arXiv:1706.06170v3 [math.AT] 28 May 2019

TOWARDS THE K(2)-LOCAL HOMOTOPY GROUPS OF Z

PRASIT BHATTACHARYA'* AND PHILIP EGGER?

CONTENTS

1. Introduction

Summary of results

Organization of the paper

Acknowledgments

Formal group laws and homotopy theory

The BP,BP-comodule BP.Z

The action of the small Morava stabilizer group on (E2).Z
The duality resolution spectral sequence for Z

. The K(2)-local homotopy groups of Z

Appendix A. A regularity criterion for a representation of Qg
References

> ot o

EEEEEEomssm=

ABsTRACT. In [BE], we introduced a class Z of 2-local finite spectra and
showed that all spectra Z € Z admit a va-self-map of periodicity 1. The
aim of this article is to compute the K (2)-local homotopy groups m« Lk (2)Z
of all spectra Z € zZ using a homotopy fixed point spectral sequence, and we
give an almost complete answer. The incompleteness lies in the fact that we
are unable to eliminate one family of d3-differentials and a few potential hid-
den 2-extensions, though we conjecture that all these differentials and hidden
extensions are trivial.
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1. INTRODUCTION

We recently introduced (see [BE]) the class of all finite 2-local type 2 spectra Z
such that there is an isomorphism

H.Z = A2) | E(Q2)

of A(2)-modules, where A(2) is the subalgebra of the Steenrod algebra generated
by Sq', S¢* and Sq*. We denote this class by Z. Let K(n) denote the height n
Morava K-theory and k(n) its connective cover. Let ¢mf denote the connective
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spectrum of topological modular forms. The two key features of Z (see [BE] for
details) are as follows:

e Every Z € Z admits a self-map v : ©6Z — Z which induces multiplication
by v3 on K (2).-homology of Z, i.e. Z admits a vi-self-map.

e Every Z € Z satisfies tmf A Z ~ k(2).
The purpose of this paper is to compute the K(2)-local homotopy groups of any
ZeZ.

It is difficult to overestimate the importance of K (n)-local computations in stable
homotopy theory. At every prime p, the homotopy groups of L K(l)SO have been
known to capture the patterns in chromatic layer 1 of the stable homotopy groups
of spheres (also known as the image of J) since work of Adams [A66]. Likewise,
the chromatic fracture square, the chromatic convergence theorem [R92], as well
as the nilpotence and periodicity theorems in [NilpIl], suggest that the K (n)-local
homotopy groups of S° or other finite spectra encapsulate information about the
patterns in the n-th chromatic layer of the stable homotopy groups of spheres.

However, our motivation to compute the K (2)-local homotopy groups of Z comes
from its relevance to the telescope conjecture due to Ravenel [R84]. One of the
various formulations of the telescope conjecture is as follows. Let X be a p-local
type n spectrum. By [NilpIl], X admits a v,-self-map v : X!X — X i.e. a self-map
such that K (n).v is an isomorphism. Then the homotopy groups of the telescope
of X

T(X) := hocolim(X A R D GRS

are the v,-inverted homotopy groups of X, i.e. m.(T(X)) = v, 7. (X). Since

K(n), = F,[v;r1], the localization of a spectrum with respect to K(n) can be
thought of as, roughly speaking, another way of ‘inverting v,’ in the homotopy

groups of X. Moreover, there is always a natural map
[ T(X) — LK(n)X

Telescope Conjecture (Ravenel). For every type n spectrum X, the map ¢ is a
weak equivalence.

It follows from the thick subcategory theorem [NilpIl, Theorem 7], that if the
telescope conjecture is true for one p-local type n finite spectrum then it is true
for all p-local type n finite spectra (see [R92]). For chromatic height n = 1, the
telescope conjecture was proved by Haynes Miller [Mil81] using the mod p Moore
spectrum M, (1) when p > 2, and by Mark Mahowald using the bo-resolution of
the finite spectrum Y := M>(1) A Cn [M81], [IM82] when p = 2. While the telescope
conjecture is true for n < 1 at every prime, it remains an open question for all other
pairs (n, p).

We claim that in the case n = 2,p = 2, the 2-local type 2 spectra Z € Z are
the most appropriate ones to consider in our study of the telescope conjecture.
Firstly, they all admit a vi-self-map, whereas other type 2 spectra with known vy-
periodicity, such as M (1,4) and the A; spectra, only admit v32-self-maps [BHHMAOS,
BEM17]. Lower periodicity is desirable for computational reasons. Moreover, the
fact that tmf A Z ~ k(2) makes the Ej-page of the tmf-based Adams spectral
sequence readily computable. Also, the Z € Z are in many ways the ‘correct’
height 2 analogue of Y (the spectrum used in the proof of the telescope conjecture
at chromatic height 1 at the prime 2). This is because Y is a type 1 spectrum which
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satisfies properties analogous to Z, i.e. it admits a vi-self-map [DMS&1] and satisfies
boANY =~ k(1). We will further strengthen our claim by giving an almost complete
computation of the K (2)-local homotopy groups of any Z € Z , which is the ‘easier
side of the telescope conjecture’ because of its computational accessibility.

In this paper we will use a homotopy fixed point spectral sequence (2.19), which
is essentially a consequence of the work of Jack Morava in [Mor85] followed by
IMRW] and [DHO04]. We will give further details in Section

To compute the homotopy fixed point spectral sequence, we need to understand
the action of the big Morava stabilizer group Go = Sy x Gal(F4/F2) on (E2).Z,
where So is the small Morava stabilizer group (see Section I for details). This
action can be understood by explicitly analysing the BP,BP-comodule structure
on BP,Z via the map

¢ : BP,BP —s Hom"(Ss, (E).Z)

due to [DH95]. The real hard work in this paper is to compute the BP,.BP-
comodule structure on BP.Z and obtain the action of Sg on (Es).Z via the map
¢. The group Sy has a finite quaternion subgroup Qs (to be described in Section H)
and the pivotal result of this paper is Theorem [£.12] where we prove that there is
an isomorphism

(E2)0Z = F4[Qs]

of modules over the group ring F4[Qs]. Part of the proof of Theorem is a
nontrivial exercise in representation theory, which we have banished to Lemma [A4]
in the appendix in order to avoid distracting from the main mathematical issues at
hand. Theorem 12| provides another point of comparison between Y and Z; note
that G; = Z; >~ 7./2 x Zs, and it can easily be seen that

(E1)oY = Fo[Z/2].

In Section 5, we run the algebraic duality resolution spectral sequence, a convenient
tool to compute the group cohomology with coefficients in (E3).Z. Finally in
Section [6] we compute the the Fs-page of ([2.19). We locate two possible families of
vo-linear ds-differentials and several possible hidden extensions. Using the inclusion
S0 < Z of the bottom cell, we are able to eliminate one of the two vs-linear ds-
differentials and some of the possible hidden extensions.

Summary of results. In Figure [[I we summarize all possibilities for 7. Lg2)Z
from the work in this paper. Figure[lis a part of the homotopy fixed point spec-
tral sequence, where we represent possible ds-differentials using dashed arrows and
hidden extensions by dotted lines. Any generator which is a multiple of a specific
element ¢ in the F>-page (to be discussed in Section[f)) is displayed using a ‘o’; oth-
erwise using a ‘e’. Since the homotopy groups of Lk (2)Z are periodic with respect
to multiplication by vi, which has bidegree (s,t — s) = (0,6), the different possible
answers can be read off from the portion 0 <t — s < 5.

In work to appear, the tmf-resolution for one particular model of Z € Z is
studied to compute its unlocalized homotopy groups. This computation shows
that the potential d3-differentials and hidden extensions as indicated in Figure [II
are trivial, giving us a complete computation of the K (2)-local homotopy groups
of that particular spectrum Z. We expect the same thing to happen for every
spectrum Z € Z.
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FIGURE 1. Possible differentials and hidden extensions in the spec-
tral sequence H*(Gy; (E2)iZ) = m—sL(2)Z.

Conjecture 1. For every Z € 2, the K (2)-local homotopy groups of Z are given
by
T L@ Z =2 Favi'] ® E(a1, a3, as,C)

where |a;| =1, |¢| = —1 and |va| = 6.

The spectrum Z in the unpublished work mentioned above would be the first
finite 2-local spectrum for which we have complete knowledge of its K(2)-local
homotopy groups. It can be built using iterated cofiber sequences of five differ-
ent self-maps (see [BE]) starting from S°. Thus, one could work backwards from
7« L (2)Z, using Bockstein spectral sequences iteratively to get information about
F*LK(Q) SO.

ORGANIZATION OF THE PAPER

The results in this paper are independent of the choice of Z € Z , and hence Z
will refer to an arbitrary spectrum Z € Z for the rest of the paper.

We devote Section 2] to recalling some fundamental results which connect the
theory of formal group laws to homotopy theory.

In Section Bl we compute the BP, BP-comodule structure of BP,Z.

In Section ], we briefly recall some of the details of the height 2 Morava stabilizer
group Se and compute the action of So on the generators of (E2).Z.

In Section[Bl we compute the group cohomology with coefficients in (Fs).Z using
the duality spectral sequence as well as a result of Henn, reported by Beaudry [B17].

In Section [6] we analyse the homotopy fixed point spectral sequence for Z and
eliminate one of the two possible Fa[v3!]-linear families of ds-differentials and some
of the possible hidden extensions.

In Appendix [A]l we include the representation theory exercise omitted from the
proof of Theorem [£.121
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2. FORMAL GROUP LAWS AND HOMOTOPY THEORY

The theory of formal group laws was developed by number theorists and eventu-
ally found by Lazard and Quillen to have deep relations with homotopy theory. We
will review these relations, primarily following [LT] and |[R88]. We will conclude
with a formula relating action of the Morava stabilizer group on a Morava module
to the structure of a corresponding BP . BP-comodule.

Definition 2.1. Let R be a Z,)-algebra. A formal group law over R is a power
series F'(z,y) € R[[z,y]] satisfying

b F(Iay) = F(y,:l?)

oz =F(z,0)

i F(F(xvy)az) = F(va(yvz))
When R is a graded Z,)-algebra we set |z| = [y| = —2 and we require that F'(x,y)
be a homogeneous expression in degree —2.

Definition 2.2. Given formal group laws F, G over R, a homomorphism from F
to G is a power series f € R[[z]] such that f(0) =0 and

f(F(z,y) = G(f(2), f(y)).

A homomorphism f is an isomorphism if f'(0) is a unit in R, and an isomorphism
f is said to be strict if f'(0) = 1. A strict isomorphism from F' to the additive
formal group law is called a logarithm of F.

Notation 2.3. We will often use the notation 2+ py to denote F(x,y) and [n]p(z)
to denote x +p --- +p x. We will denote the set of formal group laws over R by
—_———

FGL(R), and the groupoid of formal group laws over R with strict isomorphisms
by (FGL(R),SI(R)). When R is torsion-free, then the image of F in (R®Q)|[z, y]]
has a logarithm, which we will denote by log, € (R ® Q)][[]]

Definition 2.4. Let R be a torsion-free Z,)-algebra and let F' be a formal group
law over R. Then F is called p-typical if its logarithm is

logp(z) = Z Liz?
i>0
with lo =1.
Now we recall the p-local analogue of the famous theorem of Lazard and Quillen.
All formal groups discussed will be assumed to be p-typical unless otherwise stated.

The assignment of a Z,-algebra R to the set FGL(R) is functorial, and we
denote this functor by

FGL(-) : Z)-algebra — Sets.

Similarly, the functor which assigns a graded Z,)-algebra R. to the set of formal
group laws over R, is denoted by

FGL(-) : Graded Z,)-algebra — Sets.
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Theorem 2.5 (Cartier-Lazard-Quillen). The covariant functor FGL(—) defined
on the category of Zp)-algebras is represented by the Zy,)-algebra

V = Zlin, o, - ),

i.e. FGL(R) = Homgy,,, (V,R). The covariant functor FGL(—) defined on the
category of graded Z,)-algebras is represented by the graded Zy)-algebra

BP* = Z(p)[vl,vg, . ]
with |v;] = 2(p* — 1), i.e. FGL(R.) = Homg,, (BP., R.).
Ezample 2.6 (Honda formal group law). Defining the ring homomorphism
On vV - Fpn

N 1 i=n

vi 0 i#n
for ¢ # n gives the Honda formal group law I',, over Fpn. This formal group law
satisfies

[plr, (z) = 2.

A theorem of Lazard says that I',, is unique in that every formal group law of height

n over a separably closed field of characteristic p is isomorphic to I';,, though this
isomorphism might not be strict.

Remark 2.7. The generators v; € V are defined by the property that

plr, () =pr+r, SV e
1>1

where F7y; is the universal p-typical formal group law over V. Similarly, the v; € BP.
are defined by the property that

_ _ FBP. i
[p]]"sp* (:E) = px +-7:BP* Z v; TP
>0
where Fpp, is the universal p-typical formal group law over BP, and |Z| = —2.
The generators {9; : ¢ > 0} and {v; : ¢ > 0} are often called the Araki generators
in the literature.

Consider the functor
p: Ly -algebra — Graded Z,)-algebra

which sends R +— R[u*1!], where u is a formal variable in degree —2. If F is a formal
group law over R, then

F(z,7) = uF(u T, u"'y)
where |T| = |7| = —2, is a formal group law over R[u™!]. Mapping F ~ F defines a
natural transformation between the functors FGL(—) and FGL(—) o p. Since Fy
is a formal group law over the graded ring YN/[uil], we obtain a map

(2.8) 6:BP, — V]u*!]

and it follows from comparing the p-series (see Remark 27) that 6(v;) = u! 7' ;.
We can also ask about how to represent groupoids of formal group laws. We
can do this in two ways, either by considering the groupoid of formal group laws
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with isomorphisms, or the smaller groupoid of formal group laws with strict iso-
morphisms.

Lemma 2.9. Let F' be a p-typical formal group law and let G be an arbitrary formal
group law over a Zy-algebra R, and let f be an isomorphism from F to G. Then
G is p-typical if and only if

F .
-1 o P
f (fL') - E i>0 tl‘r 9
where t; € R for every i and ty € R*.

If we want f to be a strict isomorphism, then we must have tg = 1. In the
context of graded Z,-algebras, ¢; is forced to be in degree 2(p* — 1). Thus we can
define a Hopf algebroid (BP., BP,BP) with

BP.BP = BP.[t1,ta,...: |t;| = 2(p" — 1)]
which represents the functor

(FGL(-),SI(—)) : Graded Z,)-algebras — Groupoids

which assigns a graded Z,)-algebra R, to the groupoid of p-typical formal group
laws over R, with strict isomorphisms. Let nr,nr : BP. — BP,.BP denote the
left and the right units of the Hopf algebroid BP,.BP. Note that the universal
isomorphism f : n; Fpp, = Fpp, — NiFBp, satisfies the formula

J7N@) =T 4r, Y

i>1

Fpp,

i
=P
t; T,

where |Z| = —2.
Similarly, one can consider the case where R is ungraded and f is an isomorphism
that need not be strict. Thus we define

VT =Vl i1,da,-.: [fs] = 0],
getting a Hopf algebroid (‘7, ‘7?) which represents the functor
(FGL(-),1(—)) : Z(;-algebras — Groupoids

which assigns a Z,)-algebra R to the groupoid of p-typical formal group laws over

R with isomorphisms. In this case the universal isomorphism f i Fy = Fp —
ngFy satisfies the formula

Foiw =3

>0
Let us define
.T‘;(E,y) = u}},(u‘lf,u_ly)
GEy) = founpFplly wizfy u'p)
f@) = touf(u'T)
where [Z] = [y] = —2. It is easy to see that the triple (Fy, f,@) is an element

of the groupoid (FGL(VT[u*']), SI(VT[u%'])). Hence the map 6 of (ZX) can be
extended to a left BP,-linear map

(2.10) 6 : BP,BP —s VTu*"].
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Since
i@ = ufTN )
Fyp~~—pt i i
= ’U,(Z Vtito pu_p fp)
i>0
Fy~~—pt i i
= Z Vtito pul_p fp,
i>0
and

@ =6 (),
we get the formula
(2.11) 0(t:) = ity " ul?'

Now we briefly recall the notion of deformation, which arose in number theory,
and has important implications for homotopy theory.

Definition 2.12. Let k be a field of characteristic p > 0 and I' a formal group law
over k. A deformation of (k,T') to a complete local ring B with projection

m: B — B/m

is a pair (G, i) where G is a formal group law over B and
i:k— B/m

is a homomorphism satisfying :I' = 7G.

A morphism from (G1,41) = (Ga,i2) is defined only when i; = 45, in which case
it consists of an isomorphism
f : Gl — G2
of formal group laws over B such that

f(z) =2 mod m.

Such morphisms are also called *-isomorphisms. Note that the set Defr(B) of
deformations of (k,T") to B with *-isomorphisms forms a groupoid. The work of
Lubin and Tate [LT] guarantees the existence of a universal deformation. More
precisely:

Theorem 2.13 (Lubin-Tate). Let T be a formal group law of finite height over
a field k of characteristic p > 0. Then there exists a complete local ring E(k,T)
with residue field k and a deformation (Fr,id) € Defr(E(k,T")) such that for every
(G,i) € Defr(B), there is a unique continuousl ring homomorphism 0 : E(k,T") —
B and a unique *-isomorphism from (G,i) to (0Fr,1).

Remark 2.14. Tt is well-known (see [LT]) that if & is a perfect field and T has height
n, then a choice of FT determines an isomorphism

E(k,T) = W(k)[[u1,. .. un-1]]

of complete local rings, where W (k) is the ring of Witt vectors on k.

1A ring homomorphism of local ring is continuous if the image of the maximal ideal of the
domain is contained in the maximal ideal of the codomain.
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The automorphism group Aut(I'/k) of T' acts on E(k,T") as follows (also see
[IDHO95, §1]). Let v € k[[x]] be an invertible power series. Choose an invertible

power series ¥ € E(k,T')[[z]] as a lift of v and define 1?'; over E(k,T) by

Fy () =7 (Fr(3(2), 7).
Note that the lift ﬁy depends on the choice of lift 5. Since (E,, id) € Defr(E(k,T)),
the Lubin-Tate theorem gives us a unique homomorphism
¢~ : B(k,T) — E(k,T)

and a unique *-isomorphism

. Fy — ¢y Fp.

2

The composite
=1 — 5 o~

fy i Fr 2 B, 5 ¢, Fr

does not depend on the choice of ¥ and is an element of the groupoid
(FGL(E(k,T)), I(E(k,T))).
Therefore the classifying map for Fr
Or: V — E(k,T),
can be extended to a left V-linear map
Or : VT —s Map®(Aut(T/k), E(k,T)).
Let us simply denote 1 (Z;)(7) by ti(7) for v € Aut(T'/k). The elements () satisfy
the equation
_ Fr i
15 ) = Z ti(y)z” .
i>0
One can also consider the graded formal group law T over k[u™!]. Note that
Aut(T/k) = Aut(T/k[u*']) via the invertible map v(—) + wy(u~'—). One can
similarly define the graded universal deformation formal group law Fr over the
graded ring E(k,T')[u*!]. Let v € Aut(T'/k) act on E(k,T')[u™!] via the ring ho-
momorphism ¢, : E(k,I')[u*!] = E(k,T')[u*!] such that
" if 2 € B(k,T
b (z) = ?V(I) 1 17 _( )
to(y)x if x = w.
Notice that
6, Fr(Z,9) = to(y)ud, Fr(fo(v) ™ u™ "%, fo(v) u™'p)

and R B

fv = tO(”Y)iluf'v(uilf)
is a strict isomorphism between Fr and gb,yfp. Thus we have a left BP,-linear map
(2.15) 0r : BP.BP — Map°(Aut(T/k), E(k,T)[u*']).
It can be easily checked that 6 is identical to the composite map

g;[uil]

BP,.BP -4 VT "5 ' Map®(Aut(T/k), E(k,T)[u®]).
Let us denote the map 60p(t;)(—) simply by ¢;(—). It follows from (2.II]) that
. .

(2.16) i(7) = LMo (y) P ut
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for v € Aut(I'/k). Also keep in mind that f, fits into the commutative diagram

150 R

o

~ ~

Fﬁf

where the vertical squiggly arrows are reduction modulo m = (p,u1,...,Un—1).
Thus for v~ ! = agz +1 a12? +r tasa? +r - € k[[x]], we have

(2.17) t;(7) = a; mod m and t;(y) = aiaapiulfpi mod m.
It follows from [R88][Corollary 4.3.15] that when I" has height n and k < n,
(2.18) te(71y2) = Zti(%)tk—i(%)p mod m.

i=0

Now let’s focus on the Honda formal group law I',, over F» and let F;, denote
its universal deformation. By Remark 214l we have

EFpn,Tn) = W(Fpn)[[ur, .o un]],

where W (F,n ) are the Witt vectors of F,», which has an action of the small Morava
stabilizer group

Note that the map ¢,, of Example which defines the Honda formal group law
factors through F,. Therefore I';, has coefficients in F,. Consequently, the big
Morava stabilizer group

G = Aut(T/Fp) = Sy, % Gal(Fyn /F,)

acts on E(Fyn,I';). The Lubin-Tate universal formal group law F;, over E(Fpn,T'y,)
is given by the ring homomorphism

0:V — E(F,,T,)

u; 1<n
v; > 1 1=n
0 2>n

which means that

[Plr. (2) = pz 41, wia? +r, - +r, n12? 4r, 2?

We also have a graded formal group law F,, over the graded ring (E, ). := E(Fpn, ) [u™!]
which is given by the ring homomorphism

0:BP, — (En)«
uiufpi 1<n
v = u P i=n
0 i>n
By the Landweber exact functor theorem,



TOWARDS 7, L (2)Z 11

is a homology theory, thus it is represented by a spectrum F,,, known as Morava
E-theory. By a theorem of Devinatz and Hopkins (see [DH04]), the action of G,
on (E,). lifts to one on E,, itself whose homotopy fixed point spectrum is

(Ep)" o Lig(n)S°.
This gives us a homotopy fixed point spectral sequence
(2.19) Ey' = H*(Gp; (En)i) = mi—sLic(n)S°
whose F, page can be found using a Lyndon-Hochschild-Serre spectral sequence
H* (Gal(Fyn [Fy): H (Su; (Ba).)) = HY (G (Ba).),
which as a consequence of Hilbert’s Theorem 90 reduces to

(2:20) H (G (Ea)) = HO (Sus (Ea)) O /50,

3. THE BP,BP-COMODULE BP.Z

For every Z € Z , there is, by definition, an isomorphism

H.Z = (A(2) ) E(Q2)). = Fal&1,&)/(€3,€3)

of A(2).-comodules [BE]. We will use this fact to determine the BP, BP-comodule
structure of BP,Z. One can use the Adams spectral sequence

Ey' = Ext'(H*BP @ H*Z,Fy) = BP,_,Z
to compute BP.Z as a BP,-module. Note that

H*BP = A//E(Q07Q17Q25' )

where Q; are the Milnor primitives. By a change of rings, the Fs-page of the above
Adams spectral sequence is isomorphic to

(3'1) Egﬁt = Eajti"t(H*BP ®H"Z, Fz) = EIthQO,th)

Let g denote the generator of H.Z in degree 0. As an E(Qo,Q1,Q2)-module,
A(2) /] E(Q2) is a direct sum of 8 copies of E(Qo, Q1) generated by the elements in
the set
G=1{g", (£19)", (&19)", (€19)", (E29)", (£1&39)", (£1€29)", (E1€39)"}-

Since H*Z = 4(2) A(2)®p(@,)F2 and Q2 is in the center of A(2), Q2 acts trivially

on H*Z. Using the iterative formula
Qi = quiQifl + Qiflsq?

one can inductively argue that Q; for i > 2 acts trivially on H*Z. Thus, we have

completely determined H*Z as a module over E(Qq, Q1,...) from its A(2)-module
structure. Thus as an E(Qq, @1, - .. )-module

H*Z =2 E(Qo,Q1,-..) ®B(Q2,Q4,..) 9
and therefore the Es-page of ([B)) is isomorphic to
Ezs’t = FQ[’UQ,’Ug, .. ] ®g*

where v; has bidegree (s,t) = (1,]|Q;|) = (1,2°*! — 1). Due to sparseness, the
Adams spectral sequence [BI)) collapses at the Eo page. Hence, as a BP,-module

(3.2) BP.Z = BP./(2,v1){(x0, %2, T4, T6, Y6, Y8, Y10, Y12),

(H*Z,Fs).
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where x; and y; are generators in degree ¢ chosen in such a way that the map
BP.Z — H.Z sends:

Tor g ys — 39

o &g ys— 36y
xy = Elg oy 1&g
xg = &g y2 = 839,

This identification allows us to infer the BP, BP-comodule structure of BP,Z from
the A(2).-comodule structure of H,Z via the diagram

BP.Z —Y BP.BP @pp. BP.Z

| l

H.Z ———— A(2), ® H.Z
2

First notice that the co-action map

Vo HoZ — A(2), @ H.Z

sends
g = 1g
&g~ Elg+1&y
&g~ Elg+1ely
&g = Glg+&lgg+ELlElg + 11y
(3.3) &g = &lg+&llgg+1|Eg
169 — &89+ (5 +63)IE1g + ELle3g + £1Etg + 11639
§1639 — 1&g+ ELETg + E11E g + &Il + ELIES g + 1|E1E3g
5639 — &g+ (6165 + €196 g + (6165 + £D) ety + £9163g
+(&3 +€0)165g + £Hle7e3g + 716139 + 1|€53g
The map

BP.BP — A.

sends v; > 0 and t; — (2, where (; is the image of & under the canonical antiauto-
morphism of A,. Moreover A(2). = A./(¢$,(3,(2,(4,(5,-..). Therefore 1o, along
with the fact that (2,v1) C BP, acts trivially on BP,Z, completely determines the
composite map

BP.Z Y5 BP,BP @pp. BP.Z — BP,BP /T ®pp. BP.Z

where
I, = (Ug,’l)g,...,t%,t%,tg,t;;,...) C BP.BP.

Note that all elements in the generating set {zq, 22, 4, Ts, s, Ys, Y10, Y12 } of BPZ
have internal degrees between 0 and 12, whereas [¢;| > 12 and |v;| > 12 when
j > 3. Therefore, for j > 3, ¢t; and v; do not appear in the expression for ¢(z;)
and 1 (y;), though vy may be present. Using (3.3) and the fact that ¢ = ¢} and
G = & + €8, we easily derive the coaction map ¢ on the generators of BP.Z
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modulo (va,t},t3) € BP,BP. We get:

Y(zo) = 1zo
Y(r2) = tilwo + 1|2
(za) = tilwo + 1wy
@/J(l‘g) = t:ﬂl'o + t%|$2 + t1|!E4 + 1|£L'6
(3.4) Ylys) = (t2 +13)|wo + ti]aa + ys
Y(ys) = titalwo + talwe + tF]xs + tilys + 1lys
Y(yo) = titalzo + (8} + ta)|za + 5|26 + 3]ys + 1|y10
V(y12) = Gito|zo + t3ta|ma + tite|zs + ta|ze + t3|ys

+t2lys + t1]y10 + 1|y12

Lemma 3.5. Forany Z € Z~, BP.Z has one of the four different BP . BP-comodule
structures given below:

(3.6)
Y(xo) = llzo
(.IQ) = t1|$0 + 1|ZE2
1/)(%4) = t%|2130 + 1|ZE4
Y(xg) = t|wo+ 3|ee + tr]rs + 1ae
Plys) = (t2+1t3)|wo + 13|22 + 1]ys
Plys) = (ati+tita)|zo + talwe + 13|24 + t1]ye + 1]ys
Y(yio) = (5 + ita)|zo + tilwa + (15 4 t2)|za + 7|6 + t1]ys + 1|y10
P(y12) = ((b+ D)t8 +t3ta + (a + b)t2)|wo + t3ta|xa + (bt} + tit2)|xs + ta|ws + 3 |ys

2
+t7lys + t1ly1o + 1ly12
where a,b € Fs.
Proof. For degree reasons, there are coefficients
0,0 ,0 30 y2 ,0 0 ,2 2 4 ,0 .0 10 0 2 y2 4 y4 6 6
A6y Kgs 185 Ags A8 110> AM10s H105 AT0» A10s H125 V125 A2y K12s 05 W25 A2, Hi2, ATy Aas Fig € Fao

such that one has

Y(xo) = llzo

(ra) = ti|me + 12

Y(zs) = ti|zo+ 1|mg

Y(zg) = (634 MNva)|zo + t1|ze + t1|Ts + 1|76

Pys) = (1] +ta + rgva)lzo + 7]z + 1|ys

Y(ys) = (U3t +tita + Nvaty)|zo + (ta + Nave)|ze + t3|2s + t1]ys + 1]ys
Y(yo) = (M10t5 + t2t2 + A 0“275 )wo + (N10t4 + )‘10U2t1)|$2 +

+(83 4+ to + Agva)|za + 3|26 + t3]ys + 1|y10
D(yr2) = (u1at? + tits + vits + Apvat] + Kyvats + ov3)|zo +
F (2ot} 4 t3tg + N2guat?)|ze + (gt} + tits + Ngvaty)|zs +
+(t2 + Afova) |6 + (£ + K59v2) |y + 111ys + t1lyr0 + lyi2.
The counitality condition of 1)
(3.7) BP.Z
/|

BP BP ®BP* BP Z W BP ®BP* BP Z

1R
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forces \Q = k8 = A2 = A}, = 0 = \§, = k§, = 0. After a change of basis change
ys ~ Y+ AQuams
Y0 ~ Yo+ A?Ovzm

Y12 ~ Y12 + Kiavays + (Ay + Kl voe.

we have

Y(xo) = 1lzo

Y(xe) = t1]|zo + 1|22

P(xa) = tilzo + 1z

Y(ze) = tlzo + 83lwe + tr]ag + 1ag

blys) = (7 +to)|zo + a2 + 1lys

V(ys) = (udt] +tita)|wo + to|e + 85|24 + t1|ys + 1ys
y0) = (ulot] + tita)lxo + (uioty + Agvati)|we + (7 + to)|za + 1|26 + t1|ys + 1]y10,
P(yr2) = (uotS + Eta + v95t3) |0 + (uiat] + E1ta + (A + Ay + ATp)vat]) |22 +

(uiztl + trt + (Mg + Alg + Ay + £95)vat) |24 + talwe + 7 ys + t3]ys + t1]y10 + 1[y12,

Now we exploit the coassociativity condition

(3.8) BP.Z id BP.BP ®pp, BP.Z

wl lA@BP*Z

Applying the coassociativity condition on on yg tells us nothing, while applying it
on yig tells us that

/\%0 = Oa,u(l)O = /L%O =1
Applying it on y12, we get
Mg+ +ATy = 0, iy = 0, AQg+ AT+ +405 = 0, g+ +1 = 0 and pg+uty+vih+1 =0
Setting a = pd and b= pfy + 1, we get (3.0). d
Remark 3.9. By sending v; — 0 and t; — (?, we obtain a functor
Q : (BP., BP,.BP)-comodules — (Fa, ®A,)-comodules,

where ®A, is the double of the dual Steenrod algebra. This functor sends BP.Z
to ®A(1).. Since A(1). has four different A,-comodule structures, it follows that
D®A(1), has four different ®A.-comodule structures. The four different BP,BP-
comodule structures on BP,Z are essentially lifts of the four different ® A,-comodule
structures on ®A(1),.

Remark 3.10. Let M, = BP./(2,v1){g0, 92, g4, gs) be the BP,BP-comodule with
four generators with cooperations

¥(g0) = 1lgo

¥(g2) = tilgo+ 1[g2

¥(ga) = tilgo+1lga

¥(ge) = t3]go+ tilg2 + t1lga + 1|gs.
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Then if W = A; A Cv, where A; is any of the four 8-cell complexes whose co-
homology is isomorphic to A(1), the BP,BP-comodule BP,W is isomorphic to
M..

A straightforward calculation tells us:

Lemma 3.11. There is an ezact sequence of BP,BP-comodules
0— M, BP.Z M, —0

such that 1(g;) = x;, 7(x;) =0 and 7(y;) = X5¢g;—¢.

4. THE ACTION OF THE SMALL MORAVA STABILIZER GROUP ON (F32).Z
To compute the Es-page of the homotopy fixed point spectral sequence
(4.1) Ey' = H*(Sy; (B2) 2) 4 Ea/F2) — my (Lye(0) 7,

we first need to understand the action of Sy = Aut(T'2/F4) on (F2).Z, where I'y is
the height 2 Honda formal group law over Fy. Recall from Section 2 (Z13]) the left
BP,-linear map

6 : BP.BP — Map“(Ss, (E»).).

For X a finite spectrum, we deduce the action of Sg on (E3).X from the knowledge
of the BP, BP-coaction map ¢Z¥ on BP,.X via the diagram

BP
¥X

(4.2) BP,X —> 4 BP,BP @pp, BP, X

lern@ap*x
Map(SQ, (EQ)*) ®BpP, BP.X.

The main purpose of this section is to understand the action of So on (E2).Z, for
all Z € Z.

We begin by briefly recalling some key facts about Sp that we need for the
calculations to follow. Let T be a formal variable that need not commute with
W (F4) and let

Oy := W(F)(T)/(T? = 2,Tw — w’T),
where w is a root of 22 + 2 + 1 € Fa[z], and o is the Frobenius map on W (Fy).
Note that any element v € O can be written as a power series

oo
v = Z a,T"
n=0

where the a, are Teichmiiller lifts of F; or are zero. Then v corresponds to the
power series

Tox 41, M2’ +1, -+ +1, Tnt” +1, -+ € Fyf[a]]
where @,, is the image of a,, under the quotient map W (F4) — F4. In fact, this
defines an isomorphism from Oy to End(T'2/F4) C Fy[[z]] and consequently, S is

isomorphic to the group of units of Oy (see [R88|[Lemma A2.2.20]). Recall from
Section 2] the map

Or, : VT — Map®(Sa, (E2)o),



16 PRASIT B. AND P. EGGER

where I', is the height n Honda formal group law. To avoid cumbersome notation,
let us continue (from Section 2]) to denote 9rn( ») simply by t,. From (ZIT7), we

learn that if
T'n n
vl = Z anz’ €S,

then
(4.3) tn(7) = an mod (2,uy).

Also keep in mind that the Teichmiiller lifts a, satisfy the equation at = a,.
Therefore we have

(4.4) 1%2(—)4 = t:,(—) mod (2,u1)

We can also write every element of Oz as a + bT where a,b € W (F4). Using the
isomorphism Sy 2 O, one defines a determinant map (see [B15, §2.3])

det : Sg — Z;

which sends a + bT — aa® — 2bb?. Composing this with the quotient map Z5 —
73 [{+1} = Zs gives the norm map
(4.5) N :Sy 24 75 = 7,

The kernel of the norm map N : So — Zs is called the norm one subgroup and is
denoted by S}. In [B15][§2.3], Beaudry described two elements a, 7 € Sy such that
det(a) = —1 and det(m) = 3, two elements which generate Z5 topologically. In
particular, 7 defines an isomorphism Sy 2 S} x Zs.

As we will see in this section, the most crucial part of the action of Sg on (E3).Z
is the action of its finite subgroups, which we describe here, following [B15] and
Buj.

Proposition 4.6. Every mazimal finite nonabelian subgroup of So is conjugate to
a group
Gas = Qs x Cs,

where Qg is the quaternion group

Qs = (i,j:i* =1, = i’ = ji)
and Cs acts by permuting i, j, and k = ij.
Notation 4.7. We denote the identity element of Qs by 1. The order 2 element
of Qg is often denoted by —1, however, to avoid confusmg it w1th an element of a

ring, we will denote it by 1 € Qg. Similarly, we denote i = 1i J = 1j, k = 1k. The
center of Qg, which is an order 2 group generated by 1, will be denoted ;.

The maximal finite subgroup G4 is unique up to conjugation as a subgroup of S,,
while as a subgroup of S}, there are two conjugacy classes, Go4 and G, = 7Gogm ™!
The group S} also has a cyclic subgroup

CGZCiXC3

generated by 1 = i and w.
The identification of Sp with O endows Sy with a decreasing filtration

(48) FQ/QSQ = SQ,Fn/QSQ = {"y €Sy y=1 (HlOd Tn))}
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One should note that
] C3 n=0
F2S2/Fpnt1) /282 = { Fi n>0.

Notice from (&3] that t,, co-acts trivially on BP.Z for n > 2. Therefore, following
@3) we conclude that F),,»Sy for n > 2 acts trivially on (E»).Z. We list the
generators of the various filtration quotients of So in the following table:

associated graded generators
Fo/2S2/F1/2S2 = Cs w
Fi )5S0/ F5 585 = Qg/Cy = Cay x Cy i,
F3/982/F398: = C; x C, 1,

The subgroup
K= <CY, F3/2SQ>7
is known as the Poincaré duality subgroup of S, and it is known that
SQ 2K x G24

The subgroup Sj inherits the filtration of Sy via F), /5S3 := S3 N F),/2S2. In partic-
ular, we have

Cs n=20
Fn/gS%/F(nH)QS% 2! Fy n>0andnodd, orn=2
Fy otherwise.

There is a corresponding Poincaré duality subgroup K' which satisfies
S5 2 K' % Gay.
Recall from ([B.2)) that
(E2)+Z = (E2)« ®@pp, BP.Z = (Es)./(2,u1)(x0, T2, T4, T6, Y6, Y8, Y10, Y12)-
For our purposes it is convenient to have all the generators in degree 0, so we define
T; = uéxi,yi = u%yi
in order to have
(E2)+Z = (E2)+/(2,u1)(To, T2, Ta, T6, Y Vs Y10: Y12)-

By ([#2), the action of Sy can be expressed in terms of maps ti Sy — E(F4,T3).
For instance, we have

2~
gp(l'g) = 1|$2+t1|$0 = 1|;v2+u 1t0 t1|$0,
so for v € Sg, we have
Y(@2) = v(uzz) = to()ulzz +u (7)1 (7)0) = to(7)T2 + (7)™ 1(7)To-
By Lemma [3.5] if we suppress ‘“y’, the action of Sy can be described as in Table ]
(thanks to ([£4)), we can adopt the simplifications 54 =t; for i = 1,2 and 1%3 =1).

Let M, = (Es). ®pp, M., where M, is the BP,BP-comodule introduced in
Remark 310l Define _
9; = U%gi
to form a set of generators {Gy, g2, 94,96} of Mo. A consequence of Lemma B.11]
and Table [T is:
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U tou
To T
_ ~2~ ~_
To to t1To + toT2
_ “1<2_ ~<2_
T4 to t1 To + 1o T4
_ ~8_ 2.2 ~~_
Tg t1 To +to t1 T2 + tot1T4 + Te
_ ~3 ~2~ ~2~2_ _
yG (tl + to tQ)ZCQ + to tl X9 —|— y6

2~  ~~~ = 2 2~ =
Us (ato t1 + tot1t2)To + t2To + 11 Ty + 1o 117 + LoTs
- ~~2 ~2~_  ~_ ~2-3  ~~ _
Y10 (totl +t1 tz).’go +ti17To + (fo t12 + t0t2)£64+

+tot1 Te + tot1Yg + to Yio
3  ~2-3~ ~ 2 pops
1o ((b + 1)t1 +tg t1 to+ (a + b)totz )fo + tot1 toTo+
P P D S0 P
"r(btotl + f1t2)$4 +to t2Te +t1 Yg +To t1 Yg + tot1Y1g + Y12

TABLE 1. The action of So on (Es).Z

Lemma 4.9. There is an exact sequence
(4.10) 0 — Mo — (E2)oZ — Mo — 0
of Qg-modules, where 1(g;) = T; and 7(Y;) = G,_¢-
We will use the exact sequence of (L.I0) (compare with (A.2)) to understand the
action of Qg on (E3)oZ. For this purpose we need the data of ¢;() modulo (2, u;)

for v € Qs. By definition of the Honda formal group law I's, we have [2]r, (z) = z*
and it follows that

@) =3
Indeed, one has -
s o Ty 4 4 I 4n
T +r, anox =x+r, T+, Zn21x =x +r, Zn21x =...=0.
Following (Z.I7)) and using the fact that [—1]r,(x) is its own inverse, we have
o= { ) no

modulo (2,u;). Further, i and j can be chosen so that modulo (2, u), one has
o to(y) =1 for all v € Qg
o t1(i) = t1(i) = L t1(j) = t1(j) = w, and ty(k) = t1 (k) = w?.

Let F4[Qs/C;] and F4[Qs] denote the group rings over Fy.

Lemma 4.11. There is an isomorphism Mo = F4[Qs/C;] of F4[Qs]-modules.

Proof. Since 1(g;) = T;, one can read the action of Qg off Table[Il With respect to
the ordered basis B = {gy, s, 94,96} of Mo, we have

1111 1 w w? 1
. 5 01 01 . 2 01 0 w?
(I)B - (I)B - 0 0 1 1 7(.])3 - (J)B - 0 0 1 w ’
0 0 0 1 0 0 0 1
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1 w? w 1
~ 0 1 0 w
(k)B = (k)B = 0 0 1 w2
0O 0 0 1
Consider the basis C = {vg,v1,v2,v3} of My where
1 0 0 1
01 1 1
Q= 0 w w? 1
0 0 0 1
is the change of basis matrix from B — C. It can be readily checked that
1 1 0 0 1 01 0
4 A~ |O 1T O0O0] .  4m ~_ |01 01
0 0 0 1 0 0 0 1
1 1 1 1
PN 10 1 0 1
0 0 0 1

The last three matrices are equal to those representing the same transformations
in the basis By of F4[Qs/C;] given in (A3)), and thus we conclude that M, and
F4[Qs/C;] are isomorphic as F4[Qg]-modules. O

Theorem 4.12. There is an isomorphism (E2)oZ = F4[Qs] of F4[Qs]-modules.
Proof. Let B,C and Q be as in the proof of Lemma TTl Let
BZ = {50752754756756758751()7?12}
be the usual ordered basis of (E3)oZ and let Cz = {co, 1, c2,c3, ¢, ¢}, ch, 5} be
another basis of (E3)oZ where Q = %2 5 is a change of basis matrix from
BZ — Cz.
By Lemma L9 in the exact sequence ([@.I0), we have 7(v;) = ¢; and T(c}) = v;.

From Table [ we know that

- I M

(]]-)BZ = [ 0 :| )

I
where }
1 0 0 a+bd
0 1 0 0
M = 0 0 1 0
000 1 |
Then . i
N A 14n ~ |1 QT'MQ | | I M
(]]-)Cz - Q (]]')BgQ = 0 I ] = 0 I .
The remainder of the proof that (F2)oZ = V3(F4) will continue in Lemma [A.4]

d

Because Qg acts trivially on u we get the following corollary.
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Corollary 4.13. There is an isomorphism

(B2):Z = Fa[u™'][Qs]
of graded Qg-modules.

Lemma 4.14. The element a~'n € Sy acts trivially on the generators of (E2)«Z.

Proof. By definition of a and 7 [B15][§2.3], 7 = o mod Fj5S,. Therefore, o '7 €
F3/5S;. The result follows from the fact that ¢, coacts trivially on BP.Z (i.e. the
BP, BP-comodule structure of BP,Z does not contain any terms involving ¢, for
n>3.) O

Further note that
to(a) =1, t1(a) = 0 and t3(a) = w mod (2,u).

A direct inspection of Table [[lshows that a acts nontrivially on (Fs).Z, in fact we
have:

Corollary 4.15. The fized point modules (E2).Z% and (E3).Z% both equal
Fa[u®'{T0, T2, Ta, T }-

Corollary 4.16. The subgroup Fy;5Ss acts trivially on (E2).Z%.

Proof. We know that F3,,Ss acts trivially as t,, coacts trivially on BP.Z for n > 3.
Furthermore, F5/5Ss/F3/5S» is generated by 1 and «, both of which act trivially
on (E3).Z%%. O

5. THE DUALITY RESOLUTION SPECTRAL SEQUENCE FOR Z

Now that we have complete knowledge of the action of S} on (F2).Z, we are
all set to calculate the group cohomology H*(Si; (E3).X), which is the key step
to finding the Fy page of the descent spectral sequence {I). We will use the
duality resolution spectral sequence, a convenient tool to calculate the FEs-page.
The duality resolution spectral sequence comes from the duality resolution, which
is a finite Zs[[S3]]-module resolution of Zy. First we fix some notations.

Notation 5.1. Throughout this section, we will let

o Sy =I5,

o S5 := Fy )5S}, and,

e 1S} be the augmentation ideal of the group ring Z»[[S3]].
Note that every element in IS5 can be written as an infinite sum of elements of the
form ay(1—g), where 1 denotes the neutral element of So, g € S3 and ay € Z»[[S3]).

Theorem 5.2 (Goerss-Henn-Mahowald-Rezk, Beaudry [B17]). Let Zy be the trivial
Zs[[S3]]-module. There is an exact sequence of complete left Zo[[S3]]-modules.

03 02 o1

0 ng %2 %1 %0 < Z2 07

where Cgo = ZQ[[S%/GQ;;H, ng = ZQ[[S%/G&A] and %1 = CKQ = ZQ[[S%/CG]] Let e be
the unit in Zs[[S3]] and e, be the resulting generator in 6,. The map 8, can be
chosen to satisfy:

e Oi(e1) = (e —a)- e,

e Or(ex) = (e+a)- e mod (2,(153)?),

o Os(e3) =mle+i+j+k)le—al)r . es.
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Let Fy = Gay, Fy = F» = Cs and F3 = Gb,. For a profinite Zs[[Si]]-module M,
there is a first quadrant spectral sequence

EP? = Eaty, sy (6, M) = HY(F,; M) = HP*(S5; M)
with differentials d, : EP'? — EPTma77 1

Since the map BP, — (FE2). sends vg — u™3, we will denote v~ by vy. Let us
now recall Shapiro’s lemma, an important result in group cohomology, which will
be used throughout the rest of this section.

Lemma 5.3 (Shapiro’s Lemma). Let G be a finite group, H C G a normal subgroup
and let M be a Z[H]-module. Then for every n, we have
H™(G; Colnd$(M)]) = H" (H; M),

where Colnd$ (M) = Homgp(Z[G], M).
Remark 5.4. If H C G is a subgroup of finite index, then

Colnd (M) = Ind (M) := Z[G] @z M.
In all of our applications of Lemma [£.3] G will be a finite group, hence one need
not distinguish between CoInd$ (M) and Ind$; (M) for any normal subgroup H of
G.

Theorem along with Shapiro’s lemma implies that
HP(Qg; (E2).Z) = { F4[gi1] ot}]:er:vv(i)se.

Furthermore, since (E3).Z has characteristic 2 and Qs is the 2-Sylow of Ga4, we
have

HP(Ga4; (E2). Z) = H?(Qs; (E2)» Z)° = Fy[u®'].
The generator w of C3 acts non-trivially on u (see Table []), but fixes u® so that

(5.5) HP(Goy; (E2) Z) = { Igduﬂ’] gzg

Remark 5.6. Note that the equivalence
(5.7) tmf N Z ~ k(2)

in the K (2)-local category of spectra can be seen as a consequence of (B.3]). For the
maximal finite subgroup G4s C Go, it is well known that (Fy)"Ges = Lk ytmf. The
FE>-page of the homotopy fixed point spectral sequence for computing the homotopy
groups of (E)"¢1s A Z is precisely HP(Gug; (E2).Z) = HP(Gay; (EBy). Z) Gl Fa/F2)
which, by (53), is isomorphic to Fa[u?3] and hence collapses. Thus we get

(L (2)(tmf N Z)) = K(2)x.
Lemma 5.8. Let G, = nGoyn~ ! in Si. Then we have
H(Glys B Z) = H(Gag; B.Z) = F[ui].
Proof. Notice that Gy N Gas D Cj. Also keep in mind that 7 = a mod Fj5Sj.

Therefore, by Corollary ILI5, 7 acts trivially on ((E2)oZ)%. Let Qg = nQsm ! C
! Land j = 7wjr—'. Thus we have

by 1 =mim™
! /
24 = Qg % (s
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Note that
i =i mod Fy/,S} and j =] mod F/5S}

because ™ € Fy/5S). Therefore, the actions of i’ and j’ on ((E2)oZ)% are exactly
the same as that of i and j respectively. It follows that

((B2)02)“" = F4[Qy/C4)
as a F4[Qg]-module. Applying the arguments of Theorem .12 to this case, one sees
(E2)0Z = FalQg]

as an Fy4[Qg]-module, and the result follows. O

Now we shall focus on computing H?(Cs; (E2).Z). Take C; to be the center of
Qs and consider Cs = C; x Fy. While Cj fixes all the Z; in addition to fixing u,
the group F}* does not fix the Z;; however it does fix the 2;. This observation will
be crucial for the computation that follows. Because Cj is the 2-Sylow subgroup
of Cg, we have

H(Cs; (E2)«Z) =
Because (Fy).Z = Fy[ut

HO(C R Qs
1[Qs] is a free F4[C;]-module we have

HY(Cy; Fau™[Qs)® = ((B2).2)%2)"
> (Fu[u™[Fo, 71, T2, T3])

1%

Fa[u®?][zo, 1, 22, 23]

concentrated at ¢ = 0. Essentially deriving from Table[Il we list the actions of i, |,
ij on the generators xg, T2, x4, xg, which will come in handy later on.

T i-x jrx ij-x
Zo i) Zo i)
(5 9) X2 u_lxo + X2 wu‘lxo + Z2 w2u_1x0 + X2
) T4 u2xy + T4 wuzg + x4 wu2xo + T4
X6 u_3x0 + u‘%z u‘%o + w2u_2x2 u_3x0 + wu‘2x2
+u_1:104 + xg +wu‘1:v4 + zg +w2u_1x4 + xg

To summarize and as well as to establish notations, we rewrite the F1-page of
the duality resolution spectral sequence for Z as

Fafvi N zoo) p=0,g=0
Fa[v3 ' [ (21,0, 1,2, 21,4, 71,6) p=1,4=0

EPT = Fylvyt ]<$20,$227$24,$26> p=2,q9=
Fa[vy ]<$30> p=3,9=0

otherwise

where the internal grading of x; ; is j. To compute the differentials in this spectral
sequence, we need the following result.

Theorem 5.10. For every Z € Z, H*(S3; (E2)«Z) is isomorphic to
H*(K';F2) @ Fafu™]

o module.

as an Fylu
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Proof. We begin with the calculation of H*(F,/5S5; (E2).Z). Since
FQ/QS% = Kl X Cﬂ,

we have a Lyndon-Hochschild-Serre spectral sequence

(5.11) By = HY(K'; HY(Cy; (E2)u2)) = HPT(FysSy; (E2).2).

Since H(Cj; (E2)«Z) = ((E2)«Z)% (concentrated at ¢ = 0) and K acts trivially
on ((E2)«Z)% by CorollaryA.T6] the spectral sequence (5.11]) collapses and we have
H*(F35S5; (E2). Z) = H*(K';F2) ® (E3). 2.

Note that
(E2).Z% = Fuy[u™"](To, B, Ta, Ts) = Fa[u™'][Qs/Cy]-
Now we run yet another Lyndon-Hochschild-Serre spectral sequence
(5.12) Ey? = HP(Qs/Cy; HI(Fy9Sy; (E2).Z)) = HPT(S3; (E2).Z)
to compute H*(S3; (E2).Z). Notice that
EY? = HP(Qs/Cy; HU(Fy2Ss; (E2).Z))
= HP(Qs/Cy; HI(K';Fs) ® (E3). Z%)
HP(Qs/Cy; HU(K '3 Fa) ® Falu™'][Qs/C4)
B HY(KY;Fy) @ Fy[ut'] when p=0
o 0 when p # 0

by Shapiro’s Lemmal[53l Thus the spectral sequence (B.12)) collapses at the Fs-page
and we get

H*(S3;(E2).Z) = H*(K*; F2) @ F4[u™].
O

From the above theorem and the following unpublished result of Goerss and
Henn (see [B15][Theorem 2.5.13]),

(5.13) H* (K" F2) = Falyo, y1,y2]/ (Y5, y7 + yoy1. v5 + Yoy)-

we get a complete description of H*(S3; (F2)+Z).

Our next goal is to make use of the formulas in Theorem to calculate the
di-differentials of the duality resolution spectral sequence for Z. Moving forward,
there are two things that are handy to keep in mind:

e 7 admits a vi-self-map [BE], therefore differentials in the duality resolution
spectral sequence for Z will be vi-linear.
e The d;-differentials preserve the internal grading.
Lemma 5.14. The differentials d; : E?’O — Ell’O and dy : E12’O — Ef”o are zero,
while the differential d; : Ell’o — E12’0 is the va-linear map given by
Fa[vi'(z1,0, 712,214, 716) — Fafvi (220,229,724, T06)
1,0,%1,2,T14 +— 0
Ti6 — AUaZ20,
where X\ € Fy. The duality resolution spectral sequence for Z collapses at the Eo-
page.
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Proof. Tt follows from Theorem that the differential d; : E"° — E}"° is given
by

di(z) = (1 —-a) -z,
which is zero, because « fixes x¢ g, (follows from Table [T also see Corollary F1H).
Likewise, the differential d; : E;"° — F3° is given by

di(z) =m(1l+i+j+ k@1 —-—a Hr . o,

which is zero because by Lemma and the fact that « =7 mod F3 /QS%, both
o and 7 fix all the x7 ;. The differential d; : E;’O — E12’O is given by

di(z)=0-2=0+a+¢&)-uz,
where £ € (I153)%. Because « fixes all the z7 j, this simplifies to
di(z) =& - .
The element & is a possibly infinite sum of the form
€=3 agn(l-g)(1-h)

for ayn € Z2[[S3]] and g,h € S3. In particular, thanks to Table [[l and 28], we
know that

(1-g)(1—=h)- 20 = 0
(I-g)(L—h) 22 = 0
(1-g)(L—h)-zg = O
L—g)@—h)-z6 = (t(R)t1(9)* +t1(h)*t1(g))z0,

and it follows that
di(w1,0) = di(w12) = di(x14) =0,
while di(x1,6) is a multiple of z3 0. We know that d; is not identically zero, because
H' (S3; (B2)+2) = H' (S35 (E2). 2)
has rank at most 3. Since differentials preserve internal grading
E- x1,6 = >\U2$2,0,

where A € FJ, is forced. Since EY'? = 0 for ¢ # 0, the duality resolution spectral
sequence for Z collapses at the Es-page. O

Remark 5.15. Since HP(S}; (F2).Z) = HP(S3; (F2). Z)% = (HP (K1;Fa)®F 4 [ut!])“s,
one requires an understanding of the action of C3 on HP(K';Fy). This action is
given by

wW-Y% = Yo
w -y = Y1 +y2
w-Yy2 = Y1

and can be deduced from [B15, § 2.5]. Therefore, one can completely calculate
HP(S}; (Es).Z) without resorting to the duality resolution. However, most existing
K (2)-local computations are done using the duality resolution spectral sequence,
which is why we chose this method, providing a better basis for comparison with
previous work.
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Corollary 5.16. The homotopy fixed point spectral sequence
Byt = H (S (Ex)iZ) = mo(B": A Z)
with d,. : ESt — Bt =1 has Ey-page
ey Fafvy ]<$00§ -
By = H Sy (F2).2) = gl b ]@22223 .-
Fa[vy")(23,0)

or in graphical form (in Adams’ grading) with each & denoting a copy of Fyvy!]:

4
'S
2 A A b
O & &
0 &
-1 1 3

The spectral sequence collapses at the Fo-page due to sparseness.

Remark 5.17. According to recent work of Goerss and Bobkova [BG], there is a
topological version of the duality resolution, which gives a resolution of the K(2)-

local sphere. The topological duality resolution can be used to compute 7, (E;I 53 A
Z) directly. However, for Z, the algebraic and the topological duality spectral
sequences are isomorphic and the computations remain identical as the relevant
spectral sequences simply collapse.

6. THE K (2)-LOCAL HOMOTOPY GROUPS OF Z

The K (2)-local homotopy groups of Z can be computed using the homotopy
fixed point spectral sequence

(61) E;’t _ HS(S2; (Ez)tZ)Gal(]F4/]F2) _— ﬂ—t—S(LK(Q)Z)7

where Gal(F4/F3) merely plays the role of ‘changing the coefficient field from Fy
to FQ.’

Recall the norm map (5], N : Sy — Zs, whose kernel is S}. By choosing an
element v € So such that N(v) is a topological generator of Zs, one can produce
a map Zg — Aut(S}) which sends 1 € Zy to the conjugation automorphism by -,
which gives an isomorphism

Sg = S% X Zg.

n [BI15 BIT], 7 is chosen to be 7. However, one can also choose v = o~ 'm. We
choose v = a7 to get the isomorphism Sy =2 S x Z,. This is convenient for us
because a1 € Fy /2S2 and therefore it acts trivially on (E2).Z. Consequently,
the Lyndon-Hochschild-Serre spectral sequence

HP (Ly; HO(S); (). 2)) = HP(Sq; (E2). 2)
collapses. Therefore

H*(Sy; (EQ)*Z)Gal(F4/F2) ~ [B(() ® H*(S%, (EQ)*Z)]Gal(F“/FZ)
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where ¢ has bidegree (s,t) = (1,0). More precisely, as a Fa[v;']-module
Folvy!(20,0) 5 =0,
Fo[v3 ' [(Cz0,0, 71,0, 1,2, T1,4) 8 =1,
Falvy (72,2, 72,4, T2,6, (1,0, (T1,2,(T14) 5= 2
HSS;E*ZGGZ(F4/]F2)% PAD) 2 4 .65 ,09 29 s )
(52 (B2).2) Fa[v3'|(23,0, (2,2, (22,4, (T26) 8 =3,
Favy'|(Cws0) s =4,
0 otherwise

In Figure 2] we draw the Es-page of (6.I]). We denote by o the generators that are

4 Q v2CT3,0Q Q
\ ol Y “\
o o s’ o o N o o q °
.o . o Lo
9 ° ° o . T2 2e 2,40 \T26e ° o |\ .
o o o o o o o o o o
€T \ \
. . 1,00 Z1,2e L1,4e ¢ . )
C:EO,OO o
0 . Z0,0e V220,00
—8 —6 —4 -2 0 2 4 6 8 10

FIGURE 2. The spectral sequence H*(Gz; (E2)1Z) = T sLi2)Z

multiples of ¢, and all others by e.
It is clear that the spectral sequence (G collapses at the E4-page. The only

possibilities are two sets of vo-linear ds-differentials

e d3(z0,0) = vy Cra6, and,

o d3(x1,4) = v2lx30.
The vp-linearity of differentials follows from the fact that Z admits a vi-self-map
IBE|]. However, the generator zg, cannot support a differential for the following
reason:
The inclusion of the bottom ¢y : S° < Z induces a nontrivial map K (2)-homology.
Therefore, to induces a nontrivial element in 7 € mo(L g (2)Z) which is represented
by zo,0 € in the Es-page of the descent spectral sequence Therefore, x is a
permanent cycle.

From the calculation of the classical Adams spectral sequence in [BE]
Ext5 (H*(Z),F2) = 7.(2)

we see that mo(Z) = Z/2. In particular, this means [.o] is the generator of m(Z)
and 2[t9] = 0. Since the map 7 : Z — Lk (2)Z sends [1] — 7, it must be the case
that 27 = 0. Therefore there is no hidden extension supported by .

Moreover it is well known that Q: is a class in w,lLK(g)SO. Let é denote the
representative of f in the Fs-page of the descent spectral sequence

By" = H*(G2; (B2).8°) = muos(Li(2)8°).

A straightforward analysis of the map of descent spectral sequences induced by
to shows that ¢ - g0 = (20,0, which is a nonzero permanent cycle representing
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¢-T€m 1(Lg)Z). Since 2t = 0, it follows that

2(C-7) = 21 =0,
ruling out another possible vo-periodic family of hidden extensions. There are other
possibilities of hidden extensions depicted in Figure [IL which we currently cannot
rule out, though low dimensional computations lead us to believe that there exists
a particular spectrum Z for which all differentials and possible hidden extensions
are zero. Furthermore, as stated in Conjecture [I we expect that this will be the
case for every spectrum Z € Z.
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APPENDIX A. A REGULARITY CRITERION FOR A REPRESENTATION OF (Qg

The quarternionic group Qs is an order 8 group which can be presented as
(A1) Qs = (i,j:i" =1, = j,i% = i)
We will denote the neutral element of Qg by 1. Often in the literature, ij is denoted
by k and i? by —1. This is justified as —1 € Qg is central and its square is 1.
However, —1 also denotes the additive inverse of 1 in a ring, and potentially can
cause confusion while working with group rings. Therefore we will instead denote
—1by 1€ Qg andi=1i,j = 1j, k = 1k. With this notation, the relations in Qg can
be rewritten as
ij=k,jk=1i,ki=]j
i2 = j2 = k2 = 1,
(1)? =1, and
ji=k, kj=i, ik =].
The quotient of the central subgroup of order 2 generated by 1, is the Klein four
group Cy X Cs. In other words we have an exact sequence of groups

]].—>CQ—L>QSL>CQXCQ—>:H..

We will denote the images of i,j € Qg by i,j € Cy x Cs.

Let F be an arbitrary field and let V,(F) denote the 4-dimensional representation
of Qg induced by the regular representation of Cy x C5 via the quotient map ¢q. Let
V5(F) denote the regular representation of QQg. When charF = 2, it is easy to see
that there is an exact sequence of F[Qg]-modules

0 — Vi(F) -5 Vi(F) -2 V4(F) — 0.

More explicitly, let ¢4 and tg be the generators of Vy(F) and V3(F) as F[Qs]-modules
and define

r(g-w) = q(g)
t(h-w) = h-g+1h-1s,
for h,g € Qs.
The purpose of this appendix is to give a necessary and sufficient condition on

an 8-dimensional representation V over a field F with char F = 2, which fits in the
exact sequence

(A.2) 0 — Va(F) -5 V -5 Vi(F) — 0,

under which it is isomorphic to V3(F). When char F # 2, the problem is straightfor-
ward. Any V which satisfies (A.2)) is isomorphic to V,(F) & V,(F), including Vg (F),
the regular representation of Qg. This is because, when charF 1 |Qg|, and W is a
subrepresentation of V, then one can define a complement subrepresentation W'
such that V = W @ W' (Maschke’s theorem). In our case, let W = img ¢ and W’
be its complement. Since ([(A.2]) is an exact sequence, it follows that

W W ~V,(F).

We will soon see that Vg(F) 2 V4(F) @ V4(F) when charF = 2.
For any g € G, let e, € F[G] denote the element such that

1o
g €g = €g'yg
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for every g’ € G. The collection {e, : g € G} forms a basis for F[G]. For our
convenience, we consider the ordered basis

(A.3) Bi={vi=ei+e+e+eva=es+e,vs=er+e,v1=eq}
of V4(F). Note that

(11 0 0]
. 0100
Ws=10 0 1 1
00 0 1|
(1.0 1 0]
o= |0 101
J)Ba 0010
000 1|
111 1
01 0 1
Ke=10o 0 1 1
000 1

Thus any vector space isomorphic to the regular representation of Cs x Co, admits
a basis B such that

()5 = ()8, ()8 = ()B4: (k)8 = (K)B,-
The main result in this appendix is the following.

Lemma A.4. Let F be a field with charF = 2. Suppose we have an exact sequence
of F[Qs]-modules
(A.5) 0 ViV 513 —0

where Vy is a representation of Qg induced from the reqular representation of Cy X
Cy. Let B = {v1,v2,v3,v4} be a basis of Vi such that

1 100 1 010

. 010 0] , 01 0 1

000 1 000 1
11 11
01 0 1
Me=17 0 1 1
00 0 1

Then for any basis C = {c1,¢2,¢3,c4,¢), ¢4, 5, ¢4} of Vs with the property that
t(vi) = ¢; and 7(c;) = v;, we have

6) Gle=| ¢ | uhere

M =

S OO0
S O 0
o0 OR
o e o

fora,b,c,d € F, and,
(i) if ¢ # 0 then Vg is isomorphic to the regular representation of Qs.
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Proof. Tt follows from (A5)) that
: (s X } - { (s Y }
= . d = .
(')C [ 0 (')B an (J)C 0 (J)B

for some (4 x 4) matrices X,Y. Let x;; and y;; denote the (4, j)-th entry of X and
Y respectively. Since the choice of ¢} is only unique modulo img #, we may apply a
change of basis matrix of the form

L P
o[ 7].
In particular, if we choose
Y13 0 14 0
B | T T2 +y13 w13 O
Y11 Y12 0  wyua
T31 T32+Y11 T3z T34
we see that
- i X N pe s Y
Plcplz[(')B : },P cplz[ )
g 0 (s 7Y 0 G
where
0 0 0 0
T— | T2 Tu + 12 T2z X13 + To4
0 0 0 0
Tq41 X31 +T42 T43 T33 + T34
and
0 0 0 0
v | ¥ + Y21 X32 + Y11+ Y22 T11+ X33+ Y23 Ti2 + T3g + Y13+ Y2u
Y31 Y32 Y11 + Y33 Y12 + Y34
Ya1 Y42 31 + Y43 T32 + Y11 + Yaa

Thus without loss of generality we may assume that

0 0 0 0 0 0 0 0

X — T21 X22 X23  X42 and Y = Y21 Y22 Y23 Y24
0 0 0 0 Y31 Y32 Y33 Y43

T41 T42 T43 T44 Ya1 Y42 Y43 Y44

Now we use the relations (A to get further restrictions on X and Y. While
(V¢ = ()¢ = Is is trivially satisfied, (i)2 = (j) is true if and only if

(eX + X(i)e = ()eY +Y(j)e-

Thus we get a linear system, which upon solving yields only yas, Y24, Y32, Y33, Y34, Y42, Y43, Y44

as free variables and we get

0 0 0 0 0 0 0 0
o= | Ya2 Ys2 Y3z Ysa | gy | Y43 Va3t Yaa Y23 Y4
0 0 0 0 Ya2 Y32 Y33z Y34
0 0 a2 ys2 0 Ya2 Y43 Yaa



TOWARDS 7, L (2)Z

Consequently, (1)¢ = [ Ié‘ ]IV[ ], where
4
Ya2 Y32 Y33 Y34
0 w2 0 w33
M =
0 0 wya2 ¥ys2
0 0 0 Ya2

Now, the linear system generated by the relation

(Del)e = @)ele(i)e

has free variables ys3, Y34, Y43, Y124 and basic variables

Y23 = Y33 + Y43

Yoa = Y34+ Yaa

Y2 = Y33+ Ya3 + Yaa
Y42 =  Y43.

31

Let a = y33,b = Y34, ¢ = ya3 and d = yz3 + Ya3 + Ya4. In terms of a, b, ¢, d, we have

0 0 0 O 0 0 0 0
| c d a b | ¢ c+d a+c a+b+c+d
(A.6) X = 0 0 0 O Y = c d a b ’
0 0 ¢ d 0 c c a+c+d
c d a b
0 ¢ 0 a
(A7) M= 00 ¢ d
0 0 0 ¢

Recall that our change of basis matrix was of the form

[ P
r=[§ 0]
and thus P~! = P and we have
1,5 s M
P (1)CP_{ .

as charF = 2. This proves ().
For (i), we need to find a vector ¥ such that

{97 : 9 € Qs}

spans V. We choosev=c,=[0 0 0 0 0 0 0

A=[7 D)ev () ()ev () ()

1]"

in the basis C. Let

(k)cU (lA()cﬁ } .
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Using (AX6) and (A7) we see that

0 b 0 a+bd 0 b+d a+b+c+d 0
0 a b a+b a+b+c+d b+d a+c 0
0 d 0 c+d b b+d a+b+c+d a+b
A 0 c d c+d a+c+d a+d a+c a
10 00 0 0 0 1 1
0 00 0 1 1 1 1
0 0 1 1 0 0 1 1
|1 11 1 1 1 1 I
By a tedious but straightforward calculation, we find
det A = c*,
completing the proof of (). O

Remark A.8. When char F = 2, the representations V4 (F)® V4(FF) and V3 (F) are not
isomorphic. Without loss of generality we may assume ¢ =1 and a =b=d = 0.
Suppose there were an isomorphism between V4 (F) @ V4(F) and Vz(F). Then there
exists a invertible matrix P such that
(1)s 0 } -
P RN = (1)cP
|: 0 (1)34 ( )C

Note that (1), is simply the identity matrix, while (1)¢ is not. It follows eas-
ily that any matrix which satisfies the above condition is not invertible, hence a
contradiction.

Remark A.9. We are unaware of any classification theorem for 8 dimensional rep-
resentations of Qg over fields of characteristic 2. We suspect that the question of
how many isomorphism classes of V satisfy (A:2)) can be resolved. A possible guess
might be that there are overall 4 isomorphism classes

¢ # 0 (when V = Vg(IF)),

c=0,d#0,

c=0,d=0,a#0,

c=0,a=0,d=0,b+#0, and

a=b=c=d=0 (when V 2 V,(F) @ V4(F)).

Since this is irrelevant to the purpose of the paper, we leave this question to the
interested reader to verify.
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