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At the prime 2, Behrens, Hill, Hopkins and Mahowald showed 
that M2(1, 4) admits a 32-periodic v2-self-map. More recently, 
in joint work with Mahowald, we showed that A1 also admits a 
32-periodic v2-self-map. This leads to the question of whether 
there exists a finite 2-local complex with periodicity less than 
32. We answer this question in the affirmative by producing a 
class of finite 2-local spectra Z̃ all of which admit a 1-periodic 
v2-self-map.
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1. Introduction

Let C0 be the category of p-local finite spectra, where p is a fixed prime. A vn-self-map 
of an object X of C0 is a self-map v : ΣtX → X such that

K(n)∗v : K(n)∗X → K(n)∗X

is an isomorphism. Here K(n) is the n-th Morava K-theory and it is well-known that 
K(n)∗ is the graded ring Fp[vn, v−1

n ] with |vn| = 2pn − 2. Since K(n)∗ is a graded 
field (i.e. every nonzero homogeneous element has a multiplicative inverse), K(n)∗X
is a graded vector space over K(n)∗ and the isomorphism K(n)∗v, up to a change of 
basis, is multiplication by a nonzero element of K(n)∗. We say that a vn-self-map v
has periodicity k if k is the smallest integer such that K(n)∗v induces multiplication by 
vkn (in which case t = (2pn − 2)k). We will refer to a vn-self-map of periodicity k as a 
vkn-self-map.

In 1998, Hopkins and Smith showed in [19] that for every n ≥ 0, Cn, the category 
of K(n − 1)-acyclics, is a thick subcategory of C0 and the Cn form a sequence of thick 
subcategories

C0 ⊃ C1 ⊃ C2 ⊃ · · · ⊃ C∞

where C∞ is the category of contractible spectra. A p-local finite spectrum X is said to 
be of type n if X ∈ Cn \ Cn+1. They also showed that

Theorem 1.1 (Hopkins-Smith). Every p-local finite spectrum X of type n admits a vn-
self-map

v : Σk(2pn−2)X → X.

Moreover, the cofiber Cv is a spectrum of type n + 1.

Not only does Theorem 1.1 show the existence of vn-self-maps, but it also provides a 
recipe for constructing type n spectra. However, [19] does not shed any light on the min-
imal periodicity of such a vn-self-map, except to establish that the minimal periodicity 
is always a power of p.

One of the key properties of a vn-self-map v : ΣtX → X is that the iterated compo-
sitions
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v◦r := Σ(r−1)tv ◦ · · · ◦ Σtv ◦ v : ΣrtX → X

are homotopically nontrivial and potentially give us an infinite family of elements in 
the stable homotopy groups of spheres. Typically, v◦r composed with the inclusion of a 
bottom cell

τr : Srt incl ΣrtX
v◦r

X

is nontrivial. Therefore, the map τr factors through some skeleton, say X〈nr〉, in such a 
way that the composite with the pinch map to a top cell of X〈nr〉

σr : Srt
τr

X〈nr〉
pinch

Snr

is a nontrivial element of πrt−nr
(S0). The collection of such {σr : r > 0} forms an infinite 

family. The smaller the periodicity of v, the smaller the gap in degree between successive 
elements in the family. Hence the interest is in

• finding the minimal periodicity of the vn-self-map on a given type n finite spectrum, 
and

• finding finite p-local spectra whose vn-self-maps have periodicity as low as possible.

Recall that K(0) = HQ and v0 is just multiplication by p. The sphere spectrum S0 is 
a type 0 spectrum which admits a v1

0-self-map. Since S0 admits a v1
0-self-map, any type 

0 spectrum admits a v1
0-self-map.

The search for vn-self-maps gets increasingly complicated as n increases. First, we 
remind ourselves some of the standard notations used in the literature. The cofiber of 
the vi00 -self-map of S0, i.e. multiplication by pi0 , is called the i0-th Moore spectrum at 
the prime p and is denoted by Mp(i0). By Theorem 1.1, Mp(i0) must admit a v1-self-map 
of some periodicity and the cofiber of

vi11 : Σi1(2p−2)Mp(i0) → Mp(i0)

is denoted by Mp(i0, i1). In general, the cofiber of

vinn : Σin(2pn−2)Mp(i0, . . . , in−1) → Mp(i0, . . . , in−1)

is denoted by Mp(i0, . . . , in−1, in) and called a generalized Moore spectrum. Often in the 
literature a generalized Moore spectrum Mp(i0, . . . , in) with ik = 1 for 0 ≤ k ≤ n is 
called a Smith-Toda complex and is denoted by Vp(n). Alternatively, one can define the 
spectrum Mp(i0, . . . , in) as a topological realization of the BP∗-comodule

BP∗/〈vi00 , vi11 , . . . , vinn 〉.
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Generalized Moore spectra may not exist for all sequences (i0, . . . , in), and even if 
such a spectrum exists, it may not be unique due to the potential non-uniqueness of the 
self-maps. Toda [30] showed that Vp(1) = Mp(1, 1) exists for p ≥ 3, Vp(2) = Mp(1, 1, 1)
exists for p ≥ 5 and Vp(3) = Mp(1, 1, 1, 1) exists for p ≥ 7. In 1966, J.F. Adams proved 
in [2] that M2(1) does not admit a v1

1-self-map, in fact the minimal periodicity of a 
v1-self-map on M2(1) is 4. Thus, Mp(1, i) does not exist for i < 4. In 2003, Behrens and 
Pemmaraju [5] showed that V3(1) = M3(1, 1) admits a v2-self-map of minimal periodicity 
9. Therefore M3(1, 1, i) does not exist for i < 9. In 2008, Behrens, Hill, Hopkins and 
Mahowald [6] showed that the v2-self-map of M2(1, 4) has minimal periodicity 32. Little 
is known about vn-self-maps for n ≥ 3 aside from the work of Toda mentioned above, 
and Nave’s proof in [26] of the nonexistence of Vp(p+1

2 ) for p > 7.
Instead of focusing on generalized Moore spectra one can also ask the following ques-

tion:

Question 1. For a fixed prime p, what is the type n spectrum whose vn-self-map has the 
smallest periodicity?

For instance, at the prime 2, we have seen that M2(1) does not admit a v1
1-self-map. 

However, it is known that Y := M2(1) ∧Cη admits eight v1
1-self-maps (see [13]). At the 

prime 3, Behrens and Pemmaraju [5] showed that M3(1, 1) does not admit a v1
2-self-map. 

However, they also proved that M3(1, 1) ∧ Y (2), where

Y (2) = S0 ∪α1 S
4 ∪2α1 S

8,

admits a v1
2-self-map. Toda proved that Mp(1, 1) admits a v2-self-map for p ≥ 5 and that 

Mp(1, 1, 1) admits a v1
3-self-map for p ≥ 7.

Though M2(1, 4) had a v32
2 -self-map, the authors hoped that one of the cofibers of the 

v1
1-self-maps on Y , collectively referred to as A1, might have a v2-self-map of periodicity 

less than 32. In joint work with Mark Mahowald (see [9]), we showed that this does not 
occur, as all of the spectra A1 have v32

2 -self-maps. This led to the question of whether 
there exists any 2-local type 2 spectrum with a v2-self-map of periodicity less than 32. 
We answer this question in the affirmative by producing a class of finite spectra that 
admit v1

2-self-maps. The main purpose of this paper is to prove the following theorem.

Main Theorem 1. There is a collection of 2-local type 2 spectra Z̃, such that every Z ∈ Z̃
admits a v2-self-map of periodicity 1.

For the rest of the paper, we will work in the stable homotopy category of 2-local 
spectra. Let A denote the mod 2 Steenrod algebra and A(n) be the subalgebra of A
generated by {Sq2i : 1 ≤ i ≤ n}. Let Qn for n ≥ 0 be the n-th Milnor element in A, 
iteratively constructed using the formula

Q0 = Sq1, Qn = [Sq2n

, Qn−1] = Sq2n

Qn−1 −Qn−1Sq
2n

.
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The Milnor element Qn generates an exterior algebra E(Qn) as Q2
n = 0 and it commutes 

with every a ∈ A(n). The exterior algebra E(Qn) is a normal subalgebra of A(n) and 
the pushout

A(n)//E(Qn) = A(n) ⊗E(Qn) F2 = F2 ⊗E(Qn) A(n)

is an A(n)-module, in fact, it is an A(n)-algebra. Let B(n) denote the A(n)-algebra 
A(n) //E(Qn) and

qn : A(n) → B(n)

denote the “quotient” map.

Definition 1.2. The class Z̃ is the collection of all finite spectra Z such that there is an 
isomorphism of A(2)-modules

H∗(Z) ∼= B(2).

Remark 1.3. It is worth pointing out that the finiteness criterion in Definition 1.2 is 
essential. Note that for a finite 2-local spectra X, Bousfield localization with respect to 
M2(1) is isomorphic to the localization with respect to HF2 (see [11]), i.e. X = XM2(1) �
XHF2 . In all arguments involving the Adams spectral sequence, including the proof of 
Main Theorem 1, we rely on the assumption that every Z ∈ Z̃ satisfies Z � ZHF2 . If we 
dropped the finiteness criterion from Definition 1.2, then one could find spectra X ∈ Z̃, 
for example X = Z ∨K(2) ∈ Z̃, for which H∗(X) ∼= B(2), but X � XHF2 . Such an X, 
while an element of Z̃, would not be of type 2, nor would the proof of Main Theorem 1
be correct in its case.

Notation 1.4. Any A-module which restricts to A(2) as an A(2)-module will be denoted 
A2. Likewise, any A-module which restricts to B(2) as an A(2)-module will be denoted 
B2.

Definition 1.2 is motivated by the fact that the cohomology of the spectrum Y , which 
admits a v1

1-self-map, is

H∗(Y ) = B(1).

To show that the class Z̃ is nonempty, we first enrich the A(2)-module B(2) to an A-
module B2. We do this by enriching the A(2)-module A(2) to an A-module A2 and 
taking B2 to be the image of q2. As we will point out in Remark 2.9 and expand upon in 
the appendix, there are many different A-modules A2, thus there are potentially many 
different A-modules B2. We will then topologically realize the B2 as cohomologies of 
spectra (see Theorem 3.2).
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There is yet another way of obtaining spectra in the class Z̃. It is known [18, 
Lemma 6.1] that there exists a nontrivial self-map

γ : Σ5Cη ∧ Cν → Cη ∧ Cν,

where η and ν are the well-known Hopf maps in π∗(S0). The map γ has multiple lifts

w : Σ5A1 ∧ Cν → A1 ∧ Cν

whose cofibers Cw belong to the class Z̃. This approach to producing Z ∈ Z̃ is described 
in the second author’s doctoral thesis [15, Chapter 3]. The authors believe that any 
spectrum in the class Z̃ can be obtained as a cofiber of such a degree 5 self-map of 
A1 ∧ Cν.

Given such a B2, we see that the spectra realizing it are not unique, even up to 
homotopy. Depending on the specific B2 we choose, there are either 4 or 8 different 
homotopy classes of spectra that realize B2 (see Theorem 5.5).

Let k(n) denote the connected cover of the n-th Morava K-theory. Lellmann [20]
proved that there exists an isomorphism of A-modules

H∗(k(n)) ∼= A//E(Qn).

Hopkins and Mahowald [18] showed that as an A-module

H∗(tmf ) ∼= A//A(2).

Since every Z ∈ Z̃ is a realization of A(2) //E(Q2), we have

H∗(tmf ∧ Z) ∼= A//A(2) ⊗A(2)//E(Q2) ∼= A//E(Q2) ∼= H∗(k(2)).

As a result, any spectrum Z ∈ Z̃ satisfies the relation

tmf ∧ Z � k(2). (1.5)

Thus Z can be thought of as the height 2 analogue of the spectrum Y because

ko ∧ Y � k(1).

As discussed earlier, Y admits a v1
1-self-map. Main Theorem 1 produces a v1

2-self-map 
of Z which further extends the analogy between Y and Z.

Understanding the ko-resolution of Y (see [21] and [22]) results in the proof of the 
telescope conjecture at chromatic height 1 at the prime 2. By analogy, we hope that 
the tmf -resolution of Z will enable us to attack the telescope conjecture at chromatic 
height 2 at the prime 2. Indeed, the authors have computed a close approximation of 
the “easier” side of the telescope conjecture, namely π∗(LK(2)Z), for any Z ∈ Z̃. Part of 
this computation also appears in [15], with a more detailed report to appear in [8].
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Organization of the paper

In Section 2 we show that every A-module B2 is “half” of a corresponding A2, in that 
there is a short exact sequence of A-modules

0 → Σ7B2 → A2 → B2 → 0.

In Section 3 we recall a criterion of Toda for realizing a given A-module as the co-
homology of a spectrum, and give a proof of a more refined criterion. In the process we 
review the construction of Adams towers and dual Adams towers, which will be necessary 
in Section 5.

In Section 4 we show that all A-modules B2 satisfy Toda’s criterion and can thus be 
topologically realized. However, in Section 5, we show that all of these realizations are 
non-unique; given an A-module B2, there are, up to homotopy, either 4 or 8 different 
spectra that realize it.

Finally, in Section 6 we complete the proof of Main Theorem 1.
We provide Appendix A to show how to obtain A-module structures on B(2) in prac-

tice. We obtain an explicit A-module and display it in the format required by Bruner’s 
Ext program [12]. We also display various Ext charts obtained by running this program.

Acknowledgments

The authors would like to thank Mark Behrens, Paul Goerss and Mike Mandell for 
their invaluable assistance and encouragement throughout this project. We would like to 
thank Irina Bobkova and Nicolas Ricka discussions helpful toward formulating (2.8). We 
are also indebted to Bob Bruner for his Ext calculator program. While none of the re-
sults in this paper rely on computer-assisted proofs, computer-assisted calculations have 
provided many of the insights in the paper. Finally, we are grateful to Alex Kruckman 
for making available online an Adem relations calculator, which was very handy for our 
purposes.

2. A-module structures on B(2)

Let Qn be the Milnor element of A, let M be a left A(m)-module for m ≥ n and let

QR
n : Σ2n+1−1M → M

x �→ xQn

be the multiplication by Qn on the right. Adams and Margolis [4] used the property 
Q2

n = 0 to define the Adams-Margolis homology

H(M ;Qn) = kerQR
n
R
.
img Qn
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When M = A(n), the right action of Qn is same as the left action of Qn as Qn lies in 
the center of A(n). Hence we can consider the map Qn of multiplication by Qn on the 
left or the right. Note that coker Qn is isomorphic to B(n). It can be easily checked that 
H(A(n); Qn) = 0, therefore kerQn

∼= img Qn. Moreover, the induced map Q̃n

A(n)
Qn

coker Qn

Q̃n

Σ−7img Qn Σ−7A(n)

is in fact an isomorphism of A(n)-modules. As a result (also see [25]) we have the short 
exact sequence of A(n)-modules

0 → Σ2n+1−1B(n) ∼= img Qn → A(n) qn→ B(n) ∼= coker Qn → 0.

Now we restrict our attention to n = 2 and consider the short exact sequence of 
A(2)-modules

0 → Σ7B(2) → A(2) q2→ B(2) → 0.

Since this short exact sequence is not split, it corresponds to a nontrivial element

ṽ2 ∈ Ext1,7A(2)(B(2), B(2)).

Let B2 denote an arbitrary left A-module whose underlying A(2)-module structure is 
B(2). In Theorem 2.3 we argue that ṽ2 lifts to an element

v2 ∈ Ext1,7A (B2, B2).

Thus there exists a short exact sequence of left A-modules

0 −→ Σ7B2
i2→ A2

q2→ B2 → 0, (2.1)

where the underlying A(2)-module structure of the A-module A2, is free over one gen-
erator in degree 0.

Before proving Theorem 2.3, we indulge ourselves in some preliminary computations 
of certain Ext groups. Let G denote a basis for B(2) as a graded F2-vector space. Observe 
that, as an E(Q2)-module

B(2) ∼=
⊕
c∈G

Σ|c|F2,

therefore
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DB(2) ⊗B(2) ∼=
⊕

c∈DG×G
Σ|c|F2,

where DG is the basis of DB(2) dual to G. Consequently,

Ext∗,∗E(Q2)(B(2), B(2)) ∼= F2[v2] ⊗
( ⊕

c∈DG×G
Σ|c|F2

)
,

where v2 is the image of the periodicity generator of Ext∗,∗E(Q2)(F2, F2) in bidegree (s, t) =
(1, 7) induced by the unit map

ι : DB(2) ⊗B(2) → F2.

One can use a change of rings isomorphism to see that

Ext∗,∗A(2)(B(2), B(2)) ∼= Ext∗,∗E(Q2)(F2, B(2)) ∼= F2[v2] ⊗
( ⊕

c∈DG
Σ|c|F2

)
.

We summarize the above discussion with the following lemma.

Lemma 2.2. Let G be a basis for B(2) as a graded F2-vector space, DG be the correspond-
ing basis for the dual DB(2) and ι0 ∈ G be the unique generator in degree 0. Then we 
have isomorphisms
(i)

Ext∗,∗E(Q2)(B(2), B(2)) ∼= F2[v2] ⊗
( ⊕

c∈DG×G
Σ|c|F2

)
,

(ii)
Ext∗,∗A(2)(B(2), B(2)) ∼= F2[v2] ⊗

( ⊕
c∈DG

Σ|c|F2

)
,

and the inclusion of E(Q2) into A(2) induces the v2-linear map

l : Exts,tA(2)(B(2), B(2)) → Exts,tE(Q2)(B(2), B(2))

g �→ (g, ι0),

for every g ∈ DG.

Theorem 2.3. Let B2 denote any A-module which restricts as an A(2)-module to B(2). 
Then there exists an element v2 ∈ Ext1,7A (B2, B2) which maps to ṽ2 under the map

k : Exts,tA (B2, B2) → Exts,t (B(2), B(2)).
A(2)
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Proof. Consider a minimal free A-module resolution of DB2 ⊗B2,

. . . → Fi
fi→ . . . → F2

f2→ F1
f1→ F0

f0→ DB2 ⊗B2. (2.4)

A minimal resolution has the property that all the differentials in the sequence

HomA(F0,F2) → HomA(F1,F2) → HomA(F2,F2) → . . .

are trivial. Thus,

Exti,∗A (B2, B2) ∼= Hom∗
A(Fi,F2) ∼= F2〈A-module basis of Fi〉. (2.5)

The identity map 1B2 : B2 → B2 generates a nontrivial element

x0,0 ∈ Ext0,0A (DB2 ⊗B2,F2),

which corresponds to a basis element of F0 by (2.5).
Now consider a minimal A(2)-module resolution of DB(2) ⊗B(2),

. . . → Gi
gi→ . . . → G2

g2→ G1
g1→ G0

g0→ DB(2) ⊗B(2). (2.6)

There is a basis element y0,0 ∈ G0, which corresponds to

1B(2) ∈ Ext0,0A(2)(B(2), B(2)),

such that k(x0,0) = y0,0. From the A(2)-module structure of B(2), it is clear that

g0(a · y0,0) �= 0

for any a ∈ A(2) with 0 ≤ |a| ≤ 6 and

g0(Q2 · y0,0) = 0.

Therefore there is a generator y1,7 ∈ G1 such that

g1(y1,7) = Q2 · y0,0,

which corresponds to ṽ2. Since any a ∈ A with 0 ≤ |a| ≤ 7 belongs to A(2), the same 
assertion holds for the element x0,0, i.e. there is a basis element x1,7 ∈ F1 such that

g1(x1,7) = Q2 · x0,0.

The generator x1,7 will correspond to an element
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v2 ∈ Ext1,7A (DB2 ⊗B2,F2)

with the desired property. �
This shows that any A-module structure on B(2) can be obtained as img QR

2 (or 
coker QR

2 ) for a given A-module A2. In her thesis [28], Marilyn Roth showed that there 
exist 1600 different A-module structures on A(2). Thus to obtain an A-module structure 
on B(2) in practice, we should consider a left A-module structure A2 on A(2), and con-
sider the A-modules img QR

2 or coker QR
2 . But not every A-module structure on A(2)

will lead to an A-module structure on B(2) as the underlying A(2)-module structure of 
img QR

2 (or coker QR
2 ) may not be isomorphic to B(2). We do not know of an explicit 

A-module structure on A(2) for which the underlying A(2)-module structure on img QR
2

differs from B(2), however, one cannot easily exclude the existence thereof. In the fol-
lowing lemma we give a condition which guarantees that the underlying A(2)-module 
structure on img QR

2 and coker QR
2 is precisely B(2).

Lemma 2.7. Let A2 denote an A-module whose underlying A(2)-module structure is sim-
ply A(2). Then the underlying A(2)-module structure of img QR

2 is B(2) if and only if 
A2 satisfies

Q2Sq
8Q2 · ı = 0, (2.8)

where ı is the generator in degree 0.

Proof. Let Q2 denote the map of multiplication by Q2 (on the left or right) in the 
category of A(2)-modules and let QR

2 denote the map of multiplication by Q2 on the 
right in the category of A-modules. The underlying A(2)-module structure on img QR

2
and coker QR

2 is precisely B(2) unless there exists n ≥ 3 such that Sq2n

Q2 · ı does not 
belong to img Q2. For dimensional reasons we only need to check the case when n = 3. 
Note that Q2Sq

8Q2 · ı = 0 if and only if

Sq8Q2 · ı = Q2a · ı = aQ2 · ı

for some a ∈ A(2) as kerQ2 ∼= img Q2 and the result follows. �
Because |Q2Sq

8Q2| = 22 while the highest degree of A(2) is 23, degree reasons alone 
are insufficient to guarantee that (2.8) is satisfied.

Remark 2.9 (Number of A-module structures on B2). Since any A-module structure on 
B(2) can be produced as a quotient of an A-module structure of A(2) which satisfies 
(2.8), one can in principle count the number of A-module structures on B(2) using the 
results of [28]. This method of counting is extremely tedious as there are 1600 different 
A-module structures on A(2). Moreover, the number of A-module structures does not 
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reflect deeper concepts, nor is it directly related to the purpose of this paper. Nonetheless, 
in the appendix we discuss in detail how to use [28] to produce A-module structures on 
B(2) and demonstrate it via an example. The authors would be curious to know if there 
is a more elegant method of counting A-module structures on B(2).

3. Toda’s realization theorems

The purpose of this section is to review Toda’s criteria for realizing an A-module as 
the cohomology of a spectrum. In the process we will review how to build Adams towers 
and dual Adams towers, which are essential in Section 5.

Let M be any graded bounded below A-module. Toda [30, Lemma 3.1] gave a criterion 
for the existence of a spectrum X which realizes M , i.e.,

H∗(X) = M.

Theorem 3.1 (Toda). Let M be a graded A-module which is bounded below. If for every 
n such that Mn �= 0, one has

Exts,n+s−2
A (M,F2) = 0 for every s ≥ 3,

then there exists a bounded below spectrum X such that H∗(X) = M .

There is yet another realization theorem of finite A-modules due to Toda. Because 
we will only ever consider finite A-modules, this finiteness hypothesis can be made at no 
cost to the rest of the paper.

Theorem 3.2 (Toda). Let M be a finite graded A-module. If

Exts,s−2
A (M,M) = 0 for every s ≥ 3,

then there exists a bounded below spectrum X such that H∗(X) = M .

A sketch proof of Theorem 3.2 can be found in notes of Haynes Miller [24]. While in 
a version of Theorem 3.2 is proved in [7, Appendix A], it is significantly more abstract 
as the theorem is proved in the much more general context of triangulated categories 
with additional properties. We take this as an opportunity to give a proof of Toda’s 
Realization theorem in its original form, which may be easier for first time readers to 
follow. We merely complete all the arguments of the sketch proof given in [24].

First note that Theorem 3.2 is stronger than Theorem 3.1, as the realization criterion 
in Theorem 3.1 implies the realization criterion in Theorem 3.2 when M is finite. To see 
this, consider the algebraic Atiyah-Hirzebruch spectral sequence

Es,t,n
1 := Mn ⊗ Exts,tA (M,F2) ⇒ Exts,t−n

A (M,M). (3.3)
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If for every s ≥ 3 and every n such that Mn �= 0, we have Exts,n+s−2
A (M, F2) = 0, then 

it follows that for all s ≥ 3 and all n ∈ Z, we have

Es,n+s−2,n
1 = Mn ⊗ Exts,n+s−2

A (M,F2) = 0.

Thus, the Atiyah-Hirzebruch spectral sequence forces

Exts,s−2
A (M,M) = 0

for every s ≥ 3.
The broad idea is to consider a free A-module resolution of M

. . .
di

→ Fi → . . .
d1

→ F1
d0

→ F0 � M

and build a corresponding tower of spectra

→ Xi → . . . → X1 → X0

often called the dual Adams tower, such that

H∗(lim
←−

Xi) ∼= M.

Recall that the Adams tower for a spectrum X consists of spectra {X̃r : r ≥ 0} with 
maps

X̃0 = X

k̃0

X̃1
ĩ0

k̃1

X̃2
ĩ1

k̃2

. . .
ĩ2

X̃r

k̃r

. . .
ĩr

K̃0

s̃0

K̃1

s̃1

K̃2

s̃2

. . . K̃r

s̃r

. . . ,

such that

• K̃r is a generalized Eilenberg-Mac Lane spectrum (GEM),
• the sequence

X̃r+1
ĩr→ X̃r

k̃r→ K̃r

is a cofibration,
• s̃r : K̃r → X̃r+1 is the connecting map of degree −1 of the above cofiber sequence, 

and
• the composite d̃r = Σk̃r+1 ◦ s̃r : K̃r → ΣX̃r+1 → ΣK̃r+1 induces the map

dr : Fr+1 := H∗(Σr+1K̃r+1) → Fr := H∗(ΣrK̃r).
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Let Xr be the cofiber in the cofiber sequence

X̃r → X → Xr.

The map ĩr : X̃r+1 → X̃r induces a map ir

X̃r+1

ĩr

X Xr+1

ir

X̃r

k̃r

X Xr

kr

K̃r ∗ Kr

such that

Xr+1
ir→ Xr

kr→ Kr

forms a cofiber sequence, where Kr � ΣK̃r. The collection {Xr : r ≥ 0} is the dual 
Adams tower. Adams showed that if X is a bounded below spectrum, then we have

lim
←−

X̃i � ∗.

Therefore, we also have

lim
←−

Xi � Xp,

where Xp is the p-completion of X. Just like the Adams tower, the dual Adams tower of 
a spectrum X fits into the diagram

X0 = ∗

k0

X1
i0

k1

X2
i1

k2

. . .
i2

Xr

kr

. . .
ir

K0

s0

K1

s1

K2

s2

. . . Kr

sr

. . . ,

(3.4)

where si : Ki → ΣXi+1 are the connecting maps of the fiber sequences

Xi+1 → Xi → Ki

and the composite

ki+1 ◦ si : Ki → Ki+1

induces the map dr : Fr+1 → Fr.
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Proof of Theorem 3.2. Consider a free A-module resolution of M

. . .
dr

→ Fr
dr−1

→ . . .
d1

→ F1
d0

→ F0 → M.

Let Kr be the GEM such that H∗(Kr) ∼= Σ1−rFr (note Kr exists as M is finite). We 
intend to build a dual Adams tower as in (3.4) corresponding to this free resolution. 
Using the condition

Exts,s−2
A (M,M) = 0

for s ≥ 3, we will show that M splits off H∗(Xr) via the maps pr and tr as displayed in 
the diagram

M
∼=

p2

M
∼=

p3

M . . .

...

H∗(X1)
i∗1

t1

H∗(X2)

t2

i∗2
H∗(X3)

i∗3

t3

. . .

(3.5)
Let X = lim

←−
Xr. The above splitting will ensure

colim
−→

H∗(Xr) ∼= M.

Case 1: r = 0, 1 and 2. The first few cases are straightforward. We choose X0 = ∗. Since

X1 → X0 → K0

is a fiber sequence, it is immediate that X1 = Σ−1K0. Choose k1 = d0 and let X2 be the 
fiber in the sequence

X2 → X1
k1→ K1.

Now because d1 ◦ Σ−1d0 : Σ−2K0 → K2 is trivial, we can construct the map k2 in the 
diagram

Σ−1X1
Σ−1k1 Σ−1K1

d1

X2

k2

X1

K2.

Let X3 be the fiber of k2:

X3 → X2
k2→ K2,
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and let t1 be the projection map

H∗(X1) ∼= H∗(Σ−1K0) ∼= F0 −→ M.

Producing the map k3 : X3 → K3 and the splitting t2 : H∗(X2) → M is the first 
nontrivial step of an inductive argument.

Case 2: r = 3. The fiber sequence X2 → X1 → K1 produces a long exact sequence

. . . ←− Σ−1F0
d0

←− Σ−1F1 ←− H∗(X2) ←− F0
d0

←− F1 ←− . . . .

Since the cokernel of the map d0 : F1 → F0 is M , we have the exact sequence of the top 
row in the diagram

0 M
p2

H∗(X2) Σ−1 ker d0 0

Σ−1F4
d3

Σ−1F3
d2

c2

Σ−1F2
d1

b2
k∗
2

Σ−1F1

a2

(3.6)

Since d1 ◦ d2 = 0 and the right vertical arrow of the above diagram is a monomorphism, 
the map k∗2 ◦ d2 factors through a map c2 : Σ−1F3 → M . Notice that

p2 ◦ c2 ◦ d3 = k2 ◦ d2 ◦ d3 = 0

and p2 is injective, hence

c2 ◦ d3 = 0.

Therefore the map c2 represents a class

c2 ∈ Ext3,1A (M,M).

Since Ext3,1A (M, M) = 0 by hypothesis, c2 is a coboundary, i.e. c2 factors through d2

c2 = b2 ◦ d2

and

k∗2 ◦ d2 = p2 ◦ b2 ◦ d2.

So if we replace k∗2 with k∗2 − p2 ◦ b2, which is exactly of the type of alteration we are 
allowed to make, we see that
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k∗2 ◦ d2 = 0.

Since the target of the map k2 is a GEM, the algebraic alteration of k∗2 can be realized 
topologically. Therefore, we have a map k3 in the diagram

Σ−1X2
k2 Σ−1K2

d2

X3

k3

X2

K3.

Define X4 to be the fiber of the map k3. Since, k∗2 ◦ d2 = 0, k∗2 factors through d1 by a 
map which we denoted by a3 in (3.6). Consequently, the exact sequence of the top row 
in the diagram of (3.6) splits and we have

t2 : H∗(X2) → M.

Case 3: r > 3. Now inductively assume that we have constructed

• kr−1 : Xr−1 → Kr−1,
• Xr as the fiber of the map kr−1, and
• A diagram of maps

0 M
pr−1

H∗(Xr−1)
tp−1

Σ−r+2 ker dr−3 0

Σ−r+2Fr−1

k∗
r−1

dr−2
Σ−r+2Fr−2

ar−1

(3.7)

whose top row is split exact.

The fiber sequence

Xr → Xr−1 → Kr−1

produces the horizontal exact sequence in the diagram
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0 0

M ΣM

Σ−r+2Fr−1

dr−2

k∗
r−1

H∗(Xr−1)

tp−1

i∗r−1

H∗(Xr)
δ∗
r−1

Σ−r+1Fr−1

k∗
r−1

dr−2

H∗+1(Xr−1)

tp−1

Σ−r+2Fr−2

ar−1

Σ−r+2 ker dr−3 Σ−r+1Fr−2

ar−1

Σ−r+1 ker dr−3

0 0.
(3.8)

The vertical split exact sequences are the part of the assumptions for the inductive step. 
By a diagram chase in the above diagram we find that

• the image of the map

k∗r−1 : Σ−r+2Fr−1 → H∗(Xr−1)

is Σ−r+2 ker dr−3, hence

ker i∗r−1
∼= coker k∗r−1

∼= M,

and,
• the kernel of the map

k∗r−1 : Σ−r+1Fr−1 → H∗+1(Xr−1)

is isomorphic to ker dr−2, hence

img δ∗r−1
∼= Σ−r+1 ker dr−2.

Consequently, the top row in the diagram

0 M
pr

H∗(Xr) Σ−r+3 ker dr−2 0

Σ−r+1Fr+2
dr+1

Σ−r+1Fr+1
dr

cr

Σ−r+1Fr
dr−1

br
kr

Σ−r+1Fr−1

ar

(3.9)

is an exact sequence. The diagram in (3.9) is just the generalization of the diagram in 
(3.6). Therefore, one can make exactly the same arguments as in the case of r = 3, to 
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conclude that kr factors through a map cr. The map cr is a cocycle and it represents a 
class

cr ∈ Extr+1,r−1
A (M,M).

Since Extr+1,r−1
A (M, M) = 0 by hypothesis, cr is also a coboundary, hence factors 

through dr via a map br. Replacing k∗r with k∗r − pr ◦ br, we see that

dr ◦ kr = 0

in the diagram

Σ−1Xr

kr Σ−1Kr

dr

Xr+1

kr+1

Xr

Kr+1.

Hence we have a lift kr+1 : Xr+1 → Kr+1. Define Xr+2 to be the fiber of kr+1. Since 
k∗r ◦ dr = 0, k∗r factors through dr−1 via the map ar. Therefore, the top row of the 
diagram in Equation (3.9) splits and we have a map

tr : H∗(Xr) → M.

Convergence. Let X = lim
←−

X̃r. We still need to show that

H∗(lim
←−

X̃r) = lim
→

H∗(X̃r)

in order to conclude H∗(X) = M . This is true when M is bounded below. The argument 
is standard and is known as Adams’ Convergence Theorem in the literature (see [1, 
Theorem 2.1] and [3, Part III, Theorem 15.1] for details). �

Now we briefly discuss some basic properties of the Adams tower and the dual Adams 
tower of a spectrum. Let X be a k-connected spectrum, i.e. πi(X) = 0 for i ≤ k. The 
Adams tower {X̃r : r ≥ 0} and the dual Adams tower {Xr : r ≥ 0} of X is said to 
be minimal if it corresponds to a minimal free A-module resolution of H∗(X). Because 
minimal free resolutions of H∗(X) are nonunique, it follows that minimal Adams towers 
and dual Adams towers of X are also nonunique. It follows from the construction that 
for a minimal Adams tower of X, we will have

Exts,tA (H∗(X̃r), H∗(Y )) ∼=
{

Exts+r,t
A (H∗(X), H∗(Y )) for s ≥ k + 1

0 for s ≤ k
(3.10)
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for any spectrum Y . The above isomorphism is realized by the map

X̃r → X.

Similarly, a minimal dual Adams tower satisfies

Exts,tA (H∗(Xr), H∗(Y )) ∼=
{

Exts,tA (H∗(X), H∗(Y )) for s ≤ r − 1 + k

0 otherwise
(3.11)

for an arbitrary spectrum Y .
Suppose we have a map of spectra f : X → Y , where X and Y are both bounded 

below. Then f induces a map between their Adams towers

∗ . . . X̃3

f̃3

X̃2

f̃2

X̃1

f̃1

X

f

∗ . . . Ỹ3 Ỹ2 Ỹ1 Y

and their dual Adams towers

X

f

. . . X3

f3

X2

f2

X1

f1

∗

Y . . . Y3 Y2 Y1 ∗.

However, the collection of maps {f̃i : i ≥ 0} and {fi : i ≥ 0} may not be unique, even 
when the Adams tower and its dual are minimal.

4. Realization of B2

Let B2 denote a fixed A-module structure on the A(2)-module B(2). The main purpose 
of this section is to use Toda’s realization theorem, Theorem 3.1, to conclude:

Theorem 4.1. There exists a finite spectrum Z ∈ Z̃ such that

H∗(Z) ∼= B2

as an A-module.

For this we need to compute Ext∗,∗A (B2, F2). For any A-module M there is a Bousfield-
Kan spectral sequence

Es,t,n
1 =

⊕
Exts−n,t

A(2) (A//A(2)
⊗n ⊗M,F2) ⇒ Exts,tA (M,F2)
n
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where A//A(2) is the augmentation ideal, i.e. the kernel of the map

A//A(2) → F2.

This spectral sequence is also otherwise known as the algebraic-tmf spectral sequence 
(see [6,9]). We will abbreviate the name to ‘alg-tmf SS’ for the rest of the paper.

Notation 4.2. To save space, we will suppress copies of F2 in Ext groups, abbreviating 
Ext∗,∗A(2)(N, F2) to Ext∗,∗A(2)(N) and Ext∗,∗E(Q2)(K, F2) to Ext∗,∗E(Q2)(K), where N is an 
A(2)-module and K is an E(Q2)-module.

Warning 4.3. The name ‘algebraic-tmf spectral sequence’ is due to the fact that 
H∗(tmf ) = A //A(2). However, there are similar spectral sequences involving A //A(n) for 
n ≥ 3, despite the fact that these A-modules are not realizable topologically. We point 
this out so that readers are aware of the fact that the results in this paper do not rely 
on the theory of tmf per se, unlike some other results on v2-self-maps of finite complexes 
(such as the results of [9,6,5]).

In [14] (also see [6, §5]), it has been proved that as an A(2)-module

A//A(2) ∼=
⊕
j≥0

Σ8jN1(j)

where N1(j) is the j-th Brown-Gitler module [16,17]. N1(0) ∼= F2 is precisely the image 
of the unit map. As a result we have

A//A(2) ∼=
⊕
j≥1

Σ8jN1(j)

and the E1-page of the alg-tmf SS can be expressed as

Es,t,n
1 =

⊕
j1≥1,...,jn≥1

Ext
s−n,8(j1+···+jn)
A(2) (N1(j1) ⊗ · · · ⊗N1(jn) ⊗M).

We will refer to s as the Adams filtration, t as the internal degree and n as the tmf -
filtration. Thus, the dr differentials have tridegree (1, 0, r).

In Fig. 1, we provide a visual aid to assist the understanding of the E1-page of the 
alg-tmf SS. We encode the tmf -filtration using colors and express the spectral sequence 
in (x, y) = (t − s, s) coordinates. We use black for n = 0, blue for n = 1, red for n = 2
and green for n = 3. We draw the symbol with a sequence of numbers j1 . . . jk
at (t − s, s) = (8(j1 + · · · + jk) − k, k) to indicate that we must place a shifted copy 
of Ext∗,∗A(2)(N1(j1) ⊗ · · · ⊗ N1(jk) ⊗ M) at that bidegree. By doing so, we assemble all 
the potential contributors to Exts,tA (M) in the (t − s, s) coordinate system. With this 
arrangement, where we denote different alg-tmf filtrations using different colors, any 
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Fig. 1. A convenient pictorial description of the E1-page of the alg-tmf SS. (For interpretation of the colors 
in the figures, the reader is referred to the web version of this article.)

differential in the alg-tmf SS looks like an Adams d1 differential, pointing one unit up 
and one unit to the left.

Now we estimate Exts,tA (B2) using the alg-tmf SS. Since B2 as an A(2)-module is 
isomorphic to A(2) //E(Q2), we can apply a change of rings formula to see

Ext∗,∗A(2)(N1(j1) ⊗ · · · ⊗N1(jk) ⊗B2) ∼= Ext∗,∗E(Q2)(N1(j1) ⊗ · · · ⊗N1(jk)). (4.4)

As an E(Q2)-module

N1(1) ∼= E(Q2) ⊕ Σ4F2 ⊕ Σ6F2

and

N1(2) ∼= E(Q2) ⊕
⊕

2≤i≤4
Σ2iE(Q2) ⊕

⊕
5≤i≤7

Σ2iF2.

Computation of the Ext groups on the RHS of (4.4) is very tractable. Firstly, E(Q2)
and F2 are the only indecomposable E(Q2)-modules, which means that any E(Q2)-
module M can be expressed as direct sums of shifted copies of E(Q2) and F2. Moreover, 
the fact that

• F2 ⊗ F2 ∼= F2,
• F2 ⊗ E(Q2) ∼= E(Q2) ⊗ F2 ∼= E(Q2), and,
• E(Q2) ⊗E(Q2) ∼= E(Q2) ⊕ Σ7E(Q2),

allows us to express the tensor product M ⊗N of two E(Q2)-modules as a direct sum of 
indecomposable E(Q2)-modules. Once we know the indecomposable components of an 
E(Q2)-module M , we can compute Ext∗,∗E(Q2)(M, F2) using the facts

• Ext∗,∗E(Q2)(E(Q2)) ∼= F2 and
• Ext∗,∗ (F2) ∼= F2[v2], where v2 has bidegree (s, t) = (1, 7).
E(Q2)
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Fig. 2. The E1-page of the alg-tmf SS for B2.

In Fig. 2 we plot the first 25 stems of the E1-page of the alg-tmf SS, annotating certain 
elements with their May names. Note that the E1-page is a module over Ext∗,∗E(Q2)(F2) =
F2[v2], hence admits a v2-action. We use a ◦ to denote an element on which v2 acts 
trivially, otherwise we use a •. We use dotted lines to indicate the v2-action. We will 
indicate the tmf filtration using the same color code as Fig. 1.

Proof of Theorem 4.1. B2 is nonzero in dimensions 0 through 16. By Theorem 3.1, it is 
enough to prove

Exts,s+n−2
A (M) = 0

for s ≥ 3 for 0 ≤ n ≤ 16, equivalently,

Exts,tA (M) = 0

for s ≥ 3 and −2 ≤ t − s ≤ 14. From, Fig. 2 it is clear that in the E1-page of alg-tmf SS 
Es,t,n

1 = 0 for s ≥ 3 and −2 ≤ t − s ≤ 14 for all n ∈ N, and hence the result follows. �
While we have proved what we set out to prove in this section, we would like to justify 

the May names and the differential in stem 22 of Fig. 2, as it will be crucial for the proof 
of our main theorem in Section 6. To do this, we must delve deeper into the alg-tmf
SS, identifying the elements by the names they would inherit from the May spectral 
sequence. We first recall the May filtration of the Steenrod algebra.

The May filtration, introduced by J.P. May [23], can be easily described as a decreasing 
filtration of the dual Steenrod algebra A∗ [27], [10]. The May weight w of ξ2j

i is 2i − 1. 
In general

w(ξj1i1 . . . ξjnin ) =
n∑

k=1

(2ik − 1)α(jk)

where α(jk) is the number of 1’s in the 2-adic expansion of jk. The associated graded 
of A∗ is a Hopf algebra, which is primitively generated by ξi,j , the image of ξ2j

i in the 
associated graded. Consequently we have a filtration of the cobar complex C(F2, A∗, F2), 
resulting in a spectral sequence
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Es,t,w
1 = F2[hi,j : i ≥ 1, j ≥ 0] ⇒ Exts,tA∗

(F2,F2) ∼= Exts,tA (F2,F2)

where hi,j = [ξi,j ]. This spectral sequence is called the May spectral sequence in the 
literature.

Notation 4.5. For any A-module M we will denote the Er-page of the alg-tmf SS by 
Es,t,n

r [M ].

Note that we have already established that (see Theorem 2.3) there is a map

v2 : Σ−1,0B2 → Σ0,7B2

in the derived category of A-modules, whose cofiber is A2, an A-module whose underlying 
A(2)-structure is a free copy of A(2). Note that

Es,∗,n
1 [A2] = Exts−n,∗

A(2) (A(2) ⊗A//A(2)
⊗n

) ∼= Exts−n,∗
F2

(A//A(2)
⊗n

)

which is isomorphic to

(A//A(2))∗
⊗n

when s = n and 0 otherwise. Consequently, the E1-page of the alg-tmf SS for A2 (re-
stricted to the part s = n) is isomorphic to a sub-complex of C∗,∗(F2, A∗,F2) (see 
Remark 4.7) which we denote by

C∗,∗(F2, (A//A(2))∗,F2).

Moreover, for degree reasons, the alg-tmf SS collapses at the E2-page, i.e. Es,t,s
2 [A2] =

Exts,tA (A2). Recall that (A //A(2))∗ = F2[ζ8
1 , ζ

4
2 , ζ

2
3 , ζ4, ζ5, . . . ], where ζi are the anti-

automorphic images of ξi. (A //A(2))∗ inherits the May filtration from A∗, likewise 
C∗,∗(F2, (A//A(2))∗,F2) inherits the May filtration from C∗,∗(F2, A∗,F2). Thus we have 
a May spectral sequence calculating the d1-differential of the alg-tmf SS for A2

E∗,∗,∗,∗
1 = F2[hi,j : i + j ≥ 4, i ≥ 1, j ≥ 0] ⇒ E∗,∗,∗

2 [A2] ∼= Ext∗,∗A (A2).

Therefore we can assign May names to elements of Ext∗,∗A (A2). From (4.4) it is clear 
that every element x in the E1-page of the alg-tmf SS for B2 satisfies either vi2 · x �= 0
for all i > 0 or v1

2 · x = 0. Therefore the map

q2 : Es,t,n
1 [B2] → Es,t,n

1 [A2],

induced by q2 : A2 → B2, is injective when restricted to the subcomplex Es,∗,s
1 [B2]. 

Therefore we can assign May names to the those elements in Es,t,n
1 [B2] for which s = n.
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The A∗-comodule

Σ8N1(1)∗ ⊂ (A//A(2))∗ = F2[ζ8
1 , ζ

4
2 , ζ

2
3 , ζ4, ζ5, . . . ]

consists of the elements {ζ8
1 , ζ

4
2 , ζ

2
3 , ζ4} (see [14,6] for details). The red bullet

• ∈ E2,2+22,2
1 [B2]

is the contribution of a generator in Ext0,24E(Q2)(Σ
8N1(1) ⊗ Σ8N1(1)) which corresponds 

to the cobar element [ζ4
2 |ζ4

2 ]. Therefore its May name is h2
2,2. Similarly, the green circle

◦ ∈ E3,3+21,3
1

is the contribution of a generator in Ext3−3,24
E(Q2) (Σ8N1(1) ⊗ Σ8N1(1) ⊗ Σ8N1(1)) which 

corresponds to [ζ8
1 |ζ8

1 |ζ8
1 ], hence has the May name h3

3. By work of Tangora [29], which 
is also exposed in [10], one has

d2(h2
2,2) = h3

3 (4.6)

in the May spectral sequence, which explains the differential in Fig. 2.

Remark 4.7. Note that A(2) is not a normal subalgebra of the Steenrod algebra A, 
so (A //A(2))∗ is not a Hopf algebra. Therefore, one cannot make sense of a cobar 
construction C∗,∗(F2, (A //A(2))∗, F2) in the conventional sense. However, using the fact 
that tmf ∧A2 � HF2, we see that there is a map from the tmf -resolution of A2

A2 tmf ∧A2 . . . tmf ∧n ∧A2 . . .

tmf ∧A2 tmf ∧ tmf ∧A2 tmf ∧ tmf ∧n ∧A2

to the Adams resolution for the sphere spectrum S0

S0 HF2 . . .HF2
∧n

. . .

HF2 HF2 ∧HF2 HF2 ∧HF2
∧n

.

Consequently we have an injective map from the E1-page of the tmf -based Adams spec-
tral sequence of A2 to the reduced cobar complex for S0

En,∗
1 [A2] = π∗(tmf ∧ tmf ∧n ∧A2) ∼= (A//A(2))⊗n

∗ ↪→ A
⊗n

∗ = Cn,∗(F2, A∗,F2)
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which commutes with the differentials. Thus E∗,∗
1 [A2] is isomorphic to a subcomplex 

of C∗,∗(F2, A∗,F2), which we denote by C∗,∗(F2, (A//A(2))∗,F2). The same can be con-
cluded for E1-page of the alg-tmf SS for A2 because it is isomorphic to the E1-page of 
the tmf -based Adams spectral sequence for A2.

5. Nonuniqueness of Z

In this section we prove that the spectra Z ∈ Z̃ realizing a given A-module B2 are 
never unique, even up to homotopy. In fact, a given A-module B2 can be realized by 
either 4 or 8 homotopically different spectra in Z̃. To motivate the proof, we first give 
a sufficient condition for a spectrum X under which the A-module structure of H∗(X)
determines X uniquely up to homotopy.

Proposition 5.1. Let X be any finite spectrum, and let M denote the A-module H∗(X). 
If

Exts,s−1
A (M,M) = 0

for every s ≥ 2, then every HF2-nilpotently complete spectrum Y such that H∗(Y ) ∼= M

as an A-module, is weakly equivalent to X.

Proof. Consider the Adams spectral sequence

Es,t
2 = Exts,tA (H∗(Y ), H∗(X)) ⇒ [X,Y ]t−s.

Since H∗(X) ∼= H∗(Y ) ∼= M , the E2 page is isomorphic to Exts,s−1
A (M, M). Let g denote 

a generator in bidegree (0, 0) which corresponds to the isomorphism H∗(X) ∼= H∗(Y ) of 
A-modules. Since Extr,r−1

A (M, M) = 0 for r ≥ 2, it follows that

dr(g) = 0.

Thus g realizes a topological map

g : X → Y

which induces an isomorphism in cohomology. Therefore, by Whitehead’s theorem X is 
weakly equivalent to Y . �

Therefore, to address the uniqueness question we must compute Extr,r−1
A (B2, B2) for 

r ≥ 2. We will use the alg-tmf SS to do so. As an A(2)-module B2 ∼= A(2) //E(Q2), 
therefore a change of rings formula implies

Ext∗,∗ (N1(j1)⊗ · · · ⊗N1(jk)⊗DB2 ⊗B2) ∼= Ext∗,∗ (N1(j1)⊗ · · · ⊗N1(jk)⊗DB2).
A(2) E(Q2)
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Since

DB(2) ∼=
⊕
c∈DG

Σ|c|F2

as an E(Q2)-module, we have

Es,t,n
1 [DB2 ⊗B2]

∼=⊕
j1≥0,...,jn≥0

Ext
s−n,8(j1+···+jn)
E(Q2) (N1(j1) ⊗ · · · ⊗N1(jn) ⊗DB2)

∼=

⊕
j1≥0,...,jn≥0

Ext
s−n,8(j1+···+jn)
E(Q2) (N1(j1) ⊗ · · · ⊗N1(jn) ⊗

⊕
c∈DG

Σ|c|F2)

∼=

⊕
c∈DG

(
⊕

j1≥0,...,jn≥0
Ext

s−n,8(j1+···+jn)+|c|
E(Q2) (N1(j1) ⊗ · · · ⊗N1(jn)))

∼=

⊕
c∈DG

E
s,t+|c|,n
1 [B2].

In other words, E∗,∗,∗
1 [DB2 ⊗B2] is a direct sum of shifted copies of E∗,∗,∗

1 [B2], one for 
each generator of DB2. We computed E∗,∗,∗

1 [B2] in Section 4 and displayed it in Fig. 2.

Notation 5.2. We know that H∗(Z) ∼= F2[ξ1, ξ2]/(ξ8
1 , ξ

4
2) as an A(2)∗-comodule. Let g

ξ
i1
1 ξ

i2
2

be the element in H∗(Z) dual to ξi11 ξi22 . We conveniently choose

G = {g
ξ
i1
1 ξ

i2
2

: 0 ≤ i1 ≤ 7, 0 ≤ i2 ≤ 3}.

We denote the element of DG, which is Spanier-Whitehead dual to g
ξ
i1
1 ξ

i2
2

, by g
ξ
i1
1 ξ

i2
2

.

In Fig. 3 we draw the alg-tmf SS for DB2 ⊗B2 for 0 ≤ s ≤ 3 and −2 ≤ t − s ≤ 2. We 
place a ∗ in bidegree (s, t) if Es,t,∗

1 [DB2 ⊗ B2] �= 0 but irrelevant to this discussion. In 
bidegree (s, t) = (2, 2 − 1), the two bullets (•) are v2

2 · gξ7
1ξ

2
2

and v2
2 · gξ4

1ξ
3
2
, and the circle 

(◦) is h2
3 · gξ6

1ξ
3
2
.

Lemma 5.3. Let B2 denote any A-module structure on B(2). Then

dimF2(Ext2,1A (B2, B2)) = 2 or 3

depending on the A-module structure on B2.
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Fig. 3. The E1-page of the alg-tmf SS for DB2 ⊗ B2.

Proof. The elements {v2
2 ·gξ7

1ξ
2
2
, v2

2 ·gξ4
1ξ

3
2
, h2

3·gξ6
1ξ

3
2
} cannot support a nontrivial differential 

in the alg-tmf SS as

Es,s−2,∗
1 [DB2 ⊗B2] = 0

for all s = 3. Moreover, v2
2 · gξ7

1ξ
2
2

and v2
2 · gξ4

1ξ
3
2

cannot be a target of a differential in the 
alg-tmf SS, as they are in algebraic-tmf filtration zero. Therefore, v2

2 ·gξ7
1ξ

2
2

and v2
2 ·gξ4

1ξ
3
2

are present in Ext2,1A (B2, B2). However, h2
3 · gξ6

1ξ
3
2

can be a target of a differential in the 
alg-tmf SS for B2. �
Remark 5.4. In fact, for the specific A-module structure on B(2) which is worked out in 
Appendix A (see Fig. 6), we see that

dimF2(Ext2,1A (B2, B2)) = 2,

which means that h2
3 ·gξ6

1ξ
3
2

is trivial in Ext2,1A (B2, B2). Though the authors are not aware 

of an A-module structure on B(2) for which h2
3 ·gξ6

1ξ
3
2

is nontrivial in Ext2,1A (B2, B2), one 
cannot rule out such a scenario as we have not been able to get a handle on all possible 
A-module structures on B(2).

Theorem 5.5. For an A-module B2 whose underlying A(2)-module is isomorphic to B(2), 
let

n = dimF2(Ext2,1A (B2, B2)).

Then there are 2n different homotopy types of spectra Z ∈ Z̃ such that

H∗(Z) ∼= B2

as an A-module.
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Proof. By Theorem 3.2, we know that there exists at least one spectrum Z that realizes 
B2. Fix a minimal dual Adams tower {Zi : i ≥ 0} for Z. The dual Adams tower for Z
fits into the diagram

Z0 = ∗

k0

Z1
i0

k1

Z2
i1

k2

. . .
i2

Zr

kr

. . .
ir

K0

s0

K1

s1

K2

s2

. . . Kr

sr

. . .

where Kr is a GEM. The spectrum Z is then the limit

Z = lim
←−

Zi.

To create another spectrum Y realizing B2, we alter k2 using a nonzero element 
δ ∈ Ext2,1A (B2, B2) in such a way that the composite

dr : Kr
sr→ ΣZr+1

kr+1→ ΣKr+1

remains fixed for all r ≥ 0. Then we argue that Y and Z are not weakly equivalent.
For an element δ ∈ Ext2,1A (B2, B2), choose a cocycle representative

δ∗ : ΣF ∗
2 → B2.

Since δ∗ is a cocycle, the composite

ΣF ∗
3

d2

→ ΣF ∗
2

δ∗→ M

is trivial. Note that Z1 = Σ−1K0 and k1 = d0, therefore unwinding the long exact 
sequence associated to the fiber sequence

Z2
i1→ Z1

k1→ K1

gives us the diagram

ΣF ∗
2

δ∗

Δ∗

F ∗
0
∼= H∗(Z1)

i∗1

0 M
p2

H∗(Z2)

k∗
1

Σ−1 ker d0 0

H∗+1(K1),

(5.6)
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where the horizontal row is exact (compare with (3.6)). Let Δ∗ denote a lift of δ∗, which 
exists as ΣF ∗

2 is a free A-module.
Now we build a dual Adams tower {Yi : i ≥ 0} which fits into the diagram

Y0 = ∗

l0

Y1
j0

l1

Y2
j1

l2

. . .
j2

Yr

lr

. . .
jr

K0

t0

K1

t1

K2

t2

. . . Kr

tr

. . .

as follows. Define Yi := Zi for 0 ≤ i ≤ 2 and let li = ki for 0 ≤ i ≤ 1. Let

l2 : Y2 → K2

be the map that classifies

k̃∗2 + p2 ◦ δ∗ : ΣF ∗
2 → H∗(Z̃2).

The condition that δ∗ is a cocycle guarantees that d3 ◦ l̃2 � 0. By construction of l2, we 
have

Y2 = Z2

l2−k2

j1=i1
Y1 = Z1

Δ

K2.

(5.7)

Note that Δ �� 0 as δ �= 0. However, (l2 − k2) ◦ t1 = Δ ◦ j1 ◦ t1 = 0 which means

l2 ◦ t1 = k2 ◦ s1 = d1.

Build the rest of the tower {Yi} in the usual way described in the proof of Theorem 3.2, 
and let Y denote the limit

Y := lim
←−

Yi.

The choices for li for i ≥ 3 will not make any difference as

Exts,s−1
A (B2, B2) = 0

for s ≥ 3.
Note that

HomA(H∗(Y ), H∗(Z)) ∼= Ext0,0A (H∗(Y ), H∗(Z)) = Ext0,0A (B2, B2) = F2.
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Therefore there is exactly one A-module map ι∗ : H∗(Y ) → H∗(Z) which is an isomor-
phism. Let ι denote the corresponding element in Ext0,0A (H∗(Y ), H∗(Z)). To show that 
Y and Z are not weakly equivalent it suffices to show that ι is not a permanent cycle in 
the Adams spectral sequence

Es,t
2 = Exts,tA (H∗(Y ), H∗(Z)) ⇒ [Z, Y ]t−s. (5.8)

Indeed, assume ι is a permanent cycle. Then there will be a map of spectra

ι : Z → Y

which induces ι∗ on cohomology and we will have a map of dual Adams towers

Z

ι

. . . Z3

ι3

Z2

ι2

Z1

ι1

Y . . . Y3 Y2 Y1

Note that ι1 and ι2 exist trivially as Z1 = Y1 and Z2 = Y2. However, the diagram

Z3

ι3

Z2

�

k2
K2

Y3 Y2
l2

K2

shows that the map ι3 : Z3 → Y3 exists if and only if the right square commutes because 
the horizontal rows are cofiber sequences. But (5.7) implies that the right square does 
not commute. Therefore ι3 does not exist and we have a d2 differential

d2(ι) = δ

in the Adams spectral sequence (5.8), hence a contradiction.
Thus we get exactly one homotopy type realizing B2 for each element in Ext2,1A (B2, B2)

and the result follows. �
Remark 5.9. Let Z1 and Z2 denote two spectra such that

H∗(Z1) ∼= H∗(Z2) ∼= B2.

From the arguments in the proof of Theorem 5.5, we see that in the Adams spectral 
sequence

Es,t
2 = Exts,tA (H∗(Z2), H∗(Z1)) ⇒ [Z1, Z2]t−s
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Fig. 4. The E1-page of the alg-tmf SS for DB2 ⊗ B2.

the generator ι in bidegree (0, 0) supports a nontrivial d2 differential unless Z1 � Z2. 
Therefore the d2 differential in some sense ‘measures the difference’ in homotopy types 
between the spectra Z1 and Z2.

6. Existence of a v1
2-self-map of Z

As usual, let B2 denote an A-module whose underlying A(2)-module structure is B(2). 
By Theorem 5.5 and Lemma 5.3, we know that there are either four or eight different 
homotopy types of spectra which realize B2. Let Z denote a spectrum of a specific 
homotopy type which realizes B2. In Fig. 4 we lay out the E1-page of the alg-tmf SS for 
DZ ∧ Z.

As in Fig. 1 we use colors to distinguish tmf -filtration, with ∗ in bidegrees which are 
nonzero but irrelevant to the discussion. In Theorem 2.3, we have established that v2 · ι
is a nonzero permanent cycle in the alg-tmf SS denoted by v2 ∈ Ext1,7A (H∗(Z), H∗(Z)).

Proof of Main Theorem 1. From Fig. 4 it is clear that

Exts,s+5
A (H∗(Z), H∗(Z)) = 0

for all s ≥ 4. The task of proving the Main Theorem 1 then boils down to eliminating the 
possibility of v2 supporting a nontrivial d2 differential in the Adams spectral sequence

Es,t
2 = Exts,tA (H∗(Z), H∗(Z)) ⇒ [Z,Z]t−s. (6.1)

Fig. 4 makes it clear that in the E1 page of alg-tmf SS for DZ ∧ Z

E3,8,∗
1 = {v3

2 · gξ7
1ξ

2
2
, v3

2 · gξ4
1ξ

3
2
, h3

3 · gξ7
1ξ

3
2
}.

The element h3
3 · gξ7

1ξ
4
2
, which has tmf -filtration 3, is the target of a differential in the 

alg-tmf SS due to (4.6), hence trivial in the E2-page of (6.1). However, the elements 
v3
2 · gξ7

1ξ
2
2

and v3
2 · gξ4

1ξ
3
2

are nonzero permanent cycles in the alg-tmf SS as they are in 
tmf -filtration 0, hence represent nonzero elements in the E2-page of (6.1).
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Since H∗(k(2)) = A //E(Q2), the E2-page of the Adams spectral sequence computing 
k(2)∗(DZ ∧ Z) is

Ext∗,∗E(Q2)(H
∗(Z), H∗(Z)) ∼= Ext∗,∗E(Q2)(B(2), B(2))

which we have already computed (see Lemma 2.2). Now consider the map of spectral 
sequences

Exts,tA (H∗(Z), H∗(Z))

k∗

πt−s(DZ ∧ Z)

k

Exts,tA(2)(H
∗(Z), H∗(Z))

l∗

tmf t−s(DZ ∧ Z)

l

Exts,tE(Q2)(H
∗(Z), H∗(Z)) k(2)t−s(DZ ∧ Z)

(6.2)

induced by the maps S0 k→ tmf l→ k(2). The elements vi2 · ι, vi2 · gξ7
1ξ

2
2

and vi2 · gξ4
1 ,ξ

3
2

for 
i ≥ 0 have nonzero image under the map k∗ as they are in tmf -filtration zero. Moreover, 
they have nonzero image under the composite (l ◦ k)∗ by Lemma 2.2. From Remark 5.9, 
it is clear that

d2(ι) = 0

in the upper-most spectral sequence in (6.2). Therefore,

d2(k∗(l∗(ι)) = 0.

Since k(2) admits a v2-self-map, the differentials in the bottom-most spectral sequence 
of (6.2) are v2-linear, which means

d2(v2 · k∗(l∗(ι)) = 0.

Now, suppose that

d2(v2) = c1v
3
2 · gξ7

1ξ
2
2

+ c2v
3
2 · gξ4

1ξ
3
2

with (c1, c2) �= (0, 0). This would imply

d2(v2 · k∗(l∗(ι)) �= 0

as v3
2 · gξ7

1ξ
2
2

and v3
2 · gξ4

1ξ
3
2

have nontrivial images under the map k∗ ◦ l∗, which is a 
contradiction. Thus we can conclude
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d2(v2) = 0

and Z admits a v1
2-self-map. �

Remark 6.3 (v2-maps). Now let Z1 and Z2 be spectra realizing B2. Then

d2(ι) = c1v
2
2 · gξ7

1ξ
2
2

+ c2v
2
2 · gξ4

1ξ
3
2

+ c3h
2
3 · gξ6

1ξ
3
2

(6.4)

where ci ∈ F2. Essentially using the argument in the proof of Main Theorem 1, we see 
that there are three possibilities:

(i) if c1 = c2 = c3 = 0, then Z1 and Z2 have the same homotopy type, which we call Z
and there exists a v1

2-self-map

v : Σ6Z → Z,

(ii) if c1 = c2 = 0 but c3 �= 0, then Z1 and Z2 have different homotopy types, but we 
nonetheless have a map

v : Σ6Z1 → Z2

which induces multiplication by v1
2 on Morava K-theory, and

(iii) if one of c1 or c2 is nonzero, then there is no map

v : Σ6Z1 → Z2

which induces multiplication by v1
2 on Morava K-theory.

Appendix A. An explicit A-module structure on Z

The A(2)-module B(2) is 32-dimensional as an F2-vector space spread across from 
degree 0 to degree 16. Endowing B(2) with an A-module structure is therefore not easy 
in practice and requires a systematic approach. In Section 2, we established that any A-
module structure on B(2) extends to an A-module structure on A(2) (see Theorem 2.3). 
Hence, we can obtain all possible A-module structures on B(2) from A-module struc-
tures on A(2). Marilyn Roth [28] showed that there are 1600 A-module structures on 
A(2). However, she did not list explicit A-module structures or A∗-comodule structures. 
Rather, she encoded these structures in F2-linear maps

s : A(2)∗ → (A//A(2))∗

which satisfy certain criteria. Each s-map leads to a unique A-module structure on A(2), 
and Roth showed that there are 1600 such maps. The purpose of this Appendix is to 
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review Roth’s work and demonstrate, via an example, how to obtain different A-module 
structures on B(2) in practice. We will express the A-module in the format required by 
Bruner’s Ext software [12] and display the output of the program.

We begin by describing the recipe for converting an s-map into an A-module structure 
on A(2) as prescribed in [28]. It is useful to dualize things, considering not A-modules, 
but A∗-comodules. Recall that the dual Steenrod algebra A∗ is the polynomial algebra

A∗ = F2[ξi : i ≥ 1]

where the generator ξi is in degree 2i − 1. As A(2) ⊂ A is a sub-Hopf algebra generated 
by Sq1, Sq2 and Sq4, the dual A(2)∗ is the quotient algebra

A(2)∗ := F2[ξ1, ξ2, ξ3]/(ξ8
1 , ξ

4
2 , ξ

2
3)

of A∗, and

(A//A(2))∗ = F2[ξ8
1 , ξ

4
2 , ξ

2
3 , ξ4, ξ5, . . . ].

Notice that as a graded F2-vector space, A(2)∗ has generators in degrees 0 ≤ t ≤ 23. 
Between degrees 0 and 23, the graded F2-vector space (A //A(2))∗ has exactly one nonzero 
generator in degrees 8, 12, 14, 15, 20, 22 and 23. In those same degrees, A(2)∗ has 3, 4, 
4, 3, 2, 1 and 1 generators respectively. As a result there are 218 different s-maps. An 
s-map can be uniquely extended to an s-map

s : A∗ → (A//A(2))∗

as A∗ = A(2)∗ ⊗ (A //A(2))∗. Corresponding to each s-map, there is a j-map

j : A(2)∗ → A∗

which is defined as follows. Let π : A∗ → A(2)∗ be the canonical projection and i :
(A //A(2))∗ → A∗ be the canonical inclusion. Define the j-map inductively using the 
formula

j(a) = a + s(a) +
∑
i

j(π(a′i)) · s(i(a′′i )) (A.1)

where a′i and a′′i are part of the formula for the coproduct on a

ψ(a) = a⊗ 1 + 1 ⊗ a +
∑
i

a′i ⊗ a′′i .

Roth proved that [28, Chapter III]

A(2)∗
j→ A∗

ψ→ A∗ ⊗A∗
A∗⊗π→ A∗ ⊗A(2)∗
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defines an A∗-comodule structure on A(2)∗ if and only if the composite

A(2)∗
j→ A∗

ψ→ A∗ ⊗A∗
s⊗s→ (A//A(2))∗ ⊗ (A//A(2))∗ (A.2)

sends ξ7
1ξ

3
2ξ3 �→ 0. Roth listed all the s-maps which satisfy the criteria (A.2), and found 

that there are 1600 such s-maps.
One can obtain the A-module structure on A(2) simply by dualizing the A∗-comodule 

structure on A(2)∗, however, in practice, this is quite tedious. Instead, one can obtain 
the A-module structure on A(2) directly from the j-map using the right action of the 
total squaring operation

Sq =
∑
i≥0

Sqi : A∗ → A∗.

Note that for a left A-module M , its dual M̂ = HomF2(M, F2) admits a right action of 
A. In particular, the right action of A on its dual A∗ is determined by the right action 
of the total squaring operation Sq on A∗. It is well-known that the right action of Sq is 
a ring homomorphism determined by the formula

(ξi)Sq = ξi + ξi−1.

Given a j-map we obtain the A-module structure on A(2) as follows. We declare

Sqi(x) = x1 + · · · + xn

where x, x1, . . . , xn ∈ A(2), if (j(xi∗))Sqi contains j(x∗) as a summand. After obtaining 
the A-module structure on A(2) one must check if it satisfies (2.8). If so, one can easily 
get an A-module structure on B(2) by considering the inclusion map i2 or the quotient 
map q2 of (2.1).

A.1. A-module definition file for Bruner’s program

We now consider the sample j-map that Roth computed [28, Pg 30, Chapter III] and 
check that the resulting A-module structure on A(2) satisfies (2.8). We will now express 
the resulting A-module structure on B(2) as a definition file for Bruner’s program [12]. 
The A-module structure is encoded in a text file named Z in a way that we will now 
describe. The first line of the text file Z consists of a positive integer n, the dimension of 
B(2) as an F2-vector space, whose basis elements we will call g0, . . . , gn−1. The second 
line consists of an ordered list of integers d0, . . . , dn−1, which are the respective degrees 
of the gi. Every subsequent line in the text file describes a nontrivial action of some Sqk

on some generator gi. For instance, if we have

Sqk(gi) = gj1 + · · · + gjl,

we would encode this fact by writing the line
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i k l j1 ...jl

followed by a new line. Every action not encoded by such a line is assumed to be trivial. 
The text file Z is as follows.

32

0 1 2 3 3 4 4 5 5 6 6 6 7 7 7 8 8 9 9 9 10 10 10 11 11 12 12 13 13 14
15 16

0 1 1 1
0 2 1 2
0 3 1 3
0 4 1 5
0 5 1 7
0 6 1 9
0 7 1 12
0 10 1 20
0 12 1 25
0 13 1 27
0 14 1 29

1 2 2 3 4
1 3 1 6
1 4 2 7 8
1 5 1 10
1 6 2 12 13
1 7 1 15
1 8 1 17
1 9 1 20
1 12 1 27
1 14 1 30
1 15 1 31

2 1 1 3
2 2 1 6
2 4 3 9 10 11
2 5 2 12 14
2 6 2 15 16
2 7 1 18
2 8 1 21
2 9 1 23
2 10 1 25
2 11 1 27
2 12 1 29

3 2 1 8
3 3 1 10
3 4 2 12 14
3 6 3 17 18 19
3 7 2 20 22
3 8 2 23 24
3 9 1 26
3 10 2 27 28
3 11 1 29
3 12 1 30
3 13 1 31



38 P. Bhattacharya, P. Egger / Advances in Mathematics 360 (2020) 106895
4 1 1 6
4 2 1 8
4 3 1 10
4 4 1 13
4 5 1 15
4 6 1 17
4 7 1 20
4 12 1 30
4 13 1 31

5 1 1 7
5 2 2 9 10
5 3 1 12
5 4 1 16
5 5 1 18
5 6 2 20 22
5 12 1 31

6 2 1 10
6 4 1 15
6 6 1 20
6 12 1 31

7 2 2 12 13
7 3 1 15
7 4 2 17 18
7 5 1 20
7 6 1 24
7 7 1 26

8 1 1 10
8 4 2 17 19
8 5 2 20 22
8 6 1 24
8 7 1 26
8 8 1 28
8 9 1 29
8 10 1 30
8 11 1 31

9 1 1 12
9 2 1 15
9 4 2 20 21
9 5 1 23
9 6 2 25 26
9 7 1 27
9 8 1 29

10 4 2 20 22
10 6 1 26
10 8 1 29

10 10 1 31

11 1 1 14
11 2 1 16
11 3 1 18
11 4 1 21
11 5 1 23
11 6 1 25
11 7 1 27
11 10 1 31

12 2 1 17
12 3 1 20
12 4 1 23
12 6 2 27 28
12 7 1 29
12 8 1 30
12 9 1 31

13 1 1 15
13 2 1 17
13 3 1 20
13 4 1 24
13 5 1 26

14 2 2 18 19
14 3 1 22
14 4 2 23 24
14 5 1 26
14 6 2 27 28
14 7 1 29
14 8 1 30
14 9 1 31

15 2 1 20
15 4 1 26

16 1 1 18
16 2 1 22
16 4 2 25 26
16 5 1 27
16 6 1 29

17 1 1 20
17 4 1 28
17 5 1 29
17 6 1 30
17 7 1 31

18 2 1 24
18 3 1 26

18 4 1 27
18 6 1 30
18 7 1 31

19 1 1 22
19 2 1 24
19 3 1 26
19 4 1 28
19 5 1 29
19 6 1 30
19 7 1 31

20 4 1 29
20 6 1 31

21 1 1 23
21 2 2 25 26
21 3 1 27
21 6 1 31

22 2 1 26
22 4 1 29
22 6 1 31

23 2 2 27 28
23 3 1 29
23 4 1 30
23 5 1 31

24 1 1 26
24 4 1 30
24 5 1 31

25 1 1 27
25 2 1 29
25 4 1 31

26 4 1 31

27 2 1 30
27 3 1 31

28 1 1 29
28 2 1 30
28 3 1 31

29 2 1 31

30 1 1 31

A.2. Ext charts produced by Bruner’s program

Using Bruner’s program, we compute Ext∗,∗A (B2, F2) (see Fig. 5) where B2 is the A-
module structure on B(2) that we computed above. Bruner’s program is able to compute 
the A-module structure for Spanier-Whitehead duals and tensor products of A-modules. 
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Fig. 5. The file Z_1.pdf displaying Exts,tA (B2,F2) for 0 ≤ t − s ≤ 22.

Fig. 6. The file ZDZ_1.pdf displaying Exts,tA (B2, B2) for −7 ≤ t − s ≤ 15.

Using these features we produce an A-module definition file for B2 ⊗ DB2 which we 
named ZDZ. This allows us to compute Ext∗,∗A (B2, B2) (see Fig. 6) easily using Bruner’s 
program. We use the chart in Fig. 6 to make our conclusions in Remark 5.4.
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