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90. INTRODUCTION 

IN THIS paper we will investigate certain aspects of the structure of the mod 2 Steenrod 

algebra, A, and of modules over it. Because of the central role taken by the cohomology 

groups of spaces considered as A-modules in much of recent algebraic topology (e.g. 

[ 11, [2], [7]), it is not unreasonable to suppose that the algebraic structure that we elucidate 

will be of benefit in the study of topological problems. 

The main result of this paper, Theorem 3.1, gives a criterion for a module !M to be 

free over the Steenrod algebra, or over some subHopf algebra B of A. To describe this 

criterion consider a ring R and a left module over R, M; for e E R we define the map 

e: M -+ M by e(m) = em. If the element e satisfies the condition that e2 = 0 then im e c ker e, 

therefore we can define the homology group H(M, e) = ker elime. Then, for example, 

H(R, e) = 0 implies that H(F, e) = 0 for any free R-module F. We can now describe the 

criterion referred to above: for any subHopf algebra B of A there are elements e,-with 

ei2 = 0 and H(B, ei) = O-such that a connected B-module M is free over B if and only 

if H(M, ei) = 0 for all i. This criterion we attribute to C.T.C. Wall (unpublished); he 

studied the cases B = A,, A, proving our Theorem 3.1 for B = A,. Here A, is the sub- 

algebra of A generated by Sql, . . . , Sq2”. It should also be noted that some ofthese homology 

groups have already been found useful in algebraic topology, for example in the work of 

Anderson, Brown and Peterson [2]. 

This paper is organized as follows. Section 1 is devoted to a brief description of the 

Steenrod algebra from the point of view taken by Milnor [6]. The section also quotes a 

characterization, due to the second author, of subHopf algebras of A. In Section 2 we 

develop the algebraic tools needed to prove the main theorem by considering the partic- 

ular situation of exterior algebras. Section 3 is primarily devoted to the proof of the main 

theorem, Theorem 3.1, which was described above. The section also includes some of the 

more immediate corollaries, for example, if we are given a short exact sequence of A- 

modules and any two are free then so is the third. In Section 4 we begin a more detailed 

study of A-modules using the homology groups introduced in Section 3. The results are of 

two types, “global” and “local”. We prove, for example, that free A-Modules are injective 

and use this to answer positively the question: is there a nice relation between A-modules 

M and N if there is an A-map between them that induces isomorphisms of the homologies? 
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A brief word about the genesis of this paper: all the results were originally proven by 

the second author [3]; however this paper incorporates a proof of the main theorem due 

to the first author that is substantially easier to follow. 

81. THE STRUCTURE OF THE Mod 2 STEENROD ALGEBRA 

In this section we recall some basic properties of the Steenrod algebra primarily from 

the point of view of the Milnor basis. The mod 2 Steenrod algebra, A, is the algebra of 

stable operations in cohomology with Z,-coefficients. We recall the description due to 

John Milnor of this algebra: 

THEOREM 1.1. The Steenrod algebra A is a locally finite Hopf algebra such that the 

dual Hopf algebra A* satisfies 

(1) A* = Zl[<, , t2 ,...I deg<i=2i-1,anrl 

Therefore A has a Zz-basis dual to the monomial basis of A* which we denote {Sq(r, , r2 , . . .)} 

with Sq(r, , rz, . . .) dual to <‘,‘c;’ . . . Further with respect to this basis the Hopf algebra 

structure of A is given by 

(1) II/Sq(r, , . . .) = 2 Sq(s, , . .) @ Sq(tl , . . .), and 
5,+1,=r, 

(2) %(r, , . . .) . Sq(s, , . . .) = ~P(Wsq(t~~ . . . ) the summation being over all matrices , 

* 
x0 I x02 . . . 

_y= x10 Tll ... 

x20 : 

that satisfy sj =Cxij, ri =I 2'xij and with t, = C Xii 
i+ j=k 

Proof. See [6] for details. 

DeJnition 1.1. We will be interested in certain particular 

give special notation. Let P,(r) = Sq(0, . . . , r) with the r in 

P,(2”). This notation agrees with May’s [5]. 

elements of A to which we 

the tth position and P,“= 

Notation. We will say that 2k E r if 2k appears in the dyadic expansion of r. 

The following lemma is the reason that the multiplication described in Theorem 1.1 

is not as bad as it looks. 

LEMMA 1.2. The coe$cient /l(X) = 0 ifand only iff orsomexi,j, ,x~,~~ withi, + j, = i, +j, 

and some k, 2” E ~i,j, , xi,jz . 

Proof. It suffices to show that the multinomial coefficient (x1 , . . . , x,) = 
(x1 + *** +x,)! 

x,!...x,. I 

is zero mod 2 if and only if for some i, j, k, 2’~ xi, xj . We will do this by induction on n. 
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If n = 2 we have the standard result that 
(Xi + x,)! = ‘u“ 

- Xi ! II ! n( :) b,, 
mod 2 where xi + x2 =xai 2’ 

and xi =x6,2” (see [9]). Since zi 
(3 

= 0 mod 2 if and only if a, = 0 and bi = 1, the coefficient 

is zero mod 2 if and only if 2’ E x I, x2 for some k. Assuming the result for n - 1 we note 

that (x1 , . . . , xn) = (x1 +. . . + x,_ 1 , x,) . (x1 , . . . , x,,_ 1). Therefore (.x1 , . . . , x,) = 0 mod 2 

if and only if (xi +. . . + x,-i , x,) = 0 mod 2 or (xi , . . , x,_ i) z 0 mod 2. If (pi , . . . , x,_ i) 

= 0 mod 2, then for some i, j < n and some k, 2k E xi, xj and if not then (x1 + * * * + .r,_, , x,,) 
E 0 mod 2 implies for some i < n and some k, 2’ E _‘ci, x,, , 

By way of illustration we record the computations that arise later in this work. 

LEMMA 1.3. (I) If r, s < 2’ then [P,(r), P,(s)] = 0. 

(2) Ifr < 2’ then P,(r)P,(s) = F P,(r + s), in particular P,(r)’ = 0. 

(3) P,’ . P,’ = P,(2’ - l)P& . 

(4) rf’ 1 5 r < 2’ t.‘wn [Pt, P,(r)] = P,(r - l)Pi,. 

(5) [P,‘, et1 = 0. 

Proof. As a sample consider (3). Because of the restrictions on the rows of the matrices 

that we must consider, the only ones to look at are 

* 0 . . . 2’ * . . 2’-1 

1 0 
and . . . 

2’ . (j... ; 

From Lemma 1.2 it is obvious that the multinomial coefficient associated with the 

first matrix is 0 and with the second matrix is 1. This gives (3). 

Tn Section 3 we will be interested in the structure of the subHopf algebras of A. There- 

fore we quote the following proposition of [4] which gives a characterization of the subHopf 

algebras suitable for our purposes. 

PROPOSITION 1.4. Let B c A be a subHopf algebra, let tf 

r,(t)=max{s12sEb,firSq(bl ,..., b,,...)EB) 

or rs(t) = 03 if’ there is no maximum or 

rB(t)= -1 ifb,=OforallSq(b, ,..., b, ,... )EB. 

(1) B has u Zz-basis {.Sq(r, , . . .) ( r1 < 2’B(‘)+1). 

(2) As an algebra B is generated by {P,” ( s I rB(t)). 

Note. As the proposition makes clear, a subHopf algebra B is determined by its 

function r,(t). However not all such functions are so realizable-for example r(1) = 1, 

r(2) = - 1 is not. 
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(2) 

(3) 

Exampfes. (1) Let A,, denote the subHopf algebra determined by the function 

r(t) = max{n + 1 - t, -l} then u A,, = A. 
” 

Let A(0) denote the subHopf algebra of A determined by the function r(t) = 0 all t, 

then A(0) is an exterior algebra on P,’ all t. 

Let B be a subHopf algebra of A, let B(0) denote the subHopf algebra A(0) n B-it is 

determined by r(f) = 0 if rB(t) 2 0 and r(t) = - 1 otherwise. Note that B(0) is a normal 

subalgebra of B-a subalgebra C of B is normal if B . I(c) is a two-sided ideal of B. 

Definition 1.2. Let B be a subHopf algebra of A, then htB is the maximum of r*(t) for 

all t-we say htB = CO if either r,(t) = co for some t or there is no maximum. So for example 

htA, = n and htB(0) = 0 (unless B is trivial). 

The main result of this paper will be proved by induction on htB and in that induction 

the following proposition will play a key role. 

PROPOSITION 1.5. Let B be a subHopf algebra of A with htB = n c to. Then B/B(O) 

is isomorphic to a subHopf algebra of A, B’, with htB’ = n - 1. For instance A/A,(O) z A,_ 1 . 

Recall that for C normal in B, B/C is the algebra B/Bf(C) = Z, @I =B. 

Proof. Let O:A*-+A* be given by Ox =s2, then it is easy to check that 0 is a map of 

Hopf algebras. Therefore there is a dual map O*:A -+ A of Hopf algebras, 0* halving 

degree and Q*P,’ = Pf-‘, s > 0, O’P,’ = 0. Since ker O* = A * f(A(O)), O* induces an iso- 

morphism fJ’:A/A(O) + A, so let B’ = O’(B/B(O)) (0’ being an isomorphism of Hopf algebras 

and B/B(O) a subHopf algebra of A/A(O) imply that B’ is a subHopf algebra of A). Further 

since 6’P,S = P:-’ . It follows from Proposition 1.4 that r,,(r) = rrr(t) - 1 and so hrB’ = htB- 1 

ifhtB <co. 

$2. MODULES OVER EXTERIOR ALGEBRAS 

For the remainder of this paper we will be working with categories of connected (Ieft) 

modules over connected algebras-a graded algebra R over K is connected if Ri = 0 for 

i < 0 and R, = K and a graded R-module M is connected if Mi = 0 for i < r for some 

integer r. . 

Definition 2.1. Let M be such a module over the algebra R. For e E R we define the 

map e: M 3 M by e(m) = em. We say that e is exact on M if MA MA M is exact. For 

e E R satisfying e* = 0 we also have H(M; e) = ker elM/ im e[M and then e is exact on 

M if and only if H(M; e) = 0. 

It is immediate that if e is exact on R and M is free over R then e is exact on M. This 

leads us to the following definition. 

Definition 2.2. An algebra R is pseudo-exterior on (e,} with respect to a category of 

R-modules, %?, if there are elements ei E R which are exact on R such that the following 

condition is satisfied : 

an R-module M E V is R-free if and only if H(M, ei) = 0 for all i. 
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The name we have chosen is reasonable because we shall show that exterior algebras 

on generators of distinct degree are pseudo-exterior. However the subject of pseudo-exterior 

algebras only becomes truly non-trivial when we add that we will prove that every subHopf 

algebra of the mod 2 Steenrod algebra-including A itself-is pseudo-exterior. 

THEOREM 2.1. Let R = E[x, , . . . , x,] the exterior algebra on generators x1, . . . , x,. 

We further assume that the dimensions of the generators are distinct. Then a connected 

R module M is R-free if and only if H(M, xi) = 0 for all i; that is R is pseudo-exterior with 

respect to the category of connected R-modules. 

Note. (1) The condition on the degrees of the generators is essential as the following 

example shows. Let R = E[x, , x2] where deg x1 = deg x2 ; we will exhibit an R-module 

A4 such that H(M, x,) = H(M, x2) = H(M, x3) = 0 where x3 = x1 + x2 (these are all the 

elements of R which are exact on R itself) but A4 is not free over R. One such M is given by 

generators a, b and relations x,a + x,b, x2a + x,b, .~,a + x,b. 

(2) Since the fact that the generators have distinct degrees is crucial, we will need the 

following in Section 3: deg P,” = deg P:,’ if and only if P,” = Pf,‘. That is deg P,” = 2’(2’ - 1) 

and the t and s can be recovered from the dyadic expansion of this number. 

In order to prove Theorem 2.1 we prove two propositions that will also be of use in 

$3. For an R-module M let QR(M) = M/I(R)M = KOR M (then for B c R, R/B = QB(R) 

and es(M) is a Q,(R)-module). Let {m,} be a set of elements in M whose images in QR(M) 

form a K-base for Q,(M). Then the following facts are well known and easily proved. 

(i) The elements mi generate M as an R-module. 

(ii) If M is free over R on any base, then the elements mi form an R-base for M. 

PROPOSITION 2.2. Let B be normal in R and C = RIB. If M is free over B and Qrc(M) 

is free over C then M is free over R. 

Proof. Take elements bi forming a K-base for B, and elements cj in A whose images 

in C form a K-base for C. Also take elements mk in M whose images in QR(M) = Qc(Qs(M)) 

form a K-base. Since es(M) is C-free, the elements cjmk give a K-base there. Since M is 

B-free, the elements bicjmk form a K-base in M. Either there are no elements mL, in which 

case the result is trivial, or else the elements bi cj are linearly independent in R; so we assume 

the latter. Since the elements bicj certainly span R they form a K-base there. So the elements 

m, form an R-base for M. 

Let R = E[x, y] where deg x = d, deg y = e with d # e. Let M be a connected R-module. 

Then both yM and M/yM are modules over E[x]. 

LEMMA 2.3. If x and y are exact on M then x is exact on M/(yM). 

Prooj: Since y is exact on M we have an isomorphism M/(yM)A yM commuting 

with x. Therefore H,(M/(yM); x) = if,,+,(yM; x). But also we have the following exact 

sequence of E[x]-modules: 0 --) yM --f M -+ M/(yM) + 0. This yields an exact homology 

sequence and since H(M; x) = 0 we have an isomorphism H,(M/(yM); x) = H,,+,(yM; x). 

So HAMI( x) = H,+,-AMI( x). But WYW is zero in degrees less than some 
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degree, so H,(M/(jM); X) = 0 for r small enough. Since cl - e # 0 we can use this isomor- 

phism to show that H,(M/(yM); x) = 0 for all r. 

Proof of Theorem 2.1. The proof is by induction on the number n of generators. The 

result is trivially true for n = 1; suppose it is true for E[x, , . . . , x-,I. Let A4 be a module 

over R such that H(M, xi) = 0 for each xi. We apply Proposition 2.2 taking B = E[xJ, 

so that C= E[x,,x,, .._, x,-r 1. Then A4 is free over B by the trivial case n = 1. We have 

Q,(M) = M/(x,M); the elements xi are exact on err(M) for 1 I i _< n - 1 by Lemma 2.3. 

By induction es(M) is C-free and so by Proposition 2.2, M is free over R. 

We end this section by proving one final result that will be needed in the next section. 

Let R be an exterior algebra E[x, , . . . , x,] in which the dimensions of the generators are 

all distinct. Let M be an R-module. Then the quotient module 

N=M/(x,M+ *** + -r,_,M) = es(M) (B = E[x,, . . . , x,_ J) is a module over E[xJ. 

LEMMA 2.4. If each xi is exact on M then x, is exact on N. 

Of course this follows immediately from Theorem 2.1; but the obvious direct proof 

is by induction over n. The result is true for n = 2 by Lemma 2.3, SO suppose it true for 

n - 1. Let R and A4 be as above. Then P = M/(x,M + - +* + x,_~M) is a module over 

E[x,_, , x,,]. By the inductive hypothesis, x,,_, and x, are exact on P. By Lemma 2.3 x,, is 

exact on P/(x,_ lP) = N. 

$3. THE MAIN THJZOREM AND COROLLARIES 

The primary aim of this paper is to prove that a wide class of interesting algebras are 

pseudo-exterior. Recall that for an arbitrary subHopf algebra B c A (as usual A the mod 2 

Steenrod algebra), B is generated as an algebra by the PTs in B. 

THEOREM 3.1. Let B be a subHopf algebra of A then B is pseudo-exterior (with respect 

to the category of connected B-modules) on the Pt’s in B with s c t. In particular A is 

pseudo-exterior on (Pt ] s < t}. 

The brunt of our work will be to prove the following theorem of which Theorem 3.1 

is an easy corollary. 

THEOREM 3.2. Let B be a finite subHopf algebra of A, then B is pseudo-exterior on the 

Pt’s in B with s < t. 

We observe that any particular application of Theorem 3.2 can be made independent 

of proposition 1.4. To do so, one simply has to check that the given subalgebra B, and the 

subalgebra B’, B” etc. which arise from it by using Proposition 1.5, are as described in 

Proposition 1.4. For example the reader who does not wish to check the proof of Proposition 

1.4 can still be sure that Theorem 3.2 is true for A,, and Theorem 3.1 is true for A. 

Proof of Theorem 3.1 from Theorem 3.2. There are two things that must be proven. 

First that for any B and P,’ E B with s < t, P,” is exact on B. Second if a connected B-module 

satisfies If(M, Pt) = 0 for all P,” E B with s < t then M is free over B. 

To prove the first let C be the subalgebra of B generated by P,“’ with s’ 5 s. Since 

s < t, C is an exterior on the P,“s with s’ I t (see for example Lemma 1.3) and since C 
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has a Zz-basis given by all P,(r) with r < 2’, it is in fact a subHopf algebra of B. Therefore 

by an oft-quoted result of LMilnor and Moore [S], B is free over C. So P,” is exact on B 

if it is exact on C and C being an exterior algebra with P,’ as one of the generators, this 

is obvious. 

To prove the second statement assuming Theorem 3.2 we proceed as follows: let 

B, = B n A,,, then the B,,‘s satisfy 

(1) B, is a finite subHopf algebra of B 

(2) B,,cB,+,anduB,=B. 

Let M be a connected B-module satisfying H(M, P:) = 0 for all P,” E B with s < t. In 

particular H(M, P,‘) = 0 for all P,” E B, for any n and so by Theorem 3.2 A4 is B,,-free 

for any n. So it suffices to show that if M is B,-free for all n then A4 is B-free. Let {mJ be 

a set of elements in M whose images in QB(M) form a &-base for &,(M). We will 

prove that M is B-free on {m,] so assume that there are elements bi E B (with only a finite 

number non-zero) such that Cbimi = 0. For n large enough bi E B, for all i. Ako since 

M + QB,(kf) + QB(M), the images of the mt’s in QJM) are linearly independent so can 

be expanded to a base for QB,(M) over Z, coming from {mj’} 3 {mt}. Then since M is B,-free 

we have that M has a B,-base of {mj’}. So in particular we must have that Cb,m, = 0 implies 

bi = 0 for all i. 

Before proving Theorem 3.2 we state some of the more immediate corolIaries. 

COROLLARY 3.3. Let B be a subHopfalgebra of A. If we are given an exact sequence of 

B-modules 0 -+ M1 -+M2 +MJ -+ 0 such that any two of the modules are free over B then so 

is the third. 

Proof For any P,” E B with s < t we can regard M, as a complex with differential 

P,” and maps of B-modules induce maps of complexes. Therefore the exact sequence 

0 --t M1 + Mt + M3 + 0 induces long exact sequences in the P,” homologies. Then the 

freeness of two of the M,‘s implies that their P,’ homologies are both zero, so the same is 

true of the third which is therefore free by Theorem 3.1. 

We recall the following definition from homological algebra. 

Definition 3.1. An R-module M has infinite homologicai degree if there are no projec- 

tive resolutions of M over R of finite length. 

COROLLARY 3.4. Let M be a connected B-module (B a subHopf algebra of A), then 

either M is B-free or M has infinite homological degree. 

Proof, If MO has a finite projective resolution over B then there is a sequence of exact 

sequences 0 + Mi + Fi-1 -+ Ml-1 --) 0 with Fi- 1 B-free and for i large enough M, is B-free. 

Therefore iterated application of Corollary 3.3 gives us that Mo is B-free. 

Note. The results of Corollaries 3.3 and 3.4 as well as many of the results of the next 

section are true for an arbitrary pseudo-exterior algebra, as the proofs make evident. 

We now commence with the proof of Theorem 3.2. The proof will he by induction on 

htB (see Definition 1.2), the inductive step based on Proposition 2.2. In order to apply the 
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inductive hypothesis we need the following lemma, whose proof we postpone until the end 

of this section. 

LEMMA 3.5. Let B be a finite subHopf algebra of A and let M be a conrlected B-module. 

If P,’ is exact on il/ for P,’ E B rc,ith s < t then P,‘ is e.uact on ~l/l,&,,,~~ P,‘.t/ = Q,,,,(M) 

for P,” E B nYth s I t. 

Proof of Theorem 3.2. In the light of what has already been shown in proving Theorem 

3.1 it suffices to show that if M is a connected B-module such that H(M, P,‘) = 0 for all 

P,’ E B with s < t, then M is B-free. As stated above the proof will be by induction on htB. 

If htB = 0 then B is an exterior algebra on a subset of the P,“s-this follows from Proposi- 

tion 1.4-and so the theorem is true having been proven under the guise of Theorem 2.1. 

So assume the result for cor.nected modules over B’ with htB’ < n and let htB = n. 

So consider ICI a module over B such that P,’ is exact on M for P,’ E B, s < t. As in 

Section 1, let B(0) be the exterior algebra generated by the P,“s in B and let B’ = B/B(O). 

Then, as we have shown in Proposition 1.5, B’ is a finite subHopf algebra of A with 

htB’ = n - 1. Since the P,“s with s < t in B project to the Pt’s with s < t in B’ it follows 

from Lemma 3.5 that P,’ is exact on Qoco,(M) for all P,’ E B’ with s <t. Therefore by 

induction QBCO)(M) is free over B’. In addition M is free over B(0) as noted above. 

Therefore by Proposition 2.2 M is free over B, which completes the proof of the theorem 

modulo the proof of Lemma 3.5. 

If we look at Lemma 3.5, it is clear that a special role is played by the operations 

P,’ with s = t because they have to be proven exact on the quotient although they are not 

given to be exact on M. We therefore study the elements P,’ E 3. Since P,’ E B and B is a 

subHopf algebra of A it follows that P,‘, P,’ , . . . , PC*-’ E B and since [P,‘, P,‘] = P:, we 

also have Py, E B. As in Lemma 1.3 it is clear that P,‘, P,‘, . . . , P,‘-‘, Pzr generate a sub- 

exterior algebra of B. Let D(t) denote the subalgebra of B generated by that exterior algebra 

and P,‘. The structure of D(t) is given by the following formulae of Lemma 1.3: 

(P,‘)2 = P,(2’ - l)PY,, 

[P,‘, P,(r)] = P,(r - l)Pi, for 1 I r < 2’, 

[P,‘, P&l = 0. 

It follows that D(t)/E[Py,] = E[P,‘, P,‘, . . . , P:-‘, P,‘] and if M is a module over 

D(t) then QE(M) (E = E[Pg,]) is a module over E[P,‘, P,‘, . . . , P:-‘, P,‘]. 

LEMMA 3.6. Let A4 be a connected D(t)-module such that Pt, is exact on M, then P,’ 

is exact on Q,(M). 

Proof. The result to be proved may be expressed as follows. Suppose given an element 

x of M of degree n such that P,‘x = P:, y for some y in M. We have to show that we can 

write x in the form x = P,‘u + Ptfu for some U, u in IV. 

The proof is by a double induction and the main induction is over n, so we assume 

as our main inductive hypothesis that the result is true for elements x’ of degree less than n. 

Suppose given an element s of degree n such that P,‘x = P;,y. Applying P,’ we get 
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P,(2’- l)P!&x = P,‘Pi,y, that is PT,[P,(2’ - 1)~ + P,‘y] = 0. Since PyI is exact on A4 we 

have P,(2’ - 1)~ = P,‘y + P&z for some z in M. 

Now observe that 

P,(2’ - 2)Pf,.r = PllP,(2’ - 1)x + P,(2’ - l)P,‘x 

= Pr’P,‘y + PrfPPrz + P,(2’ - l)Pg,J 

= PjPi,i. 

Again by the exactness of Pi, we see that P,(2’ - 2)x = P,‘z + Pi, \i*. 

If t = 1 this completes the proof since P,(O) = 1. Otherwise we continue by induction. 

More precisely we will prove by downwards induction over r that P,(r)x = P,lc + Py,d 
for 0 I r < 2’ - I. Then for r = 0 this will express x in the required form. We have obtained 

this result for r = 2’ - 1 and r = 2’ - 2 above, so we assume as our subsidiary inductive 

hypothesis that P,(r)x has the desired form for some r in the range 1 I r I 2’ - 2. Let 

s = 2’ - 1 - r (s > 0). We have P,(r)P,(s) = P,(s)P,(r) = P,(2’ - 1). 

so 
P,‘y + PY,z = P,(2’ - 1)X 

= P,(s)P,(r)x 

= P,(s)P,‘c + P,(s)P;,d 

= P,‘P,(s)c + P,(s - l)Pi,c + P,(s)P;,(d). 

That is, P,‘(y + P,(s)c) = P!,(z + P,(s - 1)~ + P,(s)d). But the dimension of y is less than n, 

so the main inductive hypothesis shows that y + P,(s)c = P;e + PiJI Now observe that 

P,(r - I)Py,.r = P,(r)P,‘x + P,‘P,(r)x 
= P,(r)Pi, y + P,‘P,‘c + P,‘Py,d 
= Pl(r)P;l P,(s)c + P,(r)P& P,‘e + P,‘P,‘c +P,IP:,d 
= Pi, P,‘P,(r)e + Pi, P,‘d. 

That is, Pi,(P,(r - 1)x + P,‘h) = 0 where h = d + P,(r)e. Siwe Pp, is exact we have 

P,(r - 1)s = P,‘h + Py,k. This completes the subsidiary induction over r, which completes 

the main induction and hence the lemma, 

Proof of Lemnm 3.5. Now let M be a module over B such that P,’ is exact on M for 

P,’ E B with s < 1. Consider P,’ 6 B with s I t. We form first the quotient M/Pq,M. Then 

P,’ is exact on M/Pz,M by Lemma 3.6 ifs = t and by Lemma 2.4 ifs < t. Also for Pi0 E B 
with i # 2t, Pi0 is exact on M/P&M by Lemma 2.3. 

We now consider the quotient N = es,(M) where B, is the subexterior algebra of B 
generated by all Pi0 with i > s. Then N is a module over an exterior algebra Con generators 

Pi0 E B with i I s and P,‘; this being a subalgebra of Qe,(B) as can be seen from the fol- 
lowing relations: 

[Pi’, PI7 = PO+, P,(2’ - 2’) if i 5 s, 

P,‘P,’ = 0 ifs < f, 

P,‘P,’ = PZ, P,(2’ - 1). 

Further Pi0 is exact on N for 1 I i I s, as we see by applying Lemma 2.4 to M considered 
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as a module over the exterior algebra generated by B, and Pi’. Again P,” is exact on 8, 

as we see by applying Lemma 2.4 to M/P&M considered as a module over the exterior 

algebra generated by Pi0 E B with i > s and i # 2t and P,‘. These results allow us to apply 

Lemma 2.3 to iV with respect to the exterior algebra C. We conclude that P,’ is exact on 

QS(O,(~~f). 

0-I. PROPERTIES OF THE HOMOLOGY GROUPS 

This section is the beginning of a more detailed study of the homology groups intro- 

duced in Sections 2 and 3. The results are of two primary types. 

On the one hand we would like to know something about the “global” nature of 

the homology groups. In particular we wish to answer the following question: let M and 

N be connected A-modules, and suppose that we are given an A-map M + N which induces 

isomorphisms of all the homology groups, is there a new relationship between M and N? 

Further, in the process of answering this question we prove that connected free A-modules 

are injective. 

On the other hand we wish to consider properties that can perhaps be described 

as “ local “. In this work we consider the case in which B is a subHopf algebra of A. 

The localization results are of two types. If an A-module M is an extended B-module 

(M = A BON for some B-module N) then only the homology groups in B arise, i.e. 

H(M, P,“) = 0 if P,” #B. We can also localize with respect to degree and get that if B 

is finite and H,(M, P,‘) = 0 for i < I and P,’ E B then M is B-free through deg I- c1 

(J independent of M or I). 

THEOREM 4.1. If F is a connected free A-module then F is injective in the category of 

arbitrary A-modules.* 

Proof. (a) We first reduce the problem to one of showing that A itself is an injective 

A-module in the stated category. Suppose that A is injective then the arbitrary product of 

copies of A, I’IAx,, is injective (in general the product of injectives is injective). Let 

CAx, be a connected free A-module; then ITAx, is connected. We have the short exact 

sequence 0 -+ CAx, + IlAx, + M-+ 0 and since TIAx, is injective it will suffice to show that 

this sequence splits (in general the direct summand of an injective is injective). 

SUBLEMMA. For all P,‘, H(llAx,, P,‘) = 0 (therefore since lTAx, is connected we have 

also that IIAx, is A-free). 

Proof. Let (aJ E kerP,‘I ITAx, and let II,:lIAx, -+ Ax, be the projection. Then 

P,“a, = P,“II,(a,) = II,P~(a,) = 0 and therefore a, = P,"b, . Thus (a3 = P:(b,). 

From the sublemma and the sequence above we conclude that H(M, P,‘) = 0 and since icf 

is connected it is a free A-module. And so as we desired, we have the splitting of 

(b) We must now show that A is injective in the category of arbitrary A-modules. 

* We would like to thank J. C. Moore and F. Peterson for pointing out an error in the original proof 
of this result. Also the proof of part (b) is a modification due to F. Peterson of a proof of ours. 
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Consider 0 -+ A -!+ ICI with M an arbitrary A-module. To show that I splits consider all 

pairs (N, p) with .4 c IV c M and p:iV + A satisfying pl = 1. Partially order these pairs 

by setting (N, p) < (N’, p’) if N c N’ and p = p’ 1 N. Every linearly ordered subset has an upper 

bound so we may extract a maximal element (N, p). Assume that N # M and consider 

M E M - IV. We show how to extend p to N + Anz. 

As an A.-module A is locally finite and free, and since A, is a Poincare algebra we conclude 

that A is an injective A,-module. So p extends to an A.-map pn:M-+ A. Let p,(m) = a,, , 

the sequence {a,) is a subset of A, (where k = deg(m)) which is a finitely generated vector 

space over Z2. Therefore for some n, a, occurs infinitely often and it is easy to check that 

p’:N + Am -+ A defined by p’/ N = p and p’(m) = a,, is an A-map (any relation in A occurs 

within some A,,). 

We are now in a position to answer the question posed at the beginning of this section. 

Definition 4.1. TWO B-modules M and N are stably equivalent if there are free B- 

modules F, and F, such that F, 0 A4 and F2 0 N are isomorphic. 

THEOREM 4.2. Let f :1!4 + N be a map of connected A-modules and suppose that for all 

P,” with s < t f* : H(hl, P,“) -+ H(N, P,“) isanisomorphism. Then M and N are stably equivalent. 

Proof: First assume that f is epic, i.e. 0 -+ K -+ M -+ N 40. Then H(K, PC”) = 0 for all 

P,” and therefore by Theorem 3. I I\ is A-free. By Theorem 4.1 we conclude that the sequence 

splits and M @ K z IV. 

Now consider the general case 0 -+K-+M~N-,L+O.LetF~N+Obeexactwith 

F a free A-module. Then M@ Fz N is onto giving 0-t K’-+M@F+N-+O. But 

since H(F, P,“) = 0 and f* :H(M, P,“) --t H(N, P,“) is an isomorphism, we get that 

(f‘+ g),:H(M@ F, P,“) --* H(N, P,“) 

is an isomorphism, which completes the proof. 

We come now to the “ local” results described at the beginning of this section. 

Definition 4.2. An A-module M is an extended B-module (B a subHopf algebra of A) 

if M is isomorphic to A @*iv for some B-module N. 

THEOREM 4.3. Let M be an extended B-module, then for P,S 6 B (with s < t) 

H(M, P,“) = 0. 

The proof of this result can be found in [4]. 

The other type of localization that we wish to consider is that with respect to degree. 

In order to do this we make the following obvious definition. 

Definition 4.3. Let A4 be an R-module (both R and M being graded) then M is free 

Illrough degreer ifthere is a free R-module Fand map/:F + A4 such thatfis an isomorphism 

in degree _< r. 

THEOREM 4.4. Let B be a finite subHopf algebra of A and let M be a connected B-module. 

/1‘ H,(M, Prs) = 0 for P,” E B, s < t, and for i I r then M is B-free through degree r - c 

where c is a constant depending on B. 
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Since we are emphasizing the qualitative nature of the result, no attempt will be made 

to determine a best possible such c. Also we will only sketch the proof of this result since 

it is a straightforward modification of the proof of Theorem 3.2 (and the proofs of Prop- 

osition 2.2 and Lemmas 2.3, 2.4, 3.5, 3.6). 

We first note that in the case of Lemmas 2.3 , 2.4, 3.6 the desired modification can 

easily be made since each is essentially proved by induction on degree starting with M, = 0 

for r sufficiently small. In the case of Proposition 2.2 our proof involved an explicit con- 

struction of a basis of M over R. Since we are working with connected modules over con- 

nected algebras the same construction can bc performed to give a basis through a range 

(in the sense of Definition 4.3). 

With these results the modified version of Lemma 3.5 is easily provable. From this the 

proof of Theorem 4.4 follows. 
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