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ON THE tmf-RESOLUTION OF Z

A. BEAUDRY, M. BEHRENS, P. BHATTACHARYA, D. CULVER, AND Z. XU

ABSTRACT. We study the tmf-based Adams spectral sequence for the type
2 spectrum Z. We establish the structure of the Ej-page of this spectral
sequence, and compute the d;-differential modulo va-torsion. We develop a
technique for performing low dimensional calculations, and use this to compute
the spectral sequence fully in stems < 40. We use this computation to prove
that the K (2)-local Adams-Novikov spectral sequence for Z studied by the
third author and Egger collapses, resulting in the computation of the homotopy
groups of Z (2). We discuss how these computations fit with the conjectural
failure of the telescope conjecture.
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1. INTRODUCTION

In [BE16a], the third author and Egger introduced a class of 2-primary type 2
spectra Z whose elements Z all satisfy

H*(Z) Z42) A(2) ) E(Q2)

for the subalgebras E(Q2) C A(2) of A, the mod 2 Steenrod algebra. Here and
throughout the paper, cohomology implicitly is taken with coefficients in Fo. The
two other key features of any Z € Z are

e it admits a self-map v : X7 — Z inducing multiplication by v} in K(2).Z,
and,
o tmf A Z ~ k(2).

Here, tmf is the connective spectrum of topological modular forms, K(2) is height
2-Morava K-theory, and k(2) is its connective cover.!

The importance of any Z lies in the fact that it is the height 2 analogue of the type
1 spectrum Y := M(2) A Cn, where M (2) is the mod 2 Moore spectrum and Cn
is the cofiber of n: S — SY. Indeed, Y satisfies height 1 analogs of some of the
properties of Z:

o H*(Y)=,0) A1)/ E(Q1),
e it admits a vi-self-map v : ¥?Y — Y, and,
e boANY ~ k(1)

where bo denotes the connective cover of the real K-theory spectrum KO. The
above properties of Y play a crucial role in the study the bo-Adams spectral se-
quence (bo-ASS) for Y, which was used by Mark Mahowald to prove the telescope
conjecture at chromatic height 1 at the prime 2 [Mah82]. Thus it is natural to ask
if the tmf-ASS of Z can shed light on the telescope conjecture at chromatic height
2 at the prime 2, a question which so far remains unanswered for chromatic heights
greater than 1.

Let us briefly recall the statement of the telescope conjecture, which is due to
Ravenel [Rav84]. Fix a prime p and an integer n > 0. Recall that the homotopy
groups of the height n Morava K-theory spectrum are given by

K(n). = Fylvy "]

where |v,| = 2(p™ — 1). A finite p-local spectrum X is of type n if n is the smallest
integer such that K(n).(X) # 0. The periodicity theorem [DHS88] of Devinatz,
Hopkins and Smith guarantees that for a type n spectrum X, there exists an integer
d > 0 and a map

v: 20" -Ddx y x

n the context of this paper, K(2) will denote the form of Morava K-theory derived from the
Morava E-theory spectrum Eo = E(F4,C) where C is the formal group law of the supersingular
elliptic curve (see Section 4.1 for more details).
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such that K (n).(v) is multiplication by vZ. We will call the map v: £2¢®" DX —
X a vi-self-map. The telescope of X is defined as the homotopy colimit

X=X L n20"-Ddy b y-a0"-Ddx
Let X (n) denotes the Bousfield localization of X with respect to K (n).

Conjecture 1.0.1 (Telescope Conjecture). For any type n spectrum X, the natural
map R

X — XK(n)
is an equivalence.

The goal of this paper is to adapt the bo-ASS techniques used by Mahowald to
study the tmf-ASS for Z

gt (7)) = (tmf " A Z) = 1 Z

in order to study we-periodicity and the telescope conjecture. We transfer the bo-
ASS techniques developed in [BBB*17] to compute the tmf-ASS for Z.

Specifically, we will give a method for computing the Fs-page of the tmf-ASS for
Z through a range, and use this to perform low dimensional computations of m.Z
for a particular choice of Z € Z.2 These low dimensional computations will allow
us to eliminate the possibility of differentials in the localized tmf-ASS, studied in
[BE16a], converging to 7. Z (2). The resulting computation of 7, Zg (o) represents
the first non-trivial computation of the homotopy groups of a K(2)-local finite
complex at the prime 2.

Another aim of this paper is to repeat Mahowald’s analysis and to identify where
the arguments fail to resolve the telescope conjecture at n = 2 for the spectrum Z.
Further, we will cast the arguments of Mahowald-Ravenel-Shick [MRS01] in this
context and explain why one could be lead to suspect that the telescope conjecture
might fail in this case.

Overview of the paper. In Section 2, we establish some notation and recall some
facts about the 2-primary dual Steenrod algebra A and its subalgebras A(n) and
E(n). We then recall how Margolis homology of an A-module M can be used to
compute Ext groups of the form

Extyio (M, Fy).

The importance of these Ext groups is that the classical ASS for k(n).X takes the
form

By = Extyo  (H*X,Fa) = k(n),— X.

We compute the Margolis homology of A/ A(n) and Aj E(n).

In Section 3 we begin our analysis of the tmf-ASS {"™ E7™*(Z)}. Since the E;-term
is given by
M EPN(Z) = m(tmf A Z) 22 k(2), (tmf),

2We restrict attention to a particular Z € Z because the computations of Section 7 rely on
computer Ext computations based on a particular Steenrod module structure on H*(Z). However,
preliminary computations with the May spectral sequence suggest that the computations of that
section hold for every Z € Z.
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we may use the Adams spectral sequence to calculate it. Our Margolis homology
computations give the Es-terms of these Adams spectral sequences, and we show
these Adams spectral sequences collapse to give a short exact sequence of chain
complexes

(1.0.2) 0= V**(Z) = ™ BN (Z) = ¢**(Z) = 0

where the groups C**(Z) are va-torsion free and completely computable and the
groups V**(Z) are vi-torsion and essentially incomputable. We will refer to C**(Z)
as the good complex and V**(Z) as the evil complex. The goal is to use the short
exact sequence (1.0.2) to compute "™ E3* from H**(C(Z)) and H**(V(Z)) (the
latter which we will show is computable, despite the incomputability of V**(Z)
itself).

The journey begins in Section 4, where we compute the differentials in the good
complex C**(Z). This is accomplished by showing that the good complex is actually
isomorphic to the cobar complex of an explicit sub-Hopf algebra & (2) of a quotient
of the Morava stabilizer algebra X(2).

In Section 5 we embark on the computation of

H"*(C(2)) = Ext;&)(k@)*, E(2)4).
The cohomology of the Morava stabilizer algebra ¥(2) was computed by Ravenel
[Rav77] using a modification of the May spectral sequence which we will call the
May-Ravenel spectral sequence. In our setting, the May-Ravenel spectral sequence
takes the form

ME g — g+*(E°C(Z)) = H**(C(Z)).

We completely compute the Fj-term of this spectral sequence (Theorem 5.4.3). It
is possible there are higher differentials and extensions in this spectral sequence,
but we will find that in the low dimensional range we consider, none can occur.

Having dealt with the good complex, in Section 6 we turn to the problem of com-
puting the cohomology of the evil complex. The situation is analogous to that of
the bo-ASS, for which the authors have already developed a technique which we
refer to as the agathokakological method [BBB117]. The key ingredients are the
algebraic agathokakological spectral sequence (AKSS)

H*""(Cag(2)) ® H**(V(2)) = “*E37(2),

and the dichotomy principle (Theorem 6.2.6) which relates evil terms in the alge-
braic AKSS to ve-torsion in *** E5*(Z). We therefore are able to recover H**(V (Z))
from H***(Cqqy(Z)) (which we completely compute) and ***E3™(Z) (which we
compute using Bruner’s Ext software [Bru93]). We end this section with a discus-
sion of the topological AKSS,

H**(C(Z2))® H"*(V(2)) = m.Z
which is essentially a refinement the tmf-ASS.

In Section 7, we perform low dimensional computations of the tmf-ASS (or equiv-
alently, the topological AKSS) for Z in the range ¢t — n < 40. This proceeds by
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first analyzing ve-periodicity in “**E3*(Z) by analyzing the Fa-term of the Adams
spectral sequence for the cofiber

07 2 7 5 A,

where H*As = A(2). Appendix A contains the Bruner module definition data
used to compute the relevant Ext charts. We then compute the algebraic AKSS in
our range. From this we extract H**(V(Z)), which we input into the topological
AKSS, and compute through our range. We end this section with a comparison to
the computations of Bhattacharya-Egger of the K (2)-local Adams-Novikov spectral
sequence (ANSS) for Z, and prove that their spectral sequence collapses by mapping
the tmf-ASS to the K (2)-local ANSS (Theorem 7.5.1).

Mahowald proved the telescope conjecture for Y by showing that the Fs-term of
the bo-ASS

POENNY) = T tY

decomposes into a direct sum of two pieces:

(1) a summand which is v;-torsion free and is isomorphic to 7.Yx (1) after v;-
inversion, and
(2) a summand which consists entirely of bounded v?-torsion.

Mahowald then showed that infinite sequences of hidden extensions among this v3-

torsion cannot contribute to the homotopy of the telescope .Y by proving that
b B5*(Y) has a vanishing line of slope 1/5.

In Section 8 we discuss how the analog of this paradigm fails for the tmf-resolution.
Namely, assuming there are no additional differentials or extensions in the May-
Ravenel spectral sequence, and assuming a certain pattern of ds-differetials, we
show that "™ F, decomposes into a direct sum of three pieces:

(1) a summand which is vp-torsion free, and is isomorphic to 7. Zx(2) after vo
inversion,

(2) a summand which consists entirely of bounded v3-torsion, and

(3) a summand which consists of unbounded wvs-torsion, and assembles via a
conjectural sequence of hidden extensions, into an uncountable collection
of vy-parabolas.?

Our methods establish a slope 1/11 vanishing line for "™ E3*(Z), but we explain
why one might expect to be able to improve this to a slope 1/13 vanishing line, which
would preclude infinite families of hidden extensions among the terms in summand
(2) from assembling to give vo-families in 7.Z. We then describe the analogs
of conjectures of Mahowald-Ravenel-Shick [MRS01] which describe a hypothetical
picture (the parabola conjecture) of 7.2 which is assembled from a portion of the
classes in summands (1) and (3) above, and in particular is unequal to m.Zg (2)-.
However, just as in [MRS01], it is totally possible for a bizarre pattern of differentials
between ve-parabolas to occur to make the telescope conjecture true.

3We call them vo-parabolas because they lie on (sideways) parabolas in the (£ — n, n)-plane.
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2. BACKGROUND

2.1. Subalgebras and subquotients of the Steenrod algebra. Let A denote
the mod 2 Steenrod algebra and let A, be its dual. The algebra A, is a polynomial
algebra on the Milnor generators &; of degree i. Letting ¢; = £, be the conjugates,
A, can also be expressed as

A* - ]F2[<13<27C35"']

where the elements (; = &, of degree 2° — 1 are dual to the elements Q; _; € A
defined inductively as

QO = Sq17
Qi = [Sq217Qi71]7 1> 0.

The coproduct on A, is given by
PG =Y G
itj=k
The elements @, are primitive, i.e., ¥(Q,) = Q, ® 1 +1® Q,, and satisfy Q% = 0.
Let A(n) be the subalgebra generated by Sq', .. ., Sq?" and E(n) be that generated
by Qo, . ..,Q,. Of particular interest will be the A-modules
AfAn) =2 A® ) Fo,
AJE(n) and A(n) /) E(Q,) since
H*bo= AJA(1), H*ku > AJE(1), HY =2 AQ1) J E(Q1),
Hmt = AJA(2), H*BP2)=AJE?2), H*Z=A?2)/EQ.).
We note that the dual of A(n) and E(n) are given by

2n+1 271

A(n)*gA*/(l 382 sty 727,+17Cn+2a'--)
E(n). = E(G, - Gug)-
Hence, A/ A(n) and A E(n) have duals given by

(AJAM)). =B[22, ot Cuas -
(A//E(n))* = ]FQ[C127 B 721+17<n+27<n+37 .. }

2.2. Margolis homology. We will use information on the action of the subalgebra
E(Q,) to carry out our computations. We gather some useful observations in this
section. A reference for these topics is [Mar83, Part III].

Lemma 2.2.1. Let M be a graded module over an exterior algebra E(x) = Falx]/x?
where x has degree k. Suppose that M is of finite type (that is, a finite Fy-vector
space in each degree). Then M is a direct sum of free modules and trivial modules.
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Definition 2.2.2. Let M be a module over E(x). Let ker, (M) be the kernel of
multiplication by z and im, (M) be its image. Define

H(M;z) :=ker,(M)/im,(M).
Corollary 2.2.3. Let M be a module of finite type over an exterior algebra E(x)
where x has degree k, then
Exty ) (M, F2) = (Fa2[y] © H(M;z)) &V

{1k

fory in Ex and V a direct sum of copies of Fo in cohomological degree zero.

Proof. Since M is of finite type, it can be expressed as a direct sum
M= PSF, & P E(x)
i€T jeF
for sets T' and F'. Then
Exty,) (M, Fz) = (@ ST, [y]) o P xF,
ieT jEF

However, H(M;z) = @, . X'F, so the claim holds. O

€T

We will apply these results to the exterior algebra E(Q,,).

Definition 2.2.4. Let M be an A(n)-module. The n-th Margolis homology of M
is HM; Q). It M = H*(X), then we abbreviate H(H*(X);Q,) as H(X;Qy).

It follows that for any A-module M, there is an isomorphism
EXtE’(an)(M, F2> = (FQ [Un] ® H(M; Qn)) eV

ntl_
1.2

for v, in Ex Land V a direct sum of copies of Fy.

Let M and N be A(n)-modules. For an element « € A(n) let
(@)= ai®a
denote its coproduct. Then M ® N can be given the A-module structure
a(a®@b) =v(@)(a®b) =Y aia® a;b.

Since @, is a primitive, we have Q,(a ® b) = Qn(a) ® b+ a ® Q,,(b). From this,
one can deduce the following lemma.

Lemma 2.2.5. Let M and N be A(n)-modules of finite type. Then
H(M @ N;Qn) = H(M;Qn) © H(N; Qn).

Corollary 2.2.6. If M is an A(n)-module of finite type, then

EXt;EQn) (M®k7 FQ) = FQ [Un] & H(M7 Qn)®k (&) \%

where V' a direct sum of copies of Fs.
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Remark 2.2.7. To compute Extg(q,), it is useful to understand the left action
of @, on A, or equivalently, its dual right action on A,. Indeed, if M is a left
E(Qy)-module and M, is its Fo-dual, there is a right action of F(Q,,) on M, given

by (¢Qn)(a) = ¢(Qn(a)) and
EXtE(Qn)(Ma FQ) = EXtE(Qn)(F27 M*>
The action of E(Q,) on A, is determined the formula

(2Qn, ) = (z,Qna)

for x € A, and a € A, which is straightforward to compute on the (}’s: since @,
is dual to (41, if K > n+ 1 we have

(GeQns @) = (G Qua) = (), Qn @ @) = (G a).
So,

2n+1

o1 kZn+1,
Can—{Ok !

k<n—+1.

The following result is a straightforward consequence of Remark 2.2.7 and the fact
that the action of @, is a derivation, so that (?@Q,, = 0 for all k.

Lemma 2.2.8. There are isomorphisms

2n+l 2n+1

H((AJA(n))x; Qn) 2 F[G :?rHa-~-7 ER AP AT NN V) (¢ SUNG SN

and
o+l gn+l

H((AJE(n))«;Qn) 2 F2lCF, G, J/(GF .G -00)

3. THE GOOD/EVIL DECOMPOSITION OF THE FE1-TERM

3.1. The computation of the E;-term of the tmf-ASS for Z. We study the
tmf-ASS for Z, which has the form

gt — o (tmf "N Z) = 1 (2).
To understand the E;-term, we use the classical ASS,
(3.1.1) Ext% (H* (tmf"" ™ A Z),Fy) = m;_(tmf "1 A Z) = tmiprt=s
Since the cohomology of the spectrum Z satisfies
H*(2) 2 A(2) J E(Q),
we have
H*(tmf"" LA Z) 2 AJAR)P™ T @ A(2) J E(Q2).
Via two change of rings isomorphisms, we get

(3.1.2) Exty" (H* (tmf""™ A Z),Fs) 2 Exty, ) (A ) A(2)%", Fa).
Let

Caty " (Z) :=Falva] ® H(A [ A(2)s, Q2)°"

alg
Then Corollary 2.2.3, Corollary 2.2.6, and Lemma 2.2.8 imply the following.
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Proposition 3.1.3. There is an isomorphism of Fa[ve]-modules

(3.14) Bty (H (f " A 2), ) 2 O (2) Vi (2)

alg
where
Cig”™ = Falvo] ® [FalG, 63, 3.+ 1/(S. 63, )]
and V1" (Z) is a direct sum of shifted copies of Fy’s which are simple va-torsion
(i.e., vo - x = 0 for all elements x) which are concentrated in Adams filtration zero:

VE(Z) = VIO (Z) = VIR (Z).

alg alg

We therefore deduce:

Corollary 3.1.5. We have an isomorphism of Fa-vector spaces
(3.1.6) mf g — 7 (tmf A tmf™" A Z) 2 V(Z) @ CV(Z),
where V**(Z) is the module defined in Proposition 3.1.3, and,

C"*(Z) 2 Falva] © [FalCh, 2.2, 1/(¢5, ¢G5, )] "

Proof. The differentials in (3.1.1) are vs-linear as Z has a ve-self map. The elements
of C:l’;’* (Z) are concentrated in even degrees so there can be no differentials between
them. It then follows that there can be no non-zero differentials supported by
elements of V™*(Z) as these are vo-torsion so cannot hit ve-free classes. Therefore,
the ASS for 7, (tmf"" ' A Z) collapses. Since tmf A Z ~ k(2), there are no possible

additive extensions. O

Remark 3.1.7. The Adams spectral sequence argument above is not sufficient to
deduce that the isomorphism (3.1.6) is an isomorphism of k(2).-modules, because
in principle there could be hidden vs extensions on the generators of V™*(Z).
However, the possibility of such vy extensions will be ruled out in the next section.

3.2. A topological lift of the splitting. We now prove that the splitting (3.1.6)
lifts to the category of spectra.

Lemma 3.2.1. For all n, there is a generalized Filenberg-MacLane spectrum HV™
and a spectrum C™ such that

tmf"\" LA Z ~ HV™ v O™
and which recovers the splitting (3.1.6) on the level of homotopy groups.

Proof. Let X denote tmf"" ™ A Z. As discussed above, a change-of-rings isomor-
phism allows us to identify the Fs-term of the ASS for X as

Ext’y” (H* (tmt""* A Z), F2) 2 Extyi, ) (A A(2)%", Fy)

From Lemma 2.2.1, there is a decomposition
AJAQR)* ! =g, FOG
where F' is a free F(Q2)-module and G is a direct sum of trivial E(Qz)-modules.

In applying the change-of-rings isomorphism, one uses the sheering isomorphism
AJEQ2) @ AJ A(2)*" =4 A®E(q,) (A A(2)®")
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and hence we have that
H*(X) =4 (A®E(Q,) F) ® (A®E@Q,) G).

In particular, A ®g(q,) F is a free A-module and A ®p(q,) G is a free A/ E(Q2)-
module.

Let HV™ denotes the generalized Eilenberg-MacLane spectrum whose homotopy
groups are V™*(Z). Then

Consider the Adams spectral sequence
Exty (H*(HV"), H*(X)) = [S'7°X,HV"] = [X, HV"];s.

Since H*(HV™) is a free A-module, the Es-term is concentrated in Ext%’*, and so
the spectral sequence collapses. Thus, there is a map of spectra

X - HV"
which is detected by the inclusion in cohomology
H*(HV") =2 (A®pgq,) F) - H*X.
Let C™ denote the fiber of this map, so that we have a fiber sequence
(3.2.2) C"— X — HV"™

We will show there is a map HV"™ — X which splits this fiber sequence. Towards
this end, consider the Adams spectral sequence

(3.2.3) Exty (H*X, H*(HV")) = [HV", X];_s.
Applying a change-of-rings isomorphism, the Es-page becomes
(3.2.4) Exth’EkQZ)(A//A(Z)m, A®g, F).

Recall that a free F(Q2)-module is also injective (cf. [Mar83, p.245]). Since

A ®pq,) F is a free A-module, and since A is free as an E(Q2)-module, it fol-
lows that (3.2.4) is concentrated in Ext%’?Qz).
collapses at Fs, and there is a map of spectra

HV" - X

So the spectral sequence (3.2.3)

which is detected by the projection map
H*X — H*HV™.
Thus we have produced maps
HV" - X - HV"
which induce
ARp) F + (A®Eg,) F) ® (A®Eg«,) G) + A®Egq,) I

on cohomology. It follows that the fiber sequence (3.2.2) is split and that it recovers
the splitting of (3.1.6). O

Corollary 3.2.5. The isomorphism (3.1.6) is an isomorphism of k(2).-modules.
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3.3. The good and evil complexes. We now upgrade the decomposition of
Corollary 3.1.5 to a short exact sequence of chain complexes. The first observation
is the following.

Proposition 3.3.1. The subspace V**(Z) forms a subcomplex of t’““fET’*(Z).

Proof. This follows from the fact that V**(Z) consists of vs-torsion, and the dif-
ferentials commute with ve-multiplication. Differentials supported by wvs-torsion
classes cannot hit vo-torsion-free classes. O

We will call (V**(Z),dy) the evil complex. Since (V**(Z),d;) forms a sub-complex
of "™ E**(Z), we can define C**(Z) to be the quotient complex

0— V**(Z) = "™E(Z) = C**(Z) — 0.
We will call (C**(Z),d;) the good complez.

Abbreviate H**(V) = H(V**(Z),d1) and H**(C) = H(C**(Z),dy). There is a
long exact sequence

(3.3.2) o HYN(V) = MRS (2) o ) S B (V) =

We will see that H**(C) can be computed completely, while H** (V) is mysterious.
We call the elements of H**(V') evil and those of H**(C) good.

In [BBBT17], we establish a method for computing H**(V') in a range. The idea
is to use the tmf-Mahowald spectral sequence (MSS),

(3.3.3) il st — Ext (H* (tmf" A Z),Fy) = Ext® ™ (H*(Z), Fa).

alg

with
. tmf pn,s,t tmf pn+r,s—r+1,t
d, : Eprst  tml .

The construction of this spectral sequence is identical to that of [BBBT17]. The
FE1-term fits into an exact sequence of chain complexes

0= V™ (2) = S EY™ = Coin™(Z) = 0

(see (3.1.4)) from which we obtain a long exact sequence
(3.3.4)
Oal

BRI H*,*,*(Valg) N t;rll;E;,*,*(Z) N H*’*’*(Calg) _9> H*Jrl,*,*(valg) s,
We will compute the homology H***(Cqiq) explicitly, and the abutment of this
spectral sequence can be computed through a range, for example using Bruner’s
program. From this, we can inductively deduce information about H*™**(Vg,), at
least through a range. Further, H™*!(V,,) is concentrated in degree s = 0 and
the identification of cochain complexes

VN Z) = VN Z)

alg
implies that
H*’*(V) o H*’O,*(Valg)-

This isomorphism allows us to transfer information from the tmf-MSS to the tmf-

ASS.
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In order to understand " E}*(Z) and t;’llng;’*’*(Z), the first step is to compute

H**(C) and H***(Cqi4) (see Theorem 5.4.3 and Remarks 5.4.4 and 5.4.1).

4. COMPUTATION OF THE DIFFERENTIALS IN THE GOOD COMPLEX

Let X(2) be the Hopf algebra over K(2), , given as
2(2) = K<2)* @BP, BP.BP QpP, K(Q)*
k
= FQ[Ug:l][tltha .- }/(ti - ’U% 71tk)'

Note that X(2) is the Morava stabilizer algebra, described in [Rav86, Chapter 6].
Let Ko = E5/m be the extension of K (2) described in Section 2 of [GHMRO5], so
that

(K)o = Fyfut]

with |u| = —2 and
Vg = w3,
We let
Yo 1= (K2)x @k (2), 2(2)

denote the associated Hopf algebra over (Ks).,.

We will begin this section with a discussion of the extended Morava stabilizer
group associated to the unique supersingular elliptic curve defined over Fo, and its
relationship with both TMF and the more traditionally studied Morava stabilizer
group associated to the Honda height 2 formal group. We will then introduce a
certain quotient X9 of ¥y associated to an open subgroup of this extended Morava
stabilizer group. The main result of this section (Theorem 4.4.5) is that there is a
sub-Hopf algebra

(k(2):,5(2)) C ((K2)s,2)
such that the good complex is isomorphic to the associated cobar complex [Rav86,
Definition A1.2.11]:

() = O o) (k(2)1)-

The cohomology of 35 was essentially studied by Ravenel in [Rav86, Chapter 6],
and Ravenel’s approach to this computation will be used in the following section
to give an essential foothold in the computation of the cohomology of the good
complex.

4.1. The elliptic Morava stabilizer group and Morava stabilizer algebra.
We first recall some facts about the automorphism group of the unique supersingular
elliptic curve over Fy, and its associated formal group. We refer to [Beal7] and
[Hen18] for more details in this context.

Over Fy4, the endomorphism ring of the elliptic curve C : y2 +y = 3 is the maximal

order (the Hurwitz integers)

T+itj+h
End(C) = Z{l,i,j, “?*}
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in the quaternion algebra
D =Q(i,j)/(i* = -1, j* = ~1, ij = —ji).
with k :=4j [Deudl, pp. 237-9]. Define
1
w=—g(+it+j+h).
Then we have

w'=1 wtw+1=0,

and

2

wiw? = j, wjw? =k, wkw? =1.

The automorphism group of C' is the subgroup of D* generated by
Q8 = {:l:lv :l:’L, :l:jv :l:k}
and w, so we have
G24 = Aut(C) = Qg X C3.

To make this identification explicit, we may define the generators ¢ and w of

We define
T:=j—keEnd(C)
so we have
T? = -2.
Then D has the alternative presentation as
(4.1.1) Q)T /(Ta = a°T, T? = —2)

where w? = w? is the action of the Galois group
Gal := Gal(Q(w)/Q) = Gal(F,/F2) = (o).

For example, i € D can be expressed as 1_irﬁ(l —T)in (4.1.1).

Since the curve C is defined over Fo, the Galois group Gal also acts on End(C),
and hence on Aut(C) and D. This action is encoded in the following lemma.

Lemma 4.1.2. The Galois action on an element x € D is given by

1
7 = —=TaT.
2
Proof. The Fy4 points of
C:y*+y=2a®

form a group isomorphic to F3 x F3. A basis for this Fsz-vector space is given in
(z,y) coordinates by

P :=(0,0),
Py = (1,w).

The generators 7 and w of the group Ga4 = Aut(C) correspond to the automor-
phisms

ii(z,y) = @+ 1y +z+w),

W (2y) = (W72, y).
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The induced action of these automorphisms on the F4-points of the curve C, with
respect to the basis (P;, P ), induces a representation

p: G24 — GL2 (F3)

s = o)
=y 7

The Galois action on C(F4) extends the representation p to an isomorphism

(413) ﬁ: G48 = G24 x Gal i) GLQ(F?,)

given by
~ 1 0
p(O’) - |:O 1:| .

One can therefore use this isomorphism to deduce that

with

17 = —1,
W’ = w?.
One easily checks from this that
7°=T
and the result follows from the presentation (4.1.1). O

The formal group of C has —2-series

[—2]a(z) = x4,
The endomorphism ring of the formal group C is the maximal order

End(C) = W(F)(T)/(Ta = a°T, T? = —2)

in the 2-adic division algebra

D2 =D® Q27
where W(Fy) = Za[w]/(w? +w + 1) is the Witt ring. The second Morava stabilizer
group

~

So := Aut(C)
is the group of units in the order End(a). Since C is defined over F, its automor-
phism group S, also gets an action of Gal, with Galois action given by

1

9° = —5T4T,
and we let

(Gg = SQ x Gal
denote the resulting extended Morava stabilizer group. The subgroup G,g is a
maximal finite subgroup of Gs.
It is more traditional in chromatic computations to use the Honda height 2 formal

group law H over F4. This is the 2-typical formal group law with 2-series

2] g (x) = 2.
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Its endomorphism ring, given by

W(F4)(S)/(Sa = a° S, S* = 2)
is observed in [Beal7] and [Henl8] to be isomorphic to End(C) by
(4.1.4) T+ asS,

where
1—2w

=

(for a choice of v/—T7 € Z3). The essential property of « is that

€ W(F,)

aa’ = —1.

We will identify Aut(H) and Aut(a) =Sy by defining
S:=a T € S,.

Howewver, the action of Gal on Sy induced from the Honda formal group is different
from the action of Gal induced from C'!
We shall denote this different Galois action (associated to the Honda formal group)
o’. It is given by

o’ 1

g° = 55 gS.
We also denote this different Galois group Gal’, and the corresponding extended
Morava stabilizer group by

=Sy x Gal’.
Lemma 4.1.5. For g € Sy we have
g(7 — _agﬂ,aﬂ'-
Proof. We compute
1
7T =—-=TgT
g 2 g
! SgaS
= ——aSga
B g
15 Sa?
=—a= @
B g
= fozg"'oz”. O

Every element g € Sy can be written as
g=ap+aS+aS*+---
with
a; € {0,1,w,w?}
and ag # 0. Let
Sy = ZaiSiESQ tap=1

i>0
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denote the 2-Sylow subgroup of So. The version of the Morava stabilizer algebra
(F4[ut'],£5) introduced at the beginning of this section can be regarded as an
algebra of functions on Ss:

Sy 2 Map®(Sa, (Ka)x) = Falut [ty b, .. .|/ (th — 02 1)
Here, the functions t; are defined as
th(l+a1S + asS% +...) = agu' 2.
The coproduct ¢ is determined by 9 (t) = )t} ® t} where

tk g/g// Ztk t% // 7 g/7g// c Sg.

The inclusion of Ga4 in Sy gives a splitting of the short exact sequence
1K —Sy — Gy —1
where K is the open normal subgroup of Sy
K={14aS?+a3S>+--- €Sy : az € {0,w}}
discussed at length in Section 2.5 of [Beal5].

The inclusion of groups
K — SQ

corresponds to a quotient of Hopf algebras
Yo — ig

where -

22 = 22/(t1,WU2t2 + t%)
(compare with [Rav86, Proposition 6.3.30], but his choice of K is Galois conjugate
to ours).

4.2. The Morava module of Z. In this subsection we will use the computations
of [BE16b] to derive the following result (where Gug is the group (4.1.3)).

Proposition 4.2.1. There is an isomorphism of Gg-modules
(E2).Z = Colnd&s, yFalu™]
where C x Gal acts on Fy[u™!] via

we(MuF) = Aok, o, (b)) = AUk

The proof of this proposition will require some preliminary recollections from [BE16b].
Let E) denote the Morava E-theory spectrum associated to the Honda height 2
formal group over Fy. The spectrum FE) has an action of the extended Morava
stabilizer group G4 = Sy x Gal’ of the previous subsection.

The third author and Egger computed (EY).Z as
(422) (Eé)*Z gF4[ui]{j07i'23j475_067gﬁag&glOang}a |f2| = |gz| :0,

with an explicit action of Sy [BE16b, Table 1]. Since the generators u*/?z; and
u'/2y; are in the image of the map

BP,.Z — (E}).Z,
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they have trivial action of the Galois group Gal’, and therefore Gal’ acts on (4.2.2)
by acting on Fy. Following the proof of [BE16b, Thm. 4.12], we see that for any
x € (Eb)oZ with

(423) T = Y12 + T + aoTo + auTy + asTg, oy € Fy

we have*
(E5)oZ = F4[Qs{x}.

Proof of Proposition 4.2.1. Let Eo denote the Morava E-theory associated to the
height 2 Honda formal group over the algebraic closure Fs, with action of

G/Q = SQ X Gal(Fg/Fg)

Let o’ denote the Frobenius, regarded as a generator of Gal(Fy/F3), acting on Sy
as in the previous subsection. Then we have

By~ BME,
Since the formal group of the elliptic curve C' is isomorphic to the Honda formal
group over Fy, we deduce that the associated Morava E-theory is the same, but the
action of the Galois group is different. The calculations of the previous subsection
imply that if we define B

o:=ac € G
then the Morava E-theory associated to the formal group of C' over Fy is given by

By = BM),
Since 0 = (¢/)*, we deduce that Fy and E} have the common extension

EY = Eg<a4>.
We therefore have

(E3)oZ = Fi6 @r, (E3)0Z = Fi6Qs]{z}

for any x of the form (4.2.3) (with a; € F16). Let @ € Fy be a generator, so that

~ 4 ~ ~
07 =0 =0

Since w + w* € F4 we can take & so that
w+ (:)4 =w € Fy.
Define
z:= g0+ (1 +&* + %) %6 + (a + b) (@ + &%) T
(where a, b € 5 are those associated to the choice of Z € Z as in [BE16b, Lem. 3.5]).
Then it follows from [BE16b, Table 1] and

a=14+2w mod4
that
(1) 0 = ao’ acts trivially on z,

1
(2) (w) = C3 < Sy acts trivially on z,
(3) x generates (EY)oZ as a free Fi6[Qs]-module.

4In the notation of [BE16b], we have x = k - ¢, + terms involving ¢;, where k € Qg is the unit
quaternion.
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It follows that x generates
(E2)oZ = [(E5)oZ]” "

as an Fy[Qs]-module. This, together with (1) and (2) above, implies the desired
result. d

4.3. The good complex as a subcomplex of the cobar complex of ¥,. The
map tmf — TMF induces a map of spectral sequences

(4.3.1) mipe(Z) — ™MEER(2).
The kernel of ™ E}*(Z2) — ™FEY*(Z) is V**(Z) and the image is

Let E5 be the Morava FE-theory spectrum associated to the formal group C over
F4. Then the Goerss-Hopkins-Miller theorem implies that Ey has an action of Go,
and we have

Lyc(2)TMF o~ Eh%ss
where G4g is the group defined in (4.1.3). We will now explain how the complex
TMFEl(Z) can be regarded as a subcomplex of the cobar complex for the Hopf

algebra 3.

The first step will be to express the E-term in terms of the Morava stabilizer group
(Corollary 4.3.4).

Lemma 4.3.2. There is a Go-equivariant isomorphism
(EQ)*(TMF AN Z) = Mapc(Gg/G4g7 (EQ)*Z)

(where Go acts on Map® by the conjugation action on functions), and this leads to
an isomorphism

7. TMF A TMF A Z 2 Map{,, ,a(G2/Gas, Fa[u™])

where Map, g1 (G2/Gas, Fa[ut']) denotes the Cs x Gal equivariant maps.

Proof. Since Z is a type 2 complex, X AZ is K (2)-local for any E(2)-local spectrum
X. In particular, we have

(4.3.3) TMF A Z ~ ENCus A 7.

Using the fact that for finite groups, homotopy fixed points and homotopy orbits
of K(2)-local spectra are K (2)-locally equivalent [Kuh04] we get

TMF A TMF A Z ~ ERGas p BICas A 7 ~ (By A (ERC4s A Z))hGas,
We use the homotopy fixed point spectral sequence
H*(Guys, (E2) (B9 A Z)) = 7 J,TMF A TMF A Z.
By [BBGS18, Corollary 2.1],
(E2)+(EYSS N Z) = (By)u(By A Z)"9%5 = Map®(Ga/Glas, (B2)+Z)

with action of G4g given by the conjugation action on functions. Since we have an
isomorphism of Gy4g-modules

(E2)oZ = comdg;; caFa[u™'] 2 Map, , ga(Gas, Fa[u™'])
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it follows that
(B2) (B2 A Z)"* = Mapg, ygal(Gas, Map®(Ga/Guas, Fa[u™'])).
In particular, the Es-term of the homotopy fixed point spectral sequence is
H*(Gas, (Ea).(Ea A Z)"9%) = H*(C5 % Gal, Map®(G2/Glas, Fa[u™'])).

Since C'3 has order coprime to 2 and Gal acts freely on F,, the Es-term is concen-
trated in degree s = 0, and given by

Mapc(Gg/G4g, F4[u:tl])03><Gall

The spectral sequence collapses, giving the result. O

Corollary 4.3.4. For s > 1, there is a Ga-equivariant isomorphism
(E).(TMFE"* A Z) =2 Map®((G/Gug) %, (F2). Z)

with the diagonal action on (Go/G4g)™® and action on Map® the conjugation action
on functions. This leads to an isomorphism

TMEEY(Z) = m TMF T A Z 2 Mapg, yical(G2 X - XGus Ga /Gas, Falu™)).

S

The action on
GQ XG48 e XG48 GQ/G48

is via by left multiplication on the first factor of Gs.

Proof. Suppose that the claim holds for s — 1. Then
FEo N ’]._‘1\/11’—‘\/\S NZ ~ FEy A EgG4s A TMF/\(sfl) AZ
~ (FEy A By ATMF/C™D A 7)hGas

where G4g acts on the second copy of Fy. The Fs-page of the homotopy fixed point
spectral sequence is given by

H*(Gas, (F2)s(Ea ATMFAC™D A 2)).
Furthermore,
(E3)y(Ey ATMFMNE™Y A Z) 2 Map®(Ga, (Ey), TMF ™Y A 7)
= Map®(Ga, Map®((G2/Gus)* ", (E2). Z)).
It follows that
H*(Gys, (B3)+(Ey A TMF ™D A 2)) =2 HO(Gus, (E2)y (Ey A TMFAG™Y A 7))
= Map“((G2/Gag)™*, (E2)+ Z).
which proves the first claim.
Next,
TMF D A Z ~ (By A TME A Z)1Gs,
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We use the homotopy fixed point spectral sequence again, together with the fact
that

(EQ)*(TMF/\S A Z) = Mapc((GQ/G48)Xs, (Eg)*Z>
= Map®((G2/Gas) ™, Mape, yyar (Gas, Fa[u™']))
= Mapg, wgal(Gas, Map®((G2/Gus) **, Fafu™'])).

The proof is finished in a way analogous to that of Lemma 4.3.2. The last step
identifies

Mapg, o qar ((G2/Gas)*® Falu™']) & Mapg, ,ca (G2 Xy« X G2 /Gas, Fa[u™'])

via a shearing isomorphism. O

It is not clear how the groups
MangmGal(GXG48 /Gas, Falu il])

in Corollary 4.3.4 form a cochain complex. We now will address this by showing
that they are a subcomplex of the Fy-based Adams spectral sequence for Z.

The map of spectra TMF — E5 induces a map of Adams spectral sequences. The
induced map on FEi-terms

™MER(Z) = BB (2)
is given by the canonical inclusion
Mapg, cal (G2 . /Gag, Fa[u™']) = Mapg,, (G, G, e’ /Glas, COIndg4§<GalF [w*'])
C Map‘( Q,CoIndggiGalel[uil])
where the latter is the cobar complex for Go acting on (Es).Z:
C,(B2).2) = P EY"(2).

In particular, the differential in the cobar complex for Gg restricts to give the
differential on the subcomplex

Map¢, sqal (G X Gas® /G48,IF4[ N c MapC(GS,CoIndggﬁanle;[uil]).

We now have the following lemma.

Lemma 4.3.5. There is an embedding of cochain complexes
MEE(2) € O ((K2).).

Proof. The injection comes from the composite
TMEES*(Z) 2 Mapg, yuga(Gy 7 /Gus, Fa[u™'])
— Map (GXG48 /G48,F4[ il])
= Map‘(Ks,IF4[u D
~ 3 ((K2).).
Here, the second to last isomorphism comes from the fact that the composite
K — GQ — GQ/G48
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is a homeomorphism. O

4.4. The sub-Hopf algebra §(2) C ¥5. We shall now study a sub-Hopf algebra
(K(2)4,%(2)) of the Hopf algebra ((Ks)., X2) such that the image of "™ E(Z) in
the cobar complex for 5 is the cobar complex for ¥(2).

Define Hopf algebras

$(2) C X(2) C X
by letting 5(2) be the image of the map
Mapg, ygat (G2/Gag, Fa[u™]) < Map®(K, Fa[u™']) = 5.
and letting $(2) be the image of the map
MachS(Gg/G48,F4[ui1]) < Map®(K, Fy[u*']) = 5,.

Note that there is a nonstandard induced Cs x Gal action on ¥y so that

$(2) = 557,

$(2) = $(2)C = T

We now compute this action of C3 x Gal on
Sy = Falu™[ta, 25, -1/ (£3 + wvats, T + v%kilt_k).
Here we use fj to denote the image of t;, € ¥ in L. Let o be the generator of Gal,
and we will denote the generator of C3 C Gs by w, our fixed choice of 3rd root of
unity.
Recall [Beal5| that elements z € K can be written as
r=14aS%+a38%+---
with as € {0,w} and a; € {0,1,w,w?} for i > 2. The function
t; € ¥g = Map®(K, Fy[u™))
is given on elements = as above by the formula
ti(z) = a2
Under the isomorphism
Map® (K, F4[u™1]) = Map®(Gy/Gas, Fa[u™!])
the function ¢; is given on a coset gG4g by
ti(9Gag) = ti(x)
where x is the unique element of K so that xG4s = gGas.
Note that C3 acts on Fy[u*!] through ring maps by the formula
w-u=wu
and Gal acts through the Galois action on Fy, so

F4[uj:1]03><1Ga1 _ ]F2 [”Uétl].
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Lemma 4.4.1. The functions t;, € Sy are Cs3 equivariant, so the Cs action on ty,
is trivial.
Proof. We have (for ag € {0,w}):
th(w(l + aS8? + a3S® + -+ )Gag) = T ((w + wasS? + wazS> + - - - )Gug)
=1 ((w + wapS? + wazS® + - - )w?Gug)
=1.((1 4 a9S? + w?azS® + -+ - )Gyg)

k
{akul2 , k even,
w
w

k
wapul™2 k odd

k(14 a2S8? +a3S® + - )Gag). O
Corollary 4.4.2. The sub-Hopf algebra ¥(2) C 3o is given by
§(2) = F4[U§:1][{2, 53, tee }/(% + W’Ugt_z, t_i + ’ngilt_k).

Lemma 4.4.3. We have
g - 15_2 = wfg

and the element ty = w?ty € 1(2) is Galois invariant.

Proof. We compute the conjugation action (for as € {0,w}) using that o= = o,
Lemma 4.1.5, and the fact that o« =1 (mod 2):

[
olta(—a(l 4 a5S8? + - )aGug)]
= ofta((1 +a3S8% + - )Gus)]
- {U[t2((1 +08% 4 --+)Gus)], az =0,
olta((1 + w282+ - )Gy)], as =w.
Now if as = 0, it follows we have
ofta(o(14+08* +---)Gag)] = 0
=wh((14+ 0S8+ ---)Gas).

However, if as = w, the coset representative is not in K, and we have to rectify this
by adjusting it by right multiplication with

—1=14+54+5"+---€Gy
to get it into K. We have
oTa((1+w2S? + - )Gag)] = olfa((1 +w2S? + - )(~1)Gas)
= oft2((1+w?S% +---)(-1))]

[wu™]

|
Q

— W2u-3

wfg((1+w52+"')G4g). |:|
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Define 7(2) to be the image of the composite
metmf A tmf A Z — 7, TMF A TMF A Z — 3(2).

Lemma 4.4.4. The Hopf algebra structure on (F4[vi'],3(2)) restricts to a Hopf
algebra structure on (k(2).,5(2)).

Proof. The only thing which is not obvious is that the coproduct of ¥(2) restricts
to a coproduct on 5(2). Using the fact that tmf A Z ~ k(2), it suffices to consider
the diagram, where ¢ is the unit:

k(2).(S A tmf) K(2),(S A TMF) (2)

(é/\l)*l (ZAl)*J/
k(2). (tmf A tmf) ——— L K(2).(TMF A TMF) s

(*)T T

£(2). (tmf) @p(a). k(2 tmf = K (2).(TMF) @xc(a). K(2).TMF — £(2) 0, 1) 5(2)

Since (x) is an isomorphism after inverting v, it follows that maps (1) and (2) have
isomorphic images. The result follows. U

Theorem 4.4.5. The Hopf algebra 5(2) C X(2) has the form
o(2) =T, [Uétl][{g,?g, . ]/((tg)2 = v%tg, ty = terms with Adams filtration > 0)
where tg = (w?t3)? and for k >3
ty =ty + terms of higher Adams filtration.

There is an isomorphism of cochain complexes
C™(2) = CF5)(k(2)+).

Proof. By Lemma 4.3.5, it suffices to establish that the image of the map

mtmf A Z - ™M (7)< S (K (2)2)

is what we claim it is. We focus on the case of n = 2; it will be apparent that the
general case is essentially the same. Recall that we have

35 Bo(tmf A tmf A Z) =2 *** E9(k(2) A tmf)
= Folv2](¢3, G35 CEs - 1/ (E)
@ simple vo-torsion in Adams filtration 0.

Note that since the elements 3, ¢? all lie in Adams filtration zero, the Adams filtra-
tions and vy-Bockstein filtrations on k(2).tmf agree. This means that an element
in K(2).tmf = K(2),TMF is in the image of the map

mlpl*(Z) 2 k(2)tmf — vy 'k(2).tmf = K(2), TMF = ™F p1*(7)
if and only if it is detected (in the localized Adams spectral sequence) by an element

in the image of the map
455 By (k(2)tmf) — vy ! 5 By (k(2) tmf).
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For the purposes of this paper, define [LN12], [AL17]
BP(2) :=tmf;(3)

where we have
tmf1 (3)]{(2) ~ Egcg' ><1Ga1.

Consider the commutative diagram

(4.4.6) k(2)stmf —— K (2), TMF“—— Map®(Gy/Gys, F4[ut!])

T -

k(2),BP(2) K(2), By Map®(Gy, F4[u*'])

We wish to determine which v, multiple of ¢, is in positive Adams filtration. To
that end, we must compute the image of t; under map (3) in (4.4.6). This is
tantamount to computing, for g € Gg, the value ?2(9G48). Since we have already
established %5 is C3 x Gal-equivariant, we may assume

g=1+a1S+aS*+---.

Write a; = aw + Bw? with a, 3 € F,. Using the fact that the elements j and k in
Ggg are given by

j=1+w?S+ws+- -
k=1+wS+wsS*+ -
(see [Beal5]) we compute:
ta(gGas) = ta((1+ (aw + Bw?)S + a5 + -+ )Gag)
ta((1 + (aw + Bw?)S + agS? + - - k5P Gys)

ta((1+ (ag + (a + B)w? + afw)S? + - -+ )Gug).

Let
TI',N Fy > Fsy

be the trace and norm, respectively, so that Tr(a) = a + a” and N(a) = aa®. From
the definition of ¢5 we find

to((1+ apS? + - )Gag) = Tr(ag)u™>.
It follows from the above calculation that
t2((1+a1S 4+ agS? + -+ )Gus) = (Tr(as) + N(ay))u™>.
Thus the image of ; under map (3) in (4.4.6) is the image of
ty +tavgt + 13

under map (2). Since the elements ¢; € k(2),BP(2) all have Adams filtration 0, it
follows that voty = t3 € K (2). TMF lifts to an element

(4.4.7) 12 = vgty + t3 + vat}
of k(2).tmf.
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For k > 3, we define t;, € 3(2) to be the image of an element of k(2),tmf detected
by ¢?. Since in the Adams spectral sequence for k(2), BP(2) the element (7 detects
tg, we deduce that the image of f; under (1) satisfies

) = ti + terms of positive Adams filtration.

The result for n = 2 follows.

Similar reasoning shows that the image of
MEP(Z) 2 k(2),mf"" — K(2), TMF" = 5(2)®x@.n = TMFgi*(7)

is 5(2)Bre) 7, O

Note that while we do not know the full structure of 7(2) because of the complicated
action of Gal on X(2), we do completely know the structure of 7(2) := 5(2) @ F4 C
3(2).

N = = = - k1 —
(2) = Fafva] [, fo.- 1/ (B)? + 0383, B + 03" ~00).

5. THE COHOMOLOGY OF THE GOOD COMPLEX

In the previous section we established that
CH(2) = C5)(k(2)4).

In this section we will compute the F;-term of a spectral sequence which computes
the cohomology

H*(5(2)) = H(Clpy (k(2).)) = H(C(Z)) = H™(C).

In our low dimensional range, it will turn out that there are no possible differentials
in this spectral sequence.

5.1. Overview of the strategy. Recall from the previous section that we really
only have a complete understanding of the base change

7(2) = 5(2) ® F4

and we only know the generators of o(2) in 7(2) modulo terms of higher Adams
filtration. Our approach to understanding this cohomology will be to understand

aspects of the cohomology of 7(2), and then to infer results about the cohomology
of 5(2).

Our method of computing the cohomology of 7(2), and comparing it with the
cohomology of 5(2), will be to adapt a filtration employed by Ravenel to compute
the cohomology of Morava stabilizer algebras. This filtration will result in a pair of
May-type spectral sequences, which we refer to as May-Ravenel spectral sequences:

M (5(2)) = H* (B} 5 (2)) == H"(5(2))

| |

M (9(2)) = H* (B} 5 (2)) == H"(5(2))
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The E-terms M#E; will be computed by endowing E}%5(2) and E}E7(2) with
Adams filtrations, resulting in a pair of Adams filtration spectral sequences

AE(6(2)) == H"(E;""'5(2))

| |

AP E(a(2)) == H"(E;'"'3(2))

The May-Ravenel E;-term ¥ E, (7(2)) is the cohomology of a certain restricted Lie
algebra [(2). This cohomology may be computed by a Chevallay-Eilenberg complex,
whose differentials were explicitly computed by Ravenel. The key observations
which we employ are:

(1) The Chevallay-Eilenberg complex is isomorphic to ¥ E1(7(2)).

(2) The differentials in the Adams filtration spectral sequence {*F E,.(7(2))}
can be completely computed in terms of the differentials in the Chevallay-
Eilenberg complex.

(3) The image of “F'E1(5(2)) in AF E1(7(2)) can be computed precisely, since
we know the generators of o(2) modulo terms of higher Adams filtration.
This allows us to completely compute the differentials in the Adams filtra-
tion spectral sequence {*FE,.()}.

Even with knowing the differentials, the combinatorics for computing the spec-
tral sequence {4 E,(7)} is complicated. This computation will be facilitated by
refining the Adams filtration with a lexicographical filtration. This results in a
lexicographical filtration spectral sequence

A E(3(2) = "M Eo(3(2) = YT E(3(2)).

We will completely compute this spectral sequence, and thus completely compute
MEpR (5(2)). In the low dimensional range we consider for our application, there
will be no possible differentials in the May-Ravenel spectral sequence

MEB(5(2)) = H*(5(2)).

5.2. The May-Ravenel spectral sequence. Let (Fy,S(2)) be the Hopf algebra
obtained from (K (2).,3(2)) by setting v = 1. In [Rav86, Chapter 3|, Ravenel
computed

H"(5(2)) = Extlg ) (F2,Fs).

The computation for (K(2),,2(2)) and ((K32)«, X2) can be done using similar meth-
ods and all differentials follow from Ravenel’s work by reintroducing the grading.
We begin by summarizing Ravenel’s method, which we then apply to our cases.

In [Rav86, Section 4.3], Ravenel defines a filtration of Hopf algebroids on BP,(BP)/Iy.
Specializing to the case of N = p = 2, this induces a filtration on (k(2).,0(2)),
where

0(2) = Folva][ts, ta, .. ] /(t: — 02" ~1tp).
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There is a unique increasing multiplicative filtration (which we call the May-Ravenel
filtration) on o(2) such that

deg(v2) =0
deg(tzj) =1

deg(tQkH) =3.21 k>0,
deg(3;) = 2

Further, Ravenel [Rav86, 4.3.24] proves that this is a filtration of Hopf algebroids,
so that the associated graded Fy(o(2)) is a Hopf algebra. It is given by the exterior
algebra

Eo(U(Q)) = FQ[’UQ] & E[ti)j 1 0<i,5 € {O, 1}]
where t; ; is the image of ¢2'.

From this filtration, we get a May type spectral sequence, which we call the May-
Ravenel spectral sequence:

M (0(2)) = H*(0(2))-
The first step is to compute M FE;(0(2)).
Let E%(c(2)) be the Fa-linear dual of Ey(c(2)) and x;; be the dual of ¢; ;. Since

the t; ;’s form a basis of the indecomposables of Ey(c(2)), it follows that z; ; forms
a basis for the restricted Lie algebra of primitives

1(2) := PE°(c(2))

and P E, = H*(1(2)). Applying the methods of [May66, Remark 10], we obtain a
Chevallay-Eilenberg cochain complex

Cop(l(2)) = Falvo] © P({hi;}o<io<i<1)
for elements h; ; of internal degree 27F1(28 — 1) and cohomological degree 1 with
H*(Cop(1(2)) = M1 B (0(2)).
(Here, h; ; represents the dual of the element May calls vi(z; ;).)
The differentials are determined by the Lie bracket and restriction of PE?(c(2)).

For o(2), these are obtained by “remembering the grading” in [Rav86, 6.3.3]. We
obtain the following differentials.

Theorem 5.2.1. Let xo = vahao + ho1. The differentials in C&(1(2)) are deter-
mined by d(h1 ) =d(h1,1) =0 and

d(h2,0) = h1oh11 d(h2,1) = vah1ph1 1

d( ) =h ,0X2 d(h3,1) = h1 ,1X2

d(hayp) = ha, ohs 1+ v3h11hao +vaxs  d(ha1) = v5hiohsa + vihi1hs o+ v5x3
d(hio) = v2hi_ 2,1 d(hz,l) = 21 lhz 2,0

where the last two identities hold for i > 5.



28 A. BEAUDRY, M. BEHRENS, P. BHATTACHARYA, D. CULVER, AND Z. XU

Now, we can put the same filtration on ¥, and this induces a filtration on 5 which
restricts to a filtration on 7(2) and (2). The corresponding associated graded Hopf
algebra in the case of 7(2) is given by

EYME(E(2)) = Falva] @ E(ta1, 130,831, 4,0, ta1, "+ )

As before, we have a May-Ravenel spectral sequence
MEE (5(2)) = H*(3(2)),

The following is then a consequence of Theorem 5.2.1, and the fact that x» corre-
sponds to ho 1 in the Chevellay-Eilenberg complex Cf ,(1(2)) (see (4.4.7)).

Theorem 5.2.2. The differentials in the Chevallay-FEilenberg complex Ct(1(2))
are determined by N
d(ha,1) = d(hs,0) = d(hs,1) =0
and
d(ha,0) = vah d(hay) = v§h3
i—1

d(hip) = v2hi 5, d(hin) =v5 hi 5

s )

where the last two identities hold for i > 5.

5.3. The lexicographical filtration spectral sequence. In order to compute
the cohomology of this Chevallay-Eilenberg complex Cg ;(1(2)), we order the mono-
mials via a lexicographical filtration. FExpress a generic additive generator of
C}5(1(2)) in the form
Ugnhl?f?ohifo e '%lzﬂhég’,l%fﬁl Tt
We place an increasing filtration on these monomials via left lexicographical® or-
dering on the sequence
(=m; - ley U5y ks, ka)

where in the above 72 € {0,1} is n mod 2. Note that the value m above is the Adams
filtration, so lexicographical filtration is a refinement of Adams filtration. The
differentials of Theorem 5.2.2 are easily seen to decrease lexicographical ordering,
resulting in an increasing filtration on C%.;(1(2)) and a (transfinite) lexicographical
filtration spectral sequence (LFSS)

Cop((2) =" Ey = MR E1(7(2)).

We decline to explicitly grade this spectral sequence, and will simply remember
that differentials decrease lexicographical filtration, and that they are ordered by
which differential changes lexicographical filtration by the least amount. Note that
differentials increase Adams filtration.

5We remind the reader that left lexicographical filtration imposes an order on a multi-index by
first comparing the left-most (first) index, but in the case of equality compares the second index,
and so on.
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We now run this spectral sequence. We will run the differentials in two rounds.
The first round will consist of those differentials which change Adams filtration by
1. The second round will consist of those differentials which change Adams filration
by a quantity greater than 1.

Differentials which change Adams filtration by 1.
The first round of differentials are
d(vy R T g - R R R ) = o R R RE R TR Rl
What remains has basis
2k la+2p s T
hiohs e hes, h2+h§1h4f1--.,
s h”“h R R
Here, €5 € {0,1}. The next round of differentials are those of the form
ARSI R, ) = R - T Y, -
What remains has basis
Nt R 1Y Y PR
h’§ hisnZks ke hg hl3+2h 'RRRER
2y h2’“4h2’“5h BB

with e3 € {0,1}. Repeating this process infinitely many times, we have the follow-
ing.

Lemma 5.3.1. The page of the lexicographical filtration spectral sequence obtained
by running all differentials which increase Adams filtration by 1 has a basis whose
leading terms (with respect to lexicographical ordering) are given by:

() o REEGREG  R b

m,k; > 0; ¢; € {0,1},

2k4 2kit2q kits T e €i—1 pli+273lit1
(H) h h o h1+20h1+30 h2,1"'hz 11h hl—‘rll T

1> 2; kj,lj >0 € € {0,1}

Proof. The only extra thing to check is that there are no additional differentials.
The subtle point is that differentials cannot be computed just by considering the
leading terms. We therefore must argue that terms (I) and (II) can be completed,
by adding terms of lower lexicographical filtration, to cocycles (with respect to the
differentials which raise Adams filtration by 1). In the case of terms (I), this is
trivially true - the leading terms are cocycles (with respect to differentials which
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change Adams filtration 1). In the case of terms of type (II), one can check that
the sum (with €; € {0,1})
l‘(k‘g, 2]6‘4, N 2ki+2a 2ki+3 + €i+3; ce.o3€2, 0. 61, ll + 2, li+17 . ) =
Bglohi -+ Ly R R B B
—|—€i+3h§f’0h2k4 . h2ki+2+1h2ki+3 2kita+€ita h2k51+5+€i+5 . E;?l . héilhl¢+1+2hli+2

4,0 ° i+2,0 i+3,0"%44,0 i+5,0 i—1,1 i+1,1 Y217
SRGTRYAN [ RRRY ey S it Y etird i SRARRERY S TRERY M e e Y Yo SRR
SRGTEI AN [t RRRY ey St B et Bl A RERY S RERY b Y TRRY ISAE Y Hie SRR
is such a cocycle. O

Differentials which change Adams filtration by more than 1.

We now run the differentials which change Adams filtration by more than 1. The
idea is that these differentials are non-trivial only on terms of type (I), and these
differentials hit terms of type (I). Terms of type (II) are going to be permanent
cycles in the lexicographical filtration spectral sequence.

We note in what follows that by Theorem 5.2.2, the element h4; is a permanent
cycle in the LFSS. This is because the target of d(h4,1) is killed by the shorter
differential

d(Ugh4’0) = ’Ugﬁg’l.
The first round of differentials in the LFSS will be of the form

mi €3 2ks 1,2k4 1, 2ks Tex 163 7 €s €6
d(vy 3,0h3,0 h4,0 hs,o OB ELENT 4,1h5,1h6,1"')
_  m+167&3 7. 2(ka+1) 4 2ky 1 2ks Tex 163 7 €4 1 €6
= Uy h3,0h3,0 highsg - 21310161

with m, k; € Nand ¢;,€; € {0,1}. Of the terms of type (I), what remains are terms
of the forms

m1 €3 1.2kqg 1 2ks5 Teo €3 7€4 1 €6
Uy h3,0h4,0 h5,0 T h2,1h3,1h‘4,1h6,1 T
<16 €3 2(k3+1) 2ky T e €3 7.€4 1 €6
) h3,0h3,0 h4,0 U 2,1h3,1h4,1h’6,1 oo

The next round of differentials will be of the form
m 1 €3 1.2ks 1 2ks Tea 1 €3 T €s €7
d(vy h3,0h4,0 h5,0 e 'h2,1h3,1h4,1h6,1h7,1 )
_m+323 &3 3 2(kat+1) 4 2ks Tea 1€3 7€4 1 €7
= Vg h3,0h4,0 h5,0 e 'h2,1h3,1h4,1h7,1 T

Of the terms of type (I), what remain are terms of the forms

mpés 72ks Tex pe3 Tes per
Vg h3,0h5,0 2,1h3,1h4,1h7,1"' )
<1671 €3 1.2(k3+1); 2ky Tex 163 7 €4 166
vy hg’ohs g hyg -+ ho’ hg’ hihely -,
<321 €3 2(k4+1) 2ks T e €3 T €es €7
03" hg’ohy hg -+ ho’ hs hiy hay -

Continuing in this manner, we arrive at the following.
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Theorem 5.3.2. The May-Ravenel E1-term MR E,(5(2)) has a basis over Fy whose
representatives in the lexicographical filtration spectral sequence are given by:

(I') w3 hohs h hs,
m Z 07 Ejagj € {0’ l}a

" <211 &3 3 2(ki+1) 7 2kiq1 5 2kiq2 Tex pe3 Teq p€its
(I w3 h3,0hi,0 hi+1,0hi+2,0 T h2,1h3,1h4,1hi+3,1 Tt

1> 3; kj > 0; €5,€; € {0,1},

k3 7.2ky 2kit2; kits Tea €1 pl;4+27 bt
(H) h3,0h4,0 e hi+2,0hz'+3,0 e h2,1 e hi—l,lhi,l hi+1,l e

1> 2; k‘j,lj > 0; € € {0,1}

Proof. As with Lemma 5.3.1, the only missing piece of the analysis above is a proof
that the listed terms are indeed permanent cycles in the lexicographical filtration
spectral sequence. This again will be accomplished by explicitly exhibiting cocycles
in C%5(1(2)) with leading terms agreeing with those above. The terms (I') are
simply cocycles. The terms (I”) complete to cocycles given by

€s 1.2(ki+1); 2ki11 T€x 1 €3 7 €4 7 €it3
€3 + 2 3 4 +
h3,0hi,0 hi+1,0 T h2,1h3,1h4,1 i+3,1° "

202 _9it1l ) & 12k 3 2(kig1+1) 5 2kiyo Teo 1€3 T ey €ita
+ €i4305 hlohiohizio "hivao - hoihs’ hifihivo1h; gy -
213 _ 91+l e 12k, 3 2kiq1 ; 2(kigra+1) Teo 1 €3 Teg €i43 1 €it5
+ €445 h‘370hi,0 hi+1,0hi+2,0 T h271h371h471hi+2,1hi+3,1hi+5,1 T

For the terms of type (II), we observe that the Cartan-Eilenberg differential d“*
is given on the terms x(—) appearing in the proof of Lemma 5.3.1 by

dCEl’(kg, 2k4, N 2ki+2, 2ki+3 + €i+37 N TR ei—lali + 27 li+1; .. ) =
65U§4$(l€3+2, 2ky, ... 2ki+27 2ki+3+gi+3; e €0y, €4,00€6, ..., 621,142, li+1, .. )

5
+66U§ x(k‘3, 2(k4+1), .o 2ki+2, 2ki+3+€i+37 ...3€2,...,€4,€5, 0,67, ey €61, li+27li+1a .. )

+l_w§i7130(/€372k4, vy 2(kio 1), ., 2kig0, 2k 3 tEiqs, . s €0y €1, L= 12,0, )
+l_i+1v§i:c(k3,2k4, vy 2(Rkica ), 2K 00, 2k 3 €y s, €2, 61, L2, L — 1)
+ “ee

However, also note that

CE (1 ks 12ks 2kiro+1;2k;13+€437 2kifa+€14 T e €i—1 7l; plitt
d (h3,0h4,0 T hi+2,0 hz‘+3,0 hz‘+4,0 o 'h2,1 e hi—1,1hif1hi+1,1 T

= vow(k3,2ky, ..., 2kiy2,2kii3 + €iqa, .. s €2, . €61, i + 2,10, ).
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We therefore find that the terms of type (II) complete to the following cocycles:

x(k3, 2ka, ... 2kiyo,2kirs + €43, .3 €2, €1, b + 2,111, . )

41 k3+2 2k4 2kiyo+1; 2ki3+€it3 Tea e €6 €i—1 1l
+es05 hENTPRT - “hiiso hitso chgy o1 b
5_1 k3 2(k4+1) 2k;yo+14 2k 3+€;43 T e €5 €i—1 L
+ €6v; hsiohig hitso hitso chgl e h4,1h5,1h7,1 s b gy
4+
2‘ 11 k3 2k:4 2(ki—2+1) 2kit2+1; 2k 4 3+€it3 Tea Tea pes péi-t pli—l
+liv h3ohio - hiZsg hiiso T hids ooty hgt ey e by R

2i_1 ks 2k4 2(ki—141) 2kiyo+1; 2kip3+Ei4s Teo Tes 165 €i—1 7l; plig1—1
+lz+1v2 hs'ohio - hi® 2,0 ) hi+2,0 hi+3,0 "'h2,1"'h4,1h5,1"'hifl,lhil,lhz#l,l

Hipavy AT - W T RO R RGBS B BT
S P N R iy A SRR ARy RPN 10 Y Mirioy LNRRRY A= PR
O

5.4. The Adams filtration spectral sequence. Endow (2) and its subalgebra
o(2) with an increasing Adams filtration, by declaring AF(v3) = 1, and giving all
other generators Adams filtration 0. The differentials in the cobar complex respect
Adams filtration because, by Theorem 4.4.5, they come from maps of spectra (the
connecting maps in the tmf-Adams resolution for 7).

The algebra generators of

E35(2) = Fylvg, t3, 3,14, .. .]/(t2 = 0,14 = 0)

are easily seen to be primitive (see, for example, [Rav92a, Prop. B.5.15]). Fur-
thermore, Theorem 4.4.5 implies that E4¥'G(2) is the primitively generated k(2).-
subalgebra

Folva, 12, 85,4, .. .] /(£ = 0,74 = 0) C EAFF(2).
Remark 5.4.1. Since there is an isomorphism of cochain complexes
Caiy” (2) = Charg(s) (k(2):)

we deduce
H™"*(Carg) = Fava, ho 1, hij) i

j=0,1
We may likewise endow E}F7(2) and EMEG(2) with Adams filtration. Then
E{F E)MEF(2) is given by

Falv2] ® E(t,1,%7) i

j=0,1
with t21, t; ; primitive, and E§'" Ey” " (2) is given by the subalgebra

Fylva] ® E(tan,ti;) iss

j=0,1
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This results in a pair of Adams filtration spectral sequences

APE(6(2)) == H"(E;""'5(2))

with
AE1(5(2) 2 Falva, ho, hag) s

j=0,1

AFB1(7(2)) = Fafvs, ho 15 hi g}

0

We will now compute the Adams filtration spectral sequence A% E,.(5(2)) by relating
it to the LFSS. Namely, the Chevallay-Eilenberg complex C%5(1(2)) is a quotient
of the cobar complex for E}/ %5 (2)

EMRU(Z) — Cép((2).

By endowing CCE(Z( )) with an Adams filtration, we get an associated spectral
sequence “*'E,.(1(2)) and a map of spectral sequences

B (5(2)) = H*(E}'"5(2))

|

AFEL(1(2) == H*(E}MPF(2))

From Theorem 5.2.2 we see that all differentials in C}.;(1(2)) increase Adams fil-
tration, and thus

AE(1(2) = HY (BT Cop(1(2)))
= By " Ctp(1(2))
= F4[U2,E2’17 hi’j} ji23

=0,1

We deduce the following.
Proposition 5.4.2. The map
AP B (3(2)) - ATE(1(2))
is an isomorphism, and thus there is an isomorphism of spectral sequences

(Y E(3(2)} = {(YTE(1(2)})-

Finally, we observe that since lexicographic filtration is a refinement of Adams
filtration, the differentials in the AFSS 4¥ E,.(I(2)) are simply those differentials in
the LFSS which change Adams filtration by r. As we have determined the LFSS,
we have implicitely determined the AFSS for [(2), and therefore the AFSS for 7(2).
We deduce that the AFSS for 7(2) is simply obtained by restricting the differentials
from the AFSS for 3(2). Therefore, from Theorem 5.3.2 we deduce:
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Theorem 5.4.3. The May-Ravenel E1-term MR E1(5(2)) has a basis over Fy whose
representatives in the lexicographical filtration spectral sequence are given by:

/! mp €z 7€ €3 7. €4
(I') v h3,0h2,1h3,1h4,1v

m > 0; €,€& € {0,1},

7 <2t &5 1 2(ki+1) 4 2kiq1 5 2kit2 Teo 1€3 Teq 7 €it3
(I ) Vg h3,0hi,0 hi+1,0 hi+2,0 e h2,1h3,1h4,1 i+3,1° "

1> 3; kj > 0; €,€ € {0,1},

k3 7.2k4 2kit2; kits Teo €i—1 10;+27lit1
(H) h3,0h4,0 e hi+2,0hz'+3,0 e hz,l e hi—l,lh’i:1 hi+1,1 e

1> 2; k‘j,lj > 0; € € {0,1}.

Remark 5.4.4. We do not know if there are differentials in the May-Ravenel
spectral sequence
MEE (5(2)) = H*(5(2)) = H**(C).

Even in relatively low degrees, possibilities are plentiful. For example, there could
be a differential

A} (h2 ) = v ho 113 .
We also do not know if there are possible hidden vs-extensions in the May-Ravenel
spectral sequence. Again, there are endless possibilities - as an example, there could
be a hidden extension

U%Ghéo ; U%4h271h§70h371.
However, in the very low degrees which are relevant to the computations later in
this paper, there are no possibilities of differentials or hidden vs-extensions.

6. THE AGATHOKAKOLOGICAL METHOD

In this section we will adapt the agathokakological method introduced in [BBB*17]
to our present setting, to compute the Eo-term of the tmf-ASS for Z.

6.1. Overview of the method. The short exact sequences
0— V**(Z) = "™EY(Z) = C**(Z) — 0.,

0= Vr*(2) — CNEYTT Coin™(Z) = 0

give rise to long exact sequences

o HY(V) = MET(Z) - HY(C) S B (V) 5

aal

NN H*7*7*(Valg) N t;?;E;7*7*(Z) N H*v*v*(calg) 9 H*+1,*7*(Valg) — ...

We have computed H***(Cq;4) (Remark 5.4.1). By using Bruner’s Ext program
to compute “**E5(Z) through a range, we can then use the Mahowald spectral
sequence

tmeQ(Z) = assEQ(Z)

alg
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to deduce H**(V). We then use our knowledge of H**(C) (Theorem 5.4.3 and
Remark 5.4.4) to deduce "™ Ey(Z).

This analysis is aided by means of the (algebraic) agathokakological spectral sequence
(AKSS).
{akssEn+ae,s,t (Z)} = assE;+s,t(Z)

alg™r+Be
with
n,s,t € N,
a € {0,1},
g e{-1,0,1}

The pages of this spectral sequence are ordered by
n—e<n<n+e<n+l

and the differentials take the form

akss . akss pn+te,s,t akss pn4r,s—r+1,t
drff : algET‘*G - algErfe )

akss . akss pntae,s,t akss pn+r+oe,s—r+1,t
dr . algEr - algEr ’

dakss . akssEn,s,t N akssEn+r+e,sfr+1,t
r4+e .

r+e * alg alg™~r+e
We have
H"’S’t(Calg), a =0,
akssEVTEOSN(Z) = S HMWY(V), a=1,5=0,
0, otherwise
and

{55 = Oalg.
See [BBBT17, Sec. 7] for a detailed account of the construction of this spectral
sequence.

Elements in “43* E7°.(Z) are called good, and elements in *%3 E7' 75" (Z) are called
evil. Non-trivial elements of *** E9(Z) are called good (respectively evil) if they are
detected in the AKSS by good (respectively evil) classes. Because there are no evil

classes in tridegrees with s > 0, there are no non-trivial differentials

dripe(z) =Yy

with x evil and r > 1.

6.2. The dichotomy principle. The key to computing the algebraic AKSS is to
determine which elements of *** F5(Z) are good and which are evil. This is done
by linking we-periodicity with goodness. An element of ***E5(Z) is va-periodic if
its image under the homomorphism

assE2(Z) — ’U;l assEQ(Z)
is non-trivial. Otherwise it is said to be vy-torsion.

The following two propositions give a practical means of determining whether an
element of “**FE4(Z) is ve-periodic.
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Proposition 6.2.1. We have
vy 9 By (Z) 2 FovE, hot, hao, by haos hat, -]

Proof. The computation is almost identical to that of [MRS01, (2.20)]. O

Corollary 6.2.2. For r > 1, there are no d, differentials between good classes in
the algebraic AKSS.

Proof. Proposition 6.2.1 implies that the vy-localized algebraic AKSS collapses at
E14c. The result follows from the fact that the map

akss pn—+aoe,s,t —1 akss pn+ae,s,t
algEl-l—e (Z) — Uy algE1+e (Z)

is an injection for o = 0 (the good part). O

In order to state and prove the dichotomy principle, we will need to establish bounds
on vy-periodicity in Ext, and on the evil complex. Let Ay denote the cofiber of the
vg-self map

¥°Z - Z.

We have
H*(As) = A(2)
as an A(2)-module (see Section 7.1).

Lemma 6.2.3. We have
assE;,t(AQ) -0
for
g (tms)+12
11

Proof. The May spectral sequence for *** E4(As A Co) has Ej-term of the form®
May 1 (AgANCa) 2 Falhy jyy P jos ha sy - ¢ 41 > 4352 > 2593 > 135k > 0,k > 4].

One checks that the smallest slope ;> of these generators is 1—11, given by hoo. It

follows that t
@S ES Ay AN Co) =0
for
t—s
11
It follows from the fact that h{ 5 = 0 in ***E3™(S) that the h; s-Bockstein spectral
sequence

s >

WSEY (Ay AN Co)lhy ] = “EY (A)

has a horizontal vanishing line at F,, and one deduces that the translation of this

{;-vanishing line passing through (¢ —s,s) = (21,3) (the bidegree of hf 5) serves as

a vanishing line for ***E5™*(Ay). O

6 Although we use similar notation for generators in H*-*:* (Caig(Z)), we warn the reader that in
this context we are using Adams-Novikov naming conventions, so that the May spectral sequence
generator h; ; corresponds to the generator h; ;1 € H***(Cq14(Z)) for i > 2 and j € {1, 2}.
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Proposition 6.2.4. The evil complex V™' (Z) satisfies

Hn,t(v*,*) =0
for
(t—mn)+12
n > 11 .

Proof. We explain the relationship between H**(V') and *** E5*(As) by construct-
ing a spectral sequence which relates them. We first note that because H*(Ag)
A(2), we have

tme?’s’t(Ag) =0

alg

for s > 0. Therefore, the only possible non-trivial differentials in the tmf-MSS are

d; differentials, and
tme;z,O,t(A2) o~ assE;’t(Ag).

alg
The short exact sequence of A,-comodules

0— H.Z — H.Ay — H,X"Z — 0
induces a long exact sequence

0 — tme’liL,O,t(Z) tmen ,0, t(A ) N tme;l,O,tf'Y(Z) v2 tme’rL,l,t(Z) .

alg alg alg alg

We therefore deduce that there is a short exact sequence

tmen ,0, t(Z) N tme'IiL,O,t (AQ) N Vn,t—?(z) 0.

alg
This allows us to consider the decreasing filtration of cochain complexes, with
associated filtration quotients:

tme’IiL,O,t (A ) )tme?’O’t(Z) )Vn,t(Z) . 0

alg alg

i |

Vmt=T(Z) crt(2) Vnt(Z)

alg

Taking cohomology, we get a strange little spectral sequence which we will dub the
algebraic AKSS for Ay as it more or less arises as a kind of mod vy version of the
algebraic AKSS for Z. If we index it as follows:”

akssErlLJrEe t(A2) _ Hn,t77(v),

alg
YtgEle(Az) = H™" (Cary),
akSSE?i:’t(AQ) — ];In,t(‘/—)7

alg

then the resulting spectral sequence takes the form

akssE?ige,t(AZ) = assEn’t(Az)

alg

"With this indexing convention the map Z — Ag results in a map of spectral sequences

QIZ‘?;E7L+M L aﬁ?;En+a€ (A3) (which one takes to be the zero map on terms with s > 0).
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with differentials

.akss pn—e,t akss pn+1,t
d1+€' algE1+e (AQ)_> algE1+e (A2)

. akss pn,t akss pn+1l4e,t
d1+€‘ algE1+e(A2)_> algElJre (A2)

.akss pn—e,t akss pn+1+e€,t
d1+2€ . algE1+25 (AQ) — algE1+25 (Az)
and
akss pn+oe,t __ akss pntae,t
By (Ag) = Mg ELS N (As).

alg alg
The result follows for dimensional reasons (by induction on ¢—n) using Lemma 6.2.3
and the fact that
Hn,D,t (Calg) =0

for
S t—n
n
11
(since the generator of H***(Cuy) with lowest slope is hop, with slope - =
L) O
i/

Proposition 6.2.5. The map

assEg,t(Z) N ’U2_1 assE;,t(Z)
is an isomorphism for
(t—s)+12

>
5 11

Proof. The result follows from considering the map of algebraic AKSS’s

Cig BN Z) = vy G BT (Z)

and using Proposition 6.2.1, Corollary 6.2.2, Proposition 6.2.4, and the observation
that the map
Hn,s7t(calg) N v;les,t(Calg)

is an isomorphism for

O

Given a class x € ***Ey(Z) it is therefore straightforward to determine from low
dimensional computations if it is vy-periodic Let k be chosen such that v5z lies in
the range of Proposition 6.2.5. Then z is vy-periodic if an only if v5z # 0.

The following theorem, analogous to the dichotomy principle in [BBB*17], com-
pletely determines whether classes in “** F5 are good or evil. Note that because of
Corollary 6.2.2 (which does not have an analog in the context studied in [BBB*17]),
the proof of the dichotomy principle is much more straightforward in the present
context.

Theorem 6.2.6 (Dichotomy Principle). Suppose that = is a non-trivial class in
“ B3 (2).

(1) If x is va-torsion, it is evil.
(2) Every class in the range of Proposition 6.2.5 is good.
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(8) Suppose x is vy-periodic, and suppose that k is taken large enough so that
vEx lies in the range of Proposition 6.2.5. Suppose that vz is detected in

the AKSS by a class in a’fj;E;f: Then z is good if and only if

s >n.

Proof. We deduce (1) from Corollary 6.2.2. We deduce (2) from Proposition 6.2.4.
For (3), suppose that x is ve-periodic, detected by an evil class

~ akss g +e,s—n' t
T e algE1+e

in the algebraic AKSS. Then we must have
s=mn'.
Since 7 is vo-torsion, we deduce that the v5-multiplication must arise from a hidden
extension in the AKSS, and therefore
s=n'<n.
Suppose however that x is detected by a good class

~ ~ akss pn',s—n't
c E" )
T alg +e

Then we must have
s—n'>0.
We deduce from the proof of Corollary 6.2.2 that n’ = n, and therefore s —n > 0
and
s>Mn.
O

6.3. The topological AKSS. There is a topological analog of the AKSS, which
refines the tmf-ASS just as the (algebraic) AKSS constructed in the beginning of
this section refines the tmf-MSS.

Consider the short exact sequence
(6.3.1) 0— VP (Z2) = "™ EY(z) L cv (Z) = 0.

Just as in the algebraic case, we will regard the evil subcomplex V™*(Z) as being
in filtration n + €. The result is a topological AKSS:

{akssE:}i-g:,t} = Wt—n(Z)

with differentials

s t t
dgli.s: . akssE:}j? N akssEnJr'r,

r—e

akss ., akss pn+ae,t akss pn+r4ae,t
dokss jakss prtact _, akss pn ,

akss ., akss pmn,t akss pn+r4e,t
dr+e . ErJre - ErJre .

The E4-term takes the form
akssEnJrae,t _ Cn’t(Z)v a =0,
i =
Vmi(Z), a=1.

The d;-differential
d({,kss . akssErllJrae,t s ak:ssE71’L+1+ae,t
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is given by

dy = {dglyood’ a=0,

el a=1.

We therefore have

akssEn+ae,t _ H",t(c)’ a =0,
Ite H™(V), a=1.

The only nonzero djy-differentials are of the form

n,t __akss gmn,t dite qkss n+l+et n+1,t
H™MHC) = "By, —— BT = H'H(V),
for which we have
d1+e =0

where 0 is the connecting homomorphism of (3.3.2). It turns out all of these
differentials can be derived from the algebraic AKSS.

Lemma 6.3.2. For n =0, the differentials

. akss rn,t dite qgkss n+1+e,t
dyye: Fosppt Loy akss gt

are trivial. For n > 1, they are determined by the following commutative diagram:

akssEn,t dite akssEnJrlJre,t
1+e

1+e€

akss n,0,t akss rn+1+¢€,0,t
algE1+e W’ algE1+e
14e

Proof. Topologically, di4. derives from applying 7. to the composite
(6.3.3) C" = tmf"" A Z = tmf A Z 5 HYL

The first statement follows from the fact that the only elements in H™*(C) for

n = 0 are powers of vp. The second statement follows from the fact that d‘fffe is

the induced map of Adams Eg -terms coming from the composite (6.3.3):

C’ﬂ,o,* _ assEO,* (Cn) N assEO,* (an+1) — Vn—i—l,*' O

alg

The Es-term of the tmf-ASS is deduced from the short exact sequence

0— akssE;H-e,t N tme;l,t N akssEg,t 0.

The differentials in the topological AKSS determine and are determined by the
differentials in the tmf-ASS, with lengths dictated by whether the sources and
targets of the tmf-ASS differentials are good or evil. Unlike the algebraic case, in
the topological case there are no dimensional restrictions: in principle good or evil
classes can each kill either good or evil classes (but not via di-differentials since
V**(Z) is a subcomplex of the Fj-term). Furthermore, there is no dichotomy
principle in the topological AKSS.
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7. STEM BY STEM COMPUTATIONS

In this section, we apply the agathokakological techniques of the previous section
to do low dimensional computations of 7,Z. Furthermore, we settle the ambiguity
left in [BE16b] regarding the differentials in the K (2)-local Adams Novikov spectral
sequence (Theorem 7.5.1).

7.1. The algebraic AKSS. In this section, we use the algebraic AKSS

(ERENS2)) = By (2)

to identify H*(V(Z)) in the range relevant for computing 7,7 in degrees x < 39.

More specifically, we do these computations for a specific choice of Z and ve-self
map. It is shown in [BE16a][§2] that for any Z € Z and vi-self map f: 67 — Z,
there is a cofiber sequence

(7.1.1) sz Loz o) —>¥Z

where C(f) is a spectrum with the property that H*C(f) is isomorphic to A(2)
as an A(2)-module. The different choices of Z € Z and vi-self maps give rise to
different A-module structures on A(2).

For the rest of the section we work with those Z € Z whose A-module structure
is the one given in [BE16a, Appendix 1]. We will denote this A-module B(2).®
From [BE16a, Remark 5.4], we learn that there are four different homotopy types
of finite spectra realizing B(2). Of course all of them support a vi-self map by
[BE16a, Main Theorem 1]. In [BE16a], the authors define B(2) as

B(2) == A(2) ®p(q,) Fa,

where A(2) is the A-module of [Rot77, p.30]. See also Appendix A. It follows
that the cofiber of any vi-self map of our chosen Z is a realization of the mod-
ule A(2). It turns out there is a unique homotopy type of spectra realizing A(2)
(Ext’*T(A(2), A(2)) = 0 for s > 2). Therefore, different choices of a vi-self map
on our chosen Z will not affect the calculations that follow. For this choice, we let

A2 = C(f)

In this section, we also define
Ext%'(Z) := Ext%' (H*(Z),F2), Ext'(As) := Ext' (H*(As), Fa).

Both Ext’y"(Z) and Ext’;"(As2) can be computed using Bruner’s program [Bru93].
The results are depicted in Figure 7.1 and Figure 7.2 in Adams grading (z,y) =
(t—s,s).

8In [BE16a], A(2) is denoted by Az and B(2) by Bo.
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7.2. vo-multiplication in Ext4(Z). To proceed with our computations, we will
need to determine which classes in Ext’;"(Z) are detected by evil classes, and which
are detected by good classes. This will be done using the dichotomy principle
(Theorem 6.2.6), and so we need to identify the vo-periodic classes in Ext’y"(Z2).
To do this, we proceed as follows.

Note that there is a long exact sequence
(7.2.1)

oo —> Ext51(Z) — Ext%'(As) — Ext3'(X72) o Ext5 N (Z) — ...
where the connecting homomorphism § corresponds to multiplication by v,
§ =wvy: Ext% (272) =2 Ext' "7 (Z) — Ext5H(2).

The vo-multiplications in Ext’y"(Z) are indicated by dotted lines of slope (6,1) in
Figures 7.1 and 7.2. The indicated multiplications are completely determined by
the long exact sequence (7.2.1). In Example 7.2.2, we give a sample proof deducing
the existence of a vo-multiplication from the long exact sequence. The proofs for the
other vo-multiplications indicated in Figures 7.1 and 7.2 are also straightforward,
though the arguments involving classes in stems * > 40 become more tedious due to
the growing dimension of Ext’;"(A42) and of Ext’y"(Z). The vo-multiplication data
in Figures 7.1 and 7.2 is complete in stems x < 39. In stems 40 < x < 60, we only
draw those multiplications which are necessary to apply part (3) of Theorem 6.2.6
to do computations up to * = 39.

Example 7.2.2. If z is the non-zero class in (t — s, s) = (15,1) of Ext’y*(Z), then
voxr # 0. Indeed, in degree (t — s,s) = (21,2) (the target of vo-multiplication
on ), Exty*(Asz) is one dimensional over Fo. However, there are two possible
contributions to Ext’;"(A2) in this degree from the long exact sequence (7.2.1).
(See Figure 7.3 and its caption.) There is a class X7y of Ext’;"(£7Z2), labeled el
of Figure 7.3, where y is the class labeled le in degree (14,2) of Figure 7.3. There
is also a class z of Ext’y"(Z), labeled 6 in Figure 7.3. Since voy = 0 for degree
reasons, X7y is in the kernel of the connecting homomorphism . Therefore, the
non-zero element of Ext’™(Az) corresponds to the class Y7y. For degree reasons,
§(z) = 0, and so there must be a class w of degree (22,1) in Ext’y*(X7Z) such that
d(w) = z. The only possibility is the class labeled by e4 of Figure 7.3. The class x
corresponds to 4e in Figure 7.3, and so w = X7x. It follows that vpx = 2.

7.3. The differentials in the algebraic AKSS. We turn to the computation of
the algebraic AKSS. From Remark 5.4.1, we have that

(7.3.1) H*"*(Cog) = Fz[vzyﬁz,h h3,0,h3,1, hao, ha 1, ...

We use the dichotomy principle to determine which classes of Ext4(Z) are good
and which are evil. With (7.3.1) and the results of the previous section on vs-
multiplications, this is straightforward and result of this analysis is depicted in
Figure 7.4.

Having determined which classes in Ext’;"(Z) are detected by good and evil, we
can now deduce H**(V) from the algebraic AKSS. We name the evil classes in the
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FIGURE 7.1. Ext%'(Z) (left) and Ext%'(As) (right) drawn in
Adams coordinates (z,y) = (t — s, s) in degrees x < 32. The dot-
ted lines of slope (6,1) denote vo-multiplication. The solid lines
of slope (1,1) denote h; (i.e. ) multiplications and those of slope
(3,1) denote ho (i.e. v) multiplications. The gray line of slope
1/11 is the line of Proposition 6.2.5.
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black
blue
red

W= O

green

TABLE 1. The tmf-filtration.

algebraic AKSS (Figure 7.4) by

(z,y:n),
where (z,y) = (t — (s + n),s + n) is the Adams coordinate and n is the tmf-
filtration. These classes are denoted by open circles in Figure 7.4. The good classes

are denoted by solid circles. For example, the class in degree (x,y) = (7,1) in
Ext4(Z) is detected by evil and denoted by (7,1 : 1)¢¥ in the algebraic AKSS.

In stems 0 < z < 39, the following evil classes exist for degree reasons. More
precisely, these evil classes detect a class in Ext4(Z) in a degree which contains no
non-zero element of H*(Cqiq):

(7,1:1)%
(15,1: 1)
(31,1:1)%

ev

ev

ev
ev

ev

€V

)
ev

( 2)

( 2)°
( 2)
(21,2:2)°
(30,2 :2)%
( 2)

( 2)

( 2)°
( 2)°

ev

The following evil classes exist because of the following differentials

dl-&-e(hg,l) =

die(hio) =
d1+€(h371 = (26, 2: 2)“U
d1+€(h470 (28 2: 2)61)

d2+e(02h3,1
dote(vahayp
diye(ha1hsn
d3te(Vihag) = (40,4 4)°",

Examples of how we deduce these differentials is given in Example 7.3.2.

—_— — ~— Y — —

Example 7.3.2. In degree (t —s,s) = (26,2), Ext4(Z) is trivial. Therefore, h3 ,
cannot survive the spectral sequence so must support a differential. Since the class
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in (25, 3) of Ext 4(Z) is detected by a good class, the only good class in that bidegree
(v3hs,0) cannot be hit by a differential. So the target of the differential on h3 ; must
be evil, and we obtain the differential

d1+e(h§,0) =
The only non-trivial class in degree (38, 2) of Ext 4(Z) is detected by evil. Therefore

Eg,lhg,l must support a non-trivial differential. A similar analysis as before gives
the differential

dite(harhsy) =

Furthermore,
(733) d1+€(h3)0h371) = 1 and d1+€(E271h470) = Qg
where at least one of the coefficients «a; is non-zero. Similarly, at least one of the
following do-differentials must occur
d3ye(vihz ) = (38,4 :4)°" or dite(h3 o) = (38,4 1)

These ambiguities will be mostly settled in the next section.

7.4. The topological AKSS and the computation of the tmf-based ASS
for Z. Now, we turn to our analysis of the spectral sequence

mfprt — o (tmf A Z) = 1 (2)

and low-dimensional computations of m.Z. Our analysis of the algebraic AKSS has
allowed us to identify H**(V'), together with the boundary homomorphism

%k Oalg *, %
H***(Caty) —5 H**(V)
in the form of dy. differentials in the algebraic AKSS. Theorem 5.4.3 gives the
F1-term of the May-Ravenel SS

(7.4.1) MEE (5(2)) = H**(C).

It does not exclude the possibility of differentials, but there are no possibilities of
differentials in the range of interest.

We recall from Sections 3 and 6 that, in the tmf-based ASS, the following d;
differentials have already been determined by our previous computation.

e An evil class cannot kill a good class via a d;-differential since V**(Z) is
a subcomplex of "™ E¥*(Z).

e The d;-differentials between evil classes are completely determined by those
in the algebraic AKSS since V**(Z) = V:l’;)’*(Z).

e The d;-differentials from good classes to evil classes are determined by the

differentials in the algebraic AKSS. This is Lemma 6.3.2.

In Figure 7.6, we draw % E(5(2)) in the range 0 < t —n < 40, together with the
information about H**(V') and differentials obtained from the algebraic AKSS.

We use the map of spectral sequences from tmf-based ASS to the classical ASS to
ascertain that, in the range ¢t — s < 39, there are no additional differentials.
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Proposition 7.4.2. There are no non-trivial differentials in the classical ASS for
Z with source in stem t — s < 39.

Proof. In the computations of m,Z for 0 < x < 39, the possible differentials have
source in stems
t —s = 30,31, 36,37, 38, 40.

In stems ¢t — s < 40, the potential sources for differentials are the image of evil
classes which are permanent cycles in the tmf-based ASS. Indeed, for degree reasons,
these classes are permanent cycles provided that they are d;-cycles. Since all d;-
differentials on evil classes have been recorded in Figure 7.6 and all of the potential
sources are dj-cycles, the claim follows. ]

Remark 7.4.3. There is a potential do-differential in stem ¢ —s = 40 in the classical
ASS for Z. In fact, this problem is tied to the ambiguity in (7.3.3), as we will see
in the proof of the next proposition, where we will establish that such a non-trivial
do differential must occur in the ASS for Z.

Proposition 7.4.4. The only non-trivial differential d,. for r > 1 in the tmf-based
ASS with source in the range t —n < 40 is

d2(02h3,1) =

Proof. Combining degree arguments with vo-linearity, the only two possibilities are

d2(®2h3,1) = )

d3(vahgy) = (38,4 : 4)°".
By Proposition 7.4.2, the classical ASS for Z collapses in this range. Therefore,
m32Z and m33Z have order 2. For this to be the case, we must have da(vohs 1) =

in the tmf-based ASS.
Since 71271114,0 is not an element in H**(C), if
di+e(h3ohs 1) =0,

then it follows from the tmf-based ASS that we must have

dg(vghg,l) =
and m39Z has order 4. If, however, the correct differential is

dite(hzohs ) = ;
then it follows from the tmf-based ASS that w392 has order 2.
From the structure of the tmf-ASS we deduce that the map
vy : m33(Z) 25 m39(2Z)

is zero. It is immediate from Figure 7.2 that the ASS for A, collapses in degree 39
to give
7T39(A2) = Z/2

It follows from the long exact sequence associated to the cofiber sequence

Y67 2y 7 5 Ay
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that we must have
7T39(Z) = Z/2
We therefore conclude that

diye(hsohs,) =
and
ds3(v3hs 1) = 0.
[l

It follows from Proposition 7.4.2 and Proposition 7.4.4 that Figure 7.6 is complete.

7.5. The K (2)-localization of Z. We end this section with one of the main goals
of this paper, which is to determine the homotopy groups of 7. Zg s).

Theorem 7.5.1. The K(2)-local Adams Novikov spectral sequence for Z collapses
at the Ey-term.

Proof. This spectral sequence is isomorphic (Fy onwards) to the vo-localized tmf-

ASS
vy MEYNZ) = monZk (o)

The Es-term is given by inverting vy in Theorem 5.3.2, and so is isomorphic to
Fao3'] ® E(hs,o,%zu h3,1,ﬁ4,1)

(see Figure 7.7). All differentials are vp-linear since Zg (o) has a v3-self map. Fur-
thermore, there is a horizontal vanishing line at Fs. Indeed, E;L t=0forn > b.
The class labeled by 1 is the image of (S — ToZ K (2) SO is a permanent cycle.
For degree reasons, the only possible non-trivial differentials are ds’s with sources
vlghgl. However, since dg(vghg,’l) in the tmf-based ASS is zero, U%h&l maps to a
ds-cycle in vyt M ETT O

Next, we solve all but one exotic extension:

Theorem 7.5.2. For k # 3 mod 6, the groups mZr o) are annihilated by multi-
plication by 2.

Proof. The class detected by 71271 in 711 Z and hs o in w132 have order 2 since there
is no room in the tmf-based ASS for exotic extensions in these degrees. Therefore,
their images in m.Zp ) have order 2, and so do all their multiples. The class

detected by v510h4,1 is in the image of the bottom cell, S?((z) — Zk(2)- Indeed,
it is the image of the element (5 € 7r_1LK(2)SO discussed in [DHO04, Proposition
2.2.1].7 So, any multiple of 112_10%471 has order 2. [

90ur notation differs from [Rav77, (3.4) Theorem]. In this reference, our class vy 10%471 is

closely related to p2 and Ravenel’s (2 is closely related to 0272%2,1‘
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FIGURE 7.6. The topological AKSS computing 7, (Z) drawn in
grading (z,y) = (t — n,n), starting at the E;.-page. Gray lines
are differentials. They are dashed, if our method is inconclusive.
Dotted lines are known ve-multiplications. Dashed line are known
v-multiplications. The gray line of slope 1/11 is the line of Propo-
sition 6.2.5.
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FIGURE 7.7. The E-page of the K(2)-local Fy-based Adams
Novikov spectral sequence for Z. The only possible non-trivial
multiplication by 2 extensions are dotted. Classes denoted by o
are multiples of (5 € W,lS%(Q).

Remark 7.5.3. In [BE16b], the authors study the K(2)-local E,-based Adams
Novikov spectral sequence for Z, where K (2) is the Morava K-theory whose formal
group law is the Honda formal group law. Since the homotopy type of Zg (o)
is independent of the choice of K(2), Theorem 7.5.1 and Theorem 7.5.2 settle
Conjecture 1 of [BE16b] for our particular choice of Z € zZ , except for the group
structure of 7316, 2K (2)-

8. DISCUSSION OF THE TELESCOPE CONJECTURE FOR Z.

While the telescope conjecture was initially proposed by Ravenel [Rav84], Ravenel
was also the first to propose that it should be false for chromatic levels > 2 [Rav92b].
The method of disproof proposed in [Rav92b] (the parameterized Adams spectral se-
quence) turned out to not be sufficient to provide a counterexample to the telescope
conjecture, but it laid out the blueprint for what could go wrong.

A more detailed account of this story is laid out by Mahowald-Ravenel-Shick
[MRS01], who studied a family of Thom spectra y(n) (defined for all primes p
and all n > 1) and some conjectures about their localized Adams spectral se-
quences, which, if true, would provide counterexamples to the telescope conjecture
for all primes p and all n > 2. These conjectures lay the groundwork for a con-
crete counter-conjecture for the homotopy of the telescopes proposed by Ravenel
in [Rav95], which we shall call the parabola conjecture.

In this section we outline the analog of this conjectural story for Z, and explain
how the structure of the tmf-ASS for Z described in this paper is consistent with
the parabola conjecture. Specifically, let Z denote the telescope of the vo-self map
on Z. The telescope conjecture predicts that the map

(8.0.1) Z = Zg @)

is an equivalence. In Theorem 7.5.1, we have already verified (up to a potential
additive extension) that

T d g (2) = Fo[vi] @ E(hg.1, hs.o, h3,17ﬁ4,1)~
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The parabola conjecture predicts the structure of A , and in particular predicts
that the map (8.0.1) is neither injective nor surjective in homotopy.

8.1. The localized Adams spectral sequence for Z. Consider the localized
Adams spectral sequence
(8.1.1) vy VBN (Z) = T 2.
The Es-term of this spectral sequence was computed in Proposition 6.2.1:
vy LS ESY(Z) 2 Fo[vd, hot, hao, hs1, haos hat, .. ).
The analog of Mahowald-Ravenel-Shick’s differentials conjecture [MRS01, Conj. 3.16]

is the following.

Conjecture 8.1.2. (Differentials Conjecture) In the localized Adams spectral se-
quence (8.1.1) we have

da(ha0) = v2h3,,

da(hi) = v2h7 sy,

d4(hi,1) = UZh?—Lo-
The idea is that the dy differentials in the above conjecture are lifted from the
analogous differentials in the May-Ravenel spectral sequence (Theorem 5.2.2), and

that the d4 differentials arise from these through an extended power argument
[Rav92b].

Assuming these are the only d,. differentials for r < 4, and that they satisfy the
Leibniz rule,'® we would have

vy VS EE(Z) 2 Fo[vl] @ E(hoy, ha o, hay, &g, T4, x5, )

where!!
32
x; = hi .

In the discussion after Conjecture 5.12 of [MRSO01] (see also [Rav92b]), Mahowald-
Ravenel-Shick predict the collapse of the localized ASS for y(n) at a finite stage.
The analog of their conjecture in our context is the following.

Conjecture 8.1.3 (Parabola Conjecture). The localized ASS for Z collapses at
E5, and therefore

7‘—*2 = FQ[US:] ® E(FhVZ,lah3,07h3,13x37x47x57 e )

Moreover, the telescope conjecture is false, and the kernel of (8.0.1) is the ideal

(3,24, ) C T Z
and the ideal _
(ha) C TZi(2)

10Note that Z is not a ring spectrum, as we have already seen in the topological AKSS, where
7L2,1 is a permanent cycle but E%,l supports a non-trivial differential.

Hrp particular, we have hg,o = x3 rather than h;o = 0, but this is somewhat irrelevant given
that Z is not a ring spectrum. Our choice to present 1;2_1 E5 in this manner leads to a more
uniform discussion.
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maps isomorphically onto the cokernel of (8.0.1).

Remark 8.1.4. Note that the element U510E4’1 is the image of the element (5 €
m_1Sk(2) (see the proof of Theorem 7.5.1), so the second part of the parabola
conjecture predicts that (, is not in the image of the telescopic homotopy. However,
the collapsing of the localized Adams spectral sequence does not directly imply that
(5 is not in the image of the telescopic homotopy: (2 could be detected by a vso-
family of lower Adams filtration than the vp-family corresponding to hs; in the
localized ASS.

We will now explain why we call Conjecture 8.1.3 the “parabola conjecture.”

8.2. Unbounded vs-torsion in the tmf-ASS for Z. The key to Mahowald’s
proof of the telescope conjecture at chromatic level 1 was his bounded torsion the-
orem [Mah81], which states that the Es-page of the bo-ASS for the sphere de-
composes into a direct sum of vj-periodic classes, and v?-torsion classes. We will

explain how the analogous phenomenon likely fails in the context of the tmf-ASS
for Z.

We have already seen (Theorem 5.4.3) that the May-Ravenel Ej-page has un-
bounded ws-torsion. But we must run some more differentials in the tmf-ASS
to relate this unbounded ve-torsion to the kernel of the map (8.0.1).

We will assume the following optimistic conjecture in order to simplify our discus-
sion.

Conjecture 8.2.1 (Bounded Torsion Conjecture). The May-Ravenel spectral se-
quence collapses at F; with no hidden vs-extensions.

Then H**(C) has basis:
(I') o5 5o he? hi Ry,
m>0;¢€;,& € {0,1},
A7) o RSeal el R S R R
i>3; k; >0; €5,€ € {0,1},

€3 7.€i43 1 €ita ka k4 Tea €1 30427l
(ID) h3,0h1'+3,0hi+4,0""r3 R R R (Y ) hi+1,1"'7

> 2; k‘j,lj > 0; €5,€ € {0,1}

The long exact sequence (3.3.2) implies that the unbounded vo-torsion in ‘™ E%*(Z)
arises from the terms (I') and (I”) above. Since the terms (II) above, as well as
H**(V) are vi-torsion, the elements of "™ E%*(Z) not mapping to terms of the
form (I') or (I”) are at most v3-torsion.

The d4-differentials of the Differentials Conjecture 8.1.2 suggest the following anal-
ogous conjecture for the tmf-ASS.
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FIGURE 8.1. The wvo-periodic family supported by z3

Conjecture 8.2.2 (Differentials Conjecture, v2, part 1). In the tmf-ASS for Z
there are differentials

myés ki+1 _kit1 €yo €43 ki—1 kg Tex 163 T ey €141 7 €142
ds(v3 hfor; iy vl w s byl hiy 4,1hl,1hz+1,1hz+2,1 o)
_ om+lyés ki+1_kit1 €itro2 €ii3 k142 K Tex 163 €4 1 €41 7 €142
= Uy hS,Oxi T XSy e hol hi Ry l+1,1hl+2,1 T
4.

fori>3,1>i+3,m<2% —1 k; >0, and ¢;,¢ € {0,1}.

After running these ds-differentials the only remaining classes in the tmf-ASS for
Z are either v3-torsion, or of the form

/ mip € 7 €2 1 €3 1€
(') vy h3,0h2,1h3,1h4,1v

m>0; ¢€;,& € {0,1},

1" <2171 1e0 €3 Teq ki+1 Kkit1 €42 €its
I w3 2,1703,0M311M4 1% Ty Tjqpo Lyqg "0

1> 3; kj > 0; €5,€ € {0,1}.

8.3. Parabolas. In the tmf-ASS for Z, we have differentials (Theorem 5.2.2)
di (hi+2,1) = ’USHA%
whereas in the Adams spectral sequence there are conjecturally differentials (Con-
jecture 8.1.2)
dy(Pisa1) = vawiy,.
This suggests the following.

Conjecture 8.3.1 (Extension Conjecture). In the tmf-ASS there are hidden ex-
tensions
2t 2
(% €Tr; = ’UQZ‘H_l.

This conjecture predicts that the va-torsion families of type (I"”) of Conjecture 8.2.2
in the tmf-ASS for Z actually assemble via an infinite sequence of hidden extensions
to form ve-periodic families in 7, (Z). Figure 8.1 shows one such va-periodic family.

If we assign a mass to x; via
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and, more generally for monomials
M(virahsaght ) i= ks M (x3) + kaM (24) + - - -
then one finds that all of the terms of the form

mki+1_Kit1 €t €43
Vg Ty Tiyq TiggXiys trr

(fori>3,0<m <2 k; >0, and ¢ € {0,1}) lie in the same vo-periodic family
if and only if they have the same mass.

Each of these vo-periodic families begins with a term of the form
x13€3 xi4 Z‘E‘B DY
(with k3 > 0 and €; € {0,1}) with corresponding mass
kg €4 €5
M= 122050
S ta st

Thus for each monomial
hs' hs’ohs® hi'y € E(ha 1, ha o, ha 1, ha)

and each mass M € Z[1/2]>° there is a corresponding non-trivial monomial

xé%fﬁx?’ - € Folos] @ E(x4, 5,26, + )

such that
hgflhgfohgflhf;flx’;%i“x? T
supports a vo-family with mass M. For each of these vo-families, the elements
nglhg?ohgflﬁrlvﬂfiiz]w
represent a cofinal collection of elements which lie in the family. The elements

vgx?FzM lie on the (sideways) parabola

4
(8.3.2) t—n= M”2 —3n+6

in the (¢ — n,n)-plane. As such, we will refer to these vo-families as ve-parabolas.

8.4. The vanishing line. Theorem 5.4.3 and Proposition 6.2.4 imply the follow-
ing.

Theorem 8.4.1. In the tmf-ASS for Z, we have ™ EY'(Z) =0 for

>t—n+12
n>———.
11

Unfortunately, Conjecture 8.2.1 only predicts the bounded wo-torsion in this Fs-
term is v3-torsion. This means that the v3-torsion could in principle assemble (via
infinite sequences of hidden extensions) to detect non-trivial vo-periodic families in
m«Z which lie along curves with derivatives > 1/12 in the (¢ — n,n)-plane. Thus
Theorem 8.4.1 is not strong enough to preclude the bounded v3-torsion contributing
to the homotopy of Z.
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This 1/11 vanishing line essentially arises from the element 712,1 € H**(C).'? How-
ever, the results of [AD73] imply that “**E3™(Az) has a vanishing line of slope
1/13. Moreover, the element h%y2 in the May spectral sequence (corresponding to
E%J € H**(C(Z))) detects the element go € “**F4(S). The element go is not nilpo-
tent [Isald], but it detects the element Ro € m44(S) which necessarily is nilpotent
by the Nishida nilpotence theorem. It seems likely this can be used to prove the
following, which would imply that the bounded v3-torsion cannot contribute to the
homotopy of Z.

Conjecture 8.4.2 (Vanishing Line Conjecture). There is an r so that "™ E™*(Z)
has a 1/13 vanishing line.

8.5. The parabola conjecture. Assuming all of the conjectures so far are true,
the homotopy of Z can only be detected by the we-periodic elements or the wvo-
parabolas in tme4(Z ). We therefore are left to consider the possibility of differen-
tials between these families. The only possibilities are:

(1) differentials between ve-periodic elements,

(2) differentials from ve-periodic elements to va-parabolas,

(3) differentials from a ve-parabola of mass M to a wvs-parabola of mass M’
with M" > M.

Differentials of type (1) are ruled out by Theorem 7.5.1. Proposition 7.4.4 estab-
lishes that ho 1, hs o, and v3hs 1 are permanent cycles in the tmf-ASS. While Z is
not a ring spectrum, one might nevertheless suspect that the vo-families

vy" E§11h§20h§31
cannot support differentials of type (2), and presumably this could be easily estab-
lished be extending our low dimensional calculations a little further.

We therefore turn to considering differentials of type (2) involving the element E4’1.
Note that since v510h4’1 detects (2 € m_1Zk (), this is equivalent to the question
of whether the element (2 € m_1 Zk () lifts to T_1Z (compare with Remark 8.1.4).
We first note that Conjecture 8.2.2 does not include the differential

d4(h4’1) = 'U2:L'§

of Conjecture 8.1.2. We therefore offer this second installment to Conjecture 8.1.2
which does include this differential, and its consequences.

Conjecture 8.5.1 (Differentials conjecture, v2, part 2). In the tmf-ASS, for m >
0, the vo-families

vy h§f1h§?0h§?1h4,1
support differentials which hit the vo-parabolas supported by

Ter 1 €2 1€3 2
h2,1h3,0h3,113

121f one replaces Z with the Thom spectrum y(2) of [MRS01], a similar analysis to Theo-
rem 8.4.1 easily yields a vanishing line of slope 1/13.
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FIGURE 8.2. The conjectural differentials on UQ”EM.

and the vy-parabolas supported by
715171h§f0h§?1ﬁ4,1x§3xi“x§5 T
support differentials which hit the vy-parabolas

Ter pex pes ks+2 €4 &
halyhslohghywg® “aytag’ - - -

Figure 8.2 shows an example of such a family of differentials. Note that the lengths
of each of the families of differentials predicted by Conjecture 8.5.1 are unbounded.
However, it could be that far enough out in the family, the differentials are all zero.
This could occur, for instance, if another parabola supporting shorter differentials
kills the vo-family which is the putative target. Such a phenomenon would be a
means for (s to exist in 7.2 without violating Conjecture 8.5.1.

The following version of the parabola conjecture offers a maximally anti-telescope
point of view, and is consistent with Conjecture 8.1.3.

Conjecture 8.5.2 (Parabola Conjecture, v2). The differentials of Conjecture 8.5.1
are non-trivial, and all of the remaining wo-parabolas have elements which are
permanent cycles. Thus the vo-periodic homotopy of Z is generated by the wvo-
families _

v;n 53,0 g?l g?h m 20, € € {0’ 1}’
and the vo-parabolas supported by

hg?oﬁgflhgflx?azi“ Ty 65,6 € {0,1}.

Remark 8.5.3. Some recent work of Carmeli-Schlank-Yanovski seems to actually
imply that (2 € m.Zg(9) lifts to an element of 7.Z. If this turns out to be true,
than it flies in the face of the conventional wisdom on the subject, but it does not
seem to necessarily force the telescope conjecture to be true. Rather, it is totally
possible that a weak form of the parabola conjecture is true, where the map

7T*2 — W*ZK(Q)

is surjective with non-trivial kernel generated by a portion of the vs-parabolas.

APPENDIX A. A(2) AS A MODULE OVER THE STEENROD ALGEBRA

Here, we describe the A-module structure on A(2) resulting from [Rot77, p. 30,
Chapter III] and present it as a definition file for Bruner’s program [Bru93]. The
definition file is a text file, where the first line is an integer n which records the
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dimension of the A-module as an Fo-vector space. We should then interpret that
we are given an ordered basis go,...,9n_1. The second line of the text file is an
ordered list of integers dy, ..., d,—1, where d; is the internal degree of g;. For A(2),
the first two lines of Bruner’s definition file reads as:

64

0123344556667 7778889999101010 10 10 11 11 11
11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15 15 16 16 16 16 17 17
17 18 18 19 19 20 20 21 22 23

Every subsequent line in the text file describes a nontrivial action of some Sq¢* on
some generator g;. For example, if

Sq*(9:) = gju + -+ g,
we would encode this fact by writing the line
iklj ... g
followed by a line break. Actions which are not indicated by such data are assumed
to be trivial.
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2129
3133

4 2 37 40
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8 1 53
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4 2 41 42
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8 1 55

10 2 59 60
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2232 33
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25 9 1 58

25 10 2 59 60
25 11 1 61
25 12 1 62
256 13 1 63
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26 31 39
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26 6 3 49 50 51
26 7 2 52 54
26 8 2 55 56
26 9 1 58

26 10 2 59 60
26 11 1 61
26 12 1 62
26 13 1 63
27 11 31
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27 31 39

27 4 1 43

27 5 1 46

27 6 1 49

27 7 1 52

27 12 1 62
27 13 1 63
28 2 2 36 37
28 3141

28 4 2 45 46
28 5 1 48

28 6 1 52

28 8 1 58

28 12 1 63
29 11 33

29 4 2 45 47

29 5 2 48 50
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43 3 1 52
43 4 1 56
43 5 1 58
44 2 2 50
44 3 1 54
44 4 2 55
44 5 1 58
44 6 2 59
44 7 1 61
44 8 1 62
44 9 1 63
45 1 1 48
45 4 1 57
45 5 1 59
45 6 1 61
45 8 1 63
46 2 1 52
46 4 1 58
47 1 1 50
47 2 1 54
47 4 2 57
47 5 1 59
47 6 1 61
48 4 1 59
48 6 1 62
[AD73]
[AL17]
[BBB+17]
[BBGS18]
[BE16a]
[BE16b]
[Beals]
[BealT]
[Bru93]
[Deu4l]

48 7 1 63 54 2 1 58
54 4 1 61
49 1 1 52 54 6 1 63
49 4 1 60
51 49 5 1 61 55 2 2 59 60
49 6 1 62 55 3 1 61
56 49 7 1 63 55 4 1 62
55 5 1 63
60 50 2 1 56
50 3 1 58 56 1 1 58
50 4 1 59 56 4 1 62
50 6 1 62 56 5 1 63
50 7 1 63
57 1 1 59
51 1 1 54 57 2 1 61
51 2 1 56 57 4 1 63
51 3 1 58
51 4 1 60 58 4 1 63
51 5 1 61
51 6 1 62 59 2 1 62
51 7 1 63 59 3 1 63
52 4 1 61 60 1 1 61
52 6 1 63 60 2 1 62
58 60 3 1 63
53 1 1 55
53 2 2 57 58 61 2 1 63
53 3 1 59
53 6 1 63 62 1 1 63
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