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TOBIAS BARTHEL, NATÀLIA CASTELLANA, DREW HEARD, AND BEREN SANDERS

Abstract. We prove that a jointly conservative family of geometric functors

between rigidly-compactly generated tensor triangulated categories induces
a surjective map on spectra. From this we deduce a fiberwise criterion for
Balmer’s comparison map to be a homeomorphism. This gives short alternative

proofs of the Hopkins–Neeman theorem and Lau’s theorem for the trivial action.

Throughout this note, we work in the context of rigidly-compactly generated
tensor triangulated (tt) categories, usually denoted by S or T. We write Spc(Tc)
for the associated Balmer spectrum of compact (=dualizable) objects and freely
use basic constructions from tt-geometry [Bal05, Bal10]. A coproduct-preserving
tensor triangulated functor f∗ : T → S is called a geometric functor. Such a functor
preserves compact objects and hence induces a continuous map Spc(Sc)→ Spc(Tc).
Following terminology introduced in [Bal20a, CSY22], a weak ring in T is an
object R ∈ T equipped with a map η : 1 → R from the unit object such that the
induced map R⊗ η : R→ R⊗R is a split monomorphism.

1.1. Definition. Suppose {f∗i : T → Si}i∈I is a family of geometric functors between
rigidly-compactly generated tt-categories. We say the family is

• jointly conservative if for any t ∈ T, f∗i (t) = 0 for all i ∈ I implies t = 0;
• jointly nil-conservative if for any weak ring R ∈ T, f∗i (R) = 0 for all i ∈ I

implies R = 0.

Note that any jointly conservative family is in particular jointly nil-conservative.
The converse does not hold:

1.2. Example. The Morava K-theories {K(n)⊗− : Sp→ Mod(K(n))}n∈N∪{∞} are
jointly nil-conservative as a consequence of the nilpotence theorem [HS98, Theorem 3]
but they are not jointly conservative since they all annihilate the Brown–Comenetz
dual of the sphere [HS99, Corollary B.12].

1.3. Theorem. If {f∗i : T → Si}i∈I is a jointly nil-conservative family of geometric
functors, then the induced map1

(1.4) ϕ :
⊔
i∈I

Spc(Sci )→ Spc(Tc)

is surjective.
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1Throughout this paper, coproducts are taken in the category of topological spaces (as opposed

to the category of spectral spaces).
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1.5. Remark. If the family is finite, then this result can be deduced from the
criterion [Bal18, Theorem 1.3] by first proving that the geometric functor

∏
i f
∗
i

detects tensor nilpotence of morphisms with dualizable source, as in [BCH+23,
Section 2.3]. For an infinite family, such an argument cannot work directly, because
Spc(

∏
i∈I S

c
i ) 6=

⊔
i∈I Spc(Sci ) whenever infinitely many of the Si are non-trivial.

Indeed, the spectrum Spc(
∏
i∈I S

c
i ) is a spectral space and in particular quasi-

compact, while an infinite coproduct of non-empty spaces cannot be quasi-compact.
Here we use implicitly that (

∏
i∈I Si)

c '
∏
i∈I S

c
i ; see for example the proof of

[Lur09, Proposition 5.5.7.6] combined with [Lur09, Proposition 5.5.7.8] for the
corresponding ∞-categorical statement.

1.6. Example. If {ki}i∈I is a family of fields, then the Zariski spectrum Spec(
∏
i∈I ki)

is homeomorphic to the Stone–Čech compactification of I.

1.7. Remark. Using the Balmer–Favi support [BF11] and the techniques of [BCHS23],
it is possible to prove Theorem 1.3 for arbitrary indexing sets I under the additional
hypothesis that Spc(Tc) is weakly noetherian. However, since the construction of a
surjective map as in (1.4) is often the first step in understanding Spc(Tc), making
any assumption on its topology is not desirable. Consequently, our proof relies on a
suitable support theory for big objects which exists unconditionally without any
point-set assumptions on Spc(Tc). Such a theory is provided by the homological
residue fields developed in [BKS19, Bal20b, Bal20a], from which we will draw freely.
Indeed, we will derive Theorem 1.3 as a corollary of the following more complete
statement:

1.8. Theorem. A family {f∗i : T → Si}i∈I of geometric functors is jointly nil-
conservative if and only if the induced map on homological spectra

(1.9) ϕh :
⊔
i∈I

Spch(Sci )→ Spch(Tc)

is surjective.

Proof. (⇒): Let B ∈ Spch(Tc) be a homological prime and consider the associated
weak ring EB 6= 0; see [BKS19, Section 3]. By assumption, there exists some i ∈ I
such that f∗i (EB) 6= 0. For simplicity, write f∗ := f∗i and f∗ for its right adjoint.
By the unit-counit identity and the projection formula [BDS16, (2.16)], we deduce

f∗(1)⊗ EB ' f∗f∗(EB) 6= 0.

Note that as a right adjoint to a tt-functor, f∗ is lax symmetric monoidal, hence f∗(1)
is a weak ring in T. Since the homological support coincides with the naive
homological support for weak rings [Bal20a, Theorem 4.7], this implies that B ∈
Supph(f∗(1)). By [Bal20a, Theorem 5.12], we conclude that

B ∈ Supph(f∗(1)) = im(Spch(f∗)),

thereby verifying that (1.9) is surjective.

(⇐): If R ∈ T is a nonzero weak ring, then Supph(R) 6= ∅ by [Bal20a, Thm. 1.8].
Hence, if (1.9) is surjective then there exists an i ∈ I such that

im(Spch(f∗i )) ∩ Supph(R) 6= ∅.

By [Bal20a, Theorem 1.2(d) and Theorem 1.9], this implies Supph(fi∗f
∗
i (R)) =

Supph(fi∗(1)⊗R) = Supph(fi∗(1)) ∩ Supph(R) 6= ∅ so that f∗i (R) 6= 0. �
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Proof of Theorem 1.3. In order to deduce Theorem 1.3 from Theorem 1.8, we employ
the naturality of the homological comparison map φ from [Bal20a, Theorem 5.10],
resulting in a commutative square:⊔

i∈I Spch(Sci )
ϕh

//

tφSi

��

Spch(Tc)

φT

��⊔
i∈I Spc(Sci ) ϕ

// Spc(Tc).

By [Bal20b, Corollary 3.9], the vertical maps are surjective, and so is the top
horizontal map by Theorem 1.8. It follows that ϕ is also surjective. �

1.10. Remark. It is an open question whether the converse to Theorem 1.3 holds, that
is, whether the surjectivity of ϕ in (1.4) implies that the family {f∗i }i∈I is jointly
nil-conservative. It is known that the family need not be jointly conservative (see
[BCHS23, Example 14.26]). In light of Theorem 1.8, the converse of Theorem 1.3
would follow from Balmer’s “Nerves of Steel” Conjecture that the homological and
tensor triangular spectra always coincide; see [BHS21a].

1.11. Remark. While Theorem 1.3 is in general not enough to determine the topology
on Spc(Tc) even when ϕ is a bijection (see for instance [BHS21b, Remark 15.12]),
there are cases in which it can be used to compute the topology. Recall that Balmer
[Bal10] constructs a natural comparison map

ρT : Spc(Tc)→ Spech(End∗T(1))

between the tensor triangular spectrum and the Zariski spectrum of the graded
endomorphism ring of the unit object. If T is noetherian in the sense that End∗T(C)
is noetherian as an End∗T(1)-module for each C ∈ Tc, then ρT is a homeomorphism
if and only if it is a bijection [Lau21, Corollary 2.8]. The following result provides a
‘fiberwise’ criterion for Balmer’s comparison map to be a homeomorphism:

1.12. Corollary. Let T be a noetherian rigidly-compactly generated tt-category and
consider a family of geometric tt-functors {f∗i : T → Si}i∈I satisfying the following
properties:

(a) the family {f∗i }i∈I is jointly nil-conservative;
(b) ρSi is a bijection for all i ∈ I;
(c) the induced map on Zariski spectra⊔

i∈I
Spech(End∗Si

(1))→ Spech(End∗T(1))

is a bijection.

Then ρT is a homeomorphism.

Proof. Naturality of the comparison map yields a commutative diagram⊔
i∈I Spc(Sci ) Spc(Tc)

⊔
i∈I Spech(End∗Si

(1)) Spech(End∗T(1)).

ϕ

tρSi
ρT
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On the one hand, by assumption, both the left vertical and the bottom horizontal
maps are bijections, so ϕ has to be injective. On the other hand, Theorem 1.3
implies that ϕ is also surjective, hence bijective. It follows that ρT is a bijection
and thus a homeomorphism because T is noetherian. �

1.13. Remark. Corollary 1.12 offers an alternative perspective on the Hopkins–
Neeman theorem [Hop87, Nee92] for noetherian commutative rings:

1.14. Example. Let D(R) be the derived category of a noetherian commutative
ring R. For any prime ideal p ∈ Spec(R), consider the residue field κ(p), constructed
as the quotient field of R/p, and write f∗p : D(R)→ D(κ(p)) for the associated base-
change functor. We claim that the family {f∗p}p∈Spec(R) satisfies the assumptions of
Corollary 1.12. Indeed, (b) and (c) are immediate: since κ(p) is a field, ρD(κ(p)) is a
bijection (between singletons), while (c) holds by construction. Finally, the family
{f∗p} is jointly conservative by [Nee92, Lemma 2.12],1 which verifies (a). Therefore,
the comparison map

ρD(R) : Spc(D(R))
∼−→ Spec(R)

is a homeomorphism. �

1.15. Remark. The extension to arbitrary commutative rings follows by absolute
noetherian approximation as in Thomason’s work [Tho97]; cf. [Lau21, Lemma 2.12].

1.16. Example. Let G be a finite group and let R be a noetherian commutative ring
equipped with trivial G-action. We write Rep(G,R) for the tt-category of R-linear
derived representations of G introduced in [Bar21]. This category is noetherian
and rigidly-compactly generated with subcategory of compact objects given by
Db(mod(G,R)), the bounded derived category of R[G]-modules whose underlying
complex of R-modules is perfect. If k is a field, then Rep(G, k) coincides with
the homotopy category of unbounded chain complexes of injective k[G]-modules
studied in [BK08]; for an extension of this homological model to coefficients in R,
see [BBI+23].

For any prime ideal p ∈ Spec(R), there is a geometric fiber-functor

F ∗p : Rep(G,R)→ Rep(G, κ(p)),

which is induced by base-change along the canonical map R → κ(p). We claim
that the family {F ∗p }p∈Spec(R) satisfies the conditions of Corollary 1.12. Indeed,

the joint conservativity of the family is the content of [BBI+23, Proposition 3.23],
while ρDb(k[G]) is a homeomorphism by [BCR97] for any field k. It remains to verify

condition (c). To this end, note that the map on Zariski spectra induced by F ∗p
identifies with the composite

Spech(H∗(G, κ(p)))
∼−→ Spech(H∗(G,R)⊗R κ(p))→ Spech(H∗(G,R)).

The first map is a homeomorphism by [Lau21, Corollary 8.29]; see also [BIKP22,
Corollary 5.6]. Varying the second map over Spec(R) assembles into a bijection⊔

p∈Spec(R)

Spech(H∗(G,R)⊗R κ(p))
∼−→ Spech(H∗(G,R)),

which verifies (c) of Corollary 1.12 for {F ∗p }p∈Spec(R). We conclude that ρDb(mod(G,R))

is a homeomorphism. �

1Note that the proof of this lemma does not rely on the nilpotence theorem or the thick
subcategory theorem for D(R).
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1.17. Remark. Example 1.16 recovers the main theorem of [Lau21] for rings equipped
with trivial G-action — modulo the straightforward reduction from the general case
to the case where R is noetherian, as explained at the beginning of the proof of
[Lau21, Theorem 11.1]. We remark that the key input to our proof is the joint
conservativity of the functors {F ∗p } on the ‘big’ categories Rep(G,R) and emphasize
that the proof of this does not rely on the stratification of Rep(G, k).

1.18. Remark. The previous example extends to any finite flat group scheme over a
noetherian commutative ring; cf. [BBI+23]. The key input is the recent generalization
of the Friedlander–Suslin theorem [FS97] due to van der Kallen [vdK22].
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