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Topological Hochschild homology of Thom spectra
and the free loop space

ANDREW J BLUMBERG

RALPH L COHEN

CHRISTIAN SCHLICHTKRULL

We describe the topological Hochschild homology of ring spectra that arise as Thom
spectra for loop maps f W X ! BF , where BF denotes the classifying space for
stable spherical fibrations. To do this, we consider symmetric monoidal models of the
category of spaces over BF and corresponding strong symmetric monoidal Thom
spectrum functors. Our main result identifies the topological Hochschild homology
as the Thom spectrum of a certain stable bundle over the free loop space L.BX / .
This leads to explicit calculations of the topological Hochschild homology for a large
class of ring spectra, including all of the classical cobordism spectra MO , MSO,
MU , etc, and the Eilenberg–Mac Lane spectra HZ=p and HZ .

19D55, 55N20; 18G55, 55P43, 55P47, 55R25

1 Introduction

Many interesting ring spectra arise naturally as Thom spectra. It is well-known that
one may associate a Thom spectrum T .f / to any map f W X ! BF , where BF

denotes the classifying space for stable spherical fibrations. This construction is
homotopy invariant in the sense that the stable homotopy type of T .f / only depends
on the homotopy class of f ; see Lewis, May, Steinberger and McClure [23] and
Mahowald [27]. Furthermore, if f is a loop map, then it follows from a result of
Lewis [23] that T .f / inherits the structure of an A1 ring spectrum. In this case
the topological Hochschild homology spectrum THH.T .f // is defined. For example,
all of the Thom spectra MG representing the classical cobordism theories (where G

denotes one of the stabilized Lie groups O , SO, Spin, U or Sp) arise from canonical
infinite loop maps BG! BF . In this paper we provide an explicit description of the
topological Hochschild homology of such a ring spectrum T .f / in terms of the Thom
spectrum of a certain stable bundle over the free loop space. In order to state our main
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result we begin by recalling some elementary results about the free loop space L.B/ of
a connected space B . Fixing a base point in B , we have the usual fibration sequence

�.B/ �!L.B/ �! B

obtained by evaluating a loop at the base point of S1 . This sequence is split by
the inclusion B ! L.B/ as the constant loops. When B has the structure of a
homotopy associative and commutative H–space, L.B/ also has such a structure and
the composition

(1-1) �.B/�B �!L.B/�L.B/ �!L.B/

is an equivalence of H–spaces. If we assume that B has the homotopy type of a CW–
complex, then the same holds for L.B/ and inverting the above equivalence specifies
a well-defined homotopy class L.B/

'
!�.B/�B . Applying this to the delooping

B2F of the infinite loop space BF , we obtain a splitting

L.B2F /'�.B2F /�B2F ' BF �B2F:

Let �W S3! S2 denote the unstable Hopf map and also in mild abuse of notation the
map obtained by precomposing as follows:

�W B2F 'Map�.S
2;B4F /

��

�!Map�.S
3;B4F /' BF:

The following result is the main theorem of the paper.

Theorem 1 Let f W X !BF be the loop map associated to a map of connected based
spaces Bf W BX ! B2F . Then there is a natural stable equivalence

THH.T .f //' T .L�.Bf //;

where L�.Bf / denotes the composite

L�.Bf /W L.BX /
L.Bf /
�! L.B2F /' BF �B2F

id��
�! BF �BF �! BF:

Here the last arrow represents multiplication in the H–space BF .

When f is the constant map, the Thom spectrum T .f / is equivalent to the spherical
group ring †1�.BX /C , where C indicates a disjoint base point. In this case we
recover the stable equivalence of Bökstedt and Waldhausen,

THH.†1�.BX /C/'†
1L.BX /C:

The real force of Theorem 1 comes from the fact that the Thom spectrum T .L�Bf /

can be analyzed effectively in many cases. We will say that f is an n–fold loop map if
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we have an .n�1/–connected based space BnX and a homotopy commutative diagram
of the form

�n.BnX /
�n.Bnf / // �n.BnC1F /

X

'

OO

f // BF;

'

OO

where the vertical maps are equivalences as indicated. When X is a 2–fold loop space,
the product decomposition in (1-1) can be applied to L.BX /. We shall then prove the
following.

Theorem 2 If f is a 2–fold loop map, then there is a stable equivalence

THH.T .f //' T .f /^T .� ıBf /;

where T .� ıBf / denotes the Thom spectrum of BX
Bf
! B2F

�
! BF .

For 3–fold loop maps we can describe THH.T .f // without reference to �.

Theorem 3 If f is a 3–fold loop map, then there is a stable equivalence

THH.T .f //' T .f /^BXC:

If f is an infinite loop map one can realize the stable equivalence in Theorem 3 as an
equivalence of E1 ring spectra. This is carried out by the first author [5] and the third
author [39], working respectively with the S –module approach of Elmendorf, Kriz,
Mandell and May [16] and the symmetric spectrum approach of Hovey, Shipley and
Smith [20] and Mandell, May, Schwede and Shipley [31] to structured ring spectra. The
operadically sophisticated reader will note that the term “n–fold loop maps” is a device-
independent way of describing maps between group-complete spaces that are structured
by En operads (that is, operads equivalent to the little n–cubes operad). We have
chosen this elementary description since this is the kind of input data one encounters
most often in the applications and since many of the examples in the literature (such
as the ones in Mahowald [27]) are formulated in this language. For the technical part
of our work it will be important to pass back and forth between loop maps and maps
structured by operads and we explain how to do this in Appendix A.

It is known by Brun, Fiedorowicz and Vogt [11] and Mandell [30] that if T is an En

ring spectrum, then THH.T / is an En�1 ring spectrum. We expect the following
strengthening of Theorem 3 to hold: if X is a grouplike En space and f W X ! BF

an En map, then the equivalence in Theorem 3 is an equivalence of En�2 ring spectra.

Geometry & Topology, Volume 14 (2010)
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Despite the fact that the spectra on both sides of the equivalence are En�1 ring spectra,
the splitting of Equation (1-1) is only an equivalence of En�2 spaces and so we cannot
hope for an equivalence of En�1 ring spectra.

Finally, note that the equivalences we establish in the preceding theorems are nonequiv-
ariant equivalences; ie, we ignore the circle action on the topological Hochschild
homology spectrum arising from the cyclic structure. In particular, the equivalences
in Theorem 2 and Theorem 3 are nonequivariant since they are derived from the
nonequivariant decomposition of the free loop space in (1-1). Although we expect an
equivariant analogue of Theorem 1, further work on the theory of equivariant Thom
spectra is required to make precise statements possible.

The classical cobordism spectra

Let G be one of the stabilized Lie groups O , SO, Spin, U or Sp. Then the Thom
spectrum MG arises from an infinite loop map BG! BF and so Theorem 3 applies
to give a stable equivalence:

THH.M G/'M G ^BBGC:

Spelling this out using the Bott periodicity theorem, we get the following corollary.

Corollary 1.1 There are stable equivalences of spectra

THH.MO/'MO^ .U=O/h1iC
THH.MSO/'MSO^ .U=O/h2iC
THH.MSpin/'MSpin^ .U=O/h3iC
THH.MU/'MU^SUC

THH.MSp/'MSp^ .U=Sp/h1iC;

where here .U=O/hni and .U=Sp/hni denote the n–connected covers of U=O and
U=Sp respectively.

These results also admit a cobordism interpretation.

Corollary 1.2 Let G be one of the stabilized Lie groups considered above, and let
�G
� denote the corresponding G –bordism theory. Then there is an isomorphism

�� THH.M G/'�G
� .BBG/:

Geometry & Topology, Volume 14 (2010)
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There are many other examples of cobordism spectra for which Theorem 3 applies; see
Stong [47]. In the case of the identity map BF ! BF we get the spectrum MF , and
we again have a stable equivalence

THH.MF /'MF ^BBFC:

The Eilenberg–Mac Lane spectra H Z=p and H Z

Another application of our results is to the calculation of the topological Hochschild
homology of the Eilenberg–Mac Lane spectra HZ=p and HZ. These calculations
are originally due to Bökstedt [8] using a very different approach. Our starting point
here is the fact that these spectra can be realized as Thom spectra. For HZ=2 this is
a theorem of Mahowald [27]; if f W �2.S3/! BF is an extension of the generator
of �1BF to a 2–fold loop map, then T .f / is equivalent to HZ=2; see also Cohen,
May and Taylor [14]. In general, given a connected space X and a map f W X ! BF ,
the associated Thom spectrum has �0T .f / equal to Z or Z=2, depending on whether
T .f / is oriented or not. Hence HZ=p cannot be realized as a Thom spectrum for
a map to BF when p is odd. However, by an observation due to Hopkins [28], if
one instead considers the classifying space BF.p/ for p–local spherical fibrations,
then HZ=p may be realized as the p–local Thom spectrum associated to a certain
2–fold loop map f W �2.S3/! BF.p/ . We recall the definition of BF.p/ and the
p–local approach to Thom spectra in Section 3.4. Our methods work equally well in
the p–local setting and we shall prove that the p–local version of Theorem 2 applies
to give the following result.

Theorem 1.3 There is a stable equivalence

THH.HZ=p/'HZ=p^�.S3/C

for each prime p .

On the level of homotopy groups this implies that

�� THH.HZ=p/DH�.�.S
3/;Z=p/D Z=pŒx�;

where x has degree 2; see eg, Whitehead [51, Theorem 1.18]. In the case of the
Eilenberg–Mac Lane spectrum HZ.p/ for the p–local integers we instead consider the
2–fold loop space �2.S3h3i/ where S3h3i is the 3–connected cover of S3 . Arguing
as in [14] it follows that the p–local Thom spectrum of the 2–fold loop map

�2.S3
h3i/ �!�2.S3/ �! BF.p/
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is equivalent to HZ.p/ . Using this we show that the p–local version of Theorem 2
applies to give a stable equivalence

THH.HZ.p//'HZ.p/ ^�.S
3
h3i/C

for each prime p . Since topological Hochschild homology commutes with localization
this has the following consequence for the integral Eilenberg–Mac Lane spectrum.

Theorem 1.4 There is a stable equivalence

THH.HZ/'HZ^�.S3
h3i/C

where S3h3i denotes the 3–connected cover of S3 .

This gives that

�i THH.HZ/DHi.�.S
3
h3i/;Z/D

8̂<̂
:

Z for i D 0;

Z=. iC1
2
/ for i > 0 odd;

0 for i > 0 even:

The last isomorphism is easily obtained by applying the Serre spectral sequence to the
fibration sequence

S1
�!�.S3

h3i/ �!�.S3/:

An alternative approach to the calculation of THH.HZ/ has been developed by the
first author in [5]. One may also ask if a similar approach can be used for the Eilenberg–
Mac Lane spectra HZ=pn in general. This turns out not to be the case since these
spectra cannot be realized as A1 Thom spectra for n> 1; see [5] for details.

Thom spectra arising from systems of groups

A more geometric starting point for the construction of Thom spectra is to consider
systems of groups Gn equipped with compatible homomorphisms to the general linear
groups GLn.R/. We write MG for the associated Thom spectrum whose n–th space is
the Thom space of the vector bundle represented by BGn! BGLn.R/. If the groups
Gn come equipped with suitable associative pairings Gm �Gn!GmCn , then MG

inherits a multiplicative structure. For example, we have the commutative symmetric
ring spectra M† and MGL.Z/ associated to the symmetric groups †n and the general
linear groups GLn.Z/. In Section 3.5 we show how to deduce the following results
from Theorem 3.

Geometry & Topology, Volume 14 (2010)
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Theorem 1.5 There is a stable equivalence

THH.M†/'M†^ zQ.S1/C

where zQ.S1/ denotes the homotopy fiber of the canonical map Q.S1/! S1 .

Here Q.S1/ denotes the infinite loop space associated to the suspension spectrum
†1.S1/.

Theorem 1.6 There is a stable equivalence

THH.MGL.Z//'MGL.Z/^B.BGL.Z/C/C

where B.BGL.Z/C/ denotes the first space in the 0–connected cover of the algebraic
K–theory spectrum for Z.

There is a plethora of examples of this kind, involving for instance braid groups,
automorphism groups of free groups and general linear groups.

We finally mention an application of our results in connection with the analysis of qua-
sisymmetric functions. Let CP1!BU be the canonical map obtained by identifying
CP1 with BU.1/ and let �W �†.CP1/!BU be the extension to a loop map. The
point of view in Baker and Richter [2] is that �†.CP1/ is a topological model for
the ring of quasisymmetric functions in the sense that the latter may be identified with
the integral cohomology ring H�.�†.CP1//. On cohomology � then corresponds
to the inclusion of the symmetric functions in the ring of quasisymmetric functions.
Based on Theorem 1, the authors deduce in [2] that THH.T .�// may be identified with
the Thom spectrum of the map

L.†CP1/ �!L.BBU /' BU �BBU
proj
��! BU:

This uses that �W BBU !BU is null homotopic. In particular, the spectrum homology
of THH.T .�// is isomorphic to the homology of L.†CP1/.

The strategy for analyzing THH.T.f //

We here begin to explain the ideas and constructions going into the proof of the main
results. Let .A;�; 1A/ be a symmetric monoidal category. Recall that if A is a monoid
in A, then the cyclic bar construction is the cyclic object B

cy
� .A/W Œk� 7! A�.kC1/ ,

with face operators

di.a0� � � �� ak/D

(
a0� � � �� aiaiC1� � � �� ak ; i D 0; : : : k � 1;

aka0� � � �� ak�1; i D k;
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degeneracy operators

si.a0� � � �� ak/D a0� : : : ai � 1C � aiC1 � � �� ak ; i D 0; : : : ; k;

and cyclic operators

tk.a0� � � �� ak/D ak � a0� � � �� ak�1:

Here the notation is supposed to be self-explanatory. We denote the geometric realization
of this object (when this notion makes sense) as Bcy.A/. When A is one of the modern
symmetric monoidal categories of spectra and T is a ring spectrum (ie, a monoid
in A), then Bcy.T / is a model of the topological Hochschild homology provided that
T satisfies suitable cofibrancy condition; see Elmendorf, Kriz, Mandell and May [16]
and Shipley [46].

Suppose now that f W A! BF is a loop map that has been rectified to a map of topo-
logical monoids and imagine temporarily that BF could be realized as a commutative
topological monoid. Then associated to f we would have the simplicial map

B
cy
� .f /W B

cy
� .A/ �! B

cy
� .BF / �! BF;

where BF is viewed as a constant simplicial space and the last map is given by
levelwise multiplication. The intuitive picture underlying our results is the notion
that the Thom spectrum functor should take the cyclic bar construction in spaces to
the cyclic bar construction in spectra in the sense that T .Bcy.f // should be stably
equivalent to Bcy.T .f //. Ignoring issues of cofibrancy, this exactly gives a description
of THH.T .f // in terms of a Thom spectrum. This picture makes contact with the
free loop space in the following fashion: When A is a topological monoid Bcy.A/

inherits an action of the circle group T from the cyclic structure. This gives rise to the
composite map

(1-2) T �Bcy.A/ �! Bcy.A/ �! B.A/;

where B.A/ is the realization of the usual bar construction and the second map is the
realization of the simplicial map

.a0; : : : ; ak/ 7! .a1; : : : ; ak/:

The adjoint map Bcy.A/!L.B.A// fits in a commutative diagram of spaces

(1-3)

A //

��

Bcy.A/ //

��

B.A/

�.B.A// // L.B.A// // B.A/;
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where the vertical map on the left is the usual group-completion. Standard results
on realizations of simplicial quasifibrations imply that if A is grouplike (�0A is a
group) and well-based (the inclusion of the unit is a Hurewicz cofibration), then the
upper sequence is a fibration sequence up to homotopy and the vertical maps are weak
homotopy equivalences (see for instance the proof of Lemma V.I.3 of Goodwillie [18]).
This idea of relating the cyclic bar construction to the free loop space is originally due
to Waldhausen [50] and suggests that we should be able to connect the description in
terms of the cyclic bar construction to the free loop space.

Furthermore, if the topological monoid A is in fact an infinite loop space, then there is
a canonical splitting Bcy.A/!A of the upper sequence and it is proved by the third
author [40] that the composition

B.A/ �!L.B.A//
'
 � Bcy.A/ �!A

represents multiplication by the Hopf map �. Applied to BF this is the essential reason
why � appears in the statement of our main theorem.

However, there are formidable technical impediments to making this intuitive picture
precise. For one thing, BF cannot be realized as a commutative topological monoid
since it is not a generalized Eilenberg–Mac Lane space. Moreover, the classical
comparison of the Thom spectrum of a cartesian product to the smash product of the
Thom spectra is insufficiently rigid; one obtains a simplicial map relating B

cy
� .T .f //

and T .B
cy
� .f // only after passage to the stable homotopy category. This is not sufficient

for computing the topological Hochschild homology.

A major part of this paper is concerned with developing suitable technical foundations
to carry out the program above. Our approach is as follows: We introduce a symmetric
monoidal category .A;�; 1A/ which is a refined model of the category U of unbased
spaces in the sense that E1 objects can be realized as strictly commutative �–monoids.
In particular, BF will admit a model as a commutative �–monoid BFA . In this setting
we show that the Thom spectrum functor can be refined to a strong symmetric monoidal
functor TAW A=BFA ! S , where S is a suitable symmetric monoidal category of
spectra. Here A=BFA denotes the category of objects in A over BFA with the
symmetric monoidal structure inherited from A: given two objects f W X !BFA and
gW Y ! BFA , the monoidal product is defined by

f �gW X �Y �! BFA�BFA �! BFA:

This is symmetric monoidal precisely because BFA is commutative. That TA is strong
monoidal means that there is a natural isomorphism

TA.f /^TA.g/
Š
�! TA.f �g/
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and this implies that we can directly implement the intuitive strategy discussed above.
Of course, there is significant technical work necessary to retain homotopical control
over the quantities involved in the formula above, but the basic approach does become
as simple as indicated.

We construct two different realizations of the category A. In a precise sense, our
constructions herein are space-level analogues of the constructions of the modern
symmetric monoidal categories of spectra. Just as there is an operadic approach to a
symmetric monoidal category of spectra given by [16] and a “diagrammatic” approach
given by (for example) symmetric spectra [20; 31], we have operadic and diagrammatic
approaches to producing A. Since there are several good choices for the category A, we
shall in fact give an axiomatic description of the properties needed to prove Theorem 1.
The point is that even though these settings are in some sense equivalent, the natural
input for the respective Thom spectrum functors is very different. Working in an
axiomatic setting gives a flexible framework for adapting the constructions to fit the
input provided in particular cases. Both of our realizations are based in part on the
earlier constructions of May, Quinn and Ray [34] and Lewis and May [23].

L.1/–spaces and S –modules

Our first construction is intimately related to the S –modules of [16]. Let L.n/ denote
the space of linear isometries L.Un;U/, for a fixed countably infinite-dimensional
real inner product space U . The object L.1/ is a monoid under composition, and we
consider the category of L.1/–spaces. Following the approach of Kriz and May [22],
we construct an “operadic smash product” on this category of spaces defined as the
coequalizer

X �Y D L.2/�L.1/�L.1/ .X �Y /:

This product has the property that an A1 space is a monoid and an E1 space is a
commutative monoid. Therefore BF is a commutative monoid with respect to the
� product, and so we can adapt the Lewis–May Thom spectrum functor to construct
a Thom spectrum functor from a certain subcategory of L.1/–spaces over BF to
S –modules which is strong symmetric monoidal. The observation that one could carry
out the program of [16] in the setting of spaces is due to Mike Mandell, and was worked
out in the thesis of the first author [6].

I–spaces and symmetric spectra

Our second construction is intimately related to the symmetric spectra of [20; 31].
Let I be the category with objects the finite sets nD f1; : : : ; ng and morphisms the
injective maps. The empty set 0 is an initial object. The usual concatenation mtn of
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finite ordered sets makes this a symmetric monoidal category with symmetric structure
maps m t n! n tm given by the obvious shuffles. By definition, an I–space is
a functor X W I ! U , where U is the category of unbased spaces, and we write IU
for the category of such functors. Just as for the diagrammatic approach to the smash
product of spectra, this category inherits a symmetric monoidal structure from I via
the left Kan extension

.X �Y /.n/D colim
n1tn2!n

X.n1/�Y .n2/

along the concatenation functor tW I2 ! I . The unit for the monoidal product is
the constant I–space I.0;�/ which we denote by �. As we recall in Section 2.1,
the correspondence BF W n 7! BF.n/ defines a commutative monoid in IU . We
can therefore adapt the usual levelwise Thom space functor to construct a strong
symmetric monoidal Thom spectrum functor from the category IU=BF to the category
of symmetric spectra. This point of view on Thom spectra has been worked out in detail
by the third author [42]. A similar construction applies to give a strong symmetric
monoidal Thom spectrum functor with values in orthogonal spectra.
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comments and suggestions based on a very careful reading of a previous draft. The
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Organization of the paper

In Section 2 we begin by reviewing the construction of the Lewis–May Thom spectrum
functor. We then set up an axiomatic framework which specifies the properties of a
rigid Thom spectrum functor needed to prove Theorem 1. Following this, in Section 3,
we show how our main theorems can be deduced from these axioms. The rest of
the paper is devoted to implementations of the axiomatic framework. We collect the
relevant background material for the S –module approach in Section 4 and verify the
axioms in this setting in Section 5. In Section 6 we discuss modifications needed to
work in the context of universal quasifibrations. We then switch gears and consider the
setting of I–spaces and symmetric spectra. In Section 7 we collect and formulate some
background material on symmetric spectra and we verify the axioms in this setting in
Section 8. Finally, we discuss the technical details of the passage from loop maps to
maps structured by operads in Appendix A.
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2 Thom spectrum functors

In this section we formalize the properties of a rigid Thom spectrum functor needed in
order to prove our main theorems. We begin by reviewing the details of the underlying
Thom spectrum functor, roughly following Lewis [23, IX]. Our rigid Thom spectrum
functors are built on this foundation and this construction provides the “reference”
homotopy type we expect from a Thom spectrum functor.

2.1 The Lewis–May Thom spectrum functor

We work in the categories U and T of based and unbased compactly generated weak
Hausdorff spaces. By a spectrum E we understand a sequence of based spaces En

for n � 0, equipped with a sequence of structure maps S1 ^En ! EnC1 (this is
what is called a prespectrum in [23]). We write Sp for the category of spectra in
which a morphism is a sequence of maps that strictly commute with the structure maps.
Let F.n/ be the topological monoid of base point preserving homotopy equivalences
of Sn . Following Lewis we use the notation BF.n/ for the usual bar construction
B.�;F.n/;�/ and EF.n/ for the one-sided bar construction B.�;F.n/;Sn/. The
map EF.n/! BF.n/ induced by the projection Sn ! � is a quasifibration with
fiber Sn over each point in the base, and the inclusion of the basepoint in Sn defines a
section which is a Hurewicz cofibration. We refer the reader to Lewis, May, Steinberger
and McClure [23] and May [33] for more details of these constructions. The Thom
space of a map f W X ! BF.n/ is defined to be the quotient space

T .f /D f �EF.n/=X;

where f �EF.n/ is the pullback of EF.n/ and X is viewed as a subspace via the
induced section. Let BF be the colimit of the spaces BF.n/ under the natural inclusions.
Given a map f W X ! BF , we define a filtration of X by letting X.n/ be the closed
subspace f �1BF.n/. The Thom spectrum T .f / then has as its n–th space the Thom
space T .fn/, where fn denotes the restriction of f to a map X.n/! BF.n/. The
structure maps are induced by the pullback diagrams

S1 x̂f �n EF.n/

��

// f �
nC1

EF.nC 1/

��
X.n/ // X.nC 1/;
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where here x̂ is the fibre-wise smash product. This construction defines our Thom
spectrum functor

T W U=BF �! Sp:

We next recall how to extend this construction to a functor with values in the category S

of coordinate-free spectra from [23]. Thus, we consider spectra indexed on the finite
dimensional subspaces V of an inner product space U of countable infinite dimension.
Let F.V / be the topological monoid of base point preserving homotopy equivalences
of the one-point compactification SV . As in the case of Sn there is an associated
quasifibration EF.V /! BF.V / with fiber SV . We again write BF for the colimit
over the inclusions of the spaces BF.V / and observe that this is homeomorphic to the
space BF consider above. Given a map f W X ! BF , let X.V / be the closed subset
f �1BF.V / and let T .f /.V / be the Thom space of the induced map fV W X.V /!

BF.V /. This defines an object T .f / in the category P of coordinate-free prespectra
from [23] and composition with the spectrification functor LW P! S gives the Thom
spectrum functor

TSW U=BF �! S

from [23]. It is an important point of the present paper that these Thom spectrum
functors can be rigidified to strong monoidal functors by suitable modifications of
the domains and targets. This is based on the fact [7; 34], that the correspondence
V 7!BF.V / defines a (lax) symmetric monoidal functor (see eg Mac Lane [25]) from
the category V of finite dimensional inner product spaces and linear isometries to the
category U of spaces. The monoidal structure maps

BF.V /�BF.W / �! BF.V ˚W /

are induced by the monoid homomorphisms that map a pair of equivalences to their
smash product. Here we implicitly use that the bar construction preserves products.
There are now two ways in which this multiplicative structure leads to a “representation”
of the space BF as a strictly commutative monoid. On the one hand it follows from
[34, 1.1.6] that BF has an action of the linear isometries operad and we shall see in
Section 4 that this implies that it defines a commutative monoid in the weak symmetric
monoidal category of L.1/–spaces. On the other hand, the category of functors from
V to U is itself a symmetric monoidal category and the (lax) symmetric monoidal
structure of the functor V 7! BF.V / exactly corresponds to a commutative monoid
structure in this functor category. Composing with the functor I!V that maps a finite
set to the vector space it generates we get a “representation” of BF as a commutative
monoid in the category of I–spaces.
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More generally, one may consider V –diagrams of topological monoids V 7! G.V /

equipped with a unital, associative, and commutative natural pairing

G.V /�G.W / �!G.V ˚W /:

After applying the bar construction this gives a (lax) symmetric monoidal functor V 7!

BG.V /. For instance, we have the (lax) symmetric monoidal functors V 7!BO.V /

defined by the orthogonal groups and V 7! BTop.V / defined by the groups Top.V /
of base point preserving homeomorphisms of SV . We write BG for the colimit of
the spaces BG.V / and as in the case of BF this can be “represented” as a strictly
commutative monoid both in an “operadic” and a “diagrammatic” fashion. Given a
natural transformation of V –diagrams of monoids G.V /!F.V /, we define the Thom
spectrum functor on U=BG to be the composition

T W U=BG �! U=BF
T
�! Sp; respectively TSW U=BG �! U=BF

TS
�! S:

Finally, we must comment on homotopy invariance. Due to the fact that quasifibrations
and cofibrations are not in general preserved under pullback, the Thom spectrum functor
is not a homotopy functor on the whole category U=BF . A good remedy for this is to
functorially replace an object f by a Hurewicz fibration �.f /W �f .X /! BF in the
usual way. It then follows from [23, IX, 4.9] that the composite functor

T�W U=BF
�
�! U=BF

T
�! Sp

is a homotopy functor in the sense that it takes weak homotopy equivalences over
BF to stable equivalences. Given a map f W X ! BF , there is a natural homotopy
equivalence X ! �f .X /, which we may view as a natural transformation from the
identity functor on U=BF to � . We think of T .f / as representing the “correct”
homotopy type if the induced map T .f /! T .�.f // is a stable equivalence, and
in this case we say that f is T –good. It follows from the above discussion that the
restriction of T to the full subcategory of T –good objects is a homotopy functor. Thus,
for the statement in Theorem 1 to be homotopically meaningful we have tacitly chosen
T –good representatives before applying the Thom spectrum functor. We say that a
V –diagram of monoids V 7!G.V / is group valued if each of the monoids G.V / is a
group. In this case the homotopical analysis of the Thom spectrum functor simplifies
since U=BG maps into the subcategory of T –good objects in U=BF . The Thom
spectrum functor on U=BG is therefore a homotopy functor if G is group valued.

In the following we describe in an axiomatic manner the properties required of a rigid
Thom spectrum functor in order to prove Theorem 1. For simplicity we only formulate
these axioms for maps over BG when G is group valued. One may also formulate
such axioms in the general case by repeated use of the functor � , but we feel that
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this added technicality would obscure the presentation. In the implementation of the
axioms in Section 5 and Section 8 we discuss how to modify the constructions so as to
obtain Theorem 1 in general.

2.2 Rigid Thom spectrum functors

Let S denote a symmetric monoidal category of “spectra”. The reader should have
in mind for instance the categories of S –modules [16] or topological symmetric
spectra [31]. Formally, we require that S be a symmetric monoidal topological category
and that there is a continuous functor U W S ! Sp, which we think of as a forgetful
functor. A morphism in S is said to be a weak equivalence if the image under U

is a stable equivalence of spectra. (In the case of topological symmetric spectra the
“forgetful” functor we use is the composite of the forgetful functor and Shipley’s
detection functor [46]; see Section 7.1 for details).

We further require that S be cocomplete and tensored over unbased spaces. As we
recall in Section 3.1, this implies that there is an internal notion of geometric realization
for simplicial objects in S . We also assume that the category of monoids in S comes
equipped with a full subcategory whose objects we call flat monoids. Given a flat
monoid in S , we define its topological Hochschild homology to be the geometric
realization of the cyclic bar construction. (In the implementations, the flat objects are
sufficiently “cofibrant” for this to represent the correct homotopy type.)

We write A for our refined category of spaces. Formally, we require that A be a closed
symmetric monoidal topological category with monoidal product � and unit 1A ,
and we assume that there is a continuous functor U W A! U which we again think
of as a forgetful functor. A morphism in A is said to be a weak equivalence if the
image under U is a weak homotopy equivalence of spaces. We also require that A
be cocomplete and tensored over unbased spaces and that U preserves colimits and
tensors.

The following list of Axioms (A1)–(A6) specifies the properties we require of a rigid
Thom spectrum functor. Here BG denotes the colimit of a (lax) symmetric monoidal
V –diagram V 7! BG.V / as discussed in Section 2.1 and we assume that G is group
valued.

(A1) There exists a commutative monoid BGA in A and a weak homotopy equiv-
alence �W BGU

'
!BG; where BGU denotes the image of BGA under the

functor U . We further assume that BGA is augmented in the sense that there is
a map of monoids BGA! 1A .
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(A2) There exists a strong symmetric monoidal “Thom spectrum” functor

TAW A=BGA �! S

that preserves weak equivalences, and commutes with colimits and tensors with
unbased spaces. We require that TA be a lift of the Lewis–May Thom spectrum
functor on U=BG in the sense that the two compositions in the diagram

A=BGA

U
��

TA // S

U
��

U=BGU
T // Sp

are related by a chain of natural stable equivalences. Here T denotes the
composite functor

U=BGU

��
�! U=BG

T
�! Sp:

These two axioms already guarantee that we can carry out the argument sketched in
the introduction. Let ˛W A! BGA be a monoid morphism, and let Bcy.˛/ be the
realization of the simplicial map

B
cy
� .˛/W B

cy
� .A/ �! B

cy
� .BGA/ �! BGA;

where we view BGA as a constant simplicial object.

Theorem 2.1 Let ˛W A ! BGA be a monoid morphism in A. Then TA.˛/ is a
monoid in S and there is an isomorphism

Bcy.TA.˛//Š TA.B
cy.˛//:

Furthermore, there is a stable equivalence

U TA.B
cy.˛//

'
�! T .UBcy.˛//:

The simplicity of this result, once we have set up the framework of the two axioms,
is very satisfying. However, since we are really interested in topological Hochschild
homology, we must be able to represent our Thom spectra as flat monoids in S and
for this reason we introduce the functor C below. This should be thought of as a kind
of cofibrant replacement functor and for the application of Theorem 2.1 it is essential
that this “replacement” takes place in the category A before applying T . Adapting the
usual convention for topological monoids to our setting, we say that a monoid in A is
well-based if the unit 1A!A has the homotopy extension property; see Section 3.1
for details. We write AŒT � for the category of monoids in A.
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(A3) There exists a functor

C W AŒT � �!AŒT �; A 7!Ac ;

and a natural weak equivalence Ac!A in AŒT �. We require that the monoid Ac

be well-based and that the composite functor

AŒT �=BGA
C
�!AŒT �=BGA

TA
��! S; ˛ 7! TA.A

c
�!A

˛
�! BGA/

takes values in the full subcategory of flat monoids in S .

As explained earlier, we think of the symmetric monoidal category A as a refined
model of the category of spaces in which we can represent E1 monoids by strictly
commutative monoids. Whereas the functor U should be thought of as a forgetful
functor, the functor Q introduced below encodes the relationship between the monoidal
product � and the cartesian product of spaces.

(A4) There exists a strong symmetric monoidal functor QW A! U that preserves
colimits and tensors with unbased spaces. We further assume that there is a
natural transformation U !Q that induces a weak homotopy equivalence

U.Ac
1� � � ��Ac

k/ �!Q.Ac
1� � � ��Ac

k/

for all k � 0 and all k –tuples of monoids A1; : : : ;Ak .

For k D 0, the last requirement amounts to the condition that U.1A/ ! � be a
weak homotopy equivalence. Until now we have not made any assumptions on the
homotopical behavior of BGA with respect to the monoidal structure. The next axiom
ensures that we may replace BGA by a commutative monoid which is in a certain
sense well-behaved.

(A5) There exists a well-based commutative monoid BG0A in A and a weak equiva-
lence of monoids BG0A! BGA . We assume that the canonical map (induced
by the augmentation)

U
�

BG0A� � � ��BG0A„ ƒ‚ …
k

�
�! UBG0A � � � � �UBG0A„ ƒ‚ …

k

is an equivalence for all k .

Since the functor Q is monoidal it takes monoids in A to ordinary topological monoids.
We say that a monoid A in A is grouplike if the topological monoid QAc is grouplike
in the ordinary sense. Now let ˛W A! BGA be a monoid morphism and let us write
X D UA and f D U˛ . We define BX and B2GU to be the realizations of the
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simplicial spaces UB�.A
c/ and UB�.BGc

A/, and we define Bf to be the realization
of the simplicial map induced by ˛ , that is

(2-1) Bf D UB.˛c/W BX D jUB�.A
c/j �! jUB�.BGc

A/j D B2GU :

We shall see in Section 3.2 that (A3) and (A4) imply that this is a delooping of f if A

is grouplike.

Theorem 2.2 Suppose that (A1)–(A5) hold and that A is grouplike. Then there is a
stable equivalence

T .UBcy.˛c//' T .L�.Bf //;

where L�.Bf / is the map

L.BX /
L.Bf /
�! L.B2GU /' BGU �B2GU

id��
�! BGU �BGU �! BGU ;

defined as in Theorem 1.

Combining this result with Theorem 2.1, we get a stable equivalence

UBcy.TA.˛
c//' T .L�.Bf //

and since TA.˛
c/ is a flat replacement of TA.˛/ by assumption, this gives an abstract

version of Theorem 1. In order to obtain the latter, we must be able to lift space level
data to A. This is the purpose of our final axiom.
(A6) There exists an A1 operad CA that acts on BGU and a functor

RW U ŒCA�=BGU �!AŒT �=BGA; .X
f
�! BGU / 7! .Rf .X /

R.f /
���! BGA/;

where U ŒCA� is the category of spaces with CA–action. Further, we require
that R.id/W Rid.BGU /! BGA is a weak equivalence and that the composite
functor

U ŒCA�=BGU
R
�!AŒT �=BGA �!AŒT � C

�!AŒT �
Q
�! U ŒT � �! U ŒCA�

is related to the forgetful functor by a chain of natural weak homotopy equiva-
lences in U ŒCA�.

The second arrow represents the forgetful functor and the last arrow represents the
functor induced by the augmentation from the A1 operad CA to the associativity
operad [32]. It follows from (A3), (A4) and (A6) that there is a chain of weak homotopy
equivalences relating X to URf .X /. Thus, in this sense R is a partial right homotopy
inverse of U . We shall later see that if X is grouplike, then the conditions in (A6)
ensure that the delooping of f implied by the operad action is homotopic to the map
defined in (2-1).
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3 Proofs of the main results from the axioms

We first recall some background material on tensored categories and geometric realiza-
tion.

3.1 Simplicial objects and geometric realization

Let A be a cocomplete topological category. Thus, we assume that A is enriched over
U in the sense that the morphism sets A.A;B/ are topologized and the composition
maps continuous. The category A is tensored over unbased spaces if there exists a
continuous functor ˝W A�U !A; together with a natural homeomorphism

Map.X;A.A;B//ŠA.A˝X;B/;

where A and B are objects in A and X is a space. For the category U itself, the
tensor is given by the cartesian product, and in Sp the tensor of a spectrum A with
an (unbased) space X is the levelwise smash product A^XC . Assuming that A is
tensored, there is an internal notion of geometric realization of simplicial objects. Let
Œp� 7! �p be the usual cosimplicial space used to define the geometric realization.
Given a simplicial object A� in A, we define the realization jA�j to be the coequalizer
of the diagram a

Œp�!Œq�

Aq˝�
p�

a
Œr �

Ar ˝�
r ;

where the first coproduct is over the morphisms in the simplicial category and the two
arrows are defined as for the realization of a simplicial space. Notice that if we view
an object A as a constant simplicial object, then its realization is isomorphic to A. In
the case where A is the category U , the above construction gives the usual geometric
realization of a simplicial space and if A� is a simplicial spectrum, then jA�j is the
usual levelwise realization. The following lemma is an immediate consequence of the
definitions.

Lemma 3.1 Let A and B be cocomplete topological categories that are tensored over
unbased spaces and let ‰W A! B be a continuous functor that preserves colimits and
tensors. Then ‰ also preserves realization of simplicial objects in the sense that there
is a natural isomorphism j‰A�j Š‰jA�j.

Following [31], we say that a morphism U !V in A is an h–cofibration if the induced
morphism from the mapping cylinder

V [U .U ˝ I/ �! V ˝ I
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admits a retraction in A. This generalizes the usual notion of a Hurewicz cofibration
in U , that is, of a map having the homotopy extension property. Using the terminology
from the space level setting as in [45, Appendix A], we say that a simplicial object in
A is good if the degeneracy operators are h–cofibrations. We observe that a functor
that preserves colimits and tensors as in Lemma 3.1 also preserves h–cofibrations.
It therefore also preserves the goodness condition for simplicial objects. If A has a
monoidal structure, then we say that a monoid A is well-based if the unit 1A!A is
an h–cofibration.

Lemma 3.2 Let A be a closed symmetric monoidal topological category that is
cocomplete and tensored over unbased spaces. If A is a well-based monoid in A, then
the simplicial objects B�.A/ and B

cy
� .A/ are good.

Proof We claim that if U ! V is an h–cofibration in A, then the induced morphism
U �W ! V �W is again an h–cofibration for any object W . In order to show this
we use that A is closed to establish a canonical isomorphism

.V [U .U ˝ I//�W Š V �W [U�W ..U �W /˝ I/:

Similarly, we may identify .V ˝ I/�W with .V �W /˝ I and the claim follows.
The assumption that A be well-based therefore implies the statement of the lemma.

3.2 Consequences of the axioms

Now let A and S be as in Section 2.2, and assume that the Axioms (A1)–(A6) hold.
We shall prove the consequences of the axioms stated in Section 2.2.

Proof of Theorem 2.1 If ˛W A!BFA is a monoid morphism in A, then the assump-
tion that TA be strong symmetric monoidal implies that we have an isomorphism of
cyclic objects B

cy
� .TA.˛//Š TA.B

cy
� .˛//. The first statement therefore follows from

Lemma 3.1 since we have assumed that TA preserves colimits and tensors. The second
statement follows from the assumption that the diagram in (A2) commutes up to stable
equivalence.

The following lemma is an immediate consequence of Lemma 3.2 and the assumption
that U and Q preserve colimits and tensors.

Lemma 3.3 If A is a well-based monoid in A, then the simplicial objects B�.A/ and
B

cy
� .A/ are good and so are the simplicial spaces obtained by applying U and Q.
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If Z� is a simplicial object in A with internal realization Z , then it follows from
Lemma 3.1 that UZ is homeomorphic to the realization of the simplicial space UZ�
obtained by applying U degree-wise. If Z� is a cyclic object, then UZ� is a cyclic
space and UZ inherits an action of the circle group T . Recall that a monoid A in
A is said to be grouplike if the topological monoid QAc is grouplike in the ordinary
sense.

Proposition 3.4 If A is grouplike, then UB.Ac/ is a delooping of UA.

Proof The natural transformation in (A4) gives rise to a map of simplicial spaces
UB�.A

c/!QB�.A
c/ which is a levelwise weak homotopy equivalence by assumption.

Since by Lemma 3.3 these are good simplicial spaces, it follows that the topological
realization is also a weak homotopy equivalence. Furthermore, since Q is strong
symmetric monoidal, QB.Ac/ is isomorphic to the classifying space of the grouplike
topological monoid QAc , hence is a delooping of the latter. Thus, we have a chain of
weak homotopy equivalences

�.UB.Ac//'�.QB.Ac//'�.B.QAc//'QAc
' UAc

' UA;

where the two last equivalences are implied by (A3) and (A4).

Suppose now that A and therefore also Ac is augmented over the unit 1A . We then
have the following analogue of (1-2),

T �UBcy.Ac/ �! UBcy.Ac/ �! UB.Ac/;

where the last arrow is defined using the augmentation.

Proposition 3.5 If A is grouplike, then the adjoint map

UBcy.Ac/ �!L.UB.Ac//

is a weak homotopy equivalence.

Proof It follows from the proof of Proposition 3.4 that there is a weak homotopy
equivalence UB.Ac/!QB.Ac/ and by a similar argument we get a weak homotopy
equivalence UBcy.Ac/ ! QBcy.Ac/. These maps are related by a commutative
diagram

UBcy.Ac/ //

'

��

L.UB.Ac//

'

��
Q.Bcy.Ac// // L.QB.Ac//;
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where, replacing U by Q, the bottom map is defined as the map in the proposition.
Using that Q is strong symmetric monoidal, we can write the latter map in the form

Bcy.QAc/ �!L.B.QAc//;

and as discussed in the introduction, this map is a weak homotopy equivalence since
QAc is grouplike. This implies the result.

Now let ˛W A!BGA be a monoid morphism in A of the form considered in Theorem
2.2. We wish to analyze the map obtained by applying U to the composite morphism

Bcy.Ac/ �! Bcy.BGc
A/ �! Bcy.BGA/ �! BGA:

Notice first that we have a commutative diagram

UBcy.Ac/ //

'

��

UBcy.BGc
A/

'

��
L.UB.Ac// // L.UB.BGc

A//;

where the vertical maps are weak homotopy equivalences by Proposition 3.5. Writing
B2GU for the delooping UB.BGc

A/ as usual, we must identify the homotopy class
represented by the diagram

(3-1) L.B2GU /
'
 � UBcy.BGc

A/ �! UBcy.BGA/ �! BGU :

We shall do this by applying the results of [40] and for this we need to recall some
general facts about � –spaces. Consider in general a commutative well-based monoid Z

in A that is augmented over the unit 1A . Such a monoid gives rise to a � –object
in A, that is, to a functor ZW �o!A, where �o denotes the category of finite based
sets. It suffices to define Z on the skeleton subcategory specified by the objects
nCD f�; 1; : : : ; ng, where we let Z.nC/DZ�n with an implicit choice of placement
of the parenthesis in the iterated monoidal product. By definition, Z.0C/D 1A . The
� –structure is defined using the symmetric monoidal structure of A, together with
the multiplication and augmentation of Z . (This construction models the tensor of Z

with finite based sets in the category of augmented commutative monoids in A; similar
constructions are considered in [4; 40].) From this point of view the diagram of
simplicial objects

Z �! B
cy
� .Z/ �! B�.Z/

may be identified with that obtained by evaluating Z degree-wise on the cofibration
sequence of simplicial sets S0! S1

�C! S1
� ; see [40, Section 5.2]. Composing with

the functor U we get the � –space UZ and the assumption that the monoid Z be
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well-based assures that this construction is homotopically well-behaved. Notice also
that UZ is degree-wise equivalent to the reduced � –space zU Z defined by the quotient
spaces

zU Z.nC/D UZ.nC/=U.1A/:

Following Bousfield and Friedlander [9], we say that UZ is a special � –space if the
canonical maps

U.Z� � � ��Z„ ƒ‚ …
n

/ �! UZ � � � � �UZ„ ƒ‚ …
n

are weak homotopy equivalences for all n. In this case the underlying space UZ

inherits a weak H–space structure, and we say that the � –space is very special if
the monoid of components is a group. This is equivalent to the condition that Z be
grouplike as a monoid in A. Consider now the composition

T �UZ.S1
C/ �! UZ.S1

C/ �! UZ.S1/

defined in analogy with (1-3). The following result is an immediate consequence of
[40, 7.3].

Proposition 3.6 [40] If Z is a well-based commutative monoid in A such that the
� –space UZ is very special, then the adjoint map

UZ.S1
C/
'
�!L.UZ.S1//

is a weak homotopy equivalence and the diagram of infinite loop spaces

UZ.S1/ �!L.UZ.S1//
'
 � UZ.S1

C/ �! UZ.S0/

represents multiplication by �.

The last map in the above diagram is induced by the retraction S1
C! S0 .

Proof of Theorem 2.2 It remains to identify the homotopy class represented by (3-1)
and as explained in the introduction we have a splitting

L.B2GU /' BGU �B2GU :

We must prove that the homotopy class specified by the diagram

(3-2) B2GU �!L.B2GU /
'
 � UBcy.BGc

A/ �! BGU

is multiplication by � in the sense of the theorem. Let BG0A! BGA be as in (A5)
and let the spaces BG0

U
and B2G0

U
be defined as UBG0A and UB.BG0cA/. We then

obtain a diagram

(3-3) B2G0U �!L.B2G0U /
'
 � UBcy.BG0cA/ �! BG0U
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which is naturally weakly homotopy equivalent to (3-2). Writing Z for the commutative
monoid BG0A , the assumptions in (A5) ensure that Z gives rise to a very special
� –space UZ . We claim that the diagram (3-3) is naturally weakly equivalent to
the diagram in Proposition 3.6. Indeed, it follows from (A5) that the natural weak
equivalence in (A3) gives rise to degree-wise weak homotopy equivalences

UB�.BG0A/ �! UZ.S1
� / and UB

cy
� .BG0A/ �! UZ.S1

�C/:

Since these are good simplicial spaces by Lemma 3.3, the induced maps of realizations
are also weak homotopy equivalences. The statement of the theorem now follows
immediately from Proposition 3.6.

3.3 Proofs of the main theorems

We first recall some general facts about deloopings of A1 maps from [32]. Thus, let
C be an A1 operad with augmentation C !M where M denotes the associative
operad. Let C and M be the associated monads in based spaces and consider for a
C–space X the diagram of weak homotopy equivalences of C–spaces

X B.C;C;X /
'oo ' // B.M;C;X /

defined as in [32, 13.5]. The C–space B.M;C;X / is in fact a topological monoid
and we define B0X to be its classifying space, defined by the usual bar construction.
If X is grouplike, then B0X is a delooping in the sense that �.B0X / is related to
X by a chain of weak homotopy equivalences. This construction is clearly functorial
in X : given a map of C–spaces X ! Y , we have an induced map B0X !B0Y . Now
let f W X ! BGU be a CA–map and let ˛W A! BGA be the object in AŒT �=BGA
obtained by applying the functor R. We let Bf W BX !B2GU be defined as in (2-1),
where we recall that BX and B2GU denote the spaces UB.Ac/ and UB.BGc

A/. The
first step in the proof of Theorem 1 is to compare the maps Bf and B0f .

Lemma 3.7 There is a commutative diagram

B0X

B0f
��

' // BX

Bf
��

B0BGU
' // B2GU

in which the horizontal arrows represent chains of compatible weak homotopy equiva-
lences.
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Proof By definition, A is the monoid Rf .X / and it follows from (A6) that there is a
chain of natural weak equivalences of CA–spaces relating X to QRf .X /

c . Applying
the bar construction from [32] we obtain a chain of weak equivalences of topological
monoids

B.M;CA;X /' B.M;CA;QRf .X /
c/' B.M;M;QRf .X /

c/'QRf .X /
c :

The two last equivalence comes from the fact that QRf .X /
c is itself a topological

monoid [32, 13.5(iv)]. This chain in turn gives a chain of equivalences of the classifying
spaces and composing with the equivalence induced by the natural transformation
U ! Q we get the upper row in the diagram. In particular, applied to the identity
on BGU , this construction gives a chain of weak equivalences relating B0.BGU / to
UB.Rid.BGU /

c/. Furthermore, the weak equivalence Rid.BGU /!BGA from (A6)
gives rise to a weak equivalence

UB.Rid.BGU /
c/ �! UB.BGc

A/D B2GU

and composing with this we get the bottom row in the diagram. It is clear from the
construction that the horizontal rows are compatible as claimed.

Proof of Theorem 1 We first reformulate the theorem in a more precise form. As
explained in Appendix A, we may assume that our loop map f W X ! BGU is a CA–
map with a delooping of the form B1f W B1X !B1BGU , where B1 denotes the May
classifying space functor. We again write ˛W A! BGA for the monoid morphism in
A obtained by applying the functor R. Then UBcy.TA.˛

c// represents the topological
Hochschild homology spectrum THH.T .f // and it follows from Theorem 2.1 and
Theorem 2.2 that there is a stable equivalence

UBcy.TA.˛
c//' T .L�.Bf //

where Bf is defined as in (2-1). We claim that there is a homotopy commutative
diagram of the form

B1X

B1f

��

' // B0X

B0f

��

' // BX

Bf
��

B1BGU
' // B0BGU

' // B2GU :

Indeed, it is proved in [49] that the functors B1 and B0 are naturally equivalent
which gives the homotopy commutativity of the left hand square while the homotopy
commutativity of the right hand square follows from Lemma 3.7. The result now
follows from the homotopy invariance of the Thom spectrum functor.
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In preparation for the proof of Theorem 2 we recall that the Thom spectrum functor T

is multiplicative in the following sense: given maps f W X !BGU and gW Y !BGU ,
there is a stable equivalence

T .f �g/' T .f /^T .g/;

where f �g denotes the map

f �gW X �Y
f�g
���! BGU �BGU �! BGU

defined using the H –space structure of BGU . We refer to [23; 42] for different
accounts of this basic fact. Of course, one of the main points of this paper is to “rigidify”
this stable equivalence.

Proof of Theorem 2 As explained in the introduction, the loop space structure on
BX gives rise to a weak homotopy equivalence X �BX

'
!L.BX /: This fits in a

homotopy commutative diagram

X �BX
f�Bf //

'

��

BGU �B2GU

id�� //

'

��

BGU �BGU

��
L.BX /

L.Bf / // L.B2GU /
// BGU ;

where the composition in the bottom row is the map L�.Bf /. By homotopy invariance
of the Thom spectrum functor we get from this the stable equivalences

T .L�.Bf //' T .f � .� ıBf //' T .f /^T .� ıBf /

and the result follows from Theorem 1.

Proof of Theorem 3 Notice first that if X is a 3–fold loop space, then the unstable
Hopf map � gives rise to a map

�W BX 'Map�.S
2;B3X /

��

�!Map�.S
3;B3X /'X:

Let ˆ be the self homotopy equivalence of X �BX defined by

ˆD

�
id �

0 id

�
W X �BX

'
�!X �BX:
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Given a 3–fold loop map f W X ! BGU , we then have a homotopy commutative
diagram

X �BX

' ˆ

��

f�Bf // BGU �B2GU

' ˆ
��

id�� // BGU �BGU
// BGU

D

��
X �BX

f�Bf // BGU �B2GU
id�� // BGU �BGU

// BGU ;

where � denotes the trivial map. It follows from the proof of Theorem 2 that the com-
position of the maps in the upper row is weakly homotopy equivalent to L�.Bf /. Thus,
by homotopy invariance of the Thom spectrum functor we get the stable equivalence

T .L�.Bf //' T .f ��/' T .f /^BXC

and the result again follows from Theorem 1.

3.4 Eilenberg–Mac Lane spectra and p–local Thom spectra

In this section we first collect some background material on p–local Thom spectra for
a prime p . We then complete the proofs of the theorems in the introduction calculating
the topological Hochschild homology of certain Eilenberg–Mac Lane spectra. There is
a p–local version of the Thom spectrum functor

T W U=BF.p/ �! Sp.p/;

defined on the category of spaces over the classifying space BF.p/ for p–local stable
spherical fibrations and with values in the category Sp.p/ of p–local spectra. In fact,
each of our “rigid” Thom spectrum functors has a p–local analogue. This is particularly
easy to explain in the setting of I–spaces and symmetric spectra: Let S1

.p/
be the

p–localization of S1 and let Sn
.p/

be the n–fold smash product. We write F.p/.n/

for the topological monoid of homotopy equivalences of Sn
.p/

and BF.p/.n/ for its
classifying space. The definition of the symmetric Thom spectrum functor can then
readily be modified to a p–local version with values in the category of module spectra
over the p–local sphere spectrum. A similar construction works in the L.1/–space
setting using a continuous localization functor as in [21].

It follows by inspection of our formal framework and the implementations in Section 5
and Section 8 that there are p–local versions of Theorems 1, 2 and 3. The application
of this to the calculation of THH.HZ=p/ is as follows. Let BF.p/ be the colimit of the
spaces BF.p/.n/ and notice that �1BF.p/ is the group Z�

.p/
of units in Z.p/ . Consider

the map S1!BF.p/ corresponding to the unit 1�p and let f W �2.S3/!BF.p/ be
the extension to a 2–fold loop map. It is an observation of Hopkins that the associated
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p–local Thom spectrum T .f / is a model of HZ=p [28]. The argument is similar to
that for HZ=2 [27; 14], using that the Thom space of the map S1! BF.p/.1/ is a
mod p Moore space.

Proof of Theorem 1.3 Applying the p–local version of Theorem 2 to the 2–fold
loop map f W �2.S3/! BF.p/ , we get that

THH.HZ=p/' THH.T .f //'HZ=p^T .� ıBf /

and it follows from the HZ=p Thom isomorphism theorem that there is a stable
equivalence

HZ=p^T .� ıBf /'HZ=p^�.S3/C:

This is (the p–local version of) the homotopy theoretical interpretation of the Thom
isomorphism [29; 35]. Indeed, given a map gW X !BF.p/ , the condition for T .g/ to
be HZ=p orientable is that the composite map

X
g
�! BF.p/ �! BZ�.p/ �! B.Z=p/�

be null homotopic. In our case this holds since �.S3/ is simply connected.

In order to realize HZ.p/ as a Thom spectrum we compose with the canonical map
�2.S3h3i/!�2.S3/ as explained in the introduction. The argument for p odd is
again similar to that given for p D 2 in [27; 14].

Theorem 3.8 There is a stable equivalence

THH.HZ.p//'HZ.p/ ^�.S
3
h3i/C:

Proof Let f W �2.S3h3i/! BF.p/ be the composite map. By the p–local version
of Theorem 2 we have the stable equivalence

THH.HZ.p//' THH.T .f //'HZ.p/ ^T .� ıBf /

and since �.S3h3i/ is simply connected,

HZ.p/ ^T .� ıBf /'HZ.p/ ^�.S
3
h3i/C

by the HZ.p/ Thom isomorphism.

Using that topological Hochschild homology commutes with localization and that
THH.HZ/ is a generalized Eilenberg–Mac Lane spectrum, this immediately implies
the calculation in Theorem 1.4.
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3.5 The Thom spectra MBr, M† and MGL.Z/

As explained in the introduction, a compatible system of group homomorphisms
Gn!GLn.R/ gives rise to a Thom spectrum M G . In particular, we have the systems
of groups

Brn �!†n �! GLn.Z/ �! GLn.R/

given by the braid groups Brn , the symmetric groups †n , and the general linear groups
GLn.Z/. Each one of these families has a natural “block sum” pairing, inducing
a multiplicative structure on the associated Thom spectrum; see Bullett [12] and
Cohen [13]. Indeed, except for MBr, these spectra are in fact commutative symmetric
ring spectra [42]. In order to fit these examples in our framework we observe that
in each case the induced map BG1 ! BGL.R/ from the stabilized group factors
over Quillen’s plus-construction to give a loop map BGC1! BGL.R/. Furthermore,
it follows from the fact that BG1 ! BGC1 induces an isomorphism in homology
that MG is equivalent to the corresponding Thom spectrum T .BGC1/. For the braid
groups, Cohen proves [13] that BBrC1 is equivalent to �2.S3/ and combining this
with Mahowald’s theorem it follows that MBr is a model of HZ=2. Thus, in this case
we recover the calculation in Theorem 1.3 for p D 2. Notice, that the identification of
MBr with HZ=2 implies that M†, MGL.Z/ and MO are HZ=2–module spectra,
hence generalized Eilenberg–Mac Lane spectra.

Proof of Theorem 1.5 By the above remarks, M† is equivalent to the Thom spectrum
of the map B†C1! BGL.R/. It follows from the Barratt–Priddy–Quillen Theorem
that B†C1 is equivalent to the base point component of Q.S0/ and that the map
in question is the restriction to the base point component of the infinite loop map
Q.S0/!BGL.R/�Z. Hence zQ.S1/ is a delooping of B†C1 and the result follows
from Theorem 3.

Proof of Theorem 1.6 It again follows from the above discussion that MGL.Z/ is
equivalent to the Thom spectrum of the infinite loop map BGLC1! BGL.R/. Here
the domain is the base point component of Quillen’s algebraic K–theory space of Z
and the result follows from Theorem 3.

4 Operadic products in the category of spaces

In this section, we adapt the construction of the “operadic” smash product of spectra
from [16] to the context of topological spaces. The conceptual foundation of the
approach to structured ring spectra undertaken in [16] is the observation that by
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exploiting special properties of the linear isometries operad, it is possible to define
a weak symmetric monoidal product on a certain category of spectra such that the
(commutative) monoids are precisely the (E1 ) A1 ring spectra. Since many of the
good properties of this product are a consequence of the nature of the operad, such a
construction can be carried out in other categories – for instance, Kriz and May [22]
studied an algebraic version of this definition. Following an observation of Mandell,
we introduce a version of this construction in the category of spaces. Much of this
work appeared in the first author’s University of Chicago thesis [6].

4.1 The weak symmetric monoidal category of L.1/–spaces

Fix a countably infinite-dimensional real inner product space U , and let L.n/ denote
the n–th space of the linear isometries operad associated to U ; recall that this is the
space of linear isometries L.Un;U/. Since L.Un;U/ is contractible and has a free
†n action, the linear isometries operad is an E1 operad.

Observe that the space L.1/DL.U ;U/ is a topological monoid. We begin by consider-
ing the category of L.1/–spaces: unbased spaces equipped with a map L.1/�X !X

which is associative and unital. We can equivalently regard this category as the category
U ŒL� of algebras over the monad L on the category U of unbased spaces which takes
X to L.1/�X .

The category U ŒL� admits a product X �L Y defined in analogy with the product ^L
on the category of L–spectra [16, Section I.5.1]. Specifically, there is an action of
L.1/�L.1/ on L.2/ via the operad structure map L.2/�L.1/�L.1/! L.2/. In
addition, there is a natural action of L.1/�L.1/ on X �Y given by the isomorphism

.L.1/�L.1//� .X �Y /Š .L.1/�X /� .L.1/�Y /:

We define �L as the balanced product of these two actions.

Definition 4.1 The product X �L Y is the coequalizer of the diagram

L.2/�L.1/�L.1/�X �Y //// L.2/�X �Y:

The coequalizer is itself an L.1/–space via the left action of L.1/ on L.2/ by post-
composition.

The arguments of [16, Section I.5] now yield the following proposition.
Proposition 4.2 (i) The operation �L is associative. For any j –tuple M1; : : : ;Mk

of L.1/–spaces there is a canonical and natural isomorphism of L.1/–spaces

M1�L � � ��L Mk
�D L.k/�L.1/k M1 � � � � �Mk

where the iterated product on the left is associated in any fashion.
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(ii) The operation �L is commutative. There is a natural isomorphism of L.1/–
spaces

� W X �L Y �D Y �L X

with the property that �2 D id.

There is a corresponding mapping L.1/–space F�L.X;Y /; the definition follows [16,
Section I.7], and analogously is forced by the desired adjunction.

Proposition 4.3 Let X , Y , and Z be L.1/–spaces. Then there is an adjunction
homeomorphism

MapU ŒL�.X �L Y;Z/ŠMapU ŒL�.X;F�L.Y;Z//:

The natural choice for the unit of the product �L is the point �, endowed with the
trivial L.1/–action. As in [16, Section 1.8.3], there is a unit map ��L X !X which
is compatible with the associativity and commutativity properties of �L .

Proposition 4.4 Let X and Y be L.1/–spaces. There is a natural unit map of L.1/–
spaces �W ��L X !X . The symmetrically defined map X �L �!X coincides with
the composite �� . Under the associativity isomorphism ���L idŠ id�L�, and, under
the commutativity isomorphism, these maps also agree with ��L.X�LY /!X�LY .

However, just as is the case in the category of L–spectra, � is not a strict unit for �L :
the unit map ��L X !X is not necessarily an isomorphism. However, it is always a
weak equivalence. We omit the proof of this fact, as it is very technical and essentially
similar to the proof of the analogous fact for L–spectra [16, 1.8.5]. We remark only
that it is a consequence of the remarkable point-set properties of the linear isometries
operad and the isomorphism ��L �! �.

Proposition 4.5 For any L.1/–space X , the unit map �W ��L X ! X is a weak
equivalence of L.1/–spaces.

In summary, the category U ŒL� is a closed weak symmetric monoidal category, with
product �L and weak unit �. Recall that this means that the U ŒL�, �L , F�L.�;�/,
and � satisfy all of the axioms of a closed symmetric monoidal category except that
the unit map is not required to be an isomorphism [16, Section II.7.1].
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4.2 Monoids and commutative monoids for �L

In this section, we study �L–monoids and commutative �L–monoids in U ŒL�; these
are defined as algebras over certain monads, following [16, Section 2.7]. We show
that �L–monoids are A1 spaces and commutative �L–monoids are E1 spaces.
One can prove this directly, as is done in the algebraic setting in [22, Section V.3.1],
but we prefer to follow the categorical approach given for L–spectra and ^L in [16,
Section II.4].

In any closed weak symmetric monoidal category which is cocomplete, monoids and
commutative monoids can be regarded as algebras over certain monads T and P ; in
the case of L.1/–spaces, these are defined as follows. Let X�j denote the j –fold
power with respect to �L , where X 0 D �. Then we have monads on the category of
L.1/–spaces given by the formulas

TX D j̀�0 X�j ; PX D j̀�0 X�j=†j ;

where the unit is given by the inclusion of X into the coproduct and the product is
induced by the obvious identifications (and the unit map, if any indices are 0).

On the other hand, we can regard A1 and E1 spaces as algebras over monads B and
C on unbased spaces. Recall that these monads are defined as

BY D j̀�0 L.j /�X j ; CY D j̀�0 L.j /�†j X j ;

where here X n indicates the iterated cartesian product. Notice that these monads can
be obtained by composing the customary monads on based spaces which define A1
and E1 spaces with the monad that adjoins a disjoint basepoint.

The main tool for comparing these various categories of algebras is the lemma [16,
Section II.6.1] (or rather its corrected form [17]), which we write out below for clarity.

Lemma 4.6 Let S be a monad in a category C and let R be a monad in the category
CŒS� of S–algebras. If R preserves reflexive coequalizers in CŒS�, then the category
CŒS�ŒR� of R–algebras in CŒS� is isomorphic to the category CŒRS� of algebras over
the composite monad RS in C . Moreover, the unit of R defines a map S! RS of
monads in C . An analogous assertion holds for comonads.

Since the relevant monads satisfy the hypotheses of this lemma, we now obtain the
following comparison result.

Proposition 4.7 There is an isomorphism of categories between �L–monoids and
A1 spaces structured by the non–† linear isometries operad. Similarly, there is
an isomorphism of categories between commutative �L–monoids and E1 spaces
structured by the linear isometries operad.
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Proof For concreteness, we work with the associative case; the proof is analogous in
the commutative situation. The composite TL is a monad on unbased spaces. Further-
more, there is an identification of monads on unbased spaces B Š TL; Proposition
4.2 implies an isomorphism of objects, and the comparison of monad structures is
immediate. Lemma 4.6 then implies that B–algebras in unbased spaces are equivalent
to T –algebras in L.1/–spaces.

4.3 The symmetric monoidal category of �–modules

In this section we define a subcategory of L.1/–spaces which forms a closed symmetric
monoidal category with respect to �L . This is necessary for our application to topo-
logical Hochschild homology – in order to define the cyclic bar construction as a strict
simplicial object, we need a unital product to define the degeneracies. In fact, there are
two possible approaches to constructing a symmetric monoidal category from the weak
symmetric monoidal category of L.1/–spaces, which parallel the approaches developed
in [22] and [16]. If we restrict attention to the category T ŒL� of based L.1/–spaces
(where the L.1/ action is trivial on the basepoint), there is a unital product ?L formed
as the pushout

.X �L �/_ .��L Y / //

��

X _Y

��
X �L Y // X ?L Y:

In the algebraic setting of [22], this kind of construction is our only option. However,
since there is an isomorphism ��L � Š � we can also pursue the strategy of con-
sidering a subcategory of L.1/–spaces analogous to the category of S –modules [16].
Specifically, observe that the L.1/–space ��L X is unital in the sense that the unit
map ��L .��L X /! .��L X / is an isomorphism.

Definition 4.8 The category M� of �–modules is the subcategory of L.1/–spaces
such that the unit map �W ��L X !X is an isomorphism. For �–modules X and Y ,
define X �Y as X �L Y and F�.X;Y / as ��L F�L.X;Y /.

The work of the previous section implies that M� is a closed symmetric monoidal
category. For use in establishing a model structure on M� in Theorem 4.16, we
review a more obscure aspect of this category, following the analogous treatment for
the category of S –modules [16, Section II.2]. The functor ��L� is not a monad in
L.1/–spaces. However, the category of �–modules has a “mirror image” category to
which it is naturally equivalent, and this equivalence facilitates formal analysis of the
category of �–modules.
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Let M� be the full subcategory of counital L.1/–spaces: L.1/–spaces Z such that
the counit map Z! F�L.�;Z/ is an isomorphism. Following the notation of [16,
Section II.2], let f denote the functor F�L.�;�/ and s denote the functor ��L .�/.
Let r be the inclusion of the counital L.1/–spaces into the category of L.1/–spaces,
and ` the inclusion of the unital L.1/–spaces (�–modules) into L.1/–spaces. We have
the following easy lemma about these functors.

Lemma 4.9 The functor f is right adjoint to the functor s and left adjoint to the
inclusion r .

Now, we obtain a pair of mirrored adjunctions

U ŒL�
s // M�

rf `

oo
` // U ŒL�
s

oo ; U ŒL�
f // M�

r
oo

`sr // U ŒL�:
f

oo

The composite of the first two left adjoints is ��L .�/ and the composite of the
second two right adjoints is F�L.�;�/. These are themselves adjoints, and now by
the uniqueness of adjoints we have the following consequence.

Lemma 4.10 For an L.1/–space X , the maps

��L X �! ��L F�L.�;X /

F�L.�;��L X / �! F�L.�;X /and

are natural isomorphisms.

An immediate consequence of this is that the category M� and M� are equivalent,
and in particular we see that the category of �–modules is equivalent to the category
of algebras over the monad rf determined by the adjunction (see the proof of [16,
Section II.2.7] for further details).

4.4 Monoids and commutative monoids in M�

The monads T and P on L.1/–spaces restrict to define monads on M� . The alge-
bras over these monads are monoids and commutative monoids for �, respectively.
Thus, a �–monoid in M� is a �L–monoid in L.1/ which is also a �–module (and
similarly for commutative �–monoids). The functor ��L .�/ gives us a means to
functorially replace �L–monoids and commutative �L–monoids with �–monoids
and commutative �–monoids.
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Proposition 4.11 Given a �L–monoid X , the object ��LX is a �–monoid and the
map �W ��L X !X is a weak equivalence of �L–monoids. The analogous results in
the commutative case hold.

Furthermore, note that the standard formal arguments imply that � is the coproduct in
the category M�ŒP �.

4.5 Functors to spaces

In this section, we discuss two functors which allow us to compare the categories U ŒL�
and M� to spaces. There is a continuous forgetful functor U W U ŒL�! U such that
U.�/D �. This functor restricts to a continuous forgetful functor U WM�! U . In
addition, we have another continuous functor from L.1/–spaces to U . There is a map
of topological monoids � W L.1/!�. Associated to any map of monoids is an adjoint
pair .��; ��/. The right adjoint ��W U ! U ŒL� is the functor which assigns a trivial
action to a space, and the left adjoint is described in the next definition.

Definition 4.12 The monoid map L.1/!� induces a functor QW U ŒL�! U which
takes an L.1/–space X to � �L.1/ X . Q is the left adjoint to the pullback functor
which gives a space Y the trivial L.1/–action. Q restricts to a functor QWM�! U .

The interest of this second functor Q is that it is strong symmetric monoidal: it allows
us to relate � to the cartesian product of spaces.

Lemma 4.13 The functor QW U ŒL�!U is strong symmetric monoidal with respect to
the symmetric monoidal structures induced by �L and � respectively. Correspondingly,
the functor QWM� ! U is strong symmetric monoidal with respect to � and �
respectively.

Proof Let X and Y be L.1/–spaces. We need to compare ��L.1/ .X �L Y / and
.� �L.1/ X / � .� �L.1/ Y /. Observe that L.2/ is homeomorphic to L.1/ as a left
L.1/–space, by composing with an isomorphism gW U2 ! U . Therefore we have
isomorphisms

��L.1/ .X �L Y /D ��L.1/ L.2/�L.1/�L.1/ .X �Y /

Š .��L.1/X /� .��L.1/ Y /

One checks that the required coherence diagrams commute. The result now follows, as
��L.1/ � Š �.

The preceding result implies that Q takes �L–monoids and �–monoids to topological
monoids. In Section 4.7, we will describe conditions under which the natural map
UX !QX is a weak equivalence.
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4.6 Model category structures

In this section, we describe the homotopy theory of the categories described in the
previous sections. We begin by establishing model category structures on the various
categories and identifying the cofibrant objects. We rely on the following standard
lifting result (eg [43, A.3]).

Theorem 4.14 Let C be a cofibrantly generated model category where all objects are
fibrant, with generating cofibrations I and acyclic generating cofibrations J . Assume
that the domains of I and J are small relative to the classes of transfinite pushouts of
maps in I and J respectively. Let A be a continuous monad on C which commutes with
filtered direct limits and such that all A–algebras have a path object. Then the category
CŒA� has a cofibrantly generated model structure in which the weak equivalences and
fibrations are created by the forgetful functor to C . The generating cofibrations and
acyclic cofibrations are the sets AI and AJ respectively.

Furthermore, when C is topological, provided that the monad A preserves reflexive
coequalizers, the category CŒA� will also be topological [16, Section VII.2.10]. All of
the monads that arise in this paper preserve reflexive coequalizers [16, Section II.7.2].
We now record the model structures on the categories we study. We assume that U and
T are equipped with the standard model structure in which the weak equivalences are
the weak homotopy equivalences and the fibrations are the Serre fibrations.

Theorem 4.15 The category U ŒL� admits a cofibrantly generated topological model
structure in which the fibrations and weak equivalences are detected by the forgetful
functor to spaces. Limits and colimits are constructed in the underlying category U .

We use an analogous argument to deduce the existence of a topological model structure
on �–modules, employing the technique used in the proof of [16, Section VII.4.6].
The point is that counital L.1/–spaces are algebras over a monad, and moreover there
is an equivalence of categories between counital L.1/–spaces and unital L.1/–spaces;
recall the discussion of the “mirror image” categories above. The following theorem
then follows once again from Theorem 4.14.

Theorem 4.16 The category M� admits a cofibrantly generated topological model
structure. A map f W X ! Y of �–modules is
� a weak equivalence if the map Uf W UX ! U Y of spaces is a weak equivalence,
� a fibration if the induced map F�.�;X /! F�.�;Y / is a fibration of spaces.

Colimits are created in the category U ŒL�, and limits are created by applying �� .�/
to the limit in the category U ŒL�.
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Notice that although the fibrations have changed (since the functor to spaces which
we’re lifting over is F�.�;�/ and not the forgetful functor), nonetheless this category
still has the useful property that all objects are fibrant.

Lemma 4.17 All objects in the category of �–modules are fibrant.

Proof This is an immediate consequence of the isomorphism F�.�;�/Š � and the
fact that all spaces are fibrant.

As a consequence, we obtain the following summary theorem about model structures
on monoids and commutative monoids.

Theorem 4.18 The categories .U ŒL�/ŒT � and .U ŒL�/ŒP � of �L–monoids and com-
mutative �L–monoids in L.1/–spaces admit cofibrantly generated topological model
structures in which the weak equivalences and fibrations are maps which are weak
equivalences and fibrations of L.1/–spaces. Similarly, the categories M�ŒT � and
M�ŒP � of �–monoids and commutative �–monoids in M� admit cofibrantly gen-
erated topological model structures in which the weak equivalences and fibrations are
the maps which are weak equivalences and fibrations in M� . Limits are created in the
underlying category and colimits are created as a certain coequalizer [16, Section II.7.4].

Next, in order to work with left derived functors associated to functors with domain
one of these categories, we describe a convenient characterization of the cofibrant
objects. Let C be a cofibrantly generated model category with generating cofibrations
fAi ! Big such that Ai and Bi are compact and let A be a continuous monad
satisfying the hypotheses of Theorem 4.14. A cellular object in the category CŒA� is a
(countable) sequential colimit X D colimi Xi , with X0 D � and XiC1 defined as the
pushout W

˛ AAi

��

// Xi

��W
˛ ABi

// XiC1;

where here ˛ is some indexing subset of the indexing set of the generating cofibrations.
The following result is then a formal consequence of the proof of Theorem 4.14 and
the compactness of the domains and codomains in the generating cofibrations.

Proposition 4.19 In the model structures of Theorem 4.15, Theorem 4.16 and Theo-
rem 4.18, the cofibrant objects are retracts of cellular objects.
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Note that this proposition holds more generally with an appropriate transfinite descrip-
tion of the cellular objects in the absence of the compactness conditions.

These categories also satisfy appropriate versions of the “Cofibration Hypothesis” of
[16, Section VII]. That is, for a cellular object the maps Xn! XnC1 are (unbased)
Hurewicz cofibrations and the sequential colimit X D colimi Xi can be computed in
the underlying category of spaces.

4.7 Homotopical analysis of �L

In this section, we discuss the homotopical behavior of �L . We will show that the left
derived functor of �L is the cartesian product. The analysis begins with an essential
proposition based on a useful property of L.2/.

Proposition 4.20 For spaces X and Y , there are isomorphisms of L.1/–spaces

.L.1/�X /�L .L.1/�Y /Š L.2/� .X �Y /Š L.1/� .X �Y /:

As a consequence, if M and N are cell L.1/–spaces then so is M �L N . If M and
N are cell �–modules, then so is M �N .

Proof The first isomorphism is immediate from the definitions. The second is a
consequence of the fact that L.2/ is isomorphic to L.1/ as an L.1/–space via choice
of a linear isometric isomorphism f W U2 ! U ; there is then a homeomorphism
 W L.1/� ff g ! L.2/. The last two statements now follow by induction from the
analogous result for the cartesian product of cell spaces.

With this in mind, we can prove the following result regarding the homotopical behavior
of �.

Theorem 4.21 The category M� is a monoidal model category with respect to the
symmetric monoidal product � and unit �.

Proof We need to verify that M� satisfies the pushout-product axiom [43, 2.1]. Thus,
for cofibrations A! B and X ! Y , we must show that the map

.A�Y /
a

A�X

.B�X / �! B�Y

is a cofibration, and a weak equivalence if either A! B or X ! Y was. Since M�

is cofibrantly generated, it suffices to check this on generating (acyclic) cofibrations.
Therefore, we can reduce to considering a pushout-product of the form

P �!
�
�� .L.1/�B0/

�
�
�
�� .L.1/�Y 0/

�
;
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where P is the pushout

�� .L.1/�A0/��� .L.1/�X 0/ //

��

�� .L.1/�B0/��� .L.1/�X 0/

��
�� .L.1/�A0/��� .L.1/�Y 0/ // P;

for A0!B0 and X 0!Y 0 generating cofibrations in U . Using the fact that .��M /�
.��N /Š �� .M �N / and the fact that �� .�/ is a left adjoint, we can bring the
�� .�/ outside. Similarly, using Proposition 4.20 we can bring L.1/� .�/ outside
and rewrite as

��
�
L.1/�

�
A0 �Y 0

a
A0�X 0

B0 �X 0 �! B0 �Y 0
��
:

Finally, the pushout-product axiom for U implies that it suffices to show that ��
.L.1/��/ preserves cofibrations and weak equivalences. By construction of the model
structures, it follows that L.1/� .�/ and �� .�/ preserve cofibrations. Furthermore,
L.1/�.�/ evidently preserves weak equivalences, and the analogous result for ��.�/
follows from the fact that the unit map � is a weak equivalence.

The previous theorem implies that for a cofibrant �–module X , the functor X � .�/
is a Quillen left adjoint. In particular, we can compute the derived � product by
working with cofibrant objects in M� . Having established the existence of the derived
� product, we now will compare it to the cartesian product of spaces.

The analogues in this setting of [16, Section I.4.6] and [16, Section II.1.9] yield the
following helpful lemma.

Lemma 4.22 If X is a cofibrant L.1/–space, then X is homotopy equivalent as an
L.1/–space to a free L.1/–space L.1/�X 0 , where X 0 is a cofibrant space. If Z is a
cofibrant �–module, then Z is homotopy equivalent as a �–module to a free �–module
��Z0 , where Z0 is a cofibrant L.1/–space.

We now use this to analyze the behavior of the forgetful functor on �. Choosing
a linear isometric isomorphism f W U2 ! U , for L.1/–spaces X and Y there is a
natural map ˛W UX �U Y ! L.2/� .X �Y /!X �L Y .

Proposition 4.23 Let X and Y be cofibrant L.1/–spaces. Then the natural map
˛W UX � U Y ! U.X �L Y / is a weak equivalence of spaces. Let X and Y be
cofibrant �–modules. Then the natural map ˛W UX �U Y ! U.X � Y / is a weak
equivalence of spaces.
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Proof Lemma 4.22 allows us to reduce to the case of free L.1/–spaces and free
�–modules, and the result then follows from Proposition 4.20.

There is also a map U.X �L Y /! UX �U Y induced by the universal property of
the product; it follows from Proposition 4.23 that this map is a weak equivalence as
well under the hypotheses of the proposition.

The analogous result for commutative �–monoids follows from a result of [4, 6.8].
They prove that for cofibrant E1 spaces X and Y structured by the linear isometries
operad, the natural map X

`
Y !X �Y from the coproduct to the product is a weak

equivalence. Since the coproduct in M�ŒP � is precisely �, this implies the natural map
X �Y !X �Y is a weak equivalence. To handle the case of associative �–monoids,
we exploit the following analysis of the underlying L.1/–space of a cell �–monoid,
following [16, Section VII.6.2].

Proposition 4.24 The underlying �–module associated to a cell associative monoid is
cell.

To prove this, we need to briefly recall some facts about simplicial objects in L.1/–
spaces. Recall that for the categories we are studying there are internal and external
notions of geometric realization. We need the following compatibility result.

Lemma 4.25 Let X be a simplicial object in any of the categories U ŒL�, M� ,
.U ŒL�/ŒT �/, M�ŒT �, .U ŒL�ŒP �/ or M�ŒP �. Then there is an isomorphism between the
internal realization jX�j and the external realization jUX�j.

Proof First, assume that X is a simplicial object in U ŒL�, .U ŒL�/ŒT � or .U ŒL�/ŒP �.
In all cases, the argument is essentially the same; we focus on U ŒL�. For any simplicial
space Z� , there is an isomorphism of spaces LjZj Š jLZj. Now, since ��L jX�j Š

j ��LX�j, the realization of a �–module is a �–module. The remaining parts of the
lemma follow.

We now begin the proof of Proposition 4.24.

Proof First, observe that we have the following analogue of [16, Section VII.6.1],
which holds by essentially the same proof: for �–monoids A and B which are cell
�–modules, the underlying �–module of the coproduct in the category of �–monoids
is a cell �–module.

Next, assume that X is a cell �–module. Then X �X � � � ��X is a cell �–module.
Since X ! CX is cellular, the induced map TX ! TCX is the inclusion of a
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subcomplex. Let Yn be a �–monoid which is a cell �–module and consider the
pushout of �–monoids

TX //

��

Yn

��
TCX // YnC1:

By passage to colimits, it suffices to show that YnC1 is a cell �–module. We rely
on a description of the pushout of �–monoids as the realization of a simplicial �–
module. By the argument of [16, Section XII.2.3], we know that T preserves Hurewicz
cofibrations of �–modules. The argument of [16, Section VII.3.8] implies that we can
describe the pushout YnC1 as the double mapping cylinder M.TCX;TX;Yn/, and
the argument of [16, Section VII.3.7] establishes that this double mapping cylinder is
isomorphic to the realization of the two-sided bar construction with k –simplices

Œk� 7! TCX
a

TX
a

TX
a

: : :
a

TX„ ƒ‚ …
k

a
Yn:

Temporarily assuming that TCX is a cell �–module, since the k –simplices of this
bar construction are cell �–modules and the face and degeneracy maps are cellular, the
realization is itself a cell �–module. To see that TCX is a cell �–modules, observe that
since T preserves tensors and pushouts, TCX Š �

`
TX .TX ˝ I/ can be described

via an analogous double mapping cylinder and the same argument shows that it is a
cell �–module.

Finally, we study the functor Q. Since we wish to use Q to provide a functorial
rectification of associative monoids, we need to determine conditions under which the
natural map UX !QX is a weak equivalence. Note that we do not expect this map
to be a weak equivalence for commutative monoids, as that would provide a functorial
rectification of E1 spaces to commutative topological monoids.

Proposition 4.26 Let X be a cell L.1/–space. Then the map UX !QX is a weak
equivalence of spaces. Let X be a cell �–module. Then the map UX ! QX is a
weak equivalence of spaces. Finally, let X be a cell �–monoid in M� . Then the map
UX !QX is a weak equivalence of spaces.

Proof First, assume that X is a cell L.1/–space. Since colimits in L.1/–spaces are
created in U , U commutes with colimits. Moreover, since Q is a left adjoint, it also
commutes with colimits. By naturality and the fact that the maps Xn!XnC1 in the
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cellular filtration are Hurewicz cofibrations, it suffices to consider the attachment of a
single cell. Applying Q to the diagram

L.1/�A //

��

Xn

��
L.1/�B // XnC1;

since Q.L.1/�A/ŠA we obtain the pushout

A //

��

QXn

��
B // QXnC1

and therefore the result follows by induction, as Q.X0/DQ.�/D �. Next, assume
that X is a cell �–module. In an analogous fashion, we can reduce to the consideration
of the free cells. Since Q is strong symmetric monoidal, Q.��L .L.1/ �Z// Š

��Q.L.1/�Z/. Since the unit map � is always a weak equivalence, once again
we induct to deduce the result. The case for cell �–monoids now follows from
Proposition 4.24.

Therefore, for cell objects in M�ŒT �, Q provides a functorial rectification to topological
monoids.

5 Implementing the axioms for L.1/–spaces

In this section, we will show that the Lewis–May Thom spectrum functor T restricted
to the category of �–modules over .�� BG/ satisfies our axioms. We begin by
reviewing the essential properties of the Lewis–May functor.

5.1 Review of the properties of TS

As discussed in Section 2.1, the Lewis–May construction of the Thom spectrum yields
a functor TSW U=BG!S. If we work in the based setting T =BG , we obtain a functor
to SnS , spectra under S , where for f W X ! BG the unit S ! TS.f / is induced by
the inclusion �! X over BG . In this section, we review various properties of TS

which we will need in verifying the axioms for the version of the Thom spectrum
functor we will construct in the context of L.1/–spaces.
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Theorem 5.1 (i) Let f W � ! BG be the basepoint inclusion. Then TS.f /Š S .

(ii) [23, 7.4.3] The functor TSW U=BG! S preserves colimits.

(iii) The functor TSW T =BG! SnS preserves colimits.

(iv) [23, 7.4.6] Let f W X ! BG be a map and A a space. Let g be the composite

X �A
� // X

f // BG ;

where � is the projection away from A. Then

TS.g/ŠAC ^TS.f /:

(v) [23, 7.4.9] If f W X !BG and gW X 0!BG are T –good maps such that there
is a weak equivalence hW X ' X 0 over BG , then there is a stable equivalence
Mf 'Mg given by the map of Thom spectra induced by h.

(vi) [23, 7.4.10] If f W X ! BG and gW X ! BG are T –good maps which are
homotopic, then there is a stable equivalence Mf 'Mg . However, the stable
equivalence depends on the homotopy.

Notice that taking AD I , item (iv) of the preceding theorem implies that the functor
TS converts fiberwise homotopy equivalences into homotopy equivalences in SnS .
Similarly, item (iii) and (iv) imply that TS preserves Hurewicz cofibrations. The
requirement that the maps X!BG be T –good that appears in the homotopy invariance
results suggest that when dealing with spaces over BF , a better functor to consider
might be the composite TS� . Unfortunately, the interaction of � with some of the
constructions we are interested in (notably extended powers) is complicated; see
Section 6 for further discussion.

Next, we review the multiplicative properties of this version of the Thom spectrum
functor. Based spaces with actions by the linear isometries operad L can be regarded
as algebras with respect to an associated monad C and spectra in SnS which are
E1–ring spectra structured by the linear isometries operad can be regarded as algebras
with respect to an analogous monad we will also denote C . In order to understand
the interaction of the Thom spectrum functor with these monads, we need to describe
the role of the twisted half-smash product. Given a map �W X ! L.Uj ;U/ and maps
fi W Yi! BG , 1� i � j , we define a map ��…ifi as the composite

X �…iYi

…ifi // X �…iBG
�� // BG

where here �� denotes the map induced on BG by �. Given a subgroup � �†n such
that X is a � –space and � is a � –map, then ��…ifi is a � –map (letting � act
trivially on BG ) and TS.��…ifi/ is a spectrum with � –action.
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The following theorem is [23, 7.6.1].

Theorem 5.2 (i) In the situation above,

TS.��…ifi/ŠX Ë
�
Ŝ

i

TS.fi/

�
:

(ii) Passing to orbits, there is an isomorphism

TS.��†n
…ifi/ŠX Ë†n

�
Ŝ

i

TS.fi/

�
:

Here x̂ denotes the external smash product.

The following corollary is an immediate consequence.

Corollary 5.3 For f W X ! BG a map of spaces, let Lf denote the composite

L.1/�X �! L.1/�BG �! BG;

where the last map is given by the E1 structure of BG as a space over the linear
isometries operad. Then TS.Lf /Š LTS.f /.

Theorem 5.2 is the foundation of the essential technical result that describes the behavior
of this Thom spectrum functor in the presence of operadic multiplications. Given a
map f W X ! BG , there is an induced monad CBG on T =BG specified by defining
CBGf as the composite CX !CBG!BG . Lewis proves the following [23, 7.7.1].

Theorem 5.4 Given a map f W X ! BF , there is an isomorphism CTS.f / Š

TS.CBGf /, and this isomorphism is coherently compatible with the unit and multipli-
cation maps for these monads.

This result has the following corollary; the first part of this is one of the central
conclusions of Lewis’ thesis, and the second part is a consequence explored at some
length in the first author’s thesis [6] and forthcoming paper [5].

Theorem 5.5 (i) The functor TS restricts to a functor

T.SnS/ŒC�W .T =BG/ŒCBG � �! .SnS/ŒC�:

(ii) The functor
T.SnS/ŒC�W .T =BG/ŒCBG � �! SŒC�

preserves colimits and tensors with unbased spaces.
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5.2 Verification of the axioms

We begin by studying the behavior of TS in the context of L.1/–spaces. The E1
space BG constructed as the colimit over the inclusions of the V –space V 7!BG.V /

is a commutative monoid for �L . Therefore, the category U ŒL�=BG has a weak
symmetric monoidal product: Given f W X ! BG and gW Y ! BG , the product
f �L g is defined as

f �L gW X �L Y �! BG�L BG �! BG:

The unit is given by the trivial map �! BG . We define

TLW U ŒL�=BG �! SŒL�

as the Lewis–May Thom spectrum functor TS restricted to U ŒL�=BG : Corollary 5.3
implies that TS takes values in L–spectra on U ŒL�=BG . Moreover, TL is strong
symmetric monoidal (up to unit).

Proposition 5.6 Given f W X ! BG and gW Y ! BG , there is a coherently associa-
tive isomorphism TL.f �g/Š TL.f /^L TL.g/.

Proof We can describe f �gW X �Y ! BG as the natural map to BG associated
to the coequalizer describing X �Y . Theorem 5.1 implies that TL commutes with
this coequalizer and Theorem 5.2 implies that

TS.L.2/�L.1/�L.1/� .X �Y //Š .L.2/�L.1/�L.1//Ë ..TSf / x̂ .TSg//

TS.L.2/� .X �Y //Š L.2/Ë ..TSf / x̂ .TSg//:and

Inspection of the maps then verifies that the resulting coequalizer is precisely the
coequalizer defining TL.f /^L TL.g/.

Now we restrict to the subcategory M� . For a �–monoid in M� with multiplication �,
unitality implies that there is a commutative diagram

X �� //

� %%

X �X

�

��
X:

In conjunction with Proposition 5.6, this diagram implies that given a map f W X!BG ,
there is an isomorphism

TL.��L X �! ��L BG �! BG/Š S ^L TL.f /;

Geometry & Topology, Volume 14 (2010)



1210 Andrew J Blumberg, Ralph L Cohen and Christian Schlichtkrull

which implies that the following definition is sensible. We let MS denote the category
of S –modules from [16]; this is our symmetric monoidal category S of spectra in this
setting.

Definition 5.7 The category A is simply M� . Define BGA to be ��L BG . We
define a Thom spectrum functor

TAW A=BGA �!MS

given f W X ! BGA by applying TL to the composite

X
f // BGA

� // BG:

It follows immediately from Proposition 5.6 and the observation preceding the definition
that TA is a strong symmetric monoidal functor from M�=BGA to MS . Since
Theorem 5.5 implies that TA commutes with colimits and tensors, TA commutes with
geometric realization and therefore the pair A, TA satisfies Axioms (A1) and (A2).

Next, we use Theorem 4.18 to choose a cofibrant replacement functor c on the category
M�ŒT � such that for any object X in A, cX is a cell monoid [19]. Note that cell
monoids are well-based; one proves this by an inductive argument using the “Cofibration
Hypothesis” (see Ando et al [1, 3.22] for details). Then given an object f W X !BGA ,
we define Cf to be the composite

cX
' // X // BGA :

We will work with the notion of flatness encapsulated in the definition of the class
of S –modules FS by Basterra [3, 9.6] (see also Elmendorf et al [16, VII.6.4]). Let
FS denote the collection of modules of the form S ^L L.j / ËG K where K is a
G –spectrum (for G �†j ) which has the homotopy type of a G –CW– spectrum. Then
FS is the closure of FS under finite ^, wedges, pushouts along cofibrations, colimits
of countable sequences of cofibrations, homotopy equivalences, and “stabilization”
(in which if †M is in FS then so is M ). The point of this definition is that for
S –modules M and N in the class FS , the point-set smash product M ^N represents
the derived smash product [16, VII.6.7; 3, 9.5].

Lemma 5.8 Let f W X ! BGA be an object of M�ŒT �=BGA such that X is a cell
monoid. Then the underlying S –module of the S –algebra TA.f / is in the class FS .

Proof We proceed by induction. Since the class FS is closed under colimits of
countable sequences of cofibrations and TA commutes with colimits and preserves
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Hurewicz cofibrations, it suffices to consider the case in which X is generated by the
attachment of finitely many cells. Thus, we can reduce to consideration of a pushout
square of the form

TA.T .�� .L.1/�A/// //

��

TA.Xn/

��
TA.T .�� .L.1/�B/// // TA.XnC1/

where Xn can be assumed to be in the class FS and A and B are CW–complexes.
Here we are suppressing the maps from A, B , Xn , and XnC1 to BGA in our no-
tation. We need to show that under these hypotheses TAXnC1 is in the class FS .
Next, since both TA and T preserves Hurewicz cofibrations and FS is closed under
pushouts along Hurewicz cofibrations, it suffices to show that for any CW–complex Z ,
TA.T .�� .L.1/�Z/// is in the class FS . Since T .Z/ has the homotopy type of a
CW–spectrum (see the proof of [23, 7.5.6]), the result follows from Proposition 4.20
and Theorem 5.2.

This completes the verification of (A3). For (A4), we use the functor Q of Definition
4.12; we have already verified that it has the desired properties in Proposition 4.26.
For (A5), we choose a cofibrant replacement functor on the category of commutative
monoids provided by the model structure of Theorem 4.18 and use this to define
BG0A . (Recall from the discussion prior to Proposition 4.24 that BG0A has the desired
properties.)

Finally, rectification is very straightforward in this context; since Proposition 4.7 tells
us that a map X ! BGA over the non–† linear isometries operad specifies the data
of a monoid map in .U ŒL�=BGA/ŒT �, by applying �� .�/ we obtain a monoid map
in �–modules. To complete the verification of (A6), we use Proposition 4.26. Given
a topological monoid M , we can regard this as an A1 space over the non–† linear
isometries operad by pulling back along the augmentation to the associative operad.
Equivalently, M regarded as an L.1/–space with trivial action is a �L–monoid with
multiplication induced from the monoid multiplication M �M !M and the fact that
M �L M ŠM �M by the argument of Lemma 4.13.

Thus, let X be an A1 space structured by the non–† linear isometries operad. Since
Q is left adjoint to the functor which assigns the trivial L.1/–action, the unit of the
adjunction induces a map of L.1/–spaces X �L X !Q.X �L X /ŠQX �QX . To
show that Axiom (A6) holds, it suffices to show that this is a map of �L–monoids;
this map constructs the homotopy commutative diagram of the axiom. But since
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QX �QX ŠQX �L QX this map is a map of �L–monoids by the definition of the
multiplication on QX .

6 Modifications when working over BF

In this section, we discuss the situation when working over BF : there are technical
complications which arise from the fact that the projection

pnW B.�;F.n/;S
n/! B.�;F.n/;�/

is a universal quasifibration, with section a Hurewicz cofibration. Quasifibrations are
not preserved under pullback, and in general the pullback of the section will not be a
Hurewicz cofibration. If the section of pn could be shown to be a fiberwise cofibration,
pullback along any map would provide a section which was a fiberwise cofibration [36,
Section 5]. Unfortunately, this seems difficult: the proof that the section is a Hurewicz
cofibration depends on the facts that the spaces in question are LEC and retractions
between LEC spaces are cofibrations.

6.1 A review of the properties of �

The standard solution to these issues (pioneered by Lewis) is to use an explicit functor �
which replaces a map by a Hurewicz fibration. Since various properties of � play an
essential role in our work in this section, we will review relevant details here (see [23,
Section 7.1] for a more comprehensive treatment).

Definition 6.1 Given a map f W X ! B , define

…B D f.�; r/ 2 BŒ0;1� � Œ0;1� j �.t/D �.r/; t > rg:

The end-point projection �W …B! B is defined as .�; r/ 7! �.r/. There is also the
evaluation map e0W …B!B defined as .�; r/ 7! �.0/. Define �X to be the pullback

�X

��

// …B

e0

��
X

f // B:

Let �f denote the induced map

�X // …B
� // B:

There is a map ıW X ! �X specified by taking x 2 X to the pair .x; �f .x// where
�f .x/ is the path of length zero at f .x/.

The map �f is a Hurewicz fibration.
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Lemma 6.2 The maps ı specify a natural transformation id! � , and ıW X ! �X

is a homotopy equivalence (although not a homotopy equivalence over B ).

Moreover, � has very useful properties in terms of interaction with the naive model
structures on U=B and T =B [23, 7.1.11].

Proposition 6.3 The functor � on spaces over B takes cofibrations to fiberwise
cofibrations and homotopy equivalences over B to fiberwise homotopy equivalences.
As a functor on ex-spaces, it takes ex-spaces with sections which are cofibrations to
ex-spaces with sections which are fiberwise cofibrations.

There is a useful related lemma.

Lemma 6.4 If X ! X 0 is a weak equivalence over BF , �X ! �X 0 is a weak
equivalence.

There are two possible ways we might use � to resolve the problems with BF ;
we could replace pn with �pn , which will be a Hurewicz fibration and will have
section a fiberwise cofibration, or we could replace a given map f W X ! BF with a
Hurewicz fibration via � . The latter approach will yield a homotopically well-behaved
Thom spectrum construction, since the pullback of a quasifibration along a Hurewicz
fibration is a quasifibration and the pullback of a section which is a cofibration will be
a cofibration. Moreover, Lewis shows that the two approaches yield stably equivalent
Thom spectra. Since the second approach is much more felicitous for the study of
multiplicative structures, we will employ it exclusively.

� behaves well with respect to colimits and unbased tensors [23, 7.1.9].

Proposition 6.5 As a functor on U=BF and T =BF , � commutes with colimits.

There is a related result for tensors with unbased spaces (although note however that
this is false for based tensors).

Proposition 6.6 As a functor on U=BF and T =BF , � commutes with the tensor
with an unbased space A.

Finally, we recall some salient facts about the interaction of � with operadic multipli-
cations. May [32, 1.8] shows that � restricts to a functor on T ŒC�, for an operad C
augmented over the linear isometries operad, and Lewis observes that in fact � extends
to a functor on T ŒC�=BF . We make particular use of these facts in the cases of T
and P . A related observation we will use is that � restricts to a functor on U ŒL�.
An essential aspect of these results is that all of the various maps associated with �
(notably ı ) are maps of C–algebras, and so in particular the map ı yields a weak
equivalence in the category T ŒC�.
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6.2 � and cofibrant replacement

In order to verify Axiom (A3) in this setting, we must amend the cofibrant replacement
process. Given a map f W X ! BF regarded as a map in .U ŒL�/ŒT �, we consider the
map �.cf /W �.cX /!BF obtained by the cofibrant replacement functor in .U ŒL�/ŒT �
followed by � . We have the following commutative diagram:

cX //

ı
��

X //

ı
��

BF

�cX
' // �X

<<

Since the labeled weak equivalence in the preceding diagram connect objects of
.U ŒL�/ŒT �=BF which are T –good, there is a stable equivalence connecting TL.�f /

to TL.�.cf ///. If f itself was T –good, then there is a further stable equivalence
from TLf . Therefore this process does not change the homotopy type of the Thom
spectrum. Finally, we apply �� .�/ to ensure that we land in M�ŒT �=BGA . Denote
this composite functor by  .

Next, we must verify that this process produces something which allows us to compute
derived functors with respect to � and ^, in M�ŒT � and MS ŒT � respectively. Al-
though ���.cX / is not a cofibrant object in M�ŒT �, it has the homotopy type of a
cofibrant object and this suffices to ensure that it can be used to compute the derived
� product. This observation also implies that the functor Q satisfies Axiom (A4) in
this context.

Moving on, we now need to show that TA.���.cf // can be used to compute the
derived smash product in MS .

Lemma 6.7 Let f W X !BGA be a map in M�ŒT �. Let U denote the forgetful func-
tors M�ŒT �!M� and MS ŒT �!MS respectively. Then there is an isomorphism
TA.Uf /Š U TA.f /.

By Lemma 6.7, it will suffice to show that the underlying S –module of TA.���.cf //
is in the class FS . Since a slight modification of the argument of Proposition 4.24
shows that the underlying L.1/–space of a cell �L–monoid is a cell L.1/–space, in
fact Lemma 6.7 implies that it will suffice to show that given

f W X ! BFA

such that X is a cell L.1/–space, TA.���f / is in the class FS . We will make an
inductive argument. Using the fact that � commutes with colimits in L.1/–spaces
and preserves Hurewicz cofibrations, it suffices to show that the Thom spectra of
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���T .CEn/ and ���T .En/ are in the class FS , where En is a wedge of cells Dn .
We can further reduce to the case where we are considering a single cell. Abusing
notation by suppressing the maps to BF , we will refer to the relevant Thom spectra
as TA.�� �.L.1/ � Sn// and TA.�� �.L.1/ �Dn//. Finally, since Sn can be
constructed as the pushout Dn[Sn�1 Dn , it suffices to consider TA.���.L.1/��//
and TA.���.L.1/�Dn//. Recall that by Proposition 5.6, these spectra are isomorphic
as S –modules to S ^L TL.�.L.1/��// and S ^L TL.�.L.1/�Dn// respectively.

Lemma 6.8 The S –modules TA.���.L.1/��// and TA.���.L.1/�Dn// are
in the class FS .

Proof Given a map Dn!BF , by choosing a point in Dn we obtain a map �!Dn

over BF . This induces a map L.1/��! L.1/�Dn which is a weak equivalence
of L.1/–spaces over BF . Since these are cofibrant L.1/–spaces, this is a homotopy
equivalence over BF . Applying � turns this into a fiberwise homotopy equivalence.
Since T takes fiberwise homotopy equivalences to homotopy equivalences of spectra,
the resulting spectra are homotopy equivalent.

Therefore, we are reduced to considering the Thom spectra associated to �.L.1/��/
associated to the various choices of a target for point. But since BF is path-connected,
an argument analogous to the one in the preceding paragraph allows us to show that
all of these spectra are homotopy equivalent. Thus, it suffices to consider the trivial
map � ! BF . But then �.L.1/ � �// is homeomorphic as a space over BF to
�2W L.1/��.�/, where �2 is the projection away from L.1/. Applying T yields the
Thom spectrum L.1/C ^ T .�.�//. Finally, S ^L .L.1/C ^ T .�.�// is in the class
FS ; this follows from the proof of part (ii) of [23, 7.3.7], in which the homotopy type
of the Thom spectrum T .�.�// is explicitly described.

In the previous proof, we are implicitly exploiting the “untwisting” Proposition I.2.1
of [16] which provides an isomorphism of spectra AË†1X Š†1.AC ^X /.

Finally, we need to be able to compare �.f �L f / to �f �L �f .

Proposition 6.9 Let f W X ! BF be a map of L.1/–spaces, and assume that X is
a cell L.1/–space. Then there is a weak equivalence between TL�.f �L f / and
TL.�f �L �f /.

Proof Recall from Proposition 4.20 that given a choice of a linear isometric isomor-
phism gW U2!U , there is a chain of weak equivalences

X �X ! L.2/� .X �X /!X �L X:

Moreover, these equivalences are given by maps over BF .
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Lewis shows that there is a map �f ��f !�.f �f / given by multiplication of paths
which is a weak equivalence [23, 7.5.5]. In addition, he shows that �f ��f is a good
map. This is the heart of our comparison. Applying � to the chain of equivalences
above, we have a composite

�.f �f /! �.L.2/� .f �f //! �.f �L f /

which induces weak equivalences of Thom spectra T .�.f �f //! T .�.f �L f //.
On the other hand, there is also the composite

�f ��f ! L.2/� .�f ��f /! �f �L �f:

Although these are not all good maps, Lemma 6.8 implies that the induced maps of
Thom spectra

g�.T .�f / x̂ T .�f //! L.2/Ë .T .�f / x̂ T .�f //! T .�f /�L T .�f /

are stable equivalences. Since �f ��f ! �.f �f / induces a weak equivalence of
Thom spectra, the result follows.

The previous proposition gives us the following result, which allows us to compare
to a model of the free loop space which is T –good in the proof of the main theorem
from the axioms.

Corollary 6.10 Let f W X ! BGA be a map of �–monoids. Then there is a weak
equivalence of spectra TA.N

cy
�
.f // and TA.N

cy
�
f /.

Finally, the verification of Axioms (A5) and (A6) is unchanged.

7 Preliminaries on symmetric spectra

Let Sp† be the category of topological symmetric spectra as defined in [31]. Thus, a
symmetric spectrum T is a spectrum in which the spaces T .n/ come equipped with
base point preserving †n –actions such that the iterated structure maps Sm ^T .n/!

T .mCn/ are .†m�†n/–equivariant. It is proved in [31] that Sp† has a stable model
structure which makes it Quillen equivalent to the category Sp of spectra. When
implementing the axiomatic framework in this setting there are two technical issues
that must be addressed. The first is that the forgetful functor from Sp† to Sp does not
take stable model equivalences in Sp† (that is, the weak equivalences in the stable
model structure) to ordinary stable equivalences in Sp. This can be remedied using
Shipley’s detection functor as we recall below. The second issue is that the symmetric
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Thom spectrum functor on IU=BF does not take cofibrant replacement in the model
structure on IU to cofibrant replacement in Sp† . For this reason we shall introduce
explicit “flat replacement” functors on IU and Sp† which are strictly compatible
with the symmetric Thom spectrum functor. In order for this to be useful, we must of
course verify that the topological Hochschild homology of a symmetric ring spectrum
is represented by the cyclic bar construction of its flat replacement; this is the content
of Proposition 7.6 and Proposition 7.10.

7.1 The detection functor

A map of symmetric spectra whose underlying map of spectra is an ordinary stable
equivalence is also a stable model equivalence in Sp† . It is a subtle property of the
stable model structure on Sp† that the converse does not hold; there are stable model
equivalences in Sp† whose underlying maps of spectra are not stable equivalences.
In order to characterize the stable model equivalences in terms of ordinary stable
equivalences, Shipley [46] has defined an explicit “detection” functor DW Sp†! Sp† .
This functor takes a symmetric spectrum T to the symmetric spectrum DT with n–th
space

DT .n/D hocolim
m2I

�m.T .m/^Sn/:

Here we tacitly replace the spaces in the definition of DT by spaces that are well-based,
for example the realization of their singular simplicial complexes. It then follows as
in [46, 3.1.2], that a map of symmetric spectra is a stable model equivalence if and
only if applying D gives an ordinary stable equivalence of the underlying spectra.
Furthermore, by [46, 3.1.6], the functor D is related to the identity functor on Sp† by
a chain of natural stable model equivalences of symmetric spectra.

7.2 The flatness condition for symmetric spectra

It follows from [46], that if T is a cofibrant symmetric ring spectrum, then the cyclic bar
construction Bcy.T / represents the topological Hochschild homology of T . However,
in the study of Thom spectra we find it useful to introduce the notion of a flat symmetric
spectrum, which is a more general type of symmetric spectrum for which the smash
product is homotopically well-behaved. We first consider flat symmetric spectra in
general and then define what we mean by a flat symmetric ring spectrum. For this
we need to recall some convenient notation from [42]. In the following T denotes a
symmetric spectrum and I is the category of finite sets and injective maps defined in
the introduction. Given a morphism ˛W m! n, we write n�˛ for the set n�˛.m/
and Sn�˛ for the one-point compactification of Rn�˛ . Associated to ˛ we have the
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composite map

Sn�˛
^T .m/ �! Sn�m

^T .m/ �! T .n/
x̨
�! T .n/;

where the first map is the homeomorphism induced by the ordering of n�˛ inherited
from n, the second map is the structure map of the symmetric spectrum, and x̨ is
the extension of ˛ to a permutation which is order preserving on the complement
of m. The advantage of this notation is that it will make some of our constructions
self-explanatory. Consider for each object n the I=n–diagram of based spaces that to
an object ˛W m! n associates Sn�˛ ^T .m/. If ˇW .m; ˛/! .m0; ˛0/ is a morphism
in I=n, then ˛ D ˛0 ıˇ by definition, and ˇ specifies a canonical homeomorphism
between Sn�˛ and Sn�˛0 ^Sm0�ˇ . The induced map is then defined by

Sn�˛
^T .m/

'
�! Sn�˛0

^Sm0�ˇ
^T .m/ �! Sn�˛0

^T .m0/:

Applying this functor to a commutative diagram in I of the form

(7-1)

m
˛2

��

˛1 // n1

ˇ1

��
n2

ˇ2 // n

and writing  for the composition ˇ1 ı˛1 D ˇ2 ı˛2 , we get a commutative diagram
of based spaces

(7-2)

Sn� ^T .m/ //

��

Sn�ˇ1 ^T .n1/

��
Sn�ˇ2 ^T .n2/

// T .n/:

We say that T is flat if each of the spaces T .n/ is well-based, and if for each diagram
(7-1), such that the intersection of the images of ˇ1 and ˇ2 equals the image of  , the
induced map

Sn�ˇ1 ^T .n1/[Sn�^T .m/ Sn�ˇ2 ^T .n2/ �! T .n/

is an h–cofibration (that is, it has the homotopy extension property in the usual sense).
By Lillig’s union theorem for h–cofibrations [24], a levelwise well-based symmetric
spectrum T is flat if and only if (i) any morphism ˛W m! n in I induces an h–
cofibration Sn�˛^T .m/!T .n/, and (ii) for any diagram of the form (7-1), satisfying
the above condition, the intersection of the images of Sn�ˇ1^T .n1/ and Sn�ˇ2^T .n2/

equals the image of Sn� ^T .m/. This can be reformulated in a way that is easier to
check in practice.
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Lemma 7.1 A levelwise well-based symmetric spectrum is flat if and only if the
structure maps S1 ^T .n/! T .nC 1/ are h–cofibrations and the diagrams

S l ^T .m/^Sn

��

// S l ^T .mC n/

��
T .l Cm/^Sn // T .l CmC n/

are pullback diagrams for all l , m and n.

Here the notation is supposed to be self-explanatory. For instance, the symmetric Thom
spectra MO and MF obtained by applying the Thom space functor levelwise are flat.
We shall now prove that smash products of flat symmetric spectra are homotopically
well-behaved. Recall from [42] that the smash product of a family of symmetric spectra
T1; : : : ;Tk may be identified with the symmetric spectrum whose n–th space is the
colimit

T1 ^ � � � ^Tk.n/D colim
˛Wn1t���tnk!n

Sn�˛
^T1.n1/^ � � � ^Tk.nk/:

Here the colimit is over the comma category tk=n, where tk W Ik ! I denotes the
iterated monoidal product. We introduce a homotopy invariant version by the analogous
based homotopy colimit construction,

T1 ^
h
� � � ^

h Tk.n/D hocolim
˛Wn1t���tnk!n

Sn�˛
^T1.n1/^ � � � ^Tk.nk/:

For k D 1 this is the replacement xT1 to be considered in Section 7.3. It should be
observed that the functor on k –tuples of symmetric spectra so defined is not the same
as the iteration of the functor .�/ ^h .�/. As we shall see in Proposition 7.3, the
symmetric spectrum T1 ^

h � � � ^h Tk always represents the “derived” homotopy type
of the smash product for symmetric spectra that are levelwise well-based.

Proposition 7.2 If the symmetric spectra T1; : : : ;Tk are flat, then the canonical
projection

T1 ^
h
� � � ^

h Tk �! T1 ^ � � � ^Tk

is a levelwise equivalence.

Proof For notational reasons we only carry out the proof for a pair of flat symmetric
spectra T1 and T2 . The proof in the general case is completely analogous. Let A.n/ be
the full subcategory of t=n whose objects ˛W n1tn2! n are such that the restrictions
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to n1 and n2 are order preserving. Since this is a skeleton subcategory, it suffices to
show that the canonical map

hocolim
A.n/

Sn�˛
^T1.n1/^T2.n2/ �! colim

A.n/
Sn�˛

^T1.n1/^T2.n2/

is a weak homotopy equivalence for each n. Notice that A.n/ may be identified with
the partially ordered set of pairs .U1;U2/ of disjoint subsets of n, so that we may
write the diagram in the form

Z.U1;U2/D Sn�U1[U2 ^T1.U1/^T2.U2/:

Notice also, that since the base points are nondegenerate and the categories A.n/ are
contractible, it suffices to consider the unbased homotopy colimit instead of the based
homotopy colimit. We now use that the categories A.n/ are very small in the sense of
[15, Section 10.13]. By general model theoretical arguments using the Strøm model
category structure [48] on U , we are therefore left with showing that the canonical map

colim
.U1;U2/¨.U

0
1
;U 0

2
/

Z.U1;U2/ �!Z.U 0
1 ;U

0
2 /

is an h–cofibration for each fixed object .U 0
1
;U 0

2
/. Since the structure maps in the

A.n/–diagram Z are h–cofibrations and since h–cofibrations are closed inclusions,
we may view each of the spaces Z.U1;U2/ as a subspace of Z.U 0

1
;U 0

2
/. By the

flatness assumptions on T1 and T2 we then have the equality

Z.U1;U2/\Z.V1;V2/DZ.U1\V1;U2\V2/

for each pair of objects .U1;U2/ and .V1;V2/. Thus, by the pasting lemma [37, 18.3]
for maps defined on a union of closed subspaces, the colimit in question may be
identified with the union of the subspaces Z.U1;U2/. The conclusion now follows
from an inductive argument using Lillig’s union theorem for h–cofibrations [24].

Proposition 7.3 If T1; : : : ;Tk are levelwise well-based symmetric spectra, then there
is a chain of levelwise equivalences

T1 ^
h
� � � ^

h Tk

'
 � T 01 ^

h
� � � ^

h T 0k
'
�! T 01 ^ � � � ^T 0k ;

where T 0i ! Ti are cofibrant replacements in the stable model structure on symmetric
spectra.

Proof It follows from [31, 9.9] that we may choose cofibrant symmetric spectra
T 0i and levelwise acyclic fibrations T 0i

'
!Ti . The left hand map is then a levelwise

equivalence since homotopy colimits preserve termwise equivalences of well-based
diagrams. That the right hand map is an equivalence follows from Proposition 7.2 since
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cofibrant symmetric spectra are retracts of relative cell-complexes by [31], hence in
particular flat.

Combining these propositions we get the following corollary which states that smash
products of flat symmetric spectra represent the “derived” smash products.

Corollary 7.4 If T1; : : : ;Tk are flat symmetric spectra, then there is a levelwise
equivalence

T 01 ^ � � � ^T 0k
'
�! T1 ^ � � � ^Tk ;

where T 0i ! Ti are cofibrant replacements in the stable model structure on symmetric
spectra.

In the next definition we use the notion of an h–cofibration introduced in Section 3.1.

Definition 7.5 A flat symmetric ring spectrum T is a symmetric ring spectrum whose
underlying symmetric spectrum is flat and whose unit S ! T is an h–cofibration.

Proposition 7.6 If T is a flat symmetric ring spectrum, then Bcy.T / represents the
topological Hochschild homology of T .

Proof Let T 0! T be a cofibrant replacement of T as a symmetric ring spectrum.
Then it follows from [46] that Bcy.T 0/ represents the topological Hochschild homology
of T . Using Corollary 7.4, we see that the induced map of simplicial symmetric spectra
B

cy
� .T

0/! B
cy
� .T / is a levelwise equivalence in each simplicial degree. Furthermore,

the assumption that the unit be an h–cofibration implies by Lemma 3.2 that these
are good simplicial spaces. Therefore the topological realizations are also levelwise
equivalent.

7.3 Flat replacement of symmetric spectra

We define an endofunctor on the category of symmetric spectra by associating to a
symmetric spectrum T the symmetric spectrum xT defined by

xT .n/D hocolim
˛Wn1!n

Sn�˛
^T .n1/;

where the (based) homotopy colimit is over the category I=n. This is not quite a flat
replacement functor since xT need not be levelwise well-based. However, we do have
the following.

Proposition 7.7 If T is a symmetric spectrum that is levelwise well-based, then xT is
flat and the canonical projection xT ! T is a levelwise weak equivalence.
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Proof We show that xT satisfies the flatness conditions (i) and (ii). Thus, given a
morphism ˛W m ! n, we claim that the structure map Sn�˛ ^ xT .m/ ! xT .n/ is
an h–cofibration. Let ˛�W I=m ! I=n be the functor induced by ˛ . Using that
based homotopy colimits commute with smash products and that there is a natural
isomorphism of I=m–diagrams

Sn�˛
^Sm�ˇ

^T .m1/Š Sn�˛ˇ
^T .m1/; ˇW m1 �!m;

the map in question may be identified with the map of homotopy colimits

hocolim
ˇWm1!m

Sn�˛ˇ
^T .m1/

˛�
�! hocolim

 Wn1!n
Sn�

^T .n1/:

Notice that ˛� induces an isomorphism of I=m onto a full subcategory of I=n. The
claim therefore follows from the general fact that the map of homotopy colimits obtained
by restricting a diagram to a full subcategory is an h–cofibration; see eg Elmendorf
et al [16, X.3.5]. In order to verify (ii) one first checks the condition in each simplicial
degree of the simplicial spaces defining the homotopy colimits. The result then follows
from the fact that topological realization preserves pullback diagrams. The map xT !T

is defined by the canonical projection from the homotopy colimit to the colimit

xT .n/D hocolim
I=n

T �! colim
I=n

T D T .n/;

where the identification of the colimit comes from the fact that I=n has a terminal object.
The existence of a terminal object implies that this is a weak homotopy equivalence.

The relationship between the replacement functor and the ^h –product is recorded in
the following proposition whose proof we leave with the reader.

Proposition 7.8 There is a natural isomorphism of symmetric spectra

xT1 ^ � � � ^
xTk Š T1 ^

h
� � � ^

h Tk :

Recall the notion of a monoidal functor from [25, Section XI.2]. This is what is
sometimes called lax monoidal.

Proposition 7.9 The replacement functor T 7! xT is (lax) monoidal and the canonical
map xT ! T is a monoidal natural transformation.

Proof The replacement of the sphere spectrum has 0th space xS.0/D S0 and we let
S ! xS be the unique map of symmetric spectra that is the identity in degree 0. We
must define an associative and unital natural transformation xT1^

xT2!T1 ^T2 , which
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by the universal property of the smash product amounts to an associative and unital
natural transformation of IS � IS –diagrams

(7-3) xT1.m/^ xT2.n/ �! T1 ^T2.mC n/:

Here IS denotes the topological category such that Sp† may be identified with the
category of based IS –diagrams [31; 42]. Consider the natural transformation of
I=m� I=n–diagrams that to a pair of objects ˛W m1!m and ˇW n1! n associates
the map

Sm�˛
^T1.m1/^Sn�ˇ

^T2.n1/ �! SmCn�˛tˇ
^ .T1 ^T2/.m1C n1/;

where we first permute the factors and then apply the universal map to the smash
product T1 ^T2 . Using that based homotopy colimits commute with smash products,
the map (7-3) is the induced map of homotopy colimits, followed by the map

hocolim
I=m�I=n

SmCn�˛tˇ
^ .T1 ^T2/.m1C n1/ �! T1 ^T2.mC n/

induced by the concatenation functor I=m� I=n! I=mtn. With this definition it
is clear that the natural transformation xT ! T is monoidal.

It follows from this that the replacement functor induces a functor on the category of
symmetric ring spectra. In order to ensure that the unit is an h–cofibration we adapt
the usual method for replacing a topological monoid with one that is well-based. Thus,
given a symmetric ring spectrum T , we define T 0 to be the mapping cylinder

T 0 D T [S^f0gC S ^ IC;

where we view the unit interval I as a multiplicative topological monoid. This is again
a symmetric ring spectrum and arguing as in the case of a topological monoid [32, A.8]
one deduces that the unit S ! T 0 is an h–cofibration and that the canonical map of
symmetric ring spectra T 0! T is a homotopy equivalence. It is easy to check that if
T is flat as a symmetric spectrum, then T 0 is a flat symmetric ring spectrum in the
sense of Definition 7.5. Combining these remarks with Proposition 7.7, we get the
following.

Proposition 7.10 If T is a symmetric ring spectrum that is levelwise well-based, then
T c D . xT /0 is a flat symmetric ring spectrum.
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8 Implementing the axioms for symmetric spectra

In this section we verify the Axioms (A1)–(A6) in the setting of I–spaces and symmetric
spectra. The basic reference for this material is the third author’s paper [42] in which
the theory of Thom spectra is developed in the category of symmetric spectra.

8.1 Symmetric spectra and I–spaces

In the axiomatic framework set up in Section 2.2 we define S to be the category of
symmetric spectra Sp† and we say that a symmetric ring spectrum is flat if it satisfies
the conditions in Definition 7.5. We define U to be the composite functor

U W Sp†
D
�! Sp† �! Sp;

where D is the detection functor from Section 7.1 and the second arrow represents the
obvious forgetful functor. It follows from the discussion in Section 7.1 that a map of
symmetric spectra is a stable model equivalence if and only if applying U gives an
ordinary stable equivalence of spectra.

We define A to be the symmetric monoidal category IU of I–spaces as defined in
the introduction. Given an I–space B , let BŒn� be the I–space B.nt�/ obtained by
composing with the “shift” functor nt� on I . We write HomI.A;B/ for the internal
Hom-object in IU defined by n 7! IU.A;BŒn�/. This makes IU a closed symmetric
monoidal topological category in the sense that there is a natural isomorphism

IU.A�B;C /Š IU.A;HomI.B;C //:

We define an I–space monoid to be a monoid in IU . The tensor of an I–space A

with a space K is given by the obvious levelwise cartesian product A�K . Associating
to an I–space its homotopy colimit over I defines the functor U W IU ! U , that is,
UAD hocolimI A. Here we adapt the Bousfield–Kan construction [10], such that by
definition UA is the realization of the simplicial space

Œk� 7!
a

n0 ��� nk

A.nk/;

where the coproduct is indexed over the nerve of I . In particular, U� is the classifying
space BI which is contractible since I has an initial object. That U preserves tensors
and colimits follows from the fact that topological realization has this property. As in
[42; 40] we also use the notation AhI for the homotopy colimit of an I–space A.

In the discussion of the Axioms (A1)–(A6) we consider two cases corresponding to the
underlying Thom spectrum functor on U=BF and its restriction to U=BO . In the case

Geometry & Topology, Volume 14 (2010)



Topological Hochschild homology of Thom spectra and the free loop space 1225

of (A2) and (A3) we formulate a slightly weaker version of the axioms which hold in
the IU=BF case and which imply the original axioms when restricted to objects in
IU=BO . In Section 8.2 we then provide additional arguments to show why the weaker
form of the axioms suffices to prove the statement in Theorem 1. One can also verify
the axioms for more general families of subgroups of the topological monoids F.n/.
We omit the details of this since the only reason for singling out the group valued case
is to explain how the arguments simplify in this situation.

Axiom (A1)

As explained in Section 2.1, the correspondence n 7! BF.n/ defines a commutative
monoid in IU . In order to be consistent with the notation used in [42], we now redefine
BF to be this I–space monoid and we write BFhI for its homotopy colimit. Let N be
the subcategory of I whose only morphisms are the subset inclusions and let i W N ! I
be the inclusion. Thus, N may be identified with the ordered set of natural numbers.
Let BFhN be the homotopy colimit and BFN the colimit of the N –diagram BF ,
such that BFN is now what was denoted BF in Section 2.1. We then have a diagram
of weak homotopy equivalences

BFhI
i
 � BFhN

t
�! BFN ;

where t is the canonical projection from the homotopy colimit to the colimit. Here i

is a weak homotopy equivalence by Bökstedt’s approximation lemma [26, 2.3.7], and t

is a weak homotopy equivalence since the structure maps are h–cofibrations. Using
that BFhI has the homotopy type of a CW–complex, we choose a homotopy inverse j

of i and define � to be the composite weak homotopy equivalence

�W BFhI
j
�! BFhN

t
�! BFN :

Starting with the commutative I–space monoid n 7! BO.n/, we similarly get a weak
homotopy equivalence �W BOhI

'
!BON .

Axiom (A2)

The symmetric Thom spectrum functor

T W IU=BF �! Sp†

is defined by applying the Thom space functor from Section 2.1 levelwise: given
an object ˛W A! BF with level maps ˛nW A.n/! BF.n/, the n–th space of the
symmetric spectrum T .˛/ is given by T .˛n/. Since colimits and tensors in IU=BF

and Sp† are formed levelwise, the fact that the Thom space functor preserves these
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constructions [23, IX] implies that the symmetric Thom spectrum functor has the same
property. Given maps of I–spaces ˛W A! BF and ˇW B! BF , we may view the
canonical maps

A.m/�B.n/ �!A�B.mC n/

as maps over BF.mC n/ and since the Thom space functor takes cartesian products
to smash products, the induced maps of Thom spaces take the form

T .˛/.m/^T .ˇ/.n/ �! T .˛�ˇ/.mC n/:

It follows from [42, 1.1] that the induced map of symmetric spectra

T .˛/^T .ˇ/ �! T .˛�ˇ/

is an isomorphism such that T defines a strong symmetric monoidal functor. We next
discuss homotopy invariance. Applying the usual Hurewicz fibrant replacement functor
levelwise (defined using the standard path space fibration) we get an endofunctor � on
IU=BF and it follows from [42, 1.4] that the composite functor

T�W IU=BF
�
�! IU=BF

T
�! Sp†

is a homotopy functor: if .A; ˛/! .B; ˇ/ is a weak equivalence over BF (that is,
AhI ! BhI is a weak homotopy equivalence), then T�.˛/! T�.ˇ/ is a stable
model equivalence. We say that an object .A; ˛/ is T –good if the canonical map
T .˛/! T�.˛/ is a stable model equivalence. It follows from the definition that the
symmetric Thom spectrum functor preserves weak equivalences on the full subcategory
of T –good objects in IU=BF . Since IU=BO maps into the subcategory of T –good
objects in IU=BF by [42, 2.3], this in particular implies that T preserves weak
equivalences when restricted to IU=BO .

Proposition 8.1 Restricted to the full subcategory of T –good objects, the two compo-
sitions in the diagram

IU=BF
T //

U

��

Sp†

U

��
U=BFhI

�� // U=BFN
T� // Sp

are related by a chain of natural stable equivalences.

Again this implies the statement in (A2) when restricted to IU=BO . We postpone the
proof of this result until we have introduced the functor R in (A6).
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Flat replacement and Axiom (A3)

We first recall the flatness notion for I–spaces introduced in [41]. Thus, an I–space A

is flat if for any diagram of the form (7-1), such that the intersection of the images of
ˇ1 and ˇ2 equals the image of  , the induced map

A.n1/[A.m/A.n2/ �!A.n/

is an h–cofibration. By Lillig’s union theorem for h–cofibrations [24], this is equivalent
to the requirement that (i) any morphism ˛W m! n in I induces an h–cofibration
A.m/! A.n/, and (ii) that the intersection of the images of A.n1/ and A.n2/ in
A.n/ equals the image of A.m/. For instance, the I–spaces BO and BF are flat.

The flat replacement of an I–space A is the I–space xA defined by

xA.n/D hocolim
˛Wn1!n

A.n1/;

where the homotopy colimit is over the category I=n. We have the following I–space
analogues of Propositions 7.7 and 7.9.

Proposition 8.2 The I–space xA is flat and the canonical projection xA ! A is a
levelwise equivalence.

Proposition 8.3 The flat replacement functor is a (lax) monoidal functor on IU and
xA!A is a monoidal natural transformation.

It follows from this that the flat replacement functor induces a functor on the category
of I–space monoids. As in the axiomatic framework from Section 2.2 we say that an
I–space monoid is well-based if the unit � ! A is an h–cofibration. Let I be the
unit interval, thought of as a based topological monoid with base point 0 and unit 1.
Given a I–space monoid A, let A0 DA_ I be the I–space monoid defined by the
levelwise wedge products A0.n/DA.n/_ I . Notice that if A is commutative, then so
is A0 . This construction is the I–space analogue of the usual procedure for replacing
a topological monoid by one that is well-based. Arguing as in the case of a topological
monoid [32, A.8], one deduces the following.

Proposition 8.4 Let A be an I–space monoid. The associated I–space monoid
A0 DA_ I is well-based and the canonical map of monoids A0!A is a homotopy
equivalence.
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We now define the functor C in (A3) by

C W IU ŒT � �! IU ŒT �; A 7!Ac
D . xA/0

and we define the natural transformation Ac!A to be the composition of the levelwise
weak homotopy equivalences . xA/0! xA!A. Given a monoid morphism ˛W A!BF ,
we write ˛c for the composition

˛c
W Ac
�!A

˛
�! BF:

We need a technical assumption to ensure that the associated symmetric spectrum
T .˛c/ is levelwise well-based. In general, we say that a map of I–spaces ˛W A!BF

classifies a well-based I–space over A if the h–cofibrations BF.n/!EF.n/ pull back
to h–cofibrations via ˛ . This condition is automatically satisfied if ˛ factors through
BO [23, IX; 42, 2.3]. Thus, restricted to such morphisms the following proposition
verifies (A3) in the BO case. Recall the functor T 7! T c from Proposition 7.10.

Proposition 8.5 There is an isomorphism of symmetric ring spectra

T .˛c/Š T .˛/c

and if ˛ classifies a well-based I–space over A, then T .˛c/ is a flat symmetric ring
spectrum.

Proof Consider in general a monoid morphism ˛W A! BF and the induced mor-
phisms ˛0W A0 ! BF and x̨W xA! BF . We claim that there are isomorphisms of
symmetric ring spectra T .˛0/ Š T .˛/0 and T .x̨/ Š T .˛/. This clearly gives the
isomorphism in the proposition. The isomorphism for ˛0 follows directly from the fact
that T preserves colimits. For the second isomorphism we first observe that since the
Thom space functor preserves coproducts and topological realization, it also preserves
homotopy colimits. Thus, we have levelwise homeomorphisms

T .x̨/.n/Š hocolim
 Wn1!n

T .A.n1/
ı˛n1
����! BF.n//Š hocolim

 Wn1!n
Sn�

^T .˛/.n1/

and since the last term is T .˛/.n/ by definition, the claim follows. For the last statement
in the proposition we observe that if ˛ classifies a well-based I–space over A, then
the symmetric spectrum T .˛/ is levelwise well-based. The statement therefore follows
from Proposition 7.10.

Remark It is proved in [38] that there is a model structure on IU whose weak
equivalences are the maps that induce weak homotopy equivalences on homotopy
colimits. Similarly, there are model structures on the categories of monoids and
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commutative monoids in IU . However, there are several reasons why these model
structures are not directly suited for the analysis of Thom spectra. For example, it
is not clear that the T –goodness condition on objects in IU=BF is preserved under
cofibrant replacement and the Thom spectra associated to cofibrant I–spaces will not
in general be cofibrant as symmetric spectra. Using the less restrictive notion of flatness
introduced here also makes it clear that many I–spaces, such as for example BF ,
behave well with respect to the �–product even though they are not cofibrant in these
model structures.

We next formulate some further properties of the flat replacement functor that will be
needed later. Consider the homotopy invariant version of the �–product defined by

A1�h
� � ��h Ak.n/D hocolim

n1t���tnk!n
A.n1/� � � � �A.nk/:

For k D 1 this is the flat replacement xA. As for the analogous functor for symmetric
spectra it should be remarked that the functor on k –tuples of I–spaces so defined is
not the same as the iteration of the functor .�/�h .�/.

Proposition 8.6 There is a natural isomorphism of I–spaces

xA1� � � �� xAk ŠA1�h
� � ��h Ak :

We also have the following I–space analogue of Proposition 7.2. The proof is similar
to but slightly easier than the symmetric spectrum version since we do not have to
worry about base points here.

Proposition 8.7 [41, 2.5] If the I–spaces A1; : : : ;Ak are flat, then the canonical
projection

A1�h
� � ��h Ak �!A1� � � ��Ak

is a levelwise equivalence.

As in Section 7.2 we conclude from this that the �h –product always represents the
“derived” homotopy type and that the �–product has the “derived” homotopy type for
flat I–spaces.

Axiom (A4)

We define Q to be the colimit over I ,

QW IU �! U ; QAD colim
I

A:

Geometry & Topology, Volume 14 (2010)



1230 Andrew J Blumberg, Ralph L Cohen and Christian Schlichtkrull

It is clear that Q preserves colimits and the fact that U is closed symmetric monoidal
under the categorical product implies that it also preserves tensors. Before verifying
the remaining conditions it is helpful to recall some general facts about Kan extensions.
Thus, consider in general a functor �W B ! C between small categories. Given a
B–diagram X W B!U , the (left) Kan extension is the functor ��X W C!U defined by

��X.c/D colim
�=c

X ı�c

and the homotopy Kan extension is the functor �h
�X W C! U defined by the analogous

homotopy colimits,
�h
�X.c/D hocolim

�=c
X ı�c :

Here �c denotes the forgetful functor �=c! B ; see eg Schlichtkrull [41]. The effect
of evaluating the colimits of these functors is recorded in the following lemma.

Lemma 8.8 There are natural isomorphisms

colim
C

��X Š colim
B

X; colim
C

�h
�X Š hocolim

B
X;

and the canonical projection from the homotopy colimit to the colimit

hocolim
C

�h
�X �! colim

C
�h
�X

is a weak homotopy equivalence.

An explicit proof of the last statement can be found in [41, 1.4]. Using that the �–
product is defined as a Kan extension, the fact that Q is strong symmetric monoidal
now follows from the canonical homeomorphisms

colim
I

A�B Š colim
I�I

A�B Š colim
I

A� colim
I

B;

where the second homeomorphism again is deduced from the fact that U is closed.
We define the natural transformation U !Q to be the canonical projection from the
homotopy colimit to the colimit.

Lemma 8.9 Given I–spaces A1; : : : ;Ak , there is a canonical homeomorphism

Q. xA1� � � �� xAk/Š UA1 � � � � �UAk

and the canonical projection gives a weak homotopy equivalence

U. xA1� � � �� xAk/
'
�!Q. xA1� � � �� xAk/:
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Proof Using Proposition 8.6 we may write xA1�� � �� xAk as a homotopy Kan extension,
hence the result follows immediately from Lemma 8.8.

When A is an I–space monoid the canonical map . xA/0! xA is a homotopy equivalence
of I–spaces. The above lemma therefore implies the following result which concludes
the verification of the conditions in (A4).

Proposition 8.10 Given I–space monoids A1; : : : ;Ak , the canonical projection

U.Ac
1� � � ��Ac

k/ �!Q.Ac
1� � � ��Ac

k/

is a weak homotopy equivalence.

Axiom (A5)

In the notation of Axiom (A5), we define BF 0 and BO 0 to be the well-based I–space
monoids defined from BF and BO as in Proposition 8.4. These are again commutative
flat I–space monoids and the condition in (A5) therefore follows from the following
more general result.

Proposition 8.11 If A1; : : : ;Ak are flat I–spaces, then the canonical map

U.A1� � � ��Ak/ �! UA1 � � � � �UAk

is a weak homotopy equivalence.

Proof Consider the commutative diagram

Q. xA1� � � �� xAk/
' // Q. xA1/� � � � �Q. xAk/

U. xA1� � � �� xAk/

'

OO

//

'

��

U. xA1/� � � � �U. xAk/

'

OO

'

��
U.A1� � � ��Ak/ // U.A1/� � � � �U.Ak/;

where the vertical maps are weak homotopy equivalences by Proposition 8.7 and
Lemma 8.9. The horizontal map on the top is a homeomorphism since Q is strong
monoidal and the result follows.
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Axiom (A6)

The definition of the functor in (A6) is based on the I–space lifting functor

RW U=BFhI �! IU=BF; .X
f
�! BFhI/ 7! .Rf .X /

R.f /
���! BF /

introduced in [42]. We shall not repeat the details of the definition here, but we remark
that a similar construction applies to give an I–space lifting functor with BO instead
of BF . The following is proved in [42].

Proposition 8.12 [42, 6.8] The Barratt–Eccles operad E acts on BFhI and if C is
an operad that is augmented over E , then there is an induced functor

RW U ŒC�=BFhI �! IU ŒC�=BF

and a natural weak equivalence of C–spaces .Rf .X //hI
'
�!X .

There is an analogous result in the BO case. Now let C be the associativity operad
such that the categories U ŒC� and IU ŒC� are the categories of topological monoids
and I–space monoids, respectively. The associativity operad is augmented over the
Barratt–Eccles operad and we define the functor R in (A6) to be the induced functor

RW U ŒC�=BFhI �! IU ŒT �=BF

and similarly with BO instead of BF . The composite functor

U ŒC�=BFhI
R
�! IU ŒT �=BF �! IU ŒT � C

�! IU ŒT �
Q
�! U ŒT � �! U ŒC�

takes an object f W X !BFhI to Q.Rf .X //
c and we have a chain of weak homotopy

equivalences in U ŒC� given by

Q.Rf .X //
c '
�!Q.Rf .X //

'
�! .Rf .X //hI

'
�!X:

Here the left hand equivalence is induced by the canonical homotopy equivalence
of Proposition 8.4, the next is the homeomorphism established in Lemma 8.9, and
the last equivalence is provided by the preceding Proposition. The verification of the
axioms is now complete except for the proof of Proposition 8.1. For this we need the
following two results from [42]. Recall that by our conventions a map in IU is a weak
equivalence if the induced map of homotopy colimits is a weak homotopy equivalence.

Proposition 8.13 [42, 4.11] The composite functor

IU=BF
U
�! U=BFhI

R
�! IU=BF

is related to the identity functor on IU=BF by a chain of natural weak equivalences.
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The next proposition shows that the ordinary Thom spectrum functor can be recovered
from the symmetric Thom spectrum functor up to stable equivalence. It is a direct
consequence of [42, 4.10; 42, 4.23].

Proposition 8.14 [42] The two compositions in the diagram

IU=BF
� // IU=BF

T // Sp†

U

��
U=BFhI

�� //

R

OO

U=BFN
T� // Sp

are related by a chain of natural stable equivalences.

Since by [42, 4.9] the functor R takes values in the subcategory of T –good objects in
IU=BF , the composite functor in the proposition is in fact stably equivalent to U TR.
However, the above formulation is convenient for the application in the following proof.

Proof of Proposition 8.1 It suffices to show that the two compositions in the diagram

IU=BF
� //

U

��

IU=BF
T // Sp†

U

��
U=BFhI

�� // U=BFN
T� // Sp

are related by a chain of stable equivalences. Composing the chain of equivalences
in Proposition 8.13 with the levelwise fibrant replacement functor � gives a chain
of natural equivalences relating the functors �RU and � on IU=BF . Therefore,
applying the symmetric Thom spectrum functor to this chain, we get a chain of stable
model equivalences

T�RU ' T�W IU=BF �! Sp†:

Combining this with Proposition 8.14, we finally get the required chain of stable
equivalences

U T� ' U T�RU ' T���U:

8.2 The proof of Theorem 1 in the general case

In this section we show that the weaker forms of the Axioms (A2) and (A3) suffice
for the proof of Theorem 1. The main technical difficulty is that the symmetric Thom
spectrum functor only preserves weak equivalences on the full subcategory of T –good
objects in IU=BF . In order to maintain homotopical control we must therefore be
careful only to apply the Thom spectrum functor to T –good objects. We say that a
map ˛nW A.n/! BF.n/ classifies a well-based quasifibration if

Geometry & Topology, Volume 14 (2010)



1234 Andrew J Blumberg, Ralph L Cohen and Christian Schlichtkrull

(i) the pullback ˛�EF.n/!A.n/ is a quasifibration, and

(ii) the induced section A.n/! ˛�EF.n/ is an h–cofibration.

An object ˛ in IU=BF is said to classify well-based quasifibrations if the level maps ˛n

do. This condition implies that ˛ is T –good and is sometimes technically convenient
as in the following lemma from [42].

Lemma 8.15 [42, A.4] Let ƒ be a small category and let f�W X� ! BF.n/ be a
ƒ–diagram in U=BF.n/ such that each f� classifies a well-based quasifibration. Then
the induced map

f W hocolim
ƒ

X� �! BF.n/

also classifies a well-based quasifibration.

Now let f W X ! BFhI be a map of topological monoids and let ˛W A! BF be the
object in IU ŒT �=BF obtained by applying the functor R. The first step is to ensure
that the symmetric Thom spectra T .˛/ and T .˛c/ have the correct homotopy types.

Lemma 8.16 The objects ˛W A! BF and ˛c W Ac! BF classify well-based quasi-
fibrations.

Proof It follows from the definition of the functor R in [42] that the level maps ˛n

classify well-based quasifibrations and that the same holds for the composite maps

A.m/
˛m
��! BF.m/


�! BF.n/

for each morphism  W m! n in I . Thus, ˛ classifies well-based quasifibrations and
by Lemma 8.15 the same holds for x̨ . Since Ac is the homotopy colimit of the diagram
�! xA, the result follow.

It now follows from Proposition 8.5 that T .˛c/ is a flat symmetric ring spectrum
and therefore that the cyclic bar construction Bcy.T .˛c// represents the topological
Hochschild homology of T .˛/. It remains to analyze the map Bcy.˛c/.

Lemma 8.17 The object Bcy.˛c/W Bcy.Ac/! BF in IU=BF is T –good.

In preparation for the proof, consider in general a simplicial object f�W X�!BF.n/ in
U=BF.n/ with topological realization f W X ! BF.n/. Evaluating the Thom spaces
degree-wise we get a simplicial based space T .f�/ whose realization is isomorphic to
T .f / as follows from Lemma 3.1.
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Lemma 8.18 Suppose that f�W X� ! BF.n/ is degree-wise T –good and that the
simplicial spaces X� and T .f�/ are good. Then the realization f W X !BF.n/ is also
T –good.

Proof We must show that the canonical map X ! �f .X / induces a weak homo-
topy equivalence of Thom spaces T .f /! T�.f /. Using that � preserves tensors
and colimits, we identify the latter map with the realization of the simplicial map
T .f�/! T�.f�/. The assumption that f be degree-wise T –good implies that this is
a degree-wise weak homotopy equivalence. Since the simplicial space T .f�/ is good
by assumption, it remains to show that the goodness assumption on X� implies that
T�.f�/ is also good. For this we use [23, IX.1.11], which implies that the degeneracy
maps �.Xk/ ! �.XkC1/ are fibrewise h–cofibrations over BF.n/. The induced
maps of Thom spaces are therefore also h–cofibrations. The conclusion now follows
from the fact that a levelwise weak equivalence of good simplicial spaces induces a
weak equivalence after topological realization.

Proof of Lemma 8.17 Notice first that B
cy
� .A/ and T .B

cy
� .˛

c// are good simplicial
objects since Ac and T .˛c/ are well-based. By the lemma just proved it therefore
suffices to show that the simplicial map B

cy
� .A

c/.n/!BF.n/ is degree-wise T –good
for each n. In simplicial degree k this is the composition

Ac � � � ��Ac.n/ �! xA� � � �� xA.n/ �! BF.n/

where the first map is a fibrewise homotopy equivalence over BF.n/. It therefore
suffices to show that the second map is T –good and using Proposition 8.6 we write
the latter as a map of homotopy colimits

hocolim
n0t���tnk!n

A.n0/� � � � �A.nk/ �! BF.n/:

The maps in the underlying diagram classify well-based quasifibrations by construction
and the result now follows from Lemma 8.15.

Proof of Theorem 1 Let C be the associativity operad. As explained in Appendix A
we may assume that our loop map is a map of C–spaces f W X ! BFhI and we
again write ˛W A! BF for the associated monoid morphism. It follows from the
above discussion that the topological Hochschild homology of T .f / is represented by
Bcy.T .˛c// which in turn is isomorphic to the symmetric Thom spectrum T .Bcy.˛c//.
Since Bcy.˛c/ is T –good, the weaker version of (A2) suffices to give a stable equiva-
lence

U T .Bcy.˛c//' T���.UBcy.˛c//:
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From here the argument proceeds as in Section 3.3 and we get a stable equivalence

U T .Bcy.˛c//' T�.L�.Bf //

which is the content of Theorem 1.

Proceeding as in Section 3.3 one finally deduces the general case of Theorem 2 and
Theorem 3 from this result.

Appendix A Loop maps and A1 maps

In order to prove our main results we need to pass from loop map data to the more rigid
kind of data specified by a map of A1 spaces. This can be done using the machinery
from [32] as we now explain. Let C1 be the little 1–cubes operad. Given an A1
operad C we let D be the fibred product COC1 such that there is a diagram of A1
operads C D! C1 . Let C , C1 and D be the associated monads on the category T
of based spaces. With the notation from [32, 13.1], we have for each C–space X a
diagram of D–spaces

X
�
 � B.D;D;X /


�!�B.†;D;X /

where � is a homotopy equivalence. We write B1X for the space B.†;D;X /. If
X is grouplike, then this is a delooping in the sense that the map  also is a weak
equivalence; see May [32], Segal [44] and Thomason [49]. It is known by [49] that
the functor X 7! B1X is equivalent to the functor obtained by first replacing X by a
topological monoid and then applying the usual classifying space construction (this is
the functor denoted B0X in Section 3.3). Here and in the following we tacitly assume
that all base points are nondegenerate. This is not a serious restriction since by [32]
any A1 space may be functorially replaced by one with a nondegenerate base point.
The following result shows that we can always rectify loop maps over a grouplike A1
space to A1 maps.

Proposition A.1 Let C be an A1 operad and let Z be a grouplike C–space. Then
there exists a “loop functor”

S�W T =B1Z �! U ŒC�=Z;
�
Y

g
�! B1Z

�
7!

�
S�g.Y /

S�.g/
���!Z

�
;

Geometry & Topology, Volume 14 (2010)



Topological Hochschild homology of Thom spectra and the free loop space 1237

and a chain of weak equivalences of D–spaces S�g.Y /'�.Y / such that the diagram

S�g.Y /
S�.g/ //

'

��

Z

'

��
�.Y /

�.g/ // �.B1Z/

is commutative in the homotopy category.

Proof Given a based map gW Y !B1Z , let �0g.Y / be the homotopy pullback of the
diagram of D–spaces

�.Y /
�.g/
���!�.B1Z/


 � B.D;D;Z/:

Then �0g.Y / is a D–space, and since Z is group-like, the map  is a weak equivalence
and therefore the map �0g.Y /!�.Y / is a weak equivalence of D–spaces. In addition,
we have an induced map of D–spaces

�0.g/W �0g.Y / �! B.D;D;Z/
�
�!Z:

Consider now the functor B.C;D;�/ from D–spaces to C–spaces and notice that
there are natural equivalences of D–spaces

X
�
 � B.D;D;X / �! B.C;D;X /

for any D–space X . We define S�.g/ to be the map of C–spaces induced by �0.g/,

S�.g/W S�g.Y /D B.C;D; �0g.Y // �! B.C;D;Z/ �!Z:

The last map is defined since Z is already a C–space. It is clear from the construction
that S�.g/ is related to �.g/ by a homotopy commutative diagram as stated.

Proposition A.2 Let S� be the functor from Proposition A.1 and suppose that Z is
connected. Restricted to gW Y ! B1Z with Y connected, there is a chain of weak
equivalences Y ' B1

S�g.Y / such that the diagram

Y
' //

g
!!

B1
S�g.Y /

B1
S�.g/yy

B1Z

is commutative in the homotopy category.
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Proof Given a based space Y there is a canonical map �W B1�.Y /! Y which by
[32, 13.1] and [49] is a weak equivalence if Y is connected. Applying the functor B1 to
the diagram of D–spaces in Proposition A.1 we therefore get a homotopy commutative
diagram

B1
S�g.Y /

B1
S�.g/ //

'

��

B1Z

'

��
Y

g // B1Z

where the vertical arrow on the right represents the chain of maps

B1Z
B.†;D;�/
 ������� B.†;D;B.D;D;Z//

B.†;D; /
�������! B.†;D; �.B1Z//

�
�! B1Z:

It remain to show that this represents the identity on B1Z . For this we observe that
B.†;D;B.D;D;Z// is homeomorphic to the realization of the bisimplicial space
with .p; q/–simplices †DpDDqZ and that the two maps correspond respectively to
multiplication in the p and q direction. We may also view this space as the realization
of the diagonal simplicial space †DpDDpZ and the result now follows from the
explicit homotopy

H W B.†;D;B.D;D;Z//� I �! B1Z; H.Œb;u�; t/D Œb; tu; .1� t/u�:

Here I denotes the unit interval, b is an element in †DpDDpZ , and u is an element
in the standard p–simplex

�p
D f.u0; : : : ;up/ 2 IpC1

W u0C � � �Cup D 1g:

For completeness we finally show that one may rectify n–fold loop maps over a
grouplike E1 space to maps of En –spaces for all n. Let Cn be the little n–cubes
operad. Given an E1 operad C we let Dn be the product operad C � Cn . This is an
En operad in the sense that the projection Dn! Cn is an equivalence. We again write
C , Cn and Dn for the associated monads. With the notation from [32, 13.1], we have
a diagram of Dn –maps

X
�
 � B.Dn;Dn;X /


�!�nB.†n;Dn;X /

and we write BnX for the space B.†n;Dn;X /. When X is grouplike this is an
n–fold delooping in the sense that  is a weak equivalences. An argument similar to
that used in the proof of Proposition A.1 then gives the following.
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Proposition A.3 Let C be an E1 operad and let Z be a grouplike C–space. Then
there exists an “n–fold loop functor”

S�n
W T =BnZ �! U ŒDn�=Z;

�
Y

g
�! BnZ

�
7!

�
S�n

g.Y /
S�n.g/
����!Z

�
;

and a chain of weak equivalences of Dn –spaces S�n
g.Y /'�

n.Y / such that the diagram

S�n
g.Y /

S�n.g/ //

'

��

Z

'

��
�n.Y /

�n.g/// �n.BnZ/

is commutative in the homotopy category.
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