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Abstract. In [BE], we introduced a class Z̃ of 2-local finite spectra and

showed that all spectra Z ∈ Z̃ admit a v2-self-map of periodicity 1. The
aim of this article is to compute the K(2)-local homotopy groups π∗LK(2)Z

of all spectra Z ∈ Z̃ using a homotopy fixed point spectral sequence, and we
give an almost complete answer. The incompleteness lies in the fact that we
are unable to eliminate one family of d3-differentials and a few potential hid-
den 2-extensions, though we conjecture that all these differentials and hidden
extensions are trivial.

Keywords: K(2)-local, stable homotopy groups, Morava stabilizer group

1. Introduction

We recently introduced (see [BE]) the class of all finite 2-local type 2 spectra Z
such that there is an isomorphism

H∗Z ∼= A(2)//E(Q2)

of A(2)-modules, where A(2) is the subalgebra of the Steenrod algebra generated

by Sq1, Sq2 and Sq4. We denote this class by Z̃. Let K(n) denote the height n
Morava K-theory and k(n) its connective cover. Let tmf denote the connective
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spectrum of topological modular forms. The two key features of Z̃ (see [BE] for
details) are as follows:

• Every Z ∈ Z̃ admits a self-map v : Σ6Z → Z which induces multiplication
by v12 on K(2)∗-homology of Z, i.e. Z admits a v12-self-map.

• Every Z ∈ Z̃ satisfies tmf ∧ Z ≃ k(2).

The purpose of this paper is to compute the K(2)-local homotopy groups of any

Z ∈ Z̃.
It is difficult to overestimate the importance ofK(n)-local computations in stable

homotopy theory. At every prime p, the homotopy groups of LK(1)S
0 have been

known to capture the patterns in chromatic layer 1 of the stable homotopy groups
of spheres (also known as the image of J) since work of Adams [A66]. Likewise,
the chromatic fracture square, the chromatic convergence theorem [R92], as well
as the nilpotence and periodicity theorems in [NilpII], suggest that the K(n)-local
homotopy groups of S0 or other finite spectra encapsulate information about the
patterns in the n-th chromatic layer of the stable homotopy groups of spheres.

However, our motivation to compute theK(2)-local homotopy groups of Z comes
from its relevance to the telescope conjecture due to Ravenel [R84]. One of the
various formulations of the telescope conjecture is as follows. Let X be a p-local
type n spectrum. By [NilpII], X admits a vn-self-map v : ΣtX → X , i.e. a self-map
such that K(n)∗v is an isomorphism. Then the homotopy groups of the telescope
of X

T (X) := hocolim
−→

(X
v

−→ Σ−tX
v

−→ Σ−2tX
v

−→ . . . )

are the vn-inverted homotopy groups of X , i.e. π∗(T (X)) = v−1
n π∗(X). Since

K(n)∗ = Fp[v
±1
n ], the localization of a spectrum with respect to K(n) can be

thought of as, roughly speaking, another way of ‘inverting vn’ in the homotopy
groups of X . Moreover, there is always a natural map

ι : T (X) −→ LK(n)X.

Telescope Conjecture (Ravenel). For every type n spectrum X, the map ι is a
weak equivalence.

It follows from the thick subcategory theorem [NilpII, Theorem 7], that if the
telescope conjecture is true for one p-local type n finite spectrum then it is true
for all p-local type n finite spectra (see [R92]). For chromatic height n = 1, the
telescope conjecture was proved by Haynes Miller [Mil81] using the mod p Moore
spectrum Mp(1) when p > 2, and by Mark Mahowald using the bo-resolution of
the finite spectrum Y :=M2(1) ∧Cη [M81, M82] when p = 2. While the telescope
conjecture is true for n ≤ 1 at every prime, it remains an open question for all other
pairs (n, p).

We claim that in the case n = 2, p = 2, the 2-local type 2 spectra Z ∈ Z̃ are
the most appropriate ones to consider in our study of the telescope conjecture.
Firstly, they all admit a v12-self-map, whereas other type 2 spectra with known v2-
periodicity, such asM(1, 4) and the A1 spectra, only admit v322 -self-maps [BHHM08,
BEM17]. Lower periodicity is desirable for computational reasons. Moreover, the
fact that tmf ∧ Z ≃ k(2) makes the E1-page of the tmf -based Adams spectral

sequence readily computable. Also, the Z ∈ Z̃ are in many ways the ‘correct’
height 2 analogue of Y (the spectrum used in the proof of the telescope conjecture
at chromatic height 1 at the prime 2). This is because Y is a type 1 spectrum which
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satisfies properties analogous to Z, i.e. it admits a v11-self-map [DM81] and satisfies
bo ∧ Y ≃ k(1). We will further strengthen our claim by giving an almost complete

computation of the K(2)-local homotopy groups of any Z ∈ Z̃, which is the ‘easier
side of the telescope conjecture’ because of its computational accessibility.

In this paper we will use a homotopy fixed point spectral sequence (2.19), which
is essentially a consequence of the work of Jack Morava in [Mor85] followed by
[MRW] and [DH04]. We will give further details in Section 2.

To compute the homotopy fixed point spectral sequence, we need to understand
the action of the big Morava stabilizer group G2 = S2 ⋊ Gal(F4/F2) on (E2)∗Z,
where S2 is the small Morava stabilizer group (see Section 2 for details). This
action can be understood by explicitly analysing the BP∗BP -comodule structure
on BP∗Z via the map

φ : BP∗BP −→ Homc(S2, (E2)∗Z)

due to [DH95]. The real hard work in this paper is to compute the BP∗BP -
comodule structure on BP∗Z and obtain the action of S2 on (E2)∗Z via the map
φ. The group S2 has a finite quaternion subgroup Q8 (to be described in Section 4)
and the pivotal result of this paper is Theorem 4.12, where we prove that there is
an isomorphism

(E2)0Z ∼= F4[Q8]

of modules over the group ring F4[Q8]. Part of the proof of Theorem 4.12 is a
nontrivial exercise in representation theory, which we have banished to Lemma A.4
in the appendix in order to avoid distracting from the main mathematical issues at
hand. Theorem 4.12 provides another point of comparison between Y and Z; note
that G1 = Z×

2
∼= Z/2× Z2, and it can easily be seen that

(E1)0Y ∼= F2[Z/2].

In Section 5, we run the algebraic duality resolution spectral sequence, a convenient
tool to compute the group cohomology with coefficients in (E2)∗Z. Finally in
Section 6 we compute the the E2-page of (2.19). We locate two possible families of
v2-linear d3-differentials and several possible hidden extensions. Using the inclusion
S0 →֒ Z of the bottom cell, we are able to eliminate one of the two v2-linear d3-
differentials and some of the possible hidden extensions.

Summary of results. In Figure 1, we summarize all possibilities for π∗LK(2)Z
from the work in this paper. Figure 1 is a part of the homotopy fixed point spec-
tral sequence, where we represent possible d3-differentials using dashed arrows and
hidden extensions by dotted lines. Any generator which is a multiple of a specific
element ζ in the E2-page (to be discussed in Section 6) is displayed using a ‘◦’, oth-
erwise using a ‘•’. Since the homotopy groups of LK(2)Z are periodic with respect

to multiplication by v12 , which has bidegree (s, t− s) = (0, 6), the different possible
answers can be read off from the portion 0 ≤ t− s ≤ 5.

In work to appear, the tmf -resolution for one particular model of Z ∈ Z̃ is
studied to compute its unlocalized homotopy groups. This computation shows
that the potential d3-differentials and hidden extensions as indicated in Figure 1
are trivial, giving us a complete computation of the K(2)-local homotopy groups
of that particular spectrum Z. We expect the same thing to happen for every

spectrum Z ∈ Z̃.
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◦ ◦ ◦◦ ◦ ◦◦ ◦ ◦

◦ ◦ ◦

Figure 1. Possible differentials and hidden extensions in the spec-
tral sequence Hs(G2; (E2)tZ) ⇒ πt−sLK(2)Z.

Conjecture 1. For every Z ∈ Z̃, the K(2)-local homotopy groups of Z are given
by

π∗LK(2)Z ∼= F2[v
±1
2 ]⊗ E(a1, a3, a5, ζ)

where |ai| = i, |ζ| = −1 and |v2| = 6.

The spectrum Z in the unpublished work mentioned above would be the first
finite 2-local spectrum for which we have complete knowledge of its K(2)-local
homotopy groups. It can be built using iterated cofiber sequences of five differ-
ent self-maps (see [BE]) starting from S0. Thus, one could work backwards from
π∗LK(2)Z, using Bockstein spectral sequences iteratively to get information about

π∗LK(2)S
0.

Organization of the paper

The results in this paper are independent of the choice of Z ∈ Z̃, and hence Z

will refer to an arbitrary spectrum Z ∈ Z̃ for the rest of the paper.
We devote Section 2 to recalling some fundamental results which connect the

theory of formal group laws to homotopy theory.
In Section 3 we compute the BP∗BP -comodule structure of BP∗Z.
In Section 4, we briefly recall some of the details of the height 2 Morava stabilizer

group S2 and compute the action of S2 on the generators of (E2)∗Z.
In Section 5, we compute the group cohomology with coefficients in (E2)∗Z using

the duality spectral sequence as well as a result of Henn, reported by Beaudry [B17].
In Section 6, we analyse the homotopy fixed point spectral sequence for Z and

eliminate one of the two possible F2[v
±1
2 ]-linear families of d3-differentials and some

of the possible hidden extensions.
In Appendix A, we include the representation theory exercise omitted from the

proof of Theorem 4.12.
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2. Formal group laws and homotopy theory

The theory of formal group laws was developed by number theorists and eventu-
ally found by Lazard and Quillen to have deep relations with homotopy theory. We
will review these relations, primarily following [LT] and [R88]. We will conclude
with a formula relating action of the Morava stabilizer group on a Morava module
to the structure of a corresponding BP∗BP -comodule.

Definition 2.1. Let R be a Z(p)-algebra. A formal group law over R is a power
series F (x, y) ∈ R[[x, y]] satisfying

• F (x, y) = F (y, x)
• x = F (x, 0)
• F (F (x, y), z) = F (x, F (y, z))

When R is a graded Z(p)-algebra we set |x| = |y| = −2 and we require that F (x, y)
be a homogeneous expression in degree −2.

Definition 2.2. Given formal group laws F,G over R, a homomorphism from F
to G is a power series f ∈ R[[x]] such that f(0) = 0 and

f(F (x, y)) = G(f(x), f(y)).

A homomorphism f is an isomorphism if f ′(0) is a unit in R, and an isomorphism
f is said to be strict if f ′(0) = 1. A strict isomorphism from F to the additive
formal group law is called a logarithm of F .

Notation 2.3. We will often use the notation x+F y to denote F (x, y) and [n]F (x)
to denote x+F · · ·+F x︸ ︷︷ ︸

n

. We will denote the set of formal group laws over R by

FGL(R), and the groupoid of formal group laws over R with strict isomorphisms
by (FGL(R), SI(R)). When R is torsion-free, then the image of F in (R⊗Q)[[x, y]]
has a logarithm, which we will denote by logF ∈ (R⊗Q)[[x]]

Definition 2.4. Let R be a torsion-free Z(p)-algebra and let F be a formal group
law over R. Then F is called p-typical if its logarithm is

logF (x) =
∑

i≥0

lix
pi

with l0 = 1.

Now we recall the p-local analogue of the famous theorem of Lazard and Quillen.
All formal groups discussed will be assumed to be p-typical unless otherwise stated.

The assignment of a Z(p)-algebra R to the set FGL(R) is functorial, and we
denote this functor by

FGL(−) : Z(p)-algebra −→ Sets.

Similarly, the functor which assigns a graded Z(p)-algebra R∗ to the set of formal
group laws over R∗ is denoted by

FGL(−) : Graded Z(p)-algebra −→ Sets.
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Theorem 2.5 (Cartier-Lazard-Quillen). The covariant functor FGL(−) defined
on the category of Z(p)-algebras is represented by the Z(p)-algebra

Ṽ = Z(p)[ṽ1, ṽ2, . . .],

i.e. FGL(R) ∼= HomZ(p)
(Ṽ , R). The covariant functor FGL(−) defined on the

category of graded Z(p)-algebras is represented by the graded Z(p)-algebra

BP∗ = Z(p)[v1, v2, . . .]

with |vi| = 2(pi − 1), i.e. FGL(R∗) ∼= HomZ(p)
(BP∗, R∗).

Example 2.6 (Honda formal group law). Defining the ring homomorphism

φn : Ṽ → Fpn

ṽi 7→

{
1 i = n
0 i 6= n

for i 6= n gives the Honda formal group law Γn over Fpn . This formal group law
satisfies

[p]Γn
(x) = xp

n

.

A theorem of Lazard says that Γn is unique in that every formal group law of height
n over a separably closed field of characteristic p is isomorphic to Γn, though this
isomorphism might not be strict.

Remark 2.7. The generators ṽi ∈ Ṽ are defined by the property that

[p]F
Ṽ
(x) = px+F

Ṽ

∑

i>1

F
Ṽ

ṽix
pi

where FṼ is the universal p-typical formal group law over Ṽ . Similarly, the vi ∈ BP∗

are defined by the property that

[p]FBP∗
(x) = px+FBP∗

∑

i>0

FBP∗

vix
pi

where FBP∗
is the universal p-typical formal group law over BP∗ and |x| = −2.

The generators {ṽi : i > 0} and {vi : i > 0} are often called the Araki generators
in the literature.

Consider the functor

ρ : Z(p)-algebra −→ Graded Z(p)-algebra

which sends R 7→ R[u±1], where u is a formal variable in degree −2. If F is a formal
group law over R, then

F (x, y) := uF (u−1x, u−1y)

where |x| = |y| = −2, is a formal group law over R[u±1]. Mapping F 7→ F defines a
natural transformation between the functors FGL(−) and FGL(−) ◦ ρ. Since F Ṽ

is a formal group law over the graded ring Ṽ [u±1], we obtain a map

(2.8) θ : BP∗ −→ Ṽ [u±1]

and it follows from comparing the p-series (see Remark 2.7) that θ(vi) = u1−p
i

ṽi.
We can also ask about how to represent groupoids of formal group laws. We

can do this in two ways, either by considering the groupoid of formal group laws
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with isomorphisms, or the smaller groupoid of formal group laws with strict iso-
morphisms.

Lemma 2.9. Let F be a p-typical formal group law and let G be an arbitrary formal
group law over a Z(p)-algebra R, and let f be an isomorphism from F to G. Then
G is p-typical if and only if

f−1(x) =
∑F

i≥0
tix

pi ,

where ti ∈ R for every i and t0 ∈ R×.

If we want f to be a strict isomorphism, then we must have t0 = 1. In the
context of graded Z(p)-algebras, ti is forced to be in degree 2(pi − 1). Thus we can
define a Hopf algebroid (BP∗,BP∗BP) with

BP∗BP = BP∗[t1, t2, . . . : |ti| = 2(pi − 1)]

which represents the functor

(FGL(−), SI(−)) : Graded Z(p)-algebras −→ Groupoids

which assigns a graded Z(p)-algebra R∗ to the groupoid of p-typical formal group
laws over R∗ with strict isomorphisms. Let ηL, ηR : BP∗ → BP∗BP denote the
left and the right units of the Hopf algebroid BP∗BP . Note that the universal
isomorphism f : η∗LFBP∗

= FBP∗
→ η∗RFBP∗

satisfies the formula

f−1(x) = x+FBP∗

∑

i≥1

FBP∗

tix
pi ,

where |x| = −2.
Similarly, one can consider the case where R is ungraded and f is an isomorphism

that need not be strict. Thus we define

Ṽ T = Ṽ [t̃0
±1
, t̃1, t̃2, . . . : |t̃i| = 0],

getting a Hopf algebroid (Ṽ , Ṽ T ) which represents the functor

(FGL(−), I(−)) : Z(p)-algebras −→ Groupoids

which assigns a Z(p)-algebra R to the groupoid of p-typical formal group laws over

R with isomorphisms. In this case the universal isomorphism f̃ : η∗LFṼ = FṼ →
η∗RFṼ satisfies the formula

f̃−1(x) =
∑

i≥0

F
Ṽ

t̃ix
pi .

Let us define

F Ṽ (x, y) = uFṼ (u
−1x, u−1y)

Ĝ(x, y) = t̃0u η
∗
RFṼ (t̃0

−1
u−1x, t̃0

−1
u−1y)

f̂(x) = t̃0uf̃(u
−1x)

where |x| = |y| = −2. It is easy to see that the triple (F Ṽ , f̂ , Ĝ) is an element

of the groupoid (FGL(Ṽ T [u±1]), SI(Ṽ T [u±1])). Hence the map θ of (2.8) can be
extended to a left BP∗-linear map

(2.10) θ : BP∗BP −→ Ṽ T [u±1].



8 PRASIT B. AND P. EGGER

Since

f̂−1(x) = uf̃−1(t̃0
−1
u−1x)

= u(
∑

i≥0

F
Ṽ

t̃i t̃0
−pi

u−p
i

xp
i

)

=
∑

i≥0

F
Ṽ

t̃it̃0
−pi

u1−p
i

xp
i

,

and

f̂−1(x) = θ(f̃−1(x)),

we get the formula

(2.11) θ(ti) = t̃it̃0
−pi

u1−p
i

Now we briefly recall the notion of deformation, which arose in number theory,
and has important implications for homotopy theory.

Definition 2.12. Let k be a field of characteristic p > 0 and Γ a formal group law
over k. A deformation of (k,Γ) to a complete local ring B with projection

π : B −→ B/m

is a pair (G, i) where G is a formal group law over B and

i : k −→ B/m

is a homomorphism satisfying iΓ = πG.

A morphism from (G1, i1) → (G2, i2) is defined only when i1 = i2, in which case
it consists of an isomorphism

f : G1 −→ G2

of formal group laws over B such that

f(x) ≡ x mod m.

Such morphisms are also called ⋆-isomorphisms. Note that the set DefΓ(B) of
deformations of (k,Γ) to B with ⋆-isomorphisms forms a groupoid. The work of
Lubin and Tate [LT] guarantees the existence of a universal deformation. More
precisely:

Theorem 2.13 (Lubin-Tate). Let Γ be a formal group law of finite height over
a field k of characteristic p > 0. Then there exists a complete local ring E(k,Γ)
with residue field k and a deformation (FΓ, id) ∈ DefΓ(E(k,Γ)) such that for every
(G, i) ∈ DefΓ(B), there is a unique continuous 1 ring homomorphism θ : E(k,Γ) →
B and a unique ⋆-isomorphism from (G, i) to (θFΓ, i).

Remark 2.14. It is well-known (see [LT]) that if k is a perfect field and Γ has height
n, then a choice of FΓ determines an isomorphism

E(k,Γ) ∼=W (k)[[u1, . . . , un−1]]

of complete local rings, where W (k) is the ring of Witt vectors on k.

1A ring homomorphism of local ring is continuous if the image of the maximal ideal of the
domain is contained in the maximal ideal of the codomain.
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The automorphism group Aut(Γ/k) of Γ acts on E(k,Γ) as follows (also see
[DH95, §1]). Let γ ∈ k[[x]] be an invertible power series. Choose an invertible

power series γ̃ ∈ E(k,Γ)[[x]] as a lift of γ and define F̃γ over E(k,Γ) by

F̃γ(x, y) := γ̃−1(FΓ(γ̃(x), γ̃(y))).

Note that the lift F̃γ depends on the choice of lift γ̃. Since (F̃γ , id) ∈ DefΓ(E(k,Γ)),
the Lubin-Tate theorem gives us a unique homomorphism

φ̃γ : E(k,Γ) −→ E(k,Γ)

and a unique ⋆-isomorphism

γ̂ : F̃γ −→ φ̃γFΓ.

The composite

fγ : FΓ
γ̃−1

−→ F̃γ
γ̂

−→ φ̃γFΓ

does not depend on the choice of γ̃ and is an element of the groupoid

(FGL(E(k,Γ)), I(E(k,Γ))).

Therefore the classifying map for FΓ

θ̃Γ : Ṽ −→ E(k,Γ),

can be extended to a left Ṽ -linear map

θ̃Γ : Ṽ T −→Mapc(Aut(Γ/k), E(k,Γ)).

Let us simply denote θΓ(t̃i)(γ) by t̃i(γ) for γ ∈ Aut(Γ/k). The elements t̃i(γ) satisfy
the equation

f−1
γ (x) =

∑

i≥0

FΓ

t̃i(γ)x
pi .

One can also consider the graded formal group law Γ over k[u±1]. Note that
Aut(Γ/k) ∼= Aut(Γ/k[u±1]) via the invertible map γ(−) 7→ uγ(u−1−). One can
similarly define the graded universal deformation formal group law FΓ over the
graded ring E(k,Γ)[u±1]. Let γ ∈ Aut(Γ/k) act on E(k,Γ)[u±1] via the ring ho-
momorphism φγ : E(k,Γ)[u±1] → E(k,Γ)[u±1] such that

φγ(x) =

{
φ̃γ(x) if x ∈ E(k,Γ)

t̃0(γ)x if x = u.

Notice that

φγFΓ(x, y) = t̃0(γ)uφ̃γFΓ(t̃0(γ)
−1u−1x, t̃0(γ)

−1u−1y)

and
f̂γ = t̃0(γ)

−1ufγ(u
−1x)

is a strict isomorphism between FΓ and φγFΓ. Thus we have a left BP∗-linear map

(2.15) θΓ : BP∗BP −→Mapc(Aut(Γ/k), E(k,Γ)[u±1]).

It can be easily checked that θΓ is identical to the composite map

BP∗BP
θ

−→ Ṽ T [u±1]
θ̃Γ[u

±1]
−→ Mapc(Aut(Γ/k), E(k,Γ)[u±1]).

Let us denote the map θΓ(ti)(−) simply by ti(−). It follows from (2.11) that

(2.16) ti(γ) = t̃i(γ)t̃0(γ)
−piu1−p

i
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for γ ∈ Aut(Γ/k). Also keep in mind that fγ fits into the commutative diagram

FΓ

��

�O
�O
�O

fγ
// φ̃γFΓ

��
�O
�O
�O

Γ γ
// Γ

where the vertical squiggly arrows are reduction modulo m = (p, u1, . . . , un−1).

Thus for γ−1 = a0x+Γ a1x
p +Γ +a2x

p2 +Γ · · · ∈ k[[x]], we have

(2.17) t̃i(γ) ≡ aimod m and ti(γ) ≡ aia
−pi

0 u1−p
i

mod m.

It follows from [R88][Corollary 4.3.15] that when Γ has height n and k ≤ n,

(2.18) t̃k(γ1γ2) ≡

k∑

i=0

t̃i(γ1)t̃k−i(γ2)
pi mod m.

Now let’s focus on the Honda formal group law Γn over Fpn and let Fn denote
its universal deformation. By Remark 2.14, we have

E(Fpn ,Γn) =W (Fpn)[[u1, . . . , un−1]],

whereW (Fpn) are the Witt vectors of Fpn , which has an action of the small Morava
stabilizer group

Sn := Aut(Γn/Fpn).

Note that the map φn of Example 2.6 which defines the Honda formal group law
factors through Fp. Therefore Γn has coefficients in Fp. Consequently, the big
Morava stabilizer group

Gn := Aut(Γn/Fp) = Sn ⋊Gal(Fpn/Fp)

acts on E(Fpn ,Γn). The Lubin-Tate universal formal group law Fn over E(Fpn ,Γn)
is given by the ring homomorphism

θ : Ṽ → E(Fpn ,Γn)

ṽi 7→





ui i < n
1 i = n
0 i > n

which means that

[p]Γn
(x) = px+Γn

u1x
p +Γn

· · ·+Γn
un−1x

pn−1

+Γn
xp

n

.

We also have a graded formal group law Fn over the graded ring (En)∗ := E(Fpn ,Γn)[u
±1]

which is given by the ring homomorphism

θ : BP∗ → (En)∗

vi 7→





uiu
−pi i < n

u−p
n

i = n
0 i > n

By the Landweber exact functor theorem,

(En)∗(−) := (En)∗ ⊗BP∗
BP∗(−)
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is a homology theory, thus it is represented by a spectrum En, known as Morava
E-theory. By a theorem of Devinatz and Hopkins (see [DH04]), the action of Gn
on (En)∗ lifts to one on En itself whose homotopy fixed point spectrum is

(En)
hGn ≃ LK(n)S

0.

This gives us a homotopy fixed point spectral sequence

(2.19) Es,t2 := Hs(Gn; (En)t) =⇒ πt−sLK(n)S
0

whose E2 page can be found using a Lyndon-Hochschild-Serre spectral sequence

Hs1(Gal(Fpn/Fp);H
s2(Sn; (En)∗)) =⇒ Hs1+s2(Gn; (En)∗),

which as a consequence of Hilbert’s Theorem 90 reduces to

(2.20) Hs(Gn; (En)∗) = Hs(Sn; (En)∗)
Gal(Fpn/Fp).

3. The BP∗BP-comodule BP∗Z

For every Z ∈ Z̃, there is, by definition, an isomorphism

H∗Z ∼= (A(2)//E(Q2))∗ = F2[ξ1, ξ2]/(ξ
8
1 , ξ

4
2)

of A(2)∗-comodules [BE]. We will use this fact to determine the BP∗BP -comodule
structure of BP∗Z. One can use the Adams spectral sequence

Es,t2 = Exts,tA (H∗BP ⊗H∗Z,F2) ⇒ BPt−sZ

to compute BP∗Z as a BP∗-module. Note that

H∗BP = A//E(Q0, Q1, Q2, . . . )

where Qi are the Milnor primitives. By a change of rings, the E2-page of the above
Adams spectral sequence is isomorphic to

(3.1) Es,t2 = Exts,tA (H∗BP ⊗H∗Z,F2) ∼= Exts,tE(Q0,Q1,... )
(H∗Z,F2).

Let g denote the generator of H∗Z in degree 0. As an E(Q0, Q1, Q2)-module,
A(2)//E(Q2) is a direct sum of 8 copies of E(Q0, Q1) generated by the elements in
the set

G = {g∗, (ξ21g)
∗, (ξ41g)

∗, (ξ61g)
∗, (ξ22g)

∗, (ξ21ξ
2
2g)

∗, (ξ41ξ
2
2g)

∗, (ξ61ξ
2
2g)

∗}.

Since H∗Z ∼=A(2) A(2)⊗E(Q2)F2 and Q2 is in the center of A(2), Q2 acts trivially
on H∗Z. Using the iterative formula

Qi = Sq2
i

Qi−1 +Qi−1Sq
2i

one can inductively argue that Qi for i ≥ 2 acts trivially on H∗Z. Thus, we have
completely determined H∗Z as a module over E(Q0, Q1, . . . ) from its A(2)-module
structure. Thus as an E(Q0, Q1, . . . )-module

H∗Z ∼= E(Q0, Q1, . . . )⊗E(Q2,Q3,... ) G

and therefore the E2-page of (3.1) is isomorphic to

Es,t2
∼= F2[v2, v3, . . . ]⊗ G∗

where vi has bidegree (s, t) = (1, |Qi|) = (1, 2i+1 − 1). Due to sparseness, the
Adams spectral sequence (3.1) collapses at the E2 page. Hence, as a BP∗-module

(3.2) BP∗Z ∼= BP∗/(2, v1)〈x0, x2, x4, x6, y6, y8, y10, y12〉,
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where xi and yi are generators in degree i chosen in such a way that the map
BP∗Z → H∗Z sends:

x0 7→ g y6 7→ ξ22g
x2 7→ ξ21g y8 7→ ξ21ξ

2
2g

x4 7→ ξ41g y10 7→ ξ41ξ
2
2g

x6 7→ ξ61g y12 7→ ξ61ξ
2
2g.

This identification allows us to infer the BP∗BP -comodule structure of BP∗Z from
the A(2)∗-comodule structure of H∗Z via the diagram

BP∗Z
ψ

//

��

BP∗BP ⊗BP∗
BP∗Z

��

H∗Z
ψ2

// A(2)∗ ⊗H∗Z

First notice that the co-action map

ψ2 : H∗Z −→ A(2)∗ ⊗H∗Z

sends

(3.3)

g 7→ 1|g
ξ21g 7→ ξ21 |g + 1|ξ21g
ξ41g 7→ ξ41 |g + 1|ξ41g
ξ61g 7→ ξ61 |g + ξ41 |ξ

2
1g + ξ21 |ξ

4
1g + 1|ξ61g

ξ22g 7→ ξ22 |g + ξ41 |ξ
2
1g + 1|ξ22g

ξ21ξ
2
2g 7→ ξ21ξ

2
2 |g + (ξ61 + ξ22)|ξ

2
1g + ξ21 |ξ

2
2g + ξ41 |ξ

4
1g + 1|ξ21ξ

2
2g

ξ41ξ
2
2g 7→ ξ41ξ

2
2 |g + ξ81 |ξ

2
1g + ξ41 |ξ

2
2g + ξ22 |ξ

4
1g + ξ41 |ξ

6
1g + 1|ξ41ξ

2
2g

ξ61ξ
2
2g 7→ ξ61ξ

2
2 |g + (ξ41ξ

2
2 + ξ101 )|ξ21g + (ξ21ξ

2
2 + ξ81)|ξ

4
1g + ξ61 |ξ

2
2g

+(ξ22 + ξ61)|ξ
6
1g + ξ41 |ξ

2
1ξ

2
2g + ξ21 |ξ

4
1ξ

2
2g + 1|ξ61ξ

2
2g

The map

BP∗BP −→ A∗

sends vi 7→ 0 and ti 7→ ζ2i , where ζi is the image of ξi under the canonical antiauto-
morphism of A∗. Moreover A(2)∗ ∼= A∗/(ζ

8
1 , ζ

4
2 , ζ

2
3 , ζ4, ζ5, . . . ). Therefore ψ2, along

with the fact that (2, v1) ⊂ BP∗ acts trivially on BP∗Z, completely determines the
composite map

BP∗Z
ψ

−→ BP∗BP ⊗BP∗
BP∗Z −→ BP∗BP/I2 ⊗BP∗

BP∗Z

where

I2 = (v2, v3, . . . , t
4
1, t

2
2, t3, t4, . . . ) ⊂ BP∗BP .

Note that all elements in the generating set {x0, x2, x4, x6, y6, y8, y10, y12} of BP∗Z
have internal degrees between 0 and 12, whereas |tj | > 12 and |vj | > 12 when
j ≥ 3. Therefore, for j ≥ 3, tj and vj do not appear in the expression for ψ(xi)
and ψ(yi), though v2 may be present. Using (3.3) and the fact that ζ21 = ξ21 and
ζ22 = ξ22 + ξ61 , we easily derive the coaction map ψ on the generators of BP∗Z
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modulo (v2, t
4
1, t

2
2) ∈ BP∗BP . We get:

(3.4)

ψ(x0) = 1|x0
ψ(x2) = t1|x0 + 1|x2
ψ(x4) = t21|x0 + 1|x4
ψ(x6) ≡ t31|x0 + t21|x2 + t1|x4 + 1|x6
ψ(y6) ≡ (t2 + t31)|x0 + t21|x2 + 1|y6
ψ(y8) ≡ t1t2|x0 + t2|x2 + t21|x4 + t1|y6 + 1|y8
ψ(y10) ≡ t21t2|x0 + (t31 + t2)|x4 + t21|x6 + t21|y6 + 1|y10
ψ(y12) ≡ t31t2|x0 + t21t2|x2 + t1t2|x4 + t2|x6 + t31|y6

+t21|y8 + t1|y10 + 1|y12

Lemma 3.5. For any Z ∈ Z̃, BP∗Z has one of the four different BP∗BP-comodule
structures given below:
(3.6)
ψ(x0) = 1|x0
ψ(x2) = t1|x0 + 1|x2
ψ(x4) = t21|x0 + 1|x4
ψ(x6) = t31|x0 + t21|x2 + t1|x4 + 1|x6
ψ(y6) = (t2 + t31)|x0 + t21|x2 + 1|y6
ψ(y8) = (at41 + t1t2)|x0 + t2|x2 + t21|x4 + t1|y6 + 1|y8
ψ(y10) = (t51 + t21t2)|x0 + t41|x2 + (t31 + t2)|x4 + t21|x6 + t21|y6 + 1|y10
ψ(y12) = ((b + 1)t61 + t31t2 + (a+ b)t22)|x0 + t21t2|x2 + (bt41 + t1t2)|x4 + t2|x6 + t31|y6

+t21|y8 + t1|y10 + 1|y12

where a, b ∈ F2.

Proof. For degree reasons, there are coefficients

λ06, κ
0
6, µ

0
8, λ

0
8, λ

2
8, µ

0
10, λ

0
10, µ

2
10, λ

2
10, λ

4
10, µ

0
12, ν

0
12, λ

0
12, κ

0
12, σ, µ

2
12, λ

2
12, µ

4
12, λ

4
12, λ

6
12, κ

6
12 ∈ F2

such that one has

ψ(x0) = 1|x0

ψ(x2) = t1|x0 + 1|x2

ψ(x4) = t21|x0 + 1|x4

ψ(x6) = (t31 + λ06v2)|x0 + t21|x2 + t1|x4 + 1|x6

ψ(y6) = (t31 + t2 + κ06v2)|x0 + t21|x2 + 1|y6

ψ(y8) = (µ0
8t

4
1 + t1t2 + λ08v2t1)|x0 + (t2 + λ28v2)|x2 + t21|x4 + t1|y6 + 1|y8

ψ(y10) = (µ0
10t

5
1 + t21t2 + λ010v2t

2
1)|x0 + (µ2

10t
4
1 + λ210v2t1)|x2 +

+(t31 + t2 + λ410v2)|x4 + t21|x6 + t21|y6 + 1|y10

ψ(y12) = (µ0
12t

6
1 + t31t2 + ν012t

2
2 + λ012v2t

3
1 + κ012v2t2 + σv22)|x0 +

+(µ2
12t

5
1 + t21t2 + λ212v2t

2
1)|x2 + (µ4

12t
4
1 + t1t2 + λ412v2t1)|x4 +

+(t2 + λ612v2)|x6 + (t31 + κ612v2)|y6 + t21|y8 + t1|y10 + 1|y12.

The counitality condition of ψ

(3.7) BP∗Z
∼=

++❱
❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

ψ

��

BP∗BP ⊗BP∗
BP∗Z

ǫ⊗BP∗Z
// BP∗ ⊗BP∗

BP∗Z
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forces λ06 = κ06 = λ28 = λ410 = σ = λ612 = κ612 = 0. After a change of basis change

y8  y8 + λ08v2x2

y10  y10 + λ010v2x4

y12  y12 + κ012v2y6 + (λ012 + κ012)v2x6.

we have

ψ(x0) = 1|x0

ψ(x2) = t1|x0 + 1|x2

ψ(x4) = t21|x0 + 1|x4

ψ(x6) = t31|x0 + t21|x2 + t1|x4 + 1|x6

ψ(y6) = (t31 + t2)|x0 + t21|x2 + 1|y6

ψ(y8) = (µ0
8t

4
1 + t1t2)|x0 + t2|x2 + t21|x4 + t1|y6 + 1|y8

ψ(y10) = (µ0
10t

5
1 + t21t2)|x0 + (µ2

10t
4
1 + λ210v2t1)|x2 + (t31 + t2)|x4 + t21|x6 + t21|y6 + 1|y10,

ψ(y12) = (µ0
12t

6
1 + t31t2 + ν012t

2
2)|x0 + (µ2

12t
5
1 + t21t2 + (λ08 + λ012 + λ212)v2t

2
1)|x2 +

(µ4
12t

4
1 + t1t2 + (λ010 + λ412 + λ012 + κ012)v2t1)|x4 + t2|x6 + t31|y6 + t21|y8 + t1|y10 + 1|y12,

Now we exploit the coassociativity condition

(3.8) BP∗Z
ψ

//

ψ

��

BP∗BP ⊗BP∗
BP∗Z

∆⊗BP∗Z

��

BP∗BP ⊗BP∗
BP∗Z

BP∗BP⊗ψ
// BP∗BP ⊗BP∗

BP∗BP ⊗BP∗
BP∗Z.

Applying the coassociativity condition on on y8 tells us nothing, while applying it
on y10 tells us that

λ210 = 0, µ0
10 = µ2

10 = 1.

Applying it on y12, we get

λ08+λ
0
12+λ

2
12 = 0, µ2

12 = 0, λ010+λ
4
12+λ

0
12+κ

0
12 = 0, µ4

12+µ
0
12+1 = 0 and µ0

8+µ
0
12+ν

0
12+1 = 0

Setting a = µ0
8 and b = µ0

12 + 1, we get (3.6). �

Remark 3.9. By sending vi 7→ 0 and ti 7→ ζ2i , we obtain a functor

Q : (BP∗,BP∗BP)-comodules −→ (F2,ΦA∗)-comodules,

where ΦA∗ is the double of the dual Steenrod algebra. This functor sends BP∗Z
to ΦA(1)∗. Since A(1)∗ has four different A∗-comodule structures, it follows that
ΦA(1)∗ has four different ΦA∗-comodule structures. The four different BP∗BP -
comodule structures on BP∗Z are essentially lifts of the four different ΦA∗-comodule
structures on ΦA(1)∗.

Remark 3.10. Let M∗ = BP∗/(2, v1)〈g0, g2, g4, g6〉 be the BP∗BP -comodule with
four generators with cooperations

ψ(g0) = 1|g0

ψ(g2) = t1|g0 + 1|g2

ψ(g4) = t21|g0 + 1|g4

ψ(g6) = t31|g0 + t21|g2 + t1|g4 + 1|g6.



TOWARDS π∗LK(2)Z 15

Then if W = A1 ∧ Cν, where A1 is any of the four 8-cell complexes whose co-
homology is isomorphic to A(1), the BP∗BP -comodule BP∗W is isomorphic to
M∗.

A straightforward calculation tells us:

Lemma 3.11. There is an exact sequence of BP∗BP-comodules

0 −→M∗
ι

−→ BP∗Z
τ

−→ Σ6M∗ −→ 0

such that ι(gi) = xi, τ(xi) = 0 and τ(yi) = Σ6gi−6.

4. The action of the small Morava stabilizer group on (E2)∗Z

To compute the E2-page of the homotopy fixed point spectral sequence

(4.1) Es,t2 = Hs(S2; (E2)tZ)
Gal(F4/F2) =⇒ πt−sLK(2)Z,

we first need to understand the action of S2 = Aut(Γ2/F4) on (E2)∗Z, where Γ2 is
the height 2 Honda formal group law over F4. Recall from Section 2 (2.15) the left
BP∗-linear map

θΓn
: BP∗BP −→Mapc(S2, (E2)∗).

For X a finite spectrum, we deduce the action of S2 on (E2)∗X from the knowledge
of the BP∗BP -coaction map ψBPX on BP∗X via the diagram

(4.2) BP∗X
ψBP

X
// BP∗BP ⊗BP∗

BP∗X

θΓn
⊗BP∗X

��

Map(S2, (E2)∗)⊗BP∗
BP∗X.

The main purpose of this section is to understand the action of S2 on (E2)∗Z, for

all Z ∈ Z̃.
We begin by briefly recalling some key facts about S2 that we need for the

calculations to follow. Let T be a formal variable that need not commute with
W (F4) and let

O2 :=W (F4)〈T 〉/(T
2 − 2, Tω − ωσT ),

where ω is a root of x2 + x + 1 ∈ F2[x], and σ is the Frobenius map on W (F4).
Note that any element γ ∈ O2 can be written as a power series

γ =

∞∑

n=0

anT
n

where the an are Teichmüller lifts of F×
4 or are zero. Then γ corresponds to the

power series

a0x+Γ2 a1x
2 +Γ2 · · ·+Γ2 anx

2n +Γ2 · · · ∈ F4[[x]]

where an is the image of an under the quotient map W (F4) → F4. In fact, this
defines an isomorphism from O2 to End(Γ2/F4) ⊂ F4[[x]] and consequently, S2 is
isomorphic to the group of units of O2 (see [R88][Lemma A2.2.20]). Recall from
Section 2 the map

θ̃Γn
: Ṽ T −→Mapc(S2, (E2)0),
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where Γn is the height n Honda formal group law. To avoid cumbersome notation,

let us continue (from Section 2) to denote θ̃Γn
(t̃n) simply by t̃n. From (2.17), we

learn that if

γ−1 =
∑

n≥0

Γn

anx
2n ∈ S2,

then

(4.3) t̃n(γ) ≡ an mod (2, u1).

Also keep in mind that the Teichmüller lifts an satisfy the equation a4n = an.
Therefore we have

(4.4) t̃n(−)4 ≡ t̃n(−) mod (2, u1)

We can also write every element of O2 as a+ bT where a, b ∈ W (F4). Using the
isomorphism S2 ∼= O×

2 , one defines a determinant map (see [B15, §2.3])

det : S2 −→ Z×
2

which sends a + bT 7→ aaσ − 2bbσ. Composing this with the quotient map Z×
2 →

Z×
2 /{±1} ∼= Z2 gives the norm map

(4.5) N : S2
det
−→ Z×

2 ։ Z2.

The kernel of the norm map N : S2 → Z2 is called the norm one subgroup and is
denoted by S12. In [B15][§2.3], Beaudry described two elements α, π ∈ S2 such that
det(α) = −1 and det(π) = 3, two elements which generate Z×

2 topologically. In
particular, π defines an isomorphism S2 ∼= S12 ⋊ Z2.

As we will see in this section, the most crucial part of the action of S2 on (E2)∗Z
is the action of its finite subgroups, which we describe here, following [B15] and
[Buj].

Proposition 4.6. Every maximal finite nonabelian subgroup of S2 is conjugate to
a group

G24 = Q8 ⋊ C3,

where Q8 is the quaternion group

Q8 = 〈i, j : i4 = 1, i2 = j2, i3j = ji〉

and C3 acts by permuting i, j, and k = ij.

Notation 4.7. We denote the identity element of Q8 by 1. The order 2 element
of Q8 is often denoted by −1, however, to avoid confusing it with an element of a

ring, we will denote it by 1̂ ∈ Q8. Similarly, we denote î = 1̂i, ĵ = 1̂j, k̂ = 1̂k. The
center of Q8, which is an order 2 group generated by 1̂, will be denoted C

1̂
.

The maximal finite subgroupG24 is unique up to conjugation as a subgroup of S2,
while as a subgroup of S12, there are two conjugacy classes, G24 and G

′
24 = πG24π

−1.
The group S12 also has a cyclic subgroup

C6 = C
1̂
× C3

generated by 1̂ = i2 and ω.
The identification of S2 with O×

2 endows S2 with a decreasing filtration

(4.8) F0/2S2 = S2, Fn/2S2 = {γ ∈ S2 : γ ≡ 1 (mod T n))}.
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One should note that

Fn/2S2/F(n+1)/2S2 ∼=

{
C3 n = 0
F4 n ≥ 0.

Notice from (4.3) that tn co-acts trivially on BP∗Z for n > 2. Therefore, following
(4.3) we conclude that Fn/2S2 for n > 2 acts trivially on (E2)∗Z. We list the
generators of the various filtration quotients of S2 in the following table:

associated graded generators

F0/2S2/F1/2S2 ∼= C3 ω

F1/2S2/F2/2S2 ∼= Q8/C1̂
∼= C2 × C2 i, j

F2/2S2/F3/2S2 ∼= C
1̂
× Cα 1̂, α

The subgroup

K = 〈α, F3/2S2〉,

is known as the Poincaré duality subgroup of S2, and it is known that

S2 ∼= K ⋊G24

The subgroup S12 inherits the filtration of S2 via Fn/2S
1
2 := S12 ∩ Fn/2S2. In partic-

ular, we have

Fn/2S
1
2/F(n+1)/2S

1
2
∼=





C3 n = 0
F4 n ≥ 0 and n odd, or n = 2
F2 otherwise.

There is a corresponding Poincaré duality subgroup K1 which satisfies

S12
∼= K1 ⋊G24.

Recall from (3.2) that

(E2)∗Z ∼= (E2)∗ ⊗BP∗
BP∗Z ∼= (E2)∗/(2, u1)〈x0, x2, x4, x6, y6, y8, y10, y12〉.

For our purposes it is convenient to have all the generators in degree 0, so we define

xi = u
i
2 xi, yi = u

i
2 yi

in order to have

(E2)∗Z ∼= (E2)∗/(2, u1)〈x0, x2, x4, x6, y6, y8, y10, y12〉.

By (4.2), the action of S2 can be expressed in terms of maps t̃i : S2 → E(F4,Γ2).
For instance, we have

ψBPZ (x2) = 1|x2 + t1|x0 = 1|x2 + u−1t̃0
−2
t̃1|x0,

so for γ ∈ S2, we have

γ(x2) = γ(ux2) = t̃0(γ)u(x2 + u−1t̃0(γ)
−2t̃1(γ)x0) = t̃0(γ)x2 + t̃0(γ)

−1 t̃1(γ)x0.

By Lemma 3.5, if we suppress ‘γ’, the action of S2 can be described as in Table 1

(thanks to (4.4), we can adopt the simplifications t̃i
4
= t̃i for i = 1, 2 and t̃0

3
= 1).

Let M∗ = (E2)∗ ⊗BP∗
M∗, where M∗ is the BP∗BP -comodule introduced in

Remark 3.10. Define
gi = u

i
2 gi

to form a set of generators {g0, g2, g4, g6} of M0. A consequence of Lemma 3.11
and Table 1 is:
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u t̃0u

x0 x0

x2 t̃0
2
t̃1x0 + t̃0x2

x4 t̃0
1
t̃1

2
x0 + t̃0

2
x4

x6 t̃1
3
x0 + t̃0

2
t̃1

2
x2 + t̃0t̃1x4 + x6

y6 (t̃1
3
+ t̃0

2
t̃2)x0 + t̃0

2
t̃1

2
x2 + y6

y8 (at̃0
2
t̃1 + t̃0 t̃1 t̃2)x0 + t̃2x2 + t̃1

2
x4 + t̃0

2
t̃1y6 + t̃0y8

y10 (t̃0t̃1
2
+ t̃1

2
t̃2)x0 + t̃1x2 + (t̃0

2
t̃1

3
+ t̃0 t̃2)x4+

+t̃0t̃1
2
x6 + t̃0t̃1y6 + t̃0

2
y10

y12 ((b + 1)t̃1
3
+ t̃0

2
t̃1

3
t̃2 + (a+ b)t̃0t̃2

2
)x0 + t̃0t̃1

2
t̃2x2+

+(bt̃0 t̃1 + t̃1 t̃2)x4 + t̃0
2
t̃2x6 + t̃1

3
y6 + t̃0

2
t̃1

2
y8 + t̃0 t̃1y10 + y12

Table 1. The action of S2 on (E2)∗Z

Lemma 4.9. There is an exact sequence

(4.10) 0 −→M0
ι

−→ (E2)0Z
τ

−→M0 −→ 0

of Q8-modules, where ι(gi) = xi and τ(yi) = gi−6.

We will use the exact sequence of (4.10) (compare with (A.2)) to understand the

action of Q8 on (E2)0Z. For this purpose we need the data of t̃i(γ) modulo (2, u1)
for γ ∈ Q8. By definition of the Honda formal group law Γ2, we have [2]Γ2(x) = x4

and it follows that

[−1]Γ2(x) =
∑Γ2

n≥0
x4

n

.

Indeed, one has

x+Γ2

∑Γ2

n≥0
x4

n

= x+Γ2 x+Γ2

∑Γ2

n≥1
x4

n

= x4 +Γ2

∑Γ2

n≥1
x4

n

= · · · = 0.

Following (2.17) and using the fact that [−1]Γ2(x) is its own inverse, we have

t̃n(1̂) =

{
1 n even
0 n odd

modulo (2, u1). Further, i and j can be chosen so that modulo (2, u1), one has

• t̃0(γ) = 1 for all γ ∈ Q8

• t̃1(i) = t̃1(̂i) = 1, t̃1(j) = t̃1(̂j) = ω, and t̃1(k) = t̃1(k̂) = ω2.

Let F4[Q8/C1̂
] and F4[Q8] denote the group rings over F4.

Lemma 4.11. There is an isomorphism M0
∼= F4[Q8/C1̂

] of F4[Q8]-modules.

Proof. Since ι(gi) = xi, one can read the action of Q8 off Table 1. With respect to
the ordered basis B = {g0, g2, g4, g6} of M0, we have

(i)B = (̂i)B =




1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1


 , (j)B = (̂j)B =




1 ω ω2 1
0 1 0 ω2

0 0 1 ω
0 0 0 1


 ,
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(k)B = (k̂)B =




1 ω2 ω 1
0 1 0 ω
0 0 1 ω2

0 0 0 1


 .

Consider the basis C = {v0, v1, v2, v3} of M0 where

Q =




1 0 0 1
0 1 1 1
0 ω ω2 1
0 0 0 1




is the change of basis matrix from B → C. It can be readily checked that

(i)C = Q−1(i)BQ =




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 , (j)C = Q−1(j)BQ =




1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1


 ,

(k)C = Q−1(k)BQ =




1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1


 .

The last three matrices are equal to those representing the same transformations
in the basis B4 of F4[Q8/C1̂

] given in (A.3), and thus we conclude that M0 and
F4[Q8/C1̂

] are isomorphic as F4[Q8]-modules. �

Theorem 4.12. There is an isomorphism (E2)0Z ∼= F4[Q8] of F4[Q8]-modules.

Proof. Let B, C and Q be as in the proof of Lemma 4.11. Let

BZ = {x0, x2, x4, x6, y6, y8, y10, y12}

be the usual ordered basis of (E2)0Z and let CZ = {c0, c1, c2, c3, c
′
0, c

′
1, c

′
2, c

′
3} be

another basis of (E2)0Z where Q̃ =

[
Q ∗
0 Q

]
is a change of basis matrix from

BZ → CZ .
By Lemma 4.9, in the exact sequence (4.10), we have ι(vi) = ci and τ (c

′
i) = vi.

From Table 1, we know that

(1̂)BZ
=

[
I M
0 I

]
,

where

M =




1 0 0 a+ b
0 1 0 0
0 0 1 0
0 0 0 1


 .

Then

(1̂)CZ
= Q̃−1(1̂)B8Q̃ =

[
I Q−1MQ
0 I

]
=

[
I M
0 I

]
.

The remainder of the proof that (E2)0Z ∼= V8(F4) will continue in Lemma A.4.
�

Because Q8 acts trivially on u we get the following corollary.
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Corollary 4.13. There is an isomorphism

(E2)∗Z ∼= F4[u
±1][Q8]

of graded Q8-modules.

Lemma 4.14. The element α−1π ∈ S2 acts trivially on the generators of (E2)∗Z.

Proof. By definition of α and π [B15][§2.3], π ≡ α mod F3/2S2. Therefore, α
−1π ∈

F3/2S2. The result follows from the fact that tn coacts trivially on BP∗Z (i.e. the
BP∗BP -comodule structure of BP∗Z does not contain any terms involving tn for
n ≥ 3.) �

Further note that

t̃0(α) ≡ 1, t̃1(α) ≡ 0 and t̃2(α) ≡ ω mod (2, u1).

A direct inspection of Table 1 shows that α acts nontrivially on (E2)∗Z, in fact we
have:

Corollary 4.15. The fixed point modules (E2)∗Z
C

1̂ and (E2)∗Z
Cα both equal

F4[u
±1]{x0, x2, x4, x6}.

Corollary 4.16. The subgroup F2/2S2 acts trivially on (E2)∗Z
C

1̂ .

Proof. We know that F3/2S2 acts trivially as tn coacts trivially on BP∗Z for n ≥ 3.

Furthermore, F2/2S2/F3/2S2 is generated by 1̂ and α, both of which act trivially

on (E2)∗Z
C

1̂ . �

5. The duality resolution spectral sequence for Z

Now that we have complete knowledge of the action of S12 on (E2)∗Z, we are
all set to calculate the group cohomology H∗(S12; (E2)∗X), which is the key step
to finding the E2 page of the descent spectral sequence (4.1). We will use the
duality resolution spectral sequence, a convenient tool to calculate the E2-page.
The duality resolution spectral sequence comes from the duality resolution, which
is a finite Z2[[S

1
2]]-module resolution of Z2. First we fix some notations.

Notation 5.1. Throughout this section, we will let

• S2 := F1/2S2,

• S1
2 := F1/2S

1
2, and,

• IS1
2 be the augmentation ideal of the group ring Z2[[S

1
2 ]].

Note that every element in IS1
2 can be written as an infinite sum of elements of the

form ag(1−g), where 1 denotes the neutral element of S2, g ∈ S1
2 and ag ∈ Z2[[S

1
2 ]].

Theorem 5.2 (Goerss-Henn-Mahowald-Rezk, Beaudry [B17]). Let Z2 be the trivial
Z2[[S

1
2]]-module. There is an exact sequence of complete left Z2[[S

1
2]]-modules.

0 // C3
∂3

// C2
∂2

// C1
∂1

// C0
ǫ

// Z2
// 0,

where C0
∼= Z2[[S

1
2/G24]], C3

∼= Z2[[S
1
2/G

′
24]] and C1

∼= C2
∼= Z2[[S

1
2/C6]]. Let e be

the unit in Z2[[S
1
2]] and ep be the resulting generator in Cp. The map ∂p can be

chosen to satisfy:

• ∂1(e1) = (e− α) · e0,
• ∂2(e2) ≡ (e+ α) · e1 mod (2, (IS1

2)
2),

• ∂3(e3) = π(e + i+ j + k)(e − α−1)π−1 · e2.
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Let F0 = G24, F1 = F2 = C6 and F3 = G′
24. For a profinite Z2[[S

1
2]]-module M ,

there is a first quadrant spectral sequence

Ep,q1 = ExtZ2[[S12]]
(C,M) ∼= Hq(Fp;M) ⇒ Hp+q(S12;M)

with differentials dr : E
p,q
1 → Ep+r,q−r+1

1 .

Since the map BP∗ → (E2)∗ sends v2 7→ u−3, we will denote u−3 by v2. Let us
now recall Shapiro’s lemma, an important result in group cohomology, which will
be used throughout the rest of this section.

Lemma 5.3 (Shapiro’s Lemma). Let G be a finite group, H ⊂ G a normal subgroup
and let M be a Z[H ]-module. Then for every n, we have

Hn(G;CoIndGH(M)]) = Hn(H ;M),

where CoIndGH(M) = HomZ[H](Z[G],M).

Remark 5.4. If H ⊂ G is a subgroup of finite index, then

CoIndGH(M) ∼= IndGH(M) := Z[G]⊗Z[H] M.

In all of our applications of Lemma 5.3, G will be a finite group, hence one need
not distinguish between CoIndGH(M) and IndGH(M) for any normal subgroup H of
G.

Theorem 4.13 along with Shapiro’s lemma 5.3 implies that

Hp(Q8; (E2)∗Z) ∼=

{
F4[u

±1] p = 0
0 otherwise.

Furthermore, since (E2)∗Z has characteristic 2 and Q8 is the 2-Sylow of G24, we
have

Hp(G24; (E2)∗Z) ∼= Hp(Q8; (E2)∗Z)
C3 ∼= F4[u

±1]C3 .

The generator ω of C3 acts non-trivially on u (see Table 1), but fixes u3 so that

(5.5) Hp(G24; (E2)∗Z) =

{
F4[u

±3] p = 0
0 p 6= 0

Remark 5.6. Note that the equivalence

(5.7) tmf ∧ Z ≃ k(2)

in the K(2)-local category of spectra can be seen as a consequence of (5.5). For the
maximal finite subgroupG48 ⊂ G2, it is well known that (E2)

hG48 ∼= LK(2)tmf . The
E2-page of the homotopy fixed point spectral sequence for computing the homotopy
groups of (E2)

hG48 ∧ Z is precisely Hp(G48; (E2)∗Z) = Hp(G24; (E2)∗Z)
Gal(F4/F2),

which, by (5.5), is isomorphic to F2[u
±3] and hence collapses. Thus we get

π∗(LK(2)(tmf ∧ Z)) ∼= K(2)∗.

Lemma 5.8. Let G′
24 = πG24π

−1 in S12. Then we have

Hq(G′
24;E∗Z) ∼= Hq(G24;E∗Z) ∼= F4[v

±1
2 ].

Proof. Notice that G′
24 ∩ G24 ⊃ C

1̂
. Also keep in mind that π ≡ α mod F3/2S

1
2.

Therefore, by Corollary 4.15, π acts trivially on ((E2)0Z)
C

1̂ . Let Q′
8 = πQ8π

−1 ⊂
G′

24, i
′ = πiπ−1 and j′ = πjπ−1. Thus we have

G′
24

∼= Q′
8 ⋊ C3



22 PRASIT B. AND P. EGGER

Note that

i′ ≡ i mod F2/2S
1
2 and j′ ≡ j mod F2/2S

1
2

because π ∈ F2/2S
1
2. Therefore, the actions of i′ and j′ on ((E2)0Z)

C
1̂ are exactly

the same as that of i and j respectively. It follows that

((E2)0Z)
C

1̂ ∼= F4[Q
′
8/C1̂

]

as a F4[Q
′
8]-module. Applying the arguments of Theorem 4.12 to this case, one sees

(E2)0Z ∼= F4[Q
′
8]

as an F4[Q
′
8]-module, and the result follows. �

Now we shall focus on computing Hq(C6; (E2)∗Z). Take C
1̂
to be the center of

Q8 and consider C6 = C
1̂
× F×

4 . While C
1̂
fixes all the xi in addition to fixing u,

the group F×
4 does not fix the xi; however it does fix the xi. This observation will

be crucial for the computation that follows. Because C
1̂
is the 2-Sylow subgroup

of C6, we have

Hq(C6; (E2)∗Z) = Hq(C
1̂
;F4[u

±1][Q8])
C3 .

Because (E2)∗Z ∼= F4[u
±1][Q8] is a free F4[C1̂

]-module we have

Hq(C
1̂
;F4[u

±1][Q8])
C3 ∼= (((E2)∗Z)

C
1̂)C3

∼= (F4[u
±1][x0, x1, x2, x3])

C3

∼= F4[u
±3][x0, x1, x2, x3]

concentrated at q = 0. Essentially deriving from Table 1, we list the actions of i, j,
ij on the generators x0, x2, x4, x6, which will come in handy later on.

(5.9)

x i · x j · x ij · x
x0 x0 x0 x0
x2 u−1x0 + x2 ωu−1x0 + x2 ω2u−1x0 + x2
x4 u−2x0 + x4 ω2u−2x0 + x4 ωu−2x0 + x4
x6 u−3x0 + u−2x2 u−3x0 + ω2u−2x2 u−3x0 + ωu−2x2

+u−1x4 + x6 +ωu−1x4 + x6 +ω2u−1x4 + x6

To summarize and as well as to establish notations, we rewrite the E1-page of
the duality resolution spectral sequence for Z as

Ep,q1 =





F4[v
±1
2 ]〈x0,0〉 p = 0, q = 0

F4[v
±1
2 ]〈x1,0, x1,2, x1,4, x1,6〉 p = 1, q = 0

F4[v
±1
2 ]〈x2,0, x2,2, x2,4, x2,6〉 p = 2, q = 0

F4[v
±1
2 ]〈x3,0〉 p = 3, q = 0

0 otherwise

where the internal grading of xi,j is j. To compute the differentials in this spectral
sequence, we need the following result.

Theorem 5.10. For every Z ∈ Z̃, H∗(S1
2 ; (E2)∗Z) is isomorphic to

H∗(K1;F2)⊗ F4[u
±1]

as an F4[u
±1]-module.



TOWARDS π∗LK(2)Z 23

Proof. We begin with the calculation of H∗(F2/2S
1
2; (E2)∗Z). Since

F2/2S
1
2
∼= K1 × C

1̂
,

we have a Lyndon-Hochschild-Serre spectral sequence

(5.11) Ep,q2 = Hp(K1;Hq(C
1̂
; (E2)∗Z)) =⇒ Hp+q(F2/2S

1
2; (E2)∗Z).

Since Hq(C
1̂
; (E2)∗Z) ∼= ((E2)∗Z)

C
1̂ (concentrated at q = 0) and K1 acts trivially

on ((E2)∗Z)
C

1̂ by Corollary 4.16, the spectral sequence (5.11) collapses and we have

H∗(F2/2S
1
2; (E2)∗Z) ∼= H∗(K1;F2)⊗ (E2)∗Z

C
1̂ .

Note that

(E2)∗Z
C

1̂ ∼= F4[u
±1]〈x0, x2, x4, x6〉 ∼= F4[u

±1][Q8/C1̂
].

Now we run yet another Lyndon-Hochschild-Serre spectral sequence

(5.12) Ep,q2 = Hp(Q8/C1̂
;Hq(F2/2S

1
2; (E2)∗Z)) ⇒ Hp+q(S1

2 ; (E2)∗Z)

to compute H∗(S1
2 ; (E2)∗Z). Notice that

Ep,q2 = Hp(Q8/C1̂
;Hq(F2/2S

1
2; (E2)∗Z))

= Hp(Q8/C1̂
;Hq(K1;F2)⊗ (E2)∗Z

C
1̂)

= Hp(Q8/C1̂
;Hq(K1;F2)⊗ F4[u

±1][Q8/C1̂
])

=

{
Hq(K1;F2)⊗ F4[u

±1] when p = 0
0 when p 6= 0

by Shapiro’s Lemma 5.3. Thus the spectral sequence (5.12) collapses at the E2-page
and we get

H∗(S1
2 ; (E2)∗Z) = H∗(K1;F2)⊗ F4[u

±1].

�

From the above theorem and the following unpublished result of Goerss and
Henn (see [B15][Theorem 2.5.13]),

(5.13) H∗(K1;F2) ∼= F2[y0, y1, y2]/(y
2
0 , y

2
1 + y0y1, y

2
2 + y0y2).

we get a complete description of H∗(S1
2 ; (E2)∗Z).

Our next goal is to make use of the formulas in Theorem 5.2 to calculate the
d1-differentials of the duality resolution spectral sequence for Z. Moving forward,
there are two things that are handy to keep in mind:

• Z admits a v12-self-map [BE], therefore differentials in the duality resolution
spectral sequence for Z will be v12-linear.

• The d1-differentials preserve the internal grading.

Lemma 5.14. The differentials d1 : E0,0
1 → E1,0

1 and d1 : E2,0
1 → E3,0

1 are zero,

while the differential d1 : E1,0
1 → E2,0

1 is the v2-linear map given by

F4[v
±1
2 ]〈x1,0, x1,2, x1,4, x1,6〉 −→ F4[v

±1
2 ]〈x2,0, x2,2, x2,4, x2,6〉

x1,0, x1,2, x1,4 7→ 0

x1,6 7→ λv2x2,0,

where λ ∈ F×
4 . The duality resolution spectral sequence for Z collapses at the E2-

page.
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Proof. It follows from Theorem 5.2 that the differential d1 : E0,0
1 → E1,0

1 is given
by

d1(x) = (1 − α) · x,

which is zero, because α fixes x0,0, (follows from Table 1, also see Corollary 4.15).

Likewise, the differential d1 : E2,0
1 → E3,0

1 is given by

d1(x) = π(1 + i+ j+ k)(1 − α−1)π−1 · x,

which is zero because by Lemma 4.15 and the fact that α ≡ π mod F3/2S
1
2, both

α and π fix all the x1,i. The differential d1 : E1,0
1 → E2,0

1 is given by

d1(x) = Θ · x = (1 + α+ E) · x,

where E ∈ (IS1
2 )

2. Because α fixes all the x1,j , this simplifies to

d1(x) = E · x.

The element E is a possibly infinite sum of the form

E =
∑

ag,h(1 − g)(1 − h)

for ag,h ∈ Z2[[S
1
2 ]] and g, h ∈ S1

2 . In particular, thanks to Table 1 and (2.18), we
know that

(1 − g)(1 − h) · x0 = 0

(1 − g)(1 − h) · x2 = 0

(1 − g)(1 − h) · x4 = 0

(1 − g)(1 − h) · x6 = (t̃1(h)t̃1(g)
2 + t̃1(h)

2 t̃1(g))x0,

and it follows that

d1(x1,0) = d1(x1,2) = d1(x1,4) = 0,

while d1(x1,6) is a multiple of x2,0. We know that d1 is not identically zero, because

H1(S12; (E2)∗Z) ∼= H1(S1
2 ; (E2)∗Z)

C3

has rank at most 3. Since differentials preserve internal grading

E · x1,6 = λv2x2,0,

where λ ∈ F×
4 , is forced. Since Ep,q1 = 0 for q 6= 0, the duality resolution spectral

sequence for Z collapses at the E2-page. �

Remark 5.15. SinceHp(S12; (E2)∗Z) ∼= Hp(S1
2 ; (E2)∗Z)

C3 ∼= (Hp(K1;F2)⊗F4[u
±1])C3 ,

one requires an understanding of the action of C3 on Hp(K1;F2). This action is
given by

ω · y0 = y0

ω · y1 = y1 + y2

ω · y2 = y1

and can be deduced from [B15, § 2.5]. Therefore, one can completely calculate
Hp(S12; (E2)∗Z) without resorting to the duality resolution. However, most existing
K(2)-local computations are done using the duality resolution spectral sequence,
which is why we chose this method, providing a better basis for comparison with
previous work.
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Corollary 5.16. The homotopy fixed point spectral sequence

Es,t2 = Hs(S12; (E2)tZ) =⇒ πt−s(E
hS12 ∧ Z)

with dr : E
s,t
r → Es+r,t+r−1

r , has E2-page

Es,∗2 = Hs(S12; (E2)∗Z) ∼=





F4[v
±1
2 ]〈x0,0〉 s = 0

F4[v
±1
2 ]〈x1,0, x1,2, x1,4〉 s = 1

F4[v
±1
2 ]〈x2,2, x2,4, x2,6〉 s = 2

F4[v
±1
2 ]〈x3,0〉 s = 3

or in graphical form (in Adams’ grading) with each ♠ denoting a copy of F4[v
±1
2 ]:

−1 1 3
0

2

4

♠
♠ ♠ ♠

♠ ♠ ♠
♠

The spectral sequence collapses at the E2-page due to sparseness.

Remark 5.17. According to recent work of Goerss and Bobkova [BG], there is a
topological version of the duality resolution, which gives a resolution of the K(2)-

local sphere. The topological duality resolution can be used to compute π∗(E
hS12
2 ∧

Z) directly. However, for Z, the algebraic and the topological duality spectral
sequences are isomorphic and the computations remain identical as the relevant
spectral sequences simply collapse.

6. The K(2)-local homotopy groups of Z

The K(2)-local homotopy groups of Z can be computed using the homotopy
fixed point spectral sequence

Es,t2 = Hs(S2; (E2)tZ)
Gal(F4/F2) =⇒ πt−s(LK(2)Z),(6.1)

where Gal(F4/F2) merely plays the role of ‘changing the coefficient field from F4

to F2.’
Recall the norm map (4.5), N : S2 → Z2, whose kernel is S12. By choosing an

element γ ∈ S2 such that N(γ) is a topological generator of Z2, one can produce
a map Z2 → Aut(S12) which sends 1 ∈ Z2 to the conjugation automorphism by γ,
which gives an isomorphism

S2 ∼= S12 ⋊ Z2.

In [B15, B17], γ is chosen to be π. However, one can also choose γ = α−1π. We
choose γ = α−1π to get the isomorphism S2 ∼= S12 ⋊ Z2. This is convenient for us
because α−1π ∈ F4/2S2 and therefore it acts trivially on (E2)∗Z. Consequently,
the Lyndon-Hochschild-Serre spectral sequence

Hp(Z2;H
q(S12; (E2)∗Z)) =⇒ Hp+q(S2; (E2)∗Z)

collapses. Therefore

H∗(S2; (E2)∗Z)
Gal(F4/F2) ∼= [E(ζ) ⊗H∗(S12; (E2)∗Z)]

Gal(F4/F2)
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where ζ has bidegree (s, t) = (1, 0). More precisely, as a F2[v
±1
2 ]-module

Hs(S2; (E2)∗Z)
Gal(F4/F2) ∼=





F2[v
±1
2 ]〈x0,0〉 s = 0,

F2[v
±1
2 ]〈ζx0,0, x1,0, x1,2, x1,4〉 s = 1,

F2[v
±1
2 ]〈x2,2, x2,4, x2,6, ζx1,0, ζx1,2, ζx1,4〉 s = 2,

F2[v
±1
2 ]〈x3,0, ζx2,2, ζx2,4, ζx2,6〉 s = 3,

F2[v
±1
2 ]〈ζx3,0〉 s = 4,

0 otherwise

In Figure 2, we draw the E2-page of (6.1). We denote by ◦ the generators that are

−8 −6 −4 −2 0 2 4 6 8 10

0

2

4

x0,0 v2x0,0

x1,0
◦ζx0,0

x1,2 x1,4 ◦

◦ ◦ ◦ ◦
x2,2

◦
x2,4

◦
x2,6

◦ ◦ ◦ ◦

◦ ◦
x3,0
◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦v2ζx3,0 ◦

Figure 2. The spectral sequence Hs(G2; (E2)tZ) ⇒ πt−sLK(2)Z

multiples of ζ, and all others by •.
It is clear that the spectral sequence (6.1) collapses at the E4-page. The only

possibilities are two sets of v2-linear d3-differentials

• d3(x0,0) = v−1
2 ζx2,6, and,

• d3(x1,4) = v2ζx3,0.

The v2-linearity of differentials follows from the fact that Z admits a v12-self-map
[BE]. However, the generator x0,0 cannot support a differential for the following
reason:
The inclusion of the bottom ι0 : S0 →֒ Z induces a nontrivial map K(2)-homology.
Therefore, ι0 induces a nontrivial element in ι ∈ π0(LK(2)Z) which is represented
by x0,0 ∈ in the E2-page of the descent spectral sequence 6.1. Therefore, x0,0 is a
permanent cycle.

From the calculation of the classical Adams spectral sequence in [BE]

Exts,tA (H∗(Z),F2) =⇒ π∗(Z)

we see that π0(Z) ∼= Z/2. In particular, this means [ι0] is the generator of π0(Z)
and 2[ι0] = 0. Since the map η : Z → LK(2)Z sends [ι0] 7→ ι, it must be the case
that 2ι = 0. Therefore there is no hidden extension supported by x0,0.

Moreover it is well known that ζ̃ is a class in π−1LK(2)S
0. Let ζ̂ denote the

representative of ζ̃ in the E2-page of the descent spectral sequence

Es,∗2 = Hs(G2; (E2)∗S
0) ⇒ π∗−s(LK(2)S

0).

A straightforward analysis of the map of descent spectral sequences induced by

ι0 shows that ζ̂ · x0,0 = ζx0,0, which is a nonzero permanent cycle representing
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ζ̃ · ι ∈ π−1(LK(2)Z). Since 2ι = 0, it follows that

2(ζ̃ · ι) = ζ̃ · 2ι = 0,

ruling out another possible v2-periodic family of hidden extensions. There are other
possibilities of hidden extensions depicted in Figure 1, which we currently cannot
rule out, though low dimensional computations lead us to believe that there exists
a particular spectrum Z for which all differentials and possible hidden extensions
are zero. Furthermore, as stated in Conjecture 1, we expect that this will be the

case for every spectrum Z ∈ Z̃.
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Appendix A. A regularity criterion for a representation of Q8

The quarternionic group Q8 is an order 8 group which can be presented as

(A.1) Q8 = 〈i, j : i4 = 1, i2 = j2, i3j = ji〉

We will denote the neutral element of Q8 by 1. Often in the literature, ij is denoted
by k and i2 by −1. This is justified as −1 ∈ Q8 is central and its square is 1.
However, −1 also denotes the additive inverse of 1 in a ring, and potentially can
cause confusion while working with group rings. Therefore we will instead denote

−1 by 1̂ ∈ Q8 and î = 1̂i, ĵ = 1̂j, k̂ = 1̂k. With this notation, the relations in Q8 can
be rewritten as

• ij = k, jk = i, ki = j

• i2 = j2 = k2 = 1̂,
• (1̂)2 = 1, and

• ji = k̂, kj = î, ik = ĵ.

The quotient of the central subgroup of order 2 generated by 1̂, is the Klein four
group C2 × C2. In other words we have an exact sequence of groups

1 −→ C2
ι

−→ Q8
q

−→ C2 × C2 −→ 1.

We will denote the images of i, j ∈ Q8 by i, j ∈ C2 × C2.
Let F be an arbitrary field and let V4(F) denote the 4-dimensional representation

of Q8 induced by the regular representation of C2×C2 via the quotient map q. Let
V8(F) denote the regular representation of Q8. When char F = 2, it is easy to see
that there is an exact sequence of F[Q8]-modules

0 −→ V4(F)
t

−→ V8(F)
r

−→ V4(F) −→ 0.

More explicitly, let ι4 and ι8 be the generators of V4(F) and V8(F) as F[Q8]-modules
and define

r(g · ι8) = q(g) · ι4

t(h · ι4) = h · ι8 + 1̂h · ι8,

for h, g ∈ Q8.
The purpose of this appendix is to give a necessary and sufficient condition on

an 8-dimensional representation V over a field F with char F = 2, which fits in the
exact sequence

(A.2) 0 −→ V4(F)
t̃

−→ V
r̃

−→ V4(F) −→ 0,

under which it is isomorphic to V8(F). When char F 6= 2, the problem is straightfor-
ward. Any V which satisfies (A.2) is isomorphic to V4(F)⊕V4(F), including V8(F),
the regular representation of Q8. This is because, when char F ∤ |Q8|, and W is a
subrepresentation of V , then one can define a complement subrepresentation W ′

such that V ∼= W ⊕W ′ (Maschke’s theorem). In our case, let W = img t̃ and W ′

be its complement. Since (A.2) is an exact sequence, it follows that

W ∼=W ′ ∼= V4(F).

We will soon see that V8(F) ≇ V4(F)⊕ V4(F) when char F = 2.
For any g ∈ G, let eg ∈ F[G] denote the element such that

g′eg = eg′g
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for every g′ ∈ G. The collection {eg : g ∈ G} forms a basis for F[G]. For our
convenience, we consider the ordered basis

(A.3) B4 = {v1 = e1 + ei + ej + ek, v2 = e1 + ej, v3 = e1 + ei, v4 = e1}

of V4(F). Note that

(i)B4 =




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1




(j)B4 =




1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1




(k)B4 =




1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1


 .

Thus any vector space isomorphic to the regular representation of C2 ×C2, admits
a basis B such that

(i)B = (i)B4 , (j)B = (j)B4 , (k)B = (k)B4 .

The main result in this appendix is the following.

Lemma A.4. Let F be a field with char F = 2. Suppose we have an exact sequence
of F[Q8]-modules

(A.5) 0 −→ V4
t̃

−→ V8
r̃

−→ V4 −→ 0

where V4 is a representation of Q8 induced from the regular representation of C2 ×
C2. Let B = {v1, v2, v3, v4} be a basis of V4 such that

(i)B =




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 , (j)B =




1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1




(k)B =




1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1


 .

Then for any basis C = {c1, c2, c3, c4, c
′
1, c

′
2, c

′
3, c

′
4} of V8 with the property that

t̃(vi) = ci and r̃(c
′
i) = vi, we have

(i) (1̂)C =

[
I4 M
0 I4

]
, where

M =




c d a b
0 c 0 a
0 0 c d
0 0 0 c




for a, b, c, d ∈ F, and,
(ii) if c 6= 0 then V8 is isomorphic to the regular representation of Q8.
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Proof. It follows from (A.5) that

(i)C =

[
(i)B X
0 (i)B

]
and (j)C =

[
(j)B Y
0 (j)B

]

for some (4× 4) matrices X,Y . Let xij and yij denote the (i, j)-th entry of X and
Y respectively. Since the choice of c′i is only unique modulo img t̃, we may apply a
change of basis matrix of the form

P =

[
I4 P
0 I4

]
.

In particular, if we choose

P =




y13 0 x14 0
x11 x12 + y13 x13 0
y11 y12 0 y14
x31 x32 + y11 x33 x34




we see that

P (i)CP
−1 =

[
(i)B X̃
0 (i)B

]
, P (j)CP

−1 =

[
(j)B Ỹ
0 (j)B

]

where

X̃ =




0 0 0 0
x21 x11 + x12 x23 x13 + x24
0 0 0 0
x41 x31 + x42 x43 x33 + x34




and

Ỹ =




0 0 0 0
x31 + y21 x32 + y11 + y22 x11 + x33 + y23 x12 + x34 + y13 + y24

y31 y32 y11 + y33 y12 + y34
y41 y42 x31 + y43 x32 + y11 + y44


 .

Thus without loss of generality we may assume that

X =




0 0 0 0
x21 x22 x23 x42
0 0 0 0
x41 x42 x43 x44


 and Y =




0 0 0 0
y21 y22 y23 y24
y31 y32 y33 y43
y41 y42 y43 y44


 .

Now we use the relations (A.1) to get further restrictions on X and Y . While
(i)4C = (j)4C = I8 is trivially satisfied, (i)2C = (j)2C is true if and only if

(i)CX +X(i)C = (j)CY + Y (j)C .

Thus we get a linear system, which upon solving yields only y23, y24, y32, y33, y34, y42, y43, y44
as free variables and we get

X =




0 0 0 0
y42 y32 y33 y34
0 0 0 0
0 0 y42 y32


 and Y =




0 0 0 0
y43 y43 + y44 y23 y24
y42 y32 y33 y34
0 y42 y43 y44



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Consequently, (1̂)C =

[
I4 M
0 I4

]
, where

M =




y42 y32 y33 y34
0 y42 0 y33
0 0 y42 y32
0 0 0 y42




Now, the linear system generated by the relation

(i)C(j)C = (1̂)C(j)C(i)C

has free variables y33, y34, y43, y44 and basic variables

y23 = y33 + y43

y24 = y34 + y44

y32 = y33 + y43 + y44

y42 = y43.

Let a = y33, b = y34, c = y43 and d = y33 + y43 + y44. In terms of a, b, c, d, we have

(A.6) X =




0 0 0 0
c d a b
0 0 0 0
0 0 c d


 , Y =




0 0 0 0
c c+ d a+ c a+ b+ c+ d
c d a b
0 c c a+ c+ d


 ,

(A.7) M =




c d a b
0 c 0 a
0 0 c d
0 0 0 c


 .

Recall that our change of basis matrix was of the form

P =

[
I4 P
0 I4

]
,

and thus P−1 = P and we have

P−1(1̂)CP =

[
I4 M
0 I4

]

as char F = 2. This proves (i).
For (ii), we need to find a vector v such that

{gv : g ∈ Q8}

spans V8. We choose v = c′4 =
[
0 0 0 0 0 0 0 1

]T
in the basis C. Let

A =
[
v (1̂)Cv (i)Cv (̂i)Cv (j)Cv (̂j)Cv (k)Cv (k̂)Cv

]
.
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Using (A.6) and (A.7) we see that

A =




0 b 0 a+ b 0 b+ d a+ b+ c+ d 0
0 a b a+ b a+ b+ c+ d b+ d a+ c 0
0 d 0 c+ d b b+ d a+ b+ c+ d a+ b
0 c d c+ d a+ c+ d a+ d a+ c a
0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
1 1 1 1 1 1 1 1




.

By a tedious but straightforward calculation, we find

detA = c4,

completing the proof of (ii). �

Remark A.8. When char F = 2, the representations V4(F)⊕V4(F) and V8(F) are not
isomorphic. Without loss of generality we may assume c = 1 and a = b = d = 0.
Suppose there were an isomorphism between V4(F)⊕ V4(F) and V8(F). Then there
exists a invertible matrix P such that

P

[
(1̂)B4 0

0 (1̂)B4

]
= (1̂)CP

Note that (1̂)B4 is simply the identity matrix, while (1̂)C is not. It follows eas-
ily that any matrix which satisfies the above condition is not invertible, hence a
contradiction.

Remark A.9. We are unaware of any classification theorem for 8 dimensional rep-
resentations of Q8 over fields of characteristic 2. We suspect that the question of
how many isomorphism classes of V satisfy (A.2) can be resolved. A possible guess
might be that there are overall 4 isomorphism classes

• c 6= 0 (when V ∼= V8(F)),
• c = 0, d 6= 0,
• c = 0, d = 0, a 6= 0,
• c = 0, a = 0, d = 0, b 6= 0, and
• a = b = c = d = 0 (when V ∼= V4(F)⊕ V4(F)).

Since this is irrelevant to the purpose of the paper, we leave this question to the
interested reader to verify.
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