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PREFACE

The three sections of this book represent courses of lectures
which I delivered at the University of Chicago in 1967, 1970 and 1971
respectively; and the three sections are of slightly different characters.
The 1967 lectures dealt with part of Novikov's work on complex cobord-~
ism while that work was still new--they were prepared before I had
access to a translation of Novikov's full-length paper, Izvestija
Akademii Nauk SSSR, Serija Matematifeskaja 31 (1967) 855-951., They
were delivered as seminars to an audience assumed to be familiar with
algebraic topology. The 1970 lectures also assumed familiarity, but
were a longer series attempting a more complete exposition; I aimed to
cover Quillen's work on formal groups and complex cobordism. Finally,
the 1971 lectures were a full-length ten-week course, aiming to begin at
the beginning and cover many of the things a graduate student needs to
know in the area of stable homotopy and generalised homology theories.
They form two-thirds of the present book.

No attempt has been made to rewrite the three sections to impose
uniformity, whether of notation or of anything else. Each section has its
own introduction, where the reader may find more details of the topics
considered. Each section has its own system of references; in Part I the
references are given where they are needed; in Part II the references

ix



are collected at the end, with Part I as reference [2]; in Part II1 the
references are again at the end, with Part 1l as reference [2] However,
the page numbers given in references to [2] refer--1 hope-- to pages in
the present book.

Although I have not tried to impose uniformity by rewriting, a
certain unity of theme is present. Among the notions with which familiar-
ity is assumed near the beginning of Part I, I note the following: spectra,
products, and the derived functor of the inverse limit., All these matters
are treated in Part III-~in sections 2-3, 9 and 8, Similarly, near the
beginning of Fart II I assume it known that a spectrum determines a
generalised homology theory and a generalised cohomology theory; this
is set out in Part III, section 6. Again, at the end of Part I, section 2
(page 7) the reader is referred to the literature for information on
m, (MU); he could equally well go to Part II, section 8 (page 75). Perhaps
one should infer that in my choice of material, methods and results for
my later courses, I was influenced by the applications I had already
lectured on, as well as others I knew.

I am conscious of other places where the three parts of this book
overlap, but perhaps the reader can profit by analysing these overlaps
for himself; and certainly he should feel free to read the parts in an
order reflecting his own taste. I need hardly direct the expert; a new-
comer to the subject would probably do best to begin by taking what he

needs {rom the first ten sections of Part IIl.

I would like to express my thanks to my hosts in the University

of Chicago, and to R. Ming for taking the original notes of Part III.
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S. P. NOVIKOV'S WORK ON

OPERATIONS ON COMPLEX COBORDISM






1. INTRODUCTION

The work of S, P, Novikov which is in question was presented at
the International Congress of Mathematicians, Moscow, 1966, in a half-
hour lecture, in a2 seminar and in private conversations, It has also
been announced in the Doklady of the Academy of Sciences of the USSR,
vol. 172 (1967) pp. 33-36. Some of Novikov's results have been obtained
independently by F.S, Landweber (to appear in the Transactions of the
AMS).

The object of these seminar notes is to give an exposition of that
part of Novikov's work which deals with operations on complex
cobordism. I hope that this will be useful, because I believe that the
cohomology functor provided by complex cobordism is now ripe for
exploitation. I therefore aim to present the material in sufficient detail,
so that a reader who has 2 concrete application in mind can make his
own calculations. In particular, I will give certain formulae which are
not made explicit in the sources cited above.

These notes will not deal with any of the other topics which are
mentioned in the sources cited above. These include the following.

(i) Generalizations of the Adams spectral sequence in which
ordinary cohomology is replaced by generalized {(extraordinary) coho-

mology.



{ii} Connections between these studies for complex cobordism
Q:;(X,Y) and the corresponding studies for complex K-theory K*(X,Y).

(iii) The cohomology functor QE(X,Y)@ QP (where QP is the
ring of rational numbers a/b with b prime to p); and the splitting of

this functor into direct summands.

2. COBORDISM GROUPS

Let 5 bea U(n)-bundle over the CW-complex X. Let E and
Eo be the total spaces of the associated bundles whose fibers are
respectively the unit disc E?"c C" and the unit sphere stn-le ¢,
Then the Thom complex is by definition the quotient space E/Eo; it is
a CW-complex with base point. In particular, if we take 5 to be the
universal U(n)-bundle over BU(n), then the resulting Thom complex
M(E§} is written MU(n).

Example 2.1. There is a homotopy equivalence MU(1}) ~ BU{(1).

Proof. Since E is a bundle with contractible fibers, the pro-
jection p:tE - BU(1l) and the zero cross-section sO:BU(l) - E are
mutually inverse equivalences., Since S1 = U(l) and Eo is the total
space of the universal U(l)-bundle over BU(1), EO is contractible,
and the quotient map E —~ E/E_ is a homotopy equivalence.

We have an obvious map S2MU(n) % MU(n+1). In this way
the sequence of spaces

(MU(0), MU(1), MU(2), ... ,MU(n), ... )

and maps i]n becomes a spectrum. Associated with this spectrum we

have a cohomology functor, as in G.W. Whitehead, "Generalized

homology theories,' Trans. Amer. Math. Soc. 102 (1962), pp 227-283,



The groups of this cohomology functor are written Q%(X, Y), and called
complex cobordism groups. For other accounts, see M. F., Atiyah,
"Bordism and Cobordism,'" Proc. Camb. Fhil. Soc. 57 (1961) pp 200-208,
and P.E. Conner and E.E, Floyd, "The Relation of Cobordism to
K-Theories, " Springer, Lecture Notes in Mathematics No, 28, 1966,

pp 25-28.

We will generally suppose that this cohomology functor is defined
on some category of spectra or stable objects. This assumption can
easily be removed, if the reader wishes, at the cost of making some of
the proofs more complicated; one would have to replace the appropriate
spectra by sequences of complexes approximating to them.

Next we wish to discuss the cup-products in this cohomology
theory. We therefore wish to introduce the product map

p:MU A~ MU - MU.
Here "A'" means the smash product, and we assume that MU A~ MU
can be formed in our stable category. We further assume that MU A MU
has skeletons (MU A MU)q, in a suitable sense, so that we have a short

exact sequence

0 - Liml[S(MUAMU)q, MU] - [MUAMU, MU] - Lim®[(MUA MU)q, MU] ~ 0.
q q

! means the first derived

(Here Lim® means the inverse limit, Lim
functor of the inverse limit, and [X,Y] means the group of stable
homotopy classes of maps from X to Y in our stable category.) In
this exact sequence, the group Lé{m1 [S(MU,\MU)q,MU] is zero. (This

follows from the facts that Hr(MU/\ MU) = 0 for r odd and

rrr(MU) = 0 for r odd--see below. Thus the spectral sequence



H'(MUAMU, 7 (MU)) = [MUAMU, MU]
has all its differentials zero.) It will therefore be sufficient to give an
element of L'élm0 MU ~ Moy, MUT.
Now, we have a map
BU(n) X BU(m) - BU(n+m),
namely the classifying map for the Whitney sum of the universal
bundles over BU(n) ’and BU(m). Over this map we have a map
o MU A MU(m) ~  MU{n+m).
The maps Pa, m yieldan element of L‘i;mol-(MU/\MU)q,MU], and
therefore they yield a unique homotopy class of maps
p:MU ~ MU - MU,
The map p is commutative and associative (up to homotopy).
Using the map p, one introduces products in cobordism. More
precisely, one has a product
g ® ayY) - oy (XA

where X and Y are spectra, and therefore a similar product for the

~

reduced groups € U where X and Y are spaces. For spaces we
have also an external product
+r
ed(X,AAQQ(Y,B) - X {XxY, AXYUXXB)
U U o)
and an internal product
ad(x,a) ®al(x,B) ~ o¥ix,auB).
U U U

The products satisfy the axioms which products should satisfy, that is,
naturality, associativity, anticommutativity, existence of a unit, and
behavior with respect to suspension or coboundary,

Next we must mention the Thom isomorphism. For each

U(n)-bundle § over X the classifying map for £ induces a map



v:M(§) = MU(n).
The map vy represents a canonical element g in Qrzjn(E,Eo), We de-

fine the Thom isomorphism

q+2n

o (E,E®)

o Q%(X) -~ Q
by @(x) = (p*x)g, as usual, (See A. Dold, '"Relations between
Ordinary and Extraordinary Cohomology,' Colloguium on Algebraic
Topology, Aarhus 1962.)

Only one thing remains before we have a fair grasp on the

cohomology functor we need to know the coefficient groups

QU;
x
Q%(P), where P is a point. In fact QU(P) is a polynomial ring
A N T
-2i * . .
where X, ¢ QU (P). A good grasp on QU(P) is provided by the
following authors: J. Milnor, '"On the Cobordism Ring Q% and a
Complex Analogue, ' Amer. Jour. Math. 82 (1960) pp 505-521;
R. Stong, "Relations among Characteristic Numbers. I," Topology 4

(1965) pp 267-281; A, Hattori, "Integral characteristic numbers for

weakly almost complex manifolds, ' Topology 5 (1966) pp 259-280.

3. HOMOLOGY
The Novikov operations are closely related to certain polynomials
in the Conner-Floyd Chern classes. (These classes may be found in
P.E. Conner and E,E. Floyd, lcc. cit. pp 48-52.) It is convenient to
begin by introducing the corresponding polynomials in the ordinary
Chern classes.
The Whitney sum map BU(n) X BU(m) -+ BU(n+m) defines

products in H,(BU). We have BU(1)= CP®, so H (BU(1)) hasa



Z-base consisting of elements l,x,xz,x3, ... , where x ¢ HZ(BUU))

is the generator . Take the dual base in H,(BU(1l)) and call it
bo’ bl’ bz, b3, e The injection BU{1) = BU maps these elements
into H,{(BU), where they can be multiplied. H,(BU) has a Z-base con-

sisting of the monomials

Vv \)2 Vv
1 3
b1 b2 b3 o
Take the dual base in H*(BU) and call its elements cv ; here the index
v runs through sequences of integers
v = (\)1,\)2:\)3, o)
in which all but a finite number of terms are zero. We have

. g2

c (BU), where

vl =\)1+Z\)2+3\)3+ ves
If we take = (i,0,0, ... ), we obtain the classical ith Chern class <-
We have thus given a base of H*(BU) which is well related to the
Whitney sum map. This is obviously profitable in considering MU, be-
cause in H*(MU) we have a Whitney sum map but not a cup-product map.
For later use, we describe H,(MU), which is defined by

(MU(n)).

Hpi(MU) = Lim Hpp i

n
The Whitney sum map MU(n) A MU{(m) - MU(n+m) defines products in
H,(MU). The Thom isomorphism
.49 - pi+en
@:H*(BU(n)) H {MU(n))
passes to the limit and gives an isomorphism
grYBU) ~ HYMU),
and similarly for homology. In particular, we have a '"Thom isomorphism"

y:H*(BU) -~ H,(MU),



which commutes with the products. Thus the ring H,(MU)} is a poly-
3

nomial ring on generators b‘l,b‘z,b‘ , «.. , corresponding to

b,,b b3, ... under the Thom isomorphism. It is equivalent, of course,

1 -2

to describe these generators as follows: take the generators
bi € HZi(BU(l))' take their images b'l € H2i+ 2(MU(1)) under the Thom
isomorphism, and apply the injection
H2i+2(MU(l))—> HZi(MU)'
Under the equivalence MU(1) ~ BU(1), the class b{ € H2i+2(MU(l))

corresponds to bi+l € HZ.H_Z(BU(I)).

4, THE CONNER-FLOYD CHERN CLASSES
Conner and Floyd take 2 U(n)-bundle ¢ over a CW-complex X,
and undertake to assign to it characteristic classes which lie, not in

2 #*
ordinary cohomology H (X), but in QU(X).

THEOREM 4.1. To each £ over X and each q = (al,qz,a saee)

3

o
2 ‘(}(), called the Conner-Floyd Chern

we can assign classes Cfa(E)e Qy

classes, with the following properties:

(i) eflg) = 1.

% 2
(i1) Naturality: cf (g ¢) = g cf (g).
a > a ?
(iii) Whitney sum formula: ci’a(ge n) = E (ef_g)(cf 7).
Fie f Y
(iv) Let g bea U(l)-bundle over X, classified by a map

X-—-f—-.- BU(1), and let the composite X -{——-.- BU(1) — MU(1) represent

2
the element w €9 {X). Then

cf (B) = > (c_.b)uw'
o > ¢

Explanations. In (iii), the addition of the sequences § and vy
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is done term-by-term; that is, if
B =By BynBys -on)s

» e )s

Yy = (Vl’VZ’Y?J

then
B+y = (ﬁl + vy Bot vy Bt vy oel )
The multiplication of (cfEz _g) and (Cfle) is done in the ring QB(X).

In (iv), the map BU(l}) —> MU(1) is the equivalence provided by
Example 2. 1. The integer (Ca’bi) is defined by the Kronecker pairing
of H*(BU) and H_(BU) to Z. The sum over i is illusory; a non-zero
contribution can arise only for i = |o|. The formula merely means that
of (g) is Sl o has the form (0,0,0, ... ) or
(0,0, ... ,0,1,0, ... ), and otherwise zero. The use of coefficients
like (Cq’bi) is however convenient for doing algebra, and saves

dividing cases.

Sketch proof of Theorem 4.1. The Grothendieck method for

defining the ordinary Chern classes works just as well in generalized
cohomology, and defines cfl, cfz, cf3, ... . (See Conner and Floyd,
loc, cit.}), Of course, Conner and Floyd restrict their spaces to be
finite CW-complexes (although their arguments apply unchanged to
finite-dimensional CW-complexes.) Itis therefore necessary to argue
that
R

1t o (@U Y =0,
sothat cf, defines an element of Q;(BU(n)) (or of 0 (BU), if
required), Therefore cfi is defined on all U(n)-bundles, by

naturality, The same means is employed to extend the scope of

conclusions (iii) and (iv) beyond the case considered by Conner and Floyd.
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It works because the appropriate Lim! groups for BU(n) x BU(m) and
BU(1) are zero.
So far we have only considered the classes cfl, cfz, cf3,
Now, each element in H*(BU) can be written as 2 unique polynomial in
the ordinary Chern classes CI’CZ’ Cqs +.. ; say
CO. = Pa(cl,cz,c,j, oo )
Define ch to be the same polynomial in cfl, cfz, cf3, ... ; that is,
cfa = PG (cfl, cfz, cf3, ces )
Of course, one of the advantages claimed for the treatment above
is that it avoids mentioning the algebra of symmetric polynomials. At
the insistence of my friends, I explain the connection of the PG with

symmetric polynomials. Let ffl, frz, 5‘3, ... be the elementary

symmetric functions in a sufficiency of variables xl,xz, ven ,xn; then
ml m, m
Pa(c-l,crz, 5‘3,...) = le Xy eeex

where the sum runs over n-tuples (ml,mz, ,mn) such that o of
the m's are 1, fod of the m's are 2, and so on, while the rest of
the m's are 0.

Both for practical calculation and conceptual work I recommend the
study of the dual rings H,(BU) and H*(BU) above the study of symmetric
polynomials.

Now that we have defined the classes Cfc’ the Whitney sum

formula (iii) is deduced from the special case

lgan = ) cf(g) ofjin)

i+j=k
by pure algebra, and similarly the behavior on line bundles (iv) is

deduced by pure algebra from the special case
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1 (i=0)
Cfi(E) = w (i=1)
0 (i>1).

5. THE NOVIKOV OPERATIONS
The basic analogy which Novikov follows is now: as the Steenrod
squares are to the Stiefel-Whitney classes, so the Novikov operations
- are to the Conner-Floyd eharacteristic classes. This will be made

precise in Theorem 5.1 {vii) below,

THEOREM 5. 1. (S.P. Novikov): For each aq= (0)r0p0 05 ven

there exists an operation

q q+2h|
: X, Y) - Q X
sa'QU< ,Y) U (X,Y)

with the following properties:

(i) s, = L the identity operation.

* £
ii) s _ is natural: s f ={s .
(i1) s, Q o

(iii) s_ 1is stable: s § = §s .
a a a
(iv) s is additive: sa(x+y) =<sc1x) + (,say).

(v) Cartan formula:

s (xy) = z (SBX)(S V).
a B+y=za Y
(vi) Suppose that an element W e 07(x) is represented by a map
X5 MU(1). Then
i+l
sa(u) = 21: (ca,bi)w .

(vii) Suppose that £ is an U(n)-bundle over X, and consider the

following diagram.
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2n *a 2n+2 o]
5 o]
@ ME,E)—%— @ (E,E,)

’01—’ 4 T
o 2al
24(%) ay )

(Here the pair E’Eo isasin §2, and p is the Thom isomorphism

for QU .} Then we have

cf () = ¢ s pl
Explanations: In (v), the addition of the sequences B8 and vy is
done term-by-term. The cup-product xy may be taken in any one of
the three senses explained above, and then the cup-product (sﬁx)(s y) is
Y
to be taken in the same sense.
For the coefficient (ccl »b;) in (vi), see the note on Theorem 4.1 (iv).
Sketch proof. We take (vii) as our guide. We have a Thom
isomorphism
= AT
#:Q_(BU(n)) - q (MU(n)).
U U
: & 2n+2|a| .
Consider the elements ;acfa € N U (MU(n)). They yield a
2
unique element s ¢ |akMU) (the Liml argument again), This
a
*
element defines an operation on the cohomology theory QU .
Property (vii) results immediately from the definition, and
properties (ii), (iii) and (iv) are trivial, For example, if

x,y:X - MU are maps, and if we represent s by a map

a
2a 2a
ssMU - S MU, then the maps s(x+y}) and (sx)+({sy):X = S MU are
homotopic, since we are working in a stable category,
Properties (i), {v) and (vi) are deduced from the corresponding

properties (i), (iii) and (iv) of the Conner-Floyd classes (Theorem 4. 1)

by using appropriate properties of the Thom isomorphism ¢ . For
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example: in proving (v), it is sufficient to consider the case in which x
and y are both the identity map i:MU = MU, so that xy is the
product map p:MU A MU - MU. Using the Lim1 argument again, it is
sufficient to consider the case in which x and y are the generators for
~Non ~2m . -
QZU(MU(n)), QU (MU(m)). Now we use the fact thatif ¢ isa
U(n) -bundle over X and 5 is a U{m)-bundleover ¥ the following

diagram is commutative.

~p+2 ~q+2 ~
B e ® a7 (M) RroduCt  GeaarInitm ey | i)
‘P§®5onl 5p+<1+2n+2m“\,[(g X 7))
50§xr{
d
b (x) ® Q?J(Y) procuct P x ¥)

The application, of course, is with £ the universal bundle over BU(x)
and n the universal bundle over BU(m).
For {(vi) we need to know that for the universal U(1)-bundle over

BU(1), the homomorphism

2i ~2i4+2 2i+2 .
- = M
Qg (BU(L) 0y (MUY QU (MU(1)) (i=20)
i i 2
carries & to C}+l. (Here & 1is the universal element in QU(BU(I))

2
or (0 (MU(1)).)
U )
Since sa is 2 homotopy class of maps
Mu — 529 mu,
it induces 2 homomorphism
H (MU) - H MU).
SCI q( ) Q-ZIOL‘( )
It is reasonable to ask for this homomorphism to be made explicit. Since
we have seen in §3 that H,(MU) is a polynomial ring, it is reasonable
to ask (i) how s, acts on products, and (ii) how s, actson the

o)
generators bi'. Set b'= 2 bil ; then it is sufficient to know sn(b'),
i=0 :
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since one can separate the components again.

THEOREM 5.2. (i) If x,y eH*(MU), then

sa(xY) =B+2= (sBx)(SYy).
s T . ni+l yee
(ii) So(b ) = §0(C0'bi)(b) .

Sketch proof, Part(i). By Theorem 5.1 (v), we have the following
commutative diagram.

MUAMU— 2 oMU

S AS
Bivsa B v 5y

6 V s2Bhvua g2 MMUP—> s vy
+y=q,

Pass to induced maps of homology.
Part {ii). Since the generators b": come from MU(1l), we can
make use of Theorem 5.1 (vi). If w 1is the canonical element of

QZ(MU(I)), we wish to compute the effect on homology of the element

u.‘i+1€, QZH 2(MU( 1)), that is, the effect of the following composite map .,
MU(X)L>MU(1)/\MU(1)/\... AMU(1) (i+1 factors)
|
MU(i+1)

Now, the diagonal map

BU(1) -8 5 BU(1) x BU(1)X ... X BU(1)

induces a map of cohomology given by
u W 1:11+1:12+...+rui_H

u
A,'((x 1®x Z@...@x Y=x ;

therefore it induces a map of homology given by

A,b = > bu1®bu2®...® b,

3
t u, ¥u,+,, . +u. =t i+l
1772 i+l



~;
The map of H, induced by
BU(1) 2 = BU(1) A BU(1) A ... ABU(1)
is given by the same formula, provided we now interpret bo as 0, Next

recall that b;: in MU(1) corresponds to bt+ in BU(l). We deduce that

1
Oybl = > b"11® b;l2® ... @bl 1
Zt-1 +
u1+u2—1—.. +u +1 t-1 1
and
- N bt -
Pyl = >, by bl bl
U 4u_+ ...tu, =t-i 1 2 i+l
1 2 i+l

Adding, we see that
P*A*bl = (b|)1+1 .

By Theorem 5.1 (vi), we have the following commutative diagram.

s?MU

MU(1)

Pass to induced maps of homology.

COROLLARY 5.3. s :H°(MU) = g2 limu) is given by
a

satpl = e, .

Proof. By Theorem 5,2 (ii),

0 if i< |al (trivially)
AR
(¢ ,b)1 if i=|al.
a’ i
Using Theorem 5.2 (i) we have
1R 1Y = = 1
sa(bi bi"'bi) = (55 b} )(s‘3 bi )...(s‘3 bi').
172 r B+, +... +B =« 171 2 2 r r
172 r
If we assume that i +iy+ ... +1 = | |, then the only terms which can

contribute to this sum are those with

Byl=i;, IBal=igs »ee B | =i,
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and we obtain

{cy,b, e +b. )ou.fc ,b )1
z Fzl 11 B2 l2 Sr e

where the sum runs over such 8 1,32, P ,ﬁr. This of course yields

We have shown that
so(yzx) = (ca,x)l

for x ¢H (BU). Transposing to cohomology, we obtain

2fe |
Sy Pl =pc, -

6. THE ALGEBRA OF ALL OPERATIONS
Next we need to consider a much more trivial sort of operation.
Let x be a fixed element in Q%(P). Let X,Y bea pair, and let

E(X). For each

c:X -~ F be the constant map; thus c*(x) e
q .
€ X,Y), we define
y QU( )
* +q
ty) = (¢ Xy e 25 (X, Y),
This defines a cohomology operation
+
votx,y -~ 0P x,y).
U U
ke £
In fact, we can say that QU(P) acts on all our groups QU(X,Y),
acting on the left,
Now suppose that we fix a dimension d (positive, negative or zero),
and for each index a = (n 1 a2’03' «e.) Wwe choose an element

d-2h
U

1
X e 0 (P).

o
(We do not require that all but a finite number of the X, are zero; they

may all be non-zero if they wish.) For each x; we have a corresponding

ope ration
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e %%y - o%x,y).
a” U U
We now consider the infinite sum
aztasn: Q%(X,Y) - Q?J*d(x,Y).
(Here we are assuming, as usual that X,Y is a CW-pair of finite

homological dimension.)

THEOREM 6.1 (Novikov).
(i) This sum converges, in the sense that all but a finite number

of the terms t s yield zero.

a
(ii) This sum defines a cohomology operation on Q{J which is

natural and stable.

which is natural and

P
(iii) Every cohomology operation on QU

stable can be written in this form.

s

(iv) This way of writing a2 cohomology operation on 0y

is unique;

if

t o:dx, vy -~ %%,y
U U

oo’
for all X,Y and g, then x =0 forall g.
a
o coiay. q+2Q .
Sketch proof. Part (i) is trivial: the group QU (X,Y) is zero
if |a| is large compared with the homological dimension of the pair
X,Y. Part (il) is also trivial.
For parts (iii) and (iv), consider the spectral sequence
HA MU, 07 (P))=> 2 (MU)
3 —_ .
U U
It follows from Corollary 5.3 that the elements sce Q;(MU) con stitute
M
an QU(P)—base for the F_,2 term of this spectral sequence.
There is an alternative method of proving part (iv), as follows,

Remark 6.2 (Novikov), The operations z ta s, .are

distinguished by their values on the classes
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2m n n % n
wluzz...u)meQU (CP XCP X ... P)

(where m and n run over all positive integers),

Sketch proof. Itis easily seen that ({{J(CPH X Cpnx e XCPn)

E? £
is free over Q(;(P)’ with an OU(P)-base consisting of the monomials
11 i
1 72 m
o) R
w @, w

with 0 <i <n for all r; the remaining monomials are zero. We have

il+1 iz+l im+l
s . = ,b. b. ...b, e .
a(wlwz. w b= >, ley i, lm)ul o w

11'12""’1m
This will of course be zero if Gl +02+ 03+ ...>»>m orif a. >0 for
i

any i with i+1 > n; but the remaining elements S(L(UI Wyeo. wy) are

linearly independent over Q)G(P).

Note. With the foundations indicated above, the use of CPOO

instead of CP" gives no trouble,
Next we need to know how to compute the composite of two
operations t s, tIBSB' This breaks up into three problems.
(i) We need to write sct'B in the form 2 t'\'{sY . Thps reduces
*
to computing the action of sy ©on QylP) for
b

sy = 20 (sge x(sy) = > (s x)(s ).
i Y Ry
f+v=a R+y=o

This writes the operation in the required form.
Now we have Q:}(P) B ﬂ*(MU), and by Milnor (loc. cit.) the
Hurewicz homomorphism
T, (MU -+ H,(MU)
is monomorphic, Therefore, in principle it is sufficient to know the
action of sc on H*(MU), which has been given in Theorem 5.2,

We will return later to the action of sy on Q’{I(P).



20

(ii) We need to compute the composite tat'\‘/ . This is trivial; just
¥
multiply the corresponding elements of QylP).
(iii) We need to compute the composite S, 8g+ This is done by the

following theorem.

THEOREM 6,3, The set S of Z-linear combinations of the s,
is closed under composition. The ring S 1is a Hopf algebra over Z,
whose dual S, is the polynomial algebra on generators b'l‘,bg, b'_,", ves

where (s_,b") =(c,,b.). Set b'" = E( b'', where b" = 1; then the
(o} i a’ i 5o i [e]
i=

diagonal in S, is given by

Abn = 2 (b||)i+l ®b'1' .

i>0
Explanation. By separating this formula into components we
obtain the value of Ab‘}‘(; this determines the diagonal on the whole of

S,

4> and hence determines the product in S. The situation is similar to

that arising in Milnor's work on the dual of the Steenrod algebra,
Theorem 6.3 is due to Novikov, except that he does not give the

explicit formula for the diagonal in S .
*

* n n n
Sketch proof. In Qu(CP" X CF X X C? ) se(wlwz___q;m)
1 2 Im
is a Z-linear combination of monomials w) w, e W and hence
T A
snsﬁ(‘”l"’?' . '“’m) is a Z-linear combination of monomials wy u)z EETN

By the proof following Remark 6.2, 5.5a is a Z-linear combination of

operations sy.
We next wish to calculate Ab'}‘(, that is, to find s, sp(w) for each
- . 2 @©
o By where « is the generator in Q(CP ). We have

ny i+l
sgw :iZ(sR,bi)w1+

and therefore
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i+) +j2+...+j_ +1
Coce 3 tsumreras s b
O s | Iy 2 i i
1’72 i+l

We conclude that

Ab) = bl bl .. bl @ b,
ko +j§:,.+j =x 12 iv1 @
172 i+1
Summing over b, we obtain the formula given.
Note. Now that we have introduced the dual Hopf algebra S*, we
can reformulate Theorem 5.2, Recall that S acts on H,(MU), acting
*

on the left; therefore it acts on the right on H (MU); that is, we have a
product map

% ®

p:H (MU) @S - H (MU).
Transposing again, we have a coproduct map
LH(MU) -~ H (MU) ® S,.

This is related to the original action of S on H_{MU) as follows: if

Ahs >n® s

i
then
h = h 3
sh = 2 END
1
for all s ¢ S. The map
A:H, (MU) H ((MU)® S,

may be described as follows,

PROPOSITION 6. 4. 4o preserves products, and

T SR D R - RS
izo !

This is a trivial reformulation of Theorem 5.2,
The analogy between this formula and that in Theorem 6.3 should
be noted.

At this point we possess a firm grasp of the algebra of operations
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on Q

7. SCHOLIUM ON NOVIKOV'S EXPOSITION

In Moscow, Novikov made a careful distinction, which is main-
tained in his Doklady note, between SN:Q;(P) - QZ(P) and a
certain homomorphism 0—:: Q:‘J(P) - Q):J(P). It is necessary to
observe that they coincide, and for this purpose it is necessary to
analyse Theorem 3 of Novikov's Doklady note.

First observe that in Novikov's Doklady note, MU and QU are
different names for the same thing, since both are defined to be Q;(P)
{p. 33 line 4 of Section II; p. 35 line 8). Next recall that Novikov writes
AU for the algebra of operations, and observe that the isomorphism

Hom (AU,MU) = Q

AU
which he has in mind is precisely the standard isomorphism 0 given by

u

8(h) = h(1).

u

Next consider Novikov's map d:A~ - AU.

Since it is asserted to
induce a map
X
d :Hom (AU,M ) - Hom (AU,M Y,
u U U U
A A

it is implicit that d must be a map of left A-modules. Since itis
asserted to satisfy d(1) = s, it must be given by

dfa) = as_

Now consider the following diagram.

*

Hom U(AU’MU) —-—d———>- Hom U(AU,M )
A A U

0 o]

x > 0

Oy
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It is trivial to check that it is commutative if we define x by x(y) = s,V
sk

But Novikov asserts that it is commutative if we define x to be ¢«
w

*
Therefore fu(y) =Y.

8., COMPLEX MANIFOLDS
Next it is necessary to recall that a stably almost-complex mani-
fold M™ defines an element (Mn] of Q{Jn(P). If we are given such
a stably almost-complex manifold Mn, it is natural to ask for the value
of Sy [Mn] It is especially reasonable to ask this for the manifolds
CP", since these manifolds are familiar and are known to provide a set
of generators for the polynomial ring QE(P) ® Q (where Q is the

ring of rational numbers).

THEOREM 8, 1. s [CP"] = (c, b hrepttlal) where

8

-
1
o
-

Explanation. Since the element b is a formal series with first
term 1, it is invertible. The integer (cc,b'n'l) is the Kronecker

2
product of an element in H |cz| (BU) and an element in TT Hq(BU).
q

This time we have used the algebra in §3 to write down a coefficient
which isn't necessarily 0 or 1.
Theorem 8.1 is due to Novikov, except that he does not give the

ol

Sketch Proof. To preserve the character of the arguments, we

n
explicit formula for the coefficient of [CP

will show how to deduce this from Theorem 5.2 by pure algebra.

The letter X will always mean the canonical anti-automorphism
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of the relevant Hopf algebra. In CP", the tangent bundle 7 satisfies
7@ 1 ={n+1)f , and so for the normal bundle ,, we have
cqbv) = (Xeg)T

= (Le M(n+1)p)

: > (e b b ...b x| Z *
i,ig,.e..d 12 ‘nyl
1772 n+1
Lot +ea. L
. 1772 n+l
= > (¢ ,xlb, b, ...b_  ))x
i, i R T A s
17727 " 'n+l
The terms with i +i_  + ... +1 = n give the normal characteristic

1 2 n+1

numbers of CE". Therefore the class of \'CPn] in HZ (MU) is
- n

¢ > x(b b ,,ub )
i+ i =n 1 °2 n+l
1 2+...+n+1
n+l)
n

= px(b

H

where the subscript n means the 2n-dimensional component., But since

1 n+l -n-~1

Ab=b®b, wehave Yb=b"" and ¥(b ) =b . We conclude
n . .
that the class of [CP ] in H, (MU) is
-n-1
()77
n
Now by 5.2 (ii) we have the formula
i+l
s(') = > (e b))
i>0
From this we will deduce
~1 j~1
(Formula 8.2) s (b7 = 0 (e, xb (b’ .
¢ 0 & 7

It is easy to see that this checks; for it yields
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1

oy ‘i+‘j
s, (b (b)) > (cB,bi)(cY,ij)(b)
BTy =a
i»0, j=0
= 3 (c,b.xb)b)H
i20,j209% * ©J

= (e sbo) L,
as it should. But this manipulation allows one to prove the formula for
s ((bl)—l)d by double induction over |g| and d, starting from the
a
trivial cases |a| =0 and 4 = 0.

From (8.2) we deduce that

1, ~n-1 _ . Inl-n-l
s (61777 = > (cyoudbs b wuub N{(bY )

RO U SRS =gl 172 n+1
1 n+l

2
Zn-Z‘al

n-|o|’

This is the class of [CP“’|°L]] in H (MU), up to a factor

(4:ﬂ ,b—n-l). Now the result follows from the fact that the Hurewicz
homomorphism

Ty (MU} ~  H_(MU)
is monomorphic.

From a geometrical point of view the proof just given is uncouth
and perverse; Theorem 8.1 should be deduced from an elegant formula
of Novikov. Before starting this, we will recall some material from
ordinary cohomology.

Let M,N be oriented manifolds of dimension m,n, and let
f+ M =~ N bea continuous map. The "Umkehrunghomomorphismus'
or "forward homomorphism?"

n-m+9q

£ M) - H (N)

is defined to be the following composite.



HY(M) H* ™ ()
¥ d

£,
H (M) — e H _q(N)

m-q
Here d is the Poincare duality isomorphism.

A similar construction may be given in which H* is replaced by
Qi}, provided we assume that M and N are stably almost-complex
manifolds and replace d by the Atiyah duality isomorphism

U
D: Q%(M) ~ooe M.
Here Qx(yjn—q means complex bordism; see Atiyah, loc. cit., for real
bordism and the corresponding duality theorem.

We shall in fact only have to apply the homomorphism f! in the
case when N is a point P and { is the constant map <M - P, It
will make both the proof and the exposition easier if we give an
alternative definition of c!, which does not require the introduction of
bordism.

Suppose that we embed the manifold M in a high-dimensional

2
sphere Sm+ p’ with unitary normal bundle v . Define <, to be the

following composite.

q q-m
Qu(M) oy T (P)
o2
2 ¥
Qq+ p(E:EO)
' 3 ) , )
,_2Q+QP(Sm+2P’ C Int E) ______J__> Qq+2p(sm+ P Dm+ p)
by U U R

Here ¢ 1is the Thom isomorphism; E and Eo refer to the normal

bundle , of M;and C Int E is the complement of the interior of E,.

q+2p M+2p

(If one wished one could replace QU (s , ClInt E} by
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2

Q§+2P(sm+ p, C M); this would make it clearer that this group is
standing in for a bordism group of M, via Alexander duality or

. m+2p . : .
S-duality.) Further, D is a small disc contained in C Int E, and
the right-hand vertical arrow is the usual iterated suspension; this may
be viewed as the analogue of the left-hand column, with M replaced by P,

We will accept this composite as our definition of c - If any reader
who is familiar with bordism prefers a different definition, we may leave

it to him to reconcile his definition with this one.

Now we come to Novikov's formula. Take a stably almost

complex manifold Mm, representing an element [Mm] € Q_Um(P). Let
; . 2lal - m
v be its stable normal bundle; thus cfo(\)) € QU (M) and

2lq -
cef (Wen” ™ M),
' a

THEOREM 8.3 (Novikov). sal'Mm] = e cf (v)-

This result follows easily from the definition of 54 in 55, by

naturality.






PART II

QUILLEN'S WORK ON FORMAL GROUPS

AND COMFLEX COBORDISM






0. INTRODUCTION

These notes derive from a series of lectures which I gave in
Chicago in April 1970. Itis a pleasure to thank my hosts for an enjoy-
able and stimulating visit,

In §51-8, I have tried to give a connected account, beginning
from first principles and working up to Milnor's calculation of 7, (MU)
(8.1) and Quillen's theorem that %,(MU) is isomorphic to Lazard's
universal ring L (8.2), The structure of 1. is obtained from first
principles {7.1). This is done by relating the notion of a formal group
to the notion of a Hopf algebra. The material has been so arranged
that algebraists who are interested in the subject can obtain a fairly
self -contained account by reading §§1,3,5,7.

The remaining sections deal with related matters, In [3, Lecture 3],
I have shown that for suitable spectra E, E*(E) can be given the
structure of a Hopf algebra analogous to the dual of the Steenrod algebra,
The structure of this Hopf algebra is described for the spectrum MU in
jlll, for the BU-spectrum in §13, and for the Brown-Peterson spectrum
in §16. Sections 15 and 16 are devoted to Quillen's work on the Brown-

Peterson spectrum [14]. §14 is devoted to the Hattori-Stong theorem.

31
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1. FORMAL GROUPS
We may understand formal groups by an analogy. Let G bea
real Lie group of dimension 1. By choosing a chart, we may identify a
neighborhood of the unit in G with a neighborhood of zero in Rl, so
that the unit in G corresponds to zero. The product in G is then given
by a power-series:

(1.1) poc,y) = > ai.xiyj .
20 Y

This power-series is convergent for small x and y, and satisfies the
following conditions.

(1.2) n(x,0) = x, p0,y) =vy.

(1.3) plx,nly, 2)) = plp(x,v),2).

Now let R be any commutative ring with unit., Then a "formal
product” (over R) is a formal power-series of the form (1.1), but with
coefficients aij in R, satisfying (1.2) and (1. 3).

We have two trivial examples.
(1.4) pX,y) = X+ y.
{1.5) Max,y) =X + y + xy.
For example, suppose that we consider the Lie group G of positive real
numbers under multiplication, and use the chart under which x ¢ Rl
corresponds to (1 + x) ¢ G; we obtain formula (1. 5),

Let us return to the general case; there are a few obvious

comments, Condition (l.2) is equivalent to:
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1 (i=1)
a.O =
! 0 G#1)
(1.6)
1 (3= 1)
a.,..
o 0 Gt

So we may write our formal power-~series in the following form.

(1.7) px,y) sx 4y + >0 a xyl
i,3»1 M

Condition (1. 3) involves substituting one formal power-series in another,
but this involves no difficulty since our formal power-series have their
constant terms zero.

We observe that so far we are only discussing the case of
dimension 1. That is, in the general case one would start from a Lie
group of dimension n, and proceed by analogy.

Given a formal product p, a formal inverse , isa formal

power-series

(1.8) ix= > al
=1 !

(with coefficients aJ‘. in our ring R) such that
(1.9) Fix, 130 =0, plux,x) = 0.
LEMMA 1.10. Given any formal product p, there is a formal
inverse t , and it is unique.
The proof is trivial.
We have two examples; with the "additive product" of (1.4) we have
ux) = -x,
and with the "multiplicative product' of (1.5) we have
t{x) = -x+x2 -x3+x4

So far, a "formal product" is like a grin without a Cheshire cat
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behind it. A "formal group'' must, of course, be a group object in a
suitable category; I take this notion as known. If X is to be a group
object in the category C, then Cartesian products such as X® must
existin C {for n=0,1,2,3; and X must be provided with structure
maps in the category C, namely a product map m:X2 - X, a unit map
e:XO -+ X and an inverse map i:X -+ X, These maps must satisfy
the obvious conditions. For example, consider the category of smooth
manifolds and smooth maps; a2 group in this category is a Lie group.
Again, consider the category of commutative rings and homomorphisms
of rings, and let C be the opposite category; with a little goodwill C
may be regarded as the category of affine algebraic varieties. A group
in this category is an ''algebraic group'.

Now consider the category in which the objects are filtered
commutative algebras over R, which are complete and Hausdorff for the
filtration topology; the morphisms are filtration-preserving homomorph-
isms. Let C be the opposite category. The ring of formal power-series

R[[xl’XZ' ,xn]],
with the obvious filtration, is an object in C. The objects
R[[xl,xz, ven ,xn]] and Rﬂ:yl,yz, - ,ym]] have a Cartesian product

in C, namely

R[[xl'XZ’ e ,xn,yl,yz, - ,ym]].
. 2
Let X be the object R[[x]] in C; thena map m:X - X in C isa
filtration-preserving homomorphism
miR(]] = RlBey.x,]]s

such 2 map m is determined by giving m(x), which is a formal power-

series P(xl,xz) with zero constant term. It is now easy to check that
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each "formal product" p determines a structure map m which makes
Rffx]] into a group object, and conversely. ( The unit map e:R[[x]] > R
i .
is defined by e( E cix ) = co; inverse maps come free of charge by
i>0

Lemma 1.10). It is now clear how to proceed in dimension n; we have

to consider the object R[[xl,x ,xn]], and study the ways of making

20 e
it into a group-object in C., A 'formal group', then, is a group-object
in the category C, whose underlying object is R[[xl,xz, eeenx ]]s
n

We now revert to the case of dimension 1. Let :R - § bea

homomorphism of rings with unit. Then © induces a map
O*:R[[xl,xz]] - S[-[xl,xz-ﬂ
which carries any formal product p over R into a formal product
O,p over S. However, this is not the definition of 2 homomorphism
between formal groups. Such a homomorphism is, of course, a map in
our category, with the obvious property. Thatis, if G is a formal
group (R{[x]],p), and H isa formal group (Rf{y]],y, ), then a homo-
morphism 6:G = H is a formal power-series
y = f(x) = Z c_x1
i>1 !
{with coefficients oA in R) such that
vf(x ), f(x,)) = falx,x0) .
The analogy with the case of a Liie group is obvious. If the coeffieient
-1

cl is invertible in R, then f exists, and f is a isomorphism.

In our applications we are interested only in the case of dimension 1,
and moreover only in commutative formal groups. That is, our formal

products will satisfy

(1.11) plx, v} = ply,x),
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or equivalently
(1.12) aij = a.ji .

QOur applications arise in algebraic topology.

2, EXAMPLES FROM ALGEBRAIC TOPOLOGY

In this section we will explain how examples of formal products
arise in studying generalized cohomology theories, According to [17],
generalized cohomology theories are closely connected with stable
homotopy theory and the study of spectra. For convenience we will
suppose that we are working in a suitable category of spectra, such as
that constructed by Boardman (5,67, so that we can form smash-products
of spectra. A ring-spectrum is a spectrum E provided with a product
map p:E A E - E. All our ring-spectra will be associative and
commutative up to homotopy, and will be provided with a map
i:SO - E which acts as a unit up to homotopy. We shall suppose
known the work of G. W. Whitehead [17], according to which a ring-
spectrum determines a generalized homology theory E, anda
generalized cohomology theory E*. These theories admit all the
usual products. The coefficient groups for these two theories are givenby

E™pt) = E_(pt) = W (E) = [57,E],

Initially we are interested in three examples, First, the
Eilenberg-Mac Lane spectrum for the group of integers, Since the
corresponding homology and cohomology theories are universally
written H, and H*, we will write H for this spectrum. Secondly, the
BU-spectrum; since the corresponding homology and cohomology theories

*
are called K-theory, and written K_,K (and since we have just dis-
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pensed with the use of K for the Eilenberg-Mac Lane spectrum) we will
write K for the BU-spectrum. (Note that we would anyway have to find
different notation for the BU-space and the BU-spectrum, since we have
to distinguish between them.) Thirdly, the Milnor spectrum l_'12]; this is
always written MU; the corresponding homology and cohomology theories
are complex bordism and complex cobordism.

We do not need homology and cohomology with coefficients until
§15, but it seems best to deal with the matter now. Let G be an

abelian group; then we can construct a Moore spectrusn M = M{G) so that

T.r(M) =0 for r <0
(M) ® G
Hr(M) =0 for r> 0.

We define a '"'spectrum with coefficients' by
EG=E A M,
For example, HG is an Eilenberg-Mac Lane spectrum for the group G.
The homology and cohomology theories associated with EG are written
E%

EG,,EG .

We will study spectra E which are provided with '"orientations",
in the following sense (which owes much to a seminar by A, Dold).

o

(2.1) There is given an element x ¢ E (CPCD) such that

~

E;'(Cpl) is a free module over 1, (E) on the generator

Lok . 1 o . . .

i"x, where i:CP —> CP is the inclusion map.

1 . e . 2

We know, of course that CP  may be identified with S, and that
Vi 20 , . R 62 2
E (S7) is free over T, (E) on one generator Yy, which lies in E%(87),

0

and is represented by the unit map § — E; but we do not insist that

= ~
i x is this generator, or even that it lies in EZ(SZ). QOur assumption
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%

says only that i x = uy , where u is an invertible element in 7 _(E).

If we have more than one spectrum in sight, we write xT for the

%

generator in E (CPOO), and uE for u.

We make a blanket assumption that the objects to be studied are
pairs (E,xE); any E which appears in what follows is supposed to be

- . E

provided with a class x

2
H O HYCP™®) to be the

Examples. (2.2). E =H. We take x
usual generator,

(2.3). E = K. We identify CE® with BU(1), we take ¢ to be
the universal line bundle over BU(1l), and we take
xK = E€-1ce io(cpw)-

Notes. It is justifiable to take xK in ko(CPm) instead of
f{z(cpw), because it makes the ''n-th Chern class in K-cohomology"
lie in dimension 0 instead of dimension 2n, so that it is more conven-
iently related to bundles and representation-theory. Also we get a better
formula at {2,9) below, The unit uK is the usual generator in 7 5(K);
this provides some justification for writing i*x = uY rather that

o
Y = ul X.

(2.4). E = MU, We have a canonical homotopy equivalence
IR} :CPOD-—) MU(1). In fact, MU(]l) is a quotient space formed from a
disc-bundle over BU(1)} by identifying to one point a subbundle whose
fibers are circles. This subbundle is the universal U(l)-bundle, so it
is contractible, and the quotient map is @ homotopy equivalence, The
disc-bundle is clearly equivalent to BU({1) under the projection,

MU

0,
We take x € MUZ(CP } to be the class of w .

Let us return to the general case. By using the projections of
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Cpmx CcP® onto its two factors, we obtain two elements

%
[1%p € £ (cP® x cp®).

X
LEMMA 2.5. (i) The spectral sequences
H'(cPp™; T (E) = E (CP")
H(CP®; 7, (E) => E¥cp®
H'(CP™ x CP™; 7,(E) == E (CP" x cp™)
H(CP® x  CP®;7,(E) == E (CP®x CP™)
are trivial,
(ii) E*(CPn) is the ring of polynomials T, (E)x] modulo the
ideal generated by xHL

EY(CP®) is the ring of formal power-series 7 _(E){[x]].

E“(CP® x CP™) is the ring of polynomials =_(E) [x,,x,] modulo

m+1

n+1l
the ideal generated by x, and Xy

x* o © .
E (CP X CP ) is the ring of formal power-series ri,(E)[[xl,xz'_U,

Proof. Consider each spectral sequence of part (i); the relevant

powers xl or xl J
1 2

give 2w (E)-base for the Ez-term on which all
differentials dr vanish. Since the differentials d,. are linear over
-,—r*(E), they vanish on everything.

We know that CP® {s an Eilenberg-Mac Lane space of type (Z,2);
in particular it is an H-space, and its product map

m:cp x cp® — cp®

is unique up to homotopy. One way to decribe m is to say that it is the
classifying map for the tensor-product glgz of the two line-bundles over
CPOOX CPOO; in other words, m*_E = glﬁz.

In general, we can form m*x, and by Lemma 2,5 it is a formal
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power-series in two variables:

x i _
(2.6) mox = g, ) = 123 35712 (ag; e TlEN .

LEMMA 2.7. This formal power-series is a commutative formal
product, in the sense of §1, over the ring 1TJ_(E).
The proof is easy.
If we have more than one spectrum E in sight, we write p for
E . . .
E and ‘a-ij for the coefficients.in Tr:\:(E).
Examples. (2.8). E =H. We have
#* H_H, H
x

= +
X1 X2

m
We get the "additive formal product' of (1. 4).

(2.9). E =K. We have

that is,

m*(l +x} = {1 +xl)(1 +x2)

%

mx=Xl+X2+XlX2.

We get the "multiplicative formal product' of (1.5).
(2.10). We see that there is a formal product defined over

@, (MU), with

255 € To(iaj-MY) -

In this way we get a lot of useful elements in T, (MU).
{(2.11)., Let n:CP  —> CP be the map which classifies the line

bundle g_l inverse to £ in the sense of the tensor-product,

{Alternatively, n is the map of classifying spaces induced by the

-1

homomorphism z —> z~° = Z;U(1) —> U(1).) Then we have
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n#cxMU - z at (xMU)J
=0

where Z a'_xJ is the '"formal inverse'' corresponding to the formal
J

U

=1
M
product p (see (1.8)-(1.10)).
Next a2 remark on naturality. Suppose given a homomorphism
E ¥
f1E —> F of ring-spectra. If x is as above, then i xE = uEY E, so
E
i*(fﬂxE) = (fuu )YE; here i*uE is invertible in ‘lr*(F), so we can take

f*xE as a generator x¥ . With this choice of generator we have

a.}:j = f, a,E_ , or in other words PF = f*}l

E
More usually, however, both E and F have given generators

x ,% . Inthis case we have

E F i
f%x = Z Ci(x )1 ’

i>1
where the c, are coefficients in 7 _(F) and

E
(2.12) fu” =c uF.

Let us set

.
> e ) = e)

i>1
then we have the following result.
. F _F._ E F ¥
LEMMA 2.13. glp™ (6] 5%5)) = (Lp ) el glx, )
The proof is immediate, by naturality,
This lemma states that the power-series g is an isomorphism

from the formal group with product pF to the formal group with

E
product {.p

Examples: (i) We will see in {4 that we have a map f:MU — H

MU _ _H 0

such that f,x = x", Then f*aij = if i>1 and j> 1.

(ii) We will see in {4 that we have a map g:MU —> K such that
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. xMU= u—lxK. Then g*a1

* Zu and g*(aij)=0ifi>lorj>l.

1
Many calculations which are familiar for ordinary homology and
cohomology can be carried over to E.
LEMMA 2.14. (i) The spectral sequences
n n
H*(CP ; -rr*(E))::> E (CP)
H,(CP%; 1 (E)) == E,(CP™)
H,(CP"x CP™; m(E)) = E_(CP" x CP™)
#,(CP®x CP®; 1 (E)) == E,(CP® x CP™)
are trivial.
* n n, s
(ii) E (CP ) and E*(CP ) are dual finitely-generated free
modules over -n—*(E).
(iii) There is a unique element Bn € E*(CPn) such that
. 1 (i = n)
i -
<x xBn> = )
6] (i #n) .
We can then consider the image of B8 in E*(Cpm) for m>n and in
n

E*(CPOO); these images we also write R Nt

(iv) E*(Cpn) is free over -n—*(E) on generators 80’81' ‘e ,Bn.

E*(CPOO) is free over +7,(E) on generators Bo’ﬂl""'sn""

E,QK(CPn X CPm) is {free over T,(E) with a base consisting of
the external products Biﬁj for 0 ci<n, 0<j<m.
E*(CPOOX CP®) is free over -.-r*(E) with a base consisting
of the external products Bi Bj .
{v) The external product
©0 0 oo e8]
E(CP™) ®_n_ E E(CP7) — E(CP X CP )
«(E)
is an isomorphism.

The proof of part (i) is easy, by considering the pairing of these
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spectral sequences with those of (2.5)(i). {(Compare [3. p. 217, where
however one is arguing in the opposite direction.) This leads
immediately to parts (ii) and (iii). We see that in part (i), the Ez—term
of each spectral sequence has a 7r*(E)—base consisting of the
appropriate elements g8, or Riﬂj. This leads to parts (iv) and (v).
i

If we have more than one spectrumm E in sight, we write Bi

for the generators in E*(CPOO). If we have 2 homomorphism f: E — F
; . ¥F_;  E
of ring-spectra, and if we choose x~ = 1i,x (as above), then we have
F E .

B; =f>kBi . More usually, however, both E and F have given

E F .
generators x ,X . Inthis case we have

: ¥
15 2 i) ey,
121

E F

where the ci are coefficients in 74{F) and f*u = Clu , as above. In
this case the appropriate move is to invert the power-series and get

-1 E E .

oF 2 gT LT 2 S A )
) i

passing to powers, we get

Fj j E i

)= 2 el
i

for some coefficients d? e 7, (F). Then we have:
i

E jF
2 =
LEMMA 2.15. g EJ: a4

The proof is immediate, by exploiting the pairing between

generalized homology and cohomology.

Examples. (2.16). We will see in {4 that we have a map
U H MU
£:MU —> H such that f,x" " =x . Thus we have g = gl
A i

(2.17). We will see in §4 that we have 2 map g:MU —> K such

- MU i K
that g*xMU = u 1xK. Thus we have g B uIB
i %Py :

1
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COROLLARY 2,18, The diagonal map
@ e @
A CPT — CPTX CP
gives E*(CPOO) the structure of a coalgebra, whose coproduct map is

given by

ek ® 2 B ®F;

iy =
This follows immediately from (2. 14). It suggests that we regard
E (CPOO) as a Hopf algebra, with product induced by

m: CP® x cP® — cp®

and coproduct as in (2, 18)., We note that if we do this we shall have
m (A ®B) = >, alfﬁ ,
GRS j r 1k

where the sum runs over k <i+j; for by cellular approximation we can
suppose that m maps cpl x cp! into cp' . of course, the

formulae which hold here can be written down in the general abstract

case, and we will now indicate this,

3. REFORMULATION

In this section we will interpret a formal group over R as a group
in the category of coalgebras over R.

The results of the previous section suggest that the algebra of
formal power series R{[x]], which arose in {1, is actually the dual of
the object which should be considered. Let F be an R-module which is
free on generators BO,BI, e ,Bn, ... . Wemake F intoa coalgebra
over R by setting

(3.1) wsk=_2kﬂi®aj-
i+j =

The dual of F, given by ol HomR(F,R), is then an algebra over R, and



45

it can be identified with R[[x]} the pairing between R{[x7] and F is
given by

(3.2) <i§(:) ci"i,ﬁn7 sc, .

(Here the coefficients c, 1ie—in R.)

The analogy with the case of a Lie group confirms that this proced-

. i
ure is reasonable. Instead of looking at analytic functions Z c,x on
i>0 0
G, we look at differential operators, because functions are contra-

variant and differential operators are covariant. More precisely, we
. : . 1 47
interpret g as the differential operator — —— , evaluated at
nt 4.0
x = 0., The result of applying this operator to the analytic function

<< i, . A
c.x 1is indeed c_. The coproductin F corresponds to Leibniz'

.4’> i n

i

o

formula

1 di 1 dj

(fg) = g (— — I (————g) .
s Ty 1 1! J

dx i+j=k dx dx

1
kI
Since differential operators are covariant, it is reasonable that the pro-
duct in G should induce a product of differential operators.
To continue, let F be as above; then we can form F®RF , and
its dual, Hom (F®pF, R), may be identified with the algebra R[[xl,xzf\].
The pairing between R|-|-x1,x2:|:| and F ®R F is given by
i J
(3.3) c, x'xd, Y =c .
<1zj 1J12Bp®8q Pq
Each R-map
: —
m :F ®R F F
induces a dual map
b3
m :RUX]] - Rl—[xl'xz:” .
This induces a 1-1 correspondence between maps m, which are

. . . - . * .
filtration-preserving (in a suitable sense) and maps m  which are
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filtration-preserving; corresponding maps are given by the following

formulae,
K
(3.4) m(R@F) = > 2.8
VoG UK
* koo ki J
3.5 = Al
(3.5) w0 e

(Here the coefficients a;(j lie in our ring R. The coefficients a_l_ are
1)

the coefficients a, .  of §1.) The map m* isa map of algebras if and
1
only-if the map m, is a map of coalgebras. It is now easy to check

that the relevant conditions on m, (such as associativity and
commutativity) are equivalent to the corresponding conditions on m .

The map e:R[[x]] —> R, which was introduced as a unit mapin $§1 and

defined by e E c_xl) = ¢ , now has the alternative name B ; we take
. i o Yo
i>0

Bo as our unitin F,

X
It is clear, of course, thatif m is a map of algebras, then

k

£ sl
m xk is determined by m x. So in this case, the coefficients a
1)

are

determined by the ailj = aij' For example, we easily obtain the following

formula,
k
(3.6) a,.=ka . .
1j 1,3+l -k
Exercise, Obtain a formula for alzc2 .

We conclude that there is a precise equivalence between group-
object structures on R([[x]], in the sense of §1, and suitable Hopf-
algebra structures on F. A formal group is therefore also a group-

object in a suitable category of coalgebras.

4, CALCULATIONS IN E-HOMOLOGY AND COHOMOLOGY

In this section we continue the programme of taking results which

are familiar for ordinary homology and cohomology, and carrying them
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over to E. First we compute the E-homology of the spaces BU(n) and
BU. The space BU 1is an H-space; its product corresponds to addition
in K-cohomology; in particular, we have the following homotopy-

commutative diagram, in which the upper arrow is the Whitney sum map.

BU{n} X BU(m) ——— > BU{(n+m)

BU X BU > BU
This diagram gives rise to the following diagram of products.
E (BUx) ® E,(BU(m))————> E_(BU{n+m))
* ﬂ*(E) %

E*(BU)(&F*( E,(BU) ———> E _(BU)

E)
By using the injection BU{1) — BU, the classes Bi € E*(CPOO) give
classes in E*(BU); we write Bi for these classes also, The element
B, acts as a unit for the products.
LEMMA 4.1. (i) The spectral sequences
H,(BU(n); 7,{E)) = E_(BU(n))
H*(BU; m.(E) = E,(BU)
are trivial.
(ii) E.(BU(n)) is free over 7,(E), with a base consisting of the

monomials

g, B - B

1 2 tp
such that i1>0, iz>0, P ir>0, Ofrsn. (The monomial with

i

r = 0 is interpreted as 1.)
E,(BU) is a polynomial algebra

ﬂ*(E)[Bl’BZ’ P P ]

1

(iii) The coproduct in E,(BU(n)) and E_(BU) is given by
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Y’Bk ol Bi®9.y
i+3=
where By = 1.

The proof of parts (i) and (ii) is easy, because the monomials

givea 7 (E)-base for the E°-term on which all differentials d_
vanish. Since the differentials are linear over 7, (E), they vanish on
everything., Part (iii) comes from (2.18).
We now introduce a general lemma.
LEMMA 4,2, Let X bea space (or a spectrum provided that
rr(X) =0 for r «-N, some N.). Suppose that H_(X; 7 (E)) is {ree
over 7,(E) and that the spectral sequence H_(X; 7 (E)=—= E*(X) is
trivial. Let F be a module-spectrum over the ring-spectrum E. Then
the spectral sequences
H(X; m(F)==>F (X)
H(X; 7, (F)) = F(X)

are trivial, and the maps

ELX) @ L (k) Wl F) ——= F (X}

F*(X) — Hom_ﬁJ‘(E)(E*(X), Tr*(F))
are isomorphisms,

The proof is 2 routine exercise on pairings and spectral sequences
(compare {3], p- 20, Proposition 17}.

In particular, if E isasin §2, the lemma applies to X = CP®,
BU(n) and BU. We will also see that it applies to X = MU --see (4.5).

Although it is quite unnecessary for our main purposes, we pause

to observe that Chern classes behave as expected in E -cohomology.
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*
LEMMA 4,3, (i) E (BU) contains a unique element < such that
(g =1
<Ci» El > =
and
<C¢;, m> = 0
i

i i .
when m is any monomial ﬂllﬂ 22 e ﬂr T distinct from (Pl)l. We have

c = 1.
()

(ii) The restriction of c, to BU(1) is xE, the generator given

1
in §2.

(iii) The restriction of ¢, to BU(n) is zerofor i>n. (Other-
wise, the image of ¢ in E*(BU(n}) will also be written c.)

2
(iv) E (BU(n)) is the ring of formal power-series
TTs,:(E) [[Cl' CZ’ PN Cn]];
and E*(BU) is the ring of formal power-series
—n*(E)[[cl, Cpr mer 2 e .

(v) We have

o 2> ® 5
i+j=k

Proof. The definition of ¢ in (i) is legitimate by (4.2) applied
to X = BU, F = E. We easily check that the unit 1 ¢ E (BU) plays the
role laid down for ¢, Part (i1) is trivial; part (iii) follows easily from
(4. 1)(i1) plus (4.2) applied to X = BU(n). We turn to part (iv).

Let m be a monomial

i i

m = 511922... e in E(BU);

let the image of m under the iterated diagonal, which is determined by

(4. 1)(iii), be
S @, . B,
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Then

< c, ,m>

c. C, ...C.
) Jg
= 2 <c ,m ><c. ,m, >-..<co,m >
= 3y @ iy 2a j sa
and this is a well-determined integer independent of the spectrum E. In
particular this integer is the same as in the case E = H. We conclude that
that in the spectral sequence
H'(BU(n); 7 (E)== E (BU(n)), or
% ”
H (BU; 71, (E)) = E¥*(BU)
the E_, term hasa 7 ,(E)-base consisting of the appropriate monomials

2

C. C, voe €,

Iy 2 s
This leads to part {iv). Part (v) follows by duality from the definition in
part {i).

The classes ci are of course the generalized Chern classes in
E-cohomology. If required they may be constructed as characteristic
classes for U(n)-bundles over appropriate spaces by the method of
Grothendieck, and then pulled back to BU(n) and BU by limiting
arguments. {Compare [2, pp. 8-97%.) Inthe case E = MU we get the
Conner-Floyd Chern classes.

If we have more than one spectrum in sight we write fziE, c.

If we are given a map {:E—> F of ring-spectra, and choose
<5 = f*xE, as in §2, then we have
c:iF = f*ciE.
The reader may carry over (2. 15) to cohomology, but it is not necessary

for our purposes.

For the next lemma, we note that E_(MU) is a ring, and that the
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Yinclusion® of MU(1) in MU induces a homomorphism
E (MU(1)) —> E_ _(MU).
_(u() M)

Following the analogy of ordinary homology, we take the element

E E =~
i>
uB L € E (MUQ)) (i>0)

. E e . E s

and write b for its image in E (MU). The factor u~ (see §2) is intro-
E
duced in order to ensure that b_'=1 in EO(MU).

Suppose given a map {:tE — F of ring-spectra. Then it is clear
that Lemma 2.15 carries over; with the notation of (2.15), we have the
following result.

j+l
E g bF

. b, = :
(4.4) Loy =« 1

;
In particular, as soon as we obtain the canonical map {: MU — H, it will
send biMU to b?; as soon as we obtain the canonical map g: MU — K, it
will send biv[U to uibiK, where u=u® e 'nz(K).

With an eye to later applications (§15) we include a little spare
generality in the next two lemmas, Let R be a subring of the rational
numbers ; the reader interested only in the immediate applications may
take R = Z. We recall from §2 that MUR is the representing spectrum
for complex bordism and cobordism with coefficients in R,

We assume that for each integer d invertible in R, the groups
‘n*(E) have no d-torsion. This assumption is certainly vacuous if R= 2.

LEMMA 4.5. (i) The spectral sequences

H*(MUR; ‘n*(E)) = E*(MUR)
H*(MURAMUR; ‘n*(E)) = E*(MUR AMUR)
are trivial, so that Lemma 4. 2 applies.

(ii) E,(MUR) is the polynomial ring

(M (EY®R)[b), BB senn ]
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Proof. For (i), in the case of MUR we note that the monomials
in the bi form a W*(E)® R-base for the Ez—term on which all differentials
dr vanish. The differentials dr are linear over T(*(E), and by using
the assumption on n*(E) we see they are linear over R. So the differ-

entials dr vanish on everything., Similarly for MURAMUR, using ex-

terior products of such monomials. This proves (i) and (ii).

For the next lemma, let R be again a subring of the rational num-
bers [, and let E be a ring-spectrum, with xE as in §2, such that
7, (E) — m (E}®R
is iso. (For example, we might have E = FR.)

LEMMA 4.6. Suppose given a formal power-series
E E i+l 2
f(x )= > a6 )"« E5CP®)
ixo !
- E -
with u d0 =1, Then there is one and (up to homotopy) only one map of
ring-spectra
g: MUR — E
E
such that g*xMU =f(x ).
s . MU
Notes. (i) By abuse of language, we have written x also for

2 ~ 2
the image of x Ve MUX(CP®) in MUR

(cP®).
.. . . E -
(ii) The necessity of the condition u d, =1 is shown by (2.12).
Proof. We check that the conditions of Lemma 4.2 apply to
X = MUR, F = E. We certainly have
H,(MUR;7 (E)) = H (MU;7 (E)®R) = H_(MU; 7 (E))
(by the assumption on E), so H,k(MUR;-rrJ‘(E)) is free over m, (E).

Similarly

E,(MUR) = (n (E)®R)[by,b,,...,b ... ] = m (E)b by, uuyb ...

n n
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If 11—*(E) — ﬁ*(E)® R is iso, then 'rr*(E) has no d-torsion for any
integer d invertible in R, and Lemma 4.5 shows that the spectral
sequence
H,(MUR; 7 (E))=—> E,(MUR)
is trivial. So Lemma 4.2 shows that there is a (1-1) correspondence
between homotopy classes of maps
g:MUR —s E

and maps

0:E . (MUR) —> w)::(E)
which are linear over W*(E) , and of degree zero. Similarly for maps

h:MUR A MUR —> E ;
and this allows us to check whether a map g:MUR —> E makes the

following diagram homotopy-commutative.

MURA MUR — 8478 o EAE

l N

MUR £ E .

We find by diagram-chasing that for this, it is necessary and sufficient
that the map O corresponding to g should be a2 map of algebras over
7.(E). Now the condition

E
di(x )1+1

M

gyX =
i>0

is equivalent to

6(b;) = uEd.1 (i>0 .
Provided that uEd0 =1, there is one and only one map 0 of , (E)-
algebras which satisfies this condition. This proves Lemma 4.6.

Examples. (4.7). There is one and only one map f:MU —> H

of ring-spectra such that
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( MU _ H
2k =X

This is of course a trivial example,
(4.8). There is one and only one map g:MU —> K of ring-spectra

such that

This map is, of course, the usual one, which provides a K-orientation
for complex bundles.

We can also use Lemma 4,6 to construct multiplicative cohomology
operations from MU” to MU, following Novikov [137

We can also use Lemma 4.6 to obtain Hirzebruch's theory of
“multiplicative sequences of polynomials' in the (ordinary) Chern classes,
If we think for 2 moment about the gradings in Hirzebruch's formulae,
we see that for this purpose we need to take E to be a product of
Eilenberg-Mac Lane spectra, having homotopy groups

Q for r even
T (E) =
0 for r odd.
A suitable candidate is the spectrum H A K, which has the required
properties.

Some readers may perhaps be used to thinking of "multiplicative
sequences of polynomials' as elements of the cohomology of the space
BU (elements of (H /\K)*(BU), in fact); and they may perhaps be
surprised to see them treated as maps of MU, On this point several
comments are in order.

(a) Lemma 4.6 provides us with all the Thom classes we need, so
we have 2 Thom isomoarphism

HAK BU) ¥ (H AR (MU).
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(b) “Multiplicative sequences of polynomials' carry the Whitney
sum in BU into the product in cohomology. The Whitney sum in BU
corresponds to the product in MU, so it is more convenient to describe
the behavior on products by saying that we have 2 map of ring-spectra
defined in the spectrum MU,

(c) "Multiplicative sequences of polynomials' are intended for use
on manifolds, so that we actually require their values on elements of
7.(MU). For this reason, their definition in terms of MU may be more
transparent than their expression in terms of ordinary Chern classes in
BU. For example, consider the map of ring-spectra

MU-£E 5K 2SAK — HAK,
where the map g:MU — K is that mentioned above.

Exercise, Follow up these hints.

Lemma 4.6 shows that if we consider pairs (E,xE), as above, and
such that uE = 1, then among them the pair (MU,xMU) has a universal
property; for any other pair (E,XE), there is a map g:MU——= E such

that g*xMU = xE. In particular, for any such (E,xE) we have a

MU_ E

homomorphism of rings g,: 7, (MU)—> w(E) such that gt !

(see 52); that is, g, carries the one formal product into the other.

We will see in the next section that there is 2 ring L, with a formal
product defined over it, which enjoys a similar universal property in a
purely algebraic setting. It is known that 7, (MU} isa polynomial
algebra, over Z, on generators of dimension 2,4,6,8, ... . The ring
L can be made into a graded ring, and it is known thatit is then a
polynomial algebra, over Z, on generators of dimension 2,4,6,8, ... .

Following Quillen, we regard these as plausibility arguments, to
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introduce the theorem that the canonical map from L to = ,(MU) is an

isomorphism.

5. LAZARD'S UNIVERSAL RING

In this section we introduce Lazard's universal ring. Following
Frdhlich [8_'5, we call this ring L (for Lazard).

THEOREM 5.1. There is 2 commutative ring I, with unit, and a
commutative formal product pL defined over L., such that for any
commutative ring R with unit and any commutative formal product p
defined over R there is one and only one homomorphism 6:L—= R
such that

gr;PL = PR

Proof. We define L. by generators and relations; that is, we
define L. as the quotient of 2 polynomial ring ¥ by an ideal 1, Take
formal symbols a5 for i>1, j>1, and set

P = Z[a“,alz,am, R T |

1)

Form the formal power-series

(5.2) oY) s x by 4 D0 ey
i,jzl
and set
(5. 3) i ply, 2)) - plpx, ), 2) = > b sxdylzk
i,k Ok

Then each coefficient bijk is a well-defined polynomial in the a,,, Take
1)
I to be the ideal in P generated by the elements bijk and a.  -a,, It
iy ji
is trivial to check that L = P/I has the required properties.

We note that we can make L into a graded ring if we wish, In

fact, we assignto x,y and p(x,y) the degree -2;then aij has degree
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2(i+j-1), and bijk is a homogeneous polynomial of degree 2(i+j+k-1).
1t follows that I is a graded ideal and P/I is a graded ring.
We note that the structure of 1 is in principle computable, For
example,
L0 ¥ 7, generated by 1,

L, ¥ Z, generated by a

2 11’

4

L, ¥Z®Z, generated by a?l and a,,

~ 3
L6 € Z ®Z Z, generated by a“,a“a12 and a22_313'

{(Exercise: obtain the relation which allows one to write a,, and a3y
in terms of the three generators given.)

The structure of L will be described in more detail in our next
algebraic section, {7,

In order to obtain the structure of L, we use algebraic arguments

which are openly obtained by analogy with the situation in algebraic

topology.

6. MORE CALCULATIONS IN E-HOMOLOGY

The element 244 in (MU) can be represented by a

T2(i45-1)
weakly almost-complex manifold; we might well be asked to compute the
(normal) characteristic numbers of this manifold., It is equivalent to ask
for the image of a_1j under the Hurewicz homomorphism
ﬁ*(MU) —> H_(MU).
It is the object of this section to answer this question.
To do so we introduce the Boardman homomorphism, which is

slightly more general than the Hurewicz homomorphism. l1et E be a

(commutative) ring-spectrum; then for any (space or spectrum) Y we



58

can consider the map

N N AR L. N Y Y;
composition with this map induces a homomorphism
B
X, Y],
o

We recover the Hurewicz homomorphism by setting X =5, E = H,

> D{,E/\Y-Lk.

The Boardman homomorphism is more or less guaranteed to be
useful when E = H, because of the following lemma.

LEMMA 6.1. HAY is equivalent (though not canonically, in
general) to a product of Eilenberg-Mac Lane spectra, whose homotopy
groups are the groups

7|‘n(H NY) = H (Y).

It follows that

1"

X.HAYLE T] HYTTOGH ()
n

(not canonically); so the groups [X,E I\Y"\r are computable for E = H,

Proof of (6.1); For each n, we can construct a Moore spectrum
M(Gn’n) for the group G_ = (HAY) in dimension n, and construct
n n
a map

f :M(G_,n) =™ HAY

n n
which induces an isomorphism

(f )i w (MG, n)) —> g (HAY).
We can then construct the map
1A fn pal
HAM(G ,n) —> HMHAY —— 5 HAY,
where HAM(G ,n) is an Eilenberg-Mac Lane spectrum for the group
n

Gn in dimension n. We can then form the map

V HAM(G ,n) —> HAY
n

whose n-th component is the map (u A 1){1~{ ) just constructed; we
n
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observe that it is a homotopy equivalence by Whitehead's Theorem (in the
category of spectra). Let TT H AM(G ,n) be the product in the

n n
categorical sense; then there is a map

\/ Ha M(Gn,n) - TTH A M(Gn,n),
n

n

and this too is a homotopy equivalence by Whitehead's Theorem. This
proves Lemma 6.1,

Returning to the general case, since E AY is atleast a module-
spectrum over the ring-spectrum E, we may hope to obtain information
about \’X, E AY]T = (E AY)_T(X) from E*(X); for example, we may have
available a universal coefficient theorem.

LEMMA 6.2. We have the following commutative diagram.

X, vl > X, EAY],

\\ /

Hom ﬂ((E)(E*(X) »ELY))

Here a 1is defined by

alf) = i*:E*(X) R —— E*(Y) .
while p is the homomorphism of the universal coefficient theorem, de-
fined by

(p(b)}{{k) = <h,k> ¢ (E AY).

Ty
In the last formula we have h ¢ (E A Y) (X), k ¢ E,(X), and the
Kronecker product <h, k> is defined using the obvious pairing of EaA Y
and E to EAY.

The proof of the lemma from the definitions is easy diagram-
chasing. The lemma is of course mainly useful when p is an isomorph-

ism; but since EAY 1is a module-spectrum over E, Lemma 4.2 shows

that p is an isomorphism when E is asin §2, and X = CP®, BU, MU,
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Let E be a ring-spectrum which satisfies the assumptions made
in _§2. Then we can consider the following two maps.
E~EnS°——=E AMU

MU= S°A E—> E A MU .

Both are of course maps of ring-spectra. The generators xE and xMU

will vyield two génerators in (E AMU))“(CPOO), and these generators may

well be different, In order to remember which is which, we call them

xE and xMU also (abusing notation to avoid complicating it). Our next

task is to compare xE and xMU,

LEMMA 6.3. In (EAMU)(CP®) we have

E E
z(uE) )1+1 .
i>0

E-1.E

Note that the ooefficients {(u~) b, lie in T, (E AMU).
i *

Proof. Apply Lemma 6,2 to the case X = CPCO, Y = MU. Since

xMU is a reduced class, sois BxMU. By definition, we have
MU, E E E
(ox B = by
But we also have
; 1 (i=})
EJ,,.E
(px ) =
0 (i#3

The result follows by comparing these formulae, since p is an
isomorphism.
. . E
In order to exploit this result, let g(x~) be the formal power-

series

E 1
(6. 4) e T S e R € R

i>0

with coefficients in 7, (E AMU), and let g'l be the inverse power-
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series, so that

E -1_MU
X .

x =g
COROLLARY 6.5. After applying the homomorphisms
T.*(E) — > -n*(E AMU)
T (MU} —> 7, (E A MU}

the formal products }JE,}JMU are related by

U
).

MU(XI;/IU,XMU E _1XII\4U’ -1y

R > ) =glple

The proof is immediate from Lemma 2.13; or directly, the map

m:cpoox cp® — cp® yields an induced homomorphism m* which
commutes with products and limits, so that
mglx ) = glm %),
One just rewrites this equation.
COROLLARY 6.6, Take E = H. Then after applying the homo-

morphism 7, (MU) —> 7, (HAMU) we have

MU ) = ex H(lo Hx 1 Hx
Poxpax,) = exp g x +log x,),

where
epo(x) = z bile’
i>0
b, ¢ H,,(MU) are the usual generators coming from H2i+2(MU(1)), and

1

logH is the formal power-series inverse to exp
This is immediate from (6. 5), using (2. 8).

This corollary yields a method of calculating the image of aij in

HZ(i+j 1)(MU), in terms of the usuval base in H, (MU). For example, we
have
=2
%11 5
2
—> -2
al2 3b2 bl
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3
ay3 —>4by - 8b b, + 4b)
2, —> by - bbb +2b‘;’

22 3 2 etc,

COROLLARY 6.7. Take E = K. Then after applying the homo-

morphism T,*(MU) —>  T(K AMU), we have

MU ~ -1 -1 -1 -1
P (xl:xz) = glg xl + 8 xz + (g xl)(g xz));

where

gx) = > u bl
i>0 !

u ¢ my(K), b, eK (MU) are the generators defined above, and g'1 is
the formal power-series inverse to g.
This is immediate from (6. 5), using (2.9).
This corollary yields a method of calculating the image of a_1j in
KZ(i+j-1)(MU)' in terms of the base in K*(MU). For example, we have
a11 —> u(l + Zbl)
alz-—-> uz(b1 + 3b2 - Zb?)

3 2 3
2b_ - 2b - 4
a13-——> u”{ 2 1 +4b3 8b1b2 + b1 )

3 2 3
a, —> u (b1 n 6b2 - .’ab1 + 6b3 - (-,~b1b2 + Zbl) etc,
We can also use the same method to calculate the Hurewicz homo-
morphism
ﬂ,ﬁ(MU)—ﬁ- MU*(MU) .
For this purpose we need to distinguish between the two copies of MU.
We borrow the notation of [3], and write
qL’qR: —,1*(MU)—> MU*(MU)
for the homomorphisms induced by the maps
o lIai
MU # MUA ST ——> MU A MU
MU ~ 8°A MU 2L o MU AMU .

The Hurewicz homomorphism is Np- The usual action of  74(MU) on
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MU_{X), which works for any X, is given for X = MU by I?L .

COROLLARY 6.8, The value of g °® the generators a__ is given
i

by
L, -1 -1
polxx) =gple x g %)
where
R L i ]
priepg) s 2 lnga, xps
i,
L i j
= a )
Fobepg) 123\' | 250
MU i+l
gx) = > b ox
’120

b?AU € MUZi(MU) is the generator described in §4, and g-l is the

power-series inverse to g.
This corollary is strictly on the same footing as the preceding two.
This yields a method of calculating r{R(a, ). For example, we find
1)

= 2b
r}R(an) 1 @

11
2
NR(3 gy = (3B - 2B)) v 2 by v,
3 2
- - +4b%) + 2 (2b_-2 a
qRr(213) (4b, 8b1b2 1) 11( b2 b1)+ 13

r\R(aZZ) = (6b3 - 6b1b2+ Zb';') + a11(6b2'3b12)
+ (2a11+ a%l )b1 + Ay,

From these formulae for the images of the a__ under the Hurewicz
homomorphism

Ty MU) —— MU*(MU)
one can of course deduce the formulae for the images of the aij under
the Hurewicz homomorphisms

Ts{MU) — H, (MU)

-rr*(MU) —> K_(MU).

One just applies the maps MU — H, MU —> K. In fact, the map
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MU H
MU—> H sends bi to b, and sends aij to 0 for i> 1, j>1.
N zZ

MU 3. K
The map MU-—> K sends b, to ub:,l s a11 to u, and aij to 0
i

if i»1 or j> 1.

7. THE STRUCTURE OF LAZARD'S UNIVERSAL RING L

We propose to prove:

THEOREM 7.1. The graded ring L 1is a polynomial algebra over
Z on generators of dimension 2,4,6,8, ... .

In order to prove this, we will use a faithful representation of L,
Its construction is suggested by the results of the last section. As a
matter of pure algebra, we define a (graded) commutative ring R by

yr e byl ]

R=2[b,b
where b is assigned degree 2i; b0 is interpreted as 1 if it arises,
i
The generator bi is to be distinguished from the generator g _in §3.
i

We define a formal power-series

exply) ¢ RfTyT]
by

(7.2) exp(y) = > biy1+1 ,
i>»0

and we define log(x) to be the power-series inverse to exp, so that

exp log(x) = x

(7.3)
log exp(y) =y .

For later use, we make the log series more explicit. Let its

coefficients be

m, €Z[b1,b2, ve ,bn, 17

so that

i+1
(7.4) log x = 2 m, X
i»0
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If S isaninhomogeneous sum, let us write S, for the component of 5
of dimension 2i. Then we have:

oo
1 —n-
PROPOSITION 7. 5. m o= (S b))
o i=0 0

n+l
1 = -n-1
b =— .
n ntl (z mi)n
i=0
Examples. m1 = -b1
2
=2b. - b
m, 1 2
= 5b3 5b_b b t
m3 - 1+ 152 - b3 etc.

Proof. 1f

i
w =
E ciydy,
1> «N

define resw tobe c 1 the residue of «» at y =0, This definition
of the residue is purely algebraic, and the property of the residue which

we shall use can be established purely algebraically. Set

_— biyi+1

50
Yo S madth
; J
i=0
. _n- ) i-n-
Then (z b.) n-1 5 the coefficient of y? in (2 b.ly) n-1'ihat is,
>0 ' " i>0
the coefficient of y"1 in (z binl)-n_l. So we have
i>0
-n-1 -n-
(Z b;) n = res(x & 1dy)
y 'n
i>0
= res(x_n_1 -g-—idx)
= res[x'n_l( z m.(j+l)xJ)dx:|
jz0 J

= (n+1)mn .
Of course, the relation between the coefficients bi and m. of the
i

two inverse series is symmetric.
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In the future, whenever symbols bi and m, appear in various
1
contexts, they will be related as in (7.5).
Remark 7.6.  Suppose that instead of Z we have in sighta
ring U, that we replace R by
Ulb by, vow i s vne ]y

and that we replace our series exp by

w=u !l S b it

i_>_0 !
where u is invertible in U. (An application is given in (6.3), (6.7).)

Then we have

3+l g+l
y=22 mu X,
io !

by substituting ux for x in our previous work.
Let us return to formal groups. We define a formal product over
R=Z[b,by, «vn ub y oun]by
(7.7) pR(x x,) = exp(log x, + log x )
1’72 1 2"
It is easy to check that this does define a formal product. We have simply
taken the additive formal product, (1.4), and made a change of variables;
but the change of variables is of a fairly general nature. The topologist
who has read §'6 knows that this piece of pure algebra is read off from
the structure of H..(MU); the algebraist doesn't have to worry.
According to §5, there is one and only one homomorphism
#:L — R
. . L, R
which carries the formal product p~ into p . We propose to prove:
THEOREM 7.8. The map €@ 1s monomorphic,

This theorem shows that we have made the ring R big enough to

provide a faithful representation of L. The proof will require various
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intermediate results,
We first recall that the augmentation ideal of a2 connected graded

ring A 1is defined by

T= >0 A_.

n>0

The elements of I2 are often called '"decomposable elements''. The
"indecomposable quotient" Q. (A) is defined by
_ 2
Q.(A) =1/17.
We can often use Q,(A) to geta hold on A.
It is clear that Qm(L) and Qm(R) are both zero unless m = 2n,
n> 0. Inthis case we have Q, (R) ¥ Z, generated by the coset [bn].

LEMMA 7.9. (i) loglx) = > mx'"!, where m_=1 and
i 0

m, £ -b mod 1% for i>1.

(+3)

2
— i+ lmod I for i>1, j>1.
il j! - - -

(ii) O(aij) z

(i1i) The image of an(o):QZn(L)'_> an(R) consists of the
multiples of d[bn], where

P if n+1 =pf, p prime, f_>_l
1 otherwise .

Proof, Part (i) is immediate. Part (ii) follows from (7.7) by
an easy calculation, ignoring coefficients in IZ. Since L 1is generated
as a ring by the aij’ an(L) is certainly generated as an abelian group
by the aij with i+j #n+l, i> 1, j> 1. To prove part (iii) we need
only show that the highest common factor of the binomial coefficients

(i+3)!

YT (i +3j=n+1, i>1, j>1)

is the integer d defined in the enunciation.

£
It is well known, and easy to see, that if n+1 = p all these
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binomial coefficients are divisible by p, and that if n+1 ¢ pf at least

one of them is not divisible by p. One has only to add that if n+l = pf,
then the binomial coefficient with

f- f-

, J=pp is
! 2
——-—)\qu' mod p
and it is divisible by p but not by p

Topologists will note that this calculation is exactly the same as
one which Milnor made in the topological case.

He was, of course, com-
puting the image of
Q, (T, (MU))—>Q, (H (MU)).

The "Milnor genus' may be regarded as the projection

H, (MU)—> Q, (H (MU)) ,

and the "hypersurfaces of type (1,1) in CP'x CP’"' are related to the

elements a ¢ 'ﬁ*(MU) (see Corollary 10.9).
1j =

In order to obtain the structure of Q_(L), we propose to consider
formal groups defined over graded rings S of a particular form.

an abelian group A, and an integer n > 0, we can make

Given
Z@A into

a graded ring so that
§5,= 2
SZn = A

Sr=0 for r#0, 2n .
LEMMA 7.10. Among formal groups defined over such rings 5,
the obvious formal group defined over Z §Q, (L) is universal.

The proof is immediate; any homomorphism of rings

L—>Z6A

factors to give the following diagram.
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L——>Z@A
\ o
ye
S
2689, (L)

We can now reformulate the main lemma used by Lazard and by
Frohlich, Let Tn be the image of an(O):an(L)—_> an(R), described
in (7.9).

LEMMA 7.11. (After Lazard and Frdhlich). For any
{(commutative) formal group defined over a ring Z @A, the homo-
morphism

Z6Q_ (Ly— Z0O0A
2n
factors through the quotient map
—
Z@an(l_) Z@T, .

The main results of this section follow very easily from this
lemma; but we will defer the proofs until we have proved Lemma 7.11.

Proof, We recall the reformulation of }3. A formal group
defined over Z (3 A is a Hopf algebra structure ona certain coalgebra
F; the coalgebra F is free over Z @ A on generators BO,BI, .. ’ﬁi’ e

and the coaction is given by

pe, = S A ®8; .
i+j=k
Inspecting the formulae in 83 again, we see that now our rings are
graded, F can be graded so that p_ has degree 2i,
1

In our case, part of the product structure is determined by the

coproduct structure; we must have

(i+3)1 k
G T TR P It %15 P
o k=i+j-n >0

(7.12)

Here the alf_ are coefficients in A, which have to be determined, and
1
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we are interested in their values for k = 1. More precisely, let d be

i+j)!
the highest common factor of the binomial coefficients -(—-LI over

itj =n+l, i>1, j>1, asin (7.9); we wish to show that

S S €T L

(7.13) aij 3 T

for some fixed element a € A; for then the required map ¢ from Tn
to A will be defined by y(d[’bn'_[) =a,
We emphasize that the product Biej is known, from (7.12}, if
i4+j «n+l., We now divide cases.
Case (i}, A ¥ Z; let us write as if A = Z, We have
""" = menre,,, + 36

for some a¢ Q. When i+j = n4+l, we have

n+1
)

LAIGLRE (al)l(sl)‘ = (p

1

() Ry 5 + 3B )

Comparing this with (7.9) we have

2l LG e
ij  irjr d
. : (i+j)t a .
Here a is a rational number such that ﬁ 3 is an integer for

i+j =n4l, i>1, j>1. The highest common factor of the numbers

14+3) !
(.1'“_)" _cli is 1, so a is an integer, and we have obtained the required
it j!

result (7. 13) in this case.
Case (ii). A @ Z ., Take i,j suchthat i+j=n+1, i>1, j>1
P zZ Z
and write

2
= A+ AP+ NPt +xrpr,

. 2 r
JEPR AR P PP e S RP
where 0 < /\i<P' 05}1i<p for each i. Then

NP VI
I IS
P P P
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SR S P
oy 152 r
g, BB _ ... B =c'B.
1 7p p2 pr ]

where the coefficients ¢' and c¢'" are non-zero mod p; in fact,
€t = AGIA 1A L. A1 modp

c't S N ) LR o mod p.
Then we have

i+)! o 1 AP ARy AR
Bi+j * ijﬁl - sisj Tt Py P r *

p

it j!

At this point we separate cases further.
f
Case (a): Suppose that n+l # p° and )‘i +u, >p for some i.
1 2

Then we have p1+l< n+l, and since n+} # pf we actually have

: i+j)!
PHI <n+l; so (B _)p =0 by (7.12) and a} =0. Since ( J)_
1 S

p

is also
J

0 mod p, the required formula (7. 13) will be true in this case whatever
choice of a we make later,
Case (b}, Suppose that n+l = pf and >‘i +9, 2P for some
i «f-2, Then the same argument applies, except that we have to remark
that éil%j-),i is 0 mod p. (I am willing to assume that the reader
knows or can work out all the required results on binomial coefficients.)
Case (c). Suppose n+l # pf and M o+p <P for all i. If we
write

2 r
n+1=\)o+\) P+ v,P +---+\)rp ,

1

with 0 < vy < p for each i, we must have

Do e
But we can set, once for all,
Vv, v g
o, 1.2 r
. =c +a
B, B 'B BoL=clB,  +28)

1 2’
Pop p

where the coefficient ¢ is non-zero mod p; in fact,



= ' ! v | mod p.
€= volv, . P
Then
1 [
a,, =—
ij cte!
_ !
Tt

f
So the required formula (7.13) holds if n+l ¢ p .
Case {d). The only remaining case is that in which

i= X\ Pf'I, j= Ff_lpf-l' In this case we can set, once for

f
ntl = -1

all,
P - -
(spf_l) efne) * (P-1) 128,
where a ¢ A, Then we have

1 (p-1)!
a =  _a

2Py

- L4
pitj!

f
So the required formula (7.13) holds if n+l = p . This completes case (ii).

Case (iii), A 2 Z Iz We first remark that a homomorphism of
p
graded rings Z@A — Z @ A' is eqQuivalent to 2 homomo rphism of

abelian groups A —= A'. We now proceed by induction over £, and
assume the result true for f-1. Suppose given a homomorphism
0
QopL) > z

and form the following diagram.

By case {ii) the homomorphism g'0 factors in the form Q. Since T
n

is free, we can factor ¢ in the form q'8 . Then q'(0 £q) = 0, and
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so 6 - fQ maps into Z £y By the inductive hypothesis, 6 - Bq

factors in the form yci). Therefore © = (B +y)q. This completes the
induction, and finishes case (iii).

Case (iv). A is any finitely-generated abelian group. Then A

can be written as a direct sum of groups Z and Z ¢ The result
p
follows from cases (i) and (iii).

Case {v). A is any abelian group. Let O:an(L)—é A bea
homomorphism. Since an(L) is finitely-generated, so is the image
of 0. The result follows from case (iv).

This completes the proof of Lemma 7.11.

COROLLARY 7.14. The quotient map

an(O):QZn(L) —> T
of {7.9) and {7.11) is an isomorphism,

Proof. Of course, the quotient map is an epimorphism. Consider

the following diagram.

ZQ an(L) ZQ an(L)

1 @an(O) e

By Lemma 7.11, the identity map of QZn(L) factors through Q2 (0).
n
Therefore Q2 (8) is monomorphic,
n

We now prove Theorems 7.1 and 7.8. Choose in LZ an
n

element t which projects to the generator of Tn. We immediately

obtain a map

a
Zts tys vee sty w T——>L

By Corollary 7. 14, Q2 {a) is an isomorphism for each n, and there-
n
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fore g is an epimorphism. But it is obvious that the composite map

a 0
L-—>R=2[b.,b, ... ,b,
Z[tl,tz t ] = > [1 b, b

[

is monomorphic, since Octn is 2 non-zero multiple of bn, modulo
decomposables. Therefore g is an isomorphism and 0 is 2 mono-
morphism., This proves (7.1) and (7.8).
COROLLARY 7.15. Let ys be any formal product defined over
a ring S containing the rational numbers Q. Then the formal group
with formal product PS is isomorphic to the additive formal group (1. 4).
Proof. We have 2 homomorphism 6:L. —> S carrying FL
into p. Since S DQ, 0 extends to give a homomorphism
0:L® Q—> S. Let R be as above; then we may identify L @ Q with
R ®Q. Then the power-series

i41
exply) = S (0b)y
izO !

log(x) = Z (Omi)xi+l
i>0

give the required isomorphism.

Of course, this result is much easier than the proof we have given
of it; and it does not need the hypothesis that the formal product PS is
commutative (as we are always assuming.) We have given the result to
stress that in what follows, log and exp will always be as in the proof

of (7.15).
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8. QUILLEN'S THEOREM
By Theorem 5.1 we have a map
6L — 7, (MU).
The object of this section is to prove the following results,

THEOREM 8.1. (Milnor) w*(MU) is a polynomial algebra over
7Z on generators of dimension 2,4,6,8, ... .

THEOREM 8. 2. (Quillen) The map

8hL — 7, (MU)
is an isomorphism.

Following Milnor, we base our calculation of TF*(MU) on the
spectral sequence

s,t * s
(8.3) ExtA (H (MU;ZP),ZP) e ﬂ't_s(MU).
Here A is the mod p Steenrod algebra.

LEMMA 8.4, H*(MU: ZP) is a free module over A/(ABA), where
ABA is the two-sided ideal generated by the BokStein boundary B = ﬁp .

This lemma is an absolutely standard consequence of the following
facts, (i) A/(ABA) acts freely on the Thom class u € I—IO(MU;ZP ).

(ii) H*(MU;ZP) is a coalgebra over A/(ABA).

Unfortunately, we do not only need to know that H*(MU;ZP) is free
over A/(ARA); we need to know about its base; or more precisely, we
need the following result.

LEMMA 8.5, HomA(H*(MU;Zp), ZP), which can be identified with
the set of primitive elements in the comodule H*(MU;ZP), is a polynomial
algebra on generators of dimension 2n for n>0, n # pf-l.

We prove (8.4) and (8. 5) together, following Liulevicius. More

precisely, let A, be the dual of A/(ABA); it is a polynomial algebra
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Zpﬁgl,gz. SRS PR
with g of dimension Z(pf—l). Let N, be a polynomial algebra

Z [x,,X, vau X X, e
pI 17 %2 "p-2p ]

with one generator %; of dimension 2i whenver i#pf—l. Define a

homomorphism
aH,(MUZ ) —> N,
by
. {
%, (i #p-1)
a(bi) = P
0 (i=p-1)

Define 2 homomorphism from H (MU;Z } to A ® N, by
p < *
1
HMU;Z) %> A,® H(MU;Z ) —325 A ®N,
a P Y * p sk #*
where Y isthe coproduct map. Make A, ® Ny intoa comodule over
A_ by giving it the coproduct map
A®N, 41 ALR(A®N,).

Then (1&Qa)y is 2 homomorphism of rings and a homomorphism of

comodules over A .
Now, in BU(1) we have

p
yﬂpf = Ef®ﬂl + g£_1®ep +... +1®PR =

So in MU we have

b :
W ¢ £
p -1

We see that the map
QAU @ aly) : HIMUSZ ) ——> QA QN,)
is given by
1®% mod1® (i #p-1)

AO® 0¥, = 2 ;
! § ® lmod I (i =p-1).



77

So QA{1® q)y) is an isomorphism, and (1®q)y 1is anepimorphism.
By counting dimensions, {l1@ a)¢ must be an isomorphism,

Since the dual of A*® N, is {iree, we have proved (8.4). Since
the set of primitive elements in A, @ Ny is precisely N,, we have
proved (8.5) too.

COROLLARY 8.6. In the spectral sequence (8. 3), the E,-term

ExtAs't (H*(Mu;zp),zp)
is a polynomial algebra on generators xn, n=0,1,2,3, ... of bidegree
s =0, t=2n (n#pf—l)
s=1, t=2n4l (n = pf—l).

This follows from (8.4), (8.5) by standard methods; see [12]],

It follows from (8. 6) that the spectral sequence (8.3) has non-
zero groups only in even dimensions; so the spectral sequence is trivial.

In order to deduce the required results on ‘M*(MU), we need a
technical lemma on the convergence of the spectral sequence (8, 3).

LEMMA 8.7. Suppose given a connected spectrum X, such that

-n-r(X) is finitely generated for each r and zero for r < 0. Suppose
given integers m,e. Then there exists s = s(m,e) such that any
element in 7rm(X) of filtration >s in the spectral sequence

Ext> (B (%52 ),2 ) 2= 7 (X)
A P’ P t-s
is divisible by p° in - (X).
This may be proved by the method given in my original paper [1].
COROLLARY 8.8.

Zp for m =2n, n>0

Q (T MU)®2Z_ 2
m P 0 otherwise

Proof, When m # 2n (n > 0) the result is trivial, so we
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assume m = 2n, n> 0. Thereare of course many ways of seeing that
an('r{*(MU)) ® Zp has dimension at least one over Zp; for example,
Qum MU QFQ, (HMU)®QTQ.
We need to prove that QZ (7T>:(MU)) ® Z has dimension at most 1.
n P
Let t. ¢ ﬂz_(MU) be an element whose class in the Ez-term is
i i
the generator x, of (8.6). I claim that Q2 (ﬂJﬁ(MU))@ Zp is gen-
i n' 7
erated by the image of tn. In fact, let y be any element in ‘rrz {MU),
n
and let s be as in {8,7), taking m = 2n, e = |; then (by induction over
the filtration) we can find a polynomial q(to,tl, v ,tn) such that
y - q(to,tl, ,tn) has filtration > s, and so
= PR 4 .
y Q(to, tl n) + pz
Since ‘ITO(MU) = Z, the coefficient of tn (which a priori is a poly-
nomial in to) must be an integer c. We deduce that
_ 2
y = ety mod I + P71, (MU),

where 1= > ¥ (MU). Thatis, Q, (1 (MU)® Z_ is generated by
i>0 P

the image of tn' This proves (8.8).
COROLLARY 8.9,

'z for m =2n, n> 0
Q_(r, (MU)) ¥
m 0 otherwise
Proof. Qm(-nL(MU)) is a finitely generated abelian group; use
1o i

the structure theorem for {initely generated abelian groups, plus (8. 8).

We now consider the following diagram.
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L : m, (MU)

0 h
Zf by wvn by vl ] H(MU)
Here 0 has been carefully defined so that the diagram is commutative,
as we see by comparing (6. 6) with (7.2), {7.7). The behavior of 0 has
been studied in §7.
LEMMA 8,10. The image of
an(h)!an(‘h'*(MU)) —_— QZn(H‘*(MU))
is the same as the image of an(O) (which has been described in (7.9)).
Proof. It is clear that Im an(O) C Im an(h); we have to prove
f
Im an(h) C Im an(O). If nyl £ p there is nothing to prove, If
ntl = pf, consider the canonical map
MU—=H —» HZ ;
b
call it g. The induced homomorphism
q,1H, (MU —> (HZ ), (HZ )
. P b
clearly annihilates the image of Trzn(MU). On the other hand, it carries
b into the Milnor generator E. in (HZ ) (HZ ) (since both come
n £ p* p
from MU(1) = BU(1)). The class €¢ remains non-zero when we pass to
Q2n<HZP)*(HZP) E ZP. So the image of an(h) consists at most of the
multiples of p[bn]. This proves (8, 10).
Exercise., See if you can refrain from translating this proof into
cohomology.

We proceed to prove (8.1) and (8,2), Recall our diagram,



PPy e N
It follows from (8.9) and (8. 10} that
an(h):an(-r.*(MU)) —> Im an(o))
is iso. Using (7.14), we see that
Q, (090, (L) —>Q, (m (MU)
is iso. Therefore
gL ——> -rr*(MU)
is epi. But by (7.8), the map 0 = h0' is mono; so 0' is mono, and @
is an isomorphism. This proves (8.2),and (8. 1) follows from (7. 1).
Taking a2 last look at our diagram, we conclude that the homo-
morphism @ studied in §7 was, up to isomorphism, the Hurewicz
homomorphism
h: 7, (MU) — H_(MU).
COROLLARY 8.11. The Hurewicz homomorphism
h: ﬂ}k(MU)—)’ H,(MU)
is 2 monomorphism.

Exercise, Deduce (8.1) directly from (8.6).

9. COROLLARIES
In this section we will record various results which follow from
the resuits in §8, or supplement them, and are needed later,
Recall that the complex manifold CP"™ defines an element

[CP"] e, (MU).
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LEMMA 9.1. With the notation of §7, the image of [CP ] in
HZn(MU) is (n+1)mn.
Proof. Algebraic topologists will instantly recognize the formula

[a 0] n-1
< -n-
(2> b))
i=0

of (7.5) as giving the normal Chern numbers of CPn.
We know from §'8 that the map
Te(MU)—> 7 (MU)® Q
is an injection, and we may identify Tr*(MU) ®Q with H*(MU)® Q. It
is often convenient to work in 'rr*(MU) ® Q, and we now know that we
lose nothing by doing so. In what follows, then, we will often regard
H [cP”]

m_ =m e HZn(MU) as the element il

of 7, (MU)® Q. If wedo
n x

so, we have the following result,
COROLLARY 9.2. (MiSé&enko (13, Appendix 1]) The logarithmic

series for the formal product pMU may be written
logHXMU - cp” (XMU)nH _
n>0 n+1
LEMMA 9.3. Suppose that RC S are subrings of the rationals,
Then a map
:MUR — MUS
is determined up to homotopy by
f, . T(MUR) —> 71,(MUS).
Proof. There are many variants possible; we argue as follows.,
Applying (4, 2) as in the proof of (4. 6), we see that { is determined up to
homotopy by

£!MUR4(MUR)—> MUR,(MUS).

Since 7,(MU) is torsion-free by (8. 1), we see that the vertical arrows
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of the following commutative diagram are monomorphisms.
f,
MUR_ (MUR) —— = MUR_(MUS)

MUR*(MUR)®Q —> MUR(MUS)® Q

R e R

T (MUQ)® 7, (MUR) ——— 5 7, (MUQ) ®,(MUS)

So f is determined by £, : 7 (MUR)—s 5,(MUS). This proves the
lemma.

Next we go back to the work of (6.8). We now know that the
Hurewicz homomorphism

qR:-ﬂ*(MU)—;v MU_(MU)
is adequately described by giving
nr®1: 7, (MU)QQ %MU*(MU) ®Q,

and this can be done by giving its effect on the generators

m, = m? 3 Trzi(MU)®Q. For this purpose we propose the following

formula, We write Mj for the generator mJMU € MUZ,(MU), to
J

distinguish it from mJ,: m?

PROPOSITION 9. 4.

M l . .
Z (qui)x1+ N Z mi(z ij_]+1)1+1.

>0 i>0 ~j>0
Proof. Consider again the two maps

n, ;MU 2 MUA s° 1~ o MU AMU

v c® inl
r\L:MU ¥YSAMU——> MUAMU

MU
of (6.8). Applying them to x , we obtain two generators in

2
(MU A MU) (CPOO); we call these generators xL,xR. (We no longer need

L for the Lazard ring.) Applying Lemma 6.3, we find

(9. 5) e > MUy
i 0
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Passing to the inverse power-series, we find

(9. 6) e > MY R‘“-Zw R+l
1>0 3>0

Now our log series are

xH = longL = 2 (qui)(xL)i+1

i>0

xH = log x Z (x‘(Rm Y(x i+l .

i» 0

S50 we obtain

S gm0 s 3 (e Z M Ryslyiet

1>0 1>0

This proves the propcsition,

10. VARIOUS FORMULAE IN T7,(MU)

In this section we will derive various relations between different
elements lying in ,—.*(MU) or 7,—*(MU) ® Q. In particular, we will
give the relationship between the coefficients aij and Milnor's hyper-
surfaces of type (1,1) in CPi X CPj (10.6}).

To begin with we try to answer various questions that might arise
in practical calculations.

{) To write the coefficients m, in the logH series in terms of
the coefficients bi in the epo series. See (7.5).

(ii) To write the coefficients bi in the epo series in terms of
the coefficients m, in the logH series. See (7.5),

(iiil) To write the coefficients aij in terms of the bi or m,, re-
garded as elements of 7, (MU) ® Q. See (6.6).
(iv) To write the b or m,, regarded as elements of 7 (MU)® Q,

in terms of the aij' The most convenient formula is the following.
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-1
)

il'n

(10.1) [CP™]= (4 = ( > 2
i i»0

- n
COROLLARY 10.2. If n> 1 we have [CP Jz -2 . mod decom-
- n
posables in 7 (MU).
Proof of {10.1): Take the equation

i
Jy -
log(x1 + z aijxlxz) =log xl + log x,
i»0,j>1

and equate coefficients of X We obtain

n iy
(na (ns1)m ) )( igailxl) = 1L

Following LlLemama 9.1, it is plausible to observe that the injection
. n [e] . . o,
1n:CP — > CP defines an element [1n] 3 MU2 (CP™), and to relate

n
this element to those we have already studied. The element [i ] is not
n
M
equal to B U, because the constant map c:CPoo—> pt sends [i ] to
n -n
n MU . . : . .
[CP "] and B to 0. The required relation will be given in (10.5).
n
LEMMA 10.3, If n3» 1, we have
MU . . . o
x N [1n]- [ln-l] in MUZ(n—I)(CP )

This is the sort of result which should obviously be proved
geometrically, However, since we are proceeding homologically and not
assuming much familiarity with the geometric approach, we check the re-
sult by applying the homomorphism

MU, (CP®)—s (H AMU)_(CPP),
which we know to be monomorphic by {2.14), (8.11).
The image of {i_] in (H A MU), (CP®) is
393

s -n-1
> 0> b, ® B

ptg=n k=0 a

H H M 2
where b b, B =8 . Theimageof x Y in (5 aMU)YCP)

qQ
Hryl
DI NI R

r
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by (6. 3). The cap product of these two classes is

S b)) " b
Z ( Z k)p r ® Bq_r_l *
ptg=n k=0
r

Set g-r-1 = s; we obtain

o)

[o o] ~n-1 -n
z (Z bk)p br® Bs : Z ( Obk)t S Bs

p+r+s = n-1 k=0 t+s=n-1 k=

This is the same as the image of [i 1].
n-

COROLLARY 10. 4.
[i ] {r<n)
MU . n-r -
T N [1,]=
0 (r>n ).

This follows immediately, by induction over r.
COROLLARY 10.5.
MU o,
G,J= 20 [CP™lp_ in MU, (CP ).
n r+s=n s

Proof.
M2 T = e (M A D).

If s>n we obtain 0; if s <n we obtain c*[in_s] =[CP

We are now ready to explain the connection between the coefficients
2;; of (2.10) and Milnor's hypersurfaces H, . of type (1,1) in CP' XCP”.

u v

PROPOSITION 10.6. [H_ ]+ 2 2, JcP JeP )
r+us=p
s+V=q

(I understand this formula was also obtained by Boardman.)

COROLLARY 10.7. If p>1 and q> 1, we have

[H mod decomposables in 7, (MU).

s a
P»q] p-9
Proof of (10.6). The construction of H q yields the following
LA R T A4 L P

formula.

#* MU R .
[Hp,q]- Cllm X ML T [1q])) .

Here c:CPODXCPOO-q pt is the constant map, and m:CPOOx CPOD—_>CP°°
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is the product map of §2; we have
m MU o mudcp® x cp®)
and
o 0.
i x i MU (CPT X CP™).
fplx gl e MUy o) )
This yields

* MU .
[Hp,q] t<&m x, [1P]X.[1q]> .

But here we have

* MU MU, r,_ MU,s
m X 2 ars(x ) (x )

r,Ss 1 z '
1= >, [CPu]ﬁMU,
P rtu=p T

MU
s .

1= > [cP'le

s4v=Qq

The result follows immediately.

COROLLARY 10.8. 7,(MU) is generated by the elements [CP" ]
for n>1 together with the elements [Hp,q] for p>1, q9>1.

Proof. By (8.2}, —n*(MU) is generated by the aij; but by

(10.2) and (10.7) these coincide with the [CP"] and [H | modulo
. e

decomposables.

11. MU, (MU)

It is shown in [3, Lecture 3, pp. 56-76] that MU_(MU) may be
considered as a Hopf algebra. We may think of MU*(MU), the Novikov
algebra of operations on MU-cohomology, 2s analogous to the Steenrod
algebra; if we do so, we should think of MU*(MU) as analogous to the
dual of the Steenrod algebra, which was studied by Milnor [11]. There is
only one point at which we need to take care in generalizing from the

classical case to the case of generalized homology; the Hopf algebra
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MU (MU) = 7,(MU AMU) is a bimodule over the ring of coefficients
ﬂ*(MU)' because we can act either on the left-hand factor of MU AMU or
on the right-hand factor. On this point, see [3, Lecture 3, pp. 59-607.
I would now advance the thesis that instead of considering MU*(X)
as a {topologised) module over the {(topologised) ring MU*(MU), we
should consider MU*(X) as a comodule with respect to the Hopf algebra
MU, (MU). For this purpose I propose to record the structure of MU*(MU)
as a Hopf algebra. I would like to regard this account as superseding, to
a large extent, the account which I gavein my earlier Chicago notes [2]).
At this point I pause to insert various remarks intended to make
the spectrum MU AMU seem more familiar. Some may like to think of
it as the representing spectrum for U x U-bordism; that is, we consider

n+2p+2q
, and

manifolds Mn, which are given embedded in 2 sphere S
whose normal bundle is given the structure of 2 U(p) X U(q)-bundle --
say as vy = vl@vz. With this interpretation, some of the structure
maps to be considered are obvious ones. For example, we shall consider
a conjugation map or canonical anti-automorphism

MU (MU)—> MU_(MU);
this is induced by the usual switch map

2:MU A MU ——s MU A MU,
which interchanges the two factors. The effect of ¢ on Mn is to leave
the manifold alone and take the new v to be the old v, and vice

versa, We can easily construct U x U-manifolds, for example, by taking

CP" and taking the stable classes of vy to be pE,qe, where

V2

p+9 =-(n+1). However, we will make no further use of this approach.

I also remark that MU ~nMU is homotopy-equivalent to a wedge-
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sum of suitable suspensions of MU. This follows from the following
lemma, plus (4. 5).

LEMMA 11.1. Let E be a ring-spectrurm. In order that E A X
be equivalent, as a module-spectrum over E, to a wedge-sum
\/ En Sn(a), it is necessary and sufficient that 7:‘*(E A X) should be a
a

free module over 7, {E).

Proof, '17*( \/ Ena Sn(a)) 3 z*n*(E/\ Sn(a)) is indeed a free
o a

module over '77},_(E). So if E A X 1is equivalent, as a module-spectrum

over E, to \/ E/\Sn(a), then ~7r*(E A X) is also free,
a

Conversely, assume that 7 (E A X) is free over -7 (E), witha

base of elements b ¢

T E AX). Represent b by a ma
. ”n(a)( ) presen . y 2 map

fa:s“(a)_>1: A X,
and consider the map

sl
£V Ens" L Eax
a

who se g-th component is

Iaf
2Ma) e papax 2N L Eax.

EAS
Then f is clearly a map of module-spectra over E, and f induces an
isomorphism of homotopy groups; so f is 2 homotopy equivalence, by
Whitehead's Theorem (in the category of spectra,)

Let us return to the structure of MU, (MU). Recall from (4. 5) that
MU*(MU) is free as a left module over 'ﬁ*(MU), with a base consisting
of the monomials in the generators bi = biMU € MUZi(MU)'

Recall also from [3, p. 61] that the structure maps to be con-

sidered are as follows.

(i} A product map
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¢: MU (MU) @ MU, (MU) — MU_(MU).

This is the same product in MU*(MU) that we have been using all along,
and we do not need to give any formulae for it, because MU*(MU) is
described in terms of this product.

{ii) Two unit maps

N1, ARE “rr_*(MU).._; MU*(MU).
These are induced by the maps
MU € MUAS® s g A MU,
MU ¥5° A MU M o My AMU
respectively. They are introduced so that left multiplication by
a € 7, (MU) is multiplication by qL(a), and right multiplication by
a e 7,(MU) is multiplication by QR(a). The map N sends
a € Tr*(MU) to a.1, and we do not need to give any other formula for it.
The map qR is essentially the Hurewicz homomorphism
T (MU) —> MU, (MU).

It figures in the next result; to motivate it, we recall that one should
describe the action of cohomology operations h ¢ MU*(MU) on the ring
of coefficients T*(MU); compare 1'2, p. 19; Theorem 8.1, p. 23]_

PROPOSITION 11.2. Let E be asin [3, Lecture 3], and let
h ¢ E*(E). Then the effect of the cohomology operation h on the element
X €T .(E) is given by

b\ = <h, TR x>,

This may be proved either directly from the definitions by diagram-
chasing, or by substituting X = §°, Wy = (qLA) ® 1 in [3, Proposition 2,
p. 727.

We return to listing the structure maps to be considered.
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(iii) A counit map
;_:MU*(MU) —> 7r*(MU).
This is induced by the product map
p:MU A MU — MU,
{iv) A canonical anti-automorphism, or conjugation map
¢:MU_{MU) —> MU_(MU).
This is induced by the switch map

T:MU AMU—> MU AMU,

as remarked above,

(v) A diagonal or coproduct map

k/::MU*(MU) —_—> MU*(MU) ® TT,::(MU)MU*(MU).

The maps which have not been discussed already are given

following result,

by the

THEOREM 11.3. (i) The homomorphism R is calculated in

§6, 39.

(ii) The map ¢ is a map of algebras which are bimodules over

wy{MU); it satisfies
£(1) = 1
g(bi) =0 for is 1.

(i1i) The map ¢ is a map of rings; it satisfies

c{n . a) =g 2
OB @ e vy

c(rzRa) = sza
and
cfb) =m,
1 1
where b, and m, are related as in {7.5).
i

1

{iv) The coproduct map ¥ 1is a map of bimodules over

T*(MU).
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it is given by

_]+1
9o X L > b)) ®b
i+3 =k h_>_0

(Compare [2, p. 20, Theorem 6.3].)
Proof. We begin with part (ii}. The formal properties of &
are given in [3]. Instead of saying that ¢ is induced by
p:MU A MU —> MU, we may proceed as follows, Let x ¢ MU*(MU),
Jet 1 ¢ MUY(MU) be the class of the identity map 1:MU—s MU, and
let <« 1,x> ¢ T;*(MU) be their Kronecker product; then
elx) =<1, x>,
Applying the naturality of the Kronecker product to the map MU(1)—= MU,
we find that
MU

<l,b, > =« x , B >
1 i+l

0 for 1>0.
We turn to part (iii) of (11.3). The formal properties of c are

given in [37]. By (9.5) we have
R _ MU, L i+l
x = Z bi (x ) .

i> 0
Applying ¢, we find
L Z MU R)1+1
i>0
MU MU

So c¢b; =m,
i i

We turn to part {iv) of (11.3). The formal properties of ( are
given in [3]. We begin work by determining the coproduct map

¢:MU(CP®) —> MU_(MU) ® MU_(CP%).

7,,(MU)

By definition, this coproduct map is the following composite.
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MU_(CP%) — (MU A MU)_(CP™)

~

MU, (MU) ® MU, (cP™).

F,(MU)
Here the first factor can be described by adopting the notation of the
proof of (9.4); it maps R ¢ MUZ,(CP‘”) into 8~ ¢ (MU /\MU)Z_(CPOO)_
i 1 1 1
The isomorphism maps the element 1 ®R  in the tensor-product into
1
R
R, € (MUa MU)Z_(CPOO). By (9.5) we have
1
M L i+l
xR = Z b, U(x )1
i>0 1
and therefore
j MU j L j+k
By =S b, ) )
. i k
k 1>0

Dualizing, we find

MU j
BiL= > 02 by )i_j®93;

0<j<i k>0 J
that is,
MU j
(11.4) ya = > (>2p ). ® a8
i 0 < j<i K J J
(Note that this formula determines the coaction map
e MU
\,v.MU*(BU) —> MU, (MU} ®7T*(MU) +{BU)

for the space BU.) Transferring (11.4) to MU by the "inclusion"

CP® = MU(1)—> MU, we find

j
i-17 > X By @ b1

0<j-1<i-1 420

wb
which is equivalent to the result given. This completes the proof of (11. 3},

Note. Consider the subalgebra

(compare [2, p. 20, Theorem 6.3).) The product map ¢ , diagonal
map ¢ and conjugation ¢ all carry this subalgebra to itself; the counit

restricts to give a map
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€5, 5 2

such that £(1) = 1, e(b) =0 for i> 1. We conclude that the
i zZ

restriction of ¢ to this subalgebra must coincide with the conjugation it

would have if considered in its own right as 2 Hopf algebra over Z.

12. BEHAVIOUR OF THE BOTT MAP

We recall that in the spectrum K, every even term is the space

BU, and the maps between them are all the same; each is the map

2
B:S A BU —BU
adjoint to the Bott equivalence

2
B":BU = QOBU.

2
(Here O means the component of the base-point in the double loop-

space 02.)

In order to compute E, (BU), itis therefore desirable to compute

B*:En(BU)———> En+2(BU)'
This will be done in (12.5), (12.6).
We first describe the primitive elements in E,(BU).
We have seen that

E(BU) = 'rr*(E)[el,BZ, RN ]

with coproduct

¥R, = 20 B®R;
iyj<k

As usual, we define the Newton polynomial Qk so that
n

kK k k. ~k, -
x1+x2+...+xn—Qn(a'1,fr2,.--,rrk),

where LB is the i-th elementary symmetric function of x

Ql; is independent of n for n >k, and then we write Qk for Qk .
= n

1

3 Xy,

2

s X .

n
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We define elements sk e E.(BU) for k> 1 by
_ Ak
S = Q (ﬁl,Fz, ,ﬁk).

Examples. 5y ° Ry

2
= —2
s Pl PZ

3
$;% B - 35192 + 3B .

PROPOSITION 12.1. The primitive elements in E (BU) form a
free module over 7 (E), with a base consisting of the elements

51,52,53, e .

The proof goes precisely as in ordinary homology.
We need two formulas about the s;.

n
2,2 5 - -pn-1 - =
(12.2) Spm R S, tRS 5+ ees +(51) Bn—lsl +(-1) ng =0.

This is well -known.

o) 1 00 0 1
(12.3) (220" s )= Z0sBy 22 8) .
n=1 " s=1 ° t=0 *
Proof. Write (12,2) in the form
(—l)n—ls +b (_l)n-Zs + ... + b s =nb
n 1 n-1 n-1 1 n

and add over n > 1; we find

@
€S-0
n=1

1 © 2
s (> By =( 2> s ).
t=0 s=1
This yields (12.3).
We next consider the tensor product map. We recall that the map
BU(n) X BU(m) —> BU(nm)
which classifies the ordinary tensor product of bundles does not behave
well under the inclusion of BU(n) in BU(n+l); it is necessary to con-
sider the product on reduced K-theory defined by the '"tensor product

of virtual bundles of virtual dimension zero"; this is represented by a map

t:BU A BU —> BU.
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We calculate
1, E,(BU)® E_(BU) — E,(BU)
at least on the elements Bi® ﬁj .

PROPOSITION 12.4. If i>0, j>0 we have

o0 (o)
t(R®B.) = kg (> eyt (> ey
L ;é:i P k zz=o‘1-p =0 'i-a
Q<]
k < p+q

Proof. The restriction of t to BU(1) A BU(l) corresponds to the

element

(€)-Ig,-1) = g6, -€) - B, + 1
in BUO(BU( 1) X BU(1)). We therefore introduce the following maps.

BU(1)X BU(1) %5 BU(1) — BU, corresponding to €15,

T

BU(1)X BU(1) - BU(1) —> BU, corresponding to €,
.

BU(1) X BU(1)-——= BU(1}) —> BU, corresponding to £,

BU(1) X BU(1) C—) BU(]l) —= BU, corresponding to 1.
Here ’rTI is projection onto the first factor, 7:‘2 is projection onto the
second factor, and c¢ is the constant map. The required element of

BU®(BU(1) x BU(1)) can therefore be represented in the following form.

(BU(1) x BU(1) —2—> (BU(1) x BU(1))*
f

4
BU

lg

su*t - BU.
Here A is the iterated diagonal map; f is the map whose four com-
ponents are the four maps given above; g is a map whose four com-
ponents represent 1, -1, -1 and 1; and p is the iterated product map.

We have
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Ldp®e) = 2 8 ®B;08; ®F; @8, BB, ®F, ®F;
Iivighigsiy =1 7 1 2 2 3 3 4 4
j1+j2+j3+3'4 =
k
AR @B )= 2. a . R
iP5, k<igy o M01 k
(—r,l),k(sié@ﬁjz) = eiz (3, =0
0 , > 0)
(). (p; 085 ) =L By (320
0 (i3 > 0)
C,,i(zai;@sj‘}) =) 01 (i4 iy 0)
0 {(otherwise).
and

foo) © _
(-1 ¢ g,) =( > 8)
AP

So we obtain

te®g) < o b (S i Sy
B®8 i1+§=ia11i1 k(z}:oﬂf)iz( F}%aph
Jy#ig 7
k<i +jl
This proves (12.4).

PROPOSITION 12.5,

The map
By :E(BU)-——>E ,(BU)
annihilates decomposable elements.

Proof.

A nd 2
E (BU) z E (S™ A BU)
n n+2
4

lB*
~Y 2 £~
En( poBU) e — En+2(BU)

Here the bottormn horizontal map o

We have the following.commutative diagram.

is the appropriate double suspension;
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and it is well-known that it annihilates products, providing the products
~ o2
in E (OOBU) are those induced by the loop-space product; the proof for
n
ordinary homology goes over, But BU is an H-space, so the loop-
space Product PO on QZ(BU) is homotopic to the produCt }JH induced
o
from the H-space product in BU. Now the periodicity isomorphism
o~ v R 2
BU%X) ¢ BU%S" A X)
is an isomorphism of additive groups; this says that under
2
B":BU—= Q BU the H-space productin BU corresponds to the
o
duct i 28U, So oR, annihilates el hich are d
produc PH in Qo . 0 R, annihilates elements which are de-
composable in the usual sense.

PROPOSITION 12,6, If j >0 we have

E t-
Bp) = > wa (17l
rt= §+l
t >0

£ 2 uEa tB, mod decomposables.
rit=341 1T
t>0
Proof. The second line follows from the first by {12.2), so we
need only prove the first,
~ 2
Recall that B, is not the canonical generator in E_(5); the latter
e E ~ 2 ; : i
is given by u Bl € EZ(S ). Since the Bott map B 1is the restriction of
t to SZ/\ BU, we have
E .
BB )=t (u AR ®B) for j>0.
i 177
We apply (12.4), and find that the sum in (12.4) can be divided into two
parts, one with p =1 and one ‘with p = 0. In the latter, we use the fact
that
1 if k=gq

09 0 if ktg
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We find

E > 1
+u - -
2o R-B TR
j £=0
The second sum is zero unless j =0, so we can forgetit. In the first

sum, we have
ak k
= ka
1q 1 g+l -k
by (3.6). Writing r for g+1-k, we find

E < -l
B*(Bj) = u > alr(kfzk)( %oﬂi)s .

r+s+k=j+1

Using (12.3), we find

E
B,(B) = u > a, (-7 s
J r+t5j+1
=0

This proves (12.6).

13. K, (K)

In this section we compute the Hopf algebra K*(K). The results
represent joint work with Mr, A.5. Harris,

We recall from [4] that To{K) is the ring of finite Laurent series
Zl’_u,u_l‘j, where u ¢ WZ(K) is the element introduced in §'2, By (4. 1),
K, (BU) is torsion-free. Passing to the limit along the BU-spectrum K,
we see that K, (K) is torsion-free. Therefore the map

K (K) —> KJK)®Q
is a monomorphism. But K (K)®Q is the ring of finite Laurent series
Q[u,u'l»""’_l], where we have written u for T\Lu’ v for qRu' We
propose to describe K (K) asa subring of Ql:u,u_l,V,v_l]. It is

sufficient to describe K _(K) as a subring of K (K)®Q = Qu” lv,uv_lhl,
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but we will work in full generality.
. . k . .

We first observe that the operation Y was originally introduced
as an unstable operation; to make it a stable operation we need to intro-
duce coefficients Z[l'] (Here ZI'-—l-] is the ring of rational numbers of

. T
the form n/k™.) Crudely speaking, we cannot define a map of spectra

k
K —> K by taking each component map to be ¢ :BU —=> BU, because
the following diagram does not commute.
B
S2ABU—— > BU
k

Iny l ¥

v

2
S I\BU—B%BU

We have to take the (2n)-th component of our map to be
L y*BUu s BUZTL].
K k
Here the space BUZ[%(] is constructed by taking the spectrum KZ[_i'I
representing K-theory with coefficients in Zf%] (see §2), converting
it into an R -spectrum, and taking the (2n)-th space of this ( -spectrum.
For any element h ¢ K*(K) we can form
k 1
< @S h> eW*(K)®Zr§'| (k £ 0).
But if we identify h with a finite Laurent series f(u,v), as above, then
we have
k
(13.1) <y ,h> = f(u, ku).
COROLLARY 13.2, A necessary condition that a finite Laurent
series f{u,v) lie in the image of K,(K) is
1
(13.3) f(u, ku) ¢ n*(K)®ZfE] for k>0.
THEOREM 13.4. (i) K_(K) may be identified with the set of
finite Laurent series f(u,v) which satisfy {}13.3).

(i1} The productin K (K} is the product of LLaurent series.
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(iii) The unit maps are given by

u

()

1
<

qR(u-) =

(iv) The counit map is given by

£{u) = u
£(v) = u
gulv) =1
glav™h) =1

(v) The conjugation map is given by

c(u) = v

c{v) = u

c(u-lv) = uv!
1 -1

cluv ) =u v,
(vi) The coproduct map is given by
Yu) = u®1l
v) = 1Qv
t,u(u_lv) = u'lv®u_lv
Huav~ l) = uv_l® uv-l .
The proof of (13.4) will be built up in stages.
LEMMA 13.5. The Bott map
K K (BU
B, K (BU)—> Kn+2( )
annihilates decomposables, and is given by

B R. = u{{j+1B. .+ jB) mod decomposables,
*SJ ) i+ 3

1
Proof. Immediate from (12.5) and {12.6); the values of the

coefficients a,,  come from (2.9).

We observe that the generator in 'thn(BU) gives an element in
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Kzn(BU); we write the latter element w™ (noting that the multiplication
involved is in the sense of the tensor-product map t:BUABU —s BU,
and is not to be confused with our usual multiplication, which comes
from the Whitney sum map BUXBU —— BU,) If we regard BU as the

2m-th term of the spectrum K, then the image of w” in K (BU)

2(n-m)
is v"™ (assuming n> 1),

LEMMA 13.6, In KZ (BU)® Q we have
n

U_IW(U_IW—IL..(u'lw—n+U

Bn” 1-2-,..n

modulo decomposables in the sense of Whitney sum, where the product

is taken in the sense of the tensor- product,

Proof, By induction over n; for n = 1 we have [‘31 = u—lw.
Suppose the result true for n. Since B*wr = wr'”, we have
B B u—lw(u-lw-l) . (u_lw— n+l)w
x(B) = 1-2+ ... :n

By (13.5) we have

Bn+1 = (u” 1B*Bn— nsn) mod decomposables

1
n+l
u” lw(u" Lo 1)... (u” lw-n+l)(u' 1w—n)

1-2+ ... »n-(n+l)

mod decomposables.
This completes the induction and proves (13.6).

LEMMA 13.7. Theimage of K,(K) in K*(K)®Q is generated

over Z[u,u'l,\',v-l] by the elements
- -1 -
u lv(u v-1l) ... (u lv-n+l) (n=1,2,3 )
le2 ... «n T e

-1
Proof. Immediate, since it is generated over Z[u,u ] by the
images of the elements R in the 2m-th term of the spectrum X
n

(n=1,2,3, ...; m=0,1,2,...).

LEMMA 13.8. A polynomial f(x)f {J[X ] cai be WIitten a8 an
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integral linear combination of the binomial polynomials

#x(x-1) ... {x-n+l) _
1°2* ... *n (n=0,1,2,...)

if and only if it takes integer values for x = 1,2,3, ... .
The proof is a piece of standard algebra, which can be left to the

reader,

Proof of Theorem 13,4, The substantial part is part (i). First,

take an element of K,(K); its image in K (K)I® Q is a finite Laurent
series of the type described in (13.7), and f(u,ku) ¢ Z[u,u"},1/k]
by (13.8).

Conversely, take a finite Laurent series f{u,v) which satisfies
(13. 3); without loss of generality we may suppose that f is homogeneous,
say flu,v) = uSgu"lv), where g(k) ¢ z[%] for k=1,2,3, ... . The
power to which z_l occurs in g(z) is bounded, say by N. Also g(z)
contains only a finite number of coefficients in Q; their denominators
contain only a finite number of prime factors p, and each prime p
occurs to a power which is bounded, say by M (independent of p). Then

h(z) = zN+Mg(Z)

has the property that h(k) ¢ Z for k =1,2,3, ... . Infact, each prime
p dividing k cannot occur in the denominator of h(k), by construction;
nor can any other prime, by assumption. By Lemma 13,8, h(u"lV) is

an integral linear combination of binomial polynomials

-1 -1 -1
u Tv(uTtv-1) ... (u Tv-n+l) (n> 0).
1-2- ... *n -
So f{u,v) = ud(uv' 1)NH"Mh(u‘lv) is a linear combination over Z[u,u'l,v_1'|

of these polynomials. We do not need the polynomial for n = 0 (namely

1) since it is a multiple over Z[u,v_l] of the polynomial for n = 1
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v). By Lemma 13.7, f(u,v) lies in the image of K,(K).

(namely u”
This proves {13.4)(i).

The remaining parts of (13.4) are easy. It is only necessary to
comment on one point. In {vi), the fact that ¢ is a map of bimodules
gives

-1y 2 -1
Hu " v) =u Qv

but in K, (K) ® K,(K) we have

T4 (K)
I S (|
u Qv =u vQu v,

since the tensor product is taken over T,{K) and v = Rpu. Similarly

for (,[/(uv- 1).

14. THE HATTORI-STONG THEOREM

In this section I will present a slight reformulation of the result
of Hattori and Stong. (Stong proved it first, but his name creeps to the
back for reasons of euphony--it brings a phrase or sentence to such a
resouncing end.) This reformulation has been used by L. Smith [15].

Recall from [3, Lecture 3'& that for suitable spectra E, such as
E =K, E,/(X) is a comodule over the Hopf algebra E*(E). We say that
an element x in a comodule is primitive if Yx =1Qx; we write
PE,(X) for the subgroup of primitive elements in E,{X). One can see
directly from the definition of { that the Hurewicz homomorphism in
E-homology,

ht 7 (X)— E,(X),

maps into PE*(X).

THEOREM 14.1 (after Stong flé] and Hattori [9]). The Hurewicz

homomorphism in K-homology gives an isomorphism
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h: 7 (MU) ¥ PK, (MU).
Remark. As soon as one knows that w7 (MU) is torsion-free, it
is easy to show that this Hurewicz homomorphism is a monomorphism.

For example, consider the following commutative diagram.

7, (MU) h K, (MU)
rMO®Q Lk MUIRQ

We have K (MU)QQZ 7 (K) & 7, (MU) &®Q; so the bottom horizontal
map and the left-hand vertical map are both monomorphisms.

The essential content of the theorem, then, is that it identifies the
images of h.

Proof of (14.1). For lack of time in writing out these notes to
work out a direct proof, I will deduce this result from the formulation
given by Hattori. (After all, Hattori's proof is very elegant.) Hattori
proves precisely that if x ¢ K (MU) and nx € Im h for some integer
n £ 0, then x €Imh, Itis rather easy to see that any primitive in
K, (MU)® Q lies in the image of h®1. So suppose x € PK.(MU); then
by preceding sentence, x lies in Im(h®]1); that is, for some integer
n#0 we have nx €Im h., So by Hattori's form of the result, x € Im h.
This proves (14. 1).

Exercise. Deduce Hattori's form of the result from (14. 1),

15. QUILLEN'S IDEMPOTENT COHOMOLOGY OPERATIONS
Suppose given a spectrum E and an abelian group G. It may
happen that when we form the spectrum EG, as in 82, it splits as a sum

or product. Examples are given in \:3, Lecture 4]. In such cases, it is
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highly desirable to have a splitting which is canonical and doesn't depend
on any choices. I have developed this point in [3, Lecture 4]. In
particular, I have made the rather obvious point that one should look for
canonical idempotent cohomology operations, that is, idempotent maps
¢:EG — EG.

An important special case is that in which E = MU and G = Qp,
the integers localized at p (that is, the ring of rational numbers n/m
with m prime to p.) In this case the possibility of splitting MUQp was
proved by Brown and Peterson [7], and again by Novikov [137; but both
methods involved choice.

Quillen has succeeded in giving canonical idempotents
g:MUQp—;» MUQp (one for each p). This is profitable in two ways,
Firstly, it means that we no longer have to construct the Brown-Peterson
spectrum by synthesis, building it up from its homotopy groups and
k-invariants; we can construct it by taking MUQp and splitting off the
piece we want. Secondly, we obtain a very precise hold on the Brown-
Peterson spectrum, and can obtain information about it by passing to the
quotient from MUQP. This process yields good, explicit formulae,

THEOREM 15.1. Let d> 1 be an integer, and let R Q be a
subring of the rationals containing d=l. Then thereisa unique map of
ring- spectra

e = ed:MUR% MUR

satisfying the following conditions.

(i) e is idempotent: e? - e.

(ii) e has the following effect on T,.(MUR).
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0 if n% -1 modd
efCP"] =
[CP"] if n# -1 mod d.
Two such idempotents ed, esJ commute,
THEOREM 15.2. (D, Quillen [14]) Let p be a prime. Then
there is @ unique map of ring-spectra
£= £ :MUQ __5 MUQ
P P P
satisfying the following conditions.
(i) & 1is idempotent: E =&
(i) & has the following effect on 1{'*(MUQP).
n : f
[CP"] if n=p-1 for some {
g[CPn] -
0 otherwise,
Proof of (15.2) from (15.1). Take
£ = _EI_ eq

where the product ranges over all primes q # p, observing that the

product is convergent in the filtration topology on MUQ;(MUQP), which
is complete and Hausdorff.

We turn to consider the proof of (15.1). We know from Lemma 4.5
that so long as T,(E) —> 7, (E) ® R isiso (which is certainly true
for E = MUR), maps of ring-spectra giMUR—=» E arein (1-1)
correspondence with power-series

g*(xMU) - f(xE) - di(XE)i+1

iz 0

E
with uEdo <1, d ¢ 7 (E). Assume for simplicity that u = 1, which
i f
is the case in the applications. All we have to do is pick the right power-
series, Letus consider how the choice of f will affect

gyt M (MUR})——3 7 (E).



Let us take the primitive elements
. i
1ogMUMU & 5 (MO S (P ] n oy 0
i 1 i i+l *
>0
E E E i
log x = 2, n(x )", say, ne 7 (B)®Q, n 1.
i>0 1 1 o ]
. e MU
et us define the modified log series by
MU _ MU i+]
mog X = > (gm)x )77,
i> 0
so that it serves to store the coefficients g, m;. Let expE be the series
inverse to log
PROPOSITION 15.3. The elements g,m, € 7 (E) ®Q are given
by
mog(fxE) = 1ogExE
or equivalently
-1
mog z = logE(f z).
For our applications we need to know how to construct f given the co-
efficients g,m;, and the appropriate formula is as follows.
-1 E
COROLLARY 15.4. { "z = exp mog 2.
Proof of (15.3), (15.4). The element
MU MU _ MU, 1+1

m,(x )

log i

(=]

I\

is primitive. Therefore

MU_MU E i+
gelog UMY = 55 (g m (5 = mog(x™)

i>0
is primitive. But the primitive elements in EQ (CP~) form a free

. E_E
module over -7 (EQ), with one generator log x; and we check that
mog(fxE) has first term xE; so
mog(fxE) = logExE

This proves {15. 3) and (15. 4).



108

Next suppose given a formal product p, over a ring R, and consider
formal power-series, with zero constant term, over R. We can make
these formal power-series into an abelian group by defining

g+ T =ple,T).
p
Subtraction in this abelian group will be written _}‘. If our ring R also

contains d-l, we can divide by d in this abelian group; we write

for the solution of
T2 T+ T4 e + @ (d summands),
B B P
If our ring R contains Q, we can write
G +pf = exp(log & + log 7).
where expand log are as in §7,

Proof of (15.1). Our proposal is to take

(15.5) mog z = log 2 -é—(log ]lz + log ]Zz + ...+ log [42).

Here 51, ]2, RN Zd are the complex d-th roots of 1, and
. i+1 _[cpi
log z = E m;z » my ___.___]
i> 0 i+1

as it should be for MU or MUR. It is easy to see that this power-series
(15.5) has the coefficients g*(mi) given in (15.1)(ii). A priori the co-
efficients of mog z liein 7 (MU)®exp 2Ti/d] .

Applying exp to (15.5), we get

-1 _1’
(15.6) fz= Z_P(d)}J(le+}l]22 +P +}1!dz).
For any ZI'ZZ’ e s Zd we can consider

le +)’1 ZZZ +}’1 v +/uzdz
as a formal power-series with coefficients in

TAMO) X Z(] L e 2 1)
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The coefficients are clearly polynomials symmetric in ;’l’ ;2, e s Zd’
50 we can write them in terms of the elementary symmetric functions
0'1, ’J‘Z, e gé When we substitute for ;l' N ’Zd the complex d-th

roots of 1, we have

=0, ..., 7 _1_

d
a1 =0 w (-

We obtain a power-series with coefficients in T, (MU).

So (15.6) shows that f-lz, and hence fz, has coefficients in
T(MU) ® Z[é] This proves the existence of a map e:MUR —3» MUR
of ring-spectra satisfying (15. 1)(ii).

The fact that ey is idempotent follows from the fact that its effect
on 7, (MUR) is obviously idempotent, by Lemma 9.3, The fact that
two such idempotents ed'd% commute is proved in the same way.

16. THE BROWN-PETERSON SPECTRUM

In this section we introduce the Brown-Peterson spectrum, and
discuss its properties, In particular, we prove the homology analogue of
Quillen's result on the algebra BP*(BP) of cohomology operations.

We keep a prime p fixed throughout. For any X, consider

E*:MUQ:(X)——> MUQ;(X),
where €= £ isasin $15. The image of £, is a natural direct
summand of MUQ:(X), so it is a functor turning cofibrations into exact
sequences, It also satisfies the wedge axiom, so (by Brown's theorem in
the category of spectra) it is a representable functor. We write BP f{for
its representing spectrum, after Brown and Peterson [7]. The map &
is 2 map of ring-spectra, so the image of ¢, is a cohomology functor

with (external) products. Therefore BP is a ring-spectrum. We have
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canonical maps of ring-spectra which make up the following commutative
diagram.

MUQ, — & s MUQ
N A
BP
We have . : 1:BP — BP.

If we were to follow Quillent's line [14'], we would now copy the
work of §15, taking E = BP, to construct a whole family of cohomology
operations from MUQp to BP, and prove that they factor through the
canonical projections 'T:MUQp — BP.

To construct the different operations of the family, Quillen
introduces into his work formal variables tl,tz, s tn, ... and con-
structs an operation

TEMUQ—> BP(Z[t ) ty, o oty .a )
He then takes the components of this operation; for any sequence
Q= (al,az, [N ,an, ...} such that a; < 0 for all but a finite number of
ay ap On

i, he takes the operation r_ to be the coefficient of ty tz ...tn in T
a

It would not really give us any trouble to afflict BP with
coefficients Z[tl,tz, e 'tn’ SN ]; we could construct a Moore space

st » »..] by taking a wedge of

M for the graded ring Z[tl,tz, cee sty

spheres of suitable dimensions, and giving it a suitable product; and then
we could form BP A M. But since we are only trying to explain the
direction of Quillen's work, we won't labor these details.
. BP . .
We give BP a class x by using the canonical maps

MU — MUQp _ "~ BP. Thelog function for BP is obtained by

naturality from that for MU. Let us recall that
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Ci
= er ] € T{MU)® Q,

i i+1
and that T:MUQ_ > BP annihilates m, unless i = pl-1. Letus

write

m , I ,m3,etc.
p -1 p -1

for the images of these surviving generators in W;R(BP)®Q. Then we

p-1

have
2 3
1ogBPx=x+m *xP 4 m 2 xP +m g %P
p-1 po-1 p -1
In our present language, Quillen's method is to construct Ty by
taking its modified log series to be
2 3
mog z = z +m zp+m2 2P +m zP
p-1 p--1 p -1
2 3
+  t2Pem PP oam PSP
1 - 2_,1
p -
PZ P P3
+ tzz + mp_1 t2 25 ..
3
+ t3 zp

(Note how one can read off the effect of rt on . (BP) ® Q from this
display.) The reason that the coefficients in the display are introduced is
that they represent the cheapest way to get the corresponding formal
power-series defined over ¥,.(BP); for we have

iz - expBP mog z

2 3
= Z 4 tzp+ tzP + t 2P + e
P 1 R 2 r 3 i
Here p means pBP, the formal product defined over 7 (BP).
From our present point of view, however, Quillen's formal var-
iables t, are crying out to be located in BP_(BP). That is: for any

element

u e Hom;(z[tl,tz, el 7, (BP))



(say assigning the value u(1 to t.7t_...t n) Quillen constructs a
n
cohomology operation
> ux
o oG
He then obtains each operation once and once only [14, Theorem 5(i) ],

. . % _ 3
so he is asserting BP (BP) = Homz(z[tl,tz, ], T,(BP))
%

= H
", (BP)

(7,(BP)[t],t5, ... ]um, (BP)).

But we know we should have

ES

% g
BP) = H
BP (BP) om_m*(BP)

(BP_(BP), 1, (BP)).
We therefore try to copy Quillen's work in homology.
THEOREM 16.1. (i) There is a unique system of classes

t; e BP_ . (BP)
2(p-1)

such that t, =1 and in BPQ,(BP) we have

Aplm )= 20 m ()
p -1 i+jsk  p -1

pi

{(ii) We have
BP,(BP) = W*(BP)[tl,tZ, ]
{This describes the product map ¢ and the map qL, or the structure
as a left module over 7,(BP); the map g, or the structure as a
right module over 7_(BP), is given by (i).)
(i1i) The counit map is given by
g1y =1

0 for i> 0.

L)

(iv) The conjugation is given by the following inductive formula.
h h+i
> om o, ()P )P em
hiivj=k p -1 J

(v) The coproduct is given by the following inductive formula.
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i oh ohi
Z m B (t,v:j)P =2, m, 'e (t)
1

itvj=k - h+i+j=k p -1

The formula in part (i) restates that in Quillen's Theorem 5(iii)
[14], and the formula in part (v) restates that in Quillen’s Theorem 5
(iv) [147.

As for the formulae which are claimed as "inductive!, we note
that (iv) does indeed contain the leading term ctk (take h =0, i =0) and
otherwise contains terms in ctJ. with j <k; and similarly, {v) contains
the leading term L})tk (take i = 0) and otherwise contains terms in ¢tj
with j < k.

Proof of (16.1). We first prove the uniqueness clause of part (i).

The formula

P
Nolm . )= > m . (t)
REK ) iRk pa1 )

contains the leading term tk (take i = 0) and otherwise contains terms
in tJ_ with j «k; so by induction, it determines the image of tk in
BPQ.(BP). But the map

BP . (BP)— BPQ,(BP)
is monomorphic, so the formula of part (i) characterises the tk.
The essential part is the existence clause of part (i). We first re-

call the following equation from the proof of (9. 4):

R i+] R 1
(16.2) > aglmy ) PILNPIENC Y
L j20
<:r—’1
Here m, < %]— e«_-r"‘Zi(MU) R Q,

glm,) € MU, (MU) ®Q,
Mj € MUZi(MU) is as in Proposition (9. 4),

and the equation takes place in (MUA MUQ)*(CPOO).
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To this equation we apply the homomorphism induced by the map
T A T:MUAMU —> BP ABP. If, for the moment, we write Nj for the
image of Mj in BP2~(BP), we obtain the following equation in

i

(BP A BPQ),(CP®).

{ . £
(16.3) S oaptm o NP w0 NP
i p -1 f

p-1 j>0

Use the equation of (16.1)(i)., namely
i
Rpm T Z m . (t)P
po-1 i+jzk p-1 7

to define t (inductively) as an element of BPQ_(BP). Substituting in

(16.3) we get
i it Lo
R
Zom )P NP = X (2 NT)ITHP
— i ] £ . J
L,j p-l P-1 >0
That is,
P Ry R
S 10gP (e (x )F) = 10gP TSN ()T
i J >0
BP
Apply exp =, We get
2
R R
(16.4) e NS LA L
B P 2 P 3

R j+1
= Z NJ_(x )J .
=0
Here p means PBP, the formal product defined over 7. (BP).
Suppose, as an inductive hypothesis, that we have shown
ti e BP,.(BP) for i>k. (The induction starts, since to = 1.) Extract

k
R
from (16. 4) the coefficient of (x )p . We obtain

6.5 ; eee st = .
(1 ) tk+f£t,l’t2 k—l) Nk
w p -1
Here N k lies in BP*(BP); and f(tl,tz, e 'tk-l) is a polynomial in

p -1

tl,tz, e ’tk-l’ with coefficients in 'ﬁ*(BP), so it lies in BPJ‘(BP) by

the inductive hypothesis, Therefore tk lies in BP_(BP). This completes

the induction, and proves part (i).



We notice that (16.4) answers the obvious question: how do the
homology generators in MU*(MU) map into BP*(BP)? Thatis, the image
. . . R, j+1 .
N, of M, in BP_(BP) is the coefficient of (x) in the left-hand
j %

J
side of (16.4), and this coefficient is a definite polynomial in t_,t

ACUREE
We turn to part (ii). It is clear that BP*(BP) is the image under
(77 A T of MU*(MU); so it is gencrated, over W*(BP), by the classes
Nj' Using the last paragraph, this means that it is generated by the
classes tk. Similarly, H,(BP) is the image under -, of H_(MU), and

50 it is

Consider the spectral sequence
H,(BP; 1r*(BP)).——_—> BP*(BP).

It is trivial, because it is a direct summand of the corresponding

k k

.
sequence for MUQ (MUQ ); and in the Ez-term, t. is equal to m
p P -1

p

modulo decomposables, by (16.5). Therefore
BP*(BP) = 'n’k(BP)[tl,tZ, eon 1
This proves part (ii).

We turn to part (iii). It is one of the formal properties of the counit
that €1 = 1. Suppose, as an inductive hypothesis, that we have proved
gti =0 for 0 <i< k. Apply the counit & to the formula in (16, 1){i).
Using the fact that ¢ np = 1, and the inductive hypothesis, we find that

m = m + £t
p -1 p -1

So ¢ tk = 0. This completes the induction and proves part (iii).

=

We turn to part (iv). Apply the conjugation map ¢ to the formula

in (16. 1){(i). Since Mg = IL and ¢qp, = ngr we obtain the following
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result,
i
m = z (agm ¢ Het )P
p -1 f+j=k p -1 J
Substituting for RpM ¢ from (16. 1){(i), we {ind
p -1 .
‘ p ph+1
m, = Z m (ti) (ctj)

p -1 h+i+j=k p -1
This proves part {iv).
We turn to part {v). Take the formula in (16. 1){i), and apply the

coproduct map ¥ . Taking the right-hand side first, we have

i
Z m . ((//t,)p =1® nyim ).
Y7k p-1 3 Rph

Substituting for qR(m ) from (16.1)(i), we have

ph—l
£

i

P

E mo.o(pt) =1 ® 2: m (tJ,)P.
i+j=k p -1 J t+j=k p -1

Since the tensor-product is taken over Tr*(BP), acting on the left of the

right-hand factor and on the right of the left-hand factor, this gives
pi f
om o wn) s > (m ) ®)P
itj=k p-1 J fHj=k p-1
Substituting for R ¢ from (16. 1)(i), we find
p -1

i h
> om o w)P = om0 ®y)P
ik p-1 heitjsk  p =1 ° .

h+i

This proves part (v), and completes the proof of Theorem 16, 1.

17. KO_(KO) (Added May 1970)
The results of §13 carry over to real K-theory. The material
which follows represents joint work with R.M. Switzer.
We write KO for the BO-spectrum. The groups KO4n(KO) are

torsion-free, so the map



KO 4, (KO)— KO, (KO) & Q

is a monomorphism. By means of the complexification map
KO — K
we can identify ; KO4H(KO) ®Q with a subalgebra of K*(K) 0,
namely (with the notation of §13) Q[uz,u'z,vz,v_zj.
THEOREM 17.1. The map

§x04n(K0)__> K (K® Q

gives an isomorphismbetween ZKO4n(KO) and the set of finite Laurent

n

series f(u,v) which satisfy the following conditions.

(17.2) fl-u,v) = f{y9,v), f(u,-v) = f{u,v).
(17.3) For any pair of non-zero integers h,k we have
4 -4 2 1
f(ht,kt) ¢ ZTt",t7 7, 2t ’ﬁ]‘
Notes. (17.4). It is clear from the above that any { in the image
£ KO (KO) satisfies (17.2).
° Z (KO ies (17.2)
(17.5). By using the operatim \Pk, as in §13, one easily
proves that such an { satisfies (17.3).
(17.6). Condition (17.3) has been written with two integers
h,k in order to emphasize that it is invariant under the switch map
7:KO A KO —> KO A KO, which interchanges u and v. It would
actually be sufficient to use the special case of (17.3) in which h = 1.
Similarly, in §13 we could replace (13.3) by
f(ht,kt) ¢ Z[t t‘l,—l]
> ) eullp
The proof of Theorem 17.1 is similar to that in  $13.

Since KO,(X) is a left module over -, (KO), we have a product map

T, (KO) @, KO (KO) —s KO_ (KO).



THEOREM 17.7. This map
"Tm(KO) ®Z KOO(KO)ﬁ KOm(KO)
is an isomorphism.
Thus we have

Z2 ®Z KO_(KO) {m 21,2 mod 8)

KO_(KO) 2
0 (m % 3,5,6,7 mod 8)

At the risk of laboring the obvious, we make the following result
explicit,

PROPOSITION 17.8. An element of KOO(KO) lies in the kernel of

KOO(KO)—:» Z2 ®Z KOO(KO)
if and only if the corresponding Laurent series f(u,v) satisfies the
following condition,
(17.9) For any pair of odd integers h,k we have
1
f(h,k) € zz[m:] .

By (17.1), this is the condition for %f to lie in the image of

KO (KOj).)
o

As in §13, the structure of KO, (KO) as a Hopf algebra is
determined by this representation. We need the following extra informaton,

PROPOSITION 17.10. The generator g ¢ vl(KO) satisfies

1, (&) = ngle) -
This is immediate, since g lies in the image of

1*,

Trl(s°)——> -, (KO).
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PART III

STABLE HOMOTOPY AND GENERALISED HOMOLOGY






1. INTRODUCTION

These notes, prepared by R. Ming, are based on a course I gave
at the University of Chicago in the spring of 1971. I propose to construct
a stable homotopy category equivalent to Boardman's, but whose con-
struction will be accessible to those without a specialized knowledge of
category theory. I will then formulate a number of classical topics in
this framework, and finally present some new applications.

First I have to explain the meaning of the word "stable'' in alge-
braic topology. We say that some phenomenon is stable, if it can occur
in any dimension, or in any sufficiently large dimension, and if it occurs
in essentially the same way independent of dimension, provided perhaps

that the dimension is sufficiently large.

Example (a}. We can consider the homotopy groups of spheres,

Tt (Sn). We have the suspension homomorphism.
r

n+1

E: nn+r(sn)—> (s™hy.

Thartl
The Freudenthal suspension theorem says that this homomorphism is an
n .
isomorphism for n> r+l. For example, ﬁn+1(S } is isomorphic to
Z2 for n> 2, The groups nn_h_(Sn) {n> r+1) are called the stable

homotopy groups of spheres.

123
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More generally, let X and Y be two CW-complexes with base-
point. When we mention a CW-complex with base-point, we will always
assume that the base-point is a 0O-cell. By [X,Y] we will mean the set
of homotopy classes of maps from X to Y; here maps and homotopies
are required to preserve the base-point. The product W x X of two
CW-complexes will always be taken with the CW-topology. The smash-
product W A X of two CW-complexes with base-point is defined, as
usual, by

WAX=WxX/WvX.
The suspension SX of a CW-complex with base-point is to be the
reduced suspension, either 51/\ X or Xa Sl, whichever suits our sign
conventions better when we come to use it., Of course the two are
homeomorphic, If £:X —> Y is a map between CW-complexes with
base-point, its suspension Sf is to be 1a f:S1 AKX —> S1 AY (or
fAl:XA S1 —> YA Sl). Suspension defines a function

s:[x,v] —> [sx,5Y].

Theorem 1.1. Suppose that Y is (n-1)-connected. Then S is
onto if dim X < 2n-1 andis a 1-1 correspondence if dim X <2n-1.
(14] p. 458).

Under these circumstances we call an element of [X,Y] a stable

homotopy class of maps.

Example (b). We consider the notion of a cohomology operation.
Such an operation is a natural transformation
P:H (X, Yim —> H (X, Y;G).

Here n,m,m and G are fixed. In other words, ¢ 1is a function de-
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fined on Hn(X,Y;-rr) and taking values in Hm(X,Y;G), subject to one
axiom only: if £:X,¥Y —> X',¥' and h e H (X', Y';m then
ofh) = £ (oh).

By contrast, a stable cohomology operation is a collection of coho-
mology operations, say

o HX, v;m —> 1, v56).

Here n runs over Z, while d,7 and G are fixed, Each 9, is
required to be a natural, as above. But also we require that the follow-

ing diagram be commutative for each n.

5
HNY, Zm) —— 2 S BN vim
q’n\t Pn+l
5
Yy, z;6) — > g™y v

That is, we require ¢ to commute with & as well as f*.

For an example, take m=G = ZZ‘ and let i be the Steenrod
square Sqd-

So a stable cohomology operation is something which can be applied
in any dimension. Given a cohomology operation

@:H(X, ¥im) —> HO(X, Y;G)
it need not appear as the n-th term of any stable cohomology operation.

{(For more on cohomology operations, see for example f11], [15]
and [14] pp. 429-430.)

To do algebraic topology, it is rather important to be able to dis-
tinguish between unstable problems, which arise in some definite
dimension, and stable problems, which arise in any sufficiently large
dimension. We have actually come quite a long way since Eilenberg said,

'""We can distinguish two cases--the stable case and the interesting case."
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Sometimes we solve an unstable problem first and use the result to

solve a stable problem. For example, one might begin by proving
rr3(SZ) = Z (unstable) and then go on to deduce that rrn+1(Sn) = Z2 for
n> 2 (stable). More usually, however, we face some geometrical
problem which looks like an unstable problem, but we reduce it to a
stable problem and then solve the stable problem.

-1
For example, we might consider the problem, 'Is s" an

H-space?" Examples: for n =4, s° isan H-space; for n =6, s°
is not. This problem is unstable. However, one way to solve the
problem is to reduce it to the following one. "Assuming m >n, is there
a complex X = Sm U em+n in which

sz ) —> B Z,)
is non-zero?'" This problem is stable; for a given n the answer is
independent of m, provided m > n. But this problem is equivalent to
the former one.

Another case arises in cobordism theory. Here, for example, one
might want to take compact ariented smooth manifolds, of dimension n,
without boundary, and classify them under a certain equivalence relation
to get a group Qn. The problem would be to find the structure of Q.
The problem as stated is not yet in the form of 2 homotopy problem, but
it appears to be unstable--there is one problem for each n. However,
René Thom reduced the problem to a homotopy problem, and found it
was a problem of stable homotopy theory. More precisely, he intro-
duced the Thom complex MSO(n), and he gave an important construction
which yields an isomorphism

Q Fm , (MSO(n))  (n>r+l).
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The computation of ﬂn+r(MSO(n)) is a stable problem, which was begun
by Thom, continued by Milnor and completed by Wall. (A suitable refer-
ence on cobordism is Stong [161].)

Now of course to solve stable problems, or to compute groups such
as [X,Y] or nn+r(MSO(n)), we need computable invariants. In the
first instance this means homology and cohomology, but we could certain-
ly agree to go as far as generalized homology and cohomology theories.

I will suppose it known that a generalized homology or cohomology theory
is a functor Ky or K* which satisfies the first six axioms of
Eilenberg-Steenrod [6], but not necessarily the seventh,'the dimension
axiom. I will suppose it known that the material in Eilenberg-Steenrod
Chapter 1 carries over to this situation. For example, if X is a space
with base-point one can define reduced groups IA{'*(X), fl(*(}(); and one

can define a suspension isomorphism

This already tells us that the study of generalized homology and
cohomology is part of stable homotopy theory. At least, what ] said is
true if you consider ﬁ*(}() or ﬁ*(}() as an additive group; if you
started to use products, or unstable cohomology operations, you would
get outside the realm of stable homotopy theory,

To go on with Eilenberg-Steenrod Chapter 1, we have Mayer-
Vietoris sequences

P K (UNY) > K (U) @K (V) —> K (DUV) —> ...

> KU UV K (0) @K (V) —> K (UnV) —> ... .

Also we have the Atiyah-Hirzebruch spectral sequence, which was really
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invented by G. W. Whitehead but not published by him:

H (XK, (pt.))=> K*(X)

B (0K (pt ) = K (%)
This spectral sequence replaces the Eilenberg-Steenrod uniqueness
theorem when we go from the ordinary to the generalized case. The
Atiyah-Hirzebruch spectral sequence emphasizes that before computing,
we need to know the coefficient groups K,(pt.) and K*(pt. ).

At this point I should give some motivation for some of the topics
to be considered. One of these we will treat in some detail is that of
products; they may not be part of stable homotopy theory, but they have
numerous applications. For example, suppose we wanted to take the
classical results on duality in manifolds, and carry them over to the
generalized case. We would proceed like this,

"Let X be a topological manifold; I don't care whether it is com-
pact or not, but let us assume it has no boundary." (If it starts with a
boundary I add an open collar, which doesn't change the homology and
gives a non-compact manifold without boundary.) ''Suppose that X is
orientable with respect to E, where E is a ring-spectrum. Let K,L
be a compact pair in X, and assume that ¥ is a module-spectrumr over
E. Then a certain homomorphism (which has to be described) is an
isomorphism

F_(CL, 0K — FVT(K, L),
where n is the dimension of the orientation class.' (The homology on
the left is the singular homology associated with F, the cohomology on

the right is of the Cech type.)
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Theorems of this sort were introduced by G. W. Whitehead in his
well-known paper on generalized homology theories [17), vut unfortun-
ately he did not go quite as far as the result I have stated. To prove
this result one follows a simple recipe: take the treatment in Spanier
and do it all over again, with ordinary homology replaced by generalized
homology.

For this purpose, of course, one needs products, asinthe ordinary
case. Indeed, the duality map is defined by a product. There are four
basic external products: an external product in homology, an external
product in cohomology, and two slant products. From this one gets two
internal products, the cup product and the cap product. There is also
the Kronecker product, which can be obtained as a special case of either
slant product or the cap product.

Of course one needs to know the formal properties of the products.
For example, the four external products satisfy eight associativity
formulae. I do not know a good source in print where they are collected
and numbered 1 to 8. Again, when you prove the duality theorem for
manifolds, you need to know that the duality homomorphism commutes
fap to sign) with boundary maps So you need to know the properties of the
products with respect to boundary maps. Again I know of no good
source in print; Eilenberg-Steenrod volume II is not out yet.

Once you have all the material about duality in manifolds, you can
have a certain amount of fun. For example, there is a formula for
computing the index of a compact oriented manifold. It says that you take
a certain characteristic class of the tangent bundle T and evaluate it

on the fundamental homology class. Now, you may think I mean
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Hirzebruch's formula in ordinary homology, but I don't; I mean the
analogue in complex K-theory. If M is an almost-complex manifold, it
has a fundamental class [M]K in K-homology, and its tangent bundle T
has a characteristic class pz(T) in K-cohomology, and we can form
their Kronecker product <F2(T), [M]K> . Then we have
Index (M) = <p,(7}, (M1, > .

In ordinary cohomology, one uses not only products, but also coho-
mology operations. For example, suppose that X and Y are finite com-
plexes, and that we want to study the stable groups

Lim [s§™'x,s"v].
n —>>o

There is a recipe which goes as follows. Form IA-‘I*(X:ZP) and f{'*(Y;Zp)
and consider them as modules over the mod p Steenrod algebra A, that
is, the algebra of stable operations on mod p cohomology. Form
EENL ¥k
ExtA (H (Y;Zp),H (X;Zp)) .
Then there is a spectral sequence with this E,-term and converging to
the stable group above, at least if one ignores g-torsion for q prime
to p. People seem to call this the Adams spectral sequence, sol
suppose I had better do so too. This was the way Milnor computed n(MU).
At one time I used to make the point that one ought to take this
spectral sequence and replace mod p cohomology by a generalized coho-
mology theory; but the first person to do so successfully was Novikov,
who took complex cobordism, MU*. In these notes I have developed the
spectral sequence in sufficient generality so as to include spectral se-
quences constructed from a number of commonly used theories, using

homology instead of cohomology for reasons which will become apparent
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in §l6.

Recently Anderson has been considering the Adams spectral se-
quence (for computing stable homotopy groups of spheres) based on bu,
the connective BU-spectrum, and Mahowald has proved various results,
including one on the image of the J-homomorphism, by considering a
similar construction based on bo, the connective BO-spectrum. I have
reproved some of their results. The calculations to be given here give
a sanple application of the Adams spectral sequence, as well as giving
some of the information needed to use these spectral sequences based

on bu and bo.

2. SPECTRA
The notion of a spectrum is due to Lima [7] It is generally
supposed that G.W. Whitehead also had something to do with it, but the
latter takes a modest attitude about that.
By definition, a spectrum E is a sequence of spaces En with
basepoint, provided with structure maps, either

€niSE,;— Epyy

eE,—>0E, -
Of course giving a map €, is eqQuivalent to giving a map €x|1’ as S and
(0 are adjoint. There is one other variant; if we choose to work with
connected spaces, then En will automatically map into QOEn+1, where
Q, is the component of the base-point in (); we might prefer to write

L
en.En—> Qo}i:n+1 .
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The index n may run over the integers or over §0,1,2,3, ... .
Examples will appear in a moment.
The notion of a spectrum is very natural if one starts from coho-
*
mology theory, Let K be a generalized cohomology theory, defined
on CW pairs. We have
n n
K'(X) = K'(X, pt)+ K (pt.),
~ * e
and so define Kn(}() = Kn(x,pt. ). We assume that K satisfies the
wedge axiom of Milnor and Brown. More precisely, let Xa (a0 € A) be
CW-complexes with base-point, and let ia:}(a———?‘v \C{XO. be the inclusion
of one summand in the wedge-sum. This induces
* Th
. n
i Y %) —> KX,
Let
S T
eV x)—> T K%x)
a @ aeA ¢

%
be the homomorphism with components i,. We assume that € is an

isomorphism (for all choices of EXUj and n.)

We can now apply the representability theorem of E.H. Brown
[4]. We see that there exist connected CW-complexes En with base-
point and natural equivalences

L?‘(X) =[x, 1.

(Here X runs over connected CW-complexes with base-point.) So we
obtain a collection of spaces E_(n e Z). However, a cohomology
theory does not consist only of functors K" they are connected by co-
boundary maps. If we divert attention from the relative groups KX, Y)
to reduced groups 1’{\{1(}(), we should divert attention from the coboundary

maps 8 to the suspension isomorphisms
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oK 2> kM (5%,

Here SX 1is considered as the union of two cones CX and C'X over
the same copy of X. The suspension isomorphism is defined as
Kn(X,pt.)—zf,——> K lex, %)
T“Z excision
g x"(sx, crx)

lHZ (C'X contractible)

K" sx, pt.)
The map & is the coboundary for the exact sequence of the triple
(CX,X,pt.). The vertical isomorphism is also induced by the collapsing
map (CX,X)—> (SX,pt.).

We now observe that we have the following natural equivalences, at

least if X is connected.

—~

x.E ]2 K'(x) & k™ (sX)

{3

K
sx,E 1= [x,0,E,,]
This natural equivalence must be induced by a weak equivalence

[
€y En——;» QoEn+1 .

So our sequence of spaces becomes a spectrum.

It is usual to rnake the following definition. A spectrum E 1is an

- - i 1. 1 I
(-spectrum (resp. 0.0 spectrum) if e En—>QEn+l (resp.. QoEn+l

is a weak equivalence for each n. So we have constructed an Qo—

spectrum.

These considerations also show us how to construct a CW-complex

~

K™X) valid

R

Fn (with base-point) and a natural equivalence [X, Fn]

whether X 1is connected or not. In fact, we have only to take Fn

weakly equivalent to OE .. Then we have
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—~
+1 ~
Khx) 2 k™ (sx) 2 (5%, E

]

n+1]

2

(x.0e , J2x.F 1.
As before, we have the following natural equivalences.

™ “F

n ~
(x,F 12K (X) 2K (sX)
S ,F = 1X,0F

sx.r T2 [x.0F ]
This time we conclude that this natural equivalence must be induced by
a weak homotopy equivalence

q’)n: l:‘n OFn+l .

We have constructed an ()-spectrum.

*
Example 2.1. Take K to be ordinary cohomology;
Kn(X,Y) = Hn(X,Y;n). The corresponding spectrum E is the Eilenberg-
th . .

Mac.Lane spectrum for the group m; the n™" space is the Eilenberg-
Mac Lane space of type (7,n). Thatis, we have

X 7 (r=n)

n(E) =[sT, E JxH (sm = .
0 (r#nm).
F3
Example 2.2. Take K to be complex K-theory. The corresponding
spectrum is called the BU-spectrum. Each even term EZn is the space
BU, or Z X BU, depending on whether you choose to work with connected
spaces or not. Each odd term E2n+l is the space U.
Similarly, we can take K* to be real K-theory. The correspond-

ing spectrum is called the BO-spectrum. Every eighth term Eg, is the

space BO, or ZX BO, depending on whether you choose to work with

connected spaces or not. Each term E8n+4 is the space BSp.
Of course, not all spectra are {}-spectra. n
SX (n>0)
Example 2.3. Given a CW-complex X, let En = with

pt {n <0)
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the obvious maps. We might define a spectrum F to be a suspension

spectrum or S-spectrum if

L SF,—> F
is a weak homotopy equivalence for n sufficiently large. Then this

spectrum E would be an S-spectrum, but usually not an {J-spectrum.

E is called the suspension spectrum of X. In particular, the sphere

spectrum S is the suspension spectrum of $% it has nth term S° for
n>0,

Example 2.4. Let MO{n) be the Thom complex of the universal n-plane
bundle En over BO(n). Then the Whitney sum §n ® 1 admits a bundle

map to §n+1. (Here 1 means the trivial line bundle.) The Thom

complex of & &1 is MO(n) » S1 and the Thom complex of EnH is
MO(n+1); so we get a map MO(n) Asl—s> MO(n+1), The Thom spectrum
MO is the spectrum in which the nth space is MO(n) and the maps are
the ones just indicated.

Similar remarks apply to the Thom spectra MSO, MSpin, MU,
MSU and MSp. However, MU(n) is the 2n™ term of the spectrum
MU, the (2n+1)th term being MU(n) a sl (because in the complex case
we have M(l) = SZ.) Similarly for MSU. For MSp, the term E4n+€
is MSp(n) A S% for €=0,1,2,3.

These spectra arise in cobordism theory, as I said before.

We now define the homotopy groups of a spectrum. These are
really stable homotopy groups. We have the following homomorphisms.

(en)x

1.'n+r(En) 1.'114-1'4-1(51511‘*‘1) TT114-r4-1(}':'114-1)

We define

1.'r(E) = nlgw "n+r(En);
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here the homomorphisms of the direct system are those displayed above.
If E is an (-spectrum or an (} -spectrum, then the homomorphism

(Ej)—>

Ta+r n+r+l(En+l)

is an isomorphism for n+r > 1; the direct limit is attained, and we have
nr(E) =1 r(Ep) for n+r > 1.
Thus, in Example 2.1 The Eilenberg-Mac Lane spectrum, we have
o (r =0)
nr(E) =
0 (r#0)
In Example 2.2, the BU-spectrum, we have
Z (r even)
nr(E) =
0 (r odd)

by the Bott periodicity theorem. For the BO-spectrum we have

r=20 1 2 3 4 5 6 7 8 mod 8

|
N
N
N

nr(E) 2 o z 0 0 0 2z
by Bott periodicty again.

In Example 2.3 we have

s™  (n>0)
E =
pt. (n<Q),
so that
n(B) = lim nn+r(s”7<) .

The limit is attained for n > r+l. The homotopy groups of E are the

stable homotopy groups of X.

In Example 2.4 the homotopy groups of the spectrum MO are pre-

cisely those which arise in Thom's work, namely
nr(MO) =nl_i§’nQO nn+r(MO(n)).

The limit is attained for n> r+l. Similarly for the other Thom spectra.
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In general, there is no reason why the limit lim n (E_) should
n=>g pfrn
be attained. Exercise: Construct a counterexample.
Similarly, of course, we can define relative homotopy groups. To
do so we need subobjects. Let X be a spectrum; then a subspectrum
A of X consists of subspaces AnC Xn such that the structure map

£, SX —>X, ., maps SA_ into A_ Of course we take £ IsA,, as

1 +1°

the structure map Q. for A. And if we think in terms of maps

1. _ 1 i Q
3 n Xn an+l’ we ask that § o maps An into An+l'
In fact we want to define not only relative homotopy groups, but
also boundary homomorphisms. For this purpose we want the exact
homotopy sequences of the pairs (Xn'An) and (Xn+l’An+l) to fit into

the following commutative diagram.

> ] ;
91-[n+r-(An) 1-rn+r()(n) 1-fn+r(Xn’An) 1-[n'"r-l(An) ...

l

s e B )P (X

| 3
)_>nn+r+l(xn+l’An+1)—énn+r(‘An+1)'>"‘
. m m-1 3
But here we must be careful of the signs. If 3E =S , then with the
usual conventions,
-1
3sia E™) = =St A 8E™ and 8(E™a s =™, sl
So at this point we prefer to interpret SX o 2s Xon Sl, as is done in
Puppe's paper on stable homotopy theory. With this convention, the
ladder diagram commutes; we can define
TAX, AL = lim (XA )

and we obtain our exact homotopy sequence

2> M (A) —D> (X)) > n (X, A)—> M (A)—> ... .

We have seen how to associate a spectrum to a generalised coho-

mology theory. The converse is also possible with any spectrum E we
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can associate a generalized homology theory and a generalized cohomol-
ogy theory. This is due to G.W. Whitehead, in a celebrated paper [17].
I'll get back to this later. If we have a spectrum E, it is very conven-
ient to write E, and E* for this associated homology and cohomology
theories. I will also reverse this. Ordinary homology and cohomology
(with Z coefficients) are always written H_, H*; therefore, H will
mean the Eilenberg-MacLane spectrum for the group Z. (For coeffic-
ients in 2 group G, we write HG.) This frees the letter K for other
uses. Classical complex K-theory is always written K*; therefore, K
will mean the BU-spectrum. This is fine, because I would anyway need
notation to distinguish the space BU from the BU-spectrum. Similarly,
we write KO for the BO-spectrum.

The coefficient groups of the theories E_, E* will be given by

E_(pt) = E""(pt) = m (E).

I take it that in Chicago I need not make propaganda for taking
spectra as the objects of a category. For one thing only, I would like to
define the E-cohomology of the spectrum X, in dimension 0, to be

E%x) = [x,E],
the set of morphisms from X to E in our category. (Morphisms will
correspond to homotopy classes of maps.) In fact I would like to go
further and construct 2 graded category, so that we can define

E'x) = [X,E]_,
{(morphisms which lower dimension by 1),

Next I must explain why one would want to introduce smash products
of spectra. First, we would like to define the E-homology of the

spectrum X to be
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EX) =n(EaX)=|S,E~X] .
r r r
Secondly, we would like to introduce products, for example, cup-products
in cohomology. In order to define cup-products in ordirary cohomology,
say
H(X;A) ® HY(X;B)—> HY ™(x;0)
we need a pairing A ® B —> C. George Whitehead wanted to introduce
cup-products in generalized cohomology
E"X) ®F " (x) —> 6" x)
and he found he needed a pairing of spectra from E and F to G. Now
it would be very nice if a pairing of spectra were just a morphism
p: EAF —G

in our category. Thirdly, for example, we might want to restate a
result of R. Wood in the form KO » CP2 =~ K.

When we come to undertake a complicated piece of work, the con-
venience of having available smash products of spectra is so great that
I, for one, would hate to do without it.

Now let me get on and define my category.

Isay E is a CW-spectrum if
{i) the terms En are CW-complexes with base-point, and
(i) each map ¢ : SE —>E ., is an isomorphism from SE_ toa sub-
complex of En+1'

Notes. (i) There is no essential loss of generality in restricting
to CW-spectra. (See the exercise after 3,12 or the discussion of the
telescope functor in §4.)

(ii) An isomorphism between CW-complexes is a homeomorphism

h such that h and h_1 are cellular. The CW structure on SEn is the
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obvious one on En" sl, where Sl is regarded as a CW-complex with
one 0-cell and one l-cell. Thus SEn has a base-point and one cell Sca

for each cell ¢ of E, other than the base-point.

Qa

(iii) It would be possible to identify SEn with its image under €,

and so suppose SEn < E) Sometimes it may be convenient to speak

+1°
in this way. On the whole, it seems best to leave the definition as I've
given it.

The ideas which come next are introduced to help in defining the
morphisms of our category.

A subspectrum A of a CW-spectrum E will be 2 subspectrum as
defined above, with the added condition that A C X, bea subcomplex
for each n.

Let E be a CW-spectrum, E' a subspectrum of E. We say E'
is cofinal in E (Boardman says dense) if for each n and each finite sub-
complex KCEn there is an m (depending on n and K) such that

STK maps into E;n under the obvious map

+n

m Sm_len m-1 *m+ 1
S"E ~——=>58" E _ —%...—>SE B tuae
n n+l m+n-1 m

+n"
The essential point is that each cell in each En gets into E' after
enough suspensions. I said that m depends on n and K, but there is
no need to suppose that it does so in any particular way.

The construction of our category is in several steps. In particular,
we will distinguish between ''functions', "maps'' and "morphisms''.

A function { from one spectrum E to another F, and of degree

r, is a sequence of maps in: En——> Fn N such that the following

diagrams are strictly commutative for each n.
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SE —B 5 g E —2 ~op
n n+l n n+l
an lfn_n or equivalently fn 1 an+1
G-r Phor
SFn—r > 1:.n-l“*l 1:.n-r QFn—r+l

Notes. (i) The diagrams are to be strcitly cornmutative. If we
allowed the diagrams to be commutative up to homotopy, then to make
any further construction we would need to know what the homotopies were,
so we would have to take the homotopies as part of the given structure of
a function. It seemns better to proceed as I said.

{ii) Composition of functions is done in the obvious way, and we
have identity functions.

(ii1) If E' is a subspectrum of E, the injection i of E' in E
is a function in good standing. Restriction of functions from E to E'
is the same as composition with 1.

(iv) For graded functions, it is convenient if n runs over Z.

{v) The details of the grading are cooked up so that in the end we
get ‘rrr(F) = [S,F]r .

If E isa CW-spectrum and F is an {}-spectrum, then the
functions from E to F are usable as they stand. Butis is convenient
to deal with spectra which are not ()-spectra, and then there are examples
to show that there are not enough functions to do what we want.

For one example, consider the Hopf map SB-——q% SZ. We would
like to have a corresponding function S—> S of degree 1. But there
are no candidates for the maps sl—s> SO, or §%—> S1 required to
make a function.

For another example, take two spectra with



E =85 v § v S Voo
n

F =85 .
n

We would like to have a function from E to F whose component from

nrdk-1 45 g° i a generator for the image of J in the stable (4k-1)-

S
stem. But there is no single value of n for which all the requisite maps
exist as maps into S™; we have to concede that for the different cells of
E the maps come into existence for different values of n,

So we need the following construction. Let E be a CW-spectrum
and F a spectrum. Take all cofinal subspectra E'C E and all
functions f': E'—> F. Say that two functions f{': E'—> F and

f'' E" —> F are equivalent if there is a cofinal subspectrum E'"' con-
tained in E' and E'" such that the restrictions of f' and f' to E'"!

coincide. {Check that this is an equivalence relation.)

Definition. A map from E to F is an equivalence class of such

functions.
This amounts to saying that if you have a2 cell ¢ in En' a map

need not be defined on it at once; you can wait till E_ , ~ before defining

n

the map on §™c. The slogan is, 'cells now--maps later."

Notes. (i} In order to prove that the relation is an equivalence
relation, we use the following lemma.

Lemma 2.5. If E'and E" are cofinal subspectra of E, then so
is E'n E".

The proof is trivial.

(ii) It would amount to the same to say that two functions
f' E'—>F, " E"—> F are equivalent if their restrictions to

E'N E" coincide. This comes from the following fact: if gh: K—> 1



are maps of CW-complexes with base-point, and Sg = Sh, then g = h.

Let E,F,G be spectra, of which E and F are CW-spectra.
Then we define composition of maps by composition of representatives,
choosing representatives for which composition is defined. For this
purpose we need the following lemma.

Lemma 2.6. (i) Let f: E—> F be a function, and F' a cofinal
subspectrum of F. Then there is a cofinal subspectrum E' of E such
that f maps E' into F'.

(ii) ¥ E' is a cofinal subspectrum of E, and E'" is a cofinal
subspectrum of E', then E'" is a2 cofinal subspectrum of E.

The proof is trivial.

Restriction of maps is done by composition with the inclusion map,
which is the class of the inclusion function.

We can piece maps together in the usual way. Let E be a CW-
spectrum, and U,V subspectra of E.

Lemma 2.7. Let w:U—> F, v:V—>F be maps whose re-
strictions to U /N V are equal. Then there exists one and only one map
w: UU V—> F whose restrictions to U and V are u and v
respectively,

The proof is easy.

A morphism in our category will be a homotopy class of maps, and
a "homotopy'' will be a map of a cylinder, just as in ordinary topology.
So we begin by defining cylinders. Let I+ be the union of the unit inter-
val and a disjoint base-point., If E is a spectrum, we define the
cylinder spectrum Cyl{(E) to have terms

(CYUE) =1 A E
n
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and maps
1A e
(1 A E ) A s ot E ..
The cylinder spectrum is a functor: a map f: E—>F induces a map
Cyl(f): Cyl(E) —> Cyl(F) in the obvious way. We have obvious injection
functions
io,ilz E—> Cyl{E) ,

corresponding to the two ends of the cylinder. These are natural for
maps of E. The other properties of the cylinder are as usual, and they
are too obvious to list.

We say that two maps

f.,f: E—>F

0 fy
are homotopic if there is a map
h: Cy{E)—> F

such that fo = hio, fl = hil.

Homotopy is an equivalent relation. If E,F are spectra, with E
a CW-spectrum, we write [E,F]r for the set of homotopy classes of
maps of degree r from E to F. Composition passes to homotopy
classes, as in the usual case.

The category in which we propose to work is as follows. The
objects are the CW-spectra. The morphisms of degree r are homotopy
classes of maps of degree r.

Notes. (i) Let X be a CW-spectrum consisting of Xn, negZ.

Xn (n>0)
Define X' by X‘n= . Then X' is cofinal in X, and

pt. (n <0)
therefore equivalent to X in our category. For this reason it doesn't

really make any difference whether we consider spectra indexed with
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negZ or with ne {0,1,2, ...I .

(ii) Since we have our objects and maps open to direct inspection,
we have no trouble elaborating these definitions. For example, suppose
given a CW-spectrum X with a subspectrum A, and another spectrum
Y with a subspectrum B. Then I have no trouble in defining

[x,4;v,B].

To define maps {: X,A—>Y,B we consider functions {': X',A'—> Y,B
where X' is cofinal in X, A'C X' and A' is cofinal in A. Two such,
1. X', A'—> Y,B and {": X", A" —> Y,B are defined to be equivalent
if there exist X'', A" such that {'[X"', A= fr[x" A", A map
f: X,A—>7Y,B is an equivalence class of such functions. I can define
homotopies

Cyl(X), Cyl{A)—/> Y, B
and.the elements of [X,A;Y,B] are homotopy classes of maps.

As long as we deal entirely with CW-spectra we can restrict
attention to functions whose components fn: En—> Fn-r are cellular
maps. A construction in these terms leads to the same sets [E, F]r,
The proof is left as an exercise.

In order to validate our category we give one small result. Let K
be a finite CW-complex, and let E be its suspension spectrum, so that
En =S"K for n> 0. Let F be any spectrum.

Proposition 2.8, We have

(e,F]_= nligxoo[SrHrK,Fn] )
In particular,

ls.F]_ = n (F).
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+
Proof. For any map f: sTTTK — Fn we can define a corres-

ponding map between spectra by taking its component on En+r to be

+
£ s K—> Fn; the higher components are then forced. In fact, they are

m
gmitntrg S Lo ™y s p
n m+n
+
Suppose two maps f: "MK —> Fn, g:Sm "K—> F_, give the same

element of the direct limit., Then for some p, the maps

ptr sP~"¢ p-n
S K————>5 Fr—> ¥
+ p-m -
Ptk £ 5P PF_—>F
p
are homotopic. This homotopy yields a homotopy between the corres-
ponding maps of spectra. This shows we have a function
. n+r 5
lim [s"7K,F }J—>[E,F]_ .
n—> n r
oo
Now every map from E to F arises in the way we have mentioned:

this shows 6 is onto. Also every homotopy arises in the way we have

mentioned: this shows that © is a 1-1 correspondence.

3. ELEMENTARY PROPERTIES OF THE CATEGORY
OF CW-SPECTRA

We want to show that CW-spectra can be manipulated very much
like CW-complexes. The standard way to make constructions for
CW-complexes is by induction over the cells. Now we can define 'stable
cells' for CW-spectra. Let C_ be the set of cells in En other than
the base-point. Then we get a function

Chm>Cpy1 by cg> ¢ (Scy) -
This function is an injection. Let C be the direct limit
lim C_ ;

n—=>oco "

an element of C may be called a ''stable cell.'" Unwrapping the
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definition, a stable cell is an equivalence class of cells; for each n such
an equivalence class contains at most one cell in En. Take two cells,
¢, in E; and 8 in E__, and suppose without loss of generality

a m

n < m; then c(1 and cB are equivalent if
Ch>Chyy—>...—>C,,

maps ¢, into cg-

Example. E'C E is cofinal if and only if C'~—> C is a bijection.

I said that the standard way to make constructions for CW-com-
plexes is by induction over the cells. It is usual to order the cells of a
CW-complex by dimension; first we take the cells of dimension 0, then
the cells of dimension 1, and so on, For a CW-spectrum we can order
the stable cells by ''stable dimension,'’ but this ordering is not inductive
in general, because we can have stable cells of arbitrarily large negative
stable dimension. Nevertheless we can perform inductive proofs, be-
cause each stable cell is attached to only a finite number of predecessors.
More formally, we have:

Lemma 3.1. Let E bea CW-spectrum, and G a subspectrum
of E which is not cofinal. Then E has a subspectrum F such that
E DF DG and F contains just one more stable cell than G.

Proof. G 1is not cofinal, so there exists a stable cell ¢ in E
not in G. It has a representative Coo which is contained in a finite sub-
complex K C E_ . 5o there exist finite subcomplexes K containing re-
presentatives for stable cells in E not in G. Among such K, choose
one with fewest cells, Let K=L u e, where e is a top-dimensional
cell of K. Then L fails to satisfy the conditions, for it has fewer cells

than K. So all the stable cells in L represent stable cells in G. Then
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there exists m such that S™L gives a finite subcomplex of Gm+n'
Form F by adjoining §'e to G_,  for r>m,

We illustrate the use of this lemma by proving the homotopy ex-
tension theorem. Actually we prove something slightly more general.

Lemma 3.2. Let X,A be a pair of CW-spectra, and Y,B a
pair of spectra such that n*(Y,B) = 0. Suppose givena map f: X—>Y
and a homotopy h: Cyl{A) —> Y from f|A toa map g: A—> B. Then
the homotopy can be extended over Cyl{X) soas to deform { toa map
X —> B.

The homotopy extension theorem is the special case B =Y.

Proof. Work at the level of functions. Suppose { is represented
by a function f!': X'—> Y, and h by a function h': Cyl{A')—> Y,
where X' D A', X' is cofinalin X and A' is cofinal in A. We make
our induction using Zorn's Lemma. The objects to be ordered are pairs
(U,k") where A'C UC X' and k': Cyl{U)—> Y is a function which de-
forms f'| U to a function into B, The set of such pairs is non-empty
since {A',h') qualifies; and it is clearly inductive. So we can choose a
maximal element {U,k'). I claim the maximal element has U cofinal
in X'. If not, then by 3.1 we can find UC V C X' where V contains
just one more stable cell than U, say Vo= U.ue. Then the maps

n

fl'llO/\ e: 0 ne—> Yn-r

Kkt Tade, Lave —>Y
A de: T ade, 1nve ner’Bnor

define an element of "m(Yn—r'Bn—r)' Now n.(Y,B) = 6, so that this

element vanishes after sufficiently many suspensions. So on passing to
+
v =U v ™ p' we can extend k' to a map
n+p

+
" -
Khpi T Ae Ine—>Y B ...
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Then define k'x‘1+q for q>p by suspension. This extension of k' shows
that (U,k') is not maximal, a contradiction. This contradiction shows
that U is cofinal in X', i.e., U is cofinal in X. This gives the re-
quired map of Cyl(X).
A generalized version of 3.2 works when the inclusion B—> Y is
replaced by a general function.
Lemma 3.2'. Let X,A be a pair of CW-spectra and $: B—> Y
a function of spectra such that (0*: My(B) —> n,(Y) is an isomorphism,
Suppose given maps f: X—> 7Y and g: A —> B and a homotopy
h: Cyl{A)—> Y from flA to $g. Then we can extend g over X and
h over Cyl(X) so that h becomes a homotopy from { to fg: X —> Y.
The proof is similar to that of 3.2, except that we order triples
(U,k',g') where g': U —> B and k'i; = #g’. The element
K [I*n ve: 17 n ve —> ¥
n n-
can be patched together with a contracting homotopy for f|3e to define
an element of nm((z)n_r), say k‘x'], which under the hypotheses must van-

ish on passing to @ for some p.

ptn-r

For later use I also record:

Lemma 3.3, Suppose that n*(Y) =0, and X,A is a pair of
CW-spectra. Then any map f: A—> Y can be extended over X.

Proof. Exercise. Either copy the proof of 3.2 or else quote the
result of 3.2.

Theorem 3.4. Let f E —> F be a function between spectra such
that f,: m,(E) —> n(F) is an isomorphism. Then for any CW-spectrum
X,

f0 (X, E],—> [X,Fl.
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is a (l-1) correspondence.

I emphasize that E and ¥ are not assumed to be CW-spectra.

By analogy with the case of CW-complexes, a function {: E—> F
between spectra such that [X,E]**f*—> [X,F]* is a 1-1 correspondence
for all CW-spectra X would be called a weak equivalence.

Proof of 3.4. (First argument). Without loss of generality we
can suppose that f is an inclusion; for if not, replace ¥ by the
spectrum M in which Mn is the mapping cylinder of fn. Then
me(¥, E} =0 by the exact sequence. Now we see that f, is an epi-
morphism by applying 3.2, taking the pair X mod A to be X mod pt.
Similarly, we see that f, is 2 monomorphism by applying 3.2, taking
the pair X mod A to be Cyl{X) mod its ends.

(Second argument), Instead of using the mapping cylinder spectrum,
use Lemma 3.2' in the above argument.

Corollary 3,5, (Compare the theorem of J.H.C. Whitehead.) Let
f: E —> ¥ be a morphism between CW-spectra such that

f1 M (E) —> m(F)
is an isomorphism. Then f is an equivalence in our category.

The deduction of 3.5 from 3.4 is a triviality, valid in any category.
Example., Let f: E—> F be a function such that fn: E—>F, isa
homotopy equivalence for each n. Then { is an equivalence in our
category,

Exercise. Use (3.5) to show that any CW-spectrum Y is
equivalent in our category to an Oo—spectrum.

Hint:  Construct a functor T from CW-complexes to

spectra by
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STTPX for r>n
(T_X) =
n r

pt. for r<n

Form the set of morphisms in our category

(rx.v]),
and check that it is a representable functor, represented say by Zn.
Observe that the Zn give the components of an Qy-spectrum Z; con-
struct a function Y — Z and apply 3.5.

Now I must reveal that we would really like a relative form of the

theorem of J.H.C. Whitehead. If X 1is a spectrum, let Cone(X) be

the spectrum whose nth

1 1A€n
(IAXn)I\ S —>IAXn

term is I A Xn’ with maps
4+1- (We take the base-point in I to be 0.)
We have an obvious inclusion function i: X —> Cone{X) (use the end of
the cone).

Theorem 3.6. Let f: E,A—> F,B be a function between pairs
of spectra such that

f,: M (E,A) —> m(F,B)
is an isomorphism. Then for any CW-spectrum X,
f,:[Cone(X),X;E,5],—> [Cone(X),X;F,B],

isa 1-1 correspondence,

Sketch proof. Construct a new spectrum R (for relative) with
Rn = L(En’An) (the space of paths in En starting at the base-point and
finishing in A ) Lanld structure maps g given by

€

L(EL A~ > LIE 0,8, 00 Z(LE,, A0,

where the () is written on the right to keep the "loops' coordinate out of

the way of the path coordinate. Similarly, construct S (not, for the

moment, the sphere spectrum) with Sn = L(Fn,Bn). Then f{ induces a
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function of spectra R—> 5, inducing an isomorphism of absolute
homotopy groups. By 3.4,
[x,r],— [x,s],
is a 1-1 correspondence. Unwrapping this, it says
f,:[Cone(x),%;E, Al —> [Cone(x), X;F, B,
is 2 1-1 correspondence,

This application shows why I specified that E and F in 3.4 need
not be CW-spectra.

Now for any spectrum X, we will define Susp(X) so that its n':h
term is SlA Xn and its structure maps are (S]A Xn) A Sl—l—:—‘§l> Sl/\}(n+1
Susp is obviously a functor.

Theorem 3.7. Susp: (X, Y] ,—> [Susp(X),Susp(¥)], isa 1-1
correspondence.

This theorem assures us that in some sense we did succeed in

getting into a stable situation.

Proof. We have the following commutative diagram.

x,v], Cone > [Cone(X),X; Cone(¥), Y],
Susp ‘[j*
e
(Susp(X), Susp(¥) ] ,————> [Cone(X),X; Susp(¥),pt. ],

Now the map '"Cone'' is clearly injective (since restriction gives
an inverse for it) and surjective {by 3.3). Also j* is clearly a 1-1
correspondence. The proof will be complete as soon as we show that j,
is a 1-1 correspondence, by quoting 3.6 and proving:

Lemma 3, 8. Jat n*(Cone(Y), Y)—> n,(Susp(¥Y),pt.) isa 1-1
correspondence.

Consider the following commutative diagram,
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USFRELEL S
+r
i 1 ('l)n T 1
Skl NS PN
Moirag(TnnS) Moapsy (S A Y
rqn)* i
IAY .Y  )——>n (Y_..) sl vash

11n+r+2( “th1 Tnn)' T Z n+r+l’ "n+l "n+r+2( ~Ia

(1a7 )
+r+l *
l/ 1 (‘l’n r Tk l 1 n
Maar+2 ey n 8 )21 (S A Y

n+1)

m,(Cone(Y), Y) is the direct limit of the left-hand column, and the

Y ). my(Susp(Y),pt.) is

diagram shows it is isomorphic to lim n
g P n— w n+r( n

the direct limit of the right-hand column, and the diagram shows that it
is isomorphic to the direct limit of the system in which the groups are
nn+r+l(YnA Sl) and the maps are the vertical arrows in the center
column. But the center column shows that these two direct limits are the
same. This proves Lemma 3.8, which proves Theorem 3.7,

Now we can remark that [Susp(X),Z] is obviously a group, be-
cause in Susp(X) we have a spare suspension coordinate out in front to
manipulate. And for the same reason, [SusPZ(X), Z] is an abelian
group. But now we can give [X,Y] the structure of an abelian group,
because [X,Y] is in 1-1 correspondence with [SusPZ(X),Suspz(Y)],
and we pull back the group structure on that. So now our sets of
morphisms [X, Y] are abelian groups, and it's easy to see that com-
position is bilinear.

Actually there is a unique way to give each set of morphisms [_X, Y]
the structure of an abelian group so that composition is bilinear; this is

standard once I've said the usual categorical things about sums and



products.

Well, now I would like to say that I have an additive category. The
existence of a trivial object is easy: we take the spectrum En = pt. for
all n. Then |X,pt.]=0, and [pt.,X]=0.

I claim this category has arbitrary sums (= coproducts). In fact,
given spectra X, for a e A, we form X =\C{X°‘ by Xn= g‘/(}(a)n with
the obvious structure maps

Xn 8= (VX ns' = \a/(xq)Asl—m VX, -
This obviously has the required property:
[ 3, ¥)——> T [x,.v] .

Now I must talk about cofiberings. Suppose given a map f: X—> Y
between CW-spectra, Itis represented by a function {': X'—> Y, where
X' is a cofinal subspectrum. Without loss of generality I can suppose f'
is cellular, i.e., fr'1 is a cellular map of CW-complexes for each n.
We form the mapping cone Y Yo CX as follows: its nth term is
Y, \.ix.l (IaX]) and the structure maps are the obvious ones. 1f we re-
place X' by a smaller cofinal subspectrum X', we get Y Yen cx
which is smaller than Y Ypt CX', but cofinal in it, and so equivalent. So
the construct depends essentially only on the map f, and we can write it
Y Ve CX. If we vary f by a homotopy, Yufo CX and Y \./fl CX are
equivalent, but the equivalence depends on the choice of homotopy.

Let X be a CW-spectrum, A a subspectrum. I will say A is
closed if for every finite subcomplex K C Xn, SmKCAm+n implies
K cC A,. That is, if a cell gets into A later, I put it into A to start

with, It is equivalent to saying that AC B C X, A cofinal in B implies

that A = B.
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Suppose that i: X~—> Y is the inclusion of a closed subspectrum.

th

Then we can form Y/X, with n"? term Yn/Xn. In this case there is

a map
r: Yy CX— Y/X
1
with components

Yn blln CXI‘AA% Yn/xn'

The map r is an equivalence, by 3.5.
Let's return to the general case. We have morphisms
b 1
X—>Y—>Y v CX.
Proposition 3.9. For each Z the sequence
£ 3
f i
x,z]<— [Y,z2] «— [¥y cx,2]
is exact,
The proof i1s the same as for CW-complexes, and is trivial, because
homotopies were defined in terms of maps of cylinders,
b i
The sequence X —>Y —>Y Y CX, or anything equivalent to it,

is called 2 cofibre sequence or Puppe sequence. We can extend co-

fiberings to the right, by taking
XL_>Yi—>Y\JfCX_>(Yuf CX)ui CcY.
The last spectrum is equivalent to (Y v CX)/Y = Susp(X). If we
continue the sequence further, we get

xtovi oy Y cx s susp(x) “HER Ly Suep(vy,
as for CW-complexes. It follows that the exact sequence of
Proposition 3.9 can also be extended to the right.

Proposition 3.10, The sequence

£, i,
[w,x]—> (w, v]— [w, vy cx]

is exact.
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In other words, in our category cofiberings are the same as
fiberings.
Proof. Since if ~0, i,f, =0. Suppose given g: W—>Y such

that ig~ 0. Then we can construct the following diagram of cofiberings.

f ' ; B
K> Y >y vy CX s suspx) “285P Ly uopiy)
~ ~
g/[ h /[ k‘ Susp g
. . o
Wt w_l scw? Susp(W) —————3 Susp(W)

(The homotopy ig v 0 gives us h, and the rest follows automatically.)
Now by Theorem 3.7 we have k= Susp{ for some /fe [W,X],
and

(-Susp f)(Susp { ) =~ (Susp g)(-1)

(Susp(f?) = Susp g
so using Theorem 3.7 again, we have f{¢ #g. This proves Proposition
3.10.

Proposition 3.11. Finite sums are products,

In fact,
X—>XvY—>Y
is clearly a cofibering, because (X vY) v CX ¥ Y. Soby 3.10,
(w,x]— [w,x vY]—> (W, Y]

is exact; but it is clearly split short exact, so [W,XvY]; [w,x]e {w, Y]
and Xv Y 1is also the product of X and Y.

Now I know that my category is an additive category.

Theorem 3,12, The Representability Theorem of E.H. Brown is
valid in .the category of CW-spectra and morphisms of degree 0.

The proof is as usual, but arrange the induction right.
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Exercise. Use 3.12 to show that any spectrum Y isweakly
equivalent to a CW-spectrum, (Consider the functor Ix, Y]O.)

Proposiition 3.13. The stable category has arbitrary products.

Proof. The functor of X given by
Y
T v,
satisfies the data of Brown's theorem, so it is representable, Now we
see that this representing object works for maps of degree r as well.
Note next that for any collection of Xu we have a morphism
Vra—>TT%
Namely, for each a and B Ihave to give a component which is a map
Xa——>XB; Itake ittobe 1 if a=8, 0 if a#8 .
Proposition 3,14, ({This form is due to Boardman). Suppose that
for each n, ﬁn(Xa) =0 for all but a finite number of a. Then the map
Vx,—> TTx
a @ o e
is an equivalence.
Proof. First note that
(X v Xp) E (X)) @ my(Xp)
under the obvious maps. (See 3.11.) (_Exercise . Prove this directly

from the definitions of #, and X v X, .} By induction, we have

nn(xl Vieeo¥ Xm) = Z nn(xi)
for finite wedges. Now we have

m \O/an) = % m(Xg)

by passing to direct limits. Also
U 'l;Txa) = Unn(xa), by definition.

Now the data was chosen precisely so that g ﬁn(Xu) —> Enn(xa) is an
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isomorphism. Therefore \.{Xu—>1"—]}(u is an equivalence, by 3.5,
Remark. If we use the direct proof that

Ml v X)) X ) @ (X))
this gives a proof that finite sums are products, independently of 3.7,
but depending on Brown's theorem. This can be used, in a way which is
familiar to categorists , to define an addition in the sets |_X, Y]; this
way of introducing the addition is independent of 3.7. Of course you have
to show that the addition makes the sets [X,Y] into abelian groups; the
main point is to establish the existence of inverses. I recommend making
use of an argument which is standard for H-spaces, as follows. Since
Xv X 1is both a2 sum and product, you can make a map

Xv X—»XvX

1
with components [ ] Check that it satisfies the hypotheses of 3.5,

01
B 1wy
so it has an inverse. The inverse has the form [ 01 ] But you know
A 11 1 -1 . .
the inverse of [ 01 is [0 1 ]; so you use vy for inversion and it

works.

4., SMASH PRODUCTS

In this section we will construct smash products of spectra. More
precisely, we will construct from any two CW-spectra X and Y a
CW-spectrum X A Y, so as to have the properties stated in the following
theorem, among other properties.

Theorem 4.1. (a) X A Y 1is a functor of two variables, with
arguments and values in the {graded) stable homotopy category.

(b) The smash-product is associative, commutative, and has the

sphere-spectrum S as a unit, up to coherent natural equivalences.
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We explain that statement (a) is to be taken in the graded sense.
That is, if
] t
fela,x] , gely, v,
then
fagelxay, xay]
and besides 1Al =1, we have
be
(fag)hak) = (-1)  (fh) a(gk)
T 1 1 1 1] " )
if fel[x',X o he [x,x ]b, gely vy}, ke v, v,
We explain statement (b). It claims that there are the following

equivalences in our category.

a=alX,Y,Z) 1 (XaY)aZ —>XA(YAZ),
c= ¢X,Y) :XAY——3% YaX,
/= LY) :5~rY—> Y,

r= rX) :Xsa$§ —>X.

They are all of degree 0. They are 21l natural as X,Y, and Z vary
over the stable category; in the case of ¢ this means that the diagram

XnrY — > XaY

e

XA Y > Y A X!
is commutative up to a sign (-I)Pq, if fe [X,X']P, g€ [Y,Y']q. The
other naturality conditions are the obvious ones and don't involve signs.
The equivalences make the following diagrams commute in our category.
(If one thinks in terms of representative maps, one says that these

diagrams are homotopy-commutative.)
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(WAX)A(YAZ)
a a
T T
(i) ({WAX)AY)AZ W a(Xa(YnZ))
33 a /1/\35
(WA (X AY))AZ ——H WaAl{XAY)AZ)

1}

Here a(WaX,Y,2) a a(W,X A Y,2)

»
i

1 4
a2=a(W,X,YA Z) as=a(X,Y,Z)
ay = a{W,X,Y),

YAaX
(i) C/ \Zz
XA Y——_L_—'>X AY
Here ¢, =clX,Y)
¢, = {(Y,X)
(111) YaX)n Z
cal
(X aY)nr 2 YAa(XaZ)
la !II\C
v
X a(Yn2) Yal(ZsX)
C a
(Y ~2)~X

Here the morphisms can be made precise, as in (i) and {ii).

(iv) (S AY)/\Z—>SA(YA Z)
(v) (XnS)AZ —————> X A(SAZ)
ral at
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(vi) (XAaY)n S————‘%/XA(YAS)
(vii) AY—>Y S XAS_%SAX

NSNS

(These are equivalent, in view of (iii).)

c
T T
(viii) SAS SAS
\-_/
1

It follows from these properties that every other diagram con-
structed from a,c, £, and r which you might conceivably wish to
prove commutative, is commutative; see MacLane [8]

The properties stated in this theorem are not intended to be a
complete list, We also want our smash-products to be compatible with
those which we already have for CW-complexes. We can take it as a
guiding idea that if X is a CW-spectrum with terms Xn, and Y 1is a
CW-spectrum with terms Ym’ then we want XAY to be the thing to
which Xn/\ Ym tends as n and m tend to infinity. Itis therefore
tempting to define a product spectrum P so that

Fo ™ *ap)* Ym(p) *
where n(p) and m(p) are fixed functions such that n(p) + m(p) =
while n(p)—=> o and m(p) —> c© as p —> o. This approach gives
the "handicrafted smash products'' (in later versions, '‘naive smash
products') of Boardman. Of course, there are many different ways of

choosing the functions n(p) and m(p), and these give rise to different
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"handicrafted smash products'; it is obviously desirable to prove that
these different products are related by natural equivalences. For later
work it is also desirable to have a notation more convenient than that of
functions n{p) and mf(p); it is for this purpose that we introduce the de-
tails which follow next.

Let A be an ordered set, isomorphic to the ordered set
{0,1,2,3, .. Jg. (The reason that we do not take A to be the ordered
set 50, 1,2,3, .. } is that we will later want to take A to be a subset
of {O, 1,2,3, .. .3.) Let B be a subset of A; then we define a
corresponding function

B: A—> {0,1,2,3, .. 3

as follows: B(a) is the number of elements b € B such that b<a,
Then B is monotonic, and B|B is an order-preserving isomorphism
between B and some initial segment of {0, 1,2,3, .. § The notation
B emphasizes the dependence of 8 on B rather than on A; this is
legitimate, for if we have BC A CA', then the function SA defined on
A is the restriction to A of the function BA' defined in A',

Next suppose given a partition of A into two subsets B and C, so

that A=BUC, BN C=§. A suitable illustration is obtained by taking

A=130,1,2,3, ...%
B = 10,2,4,6, ...}
c= §1,3,5,7, ...

but there are many other equally suitable choices. Then we define a
smash-product functor which assigns to any two CW-spectra X and Y
a CW-spectrum X ABC Y. It is convenient to display only B and C in

the notation, but of course the product depends on the ordering of BU C,
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The terms of the product spectrum
P=Xa Y
are given by
P =X Y .
a(a) T "B(@)" v(a)
Note that @ is an isomorphism from the ordered set A =BU C to
§0,1,2,3, ...§ and B,Y are monotonic functions from A =BuC to
the set iO, 1,2,3, ...f suchthat B(a) + Y(a) = afa).
The maps of the product spectrum are defined as follows. We have
P AS—>X Y,.ya St
ala)® Bla)” Tv(a)h® -
1 1
Here it is convenient to regard S° as R compactified by adding a
point at infinity, which becomes the base-point. This allows us to define
1 1
a map of degree -1 from S to S by tk—> -t.
If a ¢ B, then
Faa)t1 = ¥pa) 01 Yy(a)
and we define the map
"a(a) SFa(a) T Fa(a)+
by

Y(a)

ﬂa(a)(x/\y/\t) = gs(a)(x/\(—l) tiay.

If a ¢ C, then

Fatar+1 = ®a(a)" Yy(a)+1

and we define the map

na(a): Spa(a) P<3L(a)+1
by

ﬂa(a)(x;\yr\ t) = x AqY(a)(yA t) .
Here

x e X yeyY tesS ,

B(a)’ y(a)’
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and

1

1
. —> .
LCEIOR @) * W) Yy

Yc1(a.)+l

are the appropriate maps from the spectra X,Y. The sign (_I)Y(a) is

introduced, of course, because we have moved S1 across Yy(a)'

It is clear that P =X a4 is functorial for functions of X and Y

Y
BC
of degree 0. Next we point out that we have not assumed that the sets B
and C.are infinite. In the obvious applications they are infinite, so

that B(a) —> o and y({a) —> oo; but it is convenient to allow B and C

1
to be finite. For example, let S be the suspension spectrum of Sl;

then EIA Y = Susp(Y). If B is infinite, and X' is a cofinal sub-
spectrum of X, then X' "BC Y is a cofinal subspectrum X "sC Y. So
in this case X "sC Y 1is natural for maps of Y of degree 0. Next we

observe that (Cyl{X) I\BC Y and X *BC (Cyl(Y)) can be identified with
CylX e Y). It follows that the homotopy class of f ‘Bc & depends
only on the homotopy class of f (if B is infinite) or g (if C 1is infinite).
We propose to construct XaY to have the properties stated in the
following theor em.
THEOREM 4.2. For each choice of B,C there is a morphism

X a Y —>XAY (of degree 0)

fpct ® *BC

with the following properties.
(i) If B is infinite and f: X—> X' is a morphism of degree 0,

then the following diagram is commutative,

eq
X A Y BC X AY

lm
€4pc

XA Y — 3> X'AY




165

(11) If C 1is infinite and g: Y—> Y' is a morphism of degree 0,

then the following diagram is commutative.

€dpc

X Y —— > XAY

"BC
(iii) The morphism eq

X Y —> X A~Y 1is an equivalence if

BC' “"“BC

any one of the following conditions 15 satisfied.
(a) B and C are infinite.
(b) B is finite, say with d elements, and §r: SXr—> Xr+l
is an isomorphism for r>d.
(c}) C 1is finite, say with d elements, and qr:SYr—> Yr+l

is an isomorphism for r> d.

Let me show how Theorem 4.2 will help to prove Theorem 4, I{b}.
Consider first the associativity. The point is that the ""handicrafted
smash products' are actually associative if you pick the right product at
each point. More precisely, take a set A and partition it into three dis-
joint subsets B,C, and D, such that BuC and CuD are infinite, Let
X,Y, and Z be CW-spectra. Then we can form the spectra

(X

) Z and XA (Y A Z).

Y
"BC V'"BuC,D B,CuD  "CD
{Now one begins to see the purpose for which the notation was designed.)
These two spectra are actually the same spectrum. For the terms of
each are given by
= Y .
Pata) = *8(2)* Yv(2) " Z 6(a)

The maps of each are described in the same way as before. We have

1
SPaa) ™ *e(a) " ya) 2 8(a) S
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If a € B, then

Pata)+1 = Zp(a)+1 ~y(@)* Zoga)
and we have

_ _yY{a)+b(a)
na(a)(x/\yf\zz\t) = ga(a)(xA( 1) t)

AYANZ .,

If a € C then

Fa)+1 = *ga)" Yv(a)+17 Z8(a)

and we have

[
na(a)(xI\YAZAt) = XAr(Y(a((yA (-1) (a) Haz .

If a € D then

Pafa)+1 = XB(a)A Y ya) * £ 8(a)+1

and we have

ﬂa(a)(XI\YAZAt) = X Ay A56(a)(z at).

1

Here, of course, we have x ¢ X y € Yy(a)’ z €Z teS and

B(a)’
gﬁ(a), Ty(a) 55(3.) are the appropriate maps of the spectra X,Y,Z .

§(a)’

We will arrange our construction to have the following property.
THEOREM 4.3. The equivalence
a=a(X,Y,2): (XAY)AZ—>XA(YrZ)

makes the following diagram commutative for each choice of B, C,D.

(XaY)rZ Xa(YrZ)
C/ \quC lAeq% X:JD
(XAY)'\'B c, D ’\ Y)AZ XA(YA (YI\Z)
v

¢dp c*Buc D\ %B\JC D B, CuD\ '8, cop®¥cp

BvC D B CuD D
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Note that the squares are commutative by the naturality of eq; we
can apply 4.2 (i) and {ii) since BvC and CuD are infinite.

Let us now show how to check the commutativity of diagram (i) in
Theorem 4.1(b) {the pentagon diagram). Take a set A and partition it
into four infinite subsets B,C,D and E. Then by Theorems 4,2 and
4.3, all we have to do is check that the following diagram is commutative,

(Wl\ Y/\ Z)

X
/ BC )ABuc,DuE( DE \ll
1
((Wa_ X) X

A Y) Z WA (X A (Y ~
BC "BuC,D "BuCuD,E B,CuDJE C,DuE DE

\ /
1
Z —>W~a (X Y)a Z)

N (X A__Y)n N
B,CuD CD BuCuvD,E B,CuDUE CD CuD,E

Z))

(W
This diagram is commutative as a diagram of functions before we pass
to homotopy classes,

Similarly, the '"handicrafted smash products' are commutative if
you pick the right product at each point. It is tempting to partition A
as BuC, and consider XABC Y and Y4 X. Corresponding terms

CB

of these spectra are isomorphic; it is tempting to define
Ca(a)’ ¥B(a) "Yy(ay ™ Yv(a)* ¥p(a)

by

c (xay) =yax.

a(a)
However, these components do not give a function between spectra, be-
cause the relevant diagrams do not commute. We should have inserted
a sign (_l)ﬁ(a)Y(a)’ and we do not have a spare suspension coordinate, to
reverse, The answer is easy; we need only consider partitions

A =B v C such that B{a)y(a) is always even., This amounts to the

following condition. Elements number 0 and 1 in A must be either two
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elements of B, or else two elements of C. Similarly for elements
number 2 and 3, and similarly for elements number 2r and 2r+l for
each r,

Now that we realize we can restrict the choice of partition in this way,
we see that it is easy and useful to go further. In fact, we now introduce
the following restriction on the partition A = BuC,

Condition (4. 4). Elements number 0,1,2, and 3 in A are either
four elements of B, or else four elements of C; similarly for elements
number 4,5,6 and 7 in A, and similarly for elements number 4r,
4r+1, 4r+2 and 4r+3 for each r.

With this restriction, we define an isomorphism

¢=cpc’¥rec T T e X
in the manner suggested:
cn(x/\y) =ynax.
This is clearly natural for functions of X and Y. Itis also natural for
maps of X if B is infinite; similarly for Y if C is infinite.

We will arrange our constructions to have the following property.

THEOREM 4, 5. The equivalence ¢ = c(X,Y): Xa¥Y—> Yo X makes
the following diagram commutative for each choice of B,C satisfying
(4.4).

XY ——5 5 7YX

N
qucT ¢y
Cc

BC
2 > X
XABCY YI\CB

Let us now show how to check the commutativity of diagram (iii) in

Theorem 4. 1(b) (the hexagon diagram). Take a sst A and partition it

into three infinite subsets B,C and D satisfying the obvious analogue
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of condition 4.4. Then by Theorems 4.2, 4.3 and 4.5, all we have to do

is to check that the following diagram is commutative.

Yae p*1%cop,p?

““B.c,p} \
Yia zZ

(Y Z) X

~c,p%"cup,B

This diagram is commutative as a diagram of functions.

Similarly, suppose we wish to check the commutativity of diagram
(ii) in Theorem 4. 1(b), By Theorems 4.2 and 4.5, all we have todo is
check that the following diagram is commutative.

Y A X

This diagram, too, is commutative as a diagram of functions.

Similarly, the "handicrafted smash products' have S as a unit if
you pick the right product at each point. More precisely, suppose we
partition A as @uA. This is a legitimate partition satisfying the
condition {4. 4); this was the reason that we allowed the set B to be finite.
We can form the spectrum SI\¢A Y, and it is isomorphic to Y; the
obvious isomorphism has as its components the isomorphisms
SOI\Yn = Yn' This isomorphism is natural for morphisms of degree 0.
We can now define

L: SAY—>Y



170

to be the composite
€y A
SaY<——--————SA¢AY=Y.

Here edgp is an equivalence by 4. 2{iii)(b). Similarly, we can form the

spectrum X A

AQ S, and it is isomorphic to X; the obvious isomorphism

has as its components the isomorphisms Xn/\ s°¥ X+ As before, this
isomorphism is natural for morphisms of degree 0. We now define
riXas—>X
to be the composite
“dag ~
XaAS «—X Aag s=X.

Here eq is an equivalence by 4. 2(iii)(c).

AP
To check the commutativity of diagrams (iv), (v), (vi) and (vii) in

Theorem 4.1(b), we have only to check that the following diagrams are

commutative,
S —-—)S
R \ / "0, Buc! "Bc?)
-
(XA Z\‘ /X/\ (S/\¢C Z)
_
(X /\BC Y)AB\;C,¢S XABC (Y/\C¢ S)
= 1A 2
BC
XA Y



Sn Y—C—>YAA¢S Xnyp S—S—>5n,
Y

These diagrams are all commutative as diagrams of functions.

Finally, we comment on part (viii) of Theorem 4. 1{b). If you believe
any of these results you must believe that S5 is equivalent to S. So
[SAS,SASJO 4 [S,S]O = Z. So all we have to do is check that
c:SaS —> 515 has degree 1; but we shall make all our constructions to
have the obvious effect on orientations.

We now turn to the constructions necessary to prove Theorems 4.1,
4,2, 4.3 and 4.5. First we give a simple construction which is used in
proving Theorem 4. 2; this is the telescope functor. If fn:Xn———> Yn
is a sequence of maps of CW-complexes, we can form the iterated
mapping cylinder, or telescope. If the fn are taken to be cellular, the
telescope is a CW-complex. We apply this construction to the terms of
a spectrum of certain form. Let X be a spectrum consisting of CW-
complexes Xn with base-point and cellular maps 3] an\ Sl—> Xn+1;
we need not even assume that gn is an isomorphism from an\ Sl to a

subcomplex of X ; the telescope functor Tel will convert a spectrum

nt+l
X which does not have this property into one which does.

We take the half-line i> 0 and divide it into O-cells [1] and
l-cells [i,i+1] for i=0,1,2, ... . We define the nth term of Tel(X)
as a quotient space of the following wedge-sum:

n-1 .
i

. n
(V [i,i+1]+,\xi,\sn'1)v( V [ ax, as™ .
i=0 i=0

Here it is convenient to regard s as R™ compactified by adding a
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point at infinity, which becomes the base-point. In this way the

m+n n

isomorphism R™x R® —> R gives an isomorphism S™a st 5 gt
which is convenient for later use. The following identifications are to
be made. Identify the point
inxat e [i,i+1]+/\Xi/\Sn_i
with the point
inxat g [i]+AXiASn-i
Identify the point
(i+1) AxAatau € [i,i+1]+AXiI\SI/\Sn_i-l
with the point
(i+1)a Efxat)au ¢ [i+1]+Axi+lA gh-i-l
We give ”l"el()()n the obvious structure as a CW-complex.
The nth map of the spectrum Tel(X) is obtained by passing to

quotients from the obvious isomorphism of

n . n-1 .
| i\=/0 [i]% X, AT \Y; [i,1411% Xi,\s“'l)i ast

=0
with
n n-1 .
+ -i+1 . + -i+]
(V[ ax, A" [Li1] axas” )
i=0 ! i=0 1
There is an obvious homotopy equivalence rn: Te](x)n—>_xn
+
(collapse the telescope to its right-hand end [n] A Xn/\SO) These

equivalences give the components of a function r: Tel{X)——> X. This
function is a weak equivalence, by 3. 4.

We pause to observe that this construction is functorial. It is clear
that a function f: X—> Y induces Tel({f): Tel(X)—> Tel(Y}). If X' is
a subspectrum of X, then Tel(X') is a subspectrum of Tel(X). Un-
fortunately, if X is a CW-spectrum and X' is cofinal in X, it does not

follow that Tel{X'} is cofinal in Tel{(X). So we avoid saying that a map
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of X induces a map of Tel(X). However, the injection
Tel(X') —> Tel(X) is a homotopy equivalence, as we see using Theorem
3.5. Moreover, we can identify Tel{Cyl(X)) with Cyl{Tel{X)). It
follows that a homotopy class of maps of X induces a homotopy class of
maps of Tel(X). We can now remark that r is a natural transformation,
These facts are, of course, fairly trivial, but we need to cite this
passage later; it is for this reason that I have avoided a short-cut--one
could define Tel on morphisms by requiring that r be natural.

We propose to arrange for Theorem 4.2 to be true by constructing

XA Y so that it contains a copy of Tel(X a Y) for each choice of B

BC
and C. The morphism
edp ! XABC Y —> XnrY
will be defined as the following composite:
Xnge ¥ «I— Telfx Age Y) > XY,

The construction of XaY (call it P) is as a ''double telescope. "
That is, just as the parts of Tel(X) corresponded to the cells of a cell-
decomposition of the half-line i >0, so here we make a similar use of
the quarter-plane i> 0, j > 0. We divide the half-line i > 0 with
O-cells [i] and l-cells [i,i*1], i=0,1,2,3 ... . We divide the half-
line j>0 similarly, and we divide the quarter-plane i>0, j> 0 into
the products of these cells. Thus we have four cells eij with
bottom left-hand corner at ({i,j):

the 0-cell [i] w[j]
the 1-cells [i,i+1]%xLj] and [11x[j,j*1]
and the 2-cell [i,i+1]x[j,j+1] .

To construct Pn we use those cells eij which lie entirely in the
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part of the quarter-plane given by x+y <n. The condition for this is
i+ + di ) <n.
i+j d1m(eiJ) <n

Let us start from

: 1.t n-i-j
\ (GIx0D AK AT AS J
i+j<n J
and attach
+ —i-ge
Ve 'ax av asias® il
1] 1 J
where e., runs over the l-cells [i,i+1]x[j] and [i]x[j,j+1:| such that
1
i+j+1 < n. The identifications are obvious. The point
+ 1 -i-j-1
(i,j)axayasat in e ~nX. AY.AS I\Sn re)
ij 1]
is to be identified with
+ is
(i,j)Aaxayn(sat) in ([i]x[j]) AXiAYJ_,\sn 17 .
The point
n-i-j-1

+ 1
(i+1, )axAayasat in (Li,i+1]x[j]) AxiAYJ.As AS

is to be identified with

(141, D aBylxal-W ) aynt i ([ir1]x [ s X a¥yes
The point

(i, j+1)axaynasnat in ([i]x[j,j+l])+AXi/\YjASll\ gh-i-i-1
is to be identified with

(i, j*Daxanfysirt  in ([i]x[jﬂ])*AXiAYJ.HAS“'“J"I.

Consider now a cell e= [i,i+l ]x[j,j+l:| such that i+j+2 <n. We have

just described the subcomplex of Pn cérresponding to 2de. Moreover,

it contains a family of subspaces Xi AYjA SZI\ Sn_l_']_z, parametrized by

the points of Jde. Unfortunately, this family is not a product family,
at least, not in a completely trivial way. Let us start from the point

-i~j-2
(i,j)axaynrsatau in ([i]ﬂb])+AXiAYjASIASIASn =) .
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If we first increase i and then increase j, we get first to
(i+1,j)A gi(x /\(—l)js)/\y/\t/\u and then to (i+1,j+1)a €i(xz\(-l)js),\qj(y/\t)r\ u.
If we first increase j and then increase i, we get first to
o os . . i+l
(1,_]+1)Ax1\r\j(y/\s)/\t/\u and then to (1+l,_]+l)/\§i(x a(-1) t)/\qj(y AS)A UL
If I wanted to turn the first formula into the second I would have to
substitute s for t, -t for s.

We conclude, then, that the family of subspaces we have considered
is best described as

n-i-j-2
XiP\YjI\M(?)AS »

Here M(z) is the Thomn complex of a certain 2-plane bundle T over
de; more precisely, T is obtained from I x R2 by identifying the two

o -1
ends under the homeomorphism 1 ) So T is an S50O(2)-bundle

0

over De= Sl; it can be extended to a bundle over e. Of course there
are different ways of extending 7 to a bundle over e, since

nl(SO(Z)) =Z. But T is essentially independent of n,i,j,X and Y;
this follows from the description given above; or else one can use
coordinates to write down explicit isomorphisms which increase i by 1
or j by l. (The isomorphisms start from the identity map of R2 over
[i]x {j], and each suspension coordinate is either preserved or reversed
according to the demands of the signs.) All that is essential is that we
choose an extension of 2 which is similarly independent of n,i, j,X
and Y. For example, with the description of T given above, we can
trivialize * by using a geodesic path of length n/2 in SO(2).

We take the part of Pn corresponding to e = €ij to be

X, Y aM( ryag? i

where T now refers to the bundle as extended over eij' The
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identification with the part of Pn already constructed is automatic.,

This completes the construction of Pn =(XaY) . The structure

n

maps are obvious.

To summarize, we have constructed (X AY)n as a quotient space of

VE AY aM(z,)aS"7H707d
i j d
Here the sum runs over cells eij such that i+j + dim(eij) < n, and
d = dim(e.,), and Td is a suitable d-plane bundle over eij' {(For d=0
1)

and d =1, 7T, was introduced as an explicitly trivialized bundle.) The

d
1
identifications are obvious: we regard X A5  as embedded in X'+1’
1 1
xiAslAYJ.AM(T),\s“‘I‘J'd
as
n-i-j-d
XiijAMU@T)As :
and similarly for YJ,. Also we regard
1 —iej-d-
X AY. AM{z)nS A SPTIoImd-]
J
n-i-j-d-1
XA Y aM(T @ 1)aS 1 .

The discussion of the functoriality of XAY goes exactly as for the
telescope functor. More precisely, suppose X' is cofinal in X, and we
are given a function {:X'—>Z. Then X'AY is not cofinal in XaY, but
we have the following functions.

XAY ZAY
iAlT
fal
X'AY
When we pass to morphisms, i'Al is an equivalence, by 3.5, so we ob-

tain a morphism from XAY to ZAY. Since cylinders work right, we

conclude that this morphism depends only on the homotopy class of f.



It is clear how one embeds Tel(X /\BC Y) in X AY. The functions

Ba‘l, va~!

give a function
0.1,2,3, .3 —> 0,1,2,3, ...} x $0,1,2,3, ...{ . In other words,
they give the corners of a stepwise path in the quarter-plane i>0, j > 0.
We extend it to a function 6: gk > 0; —> ii > 05 x ?j > Of so that if
a eB,
ola(a), ala) + 1]C [Bla), Bla)+1 ] x[v(a)]
and if a ¢ C,
olafa),ata)+1]c [B(a)] x [v(a), via)+1].
The choice of 9 is immaterial; two choices are homotopic through maps
9 satisfying the same restrictions.
A typical part of Tel(X “BC Y) is
[k, k+1]"A X a¥ slagn-k-1
where i = Ba'lk, j= Ya_lk. We take the point
taxayauny
and map it to

+ —i-j-
B{t)Ax ayaunv in eijAXi/\Y_l\sll\sn i-j-1
J

+ -k
where eij is the appropriate l-cell. Similarly for [k] A Xi :\YJ,ASn .
It is clear that changing the choice of 6 only changes the resulting
function
Tel(X Y)—> X AY
el( ABC ) N

by a homotopy. For any choice of 8, the function Tel{X a Y)—> XKAY

BC
is natural for functions of X and Y of degree 0. From this one has

no difficulty in obtaining the naturality properties of eqy ¢ in Theorem

4.2,
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We now prove Theorem 4. 2(iii). First we consider case (a). So we
suppose that B and C are infinite. We define a subspectrum Q of P

as follows. Let Qu be the subcomplex of Pa(a) corresponding to

(a)

the cells &5 in the part of the quarter-plane given by i' <f(a), j'<y(a).

Qu(a) admits a deformation retraction on X , and

B(a)™ W(a)

Tel(X ABC Y)u(a) admits a deformation retraction on XB(a)A Y'Y(a)‘

Hence, in the diagram

Tel(X "me Y)u(a)

A

%g(a)* Yv(a) > Qy(a)

12

the two inclusions marked induce isomorphisms of homotopy groups, so
the third one does also; passing to direct limits and applying 3.5, the
inclusion

Tel(X Ao Y)V—>Q
is an equivalence.

It remains to consider cases (b} and (¢}, which are similar. Let us

consider case (b), so that B is finite with d members, and

ESX —>X
is an isomorphism for r>d. We now make a small change in the

definition of Qu(a) for "a'" such that B(a) >d. For such a, we define

corresponding to the cells e.. in

f
) to be the subcomplex o Pu(a) 1

Qu(a

the part of the quarter-plane given by i’ + j' <a{a), j'<y(a). Then

Q still admits a deformation retraction onto X since the

ala) Bla) ™ via)’
relevant map

X Ay AsT e x Ay a5 (e >0
d ) d+e -

is an isomorphism. Also Q is cofinal in P, so the proof carries over.
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We now turn to the proof of Theorem 4,5.
LEMMA 4.6. There is a spectrum Q with homotopy equivalences
it XaY—>0Q, ilz YAX —> Q so that the following diagram is

commutative for each choice of B and C satisfying condition 4. 4.

e " S
XY YaX
I !

Tel(X

eUX ag  Y) Tel(Y np X)
C

X g ¥ Yy ¥

This will certainly prove Theorem 4.5; we have only to define ¢ to be
il_lio. Note that we do not have to discuss the naturality of i;lio; it
follows from that of the other morphisms in 4, 6.

To construct , we begin by taking a copy of XaY and a copy of
YaX. The remainder of the construction will be indexed over the product
of the quarter-plane i>0, j> 0 and the interval I. The endpoint 0 of
I will correspond to XAY and the endpoint 1 of I will correspond to

Y aX.

First we observe that we can make a construction over the following

cells:
(lilx GIx " =[] x D At (i or j even)
([i,i+1]x [j1 %1 {; even)
(1% [glen” (i even)

The n™ term of the construction consists in taking the appropriate part
4+

of (X AY)nI\I , identifying the end 0 of the cylinder with the appropriate

part of (X "Y)n’ attaching the end 1 of the cylinder to the appropriate

part of (YaX), by the following map: the point
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+ —-i-j-
(S,t)AxAyAUI\V in eij /\Xil\Yj'\Sd/\Sn i-j-d
is to be identified with

d —i-i-
(t, s)ayaxaunav in e_fAle\Xil\S AsT i-j-d .
ji

These identifications are consistent.

Consider now a cell e = [2i,2i+2] x [Zj, 2j+2] % 1. We have just
described the part of Qn corresponding to the boundary 3e of e.
Moreover, it contains a subcomplex of the following form:

n-2i-2j-4

AM(TYAS .

X aY
2i" 72

Here 7' is a certain 4-plane bundle over 3e. This 4-plane bundle
depends only on the permutations and signs in our construction and on the
extension 7 chosen in the construction of X AY; it does not depend on
n,i,j,¥X or Y. Itis classified by an element

a e nl(SO) = Z2 .

Suppose now that we consider the four cells, like the cell e just
considered, which make up the cell
e' = [4i,4i+4] x [4j, 4j+4] % 1.

Call them e, e,, 83 and e The part of Q so far constructed, corres-

4°
ponding to these cells, has a subcomplex of the form

Gn-4i-4j-

N

8AM('T ") AX4i/\Y4j
Here M(=<'") is the Thom complex of a certain 8-plane bundle over

Bel v aez 5 be3 v 3e4. Over each Bei it restricts to the Whitney sum
of the previous bundle ' and a trivial 4-plane bundle. Therefore the
restriction of 7" to 3e' is classified by 4a =0. Therefore <" can
be extended over e',

From the previous construction, we now retain only XaY, YaX, and

the parts of the cylinder (XaY) Al with i divisible by 4 or j divisible



divisible by 4. We now add
Sn-4i-4j-8

X A M( 2"
4" a5t (z"A

for each i,j, and n such that n > 4i + 4j + 8. This completes the con-
struction of Q.

The injections of XAY and YAaX into Q are clearly homotopy
equivalences, by 3.5, Itis also clear that the diagram of Lemma 4.6 is
commutative, because the relevant part of the cylinder Cyl(XAY) was
put in for that purpose.

This completes the proof of Lemma 4.6 and, therefore, of Theorem

We now turn to the proof of Theorem 4.3, The constructions
(XAY)AZ and X a(YaZ) are 'quadruple telescopes,' indexed by a cell-
decomposition of the positive cone in 4-space. We arrange to replace
{(XA¥)AZ by an eguivalent construction P!, and Xa{YAZ) by an equi-
valent construction P'", so that both P' and P" are 'triple telescopes,"
indexed by a cell-decomposition of the positive cone in 3-space. Itwill
then be apparent that P' and P'" are equivalent. More formally, we
have the following lemma.

LEMMA 4.7. There is a spectrum P' and a homotopy equivalence
i""P'—=> (XAY)AZ (both independent of B, C and D) such that the
following diagram is commutative for each choice of B,C and D.

. .
(X nge VIAZ <5 (TellX ag . ¥)) a2 4l 5 xavyaz

AT

Tel((XABC Y)ABJC,DZ) —> P!

Xrge
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Similarly for Xa(YaZ) with i',j',k' and P' replaced by i",j",k",
and P'". Moreover, there is a homotopy equivalence P'—25 P" such

that the following diagram is commutative.

e

P! > pit
N

kl k”

1((X —_—
Tel({ ABC Y)ABUC,DZ) Tel(XAB,CuD(YACD Z))
Proof. By definition, the nth term of (XaAY)aZ is a union
~h-k-§
L) (Xa¥)yaZ, aM(7g)aS"
®hk
where the union extends over cells e such that

hk

h +k + di <
dlmehk_n ,

§ = dim ek and Ty is a &-plane bundle. That is, it is a union

h-i-j-d n-h-k-8

XiAYJ.AM(’Td)AS AZkI\M(Té)/\S

€1’ ®hk
where e., runs over cells with
1)
i+j+dime,.<h ,
ij—
d = dim (eij)’ and ’f‘d is a d-plane bundle. We rearrange this as

h-i-j-d .n-h-k-%
A

U X AYnZ AM(73® 7g)aS s

®ij’ ®hk
Thus the construction is indexed over a cell-decomposition of the positive
. . . . 4 3

cone i>0, j>0, h>0, k>0 in 4-space. Call this cone C . Let C
be the positive cone i>0, j>0, k>0 in 3-space, and divide C3 into
cells in the obvious way, so that the cells are r-cubes of side 1 for
r=20,1,2,3.

We construct P' by giving a suitable cellular map 6 from C3 to

C4 and "'pulling back'' the bundles and complexes we have associated

with the parts of ct, Actually we construct @ to preserve the k-coord-
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inate, so it is only necessary to construct a map ¢ from the positive
cone i>0, j> 0 to the positive cone i>0, j>0, h>0.

Our idea in defining € and ¢ is to use only cells e such

i¥ ®hk
that

i+j+dim e  =h;
1)

firstly because the other parts of (XAY}aZ are redundant, and secondly

because by keeping Sh_l_j'd = SO we avoid suspension coordinates in the

wrong place.
We first indicate into which subcomplexes the cells are to be mapped.
olilx (D= (i) = (] x i+3]
Wliindx (] ¢ ([ x [ <G+, i4501])
U([i,i+1] X [J] X [i+j+1])
ot[i]x [ 501D € ([i] < [3] = [i+j,i4541])
U] x [, +1 ]« Lisg+1])
otli,i+1]1x [j,j+1D) (il % [§] x [i+j.i+i+1])
Ui, i+1] = [5]x [i+j+1,i+5+2])
UtliTx Gegaalx [irgrn,iegs2])
Utli,is1] % [3,3+1] x [i+j+2]).
In each case the proposed subcomplex is contractible, so the construction
of ¢ is possible and unique up to homotopy. In each case, the image of
@ must be the whole subcomplex given, so we can refer to the subcom-
plex as cp(eij). Similarly for e(eijk)'

We next note that for each cell e

ik such that 1 +j +k + dim(ei. )<n,

jK

the part of ({(XAY)~rZ) associated with e(eijk) contains a subcomplex
n

of the form

N
X MY A2y AM(T) S injked

where d = dim(eijk) and T4 is a d-plane bundle over e(eijk)' We de-
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fine the corresponding part of P' to be
I3 -i-j-k-
X AY 2 M8 7 yast IR
i" 7 Tk d

where S*Td is the induced bundle over eijk' The map i' on this part

of P' is induced by the map of bundles G*Td‘”9 T, over the map @ of

a
spaces. The identifications to be made in assembling P' are automatic;
one just pulls back the identifications in (XaY)a Z.

We make the structure of P' more explicit. Corresponding to the

O-cells e .. we have
ijk
+ —i-j-
\/ XiAY.Azk,\([i]x[j]x[k]) gtttk
i+j+k<n .
Corresponding to the 1-cells we have
e_i‘—jk AXiI\YjAZkI\SI/\ Sn_l_']_k_l .
i+j+k+1 <n

Here the attaching maps are the obvious ones, involving the obvious signs.

For each 2-cell e=e,. , the bundle 8 T over e is exactly as

ijk’
described in the construction of XAY.

For each 3-cell e=x=e,,

ijk’ there is only one bundle over e extending

the given bundle 6 7 over 2e, since m,(BSO(3)) = m,(SO(3)) = 0. So
we need not worry which bundle arises.

On the other hand, the description of P" is exactly the same as the
p y

description we have just given for F'. This provides the map e:P'—>P"
The map
k' Tel{{X Y — > P!
X g Vg e, p?—F
-1 - - X :
is basically obvious. The functions fa ~, va 1, sa 1 give a function

3
6':§0,1,2,3, ... —>10,1,2,3, ...§". We extend it to a function 6"
mapping each cell of C' (the positive half-line with ourusual cell

: . 3
structure) into the obvious cell of C~. Now we construct the map k' as
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we constructed the map Tel{X a ) —> X aAY.

Y
BC

We now observe that the function

itk Tel({X A ) Z)—> (X AY)aZ actually maps into

YyA
BC B.C,D

(Tel{X "B Y)) AZ; this defines the function

't Tel(X Y))a Z —>(Tel{X A Y~ Z.

“BC BUC,D BC

The function (ral)j' satisfies the definition for i. (Some of the
cylinders spend some of their time stationary and the rest hurrying to
make up for it, but this is allowed.)

This completes the proof of Lemma 4.7, which completes the proof
of 4.3, which completes the proof of Theorem 4.1 so far as it refers to

maps of degree 0.

We now propose to go back and recover the properties of our con-
structions with respect to maps of non-zero degree.
First we introduce sphere-spectra of different stable dimensions.

Let us define the spectrum _§1 by

+1
s" (n+i > 0)

pt. (n+i <0)
L 4
PROPOSITION4.8 We have an equivalence EIA EJ £ 5 S1 J such that

the following diagrams are commutative.

i j k 3 3
(S AS)nS 2 S'Al'A59
eAl l lae
sitas s'hs’



. . i i
Proofs. (i) Any handicrafted smash-product of §° and s gives a
sp )
spectrum which has the same terms as §'") from some point onwards.
We just take care to pick an equivalence which is orientation-preserving.

i) [s5,8] = 1im [, 8™
- = n —» o

= Z; so to check the commutativity
of any such diagram, we have only to check the degree of a map. We have
been careful to make all our constructions so as to do the right thing on
orientations.

Proposition 4, 9. We have equivalences

Yp: X—> ETAX (of degree T)
with the following properties.

(i) Yy is natural for maps of X of degree 0. (This is all we can
ask, because we have not yet made ErAX functorial for maps of non-
zero degree.)

-1

i) y = L.

(iii) The following diagram is commutative for each r and s.
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al
AX<——(SAS)AX

s
l.
§r/\ (ESI\ X)
Yr
X

SSAX

h—

Proof. Clearly if we take Yo = 1_1, it is natural for maps of X of
degree 0. Consider now
0 1
S a X and S a X
= "1,12,3, .. 3 = 9,1,2,3,..3
On the left, the nth term is SlA Xn—l; on the right, the (n-1)-st term is

SlA Xn—l' The structure maps are the same in both cases. So the
1 1 . .
identity maps SAX__;—>5 A~X__, give the components of an equi-
valence of degree +1
0 1
S AX—>8 AX.

It is clearly natural for maps of X of degree 0. Composing with (_l,
we obtain an equivalence Y,

Note that at this point I have essentially picked up the Puppe
Desuspension Theorem, without restrictive hypotheses,

Now I define Yy for all other values of s by induction upwards and

downwards over s, making the following diagram commutative.

eAl (Ell\és)/\x

st
la
1 s
¥i+s 5 A (S AX)
X

One has to check that this is consistent for s = 0. Note also that Yi+s

or Y., whichever is being defined, is natural for maps of X of degree
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0, because all the ingredients of its definition are so.

We now prove the commutativity of the diagram

+ enl s
STEX (5T 5 )aX

by induction upwards and downwards over r. Here we start from the
cases r =0 (whichis a trivial verification) and r =1 (which holds by
the construction of VS). The inductive step is diagram-chasing.

We are now ready to replace our original graded category by one
which appears slightly different. In the new category, the objects are
the CW-spectra just as before; but the morphisms of degree r are
given by

[Er/\x, Y]O
in the old category. Composition is done as follows. Suppose given
§rAX—f—>Y , RN = S/
of degree 0; take their composite to be

s X <20l (55, 5T ax 25 550 (5T K)o 5%, v B s 7,
One has to check that composition is associative, and that
I _S_OAX—>X is an identity map. This is easy.

FROPOSITION 4 10. The new graded category is isomorphic to the
old, under the isomorphism sending

Er/\ X f—> Y (in the new category)
to

f
X—\LT———> ErAX—%’ Y (in the old category) .
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Proof. Since Y. is an equivalence in the old category, it is clear
that this gives a 1-1 correspondence between [ErAX,YJO (that is, the
set of morphisms of degree r in the new category) and [X,Y]r
(morphisms of degree r in the old category). It remains only to check
that this 1-1 correspondence preserves composition and identity maps.
But this is immediate from the properties of Yr in Proposition 4. 9.

If you want to see what you are doing with maps of degree r, I really
recommend considering them as maps Er,\ X—> Y of degree 0. In
particular, it is easy to see how to make X ~Y f{functorial on the new
category. More precisely, suppose given morphisms in the new category

sTAaXtsxt, SSAY-E >y,
Then we define their smash-product to be
ST XAy <2t Tt x Ay 220l o 6T, 5% Ay XAy
To prove that this has all the properties mentioned in Theorem 4.1 is now
a routine exercise in diagram-chasing. At the same time, we check that
we have not altered the definition of fag if { and g happen to be of
degree 0.

This completes the proof of Theorem 4.1.

Exercise. Show that the naturality of ¥, with respect to maps of

degree s is as follows: the diagram

Y
X—— 55X

fl (-n"° Jl,\f

-—*——Hsr Y
Y v, 5'a

is commutative up to a sign of (—1)rs if fe [X,Y]s .
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PROPOSITION 4 11. The smash-product is distributive over the
wedge-sum. Let X = \/Xa; let iy: Xo—> X be a typical inclusion.
a

Then the morphism
v ot V x Y
N -
& XgnY) ( a)A

is an equivalence.
Proof. Use a suitable handicrafted smash-product,
PROPOSITION 4. 12. Let X —f—> Y i Z be a cofibering (it is
sufficient to consider morphisms of degree zero}). Then

Lns
Wax =20 oWy 2wz

is also a cofibering.

Proof. It suffices to check for the case in which {: X—> Y is the
inclusion of a closed subspectrum, i1:Y—=>Z 1is the projection
Y—>Y/X anda N = /\BC.

5. SPANIER-WHITEHEAD DUALITY

Suppose I have a compact subset XC s”, say X490, X # s”. Thenl
know that the homology of the complement (X of X is determined by
the cohomology of X. This is given by the Alexander duality theorem:

) 2 H7(x, p1.) FH (et (X)FH O ((K,p) EH (CX).
However, the homotopy type of (X is clearly not determined by X; it
depends on the embedding. For example, take X = Sl, n = 3; we can em-
bed S1 in S3 as a knotted circle or an unknotted circle, and make
nl(CX) different in the two cases. It would be reasonable to ask the
following question. Suppose X is a good subset, e.g., a finite
simplicial complex linearly embedded in ?)o-n+1. {We make this

assumption to avoid pathologies.) How far does X determine anything
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about ('X beyond its bare homology groups?
It was proved by Spanier and Whitehead that X does determine the
stable homotopy type of (X; even the stable homotopy type of X suffices

to do this. This may easily be seen as follows. First, suppose that I

take X C s". Now embed Sn as an equatorial sphere in Sn+l, and

+1
embed the suspension SX of X in s” by joining to the two poles.
+
Then the complement of SX in s" ! is homotopy-equivalent to the com-

plement of X in S". So if somebody gives me X C 5%, Y C ™ anda

homotopy equivalence f: P —> SqY, I may as well embed sPX in

+
§™*P and s%v in sT79

, because I can do so without changing the com-
t
plements. So without loss of generality I can suppose ] have X'C st

1
Yy C sm and a homotopy equivalence {: X' —> ¥', I can even suppose

that f is PL.

I 1
Now suppose we take X'C $" and embed S” asan equatorial

]
sphere in Sn +1 without changing X'. Then the complement of X' sus-

n'+1

pends; more precisely, the complement of X' in S is the suspension

1 ] t
of that in S° . So now consider S * ™ . In this sphere we can embed
the mapping-cylinder M of f'. In this sphere we have

sm'+n'+l X = m'+1l, _n'

-X=85 (s -X)
Sm'+n'+1 v = sn'+1(sm' -
and two maps
Sm'+n'+l Sx et sm'+n'+1 VIR Sm'+n'+1 oy

But the injections
X—>M<—— Y
induce isomorphisms of cohomology. The Alexander duality isomorphism

is natural for inclusion maps, and therefore f and g induce iso-
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morphisms of homology. But now I can suspend further if necessary to
make everything simply-connected. So { and g are stable homotopy
equivalences, and we have proved the result.

With a little more attention to detail we can show that the passage
from X to the stable homotopy type of its complement in a sphere is
essentially functorial; a map £:X—> Y induces a stable class of maps
f*: (Y—> (X. The functor is contravariant, as we would expect.

The next step was taken by Spanier, and it was to eliminate the em-
bedding in S™. More precisely, suppose I have two finite simplicial com-
plexes K and L embedded in S" so as to be disjoint. I am really in-
terested in the case when the inclusions L—> (K, K—> (L are
homotopy equivalences, but this is not necessary for the construction.
Run a PL path from some point in K to some point in L; without loss of
generality we can suppose the first point is the only point where it meets
K, and the last point is the only point where it meets L. Without loss of
generality we can suppose these points are vertices and take them as the
base-points in K and L, writing bpt. for either. Take some point in
the middle of the path as the point at co. Then we have an embedding of

K and L in R". Define a map

pr K xL —> Sn_1

by —

k-2

I -¢ 11

The maps ulKxbpt. and b lbpt. x L are null homotopic, so we get a map

p(k,l) =

pi KaL —>s77h

Spanier's essential step was to realize that everything could be said in

n-1
terms of this map u. To begin with he considered maps p: KaL—>S
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whose homological behavior was such as you would expect. In order to
e xplain what you woud expect, I need slant products, which I have not
done yet,
So we use the framework we already have. Let X be a CW-spectrum.

Then we can form

[WAX,S]O .
With X fixed this is a contravariant functor of W, and it satisfies the
axioms of E.H. Brown. So it is representable; there is a spectrum )(*
and a natural isomorphism

[wax,s], <I=[w,x"] .

Taking W = X* and 1: X" —> X* on the right, we see that there is a
map

er XTAX —>5.

Using the fact that T is natural, we see that T carries

fw—sx"
fal KA
into WaX x*ax —<>5

Of course, this prescription defines

T: [w,x*]r—» [w/\}(,s]r ,
and by applying the can.onical isomorphism to a different choice of W we
see that

T: [w,x" ] —s [Wax,s]_
is an isomorphism also.

We think of this as being like duality for vector-spaces over a field
K. In that case we have
*
vV = HomK(V,K);

there is a canonical evaluation map



eV @ V—>K;
and there is a 1-1 correspondence
Hom (U®V,K) <—— Hom, (U, Hom (V,K)) .
The dual X* is a contravariant functor of X. For if we take a map

g: X—> Y, it induces a natural transformation
5
[wax,s], <rg) [way,s],

w,x" ], [w,v*],
and this natural transformation must be induced by a unique map
g Y —sx"
(We go through the usual argument of substituting W = v* and
1: v*—> ¥™ on the right.) In terms of maps e, the relation between
g and g* is that the following diagram commutes.
Yiax—— 18 oyty
g*" IJ leY
Xhx —— % >
Let Z be a third spectrum; we can make 2 map
(w,zax"] —T [wax,z]_
as follows, Given
wisz,x*

we take

fal * 1re
WAX > ZaAX AX—> 12

T is clearly a natural transformation if we vary 2Z.
Remark 5.1, T is an isomorphism if Z 1is the spectrum s™.
{The case n= 0 has already been considered, and changing n just

changes the degrees.)
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Remark 5.2. Suppose given a cofibering
Zl——~> z,—> 23—> Z,~>2Z;. If T isan isomorphism for

Zl’ZZ’ Z4 and ZS’ then it is an isomorphism for Z3.

Proof. Use the five lemma,

(W, 2)ax"] = (W, 2,0 ] = [w,2,,x" ] — (W, 2 ax"] =W,z .x"]
| i | L !
twax,z ] — [wax,2,] —>[w X, Z,] —> [Wa x,z,] > [w,\x,zsjr
Remark 5.3. T 1is an isomorphism if Z is any finite spectrum.

This is immediate by induction, using 5.1 and 5.2,

PROPOSITIONS54, If W and X are finite spectra, then

T: (W, z.x"] —> [wax,2]_

is an isomorphism for any spectrum Z.

Proof. Pass todirect limits from the case of finite spectra.

LEMMA 5.5. If X is a finite spectrum, then X  is equivalent to
a finite spectrum.

The proof is postponed until section 6, for a reason which will
appear.

PROPOSITIONS5,6. Let X be a finite spectrum, Y any spectrum.
Then we have an equivalence (X /\Y)*L> X*I\ Y* which makes the
following diagram commute.

e
%
X a) axay —22% 5

hl\ll TeXAeY

3 * 1 E *
XY AX Ay =20 s XAy ey

*® . -
Proof. By 5.5 we can assume that X is a finite spectrum. By
5.3,

3 3 T e
[w,x'AY*]r—L [WAY,X"]r



196

is an isomorphism for any spectrum W, and so is
% Ty
(wav,x"] —— [wavax,s],
by the original property of X:'<, applied to the spectrum WaY. This
state of affairs reveals X aY as the dual of YaX, with
Ty, x=Tx TY' Writing this equation in terms of maps e, we obtain the

diagram given by a little diagram-chasing.

I should perhaps emphasize that I have only done what I need later.
In particular, I have not proved that S-duality converts a cofibering of
finite spectra into another cofibering. This is true, but it needs a
slightly more precise argument, given in Spanier's exercises. Also, I
have only talked about maps into }(’;< or ZAX*. Once we have the result
on cofiberings we can talk about maps from }(*, at least when X is a

ek
finite spectrum, and so prove X ¥X.

6. HOMOLOGY AND COHOMOLOGY
Suppose given a spectrum E. Then we define the E-homology and

E-cohomology of other spectra X as follows,

() E_(x) = [, Eax].

(i) E'(X)

)

x,E]__.
These definitions are due to G. W. Whitehead [17] .
In order to convince ourselves these functors do deserve the name

of generalized homology and cohomology, let's list their trivial properties.
Proposition 6. 1. (i) E, (X) is a covariant functor of two variables

E,X in our category, and with values in the category of graded abelian

groups.
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(Note: A morphism {: X—> Y of degree r induces
f0 En(X)-—> En+r(Y)’ etc.)

The same is true for E*(X), except that it is covariant in E and
contravariant in X.

(ii) If we vary E or X along a cofibering, we obtain an exact se-
quence. That is, if

xf sy & 52

is a cofiber sequence, then

fa B
En(X) En(Y) En(Z)
and
o *
ENX) «<— E™(Y) «<E— E"(2)
are exact; if EXL >F Jd s G is a cofiber sequence, then
iy I
E (X)) —>F (X)) —> G _(X)
n n n
and

i, e
EMX) ——> FU(X) > G"(x)

are exact.

(iii) There are natural isomorphisms

o 1
En(X) = En+l(S rX),
E_(x) 2 E" Hs'x).

(iv) E ()= E{S) =7 (E).

The proofs are mostly easy., Part (ii) uses 4.12, 3.9 and 3.10.
Part (iii) uses 4.9--the fact that we have an equivalence X—> SIAX of
degree 1.

These statements give the analogues for a theory defined on spectra

of the Eilenberg- Steenrod axioms.
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Once we have defined homology and cohomology of spectra, of course
we can define homology and cohomology of CW-complexes. That is, if
L is a CW-complex, we define En(L) to be En applied to the suspension
spectrum of the complex L, and similarly for i‘:vn The theory on com-
plexes satisfies the same axioms.

For example, let Hrn be an Eilenberg-MacLane spectrum with a
single non-vanishing homotopy group ™ in dimension 0; then (Hm), is
a homology theory defined on spectra with a single non-vanishing co-
efficient group, 7 in dimension 0. Apply (Hm), to the suspension
spectrum of a complex L; it must coincide with the ordinary homology
theory of L. If one happens to have seen the ordinary homology groups
of a spectrum defined before, then (Hn), is the same thing, as we see
by passing to limits.

THEOREM 6.2. (G.W. Whitehead). En(X) é‘Xn(E).

Proof. EAX—S— X +E isan equivalence, so

[s.Eax] 2 [s,xAE].

COROLLARY 6.3, (Hm) (HG) 2 (HG)n(Hrr) .

This was found empirically by Cartan, but it is non-trivial to prove
directly. G.W. Whitehead's discovery of the proof just given was
probably an important step in his thinking about the connection between
spectra and homology theories, v

PROPOSITION 4. If X is a finite spectrum, En(x*) T ETYX).

Proof. [S,EI\X*JHL [X,E] ~ is an isomorphism by 5. 4.

This shows that generalized homology and cohomology behave

correctly under S-duality.
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Proof of 5,5: that is, if X is a finite spectrum, then )("'k is
equivalent to a finite spectrum.

Let X be a finite spectrum. Then [S,X*] = [X,S]n, and the right-
hand side is zero if n is negative with sufficiently large absolute value,
But Hn(X*) = H_n(X), which is finitely generated in each dimension and
zero outside a finite range of dimensions. Therefore X*is equivalent to
a finite spectrum.

Remark 6. 5. Every generalized homology or cohomology theory
defined on the category of CW-complexes arises by G. W, Whitehead’s

construction from some spectrum E.

In order to have a proper statement, it is necessary to spell out the
assumptions we make on the homology or cohomology of infinite complexes.
In the case of homology we assume that

lig E (L) —> E (L)
a

is an isomorphism, where L runs over the finite subcomplexes of L.
In the case of cohomology we assume the Wedge Axiom of Milnor and
Brown, thatis,

ENV L) —>TT By
a a

o o
is an isomorphism.

1 propose to omit the proof of Remark 6.5. In the case of cohom-
ology the results is fairly easily deduced from E.H. Brown's theorem in
the category of CW-complexes, and this was done in G, W. Whitehead's
original paper [17]. The argument is essentially that given in section 2.

In the case of homology we first obtain a homology theory on spectra in

an obvious way. One then converts one's homology theory into a cohom-
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ology theory defined only on finite spectra, by the definition
R E
EMX)=E_(X) .

{So one only needs the homology theory on finite spectra, in which case
it is trivial to define it.) One then has a contravariant functor defined
on finite spectra or finite complexes, and we have the task of represent-
ing it. I have proved the required result {Topology 10 (1971) pp. 185-
198).

We now consider generalized homology and cohomology groups with
coefficients. Let G be an abelian group. We can take a resolution
0—> R—i—> F—> G—> 0 by free Z-modules (a subgroup of a free abelian

group is free). Take \/ S, \/ S, such that
acA BeB

"o, S =R
S)y=F.
ﬂo( B\e/B )
Take a map f: a\e/A s -—>B\€/B S inducing i. Form
M = ( V S) v C( vV S); this is a Moore spectrum of type G. Thatis, we
BeB f 'aeA
have

for r <0

I
o

m_(M)
ny(M) = H (M) =G,

0 for r>0.

H_(M)
Now for any spectrum E, we define the corresponding spectrum with
coefficients in G by
EG=EaM.
Example. SG means SAM =M, so a Moore spectrum of type G
may be written SG.

PROPOSITION 6.6, (i) There exists an exact sequence
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0—> nn(E)® G—> "n(EG)—> Torlz(rrn l(E),G)——> 0.

(This need not split, e.g., take E=KO, G=2_,)

2
(ii) More generally, there exist exact sequences
0—> En(X)® G—> (EG)n(X)——> Tor?(En_l(X),G)"—> 0
and (if X is a finite spectrum or G is finitely generated)
0—> E"(X)e G —> (EG) (x)—> Tor?(En+1 (X),G)—> 0.
Proof. \c{ s—> E/S —> M 1is a cofibering, hence the top row of
En(Ys) —= EA(\ﬁ/ §) —> EaM

|

VE E
a

[N

<

is a cofibering. Similarly
EA(V 5)aX —> E \B/ S)aX ——> EaMaX
J/ a j
V Eax V Eax
a g
is a cofibering. Therefore we get exact sequences

—>n X E) —> nn(\é E) —>n (EaM)—>

a3 o

R®m_(E) LU ®n_(E)

and more generally,

—>[s, Veax], ——>Ts, ¥ £ax] >[5, EaMax] —>

n

Re[s, Ex] —8 S rgls, Eax]
n n

— X, VE] ——x, VE] — [x,EaM]_—>
n

o

R@[X,E] ——>F®[x,E] .5 -~ e

1R
lle
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To get the isomorphisms in the last case we assume either that X 1is a

finite spectrum or that @ and B run over finite sets, which we can

arrange if G is finitely generated. Now the cokernel and kernel of

i®1 are, according to the case,

G ®n (E) and lz(c n_(E)
G ®E (X) and Tor? (G, E,(X))
G®E (X) and lz(c E™(x)) .
Example.

If H means an Eilenberg-Mac Lane spectrum of type Z
then HZ does indeed mean the Eilenberg-Mac Lane spectrum of type G

Proof, The Tor term is zero in

1
0—28®G —> n,(HG) —» TorZ(Z,G) —> 0.

PROPOSITION 6,7. If G is torsion-free, then

mlE) ® G —> mu(EG)

and

E(X)® G —> (EG) (X)

are isomorphisms, and if X 1is finite or G finitely generated,

E x) @ 6 —> (EG) (%)

is an isomorphism.

Z
Proof. T (M (E),G) =0
f(E (X),G) =0

Z
and ) (E (X),G) =0

Example. Take G =1, and take a map it S —> H representing a

generator of ﬁO(H) = 7. Then i induces an equivalence SQ ZsuQ,
i.e., the Moore spectrum for Q is the same as the Eilenberg-Mac Lane

spectrum.



Proof. In the diagram
m.(8) ®Q——> TTn(SQ)
i.®1
" (H) ®Q ——>n (HQ)
the top and bottom rows are isomorphisms by 6.7. But by a theorem of
Serre, rrn(S) ®Q=0 for n 4: 0; and for n=0, i, rro(S) -_—> rro(H) is
an isomorphism.
Example. The map i: § —> H induces
T(X)® Q —> H.(X)® Q,
that is, rational stable homotopy is the same as rational homology.
Proof. T (X) = 5,.(X). Again by 6.7 the top and bottom rows of the
following diagram are isomorphisms.
S*(X) ® Q> 85Q.(X)
N
H*(X) ® Q — > HQ,(X)
By the previous example 5Q —— HQ 1is an equivalence, so the right-
hand arrow is an isomorphism.
Now we give a checklist of the standard spectra corresponding to the
usual generalized homology and cohomology theories.
(i) HG, the Eilenberg-MacLlane spectrum for the group G, so that
G (n=0)
m (HG) =
0 (n#0)
The theories (HG), (Hg)* are ordinary homology and cohomology with
coefficients in G.
For greater interest, let G, be a graded group, 2nd define

H(G,) = A H(Gn,n) =7 H(Gn,n); the second map is an equivalence by
n n
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3.14. Then by the first form

HIG,) (X) = > H, ,(XiG,)
and by the second

G0 = TT ™66 ) .

(ii) S, the sphere spectrum. The corresponding homology and coho-
mology theories are stable homotopy and stable cohomotopy. With all due
respect to anyone who is interested in them, the coefficient groups nn(S)
are a mess. There is a lot of detailed information known about them, but
I won't try to summarize it.

(iii) K, the classical BU-spectrum. This is an (- or Qo-spectrum;
each even term is the space BU or Z xBU; each odd term is the space
U.

The corresponding homology and cohomology theories are complex
K-homology and K-cohomology. In fact itis rather easy to see that for
a finite-dimensional CW-complex X, [X, Z x BU] agrees with the
Atiyah-Hirzebruch definition of K(X) or ’IZ(X) in terms of complex
vector-bundles over X. (Here we have to take %(X) if [X,Z X BU]
means homotopy classes of maps preserving the base-point, or K(X) if
we work without base-points.) This shows that our definition of K*(X)
agrees with the Atiyah-Hirzebruch definition if X is a finite-dimensional
CW-complex. For infinite-dimensional complexes our K (X) is the
variant called 'representable K-theory', i.e., we take %,z xBU] as
the definition.

The coefficient groups are given by the Bott periodicity theorem:

zZ {n even)

1 (K) =
n 0 (n odd) .
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We have a map K & SaK dal oy —> H(m(K) ® Q). This map is

the universal Chern character.
(iv) K-theory with coefficients. Suppose we are willing to localize
7 at the prime p; i.e., let QP be the ring of fractions a/b with b
prime to p. Then we can form KQP. It splits as the sum or product of
(p-1) similar spectra E. The typical one has
Q {(n =0 mod 2(p-1))
m (E) =
0 otherwise
Of course you may just want to split K into the sum or product of d
similar spectra, so that a typical one has
R {n = 0 mod 24)
m =
n(E) 0 otherwise ,
where R .is a subring of Q. In this case one need only invert those
primes p such that p# 1 mod d. For example, for d= 2 take
rR=2z[1/2]. see [1].
(v) Connective K-theory. bu is a spectrum having a map bu—> K
such that
nr(bu) —> rrr(K) is an isomorphism for r >0, and
m.(bu) =0 for r <0.
We may take the O-th term of bu to be Z X BU and the second term to
be BU. If X is a complex, we have
buO(X) = KO(X),
but the groups bu’(X) and K™(X) are different in general for n> 0 .
(vi) Similarly, one can consider connective K-theory with coefficients.
(vii) KC, the classical BO-spectrum. This is an - or QO—

spectrum; every term E is the space BO or Z x BO; every term

8r
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E8r+4 is the space BSp or Z x BSp. The other terms are the ones
which come in Bott's periodicity theorem for the real case:
0, 0/U, U/Sp,BSp, Sp, Sp/1J, U/O, BO .

The corresponding homology and cohomology theories are real
K-homology and real K-cohomology. In fact {as for the complex case)
for a finite-dimensional CW-complex X, [X,Z X BO] agrees with the
Atiyah-Hirzebruch definition of KO(X) or {(\6(}() in terms of real
vector-bundles over X. So our definition of KO*(X) agrees with Atiyah
and Hirzebruch if X is a finite-dimensional CW-complex.

The coefficient groups are given by the Bott periodicity theorem:

n=0 1 2 3 4 5 6 7 8 mod 8

nn(KO) z .

I
N
N
N
~
=
N
=
=
o

(viii) KO-theory with coefficients. The quickest thing to say is
0 2y ~ 0 2
that by a theorem of Reg Wood, KOA(S Uq e’) ¥ K. Here S U’l e
2
means the suspension spectrum whose second term is CP . The attach-
Al
ing map n is stably of order 2. So sz{1/2] ‘—rl_>SZ[1/2] factors

through (s° U, ez [1/2], which is contractible. So

kz[1/2] = KoA(souII eHzl1/2]

k3

KOn(s®v sz [1/2]

”

koz[1/2](s% s%) .
So the two summands into which Kz [1/23 splits are actually copies of
KOZ[]/Z]. It follows that if you introduce a ring of coefficients contain-
ing 1/2, K cannot be distinguished from two copies of KO. Of course
this is classical, by a more direct proof.

(ix) Connective real K-theory. bo is a spectrum having a map

bo —> KO with properties like those of bu —> K .
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(x) KSC, the self-conjugate K-theory of Anderson and Green. The
quickest way to say it is this. To each bundle & we have its complex
conjugate € which has the same underlying space but a new C-module
structure on each fiber; the new action of z is the old action of z.
Stably, this is induced by a map Z x BU LN Z x BU., We can define a
map of spectra T: K—> K which has components t in dimensions
divisible by 4, and -t in dimensions of the form 4r+2. Now take KSC

to be the {iber of

K l—?—> K.
You can read its homotopy groups off from the exact sequence of this

fibering: we have

n= 0 1 2 3 4 mod 4

1

N
N
o
N

m (KSC) z

(xi) MO, the Thom spectrum for the group O. The corresponding
theories are unoriented bordism and cobordism. To connect our definition
of MO,(X) with a geometrical definition in terms of manifolds one has to
make use of a transversality theorem at some point; see e.g., [5]

We have

MO ¥ H(m,(MO)) .

m,.(MO) is a polynomial algebra over Z, with one generator in every
dimension d > 0 such that d + 1 is not a power of 2, The decomposition
of MO as a wedge of copies of HZZ shows that the theories MO, and
MO* are not very powerful, but they are good for studying unoriented
manifolds.

(xii) MSO. The corresponding theories are oriented bordism and

cobordism. We have
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MSO * H(rm (MSO)) .

m,.(MSO) is a direct sum of copies of Z and ZZ' It is known, but
somewhat complicated to describe.

(xiii) MU. The corresponding theories are complex bordism and
cobordism. m,(MU) is a polynomial algebra over Z with generators of
dimension 2,4,6,8 ... . Thereis a very good map MU—> K due to
Atiyah-Hirzebruch, Conner-Floyd [3], [5] The theories MU*, MU*
are powerful.

(xiv) MU with coefficients. If one takes MUQP, it splits as a sum
of suspensions of similar spectra., A typical one is BP, the Brown-
Peterson spectrum. T7,(BP) is a polynomial algebra over Qp on gen-
erators of dimension Z(pf-l) for f=1,2, ...

{(xv)  MSpin, MSU, MSp. m{MSpin) and n,(MSU) are known,
but m, (MSp) is not yet known.

For a general reference on bordism and cobordism, I suggest
Stong [16].

We now consider the elementary additive properties of generalized
homology and cohomology theories.

Recall that I had my theories E*,E* defined on spectra, and then I
defined them on CW-complexes with base-point by saying

ElL) = E(L)

By = eNT)
where L is the suspension spectrum of L. I should say how one defines
relative groups E_(X,A), E*(X,A). This is well enough known. One
defines X/A to be the quotient complex in which A is identified to a

new point, which becomes the base-point. In particular, X/@ =X v pt.,
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also written X+ . Alternatively, one constructs the unreduced cone CA
and forms X o CA, taking the base-point at the vertex. This happens to
be the same as the reduced cone X+u CA+. Then one has a map
Y UCA——>X/A, which is 2 homotopy equivalence, Then one defines
E.(X,4) = E (Xw CA) = E(X/A),
using the isomorphism r, to identify the last two groups. Simrilarly,
E*(X,A) = E(X UCA) = E (X/A) .

Note that E*(X,pt.) = E*(X), as it should be, and similarly for
EX,pt.) = E*(X).

The induced homomorphisms are obvious: a map £: X,A—> Y,B
induces

XuCA ——— > YUCB
rJ] rl
X/A —> Y/B

and we take the induced homomorphisms of E* or E .

Excision is now obvious. Suppose a CW-complex is the union of two
subcomplexes U, V. Then

u/unN v—>uuVv/V

is actually 2 homeomorphism, so it surely induces an isomorphism of o
and E"k. Homotopy is equally obvious. Now we would like to have
boundary maps and exactness. Given an inclusion X—> Y, we have a
cofibering
iyt sytxtevte ext—e sxti s syt

~s
So applying E  we have the following exact sequence.
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i o ~ +. Si, ~ +
E (X) E (Y) Ep(Y,X) —>E (5X ) %> E_(sY")—>..

iy L .

—_—
? En-l(X ) En—l(Y )

|- |
1og

E ) ——E (V)

IfI define 3 to be the composite indicated, the sequence will be exact.
So in order to fix the boundary map and have it natural I simply want to
. o . . . = o N 1 +

make some quite explicit choice of isomorphism En(X )= En+l(s A X ).
Let's recall that almost the last thing I did in section 4 was to make

the smash-product a functor of maps of degrees other than zero. Sol

look at the sphere-spectrum
0 .1 .2
S=(s,5,s, ...)

3

and the sl-spectrum Sl - (SI,SZ 82

and I make a map from one to the other by taking the identity map from
n th n 1 .
S, the n  component of S, to S, the (n-1)-st component of S°. This
gives me a morphism of degree 1, say ¢:5 —> S . (This is actually
Yl for the spectrum S, but you are allowed to have forgotten about Yy
by now.}) ¢ is clearly an equivalence. Since I have smash-products of
morphisms of nonzero degree, I am entitled to form
~ 7l 1
X ¥ SAX—> S5 ~X.
This is an equivalence too. (Of course, the smash-product of morphisms
of nonzero degree was defined in terms of the maps Y, and if you go
back to the definition and unwrap it, you find that this is just the map Y,
for the spectrum X.) I now say that this map
o nal

X ———> slAX

is the one to be used in inducing

= 1
=
E (X) E ,,(SaX)
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ENX) <—— M (slax).
This gets my suspension isomorphism in a form convenient for later
work, and makes the boundary and coboundary quite precise.

Now we would like to assure ourselves that all the contents of
Eilenberg-Steenrod, Chapter I, go through. But we can also put the
question in this form: is there anything in Eilenberg-Steenrod Chapter I
which can't be derived from our constructions? The grand conclusion
should be that the homology groups of spheres are the right thing, and we

already know that

E (s = [s" E]

113

1-rr-n(E) )
The only problem is to compute m,(E) for a given E. So what about the
other things in Eilenberg-Steenrod Chapter I? One very useful thing is
the exact sequence of a triple. Suppose we have CW-complexes
XDYDZ . We would like to know that the following sequence is exact,
iy e A
EY,Z)—> E X,2)—> En(X, Y) ==k ¥.Z)—/> ...
Here A is the composite
E %, 7 2> E (1) P> z
A%, ¥) () E _,(Y,2).
No special proof is needed. We know that the following is a. cofibering:
+ +, %+ + o+ +,_+ +_+
vy /2t ——= %" —>x /Y ——> ¥ /2y —>sx /) .
Therefore I know that I have an exact sequence
E (v 21t g L 2 L
oY Z) X5 Z) E (X,Y) E _,(¥,2) E _(%.2)

provided that 3 is induced by the top line of the following commutative

diagram.



rAYA

X7y e oz ez s syt

X v CY
The rest of the diagram shows that ¢ 1is the same as A
There is however a moral to be drawn. We know how to display the

various groups and homomorphisms involved here in a sine wave diagram,

E(Z)  E (X)/_/\E (X, Y/_A\i LY,2)
E(Y) E, (x z E_(Y) E,(X,2)
N \ / N
E,(Y,2] E E, ()

It is useful to know that we can obtain this whole diagram from a diagram
of cofiberings.

LEMMA 6.8, Suppose given a commutative diagram

of CW-complexes with base-point. Then there exists the following

commutative diagram of cofiber sequences

\/ \ / \{ (YU CZ)%;(U B
;Bcs/ A \ A

\_’/

Here g' is induced from g, etc. If the original diagram is only homo-
topy-commutative, then by choosing a homotopy you can reduce to the

case in which it is commutative.
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This is sometimes known as Verdier's axiom. The proof is ele-
mentary. One way to say it is this: you can assume without loss of gen-
erality that { and g areinclusions, and then I have told you everything
necessary already. Since the constructions are elementary, they com-
mute with suspensions on the right and carry over to spectra. So the
corresponding lemma is true for spectra, In a fully Bourbakized treat-
ment this lemma would go in section 3.

The next thing we would like to know is the Mayer-Vietoris sequence.
This needs no special proof either., Suppose that we have a CW-complex
which is the union of two subcomplexes U and V. We wish to know the
relationship of E_(UJV),E.(U), E(V),E(UNV). We may replace these

+ + + o+
by E,(S(UUV) ), etc. So wetake 5(UnV) and S5(U vV ) and makea
+ +
map from one to the other by taking il'iZ’ where il:(Uf\V) —> U and
+
iZ: (unvy —> v* are the inclusions. Now let me form the cofiber
sequence
+ + o+ + o+ + 2 +
sS(unv) —>S(U vV ) —>5U0 vV )ui . CS(UAV) —> S (UAV) —=. ..
172
The third term is the same as
+ + +
SU v SV U Cyl{S(uUNV) ),
+

where the (reduced) cylinder is attached by i] to SU and iz to SV+.

3
But this clearly has the same homotopy type as S{(UuV) . So we get a

cofibering

i.-1
sunv)t 2> 5ot v —> s(uov)—s sHunv) £ — ... .

Here the third map can be written either as
+ = 2 +
S(UUV) — S(UwV/V) <— S(U/UnV) —> 5 (UNV)
or as minus

s(uuv) —s s(uuv/ty<= s(v/uny) —> siunv) .
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So we get the following long exact sequence.
{1y, ~12x%) (G1aodou) ) A
E (Unv) 2T o F (U) ®E (V) ——E> E (UUV)-=> E  _(UNV)—>..
n n n n n-1 :
Here the boundary map is given by
E (UUV)—> E_(UUV, V) <— E_(U, UNV) 25k LU
n n-
or minus
4
E (UUV)—> E_(UUV,U) <— E_(V, UNV) 2s>E [unv) .
n-
We proceed similarly in cohomology.

Of course this construction also carries over to spectra. In fact for
spectra we need not bother about writing the suspension, because up to
equivalence everything is a suspension. We obtain:

LEMMA 6.9. Suppose a CW-spectrum is the union of two closed sub-
spectra U,V. Then there is a cofibering

iy, -i,) (31, 33)
Uny —> UvV ——— UUV —= Susp(UNV)—> ..,
in which the third morphism is
o~
UuV—> UuV/V <— U/UNV —> Susp(UNV)
or minus
YuV—> UoV/U «<—V/UNV —> Susp(UNV).

We may call this the Mayer~Vietoris cofibering.

7. THE ATIYAH-HIRZEBRUCH SPECTRAL SEQUENCE
In this section we study the machine which plays the same role in the
study of generalized homology theories as the Eilenberg-Steenrod unique-
ness theorem plays for ordinary homology theories. Let us suppose for
convenience that X is a finite-dimensional CW-complex.
THEOREM. For each CW-spectrum F there exist spectral

sequences
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H(X3m (F) === F_, (X)
HP(X (F) == FP Y(x) .
q P

These spectral sequences were probably first invented by G. W,
Whitehead, but he got them just after he wrote the paper [18] in which
they ought to have appeared. They then became a folk-theorem and were
eventually published by Atiyah and Hirzebruch, who needed them for the
case F = K.

It is probably desirable to give the first part of the construction in
greater generality. Suppose I have a CW-complex X with a finite
filtration by subcomplexes,

g=X 1 CXeCX,CX,CL..CX =X
To get the Atiyah-Hirzebruch spectral sequence you take X = X7, the
r-skeleton; but other choices of filtration are possible, and sometimes
useful. If we then apply a functor F, or Fr to all the available pairs
and triples, we get a maze of interlocking exact sequences. The spectral
sequence helps us to find our way through this maze and to distill out the
essential information.

There are two ways to present the distillation. The first is due to
Massey, and it is the method of exact couples. We observe that we have
an exact sequence, which we write in a triangle like this.

iy
F*<XP_1) _— F*(Xp)
E) j*
F*(XP'XP-I)

If we add over p, we obtain
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Z F*(X

P

)—>ZF<X)

RN

2 FuX X))
5 p’ T p-1

Here we interpret F X ) as 0 for p<0 and as F*(X)

Now we have a triangle of the following form.

1,
A * > A
x /
c

for p>n,

Massey called such a triangle an exact couple, and he showed that from

such an exact couple you could obtain a derived exact couple

Al ———————————> Al

N%

For example you define d; =j,3: C —> C and define C'=Ker dl/Im dl'

Iterating this procedure, you obtain at C',C",C'! etc.

of the spectral sequence.

all the terms

A suitable reference is Massey [9]

The second method probably goes back to Eilenberg, and it is

essentially equivalent; it consists simply of writing down explicit

definitions of the desired groups and homomorphisms. For example, we
define
r 3
z = Ker (X ,X y———> F (X , X )
P:q i +q P’ p-1 ; ptq-1 p-1 p-r’Z
=1 X ,X_ )———>F (X ,X )
m {F p+q( P’ p- r) +q( P p-l)g
BY =Im {F (X X )= F (X ,X_ )]
P-q prq+l” ptr-1""p" p*a p p-l
1
= Ker {F X X ) —————=F X, » X ,
{ pra % p ¥p-1 p+q( ptr-1 p-l)g

r
check B (T2  , and define
pa” “p.q

»



We define the boundary maps dr by passing to the quotient from boundary

4+
maps O in an appropriate way. We prove Ker dr/Im drnz E; ; by
r

diagram-chasing. For r sufficientlylargethe groups Z; g’ Bp q and
Er become independent of r, and may be written z® , Boo and
Ps9q P.q P,9q

E® .

P, 9

We filter the groups Fm(X) by taking the images of the maps
F (X)—=>F (X);
m' p m
the image of Fm(Xn) is the whole of Fm(X), the image of Fm(X_l)
is zero, and the quotients of the successive filtration subgroups are iso-
morphic to the groups E;oq for p+q = m, as one sees with a little
diagram-chasing.
So .one gets a spectral sequence with
1
= F X X —F X) .
pra ™ FprgFp ¥p1) P P+q( )
A similar construction works in cohomology.
Now we revert to the case in which we take the skeleton filtration on
r n
X, so that Xr =X and X=X . Then we have
P wp-1
E =F X5, X
P+q( )
S~ P P—l
=F (X7/X
ptq )
e~
=F (V sh
P*q g
=2 " (F)
a
= CP(X;ﬂq(F)) , the cellular chains of X
with coefficients in ﬂq(F).
Now we need to know that we have the following commutative

diagram.



E! g C (X;m (F))
P>9q P q
‘o ;

N #

C (X;n (F)
p-l,q p-1 q )

2

3

If so, then we have E x Hp(X;nq(F)). For this purpose there are two
alternative methods of proceeding.

(i) Suppose we know that np(sp) =Z. Then we argue that we simply

have to find one component -of our map 3 , say
T (F)—— m{F
g q'F) %: q'"
iaT lpe
m(F F
q'F) g F)
One sees by diagram=-chasing that this is the homomorphism of
F (Sp_l) induced by the following map.
p*q-1
- -1 - - - -
Pl —> xP sy Pl /P2 o \/gPml 5 P!
B
Here the first map is the attaching map for the cell indexed by «, and the
last is the projection to that indexed by 8. This composite map has to
have a degree v, and the homomorphism of fp?(lfl(Sp-l) which it in-
duces is multiplication by v. But then v is also the incidence number
-1
between the cells eg and eg which figures in the definition of
2 CP(X;G) — CP_I(X;G) .
(ii) If you deny me the knowledge that TrP(SP) = Z, then I have to be-
gin by assuming that X is a finite simplicial complex. In this case
1 C_(X;G)—>C X;G
3 CLX5G) p_1( )
is given by a combinatorial formula. I arrange the proof that
P 4P 1, o .
F X5, X Y¥ C (Xsm (F
P+q( P q( "

with slightly more care and diagram-chasing, so as to incorporate a
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proof that the isomorphism takes cil onto the boundary ?» given by the
combinatorial formula. This is essentially as in Eilenberg-Steenrod,
where they prove the uniqueness theorem. It issues in the result that
when X 1is a finite simplicial complex, you can take the H in

X
p+q( )

Hp(X;ﬁq(F))*p:b F
to mean finite simplicial homology. Of course this form of the result is
the one which includes the Eilenberg-Steenrod uniqueness theorem: for
a finite simplicial complex, any ordinary homology theory agrees with
finite simplicial homology with the same coefficients,

Example. Take F = K, the classical BU-spectrum, and X = cp”.

We have

z p even, OEprn, q even
HP(X;ﬁ_q(K)) =
0 otherwise

The E_-term is illustrated as follows.,

2

q

N
zZ z Z zZ zZ O
Z Z Z z zZ

P

Z Z Z Z z O
Z Z Z Z Z

Since the terms with either grading odd are zero, the spectral

sequence collapses, and

2m n n
K™ cP)y=% z.
0
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The Atiyah-Hirzebruch spectral sequence works for infinite com-
plexes, but we need the discussion of limits in the following section,

The spectral sequence also works for spectra X, provided they are
bounded below, i.e., there exists y such that nr(X) =0 for r<vy,
For spectra which are not bounded below you can still formally set up the
spectral sequence, but the convergence is so bad that the spectral

sequence is unusable in practice.

8. THE INVERSE LIMIT AND ITS DERIVED FUNCTORS
Let I be a partially ordered set of indices a. We assume I is

directad, that is, for any o,f thereisa vy with a<vy and B <¥vy. An
inverse system G of abelian groups indexed over I consists of abelian
groups GCL (one for each a € I) and homomorphisms guB: Gc1 <—- GB
{one for each pair of indices with a <f in I). Such inverse systems
form the objects of a category; a morphism 8: G —> H in this category
is a list }eag of homomorphisms GG: Gy —> H, such that

8 =h .8 whenever a <fB. We define Lim G to be the subgroupof
ik

afag afa

UGQ consisting of lists {x.¢, xq € Gg» which satisfy x, = 84pp for

all a <B. The functor Lim 1is representable in this category; for let

Z be the integers, and let Z be the inverse system in which Zy=12

and z o = 1; then Hom(Z,G) £ Lim G. Moreover, this category has
B et =

enough injectives. In fact, let I be an injective abelian group; let I_Y

be the inverse system in which

1 if y<a 1 if y<a

0 otherwise , 0 otherwise



Then I‘Y is injective, and we get enough injectives by taking products of
objects like I—‘Y' We can therefore do homological algebra; in particular,
we have the functors

i

Lim' G = Ext'(Z,G) .

L0
We have Lim G= Lim G.
Frequently we have I= §1,2,3, ... $%. Inthis case we have an

alternative construction of Lim . Given G, define a cochain complex

C by
0
c0=c1=T\'Gn,
i 8{x 1 =§x -g x £ for {x{ eC, .
C =0 for r>1 , n n n,n+1 n+l n 0
T

Let Hi be the ith cohemology group of C. Then it is immediate that
HY = Lim G . To show that H & Lim’' G, it is sufficient to make the
<—— = <= =2
following remarks.
(i) Let 0 —> G!' —>G i G"—>0 bea sequence which is exact
J
in the category of inverse systems, thatis, 00— Ga——> G s G"——> 0
is exact for each a. Then we obtain an exact sequence of chain
complexes
0—>C'—>C —=>C"'"—>0,
and hence an exact cohomology sequence
0 0 0 1 1 1
0—>H' —>2H —>H" —>H —>H-—>H""—>0.
(ii) We have constructed enough injectives with the property that all
their maps s are epi. If all the maps Bug 2Te epi, it follows that Hl
is zero. So Hl vanishes on enough injectives.

It follows that I..imi G = Hl, and in particular I_,iml G=0 for i>2,
-~ < = e

assuming I= %1,2,3, ...{. For a general I we would not have this,
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Exercise {i). Let I= {1, 2,3, ...5, and let G be an inverse
system in which the maps g are mono; thus we may regard G1 as
n, m
a topological group, topologized by giving the decreasing sequence of sub-

groups Im I Then ']zimo G =0 if and only if G, is Hausdorff;
n =
1_.iml G =0 if and only if Gl is complete. (Here we use words so that

1

""complete' does not imply ""Hausdorf{f'; it means that each Cauchy
sequence has a limit, perhaps not unique.)

Exercise (ii). Let 1= {1,2,3, .. f We say that G satisfies the
Mittag-Leffler condition if for each n, there exists m such that

Img =Img for p>m; thatis, Im gnp converges. Show that if

np
G satisfies the Mittag-Leffler condition then Lim! G =0 .
= ” =

The cochain complex used above is due to Milnor, '""On axiomatic
homology theory", Pacific J. Math. 12(1962), 337-341. He made the

following use of it. Let E bea generalized cohornology theory satis-

fying the wedge axiom; this axiom says that the canonical map

~

*
E'(Vx)—>TTE )
a @ a a
5L bk
is an isomorphism. {(One can use E" instead of £ if one uses the dis-
joint union instead of the wedge.) Suppose given an increasing sequence
of CW-pairs (X _,A ), and set
n n
X = knj X A=A
PROPOSITION 8.1 (Milnor). There is an exact sequence
.1 .9-1 q . 0.9
0—> Lim ™ E (X ,A)—>E(X,A)—>Lim E’(X A )—>0.
(T n n < n n

Sketch proof. First consider the absolute case. Replace X by the

telescope \r_lj[n,n+l]XXn. Set U= \;1)[2n,2n+l]'xx2n,

V= U [2n+l, 2n+2] x XZ , sothat U consists of the even-numbered
n
n

+1
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cylinders, V of the odd-numbered cylinders. Using the wedge axiom,
show that the part
ed(v) ® E%v) —> EYunv)
of the Mayer-Vietoris sequence coincides, up to isomorphism, with the
cochain complex
© ©
TTEYUx )—> TT e%x )
n n
1 1
considered above. When you have a sound proof for the absolute case,
relativize it.
Proposition 8.1 is evidently valid for spectra as well as spaces,

Sketch of applications. It may happen that we wish to construct a

morphism f:X —> E, and can construct morphisms f :X, — E, where
{Xn} is an increasing sequence of subspectra whose union is X. Suppose
that fn\Xn_l = fn—l' Then 8.1 assures us that there is a morphism

f:X —> E whose restriction to each Xn is fn. (In fact, so much is

easy to prove directly by using the homotopy extension property.) How-
ever, it is difficult to check that morphisms constructed in this way have
any good properties, unless one has a uniqueness statement; one needs to
know that f is determined by giving len for all n. By 8.1, it is
sufficient to prove that Ié_i‘n_’\l [Xn, E]l =0.

For some applications it is important to know how inverse limits
work in spectral sequences. Suppose, for example, that we take a
generalized cohomology theory E* satisfying the wedge axiom and a
CW-complex X containing an increasing sequence of subcomplexes
g = X-ICXOCXJC ...CX _C...CX. Suppose also that
Lim’ E*(X,X ) =0, ugl E*(x,xn) = 0. (For example, we might have

%
= i , btai half-pl t
X kx{xn)_ Applying E , we obtain a half-plane spectral sequence
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4+
whose term EP’3 js EP CI(XP,X ). In what sense does this spectral

p-1

sequence converge? We may be interested in three conditions.

(i) Observe that EP;? —> Ei’q is mono for r > p. So we can ask
r

that the map EP’9 —5 Lim EX'? should be iso.
e ) <— r
i 1 _.p.a
(ii) Similarly, we can ask that Lim" E =0.
«<— T

r
. +
(131) Let FP'9 be the filtration quotients of EP 3(X), so that we

have exact sequences
0o—> P9 pP 9 s pp-liatl g,
fee]
and F"1'9= 0. We can ask that the map E™(X) —>12_;m0 FP 2P
should be iso.

THEOREM 8,2, Condition (ii) is equivalent to (i) plus (iii).

In practice we verify condition (ii) (see exercise {i)). We then use
8.2 to deduce that conditions (i) and (iii) hold.

We can also generalize 8.1, For convenience I consider the
absolute case. lLet X be any CW-complex which is the union of a dir-
ected set of subcomplexes Xo.' Then we have a spectral sequence

LimP EY(x ) = EPTY(x) .
a

This spectral sequence is convergent in the sense that 8.2 holds.

9. PRODUCTS
There are four external products we need: an external product in
homology, an external product in cohomology and two slant products.
Perhaps I should give some motivation for the slant products. The first
thing to say is that I need one of them for the duality theorems. The
second is to point to the case of ordinary homology. There the

Eilenberg-~Zilber theorem gives one chain equivalences
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ColX) ® Col¥) o ColX x ) —=> C,(X) @ C () .
So if we have a cycle u in X and a cycle v in Y, then p gives us a
cycle p{u®v) on X xY, whence the external homology product
H,(X) @ H(Y) 22> B (X x ¥) .
Also we can dualize & : if u is a cocycle in X and v is a cocycle in
Y, then A*(u ®@v) is a cocycle in X xY, whence the external product in
cohomology
S
H'xen (v E—su xx v
But you could also consider p(x®y) as a function of x with y fixed,
and then dualize it, so as to get
c*x xY)—>c*(X) depending on v,
that is,
ExV®C, (V) —> c (X,
whence
H % x V)@ H (V) —> H (X)) .
Similarly, if we had a cocycle C*(X)L? Z, we could form
Cx x V) A o ) @cyy) 22 v,
and so get
H (%) ® H, (X xY) —> H,(Y).
If anything, these products are even more obvious with spectra. Suppose
I want to define products in generalized theories, say
ENX) @ FN(Y) —> G (X A Y)
where X and Y are spectra, or
.. % ~
EXQ@F (Y)—> G (XaY)
where X and Y are complexes with base-point. Then I should assume

given a pairing, i.e., a map mtEAF—> G of spectra. But thenl
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might as well consider the case G = E ~F, because everything follows
from it by naturality.
(i) The external product in cohomology is a map
EP(X) @ FA(Y) —> (EAF)P™(x A v)
defined as follows. If
feEPx) = [x,E] ., geFUy)=[v,F]
P -q
then
fag e [XaY,EnF]__ = (EARP UK AY) .
The result is written fag to distinguish it from the external product in
homology.
(ii) The external product in homology is a map
EP(X)® Fq(Y) e (EAF)P+q(X AY) .

To define it, suppose

fekE(X)= [s,EAX]P . g eFyY) = [S,FAY]q ,
and form
S—&—g~—>EAXAFAY"‘1-A“<:—A1—>EAFAXAY .
This gives

fAag e (EnF) (XAY),
pta
the external product in homology.
In order to see the slant products, one way is to suppose X and Y
i
are finite complexes., Suppose given an element of E (X AY), represented
by a map
{ s * %
S PEAXAY) =EAX aY
and suppose given an element of F, (Y), represented by a map

S—g—>F/\Y-

Then we can form



227

- 141 %
s8> Eax A YRy 2aeals b xSy A e xS

this gives an element of (E,\F)*(X). Similarly, suppose given an element
of E*(X), represented by a map
s Lo g . x*

and an element of F*(X A Y), represented by a map

SE—>FiAXAY.

Then we get
s 285 pax  Faxay 20 by xayialnenl b ey
this gives an element of (EAF),(Y).
It follows from §5 that these constructions are equivalent to the
following ones, which work whether X and Y are finite or not,
(i) The first slant product is a map
EPXAY) ®F (1) > (EF)P7%(x) .
If £: XAY—> E represents an element of EP(XAY) and g:S—> FaY
represents an element of Fq(Y), we form
X By P Ay s X v AaF L s EAF
The result is written f/g.
(ii) The second slant product
EP(X)® F_(XAY) —>(EAF)__, (Y)
9 ~p7q
is defined by taking
XL > E and sE>F.XayY
and forming
sE>Faxay ey ,ray 2200 pop oy,
The result is written f\g

Note: The following conventions are helpful.

(i) Fractions have the same variance as the numerator, and the
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opposite variance from the denominator.
(ii) Pay strict attention to the order of writing things on the page.

(a) Keep the cohomology variables (which are like functions) on
the ieft of the homology variables (which are like arguments). That
way both f/g and f\g mean composites in which you first apply g
and afterwards apply f.

(b) If you have a class in E*(X AY) and wart to ''divide off'' a
homology class on one factor, by (a) you put the homology class on
the right, so let it be a class in F (Y} rather than F*(X), 1f you
have a class in F_(X AY) and you want to divide it into a cohomology
class on one factor, then by (a) you want to put the cohomology class

3 *
on the left,so let it be a class in E (X) rather than E (Y).

Of course, once we have the external products for spectra, we get
them for CW-complexes with base-point by specializing to suspension
spectra. We then get them for relative groups by turning the handle.
Note that if X, A and Y,B are pairs, then

X/AAY/B=XxY/{AxYuXxB).
So for the relative groups we have the following products:

X
EP(X,A) @ FUY, B)——> (EAF)P UK x Y, Ax YuX xB),

E_(X,A)®F (Y,B)A(EAF) (XxY, AxY u XxB),
P q p+a
EP(Xx Y, AxYuX xB)@Fq(Y,B)—/—> (E~F)P x4y,
\

EP(X,A) @F (Xx ¥, AXYUX xB)——> (Ea F) pigY+B) -
These products have various properties, of which we consider first
naturality. I will do this for the case of spectra, because there we have
to provide for maps of degree r. But first we need a remark about in-

duced homomorphisms in cohomology. Let f:X——=> Y be a morphism
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of degree -p, andlet g: Y —> E be a morphism of degree -q, i.e.,

an element of Eq(Y). Then the obvious thing to do is to define

/
3

£ B y)—> P Yx)
by
(@) = gf .
But we usually write f* on the left, and so we take care to introduce the
proper sign:
flg) = (1Pt
For the next proposition assume for parts (i) to (iv) that we have
morphisms
1 X—>X' and g Y —>7Y',

® £
PROPOSITION 9.1. (i) If ue E (X", veF (Y'), then

i

R £ :
W ag) = (-1 Kl M5 vg
or equivalently

el

(ng)f‘(u;;v) = (- (f:ku) X(g’kv) .

(i) If u e E.X), veF,(Y) then

1ylel ]

(£rg)ulunv) = (£,9) alg,v) .

(1i) If ue E(X'AY'), veF,Y) then

Ly g1+ v

(u(fa@)Vv= ( (u/g )i

3%

or equivalently

_l)|g| lu|

% =
((f ng) w/v={( f(u/gyv) .

%
(iv) If ueE {(X'), ve F(XAY) then

ful + Ifh

UNfag)w = (-1) ek g*((uf*)\V)

or equivalently
+ + |f *
u\(f/\g)*v—‘- (_1)|g| |u| |g| lf| | ' |u|g*((f u)\v) .

(v) With respect to morphisms of E and F, all the naturality
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statements are the same. Suppose given morphisms e:E-—> E',
f:F —> F'. Then
(e af) (u v)=(-1) il o e,
where the absence of a product symbol indicates that any of the four
products may be used.
The proofs are elementary diagram-chasing.
PROPOSITION 9.2, All these products are biadditive.
We have two commutativity statements.
PROPOSITION 9.3. (i) Suppose u € EX(X), v e F3Y). Then
vAu = (-l)pqc*c:;((u AV) .
(ii) Suppose u € EP(X), ve Fq(Y)' Then
vAau= (-l)pq(c A C)*(u Av).
Of course, if we are going to apply maps p: Ea F—» G and

p't FA E—> G such that

FAE
is a commutative diagram, then this absorbs the effect of
CEAF—>FAE,

We have eight associativity statements. The first statement is
obvious: suppose

u e EP(X), veFYY), w e G(Z) .

Then we have

q+r
(X AYAZ).

—_ - p*
(uAvi)aw=un(viaw) e (EAF AG)
1f we were using pairings of spectra, we would suppose that they made

the following diagram commutative.
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Aal
E~FAG—>HAG

1oy l L
ErK— > L
(Here, of course, H,K, and L are some spectra fitting into such a
diagram.) Then we would obtain
(urv)iw=un(viw) ¢ L2 T x v az).

The associativity law for the external homology product is entirely
similar. With our conventions, the other six appear as very natural
rules for manipulating fractions. For example, suppose

X &
x e E(X), veF (YaZ), zeGy2).
Then xAv e (EAF) (XY aZ), (xav)/2 e (EAF aG) (X AY) .
On the other hand, v/z ¢ (F » G)*(Y), xAv/z) e(EAF & G)#(X AY)., We
have (xav)/z=x A (v/2).

THEOREM 9. 4.

(i) If x e EPX), ye FYY), zeGT(2)
then

(xRy)Rz=xalynrz)e (EAFI\G)p+q+r(X'\YAZ).

(i) 1f x e E°(X), ueFYYrz), z¢G (2)

then
xA(u/z) = (xAu)/z e (EaFa GF ITX AY) .

(i) I ve EPXAZ), ye FUY), ue G (Yr2)

then
Vi = (a0 vayndu ¢ (EAF~ P T x) .

(iv) If te EP(XAYAr2Z), z ¢ Fgl2), y e G.(Y)

then

(t/z)/y = t/eylzay) e (E~F AP TT(x) .
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(v It y e ERY), x e FU(X), t€G (XaY¥a2z)
then

y\(x\t) = (c"‘(y ,_\X))\t e(EAF n G)-p-q+r(Z) .

(vi) If we EP(XaY), y e F(Y), veG(Xa2)

then

(w/yl\v = W(e a1 (y 9] e (EAFr G) (z)

-ptg+r
(vii) If x ¢ EP(X), we Fq(X AY), zeG(Z)
then
(\w) a 2z =0\(waz) € (EaF G)_p+q+r(Y AZ) .
(viii) If x e E(X), y e Fg(Y), 2z eG (2)
then

(xay)nz=xnlyarz) e (E~rFaQG) (X AYn2Z).

prg+r
The proofs, as usual, are done by diagram-chasing.

Now we recall that the sphere spectrum S acts as a unit for the

smash~product. It follows that we can identify

E(S) (s, E]p

with

e Ps) = [s,E]_ .
p
PROPOSITION 9.5. Suppose s is of this sort, say s ¢ [S,E],,
and y ¢ F (Y). Then
s\y: say e (EAF)(Y).
Suppose t is of this sort, say t e [S,F]* and x ¢ E’:((X). Then
x/t = xRt ¢ (E ~ F)™{X).

Suppose the result is of this sort, say x ¢ E*(X), y € F (X). Then

xy:x/ye[S,EAF]* .
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The proof is trivial diagram-chasing. The third case gives the
Kronecker product <x,y>. The explicit definition is as follows. Suppose
given X—b E, S Y s Fa X. Form

sY SFAax-SsxaF 2t S ELF.

The naturality properties of the Kronecker product are obvious and
well known.
PROPOSITION 9. 6. Suppose given f: X—> X' (of any degree),
x ¢ E"(X"), yeF,(X). Then
*
<L y> o= <xhfy>,
or equivalently

% f <!
<f'x’,y>=(-l)l | b |<

x'hi.y>.

We know that in the classical case the two slant products are obtained
from the two more usual products by dualizing; in other words, they are
related to them by the Kronecker product. We now state this for the
generalized case.

PROPOSITION 9. 7. (i) Suppose u e EP(X A Y), y € Fq(Y),

X € Gr(X). Then
<uly,x> = <a,culyax)>¢ [S,EAF« G]_p+q+r .
(ii) Suppose y ¢ EP(Y), x e GHX), v e G_(X ~Y). Then
<y,x\wu>= <c*(y AX),u> € [S,E AFa G]-p—qﬂ' .

Proof. <u/y,x> may be viewed as either (u/y)/x or (u/yN\x. So
part (i) follows by substituting into the appropriate associativity relation,
number (iv) or (vi) on the list. Similarly for part (ii), using {v) or (iii).

These formulae are useful as a heuristic guide. For example,

suppose you know some formula for the product y A x, and want to know

the corresponding formula for the product ®\u. I really have in mind
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something like a cobaundary formula, but I haven't yet done quite enough
to use this case as an illustration, so let me consider a naturality
formula. It's rather trivial, but it will do as an illustration of the
method. Suppose y ¢ EP(Y), xe Fq(X), u g Gp+q(X' AYY, g Y —>Y,

f: X'—> X. We write down

|X| lg |

<(yAxdgan¥ cou> = (- <y R, cu>
el s qrnge>  coPl B>

ol gl “ k| lgl H

) <y,x\fa g),u> (-1) <y g ) >

If we knew that pairing with y were non-singular, we would have

Ix| |glg*((xf*)\u) '

el N ngre = (1)
But this argument is indeed a valid proof, because we can take
y=1e o) .

PROPOSITION 9.8.  Suppose x* ¢ EP(X), y" ¢ FY), x, ¢ G_(X),

Vi € HS(Y). Then
<"y xRy = (0T a e a ) < x>y >

Here 1lacAl: EAGAFAH—E AFaGaH.

Proof. Apply 9.7, commutativity, and associativity law (ii) or (vii).

Now we would like to write down the properties of our products for
boundary and coboundary maps. One of them is immediate, that for the
Kronecker product. We simply observe that the boundary or coboundary
is induced by a map

X/A—>A (of degree -1) ;

we have a naturality formula for the Kronecker product valid for

morphisms of any degree, so we get the following formula.
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If aecEPA), uve F (X,8) then <a,du>= <ab,u>=(-1)P<sa,u>,
where we make the same sign conventions as before about a.
In order to see what to expect in the other cases, let's go back to the
classical case, and suppose given
u € C*(X), du € C.l8), ve C*(Y), 3v e C(B).
Then we expect to have

Il

duv) = (du)v + (-1) ‘udv) e C (AxYUXx B).
However, the separate terms (du)v and u{dv) do not define elements of
H*(A x Y XX B), so we have to work instead in
H*(AX YuXxB,AxB)=H (A XY, AxB) eH*(X XB,A x B).
Here (du)v defines an element in the first summand and u{3v) in the
second,
Additional motivation can be obtained if we consider the possibility
of arguments using the five lemma. We have the exact sequence
E (A)—) E (X)—/ E (X,A)—>E (A).
P P P p-1
If we tensor it with Fq(Y, B) we get the left-hand column of the following
diagram,
X
E (A)®F (Y,B)—> (Ea F AXY,AXB) =~
AV BF (Y, B)—> (EATF)__ Y =

(E AF)P+q(AquXx B, XxB)

1
X
E(X)® F (Y,B)—>(EAF X xY, Xx B)“
p( )@_ q( ) (E A )p+q( I )
E (X l X EAF
,AY®F (Y, B)—> XXY,AxYuXXB
p( ) q( ) (En )p+q( )
o lwl (EAF) _l(AquXxB,XxB)

s, ey
= =
EP_I(A)QFq(Y,B) (EAF)p+q_1(A><Y,AXB)

The oblique isomorphisms identify the second column with the exact

sequence of a triple. The section of the diagram labeled I is commutat-
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tive by the naturality of x , and we would like to know that the section
labeled II is also commutative. So we wish to obtain commutative
diagrams of the following form.

E (X,A)®F (Y,B) 28l £ (A)®F (Y,B)
P q p-1 q
L&
(E A F) (AXY,A xB)
p+q—1

~

X

(EAF)  (XxY,AXYuXxB)2> (E A F) (AXYUXx B,X x B)
p+q ptq-1

Ep(x,A)@Fq(Y,B)—I% Ep(X,A)@F (B)

x

& (E ,\F)p+q_1(x>< B,Ax B)

. °
(E F)p+q(XxY,AquX>(B)——> (E a F)p+q_1(Ax YuXXB,AXY)
Here we need a convention about signs. If 6: G —> G' and ¢: H—> H!'
are homomorphisms of graded groups, their tensor product is defined by

(_1)|<P| lg

(6 ®9)(g®h) = fg @ uh .

|
In particular, 1® > is defined by (1®d){ud v) = (~1) bl @ w.

Of course we propose to obtain our commutative diagrams by apply-
ing the results we already have to geometrical diagrams.

LEMMA 9.9. The following diagrams are commutative.
(i)

AAaYUuXAB XaAY XArY J

X~ B > XA BT T AAY-XAB X~ B
T:

= AnrY

BB

X Y inl Y

'8 A g
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(i1)

AAaYouXAB 3 XAY \ XAY JIA ArYoXaB

AAY A~NB ArYuXAB ArY

. 1
= X~B
AAB
Tg

3b

XX 1a37 X, g

A B B

Notes. The diagrams are valid as they stand for spectra. The maps
J,i,J',j' are the appropriate maps from the cofibre sequences, and they

have degree -1. They may be replaced by maps of degree zero into the

. ArYUuXAB, AAY .
appropriate terms §( B }s S(A B’ etc., except that 1 A j

in (ii) has to be replaced by

1a] N %'\SII\B c Al 3 SIA§AB,

w1
>
b =

With this interpretation the diagrams are valid if X,Y, etc. are CW-
complexes. For the case of spectra, the two ways of writing the diagrams
are equivalent, because we have the canonical equivalence Z ~ Sll\ Z of
degree 1.

It is sufficient to prove the commutativity of one of the diagrams, say
the first; the other then follows by applying ¢ (and checking that J
corresponds to J'). But it is trivial to check the first diagram for CW-
complexes by constructing the appropriate maps of ®KJuCA) a(Y o CB).
The construction commutes with suspension on the right, and so passes
to CW-spectra.

We now get the following eight commutative diagrams by applying
Proposition 9.1 to the diagrams in Lemma 9.9. The morphisms J,j

and sign conventions are as above.
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The following diagrams are commutative.

THEOREM 9.10.
%
i ®1 p+l, X q,Y
EY (FI1®F(g)

Y
ePaerl 51—
| R
+ +] X
(iEAF)P q(AA%) (E~FyPT (;\A%)
x
g AAYuUX AR J +q+1 XAy
EARPT9 > (E~F)P
(EAF) ( X B ) (EAF) (AI\Y\/XI\B)
PEeords 28 5 gPEHertt i)
X A
+q X +q+1
(EAFlP Y aB) (EAF)T‘Q (EA%)
) .
pHqA A Y UX A B p+q+l XAY
(EAF)” g ) >(E~F) A v ox~3!
AAYvXAB ¥ Il p+l XAY Y
P 25 E F (=
sy I8 F () yox s 5%
E@]‘L
P, Y ¥ p+l X Y, Y
E(Arg) ®F (g) ET (R B)®Fq(B)
/L a3 +1‘L/X
(B~ B A ——=> (E. PP (D)

X AY Y
B)®Fq(§)

K
X)%E}ﬂ'l(______
q'B AaYouXa

An
EX3!
J’x Y p+1 X YH Y
ENZ ~BI®F () B (g ®F(g)
1@3'*1/ e
/ p-a+l X
_1<B)————+(EAF) (x)

pX
BN B)®FCI
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P XAY 1® Ju P AAYUuXAB
E (A)®Fq(AAYuXI\B) E (A)®Fq-l(—W)
u e

P X. XY P AL
E (A)®Fq(A B) E (A)®Fq_l(A 5 )
@1 \

Pl X ep (X, ¥ N . ¥

E (A)® q(AAB) (E F)-P+q—l(B)

19 7T,
P& XA Y [ P_)E_ ArYoXAB
E ()}‘SQFq(AAYuXAB) TENROF ()
H 1® =
p X XY p X X
ENF)®F (F~g) ENZI®F _|(Z ~B)
\ _ l\
EaF) (%) x > (E~F) (B
( -ptq B M) g1
X Y jx® 1 Y
-— F = > —_
EP(A)T '3 E L BeF (5)
2 A
X Y Y
EAF —_—h EAF Aa—
( )p+q(A B) ( )p+q—l.( =
I 3 =
X AY E2 ArAYuXaAB
(BrFlpglariyox~s BB g 38
X X 18 - X
EP(A)IFC‘(B) E(4)OF _ (B)
voX Y L,
(EAF) (5 5 ) (EAF) o 1(F~B)
H X AY I a ArYouXAB
(EAF)p+q(AAYuXAB) (EAF)p+q-l(_—A/\—Y__)

By an immediate translation, we obtain commutative diagrams for
the boundary and coboundary in relative groups of pairs.

THEOREM 9.11. The following diagrams are comrutative.
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-+1 q
EPA) @ FY(Y,B)—2®L S e Py A)eFo(Y,B)
%
(E~PP YA x Y, 4xB) X

~

+ 3 *q+1
(EAF)P Y AXY X xB,Xx B)—>(EAF)T  (XxY, AxYUXxB)

EPx,A)@ FiB) — 8% >EPix a)e ¥ Ny, B

x _

X
P*g

(E AP 3(Xx B,AXB)

o4

5 +q+1
(E~F)P YA xYUX xB,AXY) —>(E~ )P T (xxY, AxYuX xB)

EP(Ax YuX x B, X x B)®F (Y, B) 58l EPTlxxY,AxYoXxB)® F (Y. B

=gl
/
EP(A X Y,A X B) Fq(Y,B)
/j’ P-q 8 p-q+l
(E~F) {A) > (EAF) (X, A)

EP(Ax YUXxB,A xY) ®F_(Y,B) B, ePHlixxY, AxYuXxB)® F(Y.B)
§®1l
EP(X x B, A x B) ®F (Y, B) /

1 ®zl

-q+1
EP(X xB,AXxB)®F__(B) ————> (E ~RPTTx, A)

EP(A) @ F (X x Y,A » Y UX xB) 18 Ep(A)®Fq_1(A xYUXx B,XxB)

Tm%’

EPA)® Fq_l(A XY,A x B)
)\

EPTIK, AV @ F (X x ¥, A XY WX x B)X> (EnF)_, . 4(Y,B)

@1
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EP(X, A)®F (X x Y, A x YuX x B) 182> EP(X,A) ®F | (AxYUXxB,AxY)
he =

N Ep(X,A)®Fq_1(XxB,Ax B)
N \
(EAF)_p+q(Y,B) (EAF)_erq_l(B)
3®1

>E Y, B
E, (X, A)®F (Y,B) po1 (RO F (Y. B)

%
X (EAF) (AXY,A xB)
p*g-1 ’

. I*

(EAF) | (XXY,AXYUuXXB)——>(EAF) (AXYUuXxB,Xx B)
ptq ptq-

1

1®>»

E (X,A)®F (Y,B E (X,A)®F (B
LA BF (Y,B) LK A®F ()
x
% (E  F) (X xB,A x B)
ptq-1 ’
. 1 |
(EaF) (X x Y, AxYoXxB)—2—>(EnF) J (AXYUXXB,AXY)

Unfortunately, we need still more diagrams. Let's return to our

original formula in the classical case,
s = v + (1) P up v,
We have written a relation between 3(uv) and (du)v by working in a
group where we can ignore u(dv), and a relation between 3¥{uv) and
u(3v) by working in a group where we can ignore (du)v. It remains to
write a relation between
(du)v and ufdv)

by working in a group where we can ignore 3{uv). And in thvis case the

answer is obvious, We have to say that the following diagram commutes

up to a sign -1.
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H (X, A)®H_(Y,B)
p Q 1®3

2@1
H (X,A)®H 1(B)

H (A)®H_(Y,B)

q P
xl (-1) lz&

H
p+q-l(AXY<‘ Hp+q_1(X)( B,A x B)
H (X XY,Ax B) /
ptq-1
We can easily prove such a result for the generalised case. Consider
the following diagram.
. E (X,A)®F (Y,B)\
°@1_-" P q < 1ed
- ~
' \»
z E_(X,A)®F
P q-

&
Ep-1(4)® E (Y. B)

i
(EAF) | (X xY,AXYuX%B)
p+

i
V Q
/ \
3
_l(AquXxB,AxY)

1 (EAF)

8
|
i
I
i
[
I

}
XYUXxB,Xs B

\\ (EAF)p+q_1(A uXX B, X% B) pta '
i
\ d X
XA (EA~F) (AxY X/B-’A B) .
\ X " ptq-1 YAXE, AX z !
\ !
X 7 _ ‘\ v
(EnF) o (AXY,AxB) iy ;AF)wq_l(XxB,AxB)

v
EAF X
( )P+Q'1( xY, AxB)

The diagram displays
(E ~AF) +q_l(Ax YoXxB,AxB)

as the direct sum
(EAF),  |(AxY,AXB)@(EAF) ,  (XxB AxB).

The composite 1,3, is zero, so the two paths from

(EAF)  (XxY,AXYUXXB) to (EaF) (XxY,AxB) around the
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outside of the lower hexagon gives maps whose sum is zero. This isthe
Eilenberg-Steenrod hexagon lemma. Of course, we know the result geo-
metrically by 6.9. Now fill in the rest of the diagram by 9.11.

Proceeding in this way for the four products we obtain four more dia-
grams listed in the following theorem.

THEOREM 9.12. (i) The following diagram is commutative up to a

sign -1.
EP(A) ® F4(B)
@1 1®5
+1
P (x, a)0 Fi(B) EP(a) 8 F4 (v, B)
+g+1
(E PP 9 % xB,AxB) (-1) (E R YA %Y, AxB)
+q+1
E~PP TN AxYUxxB,AXY) (EARY T AXYuXxB, X xB)
EHP A vy oux xB)
(ii)
EP(AXxY,AxB)® Fq(Y,B)—L—;(EAF)P-q(A)
LR - !
i~ |
- i
EN(X x Y,Ax B) 2 g
S !
J ~

4 v -
EP(X xB,AxB)®F__(B) L S E PP x,

I ueE(XxY,AxB) and y € F (Y.B), then

s 0 /y) = (-DPT G ey) .
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(111)

(Y,B)——EP(A)®F (AxY,AxB)----> F (AXYUXXB,XxB)

+q ! .
\\9 T
N
N

Fq(AquXxB)

!
|
f
|

/
| e
I 7@
W K/
X,

(EAF)
-p

&

N p+l &
A <«<—— E A)® F s -- >
(E F)-p+q—1(B) ( )X q(}( xB, A xB) Fq(Ax YuXxB,AXY)

If a2 ¢ EP(A) and u-¢ F(AX Y <X xB) then
A(A\(Ow) = ~(8a)\(pu) .
(iv) The following diagram is commutative up to a sign -1.

VAV F (Y,
EP(X ) ® q(Y B)

® ®2
@
EP_I(A) F (Y, B) E(X,A)@F _(B)
X (-1 =
(EAF)p+q_1(AxY,AxB) (E'\F)p+q_1(XXB,AxB)

\(EAF)p+q_1(XXY,AxB)/

Internal Products

Following the idea of Lefschetz, these products are introduced by
considering the diagonal map
AX—> X xX .
Here X is a CW-complex, Given u ¢ EP(X,A), ve Fq(X,B) we have
defined
- p*q
uXve(EAF) (X xX,AxX vX x B)
and we can define

uvv= Au¥xv) e (EF)PHX, ACB).
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Similarly, given u € EP(X,A), v € Fq(X,Au B), we can form
A€ Fq(XxX,AquXx B)

and define
unv=wma,v e (E AF)-p+q(X,B)-

Conversely, the X and \ products can be recovered from U and N .

Let p: XXYy—>X, P,*X XY —> Y be the projections on the two

factors,

PROPOSITION 9.13. If u ¢ EP(X,A), v ¢ FY{Y,B) then
w Xy = (p’lku)u(p’z“v) e (EAF)P I X x Y, Ax YuXxB).
I ueEP(X,A), ve F (XX Y,AXxYUXxXB) then

A = pz*((p’fu)rw) S(EAF)__, (Y.B).

The proof is immediate, by naturality,

Since we can recover the Kronecker product from either slant pro-
duct, we can recover it from the cap product.

PROPOSITION 9.14. I u ¢ EP(X,A), ve F (X,A) then

<, v>= guf{unv) e n_p+q(E ~F),

where €: X — pt. is the constant map.

All the properties of the internal products can be deduced from
those of the external ones, by naturality. The list of associativity
properties, however, will look less symmetrical than in the case of the

external products.
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10. DUALITY IN MANIFOLDS

In the classical case, to have a duality theorem relating Hr(M;A)
and Hm'r(M;A) we need to assume M 1is orientable, and then we can
take A to be any abelian group. Otherwise, we can suppose that M is
non-orientable; then either we must use twisted coefficients, or we must
suppose that A is a module over ZZ‘ The point is that an orientable
manifold has classes in Z-homology and cohomology which enter into the
statements and the proofs; and even a non-orientable manifold has such
classes if we use homology and cohomology with coefficients in Z,.

To generalize this situation, G.W. Whitehead introduced the notion

of a ring-spectrum and a module-spectrum . The idea is thatif M is

orientable with respect to E, and E*, where E is a ring-spectrum,
then the duality theorem will hold for F* and F*, where F is any
module-spectrum over E.

Examples: To illustrate the situation above, take

E=H, F=HA for any abelian group A;

E= HZZ' F = HA for any Zz—modu.le A,
A spectrum E is said to be a ring-spectrum if it has given maps

pt EAE—>E, 35: 5 —>E of degree 0 such that the following diagrams

comrmute,
1 1
~ E~EAEX2"" S E.E S E—2 SE.E
2 ) In
lanp B E ——> E
A
% n

EAE—2 > E Ens =21 S ENE
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Let E be a ring-spectrum. We say a spectrum F is a module-

spectrum over E if it has givena map vi EA¥ —> F of degree 0 such

that the following diagrams commute,

npal nal
EAEAF—>EAF SAF——>ExF
1»\\{ v '2 l\)
v 1
EAF —— > F ¥ ———F

A ring-spectrum E is said to be commutative if the following

diagram commutes.

EAE—P  »g
[of

l fad
EAE

If E is a ring-spectrum, we can use the product map p:E . E—E
to obtain products with values in E, or E* instead of (E a E)* or
(E » E)*. For example, we obtain a cup-product
EP(X,A) @ EY(X,B) —> EP"4(X, A U B).
Similarly for an action map v: EAF —> F.
Practically all the examples of spectra which I have mentioned are,
in fact, ring-spectra. I will only illustrate the case E = H. We have
0 (r<0)
rrr(HAH)=Hr(H): 2 (re0)
so that by the Hurewicz theorem,
Hy(HAaH) = 2.
Alternatively, by the Kunneth theorem
Hy(Ha H) EHO(H)a Hy(H) =222z .

By the universal coefficient theorem,
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HO(HA H) = Hom(2,2)= 2 .
Therefore I can take a map p: HA H——=H realizing the product map
287 — 7Z of o

Alternatively, realize H A H with no stable cells of dimension d <9
map the cells of dimension 0 in the indicated way, and similarly for the
cells of dimension 1. Now the map extends over the higher stable cells
of Ha H, because the higher homotopy groups of H are zero. For the
same reason, the map is unique up to homotopy.

For similar reasons, if R is a ring then HR is a ring-spectrum;
if M is an R-module then HM is a module-spectrum over HR,

So far our generalised homology and cohomology theories have been
defined on CW-pairs X,A. Now we would like to extend them to other
categories of pairs.

We begin with the singular extension of E, and E*. Take any pair
X,A andlet X',A' be a weakly equivalent CW-pair. Define the sing-
ular E-homology and E-cohomology groups of X,A to be

EP(X'A) = EP(X',A'),

EPX,A) = EPx', A",
The result is independent of the choice of X',A', up to a canonical iso-
morphism.

All the properties of EP and EP carry over very well, except for
excision. Here one has to be careful. Let U vV be a space which
comes as the union of two subspaces U and V intersectingin Un V.
Then we can certainly take a CW-complex W' equipped with a weak
equivalence

WI—"5 U~ V,



249

and we can enlarge W' on the one hand to a CW-complex U' admitting
a weak equivalence
U2 u
extending w, and on the other hand to a CW-complex V' admitting a
weak equivalence
vl s v
also extending w. Then we can put them together to get
g’ UW' Vi—>U V.,
But this map is not a weak equivalence in general. For example, take
subsets of the real numbers; let U=0Q, V=R - Q; then W' will be
empty, U' will be a countable discrete space, V' will be an uncountable
discrete space, and U!' UW’ V! will be an uncountable discrete space,
which is not weakly equivalent to R.
However, if we assume that Int UvlInt V=U vV, then
U’ UW' V! —> U vV is a weak equivalence, and all is well. So the
excision axiom holds with this extra hypothesis, which is actually the
standard one for ordinary {singular) homology and cohomology.
I must also comment on the behaviour of singular homology for limits.

let X,Y be a pair containing a directed family of subpairs Xy oY Then

o
we can form

i — >
]_,clL Ep(XCL , Ya) EP(X, Y) .

PROPOSITION 10.1. In order that this map be an isomor phism, it
is sufficient that for any compact pair K,LCX,Y we can{ind an a such
that Xy» Y, DK, L.

The proof is easy.
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Now I want to define a éech-type cohomology theory for compact
pairs K,L which happen to come embedded in some topological manifolg
M, possibly not compact, possibly with boundary. The definition is ag
follows., Let U,V run over open pairs in M with UDK, VDL, These
form a directed set; if UiDK, ViD L for i=1,2 then Ulﬂ UZDK,
Vlﬂ VZDL. So I define

E¥K,L) = Lim ENU,V).
(U, c)

{The notation E*, when applied to an arbitrary topological pair X, A
will mean singular E-cohomology.) Of course we always have a map
E'(U, V) —> EN(K, L);
this passes to the limit, and gives up a map
BNk L) —> E¥X,1) .
In general this map need not be an isomorphism. However, there are
cases when it is.
Example (i). Suppose M is a compact topological manifold,
possibly with boundary. Then
E (M) —> E" (M)
is an isomorphism.
In fact, the pair M, ® qualifies as an open pair containing the com-
pact pair M,#, and is terminal.
Example (ii). Suppose K is a point x. Then
E*(0) —> E%(x)
is an isomorphism.
In fact, any point x lies in a coordinate neighborhood, so we can

choose a cofinal system of open pairs Ua’ P DOx, # with Ua contract-



ible. Then
£ b
E (Ua)—> E (x)
is an isomorphism for all a.
*

Next I would like to know that E (K,L) is a topological invariant of
the pair (K,L), and does not depend on the embedding in M.

LEMMA 10.2 (i). Suppose given compact pairs Kl,LlC Ml and

KZ,LZC U,, V2 C M,, where UZ’ V2 is an open pair, and a continuous

map

f: KJ’L —>K_,L._ .

1 2°72

Then f can be extended so as to map some open pair U_,V

V12 EpL

1
in M_ into U_,V_ .

1 2 2

(ii) Suppose given a homotopy

h:IxK ,IxL —K_ ,L_,
lI 1 2 2
. 0 0 1 1 , . .

and extensions f of h, f of h™ which map (possibly different) open

1

0
pairs UO,V and U ,Vl into an open pair U ,VZDKZ,L . Then

2 2
1 .0 1

0
there exists an open pair U,V with K ’LIC g, vCcunNnu,v nv

1
and a2 homotopy
h: I1xU,I1xV —>U2.V2
0 1
extending f |U,V, £ U,V and h.
Proof. Standard but repeated use of compactness, plus the Tietze
extension theorem; we rely heavily on the fact that M2 is a manifold.
COROLLARY 10.3. A map f{: KI,L1—>K2,L2 induces
wo ek vk
f1E (KZ,LZ) —>E (KI’LI) depending only on the homotopy class of f,
> % »*
and satisfying 1" =1, (fg) =g { .

i
The exactness properties of E are fine, since direct limits pre-

serve exaciness.
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Example. Ilet M,3M be a pair consisting of a compact topological
manifold with boundary and its boundary. Then
v s
E {M,>M) —= E" (M, aM)
is an isomorphism.
Proof. Consider the following commutative diagram.
Vo Vs NE3 & %
—> E (M, 3M) —> E (M) —> E (M) —=E (M, M) —> ..
% 3% 3 3

—>E" (M, 3M) —> E (M)—=>E (3M) —> E (M, aM)—> ...
The rows are exact, and the two arrows marked are isomorphisms by a
previous example. The result follows by the 5-lemma.

N.B. This way of saying things relies on the previous proof that
IE*(bM) is independent of the embedding of >M in M, but it does not
need the construction of a collar for ?M inside M.

v % | %

The excision properties of E are excellent, because E was de-
fined using only open pairs in M,

PROPOSITION 10.4. If U,V are any compact sets in M, then

Euov,v) —> BN U, unv)
is an isomorphism.

This follows from the definitions by a bit of general topology {com-
pact Hausdorff spaces again.)

I also have to comment on the behaviour of E for limits.

PROPOSITION 10.5. Let Ka’La be a downward-directed set of
compact pairs in M, with intersection K,L. Then

i v 3% vole K, L
L;E E (Ka,La) —> E (X,L)

is an isomorphism.



Again, this is easy modulo a bit of general topology. One must show
that given any open pair U,V DK,L thereis an a with KQ,LQC U, V.
Experience in Manchester and Cambridge suggests I had better give
some exposition about orientations. Suppose EE » 5B isan n-plane
bundle and EO is the complement of the zero cross-section. Then for
. . -1 0 0
each point x € B, I have the fibre EX =p x; let EX =E NE . Ican

form

1

H (E ,EO) z
n X X

]S

0
HY(E_,E) 2Z.
X X
Now since o B is a bundle, locally it is a product; and if x and vy
0
are close together we can easily tell which element in Hn(Ex’ EX) cor-
0 . .
responds to which in Hn(Ey,Ey). That is, we get a bundle over B, with
fibre Z, and with structure group Z, acting on Z by n — -n. A
similar situation occurs in cohomology.
One may say that the original n-plane bundle was orientable if the
0
Z-bundle |\_JH (E ,E ) is trivial. The definition may be given equally
%X n x X
well in terms of homology or cohomology; we have
HYE_,E%) = Hom(H (E.,EY),2)
x' Tx) T n'Tx’ Tx’? ?
so the two bundles are trivial or non-trivial together.
If we are given orientations consistently on each fibre, that amounts
to saying there is given a continuous section
0
vB—> UH(E ,E)
X n x X
which assigns to each point x ¢ B a generator
A H(E,E)Ez
(x) € n( W EJ=Z .
The same goes for cohomology. But I would like a statement more global

than that. In this case it is clear that cohomology rather than homology



is required. Suppose, for example, that B had an infinity of path-
components; then a singular homology class could only have a non-zero
component in a finite number of them, but this difficulty does not arise in
cohomology. We can ask if there is an element
n 0
weH(E,E)
such that for each x ¢ B, the induced homomorphism
ks 0 0
i": HNE,E )—> H™NE ,E)
x X' Tx
te
has i;w = A{x) for any given section X .
Now in ordinary homology, theansweris yes: if you are given a
£
section 1, there exists a cohomology class « such that i w = (%) for
each x, and w 1is unique. However, the proof makes essential use of
the dimension axiom. For a generalised cohomology theory the
corresponding result is not true. There is an n-plane bundle E —> B
0
and a section r: B —» \J KOn(Ex, Ex) such that there exists no
X
0 . ¥
@ ¢ KOE,E") with i w=1x(x) for all x; in another such example the
required @ exists but is not unique.
It seems best to choose our definitions so as to avoid the difficulty.
First I consider the meaning to be assigned to the word ''generator."
. n n ~ n
Let F be a ring-spectrum; then F (R ,R" - 0) = F(57) and
¥ .on _n %k D .
F (R,R -0)=F (57) are modules over m(F). Infact each is a free
module on one generator, because we have canonical classes
v, e F (R, R -0 , ¥ eF(R"-0).
. ¥ on n . . .
I will say that p € ¥ (R",R - 0) is a generator if fzp§ is a 7, (F)-base
* n _n . . . n .
for F (R ,R -0). ¢ isa generator if and only if ¢=uy , where u is
L. n_n _n
2 unit in T (F).  need not liein F (R ,R - 0), because we may have

units of non-zero degree in m,(F); e.g., this occursif F=K.



The property which I need of generators is the following. Let G be

a module-spectrum over F. Then the map
G, {R", R"- 0) —>1,(G)
given by
y > <g,y>
is an isomorphism. In fact, it is trivially so if ¢= 'Yn, and the general
case differs only by a unit in 7.(F).
We say we F*(E,EO) is an orientation for E if

ifo ¢ F (E_,EV)
is a generator for each x ¢ B.

Of course, the question of constructing an orientation for a vector-
bundle, or of constructing orientations for some class of bundles, is
non-trivial. However it can be done in several cases which are import-
ant in the applications. For example, complex n-plane bundles can be
oriented over K* or MU*; Spin bundles can be oriented over KO*; and
so on. I will not give the constructions here.

We have defined orientations as they apply to n-plane bundles; but we
want the notion as well for topological manifolds, which might not have a
tangent bundle in the same sense as smooth manifolds. But it is well
known what one substitutes for the tangent bundle, That is, one replaces
E by Mx M, where M is a topological manifold, say without boundary,
One replaces EO by the complement of the diagonal, M XM -~ A. One
replaces the fibres Ex by the fibres x XM of the projection
Py MxM —> M. One replaces Eg by xXM - xXx, Since M is a
topological manifold without boundary, x has a neighborhood U in M

which is homeomorphic to a neighborhood of 0 in R®, by a homeo-
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morphism mapping % onto 0. Then F*(M,M-X) = F*(U, U-x)} by
excision and so is isomorphic to F*(Rn,Rn— 0}).

By an orientation over F'J': for the tangent bundle of a topological
manifold M, we will therefore mean a class we F*(M XM, Mx M - A)
such that

iiw € F*(xXM,x XM - x X x)
is a generator for each x.

If M happens to have a boundary, there are two things we can do.
The first starts from the observation that for a smooth manifold M, the
tangent bundle to M contains over 3M tangent vectors which point out,
as well as tangent vectors which point in. To copy this in the topological
case, one adds an open collar on the boundary; that is, one forms

M'=Mul0,1) X aM.
This is a topological manifold without boundary, and it has a fully
satisfactory topological tangent bundle, and one can ask for an orientation,

The other thing we can do is to use the same form of words as before,
and ask for a class

F'MXM,MXM-2) ,
but only demand that iiu be a generator for x e M - 3M .,

Evidently the first sort of orientation restricts to the second, but I
will not go into the relations between them.

Having completed the discussion of bundles, we go back to using E
for a ring-spectrum.

Suppose given an orientation class

w € Ed(MxM,MxM -A),

where E is a ring-spectrum. Let F be a module-spectrum over E.
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We define a duality map, which Wtimately will be a map of the following
form. Let K,L be a compact pairin M. Then M -L, M - K is an
open pair in M. The duality map will be a homomorphism

D:i F (M - L, M - K) —> Pk, 1
where the left-hand side, as before, indicates singular F-homology.

We will define the map D in a number of steps., Let U,V D> K,L be
an open pair in M and V', U' another open pair with UN U'=§,
VNV'=9¢., Then we have

UxU'CMxM- A&
VX VICMxM - &,
Therefore we can form
o e ENU XV, UxU' vV xVY) .
So given x € Fp(V', U') we can form
D(x) = (i"w )/x ¢ FOP(U, V) .

I claim D is natural for inclusion maps. First, suppose U'"CU,
V'CV. Then surely U'NU'=¢, V'NV'=0 ., The following diagram
commutes.

F (v',U"
/ N
Fd'P(G, V) ————> Fd_\p(U",V”)

Next suppose V', U'"'(C V', U'. Again U"'NU=§, V'NV=20.

The following diagram commutes.

F (VIII’UHI) — 3 F (V',U')

P \ / P
Fd-P(U, V)

Both facts are immediate from 9. 1.
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Again, I claim that D commutes with boundary maps, up to a suit-
able sign. More precisely, suppose we have
UDVOW g'cviCcw!

with UNU'=6¢, VNAV'=6¢, WOW' =@, Then the diagram

F (W', VY —2 > F (v',u"
p-1
d+
(-t
D D
- [
FPv, w) > F4-P*l(u, v)
. d+1 . .
commutes up to the sign (-1) . For we can easily reduce it to the case

W =¢, U'=¢, by the following diagram.

F (W, V) —2—>F  (V.§) — > F__(V',U")

p p-

0\ N\
FPv, W) —— 5Py, — b i Py
Now since weEd(MX M,MXM - A) and VNV' =@, the class w
comes via Ed(U XW', VXV'), and by 9.12(ii) we have

st w) /%) = (1) Ty o
Now we can start to pass to limits. Let us take a compact pair

K,LC M and consider the complementary open pair M-L, M-K. We
vary the pair U,V over open pairs containing K,L. We vary V,U'
over open pairs contained in M-L,M-K, of course arranging that
UNU' =6, VAV = 6. Now F (K,L)= Lim, FH{U, V), so with a class
in FY(U,V) for any U,V we get an image in ¥ (K,L). Now I claim
that for any x € FP(V',U‘), its image in fd'P(K,L) is independent of
the choice of the pair U,V, provided, of course, that there exists a pair

U,VIK,L with UNU'=@, VNV'=g. And this is immediate, by the

following diagram.
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F oyt
1:)(V , U

[

ll, v‘ll
Fd_p(U, V)\ /Fd_p(U )
F (unu",vnv"
d-p
So now we have a well defined function
D: FP(V',U') — > #d-P(x, 1)
which of course gives
: 1 1 2d-p
D: Lim F (V',U'Y)Y—>F (K,L) .
—_— P
(v',u")
(In fact, if V"', U'"'c V', U' and there exists a pair U,V with UNU'=
VNV'= @, then the following diagram commutes.)
r (v‘lll, Unl) _— 7 (V',U')
P \
F4Pu, v)
But I claim we have
Lim F (V,U)=F (M-L,M-K) .
—> P P
(v', 0"
For this we need only check, by general topology, that the available
pairs (V',U') satisfy 10, 1.
At this stage, then, we have a transformation
D: F (M-L,M-K) —> F4P(K,1)
P
which is natural in the sense that it commutes with the homomorphisms
. . . . d+l .
induced by inclusion maps, and, up to a sign (-1) , with the boundary
maps.

THEOREM 10. 6. D is an isomorphism if K N2MC L.
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We build up the proof by stages, We always assume our pairs K, L
have KN3MCL.

Remark 10.7, D is an isomorphism if K is a point x, and
L=¢.

Proof. Our assumption is x " aMCL =0, so x § 2M. I claim
the following diagram is commutative.

D V4o
F (M, M-x) ————> #4-P5)
P

F4 P
Here g(y) = <i:w,y>. Our assumption is that iiu is a generator, so
the Kronecker product with it is an isomorphism.

The commutativity of the diagram follows easily from naturality. We
can begin by supposing that we start from a class in Fp(M,M-x) which
comes from y € FP(M,M-B), where B is a small closed ball in a
coordinate neighborhood. (This uses 10.1.) If we apply D and the map
into FO P(x), we obtain

oy
where j: x — Int B is the injection. We have
Uy = (G x 0 ey ly = wly = <oy

Remark 10.8. Suppose K 1is a rectilinear simplex in a coordinate
neighborhood and L is one face of K (which may be K but must not be
). Then D is an isomorphism between groups which are zero.

Note: coordinate neighborhoods near 3M are supposed to map M
into a linear subspace of R", e.g., rP7!

Proof. (i) l‘!‘*(K,L) = 0. In fact, we can even show this without

appealing to the homotopy invariance of f‘*; just surround X,L by a co-
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final system of open convex neighborhoods U, V, for which F*(U, V) = 0.
(ii)  Also F,(M-L,M-K)=0. Thisis seen geometrically; see the
accompanying figure. We can write K as the join K= LxK'. If K'=9,

K = 1. then the result is trivially true. Since K'N 3M =@, we can draw

L a slightly larger simplex K" slightly
K farther away from L so that LxK'' is
K! n-dimensional and contains LxK', while

o LK' M d(LxK'") = L.

Then (L.*K') - L. is homeomorphic to L x (0, I:I X K'OK'":

Now clearly LxK'" - LxK'-— LxK'" - L. is a2 homotopy equivalence,
by maps and homotopies keeping ¥LxK'") - L fixed throughout. These
maps and homotopies extend over M by keeping everything fixed outside
LK,

Remark 10.9, Suppose K is a rectilinear simplex in a coordinate
neighborhood and L =f#. Then D is an isomorphism.

Proof. Since L =@, we have KNdM =@, Let x be one vertex

of K. Then we have the following commutative diagram.

0= F (M-, M-K) —> F (M, M-K) = F (M, M-x)——>F__ (M-x, M-K) = 0
0=FIPK, x) — FIPy — 5 PPy —— pdPtlig 4y o o

The four groups marked zero are so by 10.8, The map marked as an

isomorphism is so by 10,7,



262

Remark 10,10, Suppose KI’LI and KZ'LZ are compact pairs in

M with Klr\aMCLl, Kzﬁ aM CLZ’ and Klr\ L2=LlﬁK2. If D is
an isomorphism for (KI’LI)' (KZ’LZ) and (KlﬁKz,Ll.’\ LZ)’ then it is
an isomorphism for (Klu KZ,Llu L2).

Proof. Consider the diagram of Mayer-Vietoris sequences on the
following page. The Mayer-Vietoris sequences are slightly more general
than those considered in Eilenberg and Steenrod but none the worse for
that. The second row works because Kln L2 = Llf\ Kz; this is the
condition that the Mayer-Vietoris sequence may be replaced by one in
which the subspaces remain fixed (namely at Liwv L,). The first row
works for the dual reason that

{(M-K }w (M-L,) = (M-L,) v (M-K,);
this is the condition that the Mayer-Vietoris sequence may be replaced by
one in which the total spaces remain fixed (namely at (M-Ll)(\(M-LZ))
and the subspaces vary. We have the excision necessary for the first row
because all the subspaces are open, and for the second because excision
always holds for Eech F¥-cohomology on compact spaces.

The result follows from the five lemma.

Remark'10.11. Suppose K,L is a finite simplicial pair linearly
embedded in 2 coordinate neighborhood. Then D is an isomorphism.

Proof. By barycentric subdivision we can suppose that for each
simplex ¢ of K, ¢ /ML iseither 0 or 1 faces of ¢ . For such
pairs we argue by induction over the number of simplices in K. If this
number is zero the result is trivial;if this number is one it is true by

10.8 and 10.9. The inductive step is immediate from 10, 10,
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Remark 10.12. Suppose K,L is any compact pair in a single
coordinate neighbourhood. Then D is an isomorphism.

Proof. Pass to direct limits from finite simplicial neighbourhoods
u,vVv.

Proof of Theorem 10.6. Each point of K is in the interior of a

compact neighbourhood which is in a single coordinate neighbourhood.
Hence, K can be covered by finitely many such subsets. Now argue by
induction on the number of such subsets; if the number is one, 10.12 gives
us the result} the inductive step is immediate from 10.10.

COROLLARY 10.13. (Poincar€ duality). Let M be a compact top-
ological manifold without boundary, oriented over E*. Then we have an
isomorphism

D: F (M) —> F4 Py
which may be given by
Dly) = w/y.

Now we observe that we can make E*(M) act on F*(M) via the cap
product, and on F*(M) via the cup product. We could like to know that
D is a map of modules, up to sign, provided that E is a commutative
ring-spectrum, Actually this is not quite general enough for what follows;
in any case, it helps to keep the details in order if we assume our spectra
are distinct as long as we can, So I suppose given two module-spectra
G,G' over E, and a pairing p: F~ G —> G', where F is not necessar-
ily a module-spectrum over E. I also assume the pairing is right-linear

over E, in the sense that the following diagram is commutative.



1. '

EAFaG SN el ¥ a'

cAll J/l
1

FrErG Y> FaG — G

Example. Take E and F to be E; take G and G' to be F; and
assume E is a commutative ring-spectrum.
PROPOSITION 10.14. If u ¢ FFP(M), the following diagram is

d
commutative up to a sign (-1) P,

G, (M) —“——Q———>G'_p+q(M)
D (-1 LD
490 uy >R
That is, D{unv) = (-1)Puu(Dv), ve Gy ().
Proof.  Dlunv)= w/(unv)
uu(Dv)= uule/v)

using the pairings from the first and second rows of the diagram. Now
we want the following associativity formulae.
LEMMA 10,15, If

we EYXx Y, AxYUuXxB), ueFPY,C), v € G (¥, BuC)

then
wlunv) = (0o p;(u)/v € (EAFAG)d+p'q(x,A).
If
w e FP(X,4), weE X%xY, BXYUXxCQ), v € Gy(Y, C)
then

* +d-
uu /vy = | pIU\JuJ)/V € (F'\E’\G)p d q(X,A\JB).
The proof is immediate from the associativity formulae we have, by
naturality.

This gives
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Dlun ) = o wplul/v
uv (Dv)= (p*l‘ uvw)/v
where we are still using the pairing from the second row of the diagram
for the second formula. However, because the diagram of pairings ig
commutative we can write
dp *
uw (DY) = (-1) Tl o Py u)/v
using the pairing from the top row of the diagram. Now it is sufficient
to prove
. * ok
WwUPW = woPpyu
Consider the maps
Py MxM—>M
P, MXM—> M .,
They have the same restriction to & ; a fortiori they are homotopic on
A. By 10.2(ii) there is an open neighborhood U of A in M and a
homotopy h: U—> M between p1|U and p2| U. Hence, if we apply
i":FP(M x M) —> FP(U),
we have
e *
i p*;u = i p;ue P(u) .
But by excision,
d+ d+
(EAF)T P(MXM,M*xM - A)—> (E~F)" P(U,U - &)
is an isomorphism. The classes
X *
w uplu ; wp,u
restrict to
% Ry % Uk
(i wywii plu) , Hwuld P;u) ,
that is, they restrict to the same thing. Therefore they already were

equal in
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(E~F) T PM x M, M x M- 8).
This proves 10. 14.

Applying 10.13 to the case F = E, we see that there is a class
[M] ¢ Ed(M) such that

pilm)) =1 e %M.

This is called the fundamental class of M (corresponding to the given

orientation),

The usual way to present the Poincaré duality isomorphism is to say
that it is the homomorphism

FP(M)—> F

(M) d_p(M)

given by x > xn[M]. Of course the pairing being considered is

FAE—>E.FY>F

PROPOSITION 10.16. This homomorphism is the inverse of D, up

to a sign (-1)dp; it is therefore an isomorphism.

Proof. In 10,14, take E and G tobe E; take F and G'

to be F.
The resulting diagram is commutative even without the assumption that

E is a commutative ring-spectrum. Then

d
Diun [ M) = (-1)*Puubp(M]) = (-1)%Pu.
The relative version of Poincaré duality is called Lefschetz duality.

It asserts that we have the following diagram, commutative up to sign.

¥ (BM)—>FP(M)ﬁ)F (M,bM)b—>F _I(BM)ﬁ..

(4

+ ’-‘_-’l + El + E’J
5
FO 1P M)

> 74 P(uM, am) —> FO Py —> 4P M) — L.

I will omit the proof. It involves discussing the relation between an
orientation on M and one on

3M, and also manipulation of collars.
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11. APPLICATIONS IN K-THEORY

The material presented so far may have seemed rather theoretical,
But topologists also like to do sums and see how things work out in con-
crete cases, so I ought to show you somr.e examples. 1 choose to present
some examples from complex K-theory.

First we recall some facts we need about complex K-theory. This
has a geometric interpretation; a complex vector-bundle § over X re-
presents an element of k9%(X). (See §6.) Similarly, a formal linear
combination of bundles, such as £-n, gives an element of KO(X). The
Whitney sum of bundles gives addition in KO(X); the tensor product of
bundles gives multiplication in KO(X).

We need to know the K-cohomology of a few simple spaces., Over
BU(1) = CP® we have the universal U(1)-bundle, which gives a line-
bundle, i.e., a complex vector bundle with fibres of dimension 1. Call
this line bundle E. Define x=§& ~ 1 ¢ ’I\(IO(CPOO). Use the same symbol
x for the restriction of this class to CP'.

PROPOSITION 11. 1. (Atiyah and Todd). K (CP") is free over

(K} with a base consisting of l,x,xz, ceeLx® (x

n+l, 0}.
% ©
K (cP ) = (K [[x]].
We need a cohomology operation in K-theory.
PROPOSITION 11.2. There exists a function
¥2: k%) —> x°(%)
such that
. 2 .
(i) ¥ is natural,

(ii) \I/Z is a homomorphism of rings, and

(iii) if n is a line bundle, then \Ilz(r(\ =r(2.
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Now I have said something about orientations for particular vector-
bundles. If we construct orientations for a whole class of vector-bundles,
we would like them to have various properties. First, the orientations
should be natural for maps of vector-bundles. Secondly, we would like
good behaviour on Whitney sums. Suppose given two bundles €', E" over
X; form their Whitney sum &€ = €' @ §'". Let the total spaces be E,E',
E'" and the complements of the zero cross-sections EO, E'O, Eb’
respectively, Then we have maps p't E—> E', p'"E—>E'; over each
x € X one projects the sum of two fibres onto either summand. Then

E, = (0" B o () T EY).
Let weFY(E,E), ~' eF'(ELE\), w"ecF (E"E) be the three
orientations. We would like them to satisfy

w= (" e (e ).

Thirdly, we have a normalisation axiom. Consider the canonical line
bundle € over BU(1l). I claim its Thom complex MU(1) is equivalent
to BU(1l). In fact, we have to consider the associated pair of bundles
with fibres D2 and 51. But S1 = U(1); the associated s _bundle is the
universal Sl-bundle, so it is contractible. Thus, when we form a Thom
complex by collapsing it to a point, we do not change anything. But p?
is contractible and the associated Dz-b\mdle is equivalent to BU(1).
Hence, MU(1) ¥ BU{(1).

PROPOSITION 11. 3. There is an orientation «w for each complex
vector-bundle & which satisfies the following axioms.

{i) Naturality.

(ii) The axiom on Whitney sums.
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(iii) Normalization; for the universal bundle, w e IA(IO(MU(l))
corresponds under the eqQuivalence to x ¢ I,EO(BU(I)).

Now we can construct various characteristic classes, The easiest
is the Euler class. Suppose we have an orientation w in F—cohomology
for some class of bundles; let 1:X —> E be the zero cross-section. We
define the Euler class of & by

Xpl8) = 7.
Its formal properties are: naturality (if w 1is natural);
Xp(8' + ") = Xp(ENX ("),
(if e satisfies the axiom on Whitney sums); and normalisation (if w
satisfies the nomalisation axiom). For example, in the case of complex
K-theory we have
K(r() =n-1 where n is a line bundle.

PROPOSITION 11.4. Suppose the bundle in question is the tangent
bundle T of a compact smooth manifold Mn, orientable for ordinary
homology. Then

Xplm) = 1370
Here i*u is the restriction of the orientation «» to one fibre, so that it
lies in
F4R™, R"-0) 2 FT(s")
and f: M —>35" isa map of degree X(M), this being the ordinary
Euler characteristic for M.

Proof. By a result going back to Hopf, we can constructon M a
field ¥ of tangent vectors with non-degenerate singularities, so that the
number of singularities, when counted with appropriate signs, is X(M).

But now the zero section J:M —> E(t) is homotopic to a section A,
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which crosses the zero-section transversely a total of X(M) times. So
* A . . .
] w = A w. But here the contribution comes from many small discs,
. ¥
each of which contributes + 1 w.
Given an orientation, we can also construct 2 Thom isomorphism.

This allows us to copy Thom's treatment of the Stiefel-Whitney classes.

We consider the following diagram.

0 vt
K{E,E)) — > KO(E, Eo)
‘PKI T‘PK
K%(x) k()

We define
-1 2
P2A8) = o g wgll) -

PROPOSITION 11.5. ,oZ(E) € KO(X) is a characteristic class with
the following properties.

(i) Naturality,

i) p(E@xq) = p,(8)p, (7).

(iii) If n is a line bundle,
2(1’1) =1+q.
PROPOSITION 11. 6. fJZ extends to a function
0 0 1
£, K(X)—>K (X;Z[E])'
. 1
We need the denominators because ,02(1) =2, so ,02(-1) =5.
Now we are ready to study the following problem. In terms of our
%

knowledge of K (CPn), what is the fundamental class in K\,((CPn)'? 1{
we look at our account of duality, it appears we should ask a prior
question. Take CP"x CP" and embed CP" in the diagonal A . We
have an orientation

we K (CP™x cP”, CP"x CP" - A) .
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What is its image in KO(Can CPn)? Of course we require our answer
in terms of the base we know in K*(Can CPn).

PROPOSITION 11.7. K'(CP x CP") is free over m,(K) with a
base consisting of the products xilsz for 0€i<n, 0<j<n

n+l n+l
(x =0, x = 0). Here x1 and x, are the generators for the two

1 2
factors--see 11.1.

The difficulty is that the construction of w refers to a tubular
neighbourhood of the diagonal, and it is not clear how to relate that to the
whole of Mx M.

LEMMA 11. 8. Consider

W% ® n
PTK(CP x CPT,CcPx CP" - 2)—> K (CP x CP")
If kelm j":, then x1k= %,k .

See the proof of 10. 14.

0 n n

LEMMA 11.9. The subgroup of elements k ¢ K'(CP x CP ) such
that (x1 - xz)k =0 has a Z-base Pg:Pys -+ 2P where

= i
A S
i+j=n+r
The proof is a trivial calculation.
LEMMA 11.10. We have
Jw:I‘p0+a1p1+a2p2+...+anpn, aieZ.
Proof. By Lemmas 11.8 and 11.9 we have
je= ) am
i
Now consider the restriction of j©  to the diagonal. P, restricts to
e
(n+1)xn; p. restricts to 0 for i>0., But j& restricts to the Euler
1

class; X(CPn) = (n+1), and the orientation was chosen so that

1iw =x" So ag = 1.



LEMMA 11.11. jw satisfies
2 % o
Yijw)= (p, DI w)
1 n+1
where loz('r) = 5(2 + x) .
Proof. The first equation is immediate from the definition of Py
For the second,
T+ 1= (n + l)g

P2(§)=1+§=2+x,

/02(1) =2;
s0
1 n+1
PlT) = 7(2 + x)
LEMMA 11.12. "¢  is uniquely determined by 11.10 and 11.11.
Proof. Suppose as an inductive hypothesis that al, cee s A, are
determined. Then
2 n+i
= 2 . +
v (aipi) ap, + Ty,
where Tl is a sum of terms in P,
i

, ,P 3 SO
1 n

2(,# T+ 2n+i N
w) =
T (jw) 2 ap; T3 ,
where T2 is a sum of known terms and T3 is a2 sum of terms in
2
Py oot 0P Similarly, (pz—;)(j <) is the sum of known terms, terms
1 n i

in pi+1, see P and the term Znaipi' So we can find a, by equating
the coefficients of P,

LEMMA 11.13. We have

2 n+1
2(1+X)¢'(PO)=(2+X) P,

, . Q [¢) [os}
Proof. Calculating in K (CP x CP )} we have
( _ _n+l n+l
X T XP =Xy o X
therefore

2 2 _ . 2_ntl 2 n+l
xp(xl-xz)xppo—xpxl -xpxz y
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i.e.,
2 2.2 2, n+1 2, n+1
- - = {2 -
(le +x1 sz xz)‘If P, { X, +xl) (sz +x2)
(n+1)0 i n+l+j n+1+j
= T e - X )
i3 1 2

i+j=n+l

Dividing by X, - x,, which is not a zero-divisor in K(cP®x cP®), we

have
2 +1)1 i
(2 4% +x,)¥py = (_llr__l’)_'zlp, .
i+j=n+1 10 17 J
0
Now restricting to K (Can CPn). we get
2 i) +
20+ ¥ p = > (o) zlipo =2+ 0" p
i+j= n+1 A 0

This proves 11.13.
It follows that
e 1+ x)le Lizen™ 4
= = X .
F((1 x)pg) = (14 %) P = 3 P,
We conclude that the solution to our problem is:

THEOREM 11. 14,

K] i) ij
= + = +
jw (1 x)p0 2 X+ E X%
i+j=n i+j= n+l

As a corollary, we obtain the relation between the fundamental class
[CPn]K in K-homology and our base Exi} .

THEOREM 11.15.  <x, [CP“]K>= (-1t

Proof. Suppose we choose a base fbjS in KO(CPn) such that

<Xi.b.>= 8 . Then
J 1)

ij _ i J oo i
xllebk—x1 <x2.bk xlé_]k
Thus
X
j w/bﬂ: 1 g,
j*w/b =x_ +x
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j w/blzx

— 3= 3

L /b
[~ =
J 0 X
n K n
We require the class [cp ]K such that j «/lcp ]K = 1. Clearly the

answer is

[cpnjK =b_ -b _ +b

n
-1 n-2 - Pp_z ... F{-1) bO.

This proves the result.

THEOREM 11. 16. If M is a weakly almost complex manifold,

then
Index(M) = <p,(<) , [M]>.

Proof. The index is 2 homomorphism of rings from the cobordism
ring of weakly almost complex manifolds, that is, ‘I'l'::((MU). It is there-
fore sufficient to prove the result for a set of generators of the Q-
algebra 7, (MU)®Q. But the complex projective spaces CP® are such
generators. For CP" we have

pylT) = 22

n 1 n+]
<p (), [cP ] > = <z +x)
1 +1)! i j
Ly Emlageem) s
i+j=n+1 I K

,[CPn]K>

_1_[( {n+1)!

T30 28”7 +1]

i+j=nt1

%[(.1)“(2-1)n+1 +1]

21+ ™)

{1 (n=0 (2)

0 (n=1 (2)

Index (CP™)
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12. THE STEENROD ALGEBRA AND ITS DUAL

One knows that in order to perform calculations in ordinary cohom-
ology, it is very useful to have operations like the Steenrod squares.

In the general case, let E be a spectrum. Then to every element

e B s
of E (E) we can associate a natural transformation E"(X) —>E (X) de-
fined for all spectra X. Namely, given

{ g
X—E and E-=—">E,
gf

we form X-—>E. This gives a 1-1 correspondence between
elements of E*(E) and such natural transformations (consider the case
X = E).

Now E*(E) is of course a group; addition in it corresponds to adding
operations

(g, +g)f=(g,0 +(g,0) .
But E*(E) is in fact a ring; multiplication in its corresponds to compos-
ing operations,
f= f) .
(g,g)f =g (g,D
Example, Suppose given a prime p; take E=HZ . Then
- P

% e
A ={HZ ) (HZ ) is the mod p Steenrod algebra, the algebra of stable
P p

cohomology operations on ordinary cohomology with ZP coefficients.,
That it is an algebra over Zp is clear from the fact that it contains Z
It is a fact that A is generated by the Steenrod operations. If

p= 2 these are the Steenrod squares

sqt: Hn(X,Y;ZZ)———> Hn+i(X,Y;ZZ) )
If p>2 these are the Steenrod powers
n + -1
PR HNX, Y3z ) —— 5T ER(P )(X,Y;Zp)
P

together with the Bockstein boundary
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B %, vz ) —> 2" %, 752 ).
P P P

The fact that A* is generated by the Steenrod operations is not obvious,
and should not be taken as a definition; it comes from the calculation of
(Hzp)""(Hzp), which is due to Serre for p= 2, and to Cartan for p>2 .

Actually A'ch has more structure than just the structure of an
algebra. Before going into this, I want to comment on the work of
Milnor [lOJ. Milnor showed that it is also good to look at the dual of the
Steenrod algebra,

A, = (HZP)*(HZP) .

Here A, and A" are dual graded vector spaces over ZP. Of course,
if we did not know that A is finite-dimensional over ZP in each degree

we would only say

z

A" = Hom (A ,Z ),
nop
P

but of course we do know it.
Now HZP is a ring-spectrum; we have a map
)i HZP A HZP—> HZP
So we get
A, ®A,=(HZ ), (HZ )& (HZ ). (HZ
, w = 1_.’),P( p) ( p «f p)
A
—> (HZ ), (HZ ~HZ)
P)"‘( P P
s (uz )z ) =4, .
p* P £
So A, also is an algebra.
The dual of the product map ©:A R A —> A, is of course a coproduct

R e %
map Y =¢ :A —>A ®A | The interpretation of this coproduct is as

follows. Suppose

b (a) = Z a’i® ai"

1
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Then
Jan] 1]
a(xxy) = Z (-1) (ai’x)I(a’i' y) (Cartan formula) .

1
There exists one and bnly one element Z a'®a'" such that this formula
n 1 1
i
is true for all x and y. Of course the formula is then true for x X y
and xvy., For example,
k i i
Sq(xy)= »  (Sa'x)(Sq’y),
itj=k
so that

qJqu: Z Sqi®qu.
itj=k

It can easily be shown that in this way A" becomes a Hopf algebra,
Dually, A, becomes a Hopf algebra; its coproduct is the dual of the
I
composition product in A .
More generally, let X be a space such that (HZP)*(X) is finite-

% s
dimensional in each degree. Then (HZP) (X) is 2 module over A . The
action is given by a map

A ®(HZ_ ) (X) —> (HZ_) (X} .

P P

The dual of this map is a coaction map

(HZ ), (X) —> A, ®(HZ ), (X) .

P H p*
Thus (HZP)*(X) becomes a comodule over the coalgebra A,. The
assumption that (HZP)*(X) is locally finite-dimensional is in fact
unnecessary, since the coaction map can be defined directly, as will be
done below in 2 more general setting.
It turns out that the structure of A, is very much easier to describe

*
than the structure of A . One reason is that the productin A is com-

2
mutative, whereas thatin A is not (SqlSq2 + SqZSql).
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We give a description for the case p= 2. We start from RP™®
which is an Eilenberg-Mac Lanespace of type (22, 1). We have
(HZ 2)*(RPOO) = Zz[x], a polynomial algebra on one generator x of

dimension 1 (the fundamental class). We may take in (HZ (RPOO) a

2)%

base of elements b, ¢ (HZ,),(RP™) such that
i
<x,b.>=28.,
j i
Since RP® is term 1 in the I—IZ2 spectrum, b, yields some element in

(H (HZz) = Aj— 1 It can easily be shown that this element is zero

ZZ_]I

unless j is a power of 2. We define €, to be the image of b in
Zn
A . The element £  turns out to be the unit 1 € A..
2" 0 0

THEOREM 12.1 (Serre-Milnor). If p=2,

A, = yEo, e .
«=2,08,8, ]
The proof is non-trivial, and is omitted here.

The construction of Ei yields the following description of Ei as

a linear function on A*
- * 1 o,
PROPOSITION 12.2. The actionof a € A on (HZZ) (RP ) is

given by

2
= >
ax Z <a, gi x
i>0
. . oo
For x is a morphism from the suspension spectrum of RP to

I—IZ2 of degree -1, and
) 0 if j4 27 for some r
E3
<ax,b.>=<x a,b,>=<a,x b.>=
) ) <a,g > if j=27

From this it is rather easy to work out the effect of a2 on xz,x4,

etc. We get:
o it
PROPOSITION 12, 3. a(x )— Z <a, § > x
320
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It now becomes easy to work out the effect of a composite ba on x,
which gives us <ba, §_.1 > and therefore ¢ §i .
2i

PROPOSITION 12.4.  (§ = iﬂZ:k 5o .

We would now like to carry over some of this work to generalised
homology theories. l.et E be a ring-spectrum with multiplication p,
Then obviously the appropriate generalisation of A, is E_(E). It turns
out that this works quite well even in various cases where E*(E) works
horribly badly. However, one needs an assumption and one must give a
warning. The warning is that in the classical case A, is analgebra
over Zp, but in the generalised case E_(E) is a bimodule over T (E).
There are two actions of T, (E) on E,(E), and one has to remember that
they are different. The left action m(E)Q® E(E)—> E,(E}) is obtained
by using the morphism EAErE J% EAE; the right action
E*(E) ®m,(E) —> E,(E) is obtained by using the morphism
E EE "2 > £, E,

The assumption we have to make is that E,(E)} is flat as a right
module over m,(E). I say "as a right module®, but if E is commutative,
which is the usual case, it is equivalent to say that E.(E) is flatas a
left module; this is seen by using ¢: EAE —> EAE to interchange the
two sides.

The assumption is satisfied for the following cases: E = KO, K, MO,
MU, MSp, S, and HZ . See (1], Lemma 28, p. 45.

With this assumption, we have the following lemma. Consider the
morphism

1a 1
(EAE)A(E.\X)Le»EAE.\}(_



It induces a product map

E(E)® E (X)—> [S,E.E.X], .

mx(E)
LEMMA 12.5. This product map is an isomorphism.

Proof. (i) If X = SP, the result is trivial,
(ii) If we have a cofibering

X —=X_—> —> —>X
1 2 X3 X4 5

and the result is true for XI'XZ’X4’ and XS, then it is true for X3 (by
the 5-lemma).

(iii) The result is true if X is any finite spectrum, by induction on

the number of cells, using (i) and (ii).

(iv) The resultis true if X is any spectrum, by passing to direct

limits.
We can now define the coaction map we want. Consider the morphism

il
E-X ¥ EaSax —2220 o b p .

This induces
(lAi.\l)*
E(X) ———> [S,E~EAX], .

Composing this with the inverse of the isomorphism in LLemma 12.5, we

obtain 2 homomorphism

byt BEuX) > E4(E) @ E X)) .

Tul(E)
Specialising to the case X = E, we obtain the homomorphism

bpi EJE) "> E(E)® . E(E).

«(E)
We also define a counit map
et E(E) —> n,(E) ,

which is simply the homomorphism induced by the product morphism

pox E~E—E.
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THEOREM 12.6. (i) E_(E) is a coalgebra with lIJE as a coproduct
map and € as a counit map.

(ii) E,(X) is a comodule over E (E) with lg( as the coaction map,

(iii) If E = HZP, then ¢X, ¢E and ¢ become the structure maps
classically considered.

To give a complete proof of 12. 6, one has to introduce a few more

structure maps, which is very easy, and check their properties by dia-

gram chasing. See [l], chapter 3.

13, A UNIVERSAL COEFFICIENT THEOREM

The theme for the next part of the course is the following. Let E be
a fixed ring-spectrum. Suppose given E*(X) and E*(Y); what can be
said about [X,Y]*? In other words, given homological information,
what can we say about homotopy?

I propose to treat this problem under a restrictive hypothesis; that
is, I will assume that E*(X) is projective over n*(E). I do know how to
avoid this hypothesis, but it involves extra work; one has to resolve both
X and Y and mix the resolutions geometrically., The present hypothesis
is sufficient for the applications to be given here, To see that the
hypothesis is reasonable, consider two examples.

Example (i}, Let X = S. Initially most people need to compute
stable homotopy, that is, [s, Y]*. Of course E*(S) is projective over
",.(E) for any ring-spectrum E; in fact it is free on one generator,

(ii). Let E= HZP. In this case m,(E) is the field ZP, so any
module over it is projective; in particular, (HZP)*(X) is projective over

Z_f X.
p forany
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All the same, the correct level of generality will probably turn outto

be the roaximum level, so ultimately we will probably want to go beyond

the case in which E_(X) is projective over m (E).
To handle even this case, we need some results of the general type
The reader interested only in the case

of universal coefficient theorems,

X = S may without loss omit this section.
E is the ring-

In the situation of the universal coefficient theorem,

spectrum and F is a2 module-spectrum over E. E_(X) is given and

*
the aim is to find information about F*(X) and F (X).
F a module~spectrum

LEMMA 13,1, Let E be a ring-spectrum,
over E, and X any spectrum. If E*(X) = 0, then F*(X) =0 and

ES
F (X) =0.
Proof. E*(X) = 0 is equivalent to n*(}:,\x)-_—o, i.e., EAX is
contractible. Now any morphism
S‘i—>FAX
can be factored as
inlal
SAFAX ——————> ErFaX
lAfT l\) Al
i
S —— > FaAX R
f=0.

and of course E A FaX * Fa(EaX), so it is contractible; hence

Similarly, any morphism X£—> F can be factored as

1
Eax —2f s ELF

o i

X —t———sF

so {=0.
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Now observe that for any element x* [ F)X(X) we get a homomorph-

E_(X) —> m(F) .

One way to say it is that this map is

£
Xy b—> <x ,x_ >

i

where we use the pairing
c v
FAE —> EAF —>F .

%
Another way to say it is that if XE—=> F, we form

(x) Vo
E,{X) E_ (F) > (F) .

In any case, we get a homomorphism

F(X) —> Hom (X), M (F)) .

m(E) B
We will be interested in spectra X which satisfy the following condition.

Condition 13.2.  F (X) —> Hom'y, |\ (E_(X),m,(F)) is an isomor-
phism for all module-spectra ¥ over E.

I now introduce a condition on E.

Condition 13.3. E 1is the direct limit of {inite spectra ECL for
which E*(DECL) is projective over m/(E) and DECL satisfies 13.2,

Here DEa means the S-dual of Ea.

PROPOSITION 13.4., Condition 13.3 is satisfied by the following
spectra E:

S, HZp, MO, MU, MSp, K, KO .

For the moment I postpone the proof of this proposition; it will be

outlined below. Evidently one needs a lemma to say that DECL satisfies

13.2, but one can impose very restrictive condition on DE, .

The result we want is as follows,
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PROPOSITION 13, 5. Suppose E satisfies Condition 13.3 (e.g.,
E may be one of the examples listed in 13.4). Suppose E_(X) is pro-
jective over m (E). Then 13.2 holds, i.e.,
3 sic
F (X)—/> Hom E (X)), F
&  (y B+ ) Tl E)
is an isomorphism for all module-spectra F over E.
This is a special case of a more general result,
THEOREM 13.6. Suppose E satisfies Condition 13.3. Then there
is a spectral sequence
ExtP " (E,(X), ny(F)—> F(X)
X § » Ty
m(E) . P
whose edge-homomorphism is the homomorphism
F(X)—> Hom' _(E,(X),m(F))
om . » T
melE) *

considered above, and convergent in the sense that Theorem 8.2 holds.

Proof of 13.5 from 13.6. If E}I‘(X) is projective over w(E), then

Bxth) oy (BalX), ma(B))
is zero for p> 0. Hence, the spectral sequence collapses to its edge-
homomorphism. Note that we have enough convergence; condition {ii) of
Theorem 8.2 is trivially satisfied, so (i) and (iii) of 8.2 hold.

We now prove some intermediate results necessary to prove
Theorem 13, 6.

The force of Condition 13.3 is that it allows us to make resolutions
of the sort used by Atiyah in his paper on a Kiinneth theorem for K-theory.
Recall that E is the direct limit of finite spectra EO.' The injection
Ea—> E corresponds to a cohomology class ic. € EO(EQ) or to a
homology class g, € EO(DEQ).

LEMMA 13.7. For any spectrum X and any class e ¢ EP(X)

there is an Eo. and a morphism {: DEQ-—> X of degree p such that
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e =f,(g,)-

Proof. Take a class e ¢ Ep(X). Then there is a finite subspectrum
X! ci‘X and a class e' ¢ EP(X‘) such that i*(E') =e. We may interpret
e' as a morphism DX'—> E of degree p; here I need the fact (not
proved in §5) that DZY 2 Y. By assumption, this morphism factors

through some EC.’ so that

DX' —> E
a
Ea

! considered as an element of E P(DX'). Dualising back,

d ¢ =
and ¢ i =e
D =e' ¢ E(X").

(DY) yeq e E (X"
Take { to be
DEQ—LD X! 4 X.
LEMMA 13.8. For any spectrum X there exists a spectrum of
the form

_ p(B)
W = \B/ S ADEQ(B)

and a morphism g:W—> X (of degree 0) such that
gy’ EW)—> E_(X)
is an epimorphism.
Proof. Immediate from 13.7, by allowing the class e in 13,7 to
run over a set of generators for E (X).
Note that W= V/ sPP), pE

B8 a(B)
properties that E_(W) is projective and 13.2 holds, that is

inherits from its factors the

* *
F (W) —> Homn*(E)(E*(W),n*(F))

is an isomorphism for all module-spectra F over E.
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Proof of 13.6. We will construct a resolution of the following form,

with the properties listed below,

X X X
X =X, —Lsx ——>x —>X

\/ \/ \/

(i) The triangles

are cofibre triangles.
(i) For each r,
(x )8 By (X ) —> I;:*(Xr'*l)
is zero,
(iil) For each r, E*(Wr) is projective over m (E}.
(iv) For each r, the map
F (W )—> Homﬂ (E)(E*(wr)' m(F))
is an isomorphism.
Let XO = X. Assume Xr is constructed. By 13.8, there exists a
spectrum W and a morphism
r
g.: Wr—>}(r
as described in 13.8, Form a cofibering
Er
W —>»X —>X —> W
r r r+l r
where the last morphism has degree -1. Without any essential loss of
generality we may suppose by using a telescope that XOC_ ch XZC e s

let Xoo be their union. Since

E (W) —>E(X )



is an epimorphism,
E (X ) —> E_(X
*( r) ol r+l)

is zero. Therefore

E X )= 1% E(X)=0

By Lemma 13.1, we have F"(xm) =o0.
By applying F*, we get a spectral sequence, convergent in the sense

x :
that Theorem 8.2 holds. 1t is convergent to ¥ (XOO,X ) 2 FN‘(XO) and

0
has El—term
P ¥z F,(W ).
! P
Now we have arranged that

F*(wr) = Hom: (E(W ), m,(F)

*(E)
and

0 <— E,(X) <= E(Wg) <— E (W) < E, (W)
is a resolution of E*(X) by projective mecdules over n*(E). Moreover,
the boundary d1 in the spectral sequence is that induced by the boundary
in this resolution. Therefore

Eg, *_ Eth,’:E)(E*(X) J T (F)),

as claimed.

It can be checked that the edge-homomorphism is the obvious map.

Now we start work on the proof of Froposition 13.4. We need the
following lemrma.

LEMMA 13.9. Suppose (i) X 1is a finite spectrum,

(ii) the spectral sequence

H,(X:m(E))=—=>E_(X)

is trivial, i.e., its differentials are zero, and
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(iii) for each p, HP(X;H*(E)) is projective as a left module

over m,(E).

Then E (X) is projective and X satisfies Condition 13.2, i.e.,

*

F'(X) > Hom 5
*

(E,(X), m,(F)
is an isomorphism for all module-spectra ¥ over E.
(The condition that X 1is finite is not essential, but is satisfied in
the applications.)
In order to apply Lemma 13.9 to DEQ, we simply have to check that
(i} the spectral sequence
ok =
H'(Egimy(E) —> E (E)
is trivial, and
(ii) for each p, Hp(Ea;n*(E)) is projective over m(E}.
Proof of 13,9 (from [1], Lecture 1, Prop. 17). Let E; q(O) and
Epr’q(Z) be respectively the spectral sequences
H)'E(X;TT*(E)) = E_(X)
HY(X3m (F) = F(X) .
It follows immediately from the assumptions on the spectral sequence
E: *(0) that E#(X) is projective,
The Kronecker product yields a homomorphism

EP *(2) —> Hom (0), m(F)) .

r
(E_ .
mJ(E) p*

This homomorphism sends dr into (dr)%. {This assertion needs
detailed proof from the definitions of the spectral sequences, but it can
be done using only formal properties of the product and the fact that Hom

is left exact.) Because of the assumption that the spectral sequence

E. (0) is trivial, which is used here, the groups Hom (ET (0} (),
* T (E) px *

equipped with the boundaries (dr)\‘ (which happen to be zero) form a



290

(trivial) spectral sequence E;;’q(4). We now have a map of spectral
sequences
P 42— P 4.
r

For r =2 it becomes the obvious map
*

P
HY(X; F))—>H
{ n*( 1) omn*(E)

(HP(X:TT*(E))»TT*(F)) .

Since we are assuming HP(X;n*(E)) is projective over n*(E), a theorem
on ordinary homology shows that for r = 2 the map is an isomorphism,
Therefore it is an isomorphism for all finite r, and the spectral
sequence Es’q(z) is trivial. Since X is a finite spectrum, it is easy
to deduce that the map

2 Y(2)—> Hom® (E (0),7,(F)

'”*(E) P>

is an isomorphism, because the limit is attained for some finite value of

Let us now introduce notation for the filtration quotient groups, say
G, ,(0) = Im(E(XF) — E_(X))
5 * *
GP *(2) = Coim(F (X)—> F (XP)).
The Kronecker product yields a homomorphism

GP*(2)—> Hom

(£)(Cp (0 TP

(Again, the verification uses formal properties of the product and the fact

that Hom is left exact.) Consider the following diagram.

0 0
Y . l
P l o]
ELR) —> Homn*(E) (EP*(O).TT*(F))

l

GP*(2) ———> Hom

|

GP 1 *(2)— > Hom
v
0 0

£

o (£)(Cpal0) T (FD)
S

E

o) Cp1o00 )
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[e] . : . .
The second columnis exactbecause E  (0) is projective. Induction over
p*

p, using the short five lemma, now shows that
GP¥(2)—> Hom (G (0),m,(F))
m(E) Tpx
is an isomorphism. Since X 1is a finite spectrum, in a finite number of
steps we obtain the result that
%
F (X) —> Homn*(E)(E*(X),ﬂ*(F))

is an isomorphism.

We now sketch the proof of 13,4, (See [1], pp. 29-30)

(i) E =S, the sphere spectrum., Take Eq = S5; then 13.3 may be
verified directly.

(ii) E = HZP. The hypotheses of 13.9 are satisfied by any X, and it
is sufficient to let Ea run over any system of finite spectra whose limit
is HZ

p
(iii) E = MO, It is well known that
MO & V/ sn(‘)sz ¥ 'I'I_s““)Hz2 .
i i
The hypotheses of 13.9 are satisfied by any X, and it is sufficient to let
Ecx run over any system of finite spectra whose limitis MO,

(iv) E = MU, We have HP(MU;nq(MU)) =0 unless p and g are

even. Therefore the spectral sequence
X< E3
H (MU;n (MU))==> MU (MU)

is trivial., Again, HP(MU;TT*(MU)) is free over n*(MU). It is sufficient
to let EG run over a system of finite spectra which approximate MU in
the sense that

i *H —>

i, p(EOL) HP(MU)

is an isomorphism for p <n, while HP(EC‘) =0 for p>n.
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(v) E = MSp. A simple adaptation of the method of S. P. Novikov
{lZ, 13] from the unitary to the symplectic case shows that the spectral
sequence

H*(MSp;n*(Msp)): MSp " (MSp)
is trivial., Again, HP(MSp;ﬂ*(MSp)) is free over n*(MSp). The rest of
the argument is as in (iv).
(vi) E =K. Recall that in the spectrum K every even term is the
space BU. We.have
HP(BU;nq(K)) =0 unless p and q are even.
Therefore the spectral sequence
HY(BUsm, (K)) => K(BU)
is trivial. Again, HP(BU;m (K)) is free over w (K). It is sufficient to
let E,(1 run over a system of finite spectra which approximate, as in (iv},
the different spaces BU of the spectrum K.

(vii) E = KO. Recall that in the spectrum KO, every eighth term is

the space BSp. I claim that the spectral sequence

H(BSp;my(KO))—> KO (BSp)
is trivial. In fact, for each class h ¢ HBP(BSp(m)) we can construct a
real representation of Sp(m) whose Chern character begins with h; for
each class h ¢ H8p+4(BSp(m)) we can construct a symplectic represent-
ation of Sp{m) whose Chern character begins with h. The rest of the

argument is as for (vi).
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14. A CATEGORY OF FRACTIONS
We recall that our general object in these sections is to answer the
following question. Suppose given E*(X) and E*(Y). What can we say
about [X,Y] 2
Now it is clear that we cannot say everything. For example,

suppose E = HZ_; given (HZZ)”‘(X) and (HZZ)*(Y) there is no hope of

2
finding out anything about the odd torsion in [X,Y]*.
More generally, we will say that a morphism f: X—> X' is an
E-equivalence if the induced homomorphism
fgr E(X) —> E (X)
is an isomorphism. This can happen without f being an equivalence; for

example, take E = HZZ’ X =HZ_, X'=pt. Then it is clear that methods

3’
based on E-homology cannot tell X and X' apart.

It therefore seems best to introduce a new category in which one does
not attempt to tell X and X' apart. In technical terms I have to start
from the stable category and define a category of fractions.

(Added later.) I owe to A,K, Bousfield the remark that the procedure
below involves very serious set-theoretical difficulties. Therefore it
will be best to interpret this section not as a set of theorems, but as a
programme, that is, as a guide to what one might wish to prove.

Let C be the stable category already constructed.

THEOREM 14. 1. There exists a category F, called the category
of fractions, and a functor

T: C —>F

with the following properties,
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(i) If e:X—> Y is an E-equivalence in C, then T(e) is an actual
equivalence in ¥, i.e., it has an inverse T(e)_l.

(ii) T is universal with respect to this property; given a category G
and a functor U: C —> G such that e an E-equivalence implies Ufe)
is an equivalence in G, then there exists one and only one functor
V: F—> G such that U= VT,

T

C—>

U v

F
t
]
1
1
v
G

(iii) The objects of F are the same as the objects of C, and T is
the identity on objects.
(iv) Every morphism in F from X to Y can be written

T(e)-lT(f), where f1: X—>Y' and e: Y —> Y' arein C and e is

fTe

X Y

an E-equivalence.

We have T(el)_lT(fl) = T(ez)_lT(fz) in F if and only if there exists

a diagram of the following form in C.

e

Y
1\6‘1
X Y 1 >yt
%
v 2
2

&

&
2
fz \

-1
(v) Every morphism in F from X to Y can be written T(f)T(e) ,
where {:X'—> Y and e: X'—>» X arein C and e is an

E-equivalence.



X
/ Y
/
Xl
-1 -1
We have T(fl)T(el) = T(fZ)T(ez) in F if and only if there

exists a diagram of the following form in C.

/\
\//

If one takes only parts (i), (ii), and (iii) the theorem is almost empty;
such a category of fractions exists under negligible assumptions. (Added
later ! unfortunately there is no reason why the result should be a small
category.) Our object, of course, is to construct F in such a way that
we obtain a good hold on it, Parts {(iv) and (v) essentially describe two
ways of constructing F. We shall write [X,Y]f to mean the
morphisms from X to Y in the category F. Besides constructing F,
we must also give results calculating [X,Y]E in various cases which
arise in the applications. When we construct the Adams spectral
sequence, based on the homology theory E, we will try to prove that it
converges to [X, Y]Ii .

Before proving 14,1, I will finish stating some results which help to
show what F is.

We propose to get a hold on [x, Y]E by showing that if we keep Y
fixed and vary X, then we get a functor of X which is representable in
C. Then we give means for recognizing the representing object, and
finally we construct the representing object in an elementary way in

special cases.
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PROPOSITION 14.2. The following conditions on Y are equivalent,
(i) T: [x, Y:|*—> [X,Y]Ii is an isomorphism for all X,
(ii) I E_(X)=0, then [X,Y], =0.

If these equivalent conditions hold, we say that Y is E-complete,
This term can be justified by inspecting the special case E = HZP, which
will be considered later.

As an example, we give:

COROLLARY 14. 3. If Y is an E-module spectrum, then Y is
E-complete and

T: (%, v],—> [X,Y]f is an isomorphism.

Proof. (from 14.2). Condition (ii) of 14.2 holds by 13.1.

THEOREM 14. 4. (i) For any spectrum Y there is an
E-equivalence e:Y —> Z such that Z is E-complete.

{ii}) Such an E-equivalence is universal. That is, given any other
E-equivalence e': Y—> Z', there exists a unique {:Z'—> Z such that
fe' =e.

e . Z'

//7 f
o

e ‘
v
Z

(iii) Therefore, Z is unique up to canonical equivalence.
(iv) For sucha Z we have an isomorphism
(x,z], —> [x,Y]f .
given by f F—> T(e) ! T(f).
Notes. (iii) follows immediately from (ii). Since Z is defined up
to canonical equivalence by Y, we may write it as a function of Y; we

E
choose the notation Z =Y , so that

%, ¥51, = [x,v]E.
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We will call YE the E-completion of Y. Again, the term can be

justified by considering the special case E = HZ . Note that
p

EE_JE

(Y™) Y

, so that the term "completion' is justified.

We say that X is connective if there exists ny € Z such that
nr(X) =0 for r <n0.
PROPOSITION 14.5.  Suppose that E is a commutative ring-
spectrum and nr(E) =0 for r <0; suppose also that Y is connective.

E .
Then [X,Y] depends only on the ring m (E).
For example, [X,Y]_I:: is the same whether E= MUQ or
* P
E = bqu. The idea is that under these hypotheses, the difference
E . - . .
between [X,Y]* and [X,Y]* is essentially arithmetical.
For the next result, we assume that E is a commutative ring-
spectrum, that ﬂr(E) =0 for r<0, and Y is connective.
THEOREM 14. 6. (i) Suppose nO(E) is a subring R of the
rationals. Then
E
Y =YR.

(ii) Suppose nO(E) = Zm and nr(Y) is finitely generated for all r.

Then
E
Y =YI_ ,
m
where 1 1is the ring of m-adic integers, Lim Z .
m <—-r— m¥

(1ii) Suppose TTO(E) = Z__ and the identity morphism 1: Y—>Y
satisfies m® 1= 0. Then
Y =Y.
. E
Examples. (ia) Suppose nO(E) =Z, then Y =Y and

E
T: [X,Y]* —> [X,YJ* is an isomorphism,
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(ib) Suppose no(E) is a subring R of the rationals and X is 5

finite spectrum. Then
E .
x,v), =%, ¥R], = [X,v], ®R 1bye6.7.

{ia) Suppose W (E)=2Z ., m (Y) is finitely generated forall r
and X is a finite spectrum. Then

E
x,v]y=xovr =[x, v], @1 bye.7.
(itb) Take m to be a prime p, and take X =Y =S, Then
0 (r<0)
E
[s.815= 41 (r=0)
r P
the p-component of {3, S]r if r>0.
It is very plausible that the classical Adams spectral sequence should
converge to these groups.
Warnings. (i) We have assumed that ‘nr(E) =0 for r<0. If we
. . . E
do not have this, the relationship between [X,Y]* and [X,YL< may be
much more distant. For example, take E = K; it can be shown that
[S,S]Ir{ # 0 for infinitely many negative values of r,

(ii) Consider parts (ii) and (iii) of the theorem, in which no(E) = Zm
Results of the form given do require some assumption on Y beyond the
fact that it is connective. For example, take Y = S(Q/Z). It can be
shown that

[s,v].=0 andso [5,Ylel =0, but [s,v]F=1
? 1 1" "'m ’ ’ 1 m
If one takes m to be a prime p and checks the behaviour of the class-
ical Adams spectral sequence based on E = HZ , one sees that it con-
verges to [S,Y]? , as indeed it must do by the theorem to be proved in
the next section. So something which was previously a counterexample

can now be used as evidence to support the theory.
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The proof of Theorem 14.1 requires two lemmas.
LEMMA 14.7 (i) Suppose given a diagram

f
X —>X!

Y
in which e is an E-equivalence. Then we can complete it to a
commutative diagram

f
X—————> X!

Y ‘_g%Y'

in which e!' is an E-equivalence. If f is also an E-equivalence, so is

(ii} Suppose given a diagram
Xl
v— & o4
in which e' is an E-equivalence. Then we can complete it to a

commutative diagram

in which e is an E-equivalence. If g is also an E-equivalence, so is {.
Proof. (i) Let W be the fibre of X—>X"', andlet Y' be the
cofibre of W—> Y. The morphism e' is an E-equivalence by the five

lemma. Part (ii) is similar,
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LEMMA 14.8. (i) Suppose given
e f
X'—>X=——3Y
g
where e is an E-equivalence and fe = ge. Then we can construct
£y el o,
X—=3Y¥—>Y
g
with e' an E-equivalence and e'f = e'g.
(ii) Suppose given
f e!
X == Y—>Y'
g
where e' is an E-equivalence and e'f = e'g., Then we can construct
e _ty
X'—>X "3Y
g
with e an E-equivalence and fe = ge.
Proof. The proof is a manipulation with cofiberings using Verdier's
axiom (6, 8) and is left as an exercise.
Now, to construct ¥, let the objects of ¥ be the same as the
. E
objects of C., To define morphisms in F, say [X,Y] , one makes a

preliminary construction. Fix Y, and consider the category in which the

1
objects are E-equivalences vY-£>Y' and morphisms are diagrams of

the following form. /7Y|
gy

Y

ey

Then 14.7 and 14. 8 say that we get a directed category in the sense of

Grothendieck. That is, given two objects A and B, there exists

/ c
B
i £, h
given two morphisms A T"—_—3B, there exists A . B —> C
g g

where hf = hg.
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E
We define [X,Y]* = Lim [X,Y']“, where the direct limit takes
.—é 3
place over this directed category. An element of Lim x, v1] is an
—>

equivalence class of diagrams

'Yl
/ Te'
X Y
in which e’ is an E-equivalence. Two such diagrams are equivalent if

and only if there exists a diagram of the following form.

\aAYI
e

Y
1
1
2
YZ

=
] T

This is essentially the construction presented in (iv). To check that this

is an equivalence relation one uses 14.7 (i).
To define composition in the category, suppose given the two diagram

diagrams shown below with undotted arrows,

X Y
Add the dotted arrows by 14.7 (i}. We get a diagram representing a
morphism from X to Z in the new category. We check that the
equivalence class of this diagram depends only on the equivalence classes
of the factors, not on the choice of parallelogram (use 14.7 (i), 14.8 (i)).
We check the associativity law and the existence of identity
morphisms. We now have a category ¥F. We define T: C T> F as

follows: if f: X —> 7Y, let T(f) be the class pfthé following diagrarn s ©

P
PR LN
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A

X Y
One checks that this is a functor. It is now almost trivial to verify
properties (i)-(iv) of the theorem.

On the other hand, precisely the dual construction works using
14,7 (ii) and 14. 8 (ii) to show that one can construct ¥ so0 as to have
properties (i)-(iii) and (v). But of course F 1is characterised by
(i) -(iii}, so it must have both properties (iv) and (v).

Now we turn to Proposition 14.2. First, suppose E,(X) =0. Then
it is clear that the morphism pt.—=X 1is cofinal among E-equivalences
e's X! —>X. So we have [X, Y]* =0. If we assume that
T: [X, Y]*-——> [X, Y]f: 0 is an isomorphism, then clearly we deduce
that [X,Y]* = 0, So condition {i) of 14.2 implies condition (ii). The
proof that (ii) implies (i) will be given together with the proof of part of
Theorem 14.4 to be considered below. This requires three lemmas,
numbered 14.9, 14,10, and 14, 11.

LEMMA 14.9. Let A—> B —> C be a cofibering. Then

[A,Y]E < [B,Y]f(—— [c,Y]f
and
x,a)f —>x,8]F —>[x,c]F
are exact,
Proof. F¥or any Y', the sequence
[a, v ],<— [B,v],<— [c.¥'],
is exact. The given sequence is obtained from such sequences by passing

to a direct limit. But direct limits over a directed category preserve
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exactness. The same form of argument holds for the second sequence,
E
using the fact that we can also define [X, Y]* by taking a direct limit of
[X',Y]* as we vary X',
LEMMA 14. 10. The canonical map
E E
(Vx vl —> TTIx_,Y]
o o * a o %
is an isomorphism.
) . ) E
Proof. (i) Suppose given an element in W[Xa, Y] ; each of its

a
components is represented by a diagram

Then we can form the diagram

Ve,

Vox
a  a
This gives an element of [V Xa, Y]* which maps in the required way.
a
y - \Y; E
(ii) Suppose given an elemrent of [ 4 Xa, v]T, say represented by
V X Y
a O
/‘ f
e
wl
. . . E .
Suppose it restricts to zero in each [Xa, Y].., . This says that for each

o we have a commutative diagram of the following form;



X
o \C{Xo Y
1 i
a
1\ / /le f
Xc
R ; W!
€y V
Xl

and moreover, fjCI = 0. Then consider the following diagram.

V x

4 o8
Ve T
a a WI

Vo oxs
a

Y

o3

This shows that the diagram

e/aa/

w!
: E
gives the zero element of [ \/ Xa’YJJ .
a *
E
Now we start the proof of 14. 4. Consider [X,Y]* . Hold Y f{ixed
and vary X. By 14.9 and 14.10, we have the data for E.H. Brown's
E
Theorem, and we deduce that [X,Y]J{ is a representable functor of X.

That is, there is a spectrum Z and a natural transformation
2 E
u: [x,z),— [x,v],.
Here Z satisfies condition (ii) of 14.2. For suppose E*(X) = 0; then
~E -
[X, YJ* =0, as we have remarked; so [X,ZJ* =0, since U is an iso-~

morphism.

Now consider 1 e [Z,Z] and U(l) ¢ [Z,Y]E. The latter is repre-
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‘YI
u
7
-
Z Y
Extend this to a cofibre sequence v
. /
1/1 z Y
X

Then by naturality U({) = f»U(l) =0, Since U is a monomorphism,
f=0. Therefore the morphism z2> vy is equivalent to the injection
Z — Z v Susp(¥X); we can replace the representative for U(1l) by the

following diagram.
Z v Susp(X)
el!
Z Y
E
Now consider 1 € [Y,Y],_ ; there exists e: Y —> Z such that
(e)=1c¢ [Y,Y]E. That is, we have the following commutative diagram.

Z v Susp(X)

R
N/

We conclude that i*: E*(Z) —> E*(Z v Susp(X)) is an epimorphism.
Therefore E, (Susp(X)) =0. Hence, i E(Z) —> E,(Z v Susp(X)) and
€yt EL{Y)—> E (Z) are isomorphisms.

Since we now know that €:Y —> Z is an E-equivalence, we allow

ourselves to change its name to e:Y-—> Z. We have proved that any
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spectrum Y admits an E-equivalence e:Y—> Z, where E_(X) =0
implies (X,z], =o0.

We will now forget everything about Z except these two properties,

LEMMA 14.11. Suppose e: Y —> Z is an E-equivalence, and
E,(X) =0 implies [X,z],=0. Then 14.4 (ii) and (iv) hold.

This will complete the proof of Proposition 14.2; for we take
e:Y—>Z tobe 1:Y —>Y, and deduce that

: (%, v],—> I1x,v]¥

is an isomorphism. Moreover, it will obviously complete the proof of
14. 4.

Proof of 14.11, We have to show that e:Y —> Z 1is universal.
Suppose given an E-equivalence e': Y—> Z'. Then up to equivalence we
have Z' =Y \UJ CA for some g: A—> Y; and here E*(A) =0, by the

g '
exact sequence of the cofibering A—> Y “—>z,

Y —— Z (j has degree -1).

Then eg = 0 by the assumed property of Z, so e extends over Y {J) CA
g
and there is a map f:Z2'—> Z with fe'=e. Also f is unique, because
e
two choices differ by an element of j (A, Z]*, and [A, Z]* =0 by the
assumed property of Z.
This shows that e: Y —> Z is universal. Then clearly the single

object Y—=5-> 7 is cofinal in the directed category used to construct
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E
[X, Y]*; 50 we have an isomorphism
E
x,z],—> [x,v] .
given by assigning to a morphism f£:X—> Z the class of the diagram

4

X Y
. -1 1E -
i.e., the element T(e} "T(f) e [X,YJ* . This completes the proof of
14.2, 14.3, and 14. 4.

Now we start working toward the proof of 14.5.

LEMMA 14.12. Suppose rrr(E) =0 for r <0. Supposea
morphism f:X—> Y induces an isomorphism E (X)—> E*(Y). Then
it induces an isomorphism H*(X,HO(E)) —> H*(Y;HO(E)).

Proof. First a remark. Let E be any spectrum, not necessarily
a ring-spectrum, and not necessarily connective; then I claim

HrE*V s'.HG, ,

H i
where Gi = Hi(E)' In fact, for each i we can construct a Moore
spectrum SiG_; then we can construct a morphism
i
. a,
S'G, ——>HAE
i
inducing the identity map
i
G =n(SG)—>n(HAE)=0G, .
i i i i i
Now we can form
i 1~3, 1
Ha(S'G)——>HAHAE ¥ > HAE .

i

Finally we form
. fim Al)(l:\ai)i

VH.(S'G)———————>H.E
; i
i

This induces an isomorphism of homotopy groups, so it is an equivalence

by the theorem of J.H.C. Whitehead.
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Now we return to the lemma. Form the cofibering X-ia* Y —> 72,
Then we have E*(Z) = 0 and it is sufficient to deduce that
H*(Z;HO(E)) = 0. Since M (E~Z)=0, E aZ is contractible. Therefore
HAEaA Z is contractible. Now ﬂr(E) =0 for r <0, so by the
Hurewicz theorem G, = HO(E) = nO(E). We have just shown that HGO is
a direct summand in Ha E, so (HGO) A Z 1is contractible; that is,
H*(Z;nO(E)) = 0. This proves the lemma.

LEMMA 14.13. Suppose E is a commutative ring-spectrum and
TAE)=0 for r < 0. Suppose X and Y are connective and f: X—> v
induces an isomorphism H*(X;nO(E)) —> H (Y, nO(E)). Then it induces
an isomorphism E_(X)—= E,(Y).

Proof. As before, we form the cofibering Xf—-"’ Y —* Z. Then
Z is connective; we have H*(Z;ﬂo(E)) =0, and it is sufficient to prove
E.(Z) =0,

Since nO(E) is a commutative ring and nr(E) is a module over
HO(E), we have the universal coefficient theorem in the form of the

spectral sequence

m, (E)
Tor (H*(Z;HO(E)),ﬂr(E)):" H(Z:n (E)) .
P

e
s

This is a quarter-plane spectral sequence convergent in the naive sense,
We see that H*(Z;HT(E)) =0, We now consider the Atiyah-Hirzebruch
spectral sequence
H(Z;mn (E)=—3>E (2Z).
P q P P*q
This is a quarter-plane spectral sequence convergent in the naive sense.

We conclude that E*(Z) = 0.
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Warning. This condition that X and Y are connective cannot be
omitted (take E = bu, X =pt., Y= BUZp or vice versa).

Proof of 14.5. Recall that we wish to show that if E is a
commutative ring-spectrum and nr(E) =0 for r <0, then for any
connective spectrum Y, [X,Y]f depends only on nO(E). More pre-
cisely, we show that [X,Y]f = [x,y]f'. where E'=Hm (E).

(i) By 14.12, we have that any morphism f: Y—=>7Y' which induces
an isomorphism in E-homology also induces an isomorphism in
E'-homology.

(ii) Consider the directed category used in the construction of

!
[x, Y]* . I claim that morphisms f: Y—> Y' which induce an
isomorphism in E-homology are cofinal in those which induce an
isomorphism in E'-homology. Once this is proved, 14.5 follows. We
need a lemma.

LEMMA 14.14. Let Y be a connective spectrum, X any spectrum.

Then any morphism f: X—> Y factors as
X——:Y
\X’

SH (X) (r>N)
where X' is connective and Hr(X’) for some

0 (r <N)

N ¢ Z depending only on Y.
Proof. Let N be such that ﬂr(Y) =0 for r <N + 1. Then we can
N-1 . .
factor f through X/X ; this spectrum is connective. However, it

need not have the desired properties in homology. We have



/ N-1
Hr(XX ) = H_(X) (r >N)

N-1
Hr(X/X y=0 (r <N),
and in dimension N we have an exact sequence

N-1
0 —> HN(X) —> HN(X/X }—>F —>0,
. . - N-1
where F is free since it is a subgroup of HN l(X }. By the
Hurewicz theorem, we have
N-1 & N-1
nN(X/X y = HN(X/X ).
Choose a set of elements
N-1

Ba € nN(X/X )
which project to a base of F, and form
x'=x/xN} Y cs™
a

N-1
X' is connective, and X/X —> Y factors through X'. We have

T

Hr()() (r>N)
Hr(X')
=0 {r <N).
Returning to (ii) above, suppose f: Y —> Y' induces an
isomorphism in E'-homology. Form a cofibre sequence
A'——%Yf—)Y’—)... .

Here Hr(A;nO(E)) = 0, and so by the ordinary universal coefficient
theorem,

H{A)® m(E)=0 TorZ(H (A), m (E)) =0

r Z 0 ’ 1 0 o

By 14. 14, we can factor A—> Y in the form

A ——m>7Y,

N,

B

where B is connective and
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H (A)—=>H (B) for r>N
r r -

Hr(B) = 0 for r <N.

Then
z =
Hr(B)®Z HO(E) =0, Tcor1 (Hr(A),ﬂo(E)) =0

and so

Hr(B; rrO(E)) =0
for all r. Now we can form the following diagram of cofiberings.

f
A —> Y Yt ...

!

Here Y'" is connective, and Y —> Y' is an E'-equivalence, s0 it is an

B Yh—> ..,
E-equivalence by 14.13. This completes the proof of (iii) above, and so
completes the proof of (14.5).

Now we turn to Theorem 14.6. We have to take YR, or Ylm, or Y,
according to the case, and show that it satisfies the conditions in 14. 4.
We have already shown that it will be sufficient to check 14,4 (i), that is
to say that these spectra are E-equivalent to Y, under the hypotheses
given for each case, and E-complete.

Consider the first condition. In case (i), suppose nO(E) is a sub-
ring R of the rationals Z. Consider the product

SR 4 5(R/Z) .
By the Kiinneth theorem we have
H, (SR~ S(R/Z)) = 0;
for R ®z (R/2) =0, Tor%(R,R/Z) = 0, The spectrum is connective,

so SR a S(R/Z) is contractible by the theorem of J. H.C. Whitehead.



Now we have a cofibering
Y—> YR—> Y S(R/Z).
Here we have
HR_{YaS(R/Z)) = n {HASRaYAS(R/Z)) = 0,
for HASRAYAS(R/Z) is contractible. So
(HR) (Y) > (HR) (YR}
is an isomorphism.

We proceed similarly for case (ii), starting from the fact that
SZm,\ S(Im/Z) is contractible.

In case (iii) it is trivial that Yl—> Y is an E-equivalence.

Now we have to check the other condition of 14.4, namely that
E,{X) =0 implies [X,YR] =0, or [x,v1_J, =0, or [x,v], =0
according to the case.

First suppose that we are in case (i), so that nO(E) = R. Suppose
that f: X —> YR 1is a map, and suppose | have already deformed it
until all the stable n-cells map to the base-point. (The induction starts,
because YR 1is connective.) I wish to keep it fixed on the (n-1)-cells
and deform it until the n-cells and (n+1)-cells map to the base-point.
There is an obstruction, and it lies in Hn+1(X;“n+l(YR)). But R is a
principal ideal ring, and Tfn+1(YR) is a module over R, so the ordinary
universal coefficient theorem applies; we know H_(X;R) =0, so we can
deduce

HnH(X;ﬂnH(YR)) = 0.
So I can deform f as required. I continue by induction and conclude

that f=0. This shows that [X,YR], =0.
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Evidently the obstruction-theory argument will work just as well in

case (ii), provided we prove that

n+1 )
H (X’nn+I(YIm)) = 0.

Here we have 1 (YI_ )=m (YYoI by 6.7, and 7 (Y) is a
n n+1 m n

+1 m +1

finitely-generated group. And in this case we start by knowing that
HY(X;2 ) =0.
The exact sequence 0 —> Z Ly 7 —> Z —>0 induces a long exact

sequence in homology; it follows that H*(X) 2 H*(X) is an

t
m
isomorphism, hence H,(X)-——> H,(X) is an isomorphism. Now
consider
1
HomZ(Hr(X),Z t) , Eth(Hr(X),Z t) .
m m

On the one hand multiplication by m' is an isomorphism; on the other
hand it is zero. Hence the groups must be zero. So by the ordinary

universal coefficient theorem,

HY(X;Z J)=0.
m

Now we have an exact sequence

1 % * 0
—> Lji H (X;2 —> ; —> Li ; —
0 Lim (H ( mt) H (X Im) lzlm (H (x,zmt) 0.

b3
Hence we have H (X;I }=0. Finally, let G be any finitely-generated
m
abelian group. We have a resolution

0—>F1-—>FO—>G—>O

with FO and Fl finitely~generated free. Therefore we have an exact

sequence

r S5
o—>T1F1m—>TlTIm—>1m® G—>o0.

This yields an exact cohomology sequence, from which we conclude that

*
H((X;I_ ® G =0.
m
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We conclude that
n+l,., . _
HY (Xm (YD) =0,
the obstruction-theory argument works, and
x.v1_J,=0.
Finally we consider case (iii). Let f:X —> Y be a morphism.

By Lemma 14. 14, we can factor { as

X———————>»Y

X1
where X' is connective; Hr(X') = Hr(X), r >N, and Hr(X') =0 for
r <N, for some N ¢ Z.

As above,

m: H (X) —> H (X)

is an isomorphism; clearly the same is true for X'. Since X' is
connective, the theorem of J.H.C. Whitehead shows that m:¥X'—> X!
is an equivalence; so it has an inverse m_l. Consider the following
diagram.

H l . H fl 2y
X X Y

1 m© m*
(m-1) o

X! ———>Y

Since m®- lY: Y —>7Y is the zero morphism, we conclude f{'=0. Thus
[X‘, Y]* = 0. This completes the proof of 14. 6.

Now we have some short lemmas which will be needed in the next
section.

LEMMA 14.15. Suppose



is a cofibre triangle and two of A,B,C are E-complete; then so is the
third.
Proof. Suppose E (X)=0. We have an exact sequence
(x,a],— [x,B],—>[x,cl,—[x,a],— ...
Two out of every three groups are zero, so the third must be zero also.
LEMMA 14.16. If f21X—>X' and g: Y—> Y' are
E-equivalences, sois
fagi: XaY—>X'A Y!
This lemma says that smash products pass to the category of
fractions.
. 1af lag
Proof. We are given that EAX —> EAX' and E,Y ——> EA Y’
are equivalences. Then
1~ fa 1
ErXAY' ———> E~X'AY!
and
lAlAg
EAXAY ——> EAXAY'
are equivalences; hence so is their composite; that is,
frg
XaY —>X'AY!
is an E-equivalence.
Now we introduce some arithmetical considerations. Let E be a
commutative ring-spectrum such that 7 _(E) =0 for r <0, andlet
6: Z —> no(E) be the unique homomorphism of rings. Let SCZ be the

set of n such that 6(n) is invertible in no(E). Then S is multi-

plicatively closed. Let RCQ be the localization of Z at S, i.e., the



set of fractions n/m with m € S. Then there exists a unique extension
of 6 to
6: R—> nO(E).
PROPOSITION 14.17. If Y is E-complete, then rrr(Y) is an
R-module. More generally, [X,Y]r is an R-module for any X,
Proof. Let m € S; then m gives a morphism Y—> Y, which
must be an E-equivalence, since the induced map E“(Y)—> E(Y) is
multiplication by m, which is an invertible element of TTO(E). So in
[Y,Y];: the morphism m has an inverse. Therefore the canonical
map
E
gz —> (v, Y]O
extends to give
E
@ R—> lv,v]l".
0
E
So R acts on [X,Y]* for any X. If Y is E-complete, we have

Ix,vI, = (x,v], -

15. THE ADAMS SPECTRAL SEQUENCE

Suppose given a ring-spectrum E and two spectra X,Y such that
E*(X) is projective over n*(E). Our object in this section is to prove
the following theorem.

THEOREM 15. 1. Assume that X,Y and E satisfy the
assumptions listed below. Then

(i) there exists a spectral sequence with the properties which follow

(ii) its EZ term is given by

Pt _ g P
EPF = Ext E,(X), E,(Y)),
2 X p) T XD EalY)), and
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. E .
(iii) the spectral sequence converges to [X, Y]L in the sense that a
suitable analogue of Theorem 8.2 holds. More precisely, it may be

E
obtained by applying the functor [x, ] to a decreasing filtration

Y=Y Y v v
ODYIDYZD 33 DYpD
such that
0 E
Lim [X,Y ]'=0
< P
P 1 E
Lim [X,Y I =vu.
< p ¥
P
Notes. In (ii), Ext means Ext of comodules over the coalgebra

E,(E). The rules for its calculation will be explained in due course.

List of assumptions. For part (i), none; no extra data is needed

to construct the spectral sequence.
For part (ii), two assumptions.
{(a) Either X =85, or E satisfies 13.3.
(b) E,(E) is flatas a right module over w (E).
Both are satisfied for E = 5, HZp, MO, MU, MSp, K, KO.
Of course the spectral sequence may be usable even if (ii) does not
apply, if we can calculate the E1 or EZ term some other way.
For part (iii), three assumptions.
(a) Y is connective; that is, there exists o, € Z such that
rrr(Y) =0 for r <no.
(b) ﬂr(E) =0 for r <0, and
pai MG(E)®  n (E) —> 71 (E)
is an isomorphism. (Examples: 7H(E) = Zm; ﬂO(E) is a subring of the

rationals.)



Before proceeding, we observe that H (E) is 2 ring, so Hr(E) is a
module over HO(E) = ﬂO(E). Let the subring R of the rationals Q be
as in 14.17, so that we have a homomorphism 8:R—> nO(E); thus
Hr(E) becomes an R-module.

(c) Hr(E) is finitely-generated over R for all r.

Examples. E =5, H,HZp, MO, MU, MSp, bu, bo satisfy (b) and (c);
indeed Hr(E) is finitely-generated over Z. However, we might also
wish to introduce suitable coefficients. For example, we might prefer
some account of the Brown-Peterson spectrum in which ﬂO(E) is Q ,
the integers localised at p. Then R = Qp, and the groups HT(E) are
finitely-generated over R but not over Z.

The basic construction is very easy. We start with YO =Y.
Suppose Yp has been constructed. Let Wp =E Yp' Then we can
form the morphism

Ypﬁ’SAYp—iA—l——>EAY =W

P

Construct a cofibering

Y —>Y ——3>WwW —>Y
P P ptl

ptl

where WP—'—" Y has degree -1. This completes the induction and

p+l
constructs the following diagram.
= - P <
Y=Y /Y1<1-1Y2 /? 3 /,Y4
N NSNS ON

W0 W1 W2 W3

1f we wish we may use a telescope construction to replace Y0 by an
equivalent spectrum so that the morphisms actually become inclusions
YODY1 DY23Y3 O

but this is not necessary.
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E
Suppose we now apply the functor [x, ]

%K

Using 14.9 we get a
spectral sequence, and this is the spectral sequence required.

We can also write the spectra Yp' Wp slightly differently. Let us
form the cofibering

E—>5 —>E—>E
where E—> E has degree -1. Let
]—E_lp = EaEn... AE (p factors).
Smashing with EPAY, we obtain a cofibering

Pl y —> EPAY —> EABPAY — EP L, v

where again the last morphism shown has degree -1. So we may take

vy =EPAY, W =EiEP.Y.

P p

This makes it trivial that a morphism {: Y—> Y' induces
morphisms of the whole construction, and induces a homomorphism from
the spectral sequence for Y to that for Y'.

Suppose now that f: Y—> Y' is an E-equivalence. Then all the
induced morphisms Yp—) Yl':” Wp-————> wll:’ are also E-equivalences
(by 14.16) and induce isomorphisms of [X, ]i: Thus an
E-equivalence f: Y —> Y' induces an isomorphism of the whole
spectral sequence.

It follows that we may suppose without loss of generality that Y is
E-complete; for if not, replace it by its E-completion YE.

If Y is E-complete, then we easily see by induction over p that
Yp is E-complete; for Wp is E-complete since it is an E-module
spectrum, and we use 14.15. 5o in this case everything in the
construction is E-complete, and we could have used [X, ],,, instead of

]E

x, 1.



Now I had better proceed to part (ii) of the theorem, the calculation
of the EZ term. [ ought to begin by recalling some facts from algebra,
or perhaps from ''coalgebra''.

Let A be an algebra with multiplication p over a ground-ring R,
and let N be an R-module. Then we can construct A ®R N, and it is
an A-module with action map

®1
A® (A® NP >a® N.
R R R
The most usual case is that in which N is R-free; then A ®R N is
A-free. In general A ®R N is called an extended module, and it
possesses the following important property, which generalises the
characteristic property of a free module. Let M be an A-module with
action map Y. Then we have an isomorphism
2}
Hom (A ®_N,M)—> Hom (N, M) .

A R R

It is given as follows. Suppose given
A® Nf—> M ;
R
then 0f is
®
N¥R @, N2ELs o & e
where n is the unit map R—> A. Suppose given N> M; then e“lg
is
18 g Y
A® N—/7=>AQ® M—>M.
R R

In particular, if N is projective over R, then A @R N 1is project-
ive over A.

We also have the dual situation. Let C be a coalgebra with
diagonal ¥ over a ground-ring R. I emphasize that R is allowed to

act differently on the two sides of C. Let N be an R-module. Then we

can construct
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can construct C @R N, and it is a C-comodule with coaction map
Yol
cC® N—>C C .
R ®R( ®p N)

It is called an extended comodule. It has the following property. Let M
be a C-comodule with coaction map Y. Then we have an isomorphism
6

—_> H
Hom (M, C ®p N) OmR(M,N) .
It is given as follows. Suppose given
f

M—)C@R N;

then 61 is
b3
M—’_:’C@RN%R@RNQN,

where € is the augmentation C—> R. Suppose given M~5—> N; then

N—Y>ce N-28sce N.
R R

In particular, if N is injective over R, then C ®R N 1s injective
over C.

There is a prescription of homological algebra for computing
Extz:*(L,M), where I and M are comodules over the coalgebra C.
However, it does not demand that we resolve M by absolute injectives.
So long as L is projective over R it will be sufficient if we resolve M
by relative injectives. More precisely, if L is projective over R we
have to make a resolution

o—>M—>M0—> M1—>M2
where each Mi is an extended comodule. Then we form
HomC(L, MO) —> HomC(L, Ml) -—> HomC(L, MZ) —> ...
and the cohomology groups of this cochain complex are

sk

t (L.M).
EXC( )
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With this in mind, let us return to consider our geometrical

situation. We have

So of course we have

E (Y )
TT*(E) *( p)

this is by Lemma 12.5. Itis rather trivial to check that this

E*(Wp) =E(Ex Yp) FE(E) @

isomorphism throws the coaction map tbw onto \PE@ I s0 E(EAY )
o P
P
is an extended comodule.

Again, consider our cofibering
Y —>E.Y —>Y
P P ptl

has degree -1. When we smash with E we

where EAY —>Y N
P ptl
have
Ml
EAY EAEY — E.Y N
PI1ai” P p+l

But pal is aleft inverse for 1ai, so we have the following shortexact
sequence, split as a sequence of modules over 7 (E).

0— E,:,(Yp) —> E(EAY )—> E*(YPH) —>0

E (W )
P
Hence, the sequence
0 —> E_(Y) —> E*(Wo) —> E"‘(wl) — E>u(w2)——> e
is indeed a resolution of E,(Y) by extended comodules over E(E).

Now I recall that the El term of our spectral sequence is given by

>k
Ep

E
=[x,w
1 C p]*

[x,Eav 17
.

[X,EI\YPJ* (since EAY is E-complete).
P

The boundary dl is induced by the morphism
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W —>Y —> W

P p+1 p+l
where wp—> Yp+1 has degree -1. We have the following commutative
diagram.
a *
(x, EAYP] —-——DHomE*(E)(E*(X),E*(EAYP))

> o]
o

Hom .
" (E)

(E,(X), E,(Y )
Here aff) = f*. The isomorphism 6 comes because E,(Ea Yp) is an
extended comodule. The spectrum EAYP is a module-spectrum over
E, and B is precisely the map which is asserted to be an isomorphism
by 13.5, if we have the data for that, or trivially if X =S. We conclude
that o is an isomorphism.

Now we have the following commutative diagram, in which the
horizontal maps are induced by the morphisms Wp—> Wp+l (of degree
-1), and Hom is HomE*(E).

1 i
_ W —_— >
_1]* [x, ]* [X’wpﬂl';

O A

Hom(E,{(X), E”‘(Wp—l)) —> Hom(E*(X), E*(Wp))———§ Hom(E,(X), E*(Wp

[x,

8
The cohomology groups of the top row are EP¥and those of the bottom
2

row are

Px
E*( E)

Ext (E,(X), E(Y)) .
This proves part (ii) of 15.1.
We now start work on part (iii). I recall we have assumed that
P
E)y-——>
m (E) @, T (E) o (E)
is an isomorphism. I claim it follows that for any module M over TTO(E),

V
AN
TTO(E) ®Z M M
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is an isomorphism. In fact, this follows from the following commutative

diagram.
1®v
—_ 5
no(E) ®, T (E) gﬂo(E) M = 1y(E) @, M
u®l L = l\)
n (E)® M 4 —> M
0 mo(E) =

Now I undertake to prove by induction over p that nr(E a jold

)=20
for r <0, This is surely true for p = 0, by assumption. Suppose it
true for p, and consider the following cofibering.

1aial

EnsA EP Al o 5 g, EP

—p+
—= g, EP'!
=P p+l
Here ErE.E —> ELE has degree -1. As we have already re-
marked, we have a left inverse for 1laial, given by
pals EAE/\EP_> E AEP, So the exact homotopy sequence of this co-
fibering is split short exact. By the inductive hypothesis and the Kinneth
theorem, the first non-zero homotopy group of EAEAEP is
n (EAE~EP) = 1 (E) ®, n (E.ED)
0 0 Z%0 )
—ptl =ptl, . . .
Therefore nr(Ea\E ) =0 for r<-1,and m 1(E/\E ) is isomorphic
to the kernel of
n (E) @, n (EAED) —>1 (E.E) .
0 Z 0 0
But this map is an isomorphism by the remarks above, so its kernel is
=p+l
zero, and ﬂI(EI\Ep ) =0 for r <0. This completes the induction.

We have also assumed ﬂr(Y) =0 for r< ng- Since we may take

W = E~EFA Y, we have w (W)=0 for r<n_,
P rp 0
Now I undertake to prove by induction over p that ﬂr(Y )=0 for
r <n, - 1, This is immediate, from the following exact sequence.

0

G T (W)Y ) R (Y ) >
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So at this stage we have established a uniform bound no—l such that
nr(Yp) =0 for r <n0 - 1.

Next we need to construct a spectrum Yoo’ the E-homotopy inverse
limit of the Y_. The construction is easy. First we observe that we
can assume without loss of generality that Y is E-complete, and there-
fore that all the Yp are E-complete. This requires a word of
justification; we have to see that when we replace Y by YE, we do not
sacrifice the property that Y is connective. Recall that by the proof of
(14.5), we can find a uniform bound v and a cofinal set of
E-equivalences e: Y —> Y' such that rrr(Y') =0 for r<wv . This

E E
shows that [S,Y]r =0 for r<vy and ﬂr(Y )=0 for r<v.

Assume then that all the Y are E-complete. Then we can form the

[eo)
categorical product —ﬂ- Y. in C, and itis E-complete; for if E*(W) =0,
o  i=0 !
and f: W —> Tl— Y, is a map, then all the components pif: wW—> Yi are
=0 ©
zero, and so f is zero. It follows that TT Yi is the categorical product
i=0
not only in C, but also in the category of fractions F.
© o)
Now we construct a map f: TI— Yi——> TT Yi ; the ith component of f
1=0 1=0

is to be the difference of two maps, that is,

Qo P:
(1T vp—"L=v,

1=0
minus
(s8] P
i+1]
(TT Yy —— v, —> Y,
1=0
We define Y, so that we have the following cofibre sequence,
o) )
Yy —> ] ¥ £y Ty—>v
® i=0 ! i=o ’ @

E
It follows from 14.15 that YOo is E-complete. Applying [X, ]* , we

see that for any X we have the following short exact sequence.
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E E E
0—>Liml[X,Y.J — (%, Y ] —>Lim0[X,Y.] —>0 .
<—i 17 r+1 o0 r (——1— 1~ r

Now I need to quote the following result, which I will prove later,
THEOREM 15.2, Let R be a subring of the rationals Q. Suppose

Ya, E are spectra such that

(i) = (Ya) =0 for r <n,, for some n independent of a,
r
(ii) ﬁr(Yu) is an R-module for all r,aqa,

€ Z, and

(iii) ™ (E) =0 for r <n_, for some n
r 2 2

(iv) H (E) is a finitely-generated R-module for all r,
r
Then the canonical morphism
Ea(TTy)—> THEAY )
a a
is an equivalence.
The canonical morphism is of course the one with components
lApc1
EA(J] Y )—>>E.Y
a a
a
It can be shown by examples that the behaviour of A with respect to
TT is in general very bad; one cannot hope for a much stronger theorem.

Now 14,17 shows that Trr(Y_) is an R-module, where R is as in
i

14.17. So 15.2 applies and shows that

o0 00
Ex(TT v)—> TT (EnY))

i=0 i=0
is an equivalence. This shows that
[s e} [ee) o [e 0]
ELTTY) = Eat TT ¥ 2 (TT (Bav )= TT Buiy)
i=0 i=0 i=0 i=0 1

under the obvious homomorphism. It follows that we have the following
short exact sequence,

1 .0
0—>Lim E(Y) =>E(Y_)—>Lim E(Y)—>0
1 " 1

But by the construction the maps E*(Y'+l) —> E_(Y.) are zero. It
T i
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follows immediately that L(dfmo E*(Yi) = 0. It also follows that

1
&n_l E*(Yi) =0 (see section 8, exercise (ii).) Therefore E’k(Yoo) =0,
It flollows that [X. Yoo]f= U, Using the exact sequence above, we have
Lim® [x, v 15 =
< im*

L1 E
%u.n (X,Yi]*:

1

This proves 15,1 (iii). It remains to prove Theorem 15, 2.
LEMMA 15, 3. Suppose that R is a subring of the rationals, the

G, are R-modules and ¥ is a finitely-generated R-module. Then

a
o, (1TG) — TTF ®p Gy
Q a
and

R _—
or (F, TTG)) ——>||TorR(F,G )
1 a a o 1 o

are 1somorphisms.

Proof. R 1is a principal ideal ring. Take a resolution of F of the

form
n d m
O-’?R—)Z R—>F —>0 .
1
Form the following diagram
d® 1
0 —2 Tor (7, TTG )—> (}: R)®T] G —>(Z RIG[G, —> FsoTTG >0
o

a l |

H
TT—l'Ga TTTTGa
1 a 1 @

| [

TTﬁ'Ga ﬁc
a 1 1
| |

0 ~>TTuor (.G > | |(<Z R)®G )——>TT((TR)®G —>||(F®G )30
o H(d@n a 1

a

o=




The result follows,
LEMMA 15,4, Suppose that R 1is a subring of the rationals, E
is such that H (E) is a finitely-generated R-module for all R, and the
r
G(1 are R-modules, Then
H (E; G )—> TTH_(E;G )
n n o3
a a
is an isomorphism,

Proof, First observe that since R is torsion-free, the ordinary
universal coefficient theorem gives H (E;R) E H (E) ®, R; and since -
R ®Z R—> R is isomorphism, and Hr(E) is an R-module, the argu-
ment given in 15.1 (1ii) (applied to R rather than nO(E)) shows that

Hr(E) ®Z R_—>Hr(E) is an isomorphism. So H (E;R) is finitely-
r

generated over R, Now consider the following diagram.

0>H (ER) @ TG — H (E; [[G ) —> Tor" (5 (E;R),T[G )~>0
n a 1 n- a

O A

0TI (EsR)®_ G —>[TH (E;G)—>T] Tor (H _(E;R),G }—>0
a n R o o n a a 1 n-1 o

The two vertical arrows marked are isomorphisms by 15.3. The rows
are exact by the ordinary universal coefficient theorem. The result
follows by the short five lemma.

COROLLARY 15.5. (of Lemma 15,4)., Theorem 15,2 is true in the
special case in which the Ya are all Eilenberg-MacLane spectra with
homotopy groups in the same dimension q.

Proof. Let G(1 be the R-module nq(Ya). Then ‘|;|“Y(1 is an
Eilenberg-MacLane spectrum with homotopy group ‘|_|--G(1 in dimension

e}
q. We have the following commutative diagram.



m (LT ¥ mATTEAYY)
[ [
= P
H (E]]G) TTH (EG)
r-gq a a a r-q a

By 15.4 the lower horizontal arrow is an isomorphism. The result

follows immediately from the theorem of J.H. C. Whitehead.
LEMMA 15. 6. Suppose A —> B, —> C,—> Ay,—> Bc1 is a

cofibering for each a, where Ca-—> Ac1 has degree -1. Then

TTa,—> 118, —TTc —>T1a, —> 1B,
a a a Q a

is a cofibering.
Proof. Construct a cofibering

T|_Aa—>-|_|—Ba—>D—*> IIAG—» l|Ba-
o Q a a

Then it admits the following map.
— 5 —=>D— —
il Ao. I By D TT Au TT Ba
P

d ) |

a
A —>B —> C —»A —>B
a a a a a

So we can construct the following diagram.

'I'I'Aa—>'|'|'13a—> p—>TTa —>T[B

o a a o ¥
1 l 1 ll IJ
_ L

[Ta,—= T8 =>Tlc —=ila —> T8,
a a o Q o

Now the five lemma shows that the map D ——>TTCG induces an iso-
o
morphism of homotopy, and the theorem of J.H. C. Whitehead shows

that it is an equivalence. Since the upper line of the diagram is a co-

fibering, it follows that the lower line is a cofibering. This proves 15.6.
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Proof of Theorem 15.2. We wish to show that

m (EaTTy ) —>m (TTEAY )
a a

is an isomorphism, and we do this by induction over r - nl - n,. The
result is trivial if r - n; - n, <0. Suppose as an inductive hypothesis
that the result is true for smaller values of r - n1 - n2_ We can con-
struct a cofibering

K(l—_) Wa—>Ya—> Ka—>Wa
in which K —> W  has degree -1, n (W )=0 for r<n_+1 and K

a a r a 1 a
is an Eilenberg-MacLane spectrum for the R-module nn (YQ) in
1

dimension n- Using (15.6), we see that

Eallk —>E ATw, —>E MTY,—> EATTK,—> EATTW,
a G o8 a a Q
and
W(EAKQ)—>TT(EAWO) —> TNEAY ) —> TIEAK) ——>TI'(EAWQ)
a a a a a

are also cofiberings. Now consider the following diagram.

— 1
. lEA u K)——> nr+l(-|;l—(E,\Ka))
n (EATTW,) n (TTENW )
L a a
3
TAEATTY )——> n (TREAY )
L a a
n (E~TTK,) n (TTEAK )
}® "l
5
TTr—l(EA-E!I-VVC!)_*_> nr-l(-l;l—(EA\va))

Maps 1 and 4 are isomorphisms by (15.5); maps 2 and 5 are
isomorphisms by the inductive hypothesis. So map 3 is an isomorphism

by the five lemma. This completes the induction and proves Theore 15.2
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16. APPLICATIONS TO m, (buaX); MODULES OVER K[x,y]

I would like to present some applications of the spectral sequence of
$15, in which we can do the algebra without too much trouble. For this
purpose [ will consider the calculation of m (buaX)} for various spectra
X. Of course, I am really interested in w,(boaX}); however, it seems
best if I do things for the most elementary case, which is the case bu,
but undertake to use only methods which extend to the case bo. For a
similar reason I will consider mostly the prime 2, but I will try to say
only things which can also be said for the prime p,

If we apply the spectral sequence of §15 to compute . (buaX), using

say E= HZZ’ we obtain a spectral sequence of the following form.
I—IZ2

t
A, (25 (HZ,), (buaX)) == [s,buax] "

S,

Ext
However, in this case the Ext group simplifies very greatly., To explain

how it simplifies, recall that in A, we have a base consisting of the

r.r r
monomials 511522... 13 % | The dual base in A is written
n

r r,...r 0...0
sq 12 N This is consistent because Sqr is Steenrod's
01
Sqr. In particular, Sq is the element of this dual base corresponding
. 01 1 2 2.1

to the monomial 52. We have Sq =859 Sq +Sq Sq . The elements
Sql and Sqo1 generate an exterior subalgebra of A; we write B for
this exterior subalgebra. It is a Hopf subalgebra. The algebra B is of
course dual toa quotient B, of A,, namely the quotient of A, by the

2 2
ideal generated by El, §2, §3, e 'En’ ... . Just as we can consider

s
(HZZ) (X) as a module over B, we can consider (HZZ),‘(X) as a co-

module over B*.



For the case of an odd prime, the analogues of Sq1 and Sqol are

the Milnor elements QO and Ql. These are the elements of the Milnor

»

base for A corresponding to % and Tl in A . We have Qozﬁ

e
Q1 = PIBP -B pl. B is then the exterior subalgebra of A generated by
P

QO and Ql; B, 1is a quotient of A, andis an exterior algebra

generated by % and q .
PROPOSITION 16.1. Assume X is connective. Then we have a
spectral sequence

HZ

2
Ext® *(2,,(HZ,), (X)=> [s,buax] “.
B* § s t

For the case of an odd prime we should take the precaution of
splitting bqu into (p-1) similar summands and using only one of them
on the right-hand side.

I will finish stating the results I need before I start to prove anything.

In order to use this spectral sequence to the best advantage we have
to know something about the structure-theory of comodules over B,. As
long as our comodules are locally finite-dimensional we may as well
dualise and consider the structure-theory of modules over B. Even if
our comodules are not locally finite-dimensional, we can consider a
B,-comodule M as a B-module by the following construction: if

*
i =Z b;®m{' , b B,

set

where ¢ is the canonical anti-automorphism of B.
The structure-theory works perfectly well for modules over the

exterior algebra K[x,y] on two generators x and y of distinct



dimension. Here K is supposed to be a field; for some theorems one

wants K to be a finite field, but not for anything in these lectures. We
assume that the degrees of x and y are odd unless K has character-
istic 2; in other words, we want K[x,yj to be a Hopf algebra, with x
and y primitive.

Some of the ideas of the structure-theory work for a finite-dimension-
al Hopf algebra A, more general than K[x,y]. Let M and N be left
A-modules. We say they are stably isomorphic if there exists free
modules F and G suchthat M® F ZN®G. This is an equivalence
relation. For s >0 the groups

)

Ext®’ " (M, K)
A

depend only on the stable isomorphism class of M; this is one reason
why it is often sufficient to know only the stable isomorphism class of M.

We can form the sum and the tensor product of two modules. Here
we give M® N the diagonal action, using the fact that A is a Hopf
algebra. The sum and product pass to stable isomorphism classes, The
product has a unit, namely the module 1 with K in degree 0.

We say that a stable class P is invertible if there is a stable class
Q such that PQ ¥ 1.

We define £ to be the module with K in degree 1. £ 1is clearly
invertible; its inverse is the module ¥ ! with K in degree -1.

We define I to be the augmentation ideal of A,

LEMMA 16.2. If A is a connected finite-dimensional Hopf algebra,

then 1 is invertible.



We now return to the case A = K[x,y]. We observe that a.module

M has two very useful invariants:

H*(M;x) = Ker x/Im x

H, (M;y) = Ker y/Im y
These are defined on stable isomorphism classes, and send sums to
sums, products to products. The latter follows from the Kiinneth
theorem.

THEOREM 16. 3. Let M be a finite-dimensional module over
K[x,y] such that H, (M;x) and H*(M;y) both have dimension 1 over
K. Then

(i) M 1is invertible,

(ii) the stable class of M is Zalb for unique a,b e Z.

Notice how one proves uniqueness, We have

ab K in degree a+b|x|=c, say
H(Z 1x)=
) 0  otherwise
ab K in degree a+bly|l =d, say
HJ(z Isy)=
0 otherwise
Since |x| # iy|, ¢ and d determine a and b,

If we are to use Proposition 16. 1 to compute n*(bU/\X), we need to
know (HZZ)*(X) as a comodule over B*, or equivalently, (HZZ)*(X) as
a module over B. In particular, if we want to compute
n#(bUAbu/\ ...abu) (n+l factors), we need this information for
X = buabua,..abu (n factors).

PROPOSITION 16.4. (i) The stable class of (HZZ)*(bu), as a

module over B, is



335

1+ 250+ £na+ 250 ... 1+ =2 2L

(i) Let (bu)” =buabur...abu (nfactors). Then the stable class

of (HZZ)*((bu)n), as a module over B, is
1+ 2%+ =3+ 2P
Of course part (ii) follows immediately from part (i).

For the next section, we need one last fact about bu. Recall that
nz(bu) £7; let te nz(bu) be the generator. The homotopy ring m,(bu)
is the polynomial ring Z[t]. We may identify t € Trz(bu) with its image
in Hz(bu) or (HQ)Z(bu). The homology ring (HQ)*(bu) is the polynom-

ial ring Q[t]. We define a numerical function m{r) by

- T
l'-l
m(rny= TTp ¥
)4

Here p runs over prime numbers, and [x] means the integral part of

x. For example,
if r=1 2 3 4,
m(r)= 2 12 24 720
PROPOSITION 16.5. The image of H*(bu) in (HQ)*(bu) is the
Z-submodule generated by the elements

T
_t r=0,1,2, ... .
m(r)

This completes the statement of results. Now I turn to the proofs.
Let A once more denote the mod 2 Steenrod algebra,
PROPOSITION 16.6. As an A-module, we have
* ~ 1 01
(HZ ) (bu) 2 A/A(Sq +ASq Y=A & Z .
2 B 2
For the case of an odd prime, we either write

N -1
(HZ ) (bu) ;‘i— AlBQ, +AQ))
P 1
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or we split buQQ into (p-1) similar summands and take one of them.
P
For the case of bo, we have
” ~ 1 2
(HZZ) (bo) £ A/(ASq  + ASq ).
Proof of 16.6. First we obtain information cnthe first k~invariant
. o 3 o 2
of bu, which lies in H7(H), which is Z2 generated by BZSq . The
2

k-invariant must be 0 or 625q . We wish to find out which; and of
course we do it by looking at the terms in the bu-spectrum. For each
term in the bu-spectrum, the first k-invariant is given by the same
stable operation. We choose to look at the third term of the bu-spectrum,
which happens to be the first place where we can get the required
information., The third term of the bu-spectrum is the space SU. Now

2 . 6 6 X
825q #0 in H (Z,3), but H (SU) = 0. We conclude that the first

2

k-invariant of bu is 625q rather than 0.

Now the Bott periodicity theorem gives us the following cofibering,

2 i j
S abu —> bu —> H
This leads to a long exact sequence
n j* n * n 3
<— (HZ,) (bu) <= (HZ ) (H) <——(HZ,) (§~ bu) <—
Let f0 be the fundamental class in (HZZ)O(H); then we have
(HZZ)M(H) = A/ASql, under the map which takes a to afo. The class
j*fo is the fundamental class in (HZZ)O(bu); therefore we obtain a funda-
3. 3.3 . . . .
mental class f in (HZZ) (S nbu). The information on the k-invariant
says that
%* 3 2 01,0
ki~ =B_Sq 0 =sq 1
2,10 1 % 01, %0

(since Sq Sq f = 0). Thus Sq (j f0)=0 and Sq (j £ )=10. So

certainly we get a homomorphism
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1 01 *
A/(ASq + ASq ) —> (HZZ) (bu)
defined by
* 0
arH—>a(j f ).

We recall that Sq1 and Sqo1 generate the exterior subalgebra
B(C A, and A 1is free as a right module over B. So we have the
following short exact sequence.

1 01 1 1 01
0 <—A/(ASq +ASq ') «<—A/(ASq") «<—A/(ASq  +ASq )<= 0
Here the map on the right takes
01
cls x —> cls x:Sq
Indeed, we have the following diagram.

01 1 01 0
..<% [a/(asq+asq )]n<—[A/(ASql)]n <— [A/(ASq +ASq )] 5 -

| [ ;

— (sz)“(bu) « (HZ ) (H) < (sz)n(s3/\ bu) <—

2)
Suppose as an inductive hypothesis that
[a/(asq +Asa ] —> (HZ )" (bu)
is an isomorphism for r <n. Then for (HZZ) r(53/\ bu) the same thing
holds for r <n+3. Now the five lemma shows that
[A/(ASq1 + ASqOI)]r—} (sz)r(bu)
is an isomorphism for r =n. This completes the induction and proves
16. 6.
Proof of 16.1. We have a spectral sequence

HZ
s,t
Ext (Z,,(HZ,) (bunX)) => [s,bqu]t_s

*

2
Suppose to begin with that (HZZ)*(buAX) is locally finite-dimensional
over Z_,. Then Ext of comodules over A  is the same as Ext of

2

modules over A :
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s,t ~ s, t # z
ExtA~ (ZZ,(HZZ)*(buAX)) ExtA ((sz) (bu AX}, 2) .

The latter is the classical way of writing the EZ term. Now of course
the Kunneth theorem gives us an isomorphism

ES ~ % ]
(HZZ) {buaX) = (HZZ) (bu) ®ZZ (HZZ) (X) .

This is an isomorphism of A-modules, provided we make A act on the
right-hand side by the diagonal action:
= <
a(u®v) = ; (ai'u) ® (a'i' v)

1

where
= 1 n
Ja Z a ® a
(The isomorphism is A-linear by the Cartan formula.) By 16.6 this
gives
% %
b =(A®
(HZZ) (buaX) = ( g 2,)® (HZ,) (%)
where the right-hand side is again furnished with the diagonal action. On
the other hand, if M is an S-module, then A acts on A®M by the left
action
a'(a®m)=a'a@m
and on (A ®B ZZ) ® M by the diagonal action, We have an isomorphism
A M—>(A® Z.)®M
B ( B 2)
given by

a®m —> ) a'®a''m.
. 1 2
1

So we find
% o~ *
(HZZ) (busX) T A ®B (HZZ) (X}).

Now by a change-of-rings theorem we have
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Ext® (HZ ) (buaX), Z_)
uAX),
A 2 2
T ExtS t(a@_ (HZ.) (X),Z)
A B 2 2
YExtS b (HZ ) (X),Z) .
B 2 2
Finally, the assumption of local finite-dimensionality is unnecessary,
provided we dualise the argument and work in homology the whole time.
Using the corresponding lemmas for comodules and the "cotheorem' to
the change-of-rings theorem, we find

s,t ~ s, t
EXtA* (ZZ,(HZZ)*(buAX)) = Ext

B, (22 (HZ,),00) .

This proves 16.1.

The structure -theory for modules I defer for the moment, so the
next thing is to prove 16. 4, assuming the results of the structure-theory.
I need one more result not yet stated.

LEMMA 16.7. {(Adams and Margolis)., Let M and N be modules

over K[x,y] which are connective (bounded below), i.e., there exists

no € Z such that Mr= 0 and er 0 for r<no. Alternatively, let M

and N be bounded above, i.e., Mr and Nr are zero for r greater
than some ng. Let fiM—-> N be a map of modules such that
£, H*(M;x) —> H*(N;x)
and
fr Ho(My) = H (Njy)
are isomorphisms. Then M and N are stably isomorphic,

Now we can continue to study bu. In 16.6 we said that by using the

0.
i *
morphism bu s I—IZ2 we can regard (HZZ) (bu) as a quotient of

%
(HZZ) (HZZ) = A. Dually, we can regard (HZZ)k(bu) as a subobject of

(HZZ)*(HZZ) = A*. In fact, for calculation it is usually convenient to
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apply the canonical anti-automorphism of A,; in other words, instead of

looking at the morphism

0.
1ot
HZ » bu RLESRN HZ nHZ,,

and taking the induced map of homotopy, we look at
5.1
bu I\HZZ——> HZZAHZZ
and take the induced map of homotopy.
LEMMA 16.8. (fojAl)* identifies ", (busHZ ) with the
subalgebra of A, generated by
§2 52 £ ,E
152 55 5y
This is immediately equivalent to 16.6; Im(foj/\l)* is the annihilator of
Sq lA + SqOIA.
Similarly, one would identify rr*(bOAHZZ) with the subalgebra of A*
tedy b 64 52 E ,§
enerate B S5 y
& [ 172 T3 T4

%
In order to prove 16. 1, on the structure of (HZ {bu) as a B-

2!
module, an obvious move is to compute the homology of (HZZ)*(bu) for
the boundaries Sq1 and SQOI {acting on the left)., It is equivalent to
compute the homology of ﬂ*(bUI\HZZ) for the boundaries Sql and Squ
(acting on the right); these boundaries may be calculated as follows.
Regard n*(bu.\HZZ) as a subalgebra of A*; let
pa = 2 ai’® al ;

then

aSql => a! <Sql,a'.'>

H 1 1
aSqu = Z a{ <Sq01,a'i'> .

These boundaries are derivations.
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. 1
LEMMA 16.9 (i) The homology for S5q° is a polynomial algebra

2
on one generator El .

(ii) The homology for Sqo1 is an exterior algebra on generators

2 2
g5,62,8%, ...

1°°2°°3
Proof. (i) Decompose ﬂ*(bul\ HZZ) as the tensor product of the
following chain complexes.
m 1,855,588
N R T TR

§

[\S4
[\S4
H O~
'S

4
g «<—§§
r

(7} LG <= &) r’r+l’

, g ,
r +1 “rir+]
(r Z 2) .
Each chain complex (r) has homology ZZ’ generated by [1] By the
Kunneth theorem, the homology of the tensor-product is the homology of
(1). A similar proof works for (ii).
Proof of 16. 4. We show that n*(buAHZZ) contains a finite-

1
dimensional submodule Mr such that H(Mr;Sq } is Z_, generated by

2" 01 2 ?
51 , and H(Mr;Sq ) is ZZ’ generated by §r. It is sufficient to indicate
the first few modules.
2
Y gl 1 §2 g4
y 21 !
Sq
(2) 53

g2 §4 5254 58
3 2 271 1
W/
g2 ete,

Since ﬂ*(bu/\HZZ) is an algebra over B, we obtain a map

(3) §,

(1+ M)+ M) ... —>n, (busHZ)
. . . . 1 01
which induces an isomorphism of H( ;Sq ) and H{ ;59 '), so that the

two sides are stably isomorphic by 16.7. Dualising, we obtain the stable
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b
class of (HZZ)F(bu) as
b e e
(1+M Y1 +M) ... (1+M).oee
1 2 r
]
Here Mr satisfies the hypotheses of Theorem 16,3, which allows one to
. 2. b .
express it in the form T I . This proves 16. 4.

All this work carries over to bo.

We now turn to the proof of 16.5. This is done essentially by the
Bockstein spectral sequence, although I will not assume any knowledge of
that. We recall that the Bockstein boundary

: — b
52. (HZ,)_(bu) (HZZ)n—l( u)
1
is the boundary Sq  of 16.9.

Proof of 16.5. We separate the primes p. Let QP be the local-
isation of Z at p, thatis, the subring of fractions a/b with b prime
to p. We wish to prove that the image of (HQP)*(hU) in (HQ) (bu) is

- p-1 .
the Q -subalgebra generated by t and t /p. Of course I give the
P
proof for the case p = 2; the case of an odd prime is similar.
The spectrum bu has a(stable) cell-decomposition of the form
0 2
bu=8S{) e U
n
where n is the generator for the stable 1-stem, and the cells omitted
have (stable) dimension > 4, It follows that the Hurewicz homomorphism
z = m,(bu) —> H,(bu) £z
is multiplication by 2; that is, Hz(bu) is generated by t/2 =T, say. It
follows immediately that the image of H,(bu) —> (HQ)*(bu) contains
Tr = (t/2)r. We wish to prove a result in the opposite direction.
The image of HZr(bu) —> (I—IQ)2 (bu) is a {initely-generated abelian
r
group, and since it is non-zero, it is isomorphic to Z; let h ¢ H2 (bu)
r

map to a generator. Let us write h, T for the images of h, T in
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(HZZ)*(bu). Then we have
Bh=0.
2
2
By 16.9, (Ker B _/ImB. ) is generated by E T So we have
2 2'2r 1
2r
T =€ + k
1 B2

where A ¢Z and k ¢ {HZ (bu). That is,

2)2r+l

R= AT +6 x ,

h =T 5
where 62 = (HZZ)2r+l(bu) —> Hzr(bu) is the integral Bockstein, This
gives

I

h=XT + 621( + 2L

where L ¢ HZ (bu). For the images in (HQ)Zr(bu) we have
r

h = A(t/2)7 + 2ph

where p € Z; that is,

A r
m(t/Z)

A
where 7=~ ¢ Q_. This proves the result for the prime 2.

1-2p 2
Now we turn to the structure-theory.
Proof of 16.2. Recall that A is a connected finite-dimensional
Hopf algebra. So if M is an A-module, we can make its dual
* *
M = Hom*K(M,K) into an A-module. Also A is free on one generator.
Recall also that 1 is the augmentation ideal of A, so that we have the
following exact sequence.
0—>1—>A—>1—">0
Dualising, we have the following exact sequence.
0—>1—>a"—>1"—>0
%
Tensoring the first sequence with I , we have

* e
0 —>i8l —>AQI —>1"—> ¢ ,
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Here A* and A&l* are free. By Schanuel's lemma, we have
1er) +AZ 1+ (a0Th),

so 1®I* is stably isomorphic to 1, and 1 is invertible. This proves

16. 2.

To prove 16.3 (i} I need 16.7, th(:} lemma of Adams and Margolis.
First one proves a special case.

LEMMA 1£6.10. Let M be a module over K[x,y] which is con-
nective, i.e., bounded below; alternatively, let M be bounded above.
Assume H*(M;x) =0, H*(M;y) = 0. Then M is free.

Proof of 16.10. Since H*(M;x) = 0, we have a short exact sequence

0o—> M/xMi—> M i M/xM—> 0
in which i([m]) =xm and j is the quotient map. This leads to a long
exact sequence of homology for the boundary y, namely
(M5y).

Hr(M;y) —> Hr(M/xM;y) —> Hr (M/xM;y) —> H
r

+yl-1x| +ly|

Since H,(M;y) = 0, we have

Hr(M/xM;y) =H (M/xM;y) .

rtly |- fx|

Since M 1is bounded either below or above, we have H (M/xM;y) =0
r

or for r>n,. Since |y| - |x| # 0, we can use the

either for r < g 1

isomorphism

H (M/xM;y) 2 H {(M/xM;y)
r T+

ly -1 x|
to prove by induction over r that

Hr(M/xM;y) =0
for all r.

It is now immediate that M/xM is free over K[y] That is, let

bc1 be elements in M whose images form a K-base in
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M/xM
y(M/xM)

then the images of ba, yba form a K-base in M/xM. It follows that the
elements ba, yba,xba,xyba form a K-base in M, This proves 16, 10.
Proof of 16.7. Let f: M—2 N be a map of modules, say bounded

below, such that

£,7 H(M;x) —> H_(Nix)
and

f,0 H (Miy) —>H_(N:y)
are isomorphisms. By adding to M a free module ¥ bounded below, we
can extend f to {'=(f,g): M@ F —> N which is onto and also induces
an isomorphism of H,( ;x), H, ;y). Consider Ker {'; this is bounded
below, and by the exact homology sequence we have H*(Ker f:xy=0,
H*(Ker f';5y) = 0. So Ker {' is free by 16.10. But over K[x,y] the
free modules are injective, so we have

M®F 2N @ Ker {'
and M is stably isomorphic to N. This proves 16.7.

Proof of 16.3 (i). Let M be a finite-dimensional module over

K[x,y] such that H,(M;x) and H_(M;y) have dimension 1 over K.
Then the same holds for M¥. Consider the evaluation map M*® M—>1.
This is a map of modules over K[x, y], and (using the Kiinneth theorem)
it induces an isomorphism of H*( 3%, H*( ;¥). By 16.7, M*® M and
1 are stably isomorphic; so M is invertible. This proves 16.3 (i).

To prove 16.3 (ii) we need some more structure theory, First we
put in evidence several examples of graded modules over K[x,y]. The

first is called the lightning-flash. It has generators g in dimension



(ly] - &})i (i € Z) and relations g, = xgiy -

-0 €<— ... y x X el T 4+ o

We can bring the lightning-flash to an end on the left either by taking the
submodule generated by the g for i>v, or by taking a quotient module,

factoring out the g; for i <wv.

X
Y —t
Y x —> + o
In the latter case xg, T VE, 4 = 0. Similarly, we can bring the light -

ning - flash to an end on the right, either by taking the submodule gen-
erated by the g; for i <v, or by taking a quotient module, factoring out

the g for i>v.

- 00 <«— X Y
- 00 <— Y x
In the latter case = x =0.
ng gv+1

If we want finite-dimensional modules, we can end the lightning-
flash two ways on the left and two ways on the right, giving four sorts of

module., Of course, for modules of one sort we can alter the length,
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Also we might alter the grading, e.g., we might put the generator go in
degree 1 instead of degree 0.

We add to these four sorts of modules the free modules on one
generator,

THEOREM 16.11. Let M be a module over Klx,y] which is
finite-dimensional over K. Then M 1is a (finite) direct sum of modules
of these five types.

First step. Suppose xyM # 0. Then M is the direct sum of some
module N and a free module on one generator.

Proof. Take m, € Mr such that xym0 # 0. Then there is a linear
functional 6: Mr+lx| + |y|-——> K such that 9(xymo) = 1. Let F be free
on one generator { of degree r. Define maps of modules

[ S

by alf) =mg,
8{m)xyf (m e Mr+lxl N |y|)
8(xm)yf (meM . ly ,)
B{m) = {-8(ym)xf (m e Mr+ M)
8(xym){ (meM)
0 (otherwise) .

R

This shows M % (Ker B)® F.
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Second step. M ¥ N@® F, where F is free and N is annihilated
by xy.

Proof. Choose a K-base for xyM. Let m be elements in M
such that the elements xymo are the chosen K-base in xyM. Either
proceed as in the first step, or remark that this gives an injection
F —> M and F is injective,

In what.follows, then, we can.assume that M is annihilated by xy,
and we have to prove that M is a (finite) direct sum of modules of the
four types.

By a base for a graded module, we mean a K-base of homogeneous
elements.

We will say that a base beE for M is M if it satisfies the
following conditions.

(i) For each vector bc. in the base, Xbct is either zero or a vector
in the base; and Xbc. = be # 0 implies a =8,

(ii) For each vector bo. in the base, yba is either zero or a vector
in the base; and yba = be # 0 implies o =8.

LEMMA 16.12. If xyM=0 and M has a good base, then the con-
clusion of Theorem 16. 11 follows.

Proof. Suppose M has a good base {baz . Take the indices a
as the vertices of a graph., It is a finite graph, since we are assuming
M finite-dimensional over K. For each relation xba= bB introduce
one directed edge marked 'x'" and running from a to B. For each
relation ybc1 = bs introduce one directed edge marked 'y' and
running from o to B. Divide the graph into connected components. It

is clear that a vector cannot have edges arriving and departing, since
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xx,xy,yx and yy actas zero on M. By the definition of a '"good base',
a vector cannot have more than two edges arriving (one x and one vy},
and of course it cannot have more than two edges departing (one x and
one y). The connected components of the graph are therefore zigzags.
(A zigzag cannot join up into a closed polygon, because we assume
deg x # deg y.) Each connected component of the graph gives a
submodule of M, which is of. one of the 4 types described above; and
M is their direct sum. This proves 16.12,

We define the indecomposable quotient Q(M) of M by
Q(M) = M/(xM + yM). Over K we can if we wish choose a direct sum
splitting

M = (Q(M) @ (xM + yM).

Both x and y map xM + yM to 0, since we assume xyM = 0; they
also map Q(M) to (xM + yM).

Let V be a finite-dimensional vector space over K, and let

OCVICVZC v =V

be a filtration of V by a finite increasing sequence of vector subspaces.
We say that a K-base ibo} for Vv is adapted to the filtration if, for
every i, those b(1 which lie in Vi form a base for Vi .

LEMMA 16.13, Let M be a module over K[x,y] such that
(i) xyM =0 and (i1) Q(M)r =0 for r<a and for r > c. Then there
are filtrations of M for ¢-8 <r <c with the following property. For
each r in the range c-6 <r <c let ibro} be a base of yMr which is
adapted to the filtration; then the set of elements bro. can be extended to

a good base of M.
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Note. It is assumed that deg y > deg x, and & has been written

for degy - deg x.

Note. In the range c¢-8 <r < c¢ we have xM s = 0, and therefore
—_— - r

yM = xM + yM . So the vector space being filtered is the whole of
r r

r+&
the decomposable subspace of M in the dimension concerned.

COROLLARY 16. 14. If M is as in 16.13, it has a2 good base.

Proof. Any filtered vector space

OCVICVZC ...CVn=V
has at least one adapted base; for one begins by choosing a base for Vl'
extends it to a base for VZ' and so on by induction. So 16.13 provides
a good base for M.

Proof of 16.13. The proof is essentially by induction over ¢ - a;
the result is true if ¢ <a, for then M =0.

Choose a direct sum splitting M = Q(M) & (xM + yM). Let N be the
submodule of M generated by Q(M)r for a <r <ec. The relations
between N and M are as follows. We have Q(N)r= Q(M)r except for
r = ¢, in which case Q(N)c = 0, Thus we have er = xMr and
er = yMr except for r = c; thatis,

(xN + yN)r = (xM + yM)r
except for r=c+d and r=c+ e, where d =deg x, e=degy. In the
first case we have
YN__g=xN_+ ch-éc XMC + yMC_6 ,
and in the second case we have
0= xN % yN C Mot yMc =M.

We assume, as our inductive hypothesis, that the lemma is true for N.
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Then there are filtrations of er for c¢-6 <r <c which have the

property stated in the lemma, In particular, let the filtration of

= yM b
ch—B YMeos °€
= % § =
0 VOC 1CVZC CVn yMc-G
Adjoin to it the further subgroup
Vn+1 =xM 4 M 5+

We have a map x: Q(M)C —>xMC + yM 6; so we can filter the vector
c-
space Q(M)C by the counterimages
-1 -1 -1 -1
0Cx V,Cx VvV.C ... Cx 'V Cx 'V =Q(M) .
0 1 n n+1 c
We also have a map y: Q(M)C —> yMC. We filter yM_ by taking the

images

-1 _ _ _
0Cyw ' veywlve ii.Cwlv ety =ym .
0 1 n n+1 c

We now have filtrations on yMr for c-86<r <c; those for
c-8 <r <c arise from the inductive hypothesis, and that for r = ¢ has
just been constructed. Suppose given bases 5br0.i in yMr for
c-6 < r <c, adpated to the filtrations. We leave the bases as they are
for c-b <r <c, and start work on the base ibcaz for yMc .

In Q(M)C we may choose elements b'a such that ybc'1= bca and

-1
b ex 'V ifand only if b  eyx V . We may also choose elements
a m c m

b" in Q(M) forming a base adapted to the following filtration.
c

3

0C Ker yﬂx_IVOC Ker yf\x_IVlC .. ..CKeryf\x_IV CKer ynx'iﬂ
n

The elements b& and b'é together form a base of Q(M) adapted to
C
the filtration
ocx v cxlvie L Cxlv cxTly = o
0 &% 1 % n 1 o

From among the elements b('1 and blé' let us for the moment omit
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-1 -1
those which lie in x VO = Ker x and those which do not lie in x V ,
n

Then the remaining xb(’l and xb‘é form a base of ch_6 compatible
with its filtration. By the inductive hypothesis, the bases in er for

c-b <r <c form part of a good base for N. We now adjoin to this base
for N the elements b& and b" in Q(M)C, the elements yb(‘l =b in

B ca
-1
yM , and the elements xb', xb" for which b',b"” do notliein x "V ,
c a B a’ B n
We obtain a good base for M, containing the given elements bru' This
completes the induction, and proves 16. 13.
This therefore completes the proof of 16.14. Theorem 16.11

follows from 16,14 and 16.12, so this completes the proof of 16,11,

Proof of 16,3 (ii). Let M be a finite-dimensional module over

K[x,yl such that H*(M;x) and H,(M;y) both have dimension 1 over K.
Then by 16,11 it is a sum of modules of the types considered above. By
inspecting H,(M;x) and H,(M;y), it can have only one summand which is
not free, and this summand can only lie in two out of the four types. By
the same argument applied to }:aIb, each such summand is stably

a.b
equivalent to some X1 .

17. STRUCTURE OF 7 (buabu)

Mahowald and others have been using methods which rely
essentially on a calculation of m (bosaboa...Abo), where we take (n+1)
factors bo. I would like to give an introduction to this calculation; it
seems best if I do things for the most elementary case, which is the
case of bu, but undertake to use only methods which extend to the case
bo. For similar reasons I will mostly consider the case of two factors

buabu; the case of (n+l) factors is similar., Again, I will consider



mostly the prime 2, but try to make only statements which can also be
made for the prime p.

Some things can be said for a fairly general connective spectrum X.
My standing hypotheses on X will be as follows. First, assume that for
each r, Hr(X) is a finitely generated group. This may be unnecessary
for some purposes, but it is convenient. Secondly, for each prime p,
consider (HZp)*(X) as'a module over B = Zp[QO'Qlj' and assume that

ali, bli,
its stable class is ©z (1 p)I i p),

where b(i,p) > 0 and
: -

a{i,p) + b{i,p) = 0 mod 2.

Example. ILet X =buabua...abu (n factors). We have checked
the condition at the prime 2 by 16,4. We have not checked the condition
at the prime p > 2, but I believe it holds. In any case, the results at the
prime 2 follow from the assumptions at the prime 2.

Our assumptions on X have obvious consequences for the homology
of X with integral coefficients.

LEMMA 17.1. (i) H*(X) is a direct sum of groups Z2 and Zp,
and groups Z in even degree,

(ii) The same holds for H*(bu»\}().

Proof. (i) The argument is essentially by the Bockstein spectral
sequence, but we do not need to assume any knowledge of that. By
assumption, Hr(}() is finitely-generated abelian group; so it is a direct
sum of groups Z ¢ and Z. A group Z ¢ with > 2 will introduce into

P P
Ker Bp/lm Bp two groups Zp in consecutive degrees, which is
impossible; we have assumed Ker BP/Im Bp has one summand ZP in

each degree af(i,p) + b(i,p), and that a(i,p) + b(i,p) is always even. A



group Z in degree r will introduce into Ker Bp/lm Bp a group Zp in
degree r, which is possible only if r is even.
(ii) The spectrum buaX satisfies the assumptions made on X.
Of course we propose to obtain essential information on n*(buAX)
from the spectral sequence 16.1. The two results which we obtain this
way are as follows.
PROPOSITION 17.2. Assume that X is as above.
(i) The Hurewicz homomorphism
h: 7, (bunX) —> H, (buax)
is a monomorphism.
(i) The Hurewicz homomorphism
h: ﬁ*(KI\X) —> H*(K/\X)
is a monomorphism.
(iii) The homomorphism
n*(KAX)—9 ﬁ*(K/\X)®Q
is a monomorphism.
Part (ii) follows immediately from part (i), by passing to direct
limits.
Part (iii) follows from part (ii); we have H,(K) g h*(K) ®Q, and
therefore H,(KnX) = m, (KaX)® Q.
Given this proposition, one obviously tries to get a hold on n*(Kz\ X)

by describing its image in 7 (K AX)®Q. It is also very reasonable to try
to get a hold on m,(buaX) by describing its image in rr*(bu +X)@Q; the

kernel of
T (buaX) —> ﬁ*(bUI\X) ®Q

2 .
may contain elements of order p, but no elements of order p ; this

follows of course from 17.1 and 17.2. The p-torsion subgroup of
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m,(buaX) maps monomorphically to (HZ )*(X).
p
We shall also need another result. Consider the following diagram.
T {buaX) —————> H_ (buaX)

| l

Tf*(KI\X) _ H*(KAX) = ﬂ*(KAX)Q Q

THEOREM 17, 3. Let X be as above. Suppose an element
he H*(KI\ X) lies both in the image of H,(buaX) and in the image of
m{KaX). Then itlies in the image of m,(buaX).

The usefulness of this result will appear later.

I said it was reasonable to try to get a hold on 7,(KaX) by
describing its image in 7 (KaX)® Q, and to try to get a hold on 7 (buaX)
by describing its image in 7 (busX)® Q. In the case X = bu we see
that 1 (buabu)® Q is the polynomial algebra Q[u,v], where u € nz(bu)
and v € nz(bu) are the generators for the two factors, Similarly, we
have

m (Kabu) @ Q = Qlu,u !, v],
We wish to describe the images of the maps
m (K abu) —> 1 (Kabu) ® Q = alu,uhv]
ﬁ*(bUA bu) —> Tr*(buz\bu) ®Q= Q[u, v] .

THEOREM 17, 4. In order that a finite Laurent series
f(u,v) € QI_u,u_l,v] lie in the image of T, (Kabu), it is necessary and
sufficient that it satisfy the following condition.

Condition {1): for all k # 0, £+ 0 in Z we have

i -1 -
fkt, fr) e z[t,t K, L l]-



THEOREM 17.5.  In order that a polynomial f(u,v) € Q[u,v] lie
in the image of T, (buabu), it is necessary and sufficient that it satisfy
the following two conditions.

Condition (1): as in 17. 4.
Condition {2); it lies in the subgroup additively generated by

the monomials

i J
u v
m(i)  m(j)
[
Here m{r) = TTp , as in section 16. Of course, the subgroup

P
specified is actually a subring.

It is very easy to prove that the conditions given in 17.4 and 17.5
are necessary, so I will do that now.

Proof that Condition (1) is necessary. Consider the following com-

mutative diagram.

'rT*(KA bu) rr*(KA bu)® Q = Q[u,u—l, v]
*Qu * @l
1 ,-1
T (Kabu)® [k .4 ]  (Kabu)®Q

Pl "
n ez ] —m m (K)o
I |

-1 - -
AR IR l] olt,t 1]

Tire right-hand vertical arrow carries f(u,v) into f(kt,ft). This proves
that Condition (1) is necessary.

Proof that Condition 2 is necessary. Consider the following com-

mutative diagram.
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n»»(bu»\ bu) —m— n.{buabu)® O

7
H, (buabu) ——————— > H (buabu)®Q

Here H*(buhbu) is described by the Kunneth theorem, and the terms
Tor? (Hi(bu),Hj(bu)) map to zero in H*(bunbu)w Q, so the image of
H*(bu»bu) in H*(bu Abu) ®Q is the same as the image of H,(bu) ® H, (bu).
By 16,5, this is the subgroup additively generated by the monomials

ul Vj

md)  mG)
This proves that Condition (2) is necessary.

Proof of 17.5 from 17.3 and 17.4. Suppose a polynomial f(u, v)

satisfies Conditions (1) and (2). Consider f as an element of
Q[u,u_l,v] =71 Kabu)® Q= H*(KAbu). According to the proof we have
just given, Condition (2) ensures that f lies in the image of H, (buabu),
By 17. 4, Condition (1) ensures that { lies in the image of m, (Kabu).
Now 17,3 shows that it lies in the image of m (buabu). This proves 17.5.
Remarks, When we replace bu by bo, we replace Q[u,v] by
Q[uz,v2] and Q[u,u_l,v] by Q[uz,u_z,vzj; that is, we only use
functions which are even in both variables. We also replace the ring

1

-1 -1 -1 -1 -1
zlt, e k7] by m (KO)® z[x ", ¢ J; since we only need the com-

ponents of degree congruent to 0 mod 4, this is essentially

—4,1(_1,!_1]. Condition (2) is unchanged.

2 4
zl2t", 17 ¢
In order to do calculations it is often desirable to know exactly what

functions do satisfy the condition given. In such calculations it is

usually convenient to separate the primes and consider the images of
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M (Kabu)® QP-——> T (K abu) 8 Q
n*(bu,\bu) ®QP—> n*(bu:\bu) Q.
Of course I consider the prime 2. The analogue of Condition (1) reads
as follows.
(1) For each pair of odd integers, k,f, f(kt,ft) ¢ Qz[t,t_l].
The analogue of Condition (2) reads as follows.
(20 fw,v) eQ,lu/z,v/2] .
PROPOSITION 17. 6. (i) The subring of finite Laurent series

-1
which satisfy (1') is free over Qz[u,u ] on generators

v-u (v-u){v-3u) {v-u)({v-3u)(v-5u)
(5-1)(5-3) * {7-1D)({7-3)(7-5)

(ii) The subring of polynomials which satisfy (1') and (2') is free
over Q2 on the following generators,
4
4 u4(v-u) u4(V"1)(V'3‘1) u4(v-u)...(V—5u) u (v-u)...(v-7u)

u —_— 3
' 2 3 ' 4 7
2 2 2

3, uz(v—u) u3(v—u)(v—3u) u3(v—u). .. {v=-5u) u3(v—u). o {v=Tu)

“ z 3 ’ 7 ' 7
2 2 2
2 uz(v-u) uz(v-u)(v—3u) uz(v—u)...(v—Su) uz(v-u). v (v=T7u)
u, > s 3 ) 2 , 3 .
2 2 2
u(v-u) u({v-u)(v-3u) u{v-u)..,{v-5u) u{v-u)...(v-7u)
e 2 ’ 23 ’ 24 ! 25

1 v-u {v-u){v-3u) (v-u){v-3u){v-5u) (v-u){v-3u){v-5u)(v-7u)
2 22 23 24
The principle in part (ii) is that one takes each product

(v-u){v-3u)...(v-(2n-1)u), multiplies it by ul, and then divides it by the

greatest power of 2 which will still leave it satisfying (1') and (2'). The
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greatest power of 2 which leaves it satisfying (1') is read off from (1},
and is the 2-primary factor of Zn(n!). The greatest power of 2 which
leaves it satisfying (2') is 2n*

Remark, For an odd prime p we replace the arithmetic progress
progression 1,3,5,7, of 17,6 by the sequence of positive integers prime
to p. Alternatively, if one takes the precaution of splitting bqu into
{p-1) similar summands and taking one of them, one replaces
(v-u)(v-3u){v-5u)... by (vp'l-up_l)(vp'1—(p+l)up'1)(vp_1-(2p+1)up_1). .
When one replaces bu by bo, one replaces {v-u){v-3u){v-5u)... by
(vz-lzuz)(vz—?:zuz)(vz-S Zuz). ee s

The proof of 17,6 is straight algebra, and will be given later.

We begin the proof of these results with a simple result on the
homology of X, essentially comparable with 17,1,

LEMMA 17.7. Let X beasin 17.1-17.3, and let {Ci} be any

Zz—base for the subquotient Ker Bz/Im BZ of (HZZ)Zr(X) (e.g. arising

ali2)bli,2) 4oy

from our assumed decomposition (HZZ)-;(X) T e =
hi € H, (X) be any element whose image in (HZZ)Zr(X) is c;. Then the
tel _ - .

elements hi yield a QZ base for the image of (HQZ)Zr(X) in (HQ)Zr(X)'
Proof, Let kj be a Z-base for HZr(X) mod torsion; then in

HZr(X) mod torsion we can write hi = Jzaijkj’ where aij € Z. When we
t Z i -

pass to (H Z)Zr(x)' both the hi and the kj yield a Z2 base for

Ker Bz/Im BZ. So the ‘hi and kj are equal in number, and det(a. ) is

1)
odd. The result follows,

Next I recall some results of homological algebra over K[x,y].

Consider the following short exact sequences.
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K[x,

0—> plxl x5 i
yK(x,y]

—> 1 —>0

0 —s =W v o Kby] ] —3>0
xK[x,y]

They represent elements

1, k|

€ ¢ Ext .
T kixy]

(K, K)

|
Qe Extl’[|y‘ (X, K)

K[x,vy]

LEMMA 17.8. Ext;‘;

[x,v]

This is 2 completely standard calculation.

(K, K) is the polynomial algebra K[g,q],

LEMMA 17.9. We have an epimorphism

1,

s,t s+1,t
Ext (I®M,K)—™> Ext (M, K)
K{x,y] Klx,y

which is an isomorphism for s >0.

This is trivial, since we have an exact sequence

0—>18M —>AQ®M —>M —>0
with A @M free.

Now observe that as a matter of formal algebra, I can construct a
free module over K[g,q] on various generators, where I may assign
bidegrees to the generators at will, In particular, given M as a
locally-finite sum M¥ GIB Ea(i)lb(i) with b(i) >0, Itake F to bea

free module over K with generators ai of bidegrees s = -b{i), t = a(i).

LEMMA 17.10. In degrees s >0 we have an epimorphism
ok

K(x,v]

Ext (M,Zz)——> F

which is an isomorphism in degrees s > 0.



361

The case of one factor Z aIb follows immediately from 17.8 and
17.9; the factor £ ° causes a trivial shift in the t-grading. Then one
passes to sums.

Now I specialise to the case p= 2, K[x,y:l =B, a(i) = a(i,?2),
b(i) = b(i,2). Then Lemma 17.10 computes for us the Ez—term of the

spectral sequence 16.1, which converges to 7 _(buaX) at the prime 2.

s+t, t+1

LEMMA 17.11 (i) There is a homomorphism Es’t——> E
r r

of the spectral sequence 16.1 which for r =2 is multiplication by § and
for r= o is obtained by passing to quotients from multiplication by 2

in ﬂ*(bu/\ X).

s+1,t+3
r

(ii) There is a homomorphism Ei’t-——> E of the spectral
sequence 16.1 which for r =2 is multiplication by n and for r=c

is obtained by passing to quotients from multiplication by the generator

t eﬁz(bu) in m (buaX).

For an odd prime we use tp—1 in part (ii}. For bo we use the
. . 4,12
generator in n8(bo), and replace 5 by the generator in ExtA (22, ZZ),

1
Part (i) is absolutely standard, For part (ii), consider the

morphism SZ/\ bu —> bu which corresponds to multiplication by the
generator t € T‘lz(bu), consider its effect on the spectral sequence 15,1,
and chase that effect through the change-of-rings theorem.

LEMMA 17,12, Let X be as in 17.1-17.3. Then the spectral
sequence of 16.1 has all its differentials zero.

Proof. From 17.10 and our assumption that a(i) + b(i} £ 0 mod 2,
it follows that E>’" =0 for s>0 and t-s =1 mod 2; therefore the

same holds for Es’ t . So it is sufficient to consider d (e), where
r r
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't -
eeEs and s=0, t-s= 1 mod 2.
r
We suppose, as an inductive hypothesis, that d =0 for m < r,
m

so that

wn
-
It2
w
-
14

s, t
Ext’’ ({HZ )%/X),Z_.) .
xty (! 2) ) 2)
Argument (i},
8d_(e) = d (Be) = 0,
but multiplication by & is a2 monomorphism on Exts for s >0, there-
s,t
fore on E , so d (e) =0.
r r
Argument (ii).
nd (e} =d (ne) =0,
but multiplication by n is a monomorphism on Ext® for s> 0, there-
fore on Es't, so d_{(e) =0.
r r
This completes the induction, and proves 17,12,
Remark. Argument {ii) becomes better than argument (i) when we
replace bu by bo.

Proof of 17.2 (i). Let a e m (buaX) be an element in the kernel

of the Hurewicz homomorphism. Then certainly a maps to zero in
(HZP)*(b\lI\X), ie., o has filtration at least 1 in the spectral sequence
16.1, and similarly for odd primes p. Also o maps to zero in
(HQ)*(bunX) = m (buaX)®Q, so o isa torsion element. But by 17.10,

17.1 and 17. 12 multiplication by 2 induces a monomorphism

s+1,t+1

. for s >0, i.e., multiplication by 2 is a mono-

E>'—>E
[e 8}
morphism on the subgroup of elements of filtration at least 1; and

similarly for odd primes p. Therefore a =0, This proves 17.2 (i).
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Remark. If we tried to compute bu*(}() by using the Atiyah-
Hirzebruch spectral sequence
H (X;m.{bu)) =—> bu, (X)
we would encounter non-trivial extensions; it would not be obvious how
multiplication by 2 acts in bu,(X).
In order to prove 17.3, we pursue the proof of 17.2 a bit further.
Let Y be a connective spectrum; then we may filter rr*(Y) by the

filtration subgroups FS of 15,1 (with E = HZ Also we may filter

2)'
s
H*'(Y) by the subgroups Fs‘ =2 H*(Y).

LEMMA 17.13 (i) The Hurewicz homomorphism
h: 7 (Y) —> H,(Y)

maps Fs into F's.

(ii) L Y
1 1

Proof of (i). Let Y be as in §'15, a € rr*(Ys). Suppose as an
—_— s

inductive hypothesis that in Y we have h(a) = Zg.kg_ for some
s-7

k_e€ 1'r*(YS U_). The map

—> Y
s-¢ s-6-1
induces the zero homomorphism (HZZ)*(Ys—r) —> (HZZ)*(YS—G—I)' so

k, maps to zero in (HZZ)*(Ys—r—l)’ and in H*(Ys—u-—l) we have

c+1
= = k i i i
ko_ 2k3_+1, hia) = 2 ]t This completes the induction and shows

that in H (Y) = H,(Y.) we have h(a)=2°k
* * 70 s

Proof (ii)., Suppose h(a) € F'l. Then & maps to zero in (HZZ)J_(Y),

s0 a € Fl' This proves 17.13.

LEMMA 17.14., Take Y = buaX, where X is as above. Then

(i) EZ: = 17‘5/1“‘54‘1 —h% 1-"'5/17"54‘1 is a monomorphism for all s.



(ii) Fs = h_lF's; in other words, the filtration in n*(bu AX) is
obtained exactly by pulling back the filtration in H*(buf\)(),
Proof. First we show that (ii) follows from (i). Suppose (i) true,
and let a e n*(bur\)(), ha € F‘s. Suppose, as an inductive hypothesis,

. h
that o ¢ F, for some ¢<s. Consider FO_/FG+1—>F7'/F'

o+1° We

are assuming that this homomorphism is a monomorphism; it maps o
g P P P

to zero, so a € Fo_+ This completes the induction, and shows that if

1
ha € F's, then o € Fs. This proves part (ii).

We note that part (i) is true for s =0, by 17,13 (ii). It is therefore
sufficient to prove it for s> 1. It will now do no harm to replace F;_
by the image of ZS(HQZ)*(bu AX) in (HQ)*(bu AX); for this does not alter

] T
Fs/Fs+l for s> 1, by 17.1.

We now divide the proof into three parts. First we exhibit a base

for Fs/Fs+1; secondly, we exhibit a base for F'S/F thirdly we show

T .
s+1’
that with respect to these bases h is given by a non-singular triangular
matrix.

The base for F_/F is easy; if s> 1, then Es=k hasa Z_-base
3 s m o — fes) 2

consisting of the elements E 1!\' 1g_ with m +n = s + b(i), by 17,10
1 1 1

+1

and 17,12, We turn to the base for F'S/F's+1 . .
Take an element Y,1 € m (buaX) representing 3 igi. We can con-

sider its image in H_ (buaX); we see that there is an element

hi € H*(X) such that the images of Y, in (HQ), (busX) and

(HZZ)*(buAX) both have the form

h(vi) =1® hi mod lower terms

where "lower terms'" means terms
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b}_ 53 (HQ)*(bu) or (HZZ)*(bu), deg bj >0,

x; € (HQ),(X)  or (HZ,)(X), ]x},| < Ihl .
Now by construction, the image of hi in (HZZ)*(X) is the ith basis
element for Ker BZ/Im BZ' By 17.7, the elements hi form a Qz—base
for the image of (HQZ)*(X) in (HQ),(X). Let t/2 be the generator for

Hz(bu), as above. Then F'S/F's+1 has a Z_-base consisting of the

2

elements

2%(t/2)"n. (v > 0).
! - m, n,
I claim that if m. o+ n = s + b(i), then the image of £ lrl lgi in
F‘S/F's+1 is
n,
Zs(t/Z) 1hi mod lower terms.

Here “ower terms' means terms 2°(t/2)Vh  with v > n, deg h <deg h.

J 1

. b(i) o .
By construction, Vi represents § g.l, and its image in (HQ)*(buI\X)
m, b,
1
is hi mod lower terms of filtration > 0. So 2 't 'V, represents
- 1

b(i)+mi ni ml,+ni n

£ R, 'g;, and its image in (HQ) (burx) is 2 (t/2) "B, mod

o o 1

lower terms of filtration > n, +m,, Now multiplication by § or 2 isa
m. n,

monomorphism on FS/FS+1 and on 1""5/17:-__)+ So the image of § lr( 1gi

v
n.
is Zs(t/Z) lh, mod lower terms of filtration > s. This proves 17. 14.
i jd

COROLLARY 17.15. (of the proof): Suppose a ¢ T, (buaX)® Q2 has

filtration > g and its image in (HQ),(buaX) lies in

st

> (HQ),.(buw) @ (HQ) (X). Then the class of a in Eoo” can be divided
i>q *
by xzq.
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Proof. The result is empty for g =0, so we may assume q > 1.
Then the class of @ in Ei: is a linear combination of the basis

elements

I claim that every element appearing with 2 non-zero coefficient has
n, >q. For let the highest terms appearing be
m;
2 ME oR'g
where not all the )‘i are zero; then in (HQ)*(buAX), a maps to
S 2.2%(t/2)"h,
— i i
1
s+l
mod 2 (HQ)*(bUAX) and lower terms, and hence v >gq.

Since a has filtration >gq, each term

m, n.
i
§ n g
which appears has m, + 0, > Db(i) + q, and there is an element of E:q*
M ni-q 5%
mapping onto £ 'n g;. Therefore the class of a in Eoé can be

divided by 1. This proves 17.15.
LEMMA 17.16. Let o e m (buaX) @Qz, and suppose
(i) o has filtration >q,
(ii) the image of a in (HQ)*(bu/\X) lies in

2_ (HQ) . (bu)e (HQ) (X).
54 x

Then a = th for some B e 7 (buaX) ®QZ.

Proof. Considér the subgroup of a which satisfy (ii), modulo the
subgroup tqn*(bu AX) ® QZ' The quotient is evidently finite in each
degree, for when we tensor with Q the resultis zero. In particular,

for each degree there is a filtration s such that all elements of
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filtration > s in m,(buaX)® Q2 which satisfy (ii) lie in tqn*(bu AX)@QZ.
Now we argue by downward induction over the filtration of a. Suppose
the result is true for elements a' of filtration > ¢, and 0 has filtration
¢>q. Then by 17,15 the class of & in E_' can be divided by n%;
that is, a=a' + th", where a' has filtration > ¢+ 1 and

B" € m, (buaX) GQZ. Here o' also satisfies (ii), so by the inductive
hypothesis, a'= t98'. Then a = t3(p+ B'"). This completes the
induction and proves 17,16,

Proof of 17.3.  Suppose an element h € H,(KaX) lies both in the
image of H*(buAX) and in the image of 7 (KaX). Then it comes from
an element

a e M (K(-2n, ... ,0)aX}
for some sufficiently large value of n. The image of @ in H, (KaX)
lies in the image of H,(buaX). Now H,(K(-2n, ... ,®)aZ)—> H*(KA:X)
is not a monomorphism, but the image of
H*(K(-Zn, ces ,O)AX) —> H*(K(—Zn—Z, cer ,0)aX) does map mono-
morphically to H,(KaX). So by replacing 2n with 2n+2 if necessary,
we may assume that the image of a in H,(K(-2n, ... ,®)sX) lies in
the image of H,(buaX).

Now K(-2n, ... ,) ® 5 2 abu. By 17.14, the element
a e m,(K(-2n, ... ,)aX) has filtration > n. Also its image in
(HQ)*(K(—Zn, ... ,0)aX) lies in the image of HQ,(buaX). Now 17.16
applies to show that a = t"8, thatis, a lies in the image of
. (buAX) GQZ. We proceed similarly for the odd primes. Therefore a

lies in the image of w (bunX). This proves 17.3.
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To prove 17.4, we give means independent of the Adams spectral
sequence for constructing elements in T, (Kabu). Consider CP®. we
have a canonical map from CP® to BU, which we can consider as

2 [e o]
term 2 of the bu-spectrum. We get an element x € bu (CP ). Then the
Atiyah-Hirzebruch spectral sequence shows that bu).((CPOO) is free over
m,.(bu) on generators f ¢ buZi(CPOO) such that
4 1
i =

<x 'Bj> = 6ij .
Consider again the canonical map from cP® to BU, considered as
term 2 of the bu-spectrum. Applying this to Bi+1’ we obtain an element

bi € bu2i(bu) .
For more detail see [2]

LEMMA 17.17 (Adams, Harris and Switzer). The image of bn in
ﬂzn(bu/\bu) ®Q is

{v-u){v-2u)...(v-nu)
(n+1)!

The proof is essentially that of [2], Lemma 13.6, except for
changes of detail.

Proof of 17. 4. Separating components, we can assume that { is
homogeneous, say of degree d. On multiplying f{u,v) by a sufficiently
high power of u, we can ensure that

glu,v) = u"fu, v)
is a polynomial which has the following property:
glk,1) e 2 for all ke Z.
The argument is essentially given in [2], p.102, but add one more power
of u to take care of the case k=0. Then it is elementary that g(u,v)

can be written as a Z-linear combination of the polynomials
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u(u-v){u-2v)...(u-nv) d+N-n-1
(n+1)! v :

Take LLemma 17.5 and apply c: buabu-—> bu~bu; we see that

{u-v)(u-2v)...{(u-nv)
(n+1)!

. . . d+N-n-1 _ |
lies in the image of ﬂ*(bu'\bu). Clearly also u and v lie in

the image of m (buabu). Therefore g(u,v) lies in the image of
o N
m(buabu). Dividing by u , we see that f(u,v) lies in the image of
T {Kabu)., This completes the proof of 17.4, which therefore completes
the proof of 17. 5.
Proof of 17.6 (i), First] claim that the given polynomials do
satisfy (1'). Consider the special case f=1. Let f be the given

product of degree n; then

n (2k)(2k-2)(2k-4). . . (2k-2n+2)
t (2n)(2n-2)(2n-4)...2

£((2k + 1)t, t)

n k{k-1)(k-2)...(k-n+1}

Tt 1-2-3-...°n

which lie in Z[t]. Now consider f(kt,ft}) with k and ? odd. The
denominator of { contains only a finite number of powers of 2, say 2™,
so we may solve [A = 1 mod 2™; then
A (ke £1) = LAz, (A0 = £khe, 1) mod Q,[t], so tais lies in Q,[t] vy
the special case A = 1. Hence f(kt,¢t) liesin Q,[t] and f satisfies
(1.

It is now clear that Q2 [u,u-lj-linear combinations of the given
polynomials also satisfy (17},

Conversely, let f(u,v) ¢ Q[u,u_l,v] satisfy (1'). We wish to write
itasa Qz[u,u_l]—linear combination of the given polynomials. By

separating homogeneous components, it is sufficient to consider the case
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in which f(u,v) is homogeneous, say of degree n. Then we may write

f(u,v) as a Q-linear combination

n n-1v-u n-2 (v-u)(v-3u)

= + A — + A —_— .
f{u, v) Agu 8 31 LU ) (5-3)
Suppose as an inductive hypothesis that X _ A DY

02y e -1 lie in QZ.
Then the sum of the remaining terms

n-r (v-u) ... {v-{2r-1)u)
(2r+1)-1)...((2c+1) (2r-1)) T -**

glu,v) = A u
r
satisfies (1'). We may find )\r by substituting v = (2r + 1)t, u=t; we
see that
r
g((2r+1)t, t) = x t© ,
r
and X ¢ QZ. This completes the induction and proves 17.6 (i).
r

Proof of 17.6 (ii). We first observe that the given polynomials do

satisfy (1') and (2", and so do Qz—linear combinations of them.

Conversely, let f(u,v) € Q[u,v] satisfy (1') and (2"); we wish to
write it as a Qz-linear combination of the given polynomials. By
separating homogeneous components, it is sufficient to consider the case
in which f(u,v) is homogeneous, say of degree n. Then we may write
f{u,v) as a Q-linear combination

A
)\1

n )\2
u o+
4

WP Nyou) & un'z(v-u)(v-3u) + e,
2

flu,v) =

q
2 ° 2 2

q
where X eQZ. Here 2 T Qdivides r!2r by part (i); we wish to prove
r

it also divides 2°. Suppose, as an inductive hypothesis, that this is true

for r'>r., Then the sum of the remaining terms

A
)\on r

glu,v) = - ¢ R W (veu). L (vo(21-1)u)

2 ° 2 T

is the coefficient of u™ ™ 7v',

also satisfies {1') and (2'). But now



i tion, and proves 17,6 (ii).
i letes the induc
so qr <mn. This comple
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