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Abstract
We study the elliptic spectral sequence computing
𝑡𝑚𝑓∗(ℝ𝑃

2) and 𝑡𝑚𝑓∗(ℝ𝑃2 ∧ ℂ𝑃2). Specifically, we com-
pute all differentials and resolve exotic extensions by 2, 𝜂,
and 𝜈. For 𝑡𝑚𝑓∗(ℝ𝑃2 ∧ ℂ𝑃2), we also compute the effect
of the 𝑣1-self maps of ℝ𝑃2 ∧ ℂ𝑃2 on 𝑡𝑚𝑓-homology.

MSC 2020
55N20, 55T25 (primary)

Contents
1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1865
2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1867
3. 𝑡𝑚𝑓∗𝑉(0): THE 𝐸2-PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1880
4. 𝑡𝑚𝑓∗𝑉(0): THE DIFFERENTIALS AND EXTENSIONS. . . . . . . . . . . . . . . . . 1883
5. 𝑡𝑚𝑓∗𝑌: THE 𝐸2-PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1895
6. 𝑡𝑚𝑓∗𝑌: THE DIFFERENTIALS AND EXTENSIONS . . . . . . . . . . . . . . . . . . 1902
ACKNOWLEDGEMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1925
REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1925

© 2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.

1864 wileyonlinelibrary.com/journal/jtop J. Topol. 2022;15:1864–1926.

mailto:ibobkova@tamu.edu
http://wileyonlinelibrary.com/journal/jtop
http://crossmark.crossref.org/dialog/?doi=10.1112%2Ftopo.12263&domain=pdf&date_stamp=2022-09-19


THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1865

1 INTRODUCTION

1.1 Motivation

Topological modular forms (𝑡𝑚𝑓) are ubiquitous in algebraic topology and homotopy theory. The
goal of this paper is to compute the 𝑡𝑚𝑓-homology of two spaces, namely, ℝ𝑃2 and ℝ𝑃2 ∧ ℂ𝑃2,
and to determine the differentials and extensions in their elliptic spectral sequences.
We approach this problem from the point of view of stable homotopy theory. As is common,

we let 𝑉(0) denote the cofiber of multiplication by 2 on the sphere spectrum. Then

𝑉(0) ≃ Σ−1Σ∞ℝ𝑃2

and, via the suspension isomorphism, computing 𝑡𝑚𝑓∗𝑉(0) ≅ 𝜋∗𝑡𝑚𝑓 ∧ 𝑉(0) is equivalent to
computing the 𝑡𝑚𝑓-homology of ℝ𝑃2. Similarly, let 𝑌 be the smash product of 𝑉(0) with 𝐶𝜂,
the cofiber of the stable Hopf map 𝜂. Then

𝑌 ≃ Σ−3ℝ𝑃2 ∧ ℂ𝑃2

and computing 𝑡𝑚𝑓∗𝑌 is equivalent to computing the 𝑡𝑚𝑓-homology ofℝ𝑃2 ∧ ℂ𝑃2. In this paper,
we compute the elliptic spectral sequence for both 𝑡𝑚𝑓 ∧ 𝑉(0) and 𝑡𝑚𝑓 ∧ 𝑌. From this computa-
tion, we deduce 𝑡𝑚𝑓∗𝑉(0) and 𝑡𝑚𝑓∗𝑌 and provide information about theirmodule structure over
𝑡𝑚𝑓∗. In particular, we resolve all exotic 2, 𝜂, 𝜈 extensions as as compute the effect of 𝑣1-self maps
of 𝑌 on 𝑡𝑚𝑓∗𝑌. Note that determining the 𝑡𝑚𝑓∗-module structure is much less straightforward
than a simple degree-wise computation of 𝑡𝑚𝑓∗𝑉(0) or 𝑡𝑚𝑓∗𝑌.
Knowing the homology of basic spaces is part of a full understanding of any generalized homol-

ogy theory. So, we see these computations as having independent and fundamental interest. They
are, at the very least, an addition to the slim bank of examples of computations in 𝑡𝑚𝑓-homology
theory of spaces and finite spectra.
However, ourmotivation for doing this runs deeper and this computation is part of amore ambi-

tious program, coming from chromatic homotopy theory. Specifically, our main goal in doing this
computation is not just to understand the structure of 𝑡𝑚𝑓∗𝑉(0) and 𝑡𝑚𝑓∗𝑌 as 𝑡𝑚𝑓∗-modules,
but more-so to fully compute their elliptic spectral sequences. To explain this, we let𝐾(2) denote the
Morava 𝐾-theory spectrum and 𝐸2 the Lubin–Tate spectrum (also often called Morava 𝐸-theory).
In the sequence of papers [22–26, 28, 29], Goerss, Henn, Karamanov,Mahowald, and Rezk carry

out a program for studying 𝐾(2)–local homotopy theory at 𝑝 = 3 using the theory of finite reso-
lutions. These are sequences of spectra built from the 𝐾(2)-localization of 𝑡𝑚𝑓 (and 𝑡𝑚𝑓 with
level structures) that resolve the 𝐾(2)-local sphere. Finite resolutions give rise to Bousfield–Kan
spectral sequences. Let us call these finite resolution spectral sequences. The input is 𝐾(2)-local
𝑡𝑚𝑓-homology, possibly with level structures, and the output is𝐾(2)-local homotopy groups. The
ultimate goal is to use finite resolutions to compute 𝜋∗𝐿𝐾(2)𝑆0, but an intermediate step is the
computations of the homotopy groups of 𝐿𝐾(2)𝐹 for some key finite spectra 𝐹, such as the prime 3
Moore spectrum 𝑉(0) [29] and the cofiber of its 𝑣1-self map, commonly denoted 𝑉(1) [23]. So, to
use the finite resolution approach to 𝐾(2)-local homotopy, a key input is 𝜋∗𝐿𝐾(2)(𝑡𝑚𝑓 ∧ 𝐹). This
can be computed via the 𝐾(2)-local 𝐸2-based Adams–Novikov spectral sequence (which can also
be cast as a homotopy fixed point spectral sequence). This spectral sequence receives a map from
the elliptic spectral sequence of 𝑡𝑚𝑓 ∧ 𝐹. Understanding the elliptic spectral sequence of 𝑡𝑚𝑓 ∧ 𝐹
thus provides key input for 𝐾(2)-local computations.
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1866 BEAUDRY et al.

Recently, there have been significant advancements towards carrying out an analogous pro-
gram at the prime 𝑝 = 2 (see [3, 4, 8, 14]). But the program is still in progress. For example, the
only complete computation of the𝐾(2)-local homotopy groups of a finite spectrum at 𝑝 = 2 is the
computation of𝜋∗𝐿𝐾(2)𝑍 for 𝑍 ∈ , where is the class of Bhattacharya–Egger spectra admitting
a 𝑣2-self map (see [10, 11] and also [5]). Themotivation for this project is to add to this bank of com-
putations, namely, to study 𝐿𝐾(2)𝑉(0), 𝐿𝐾(2)𝑌, but also 𝐿𝐾(2)𝐴1 where 𝐴1 is the cofiber of a 𝑣1-self
map of 𝑌. For this, we found the need to understand the elliptic spectral sequence of 𝑡𝑚𝑓 ∧ 𝑉(0),
𝑡𝑚𝑓 ∧ 𝑌 and 𝑡𝑚𝑓 ∧ 𝐴1. In [33], the third author computes a𝐾(2)-local 𝐸2-based Adams–Novikov
spectral sequence converging to 𝜋∗𝐿𝐾(2)(𝑡𝑚𝑓 ∧ 𝐴1). From this computation, one can deduce that
of the elliptic spectral sequence of 𝑡𝑚𝑓 ∧ 𝐴1.
Here, we study the elliptic spectral sequences of 𝑡𝑚𝑓 ∧ 𝑉(0) and 𝑡𝑚𝑓 ∧ 𝑌. For 𝐹 either 𝑉(0)

or 𝑌, 𝑡𝑚𝑓∗𝐹 = 0 for ∗< 0 and 𝑡𝑚𝑓∗𝐹 is determined by its values in the range 0 ⩽∗< 192. In this
paper, we obtain the following result, where the definition of what we mean by exotic extensions
is given in Definition 2.20.

Theorem 1.1. The elliptic spectral sequence for 𝑡𝑚𝑓 ∧ 𝑉(0) is depicted in Figures 4–7 and [6].

𝑡𝑚𝑓∗𝑉(0) ≅ 𝑡𝑚𝑓∗+1ℝ𝑃
2,

together with all exotic 2, 𝜂 and 𝜈 extensions in the corresponding elliptic spectral sequence is as
displayed in Figures 8 and 9 in degrees 0 ⩽∗< 192.
Similarly, the elliptic spectral sequence for 𝑡𝑚𝑓 ∧ 𝑌 is depicted in Figures 14–20 and [7].

𝑡𝑚𝑓∗𝑌 ≅ 𝑡𝑚𝑓∗+3ℝ𝑃
2 ∧ ℂ𝑃2,

together with all exotic 2, 𝜂 and 𝜈 extensions and almost all exotic 𝑣1-extensions in the cor-
responding elliptic spectral sequence is as displayed in Figures 22 and 23 in degrees 0 ⩽∗< 192. In
particular,

2(𝑡𝑚𝑓∗(ℝ𝑃
2 ∧ ℂ𝑃2)) = 0.

Remark 1.2.

(1) In addition to charts in this paper, large, full range charts of the elliptic spectral sequences
can be found in [6, 7].

(2) Computing exotic extensions in this sense of Definition 2.20 can (and does in some places
here) leave ambiguity about the module structure. However, this definition of exotic exten-
sions, which we borrowed from [30], is very standard in these kinds of large spectral sequence
computations.

1.2 Methods and comparison with existing work

To say a fewwords about our techniques, themajor input in our computation is the elliptic spectral
sequence of 𝑡𝑚𝑓, which was first computed by Hopkins and Mahowald [21, chapter 15], and later
by Bauer [2]. The computation of the spectral sequence for 𝑡𝑚𝑓∗𝑉(0) is straightforward given
that data, while that of 𝑡𝑚𝑓∗𝑌 is more intricate. The technique we use for the latter relies on
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1867

an observation of the third author from [33]. For both 𝑉(0) and 𝑌, computation of the exotic
extensions requires work and new input. Several techniques are used to achieve this, and themost
interesting among these is probably the Brown-Comenetz ‘self-duality’ of 𝑡𝑚𝑓∗𝑉(0) and 𝑡𝑚𝑓∗𝑌
(see Theorem 2.7).
In [19], Bruner and Rognes do a thorough investigation of the classical Adams sequence of

𝑡𝑚𝑓 and some of its modules. (Note that the study of the classical Adams spectral sequence of
𝑡𝑚𝑓 probably goes back to Hopkins and Mahowald, and later to Henriques in [21, chapter 13].)
Among many other topics, including duality for topological modular forms which is relevant for
our approaches, they study the classical Adams spectral sequence of 𝑡𝑚𝑓 smashed with many
finite spectra, including a study of 𝑡𝑚𝑓 smashed with 𝑉(0). In particular, they also compute
𝑡𝑚𝑓∗𝑉(0), determining all but a few 2, 𝜂, 𝜈-multiplications as well as 𝑣4

1
-multiplications. Here,

we deliberately use the word multiplication in contrast to the word extension discussed above to
emphasize that Bruner–Rognes name all classes, which leads them to a more precise determina-
tion of multiplicative relations. During the writing of this paper, Bruner and Rognes shared their
charts and an advanced copy of some of the chapters of their book with us. However, our results
were obtained independently from theirs and via different methods. So, the two approaches com-
plement one another. We also use a few results on the classical Adams spectral sequence of 𝑡𝑚𝑓∗
which we verified against both [21, chapter 13] and [19, Chapters 5 and 9]. Furthermore, [19, The-
orem 10.6] gives the key result on Brown–Commenetz duality for 𝑡𝑚𝑓 (see Theorem 2.7), which
we use to resolve extensions.
Finally, we reiterate that for our applications, namely, as an input in the finite resolution

approach to 𝐾(2)-local homotopy theory, it is important to understand specifically the elliptic
spectral sequence instead of the classical Adams spectral sequence because of its close relation-
ship to the homotopy fixed point spectral sequence, a key tool in chromatic homotopy theory (see
the discussion above).

1.3 Organization of the paper

In Section 2, we discuss the elliptic spectral sequences and other key tools used later in the paper.
In Section 3, we review the computation of the 𝐸2-term of the elliptic spectral sequence for 𝑡𝑚𝑓 ∧
𝑉(0). In Section 4, we compute the differentials and some exotic extensions. In Section 5, we turn
to the computation of the 𝐸2-term of the elliptic spectral sequence for 𝑡𝑚𝑓 ∧ 𝑌 and in Section 6,
we compute the differentials and exotic extensions.

2 BACKGROUND

Conventions 2.1. In this paper, all spectra are 2-local, in particular we will write 𝑡𝑚𝑓 to mean
𝑡𝑚𝑓(2). All spectral sequence charts are drawn in Adams notation: for a spectral sequence 𝐸

𝑠,𝑡
2
=

Ext𝑠,𝑡(…) the 𝑥-axis represents 𝑡 − 𝑠 and the 𝑦-axis represents 𝑠.

2.1 (co)Truncated spectral sequences

In Section 6, we will use the (co-)truncation of the spectral sequence associated to a tower of
cofibrations. We will now recall the constructions and their basic properties. Let
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1868 BEAUDRY et al.

be a tower of cofibrations of spectra. Let (𝐸∗,∗𝑟 , 𝑑𝑟)𝑟⩾1 be the associated spectral sequence.
Let 𝑋𝑖∕𝑋𝑛 be the cofiber of the evident map 𝑋𝑛 → 𝑋𝑖 . For any 𝑛 ∈ ℕ, there is a tower of

fibrations, which we call the 𝑛-truncated tower:

We denote the terms of the resulting spectral sequence by 𝐸𝑠,𝑡𝑟,<𝑛. This spectral sequence computes
the homotopy groups of

sk𝑛−1𝑋0 ∶= 𝑋0∕𝑋𝑛.

There is a natural map from the original tower to the 𝑛-truncated tower. Let

𝑇𝑠,𝑡𝑟 ∶ 𝐸
𝑠,𝑡
𝑟 → 𝐸𝑠,𝑡𝑟,<𝑛

be the induced map between the respective 𝐸𝑟-terms. Then 𝐸
𝑠,𝑡
2,<𝑛

= 0 for 𝑠 ⩾ 𝑛, while 𝑇𝑠,𝑡
2
is an

isomorphism if 𝑠 < 𝑛 − 1 and an injection if 𝑠 = 𝑛 − 1. More generally, we have:

Lemma 2.2. For every 𝑟 ⩾ 2, the map 𝑇𝑠,𝑡𝑟 has the following properties:

(i) 𝑇𝑠,𝑡𝑟 is injective for 𝑠 ⩽ 𝑛 − 1, and
(ii) 𝑇𝑠,𝑡𝑟 is bijective for 𝑠 ⩽ 𝑛 − 1 − (𝑟 − 1).

Proof. We prove this by induction on the 𝑟. From the above discussion, (i) and (ii) hold for 𝑟 = 2.
Suppose both hold for some 𝑟 ⩾ 2.
We prove that (i) holds at 𝐸𝑟+1. Let [𝑥] ∈ 𝐸

𝑠,𝑡
𝑟+1

be represented by an element 𝑥 ∈ 𝐸𝑠,𝑡𝑟 such
that 𝑠 ⩽ 𝑛 − 1 and 𝑇𝑠,𝑡

𝑟+1
([𝑥]) = 0. So, 𝑇𝑠,𝑡𝑟 (𝑥) is the target of a 𝑑𝑟-differential. That is, there exists

𝑦 ∈ 𝐸𝑠−𝑟,𝑡−𝑟−1𝑟,<𝑛 such that 𝑑𝑟(𝑦) = 𝑇
𝑠,𝑡
𝑟 (𝑥). Since 𝑠 − 𝑟 ⩽ 𝑛 − 𝑟, 𝑇

𝑠−𝑟,∗
𝑟 is bijective by the induction

hypothesis. It follows that there exists 𝑦 ∈ 𝐸𝑠−𝑟,𝑡−𝑟−1𝑟 such that 𝑇𝑠−𝑟,𝑡−𝑟−1𝑟 (𝑦) = 𝑦. So, by naturality
and the hypothesis that 𝑇𝑠,𝑡𝑟 is injective, 𝑑𝑟(𝑦) = 𝑥. This means that [𝑥] = 0, and hence 𝑇

𝑠,𝑡
𝑟+1

is
injective when 𝑠 ⩾ 𝑛 − 1.
Now, we prove that (ii) holds at 𝐸𝑟+1. Let [𝑥] ∈ 𝐸

𝑠,𝑡
𝑟+1,<𝑛

with 𝑠 ⩽ 𝑛 − 𝑟 − 1. We need to show
that [𝑥] is in the image of 𝑇𝑠,𝑡

𝑟+1
. By the induction hypothesis, there is a class 𝑥 ∈ 𝐸𝑠,𝑡𝑟 such that

𝑇𝑠,𝑡𝑟 (𝑥) = 𝑥. It suffices to prove that 𝑥 is a 𝑑𝑟-cycle. By naturality,

𝑇𝑠+𝑟,𝑡+𝑟−1𝑟 (𝑑𝑟(𝑥)) = 𝑑𝑟(𝑇
𝑠,𝑡
𝑟 (𝑥)) = 𝑑𝑟(𝑥) = 0.

Since 𝑑𝑟(𝑥) ∈ 𝐸
𝑠+𝑟,𝑡+𝑟−1
𝑟,<𝑛 and 𝑠 + 𝑟 ⩽ 𝑛 − 1, the induction hypothesis implies that 𝑑𝑟(𝑥) = 0. □
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1869

Next, we look at the co-truncated spectral sequence. Consider the following tower of fibrations,
which we call the 𝑛-co-truncated tower,

where 𝑌0 = ⋯ = 𝑌𝑛 = 𝑋𝑛 and 𝐽0 =⋯ = 𝐽𝑛−1 = 𝑝𝑡. We denote by 𝐸
𝑠,𝑡
𝑟,⩾𝑛 the 𝑟-term of the spectral

sequence associated to this tower. There is an obvious map from the 𝑛-co-truncated tower to the
original one. This map induces a map of spectral sequences:

𝑐𝑇𝑠,𝑡𝑟 ∶ 𝐸
𝑠,𝑡
𝑟,⩾𝑛 → 𝐸𝑠,𝑡𝑟 .

We observe that 𝐸𝑠,𝑡𝑟,⩾𝑛 = 0 for 𝑠 < 𝑛, and that 𝑐𝑇
𝑠,∗
2

is a bijection for 𝑠 ⩾ 𝑛 + 1 and a surjection for
𝑠 = 𝑛. The following lemma is proved as in Lemma 2.2.

Lemma 2.3. For every 𝑟 ⩾ 2, the map 𝑐𝑇𝑠,𝑡𝑟 has the following properties:

(i) 𝑐𝑇𝑠,𝑡𝑟 is surjective for 𝑠 ⩾ 𝑛, and
(ii) 𝑐𝑇𝑠,𝑡𝑟 is bijective for 𝑠 ⩾ 𝑛 + 𝑟 − 1.

2.2 The elliptic spectral sequence

In this section, we will introduce our main spectral sequence. Let

(𝐴, Λ) = (ℤ[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6], ℤ[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6, 𝑠, 𝑟, 𝑡])

with

|𝑎𝑖| = 2𝑖, |𝑟| = 4, |𝑠| = 2, |𝑡| = 6
be the Hopf algebroid of Weierstrass elliptic curves. Then the elliptic spectral sequence has the
form [2]

𝐸𝑠,𝑡−𝑠
2

= Ext𝑠,𝑡
Λ
(𝐴,𝐴)⟹ 𝜋𝑡−𝑠𝑡𝑚𝑓.

Consider the map

Ω𝑆𝑈(4) → Ω𝑆𝑈 ≃ 𝐵𝑈

induced by the usual inclusion 𝑆𝑈(4) → 𝑆𝑈. Let 𝑋(4) be the Thom spectrum of the associated
virtual vector bundle overΩ𝑆𝑈(4). These spectra play a crucial role in the study of nilpotence and
periodicity in chromatic homotopy theory, in particular, in the work of Ravenel [36]. As outlined
in [21, chapter 9], the elliptic spectral sequence is the 𝑋(4)-based Adams spectral sequence for
𝑡𝑚𝑓 (see also [37]).
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1870 BEAUDRY et al.

Let us spell this out. We let 𝑅 = 𝑡𝑚𝑓 and 𝐸 = 𝑡𝑚𝑓 ∧ 𝑋(4). Then

𝐸 ∧𝑅 𝐸 ≃ 𝑡𝑚𝑓 ∧ 𝑋(4) ∧ 𝑋(4).

Let 𝐸 be the fiber of the unit map 𝑅 → 𝐸. For any 𝑡𝑚𝑓-module𝑀, one can construct the Adams
tower

by splicing together the cofiber sequences

𝐸
∧𝑅(𝑛+1)

∧𝑅 𝑀 → 𝐸
∧𝑅𝑛

∧𝑅 𝑀 → 𝐸 ∧𝑅 𝐸
∧𝑅𝑛

∧𝑅 𝑀.

We abbreviate

𝑋𝑘 ∶= 𝐸
∧𝑅𝑘

∧𝑅 𝑀 ≃ 𝑋(4)
∧𝑘
∧ 𝑀,

𝐼𝑘 ∶= 𝐸 ∧𝑅 𝐸
∧𝑅𝑘

∧𝑅 𝑀 ≃ 𝑋(4) ∧ 𝑋(4)
∧𝑘
∧ 𝑀,

where 𝑋(4) is the fiber of the unit map 𝑆0 → 𝑋(4). As a consequence, the associated spectral
sequence is identified with the 𝑋(4)-based Adams spectral sequence for𝑀.
However, we have that the Hopf algebroid

(𝜋∗(𝐸), 𝜋∗(𝐸 ∧𝑅 𝐸)) = (𝜋∗(𝑡𝑚𝑓 ∧ 𝑋(4)), 𝜋∗(𝑡𝑚𝑓 ∧ 𝑋(4) ∧ 𝑋(4)))

is isomorphic to (𝐴, Λ). In particular, it is flat. Therefore, the 𝐸2-term of the associated spectral
sequence is identified with

𝐸𝑠,𝑡(𝑀) ≅ Ext𝑠,𝑡
Λ
(𝐴, 𝜋∗(𝐸 ∧𝑅 𝑀)). (2.4)

See [1]. When𝑀 = 𝑡𝑚𝑓, this is precisely the elliptic spectral sequence, and more generally, this
is the elliptic spectral sequence for the 𝑡𝑚𝑓-module𝑀.
By [15, Theorem 6.5], since 𝑋(4) is connected and 𝜋0(𝑋(4)) ≅ ℤ, if 𝑀 is connective, then

𝐿𝑋(4)𝑀 ≃ 𝑀 and the spectral sequence (2.4) converges strongly in the sense of [13] to 𝜋∗(𝑀). In
this paper, we will be working with modules𝑀 of the form 𝑡𝑚𝑓 ∧ 𝐹 (where 𝐹 = 𝑉(0) or 𝑌) and
with the elliptic spectral sequence which reads as

𝐸𝑠,𝑡−𝑠
2

= Ext𝑠,𝑡
Λ
(𝐴, 𝜋∗(𝑡𝑚𝑓 ∧ 𝑋(4) ∧ 𝐹))⟹ 𝜋𝑡−𝑠(𝑡𝑚𝑓 ∧ 𝐹).

To simplify the notation, we put

∗(𝐹) ∶= 𝜋∗(𝑡𝑚𝑓 ∧ 𝑋(4) ∧ 𝐹)

noting that this is a Λ-comodule.
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1871

The spectra we will be working with in this paper are 2-local. As described in [2, section 7], one
can simplify the computation of the cohomology of the Weierstrass Hopf algebroid

(𝐴(2), Λ(2)) ≅ (𝐴 ⊗ ℤ(2), Λ ⊗ ℤ(2))

as follows. Let𝐴′ denote ℤ(2)[𝑎1, 𝑎3] and 𝑓∶ 𝐴 → 𝐴′ the evident projection. LetΛ′ denote𝐴′ ⊗𝐴

Λ⊗𝐴 𝐴
′, which is isomorphic to 𝐴′[𝑠, 𝑡]∕∼, where the relations ∼ are generated by

𝑠4 − 6𝑠𝑡 + 𝑎1𝑠
3 − 3𝑎1𝑡 − 3𝑎3𝑠 = 0

𝑠6 − 27𝑡2 + 3𝑎1𝑠
5 − 9𝑎1𝑠

2𝑡 + 3𝑎21𝑠
4 − 9𝑎21𝑠𝑡 + 𝑎

3
1𝑠
3 − 27𝑎3𝑡 = 0.

The map between Hopf algebroids

𝑓∶ (𝐴(2), Λ(2)) → (𝐴′, Λ′)

induces an equivalence of the associated categories of comodules [2, sections 2 and 7], where

𝑁 ↦ 𝐴′ ⊗𝐴(2)
𝑁

for an (𝐴(2), Λ(2))-comodule 𝑁. When 𝐹 is the 2-localization of a finite spectrum, the 𝐸2-term of
the elliptic spectral sequence for

𝑡𝑚𝑓 ∧ 𝐹 ≃ 𝑡𝑚𝑓(2) ∧ 𝐹

is isomorphic to

𝐸𝑠,𝑡
2
(𝑡𝑚𝑓 ∧ 𝐹) ≅ Ext𝑠,𝑡

Λ′
(𝐴′, 𝐴′ ⊗𝐴 ∗(𝐹)).

Remark 2.5. The spectrum 𝑡𝑚𝑓 ∧ 𝑋(4) is a complex oriented ring spectrum (for example, 𝐴 =
𝜋∗(𝑡𝑚𝑓 ∧ 𝑋(4)) is concentrated in even degrees). Let us denote by

𝐻∶ 𝑀𝑈 → 𝑡𝑚𝑓 ∧ 𝑋(4)

the map of ring spectra inducing the complex orientation of 𝑡𝑚𝑓 ∧ 𝑋(4) given by the comple-
tion of the universal Weierstrass curve at the origin. Then 𝐻 induces a homomorphism of Hopf
algebroids

𝐻∗∶ (𝑀𝑈∗,𝑀𝑈∗𝑀𝑈) → ((𝑡𝑚𝑓 ∧ 𝑋(4))∗, (𝑡𝑚𝑓 ∧ 𝑋(4) ∧ 𝑋(4))∗) = (𝐴,Λ).

Recall that 𝑀𝑈∗ ≅ ℤ[𝑥1, 𝑥2, …] with |𝑥𝑖| = 2𝑖 and 𝑀𝑈∗𝑀𝑈 ≅ 𝑀𝑈∗[𝑚1,𝑚2, …] with |𝑚𝑖| = 2𝑖.
We note that𝐻∗(𝑥1) = ±𝑎1. This is discussed in [2, (3.2)].
The map 𝐻 also induces a map from the Adams–Novikov spectral sequence for 𝜋∗(𝐹) to the

elliptic spectral sequence for 𝜋∗(𝑡𝑚𝑓 ∧ 𝐹), which converges to the Hurewitz map ℎ∶ 𝜋∗(𝐹) →
𝜋∗(𝑡𝑚𝑓 ∧ 𝐹). Moreover, the induced map at the 𝐸2-term is induced by𝐻∗.
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1872 BEAUDRY et al.

2.3 Duality

In this section, we discuss Brown–Comenetz duality for 𝑡𝑚𝑓. This will be used for determining
some of the exotic extensions in our spectral sequences. First, we introduce the following notation.

Notation 2.6. Let𝐴 be a gradedmodule over a graded commutative ring 𝑆 and 𝑥 ∈ 𝑆. We let Σ𝑟𝐴
be themodule determined by (Σ𝑟𝐴)𝑡 = 𝐴𝑡−𝑟. We denote by Γ𝑥𝐴 the 𝑥-power torsion of𝐴, that is,

Γ𝑥𝐴 = {𝑚 ∈ 𝐴 ∣ 𝑥𝑖𝑚 = 0, 𝑖 ≫ 0},

and by 𝐴∕(𝑥∞) the module that fits into the exact sequence of 𝑆-modules

𝐴 → 𝐴
[
1

𝑥

]
→ 𝐴∕(𝑥∞) → 0.

We will also denote by 𝐴∨ the Pontryagin dual of 𝐴, that is,

(𝐴∨)∗ = Hom((𝐴)−∗, ℚ∕ℤ)

with the 𝑆-module structure given by (𝑟.𝑓)(𝑚) = (−1)|𝑟||𝑓|𝑓(𝑟𝑚) for every 𝑟 ∈ 𝑆|𝑟|, 𝑓 ∈ (𝐴∨)|𝑓|
and𝑚 ∈ 𝐴|𝑚|.
Now suppose that 𝑅 is a commutative ring spectrum (for example, 𝑅 = 𝑡𝑚𝑓) and 𝑀 is a 𝑅-

module. For any 𝑥 ∈ 𝜋∗(𝑅), we define𝑀[
1

𝑥
] to be

𝑀
[
1

𝑥

]
= hocolim(𝑀

𝑥
→̂ Σ−|𝑥|𝑀 𝑥

→̂ Σ−2|𝑥|𝑀 𝑥
→̂ …).

We define𝑀∕(𝑥∞) to be the cofiber of the natural map𝑀 → 𝑀[ 1
𝑥
]. Inductively, if (𝑥1, 𝑥2, … , 𝑥𝑛)

is a sequence of elements of 𝜋∗𝑅, then we define

𝑀∕(𝑥∞1 , 𝑥
∞
2 , … , 𝑥

∞
𝑛 ) = (𝑀∕(𝑥

∞
1 , 𝑥

∞
2 , … , 𝑥

∞
𝑛−1))∕(𝑥

∞
𝑛 ).

With this notation, using the long exact sequence on homotopy groups, we see that the cofiber
sequence

𝑀 → 𝑀
[
1

𝑥

]
→ 𝑀∕(𝑥∞)

gives rise to the short exact sequence of 𝜋∗(𝑅)-modules

0 → 𝜋∗(𝑀)∕(𝑥
∞) → 𝜋∗(𝑀∕(𝑥

∞)) → Γ𝑥(𝜋∗−1(𝑀)) → 0.

Let 𝐼ℚ∕ℤ be the spectrum representing the Pontryagin dual of stable homotopy groups, so that
for a spectrum 𝑋,

𝐼
𝑞

ℚ∕ℤ
(𝑋) ∶= Hom(𝜋𝑞𝑋,ℚ∕ℤ).

Then the Brown–Comenetz dual of a spectrum 𝑋 is defined to be

𝐼ℚ∕ℤ(𝑋) = 𝐹(𝑋, 𝐼ℚ∕ℤ).
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1873

The literature contains a variety of references and methods for studying dualities of 𝑡𝑚𝑓 and
related spectra. To name a few, we note work of Mahowald and Rezk [31], Stojanoska [39, 40],
Greenlees [27], and Bruner and Rognes [19, chapter 10].
Recall that throughout this paper 𝑡𝑚𝑓 denotes the 2-localization 𝑡𝑚𝑓(2), according to

Conventions 2.1.

Theorem 2.7 [19, Theorem 10.6]. There is an equivalence of 𝑡𝑚𝑓-modules

𝐼ℚ∕ℤ(𝑡𝑚𝑓∕(2
∞, 𝑐∞4 , Δ

∞)) ≃ Σ20𝑡𝑚𝑓.

Remark 2.8. Here and below, by ‘−∕Δ∞’, we really mean ‘−∕(Δ8)∞’ as Δ is an element of the 𝐸2-
term of the elliptic spectral sequence but it does not survive to the 𝐸∞-term. However, Δ8 survives
and detects a class in 𝜋192𝑡𝑚𝑓. Note also that the class 𝑐4 ∈ 𝜋8𝑡𝑚𝑓 reduces to 𝑣41 ∈ 𝑡𝑚𝑓 ∧ 𝑉(0)
and so 𝑐4-power torsion is the same as 𝑣1-power torsion when the latter makes sense.

Corollary 2.9. There are equivalences of 𝑡𝑚𝑓-modules

(1) 𝐼ℚ∕ℤ(𝑡𝑚𝑓 ∧ 𝑉(0)∕(2∞, 𝑐∞4 , Δ
∞)) ≃ Σ19𝑡𝑚𝑓 ∧ 𝑉(0), and

(2) 𝐼ℚ∕ℤ(𝑡𝑚𝑓 ∧ 𝑌∕(2∞, 𝑐∞4 , Δ
∞)) ≃ Σ17𝑡𝑚𝑓 ∧ 𝑌.

Lemma 2.10. For  = 𝑡𝑚𝑓 ∧ 𝑉(0) or 𝑡𝑚𝑓 ∧ 𝑌, Δ8 acts injectively on (𝜋∗)∕(𝑐∞4 ).

Remark 2.11. The proof makes use of the structure of the 𝐸∞-terms of the elliptic spectral
sequences (see Figures 8, 9, 22, and 23 and, for a single large chart, [6, 7]). So, this is a bit premature
but we want to have this result here to gather all our techniques in one place. We note that the
logic of the argument is not circular as the determination of the 𝐸∞-terms does not require this
lemma; it is needed in the proof of Corollary 2.12, which will be used to establish exotic extensions
in the elliptic spectral sequences.

Proof of Lemma 2.10. In this proof, write 𝑀 = 𝜋∗ and 𝑀 = 𝜋∗∕Γ𝑐4(𝜋∗). For any 𝜋∗𝑡𝑚𝑓-
module 𝑁, write 𝑇Δ8(𝑁) to denote the submodule consisting of elements that are Δ8-torsion.
Our goal is to show that 𝑇Δ8(𝑀∕𝑐∞4 ) = 0. But the quotient map 𝑀 → 𝑀 induces an

isomorphism𝑀[𝑐−1
4
]
≅
→̂ 𝑀[𝑐−1

4
], and hence an isomorphism

𝑀∕𝑐∞4
≅
→̂ 𝑀∕𝑐∞4 .

So, it is equivalent to prove that 𝑇Δ8(𝑀∕𝑐∞4 ) is zero, and we show that below.
The snake lemma applied to the diagram

gives an exact sequence

𝑇Δ8(𝑀[𝑐
−1
4 ]) → 𝑇Δ8(𝑀∕𝑐

∞
4 ) → 𝑀∕Δ8 → 𝑀[𝑐−14 ]∕Δ

8
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1874 BEAUDRY et al.

Therefore, if

(1) 𝑇Δ8(𝑀[𝑐−14 ]) = 0, and
(2) 𝑀∕Δ8 → 𝑀[𝑐−1

4
]∕Δ8 is injective,

then we can conclude that 𝑇Δ8(𝑀∕𝑐∞4 ) = 0.
We will explain why the conditions (1) and (2) hold for  = 𝑡𝑚𝑓 ∧ 𝑌. The argument for 𝑡𝑚𝑓 ∧

𝑉(0) is more cumbersome, but can be adapted from this one.
All classes of 𝜋∗(𝑡𝑚𝑓 ∧ 𝑌) detected in positive filtration in the elliptic spectral sequence are

𝑐4-power torsion. Indeed, they are 𝑐4-power torsion at 𝐸∞ and the spectral sequence has a hori-
zontal vanishing line. All elements in filtration zero are 𝑐4-free. From this, it follows that the edge
homomorphism 𝑀 → 𝐸0,∗∞ (to the zero line of the spectral sequence) induces an isomorphism
𝑀 ≅ 𝐸0,∗∞ . But 𝐸0,∗∞ is a free module over 𝔽2[𝑐4, Δ8] and so the conditions (1) and (2) follow. □

Corollary 2.12. We have the following isomorphisms of 𝜋∗𝑡𝑚𝑓-modules

(1) Γ𝑐4(𝜋∗(𝑡𝑚𝑓 ∧ 𝑉(0))∕(Δ
∞))∨ ≅ Γ𝑐4(𝜋∗−21(𝑡𝑚𝑓 ∧ 𝑉(0))), and

(2) Γ𝑐4(𝜋∗(𝑡𝑚𝑓 ∧ 𝑌)∕(Δ
∞))∨ ≅ Γ𝑐4(𝜋∗−19(𝑡𝑚𝑓 ∧ 𝑌)).

Proof. In this proof, we let  = 𝑡𝑚𝑓 ∧ 𝑉(0). Since 𝜋∗ is 2-power torsion, we have [1∕2] ≃∗.
Thus,

∕(2∞) ≃ Σ . (2.13)

The long exact sequence in homotopy associated to the cofiber sequence

∕(2∞) → ∕(2∞)

[
1

𝑐4

]
→ ∕(2∞, 𝑐∞4 ),

gives an exact sequence

0 → (𝜋∗∕(2
∞))∕(𝑐∞4 ) → 𝜋∗(∕(2

∞, 𝑐∞4 )) → Γ𝑐4𝜋∗−1(∕(2
∞)) → 0. (2.14)

By (2.13), we have

(𝜋∗(∕(2
∞)))∕(𝑐∞4 ) ≅ (𝜋∗−1)∕(𝑐

∞
4 )

and

Γ𝑐4(𝜋∗−1(∕(2
∞))) ≅ Γ𝑐4(𝜋∗−2).

Since Δ8 acts injectively on 𝜋∗ , it also acts injectively on Γ𝑐4(𝜋∗−2). Moreover, Δ
8 acts injec-

tively on (𝜋∗)∕(𝑐∞4 ) by Lemma 2.10. The short exact sequence (2.14) then shows that Δ
8 acts

injectively on 𝜋∗(∕(2∞, 𝑐∞4 )). Therefore, we have that

𝜋∗(∕(2
∞, 𝑐∞4 , Δ

∞)) ≅ (𝜋∗∕(2
∞, 𝑐∞4 ))∕(Δ

∞).

The 9-lemma then implies that the following is a short exact sequence of 𝜋∗𝑡𝑚𝑓-modules:

0 → (𝜋∗−1)∕(𝑐
∞
4 , Δ

∞) → 𝜋∗(∕(2
∞, 𝑐∞4 , Δ

∞)) → Γ𝑐4(𝜋∗−2)∕(Δ
∞) → 0. (2.15)
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1875

By applying Hom(−,ℚ∕ℤ) to this exact sequence, we obtain

0 → (Γ𝑐4(𝜋∗−2)∕(Δ
∞))∨ → 𝜋∗(∕(2

∞, 𝑐∞4 , Δ
∞))∨ → ((𝜋∗−1)∕(𝑐

∞
4 , Δ

∞))∨ → 0,

is an exact sequence of 𝜋∗𝑡𝑚𝑓-modules.
We see that the right most term is 𝑐4-free and the left most term is 𝑐4-torsion. In particular, it

follows that

(Γ𝑐4(𝜋∗−2)∕(Δ
∞))∨ ≅ Γ𝑐4(𝜋∗(∕(2

∞, 𝑐∞4 , Δ
∞))∨)

≅ Γ𝑐4(𝜋∗𝐼ℚ∕ℤ(∕(2
∞, 𝑐∞4 , Δ

∞))),

where the second isomorphism comes from the definition of the Brown-Comenetz dual
𝐼ℚ∕ℤ(∕(2

∞, 𝑐∞
4
, Δ∞)). Together with Corollary 2.9, we obtain an isomorphism of 𝜋∗𝑡𝑚𝑓-

modules

(Γ𝑐4(𝜋∗)∕(Δ
∞))∨ ≅ Σ2(Γ𝑐4(𝜋∗−2)∕(Δ

∞))∨

≅ Σ2Γ𝑐4𝜋∗(𝐼ℚ∕ℤ(∕(2
∞, 𝑐∞4 , Δ

∞)))

≅ Σ2Σ19Γ𝑐4(𝜋∗)

≅ Σ21Γ𝑐4(𝜋∗).

Substituting  for 𝑡𝑚𝑓 ∧ 𝑌 and this last 19 with 17 gives the result for 𝑌. □

Remark 2.16. We will explain how to use Corollary 2.12 to compute extensions. Continue to let
 = 𝑡𝑚𝑓 ∧ 𝑉(0). Let 𝐾 denote the kernel of the homomorphism induced by multiplication by Δ8
on Γ𝑐4(𝜋∗)∕(Δ

∞). Since multiplication by Δ8 induces an isomorphism

Γ𝑐4(𝜋∗)
≅
→̂ Γ𝑐4(𝜋∗+192) (2.17)

for ∗⩾ 0, we see that, for −192 ⩽ 𝑡 < 0,

𝐾𝑡 ≅ Γ𝑐4(𝜋∗)∕(Δ
∞)𝑡.

The snake lemma applied to the following diagram

gives rise to the exact sequence

0 → Γ𝑐4(𝜋∗)
Δ8

^̂→ Γ𝑐4(𝜋∗+192) → 𝐾 → 0.

Note that the injective map is an isomorphism for ∗⩾ 0 and the surjective map is an isomor-
phism for ∗< 0. Using (2.17) again, the homomorphismΓ𝑐4(𝜋∗+192) → 𝐾 in the above short exact
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1876 BEAUDRY et al.

sequence induces an isomorphism

Γ𝑐4(𝜋∗)𝑡 → 𝐾𝑡−192 ≅ Γ𝑐4𝜋∗(∕(Δ
∞))𝑡−192

for 0 ⩽ 𝑡 < 192.
Now let 𝑟 be an element of 𝜋𝑙(𝑡𝑚𝑓). If 0 ⩽ 𝑘 < 192 − 𝑙, multiplication by 𝑟 induces a

commutative diagram

By applying the Pontryagin dual to this commutative diagram, together with Corollary 2.12, we
obtain the commutative diagram

As a consequence, the cardinality of the image of

𝑟∶ Γ𝑐4(𝜋∗)𝑘 → Γ𝑐4(𝜋∗)𝑘+𝑙

is the same as that of

𝑟∶ Γ𝑐4(𝜋∗)171−𝑘−𝑙 → Γ𝑐4(𝜋∗)171−𝑘.

In particular, this means that a non-trivial multiplication by 𝑟 on stem 𝑘 forces a non-trivial
multiplication by 𝑟 on stem 171 − 𝑘 − 𝑙.
Similarly, for 𝑡𝑚𝑓 ∧ 𝑌 we obtain that a non-trivial multiplication by 𝑟 on stem 𝑘 forces a non-

trivial multiplication by 𝑟 on stem 173 − 𝑘 − 𝑙.

2.4 The geometric boundary theorem

We also make use of the following result, due to Bruner [17]. A standard reference is [35, Theorem
2.3.4].We apply this theorem to the𝑋(4)-basedAdams–Novikov spectral sequence and the cofiber
sequence

𝑡𝑚𝑓 ∧ 𝑆0
2
→̂ 𝑡𝑚𝑓 ∧ 𝑆0

𝑖
→̂ 𝑡𝑚𝑓 ∧ 𝑉(0)

𝑝
→̂ 𝑡𝑚𝑓 ∧ 𝑆1.

Using𝑋(4)∗𝑡𝑚𝑓 ≅ 𝐴 and𝑋(4)∗(𝑡𝑚𝑓 ∧ 𝑉(0)) ≅ 𝐴∕2, we have𝑋(4)∗𝑝 = 0 and hence a short exact
sequence

0 → 𝐴
2
→̂ 𝐴 → 𝐴∕2 → 0. (2.18)
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1877

Theorem 2.19 (Geometric Boundary Theorem). There are maps

𝛿𝑟 ∶ 𝐸
𝑠,𝑡
𝑟 (𝑉(0)) → 𝐸𝑠+1,𝑡𝑟 (𝑆0)

such that

𝛿2 = 𝛿∶ 𝐸
𝑠,𝑡
2
(𝑉(0)) → 𝐸𝑠+1,𝑡

2
(𝑆0)

is the connecting homomorphism arising from (2.18). For all 𝑟,

𝛿𝑟𝑑𝑟 = 𝑑𝑟𝛿𝑟

and 𝛿𝑟+1 is induced by 𝛿𝑟. Furthermore, 𝛿∞ is a filtered form of

𝑝∗ ∶ 𝜋∗𝑡𝑚𝑓 ∧ 𝑉(0) → 𝜋∗+1𝑡𝑚𝑓.

2.5 Further observations on extensions

Here, we collect a few classical but useful extension results. Note that, in this paper, we use [30,
Definition 2.10] as our definition of an exotic extension. See Subsection 2.1 of that reference for a
detailed discussion. However, briefly, we have

Definition 2.20. [30, Definition 2.10] Let 𝛼 ∈ 𝜋∗𝑡𝑚𝑓 be an element detected by 𝑎 on the 𝐸∞-
term of the elliptic spectral sequence for 𝑡𝑚𝑓. An exotic extension by 𝛼 is a pair of elements 𝑏 and
𝑐 on the 𝐸∞-term of the elliptic spectral sequence for𝑀 (where𝑀 is a 𝑡𝑚𝑓-module) such that

(1) 𝑎𝑏 = 0 on the 𝐸∞-term,
(2) there is an element 𝛽 detected by 𝑏 such that 𝛼𝛽 is detected by 𝑐,
(3) if an element 𝛽′ detected by 𝑏′ is such that 𝛼𝛽′ is detected by 𝑐, then the filtration of 𝑏′ is less

than or equal to that of 𝑏.

Note that this implies that if both 𝛼𝛽 and 𝛼𝛽′ are detected by 𝑐 as in Figure 1, there is no exotic
extension from 𝑏′ to 𝑐.

Lemma 2.21. Let 𝑋 be a spectrum. Consider the long exact sequence in homotopy

… → 𝜋𝑛𝑋
𝑖
→̂ 𝜋𝑛(𝑋 ∧ 𝑉(0))

𝑝
→̂ 𝜋𝑛−1𝑋

2
→̂ …

associated to the cofiber sequence 𝑋
2
→̂ 𝑋 → 𝑋 ∧ 𝑉(0). Let 𝑎 ∈ 𝜋𝑛−1𝑋 be an element of order 2. If

𝑎′ ∈ 𝜋𝑛(𝑋 ∧ 𝑉(0)) is such that 𝑝∗(𝑎′) = 𝑎, then

2𝑎′ = 𝑖∗(𝜂𝑎) ∈ 𝜋𝑛𝑋 ∧ 𝑉(0).

Proof. This is a classical result (see, for example, [8, Lemma 3.1.5]). □

Remark 2.22. Lemma 2.21 will be used with 𝑋 = 𝑡𝑚𝑓 and 𝑡𝑚𝑓 ∧ 𝐶𝜂 where 𝐶𝜂 is the cofiber of
the Hopf map 𝜂∶ 𝑆1 → 𝑆0. This gives all exotic 2-extensions in the elliptic spectral sequences for
𝑡𝑚𝑓 ∧ 𝑉(0) and 𝑡𝑚𝑓 ∧ 𝑌, since 𝑌 ≃ 𝐶𝜂 ∧ 𝑉(0).
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1878 BEAUDRY et al.

F IGURE 1 Here, there is no exotic extensions from 𝑏′ to 𝑐, and so the dashed line would not be drawn.

Finally, we have the following classical result which is an analogue of Lemma 2.21.

Lemma 2.23. Let 𝑏 ∈ 𝜋𝑛𝑋 be such that 𝜂𝑏 = 0. If 𝑏′ ∈ 𝜋𝑛+2(𝐶𝜂 ∧ 𝑋) is such that 𝑝∗𝑏′ = 𝑏 in the
long exact sequence on homotopy groups associated to

Σ𝑋
𝜂
→̂ 𝑋

𝑖
→̂ 𝑋 ∧ 𝐶𝜂

𝑝
→̂ Σ2𝑋,

then 𝜂𝑏′ = 𝑖∗(𝜈𝑏).

Proof. First, consider 𝑏 = 𝜄 ∈ 𝜋0𝐶𝜂 given by the inclusion 𝑆0 → 𝐶𝜂 of the bottom cell. We have a
cofiber sequence

𝐶𝜂
𝑖
→̂ 𝐶𝜂 ∧ 𝐶𝜂

𝑝
→̂ Σ2𝐶𝜂

which is not split because of the non-triviality of 𝑆𝑞4 in𝐻∗(𝐶𝜂 ∧ 𝐶𝜂, ℤ∕2). We get a diagram

For any 𝑏′ ∈ 𝜋2(𝐶𝜂 ∧ 𝐶𝜂) such that 𝑝∗𝑏′ = 𝜄, we must have 𝜂𝑏′ ≠ 0, else we could split the above
cofiber sequence. Since 𝜂𝜄 = 0, 𝜂𝑏′ ∈ 𝑖∗(𝜋3𝐶𝜂), where 𝜋3𝐶𝜂 ≅ ℤ∕4{𝜈𝜄}. But in 𝜋2𝐶𝜂

2𝜈𝜄 ∈ ⟨𝜂, 2, 𝜂⟩ = ⟨𝜄, 𝜂, 2⟩𝜂,
hence 2𝜈 ∈ 𝜂∗(𝜋3Σ𝐶𝜂) and 𝑖∗(2𝜈) = 0 and 𝜂𝑏′ = 𝑖∗(𝜈𝜄)
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1879

For the general case, note that any class 𝑏∶ 𝑆𝑛 → 𝑋 such that 𝜂𝑏 = 0 can be extended to a map
�̄� ∶ Σ𝑛𝐶𝜂 → 𝑋. The claim then follows from the commutativity of the following diagram

Then 𝑏′ = (�̄� ∧ 𝐶𝜂)∗𝜄 satisfies 𝜂𝑏′ = 𝑖∗(𝜈𝑏). Now, suppose that 𝑝∗�̃�′ = 𝑏. Then �̃�′ − 𝑏′ ∈ ker 𝑝∗ =
im 𝑖∗. Therefore, 𝜂(�̃�′ − 𝑏′) = 0 so, 𝜂�̃�′ = 𝑖∗(𝜈𝑏) as well. □

2.6 Self-maps and their cofibers

It is well-known that 𝑉(0) admits 𝑣4
1
self-maps, that is, maps Σ8𝑉(0) → 𝑉(0)which induce multi-

plication by 𝑣4
1
in𝐾(1)-homology for𝐾(1) the firstMorava𝐾-theory. Themap on𝑀𝑈-homology is

given bymultiplication by 𝑥4
1
∈ 𝑀𝑈8. Under themap from theAdams–Novikov spectral sequence

of 𝑉(0) to that of the elliptic spectral sequence of 𝑡𝑚𝑓 ∧ 𝑉(0), 𝑥1 maps to 𝑣1 on the 𝐸2-term. See
the discussion surrounding (3.3). Any 𝑣4

1
self-map is detected by the same-named element. The

spectral sequence inherits an action of 𝑣4
1
and the differentials are 𝑣4

1
-linear.

Recall that we let 𝑌 be the spectrum 𝑉(0) ∧ 𝐶𝜂. In [20], Davis and Mahowald show that there
exist 𝑣1 self-maps of 𝑌, that is, maps Σ2𝑌 → 𝑌 which induce multiplication by 𝑣1 in 𝐾(1)∗𝑌. Any
of these is detected by the element 𝑣1 on the 𝐸2-term of elliptic spectral sequence for 𝑡𝑚𝑓 ∧ 𝑌 and
the differentials are 𝑣1-linear.
In Lemma 6.41, we will be studying the 𝑣1-multiplication in 𝑡𝑚𝑓∗𝑌. Some of the answers will

depend on the choice of 𝑣1-self map, so we give a bit of background here on this subject. This
material can be found in [20].
In [20], the authors show that there are in fact eight 𝑣1-self maps of𝑌. They also show that a 𝑣1-

self map of 𝑌 is detected in the Adams spectral sequence by an element of Ext1,3

(𝐻∗(𝑌),𝐻∗(𝑌)),

where denotes the Steenrod algebra at 𝑝 = 2.
A class of Ext1,3


(𝐻∗(𝑌),𝐻∗(𝑌)) is represented by a short sequence of-modules:

0 → Σ2𝐻∗(𝑌) → 𝑀 → 𝐻∗(𝑌) → 0.

Let (1) be the sub-algebra of the Steenrod algebra generated by 𝑆𝑞1 and 𝑆𝑞2. We know that
Ext1,3

(1)
(𝐻∗(𝑌),𝐻∗(𝑌)) ≅ 𝔽2 and its unique non-trivial class is represented by the short exact

sequence of(1)-module

0 → Σ2𝐻∗(𝑌) → 𝐴(1) → 𝐻∗(𝑌) → 0,

where 𝐴(1) is isomorphic to (1) as an (1)-module, thus the notation. Davis and Mahowald
showed that a class of Ext1,3


(𝐻∗(𝑌),𝐻∗(𝑌))which detects a 𝑣1-self map of 𝑌 is sent to the unique

non-trivial class of Ext1,3
(1)

(𝐻∗(𝑌),𝐻∗(𝑌)) (via the map induced by the inclusion(1) ⊂ ).
To put an-module structure on 𝐴(1), it suffices to specify the 𝑆𝑞4 action. Indeed, the action

of 𝑆𝑞𝑘, for 𝑘 ⩾ 8 on𝐴(1) is trivial for degree reasons. By the Adem relations, there must be a non-
trivial 𝑆𝑞4 on the class of degree one of 𝐴(1). There are possibilities for a non-trivial action of 𝑆𝑞4
on the classes of degrees zero and two, giving rise to four different-module structures on 𝐴(1).

 17538424, 2022, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12263 by U
niversity O

f R
ochester, W

iley O
nline L

ibrary on [12/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1880 BEAUDRY et al.

This implies, in particular, that

Ext1,3

(𝐻∗(𝑌),𝐻∗(𝑌)) ≅ 𝔽⊕3

2
.

Computing the first three stems of Ext𝑠,𝑡

(𝐻∗(𝑌),𝐻∗(𝑌)), we see that

Ext𝑠,𝑠+2


(𝐻∗(𝑌),𝐻∗(𝑌)) ≅

{
𝔽2 if 𝑠 = 2
0 otherwise.

We deduce that there are eight homotopy classes of maps Σ2𝑌 → 𝑌 detected in
Ext1,3


(𝐻∗(𝑌),𝐻∗(𝑌)) and mapping non-trivially to Ext1,3

(1)
(𝐻∗(𝑌),𝐻∗(𝑌)). These are the

𝑣1 self-maps of 𝑌.
It is somewhat surprising that out of eight 𝑣1-self-maps, there are only four homotopy types

which are distinguished by their cohomology, as is shown [20].
The singular cohomology of the cofiber of each of the 𝑣1-self maps on 𝑌 is isomorphic to one

of the four (1)s as an -module. We denote the cofibers realizing the four choices of Steenrod
algebra structure by𝐴1[𝑖𝑗], with 𝑖, 𝑗 ∈ {0, 1}. Here,𝐴1[𝑖𝑗]means that the cohomology of the spec-
trum 𝐴1[𝑖𝑗] has a non-trivial 𝑆𝑞4 on the class of degree 0 (if 𝑖 = 1) or 2 (if 𝑗 = 1). For more details
and diagrams indicating the Steenrod algebra action, see [12, figure 1]. We use the notation𝐴1, for
short, when we mean any or all of the four models.

3 𝒕𝒎𝒇∗𝑽(𝟎): THE 𝑬𝟐-PAGE

From now on, we will be working exclusively with 2-local spectra. We will write 𝑡𝑚𝑓 for 𝑡𝑚𝑓(2)
to simplify the notation. Furthermore, we will be considering only elliptic spectral sequences for
𝑀 = 𝑡𝑚𝑓 ∧ 𝐹 for 𝐹 a finite spectrum and so shorten our notation even more to

𝐸𝑠,𝑡
2
(𝐹) ∶= Ext𝑠,𝑡

Λ′
(𝐴′, 𝐴′ ⊗𝐴 ∗(𝐹)).

Themap 𝑆0
×2
^̂→ 𝑆0 inducesmultiplication by 2 on∗(𝑆0) ≅ 𝐴, which is injective. Thus, the cofiber

sequence

𝑆0
2
→̂ 𝑆0 → 𝑉(0)

gives rise to a short exact sequence of Λ′-comodules

0 → 𝐴′
×2
^̂→ 𝐴′ → 𝐴′ ⊗𝐴 ∗(𝑉(0)) → 0. (3.1)

It follows that 𝐴′ ⊗𝐴 ∗(𝑉(0)) is isomorphic to 𝐴′∕(2) as a Λ′-comodule. Since (2) ⊆ 𝐴′ is a Λ′-
invariant ideal, we have that

Ext𝑠,𝑡
Λ′
(𝐴′, 𝐴′∕(2)) ≅ Ext𝑠,𝑡

Λ′∕(2)
(𝐴′∕(2), 𝐴′∕(2)).

See, for example, [35, Proposition A1.2.16]. So, we have a spectral sequence

𝐸𝑠,𝑡
2
(𝑉(0)) = Ext𝑠,𝑡

Λ′∕(2)
(𝐴′∕(2), 𝐴′∕(2))⟹ 𝜋∗𝑡𝑚𝑓 ∧ 𝑉(0). (3.2)
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1881

A computation of the cohomology of (𝐴′∕(2), Λ′∕(2)) is originally due to Hopkins and
Mahowald and can be found in [2, section 7; 21, chapter 15, section 7] Let us describe the answer
here and introduce some notation.
Classical computations of modular forms yield

Ext0,∗
Λ′
(𝐴′, 𝐴′) ≅ ℤ(2)[𝑐4, 𝑐6, Δ]∕(𝑐

3
4 − 𝑐

2
6 − (12)

3Δ),

where

𝑐4 = 𝑎
4
1 − 24𝑎1𝑎3

𝑐6 = −𝑎
6
1 + 36𝑎

3
1𝑎3 − 216𝑎

2
3

Δ = 𝑎31𝑎
3
3 − 27𝑎

4
3

as well as

Ext0,∗
Λ′∕(2)

(𝐴′∕(2), 𝐴′∕(2)) ≅ ℤ∕2[𝑎1, Δ].

See, for example, [2; 38, III.1]. The map on Ext0,∗ induced by the mod 2 reduction (𝐴′, Λ′) →
(𝐴′∕(2), Λ′∕(2)) sends 𝑐4 ↦ 𝑎4

1
and 𝑐6 ↦ 𝑎6

1
.

There are also maps of Adams–Novikov spectral sequences, where 𝐻 and ℎ are as in
Remark 2.5:

Further,

Ext0,∗
𝐵𝑃∗𝐵𝑃

(𝐵𝑃∗, 𝐵𝑃∗𝑉(0)) ≅ 𝔽2[𝑣1];

see [35, Theorem 4.3.2].
So, we have 𝑎1 ∈ Ext

0,2

Λ′∕(2)
(𝐴′∕(2), 𝐴′∕(2)), 𝑣1 ∈ Ext

0,2
𝐵𝑃∗𝐵𝑃

(𝐵𝑃∗, 𝐵𝑃∗𝑉(0)) and 𝑥1 ∈

Ext0,2
𝑀𝑈∗𝑀𝑈

(𝑀𝑈∗,𝑀𝑈∗𝑉(0)), and

𝑣1 ↤ 𝑥1 ↦ 𝑎1. (3.3)

Note that 𝑣1 detects either of the two classes in 𝜋2𝑉(0) ≅ ℤ∕4 which map to 𝜂 ∈ 𝜋1𝑉(0) under
the homomorphism 𝜋2𝑉(0) → 𝜋1𝑆

0 in the long exact sequence in homotopy. We fix a choice and
call it 𝑣1 ∈ 𝜋2𝑉(0). It follows that 𝑎1 survives to detect the image of 𝑣1 ∈ 𝜋2𝑉(0) in𝜋2𝑡𝑚𝑓 ∧ 𝑉(0).
From now on, in mod 2 computations, we abuse notation and denote all classes we have named
𝑎1 by 𝑣1.
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1882 BEAUDRY et al.

F IGURE 2 The 𝐸2-term of the elliptic spectral sequence for 𝑡𝑚𝑓 ∧ 𝑉(0) in the range 0 ⩽ 𝑡 − 𝑠 ⩽ 50. A bullet
∙ denotes 𝔽2 and a diamond ⋄ denotes a copy of 𝔽2[𝑣1]. The lines of slope 1 denote multiplication by 𝜂, and the
lines of slope 1/3 denote multiplication by 𝜈. Horizontal lines are 𝑣1-multiplications.

Now we will present the 𝐸2 page of (3.2) as computed in [2, p.26; 21, p. 270; 40, figure. 5] (see
Figure 2). Even if the elliptic spectral sequence for𝑉(0) is notmultiplicative,𝐸2(𝑉(0)) is a ring and
we can completely describe the algebraic relations (which also follow from [2]). The ring structure
will be used in our computation of 𝐸2(𝑌) below.
Recall that 𝛿 = 𝛿2 was defined in Theorem 2.19. In the theorem below, 𝜅 ∈ 𝐸2,16

2
(𝑆0) is the

unique non-zero element.

Theorem 3.4 (Figure 2). The ring 𝐸2(𝑉(0)) is isomorphic to

𝔽2[𝑣1, Δ, �̄�, 𝜂, 𝜈, 𝑥, 𝑦]∕(∼)

for elements

𝜂 ∈ Ext1,2, 𝜈 ∈ Ext1,4, �̄� ∈ Ext4,24, Δ ∈ Ext0,24

in the image of 𝐸2(𝑆0) → 𝐸2(𝑉(0)), as well as elements

𝑣1 ∈ Ext
0,2, 𝑥 ∈ Ext1,8, 𝑦 ∈ Ext1,16

in the image of 𝛿2 ∶ 𝐸2(𝑉(0)) → 𝐸2(𝑆
0) where

𝛿2(𝑣1) = 𝜂, 𝛿2(𝑥) = 𝜈
2, 𝛿2(𝑦) = 𝜅.

The relations (∼) is the ideal generated by

(𝑠 = 1) 𝑣1𝜈 𝑣21𝑥 𝑣1𝑦

(𝑠 = 2) 𝜈𝜂 𝜈𝑥 − 𝑣1𝜂𝑥 𝜂𝑦 − 𝑣1𝑥
2 𝑥𝑦 𝑦2 − 𝜈2Δ

(𝑠 = 3) 𝜂2𝑥 − 𝜈3 𝑥3 − 𝜈2𝑦

(𝑠 = 4) 𝜂4Δ − 𝑣41�̄�.

Furthermore, we have 𝜅 = 𝑥2 and 𝛿2(𝜈2𝑦) = 4�̄�.
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1883

Remark 3.5. The algebraic structure in Theorem 3.4 can also be deduced from the appendix of [4].

Remark 3.6. The element Δ is detected by 𝑣4
2
in the Bockstein spectral sequence computation of

[21, II.2.7].

Remark 3.7. Let 𝑃 denote the following pattern:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

1

2

3

4

5

6

7

ν

ε

x

εv1

κ = x2

y

x3

Then 𝐸∗,∗
2
(𝑉(0)) can be summarized additively as

𝐸∗,∗
2
(𝑉(0)) = 𝑃[�̄�, Δ]∕(Δ𝜂4 − �̄�𝑣41).

4 𝒕𝒎𝒇∗𝑽(𝟎): THE DIFFERENTIALS AND EXTENSIONS

We begin with an observation that 𝑉(0) has a 𝑣4
1
self-map, hence all differentials 𝑑𝑟 for 𝑟 ⩾

3 are 𝑣4
1
linear. Since 𝜂, 𝜈, �̄� and Δ8 are permanent cycles, all differentials are linear with

respect to multiplication by these elements. Note that there are no even length differentials due
to sparseness.
We will use the following methods when computing differentials in this section.

(1) The map of spectra

𝑖 ∶ 𝑡𝑚𝑓 → 𝑡𝑚𝑓 ∧ 𝑉(0)

induces amap of spectral sequences. Let 𝑑𝑡𝑚𝑓𝑟 denote the differentials in the spectral sequence
for 𝑡𝑚𝑓. We can import the differentials 𝑑𝑡𝑚𝑓𝑟 (𝑎) = 𝑏 from the spectral sequence for 𝑡𝑚𝑓 if the
images of 𝑎 and 𝑏 are both non-trivial on the 𝐸𝑟 page of the spectral sequence for 𝑡𝑚𝑓 ∧ 𝑉(0).
Note also that the elliptic spectral sequence for 𝑡𝑚𝑓 ∧ 𝑉(0) is a module over the elliptic spec-
tral sequence for the ring spectrum 𝑡𝑚𝑓. For 𝑎 ∈ 𝐸𝑟(𝑆0), let 𝑎 ∈ 𝐸𝑟(𝑉(0)) denote 𝑖∗(𝑎)where
𝑖∗ ∶ 𝐸𝑟(𝑆

0) → 𝐸𝑟(𝑉(0)) is induced from the unit map 𝑖 ∶ 𝑆0 → 𝑉(0). Then, for 𝑎 ∈ 𝐸𝑟(𝑆0) and
𝑥 ∈ 𝐸𝑟(𝑉(0)) we have

𝑑𝑟(𝑎𝑥) = 𝑑
𝑡𝑚𝑓
𝑟 (𝑎)𝑥 + 𝑎𝑑𝑟(𝑥). (4.1)

(2) The long exact sequence in homotopy groups associated to the fiber sequence

𝑡𝑚𝑓
2
→̂ 𝑡𝑚𝑓 → 𝑡𝑚𝑓 ∧ 𝑉(0)
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1884 BEAUDRY et al.

F IGURE 3 The 𝜂-towers and the 𝑑3 differentials between them

gives short exact sequences

0 → (𝜋𝑖𝑡𝑚𝑓)∕2 → 𝜋𝑖(𝑡𝑚𝑓 ∧ 𝑉(0)) → ker2(𝜋𝑖−1𝑡𝑚𝑓) → 0,

where ker2(𝜋𝑖−1𝑡𝑚𝑓) is the subgroup of elements of order 2. This allows us to compute
the rank of 𝜋𝑖(𝑡𝑚𝑓 ∧ 𝑉(0)) and forces certain differentials by various dimension count
arguments.

(3) The Geometric Boundary Theorem, stated in Theorem 2.19.

For convenience of the reader, the large charts of the elliptic spectral sequence for 𝑡𝑚𝑓∗𝑉(0) can
be found in [6].

4.1 The 𝒅𝟑-differentials

Lemma 4.2 (Figure 3). The 𝑑3-differentials are Δ and 𝑣4
1
-linear. They are determined by this

linearity, the differentials

𝑑3(𝑣
2
1) = 𝜂

3; 𝑑3(𝑣
3
1) = 𝑣1𝜂

3,

and the module structure over the elliptic spectral sequence for 𝑡𝑚𝑓.

Proof. These differentials follow from the differential 𝑑3(𝑎21𝜂) = 𝜂
4 in the elliptic spectral

sequence for 𝑡𝑚𝑓. Both the source and the target are not 𝜂-torsion on the 𝐸3 page, so we can
divide by 𝜂 to get the first differential. Alternatively, the two listed 𝑑3-differentials occur in the
Adams–Novikov spectral sequence computing 𝜋∗𝑉(0) so happen here also by naturality (see, for
example, [34, Theorem 5.13 (a)]).
SinceΔ is a 𝑑3-cycle in the elliptic spectral sequence computing 𝜋∗𝑡𝑚𝑓 and the elliptic spectral

sequence for 𝑉(0) is a module over this spectral sequence, the 𝑑3-differentials are Δ-linear. For
degree reasons (making use of Δ and �̄�-linearity), these determine all 𝑑3-differentials. □

The effect of the 𝑑3 differentials is truncating the 𝜂-towers on the 𝐸3 page. Figure 3 illustrates
this process. This figure contains only the 𝜂-towers and omits the other classes. It does contain all
the 𝑑3 differentials.
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1885

F IGURE 4 𝑑5 and 𝑑7-differentials in stems 0-48. A ◦ denotes 𝔽2[𝑣41].

Remark 4.3. On the 𝐸5-page, all classes in filtrations 𝑠 ⩾ 3 are 𝑣41-torsion. The 𝑣
4
1
-free classes are

concentrated in stems 𝑡 − 𝑠 ≢ 5, 6, 7 mod 8.

4.2 The 𝒅𝟓-differentials

Lemma 4.4 (Figure 4). The 𝑑5-differentials areΔ2-linear. They are determined by this linearity, the
differential

𝑑5(Δ) = �̄�𝜈 (24, 0) ↦ (23, 5)

and the module structure over the elliptic spectral sequence for 𝑡𝑚𝑓.

Proof. The differential

𝑑5(Δ) = �̄�𝜈

occurs in the spectral sequence for 𝜋∗𝑡𝑚𝑓.
Linearity (4.1) over the spectral sequence for 𝜋∗𝑡𝑚𝑓 gives us, for 𝑥 ∈ 𝐸

∗,∗
5 (𝑉(0))

𝑑5(Δ
2𝑥) = 𝑑

𝑡𝑚𝑓
5 (Δ2)𝑥 + Δ2𝑑5(𝑥) = 2Δ�̄�𝜈𝑥 + Δ

2𝑑5(𝑥) = Δ
2𝑑5(𝑥). □

4.3 Higher differentials

Since all the classes in filtrations 4 and above are in the ideal generated by �̄�, the differentials that
have sources in filtrations 0–3 generate the other differentials with respect to themodule structure
over the elliptic spectral sequence for 𝑡𝑚𝑓 (denoted 𝐸∗,∗𝑟 (𝑆0)). We focus on these differentials in
the narrative (see Figures 4, 5, 6, and 7).
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1886 BEAUDRY et al.

F IGURE 5 Differentials in stems 48 to 96

Lemma 4.5. The 𝑑7-differentials are Δ4-linear and determined by

𝑑7(Δ𝜈
2𝑦) = �̄�2𝜂2𝑣1

𝑑7(Δ
3𝜈2𝑦) = Δ2�̄�2𝜂2𝑣1

(45, 3) ↦ (44, 10)

(93, 3) ↦ (92, 10)

and the module structure over the elliptic spectral sequence for 𝑡𝑚𝑓.
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1887

F IGURE 6 Differentials in stems 96 to 140
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1888 BEAUDRY et al.

F IGURE 7 Differentials in stems 140 to 192
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1889

Proof. First, note that 𝑑𝑡𝑚𝑓7 (Δ4) = Δ3𝜂3�̄� in the spectral sequence for 𝑡𝑚𝑓. Therefore, using (4.1),
for any 𝑎 ∈ 𝐸7(𝑉(0)) we have

𝑑7(Δ
4𝑎) = Δ3𝜂3�̄�𝑎 + Δ4𝑑7(𝑎).

Since Δ3𝜂3�̄� = 0, we get Δ4-linearity.
We give a proof for the differential 𝑑7(Δ𝜈2𝑦) = �̄�2𝜂2𝑣1. The proof for the other differential is

similar. In the spectral sequence for 𝑡𝑚𝑓, we have

𝑑7(Δ4�̄�) = 𝜂
3�̄�2.

But, for 𝛿2 ∶ 𝐸
𝑠,𝑡
2
(𝑉(0)) → 𝐸𝑠+1,𝑡

2
(𝑆0) the connecting homomorphism, we have

𝛿2(Δ𝜈
2𝑦) = Δ4�̄�

and

𝛿2(�̄�
2𝜂2𝑣1) = �̄�

2𝜂3.

The differential when 𝑖 = 0 then follows from Theorem 2.19.
Making use of the module structure over the spectral sequence for 𝑡𝑚𝑓, the only other possible

𝑑7-differential for degree reasons is on Δ2𝜈2𝑦. But this class is in fact a 𝑑7-cycle since Δ2𝑦 is a
𝑑7-cycle by sparseness. □

Lemma 4.6. Using the module structure over the elliptic spectral sequence for 𝑡𝑚𝑓, the
𝑑9-differentials are determined by the following differentials with 𝑖 = 0, 1:

(1) 𝑑9(Δ
2+4𝑖) = Δ4𝑖�̄�2𝑥 (48 + 96𝑖, 0) ↦ (47 + 96𝑖, 9)

(2) 𝑑9(Δ
2+4𝑖𝑥) = Δ4𝑖�̄�2𝜅 (55 + 96𝑖, 1) ↦ (54 + 96𝑖, 10)

(3) 𝑑9(Δ
3+4𝑖𝜂) = Δ1+4𝑖�̄�2𝜖 (73 + 96𝑖, 1) ↦ (72 + 96𝑖, 10)

(4) 𝑑9(Δ
3+4𝑖𝜖) = Δ1+4𝑖𝜅�̄�2𝜂 (80 + 96𝑖, 2) ↦ (79 + 96𝑖, 11)

(5) 𝑑9(Δ
2+4𝑖𝑣1) = Δ

4𝑖�̄�2𝑣1𝑥 (50 + 96𝑖, 0) ↦ (49 + 96𝑖, 9)

(6) 𝑑9(Δ
2+4𝑖𝑣1𝑥) = Δ

4𝑖�̄�2𝜂𝑦 (57 + 96𝑖, 1) ↦ (56 + 96𝑖, 10)

(7) 𝑑9(Δ
3+4𝑖𝑣1) = Δ

1+4𝑖�̄�2𝑣1𝑥 (74 + 96𝑖, 0) ↦ (73 + 96𝑖, 9)

(8) 𝑑9(Δ
3+4𝑖𝑣1𝑥) = Δ

1+4𝑖�̄�2𝜂𝑦 (81 + 96𝑖, 1) ↦ (80 + 96𝑖, 10)

Proof. We prove the claim for 𝑖 = 0. To prove 𝑖 = 1, one uses exactly the same arguments in
later stems.
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1890 BEAUDRY et al.

To show (1), note that Δ2 cannot support any 𝑑𝑟 for 𝑟 < 9 by sparseness. Then we have the
differential from the elliptic spectral sequence for 𝑡𝑚𝑓

𝑑9(Δ
2𝜂) = �̄�2𝜖

and this differential becomes 𝜂 divisible in the spectral sequence for 𝑡𝑚𝑓 ∧ 𝑉(0). For (2), we use
the same argument with the differential 𝑑9(Δ2𝜖) = Δ�̄�2𝜅𝜂 from the elliptic spectral sequence for
𝑡𝑚𝑓.
The differentials (3) and (4) are the images of the same differentials in the elliptic spectral

sequence for 𝑡𝑚𝑓. The differentials (5)–(8) are proved using Theorem 2.19. For example, the dif-
ferential 𝑑9(Δ2𝜂) = �̄�2𝜖 and the facts that 𝛿(𝑣1) = 𝜂 and 𝛿(𝑣1𝑥) = 𝜖 together imply (5). The others
are similar.
It remains to argue that there are no other generating𝑑9-differentials. As noted above, it suffices

to determine this on classes in filtration less than four.
Combining a comparison with the spectral sequence for 𝑡𝑚𝑓 and sparseness, we see that the

only question is whether or not the classes Δ4𝑥 and Δ4𝑣1𝑥 support non-trivial 𝑑9s. However,
a differential 𝑑9(Δ4𝑥) = Δ2𝜅�̄�2 together with 𝜂-linearity would imply the differential 𝑑9(Δ4𝜖) =
Δ2𝜅�̄�2𝜂. In the latter differential both source and target are in the image of the unit map from the
elliptic spectral sequence for 𝑡𝑚𝑓, hence this would also imply a differential 𝑑𝑡𝑚𝑓

9
(Δ4𝜖) = Δ2𝜅�̄�2𝜂

in the elliptic spectral sequence for 𝑡𝑚𝑓, which does not happen. The same argument works for
Δ4𝑣1𝑥.
We will also see in the next lemma that the possible targets of these 𝑑9s are the sources of

�̄�-multiples of the 𝑑11-differentials (1) and (3) of Lemma 4.7. □

Lemma 4.7. Using the module structure over the elliptic spectral sequence for 𝑡𝑚𝑓, the
𝑑11-differentials are determined by the following differentials with 𝑖 = 0, 1:

(1) 𝑑11(Δ
2+4𝑖𝜅) = Δ4𝑖�̄�3𝜂 (62 + 96𝑖, 2) ↦ (61 + 96𝑖, 13)

(2) 𝑑11(Δ
3+4𝑖𝜅𝜂) = Δ1+4𝑖�̄�3𝜂2 (87 + 96𝑖, 3) ↦ (86 + 96𝑖, 14)

(3) 𝑑11(Δ
2+4𝑖𝑦) = Δ4𝑖�̄�3𝑣1 (63 + 96𝑖, 1) ↦ (62 + 96𝑖, 12)

(4) 𝑑11(Δ
3+4𝑖𝜅𝑣1) = Δ

1+4𝑖𝑣1�̄�
3𝜂 (88 + 96𝑖, 2) ↦ (87 + 96𝑖, 13)

(5) 𝑑11(Δ
5𝑣1) = Δ

3�̄�2𝜈3 (122, 0) ↦ (121, 11).

Proof. The differentials (1) and (2) are images of the same differentials in the spectral sequence for
𝑡𝑚𝑓. The differentials (3) and (4) follow from (1) and (2), respectively, using Theorem 2.19. The
differential (5) follows from the fact that 𝜋121(𝑡𝑚𝑓 ∧ 𝑉(0)) does not contain 𝑣41-torsion, which can
be verified by comparing with 𝜋∗𝑡𝑚𝑓 using the long exact sequence on 𝜋∗.
Sparseness and multiplicative structure guarantees that these are all the generating 𝑑11-

differentials, except for a possible 𝑑11 on Δ7𝜂2𝑣1. However, 𝛿2(Δ7𝜂2𝑣1) = 0 but 𝛿2 of the possible
target of this 𝑑11 is non-zero. □

Lemma 4.8. The 𝑑13-differentials are determined by

𝑑13(Δ
4𝑦) = Δ2�̄�3𝜂2 (111, 1) ↦ (110, 14).
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1891

There are no 𝑑15-differentials and the 𝑑17-differentials are determined by

𝑑17(Δ
4) = �̄�4𝑦 (96, 0) ↦ (95, 17).

The 𝑑19-differentials are determined by

𝑑19(Δ
7𝜈3) = �̄�5Δ3𝑣1𝜂

2 (177, 3) ↦ (176, 22).

Proof. The first and second differentials follow from the facts that

𝜋110(𝑡𝑚𝑓 ∧ 𝑉(0)) = ℤ∕2 and 𝜋95(𝑡𝑚𝑓 ∧ 𝑉(0)) = 0,

respectively. The𝑑19-differential follows from the fact that the there is no 𝑣4
1
-torsion in𝜋177(𝑡𝑚𝑓 ∧

𝑉(0)).
There are no 𝑑15 differentials and no other 𝑑17 and 𝑑19 for degree reasons. The only argu-

ment needed beyond sparseness and multiplicative structure to show that there are no other
𝑑13-differentials is as follows. There are possible 𝑑13s on Δ3𝜈3 and Δ7𝜈3. These classes are in the
image of the 𝑡𝑚𝑓 spectral sequence. For 𝑡𝑚𝑓, 𝑑13(Δ3𝜈3) = 2�̄�4 and the target maps to zero in the
spectral sequence for 𝑡𝑚𝑓 ∧ 𝑉(0) and similarly for Δ7𝜈3. □

Warning 4.9. The 𝑑13 differential above is in fact equivalent to the 2-extension in 𝜋110𝑡𝑚𝑓. For
the reader familiar with names of classes, this corresponds to 2𝜅4 = 𝜂1�̄�3. For a recent detailed
treatment of this extension, see [19, chapter 9].

Lemma 4.10. There are no 𝑑21-differentials. The 𝑑23-differentials are determined by:

(1) 𝑑23(Δ5𝜂) = �̄�6 (121, 1) ↦ (120, 24)

(2) 𝑑23(Δ6𝜂2) = �̄�6Δ𝜂 (146, 2) ↦ (145, 25)

(3) 𝑑23(Δ6𝜂𝑣1) = �̄�6Δ𝑣1 (147, 1) ↦ (146, 24)

(4) 𝑑23(Δ7𝜂2𝑣1) = �̄�6Δ2𝜂𝑣1 (172, 2) ↦ (171, 25).

Proof. The differentials (1) and (2) occur in the elliptic spectral sequence for 𝑡𝑚𝑓. The differential
(3) is the geometric boundary of (2) as in Theorem 2.19. The last differential is forced by the fact
that the 𝑣4

1
-torsion in 𝜋171(𝑡𝑚𝑓 ∧ 𝑉(0)) is trivial. Another way to see differentials (3) and (4) is to

note that they follow from (1) and (2) using the module structure over the spectral sequence for
𝑡𝑚𝑓 and the fact that Δ5𝜂 ∈ 𝐸23(𝑆0). We thank the referee for pointing this out. There are no 𝑑21
or other 𝑑23-differentials for degree reasons. □

The following is now immediate.

Lemma 4.11. The spectral sequence (3.2) computing 𝑡𝑚𝑓∗𝑉(0) collapses at 𝐸24 with a horizontal
vanishing line at 𝑠 = 22, that is, 𝐸𝑠,𝑡∞ (𝑉(0)) = 0 for 𝑠 ⩾ 22.

4.4 Exotic extensions

We list the exotic extensions that do occur. All other possibilities can be ruled out using algebraic
structure and duality. We bring to the attention of the reader the precise meaning of exotic exten-
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1892 BEAUDRY et al.

F IGURE 8 Exotic extensions in the elliptic spectral sequence for 𝑡𝑚𝑓 ∧ 𝑉(0) in stems 0 to 96. This records
𝑡𝑚𝑓∗𝑉(0) ≅ 𝑡𝑚𝑓∗+1ℝ𝑃

2.

sions given in Definition 2.20. Note also that all exotic 2-extensions are deduced fromLemma 2.21.
We do not discuss 2-extensions further but include them in our figures.

Lemma 4.12 (Figure 8). In stems 0 to 45, there are exotic extensions:

[Δ𝜂]𝜈 = �̄�𝜖 from (25, 1) to (28, 6)

[Δ𝜖]𝜈 = 𝜅�̄�𝜂 from (32, 2) to (35, 7)

[Δ𝜅𝜂]𝜈 = �̄�2𝜂2 from (39, 3) to (42, 10)

[Δ𝑣1]𝜈 = �̄�𝑣1𝑥 from (26, 0) to (29, 5)

[Δ𝑣1𝑥]𝜈 = 𝜅�̄�𝑣1 from (33, 1) to (36, 6)

[Δ𝜅𝑣1]𝜈 = �̄�
2𝜂𝑣1 from (40, 2) to (43, 9)

[𝑦𝜈2]𝜈 = �̄�𝑣1𝜂
2 from (21, 3) to (24, 6).

Proof. The first three extensions are between elements from 𝜋∗𝑡𝑚𝑓, see [2]. The next three are
forced by the fact that the connecting homomorphism in the long exact sequence on homotopy
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1893

groups is a map of 𝜋∗𝑆0-modules, the geometric boundary theorem, and the fact that under the
map

𝛿∶ 𝐸𝑠,𝑡
2
(𝑉(0)) → 𝐸𝑠+1,𝑡

2
(𝑆0)

we have 𝛿(𝑣1) = 𝜂 (and so 𝛿(𝑥𝑣1) = 𝜖, 𝛿(𝜅𝑣1) = 𝜂𝜅, etc.).
The last extension follows from duality and the fact that there is a 𝜈 multiplication between

stems 147 and 150 (already present on the 𝐸2-page). □

Lemma 4.13 (Figure 8). In stems 46 to 96, there are exotic extensions:

(1) [Δ2𝜂2]𝜈 = Δ�̄�𝜈3 from (50, 2) to (53, 7)
(2) [Δ2𝜈]𝜂 = Δ�̄�𝜖 from (51, 1) to (52, 6)
(3) [Δ2𝑣1𝜂]𝜈 = Δ�̄�𝑥𝜈 from (51, 1) to (54, 6)
(4) [Δ2𝑥𝜈]𝜂 = Δ�̄�𝜅𝜂 from (58, 2) to (59, 7)
(5) [Δ2𝑥𝜈]𝜈 = Δ�̄�𝜅𝜂𝑣1 from (58, 2) to (61, 7)
(6) [Δ2𝜅𝜈]𝜈 = Δ�̄�2𝜂2𝑣1 from (65, 3) to (68, 10)
(7) [Δ2𝑦𝜈2]𝜈 = Δ2�̄�𝑣1𝜂2 from (69, 3) to (72, 6).

Proof. The first two extensions (1) and (2) are multiplicative relations that hold in 𝜋∗𝑡𝑚𝑓. Exten-
sion (3) follows from (1) and Theorem 2.19. Extension (4) is dual to the algebraic 𝜂 multiplication
from stem 112 to 113, and similarly for (5). Extension (6) involves classes in the image of 𝑖∗ and
this extension happens in 𝑡𝑚𝑓∗. Finally, (7) is dual to the algebraic 𝜈 multiplication from stem
99 to 102. □

Remark 4.14. Looking at the charts in [2], one might have expected extensions [Δ2𝜅𝜈]𝜂 = Δ�̄�2𝜂2
and, by the Geometric Boundary Theorem, [Δ2𝑦𝜈]𝜂 = Δ�̄�2𝜂𝑣1. However, these are not exotic
extensions according to Definition 2.20.
We also note that [Δ2𝑐4]𝜈 ≠ [Δ�̄�𝜅𝜂] and [Δ3𝑐4𝑣1]𝜈 ≠ [Δ�̄�3𝜂]. The first comes from the fact that

in 𝜋∗𝑡𝑚𝑓, there is no such extension. (This can be seen, for example, from the Adams spectral
sequence of 𝑡𝑚𝑓.) The second follows from the fact that the target has a non-trivial �̄�-multiple
and �̄�𝜈 = 0.

Lemma 4.15 (Figure 9). In stems 97 to 144, there are exotic extensions:

(1) [Δ4𝜂]𝜈 = �̄�5 from (97, 1) to (100, 20)
(2) [Δ4𝜈]𝜂 = �̄�5 from (99, 1) to (100, 20)
(3) [Δ4�̄�𝜖]𝜂 = Δ�̄�5𝜂 from (124, 6) to (125, 21)
(4) [Δ5𝜂2]𝜈 = Δ�̄�5𝜂 from (122, 2) to (125, 21)
(5) [Δ5𝜖]𝜈 = Δ4𝜅�̄�𝜂 from (128, 2) to (131, 7)
(6) [Δ5𝜅𝜂]𝜈 = Δ4�̄�2𝜂2 from (135, 3) to (138, 10)
(7) [Δ4�̄�𝑥𝑣1]𝜂 = Δ�̄�5𝑣1 from (125, 5) to (126, 20)
(8) [Δ5𝑥𝑣1]𝜈 = Δ4𝜅�̄�𝑣1 from (129, 1) to (132, 6)
(9) [Δ5𝜅𝑣1]𝜈 = Δ4�̄�2𝜂𝑣1 from (136, 2) to 139, 9)
(10) [Δ5𝜖𝑣1]𝜂 = Δ2�̄�4𝑣1𝜂 from (130, 2) to (131, 17)
(11) [Δ4𝑣1]𝜈 = Δ3�̄�𝜈3 from (98, 0) to (101, 7)
(12) [Δ5𝜅𝜂]𝜂 = Δ3�̄�3𝜂2𝑣1 from (135, 3) to (136, 14)
(13) [Δ4𝑦𝜈2]𝜈 = [Δ4�̄�𝑣1𝜂2] from (117, 3) to (120, 6).
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1894 BEAUDRY et al.

F IGURE 9 Exotic extensions in the elliptic spectral sequence of 𝑡𝑚𝑓 ∧ 𝑉(0) in stems 96 to 192, recording
𝑡𝑚𝑓∗𝑉(0) ≅ 𝑡𝑚𝑓∗+1ℝ𝑃

2

Proof. Extensions (1)–(6) follow from studying 𝑖∗ ∶ 𝑡𝑚𝑓∗ → 𝑡𝑚𝑓∗𝑉(0). Note that (4) is missing
from the [2] charts, but it is the [Δ𝜂]- multiple of the extension [Δ4𝜂]𝜈 = �̄�5 as computed there.
We thank the referee for pointing this out. Extensions (7), (8), and (9) follow from (3), (5), and (6),
respectively, using Theorem 2.19.
For (11), note that by Theorem 2.19, [Δ4𝑣1] has geometric boundary [Δ4𝜂]. Since [Δ4𝜂]𝜈 ≠ 0,

[Δ4𝑣1]𝜈 ≠ 0 and this extension is the only choice. For (12), use Remark 2.16 and the algebraic
𝜂 multiplication between 𝜋35𝑡𝑚𝑓 ∧ 𝑉(0) and 𝜋36𝑡𝑚𝑓 ∧ 𝑉(0). A similar argument applies for
(13). □

Remark 4.16. There is no exotic 𝜈-extension on [Δ5𝑐4] since the potential target is not annihilated
by �̄�.
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1895

Lemma 4.17 (Figure 9). In stems 145 to 191, there are exotic extensions:

(1) [Δ6𝜈]𝜂 = [Δ5�̄�𝜖] (from (147, 1) to (148, 6))
(2) [Δ6𝜅𝜈]𝜂 = [Δ5�̄�2𝜂2] (from (161, 3) to (162, 10))
(3) [Δ5�̄�𝜅𝜂]𝜂 = [Δ3�̄�4𝜂2𝑣1] (from (155, 7) to (156, 18))
(4) [Δ6𝑦𝜈]𝜂 = [Δ5�̄�2𝑣1𝜂] (from (162, 2) to (163, 9))
(5) [Δ5�̄�𝜖𝑣1]𝜂 = [Δ2�̄�5𝜂𝑣1] (from (150, 6) to (151, 21))
(6) [Δ6𝜈3]𝜈 = Δ3�̄�4𝑣1𝜂2 (from (153, 3) to (156, 18))
(7) [Δ6𝜖𝑣1]𝜂 = Δ5�̄�𝜅𝜂 (from (154, 2) to (155, 7))
(8) [Δ6𝜖𝑣1]𝜈 = Δ5�̄�𝜅𝜈 (from (154, 2) to (157, 7))
(9) [Δ6𝜅𝜈]𝜈 = Δ5�̄�2𝑣1𝜂2 (from (161, 3) to (164, 10))
(10) [Δ6𝑦𝜈2]𝜈 = [Δ6�̄�𝑣1𝜂2] (from (165, 3) to (168, 6))

Proof. The first two extensions occur in 𝑡𝑚𝑓∗. The third is also an extension in 𝑡𝑚𝑓∗, namely,
[Δ5�̄�𝜅𝜂]𝜂 = [Δ42�̄�3], but the image of the class [Δ42�̄�3] is detected by [Δ3�̄�4𝜂2𝑣1] in 𝑡𝑚𝑓∗𝑉(0).
Extension (4) follows from (2) and Theorem 2.19. This result also implies (5) from the exten-
sions [Δ5�̄�𝜈3]𝜂 = [Δ2�̄�5𝜂2] in 𝑡𝑚𝑓∗. All the extensions (6)–(10) follow from Corollary 2.12 and
Remark 2.16 and the data for algebraic multiplications in the range 3 ⩽ 𝑡 − 𝑠 ⩽ 20. □

5 𝒕𝒎𝒇∗𝒀: THE 𝑬𝟐-PAGE

Let 𝐶𝜂 be the cofiber of the Hopf map 𝜂, so that there is an exact triangle

𝑆1
𝜂
→̂ 𝑆0 → 𝐶𝜂 → 𝑆2. (5.1)

We define the spectrum 𝑌 to be 𝑉(0) ∧ 𝐶𝜂. which can be built from two different cofiber
sequences

𝐶𝜂
2
→̂ 𝐶𝜂 → 𝑌,

which uses the multiplication by 2 on 𝐶𝜂, and

Σ𝑉(0)
𝜂
→̂ 𝑉(0) → 𝑌,

which uses the multiplication by 𝜂 on 𝑉(0). Depending on the situation it will be more
advantageous to use either the former or the latter fiber sequence. We abbreviate

∗(𝐹) ∶= 𝜋∗(𝑡𝑚𝑓 ∧ 𝑋(4) ∧ 𝐹),

where 𝐹 will be one of the finite spectra of interest.
We now proceed to compute the 𝐸2-term of the elliptic spectral sequence computing the 𝑡𝑚𝑓-

homology of 𝑌, namely, Ext∗,∗
Λ′
(𝐴′, 𝐴′ ⊗𝐴 ∗(𝑌)).

Let us first describe ∗(𝐶𝜂). Since 𝜋∗(𝑡𝑚𝑓 ∧ 𝑋(4)) ≅ 𝐴 is concentrated in even degrees, the
cofiber sequence (5.1) induces a short exact sequence on 𝑡𝑚𝑓 ∧ 𝑋(4)-homology

0 → 𝐴 → ∗(𝐶𝜂) → Σ2𝐴 → 0.

 17538424, 2022, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12263 by U
niversity O

f R
ochester, W

iley O
nline L

ibrary on [12/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1896 BEAUDRY et al.

This splits as a sequence of 𝐴-modules so that

∗(𝐶𝜂) ≅ 𝐴 ⊕ Σ
2𝐴.

Multiplication by 2 on𝐶𝜂 inducesmultiplication by 2 on 𝑡𝑚𝑓 ∧ 𝑋(4)-homology, which is injective
because ∗(𝐶𝜂) is torsion-free. Thus, the cofiber sequence

𝐶𝜂
2
→̂ 𝐶𝜂 → 𝑌

induces a short exact sequence in 𝑡𝑚𝑓 ∧ 𝑋(4)-homology

0 → ∗(𝐶𝜂) → ∗(𝐶𝜂) → ∗(𝑌) → 0,

and it follows that

∗(𝑌) ≅ 𝐴∕(2) ⊕ Σ
2𝐴∕(2) (5.2)

as an 𝐴∕(2)-module.
Likewise, since ∗(𝑉(0)) is concentrated in even degrees, the induced map on 𝑡𝑚𝑓 ∧ 𝑋(4)-

homology of the cofiber sequence

Σ𝑉(0)
𝜂
→̂ 𝑉(0) → 𝑌

is trivial. It follows that there is a short exact sequence of Λ-comodules

0 → 𝐴∕(2) → ∗(𝑌) → Σ2𝐴∕(2) → 0.

This short exact sequence of 𝐴-modules splits because of (5.2). Tensoring it with 𝐴′ over 𝐴, we
obtain a short exact sequence of Λ′-comodules, which splits as a sequence of 𝐴′-modules

0 → 𝐴′∕(2) → 𝐴′ ⊗𝐴 ∗(𝑌) → Σ2𝐴′∕(2) → 0. (5.3)

As ∗(𝑌) is 2-torsion, (5.3) is a short exact sequence of 𝐴′∕(2)-module, and hence splits as such.
Therefore, applying Ext∗,∗

Λ′
(𝐴′, −) to (5.3), we get a long exact sequence of Ext∗,∗

Λ′
(𝐴′, 𝐴′∕(2))-

modules (see, for example, [16, p. 110, (3.3)]). Its connecting homomorphism

𝛿 ∶ Ext𝑠,𝑡
Λ′
(𝐴′, 𝐴′∕(2)) → Ext𝑠+1,𝑡+2

Λ′
(𝐴′, 𝐴′∕(2)) (5.4)

is given by multiplication with 𝜂 ∈ Ext1,2
Λ′
(𝐴′, 𝐴′∕(2)). Here, as is often the case, we denote by 𝜂

the class in Ext which detects the same-named homotopy class.
We present the effect of the connecting homomorphism separately for the 𝑣1-power torsion and

for the 𝑣1-free classes of 𝐸2(𝑉(0)) in Figures 10 and 11, respectively.
In Figure 11, a ◦ denotes a copy of 𝔽2[𝑣1], a bullet denotes a copy of 𝔽2 and a line of slope

1 denotes, as usual, multiplication by 𝜂. Note that we have �̄�𝑣4
1
= Δ𝜂4, hence �̄�𝑣4

1
= 0 in 𝐸2(𝑌),

while 𝑣1 itself is not nilpotent and Δ𝑖 is not 𝑣1 torsion.

Proposition 5.5 (Figure 12). As a module over 𝐸2(𝑉(0)), 𝐸2(𝑌) is generated by classes

𝑎[0, 0], 𝑎[5, 1], 𝑎[17, 3].
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1897

F IGURE 10 The connecting homomorphism (5.4) for the 𝑣1-power torsion classes

F IGURE 11 The connecting homomorphism (5.4) for the 𝑣1-free classes

F IGURE 1 2 𝐸2(𝑌) as a module over 𝐸2(𝑉(0)). The dashed lines are 𝑥-multiplications and dotted lines
𝑦-multiplications. Other structure lines are as in Figure 2.

The submodule generated by 𝑎[0, 0] is isomorphic to 𝐸2(𝑉(0))∕𝜂. There are Massey products

𝑎[5, 1] = ⟨𝜈, 𝜂, 𝑎[0, 0]⟩, 𝑎[17, 3] = ⟨𝜂𝑥2, 𝜂, 𝑎[0, 0]⟩
and these classes are subject to the following relations. On the new classes, we have 𝑣1multiplications

𝑣1𝑎[5, 1] = 𝑥𝑎[0, 0] 𝑣1𝑎[17, 3] = 𝑥
2𝑎[5, 1] 𝑣21𝑎[17, 3] = 𝜈

2𝑦𝑎[0, 0],

𝜂 and 𝜈 multiplications

𝜂𝑎[5, 1] = 𝜈2𝑎[0, 0], 𝜂𝑎[17, 3] = 𝜈𝑎[17, 3] = 𝑦𝑎[17, 3] = 0
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1898 BEAUDRY et al.

as well as

𝜈2𝑦𝑎[5, 1] = 𝑣31�̄�𝑎[0, 0].

Proof. Using the description of 𝐸2(𝑉(0)), the effect of the connecting homomorphism 𝛿 of (5.4) is
straightforward to compute. The cokernel is simply 𝐸2𝑉(0)∕𝜂 as an 𝐸2(𝑉(0))-module. Using the
multiplication on 𝐸2(𝑉(0)), the kernel is generated by classes 𝑎[5, 1] and 𝑎[17, 3] defined, without
ambiguity, by

𝑝∗(𝑎[5, 1]) = 𝜈 𝑝∗(𝑎[17, 3]) = 𝜂𝑥
2,

where 𝑝∗ is induced by the map 𝐴′ ⊗𝐴 ∗(𝑌) → Σ2𝐴′∕(2) of (5.3).
We now show the relations on the generators. Since 𝜂𝑎[0, 0] = 0 and 𝜈2𝑎[0, 0] ≠ 0, the Juggling

formula

𝜈2𝑎[0, 0] = ⟨𝜂, 𝜈, 𝜂⟩𝑎[0, 0] = 𝜂⟨𝜈, 𝜂, 𝑎[0, 0]⟩
implies that ⟨𝜈, 𝜂, 𝑎[0, 0]⟩ ≠ 0. The Massey product ⟨𝜈, 𝜂, 𝑎[0, 0]⟩ has zero indeterminacy, hence
by sparseness,

𝑎[5, 1] = ⟨𝜈, 𝜂, 𝑎[0, 0]⟩
and

𝜂𝑎[5, 1] = 𝜈2𝑎[0, 0].

We have that 𝑣1𝜈 = 0 ∈ Ext
∗,∗
Λ
(𝐴∕(2), 𝐴∕(2)). As a consequence,

𝑣1𝑎[5, 1] = 𝑣1⟨𝜈, 𝜂, 𝑎[0, 0]⟩
= ⟨𝑣1, 𝜈, 𝜂⟩𝑎[0, 0] (by juggling formula)
= 𝑥𝑎[0, 0] (by [2, Formula 7.5])

The equation

𝑣1𝑎[17, 3] = 𝑥
2𝑎[5, 1]

follows from the fact that

𝑣1𝜂𝑥
2 = 𝑥2𝜈

in 𝐸2(𝑉(0)) and the definition of 𝑎[5, 1] and 𝑎[17, 3] as the pre-image of 𝜈 and 𝜂𝑥2 by 𝑝∗,
respectively. It follows then that

𝑣21𝑎[17, 3] = 𝑣1𝑥
2𝑎[5, 1] (because 𝑣1𝑎[17, 3] = 𝑥2𝑎[5, 1])

= 𝑥3𝑎[0, 0] (because 𝑣1𝑎[5, 1] = 𝑥𝑎[0, 0])

= 𝜈2𝑦𝑎[0, 0] (because 𝑥3 = 𝜈2𝑦, cf.𝑇ℎ𝑒𝑜𝑟𝑒𝑚3.4)

The relations 𝜂𝑎[17, 3] = 𝜈𝑎[17, 3] = 𝑦𝑎[17, 3] = 0 follows for degree reasons.
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1899

It remains to verify that 𝜈2𝑦𝑎[5, 1] = 𝑣3
1
�̄�𝑎[0, 0]. A juggling of Massey products gives

𝑦𝜈2⟨𝜈, 𝜂, 𝑎[0, 0]⟩ = ⟨𝑦𝜈2, 𝜈, 𝜂⟩𝑎[0, 0].
The relation 𝜈2𝑦𝑎[5, 1] = 𝑣3

1
�̄�𝑎[0, 0] then follows by Lemma 5.6 and the fact that 𝜂𝑎[0, 0] = 0. □

Lemma 5.6. In Ext∗,∗
Λ′
(𝐴′, 𝐴′∕(2)), the Massey product ⟨𝑦𝜈2, 𝜈, 𝜂⟩ contains �̄�𝑣3

1
. Furthermore, its

indeterminacy is equal to 𝜂 Ext3,28
Λ′
(𝐴′, 𝐴′∕(2)), which does not contain �̄�𝑣3

1
.

Proof. By [2, formula 7.9], �̄�𝑣2
1
= ⟨𝜂, 𝜅𝜂, 𝑥⟩, and so

�̄�𝑣31 = 𝑣1⟨𝜂, 𝜅𝜂, 𝑥⟩ ⊂ ⟨𝑣1𝜂, 𝜅𝜂, 𝑥⟩ ⊂ ⟨𝜂, 𝑣1𝜅𝜂, 𝑥⟩ = ⟨𝜂, 𝜂2𝑦, 𝑥⟩.
Here, we used the relation 𝑣1𝜅𝜂 = 𝜂2𝑦. It follows that

�̄�𝑣41 ∈ 𝑣1⟨𝜂, 𝜂2𝑦, 𝑥⟩ ⊂ ⟨𝑣1𝜂, 𝜂2𝑦, 𝑥⟩
The indeterminacy of the latter is equal to

𝑣1𝜂 Ext
3,28
Λ′
(𝐴′, 𝐴′∕(2)) + 𝑥 Ext3,24

Λ′
(𝐴′, 𝐴′∕(2)) = 𝔽2{𝑣

12
1 𝜂

4},

which does not contain �̄�𝑣4
1
, so ⟨𝑣1𝜂, 𝜂2𝑦, 𝑥⟩ does not contain zero.

Now consider

⟨𝑣1𝜂, 𝑦, 𝜈3⟩ = ⟨𝑣1𝜂, 𝑦, 𝜂2𝑥⟩ ⊂ ⟨𝑣1𝜂, 𝜂2𝑦, 𝑥⟩.
The indeterminacy of ⟨𝑣1𝜂, 𝑦, 𝜈3⟩ is 𝑣1𝜂𝐸𝑥𝑡3,28Λ′

(𝐴′, 𝐴′∕(2)) + 𝜈3𝐸𝑥𝑡3,21
Λ′
(𝐴′, 𝐴′∕(2)) = 𝔽2{𝑣

12
1
𝜂4},

which is the same as the indeterminacy of ⟨𝑣1𝜂, 𝜂2𝑦, 𝑥⟩, hence ⟨𝑣1𝜂, 𝑦, 𝜈3⟩ does not contain zero
and contains �̄�𝑣4

1
.

Moreover, since

⟨𝑣1𝜂, 𝑦, 𝜈3⟩ ⊂ ⟨𝑣1𝜂, 𝑦𝜈, 𝜈2⟩
and the indeterminacy of the latter is equal to 𝜂𝑣1 Ext

3,28
Λ′
(𝐴′, 𝐴′∕(2)) + 𝜈2 Ext2,24

Λ′
(𝐴′, 𝐴′∕(2)) =

𝔽2{𝑣
12
1
𝜂4}, which does not contain �̄�𝑣4

1
,

⟨𝑣1𝜂, 𝑦𝜈, 𝜈2⟩ = �̄�𝑣41 + 𝔽2{𝑣121 𝜂4}.
Finally, since

⟨𝑣1𝜂, 𝑦𝜈, 𝜈2⟩ ⊇ ⟨𝑣1𝜂, 𝜈, 𝜈2𝑦⟩ ⊇ 𝑣1⟨𝜂, 𝜈, 𝑦𝜈2⟩
and multiplication by 𝑣1 induces an injective homomorphism on Ext4,30

Λ′
(𝐴′, 𝐴′∕(2)), we obtain

that

�̄�𝑣31 + 𝔽2{𝑣
11
1 𝜂

4} ⊃ ⟨𝜂, 𝜈, 𝑦𝜈2⟩ = ⟨𝑦𝜈2, 𝜈, 𝜂⟩.
The conclusion of the lemma follows by observing that

�̄�𝑣31 ∉ Ind(⟨𝑦𝜈2, 𝜈, 𝜂⟩) = 𝜂 Ext3,28
Λ′
(𝐴′, 𝐴′∕(2)) ⊃ 𝔽2{𝑣

11
1 𝜂

4}. □
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1900 BEAUDRY et al.

Remark 5.7. In 𝐸𝑠,𝑡
2
(𝑌), there is at most one non-zero element in any bi-degree (𝑠, 𝑡)with filtration

𝑠 > 0. There is also a unique non-zero element in bi-degree (0,0). So, for 𝑠 > 0 or (𝑠, 𝑡) = (0, 0), we
often denote by 𝑎[𝑡 − 𝑠, 𝑠] ∈ 𝐸𝑠,𝑡𝑟 (𝑌) the non-zero element, if it exists. Furthermore, when 𝑠 = 0
and 𝑡 > 0, we let 𝑎[𝑡, 0] denote the element of 𝐸0,𝑡

2
(𝑌)which is divisible by the largest power of Δ.

For example, 𝐸0,52
2
(𝑌) ≅ 𝔽2{𝑣

26
1
𝑎[0, 0], 𝑣14

1
Δ𝑎[0, 0], 𝑣2

1
Δ2𝑎[0, 0]} and 𝑎[52, 0] = 𝑣2

1
Δ2𝑎[0, 0].

For our purposes, we also need a partial knowledge of Ext∗,∗
Λ′
(𝐴′∕(2),), where

 ∶= 𝐴′∕(2, 𝑎1) ⊗𝐴∕(2) ∗(𝑌).

Since 𝑎1 ∈ 𝐴′∕(2) is aΛ′-primitive,𝐴′∕(2, 𝑎1) is aΛ′-comodule. By tensoring (5.3) with𝐴′∕(2, 𝑎1)
over 𝐴′∕(2), we obtain a diagram of short exact sequences of Λ′-comodules

(5.8)

We consider the long exact sequence derived from the bottom short exact sequence of the diagram
(5.8). The cohomology ring Ext∗,∗

Λ′∕(2,𝑎1)
(𝐴′∕(2, 𝑎1), 𝐴

′∕(2, 𝑎1)) is computed in [2, section 7]. With
our notation,

Ext∗,∗
Λ′∕(2,𝑎1)

(𝐴′∕(2, 𝑎1), 𝐴
′∕(2, 𝑎1)) ≅ 𝔽2[𝜂, 𝜈, �̄�, 𝑣2]∕(𝑣2𝜂

3 − 𝜈3, 𝜂𝜈),

where 𝑣2 is represented by the Λ′-primitive 𝑎3. The bottom short exact sequence of the diagram
(5.8) splits as a sequence of 𝐴′∕(2, 𝑎1)-modules. However, it does not split as a one of Λ′∕(2, 𝑎1)-
comodules, as it represents the element 0 ≠ 𝜂 ∈ Ext1,2

Λ′∕(2,𝑎1)
(𝐴′∕(2, 𝑎1), 𝐴

′∕(2, 𝑎1)). Therefore, the
connecting homomorphism

Ext𝑠,𝑡
Λ′∕(2,𝑎1)

(𝐴′∕(2, 𝑎1), 𝐴
′∕(2, 𝑎1)) → Ext𝑠+1,𝑡+2

Λ′∕(2,𝑎1)
(𝐴′∕(2, 𝑎1), 𝐴

′∕(2, 𝑎1)) (5.9)

of the induced long exact sequence in Ext∗,∗
Λ′∕(2,𝑎1)

(𝐴′∕(2, 𝑎1), −) is given by multiplication by 𝜂.
We obtain:

Lemma 5.10. As a module over the ring 𝔽2[𝜂, 𝜈, �̄�, 𝑣2]∕(𝑣2𝜂3 − 𝜈3, 𝜂𝜈), the cohomology group

Ext∗,∗
Λ′∕(2,𝑎1)

(𝐴′∕(2, 𝑎1), 𝐴
′∕(2, 𝑎1) ⊗𝐴∕(2) ∗(𝑌))

is generated by 𝑎[0, 0] ∈ Ext0,0 and 𝑎[5, 1] ∈ Ext1,6 with the relations

𝜂𝑎[0, 0] = 0, 𝜂𝑎[5, 1] = 𝜈2𝑎[0, 0].

Proof. By the description of the connecting homomorphism (5.9), we see that

Ext∗,∗
Λ′∕(2,𝑎1)

(𝐴′∕(2, 𝑎1), 𝐴
′∕(2, 𝑎1) ⊗𝐴∕(2) ∗(𝑌)) ≅ 𝔽2[𝜈, �̄�, 𝑣2]∕(𝜈

3){𝑎[0, 0], 𝑎[5, 0]}
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1901

F IGURE 13 Ext𝑠,𝑡
Λ′∕(2,𝑎1)

(𝐴′∕(2, 𝑎1), 𝐴
′∕(2, 𝑎1) ⊗𝐴∕(2) ∗(𝑌)) depicted in the coordinates (𝑡 − 𝑠, 𝑠)

as an 𝔽2[𝜈, �̄�, 𝑣2]∕(𝜈3)-module. Next, we determine the action of 𝜂. We see easily that 𝜂𝑎[0, 0] = 0.
To calculate 𝜂𝑎[5, 1], we remark that

𝜈2𝑎[0, 0] = ⟨𝜂, 𝜈, 𝜂⟩𝑎[0, 0] = 𝜂⟨𝜈, 𝜂, 𝑎[0, 0]⟩,
where the first equality comes from the Massey product 𝜈2 = ⟨𝜂, 𝜈, 𝜂⟩ and the second is a shuffle.
As 𝜈2𝑎[0, 0] ≠ 0, ⟨𝜈, 𝜂, 𝑎[0, 0]⟩ is not trivial and must be equal to 𝑎[5, 1] by sparseness. Hence,
𝜈2𝑎[0, 0] = 𝜂𝑎[5, 1]. □

Remark 5.11. This calculation will be used in Lemma 6.25 in order to prove Proposition 6.24. It
has also an independent interest being the 𝐸2-term of the elliptic spectral sequence for 𝑡𝑚𝑓 ∧ 𝐴1,
see Subsection 6.4 for a discussion on 𝐴1.

Although Proposition 5.5 gives us a very compact description of 𝐸2(𝑌), the elliptic spectral
sequence of 𝑡𝑚𝑓 ∧ 𝑌 is not amodule over the elliptic spectral sequence of 𝑡𝑚𝑓 ∧ 𝑉(0) as the latter
is not even a multiplicative spectral sequence. However, the elliptic spectral sequence of 𝑡𝑚𝑓 ∧ 𝑌
is a module over the elliptic spectral sequence of 𝑡𝑚𝑓. In fact, we get even more structure than
that from the fact that 𝑌 has 𝑣1-self maps. As explained in Subsection 2.6, we have:

Lemma 5.12 (𝑣1-linearity). The differentials in the elliptic spectral sequence for 𝑡𝑚𝑓 ∧ 𝑌 are 𝑣1-
linear.

We state the following ‘intermediate’ result for convenience of reference in the computations
below. The module structure of the elliptic spectral sequence spectral sequence of 𝑡𝑚𝑓 ∧ 𝑌 over
that of 𝑡𝑚𝑓 is richer thanwhat is stated here but that information can be read off of Proposition 5.5.

Corollary 5.13. As a module over

𝔽2[𝑣1, 𝜈, �̄�, Δ]∕(𝑣1𝜈, 𝜈
3, 𝑣41�̄�),

𝐸2(𝑌) is generated by

𝑎[0, 0], 𝑎[5, 1], 𝑎[12, 2], 𝑎[15, 1], 𝑎[17, 3], 𝑎[20, 2]

subject to the relations generated by

𝑣31𝑎[5, 1] = 𝑣
2
1𝑎[12, 2] = 𝑣1𝑎[15, 1] = 𝜈𝑎[12, 2] = 𝜈𝑎[17, 3] = 0
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1902 BEAUDRY et al.

and

𝜈2𝑎[15, 1] = 𝑣21𝑎[17, 3], 𝜈2𝑎[20, 2] = 𝑣31�̄�𝑎[0, 0].

Furthermore, the differentials are 𝔽2[𝑣1, 𝜈, �̄�, Δ8]∕(𝑣1𝜈, 𝜈3, 𝑣41�̄�)-linear.

Proof. This follows from the results of this section and the fact that Δ8 is a permanent cycle in the
elliptic spectral sequence spectral sequence of 𝑡𝑚𝑓. □

6 𝒕𝒎𝒇∗𝒀: THE DIFFERENTIALS AND EXTENSIONS

Our approach to computing the differentials of the elliptic spectral sequence for 𝜋∗(𝑡𝑚𝑓 ∧ 𝑌) is
based largely on the analysis of the action of �̄�. More precisely, since �̄� is a permanent cycle in the
elliptic spectral sequence for 𝑡𝑚𝑓, the elliptic spectral sequence for 𝑡𝑚𝑓 ∧ 𝑌 is a spectral sequence
of modules over 𝔽2[�̄�], meaning that every term is a 𝔽2[�̄�]-module and the differentials are maps
of 𝔽2[�̄�]-modules. Note that the 𝐸∞-term is �̄�-torsion, since �̄� is nilpotent in 𝜋∗𝑡𝑚𝑓. But all the
intermediate terms 𝐸𝑟 for 𝑟 ⩽ 23 do contain non-trivial �̄�-free elements, that is, those elements
whose multiplication with �̄�𝑖 is non-trivial for all 𝑖 ∈ ℕ.

Lemma6.1. The𝐸𝑟-term of the elliptic spectral sequence for 𝑡𝑚𝑓 ∧ 𝑌 has the following properties.

(1) All classes in filtration greater than (𝑟 − 1) are �̄�-free.
(2) All classes in filtration greater than or equal to 4 are divisible by �̄�.

Proof. We prove these two properties by induction on 𝑟 ⩾ 2. For 𝑟 = 2, this follows from Propo-
sition 5.5. Suppose now that 𝑟 > 2. Let 𝑎 be a 𝑑𝑟−1-cycle and [𝑎] ∈ 𝐸

𝑠,𝑡
𝑟 the corresponding class.

Suppose that 𝑎 lives in filtration 𝑠with 𝑠 > (𝑟 − 1). We have that �̄�[𝑎] = 0 if and only if there exists
𝑏 ∈ 𝐸𝑟−1 such that 𝑑𝑟−1(𝑏) = �̄�𝑎. Then, 𝑏 must live in filtration (4 + 𝑠) − (𝑟 − 1) > 4. By the sec-
ond property, 𝑏 is divisible by �̄�, that is, there exists 𝑐 ∈ 𝐸𝑟−1 such that �̄�𝑐 = 𝑏. As a consequence
of the �̄�-linearity, �̄�𝑑𝑟−1(𝑐) = 𝑑𝑟−1(𝑏) = �̄�𝑎, and so �̄�(𝑑𝑟−1(𝑐) − 𝑎) = 0. Since (𝑑𝑟−1(𝑐) − 𝑎) ∈ 𝐸𝑟−1
lives in filtration 𝑠 greater than 𝑟 − 2, it is �̄�-free by the second property. It follows that 𝑑𝑟−1(𝑐) = 𝑎,
and so [𝑎] = 0. Therefore, the 𝐸𝑟-term has the first property.
For the second property, suppose that 𝑎 lives in filtration greater than or equal to 4. By the

second property for 𝐸𝑟−1, there exists 𝑏 ∈ 𝐸𝑟−1 such that �̄�𝑏 = 𝑎. It suffices to prove that 𝑏 is a
𝑑𝑟−1-cycle. Suppose that 𝑑𝑟−1(𝑏) = 𝑐. The latter implies that 𝑐 lives in filtration greater that (𝑟 − 2),
hence is �̄�-free by the first property. Since 𝑎 is a 𝑑𝑟−1-cycle by assumption, we have, by �̄�-linearity,
that

0 = 𝑑𝑟−1(𝑎) = 𝑑𝑟−1(�̄�𝑏) = �̄�𝑐.

This means that 𝑐 = 0 and so 𝑏 is a 𝑑𝑟−1-cycle, as required. □

Terminology.

(1) For a class 𝑥 ∈ 𝐸𝑟 having filtration less than four, we call the subset {�̄�𝑖𝑥|𝑖 ∈ ℕ} ⊂ 𝐸𝑟 the �̄�-
family of 𝑥. A �̄�-family is called free if it contains infinitelymany elements and is called torsion
otherwise.
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1903

(2) Let 𝑥, 𝑦 ∈ 𝐸2 have filtration less than four. We say that a �̄�-family of 𝑥 is truncated by the
�̄�-family of 𝑦 if there exists 𝑟 such that 𝑑𝑟(�̄�𝑛𝑦) = �̄�𝑛+𝑙𝑥 for all 𝑛 ∈ ℕ.

By part (2) of the above lemma, at any term of the spectral sequence, every class belongs to
some �̄�-family. The following corollary tells us how these �̄�-families are organized.

Corollary 6.2.

(1) At any term of the spectral sequence, all non-zero �̄�-power torsion classes survive to the 𝐸∞-term.
(2) Every �̄�-free family consisting of permanent cycles is truncated uniquely by another �̄�-free family.

More precisely, if 0 ≠ 𝑎 ∈ 𝐸𝑟 is a permanent cycle which generates a �̄�-free family, then there
exists a unique integer 𝑟′ ⩾ 𝑟 for which there exists 𝑏 ∈ 𝐸𝑟′ having filtration less than four, such
that

𝑑𝑟′(�̄�
𝑛𝑏) = �̄�𝑛+𝑙𝑎

for all 𝑛 ∈ ℕ, where 𝑙 is determined by 𝑟′, the filtration of 𝑎 and that of 𝑏, andmoreover, {�̄�𝑖𝑎|0 ⩽
𝑖 ⩽ 𝑙 − 1} consists of non-trivial permanent cycles surviving to the 𝐸∞-term.

Proof. For part (1), let 𝑎 ∈ 𝐸𝑟 be a non-zero �̄�-power torsion class. By part (1) of Lemma 6.1, 𝑎 is in
filtration less than or equal to 𝑟 − 1. It follows that 𝑎 cannot be hit by any differential from the 𝐸𝑟-
term onwards. Moreover, by part (1) of Lemma 6.1 again, the possible targets of 𝑑𝑟′(𝑎), 𝑟′ ⩾ 𝑟 are
�̄�-free classes. Since 𝑎 ∈ 𝐸𝑟 is �̄�-power torsion, it is a permanent cycle, by �̄�-linearity. Therefore,
𝑎 persists to the 𝐸∞-term.
For part (2), let 𝑎 be a permanent cycle of filtration strictly less than four which is �̄�-free at the

𝐸𝑟-term. Then the �̄�-family of 𝑎 consists of permanent cycles. Since �̄� is nilpotent at the𝐸∞-termof
the elliptic spectral sequence for 𝑡𝑚𝑓, some power of �̄�-multiple of 𝑎must be hit by a differential.
Thus, there exists a smallest integer 𝑟′ ⩾ 𝑟 and a smallest 𝑙 ∈ ℕ for which there exists 𝑏 ∈ 𝐸𝑟′
such that 𝑑𝑟′(𝑏) = �̄�𝑙𝑎. By the minimality of 𝑟′, 𝑎 is �̄�-free at the 𝐸𝑟′ -term, so is 𝑏, because by �̄�-
linearity, 𝑑𝑟′(�̄�𝑛𝑏) = �̄�𝑙+𝑛𝑎 for all 𝑛 ∈ ℕ. It also follows from the latter that all the classes �̄�𝑘𝑎 for
𝑘 ⩽ 𝑙 − 1 are non-zero �̄�-power torsion classes on the𝐸𝑟′+1-term, hence survives to the𝐸∞-termby
part (1).
Finally, we claim that 𝑏 has filtration less than four. If 𝑏 had filtration greater than or equal

to 4, then 𝑏 would be divisible by �̄�, that is, there would exist 𝑐 ∈ 𝐸𝑟′ such that �̄�𝑐 = 𝑏, by
Lemma 6.1 part (2). By �̄�-linearity, we have that �̄�𝑙𝑎 = 𝑑𝑟′(𝑏) = �̄�𝑑𝑟′ (𝑐), and so �̄�(�̄�𝑙−1𝑎 − 𝑑𝑟′(𝑐)) =
0. This implies that 𝑑𝑟′(𝑐) = 𝜅𝑙−1𝑎 because 𝑑𝑟′(𝑐) − �̄�𝑙−1𝑎, having filtration at least 𝑟′, is �̄�-
free, by Lemma 6.1 part (1). This contradicts the minimality of 𝓁, so 𝑏 has filtration less than
four. □

Slogan 6.3. The �̄�-free families at the 𝐸𝑟-page come in pairs. The first member of the pair is a
family consisting of permanent cycles. The secondmember is a family which eventually supports
differentials (that is, possibly at a later page) to truncate the first family.

Corollary 6.4. At the 𝐸𝑟-term, we have the following.

(1) The homomorphism 𝐸𝑠,𝑡𝑟 → 𝐸𝑠,𝑡+192𝑟 induced by multiplication by Δ8 is an injection for all 𝑠
and 𝑡.

(2) If 𝑎 is a class of the 𝐸2-term such that Δ8𝑎 is a 𝑑𝑟-cycle, then 𝑎 is also a 𝑑𝑟-cycle.
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1904 BEAUDRY et al.

Proof. We prove part (1) by induction on 𝑟 ⩾ 2. For 𝑟 = 2, this can be seen from the explicit struc-
ture of the𝐸2-term. Suppose the𝐸𝑟′ -termhas these properties for 𝑟′ < 𝑟. Let us prove part (1) for𝐸𝑟.
Let 𝑎 ∈ 𝐸𝑟−1 represent a class of 𝐸𝑟. If Δ8[𝑎] = 0 ∈ 𝐸𝑟. This means that there exists 𝑏 ∈ 𝐸𝑟−1 such
that 𝑑𝑟−1(𝑏) = Δ8𝑎. It is obvious that 𝑏 lives in stem at least 192, hence there exists 𝑐 ∈ 𝐸𝑟−1 such
that 𝑏 = Δ8𝑐, by the induction hypothesis. It follows that Δ8(𝑑𝑟−1(𝑐) − 𝑎) = 0, and so 𝑑𝑟−1(𝑐) = 𝑎
because of part (1) of the induction hypothesis. Thus, [𝑎] = 0 ∈ 𝐸𝑟, as needed.
For part (2), by induction, suppose that 𝑎 is a 𝑑𝑟−1-cycle. We need to prove that 𝑎 is a 𝑑𝑟-cycle.

In effect, if 𝑑𝑟(𝑎) = 𝑏, then

0 = 𝑑𝑟(Δ
8𝑎) = Δ8𝑑𝑟(𝑎) = Δ

8𝑏.

By part (1), 𝑏 = 0, and so 𝑑𝑟(𝑎) = 0, as needed. □

Finally, we will also use the following result to establish the differentials.

Lemma 6.5 (Vanishing line). The spectral sequence for 𝜋∗𝑡𝑚𝑓 ∧ 𝑌 degenerates at the 𝐸24-term
and has a horizontal vanishing line at 𝑠 = 24, that is, 𝐸𝑠,𝑡

24
= 𝐸𝑠,𝑡∞ = 0 for 𝑠 ⩾ 24.

Proof. We know that �̄�6 is hit by a differential 𝑑23 in the elliptic spectral sequence for 𝑡𝑚𝑓, see
[2]. This means that at the 𝐸24-term of the elliptic spectral sequence for 𝑡𝑚𝑓 ∧ 𝑌, all the classes
are annihilated by �̄�6, hence are �̄�-power torsion. Therefore, by Lemma 6.1, all the classes in the
𝐸24-term are in filtrations less than 24, meaning that the spectral sequence has the horizontal
vanishing line at 𝑠 = 24, that is, 𝐸𝑠,𝑡𝑟 = 0 for 𝑠 ⩾ 24 and 𝑟 ⩾ 24. □

Remark 6.6. The cofiber sequence

𝑉(0)
𝑖
→̂ 𝑌

𝑝
→̂ Σ2𝑉(0)

𝜂
→̂ Σ𝑉(0)

gives rise to maps of spectral sequences

𝑖∗ ∶ 𝐸
𝑠,𝑡
2
(𝑉(0)) → 𝐸𝑠,𝑡

2
(𝑌), 𝑝∗ ∶ 𝐸

𝑠,𝑡
2
(𝑌) → 𝐸𝑠,𝑡−2

2
(𝑉(0))

as well as a long exact sequence

… → 𝑡𝑚𝑓∗+1𝑉(0)
𝜂
→̂ 𝑡𝑚𝑓∗𝑉(0)

𝑖∗
^̂→ 𝑡𝑚𝑓∗𝑌

𝑝∗
^̂→ 𝑡𝑚𝑓∗−1𝑉(0) → … (6.7)

6.1 The 𝒅𝟑, 𝒅𝟓 and 𝒅𝟕-differentials

Note that for 𝑟 even, 𝐸𝑟(𝑌) ≅ 𝐸𝑟+1(𝑌) since the spectral sequence is concentrated in bi-degrees
(𝑠, 𝑡) with 𝑡 even. The differentials in this section are depicted in Figures 14, 15, 16, and 17. In
addition, large charts of the elliptic spectral sequence for 𝑡𝑚𝑓∗𝑌 can be found in [7].

Proposition 6.8. There is no non-trivial 𝑑3-differential, and so 𝐸3(𝑌) ≅ 𝐸5(𝑌).

Proof. Since Δ is a 𝑑3-cycle in the elliptic spectral sequence of 𝑡𝑚𝑓, the 𝑑3-differentials are
𝔽2[𝑣1, 𝜈, �̄�, Δ]∕(𝑣1𝜈, 𝜈

3, 𝑣4
1
�̄�)-linear. All the generators listed in Corollary 5.13 are 𝑑3-cycles for

degree reasons. □
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1905

F IGURE 14 𝑑5-differentials in stems 0 to 48 and �̄�-free generators at 𝐸9

We then get the following result for degree reasons.

Corollary 6.9. The classes in stems 𝑡 − 𝑠 < 24 are permanent cycles.

Lemma 6.10. The 𝑑5-differentials are linear with respect to �̄�, 𝜈, 𝑣1, Δ2 and are determined by

𝑑5(Δ) = 𝜈�̄�, 𝑑5(Δ𝑎[5, 1]) = 𝜈�̄�𝑎[5, 1]

𝑑5(Δ𝑎[15, 1]) = 𝜈�̄�𝑎[15, 1], 𝑑5(Δ𝑎[20, 2]) = 𝜈�̄�𝑎[20, 2]

under multiplication by elements of 𝔽2[Δ2, �̄�, 𝜈, 𝑣1]∕(𝑣1𝜈, 𝜈3, �̄�𝑣41).

Proof. For linearity, we only need to prove the Δ2-linearity. Note that 𝑑5(Δ) = 𝜈�̄� in the elliptic
spectral sequence of 𝑡𝑚𝑓. By Leibniz rule and the fact that 𝐸2(𝑌) is 2-torsion,

𝑑5(Δ
2𝑥) = 2Δ𝑑5(Δ)𝑥 + Δ

2𝑑5(𝑥) = Δ
2𝑑5(𝑥).

Using the module structure over the elliptic spectral sequence of 𝑡𝑚𝑓, we get

𝑑5(Δ𝑎[5, 1]) = 𝑑5(Δ)𝑎[5, 1] + Δ𝑑5(𝑎[5, 1]) = 𝜈�̄�𝑎[5, 1].

The other arguments are similar. □

Lemma 6.11. There are no non-trivial 𝑑7-differentials.

Proof. This is an immediate consequence of sparseness. □

The following observation will be crucial for our computation and is motivated by Slogan 6.3.

Corollary 6.12 (Figure 14). The �̄�-free families on the 𝐸9-term of the elliptic spectral sequence of
𝑡𝑚𝑓 ∧ 𝑌 in stems 0 ⩽ 𝑡 − 𝑠 < 48 are given by the following 24 classes

𝑎[0, 0] 𝑎[2, 0] = 𝑣1𝑎[0, 0] 𝑎[4, 0] = 𝑣21𝑎[0, 0]

𝑎[5, 1] 𝑎[7, 1] = 𝑣1𝑎[5, 1] 𝑎[9, 1] = 𝑣21𝑎[5, 1]
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1906 BEAUDRY et al.

𝑎[12, 2] 𝑎[14, 2] = 𝑣1𝑎[12, 2] 𝑎[15, 1]

𝑎[17, 3] 𝑎[19, 3] = 𝑣1𝑎[17, 3] 𝑎[20, 2]

𝑎[26, 0] = Δ𝑣1𝑎[0, 0] 𝑎[28, 0] = Δ𝑣21𝑎[0, 0] 𝑎[30, 0] = Δ𝑣31𝑎[0, 0]

𝑎[30, 2] = Δ𝜈2𝑎[0, 0] 𝑎[31, 1] = Δ𝑣1𝑎[5, 1] 𝑎[33, 1] = Δ𝑣21𝑎[5, 1]

𝑎[35, 3] = Δ𝜈2𝑎[5, 1] 𝑎[36, 2] = Δ𝑎[12, 2] 𝑎[38, 2] = Δ𝑣1𝑎[12, 2]

𝑎[41, 3] = Δ𝑎[17, 3] 𝑎[43, 3] = Δ𝑣1𝑎[17, 3] 𝑎[45, 3] = Δ𝑣21𝑎[17, 3]

All �̄�-free families at𝐸9 are given by these classes and theirΔ2-multiples. All the elements in filtrations
four and above are �̄�-multiples of these generators.

The generators of the �̄�-free families in stems 0 ⩽ 𝑡 − 𝑠 < 48 are presented in Figure 14. The �̄�-
free generators in the range 0 ⩽ 𝑡 − 𝑠 < 192 are given by products of thesewith 1,Δ2, Δ4 andΔ6 and
all other �̄�-free generators are products of the latter ones with the powers of Δ8. By Corollary 6.2,
each �̄�-free family consisting of permanent cycles is truncated by one other �̄�-free family, and so
by exactly one because of sparseness — any two distinct �̄�-free families have different bi-degrees.
Thus, using theΔ8-linearity andCorollary 6.4, we see that the 24 × 4 �̄�-free generators in the range
0 ⩽ 𝑡 − 𝑠 < 192 organize themselves as follows. Exactly half of them are permanent cycles and the
other half are not. The �̄�-family of each non-permanent �̄�-free generator supports a differential
that hits the �̄�-family of exactly one of the other permanent generators. Note that the truncation
must begin in stems less than four byCorollary 6.2. This allows us to determine longer differentials
before settling shorter ones.
All 24 �̄�-free generators in the range 0 ⩽ 𝑡 − 𝑠 < 48 are permanent cycles due to sparseness and

in the next section we will find their ‘partners’.

6.2 The 𝒅𝟗-differentials

To analyze the 𝑑9-differentials, wemake the following observation, which, in some sense, is a very
small part of the geometric boundary theorem as in [9, appendix 4].

Lemma 6.13. Let 𝑎 ∈ 𝐸𝑠,𝑡𝑟 (𝑌) so that 𝑝∗(𝑎) ∈ 𝐸
𝑠,𝑡−2
𝑟 (𝑉(0)). Suppose 𝑝∗(𝑎) persists to the 𝐸𝑟′ -term

for some 𝑟′ ⩾ 𝑟 and that there is a non-trivial differential, 𝑑𝑟′(𝑝∗𝑎) ≠ 0. Then 𝑑𝑟′′ (𝑎) ≠ 0 for some
𝑟′′ ⩽ 𝑟′.

Proof. This is a straightforward application of naturality. Indeed, the assumptions imply that 𝑎
cannot be hit by a differential 𝑑𝑟′′ for 𝑟′′ ⩽ 𝑟′. Furthermore, if 𝑎 persists to the 𝐸𝑟′ term, then
𝑑𝑟′(𝑎) = 𝑏 for 𝑏 such that 𝑝∗(𝑏) = 𝑑𝑟′(𝑝∗(𝑎)). □

Lemma 6.14 (Figures 15, 16, and 17). There are 𝑑9-differentials, for 𝑖 = 0, 1,

(1) 𝑑9(Δ
4𝑖+2𝑎[0, 0]) = �̄�2Δ4𝑖𝑣1𝑎[5, 1] (7) 𝑑9(Δ

4𝑖+2𝑎[12, 2]) = �̄�2Δ4𝑖𝑣1𝑎[17, 3]

(2) 𝑑9(Δ
4𝑖+2𝑎[5, 1]) = �̄�2Δ4𝑖𝑎[12, 2] (8) 𝑑9(Δ

4𝑖+3𝑣1𝑎[5, 1]) = �̄�
2Δ4𝑖+1 𝑣1𝑎[12, 2]

(3) 𝑑9(Δ
4𝑖+3𝑣1𝑎[0, 0]) = �̄�

2Δ4𝑖+1𝑣2
1
𝑎[5, 1] (9) 𝑑9(Δ

4𝑖+2𝑣1𝑎[0, 0]) = �̄�
2Δ4𝑖𝑣2

1
𝑎[5, 1]
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1907

F IGURE 15 𝑑5 and 𝑑9 differentials in stems 46 to 86

(4) 𝑑9(Δ
4𝑖+2𝑎[17, 3]) = �̄�3Δ4𝑖𝑣2

1
𝑎[0, 0] (10) 𝑑9(Δ

4𝑖+2𝑣1𝑎[5, 1]) = �̄�
2Δ4𝑖𝑣1𝑎[12, 2]

(5) 𝑑9(Δ
4𝑖+3𝑎[17, 3]) = �̄�3Δ4𝑖+1𝑣2

1
𝑎[0, 0] (11) 𝑑9(Δ

4𝑖+3𝑣1𝑎[17, 3]) = �̄�
3Δ4𝑖+1𝑣3

1
𝑎[0, 0]

(6) 𝑑9(Δ
4𝑖+3𝑎[12, 2]) = �̄�2Δ4𝑖+1𝑣1𝑎[17, 3] (12) 𝑑9(Δ

4𝑖+3𝑣1𝑎[12, 2]) = �̄�
2Δ4𝑖+1𝑣2

1
𝑎[17, 3]

Proof. Let 𝑖 = 0. The differentials (1) and (3) are the image of a differential in 𝐸2(𝑉(0)) under
𝑖∗. The second differential (2) follows 𝑣1-linearity and from the fact that 𝑑9(Δ4𝑖+2𝑥) = �̄�2Δ4𝑖𝜅 in
𝐸2(𝑉(0)), 𝑖∗(𝑥) = 𝑣1𝑎[5, 1] and 𝑖∗(𝜅) = 𝑣1𝑎[12, 2].
For (4), we use Lemma 6.13. In 𝐸∗(𝑉(0)), we have 𝑑11(Δ2𝜂𝜅) = 𝜂2�̄�3. Since 𝑝∗(Δ2𝑎[17, 3]) =

Δ2𝜂𝜅, Δ2𝑎[17, 3] supports a differential of length at most 11. This 𝑑9 is the only choice. The
argument for (5) is the same, with one more power of Δ.
For (6), note that 𝑝∗(Δ3𝑎[12, 2]) = Δ3𝑣1𝜂𝑥. Since 𝑑9(𝜂𝑣1𝑥) = 𝜈𝜅�̄�2Δ, the class Δ3𝑎[12, 2]

supports a differential of length at most 9. This is the only choice.
The arguments (1)–(6) when 𝑖 = 1 are the same as those for 𝑖 = 0.
For (7)–(8), note that from our computation above, 𝑡𝑚𝑓59𝑌 ≅ ℤ∕2. This forces (7) when 𝑖 = 0.

Arguing in a similar way, 𝑡𝑚𝑓79𝑌 = 0, 𝑡𝑚𝑓155𝑌 ≅ ℤ∕2 and 𝑡𝑚𝑓175𝑌 = 0 imply the other 𝑑9s.
The 𝑑9-differentials (9)–(12) follow from those of (1), (2), (5), (6), respectively, by 𝑣1-

linearity. □

Remark 6.15. It turns out these are all the 𝑑9-differentials. For degree reasons, there can be very
few other 𝑑9s. The class Δ5𝑣1𝑎[0, 0] is the image of a 𝑑9-cycle in 𝐸9(𝑉(0)) so does not support a
𝑑9. The only other possible 𝑑9 differentials for degree reasons are as follows.

∙ A nontrivial 𝑑9 on Δ5𝑎[17, 3]. This does not happen since it implies a nontrivial 𝑑9 on
𝑣1Δ

5𝑎[17, 3] = Δ4𝑎[43, 3], but this family has already been paired: it is truncated by Δ6𝑎[36, 2].
∙ A nontrivial 𝑑9 on Δ4𝑎[17, 3], truncating the �̄�-family of Δ2𝑎[4, 0]. We will see below that this
does not happen, but at this point, we leave this undecided.
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1908 BEAUDRY et al.

F IGURE 16 𝑑5 and 𝑑9 differentials in stems 86 to 160
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1909

F IGURE 17 𝑑5 and 𝑑9 differentials in stems 160 to 194

6.3 Higher differentials

We begin our analysis using Slogan 6.3. The reader should remember that we only need to ana-
lyze the generators of the �̄�-free families, which are in filtration less than four. All differentials
discussed in this section are depicted in Figures 18 and 20.

Lemma 6.16. There are differentials

(1) 𝑑19(Δ4𝑎[5, 1]) = �̄�5𝑎[0, 0]
(2) 𝑑19(Δ5𝑣1𝑎[5, 1]) = �̄�5Δ𝑣1𝑎[0, 0]
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1910 BEAUDRY et al.

F IGURE 18 𝑑11 to 𝑑23 differentials in stems 46 to 120
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1911

F IGURE 19 𝑑11 to 𝑑23 differentials in stems 120 to 160

(3) 𝑑19(Δ4𝑎[36, 2] = �̄�5𝑎[31, 1]
(4) 𝑑19(Δ4𝑎[41, 3]) = �̄�5𝑎[36, 2]
(5) 𝑑19(Δ4𝑎[26, 0]) = �̄�4𝑎[41, 3]

Proof. For (1), since the element �̄�4 ∈ 𝜋80(𝑡𝑚𝑓 ∧ 𝑉(0)) is not divisible by 𝜂 and �̄�5 ∈ 𝜋100(𝑡𝑚𝑓 ∧
𝑉(0)) is divisible by 𝜂, the �̄�-family of 𝑎[0, 0] in the elliptic spectral sequence for 𝑡𝑚𝑓 ∧ 𝑌must be
truncated at �̄�5𝑎[0, 0]. Remembering that the source has to have filtration less than four, the only
possibility is this differential.
Inspection then shows that the differentials (2)–(4) are the only possibilities to satisfy

Slogan 6.3. □

Lemma 6.17. There are differentials

(1) 𝑑17(Δ4𝑎[0, 0]) = �̄�4𝑎[15, 1] and
(2) 𝑑17(Δ4𝑎[15, 1]) = �̄�4𝑎[30, 2]

Proof. For (1), note that in 𝜋∗(𝑡𝑚𝑓 ∧ 𝑉(0)), �̄�3𝑦 is not divisible by 𝜂 and �̄�4𝑦 = 0. The class 𝑦maps
to 𝑎[15, 1] under 𝑖∗ so it follows that the �̄�-family of 𝑎[15, 1] is truncated at �̄�4𝑎[15, 1]. The only
possibility is this differential.
For (2), using the long exact sequence, we obtain that 𝜋111(𝑡𝑚𝑓 ∧ 𝑌) = ℤ∕2. By part

Lemma 6.16 (3), the class �̄�4𝑎[31, 1] ∈ 𝐸17,1285 survives the spectral sequence and so detects the
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1912 BEAUDRY et al.

F IGURE 20 𝑑11 to 𝑑23 differentials in stems 160 to 194

unique non-trivial class of 𝜋111(𝑡𝑚𝑓 ∧ 𝑌). This implies that the class Δ4𝑎[15, 1] ∈ 𝐸
1,112
5 must

support a differential. Taking into account the 𝑑9 differentials proves (2). □

Lemma 6.18. There is a differential 𝑑23(Δ4𝑎[30, 2]) = �̄�6𝑎[5, 1].

Proof. By inspection, taking into account the 𝑑9s, the only generators that can be paired with
𝑎[5, 1] are Δ4𝑎[30, 2] and Δ4𝑎[30, 0]. However, it cannot be Δ4𝑎[30, 0] because such a differential
would have length 25, contradicting Lemma 6.5. □

Lemma 6.19. For 𝑖 = 0, 1, there are differentials:

(1) 𝑑11(Δ4𝑖+2𝑎[15, 1]) = �̄�3Δ4𝑖𝑎[2, 0] and
(2) 𝑑11(Δ4𝑖+2𝑎[28, 0]) = �̄�2Δ4𝑖𝑎[35, 3]

Proof. In (1), for both 𝑖 = 0, 1, these are the image of differentials in the spectral sequence𝐸∗(𝑉(0)).
Both source and targets survive to 𝐸11(𝑌) and so these two differentials occur.
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1913

For (2), the long exact sequence shows that 𝜋75(𝑡𝑚𝑓 ∧ 𝑌) = ℤ∕2. Lemma 6.17 (1) implies that
the class �̄�3𝑎[15, 1] ∈ 𝐸13,887 survives the spectral sequence and detects the unique non-trivial ele-
ment of the𝜋75(𝑡𝑚𝑓 ∧ 𝑌). On the other hand, the class �̄�2Δ𝜈2𝑎[5, 1] ∈ 𝐸

11,86
7 is a permanent cycle.

Thus, it must be hit by a differential and this is the possibility.
For 𝑖 = 1, by taking into account the 𝑑9-differentials and the 𝑑17-differential Lemma 6.17 (2),

we see that Δ4𝑎[35, 3] is a permanent cycle, which is �̄�-free at the 𝐸11-term. By inspection, the
only class which can truncate its 𝜅-family is Δ6𝑎[28, 0] by the indicated 𝑑11-differential. □

Lemma 6.20. There are differentials:

(1) 𝑑13(Δ2𝑎[30, 2]) = �̄�3𝑎[17, 3] and
(2) 𝑑13(Δ2𝑎[33, 1]) = �̄�3𝑎[20, 2]

Proof. For (1), it follows from (6.7) that 𝜋78(𝑡𝑚𝑓 ∧ 𝑌) ≅ ℤ∕2. By sparseness, either Δ2𝑎[30, 2] or
Δ2𝑎[30, 0] is a permanent cycle detecting the non-zero element of 𝜋78(𝑡𝑚𝑓 ∧ 𝑌). Suppose that

Δ2𝑎[30, 2] = Δ3𝜈2𝑎[0, 0]

is a permanent cycle detecting a class 𝛼 ∈ 𝜋78(𝑡𝑚𝑓 ∧ 𝑌). At 𝐸2, Δ3𝜈2𝑎[0, 0] is in the image of
𝑖∗ ∶ 𝐸2(𝑉(0)) → 𝐸2(𝑌) and so 𝑝∗(Δ3𝜈2𝑎[0, 0]) = 0. However, since 𝜋78(𝑡𝑚𝑓 ∧ 𝑉(0)) = 0, 𝑝∗𝛼 ≠

0 in 𝜋76(𝑡𝑚𝑓 ∧ 𝑉(0)) and so is detected by a non-zero class in filtration 𝑠 > 2, but such a class
does not exist. We conclude that Δ2𝑎[30, 0] is a permanent cycle and that Δ2𝑎[30, 2] supports the
stated differential.
For (2), by inspection, only Δ2𝑎[33, 1] and Δ4𝑎[5, 1] can support differentials truncating the

�̄�-family of 𝑎[20, 2]. But Δ4𝑎[5, 1] is already paired with 𝑎[0, 0]. □

Proposition 6.21. The following classes are �̄�-free permanent cycles:

(𝐴) ∶
Δ2𝑎[4, 0] Δ2𝑎[9, 1] Δ2𝑎[14, 2] Δ2𝑎[19, 3] Δ2𝑎[20, 2]

Δ2𝑎[30, 0] Δ2𝑎[35, 3] Δ2𝑎[45, 3] Δ4𝑎[17, 3] Δ4𝑎[20, 2]

and the following classes are not permanent cycles:

(𝐵) ∶
Δ6𝑎[4, 0] Δ6𝑎[9, 1] Δ6𝑎[14, 2] Δ6𝑎[19, 3] Δ6𝑎[20, 2]

Δ6𝑎[30, 0] Δ6𝑎[30, 2] Δ6𝑎[33, 1] Δ6𝑎[35, 3] Δ6𝑎[45, 3]

Consequently, in the elliptic spectral sequence for 𝑡𝑚𝑓 ∧ 𝑌, each generator in (B) truncates some
�̄�-multiple of one and only one generator in (A).

Proof. These are the remaining generators of �̄�-free families. No class in (B) can be a permanent
cycle because the �̄�-family of a class of (B) cannot be truncated. This means that all the 10 classes
of (B) are non-permanent cycles, and so all the 10 classes of (A) are permanent cycles. □

Lemma 6.22. We have the following differentials:

(1) 𝑑19(Δ
6𝑎[4, 0]) = �̄�4Δ2𝑎[19, 3] (5) 𝑑17(Δ

6𝑎[20, 2]) = �̄�4Δ2𝑎[35, 3]

(2) 𝑑19(Δ
6𝑎[9, 1]) = �̄�5Δ2𝑎[4, 0] (6) 𝑑13(Δ

6𝑎[33, 1]) = �̄�3Δ4𝑎[20, 2]

 17538424, 2022, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12263 by U
niversity O

f R
ochester, W

iley O
nline L

ibrary on [12/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1914 BEAUDRY et al.

(3) 𝑑19(Δ
6𝑎[14, 2]) = �̄�5Δ2𝑎[9, 1] (7) 𝑑17(Δ

6𝑎[35, 3]) = �̄�5Δ2𝑎[30, 0]

(4) 𝑑19(Δ
6𝑎[19, 3]) = �̄�5Δ2𝑎[14, 2] (8) 𝑑23(Δ

6𝑎[45, 3]) = �̄�6Δ2𝑎[20, 2]

Proof. Taking into account the differentials shown above, these are the only possible pairings
remaining between the classes in (B) which are the sources in (1)–(8) and classes of (A). □

Remark 6.23. There are only two generators in (B) left living in the same topological degree,
namely, Δ6𝑎[30, 0] and Δ6𝑎[30, 2]. Each of these supports a differential truncating the �̄�-families
of either Δ4𝑎[17, 3] or Δ2𝑎[45, 3] and one differential determines the other.

Determining the last differential pattern turns out to be unfortunately tricky (as far asweknow).
A crucial step towards settling the last differentials is to establish the following extension in the
𝐸∞-term of the elliptic spectral sequence for 𝑡𝑚𝑓 ∧ 𝑌.

Proposition 6.24. There is an exotic extension

𝜈2(𝜈Δ6𝑎[0, 0]) = �̄�2Δ4𝑎[17, 3].

To prove this extension, we need some intermediate results.

Lemma 6.25. In Ext∗,∗
Λ′
(𝐴′, 𝐴′∕(2, 𝑎1) ⊗ ∗(𝑌)), there is a Massey product

⟨𝜂, 𝜈, Δ4𝑎[12, 2]⟩ = Δ4𝑎[17, 3].
Proof. Since Δ4𝑎[12, 2] = 𝜂Δ4𝑎[11, 1] (see Lemma 5.10, also Figure 13), we have that

⟨𝜂, 𝜈, Δ4𝑎[12, 2]⟩ = ⟨𝜂, 𝜈, 𝜂Δ4𝑎[11, 1]⟩ ⊇ ⟨𝜂, 𝜈, 𝜂⟩Δ4𝑎[11, 1] = 𝜈2𝑎[11, 1] = 𝑎[17, 1].
The indeterminacy is zero since

𝜂 Ext2,114
Λ′

(𝐴′, 𝐴′∕(2, 𝑎1) ⊗ ∗(𝑌)) + Ext
1,6
Λ′
(𝐴′, 𝐴′∕(2))Δ4𝑎[12, 2] = 0.

□

Proposition 6.26. In Ext∗,∗
Λ′
(𝐴′,∗(𝑌)), there is a Massey product

⟨𝜂, 𝜈, Δ4𝑎[12, 2]⟩ = Δ4𝑎[17, 3].
Proof. Let 𝑓∗ ∶ Ext

∗,∗
Λ′
(𝐴′,∗(𝑌)) → Ext∗,∗

Λ′
(𝐴′, 𝐴′∕(2, 𝑎1) ⊗ ∗(𝑌)) be the map induced by the

Λ-comodule homomorphism ∗(𝑌) → 𝐴′∕(2, 𝑎1) ⊗ ∗(𝑌). By naturality of Massey products, we
have that

𝑓∗(⟨𝜂, 𝜈, Δ4𝑎[12, 2]⟩) ⊆ ⟨𝜂, 𝜈, 𝑓∗(Δ4𝑎[12, 2])⟩.
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1915

Further, 𝑓∗(Δ4𝑎[12, 2]) = Δ4𝑎[12, 2]. By Lemma 6.25, the above equation gives

𝑓∗(⟨𝜂, 𝜈, Δ4𝑎[12, 2]⟩) = Δ4𝑎[17, 3].
The pre-image of Δ4𝑎[17, 3] is the same-named class. The indeterminacy is zero. □

Lemma 6.27. There is an element of 𝜋108(𝑡𝑚𝑓 ∧ 𝑌) detected by Δ4𝑎[12, 2] and annihilated by �̄�2.

Proof. We have already determined 𝐸∞(𝑌) in stems 𝑡 − 𝑠 = 108, 148. We see that there is a short
exact sequence

0 → ℤ∕2{�̄�2Δ2𝑎[20, 2]} → 𝐺 → ℤ∕2{Δ4𝑎[12, 2]} → 0,

where 𝐺 ⊆ 𝜋108(𝑡𝑚𝑓 ∧ 𝑌) is the subgroup of elements detected in positive filtration. At the 𝐸∞-
term in stem 𝑡 − 𝑠 = 148, the only non-zero class in positive filtration is �̄�4Δ2𝑎[20, 2]. In particular,
�̄�2Δ4𝑎[12, 2] = 0. So, one of the classes detected by Δ4𝑎[12, 2] satisfies the claim. □

Wewill denote also byΔ4𝑎[12, 2] the element in𝜋108(𝑡𝑚𝑓 ∧ 𝑌), which is detected byΔ4𝑎[12, 2]
and is annihilated by �̄�2.

Proposition 6.28. There are the following relations in 𝜋∗(𝑡𝑚𝑓 ∧ 𝑌):

(1) 𝜈2[𝜈Δ6𝑎[0, 0]] ≠ 0 and
(2) 𝜂[𝜈Δ6𝑎[0, 0]] = 0

Proof. The class detected by 𝜈Δ6𝑎[0, 0] lifts to 𝜋∗(𝑡𝑚𝑓 ∧ 𝑉(0)) and there is a lift detected by 𝜈Δ6.
But in 𝜋∗(𝑡𝑚𝑓 ∧ 𝑉(0)), 𝜈2[𝜈Δ6] is not divisible by 𝜂. □

Now, we use the truncated spectral sequences of Subsection 2.1, applied to the elliptic spectral
sequence of 𝑡𝑚𝑓 ∧ 𝑌. As in Subsection 2.1, let

sk16(𝑡𝑚𝑓 ∧ 𝑌) = 𝑋0∕𝑋17

for 𝑋𝑛 the 𝑛th term of the 𝑋(4)-Adams tower of 𝑡𝑚𝑓 ∧ 𝑌. Then 𝐸∗,∗
𝑟,<17

(𝑌) as in Subsection
2.1 is a spectral sequence computing 𝜋∗sk16(𝑡𝑚𝑓 ∧ 𝑌), and it satisfies 𝐸

𝑠,∗
𝑟,<17

(𝑌) = 0 for 𝑠 ⩾ 17.
Furthermore, we have a map of spectral sequences

𝑇𝑠,𝑡𝑟 ∶ 𝐸
𝑠,𝑡
𝑟 (𝑌) → 𝐸𝑠,𝑡

𝑟,<17
(𝑌).

Proposition 6.29. In 𝜋∗(sk16(𝑡𝑚𝑓 ∧ 𝑌)), we have

⟨𝜂, 𝜈, Δ4𝑎[12, 2]⟩ = Δ4𝑎[17, 3].
Proof. In 𝜋∗(𝑡𝑚𝑓 ∧ 𝑌), the product 𝜈Δ4𝑎[12, 2], if not trivial, is detected in filtration 17. It follows
that 𝜈Δ4𝑎[12, 2] is equal to zero in 𝜋∗(sk16(𝑡𝑚𝑓 ∧ 𝑌)). Thus, the Toda bracket ⟨𝜂, 𝜈, Δ4𝑎[12, 2]⟩
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1916 BEAUDRY et al.

can be formed. Proposition 6.26 means that in 𝐸𝑠,𝑡
2,<17

(𝑌), there is Massey product

⟨𝜂, 𝜈, Δ4𝑎[12, 2]⟩ = Δ4𝑎[17, 3].
The conditions of the Moss Convergence Theorem [32] are satisfied, so the Toda bracket⟨𝜂, 𝜈, Δ4𝑎[12, 2]⟩ contains Δ4𝑎[17, 3] and the indeterminacy is zero. □

Proposition 6.30. In the elliptic spectral sequence for 𝑡𝑚𝑓 ∧ 𝑌, there is an exotic extension

𝜂𝑎[152, 2] = �̄�2Δ4𝑎[17, 3].

Proof. Since �̄�2Δ4𝑎[17, 3] lives in filtration 𝑠 = 11, it suffices to prove that extension in the𝐸∞-term
of the spectral sequence for sk16(𝑡𝑚𝑓 ∧ 𝑌). The above proposition and the choice of Δ4𝑎[12, 2]
imply that

�̄�2Δ4𝑎[17, 3] = ⟨𝜂, 𝜈, Δ4𝑎[12, 2]⟩�̄�2 = 𝜂⟨𝜈, Δ4𝑎[12, 2], �̄�2⟩.
Since �̄�2Δ4𝑎[17, 3] ≠ 0 at 𝐸∞, ⟨𝜈, Δ4𝑎[12, 2], �̄�2⟩must be non-trivial, and it must be detected by a
class which is not in the kernel of 𝜂. This forces ⟨𝜈, Δ4𝑎[12, 2], �̄�2⟩ to be detected by 𝑎[152, 2], and
so 𝜂𝑎[152, 2] is detected by �̄�2Δ4𝑎[17, 3]. □

Proof of Proposition 6.24. Let 𝛽 = [𝜈Δ6𝑎[0, 0]]. By Proposition 6.28, 𝜂𝛽 = 0 and we can form the
Toda bracket ⟨𝜈, 𝜂, 𝛽⟩. Then

𝜂⟨𝜈, 𝜂, 𝛽⟩ = ⟨𝜂, 𝜈, 𝜂⟩𝛽 = 𝜈2𝛽.
On the other hand, 𝜈2𝛽 ≠ 0 by Proposition 6.28. It follows that ⟨𝜈, 𝜂, 𝛽⟩ ≠ 0. We see that it must
be detected by 𝑎[152, 2]. So, 𝜂𝑎[152, 2] = 𝜈2𝛽 and Proposition 6.30 implies that 𝜈2𝛽 is detected by
�̄�2Δ4𝑎[17, 3]. □

Lemma 6.31. There are differentials:

(1) 𝑑13(Δ6𝑎[30, 2]) = �̄�3Δ4𝑎[17, 3] and
(2) 𝑑19(Δ6𝑎[30, 0]) = �̄�4Δ2𝑎[45, 3]

Proof. Let

𝑡𝑚𝑓 ∧ 𝑌 ← (𝑡𝑚𝑓 ∧ 𝑌)1 ← (𝑡𝑚𝑓 ∧ 𝑌)2 ← …

be the Adams tower associated to the 𝑋(4)-based resolution of 𝑡𝑚𝑓 ∧ 𝑌. We consider its 1-co-
truncated tower and the induced map of spectral sequences

𝑐𝑇𝑠,𝑡𝑟 ∶ 𝐸
𝑠,𝑡
𝑟,⩾1

→ 𝐸𝑠,𝑡𝑟 .

By Lemma 2.3, 𝑐𝑇𝑠,𝑡𝑟 is surjective for 𝑠 ⩾ 1.
Let 𝑎 = 𝜈2Δ6𝑎[0, 0] ∈ 𝐸2,150+2

2
. This is a permanent cycle representing a unique non-zero ele-

ment of 𝜋150(𝑡𝑚𝑓 ∧ 𝑌), which in this proof we denote by 𝛼. Since 𝑎 has positive filtration, there
is a class �̄� ∈ 𝐸2,150+2

2,⩾1
such that 𝑐𝑇2(�̄�) = 𝑎 and the surjectivity of 𝑐𝑇∞ guarantees that we can

choose �̄� to be a permanent cycle. It then detects classes �̄� ∈ 𝜋150((𝑡𝑚𝑓 ∧ 𝑌)1) that map to 𝛼.
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1917

Since 𝜈𝛼 is detected by 𝑏 = �̄�2Δ4𝑎[17, 3] ∈ 𝐸11,153+11∞ (Proposition 6.24), 𝜈�̄�must be detected in
𝐸𝑠,153+𝑠∞ (𝑐𝑇1) for 3 ⩽ 𝑠 ⩽ 11. Since 𝐸

𝑠,153+𝑠
2

(𝑐𝑇1) = 0 for 3 ⩽ 𝑠 ⩽ 10 (this is true for 𝐸
∗,∗
2
), 𝜈�̄� must

be detected by a lift �̄� of 𝑏.
The relation �̄�𝜈 = 0 ∈ 𝜋∗𝑡𝑚𝑓 implies that �̄�𝜈�̄� = 0 ∈ 𝜋∗((𝑡𝑚𝑓 ∧ 𝑌)1). This implies that𝑑𝑟(𝑐) =

�̄��̄� for some non-trivial element 𝑐 ∈ 𝐸15−𝑟,174+(15−𝑟)
𝑟,⩾1

. As 𝐸0,∗
2,⩾1

= 0, 𝑐must live in filtration 1 ⩽ 𝑠 ⩽
13, and hence so does 𝑐𝑇𝑟(𝑐). In particular, 𝑐𝑇𝑟(𝑐) ≠ Δ6𝑎[30, 0]. However, we find that

𝑑𝑟(𝑐𝑇𝑟(𝑐)) = 𝑐𝑇𝑟(�̄��̄�) = �̄� ⋅ 𝑐𝑇𝑟(�̄�) = �̄�
3Δ4𝑎[17, 3].

The only way for this to make sense is if 𝑐𝑇𝑟(𝑐) is equal to Δ6𝑎[30, 2] and this is the desired
differential (1).
This differential then determines (2) as noted in Remark 6.23. □

Remark 6.32. From this discussion, we also learn that there is a non-trivial class in 𝑖∗𝜋150𝑉(0)
which is detected by 𝑎[153, 11].

6.4 Exotic extensions

In this section, we resolve the exotic 2, 𝜂, 𝜈 and 𝑣1 extensions in the elliptic spectral sequence of
𝑡𝑚𝑓 ∧ 𝑌. The extensions are depicted in Figures 22 and 23.
We begin with the exotic 𝜂-extensions, which are few. To determine them, we use the following

strategies. First, the long exact sequence

… → 𝑡𝑚𝑓∗+1𝑉(0)
𝜂
→̂ 𝑡𝑚𝑓∗𝑉(0)

𝑖∗
^̂→ 𝑡𝑚𝑓∗𝑌

𝑝∗
^̂→ 𝑡𝑚𝑓∗−1𝑉(0) → … (6.33)

We use the following basic, but useful facts.

Lemma 6.34. For 𝑎 ∈ 𝑡𝑚𝑓∗𝑌 and 𝑏 ∈ 𝑡𝑚𝑓∗𝑉(0),

(1) if 𝑎 = 𝑖∗𝑏, then 𝜂𝑎 = 𝑖∗𝜂𝑏 = 0,
(2) 𝑝∗𝜂𝑎 = 𝜂𝑝∗𝑎 = 0, and
(3) 𝑣1𝜂𝑎 = 𝜂𝑣1𝑎.

Proof. These are easy consequences of the long exact sequence on homotopy groups (6.33) com-
bined with the fact that composition as well as the smash product induces the 𝜋∗𝑆0-module
structure in the stable homotopy category. □

Note further that Corollary 2.12 as described in Remark 2.16 gives a way to relate extensions in
different stems between the 𝑣1-power torsion classes. We also use Lemmas 2.21 and 2.23.
A stem-by-stem analysis using the above techniques then allows us to determine that the only

non-trivial exotic 𝜂-extensions are as follows:

Lemma 6.35. In the elliptic spectral sequence of 𝑌, there are exotic extensions

(1) 𝜂[Δ2𝜈𝑎[5, 1]] = �̄�2𝑎[17, 3]
(2) 𝜂[Δ4𝜈𝑎[5, 1]] = �̄�5𝑎[5, 1]
(3) 𝜂[Δ6𝜈𝑎[5, 1]] = �̄�2[Δ4𝑎[17, 3]]
(4) 𝜂[Δ6𝜈𝑎[20, 2]] = �̄�5[Δ2𝑎[20, 2]]
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1918 BEAUDRY et al.

F IGURE 2 1 Classical Adams spectral sequence 𝐸2-pages for 𝑡𝑚𝑓 ∧ 𝑉(0) (top) and 𝑡𝑚𝑓 ∧ 𝑌 (bottom)
computed with Bruner’s Ext-program [18]

There are no other exotic 𝜂-extensions.

Proof. Extension (1) follows fromLemma 2.23. Extensions (2) and (4) follow from duality: (2) from
𝜂[Δ2𝑎[20, 2]] = [Δ2𝑣2

1
𝑎[17, 3]] and (4) from 𝜂𝑎[5, 1] = 𝜈2𝑎[0, 0]. Finally, (3) is Proposition 6.30.

All possible exotic 𝜂-extensions are shown not to occur using Lemma 6.34, duality and
Lemma 2.23. In particular, the possible 𝜂-extensions with source in stems 52 ⩽ 𝑡 − 𝑠 ⩽ 57 are
shown not to occur using Lemma 2.23 and 𝑣1-linearity. □
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1919

F IGURE 22 Exotic extensions in the elliptic spectral sequence of 𝑡𝑚𝑓 ∧ 𝑌. This records
𝑡𝑚𝑓∗𝑌 ≅ 𝑡𝑚𝑓∗+3(ℝ𝑃

2 ∧ ℂ𝑃2). The zigzags denote exotic 𝑣1-extensions that occur only for certain choices of 𝑣1
self-maps.

Now, we turn to the exotic 2-extensions.

Theorem 6.36. There are no exotic 2-extensions in the elliptic spectral sequence for 𝑌 and,
consequently,

2(𝜋∗𝑡𝑚𝑓 ∧ 𝑌) = 0.

Proof. Since we have a cofiber sequence

𝑡𝑚𝑓 ∧ 𝐶𝜂
2
→̂ 𝑡𝑚𝑓 ∧ 𝐶𝜂

𝑗
→̂ 𝑡𝑚𝑓 ∧ 𝑌

𝑞
→̂ Σ𝑡𝑚𝑓 ∧ 𝐶𝜂,

we can apply Lemma 2.21 with 𝑋 = 𝑡𝑚𝑓 ∧ 𝐶𝜂, 𝑖 = 𝑗 and 𝑝 = 𝑞. From this, we deduce that if 𝑎′ ∈
𝜋∗𝑡𝑚𝑓 ∧ 𝑌 is in the image of 𝑗∗, then it has order 2 and that if 𝑞∗(𝑎′) = 𝑎, then 2𝑎′ = 𝑗∗(𝜂𝑎). It
follows that if 2𝑎′ ≠ 0, then 2𝑎′ is divisible by 𝜂.
This leaves one possible extension in stem 57. But such a 2-extension would lead, by duality, to

a 2-extension in stem 116. However, there are no 𝜂-divisible classes in that stem. Since the 𝐸2-term
was 2-torsion and there are no exotic 2-extensions, 𝜋∗𝑡𝑚𝑓 ∧ 𝑌 is annihilated by 2. □

Next, we turn to the 𝜈 extensions.

Remark 6.37. We will use without mention that �̄�𝜈 = 0 in 𝑡𝑚𝑓∗-modules. This allows us to
eliminate many possible exotic 𝜈-extensions.
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1920 BEAUDRY et al.

F IGURE 2 3 Exotic extensions in the elliptic spectral sequence of 𝑡𝑚𝑓 ∧ 𝑌. This records
𝑡𝑚𝑓∗𝑌 ≅ 𝑡𝑚𝑓∗+3(ℝ𝑃

2 ∧ ℂ𝑃2). The zigzags denote exotic 𝑣1-extensions that occur only for certain choices of 𝑣1
self-maps.

Lemma 6.38. In the elliptic spectral sequence of 𝑌, there are exotic extensions

(1) 𝜈𝑎[26, 0] = 𝑎[29, 5] (8) 𝜈𝑎[103, 1] = 𝑎[106, 16]

(2) 𝜈𝑎[41, 3] = 𝑎[44, 8] (9) 𝜈𝑎[124, 0] = 𝑎[127, 15]

(3) 𝜈𝑎[52, 0] = 𝑎[55, 7] (10) 𝜈𝑎[129, 1] = 𝑎[132, 16]

(4) 𝜈𝑎[54, 2] = �̄�2𝑎[17, 3] (11) 𝜈𝑎[150, 2] = 𝑎[153, 11]

(5) 𝜈𝑎[67, 3] = �̄�2𝑎[30, 0] (12) 𝜈𝑎[155, 3] = 𝑎[158, 16]

(6) 𝜈𝑎[98, 0] = 𝑎[101, 15] (13) 𝜈𝑎[165, 3] = 𝑎[168, 22]

(7) 𝜈𝑎[102, 2] = �̄�5𝑎[5, 1]

Proof. Extensions (1) and (6) follow from the extensions 𝜈𝑎[26, 0] = 𝑎[29, 5] and 𝜈𝑎[98, 0] =
𝑎[101, 7], respectively, in 𝜋∗𝑡𝑚𝑓 ∧ 𝑉(0) by applying 𝑖∗. Extensions (2), (3), (5), and (9) follow
from examining the effect of 𝑝∗ and the extensions 𝜈𝑎[39, 3] = 𝑎[42, 10], 𝜈𝑎[50, 2] = 𝑎[53, 7],
𝜈𝑎[65, 3] = 𝑎[68, 10] and 𝜈𝑎[122, 2] = 𝑎[125, 21] in 𝜋∗𝑡𝑚𝑓 ∧ 𝑉(0), respectively.
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THE TOPOLOGICAL MODULAR FORMS OF ℝ𝑃2 AND ℝ𝑃2 ∧ ℂ𝑃2 1921

Extensions (4), (7), (12), and (13) are obtained by duality from algebraic extensions. Extensions
(10) and (8) follow by duality from (2) and (5).
Extension (11) is proved in Proposition 6.24. □

Lemma 6.39. In the elliptic spectral sequence of 𝑌, there are exotic extensions

(1) 𝜈𝑎[57, 1] = �̄�2𝑎[20, 2] and
(2) 𝜈𝑎[62, 2] = �̄�𝑎[45, 3]

Dually, we have
(3) 𝜈𝑎[108, 2] = 𝑎[111, 17]
(4) 𝜈𝑎[113, 3] = 𝑎[116, 18]

Together with Lemma 6.38, there are no other non-trivial exotic 𝜈-extensions.

Toprove Lemma6.39,we use the 𝑡𝑚𝑓-basedAtiyah–Hirzebruch spectral sequence for𝑌, whose
filtration comes from the cellular filtration of 𝑌. To set up notation, we have the 𝐸1-page of this
spectral sequence

𝐸1 = ⊕
3
𝑛=0𝜋∗𝑡𝑚𝑓⟹ 𝜋∗+𝑛𝑡𝑚𝑓 ∧ 𝑌.

For a homotopy class 𝛽 in 𝜋∗𝑡𝑚𝑓 ∧ 𝑌, we denote by 𝛼[𝑛] the element that detects it in the 𝐸1-
page of the 𝑡𝑚𝑓-based Atiyah–Hirzebruch spectral sequence, where 𝑛 is the Atiyah–Hirzebruch
filtration of 𝛽, and 𝛼 is a class in 𝜋∗𝑡𝑚𝑓. The stem of 𝛽 is then the stem of 𝛼 plus 𝑛.

Proof of Lemma 6.39. In our Atiyah–Hirzebruch notation, we can rewrite the two 𝜈-extensions of
Lemma 6.39 as

(1) 𝜈 ⋅ �̄�2𝜅[3] = Δ𝜂𝜅�̄�[1],
(2) 𝜈 ⋅ �̄�3[2] = Δ2𝜈𝜅[0].

We first prove (2), namely, that 𝜈 ⋅ �̄�3[2] = Δ2𝜈𝜅[0]. In 𝜋∗𝑡𝑚𝑓 ∧ 𝐶𝜂, we have

𝜈 ⋅ �̄�3[2] = ⟨𝜈, �̄�3, 𝜂⟩[0]
by [41, Lemma 5.3]. By Moss’s theorem and the differential 𝑑11(Δ2𝜅) = 𝜂�̄�3 in the elliptic spectral
sequence of 𝑡𝑚𝑓, we have

⟨𝜈, �̄�3, 𝜂⟩ = Δ2𝜈𝜅.
Mapping this relation along the inclusion 𝐶𝜂 → 𝑌 gives us (2).
For (1), note that in 𝜋∗𝑡𝑚𝑓 ∧ Σ𝐶𝜂, we have

𝜈 ⋅ �̄�2𝜅[3] = ⟨𝜈, �̄�2𝜅, 𝜂⟩[1]
by [41, Lemma 5.3]. Since �̄�2𝜅 is 𝜈-divisible in 𝜋∗𝑡𝑚𝑓, we may shuffle

⟨𝜈, �̄�2𝜅, 𝜂⟩ = ⟨�̄�2𝜅, 𝜈, 𝜂⟩.
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1922 BEAUDRY et al.

By Moss’s theorem and the differential 𝑑5(Δ𝜅�̄�) = 𝜈�̄�2𝜅 in 𝑡𝑚𝑓, we have

⟨�̄�2𝜅, 𝜈, 𝜂⟩ = Δ𝜂𝜅�̄�.
Pulling back this relation along the quotient map 𝑌 → Σ𝐶𝜂 gives (1).
Extensions (3) and (4) follow by duality. The fact that there are no other exotic 𝜈-extensions is

discussed below. □

Most possibilities for other exotic 𝜈-extensions are ruled out in a straightforward way by ana-
lyzing 𝑖∗ and 𝑝∗, duality, the fact that �̄�𝜈 = 0. However, the following two extensions require us to
analyze the classicalAdams spectral sequence. The following proof depends on checking algebraic
extensions in

Ext((𝐻𝔽2)
∗(𝑡𝑚𝑓 ∧ 𝑌), (𝐻𝔽2)

∗)

using Bruner’s Ext-program [18]. See Figure 21 for classical Adams 𝐸2-charts for 𝑡𝑚𝑓 ∧ 𝑉(0) and
𝑡𝑚𝑓 ∧ 𝑌, and see [21, chapter 13] for 𝑡𝑚𝑓.

Lemma 6.40. In 𝜋∗𝑡𝑚𝑓 ∧ 𝑌,

(1) 𝜈𝑎[31, 1] = 0,
(2) 𝜈𝑎[36, 2] = 0.

Dually, we have,
(3) 𝜈𝑎[134, 2] = 0
(4) 𝜈𝑎[139, 3] = 0

Proof. To show this, we need to prove that

(1) 𝜈𝑎[31, 1] ≠ 𝑎[34, 6],
(2) 𝜈𝑎[36, 2] ≠ 𝑎[39, 7].

In our Atiyah–Hirzebruch notation, we can rewrite these extensions as

(1) 𝜈 ⋅ 𝜅2[3] ≠ 𝜅�̄�[0],
(2) 𝜈 ⋅ Δ𝜈3[3] ≠ Δ𝜂𝜅[0].

We give a proof for (1) that 𝜈 ⋅ 𝜅2[3] ≠ 𝜅�̄�[0] using the classical Adams spectral sequence. We con-
sider theAdams spectral sequence for 𝑡𝑚𝑓 ∧ 𝑌 and its subquotients.Wewill show that theAdams
filtration of 𝜅2[3] is 7 and the Adams filtration of 𝜅�̄�[0] is 8. The fact that there is no such 𝜈-
extension follows from the algebraic fact that on the Adams 𝐸2-page, the ℎ2-multiple of the first
element is not the second element, which is checked by a computer program.
For the class 𝜅�̄�[0], it is clear that the Adams filtration of 𝜅�̄� in 𝜋34𝑡𝑚𝑓 is 8, (it is detected by the

element 𝑑0g ,) and it maps nontrivially on the Adams 𝐸2-pages along the map 𝑡𝑚𝑓 → 𝑡𝑚𝑓 ∧ 𝑌.
The image under this map, which we denoted by 𝑑0g[0], is a permanent cycle. It cannot be killed
due to filtration reasons. Therefore, the class 𝜅�̄�[0] is detected by 𝑑0g[0] and, in particular, it has
Adams filtration 8.
For the class 𝜅2[3], we first consider the class 𝜅2[1] in 𝜋29𝑡𝑚𝑓 ∧ 𝑉(0). Since 𝜋29𝑡𝑚𝑓 =

0, 𝜋30𝑡𝑚𝑓 = 0, we have 𝜋30𝑡𝑚𝑓 ∧ 𝑉(0) = 0. This forces three non-zero Adams differentials elimi-
nating the three elements in the Adams 𝐸2-page for 𝑡𝑚𝑓 ∧ 𝑉(0). In particular, we learn that 𝜅2[1]
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in 𝜋29𝑡𝑚𝑓 ∧ 𝑉(0) is detected by the only remaining element 𝑗[0] in Adams filtration 7, and that
there is a non-zero 𝑑3-differential from (𝑡 − 𝑠, 𝑠)-bi-degrees (31,6) to (30,9).
Considering the quotient map 𝑡𝑚𝑓 ∧ 𝑌 → 𝑡𝑚𝑓 ∧ Σ2𝑉(0), we learn that 𝜅2[3] is detected in

Adams filtration at most 7. Considering the induced map on the Adams 𝐸2-pages, we also learn
that it is an isomorphism on the (𝑡 − 𝑠, 𝑠)-bi-degrees (31,6) and (30,9). So, in particular, the ele-
ment in (𝑡 − 𝑠, 𝑠)-bi-degree (31,6) does not survive. Therefore, 𝜅2[3] is detected in Adams filtration
exactly 7.
For (2), that 𝜈 ⋅ Δ𝜈3[3] ≠ Δ𝜂𝜅[0], we use the Adams spectral sequence again in a very similar

way. We will show that the Adams filtration of Δ𝜈3[3] is 8 and the Adams filtration of Δ𝜂𝜅[0] is 9.
The fact that there is no such extensions then follows as in (1).
For the class Δ𝜂𝜅[0], it is clear that the Adams filtration of Δ𝜂𝜅 in 𝜋39𝑡𝑚𝑓 is 9, (it is detected by

the element 𝑢,) and it maps nontrivially on the Adams 𝐸2-pages along the map 𝑡𝑚𝑓 → 𝑡𝑚𝑓 ∧ 𝑌.
The image under this map, which we denoted by 𝑑0g[0], is a permanent cycle. It cannot be killed
due to filtration reasons. Therefore, the class Δ𝜂𝜅[0] is detected by 𝑢[0], and in particular it has
Adams filtration 9.
For the class Δ𝜈3[3], we first consider the class Δ𝜈3 in 𝜋33𝑡𝑚𝑓. The class Δ𝜈3 in 𝜋33𝑡𝑚𝑓 is

detected in theAdams filtration 8. Considering the quotientmap 𝑡𝑚𝑓 ∧ 𝑌 → Σ3𝑡𝑚𝑓, we learn that
Δ𝜈3[3] is detected in Adams filtration at most 8. To show that it is detected in Adams filtration 8,
we will show that the only other element in lower filtration, the class in (𝑡 − 𝑠, 𝑠)-bi-degree (36,7),
supports a non-zero 𝑑2-differential.
The maps in the zigzag

are isomorphisms in (𝑡 − 𝑠, 𝑠)-bi-degrees (36,7) and (35,9) on Adams 𝐸2-pages. So, the claimed
non-zero 𝑑2-differential follows from the one in the Adams spectral sequence of 𝑡𝑚𝑓, from (𝑡 −

𝑠, 𝑠)-bi-degrees (35,7) and (34,9). □

We now turn to the study of the 𝑣1-extensions. First, recall the discussion on 𝑣1-self maps and
𝐴1 from Subsection 2.6. The homotopy groups of 𝑡𝑚𝑓 ∧ 𝐴1 are studied by the third author in
[33]. Furthermore, the knowledge of the homotopy groups of 𝑡𝑚𝑓 ∧ 𝐴1 is sufficient to allow us to
deduce much of the action of 𝑣1 on the homotopy groups of 𝑡𝑚𝑓 ∧ 𝑌, via the long exact sequence
on homotopy of the cofiber sequence

𝑡𝑚𝑓 ∧ Σ2𝑌
𝑣1
^̂→ 𝑡𝑚𝑓 ∧ 𝑌 → 𝑡𝑚𝑓 ∧ 𝐴1.

Since the outcome depends on the choice of the 𝑣1-self-map, we call a 𝑣1-self-map of type 𝐼 if its
cofiber is 𝐴1[01] or 𝐴1[10] and of type 𝐼𝐼, otherwise. Again, see Subsection 2.6 for the definition
of 𝐴1[𝑖𝑗].

Lemma 6.41.

(a) For all 𝑣1-self maps of 𝑌, there are the following exotic 𝑣1-extensions, and those induced from
these by �̄�-linearity:
(1) 𝑣1𝑎[9, 1] = 𝑎[11, 3]
(2) 𝑣1𝑎[15, 1] = 𝑎[17, 3]
(3) 𝑣1𝑎[30, 2] = �̄�𝑎[12, 2]
(4) 𝑣1𝑎[33, 1] = 𝑎[35, 3]
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(5) 𝑣1𝑎[38, 2] = �̄�𝑎[20, 2]
(6) 𝑣1Δ2𝑎[9, 1] = Δ2𝑎[11, 3]
(7) 𝑣1𝑎[99, 1] = �̄�3𝑎[21, 3]
(8) 𝑣1𝑎[104, 2] = �̄�4𝑎[26, 0]
(9) 𝑣1𝑎[105, 1] = 𝑎[107, 3]
(10) 𝑣1(𝑣1𝑎[108, 2]) = �̄�3𝑎[52, 0]
(11) 𝑣1𝑎[114, 2] = �̄�4𝑎[36, 2]
(12) either 𝑣1𝑎[116, 2] = �̄�2𝑎[78, 0] or 𝑣1𝑎[116, 2] = �̄�𝑎[98, 0]
(13) 𝑣1�̄�𝑎[105, 1] = �̄�3𝑎[67, 3]
(14) 𝑣1𝑎[129, 1] = 𝑎[131, 3]
(15) either 𝑣1𝑎[131, 3] = �̄�2𝑎[93, 3] or 𝑣1𝑎[131, 3] = �̄�𝑎[113, 3]
(16) 𝑣1𝑎[134, 2] = �̄�𝑎[116, 2]
(17) 𝑣1�̄�𝑎[115, 3] = �̄�𝑎[117, 13]
(18) 𝑣1(𝑣1𝑎[139, 3]) = �̄�3𝑎[83, 3]
(19) 𝑣1�̄�𝑎[120, 3] = �̄�𝑎[122, 14]
(20) 𝑣1(𝑣1�̄�𝑎[124, 0]) = �̄�4𝑎[68, 2]
(21) 𝑣1𝑎[147, 1] = �̄�𝑎[129, 1];
(22) 𝑣1𝑎[152, 2] = �̄�𝑎[134, 2]
(23) 𝑣1𝑎[156, 10] = 𝑎[158, 16]
(24) 𝑣1𝑎[162, 2] = �̄�2𝑎[124, 0]

(b) For 𝑣1-self-maps of type 𝐼, there are also the following 𝑣1-extensions, and those induced from
these by �̄�-linearity:
(1) 𝑣1𝑎[68, 2] = �̄�2𝑎[30, 2] and
(2) 𝑣1𝑎[83, 3] = �̄�4𝑎[15, 1]

Proof. For all parts, except for (9), (12), (15), we see, by inspecting the relevant parts of the homo-
topy groups of appropriate 𝑡𝑚𝑓 ∧ 𝐴1[𝑖𝑗], that the targets of the stated 𝑣1 extensions are sent to
zero via the natural map

𝜋∗(𝑡𝑚𝑓 ∧ 𝑌) → 𝜋∗(𝑡𝑚𝑓 ∧ 𝐴1[𝑖𝑗]).

Therefore, they are in the image of a 𝑣1-multiplication and the stated 𝑣1-extensions are the
only possibilities.
For part (9), consider

sk4(𝑡𝑚𝑓 ∧ 𝑌) = (𝑡𝑚𝑓 ∧ 𝑌)∕(𝑡𝑚𝑓 ∧ 𝑌)5,

where (𝑡𝑚𝑓 ∧ 𝑌)5 is the fifth term in the 𝑋(4)-Adams tower of 𝑡𝑚𝑓 ∧ 𝑌. It is a module over
sk4(𝑡𝑚𝑓). Since Δ4 ∈ 𝜋96(sk4(𝑡𝑚𝑓)), this element acts on 𝜋∗sk4(𝑡𝑚𝑓 ∧ 𝑌). We see that the
induced map 𝜋∗(𝑡𝑚𝑓 ∧ 𝑌) → 𝜋∗sk4(𝑡𝑚𝑓 ∧ 𝑌) sends 𝑎[9, 1] and 𝑎[11, 3] to non-trivial elements,
which we denote by the same names. Furthermore, it sends 𝑎[105, 1] and 𝑎[107, 3] to elements
detected by the products Δ4𝑎[9, 1] and Δ4𝑎[11, 3]. Since 𝑣1𝑎[9, 1] = 𝑎[11, 3] by part (1),

𝑣1Δ
4𝑎[9, 1] = Δ4𝑣1𝑎[9, 1] = Δ

4𝑎[11, 1]

in 𝜋∗sk4(𝑡𝑚𝑓 ∧ 𝑌). It follows that 𝑣1𝑎[105, 1]must be detected by 𝑎[107, 3] in the 𝐸∞-term of the
elliptic spectral sequence of 𝑡𝑚𝑓 ∧ 𝑌. □
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Remark 6.42. We are left with two undecided 𝑣1-extensions, namely, (12) and (13) in Lemma 6.41,
which we were unable to resolve.
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