M) = 0

for i � 0. Hence, πiM
πi(ϕ)−−−→ πiM

tCp is an injection for i = d+1 and an isomorphism
for i � d+ 2. In other words, ϕ is d-truncated. �

Remark 2.26. The proposition gives a necessary but certainly not sufficient condi-
tion for an object to be bounded above. For example, 𝕊triv

p (meaning the p-complete
sphere with the trivial cyclotomic structure) satisfies the conclusion of Proposition
2.25 by the Segal conjecture but not the hypothesis since TC(𝕊triv

p ) contains 𝕊p as
a summand.

We now give an example of a class of bounded above objects in the cyclotomic
t-structure. Many more will appear later, in Section 6, once we have access to the
p-typical topological Cartier module machinery developed in Section 3.

Example 2.27. Let M ∈ Sp�d be a bounded above spectrum, and let x!M denote

the induced S1-spectrum M ⊗ S1
+. Now, (x!M)tCp � 0. To see this, we can reduce

to the case where M is concentrated in a single degree using the easy generalization
of [NS18, I.2.6(ii)] for weak Postnikov towers and the fact that x! preserves colimits.
We make x!M into a p-typical cyclotomic spectrum in the only way we can: we let
the cyclotomic Frobenius x!M → (x!M)tCp � 0 be the zero map. Now, we show
that x!M ∈ (CycSpp)�d+1. To see this, fix another cyclotomic spectrum X. We
see that the mapping spectrum MapCycSpp

(X, x!M) � MapS1(X, x!M) using the

equalizer formula, since (x!M)tCp � 0. Of course, x!M ∈ (SpBS1

)�d+1. Hence, if
X ∈ (CycSpp)�d+2, the mapping space MapCycSpp

(X, x!M) vanishes.

4Recall that a map of spectra X → Y is d-truncated if it induces isomorphisms πnX ∼= πnY for
n � d+ 2 and an injection πd+1X → πd+1Y . In other words, the fiber of X → Y is d-truncated.
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16 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

3. Topological Cartier modules

In this section we give a new description of p-typical cyclotomic spectra based on
a topological version of p-typical Cartier modules. Using this description, we find
that the cyclotomic homotopy groups πcyc

i X of a p-typical cyclotomic spectrum X
“are” the homotopy groups of TR(X) = limn,R XCpn equipped with operations V
and F such that FV = p.

As for cyclotomic spectra, p-typical topological Cartier modules admit two fla-
vors: a genuine flavor and a simplistic flavor. Unlike cyclotomic spectra, where one
needs a boundedness assumption to show that the simple version agrees with the
genuine version, these flavors are unconditionally the same for p-typical topological
Cartier modules, as we prove in Section 5.

3.1. The ∞-category of topological Cartier modules. Classically, a p-typical
Cartier module is an abelian group M equipped with endomorphisms V and F
such that FV = p.5

Definition 3.1. A p-typical topological Cartier module is a spectrum M with
an S1-action together with an S1-equivariant factorization of the Cp-norm

MhCp

V−→ M
F−→ MhCp ,

where MhCp
and MhCp carry the residual S1 = S1/Cp actions and the norm

MhCp
→ MhCp is equivariant for this action. We will refer to V as the Ver-

schiebung and F as the Frobenius.

Here are some examples and constructions with p-typical topological Cartier
modules.

Example 3.2. Let M be an abelian group considered as an Eilenberg–MacLane
spectrum with (necessarily) trivial S1-action. A p-typical topological Cartier mod-
ule structure on M is equivalent to a p-typical Cartier module structure on M since
the maps V and F necessarily have to factor through the truncations MhCp

→
τ�0MhCp

� M and M � τ�0M
hCp → MhCp and the norm factors as MhCp

→
M

·p−→ M → MhCp .

Example 3.3. For every p-typical topological Cartier module M the homotopy
groups πnM are p-typical Cartier modules: the maps V, F : πnM → πnM are
induced by πn of the compositions

M → MhCp

V−→ M and M
F−→ MhCp → M.

To see that the composition FV is p, note that the composition is equivalent to

M → MhCp

NmCp−−−−→ MhCp → M and we can reduce to the case where M is discrete,
where the claim follows from the description of the norm from group homology to
group cohomology. For more about the structure of π∗M when M is a p-typical
topological Cartier module, see Section 3.5.

5In contrast to the case of Dieudonné modules we do not include the condition that V F = p.
This is only appropriate when working over Witt vectors of a perfect ring of characteristic p; see
Example 4.18 and Section 6.2.
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 17

Example 3.4. Let X be a p-typical cyclotomic spectrum. The S1-spectrum

TR(X) �
(
· · · ×

(XtCp )
hC

p2
XhCp2 ×(XtCp )hCp XhCp ×XtCp X

)
� lim←−n,R

(
XhCpn ×

(XtCp )
hC

pn−1 · · · ×(XtCp )hCp XhCp ×XtCp X
)

� lim←−n,R(TR
n+1(X))

canonically carries the structure of a topological Cartier module. The map V :
TR(X)hCp

→ TR(X) is given by the canonical map

(1) TR(X)hCp
�

(
lim←−n,RTR

n(X)
)
hCp

→ lim←−n,R(TR
n(X)hCp

)

followed by the levelwise norm

(2) · · · (XhCp)hCp
×(XtCp )hCp

XhCp
×0 0

V

��

· · · XhCp2 ×(XtCp )hCp XhCp ×XtCp X.

The map F : TR(X) → TR(X)hCp is given by the projection

(3) · · · ×
(XtCp )

hC
p2

XhCp2 ×(XtCp )hCp XhCp ×XtCp X

F

��

· · · ×
(XtCp )

hC
p2

XhCp2 ×(XtCp )hCp XhCp .

The composition is evidently the norm; this will also follow from a more detailed
analysis in Construction 3.18.

Example 3.5. Let M be a p-typical topological Cartier module. We consider the
S1-spectrum

X = M/V = cofib
(
MhCp

V−→ M
)

together with the “quotient” map ρ : M → X, which is also S1-equivariant. The
S1-spectrum X admits a canonical S1-equivariant map X → M tCp induced from
the commutative square

MhCp

V

��

id �� MhCp

NmCp

��

M
F �� MhCp

by taking vertical cofibers. The composition X → M tCp
ρtCp

−−−→ XtCp endows X
with the structure of a cyclotomic spectrum. Note that the map M tCp → XtCp is
an equivalence if M is bounded below, since the fiber is given by (MhCp

)tCp which
vanishes by the Tate orbit lemma [NS18, Lemma I.2.1]. When M is a p-typical
Cartier module, viewed as a p-typical topological Cartier module via Example 3.2,
the homotopy groups of M/V are given in Figure 1 on page 6.

Now, we give a rigorous construction of the ∞-category of p-typical topological
Cartier modules.
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18 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

Definition 3.6. The ∞-category TCartp of p-typical topological Cartier modules
is the pullback

(4) TCartp ��

��

(
SpBS1

)Δ2

(ev1,∂
1)

��

SpBS1 (id,NmCp )
�� SpBS1

×
(
SpBS1

)Δ1

,

where the bottom arrow sends an object M to the pair (M,MhCp

NmCp−−−−→ MhCp)
and the right-hand vertical arrow sends a 2-simplex

M1

f

���
��

��
��

�

M0 n
��

v

����������
M2,

expressing that n � f ◦ v, to the pair (M1,M0
n−→ M2). We will write M =

(M,VM , FM , σM ) for an object of TCartp, where M is a spectrum with S1-action,
VM : MhCp

→ M , FM : M → MhCp , and σM is a 2-simplex expressing an equiva-
lence NmCp

� FM ◦ VM .

For the rest of the section we will establish some facts about the ∞-category
TCartp including the fact that it is presentable and a formula for the mapping
spaces. Since this is a bit technical the reader might want to skip the rest of this
section on a first reading.

We recall the ∞-category CycSpFr
p of cyclotomic spectra with Frobenius lifts.

The objects are spectra X with S1-action equipped with an S1-equivariant map
ψp : X → XhCp . As an ∞-category CycSpFr

p is defined as the pullback

CycSpFr
p

��

��

(
SpBS1

)Δ1

(ev0,ev1)

��

SpBS1 (id,(−)hCp )
�� SpBS1

× SpBS1

,

or as LEq(id, (−)hCp) in the language of [NS18].

Lemma 3.7. There is a pullback square of stable ∞-categories

TCartp ��

��

SpBS1

× SpBS1

��

CycSpFr
p

��

(
SpBS1

)Δ1

,

where

(1) the left vertical functor sends (M,V, F, σ) to (M,F );
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 19

(2) the upper horizontal map sends (M,V, F, σ) to the pair (MhCp
,MhCp/F ),

where MhCp/F denotes the cofiber of M
F−→ MhCp ;

(3) the lower horizontal functor sends (M,F ) to the composition MhCp

NmCp−−−−→
MhCp → MhCp/F ;

(4) the right vertical map sends (X,Y ) to the zero map X
0−→ Y .

Proof. We consider the diagram of stable ∞-categories

(5) TCartp ��

��

(
SpBS1

)Δ2

i
��(

SpBS1
)Λ2

2

(ev1,∂1)
��

∂0 ��

(
SpBS1

)Δ1

(ev0,ev1)

��

SpBS1 (id,NmCp )
�� SpBS1

×
(
SpBS1

)Δ1
id×ev1 �� SpBS1

× SpBS1

,

where the left-hand square is the defining pullback for TCartp as in Definition 3.6
and the right-hand side is induced from the diagram of simplicial sets6

Δ2

Λ2
2

i

��

Δ1∂0
��

Δ0 �Δ1

{1}�∂1

��

Δ0 �Δ0

∂1�∂0

��

id�∂0
��

with i : Λ2
2 → Δ2 the “inclusion” and {1} denotes the map that hits the object

{1} ∈ Λ2
2. The square in this diagram of simplicial sets is a pushout of simplicial

sets and the lower horizontal map is a monomorphism. Therefore it is a pushout
in Cat∞ and thus the right-hand square in (5) is a pullback of stable ∞-categories.
We can insert a further pullback and obtain a diagram

(6) TCartp ��

��

(
SpBS1

)Δ2

i
��

CycSpFr
p

��

��

(
SpBS1

)Λ2
2

(ev1,∂1)
��

∂0 ��

(
SpBS1

)Δ1

(ev0,ev1)

��

SpBS1 (id,NmCp )
�� SpBS1

×
(
SpBS1

)Δ1
id×ev1 �� SpBS1

× SpBS1

,

6Note that we use evi for evaluation at the vertex i in Δn. For example for Δ1 we have that
ev0 corresponds to ∂1 and ev1 to ∂0.
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20 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

where the new term is equivalent to CycSpFr
p by pasting of pullback squares and

the left upper square is a pullback for the same reason. Finally we use that for
every stable ∞-category D there is a pullback square of the form

(7) DΔ2

i
��

(ev0,cofib(∂1))
�� D ×D

��

DΛ2
2 �� DΔ1

,

where the lower horizontal map sends a diagram

(8) B

��
��

��
��

��

A �� C

to the composition A → C → C/B and the right-hand vertical map sends (X,Y )

to the zero morphism X
0−→ Y . This pullback is just a manifestation of the fact that

filling a diagram as (8) is equivalent to choosing a nullhomotopy of the composition
A → B → C/B.

To finish the proof we paste together the upper square in diagram (6) with the

square (7) for D = SpBS1

. �

Now, we can give the desired formula for the mapping spectra in TCartp. Let
M = (M,VM , FM , σM ) and N = (N, VN , FN , σN ) be topological Cartier modules.
There is a map

ϑ : MapCycSpFr
p
(M,N) → Map

SpBS1

(
MhCp

, fib(FN )
)

which sends a map g : M → N in CycSpFr
p to the factorization of the map

gVM − VNghCp
: MhCp

→ N

through the map fib(FN ) → N induced from the canonical nullhomotopy

FN (gVM − VnghCp
) � gFMVM − FNVNghCp

� 0,

arising from the natural transformation (−)hCp

NmCp−−−−→ (−)hCp .

Proposition 3.8. For every pair of topological Cartier modules M and N there is
a fiber sequence

MapTCartp(M,N) → MapCycSpFr
p
(M,N)

ϑ−→ Map
SpBS1

(
MhCp

, fib(FN )
)

of spectra.

Proof. From the pullback square of Lemma 3.7 we get an induced pullback square
on mapping spectra of the form

MapTCartp
(M,N) ��

��

Map
SpBS1 (MhCp , NhCp)×Map

SpBS1 (MhCp/FM , NhCp/FN )

��

MapCycSpFr
p
(M,N) �� Map

(SpBS1)
Δ1 (MhCp → MhCp/FM , NhCp →NhCp/FN ).
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 21

Thus, to establish the fiber sequence in question, we have to identify the cofiber of
the right-hand map. The right-hand map has an obvious section which is induced

from the functor (SpBS1

)Δ
1 (ev0,ev1)−−−−−−→ SpBS1

× SpBS1

. The fiber of this section is
equivalent to the mapping spectrum

Map
SpBS1

(
MhCp

,Ω(NhCp/FN )
)
.

Since Ω(NhCp/FN ) � fib(FN ) this shows that the cofiber of the map

MapTCartp(M,N) → MapCycSpFr(M,N)

has the claimed homotopy type. Tracing through the identification lets us identify
the maps as stated. �

Remark 3.9. For every S1-spectrum M we can consider MhCp
as a cyclotomic

spectrum with Frobenius lift, where we choose the Frobenius lift to be the zero
map MhCp

→ (MhCp
)hCp . For every cyclotomic spectrum N with Frobenius lift

FN : N → NhCp we get an equivalence

Map
SpBS1

(
MhCp

, fib(FN )
)
� MapCycSpFr(MhCp

, N)

as one can directly verify from the description of mapping spectra in CycSpFr
p

using [NS18, Proposition II.1.5]. Using this equivalence we can rewrite the fiber
sequence of Proposition 3.8 as

MapTCartp(M,N) → MapCycSpFr
p
(M,N) → MapCycSpFr

p
(MhCp

, N),

in which the right-hand map can be described as the map sending g : M → N to

the map gVM − VnfhCp
: MhCp

→ N in SpBS1

which canonically refines to a map

in CycSpFr
p . This fact will be useful in Section 3.3.

There is also a “dual” version of Proposition 3.8 which we record to use later.
We consider the ∞-category

Alg(−)hCp

(
SpBS1

)
:= LEq

(
SpBS1

(−)hCp
��

id
�� SpBS1

)
of (−)hCp

-algebras. We will also abbreviate this ∞-category as Alg(−)hCp
. For

every topological Cartier module (M,F, V, σ) we get an object (M,V ) ∈ Alg(−)hCp
.

Proposition 3.10. For every pair of topological Cartier modules M,N there is a
fiber sequence

MapTCartp(M,N) → MapAlg(−)hCp

(M,N) → Map
SpBS1

(
cofib(VM ), NhCp

)
,

where the right-hand map admits a dual description to that of Proposition 3.8.

Proof. The proof is entirely dual to the one of Proposition 3.8: we first get a
pullback square of stable ∞-categories

TCartp ��

��

SpBS1

× SpBS1

��

Alg(−)hCp

��

(
SpBS1

)Δ1
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22 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

similar to the one of Lemma 3.7. Here the upper horizontal map sends (M,V, F, σ)
to (fib(V ),MhCp), the lower horizontal map sends (M,V ) to the map (fib(V ) →
MhCp

Nm−−→ MhCp), and the right vertical map sends a pair (X,Y ) to the zero
morphism from X to Y . Then as in the proof of Proposition 3.8 we compute the
mapping space in this pullback to get the result. �

Proposition 3.11. The ∞-category TCartp is stable and presentable and the

forgetful functor TCartp → SpBS1

preserves limits and colimits.

Proof. We follow the proof of [NS18, II.1.5]. The ∞-category TCartp is stable
because it is the pullback of stable ∞-categories along exact functors (see [Lura,
1.1.4.2]). Since TCartp is the pullback of accessible ∞-categories along accessible
functors, it is accessible itself by [Lur09, 5.4.6.6]. To see that TCartp admits co-

limits and that TCartp → SpBS1

preserves them, first suppose that K → TCartp
is a diagram which admits an extension to K	 → TCartp such that the induced

map K	 → SpBS1

is a colimit diagram. Since (−)hCp
preserves colimits and since

the forgetful functor CycSpFr
p → SpBS1

preserves colimits (see [NS18, Proposi-
tion II.1.5]), it follows from Proposition 3.8 that K	 → TCartp is a colimit too.
Now, let K → TCartp be an arbitrary diagram where K is a small simplicial

set. The composition K → TCartp → SpBS1

admits a colimit because SpBS1

is
presentable. Let

(colim
k∈K

M(k))hCp
� colim

k∈K
(M(k)hCp

)
colimVM(k)−−−−−−−→ colim

k∈K
M(k)

be the Verschiebung. Similarly, let

colim
k∈K

M(k)
colimk∈K FM(k)−−−−−−−−−−→ colim

k∈K
M(k)hCp → (colim

k∈K
M(k))hCp

define the Frobenius map. It is enough to show that the composition is equivalent
to NmCp

. But, the composition is equivalent to

(9) colim
k∈K

(M(k)hCp
)

colimk∈K NmCp |M(k)−−−−−−−−−−−−−−→ colim
k∈K

(M(k)hC
p

) → (colim
k∈K

M(k))hCp .

Since NmCp
is a natural transformation, there is a canonical commutative diagram

colimk∈K M(k)hCp
��

colimNmCp |M(k)

��

(colimk∈K M(k))hCp

NmCp |colim M(k)

��

colimk∈K M(k)hCp �� (colimk∈K M(k))hCp .

The top arrow is an equivalence, and we see that (9) is the desired norm. The

proof that TCartp → SpBS1

preserves limits is the same, using Proposition 3.8,

the fact that the forgetful functor CycSpFr
p → SpBS1

preserves limits by [NS18,

Proposition II.1.5], and the fact that (−)hCp preserves limits. �
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 23

Remark 3.12. The ∞-category TCartp is equivalent to the ∞-category of pullback

squares in SpBS1

of the form

M ��

��

X

��

MhCp �� M tCp

(where X = M/V ). This description is akin to Tate squares and shows that a
topological Cartier module M gives rise to a genuine Cp-spectrum

7 whose cate-
gorical fixed points are equivalent to the underlying spectrum. We will make this
analogy rigorous in Section 5.1. This category of pullback squares has an obvious
symmetric monoidal structure (algebras are such that all objects are algebras and
all maps are algebra maps), which will be discussed in more detail in future work
(see also Section 4).

Remark 3.13. Proposition 3.11 formally implies that TCartp has a single com-
pact generator K ∈ TCartp: we denote the left adjoint to the forgetful functor
TCartp → Sp by L and set K = L(𝕊). Then K is compact since if M � colimi Mi

is a filtered colimit in TCartp, then

MapTCartp(K, colim
i

Mi) � MapSp(𝕊, colim
i

Mi) � colim
i

MapSp(𝕊,Mi)

� colim
i

MapTCartp(K,Mi).

It is a generator because MapTCartp(K,M) � 0 implies by adjunction that M � 0.
It thus follows that TCartp is equivalent to the ∞-category of module spectra over

MapTCartp(K,K) = MapSp(𝕊,K) � K.

This endomorphism ring spectrum is a spectral version of the Raynaud–Cartier
ring which controls the operations on the de Rham–Witt complex. We will analyze
this ring spectrum in future work.

3.2. The t-structure on TCartp. We introduce a t-structure on TCartp which
will turn out to be compatible via the constructions in Examples 3.4 and 3.5 with
the t-structure introduced in Section 2 on cyclotomic spectra.

Definition 3.14. Let (TCartp)�0 denote the full subcategory of topological
Cartier modules whose underlying spectrum is connective, and let (TCartp)�0

denote the full subcategory whose underlying spectrum is coconnective. We will
call the objects of these ∞-categories the connective and coconnective p-typical
topological Cartier modules, respectively.

Proposition 3.15. The pair ((TCartp)�0, (TCartp)�0) defines an accessible t-
structure on TCartp with the following properties:

(i) the forgetful functor TCartp → SpBS1

is t-exact;
(ii) the functor (−)/V : TCartp → CycSpp constructed in Example 3.5 is right

t-exact;
(iii) the t-structure is compatible with filtered colimits;
(iv) the t-structure is left and right complete;

7The Cp-spectrum M admits an S1-action which is compatible with the Cp-equivariant struc-
ture, so it is really an S1-spectrum that is genuine for the family consisting only of Cp and the

trivial group.
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24 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

(v) the heart TCart♥p is equivalent to the abelian category of abelian groups
equipped with endomorphisms V and F such that FV = p.

Proof. Because (TCartp)�0 is presentable and closed under colimits and exten-
sions in TCartp, by [Lura, 1.4.4.11], there is some t-structure ((TCartp)�0, C) on
TCartp with connective part (TCartp)�0 and coconnective part some full subcat-
egory C ⊆ TCartp. Note that by Proposition 3.8, for every M ∈ (TCartp)�0 and
every N ∈ (TCartp)�−1, the mapping space MapTCartp(M,N) is contractible. It

follows that (TCartp)�0 ⊆ C. To prove that the inclusion is an equivalence, we
will prove that every topological Cartier module structure on a spectrum M with
S1-action extends to a structure on τ�0M and τ�−1M . In fact, it will be enough
to do this for τ�0M since it follows then for τ�−1M by taking cofibers.

Consider the composition (τ�0M)hCp
→ MhCp

V−→ M . Since (τ�0M)hCp
is

connective, this factors through the connective cover τ�0M → M , giving a com-
mutative diagram

(τ�0M)hCp
��

��

τ�0M

��

MhCp V
�� M.

Similarly, the composition τ�0M → M
F−→ MhCp factors through τ�0(M

hCp) �
τ�0((τ�0M)hCp), where the equivalence follows because the right adjoint functor
τ�0 commutes with limits. Hence, we get a commutative diagram

τ�0M ��

��

(τ�0M)hCp

��

M
F

�� MhCp .

Consider the prism Δ2×Δ1. We would like to construct a new object of (SpBS1

)Δ
2

defining a topological Cartier module structure on τ�0M , where the F and V maps
are the top horizontal arrows in the two commutative diagrams above. Moreover,
we need to have a map of topological Cartier modules τ�0M → M . This will be

provided by a map Δ1 → (SpBS1

)Δ
2

or, by adjunction, by a map Δ2×Δ1 → SpBS1

.
The commutative diagrams constructed above as well as the natural transforma-

tion NmCp
from (−)hCp

to (−)hCp provide a map from (∂Δ2)×Δ1 to SpBS1

. More-
over, the “bottom” of this triangular cylinder can be filled in with the 2-simplex σ
associated to the topological Cartier module structure onM . Decomposing Δ2×Δ1

into three 3-simplices (tetrahedra), we can use the fact that we can fill inner horns

(since SpBS1

is an ∞-category), to inductively fill in Δ2 ×Δ1, thus obtaining the
desired map.

Now, the cofiber of τ�0M → M is a TCartp-structure on τ�−1M . Since τ�0M ∈
(TCartp)�0 and τ�−1M ∈ (TCartp)�−1 ⊆ C[−1], it follows that in fact this is
the truncation sequence associated to M in the t-structure ((TCartp)�0, C). In
particular, we see that (TCartp)�0 � C, as desired.

Accessibility of the t-structure follows because (TCartp)�0 is presentable. The

t-exactness of TCartp → SpBS1

follows by construction. The right t-exactness of
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 25

TCartp → CycSpp follows because ifM ∈ (TCartp)�0, thenMhCp
is also connec-

tive and hence so is the cofiber M/V . Compatibility with filtered colimits follows

because filtered colimits are preserved by the forgetful functor TCartp → SpBS1

by

Proposition 3.11 and because the t-structure on SpBS1

is compatible with filtered
colimits by Proposition A.17. Right completeness follows from the right complete
version of [Lura, Proposition 1.2.1.19] since TCartp is right separated (by the con-

servativity of the forgetful functor TCartp → SpBS1

) and because (TCartp)�0 is
closed under filtered colimits and hence in particular countable coproducts inside
of TCartp. For left completeness, use that TCartp is left separated and recall

that TCartp → SpBS1

preserves limits by Proposition 3.11. It follows, as usual by
conservativity, that (TCartp)�0 is closed under countable products. We conclude
by [Lura, Proposition 1.2.1.19]. Finally, we see that the heart consists precisely of
topological Cartier modules whose underlying spectrum is discrete. Since the S1-
action is automatically trivial, we are reduced to the objects of Example 3.2. �

Remark 3.16. Alternatively, to prove the existence, accessibility, and complete-
ness of the t-structure on TCartp, one can show that the ring spectrum K of
Remark 3.13 is connective and identify the t-structure above on TCartp with
the Postnikov t-structure on K-module spectra, which has the desired properties
by [Lura, 7.1.1.13].

3.3. Topological Cartier modules and cyclotomic spectra. The functor

(−)/V : TCartp → CycSpp

of Example 3.5 preserves all colimits and thus is a left adjoint by the adjoint functor
theorem. The first result of this section identifies the right adjoint.

Proposition 3.17. The functor TR: CycSpp→TCartp is right adjoint to (−)/V .

Construction 3.18. Let us review our candidate functor TR first, which was
sketched in Example 3.4. By construction, for every cyclotomic spectrum X (no
boundedness assumptions) the spectrum

TR(X) =
(
. . .×

(XtCp )
hC

p2
XhCp2 ×(XtCp )hCp XhCp ×XtCp X

)
comes equipped with a canonical S1-action and an S1-equivariant map π : TR(X)→
X. Moreover there is an evident S1-equivariant equivalence

(10) Φ: TR(X)
�−→ X ×XtCp TR(X)hCp ,

where the pullback involves the cyclotomic Frobenius X → XtCp and the map
TR(X)hCp → XtCp is given by one of the two equivalent compositions in the
square

TR(X)hCp

can

��

πhCp
�� XhCp

can

��

TR(X)tCp
πtCp

�� XtCp .

Under Φ, the map π corresponds to projection onto the first factor. Now let us
construct the structure of a topological Cartier module TR(X) from Example 3.4
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26 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

a little bit more carefully. The map F : TR(X) → TR(X)hCp is obtained as the
composite

F : TR(X)
Φ−→ X ×XtCp TR(X)hCp

pr2−−→ TR(X)hCp

and the map V as the composite

V : TR(X)hCp

(0,Nm)−−−−→ X ×XtCp TR(X)hCp
Φ−1

−−−→ TR(X),

where the first map is zero onto the first factor and the norm into the second factor,
using the canonical nullhomotopy of can ◦Nm. Now the composition F ◦ V comes
by definition with a homotopy to the norm.

Moreover by construction of V the composite TR(X)hCp

V−→ TR(X)
π−→ X is

canonically nullhomotopic and thus gives rise to a map TR(X)/V → X. This map
admits a refinement to a map of cyclotomic spectra induced by the compatible
nullhomotopies of the horizontal maps in the commutative diagram

TR(X)hCp

V ��

��

TR(X)

F

��

π �� X

��

TR(X)hCp

Nm �� TR(X)hCp �� XtCp .

Unwinding the definitions, we see that the map TR(X)/V → X is an equivalence
precisely if the map

(11) πtCp : TR(X)tCp → XtCp

is an equivalence. Indeed, the fiber F of TR(X) → X is naturally equivalent to
the fiber of TR(X)hCp → XtCp and there is a natural map from TR(X)hCp

to this

fiber. We have TR(X)hCp
� F (equivalently, TR(X)/V � X) if and only if XtCp

is the cofiber of the norm map TR(X)hCp
→ TR(X)hCp .

In general, the map TR(X)/V → X induces a natural transformation of functors
TR → R, where R is the right adjoint to (−)/V .

Proof of Proposition 3.17. We have to verify that TR satisfies the universal prop-
erty of the right adjoint, i.e., that for every pair of a topological Cartier module M
and a cyclotomic spectrum X the induced map

MapTCartp(M,TR(X)) → MapCycSpp
(M/V,X)

is an equivalence of spectra. We use the fiber sequence for the mapping space in
TCartp in the form established in Remark 3.9:

MapTCartp(M,TR(X)) → MapCycSpFr
p
(M,TR(X))

→ MapCycSpFr
p
(MhCp

,TR(X)) .

Recall that the objects of CycSpFr
p are spectra M with S1-action equipped with an

S1-equivariant map ψp : M → MhCp . Composing with the canonical map MhCp →
M tCp defines a p-typical cyclotomic spectrum, giving a colimit-preserving functor

CycSpFr
p → CycSpp.
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 27

A result of A. Krause and the second author [KN, Proposition 10.3] says that the
right adjoint is given by TR. Using this we can retranslate the fiber sequence above
into

MapTCartp(M,TR(X)) → MapCycSpp
(M,X) → MapCycSpp

(MhCp
, X),

where the cyclotomic spectrumMhCp
has the trivial Frobenius MhCp

0−→ (MhCp
)tCp .

Using the description of the maps we see that the right-hand map in this fiber
sequence is the map induced from the map V : MhCp

→ M of cyclotomic spectra.8

Now the claim follows from the fact that the cyclotomic spectrum M/V is by
construction the cofiber of the map MhCp

→ M . �

Lemma 3.19. The natural map TR(X)/V → X is an equivalence if X is bounded
below.

Proof. We first recall that (−)hCp
and (−)tCp preserve sequential limits of uni-

formly bounded below spectra with S1-action by Lemma 2.11. Now, as noted
above, TR(X)/V → X is an equivalence if and only if the arrow of (11) is an
equivalence. There are cofiber sequences TRn(X)hCp

→ TRn+1(X) → X for each

n � 0. Applying (−)tCp and using the Tate orbit lemma, which holds as X is
bounded below, we see that TRn+1(X)tCp � XtCp for all n. Since (−)tCp com-
mutes with limits of towers of uniformly bounded below spectra by the discussion
at the beginning of the proof, TR(X)tCp � XtCp . �

Let TCart−p and CycSp−
p denote the full subcategories of TCartp and CycSpp

on the bounded below objects.

Definition 3.20. Say that a bounded below M ∈ TCart−p is V -complete if the
limit of the tower

· · · → MhCp2

VhCp−−−→ MhCp

V−→ M

vanishes. Write V n for the composition MhCpn

VhC
pn−1−−−−−−→ MhCpn−1 → · · · →

MhCp

V−→ M . Let ̂TCart−p ⊆ TCart−p be the full subcategory of V -complete
bounded below p-typical topological Cartier modules. We will say that a map
M → M̂ in TCart−p is a V -completion if M̂ is V -complete and if the natural for-

getful map MapTCartp(M̂,N) → MapTCartp(M,N) is an equivalence for every

N in ̂TCart−p .

Theorem 3.21. The functor TR: CycSp−
p → TCart−p is fully faithful and t-

exact with left adjoint M �→ M/V . The essential image is the full subcategory of
V -complete bounded below p-typical topological Cartier modules.

Proof. The first claim follows immediately from the fact that M �→ M/V is right t-
exact, that TR is t-exact, and that the counit map TR(X)/V → X is an equivalence
for X ∈ CycSpp bounded below, which was proved in Lemma 3.19. The second
claim follows from the next proposition. �

8Note that this is not a map of cyclotomic spectra with Frobenius lifts, even though source
and target have Frobenius lifts.
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28 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

Proposition 3.22. If M ∈ TCart−p is bounded below, then limn M/V n admits the
structure of a p-typical Cartier module and there is a natural map M → limn M/V n

exhibiting limn M/V n as the V -completion of M .

Proof. By the first part of Theorem 3.21, there are two claims to check: first that
TR(X) is V -complete for any bounded below p-typical cyclotomic spectrum X
(apply this to X = M/V ); second that TR(M/V ) � limn M/V n for a bounded
below p-typical topological Cartier module. Indeed, the p-typical Cartier module
structure on limn M/V n comes from that on TR(M/V ) via Construction 3.18.
The natural map is then the unit map M → TR(M/V ) of the adjunction. We have
that TR(N/V ) is V -complete and hence N � TR(N/V ) for any V -complete M .
In particular, MapTCartp(TR(M/V ), N) � MapTCartp(TR(M/V ),TR(N/V )) �
MapCycSpp

(M/V,N/V ) � MapTCartp(M,N) for N ∈ ̂TCart−p by Proposition

3.17, which shows that TR(M/V ) is a V -completion of M .
For the first claim, note that for each n the cofiber sequence

TR(X)hCpn
/TR(X)hCpn+1 → TR(X)/TR(X)hCpn+1 → TR(X)/TR(X)hCpn

is equivalent to the cofiber sequence

XhCpn
→ XCpn

R−→ XCpn−1 ,

from which it follows immediately that TR(X) � limn TR(X)/TR(X)hCpn+1 , or

equivalently that limn TR(X)hCpn+1 � 0. Similarly, the cofiber sequence

(M/V )hCpn
→ (M/V )Cpn

R−→ (M/V )Cpn−1

is inductively equivalent to

MhCpn
/MhCpn+1 → M/MhCpn+1 → M/MhCpn

,

which is what we wanted to show. �

Remark 3.23. We have defined what it means to be V -complete for a bounded
below topological Cartier module. In general, one can consider the Bousfield local-
ization of TCartp at the mod V -equivalences, i.e., all the maps in TCartp that
become equivalences after applying the functor TCartp → CycSpp. This defines
a Bousfield localization of the ∞-category TCartp by the results of [Lur09, Section
5.5.4]. The local objects are those topological Cartier modules N for which the
induced map

MapTCartp(M,N) = 0

whenever M/V = 0. It follows from the adjunction of Proposition 3.17 that
TR(X) is mod V -local for every cyclotomic spectrum X. In general, the map
M → TR(M/V ) is not a mod V -equivalence, but it is if M is bounded below.
Therefore, a bounded below topological Cartier module is mod V -local precisely if
it is V -complete in the sense of Definition 3.20. For a bounded below topological
Cartier module the map M → TR(M/V ) � limM/V n is the mod V -localization.
When M is not bounded below, this localization is mysterious and we do not know
how to describe it or how to understand the mod V -local objects. See also Propo-
sition 3.32 below.
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 29

3.4. The heart. From Theorem 3.21, we see that CycSp♥
p is the full subcategory

of TCart♥p consisting of V -complete objects. This notion of V -complete is in the

ambient stable ∞-category TCart−p . The goal of this section is to describe a more
intrinsic notion, making reference only to the abelian category of p-typical Cartier
modules, that agrees with V -completeness for objects of TCart♥p .

Definition 3.24. If M is a p-typical Cartier module, we say that M is derived

V -complete if the limit lim(· · · → M
V−→ M

V−→ M) vanishes (in the derived

category D(ℤ)), or equivalently, if the canonical map M → limn cofib(M
V n

−−→ M)
is an equivalence. We denote the category of p-typical Cartier modules by Cartp

and the full subcategory of derived V -complete Cartier modules by ̂Cartp.

Lemma 3.25. Let M be a p-typical topological Cartier module concentrated in a
single degree as in Example 3.2. Then M is V -complete as a p-typical topological
Cartier module if and only if it is derived V -complete as a p-typical Cartier module.

Proof. First, assume that M is derived V -complete. We have to show that the limit
of the diagram

(12) · · ·
VhC

p2−−−−→ MhCp2

VhCp−−−→ MhCp

V−→ M

of spectra vanishes as well. This diagram can be written as the diagonal of the
diagram

...

V⊗BCp2

��

...

V⊗BCp

��

...

V

��

· · · id⊗t2 �� M ⊗BCp2

id⊗t1 ��

V⊗BCp2

��

M ⊗BCp
id⊗t0 ��

V⊗BCp

��

M

V

��

· · · id⊗t2 �� M ⊗BCp2

id⊗t1 �� M ⊗BCp
id⊗t0 �� M,

where tn : BCpn+1 → BCpn is the canonical projection. Then the diagonal limit can
also be computed by first computing the vertical limits followed by the horizontal
one. We claim that all the vertical limits are already trivial so that also the limit of
(12) vanishes. For the rightmost column this is by assumption true. For the other
columns we invoke part (b) of Lemma 2.11 to see that they also vanish.

The converse statement follows since for any diagram of spectra · · · → X2 →
X1 → X0 with vanishing limit the induced diagram · · · → π0(X2) → π0(X1) →
π0(X0) as a diagram of abelian groups has vanishing derived limit. This can be
seen by writing the inverse limit as the fiber of a map∏

Xi →
∏

Xi

which is then an equivalence since the limit vanishes. Thus it induces a bijection
on π0 which implies the claim since the homotopy groups of the derived limit of
the π0-diagram are the kernel (lim) and cokernel (lim1) of this map. �

Theorem 3.21 and Lemma 3.25 imply the following theorem, which completes
the proof of Theorem 1.
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30 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

Theorem 3.26. The heart CycSp♥
p ⊆ TCart♥p is the full subcategory of derived

V -complete p-typical Cartier modules.

Proof. Since TR: CycSp−
p → TCart−p is fully faithful and t-exact, it embeds the

heart CycSp♥
p fully faithfully into TCart♥p . An object M of TCart♥p is moreover

in CycSp♥
p if and only if M → TR(M/V ) is an equivalence. Indeed, if M ∈

TCart♥p is equivalent to TR(N) for some N ∈ CycSp♥
p , then M is V -complete by

Theorem 3.21 and M � TR(M/V ). On the other hand, if M � TR(M/V ), then
πcyc
i M/V = 0 for i > 0 since TR is fully faithful on bounded below objects. Since

the cyclotomic t-structure is left separated, this implies M/V ∈ CycSp♥
p . Now,

M � TR(M/V ) if and only if M is V -complete as a p-typical topological Cartier
module by Theorem 3.21. This happens if and only if M is derived V -complete by
Lemma 3.25. �

Using the theorem, we can prove that the t-structure on CycSpp is not compat-
ible with filtered colimits.

Example 3.27. For the purposes of this example, we consider every abelian group
M as a p-typical Cartier module with V = p and F = id. Then, M is derived V -
complete if and only if M is derived p-complete. Now we have the filtered colimit

colim
n

ℤ/pn = ℚp/ℤp,

which we consider as a filtered colimit of p-typical Cartier modules. The p-typical
Cartier modules ℤ/pn are derived V -complete. The module ℚp/ℤp is not derived
V -complete and the derived V -completion is given as the cofiber of the derived V -
completions of ℤp and ℚp. The first is already derived V -complete and the derived
V -completion of ℚp is trivial. Hence, the derived V -completion of ℚp/ℤp is ℤp[1].

Thus the heart CycSp♥
p is not closed under filtered colimits in (CycSpp)�0.

Theorem 3.26 generalizes by induction to give a description of all V -complete
bounded below p-typical topological Cartier modules. The reader should compare
this to the fact that a complex M ∈ D(ℤ) is p-complete if and only if each homology
group Hn(M) is derived p-complete.

Proposition 3.28. A bounded below p-typical topological Cartier module M is V -
complete precisely if all its homotopy groups are derived V -complete when considered
as p-typical Cartier modules.

Proof. Assume that M is connective and V -complete. Then, as in the second
part of the proof of Lemma 3.25, we see that π0M is derived V -complete as a p-
typical Cartier module. We consider the fiber sequence τ�1M → M → π0M . By
Lemma 3.25, π0M is V -complete and by assumption M is. It follows that τ�1M
is as well. By induction we get that all homotopy groups are derived V -complete
when considered as classical Cartier modules.

For the converse assume that all homotopy groups are derived V -complete as
p-typical Cartier modules. We first write M as the limit of its Postnikov tower.
Since completion commutes with this limit (the construction uses homotopy orbits,
cofibers, and a sequential limit, all of which preserve limits of uniformly bounded
below objects by Lemma 2.11), we can assume that M is bounded above. Then,
we can reduce to a single homotopy group by using iterated extensions as in the
first part of the proof. Finally, we can apply Lemma 3.25. �
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We now describe the algebraic “completion” functor for algebraic Cartier mod-
ules to get a better understanding of the heart. This will be relevant in the next
section.

Lemma 3.29. The inclusion of derived V -complete p-typical Cartier modules into
p-typical Cartier modules is reflective. The left adjoint LM can be described as π0

of the V -completion of M as a topological Cartier module or as π0TR(M/V ). It is
also equivalent to H0 of the derived inverse limit of the tower

· · · → cofib(M
V 2

−−→ M) → cofib(M
V−→ M)

in the derived category D(ℤ).

Proof. By the previous results we have a commutative diagram

̂Cartp ��

��

Cartp

��

( ̂TCartp)�0
�� (TCartp)�0,

where ( ̂TCartp)�0 = (TCartp)�0∩ ̂TCart−p . Passing to left adjoints and applying
to discrete topological Cartier modules we get the first claim. Now observe that π0

of the inverse limit

M∧
V = lim(· · · → M/V 3 → M/V 2 → M/V )

(recall that M/V n means the cofiber of the map V n : MhCpn
→ M) is equivalent

to π0 of the inverse limit

lim(· · · → τ�1(M/V 3) → τ�1(M/V 2) → τ�1(M/V ))

and that the canonical map τ�1(M/V n) to cofib(M
V n

−−→ M) is an equivalence which
follows immediately from the long exact sequences. �

We warn the reader that L is a slightly non-standard operation and we will
refer to it as the algebraic derived V -completion. The crucial property is that

L : Cartp → ̂Cartp is a left adjoint (and hence is right exact) and that for V -
torsion free modules it is just given by the usual inverse limit limn M/V n.

Lemma 3.30. If M is V -torsion free, then so is LM .

Proof. Since M is V -torsion free, the kernel of V : limn M/V n → limn M/V n is
given by the inverse limit of the kernels of the maps

V : coker(M
V n

−−→ M) → coker(M
V n

−−→ M).

But these kernels are isomorphic to coker(M
V−→ M) through the map

coker(M
V−→ M) → ker(coker(M

V n

−−→ M) → coker(M
V n

−−→ M))

which sends m in M to V n−1(m). Under this equivalence the diagram over which
we have to take the limit is the diagram

· · · 0−→ coker(M
V−→ M)

0−→ coker(M
V−→ M)

0−→ coker(M
V−→ M)

whose limit is 0. This shows that LM is V -torsion free. �
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Lemma 3.31. For a map M → N between V -torsion free Cartier modules, the
induced map LM → LN on algebraic V -completions is an isomorphism precisely if

the induced map coker(M
V−→ M) → coker(N

V−→ N) is an isomorphism.

Proof. By the derived V -completion we shall mean the object of the derived cate-
gory given on underlying abelian groups by the (derived) inverse limit

lim
n

cofib(M
V n

−−→ M).

The V -operator on this limit can be described in the obvious way coming from a
map of diagrams. We claim that a map M → N between not necessarily V -torsion
free p-typical Cartier modules induces an equivalence on derived V -completions pre-

cisely if it induces an equivalence cofib(M
V−→ M) → cofib(N

V−→ N). To see this

note that cofib(limn cofib(M
V n

−−→ M)
V−→ limn cofib(M

V n

−−→ M)) � cofib(M
V−→ M)

which implies that a map which is an equivalence after derived V -completion is

also an equivalence after mod V reduction. Conversely, if cofib(M
V−→ M) →

cofib(N
V−→ N) is an equivalence, then one shows inductively using the fiber se-

quence

cofib(M
V−→ M) → cofib(M

V n

−−→ M) → cofib(M
V n−1

−−−→ M)

and the analogous one for N to show that cofib(M
V n

−−→ M) → cofib(N
V n

−−→ N) is
an equivalence for every n which implies that the map on the limit is an equivalence.

�
To conclude, we note that the right t-completion of the ∞-category of cyclotomic

spectra is a localization of TCartp. This will not be needed in the rest of the paper.

Proposition 3.32. The functor (−)/V : TCartp → CycSpp factors through the
right completion

Sp((CycSpp)�0) → CycSpp

of p-typical cyclotomic spectra with respect to the cyclotomic t-structure. The in-
duced map TCartp → Sp((CycSpp)�0) exhibits the right completion as a localiza-
tion of TCartp. The local objects are those topological Cartier modules all of whose
homotopy groups are derived V -complete.9

Proof. Because TR is t-exact, we have a commutative diagram

· · · �� (CycSpp)�n

τ�n+1
��

TR

��

(CycSpp)�n+1
��

TR

��

· · ·

· · · �� (TCartp)�n

τ�n+1
�� (TCartp)�n+1

�� · · ·
of ∞-categories, where the vertical maps are fully faithul with essential image con-
sisting of n-connective topological Cartier modules that are V -complete. By Propo-
sition 3.28 these are equivalently those n-connective topological Cartier modules
whose homotopy groups are derived V -complete. Taking the limit, as n → −∞, we
obtain a fully faithful embedding

Sp((CycSpp)�0) → TCartp,

9We would like to thank the anonymous referee for suggesting this explicit characterization of
the local objects.
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where Sp((CycSpp)�0) is the right completion of CycSpp with respect to the
cyclotomic t-structure. (Recall from Proposition 3.15 that TCartp is already right
complete.) This inclusion functor preserves limits and is accessible, and thus admits
a left adjoint. Moreover the essential image consists of those topological Cartier
modules all of whose homotopy groups are derived V -complete. �

3.5. p-typical Cartier complexes. LetM be a p-typical topological Cartier mod-
ule. We have already seen in Section 3.3 that the homotopy groups π∗M admit the
structure of p-typical Cartier modules, i.e., for every k ∈ ℤ the induced maps

V : πkM → πkM and F : πkM → πkM

satisfy FV = p. Moreover from the S1-action on M we get a “Connes operator”

d : πkM → πk+1M

which satisfies d2 = ηd = dη, where η here denotes the map

η : πkM → πk+1M

given by acting with the Hopf element η ∈ π1(𝕊). In particular the map η is 2-
torsion and η4 = 0. To see this we note that the map d is defined by acting with an
element d in π1 of the spherical group ring 𝕊[S1] which is given by the fundamental
class in π1(S

1) shifted to the basepoint 0 in 𝕊[S1]. Then the claim follows from the
fact that

π∗(𝕊[S
1]) = (π∗𝕊)[d]/(d2 = ηd)

which is implied by the determination of the stable homotopy class of the multi-
plication map S1 × S1 → S1. This map is after a single suspension given by the
map

S2 ∨ S2 ∨ S3 → S2

which is the inclusions on the first two summands and the Hopf map on the last.
See also [HM04] for a discussion.

Lemma 3.33. For a topological Cartier module M we have on π∗M the relations

V d = pdV, dF = pFd, FdV =

{
d for p > 2,

d+ η for p = 2

and the maps F, V commute with η.

Proof. The S1-equivariant map V : MhCp
→ M can equivalently be considered

as an S1-equivariant map M → respM , where respM has the S1-action given by
restricting the S1-action onM along the p-fold cover map S1 → S1 given by z �→ zp.
Thus we get that on homotopy groups V (d(x)) = d′V (x), where d′ : πkM → πk+1M
is the Connes operator associated with the S1-action on respM . But d′ = pd since
the p-fold cover map is of degree p. Hence, we see that

V d = d′V = pdV.

The Frobenius can dually be considered as a map respM → M and we therefore
find

dF = Fd′ = Fpd = pFd.

To identify FdV : π∗M → π∗+1M we note that we can write this as a composite

π∗M
ι−→ π∗(MhCp

)
V∗−→ π∗M

d−→ π∗+1M
F∗−−→ π∗+1(M

hCp)
κ−→ π∗+1M,
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where ι and κ are the structure maps and the maps V∗ and F∗ are the maps induced
by the spectral maps V and F on homotopy groups. The operator called abusively
V above was defined as the composite V∗ ◦ ι and similarly for F . Since V is S1-
equivariant we find that the composite of the maps is equal to

κ ◦ d′ ◦ F∗ ◦ V∗ ◦ ι = κ ◦ d′ ◦NmCp
◦ ι ,

where d′ is the Connes operator for the residual S1-action on MhCp
.10 Now we

claim that for every S1-spectrum M (not necessarily a p-typical topological Cartier
module) the composite κ ◦ d′ ◦ NmCp

◦ ι is given by d : π∗M → π∗+1M for p odd
and by d+ η : π∗M → π∗+1M for p = 2. It is enough to show this claim for M the
free S1-spectrum on a generator in degree 0, which is to say for M = Σ∞

+ S1 and
the class x ∈ π0(M) induced by the basepoint 1 ∈ S1. We have identifications

M � MhCp
� MhCp � 𝕊 ⊕ Σ𝕊

such that under these identifications the map ι : M → MhCp
is given by the

map id⊕p : 𝕊 ⊕ Σ𝕊 → 𝕊 ⊕ Σ𝕊, the norm is given by the identity, and the map
κ : MhCp → M is given by the map p⊕ id : 𝕊 → 𝕊 for p odd and by the map(

p η
0 id

)
: 𝕊 ⊕ Σ𝕊 → 𝕊 ⊕ Σ𝕊

for p = 2 (see the proof of [Hes96, Lemma 1.5.1] for an argument). Under these
identifications the operator d′ takes 1 ∈ 𝕊⊕Σ𝕊 = MhCp

to the unit element in π1 of
Σ𝕊. Then the claim follows by a straightforward computation. The commutativity
of the maps F and V with η is clear since these are stable maps. �

Now, we make this structure into a definition which is inspired by the definition
of a Dieudonné complex in [BLM].

Definition 3.34. A p-typical Cartier complex is a ℤ-graded abelian group C∗

together with operators

V, F : C∗ → C∗ and η, d : C∗ → C∗+1

satisfying

FV = p, d2 = ηd = dη, 2η = η4 = 0,

V d = pdV, dF = pFd, FdV =

{
d for p > 2,

d+ η for p = 2.

Remark 3.35. Hesselholt–Madsen [HM04] and Hesselholt [Hes15, Definition 4.1]
introduced the notion of a Witt complex. The universal example is the abso-
lute de Rham–Witt complex. These Witt complexes give examples of p-typical
Cartier complexes in the sense of Definition 3.34 with η given by multiplication
with d log[−1] = [−1] · d[−1]. In fact Witt complexes should be considered as a
multiplicative version of Cartier complexes (with some additional structure like a
map from the Witt vectors). We will study the precise relation in future work.

10This map is also equal to κ ◦NmCp ◦ d′ ◦ ι for d′ corresponding to the residual S1-action on

MhCp but we shall not need this fact.
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 35

Lemma 3.33 shows that the homotopy groups C∗ := π∗M of a p-typical topo-
logical Cartier module M naturally form a p-typical Cartier complex. The state-
ment of Proposition 3.28 is that for bounded below M the V -completeness of M
is equivalent to the derived V -completeness of the terms π∗M . In particular, the
completeness of M can be entirely expressed in terms of the associated p-typical
Cartier complex. More generally one can ask that all the terms Ci be derived
V -complete for a general Cartier complex C∗. It turns out in practice that this
condition is somewhat hard to verify since the V -adic filtration does not take the
differential d into account. For example, in the case of the de Rham–Witt complex
which will be treated later, the quotients by iterations of V will not be the trun-
cated de Rham–Witt complexes. We will now give a completeness condition for a
p-typical Cartier complex that is equivalent to degreewise derived V -completeness
but closer to the notions of completeness that arise for the de Rham–Witt complex.

Construction 3.36. Let C∗ be a p-typical Cartier complex. For every i ∈ ℤ and
r � 0 we define a derived quotient Ci/(V r + dV r) in D(ℤ) as the total cofiber of
the commutative square

Ci−1 pr

��

d
��

Ci−1

dV r

��

Ci V r
�� Ci.

This total cofiber is by definition the cofiber of the map V r + dV r : Ci ⊕Ci−1

Ci−1 → Ci (where the source is the derived pushout) and this justifies the notation
Ci/(V r + dV r).

There is a natural diagram

· · · → Ci/(V 3 + dV 3) → Ci/(V 2 + dV 2) → Ci/(V + dV )

where the map Ci/(V r+1 + dV r+1) → Ci/(V r + dV r) is induced from the map
of squares given by the identity on the lower right term, by pV on the upper left
term, and by V on the other two terms. We will denote the (derived) limit of this
diagram as (Ci)∧V+dV ∈ D(ℤ). There is a canonical map

Ci → (Ci)∧V+dV

induced from the structure map out of the lower right corner of the defining square
for Ci/(V r + dV r).

Definition 3.37. A Cartier complex C∗ is called derived (V + dV )-complete if
for every i the map

Ci → (Ci)∧V+dV

from Construction 3.36 is an equivalence in D(ℤ).

Now we show that for a bounded below Cartier complex this notion of (V +dV )-
completeness is equivalent to the naive notion of degreewise derived V -completeness.
The latter means that for every i the Cartier module Ci is derived complete in the
sense of Definition 3.24. Bounded below means that there exists i0 such that Ci = 0
for i < i0 (we hope that the cohomological notation does not lead to confusion).

Proposition 3.38. A bounded below Cartier module C∗ is derived (V + dV )-
complete precisely if it is degreewise derived V -complete.

Licensed to Univ of Rochester. Prepared on Mon Oct  2 07:26:52 EDT 2023 for download from IP 128.151.13.109.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



36 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

Proof. We can assume by shifting that Ci = 0 for i < 0. For C0 we then obtain
that C0/(V r +dV r) = C0/V r and that (C0)∧V+dV = (C0)∧V , where the latter is the

derived V -completion. It follows that C0 is derived (V + dV )-complete precisely if
it is derived V -complete.

Now we proceed by induction over i. Assume that Ci−1 is derived V - and
(V + dV )-complete. We will show that Ci is derived (V + dV )-complete precisely
if it is derived V -complete. By definition (Ci)∧V+dV is the limit of total cofibers of
squares

Ci−1 pr

��

d
��

Ci−1

dV r

��

Ci V r
�� Ci.

The limit is taken over maps of total cofibers obtained from maps of squares. Thus
we can equivalently describe (Ci)∧V+dV as the total cofiber of the square obtained
as the limit of these maps of squares. This limit square is

lim(· · · pV−−→ Ci−1 pV−−→ Ci−1 pV−−→ Ci−1) ��

��

lim(· · · V−→ Ci−1 V−→ Ci−1 V−→ Ci−1)

��

lim(· · · V−→ Ci V−→ Ci V−→ Ci) �� Ci.

The upper right term vanishes by the assumption that Ci−1 is derived V -complete;
the upper left term vanishes since the inverse limit can be written equivalently as
the limit of

· · · p−→ lim
i,V

Ci−1 p−→ lim
i,V

Ci−1 p−→ lim
i,V

Ci−1,

where limi,V Ci−1 is the term in the upper right corner, which we have already
noted is zero. In other words the limit square takes the form

0 ��

��

0

��

limi,V Ci �� Ci.

From this description it follows that the map from Ci to the total cofiber of this
square is an equivalence precisely if the lower left corner vanishes, i.e., if Ci is
derived V -complete. This finishes the proof. �

4. The symmetric monoidal structure

According to Corollary 2.14 we get an induced symmetric monoidal structure on
CycSp♥

p from the tensor product of cyclotomic spectra. In this section we shall
give an explicit formula for this symmetric monoidal structure and explore some
consequences. We will come back to this in later work.

4.1. The tensor product of topological Cartier modules. In this section we

shall describe the symmetric monoidal structure on ̂TCart−p induced through the

equivalence ̂TCart−p � CycSp−
p from the one on cyclotomic spectra. We denote
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 37

the tensor product corresponding to the symmetric monoidal structure on ̂TCart−p
by �̂. More precisely we have that

M�̂N := TR(M/V ⊗N/V ),

where ⊗ is the tensor product of cyclotomic spectra whose underlying spectrum is
just the tensor product of spectra. In this section we will follow the convention that
⊗ shall always refer to symmetric monoidal structures that are taken “underlying”

in this sense. Our first task is to give a more explicit formula for M�̂N and then
we will identify the induced symmetric monoidal structure on the heart explicitly.
In future work we will show that this symmetric monoidal structure on (TCart−p )

∧
V

is induced by a natural symmetric monoidal structure on TCartp which will be
denoted by � and use this to understand the relation to de Rham–Witt complexes
that will be explained in Section 6 over general bases.

Recall the ∞-category CycSpFr
p of cyclotomic spectra with Frobenius lift. There

are natural forgetful functors

TCartp → CycSpFr
p → CycSpp,

where the first functor just forgets the V operator and the second sends (X,ψp) to

the cyclotomic spectrum X equipped with the Frobenius X → XhCp
can−−→ XtCp . As

proven in [KN, Proposition 10.3], the second functor admits a right adjoint given by
TR, which, as we have proved above, factors canonically through the first category.
The first functor TCartp → CycSpFr

p admits both adjoints by the adjoint functor
theorem, but we will only be concerned with the left adjoint here.

Lemma 4.1. The forgetful functor

TCartp → CycSpFr
p

is monadic. The underlying S1-spectrum of the left adjoint applied to M in
CycSpFr

p is given by M [V ] :=
⊕

n�0 MhCpn
with the structure of a topological

Cartier module that will be described in the proof.

Proof. The forgetful functor reflects equivalences and preserves all colimits and
limits. Thus, it follows from Lurie’s version of the monadicity theorem that it is
monadic (see [Lura, 4.7.0.3]). To understand the left adjoint functor we give a
construction of an object M [V ] ∈ TCartp. As a spectrum with S1-action we set

M [V ] :=
⊕
n�0

MhCpn
,

where MhCpn
carries the residual S1/Cpn ∼= S1-action. We now want to equip

M [V ] with the structure of a p-typical topological Cartier module. To this end, we
define the V -operator as the inclusion

M [V ]hCp
�

⊕
n�1

MhCpn
→

⊕
n�0

MhCpn
= M [V ]

and the F -operator as the composition

⊕
n�0

MhCpn
→

⊕
n�0

(
MhCpn

)hCp →

⎛⎝⊕
n�0

MhCpn

⎞⎠hCp

= M [V ]hCp ,
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38 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

where the second map is the canonical interchange map and the first is given on
the (n = 0)-summand by F and on the nth summand by the Cp-norm map

MhCpn
� (MhCpn−1 )hCp

→ (MhCpn−1 )
hCp

followed by the inclusion into the direct sum. There is a canonical equivalence
between the composition F ◦ V and the norm map, as the latter also factors as the
composition

M [V ]hCp
�

⊕
n�1

MhCpn

⊕
NmCp−−−−−−→

⊕
n�1

(MhCpn−1 )
hCp →

⎛⎝⊕
n�1

MhCpn−1

⎞⎠hCp

.

Now we compute the mapping spectrum MapTCartp(M [V ], N) and show that the

canonical map to MapCycSpFr
p
(M,N), induced by the forgetful functor TCartp →

CycSpFr
p and the map M → M [V ] of cyclotomic spectra with Frobenius lifts, is an

equivalence. Here we abusively denote the “underlying” cyclotomic spectrum with
Frobenius lift of N also by N . To this end we use the formula for the mapping
space in TCartp given in Proposition 3.10 and get a fiber sequence

MapTCartp(M [V ], N) → MapAlg(−)hCp

(M [V ], N)(13)

ϑ−→ Map
SpBS1

(
cofib(VM ), NhCp

)
.

Note that cofib(VM ) = M . Moreover, it is straightforward to check that
MapAlg(−)hCp

(M [V ], N) � Map
SpBS1 (M,N). In fact M [V ] is by construction

free as a (−)hCp
-algebra if we neglect the F -operators. Under these identifications

the fiber sequence (13) takes the form

MapTCartp(M [V ], N) → Map
SpBS1 (M,N)

ϑ−→ Map
SpBS1

(
M,NhCp

)
with the right-hand map ϑ given by sending g to FN ◦ g − ghCp ◦ FM . But this is
also the mapping spectrum in CycSpFr. �

Remark 4.2. For any spectrum with S1-action M the spectrum

M [V ] =
⊕
n�0

MhCpn

of the last lemma is free as a spectrum with V operator. The lemma shows that
if M admits an F -operator, then M [V ] is a topological Cartier module and is also
free as a topological Cartier module. One can also express this by saying that the
commutative square of forgetful functors

TCartp ��

��

Alg(−)hCp

��

Alg(−)hCp

�� SpBS1

remains commutative after passing to left adjoints of the horizontal maps, i.e., the
square is left adjointable.
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 39

As usual we denote by (CycSpFr
p )− ⊆ CycSpFr

p the full subcategory of bounded
below objects. The adjunction of Lemma 4.1 induces an adjunction

(14) (CycSpFr
p )− ��

̂TCart−p��

whose left adjoint sends M to the V -completion of
⊕

n�0 MhCpn
, which is∏

n�0 MhCpn
and will be denoted by M [[V ]]. We note that this is also equivalent

to TR(M) where M is considered as a cyclotomic spectrum with the Frobenius

M
F−→ MhCp

can−−→ M tCp (since this is the mod V reduction).

We now use that the ∞-category CycSpFr
p has a symmetric monoidal structure

given by the “underlying” tensor product. Formally this symmetric monoidal struc-
ture is constructed exactly as the one on CycSpp in [NS18, Construction IV.2.1]

using that the functor (−)hCp : SpBS1

→ SpBS1

admits a canonical lax symmetric

monoidal structure. The symmetric monoidal structure on CycSpFr
p restricts to

one on the full subcategory (CycSpFr
p )− ⊆ CycSpFr

p since X⊗Y is bounded below
for X and Y bounded below.

Proposition 4.3. The left adjoint −[[V ]] : (CycSpFr
p )− → ̂TCart−p admits a

canonical refinement to a symmetric monoidal functor.

Proof. By definition, the functor (−)/V : ̂TCart−p → CycSp−
p is a symmetric

monoidal equivalence. Thus, it suffices to equip the composition

(CycSpFr
p )−

−[[V ]]−−−−→ ̂TCart−p
(−)/V−−−−→ CycSp−

p

with a symmetric monoidal structure. We claim that this composite is equivalent to
the functor which takes X ∈ (CycSpFr

p )− to the “underlying” cyclotomic spectrum

of X, i.e., X equipped with the composition X → XhCp
can−−→ XtCp as Frobenius.

To see this we have to compute the cofiber of the map

V :

⎛⎝∏
n�0

MhCpn

⎞⎠
hCp

→
∏
n�0

MhCpn
.

Since the product is uniformly bounded below it commutes with the orbits and the
claim follows from the description of the V and F operators given in the proof of
Lemma 4.1 above. Finally the functor CycSpFr

p → CycSpp admits by construction
of the symmetric monoidal structures a symmetric monoidal refinement since the
transformation (−)hCp → (−)tCp is a symmetric monoidal transformation. �

We now observe that for every p-typical topological Cartier module there is a
natural cofiber sequence

(15) (MhCp
)[V ] → M [V ] → M

of p-typical topological Cartier modules. Here the S1-spectrum MhCp
is considered

as a cyclotomic spectrum with Frobenius lift, where the Frobenius lift is given
by the zero map. Then the map (MhCp

)[V ] → M [V ] is induced from the map
MhCp

→ M [V ] that is given as the composition

MhCp

(id,−V )−−−−−→ MhCp
⊕M

i−→
⊕
n�0

MhCpn
= M [V ],
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where i is the summand inclusion. This is a map in CycSpFr and therefore gives
rise to a map (MhCp

)[V ] → M [V ]. Concretely this map is given by i− V , where i
is the inclusion (MhCp

)[V ] → M [V ] and V =
⊕

n�0 VhCpn
is just applied levelwise.

It is easy to see that the composite to M comes with a preferred nullhomotopy (as
we also only have to check that on MhCp

) and that on underlying spectra this is a
cofiber sequence. This implies that it is a cofiber sequence of p-typical topological
Cartier modules.11

If M is bounded below and V -complete, we also get a cofiber sequence

(16) (MhCp
)[[V ]] → M [[V ]] → M

in ̂TCart−p by completion of (15).

Corollary 4.4. For every pair of V -complete bounded below p-typical topological

Cartier modules M and N the tensor product M�̂N ∈ ̂TCart−p is equivalent to
the total cofiber of a square

(MhCp
⊗NhCp

)[[V ]]

��

�� (M ⊗NhCp
)[[V ]]

��

(MhCp
⊗N)[[V ]] �� (M ⊗N)[[V ]].

Proof. We use that the symmetric monoidal structure �̂ on ̂TCart−p commutes
with colimits and the cofiber sequence (16) for M and N to deduce that the tensor
product is the total cofiber of a square

MhCp
[[V ]]�̂NhCp

[[V ]]

��

�� M [[V ]]�̂NhCp
[[V ]]

��

MhCp
[[V ]]�̂N [[V ]] �� M [[V ]]�̂N [[V ]].

Now we use that −[[V ]] is symmetric monoidal as shown in Proposition 4.3 to get
the result. (Note that we do not need to complete the total cofiber as it is already
V -complete since this is a finite colimit.) �

Remark 4.5. One can also work out the maps in the diagram of Corollary 4.4 by
using the fact that this is a diagram in TR for the corresponding diagram

(MhCp
⊗NhCp

)

id⊗V

��

V⊗id
�� (M ⊗NhCp

)

id⊗V

��

(MhCp
⊗N)

V⊗id
�� (M ⊗N)

of cyclotomic spectra. We again issue the warning that this is not a diagram with
Frobenius lifts. Therefore one has to use the identification of TR with −[[V ]] in

11Note that this gives rise to our standard cofiber sequence MhCp → M → M/V of cyclotomic

spectra upon taking the mod V reductions (again MhCp has the trivial Frobenius). But while the
first map is a map of cyclotomic spectra between cyclotomic spectra that admit Frobenius lifts,
it is not a map of cyclotomic spectra with Frobenius lifts. That is important to keep in mind in
identifying some of the maps later.
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each term but the maps are not compatible with that identification and we get
additional terms coming from the Frobenius operators.

Now assume that M and N are connective. We want to determine π0(M�̂N)
in terms of π0(M) and π0(N). For M connective we have that π0(M [V ]) =⊕

n�0 π0(M). Thus, on π0, the effect of −[V ] is given by adjoining V freely as

a module. We will write this formula as π0(M [V ]) = (π0M)[V ], thus use the no-
tation A[V ] for an abelian group with a map F : A → A for the p-typical Cartier
module

⊕
n�0 A formed analogously to the topological case. We shall write a typ-

ical element in A[V ] as a polynomial in V , i.e., as
∑n

i=1 aiV
i. Similarly, we have

that π0(M [[V ]]) = π0(M)[[V ]].
Now, observe that in the formula of Corollary 4.4 all terms are connective if M

and N are. As a result we find that π0(M�̂N) is the total cokernel of a square

(17) (π0M ⊗ π0N)[[V ]]

��

�� (π0M ⊗ π0N)[[V ]]

��

(π0M ⊗ π0N)[[V ]] �� (π0M ⊗ π0N)[[V ]].

Of course the total cokernel does not depend on the upper left term (this is why this
is not a concept one ever hears of), so it is just the quotient of (π0M ⊗ π0N)[[V ]]
by the image of the two maps into it.

Corollary 4.6. For any pair of V -complete connective p-typical topological Cartier

modules M and N we can describe π0(M�̂N) as π0 of the algebraic derived V -
completion (see Lemma 3.29 and the following discussion for this notion) of a
p-typical Cartier module

(π0M ⊗ π0N)[V ]/ ∼,

where the equivalence relation is generated additively by

(m⊗ V n)V k ∼ (Fm⊗ n)V k+1, (Vm⊗ n)V k ∼ (m⊗ Fn)V k+1

for all m ∈ π0M , n ∈ π0N , and k ∈ ℕ.

Proof. It is clear that the square (17) is the V -completion of a square with terms
(π0M ⊗π0N)[V ] instead of (π0M ⊗π0N)[V ]. The rest follows from the description
of the maps in the square (17) which can be done as explained in Corollary 4.5 or
just using that they have to be compatible with F (where F is zero on the terms
with orbits). Concretely one gets the following description of the maps:

(1) the upper horizontal map sends (m⊗ n)V k to (V m⊗ n)V k;
(2) the left vertical map sends (m⊗ n)V k to (m⊗ V n)V k;
(3) the lower horizontal map sends (m⊗n)V k to (Vm⊗n)V k−(m⊗Fn)V k+1;
(4) the right vertical map sends (m⊗ n)V k to (m⊗ V n)V k − (Fm⊗ n)V k+1.

This implies the claim. �

Corollary 4.6 identifies the tensor product on the category of derived V -complete
p-typical Cartier modules induced from the symmetric monoidal structure on
CycSpp. We shall describe this tensor product in the next section purely alge-
braically.
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4.2. The tensor product of classical Cartier modules. Inspired by the results
of the last section, we will construct in this section a symmetric monoidal structure
� on the abelian categoryCartp of p-typical Cartier modules. Our guiding principle
is that if R is a commutative ring, then the ring of p-typical Witt vectorsW (R), with
its usual Frobenius and Verschiebung operations F and V , defines a commutative
algebra object with respect to �. In particular we will get induced symmetric
monoidal structures on modules over W (R) (internal to the category Cartp). We
will explicitly identify this category and in the case R = 𝔽p we will see that the
category is equivalent to classical Dieudonné modules.

The induced symmetric monoidal structure �W (𝔽p) on Dieudonné modules was
first defined by Goerss in [Goe99] and later studied by [BL07]. Under the relation
to genuine spectra and Mackey functors that will be explained in Section 5 our
tensor product can be understood using the tensor product of Mackey functors.

We thank Achim Krause for helpful discussion around this section and for the
crucial idea in the proof of Proposition 4.14.

Definition 4.7. Let M,N,Q be p-typical Cartier modules. A bilinear map of
abelian groups (−,−) : M ×N → Q will be called (V, F )-bilinear if it satisfies the
relations

F (x, y) = (F (x), F (y)),

V (x, F (y)) = (V (x), y),

V (F (x), y) = (x, V (y))

for any x ∈ M and y ∈ N . We let Hom(V,F )(M × N,Q) denote the group of
(V, F )-bilinear maps M ×N → Q.

Example 4.8. For a commutative ring R the multiplication W (R) × W (R) →
W (R) is (V, F )-bilinear.

For an abelian group M with a map F : M → M we will denote by M [V ] the p-
typical Cartier module

⊕
n∈ℕ

M with the V and F operators as in the last section.
We will again adopt the notation that we write an element as a polynomial in V ,
i.e., in the form

∑
aiV

i.

Lemma 4.9. Given a pair of p-typical Cartier modules M and N , the functor
Hom(V,F )(M × N,−) from p-typical Cartier modules to abelian groups is corepre-
sentable by a p-typical Cartier module M �N . Explicitly we have that

M �N = (M ⊗N)[V ]/ ∼,

where the equivalence relation is generated additively by

(m⊗ V n)V k ∼ (Fm⊗ n)V k+1, (Vm⊗ n)V k ∼ (m⊗ Fn)V k+1

for all m ∈ M , n ∈ N , and k ∈ ℕ with the V and F operators induced from the
ones on (M ⊗N)[V ].

Proof. We want to define M �N by the above formula. First we have to show that
this is even a p-typical Cartier module, i.e., that the V and F operators descend to
the quotient. For V this is obvious, since

V ((m⊗ V n)V k) = (m⊗ V n)V k+1.
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The operator F is given on additive generators by

F ((m⊗ n)V k) =

{
(Fm⊗ Fn)V 0 for k = 0,

p(m⊗ n)V k−1 for k > 0.

Thus it follows that

F ((m⊗ V n)V k) ∼ F ((Fm⊗ n)V k+1)

and similarly for the other relation. Finally we have to understand maps M �N →
Q in the category of p-typical Cartier modules. By construction these are just maps
β : (M ⊗N)[V ] → Q of p-typical Cartier modules which satisfy the relations

β((m⊗ V n)V k) = β((Fm⊗ n)V k+1), β((Vm⊗ n)V k) = β((m⊗ Fn)V k+1) .

Being V -linear, every such map β is determined by its restriction M ⊗N → M ⊗
N [V ] → Q. This restriction precisely satisfies the relation of Definition 4.7. Vice
versa every map satisfying the relations of Definition 4.7 can be extended to such
a map β in a unique way. �
Remark 4.10. We can also write this tensor product as the cokernel of the map of
p-typical Cartier modules

(M ⊗N)[V ]⊕ (M ⊗N)[V ] → (M ⊗N)[V ]

given by assembling together the maps (M ⊗N)[V ] → (M ⊗N)[V ] given by

(m⊗ n)V k �→ (Vm⊗ n)V k − (m⊗ Fn)V k+1,

(m⊗ n)V k �→ (m⊗ V n)V k − (Fm⊗ n)V k+1.

Here, the summands (M⊗N)[V ] in the source of the map are p-typical Cartier mod-
ules with Frobenius that is zero in V -degree 0. Note that this cokernel description
is basically reversing the line of thought in the proof of Corollary 4.6.

Proposition 4.11. The assignment (M,N) �→ M � N defines a symmetric
monoidal structure on p-typical Cartier modules which is compatible with small
colimits in each variable and with unit the p-typical Cartier module ℤ[V ] ⊆ W (ℤ)
which is given by

ℤ[V ] =
⊕
n�0

ℤ · V n(1) ⊆
∏
n�0

ℤ · V n(1) = ℤ[[V ]] ∼= W (ℤ),

a subring of W (ℤ).12

Proof. The proof is the same as the proof that the tensor product on abelian
groups defines a symmetric monoidal structure. Since the bilinear conditions are
symmetric, the result is symmetric. The claim about colimits is clear because
Hom(V,F )(M×N,−) takes colimits in N to limits in the functor category, and hence
colimits of corepresentables. Now, we claim that ℤ[V ]�M ∼= M ∼= M �ℤ[V ]. For
this, by symmetry, it is enough to construct a natural isomorphism

Hom(V,F )(M × ℤ[V ],−) ∼= HomCartp(M,−).

Given a (V, F )-bilinear pairing (−,−) : M ×ℤ[V ] → Q, we let f : M → N be given
by f(x) = (x, 1). Then,

f(F (x)) = (F (x), 1) = (F (x), FW (1)) = F (x, 1) = F (f(x))

12There is another similar subring of W (ℤ), namely the rational Witt vectors Wrat(ℤ). There
are canonical inclusions ℤ[V ] ⊆ Wrat(ℤ) ⊆ W (ℤ) both of which are proper.
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and

f(V (x)) = (V (x), 1) = V (x, FW (1)) = V (x, 1) = V (f(x)),

so that f is a map of p-typical Cartier modules. Given a map f : M → N of
p-typical Cartier modules we let (x, y)f : M × ℤ[V ] → N be defined by

(x, y)f = yf(x).

This is clearly bilinear. We must check that it is (V, F )-bilinear. To that end, we
have

F (x, y)f = F (y(f(x))) = FW (y)F (f(x)) = FW (y)f(F (x)) = (F (x), FW (y))f ,

V (x, FW (y))f = V (FW (y)f(x)) = yV (f(x)) = yf(V (x)) = (V (x), y)f ,

V (F (x), y)f = V (yf(F (x))) = V (yF (f(x))) = VW (y)f(x) = (x, VW (y))f ,

which is what we needed to show. These operations are mutually inverse. Associa-
tivity isomorphisms are constructed by observing that (M �N) � P corepresents
(V, F )-bilinear morphisms (M � N) × P → Q or (V, F )-multilinear morphisms
(M ×N)× P → Q. These are multilinear maps (−,−,−) satisfying

F (x, y, z) = (F (x), F (y), F (z)),

V (x, F (y), F (z)) = (V (x), y, z),

V (F (x), y, F (z)) = (x, V (y), z),

V (F (x), F (y), z) = (x, y, V (z)).

But, it is easy to check that these are precisely the same relations satisfied by the
bilinear maps classified by maps M � (N � P ) → Q. The unit, pentagon, and
hexagon axioms will be left to the reader. �

Lemma 4.12. The functor coker(V ) : Cartp → Ab admits a symmetric monoidal
structure.

Proof. The abelian group coker(M � N
V−→ M � N) is obtained from M � N by

an equivalence relation. But according to Lemma 4.9 the group M � N is itself
obtained by quotienting (M ⊗ N)[V ] by an equivalence relation. Thus we obtain

that coker(M � N
V−→ M � N) is the quotient of (M ⊗ N)[V ] obtained by the

combined equivalence relation which is generated additively by

(m⊗ V n)V k ∼ (Fm⊗ n)V k+1, (Vm⊗ n)V k ∼ (m⊗ Fn)V k+1,

(m⊗ n)V n ∼ 0 for n � 1.

In view of the third relation the first two relations are equivalent to

m⊗ V n � 0, V m⊗ n � 0.

Therefore we just obtain the quotient of M ⊗ N by these relations. But this is

coker(M
V−→ M)⊗ coker(N

V−→ N). Together with the isomorphism

coker(ℤ[V ]
V−→ ℤ[V ]) ∼= ℤ,

this gives the functor coker(V ) : Cartp → Ab the desired symmetric monoidal
structure. �
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We shall also need a derived version of Lemma 4.12. To this end we introduce a
“derived” version of � which we denote �L. This is just defined as the total cofiber
of the diagram

(M ⊗L N)[V ] ��

��

(M ⊗L N)[V ]

��

(M ⊗L N)[V ] �� (M ⊗L N)[V ],

(18)

where (−)[V ] is as before just the infinite product of M⊗LN (not homotopy orbits)
and the maps are as in the proof of Corollary 4.6. This is an object in the derived
category. The ordinary tensor product � is H0 of �L.13

Lemma 4.13. For every pair of p-typical Cartier modules M and N we have an
equivalence

cofib(M �L N
V−→ M �L N) � cofib(M

V−→ M)⊗L cofib(N
V−→ N)

in D(ℤ).

Proof. We can interchange the mod V reduction with taking the total cofiber in
the square (18). Then the square is just of the form

(M ⊗L N)
V⊗id

��

id⊗V

��

(M ⊗L N)

id⊗V

��

(M ⊗L N)
V⊗id

�� (M ⊗L N)

whose total cofiber evidently has the claimed form. �

We now show that the tensor product of p-typical Cartier modules also induces
a tensor product of derived V -complete p-typical Cartier modules. We remind the

reader of the algebraic derived V -completion L : Cartp → ̂Cartp discussed in
Lemma 3.29 and afterwards.

Proposition 4.14. The localization L : Cartp → ̂Cartp is compatible with the
symmetric monoidal structure, that is, we have an induced symmetric monoidal

structure on ̂Cartp, which we denote by �̂ and which is given by

M�̂N := L(M �N)

and has unit W (ℤ). We can also describe M�̂N as the cokernel of the map

(M ⊗N)[[V ]]⊕ (M ⊗N)[[V ]] → (M ⊗N)[[V ]],

the completion of the map in Remark 4.10.

Proof. First it is clear that the cokernel of the map (M⊗N)[[V ]]⊕ (M⊗N)[[V ]] →
(M ⊗N)[[V ]] agrees with the completion of the tensor product by the fact that the
corresponding statement is clear before completion (Remark 4.10) and the comple-
tion of a cokernel is the cokernel of the completions.

13We note that the notation �L is meant to indicate that �L is really a tensor product on the
derived category. We do not claim that it is actually the derived functor of � in any sense and
hope that this notation does not lead to confusion.
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By the usual criterion for symmetric monoidal localizations we have to verify
that for any pair of p-typical Cartier modules M and N the map

L(M �N) → L(LM �N)

is an isomorphism. We have a resolution ker(q) → M [V ]
q−→ M of M by V -torsion

free p-typical Cartier modules. Since � and L both commute with colimits (i.e., are
right exact) we can thereby reduce the question to the V -torsion free case. Thus we
assume that M is V -torsion free. Then also LM is V -torsion free by Lemma 3.30
and the map M → LM is a mod V -equivalence by Lemma 3.31. Since the mod V
reduction is also the derived mod V reduction we get using Lemma 4.13 that

cofib(M �L N
V−→ M �L N) � cofib(M

V−→ M)⊗L cofib(N
V−→ N)

� cofib(LM
V−→ LM)⊗L cofib(N

V−→ N)

� cofib(LM �N
V−→ LM �N).

Thus the induced map is a derived mod V -equivalence, thus an equivalence after
derived mod V reduction (see the proof of Lemma 3.31). But then L is H0 of the
derived completion (Lemma 3.29), thus it is also an equivalence on L. �

We recall from Theorem 2.1 that the symmetric monoidal structure on CycSpp

is compatible with the t-structure. In particular it induces a symmetric monoidal
structure on the heart as shown in Corollary 2.14 (also see Appendix A.2).

Theorem 4.15. The symmetric monoidal structure on the heart CycSp♥
p � ̂Cartp

induced from the one of cyclotomic spectra is equivalent to the symmetric monoidal

structure �̂ constructed above.

Proof. From Corollary 4.6 and the description above we get that the two tensor
products are naturally isomorphic. By construction it is clear that these isomor-
phisms are also compatible with the associators and the symmetry (since the Bar
construction can be iterated as well as the construction of the algebraic tensor prod-
uct). The fact that we get a compatibility of units follows since πcyc

0 (𝕊) ∼= TR0(𝕊) �
W (ℤ) which is a result of Hesselholt and Madsen that holds for any commutative
ring; see the proof of Theorem 6.1 for precise references. But in this case it is
also easy to see directly since the unit is also given by 𝕊[[V ]] as a consequence of
Proposition 4.3. �
4.3. Tensor product of Witt vectors and modules. We note that an equiva-
lent statement to Theorem 4.15 is to say that

πcyc
0 = TR0 : (CycSpp)�0 → ̂Cartp

is a symmetric monoidal functor, where ̂Cartp is equipped with the �̂ symmetric
monoidal functor. This functor also preserves colimits and therefore also preserves
relative tensor products over an algebra object in connective p-cyclotomic spectra.
For rings R and S we have that THH(R ⊗ℤ S) = THH(R) ⊗THH(ℤ) THH(S). It
follows from the fact that πcyc

0 (THH(R)) = W (R) (see Theorem 6.1) that we have

W (R⊗ S) = πcyc
0 (R⊗ℤ S)

= πcyc
0 THH(R)�̂πcyc

0 THH(ℤ)π
cyc
0 THH(S)

= W (R)�̂W (S),
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where the last step uses that W (ℤ) = πcyc
0 THH(ℤ) is the unit for �̂. We have

not found a statement of this sort in the literature and we think that this is an
important property of Witt vectors, as it for example explains how to understand
Witt vectors of polynomial rings in several variables. Therefore we want to give a
purely algebraic proof of this fact.

Theorem 4.16. For every pair of rings R and S there is a natural isomorphism

W (R)�̂W (S) ∼= W (R⊗ S) .

Note that we do not require that R and S are commutative here and use non-
commutative Witt vectors, but of course the statement is of most interest in the
commutative case.

Proof. Our first task is to produce a natural map

W (R)�̂W (S) → W (R⊗ S) .

In the commutative case this is easy: W (R) and W (S) are commutative algebra

objectives in ̂Cartp and therefore the tensor product is the coproduct. As a result
to construct such a map we can just combine the maps W (R) → W (R ⊗ S) and
W (S) → W (R⊗ S) that come from the maps R → R⊗ S and S → R⊗ S.

In the associative case such a map is by construction of �̂ the same as a bilinear
map W (R)×W (S) → W (R⊗S) of abelian groups with a certain compatibility with
Verschiebung and Frobenius. But such a map has exactly been constructed in [KN].
By construction of the ring structure on W (R) and W (S) in the commutative case
through this lax symmetric monoidal map the two maps agree in the commutative
case.

Now that we have the map we are left to show that it is an isomorphism. We
can resolve all our rings by rings of the form ℤ[M ] for a monoid M and since W (−)
commutes with split coequalizers reduce to this case. But for R = ℤ[M ] we have
a natural isomorphism W (R) ∼= R[[V ]] with the terminology from Section 4.2. We
will verify this at the end of the proof, but let us assume it for the moment. Thus
the statement reduces to show that the canonical map

R[[V ]]�̂S[[V ]] → (R⊗ S)[[V ]]

is an isomorphism. This in turn follows from the statement that the canonical map

R[V ]⊗ S[V ] → (R⊗ S)[V ]

is an isomorphism in Cartp. The latter is easy to verify using the explicit formula
for the tensor product in Cartp given in Lemma 4.9.

Now we want to verify that for a ring of the form R = ℤ[M ] with a monoid M we
have a canonical isomorphism of Cartier modules R[[V ]] ∼= W (R).14 For simplicity
we assume that M is a commutative monoid. The statement in fact holds with the
same proof also of non-commutative monoids but we do not want to get involved
in non-commutative Witt vectors here (see [KN] for a discussion which shows that
the arguments given here carry over directly except one has to verify that V is
injective). First, we know that W (R) is derived V -complete. Therefore to construct
a map of Cartier modules R[[V ]] → W (R) we have to construct a map R → W (R)

14This easily follows using Theorem 6.1 from the topological statement that TR(𝕊[M ]) �
THH(𝕊[M ])[[V ]] which is a formal consequence of the fact that THH(𝕊[M ]) has a Frobenius lift.
But of course the purpose of this proof is to avoid using topological arguments.
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compatible with F -operators where the F -operator on R = ℤ[M ] is given by the
pth power on M . Such a map in turn is the same as a map of multiplicative monoids
M → W (R) and is canonically provided by the Teichmüller map. Now both sides
are V -torsion free, since the Witt vectors of every commutative ring are V -torsion
free and R[[V ]] evidently is. Thus by Lemma 3.31 is suffices to show that the map
R[[V ]] → W (R) is an equivalence on the cokernel of V which is obvious. �

Finally we want to study categories of modules over ring objects A in Cartp.
The main example we have in mind is W (R) for a commutative ring R. Thus let
A be a ring object in Cartp, that is, A is a ring, equipped with V and F operators
such that

FV = p, F (ab) = F (a)F (b), V (aF (b)) = V (a)b, V (F (a)b) = aV (b).

By an A-module, we mean an A-module object in Cartp with respect to the sym-
metric monoidal structure �.

Lemma 4.17. A left A-module structure on an object M ∈ Cartp is the same as
a left module structure for the underlying ring A on the underlying abelian group
M such that the following conditions hold for any x ∈ A and y ∈ M :

(i) V (FA(x)y) = xV (y);
(ii) V (xF (y)) = VA(x)y;
(iii) F (xy) = FA(x)F (y).

Proof. This immediately follows from the definition of bilinear maps as in Defini-
tion 4.7. �

Example 4.18. For A = W (k) where k is a perfect ring of characteristic p we
get that the category ModW (k)(Cartp) is the category of W (k)-modules M (in the
classical sense of modules) together with a Frobenius semilinear map F : M → M
and a map V : M → M that is semilinear for the inverse of the Frobenius on W (k),
such that V F = FV = p. This is the category of Dieudonné modules.

5. The relationship to genuine cyclotomic spectra

In this section we shall compare the ∞-category of p-typical topological Cartier
modules with the ∞-category of genuine p-typical cyclotomic spectra. This gener-
ality will be relevant in order to understand some cases of V -completion. It will
also provide a more conceptual proof of the main result of Section 3 on the ad-
jointness of (−)/V and TR. Moreover, although we do not explore it here, we find
an equivalent formulation of the theory of p-typical topological Cartier modules in
Proposition 5.5, which immediately generalizes to the integral (or big) situation.
The main results can be found in Section 5.3.

5.1. Genuine p-typical topological Cartier modules. The next definition par-
allels that of Definition 2.21.

Definition 5.1. The ∞-category TCartgenp of genuine p-typical topological

Cartier modules is defined to be fixed points for the endofunctor (−)Cp :

TCartgenp := Fix(−)Cp (𝕋Sp
gen
p ).

In other words, a genuine p-typical topological Cartier module is a genuine S1-
spectrum M equipped with an equivalence MCp � X of genuine S1-spectra.
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Our primary aim in this section is to prove that TCartgenp � TCartp, up to

a theorem about genuine S1-spectra which we will prove in the next section. In
the next proposition, we will use the notion of an F -algebra for an endofunctor
F : C → C. By definition, these are organized into an ∞-category AlgF (C) �
LEq(F, id : C → C). In other words, an F -algebra is an object X of C equipped with
a map FX → X. Similarly, if G is an endofunctor of D, we have the opposite notion
of a G-coalgebra, namely an object Y ∈ D equipped with a map Y → GY . These
are objects of the ∞-category CoAlgG(D). For details, see [NS18, Section II.5].

Proposition 5.2. There is an adjunction

L : TCartgenp
�� CycSpgen

p�� : TR

with the functors

L(M) = colim(M → MΦCp → MΦCp2 → · · · ),
where the map M → MΦCp is given by the composite M � MCp → MΦCp . The
right adjoint is given by

TR(X) = lim
(
· · · → XCp2 → XCp → X

)
,

where the maps are induced by XCp → XΦCp � X.

Proof. This is more generally true: if we have an ∞-category C and a natural
transformation F → G of functors F,G : C → C such that F preserves sequential
limits (and these exist in C) and G preserves sequential colimits (also these are
assumed to exist in C), then we get an adjunction

L : FixF (C) �� FixG(C)�� : R,

where the underlying object of L(X) is given by the colimit

colim
(
X → GX → G2X → · · ·

)
and the fixed point structure for G comes from commuting this colimit with G.
The underlying object of R(Y ) is given by

lim
(
· · · → F 2Y → FY → Y

)
and the fixed point structure comes from commuting the limit with F . To see
that these functors are adjoint to one another, we observe that there is a natural
transformation

id → RL

given on underlying objects by the natural map

X = lim
k

F kX → lim
k

F k(colim
n

(GnX)).

It now suffices to verify the mapping space property. To this end, we claim that for
every X � FX ∈ FixF (C) and every Y � GY ∈ FixG(C) one has

MapFixF (C)(X,RY ) � MapAlgF (C)(X,Y ),

where Y is considered as an F -algebra through the map FY → GY
�−→ Y . To see

this equivalence we have used that taking the limit over iterated applications of F
is the right adjoint to the inclusion FixF (C) ⊆ AlgF (C); see [NS18, Section II.5].
The space MapAlgF (C)(X,Y ) is equivalent to the equalizer

MapC(X,Y ) ��
�� MapC(FX, Y ) ,

Licensed to Univ of Rochester. Prepared on Mon Oct  2 07:26:52 EDT 2023 for download from IP 128.151.13.109.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



50 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

where the first map is given by precomposition with FX → X and the second by
applying F and then postcomposition with FY → Y . We can similarly describe
the mapping space MapFixG(C)(LX, Y ) via CoAlgG(C) as the equalizer

MapC(X,Y ) ��
�� MapC(X,GY )

along the analogous maps. Since FX � X and GY � Y it is clear that

MapC(FX, Y ) � MapC(X,Y ) � MapC(X,GY ).

Unfolding the definitions we see that under this equivalence the maps in the equal-
izers correspond to each other and such that they are equivalent. Moreover the
equivalence we get this way agrees (at least up to homotopy) with the map induced
from the transformation id → RL. �

In order to understand the functors L and TR we need the following result,
which is in some sense a genuine version of the Tate orbit lemma, but much easier.

Lemma 5.3. For every object M ∈ 𝕋Spgenp , the canonical map(
MCp

)ΦCp → MΦCp2

is an equivalence in 𝕋Spgen.

Proof. For this proof we will write the left-hand side as
(
MCp

)ΦCp2/Cp and note

that it carries a residual S1/Cp2-action. By definition (see for example [NS18,
Definition II.2.3]), the Cp2/Cp-geometric fixed points are given by(

MCp
)ΦCp2/Cp �

((
MCp

)
⊗ ˜E(S1/Cp)

)C2
p/Cp

,

where the pointed genuine S1/Cp-space ˜E(S1/Cp) is characterized by having fixed
points

˜E(S1/Cp)
C

pk
/Cp

=

{
∗, k = 1,

S0, k > 1,

and the obvious maps (so that it receives a map from the space S0). By the
projection formula we get an equivalence of S1/Cp-spectra(

MCp
)
⊗ ˜E(S1/Cp) � M ⊗ f∗

(
˜E(S1/Cp)

)
,

where f : S1 → S1/Cp is the canonical projection and f∗ is inflation along this
projection (i.e., restriction of the action which is left adjoint to taking fixed points).

The pullback f∗
(

˜E(S1/Cp)
)

is equivalent to the genuine S1-space ˜Ep2S1 which

has fixed points

˜Ep2S1
C

pk

=

{
∗, k = 0, 1,

S0, k > 1.

Putting everything together we conclude that(
MCp

)ΦCp2/Cp �
(
M ⊗ ˜Ep2S1

)Cp2

which is by definition equivalent to MΦCp2 . �
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 51

Let M be a genuine p-typical topological Cartier module. In the next corollary,
we identify the Cpn fixed points of the genuine p-typical cyclotomic spectrum LM
from Proposition 5.2.

Corollary 5.4. For every genuine p-typical topological Cartier module M we have
a natural equivalence

(LM)Cpn � M/V n+1,

where V n+1 denotes the map MhCpn+1 → MCpn+1 �−→ M .

Proof. By definition we have that L(M) = colim(M → MΦCp → MΦCp2 → · · · )
and since (categorical) fixed points commute with colimits we have that

(LM)Cpn = colim(MCpn → (MΦCp)Cpn → (MΦCp2 )Cpn → · · · ).
The transition maps in this colimit are given by the maps

(MΦC
pk )Cpn

�−→ ((MCp)ΦC
pk )Cpn → (MΦC

pk+1 )Cpn

which are equivalences by Lemma 5.3 for k � 1. As a result, the colimit is equivalent
to the second term (MΦCp)Cpn . This sits in an isotropy separation cofiber sequence

MhCpn+1 → MCpn+1 → (MΦCp)Cpn ,

where the middle term is identified with M through the general p-typical Cartier
module structure and the left map with V n+1. This shows the claim. �

Now we come to the key assertion of the section.

Proposition 5.5. The canonical forgetful functor TCartgenp → TCartp (which
will be made explicit in the proof) is an equivalence of ∞-categories.

Proof. Fix n � 0. We consider the ∞-category

𝕋SpgenCpn

of genuine S1-spectra for the family of subgroups of Cpn ⊆ S1. In particular

𝕋SpgenCp0
= SpBS1

. Taking Cp-fixed points gives a functor

(−)Cp : 𝕋SpgenCpn+1
→ 𝕋SpgenCpn

and there is another functor Un+1 : 𝕋SpgenCpn+1
→ 𝕋SpgenCpn

which forgets the Cpn+1 -

fixed points. We define a stable ∞-category (TCartgenp )n as the equalizer

(TCartgenp )n := Eq
(
(−)Cp , Un+1 : 𝕋SpgenCpn+1

��
�� 𝕋SpgenCpn

)
of (−)Cp and Un+1. There is a canonical map (TCartgenp )n → (TCartgenp )n−1

induced from the pair of commutative diagrams15

𝕋SpgenCpn+1

Un+1

��

(−)Cp

��

Un+1

�� 𝕋SpgenCpn

Un

��

𝕋SpgenCpn

(−)Cp

��

Un

�� 𝕋SpgenCpn−1
.

15Here, we mean that the diagram with the (−)Cp horizontal maps is commutative as is the
diagram with the Un+1 and Un horizontal maps.
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The main point of the proof is to show that (TCartgenp )n → (TCartgenp )n−1 is an
equivalence for every n � 1. Let us first assume this and finish the proof. Since
𝕋Spgenp � lim←−𝕋SpgenCpn

it follows that TCartgenp � limn(TCartgenp )n, and therefore,

under our assumption,
TCartgenp � (TCartgenp )0 .

To identify the n = 0 case, we claim that there is a pullback square

(19) 𝕋SpgenCp

��

U1

��

(
SpBS1

)Δ2

∂1

��

SpBS1 NmCp
��

(
SpBS1

)Δ1

of ∞-categories. This fact is equivalent to the fact that the “Tate square” deter-
mines 𝕋SpgenCp

which is well known; see e.g. [MNN17, Theorem 6.24]. The transla-

tion between these two facts is given by the observation that a pullback square

A ��

��

B

��

C �� D

in any stable ∞-category (here SpBS1

) is equivalently determined by the triangle

F ��

		
��

��
��

��
A

��

D

where F is the horizontal fiber.
The two maps 𝕋SpgenCp

→ 𝕋SpgenCp0
= SpBS1

that feature in the definition of

(TCartgenp )0 are in the pullback description (19) given by the two maps that are
given by the composites

(−)Cp : 𝕋SpgenCp
→

(
SpBS1

)Δ2

ev1=∂0∂2

−−−−−−→ SpBS1

and
U1 : 𝕋SpgenCp

→ SpBS1

.

If thus follows that the equalizer defining (TCartgenp )0 is equivalent to the pullback
defining TCartp.

Now in order to show that the functor (TCartgenp )n → (TCartgenp )n−1 is an
equivalence we will use that for n � 1 the square

𝕋SpgenCpn+1

(−)Cp

��

Un+1

��

𝕋SpgenCpn

Un

��

𝕋SpgenCpn

(−)Cp

�� 𝕋SpgenCpn−1

(20)

is a pullback square of stable ∞-categories which we will prove in Theorem 5.11
below. Given this, the claim follows from the fact that for a general pair of maps

Licensed to Univ of Rochester. Prepared on Mon Oct  2 07:26:52 EDT 2023 for download from IP 128.151.13.109.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CARTIER MODULES AND CYCLOTOMIC SPECTRA 53

f, g : A → B in an ∞-category with finite limits (here the ∞-category of stable
∞-categories), we have a canonical equivalence

Eq

(
A f×g A

pr1 ��

pr2
�� A

)
� Eq

(
A

f
��

g
�� B

)
.

This follows by taking the “total equalizer” in the commutative diagram

A×A
pr1 ��

pr2
��

gpr2

��

fpr1
��

A

����
B ��

�� ∗

in two different ways (first horizontally and then vertically or vice versa). Then we
get the diagram

E

��

�� A×B A ��
��

��

A

��

A ��

����

A×A ��
��

����

A

����
B �� B ��

�� ∗
in which the two “outer forks” are equalizers. �

5.2. A pullback square. Now, to complete the proof of Proposition 5.5, we have
to establish that for n � 1, the square (20) is a pullback. To this end we shall
introduce some terminology and establish an abstract criterion for pullbacks of
stable ∞-categories.

Definition 5.6. Let U : C → D be a functor of stable ∞-categories. We say that
U exhibits a recollement if it admits a fully faithful left adjoint and a fully faithful
right adjoint, i.e., U is a localization and a colocalization.

For the next example we follow the notation of Proposition 5.5.

Example 5.7. The functor Un+1 : 𝕋SpgenCpn+1
→ 𝕋SpgenCpn

exhibits a recollement.

The left adjoint is given by forming the “free” Cpn+1-spectrum Fr(X) on Cpn -
spectrum X. For the spectrum Fr(X) we have that

Fr(X)Cpk =

{
XC

pk for k = 0, . . . , n,(
XCpn

)
hCp

for k = n+ 1.

The right adjoint is given by the “Borel complete” spectrum BX with

BXC
pk =

{
XC

pk for k = 0, . . . , n,(
XCpn

)hCp for k = n+ 1.

The canonical maps UB → id → UFr are equivalences. This shows that B and Fr
are fully faithful.
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54 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

Lemma 5.8. If U : C → D exhibits a recollement, then ker(U) → C → D is a
Verdier sequence. Moreover the functor U is a Cartesian and co-Cartesian fibra-
tion.16

Proof. The first statement is clear since U is a localization (or colocalization) and
thus D is the Verdier quotient by the acyclics. Now we want to show that U is a
Cartesian fibration in the sense of [Lur09, Section 2.4]; the co-Cartesian case follows
by passing to opposite categories. We claim that a morphism f : c → c′ in C is
U -Cartesian precisely if the square

(21) c
f

��

��

c′

��

RUc
RUf

�� RUc′

is a pullback in C, where R : D → C is the right adjoint to U and the vertical
maps in the diagram are the unit maps. By definition, the morphism f : c → c′ is
Cartesian precisely if the square

C/c
f∗ ��

U

��

C/c′

U

��

D/Uc
Uf∗ �� D/Uc′

of ∞-categories is a pullback. We consider the larger commutative diagram

(22) C/c
f∗ ��

U

��

C/c′

U

��

D/Uc
Uf∗ ��

R

��

D/Uc′

R

��

C/RUc
RUf∗ �� C/RUc′ .

We will show that the lower square is a pullback. Then the upper square is a
pullback if the outer square is a pullback which is evidently the case if and only if
the square (21) is a pullback. To see that the lower square in (22) is a pullback we
first note that the vertical functors R are fully faithful since the functor R : D → C
is. The left-hand vertical functor identities D/Uc with the full subcategory of C/RUc

consist of morphisms c → RUc such that c is in the essential image of R. A similar
description holds for the essential image of D/Uc′ in C/RUc′ . From this description
it is obvious that the square is a pullback if one uses that pullbacks of fully faithful
subcategory inclusions are fully faithful and given by the obvious preimage.

We now want to argue that U : C → D is Cartesian. Thus assume that we have
c′ ∈ C and a morphism f ′ : d → Uc′ in D. We need to find a Cartesian morphism

16Here we mean the invariant concept, i.e., that every replacement by a categorical fibration
is a Cartesian and co-Cartesian fibration.
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CARTIER MODULES AND CYCLOTOMIC SPECTRA 55

f : c → c′ in C with Uc � d and Uf � f ′. We extend the diagram

c′

��

Rd
Rf ′

�� RUc′

to a pullback

c
f

��

��

c′

��

Rd
Rf ′

�� RUc′

and let f be the upper horizontal morphism. First we claim that the morphism
RUc → d induced from the left vertical map is an equivalence. This follows by
applying the exact functor RU to the whole diagram and noting that RUR = R.
This shows that the whole diagram is equivalent to a diagram

c
f

��

��

c′

��

RUc
RUf

�� RUc′.

From this we conclude that f is Cartesian and that Uf = f ′ which finishes the
proof. �

Definition 5.9. Assume that U : C → D exhibits a recollement and d ∈ D.
We define the Tate object T (d) ∈ ker(U) to be the cofiber of the canonical map
L(d) → R(d), where L is the left adjoint of U and R is the right adjoint of R.

We now give our criterion for a pullback. This is similar to the main result of
[BGb].

Proposition 5.10. Assume that we have a commutative square

C F ��

U

��

C′

U ′

��

D G �� D′

of stable ∞-categories and exact functors. If U and U ′ exhibit recollements, then
the square is a pullback if and only if the following two conditions are satisfied:

(1) the vertical kernels agree, i.e., the canonical map ker(U) → ker(U ′) is an
equivalence;

(2) under this equivalence the Tate object T (d) is taken to the Tate object
T ′(Gd), more precisely for every d ∈ D the canonical map FT (d) → T ′(Gd)
is an equivalence in ker(U ′).

Proof. The functor U : C → D is a (co-)Cartesian fibration. The functor U ′ :
C′ → D′ also is a co-Cartesian fibration, thus so is the pullback C′ ×D′ D → D.
Therefore, in order to show that the functor C → C′ ×D′ D is an equivalence, it
suffices to show that it is a fiberwise equivalence over D, or equivalently that the
functor C → C′ induces an equivalence Cd → C′

Gd, and that the functor preserves
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co-Cartesian lifts. An easy adjunction argument shows that the fiber over an object
d ∈ D is equivalent to ker(U)/T (d). Similarly for the fibration the fiber over Gd is
given by ker(U ′)/T ′(Gd). Under these identifications the map on fibers is given by
the evident map

ker(U)/T (d) → ker(U ′)/T ′(Gd)

coming from the functor F : ker(U) → ker(U ′) and the map of Tate objects
FT (d) → T ′(Gd). This immediately implies that the map is a fiberwise equiv-
alence under the assumptions of the proposition.

To see that the functor C → C′ preserves co-Cartesian lifts we note that for a
map d → d′ in D the induced map on fibers of C → D is given by the functor

ker(U)/T (d) → ker(U)/T (d′)

induced from the map Td → Td′. This follows immediately from the way the fibers
are identified and from the description of co-Cartesian lifts in the proof of Lemma
5.8. Similarly the map on fibers C′ → D′ induced from the map Gd → Gd′ is
described by

ker(U ′)/T (Gd) → ker(U ′)/T (Gd′)

induced from the map T (Gd) → T (G′d′′). Then the claim follows from the fact
that in the commutative square

FT (d) ��

��

FT (d′)

��

T (Gd) �� T (Gd′)

the vertical maps are equivalences by assumption. �

Below, 𝕋SpgenCpn
is the∞-category of genuine S1-spectra with respect to the family

of subgroups of Cpn .

Theorem 5.11. The square

𝕋SpgenCpn+1

(−)Cp

��

Un+1

��

𝕋SpgenCpn

Un

��

𝕋SpgenCpn

(−)Cp

�� 𝕋SpgenCpn−1

(23)

is a pullback of stable ∞-categories.

Proof. By Example 5.7, the vertical maps Un+1 and Un exhibit recollements. We
want to apply the criterion given in Proposition 5.10. The vertical fibers are both

equivalent to SpBS1

, where the equivalence ker(Un+1) → SpBS1

is induced by taking
Cpn+1-fixed points for the left vertical map and similarly by taking Cpn -fixed points
for the right vertical map. Using the description of the adjoint given in Example 5.7,

it follows immediately that the Tate objects are T (X) � (XCpn )tCp ∈ SpBS1

for

X in 𝕋SpgenCpn
and T (X) � (XCpn−1 )tCp ∈ SpBS1

for X in 𝕋SpgenCpn−1
. This together

with the description of the functors implies that criterion (2) of Proposition 5.10 is
satisfied. �
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5.3. Consequences. Now we can deduce the following statement from the results
of Section 5.1.

Theorem 5.12. We have an adjunction

L : TCartp
�� CycSpgen

p�� : TR

with (LM)Cpn = M/V n+1 and TR(X) = limn,R XCpn . The unit of the adjunction
is given by the “naive” V -completion M → limM/V n+1 and the counit is given on
underlying spectra by the map TR(X)/V → X.

Proof. By Proposition 5.2 we have an adjunction

L : TCartgenp
�� CycSpgen

p�� : TR

which we compose with the equivalence U : TCartgenp
�−→ TCartp of Proposi-

tion 5.5 which extracts the “underlying” p-typical topological Cartier module. The
value of the composite U ◦ TR at X has by definition of TR the underlying spec-
trum TR(X) � limn,R XCpn as classically defined (we have used that taking the
underlying spectrum commutes with taking limits of genuine spectra).

Now we need to determine the fixed points of the spectrum associated with a p-
typical topological Cartier module M ∈ TCartp. First, by the way the equivalence

U : TCartgenp
�−→ TCartp we find that the map MhCn+1

p
→ MCpn+1 (where we

have abusively identified U−1M with M) is given by the composite

V n+1 : MhCpn+1 → · · · → MhCp
→ M.

Thus the claim follows from Corollary 5.4. �
So far, we have only defined what it means to be V -complete for bounded below

p-typical topological Cartier modules. In general we shall consider the Bousfield
localization of TCartp at the mod V -equivalences. For this definition it does not
matter if one considers (−)/V as taking values in p-typical cyclotomic spectra,
genuine p-typical cyclotomic spectra, or spectra. The local objects for this Bous-
field localization are in the bounded below case precisely the V -complete p-typical
topological Cartier modules which follows from Proposition 3.17 and Theorem 3.21.

Corollary 5.13. For every genuine p-typical cyclotomic spectrum X the induced
p-typical topological Cartier module TR(X) is complete with respect to the Bousfield
localization at the mod V -equivalences (see Remark 3.23). Moreover, there is an
induced adjunction

L : ̂TCartp
�� CycSpgen

p�� : TR,

which is an equivalence on bounded below objects, where ̂TCartp denotes the Bous-
field localization at the mod V -equivalences.

Proof. We have to verify that TR(X)/V → X is an equivalence for X bounded
below. But this follows from the cofiber sequences TRn(X)hCp

→ TRn+1(X) → X
by passing to the limit and noting that homotopy orbits commute with this limit
since it is uniformly bounded below.

Moreover from the description in Theorem 5.12 it follows that both functors
restrict to an adjunction between bounded below objects. Now, if M is derived
V -complete, then by definition the unit of the adjunction is an equivalence. �
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Remark 5.14. In Proposition 3.17 we have proven that there is an adjunction

(−)/V : TCartp
�� CycSpp�� : TR

for the “simplistic” version of p-typical cyclotomic spectra. Clearly the functor
(−)/V factors over the forgetful functor CycSpgen

p → CycSpp which preserves
colimits and is therefore left adjoint as well. Thus we get the adjunction of Propo-
sition 3.17 as the composite of the two adjunctions

TCartp
�� CycSpgen

p��
�� CycSpp.��

Both of these adjunctions induce equivalences on subcategories of bounded below
objects, where on the left we look at the full subcategory of V -complete bounded
below objects: the left-hand one as just shown in Corollary 5.13 and the right-hand
one as shown in [NS18]. The hardest part of the latter is in fact understanding the
right adjoint to the forgetful functor CycSpgen

p → CycSpp. Thus Corollary 5.13
also gives an independent proof of Theorem 3.21. Alternatively, Corollary 5.13 and
Theorem 3.21 can be used to reprove the p-typical part of [NS18, Theorem II.3.8].

It is now natural to ask if the adjunction of Corollary 5.13 is an equivalence. For

the simplistic adjunction (−)/V : TCartp
�� CycSpp�� : TR this is obviously

not the case since we have used the Tate orbit lemma in a crucial way. The genuine
version has a much better chance of inducing an equivalence. The following result
shows that the genuine adjunction is not an equivalence.

Proposition 5.15. The adjunction of Corollary 5.13 does not form an equivalence
of stable ∞-categories.

Proof. If the adjunction of Corollary 5.13 were an equivalence, then the counit of
the adjunction TR(X)/V → X would be an equivalence for every genuine p-typical
cyclotomic spectrum X. This is equivalent to the assertion that the inverse limit
defining TR(X) commutes with taking homotopy orbits (since it commutes with
taking cofibers and X is the cofiber of the “commuted” map). We will show that

this is not the case for X = KUtriv, where KUtriv refers to the genuine S1-spectrum
given by the inflation of KU along the projection 𝕋 → e. This carries a canonical
p-typical cyclotomic structure, since the geometric fixed points are given by KU
itself. More precisely there is a functor

(−)triv : Sp → CycSpgen
p

which is uniquely determined by requiring that it is left adjoint (i.e., preserves all
colimits) and sends the sphere to the genuine p-typical cyclotomic sphere. In other

words we have that KUtriv � 𝕊triv ⊗KU. The composite

Sp → CycSpgen
p → 𝕋Spgenp

(−)
Cpn

−−−−−→ Sp

then also preserves all colimits for each n. Thus, we find using the tom Dieck
splitting that

TRn+1(KUtriv) = (KUtriv)Cpn

� KU⊗ 𝕊
Cpn

� KU⊗ (

n⊕
k=0

𝕊 ⊗BCpk) �
n⊕

k=0

KU⊗BCpk .
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The transition maps R : TRn+1(KUtriv) → TRn(KUtriv) are under these identi-
fications given by the projections away from the last factor. As a result we find
that

TR(KUtriv) �
∞∏
k=0

(KU⊗BCpk) .

Now we will prove that the canonical map

(24)
( ∞∏
k=0

KU⊗BCpk

)
hCp

→
∞∏
k=0

(
KU⊗BCpk

)
hCp

is not surjective on π1. We write KU⊗BCpk as the colimit of its negative Postnikov
tower colim τ�n(KU⊗BCpk) for n → −∞. Then( ∞∏

k=0

KU⊗BCpk

)
hCp

� colim
n

∞∏
k=0

τ�n

(
KU⊗BCpk

)
hCp

since for uniformly bounded below spectra we can commute the homotopy orbits
with the infinite product. Similarly we get that the right-hand side of (24) is given
as

∞∏
k=0

(
KU⊗ BCpk

)
hCp

�
∞∏
k=0

colim
n

τ�n

(
KU⊗BCpk

)
hCp

so that the map (24) is the canonical map that commutes the filtered colimit with
the infinite product. On π1 this map induces the map

colim
n

∞∏
k=0

Mk,n →
∞∏
k=0

colim
n

Mk,n

with Mk,n := π1

(
τ�n

(
KU⊗BCpk

)
hCp

)
. Algebraically such a map is surjective

precisely if there exists an n0 such that for almost all k the map

Mk,n0
→ colim

n
Mk,n

is surjective. We will show that in our case none of the map Mk,n0
→ colimn Mk,n

is surjective.
We begin by determining the homotopy groups of KUhC

pk
. Greenlees [Gre93] has

shown that they are isomorphic to the local cohomology groups of the representation
ring (and explicitly the homotopy groups had been computed by Wilson [Wil73]
and Knapp [Kna78] before). We get that

π∗

(
KUhCpk

)
=

{
ℤ, ∗ even,

I(Cpk)⊗ ℚp/ℤp, ∗ odd,

where I(Cpk) ⊆ R(Cpk) is the augmentation ideal17 in the representation ring of
Cpk which is isomorphic to the group ring Z[C∨

pk ]. This can also be seen by a direct

computation using the cofiber sequence

KUhC
pk

→ KUhC
pk → KUtC

pk

(the second and third terms are even and the last term is rational) or by using the
universal coefficients theorem for KU and the Atiyah–Segal completion theorem.

17Really we should have the dual I(Cpk ) of the augmentation ideal in odd degrees but we will

only need that I(Cpk ) = ℤ⊕(pk−1) as abelian groups.
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Now the filtration in question comes from the horizontal lines in the homotopy
orbits spectral sequence

(25) E2
i,j = Hi

(
BCp, πj(KUhC

pk
)
)
⇒ πi+j

((
KUhC

pk

)
hCp

)
which is conditionally convergent. Recall that

Hi(BCp,ℤ) =

⎧⎪⎨⎪⎩
ℤ, ∗ = 0,

𝔽p, ∗ > 0 odd,

0, else

and

Hi(BCp,ℚp/ℤp) =

⎧⎪⎨⎪⎩
ℚp/ℤp, ∗ = 0,

𝔽p, ∗ > 0 even,

0, ∗ odd.

Thus the homotopy orbits spectral sequence is in homological Serre grading a right-
half plane spectral sequence which is for i > 0 (i.e., right of the axis) concentrated
in odd total degree where each entry is a sum of copies of 𝔽p’s. There cannot be any
differentials in this spectral sequence since the only differentials that are possible
for degree reasons would have to map a p-torsion group to ℤ. Thus the whole
spectral sequence collapses at E2 and is strongly convergent.18 For every value of j
there are elements in total degree 1 that are detected at the horizontal line through
−j. Since this line corresponds to elements in the image of Mk,j → colimn Mk,n,
this finishes the proof. �

6. THH of schemes and the cyclotomic t-structure

In this section, we give a sampling of applications of the cyclotomic t-structure to
the study of THH of commutative rings and to schemes. We will continue an abuse
of notation by viewing πcyc

n THH(X) simultaneously as an object of the abelian

category ̂Cartp and as a cyclotomic spectrum (with homotopy groups given by
Figure 1 on page 6).

6.1. THH of ring spectra and schemes. Our first result follows from computa-
tions of Hesselholt–Madsen and Hesselholt.

Theorem 6.1. If R is a connective 𝔼1-ring spectrum, then πcyc
0 THH(R) ∼=

πcyc
0 THH(π0R) ∼= W (π0R) as a p-typical Cartier module, where W (R) is equipped

with the Witt vector Frobenius and Verschiebung maps.

Proof. Since π0THH(R) ∼= π0THH(π0R) ∼= π0R, we see from the long exact se-
quence in cyclotomic homotopy groups that πcyc

0 THH(R) ∼= πcyc
0 THH(π0R). Now,

for any associative ring A, π0TR(A) ∼= W (A). In the commutative case, this is the
content of [HM97, Theorem F]. In the non-commutative case, see [Hes97, Theo-
rem 2.2.9] and [Hes05]. A recent exposition is given in [KN, Corollary 10.2]. The
theorem now follows from Theorem 9. �

18Note that we know the homotopy groups of Σ
(
KUhC

pk

)
hCp

= Σ
(
KUhC

pk+1

)
by the above

computation. It is interesting how the extensions work out to lead to this result.
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Remark 6.2. (a) As explained in Section 4.3, Theorem 6.1 gives a topological

proof of Theorem 4.16, i.e., that W (R)�̂W (S) ∼= W (R⊗S) for rings R and
S.

(b) It follows from Theorem 6.1 that for any cyclotomic spectrum X, the cyclo-
tomic homotopy groups πcyc

i X are modules over W (ℤ) and hence over the
cyclotomic spectra ℤtriv and THH(ℤ). Indeed, both maps ℤtriv ← 𝕊triv →
THH(ℤ) induce equivalences on πcyc

0 .

Recall from Variant 2.4 that there is a t-structure on CycSpTHH(R) =

ModTHH(R)(CycSpp), the ∞-category of THH(R)-modules in cyclotomic spectra.
We identify the heart in the next corollary.

Corollary 6.3. If R is a connective 𝔼∞-ring spectrum, then the heart CycSp♥
THH(R)

is equivalent to ModW (π0R)(CycSp♥
p ) � ModW (π0R)( ̂Cartp), the abelian category

of W (π0R)-modules in derived V -complete p-typical Cartier modules with respect

to the �̂-symmetric monoidal structure.

Proof. This follows from Theorem 4.15, Theorem 6.1, and Proposition A.15. �

Remark 6.4. Lemma 4.17 gives a concrete description of the objects of this abelian
category.

Now, we examine the cyclotomic homotopy groups of schemes in general. In
Section 6.2, we will give more precise results in the case of regular 𝔽p-schemes.

It has been shown in [BMS19, Corollary 3.3] that THH(−) is an Sp-valued fpqc
sheaf on CAlg, the category of commutative rings. They also note in [BMS19,
Remark 3.4] that the proof extends to show that THH(−)tCp is an Sp-valued fpqc
sheaf on CAlg. This is enough to prove that in fact THH(−) is a CycSpp-valued
fpqc sheaf on CAlg. We expand on this and establish pro-étale hyperdescent for
THH in CycSpp. We claim no originality in our proof, which closely follows the
argument of [BMS19].

For details on the pro-étale topology, see [BS15]. We give a brief summary
here. A map R → S is weakly étale if R → S and S ⊗R S → S are both

flat. We let CAlgproétR be the full subcategory of CAlgR on the weakly étale R-
algebras. Note that any map S → T of weakly étale R-algebras is itself weakly

étale. The faithful weakly étale maps make CAlgproétR into a site, the pro-étale site
of R. For the next proof, we will need only to know that for every weakly étale
map R → S one has LS/R � 0 (see [BS15, Proposition 2.3.3(2)], which follows
from [GR03, Theorem 2.5.36]).

Proposition 6.5. Write THH(O) for the presheaf which sends a commutative ring
R to THH(R).

(a) The presheaf THH(O) is a hypercomplete Sp-valued pro-étale sheaf.
(b) The presheaf THH(O) is a hypercomplete CycSpp-valued pro-étale sheaf.

Proof. One can use the main result of [Mat17], which says that S ⊗R THH(R) �
THH(S) for an étale map R → S, to give a proof of part (a). We will give a

different proof, which will serve to motivate our proof of (b). Let CAlgproétR be the
category of weakly étale R-algebras. As mentioned above, THH(O) is an Sp-valued
pro-étale sheaf by [BMS19, Corollary 3.3]. To prove (a), consider the presheaf
THH(O)⊗THH(ℤ) τ�nTHH(ℤ) (where τ�nTHH(ℤ) is the ordinary (not cyclotomic)
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truncation), which sends an S ∈ CAlgproétR to THH(S) ⊗THH(ℤ) τ�nTHH(ℤ). For

each S ∈ CAlgproétR , we have that THH(S) � limn THH(S)⊗THH(ℤ)τ�nTHH(ℤ). In
particular, THH(O) � limn THH(OX)⊗THH(ℤ)τ�nTHH(ℤ) as Sp-valued presheaves.
Since hypercomplete sheaves are closed under limits, it is enough to see that each
THH(O)⊗THH(ℤ) τ�nTHH(ℤ) is hypercomplete. As in the proof of [BMS19, Corol-
lary 3.3], this reduces to showing that each THH(O)⊗THH(ℤ) πnTHH(ℤ) is hyper-
complete and then to showing that THH(O)⊗THH(ℤ) ℤ is hypercomplete, since

THH(O)⊗THH(ℤ) πnTHH(ℤ) � THH(O)⊗THH(ℤ) ℤ ⊗ℤ πnTHH(ℤ).

However, THH(O)⊗THH(ℤ) ℤ � HH(O/ℤ), the presheaf which sends S ∈ CAlgproétR

to HH(S/ℤ), the Hochschild homology of S. Thus, we are reduced to proving that
Hochschild homology is hypercomplete as an Sp-valued pro-étale presheaf. Now,
HH(O/ℤ) admits a complete decreasing ℕ-indexed filtration F�

HKRHH(O/ℤ) with
graded pieces given by

grnHKRHH(O/ℤ) � ΛnLO/ℤ[n].

In particular, gr0HKRHH(O/ℤ) � O, which is hypercomplete. Since each ΛnLO/ℤ

is quasi-coherent (we use here that LS/R � 0 for R → S pro-étale) and since quasi-
coherent sheaves are hypercomplete (see for example [Lurb, Proposition 2.2.6.1]),
it follows by induction that each Fn

HKRHH(O/ℤ) is a hypercomplete pro-étale sheaf
of spectra. Part (a) follows since the HKR filtration is complete.

Now, we would like to prove that THH(O) is a hypercomplete CycSpp-valued
pro-étale sheaf. Since the forgetful functor CycSpp → Sp does not commute
with limits in general, this is not an immediate consequence of the previous para-
graph. We invoke [NS18, Proposition II.1.5], which implies that it is enough for
THH(R)tCp → limΔ THH(S•)tCp to be an equivalence for every pro-étale hyper-
cover R → S•. Since (−)tCp commutes with sequential limits of increasingly con-
nected maps (by Lemma 2.11(a)), we can reduce as in the previous paragraph to
checking that HH(R)tCp → limΔ HH(S•)tCp is an equivalence. And, again, we can
use the HKR filtration to reduce to checking that (ΛnLR/ℤ)

tCp � limΔ(Λ
nLS•/ℤ)

tCp

is an equivalence for each n ∈ ℕ. Since (−)hCp commutes with limits, it is enough
to prove that (ΛnLR/ℤ)hCp

→ limΔ(Λ
nLS•/ℤ)hCp

is an equivalence. This follows
from faithfully flat descent since (LR/ℤ)hCp

is quasi-coherent. �

Corollary 6.6. The presheaf TR(O) which sends a commutative ring R to TR(R)
is a hypercomplete TCartp-valued pro-étale sheaf.

Proof. This is immediate as TR: CycSpp → TCartp preserves limits by Proposi-
tion 3.17. �

It follows that THH(O) and TR(O) are hypercomplete for any topology coarser
than the pro-étale topology as well. We will be mainly interested in the Zariski
topology below.

Definition 6.7. Let X be a quasi-compact and quasi-separated scheme. Let
τ�nTR(OX) denote the Zariski sheafification of U �→ τ�nTR(U) in the ∞-category
TCartp. Similarly, let τ�nTR(OX) denote the Zariski sheafification of U �→
τ�nTR(U).

Remark 6.8. (a) The forgetful functor TCartp → Sp preserves limits and col-
imits, so in what follows we could as well work with presheaves of spectra.
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(b) In particular, τ�nTR(OX) and τ�nTR(OX) are both hypercomplete since
the inclusion of hypercomplete sheaves of spectra into all sheaves of spectra
is t-exact.19

Lemma 6.9. If X is a quasi-compact scheme of finite Krull dimension, then the
natural map TR(OX) → limn τ�nTR(OX) is an equivalence.

Proof. In this case, the ∞-topos of sheaves of spaces on the Zariski site of X has
finite homotopy dimension by [CM, Theorem 3.17]. This implies that every sheaf
of spaces on the Zariski site is Postnikov complete by [Lur09, Proposition 7.2.1.10].
By taking infinite loop spaces, this implies that every connective sheaf of spectra
on the Zariski site of X is Postnikov complete.20 �

Definition 6.10. Write πcyc
n THH(OX) for the Zariski sheafification of U �→

πcyc
n THH(U) ∼= πnTR(U), which is naturally a sheaf in the abelian category Cartp.

Example 6.11. By Theorem 6.1, we see that πcyc
0 THH(OX) � W (OX), Serre’s

Witt vector sheaf.

Proposition 6.12. Let X be a quasi-separated scheme of finite Krull dimension.
There is a conditionally convergent Zariski descent spectral sequence

Es,t
2

∼= H−s(X, πcyc
t THH(OX)) ⇒ πcyc

s+tTHH(X)

in Cartp.

Proof. This is the spectral sequence associated to the complete decreasing ℕ-
indexed Whitehead tower τ�tTR(OX) for TR(OX). We use that πcyc

t−sTHH(X) ∼=
πt−sTR(X). �

Example 6.13. Suppose that X has Krull dimension d. The differentials dr in
the descent spectral sequence have bidegree (r, r − 1), from which we see that the
bottom cyclotomic homotopy group of THH(X) is given by

πcyc
−dTHH(X) ∼= Hd(X, πcyc

0 THH(OX)) ∼= Hd(X,W (OX)),

where W (OX) is Serre’s sheaf of Witt vectors.

19Let X be an ∞-topos, Xhyp its hypercompletion, and consider the adjunction
f∗ : ShvSp(X ) � ShvSp(Xhyp) : f∗. As for general geometric morphisms of ∞-topoi, f∗ is t-
exact and f∗ is left t-exact (see [Lurb, 1.3.2.8]). We want to show that f∗ is right t-exact as well

in this case. Thus, let F ∈ ShvSp(Xhyp)�0 and consider the cofiber sequence

τ�0f∗F → f∗F → τ�−1f∗F .

Applying f∗ again, we see that

f∗τ�0f∗F � τ�0f
∗f∗F � τ�0F � F

using the t-exactness of f∗ and the fully faithfulness of f∗ (see [Lurb, 1.3.3.2]). Thus,

f∗τ�−1f∗F � 0. In other words, τ�−1f∗F is both ∞-connective and bounded above. Hence,
since the t-structure on ShvSp(X ) is right complete by [Lurb, 1.3.2.7], τ�−1f∗F � 0 so f∗F is

connective.
20Note that the ∞-category of connective sheaves of spectra is equivalent to the ∞-category

of sheaves of connective spectra.
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6.2. THH of smooth schemes over perfect rings in characteristic p. The
following theorem follows easily from the description of the t-structure in terms of
TR and the work of Hesselholt and Madsen.

Theorem 6.14. Suppose that k is a perfect ring of characteristic p. Then, THH(k)

∈ CycSp♥
p . The associated Cartier module πcyc

0 THH(k) is isomorphic to W (k) with
the Witt vector Frobenius F and Verschiebung V .

Proof. By Theorem 3.21, it suffices to show that TR(R) is concentrated in degree
zero and that TR0(k) ∼= W (k). When k is a perfect field of characteristic p,
this is the content of [HM97, Theorem 5.5]. When k is an arbitrary perfect ring of
characteristic p, there is a map THH(k) → πcyc

0 THH(k) � W (k)/V of commutative
algebra objects in CycSpp by Theorem 6.1. We already know that π∗THH(k) ∼=
k[b] where b has degree 2 (for instance by [BMS19, Theorem 6.1]). Since k is perfect,
π∗W (k)/V ∼= k[b] as well. Thus, it is enough to see that b maps to b up to a unit.
But, this follows by the commutative diagram

THH(𝔽p) ��

��

THH(k)

��

W (𝔽p)/V �� W (k)/V

and the fact that we know the result when k = 𝔽p. �

Remark 6.15. (a) The fact that THH(𝔽p)∈CycSp♥
p is equivalent to Bökstedt’s

original calculation via Theorem 6.1. We have already seen one direction
as Bökstedt’s calculation is used to prove [HM97, Theorem 5.5]. So, as-

sume that THH(𝔽p) ∈ CycSp♥
p . By Theorem 6.1, we find that in fact

THH(𝔽p) � W (𝔽p)/V . But, additively, π∗W (𝔽p)/V ∼= 𝔽p[b], where |b| = 2
using Figure 1 on page 6. Thus, it is enough to determine the multi-
plicative structure. For this, we use that THH(𝔽p) is a ℤtriv

p -module in
cyclotomic spectra as the trace map K(𝔽p) → THH(𝔽p) factors through
τ�0TC(𝔽p) � ℤp. Thus, we obtain a commutative diagram

ℤtriv
p

��

��

THH(𝔽p) ��

��

W (𝔽p)/V

��

ℤ
tCp
p

�� THH(𝔽p)
tCp �� (W (𝔽p)/V )tCp

of commutative algebra objects in SpBS1

. We know that ℤ
tCp
p � W (𝔽p)

tCp

→ (W (𝔽p)/V )tCp is an equivalence by the Tate orbit lemma. Thus, the
composition of the bottom arrows is an equivalence. Since we are assum-
ing that THH(𝔽p) � W (𝔽p)/V , this means that both bottom arrows are
equivalences. On the other hand, this means that the middle and right ver-

tical arrows are both 0-truncated by Proposition 2.25. Since π1ℤ
tCp
p = 0

and because the map THH(𝔽p) → THH(𝔽p)
tCp is a ring map, we see

that in fact THH(𝔽p) � τ�0THH(𝔽p)
tCp � τ�0ℤ

tCp
p . This shows that

π∗THH(𝔽p) � 𝔽p[b] multiplicatively as well.
(b) Our original proof, prior to the discovery of p-typical topological Cartier

modules, used only the fact that π∗THH(k) ∼= k[b], where b has degree
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2 when k is a perfect ring of characteristic p. Indeed, one can construct
a tower of spectra with S1-action whose limit is τ cyc�1 X for any p-typical

cyclotomic spectrum X. Studying this tower for X � THH(k) where k is a
perfect ring of characteristic p gives an alternative proof of Theorem 6.14.

Remark 6.16. (a) Recall from Example 4.18 that if R = 𝔽p, then the objects of

ModW (𝔽p)(TCartp) are called Dieudonné modules. Thus, CycSp♥
THH(𝔽p)

is the abelian category of derived V -complete Dieudonné modules.
(b) Since THH(𝔽p) is a ℤtriv-module in CycSpp, it follows that η = 0 on πcyc

n X
for any THH(𝔽p)-module X in p-typical cyclotomic spectra.

Definition 6.17. A Dieudonné complex is a p-typical Cartier complex (see
Definition 3.34) with V F = p and η = 0. Saturated Dieudonné complexes in
the sense of [BLM, Definition 2.2.1] naturally admit the structure of Dieudonné
complexes in our sense by [BLM, Proposition 2.2.4].

Combining the previous remarks, Theorem 6.14, and Lemma 3.33, we see that
for any X ∈ CycSpTHH(𝔽p), the graded abelian group πcyc

∗ X naturally admits the
structure of a Dieudonné complex.

Theorem 6.18. Let k be a perfect field of characteristic p. If R is a smooth k-
algebra, then πcyc

∗ THH(R) ∼= WΩ∗
R, as Dieudonné complexes, where WΩ∗

R is the
de Rham–Witt complex. In particular, if R has relative dimension at most d over
k, then THH(R) ∈ (CycSpp)[0,d].

Proof. At the level of TR(R), this is the content of [Hes96, Theorem C], which says
that, with the F , V , and d operations, TR∗(R) ∼= WΩ∗

R. �

Remark 6.19. In particular, we find that WΩn
R is derived V -complete for all n.

Since this is an unusual filtration to consider, we note that this is easy to de-
duce classically. Let p�WΩn

R be the p-adic filtration on WΩn
R, and let V �WΩn

R +
dV �WΩn

R ⊆ WΩn
R be the submodule generated by the images of V � and dV �.

Then, p�WΩn
R ⊆ V �WΩn

R ⊆ V �WΩn
R + dV �WΩn−1

R . Since WΩn
R is complete with

respect to p�WΩn
R and to V �WΩn

R + dV �WΩn−1
R , it is complete with respect to

V �WΩn
R. Since V is injective, this is the same as derived V -completeness. By

Proposition 3.38, TR∗(R) is also complete with respect to the derived version of
the (V +dV )-filtration. In fact, in this case, the derived and non-derived filtrations
are pro-equivalent.

Corollary 6.20. Let k be a perfect field of characteristic p, and let S be an ind-
smooth k-algebra. Then, TR∗(S) ∼= WΩ∗

S.

Proof. Because TR does not commute with filtered colimits as a functor to TCartp,
this theorem is not a formal consequence of Theorem 6.18. To correct this, we need
to dig into the proof of [Hes96, Theorem C]. Hesselholt’s result follows from a
finer result [Hes96, Theorem B], which says that if R is a smooth k-algebra, then

π∗THH(R)Cpn−1 ∼= WnΩ
∗
R[bn] and that moreover the map R : THH(R)Cpn−1 →

THH(R)Cpn−2 sends bn to pbn−1 (up to a unit). Passing up the tower, one obtains
the computation of TR.

Now, each THH(−)Cpn−1 commutes with sifted colimits of commutative rings
and in particular filtered colimits. Suppose that S � colimi∈I Si, where I is a
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filtered category and each Si is a smooth k-algebra. Then, we have

π∗THH(S)
Cpn−1 ∼= colim

i
π∗THH(Si)

Cpn−1 ∼= colim
i

WnΩ
∗
Si
[bn] ∼= WnΩ

∗
S [bn]

for each n � 1, as WnΩ
∗
− commutes with filtered colimits (see [Ill79, I.1.10]). We

still have that R : THH(S)Cpn−1 → THH(S)Cpn−2 sends bn to pbn−1 up to a unit,
so taking the limit gives the result. �

Example 6.21. (1) By Popescu’s theorem, every regular noetherian 𝔽p-
algebra is a filtered colimit of smooth 𝔽p-algebras. So, the theorem ap-
plies in particular to all regular noetherian 𝔽p-algebras.

(2) We can say somewhat more in the special case when R is a filtered colimit
of smooth k-algebras of a uniformly bounded dimension. For example,
suppose that K = k(x1, . . . , xd). Then, THH(K) ∈ (CycSpp)[0,d]. Indeed,
in that case, each WnΩ

∗
K is concentrated in degrees 0 to k and hence so is

the limit.
(3) If R is a smooth 𝔽p-algebra, then the theorem applies pro-étale locally on

the pro-étale site of R. Indeed, for every weakly étale map R → S there
is a faithfully flat ind-étale map S → T such that R → T is ind-étale. In
particular, k → T is ind-smooth. See [BS15, Theorem 2.3.4]. We will use
this below to compare the BMS filtration on TC with the filtration coming
from the cyclotomic t-structure.

Corollary 6.22. Let k be a perfect field of characteristic p, and let X be a smooth
quasi-compact k-scheme. There is a convergent spectral sequence

Es,t
2 = Hs(X,WΩt

X) ⇒ πcyc
t−sTHH(X)

in the abelian category of derived V -complete p-typical Cartier modules. If X has
Krull dimension at most d, then Es,t

2 = 0 for t > d and s > d.

Proof. Combine Proposition 6.12 and Theorem 6.18. In this case, the spectral
sequence converges because it collapses at some finite stage for each connected
component of X (above the dimension of the connected components). �

Now, we can compare the BMS filtration and the cyclotomic t-structure fil-
trations on TC(R) when X = SpecR is a smooth affine scheme over a perfect
field k. The BMS filtration is a decreasing multiplicative ℕ-indexed filtration
F�
BMSTC(R) on TC(R) with graded pieces given by grnBMSTC(R) � ℤp(n)(R)[2n] �

WΩn
X,log(R)[n] by [BMS19, Theorems 1.12 and 1.15]. It is defined in the follow-

ing way. If S is a quasi-regular semiperfect 𝔽p-algebra, then TC−(S) and TP(S)

are concentrated in even degrees. One sets F�
BMSTC

−(S) = τ�2�TC
−(S) and

F�
BMSTP(S) = τ�2�TP(S). The canonical and Frobenius maps TC−(S) → TP(S)

preserve the BMS filtration on each side and hence define a filtration F�
BMSTC(S).

One now constructs the BMS filtration on a general quasi-syntomic 𝔽p-algebra by
quasi-syntomic descent.

Note that the filtrations F�
BMSTC

−(R) and F�
BMSTP(R) do not come from a

cyclotomic filtration on THH(R). Indeed, if R = 𝔽p, then grnBMSTP(𝔽p) � ℤp[2n]
whereas TP of any cyclotomic THH(𝔽p)-module will be 2-periodic. However, we will
see that if R is smooth, then the filtration on TC(R) does come from a cyclotomic
filtration on THH(R).
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Consider the decreasing multiplicative ℕ-indexed filtration TC(τ cyc�� THH(R)) on

TC(R). Since

TC(τ cyc�� THH(R)) � fib
(
τ��TR(R)

1−F−−−→ τ��TR(R)
)
,

we see from Theorem 6.18 that the graded pieces are given by

fib
(
WΩn

R[n]
1−F−−−→ WΩn

R[n]
)
� fib

(
WΩn

R
1−F−−−→ WΩn

R

)
[n].

Theorem 6.23. Let X = SpecR be a smooth affine scheme over a perfect field k of
characteristic p. There is a natural equivalence TC(τ cyc�� THH(R)) → F�

BMSTC(R)
of filtered spectra.

Proof. The BMS filtration satisfies pro-étale descent, by definition, since it satisfies
quasi-syntomic descent. In other words, the assignment which sends a pro-étale
R-algebra S to Fn

BMSTC(S) is a pro-étale sheaf. In fact, it is hypercomplete as

it is bounded above on CAlgproétR . Indeed, if R has Krull dimension d, then for
any pro-étale R-algebra S, Fn

BMSTC(S) is d-truncated. Moreover, pro-étale-locally,
the BMS filtration reduces to the Whitehead tower on TC by [BMS19, Theo-
rem 1.15]. Thus, to map in to F�

BMSTC(R) it is enough to prove that pro-étale lo-

cally TC(τ cyc�nTHH(R)) is n-connective. For this, we need to know that WΩn
X

1−F−−−→
WΩn

X is pro-étale-locally surjective. As shown in the proof of [BMS19, Proposi-
tion 8.4], this follows from a result of Illusie [Ill79, Théorème I.5.7.2]. Moreover,
they show that the kernel (in pro-étale sheaves) is WΩn

X,log. This proves both that

there is a map of filtered objects TC(τ cyc�� THH(R)) → F�
BMSTC(R) and that the

map on graded pieces is the natural map

fib
(
WΩn

R
1−F−−−→ WΩn

R

)
→ WΩn

X,log(R),

which is an equivalence (see for example [GH99, Lemma 4.1.3] and the following
discussion). �
6.3. Crystalline cohomology and TP. Let k be a perfect ring of characteristic
p. Let R be a smooth commutative k-algebra. We show in this section how to use
Theorem 6.18 to extract the de Rham–Witt complex from TP(R).

Recall that when R is smooth over a perfect field k, then the crystalline co-
homology RΓcrys(R/W (k)) has a canonical cochain complex model given by the
de Rham–Witt complex

0 → WΩ0
R → WΩ1

R → · · · ,
which is a Dieudonné complex in the sense of Definition 6.17.

Our next theorem complements a result of Bhatt, Morrow, and Scholze. They
prove in [BMS19, Theorem 1.10] that if R is a smooth k-algebra for a perfect field
k, then there is a filtration F�

BMSTP(R) with graded pieces

grnBMSTP(R) � RΓcrys(R/W (k))[2n].

Moreover, each Fn
BMSTP(R) is itself equipped with a filtration and the maps

Fn+1
BMSTP(R) → Fn

BMSTP(R) are compatible with this secondary filtration. On
graded pieces, one obtains the Nygaard filtration on RΓcrys(R/W (k))[2n].

We recover the BMS filtration on TP(R) in the next theorem by using the cy-
clotomic t-structure. Our filtration also comes equipped with a secondary filtration
as well, but this time the induced filtration on the graded pieces is the Hodge, or
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Hodge–Witt, filtration, which lets us say that the graded pieces are given by shifts
of the de Rham–Witt complex, as opposed to an object of the derived ∞-category
equivalent to the de Rham–Witt complex.

Theorem 6.24. Let k be a perfect field of characteristic p, let R be an ind-smooth
k-algebra, and let TP(τ cyc�� THH(R)) be the filtration on TP(R) induced by the cyclo-
tomic Whitehead tower. The induced Whitehead tower with respect to the Beilinson
t-structure on filtered spectra defines a natural complete exhaustive multiplicative
decreasing ℤ-indexed filtration F�

BTP(R) in filtered spectra with graded pieces given
by

griBTP(R) � WΩ•
R[2i]

for all i. Moreover, this filtration agrees with the BMS filtration on TP(R) after
forgetting the secondary filtrations.

Proof. Applying the S1-Tate construction to the cyclotomic Whitehead tower of

THH(R), we obtain a complete decreasing ℕ-indexed filtration (τ cyc�� THH(R))tS
1

on TP(R). The graded pieces are

(πcyc
� THH(R)[�])tS

1 � (WΩ�
R[�])

tS1

by Corollaries 10 and 6.20. We let F�
BTP(R) denote the double-speed Whitehead

tower with respect to the Beilinson t-structure (see [BMS19, Section 5]) on filtered

spectra associated to the filtered spectrum (τ cyc�� THH(R))tS
1

. This is a complete

exhaustive ℤ-indexed filtration on TP(R) (see for example [Ant19, Lemma 3.2]).
Moreover, grnBTP(R)[−2n] is an object of the heart of Fun(ℤop,D(W (𝔽p))), the
∞-category of filtered objects of the derived ∞-category of W (𝔽p). Thus,
grnBTP(R)[−2n] is canonically a cochain complex; it is not hard to see that it
is of the form

0 → WΩ0
R → WΩ1

R → · · · ,
where the differential is Connes’ B-operator. By Theorem 6.18, the B-operator is
given by the differential in the de Rham–Witt complex. This completes the proof
of the first part of the theorem. For more details, see [Ant19, Example 2.4].

To continue, we must produce a map F�
BTP(R) → F�

BMSTP(R) of filtered spec-
tra. To do so, we first Kan extend so that we can compare in the quasi-regular
semiperfect case, and then we descend back to the smooth case.

As in the first paragraph, if R is smooth over 𝔽p, we can produce a complete fil-

tration F�
BTR(R)hS1 on TR(R)hS1 with graded pieces grnBTR(R)hS1 � WΩ•�n

R [2n].
The natural map TP(R) → TR(R)hS1 [2] induces a filtered map F�

BTP(R) →
F�
BTR(R)hS1 [2] which on graded pieces is the natural quotient WΩ•

R[2n] →
WΩ•�n−1

R [2n] of chain complexes.

Fix a generator v ∈ π−2ℤhS1 ∼= ℤ. Recall that if X ∈ Fun(BS1,D(ℤ)) is a chain

complex with S1-action, then XhS1 is a module over ℤhS1

and the natural map

XtS1 → XhS1 [2] induces an equivalence

XtS1 � lim
(
· · · → XhS1 [2n− 2]

v−→ XhS1 [2n]
v−→ XhS1 [2n+ 2] → · · ·

)
.

In the case of TR(R)hS1 , v induces a filtered map F�
BTR(R)hS1 → F�−1

B TR(R)hS1 [2]
which on graded pieces identifies with the quotient map WΩ•�n[2n] →
WΩ•�n−1[2n].
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For a general object X ∈ Mod
ℤhS1 , we let

TvX = lim
(
· · · → X[2n− 2]

v−→ X[2n]
v−→ X[2n+ 2] → · · ·

)
.

This construction defines a functor Mod
ℤhS1 → Mod

ℤtS1 .
Let LTP(−) denote the left Kan extension of TP(−) from polynomial 𝔽p-algebras

to all simplicial commutative 𝔽p-algebras as a functor with values in Mod
ℤtS1 .

We let LTR(−) denote the left Kan extension of TR as a functor with values in
Fun(BS1,D(ℤ)). We let L(TR(−)hS1) be the left Kan extension of TR(−)hS1 as

a functor with values in D(ℤhS1

). Since taking homotopy orbits commutes with
colimits, there is an equivalence of functors (LTR(−))hS1 � L(TR(−)hS1). We
write LTR(−)hS1 for this common functor.

Consider the commutative diagram

LTP(S) ��

��

TvLTR(S)hS1

��

TP(S) TvTR(S)hS1

in Mod
ℤtS1 . The spectrum LTP(S) carries the Kan extended Beilinson filtration

F�
BLTP(S) with graded pieces LWΩS. The spectrum TvTR(S)hS1 carries the in-

verse limit of the Kan extended Beilinson filtration on TR(S)hS1 . This is a filtration

F�
BTvLTR(S)hS1 with graded pieces given by ̂LWΩS , the completion of LWΩS with

respect to the Hodge filtration LWΩ��
S .

The Kan extended filtration F�TR(S)hS1 is complete. Indeed, if S is smooth,
grnBTR(S)hS1 � WΩ�n[2n] is in D(ℤ)[n,2n]. Thus, since the filtration is complete
in this case, Fn

BTR(S)hS1 is in D(ℤ)�n. Hence, the Kan extension FnLTR(S)hS1

is in D(ℤ)�n. In particular, the Kan extended Beilinson filtration is complete on
TR(S)hS1 for any S. Since F�

BTvTR(S)hS1 is an inverse limit of complete filtrations,
it is complete.

It follows that the map F�
BLTP(S) → F�

BTvLTR(S)hS1 factors through the com-

pletion ̂LTP(S) of LTP(S) with respect to the Beilinson filtration. On ̂LTP(S) we

have the completed Beilinson filtration F�
B

̂LTP(S) with graded pieces grnB̂LTP(S) �
LWΩS[2n].

We thus have obtained a map ̂LTP(S) → TP(S) for any commutative ring
S. If S is quasi-regular semiperfect, then LWΩS[2n] is p-adically concentrated in
degree 2n (see [BMS19, Theorem 8.14]). The completeness of the filtration implies

that Fn
B

̂LTP(S) is p-adically 2n-connective. Thus, since TP(S) is p-complete, the

map ̂LTP(S) → TP(S) automatically upgrades to a filtered map F�
B

̂LTP(S) →
τ�2�TP(S) � F�

BMSTP(S).
Now, by quasi-syntomic descent, it follows that there exists a natural map

F�
BTP(R) → F�

BMSTP(R) for any smooth 𝔽p-algebra R. Standard arguments using
the Künneth isomorphism in crystalline cohomology and étale descent reduce us to
checking that it is an equivalence for R = 𝔽p[x], the ring of functions on 𝔸1

𝔽p
. But,

one sees in this case that since the crystalline cohomology is concentrated in (ho-
mological) degrees 0 and −1, both filtrations satisfy Fn

BTP(R) � τ�2n−1TP(R) �
Fn
BMSTP(R), so we are done. �
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Remark 6.25. We expect that there is a common refinement of the Beilinson and
BMS filtrations on TP(R) when R is smooth over a perfect field k of characteristic
p. This would say that there is a filtration F�TP(R) on TP(R) where each FnTP(R)
is a bifiltered spectrum with one filtration reducing to the Nygaard filtration on the
graded pieces and the other reducing to the de Rham–Witt filtration on the graded
pieces.

In conclusion, we will briefly discuss three spectral sequences computing TP(X)
when X is smooth and proper over a perfect ring k of characteristic p: the Hes-
selholt spectral sequence, the Bhatt–Morrow–Scholze spectral sequence (or BMS
spectral sequence for short), and a new spectral sequence arising from the cyclo-
tomic Postnikov tower of THH(X).

Hesseholt’s spectral sequence, which is given in [Hes18, Theorem 6.8] when k is
a perfect field of characteristic p, is obtained Zariski locally from the inverse limit
of the Postnikov filtrations of THH(OX)tC

n
p . It has the form

(26) E2
i,j =

⊕
m∈ℤ

lim
n,F

H−i(X,WnΩ
j+2m
X ) ⇒ TPi+j(X).

The differentials dr have bidegree (−r, r − 1). Note that, as explained in [Hes18,
Section 5], the terms in this spectral sequence arise also in the conjugate spectral
sequence

(27) Es,t
2 = lim

n,F
Hs(X,WnΩ

t
X) ⇒ Hs+t

crys(X/W (k))

computing the crystalline cohomology of X over W (k). The point is that
limn,F Hs(X,WnΩ

t
X) is isomorphic to Hs(X,Ht

crys) by the Cartier isomorphism,

where Ht
crys is the Zariski sheafification of U �→ Ht

crys(U/W (k)).
The BMS spectral sequence arises because of a quasi-syntomic-local filtration on

TP. The filtration then has nth graded piece

grnBMSTP(X) � RΓcrys(X/W (k)){n}[2n].
The twist {n} is used in [BMS19] to keep track of the twist of the action of Frobe-
nius. In this case, it means that the action of Frobenius is given by p−n times the
action of Frobenius on RΓcrys(X/W (k)). The spectral sequence of the filtration
then takes the form

(28) Es,t
2 = Hs−t

crys(X/W (k)){−t} ⇒ TP−s−t(X)

(see [BMS19, Theorem 1.12]).
Our spectral sequence for TP is induced from the cyclotomic Whitehead tower.

Specifically, the cyclotomic Postnikov tower gives a complete exhaustive decreasing
multiplicative ℕ-indexed filtration Ft

cycTHH(X) = τ cyc�t THH(X) of THH(X) with

associated graded pieces grtcycTHH(X) � RΓ(X,WΩt)[t].

Theorem 6.26. Let X be a smooth and quasi-compact k-scheme, where k is a
perfect field of characteristic p. There is a complete decreasing multiplicative ℕ-
indexed filtration F�

cycTP(X) on TP(X) with associated gradeds grjcycTP(X) �(
πcyc
j THH(X)[j]

)tS1

. The associated multiplicative and conditionally convergent21

21The filtration might in general not be finite. But if the scheme is of finite dimension it is, so
that the spectral sequence is strongly convergent.
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spectral sequence takes the form

(29) E1
i,j = π∗

(
RΓ(X,WΩj

X)
)
[t±] ⇒ TPi+j(X),

where the bidegree of t is (−2, 0) and the elements in πi(RΓ(X,WΩj
X)) sit in bide-

gree (i, j).

Proof. It follows immediately from Theorem 6.18 and Corollary 10 that we get a
spectral sequence of the form

E1
i,j = πi

(
RΓ(X,WΩj

X)tS
1
)
⇒ TPi+j(X).

Now the action of S1 on WΩj
X � πjTR(OX) is trivial since there is just a single

homotopy group. Thus the action on the derived sections is trivial as well (in

fact, canonically trivialized) and the Tate spectral sequence for RΓ(X,WΩj
X)tS

1

degenerates for all j. Moreover the trivialization is multiplicative which gives the
result. �

Remark 6.27. Theorem 6.24 implies that the spectral sequence (29) agrees with (28)
when X is affine from the E2-page forward (up to reindexing). In general, they do
not agree on the E2-page.

Remark 6.28. If X is smooth and proper over a perfect field k of characteristic p,
then the Hesselholt, BMS, and cyclotomic spectral sequences for TP degenerate
rationally. To prove degeneration of the spectral sequences for TP in the smooth
proper case, it is enough to check it for one spectral sequence since rationally
all three spectral sequences start with the same ranks contributing to TPn(X)
(using rational degeneration of the Hodge and conjugate spectral sequences for
crystalline cohomology due to [IR83]). However, an argument of Scholze proves
rational degeneration of the BMS spectral sequence for smooth affine schemes over
perfect fields (see [Elm]). This comes from a canonical splitting due to the action
Adams operations and thus extends to smooth proper schemes, giving the desired
degeneration.

Appendix A. Background on t-structures

For further background on t-structures see [Lura, Chapter 1] or the original
source [BBD82]. For prestable and especially Grothendieck prestable ∞-categories,
see [Lurb, Appendix C].

A.1. Right complete t-structures. The purpose of this section is to introduce
some terminology on t-structures and especially right complete t-structures.

Definition A.1. Let C be a stable ∞-category. A t-structure on C is a pair
(C�0, C�0) of full subcategories of C such that

(1) C�0[1] ⊆ C�0 and C�0[−1] ⊆ C�0;
(2) if X ∈ C�0 and Y ∈ C�0, then the mapping space MapC(X,Y [−1]) is

contractible;
(3) for every X ∈ C there is a fiber sequence τ�0X → X → τ�−1X, where

τ�0X ∈ C and τ�−1X[1] ∈ C�0.

Remarks A.2. (a) It is useful to let C�n = C�0[n] and C�n = C�0[n] for integers
n.

Licensed to Univ of Rochester. Prepared on Mon Oct  2 07:26:52 EDT 2023 for download from IP 128.151.13.109.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



72 BENJAMIN ANTIEAU AND THOMAS NIKOLAUS

(b) A t-structure is determined by either C�0 or C�0. In other words, if
(C�0, C�0) is a t-structure on C, then C�0 is the full subcategory of ob-
jects Y ∈ C such that MapC(X,Y [−1]) � 0 for all X ∈ C�0; similarly, C�0

is the left orthogonal to C�−1. Therefore, we will often think of a t-structure
as a pair consisting of a stable ∞-category C and a full subcategory C�0

such that (C�0, C�0) defines a t-structure in the sense of Definition A.1,
where C�0 is the right orthogonal to C�1.

(c) If (C�0, C�0) is a t-structure on C, then C�0 is often called the aisle and C�0

the co-aisle. In this case, C�0 is an example of a prestable ∞-category,
a notion studied in [Lurb, Appendix C] that abstracts the properties of the
∞-category of connective spectra.

(d) The truncations of condition (3) in Definition A.1 are functorial: the inclu-
sion C�0 ⊆ C admits a right adjoint τ�0, and C�0 ⊆ C admits a left adjoint
τ�0. For X ∈ C, τ�0X → X is the counit of the adjunction for C�0 ⊆ C
and X → τ�0X is the unit for the adjunction for C�0 ⊆ C.

(e) The heart of a t-structure is the full subcategory C♥ = C�0∩C�0 of C. It is
an abelian category, by [BBD82]. It also coincides with the full subcategory
of 0-truncated objects in C�0, by [Lura, 1.2.1.9].

Definition A.3. Let C and D be stable ∞-categories equipped with t-structures
(C�0, C�0) and (D�0,D�0), respectively. An exact functor F : C → D is right t-
exact if F (X) ∈ D�0 whenever X ∈ C�0. Similarly, the exact functor F is left
t-exact if F (X) ∈ D�0 whenever X ∈ C�0. An exact functor F is t-exact if it is
left and right t-exact.

Now, we review some essentially well-known facts about right completions of
t-structures.

Definition A.4. Let C be a stable ∞-category equipped with a t-structure
(C�0, C�0).

• We say that C is right separated if the full subcategory of ∞-coconnective
objects ⋂

n

C�n

is contractible.
• We say that C is right complete if the natural map

C → lim
n

C�n � lim
(
· · · → C�n

τ�n+1−−−−→ C�n+1 → · · ·
)

is an equivalence.

Remark A.5. Left separated and left complete t-structures are defined in the
analogous way.

Lemma A.6. Let C be a stable ∞-category with a t-structure (C�0, C�0). Assume
that C admits countable coproducts and that C�0 ⊆ C is closed under countable
coproducts. Then, C is right complete if and only if it is right separated.

Proof. This is the right complete version of [Lura, 1.2.1.19]. �
Definition A.7. If C is a stable ∞-category with a t-structure (C�0, C�0), then
the ∞-category

lim
(
· · · → C�n

τ�n+1−−−−→ C�n+1 → · · ·
)
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is the right completion of C.

Lemma A.8. If C is a stable ∞-category with a t-structure (C�0, C�0), then the
right completion is naturally equivalent to Sp(C�0), the ∞-category of spectrum
objects in C�0.

Proof. Write ιn+1 for the inclusion C�n+1 ⊆ C�n. In other words, ιn+1 is the left
adjoint to τ�n+1. We may rewrite the limit

lim
(
· · · → C�n

τ�n+1−−−−→ C�n+1 → · · ·
)
� lim

(
· · · → C�−2

τ�−1−−−→ C�−1
τ�0−−→ C�0

)
as

(30) lim
(
· · · → C�0

Ω−→ C�0
Ω−→ C�0

)
.

If D is an ∞-category with finite limits, Lurie defines Sp(D) in [Lura, 1.4.2.8] as
the full subcategory of reduced, excisive functors Sfin

∗ → C�0, where Sfin
∗ is the full

subcategory of pointed spaces on those spaces that can be built out of finite colimits
from a point.22 Lurie later shows, in [Lura, 1.4.2.24], that Sp(D) is equivalent to

the limit · · · → D Ω−→ D Ω−→ D. Since C�0 has finite limits, we see that Sp(C�0) is
the right completion, as claimed. �

The right completion Sp(C�0) can be identified with the full subcategory of
Fun(ℤ, C) consisting of those functors X(�) : ℤ → C such that X(m) ∈ C�m for
all m and X(m) → X(n) induces an equivalence τ�nX(m) � X(n) for m � n.
Let Sp(C�0)�0 ⊆ Sp(C�0) denote the full subcategory of those objects X(�) where,
additionally, X(m) ∈ C�0 for all m. Let Sp(C�0)�0 be the full subcategory of those
sequences X(�) in Sp(C�0) where, additionally, X(m) ∈ C�0 for all m.

Lemma A.9. Let C be a stable ∞-category with a t-structure (C�0, C�0).

(a) The right completion Sp(C�0) is stable.
(b) The full subcategories (Sp(C�0)�0, Sp(C�0)�0) define a right complete t-

structure on Sp(C�0).
(c) The natural functor Sp(C�0) → C is right t-exact (and in particular exact).
(d) The functor in (c) induces an equivalence C�0 � Sp(C)�0.

Proof. Part (a) follows from [Lura, 1.4.2.21] since C�0 has finite limits. The re-
mainder is a right complete version of [Lura, 1.2.1.17]. �

A.2. Compatibility with symmetric monoidal structures. In this section,
we discuss the interaction of t-structures and tensor products.

Definition A.10. Let C be a stable ∞-category equipped with a t-structure
(C�0, C�0) and a symmetric monoidal structure C⊗. We say that the t-structure
is compatible with the symmetric monoidal structure if the following conditions
hold:

(i) the tensor product C × C −⊗−−−−→ C is exact in each variable;
(ii) the unit 𝟙C is in C�0;
(iii) X ⊗ Y ∈ C�0 whenever X,Y ∈ C�0.

22Thus, the idempotent completion of Sfin
∗ is Sω

∗ .
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Example A.11. The Postnikov t-structure on the ∞-category of spectra is com-
patible with the smash product symmetric monoidal structure. Indeed, the tensor
product commutes with all colimits in each variable, the sphere spectrum is con-
nective, and the smash product of connective spectra is connective.

In general, if (C�0, C�0) is a t-structure compatible with C⊗, then the∞-category
C�0 and the fully faithful inclusion functor C�0 → C inherit unique t-structures. For
example, C⊗

�0 ⊆ C⊗ is the full subcategory spanned by the objects (X1, . . . , Xn) ∈
C⊗
〈n〉 � Cn such that Xi ∈ C�0 for each i.

Lemma A.12. Let C be a stable ∞-category equipped with a symmetric monoidal
structure C⊗ and a t-structure (C�0, C�0) that is compatible with C⊗. Then, there
is a unique symmetric monoidal structure on C♥ and a unique symmetric monoidal
structure on the functor π0 : C�0 → C♥.

Proof. The proof is the same as that of [NS18, Theorem I.3.6] since C�0 → C♥

is a localization at the class W of maps X → Y such that π0X → π0Y is an
isomorphism in C♥. We just have to check that if f : X → Y is in the class W and

if Z is an arbitrary object of C�0, then X ⊗ Z
f⊗idZ−−−−→ Y ⊗ Z is in W . This is a

trivial consequence of the next lemma. �

Lemma A.13. In the situation of Lemma A.12, for any pair X,Y ∈ C�0, the
natural map π0(X ⊗ Y ) → π0(π0X ⊗ π0Y ) is an isomorphism in C♥.

Proof. To see this, consider the 3×3 diagram obtained by tensoring τ�1X → X →
π0X with the corresponding sequence for Y . We get a commutative diagram

τ�1X ⊗ τ�1Y ��

��

X ⊗ τ�1Y ��

��

π0X ⊗ τ�1Y

��

τ�1X ⊗ Y ��

��

X ⊗ Y ��

��

π0X ⊗ Y

��

τ�1X ⊗ π0Y �� X ⊗ π0Y �� π0X ⊗ π0Y,

where each row and column is a fiber sequence in C. Any term with at least one
τ�1 is in C�1. Hence, applying π0, we see using the bottom right four objects that

π0(X ⊗ Y ) � π0(π0X ⊗ π0Y ),

as desired. �

Definition A.14. We say that a t-structure on C is compatible with countable
products if C admits countable products and C�0 ⊆ C is closed under countable
products. Similarly, we say that C is compatible with countable coproducts if
C admits countable coproducts and C�0 ⊆ C is closed under countable coproducts.
We also say that a t-structure on C is compatible with products if C admits
products and C�0 ⊆ C is closed under products.

For the next proposition, let P be one of the following properties of a t-structure:
left separated, right separated, compatible with countable products, or compatible
with products.
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Proposition A.15. Let C be a presentably symmetric monoidal stable ∞-category
equipped with a compatible accessible t-structure (C�0, C�0). Let A ∈ Alg𝔼1

(C�0).

(1) Then, ModA(C) admits an accessible t-structure with ModA(C)�0 �
ModA(C�0).

(2) If the t-structure on C satisfies property P, then so does the t-structure on
ModA(C).

(3) There is a natural equivalence ModA(C)♥ � Modπ0A(C♥).
(4) If A is in Alg𝔼∞(C�0), then ModA(C) admits a presentably symmetric

monoidal structure and the t-structure is compatible with the symmetric
monoidal structure.

Proof. For (1) it is enough by [Lura, 1.4.4.11] to note that ModA(C�0) ⊆ ModA(C)
are presentable (see [Lura, 4.2.3.7]), the inclusion preserves colimits, and that
ModA(C) is closed under extensions in ModA(C). For (2), we will use that the for-
getful functor C ← ModA(C) is conservative and t-exact. Indeed, right t-exactness
follows by definition and left t-exactness follows from the fact that the forgetful func-
tor is right adjoint to the right t-exact extension of scalars functor. Now, (2) for left
or right separatedness follows from conservativity and t-exactness. For compatibil-
ity with (countable) products, we use conservativity, t-exactness, and preservation
of limits. Part (3) is a general fact about symmetric monoidal localizations. Part
(4) follows from [Lura, 4.5.2.1]. �

Remark A.16. By [Lura, 1.2.1.19], compatibility with countable products and left
separated together imply left complete. Similarly, compatibility with countable
coproducts and right separated together imply right complete.

In one way or another, we will typically be starting with a t-structure on spectra
with an S1-action. This is a special case of a t-structure on parametrized spectra,
which we introduce below.

Let X be a space, and let SpX = Fun(X, Sp) be the ∞-category of spectra

parametrized over X. There is a natural t-structure on SpX , the Postnikov t-
structure, where (SpX)�0 = Fun(X, Sp�0) and (SpX)�0 = Fun(X, Sp�0). The

heart SpX,♥ is naturally equivalent to
∏

x∈π0X
Mod♥

ℤ[π1(X,x)], the product over the

connected components of X of the abelian group of discrete ℤ[π1(X, x)]-modules,
where ℤ[π1(X, x)] is the group algebra of π1(X, x).

Proposition A.17. Let X be a space. The Postnikov t-structure on SpX is

(a) accessible,
(b) left and right complete,
(c) compatible with products and filtered colimits, and
(d) compatible with the pointwise symmetric monoidal structure(

SpX
)⊗

= Fun(X, Sp⊗)×Fun(X,Fin∗) Fin∗

on SpX .

Proof. Statement (d) follows immediately from the definitions. For the rest, note
that each property is stable under products of stable ∞-categories. Thus, it is
enough to check the case when X is path-connected. Let x ∈ X be a point.

Then, SpX
x∗
−→ Sp admits a left adjoint x!. Moreover, x!𝕊 is a compact generator

of SpX [NS18, Theorem I.4.1]. Thus, SpX � ModEndSpX (x!𝕊) by Morita theory,
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where EndSpX (x!𝕊) denotes the endomorphism algebra spectrum of x!𝕊. Now,
EndSpX (x!𝕊) � MapSp(𝕊, x

∗x!𝕊) � 𝕊[ΩxX], the spherical group algebra of the
grouplike 𝔼1-space ΩxX. Since 𝕊[ΩxX] is a connective 𝔼1-algebra, Mod𝕊[ΩxX]

admits an accessible, left and right complete t-structure which is compatible with
products and filtered colimits by [Lura, Proposition 7.1.1.13]. Thus, it is enough to

note that the two t-structures agree, which follows from the fact M ∈ SpX�0 if and
only if x∗M is in Sp�0. �
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