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Abstract. We compute the slices and slice spectral sequence of integral sus-

pensions of the equivariant Eilenberg-Mac Lane spectra HZ for the group of
equivariance Q8. Along the way, we compute the Mackey functors πkρHZ.
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1. Introduction

Let G be a finite group. The G-equivariant slice filtration was first defined in
the context of G-equivariant stable homotopy theory by Dugger in [D]; it came to
prominence as a result of its role in the proof of the Kervaire invariant conjecture
by Hill, Hopkins, and Ravenel [HHR1]. The slice filtration is an analogue in the G-
equivariant stable homotopy category of the classical Postnikov filtration of spectra.
One can also define a G-equivariant Postnikov filtration; on passage to fixed points
with respect to any subgroup H ≤ G, this recovers the Postnikov filtration of
the H-fixed point spectrum. However, there are many equivariant spectra which
possess a periodicity with respect to suspension by a G-representation sphere, and
this periodicity is not visible in the G-equivariant Postnikov filtration. The slice
filtration was devised by Dugger in order to display this periodicity for the case of
the C2-spectrum KR.

Since the groundbreaking work [HHR1], a number of authors have calculated
the slice filtration, as well as the associated slice spectral sequence, for G-spectra
of interest. A few cases are understood for an arbitrary finite group G. If M is
a G-Mackey functor, then the equivariant Eilenberg-Mac Lane spectrum HGM is
always a 0-slice [HHR1] (in this article, we use the “regular” slice filtration, as
introduced in [U]). The slice filtrations of Σ1HGM and Σ−1HGM were described
in [U]. The slices of certain suspensions of equivariant Eilenberg-Mac Lane spectra
were determined for G an odd cyclic p-group in [HHR3], [Y2] and [A], for dihedral
groups of order 2p, where p is odd, in [Z2], and for the Klein-four group in [GY]
and [S1]. We extend this list by considering in this article the case of G = Q8.

Some of the most far-reaching applications of the slice filtration and associated
spectral sequence have come in the case of cyclic p-groups of equivariance. In addi-
tion to [HHR1], this also includes [HHR2], [MSZ], [S2], and [HSWX]. In particular,
in [HSWX] the authors use slice technology to understand a C4-equivariant, height
4 Lubin-Tate theory at the prime 2. For each height n, there is a height n Lubin-
Tate theory that comes equipped with an action of the height n (profinite) Morava
stabilizer group. The homotopy fixed points with respect to this action gives a
model for the K(n)-local sphere, a central object of study. More approachable are
the homotopy fixed points with respect to finite subgroups. At height 4, the Morava
stabilizer group contains a C4-subgroup (in fact a C8), which gives the context for
[HSWX]. On the other hand, at height 2m, where m is odd, the Morava stabilizer
group contains a Q8-subgroup. Therefore it is possible that Q8-equivariant slice
techniques will eventually shed light on the K(n)-local sphere when n = 2m and
m is odd.

The focus of our article is the determination of the slices of ΣnHQ8Z. We list
the slices in Section 6 and describe the associated spectral sequence in Section 8.
We rely heavily on the computation of the slices of ΣnHK4

Z given by the second
author in [S1]. The quotient map Q8 −→ K4 allows us to gain insight into the
Q8-equivariant slices from the K4-case, as we now explain in greater generality.

Given a normal subgroup NEG, there are several constructions that will produce
a G-spectrum from a G/N -spectrum. First is the ordinary pullback, or inflation,

functor. If q : G −→ G/N is the quotient, then inflation is denoted q∗ : SpG/N −→
SpG; it is left adjoint to the N -fixed point functor. This inflation functor plays an
important role. For instance q∗(S0

G/N ) is equivalent to S0
G. However, from our point
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of view, this construction has two deficiencies. First, the ordinary inflation does not
interact well with the slice filtration. Secondly, the inflation of an HG/NZ-module
does not have a canonical HGZ-module structure.

On the other hand, the “geometric inflation” functor ([H, Definition 4.1], [LMSM,
Section II.9])

φ∗N : SpG/N −→ SpG,

which is right adjoint to the geometric fixed points functor, interacts well with
slices. Namely, if N is a normal subgroup of order d and X is a G/N -spectrum,
then

φ∗NP
k
k (X) ' P dkdk (φ∗NX) ,

by [U, Corollary 4-5] (see also [H, Section 4.2]). However, in general the geometric
inflation of an HG/NZ-module will not be an HGZ-module.

The third variant is the Z-module inflation functor ([Z1, Section 3.2])

Ψ∗N : ModHG/NZ −→ ModHGZ .

By design, the Z-module inflation of an HG/NZ-module has a canonical HGZ-
module structure, though in general this functor does not interact well with the
slice filtration.

In some cases, these constructions agree. For instance, if the underlying spectrum
of the G/N -spectrum X is contractible, then q∗X ' φ∗NX. If X is furthermore an
HG/NZ-module, then the three inflation functors coincide on X (Proposition 3.18).

The above discussion applies to the slices of ΣnHG/NZ: all slices, except for the
bottom slice, have trivial underlying spectrum. It follows that these inflate to give
many of the slices of ΣnHGZ.

Our main result along these lines, Theorem 3.19, describes the higher slices of
such an inflated HGZ-module. In the case of G = Q8, N = Z(Q8), and G/N =
Q8/Z ∼= K4, it gives the following:

Theorem 1.1. Let n ≥ 0. Then the nontrivial slices of ΣnHQ8
Z, above level 2n,

are

P 2k
2k (ΣnHQ8

Z) ' Ψ∗ZP
k
k (ΣnHK4

Z) ' φ∗ZP kk (ΣnHK4
Z)

for k > n. Furthermore,

P 2k
n (ΣnHQ8Z) ' Ψ∗ZP

k
n (ΣnHK4Z) .

As the slices of ΣnHK4
Z were determined by the second author in [S1], this

immediately provides all of the slices of ΣnHQ8
Z above level 2n. The remaining

slices of ΣnHQZ are then given by analyzing the slice tower of Ψ∗N (PnnHKZ). We
perform this analysis in Section 6.1.

1.1. Notation. Throughout, whenever referencing the slice filtration, we will al-
ways mean the “regular” slice filtration of [U].

We will often write simply Q and K to denote the quaternion group Q8 and
Klein four group K4, respectively. We write Z for the central subgroup of Q of
order two generated by z = −1. We write

L = 〈i〉, D = 〈k〉, and R = 〈j〉
for the normal, cyclic subgroups of Q of order 4. We also use the same names for
the images of these subgroups in Q/Z ∼= K. In other words, the subgroup lattices
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of Q8 and K4 are

Q8

L D R

Z

e

K4

L D R

e

Our nomenclature for the order 4 subgroups of Q8 amounts to a choice of isomor-
phism Q/Z ∼= K.

The sign representation of C2 will be denoted σ, and we will write Zσ for the
corresponding C2-module.

1.2. Organization. The paper is organized as follows. In Section 2, we review
the representations of C4, K4, and Q8, as well as Mackey functors over C4 and K4.
Then in Section 3, we introduce three inflation functors from a quotient group G/N
of some finite group G as well as several results that will aid in the calculation of
the slices of ΣnHQ8

HZ. The relevant Q8-Mackey functors and the homology of
ΣkρQ8HQ8

Z are found in Section 4. The slices of ΣnHQ8
Z must restrict to the

appropriate slices of ΣnHC4
Z; thus, we review this information in Section 5. We

provide some slice towers and describe all slices of ΣnHQ8Z in Section 6. We
then compute the homotopy Mackey functors of the slices of ΣnHQ8Z in Section 7.
Finally, we provide some examples of the slice spectral sequence for ΣnHC4

Z and
ΣnHQ8

Z in Section 8.

1.3. Acknowledgements. The authors are very happy to thank Agnes Beaudry,
Michael Geline, Cherry Ng, and Mincong Zeng for a number of helpful discussions.
The spectral sequence charts in Section 8 were created using Hood Chatham’s
spectralsequences package.

2. Background

2.1. Background for C4. The C4-sign representation σC4
is the inflation p∗σC2

of the C2-sign representation along the surjection C4 −→ C2. We will simply write
σ for σC4

. Then the regular representation for C4 splits as

ρC4
= 1⊕ σ ⊕ λ,

where λ is the irreducible 2-dimensional rotation representation of C4. TheRO(C4)-
graded homotopy Mackey functors of HC4

Z are given in [HHR2]. More specifically,
the homotopy Mackey functors of ΣkρC4HC4

Z, ΣkλHC4
Z, and ΣkσHC4

Z are given
in Figures 3 and 6 of [HHR2]. Some C4-Mackey functors that will appear below are
displayed in Table 1. All of these Mackey functors have trivial Weyl-group actions.

2.2. Background for K4. The Klein 4-group K4 = C2 × C2 has three sign rep-
resentations, obtained as the inflation along the three surjections K4 −→ C2. We
denote these three surjections by p1, m, and p2. Then the regular representation
of K4 splits as

ρK4
∼= 1⊕ p∗1σ ⊕m∗σ ⊕ p∗2σ.

Some K4-Mackey functors that will appear below are displayed in Table 2.
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Table 1. Some C4-Mackey functors

� = Z ∗ = Z∗ Z(2, 1) ◦ = B(2, 0)

Z

Z

Z

1

1

2

2
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Z

Z

2

2
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The “gap”

Figure 1. The homotopy Mackey functors of
∨
n ΣnρHK4

Z. The
Mackey functor πkΣnρHK4

Z appears in position (k, 4n− k).

The homotopy Mackey functors of ΣnρHKZ were computed in [S1, Section 9].
They are displayed in Figure 1. The homotopy Mackey functors of ΣnρHKF2 were
computed in [GY, Section 7]. They are displayed in Figure 2.
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Table 2. Some K4-Mackey functors

� = Z ∗ = Z∗ Z(2, 1)

Z

Z Z Z

Z

1
1

1

1

2

1

2
2

12
2

2

Z

Z Z Z

Z

2
2

2

2

1

2

1
1

21
1

1

Z

Z Z Z

Z

2
2

2

1

1

1

1
1

12
2

2

� = F2 ∗ = F2
∗ ◦ = B(2, 0)

F2

F2 F2 F2

F2

1
1

1

1 1 1

F2

F2 F2 F2

F2

1
1

1

1
1

1

Z/4

Z/2 Z/2 Z/2

0

1
1

12
2

2

= φ∗LDR(F2) ∗ = φ∗LDR(F2)∗ φ∗LDR(f)

F3
2

F2 F2 F2

0

p1
p2

p3

F3
2

F2 F2 F2

0

ι1
ι2

ι3

0

F2 F2 F2

0

= mg ∗ = mg∗ • = g

F2
2

F2 F2 F2

0

p1
∇

p2

F2
2

F2 F2 F2

0

ι1
∆

ι2

F2

0 0 0

0

m m∗

F2

F2 F2 F2

0

1
1

1

F2

F2 F2 F2

0

1
1

1

w w∗

0

F2 F2 F2

F2

1
1

1

0

F2 F2 F2

F2

1
1

1
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Figure 2. The homotopy Mackey functors of
∨
n ΣnρHK4F2.

The Mackey functor πkΣnρHK4F2 appears in position (k, 4n− k).

2.3. Background for Q8. The regular representation of Q splits as

ρQ ∼= H⊕ ρK ,
where H is the 4-dimensional irreducible Q8-representation given by the action of
the unit quaternions on the algebra of quaternions and ρK is the regular represen-
tation of K, inflated to Q along the quotient.

Denoting by C4 any of the subgroups L, D, or R of Q8, we have that

↓Q8

C4
ρK = 2 + 2σ and ↓Q8

C4
H = 2λ.

3. Inflation functors

3.1. Inflation and the projection formula. Let N E G be a normal subgroup
and q : G −→ G/N the quotient map. Recall that there is an induced adjunction

SpG/N SpG
q∗

(−)N

where the pullback functor q∗, called inflation, is strong symmetric monoidal. We
will also need a description of the N -fixed points of an Eilenberg-Mac Lane G-
spectrum. First note that there is a functor

(3.1) Mack(G)
q∗−→Mack(G/N)

given by

q∗(M)(H) = M(H),
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where H = H/N ≤ G/N whenever N ≤ H. The functor q∗ is denoted β! in
[TW, Lemma 5.4]. Then the homotopy Mackey functors of the N -fixed points of a
G-spectrum X are given by

(3.2) πn(XN ) ∼= q∗πn(X).

In the case of an Eilenberg-Mac Lane spectrum this yields an equivalence

(HGM)N ' HG/N (q∗M).

The following result will be quite useful.

Proposition 3.3. [HK, Lemma 2.13] [BDS, Proposition 2.15] (Projection formula)
Let N E G be a normal subgroup and q : G −→ G/N be the quotient map. Then

for X ∈ SpG/N and Y ∈ SpG, there is a natural equivalence of G/N -spectra

(q∗X ∧ Y )N ' X ∧ Y N .

We will frequently employ this in the case thatX = SV for someG/N -representation
V and Y = HGM for some G-Mackey functor M . Then the projection formula
reads

(3.4) (Sq
∗V ∧HGM)N ' SV ∧HG/N (q∗M).

See also [Z1, Corollary 5.8]

3.2. Geometric fixed points. For a normal subgroup NEG, we define the family
of subgroups F [N ] of G to consist of those subgroups that do not contain N . Recall
that the N -geometric fixed points spectrum of a G-spectrum is defined as

ΦN (X) =
(
ẼF [N ] ∧X

)N
.

This notation is simultaneously used to denote the resulting G/N -spectrum as well
as the underlying spectrum. The N -geometric fixed points has a right adjoint, given
by the geometric inflation functor

φ∗N (Z) = ẼF [N ] ∧ q∗Z.
To sum up, we have an adjunction

SpG SpG/N .
ΦN

φ∗
N

3.3. Bottleneck subgroups. The subgroup ZEQ plays an important role in this
article. The primary reason is that it satisfies the following property.

Definition 3.5. We say that N EG is a bottleneck subgroup if it is a nontrivial,
proper subgroup such that, for any subgroup H ≤ G, either H contains N or N
contains H.

We now demonstrate that bottleneck subgroups only occur in cyclic p-groups or
quaternion groups. The following argument was sketched to us by Mike Geline.

Proposition 3.6. Let N EG be a bottleneck subgroup of G. Then N is cyclic, and
G is either a cyclic p-group or a generalized quaternion group.
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Proof. We will refer to a subgroup H ≤ G which neither contains N nor is contained
in N as “adjacent” to N . The assumption that N is a bottleneck subgroup means
precisely that G has no subgroups that are adjacent to N . To see that N must be
cyclic, note that if g is not in N , then N ≤ 〈g〉, which implies that N is cyclic.

We next observe that G is necessarily a p-group. This is because if N is contained
in some Sylow p-subgroup, then any Sylow q-subgroup, for a different prime q, would
be adjacent. It follows that N contains all of the Sylow subgroups and therefore is
all of G.

Next, we recall [B, Theorem 4.3] that for a p-groupG, the group contains a unique
subgroup of order p if and only if G is either cyclic or generalized quaternion. So
we will argue that G contains a unique subgroup of order p. The first step is to
note that G cannot contain a subgroup isomorphic to Cp × Cp. This is because
such a subgroup would necessarily contain N . This would imply that N ∼= Cp, and
then N would have a complement in Cp×Cp, which would be a subgroup adjacent
to N in G.

Finally, note that the center Z(G) contains a subgroup of order p. If G has
another subgroup of order p, these two would generate a Cp×Cp, contradicting the
previous step. �
Remark 3.7. It follows from Proposition 3.6 that if NEG is a bottleneck subgroup,
then G/N is either a cyclic p-group or a dihedral 2-group.

If N E G is a bottleneck subgroup, then geometric fixed points with respect to
G can be computed in terms of geometric fixed points with respect to the quotient
group G/N .

Proposition 3.8. Let N E G be a bottleneck subgroup. Then ΦGX ' ΦG/NXN

for any X ∈ SpG.

Proof. If N EG is a bottleneck subgroup, then q∗ẼPG/N ' ẼPG. Thus

ΦGX = (ẼPG ∧X)G ' ((q∗ẼPG/N ∧X)N )G/N .

By the Projection Formula (Proposition 3.3), this is equivalent to

(ẼPG/N ∧XN )G/N = ΦG/NXN . �
Proposition 3.8 also follows from the more general [K, Proposition 9].

3.4. Inflation for Z-modules. Given a surjection q : G −→ G/N , the inflation
functor

φ∗N : Mack(G/N) −→Mack(G)

does not send Z-modules for G/N to Z-modules for G. We now describe a modified
inflation functor that exists at the level of Z-modules. This functor previously
appeared in [Z1, Section 3.2] and [BG, Section 3.10].

Definition 3.9. Let BZG ⊂ ModZ[G] denote the full subcategory of permutation
G-modules. Recall [Z1, Proposition 2.15] that ZG-modules correspond to additive
functors BZopG −→ Ab. Then the Z-module inflation functor

Ψ∗N : ModZG/N
−→ ModZG

is defined to be the left Kan extension along the inflation functor BZG/N −→ BZG.

The following is an immediate corollary of the definition as a left Kan extension.
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Proposition 3.10. The functor Ψ∗N is left adjoint to the functor q∗ : ModZG
−→

ModZG/N
, defined as in (3.1).

Proposition 3.11 ([BG, (3.11)]). For M ∈ ModZG/N
, the ZG-module Ψ∗N (M)

satisfies

(1) q∗ (Ψ∗N (M)) is M and
(2) ↓GN (Ψ∗N (M)) is the constant Mackey funtor at M(e).

Note that Proposition 3.11 completely describes Ψ∗N (M) if N is a bottleneck
subgroup. The following result states that Z-module inflation agrees with ordinary
inflation on geometric Mackey functors.

Proposition 3.12. Let M ∈ ModZG/N
, and let N EG be a bottleneck subgroup. If

M(e) = 0, then Ψ∗NM
∼= φ∗NM .

Proof. This follows immediately from Proposition 3.11. �

Remark 3.13. Note that Proposition 3.12 is not true without the bottleneck hy-
pothesis. For instance, in the case N = C3 E Σ3, then ↓Σ3

C2

(
Ψ∗C3

M
) ∼= M . In

particular, it is not true that Ψ∗C3
M is concentrated over N = C3.

We now discuss the extension to equivariant spectra.

Proposition 3.14. The N -fixed points functor

(−)N : ModHGZ −→ ModHG/NZ

for HZ-modules has a left adjoint

Ψ∗N : ModHG/NZ −→ ModHGZ .

If N EG is a bottleneck subgroup, then the spectrum-level functor Ψ∗N extends the
functor Ψ∗N of Definition 3.9, in the sense that

(3.15) Ψ∗NHG/NM ' HG(Ψ∗NM)

for M in ModZG/N
.

Proof. For an HG/NZ-module X, the inflation q∗X is canonically a module over
q∗HG/NZ. We then define the spectrum-level functor Ψ∗N by the formula

Ψ∗NX = HZ ∧q∗HZ (q∗X).

We leave it to the reader to verify that this is indeed left adjoint to the N -fixed
points functor.

To see that (3.15) holds, we show first that this holds on the indecomposable

projective ZG/N -modules. These are of the form ↑G/NK/N Z, and the diagram of

commuting adjoint functors

ModHG/NZ ModHGZ

ModHK/NZ ModHKZ

↓G/N

K/N

Ψ∗
N

↓GK

(−)N

↑G/N

K/N

Ψ∗
N

(−)N

↑GK

shows that

Ψ∗N

(
HG/N ↑G/NK/N Z

)
' ↑GK Ψ∗N (HK/NZ) ' ↑GK HKZ ' HG ↑GK Z ' HG Ψ∗N

(
↑G/NK/N Z

)
.
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Since the functor Ψ∗N : ModZG/N
−→ ModZG

is exact [Z1, Lemma 3.14], it follows

that if ModZG/N
has finite global projective dimension, then (3.15) will hold for any

ZG/N -module M . By [BSW, Theorem 1.7], this is the case precisely when G/N is
as described in Remark 3.7. �

Example 3.16. Let X ∈ SpG/N and M ∈Mack(G/N), with M(e) = 0. Again as-
sume that N is a bottleneck subgroup. Then Proposition 3.12 and Proposition 3.14
give that

Ψ∗N (X ∧HG/NM) ' q∗(X) ∧Ψ∗N (HG/NM) ' q∗(X) ∧ φ∗NHG/NM

' φ∗N (X ∧HG/NM).

We will employ this equivalence when X is a representation sphere.

Proposition 3.17. Let N E G be a bottleneck subgroup. Then for any G/N -
representation V and ZG/N -module L, we have

πn
(
Ψ∗NΣVHG/NL

) ∼= Ψ∗Nπn
(
ΣVHG/NL

)
.

Proof. Let us write X = Ψ∗NΣVHG/NL ' Σq
∗VHGΨ∗NL. Since N is a bottleneck

subgroup, it is enough to describe ↓GN πnX and q∗πnX. Now

↓GN πnX
∼= πn ↓GN X = πnΣdimVHNL(N/N).

This is a constant Mackey functor. On the other hand, by (3.2) and (3.4), we have

q∗πnX
∼= πn(XN ) ∼= πn(ΣVHG/NL).

By Proposition 3.11, this agrees with Ψ∗Nπn
(
ΣVHG/NL

)
. �

More generally, we have an extension of Proposition 3.12 to HZ-modules:

Proposition 3.18. Let X ∈ ModHZG/N
and let N E G be a bottleneck subgroup.

If the underlying spectrum ↓G/Ne X is contractible, then Ψ∗N (X) ' φ∗NX.

Proof. If the underlying spectrum of X is contractible, then X ' ˜E(G/N)∧X. The
assumption that N is a bottleneck subgroup implies that E(G/N) = q∗(E(G/N))

is the universal space for the family of subgroups of N , so that ˜E(G/N)∧ ẼF [N ] '
˜E(G/N) and it follows that

q∗X ' ˜E(G/N) ∧ q∗X ' ˜E(G/N) ∧ φ∗N (X) ' φ∗NX.
Now

Ψ∗N (X) = HGZ ∧q∗HG/NZ q
∗(X)

' HGZ ∧q∗HG/NZ ( ˜E(G/N) ∧ q∗(X)).

Since ˜E(G/N) is smash idempotent, this can be rewritten as

Ψ∗N (X) ' ˜E(G/N) ∧HGZ ∧ ˜E(G/N)∧q∗HG/NZ
˜E(G/N) ∧ q∗(X).

It remains only to show that

˜E(G/N) ∧HGZ ' ˜E(G/N) ∧ q∗HG/NZ.
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Both sides restrict trivially to an N -equivariant spectrum, so it suffices to show an
equivalence on ΦH , where H properly contains N . Without loss of generality, we

may suppose H = G. Since ΦG( ˜E(G/N)) ' S0, it suffices to show that

ΦGHGZ ' ΦGq∗HG/NZ.

According to Proposition 3.8, the left side is ΦG/NHG/NZ. Similarly, Proposi-
tion 3.8 and the Projection Formula (Proposition 3.3) show that the right side
is

ΦGq∗HG/NZ ' ΦG/N
(
HG/NZ ∧ (S0

G)N
)

' ΦG/NHG/NZ ∧ ΦG/N (S0
G)N

' ΦG/NHG/NZ.

�

Theorem 3.19. Let n ≥ 0 and let N E G be a bottleneck subgroup of order p, a
prime. Let M ∈ ModZG/N

such that PnnΣnHG/NM is of the form ΣVHG/NL, for

some G/N -representation V and L ∈ ModZG/N
. Then the nontrivial slices of the

Eilenberg-Mac Lane G-spectrum ΣnHG(Ψ∗NM), above level pn, are

P pkpk (ΣnHG(Ψ∗NM)) ' Ψ∗NP
k
k

(
ΣnHG/NM

)
' φ∗NP kk

(
ΣnHG/NM

)
for k > n. Furthermore,

P pkn (ΣnHG(Ψ∗NM)) ' Ψ∗NP
k
n

(
ΣnHG/NM

)
.

Proof. Applying the functor Ψ∗N to the slice tower for ΣnHG/NM produces a

tower of fibrations whose layers are Ψ∗NP
k
k

(
ΣnHG/NM

)
for k ≥ n. We wish to

show that this is a partial slice tower for ΣnHG(Ψ∗NM). For k > n, the k-slice
P kk
(
ΣnHG/NM

)
has trivial underlying spectrum. It follows from Proposition 3.18

that

Ψ∗NP
k
k

(
ΣnHG/NM

)
' φ∗NP kk

(
ΣnHG/NM

)
for k > n. As the geometric inflation of a k-slice, this is a pk-slice.

It remains to show that

Ψ∗NP
n
n

(
ΣnHG/NM

)
' Ψ∗NΣVHG/NL ' ΣVHGΨ∗NL

has no slices above level pn. First, note that the restriction of ΣVHGΨ∗NL to N
is the N -spectrum ΣnHNL(N), where L(N) is being considered as a constant N -

Mackey functor at the value L(G/N). It follows that this N -spectrum has no slices
above dimension |N | · n = pn. Therefore, to show that ΣVHGΨ∗NL is less than pn,
it suffices to show that

[G+ ∧H SkρH+r,ΣVHGΨ∗NL]G = 0

for any N < H ≤ G and integers r ≥ 0 and k such that k|H| > pn. Without loss
of generality we consider the case H = G.

Denote by U a complement of ρG/N in ρG, so that

ρG ∼= ρG/N ⊕ U.
We then have a cofiber sequence

S(kU)+ ∧ SkρG/N −→ SkρG/N −→ SkρG
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and a resulting exact sequence

[Σ1S(kU)+ ∧ SkρG/N+r,ΣVHGΨ∗NL]G −→ [SkρG+r,ΣVHGΨ∗NL]G

−→ [SkρG/N+r,ΣVHGΨ∗NL]G = 0.

We must show that the left term vanishes. Note that the G-action on S(kU) is
free, since N is order p. Then the desired vanishing follows from the fact that
Σ1S(kU)+ ∧ SkρG/N−V is G-connected, since dim kρG/N > dimV = n. �

4. Q8-Mackey functors and Bredon homology

We display a number of the Q8-Mackey functors that will be relevant in Table 3.
In these Lewis diagrams, we are using the subgroup lattice of Q8 as displayed in
Section 1.1. We will also often abuse notation and write the name for a K4-Mackey
functor, such as m or mg, to denote the resulting inflated Q8-Mackey functor. We
will only write the symbol φ∗Z when it is necessary to resolve an ambiguity, for
instance between φ∗ZF2 and F2.

In [HHR3, Section 2.1], the authors introduce “forms of Z” Mackey functors
Z(i, j), where i ≥ j ≥ 0, in the case of G = Cpn . From our point of view, Q8

behaves very similarly to C8, and we similarly write Z(i, j) for the Mackey func-
tor that looks like Z∗ between the subgroups of order 2i and 2j and looks like Z
outside of this range. We will at times follow [HHR3] in denoting by B(i, j) the
cokernel of Z(i, j) ↪→ Z, although we will often instead use the descriptions given
in Proposition 4.1.

These Mackey functors fit together in exact sequences as follows:

Proposition 4.1. There are exact sequences of Mackey functors

(1) Z(3, 2) ↪→ Z� g
(2) Z(3, 1) ↪→ Z� φ∗ZB(2, 0)
(3) Z(3, 1) ↪→ Z(3, 2)� m∗

(4) Z(2, 1) ↪→ Z� m
(5) Z(1, 0) ↪→ Z� φ∗ZF2

(6) Z∗ ↪→ Z� B(3, 0)
(7) mg ↪→ mgw � w.

4.1. RO(Q8)-graded Mackey functor Z-homology of a point. We will now
compute the homology of SkρQ , with coefficients in Z, as a Mackey functor. The
starting point is that the regular representation of Q splits as

ρQ ∼= H⊕ ρK ,

where H is the 4-dimensional irreducible Q-representation given by the action of the
unit quaternions on the algebra of quaternions and ρK is the regular representation
of K, inflated to Q along the quotient. We begin by computing the homology of
SkH. See also [L, Section 2] for an alternative viewpoint.

First, Proposition 3.3 and [S1, Proposition 9.1] combine to yield the following.
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Table 3. Some Q8-Mackey functors

� = Z ∗ = Z∗ ◦ = B(3, 0)

Z

Z Z Z

Z

Z

1
1

1

1

2

1

2
2

1

1

2
2

2

2

Z

Z Z Z

Z

Z

2
2

2

2

1

2

1
1

2

2

1
1

1

1

Z/8

Z/4 Z/4 Z/4

Z/2

0

1
1

1

1

2

1

2
2

12
2

2

Z(3, 2) = Ψ∗ZZ(2, 1) Z(3, 1) = Ψ∗ZZ
∗ = φ∗Z(B(2, 0))

Z

Z Z Z

Z

Z

2
2

2

1

1

1

1
1

1

1

2
2

2

2

Z

Z Z Z

Z

Z

2
2

2

2

1

2

1
1

2

1

1
1

1

2

Z/4

Z/2 Z/2 Z/2

0

0

2
2

2

= φ∗ZF2
∗

= φ∗ZF2
∗ = mgw

F2

F2 F2 F2

F2

0

1
1

1

1
1

1

F2

F2 F2 F2

F2

0

1
1

1

1
1

1

F2
2

Zσ/4 Zσ/4 Zσ/4

Z/2

0

2p1

2∇
2p2i2q

∆q

i1q

2
2

2

Proposition 4.2. For k ≥ 0, the nontrivial homotopy Mackey functors of ΣkρKHQZ
are

πn
(
ΣkρKHQZ

) ∼=


Z n = 4k

mg n = 4k − 2

g
1
2 (4k−n−1) n ∈ [2k, 4k − 3], n odd

g
1
2 (4k−n−4) ⊕ φ∗LDRF2 n ∈ [2k, 4k − 3], n even

gn−k+1 n ∈ [k, 2k − 1].
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Next, we employ the cofiber sequence

(4.3) S(H)+ −→ S0 −→ SH

to obtain the homology of SρQ from that of SρK .

e
i

zi

j

zj

k

zk

X iXziXzX

kX jX

zkY

zjX

Y

jY

zjY

zY

iY
kY

ziY

zkY

Z

iZ

jZ

zZ

kZ

ziZ

zjZ

zkZ

Figure 3. The 1-skeleton of S(H).

Proposition 4.4. The nontrivial homotopy Mackey functors of S(H) ∧HQZ are

πn (S(H)+ ∧HQZ) ∼=


Z n = 3

mgw n = 1

Z∗ n = 0.

Proof. Since the action of Q on S(H) is free, we can write down an equivariant cell
structure using only free cells. Viewing S(H) as the one-point compactification of
R3, there is a straight-forward cell structure in which the subgroups L, D, and R act
freely on the x, y, and z-axes, respectively. We display the 1-skeleton in Figure 3,
and the cell structure is described by the following complex of Z[Q]-modules:

Z[Q]2


e j
−e −i
e k
−e −e


−−−−−−→ Z[Q]4

 k e e k
−e −e i i
e −j −e j


−−−−−−−−−−→ Z[Q]3

(i−e j−e k−e)−−−−−−−−−−→ Z[Q].

This yields an associated complex of induced Mackey functors

Z[Q]
2 −→ Z[Q]

4 −→ Z[Q]
3 −→ Z[Q]
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leading to the claimed homology Mackey functors. �

Remark 4.5. A smaller chain complex for computing the homology of S(H) is
given by

Z[Q]

(
i− e
e− k

)
−−−−→ Z[Q]2

(
e+ i e+ k
−e− j −e+ i

)
−−−−−−−−−→ Z[Q]2

(i−e j−e)−−−−−−→ Z[Q].

We gave a less efficient chain complex in the proof of Proposition 4.4 for geometric
reasons.

Using (4.3), this immediately yields the following.

Corollary 4.6. The nontrivial homotopy Mackey functors of ΣHHQZ are

πn
(
ΣHHQZ

) ∼=

Z n = 4

mgw n = 2

B(3, 0) n = 0.

We will use this to compute the homology of SρQ , using the following periodicity
result.

Proposition 4.7 ([W, Proposition 4.1]). For any orientable representation V of
dimension d and free Q-space X, the orientation uV ∈ Hd(S

V ;Z) induces an equiv-
alence

ΣdX+ ∧HQZ ' ΣVX+ ∧HQZ

We now compute the homology of SρQ .

Proposition 4.8. The nontrivial homotopy Mackey functors of ΣρQHQZ are

πn (ΣρQHQZ) ∼=



Z n = 8

mgw n = 6

B(3, 0) n = 4

mg n = 2

g n = 1.

Proof. The representation ρK is orientable. For example, using the basis {1, i, j, k}
for ρK = R[K], the matrix ρK(i) is given by

ρK(i) =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,

which has determinant equal to 1. By Proposition 4.7, we have

πn (S(H)+ ∧ ΣρKHQZ) ∼=


Z n = 7

mgw n = 5

Z∗ n = 4.

The result then follows from the cofiber sequence

S(H)+ ∧ ΣρKHQZ −→ ΣρKHQZ −→ ΣρQHQZ.
�

Corollary 4.6 generalizes as follows.



THE SLICES OF QUATERNIONIC EILENBERG-MAC LANE SPECTRA 17

Proposition 4.9. The nontrivial homotopy Mackey functors of ΣkHHQZ, for k > 0
are

πn
(
ΣkHHQZ

) ∼=

Z n = 4k

mgw 0 < n < 4k, n ≡ 2 (mod 4)

B(3, 0) 0 ≤ n < 4k, n ≡ 0 (mod 4).

Proof. This follows by induction, using the cofiber sequence

S(H)+ ∧ S(k−1)H −→ S(k−1)H −→ SkH

and Proposition 4.7. The latter applies since H, and therefore also (k − 1)H, is
orientable. �

Combining this with the cofiber sequence

S(kH)+ ∧ ΣkρKHQZ −→ ΣkρKHQZ −→ ΣkρQHQZ
and Proposition 4.7 gives the following result.

Proposition 4.10. The nontrivial homotopy Mackey functors of ΣkρQHQZ, for
k > 0, are

πn
(
ΣkρQHQZ

) ∼=

Z n = 8k

mgw 4k < n < 8k, n ≡ 2 (mod 4)

B(3, 0) 4k ≤ n < 8k, n ≡ 0 (mod 4)

φ∗Zπn
(
ΣkρKHKZ

)
n < 4k,

where the latter Mackey functors are listed in Proposition 4.2.

The homotopy Mackey functors of ΣkρQHQZ are displayed in Figure 4. When
k is negative, the computation follows the same strategy. The initial input, which
can again be computed using the chain complex given in Proposition 4.4, is that

(4.11) Hn(S(H);Z) ∼= π−n
(
F
(
S(H)+, HQZ

)) ∼=

Z∗ n = 3

mgw n = 2

Z n = 0.

Using this and [S1, Proposition 9.2] leads to the following answer.

Proposition 4.12. The nontrivial homotopy Mackey functors of Σ−kρQHQZ, for
k > 0, are

π−n
(
Σ−kρQHQZ

) ∼=



Z∗ n = 8k

mgw n ∈ [4k, 8k], n ≡ 3 (mod 4)

B(3, 0) n ∈ [4k + 5, 8k], n ≡ 1 (mod 4)

φ∗ZB(2, 0) n = 4k + 1

mg∗ n = 4k − 1

g
4k−n

2 n ∈ [2k + 4, 4k − 2], n ≡ 0 (mod 2)

g
4k−n−3

2 ⊕ φ∗LDRF2
∗ n ∈ [2k + 3, 4k − 2], n ≡ 1 (mod 2)

gn−k−3 n ∈ [k + 4, 2k + 2].

Remark 4.13. The “Gap Theorem” [HHR1, Proposition 3.20] predicts that the
groups πQn Σ−kρHZ vanish for k ≥ 0 and n ∈ [−3,−1], as indicated in Figure 4.
Actually, for k ≥ 2 the argument there proves more. It tells us that for k ≥ 2, the
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cohomology groups Hn
Q(Skρ;M) vanish for positive n ≤ k + 1. This is equivalent

to saying that πQ−nΣ−kρHM vanishes, with the same conditions on k and n.

4.2. Additional homology calculations. We will also need the following auxil-
iary calculations in Section 6.

Proposition 4.14. The nontrivial homotopy Mackey functors of ΣρK−HHQZ are

πn
(
ΣρK−HHQZ

) ∼= {φ∗ZF2 n = 1

Z∗ n = 0.

Proof. The fiber sequence

ΣρK−HHQZ −→ ΣρKHQZ −→ F (S(H)+,Σ
ρKHQZ) ' Σ4F (S(H)+, HQZ)

yields an isomorphism π0

(
ΣρK−HHQZ

) ∼= Z∗ and shows that the homotopy van-
ishes for n outside of [0, 2]. Given that the restriction to any C4, which is the
C4-spectrum Σ2+2σ−2λHC4Z, has a trivial π2 [Z1, Theorem 6.10], the long exact
sequence further shows that π2 vanishes as well, and it implies that we have an
extension

w ↪→ π1

(
ΣρK−HHQZ

)
� g.

It remains to show this is not the split extension. The fiber sequence

↑QD Σ1+2σ−2λHC4
Z −→ Σ1+p∗1σ+p∗2σ−HHQZ −→ ΣρK−HHQZ

shows that π1

(
ΣρK−HHQZ

)
injects into

π0

(
↑QD Σ1+2σ−2λHC4

Z
)
∼=↑QD φ∗C2

F2.

It follows that π1

(
ΣρK−HHQZ

) ∼= φ∗ZF2 �

Proposition 4.15. The nontrivial homotopy Mackey functors of ΣρK−HHQZ(3, 2)
are

πn
(
ΣρK−HHQZ(3, 2)

) ∼= {w n = 1

Z∗ n = 0.

Proof. The short exact sequence

Z(3, 2) ↪→ Z� g

gives rise to a cofiber sequence

ΣρK−HHQZ(3, 2) −→ ΣρK−HHQZ −→ ΣρK−HHQg ' Σ1HQg.

Using a naturality square, the second map factors as

ΣρK−HHQZ −→ ΣρKHQZ −→ Σ1HQg,

where the first map is an epimorphism on π1 by the proof of Proposition 4.14 and
the second is an isomorphism on π1. The conclusion follows. �

Proposition 4.16. The nontrivial homotopy Mackey functors of ΣH−ρKHQZ(2, 0)
are

πn
(
ΣH−ρKHQZ(2, 0)

) ∼= {Z n = 0

w∗ n = −2.
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Figure 4. The homotopy Mackey functors of
∨
n ΣnρHQZ. The

Mackey functor πkΣnρHQZ appears in position (k, 8n− k).

Proof. This follows from Proposition 4.15 by duality. In more detail, Proposi-
tion 4.15 gives a fiber sequence

Σ1HQw −→ ΣρK−HHQZ(3, 2) −→ HQZ∗.

Applying Anderson duality (see [S1, Section 2.2]) gives a fiber sequence

I(Σ1HQw)←− I
(
ΣρK−HHQZ(3, 2)

)
←− I(HQZ∗),

or in other words

Σ−1I(HQw)←− ΣH−ρKHQZ(2, 0)←− HQZ.

But as the Mackey functor w is torsion, the Anderson dual is the desuspension of the
Brown-Comenetz dual. In other words, I(HQw) ' Σ−1IQ/ZHQw ' Σ−1HQw

∗. �

5. Review of the C4-slices of ΣnHZ

In this section, we review the slices of ΣnHC4
Z from [Y1]. Note that the slices

as listed in [Y1] are written using the classical slice filtration, whereas we use the
regular slice filtration. The only difference is a suspension by one. The Mackey
functors that appear here were introduced in Table 1.

According to [Y1, Section 4.2], the C4-spectrum ΣnHC4Z is an n-slice for 0 ≤
n ≤ 4. For n ≥ 5, ΣnHC4

Z has a nontrivial slice tower. Yarnall’s method for deter-
mining these slice towers is to splice together suspensions of the cofiber sequences

Σ−1HC4
g −→ Σ2HC4

Z −→ Σ2σHC4
Z,
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Σ−1HC4
φ∗C2

F2
∗ −→ Σ2HC4

Z −→ ΣλHC4
Z(2, 1),

and

Σ−1HC4
B(2, 0) −→ Σ2HC4

Z −→ ΣλHC4
Z

in combination with the equivalences

Σ2HC4
Z ' Σ2σHC4

Z(2, 1)

and

Σ−1HC4φ
∗
C2

F2
∗ ' Σ−σHC4φ

∗
C2
f ' Σ1−2σHC4φ

∗
C2

F2.

We first review these slices for odd n.

Proposition 5.1. [Y1, Theorem 4.2.6] Let n ≥ 5 be odd. The bottom slice of
ΣnHC4

Z is

Pnn (ΣnHC4
Z) '


Σ

n−5
4 ρ+4+σHC4

Z n ≡ 1 (mod 8)

Σ
n−3
4 ρ+3HC4

Z n ≡ 3 (mod 8)

Σ
n−5
4 ρ+3+2σHC4Z n ≡ 5 (mod 8)

Σ
n−3
4 ρ+2+σHC4

Z n ≡ 7 (mod 8).

Proposition 5.2. [Y1, Lemma 4.2.5] Let n ≥ 5 be odd. The nontrivial 4k-slices
of ΣnHC4

Z are

P 4k
4k (ΣnHC4

Z) '


ΣkρHC4B(2, 0) 4k ∈ [n+ 1, 2(n− 3)], k even
ΣkρHC4

φ∗f 4k ∈ [n+ 1, 2(n− 3)], k odd
ΣkρHC4

g 4k ∈ [2(n− 1), 4(n− 3)], k even.

The 4k-slices can also be read off of [HHR2, Figure 3]. When n is odd, these are
the only nontrivial slices of ΣnHC4

Z.
We now recall the slices of ΣnHC4

Z for even n.

Proposition 5.3. [Y1, Theorem 4.2.9] Let n ≥ 6 be even. The bottom slice of
ΣnHC4

Z is

Pnn (ΣnHC4
Z) '


Σ

n−4
4 ρ+3+σHC4

Z n ≡ 0 (mod 8)

Σ
n−6
4 ρ+3+3σHC4

Z n ≡ 2 (mod 8)

Σ
n−4
4 ρ+4HC4Z n ≡ 4 (mod 8)

Σ
n−6
4 ρ+4+2σHC4

Z n ≡ 6 (mod 8).

Proposition 5.4. [Y1, Lemma 4.2.7] Let n ≥ 6 be even. The nontrivial 4k-slices
of ΣnHC4

Z are

P 4k
4k (ΣnHC4

Z) ' ΣkHC4
g, k odd

for 4k in the range [n+ 2, 4n− 12].

Again, the 4k-slices can also be read off of [HHR2, Figure 3].

Proposition 5.5. [Y1, Theorem 4.2.9] Let n ≥ 6 be even. The (4k + 2)-slices of
ΣnHC4

Z are

P 8k+2
8k+2 (ΣnHC4

Z) ' Σ1+2kρHφ∗F2

P 8k+6
8k+6 (ΣnHC4Z) ' Σ3+2kρHφ∗F2.

for 8k + 2 or 8k + 6 in the range [n+ 2, 2n− 6]
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We may also view these slices through the perspective of the Z-module inflation
functor. By Theorem 3.19,

Ψ∗C2
: ModHC2

Z −→ ModHC4
Z

will provide all slices of ΣnHC4
above level 2n. Let r ≡ n (mod 4) with 3 ≤ r ≤ 6.

It follows from [S1, Proposition 3.5] that the slices of ΣnHC4Z in level at least
2n+ 2r − 4 are

P 4k
4k (ΣnHC4

Z) ' Ψ∗C2
ΣkHC2

g ' ΣkHC4
g

for 4k ∈ [2n+ 2r− 4, 4(n− 3)]. The rest of the slices then follow from determining
the slices of

Ψ∗C2
Σ

n−r
2 ρC2

+rHC2
Z ' Σ

n+r
2 + n−r

2 σHC4
Z.

The slice tower for this C4-spectrum can be found by splicing together the cofiber
sequences listed at the start of this section.

6. Q8-slices

The slices of ΣnHKZ were determined by the second author in [S1, Section 8].
As stated in Theorem 3.19, it follows that the Z-module inflation functor

Ψ∗Z : ModHKZ −→ ModHQZ

of Proposition 3.14 will produce all slices of ΣnHQZ in degree larger than 2n, as
the inflation of the slices of ΣnHKZ above degree n.

The remaining slices of ΣnHQZ will be given as the slices of Ψ∗Z (Pnn (ΣnHKZ)).
By [S1, Proposition 8.5], these are of the form

Ψ∗Z

(
Σr+jρKHKZ

)
' Σr+jρKHQZ,

where r ∈ {3, 4, 5}, if n 6≡ 2 (mod 4). In the case n ≡ 2 (mod 4), the same result
states that this is

Ψ∗Z

(
Σ2+jρKHKZ(1, 0)

)
' Σ2+jρKHQZ(2, 1).

But the cofiber sequence (Proposition 4.1)

(6.1) Σ1+jρKHQm −→ Σ2+jρKHQZ(2, 1) −→ Σ2+jρKHQZ

reduces the computation of slices of Σ2+jρKHQZ(2, 1) to the question of the slice
tower for Σ2+jρKHQZ, given that Σ1+jρKHQm ' φ∗Z(Σ1+jρKHKm) is an 8j+4-slice
[S1, Proposition 5.7]. We determine the slices of Σr+jρKHQZ, for r ∈ {2, . . . , 5} in
Section 6.1.

6.1. Slice towers for Σr+jρKHQZ. The K4-spectrum Σr+jρKHKZ is an n-slice
for r ∈ {2, . . . , 5} [S1, Proposition 7.1]. However, the inflation of this to Q8 is no
longer a slice. We here determine the slice towers of these inflations. Throughout,
we will implicitly use Proposition 6.6, which does not rely on the following material.
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6.1.1. (r = 2). First, we observe that Σ2+ρKHQZ is a 6-slice. To see this we first
note that it restricts to a 6-slice at every proper subgroup by Proposition 5.3. It
therefore remains only to show that it does not have any 8k-slices for k ≥ 1. This
is equivalent to showing that π−2

(
ΣρK−kρQHQZ

)
vanishes for k ≥ 1. In the case

k = 1, (4.11) shows that Σ−HHQZ is (−3)-truncated, in the sense that it has no
homotopy Mackey functors above dimension −3. This remains true after further
desuspending by copies of ρQ.

Next, the tower for Σ2+2ρKHQZ is given by

P 14
14 = Σ−1+2ρQHQw

∗ Σ2+2ρKHQZ

P 12
12 = Σ1+ρQHQm Σ2+ρQHQZ(2, 0)

P 10
10 = Σ2+ρQHQZ(1, 0).

This uses the computation (see Proposition 4.16)

πn
(
ΣH−ρKHQZ(2, 0)

) ∼= {Z n = 0

w∗ n = −2

to produce the first cofiber sequence.
Finally, for j ≥ 3, the tower may be obtained by recursively using

P 8j−2
8j−2 = Σ−1+jρQHQw

∗ Σ2+jρKHQZ

P 8j−4
8j−4 = Σ1+(j−1)ρQHQm Σ2+(j−2)ρK+ρQHQZ(2, 0)

P 8j−6
8j−6 = Σ1+(j−1)ρQHQφ

∗
ZF2 Σ2+(j−2)ρK+ρQHQZ(1, 0)

Σ2+(j−2)ρK+ρQHQZ.

We have proved the following result.

Proposition 6.2. Let j ≥ 1. The bottom slice of Σ2+jρKHQZ is

P 2+4j
2+4j

(
Σ2+jρKHQZ

)
'
{

Σ1+ρK+ j−1
2 ρQHQZ∗ j odd

Σ2+ j
2ρQHQZ j even.

6.1.2. (r = 3). By (4.11), the cohomology of SH is given by

H̃
n
(SH;Z) ∼= π−n

(
Σ−HHQZ

) ∼= {Z∗ n = 4

mgw n = 3.
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Suspending by 3 + ρQ leads to the cofiber sequence

P 8
8 = ΣρQHQmgw Σ3+ρKHQZ

P 7
7 = ΣρQ−1HQZ∗.

The tower for Σ3+jρKHQZ, where j ≥ 2, is then given recursively by

P 8j
8j = ΣjρQHQmgw Σ3+jρKHQZ

Σ(j−1)ρK+ρQ−1HQZ∗

P 8j−4
8j−4 = Σ2+(j−1)ρQHQφ

∗
ZF2 Σ3+(j−2)ρK+ρQHQZ(1, 0)

Σ3+(j−2)ρK+ρQHQZ.

The last cofiber sequence arises from Proposition 4.1. We have proved the following
result.

Proposition 6.3. Let j ≥ 1. The bottom slice of Σ3+jρKHQZ is

P 3+4j
3+4j

(
Σ3+jρKHQZ

)
'
{

Σ−1+ j+1
2 ρQHQZ∗ j odd

Σ3+ j
2ρQHQZ j even.

6.1.3. (r = 4). The tower for Σ4+ρKHQZ is given by

P 12
12 = ΣρQ+1HQmg Σ4+ρKHQZ ' Σ2ρKHQZ(3, 1)

P 10
10 = ΣρQ+1w Σ2ρKHQZ(3, 2)

P 8
8 = ΣρQHQZ∗.

This uses the short exact sequence (Proposition 4.1)

Z(3, 1) ↪→ Z(3, 2)� m∗,

the equivalence ΣρKHKm
∗ ' Σ2HKmg ([GY, Proposition 4.8]), and the computa-

tion (see Proposition 4.15)

πn
(
ΣρK−HHQZ(3, 2)

) ∼= {w n = 1

Z∗ n = 0.
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The tower for Σ4+jρKHQZ, where j ≥ 2, may then be obtained recursively from

P 8j+4
8j+4 = Σ1+jρQHQmg Σ4+jρKHQZ ' Σ(j+1)ρKHQZ(3, 1)

P 8j+2
8j+2 = Σ1+jρQw Σ(j+1)ρKHQZ(3, 2)

Σ(j−1)ρK+ρQHQZ∗

P 8j−2
8j−2 = Σ3+(j−1)ρQHQφ

∗
ZF2 Σ4+(j−2)ρK+ρQHQZ(1, 0)

Σ4+(j−2)ρK+ρQHQZ.

Proposition 6.4. Let j ≥ 1. The bottom slice of Σ4+jρKHQZ is

P 4+4j
4+4j

(
Σ4+jρKHQZ

)
'
{

Σ
j+1
2 ρQHQZ∗ j odd

Σ4+ j
2ρQHQZ j even.

6.1.4. (r = 5). Here, we start with the slice tower for Σ5HQZ, as this is not a slice.
The short exact sequence

Z(3, 1) ↪→ Z� φ∗ZB(2, 0)

gives rise to a cofiber sequence

P 8
8 = ΣρQHQφ

∗
ZB(2, 0) −→ Σ5HQZ ' Σ1+ρKHQZ(3, 1) −→ Σ1+ρKHQZ.

Now the argument showing that Σ2+ρKHQZ is a 6-slice, given above in Section 6.1.1,
also applies to show that Σ1+ρKHQZ is a 5-slice. Thus, this cofiber sequence is the
slice tower for Σ5HQZ.

Next, the tower for Σ5+ρKHQZ is given by

P 16
16 = Σ2ρQHQφ

∗
ZB(2, 0) Σ5+ρKHQZ ' Σ1+2ρKHQZ(3, 1)

P 12
12 = Σ2+ρQHQφ

∗
ZF2 Σ1+2ρKHQZ

P 9
9 = Σ1+ρQHQZ∗,

where the bottom cofiber sequence arises from the computation (Proposition 4.14)

πn
(
ΣρK−HHQZ

) ∼= {φ∗ZF2 n = 1

Z∗ n = 0.
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The tower for Σ5+jρKHQZ, where j ≥ 2, may then be obtained recursively from

P 8j+8
8j+8 = Σ(j+1)ρQHQφ

∗
ZB(2, 0) Σ5+jρKHQZ

Σ1+(j+1)ρKHQZ(3, 1)

P 8j+4
8j+4 = Σ2+jρQHQφ

∗
ZF2 Σ1+(j+1)ρKHQZ

P 8j
8j = ΣjρQHQB(3, 0) Σ1+(j−1)ρK+ρQHQZ∗

Σ1+(j−1)ρK+ρQHQZ.

Proposition 6.5. Let j ≥ 1. The bottom slice of Σ5+jρKHQZ is

P 5+4j
5+4j

(
Σ5+jρKHQZ

)
'
{

Σ1+ j+1
2 ρQHQZ∗ j odd

Σ1+ρK+ j
2ρQHQZ j even.

6.2. Slices of ΣnHQZ. In this section, we describe all slices of ΣnHQZ for n ≥ 0.

Proposition 6.6. The Q8-spectrum ΣnHQZ is an n-slice for 0 ≤ n ≤ 4.

Proof. Since this is true after restricting to any C4 (see Section 5), any higher slices
would necessarily be geometric and therefore occurring in slice dimension at least
8. But we can show directly that ΣnHQZ < 8 if n ∈ [0, 4]. This follows from the
vanishing of πρQΣnHQZ ∼= π−nΣ−ρQHQZ as displayed in Figure 4. �

It remains to determine the slices of ΣnHQZ when n ≥ 5. Note that Theo-
rem 3.19 applies by [S1, Proposition 8.5]. We first describe the bottom slice.

Proposition 6.7 (The n-slice). For n ≥ 5, write n = 8k + r, where r ∈ [5, 12].
Then the n-slice of ΣnHQZ is

Pnn (ΣnHQZ) '



Σ1+ρK+kρQHQZ r = 5

Σ2+ρK+kρQHQZ(3, 2) r = 6

Σ−1+(k+1)ρQHQZ∗ r = 7

Σ(k+1)ρQHQZ∗ r = 8

Σ1+(k+1)ρQHQZ∗ r = 9

Σ2+(k+1)ρQHQZ(1, 0) r = 10

Σ3+(k+1)ρQHQZ r = 11

Σ4+(k+1)ρQHQZ r = 12.

Proof. By Theorem 3.19, the n-slice of ΣnHQZ is the n-slice of the Z-module in-
flation of the n-slice of ΣnHKZ. By [S1, Proposition 8.5], writing n = 4j + r4 with
r4 ∈ {2, 3, 4, 5}, we have

Ψ∗ZP
n
n (ΣnHK4Z) '

{
Σ2+jρKHQZ(2, 1) n ≡ 2 (mod 4)

Σr4+jρKHQZ else.
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If n 6≡ 2 (mod 4), the slice tower was given in Section 6.1. For the case of n ≡ 2,
since Σ1+jρKHQm ' φ∗Z(Σ1+jρKHKm) is an 8j + 4-slice [S1, Proposition 5.7], the
cofiber sequence (Proposition 4.1)

(6.8) Σ1+jρKHQm −→ Σ2+jρKHQZ(2, 1) −→ Σ2+jρKHQZ,

combines with the work of Section 6.1.1 to to show that

Pnn
(
Σ2+jρKHQZ(2, 1)

)
' Pnn

(
Σ2+jρKHQZ

)
.

The latter is given in Proposition 6.2. �

Proposition 6.9 (The 8k-slices). For n ≥ 5 and 8k > n, the 8k-slice of ΣnHQZ
is

P 8k
8k (ΣnHQZ) '



ΣkHQg
n−k−3 8k ∈ [4n− 8, 8n− 32]

ΣkρQHQg
4k−n

2 8k ∈ [2n+ 4, 4n− 16]

and n ≡ 0 (mod 2)

ΣkρQHQg
4k−n−3

2 ⊕ φ∗LDRF2
∗ 8k ∈ [2n+ 4, 4n− 12]

and n ≡ 1 (mod 2)

ΣkρQHQmg
∗ 8k = 2n+ 2

ΣkρQHQφ
∗
ZB(2, 0) 8k = 2n− 2

ΣkρQHQB(3, 0) 8k ∈ [n+ 3, 2n− 10]

and n ≡ 1 (mod 4)

ΣkρQHQmgw 8k ∈ [n+ 1, 2n]

and n ≡ 3 (mod 4).

Proof. This is a translation of Proposition 4.12. Alternatively, the slices above
dimension 2n follow from Theorem 3.19 and [S1, Proposition 8.6]. The slices in
dimensions 2n and lower follow from the towers computed in Section 6.1. �

Proposition 6.10 (The 8k+ 4-slices). For n ≥ 5 and 8k+ 4 > n, the 8k+ 4-slices
of ΣnHQZ are

P 8k+4
8k+4 (ΣnHQZ) '


Σ3+kρQHQφ

∗
LDRF2 8k + 4 ∈ [2n+ 4, 4n− 12], n even

Σ2+kρQHQφ
∗
ZF2 8k + 4 ∈ [n+ 1, 2n− 4], n odd

Σ1+kρQHQm 8k + 4 ∈ [n+ 2, 2n], n ≡ 2 (mod 4)

Σ1+kρQHQmg 8k + 4 ∈ [n+ 4, 2n− 4], n ≡ 0 (mod 4)

Proof. The first case follows from [S1, Proposition 8.7]. The remaining cases follow
from (6.8) and Section 6.1. �

Proposition 6.11 (The 4k + 2-slices). Let n ≥ 5. If n is odd, then ΣnHQZ has
no nontrivial 4k + 2-slices if 4k + 2 > n. If n is even and 8k + 2 > n, then the
8k + 2-slice of ΣnHQZ is nontrivial only if 8k + 2 ∈ [n + 1, 2n], in which case the
slice is

P 8k+2
8k+2 (ΣnHQZ) '

{
Σ1+kρQHQw n ≡ 0 (mod 4)

Σ1+kρQHQφ
∗
ZF2 n ≡ 2 (mod 4)
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Similarly, if n is even and 8k− 2 > n, the 8k− 2-slice is nontrivial only if 8k− 2 ∈
[n+ 1, 2n], in which case the slice is

P 8k−2
8k−2 (ΣnHQZ) '

{
Σ−1+kρQHQφ

∗
ZF2

∗ n ≡ 0 (mod 4)

Σ−1+kρQHQw
∗ n ≡ 2 (mod 4).

Proof. According to [S1], the K4-spectrum ΣnHKZ does not have any nontrivial
slices in odd dimensions, except for the n-slice. By Theorem 3.19, this implies
that ΣnHQZ does not have any 4k + 2-slices above dimension 2n. The slices in
dimensions below 2n are given by Section 6.1. �

6.3. Slice towers for ΣnHQZ. By Proposition 6.6, ΣnHQZ is an n-slice for n ∈
{0, . . . , 4}. The slice tower for Σ5HQZ was given in Section 6.1.4. We now display
a few more examples of slice towers.

Example 6.12. The slice tower for Σ6HQZ is

P 16
16 = Σ2HQg Σ6HQZ

P 12
12 = Σ1+ρHQm Σ2+ρKHQZ(2, 1)

P 6
6 = Σ2+ρKHQZ.

This follows immediately from combining [S1, Example 8.2], (6.8), and Section 6.1.1.

Example 6.13. The slice tower for Σ7HQZ is

P 24
24 = Σ3HQg Σ7HQZ

P 16
16 = Σ2+ρQHQm Σ3+ρKHQZ(2, 1)

P 8
8 = ΣρQHQmgw Σ3+ρKHQZ

P 7
7 = ΣρQ−1HQ8

Z∗.

This follows immediately from combining [S1, Example 8.3] and Section 6.1.2.

Example 6.14. The slices, but not the slice tower, for Σ8HKZ were determined
in [S1, Section 8]. Let us denote by F the fiber of the map HQZ −→ HQφLDRF2

induced by the map of Q8-Mackey functors Z −→ φLDRF2 that is surjective at L,
D, and R. Then the nontrivial homotopy Mackey functors of F are π0(F ) ' Z(2, 1)
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and π−1(F ) ∼= g2. The slice tower for Σ8HQZ is

P 32
32 = Σ4HQg Σ8HQZ ' Σ4+ρKHQZ(3, 1)

P 24
24 = Σ3HQg

2 Σ4+ρKHQZ(2, 1)

P 20
20 = Σ3+ρQHQφ

∗
LDRF2 Σ4+ρKF

P 12
12 = Σ1+ρQHQmg Σ4+ρKHQZ ' Σ2ρKHQZ(3, 1)

P 10
10 = ΣρQ+1w Σ2ρKHQZ(3, 2)

P 8
8 = ΣρQHQZ∗,

where the bottom of the tower comes from Section 6.1.3.

7. Homology calculations

In Section 6, we described the slices of ΣnHQZ. In Section 8 below, we will
give the corresponding slice spectral sequences. The E2-pages of those spectral
sequences are given by the homotopy Mackey functors of the slices. We describe
those homotopy Mackey functors here.

7.1. The n-slice. We start with the n-slices in the order listed in Proposition 6.7.
The homotopy Mackey functors of ΣjρQHQZ were calculated in Proposition 4.10.
We use the same methods to determine the homotopy Mackey functors of ΣρK+jρQHQZ.

Proposition 7.1. For j ≥ 1, the homotopy Mackey functors of ΣρK+jρQHQZ are

πi(Σ
ρK+jρQHQZ) ∼=



Z i = 8j + 4

mgw
i ∈ [4j + 4, 8j + 3],

i ≡ 2 (mod 4)

B(3, 0)
i ∈ [4j + 4, 8j + 3],

i ≡ 0 (mod 4)

φ∗Zπi(Σ
(j+1)ρKHKZ) i ∈ [j + 1, 4j + 3].

See Proposition 4.2 or Figure 1 for the homotopy Mackey functors of Σ(j+1)ρKHKZ.
We may now use Proposition 7.1 and the exact sequence Z(3, 2) ↪→ Z� g to get

the homotopy Mackey functors of ΣρK+jρQHQZ(3, 2).
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Proposition 7.2. For j ≥ 1, the homotopy Mackey functors of ΣρK+jρQHQZ(3, 2)
are

πi(Σ
ρK+jρQHQZ(3, 2)) ∼=



Z i = 8j + 4

mgw
i ∈ [4j + 4, 8j + 3],

i ≡ 2 (mod 4)

B(3, 0)
i ∈ [4j + 4, 8j + 3],

i ≡ 0 (mod 4)

φ∗Zπi(Σ
(j+1)ρKHKZ) i ∈ [j + 2, 4j + 3].

The key point here is that the homotopy Mackey functors of ΣρK+jρQHQZ(3, 2)
are the same as that of ΣρK+jρQHQZ, except that the g in degree j + 1 has been
removed.

In Proposition 4.12 we list the homotopy Mackey functors of Σ−jρQHQZ. An-
derson duality then provides us with the homotopy Mackey functors of ΣjρQHQZ∗.

Proposition 7.3. For j ≥ 1, the homotopy Mackey functors of ΣjρQHQZ∗ are

πi(Σ
jρQHQZ∗) ∼=



Z i = 8j

mgw
i ∈ [4j + 1, 8j − 1],

i ≡ 2 mod 4

B(3, 0)
i ∈ [4j + 1, 8j − 1],

i ≡ 0 mod 4

φ∗ZB(2, 0) i = 4j
φ∗Zπi−4(Σ(j−1)ρKHKZ) i ∈ [j + 3, 4j − 1].

Finally, the homotopy Mackey functors of ΣjρQHQZ(1, 0) follow from the exact
sequence Z(1, 0) ↪→ Z� φ∗ZF2.

Proposition 7.4. For j ≥ 1, the homotopy Mackey functors of ΣjρQHQZ(1, 0) are

πi(Σ
jρQHQZ(1, 0)) ∼=



Z i = 8j

mgw
i ∈ [4j + 1, 8j − 2],

i ≡ 2 (mod 4)

B(3, 0)
i ∈ [4j + 1, 8j − 2],

i ≡ 0 (mod 4)

φ∗ZB(2, 0) i = 4j
φ∗Zπi(Σ

jρKHKZ) i ∈ [j, 4j − 1].

7.2. The 8k-slices. We now move on to the 8k-slices.

Proposition 7.5. For j = 1, the homotopy Mackey functors of ΣjρQHQφ
∗
ZB(2, 0)

are

πi(Σ
ρQHQφ

∗
ZB(2, 0)) ∼=

{
mg i = 2
g i = 1.

For j ≥ 2, they are

πi(Σ
jρQHQφ

∗
ZB(2, 0)) ∼=


φ∗LDRF2 i = 2j
g3 i ∈ [j + 2, 2j − 1]
g2 i = j + 1
g i = j.

Proof. Because φ∗ZB(2, 0) is a pullback,

ΣjρQHQφ
∗
ZB(2, 0) ' ΣjρKHQφ

∗
ZB(2, 0).
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The exact sequence of K-Mackey functors m∗ −→ B(2, 0) −→ g provides us with

ΣjρKHKm
∗ −→ ΣjρKHKB(2, 0) −→ ΣjρKHKg. The conclusion follows from [GY,

Propositions 4.8 and 7.4] and the resulting long exact sequence in homotopy. �

We may again use this strategy of reducing the calculations from Q to K for
determining the homotopy Mackey functors of ΣjρQHQB(3, 0).

Proposition 7.6. For j = 1 the homotopy Mackey functors of ΣjρQHQB(3, 0) are

πi(Σ
ρKHKB(3, 0)) ∼=


φ∗ZF2 i = 4
mg i = 2
g i = 1.

For j ≥ 2, the homotopy Mackey functors of ΣjρQHQB(3, 0) are

πi(Σ
jρQHQB(3, 0)) ∼=



φ∗ZF2 i = 4j
mg i = 4j − 1
φ∗LDRF2 ⊕ g4j−2−i i ∈ [2j + 2, 4j − 2]
g2(k−2)+1 i = 2j + 1

φ∗LDRF2 ⊕ g2(j−3)+1 i = 2j

g2(i−j−1) i ∈ [j + 3, 2j − 1]
gi−j+1 i ∈ [j, j + 2].

Proof. Because the underlying spectrum of HQB(3, 0) is contractible,

ΣρQHQB(3, 0) ' ΣρKHQB(3, 0).

Now, we may consider B(3, 0) as a pullback φ∗ZB := B(3, 0), thus the calculation
is reduced to one of K-Mackey functors. The sequence of K-Mackey functors

Z∗ 2−→ Z −→ B provides us with

ΣjρKHKZ∗ −→ ΣjρKHKZ −→ ΣjρKHKB.

Except for i = 4j − 2, the result follows from the associated long exact sequence in
homotopy. In degree 4j − 2 we have an extension

mg −→ π4j−2(ΣjρKHB) −→ g.

We need to show this is not the split extension. This follows from the exact sequence
B(2, 0) −→ B −→ F2 of K-Mackey functors. �

Proposition 7.7. For j = 1 and j = 2, the homotopy Mackey functors of ΣjρQHQmgw
are

πi(Σ
ρQHQmgw) ∼=

{
φ∗ZF2 i = 4

φ∗ZB(2, 0) i = 2.

and

πi(Σ
2ρQHQmgw) ∼=



φ∗ZF2 i = 8

mg i = 7

φLDRF2 i = 6

g i = 5

mg i = 4

g i = 3.
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For j ≥ 3, the homotopy Mackey functors of ΣjρQHQmgw are

πi(Σ
jρQHQmgw) ∼=



φ∗ZF2 i = 4j

mg i = 4j − 1

φLDRF2 ⊕ g4j−i−2 i ∈ [2j + 2, 4j − 2]

g2j−3 i = 2j + 1

g2j−5 ⊕ φLDRF2 i = 2j

g2(i−j)−2 i ∈ [j + 2, 2j − 1]

g i = j + 1

Proof. We first deal with the case j = 1. The short exact sequence of Mackey
functors

w∗ ↪→ mgw � mg∗

combines with Proposition 7.17 and Proposition 7.9 to show that the only nontrivial
Mackey functors are φ∗ZF2 in degree 4 and an extension of m by g in degree 2. It
remains to see that this extension is φ∗ZB(2, 0). According to Proposition 4.12, the
Postnikov tower for Σ−ρQHQZ is

Σ−5HQφ
∗
ZB(2, 0) Σ−ρQHQZ

Σ−7HQmgw X

Σ−8HQZ∗.

Desuspending this diagram once by ρQ gives a tower for computing the homotopy
Mackey functors of Σ−2ρQHQZ. The homotopy Mackey functors for Σ−8−ρQHQZ∗
and Σ−5ρQHQΨ∗B(2, 0) follow, using Anderson duality, from Proposition 4.10 and
Proposition 7.5. Long exact sequences in homotopy then imply that

π−9(Σ−7−ρQHQmgw) ∼= φ∗ZB(2, 0).

Dualizing gives that π2(ΣρQHQmgw) is φ∗ZB(2, 0).
We now have a fiber sequence

(7.8) Σ4HQφ
∗
ZF2 −→ ΣρQHQmgw −→ Σ2HQφ

∗
ZB(2, 0).

Suspending this sequence by ρQ immediately gives the homotopy Mackey functors
of Σ2ρQHQmgw. The same is true in the case j = 3, except that we have an
extension

g ↪→ π6Σ3ρQHQmgw � φLDRF2.

We claim that, more generally, any extension of Z-modules

gm ↪→ E � φLDRF2

is necessarily the split extension. To see this, first note that φLDRF2 is, by def-
inition, the direct sum φ∗LF2 ⊕ φ∗DF2 ⊕ φ∗RF2. It therefore suffices to show that
the only Z-module extension of φ∗LF2 by gm is the split extension. Since any such
extension will vanish at the subgroups D and R, the Z-module structure forces the
value at Q to be 2-torsion and therefore equal to F2

m+1. Since there is a nontrivial
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restriction to the subgroup L, the Z-module structure forces the transfer from L to
vanish. Thus the extension must be the split extension.

The suspension by (j − 1)ρQ of (7.8) gives the homotopy Mackey functors of
ΣjρQHQmgw in degrees 2j + 1 and higher. Now we argue by induction that the

Mackey functors for ΣjρQHQmgw are as claimed, for j ≥ 3. For instance, since the
bottom Mackey functor is

πj(Σ
(j−1)ρQHQmgw) ∼= g,

we see by decomposing Σ(j−1)ρQHQmgw using the Postnikov tower that

πj+1(ΣjρQHQmgw) ∼= g.

The values of the Mackey functors πi, for i ≤ 2j − 2, follow in a similar way. The
values

π2j−2(Σ(j−1)ρQHQmgw) ∼= g2j−7 ⊕ φLDRF2,

and

π2j−1(Σ(j−1)ρQHQmgw) ∼= g2j−5

give that

π2j−1(ΣjρQHQmgw) ∼= g2j−4

and that we have an extension of Z-modules

g2j−5 ↪→ π2j(Σ
jρQHQZ)� φLDRF2.

By the argument given above, this must be the split extension. �

The homotopy Mackey functors for the remaining 8k-slices follow from [S1,
Propositions 9.5, 9.8].

Proposition 7.9 ([S1, Proposition 9.5], [GY, Proposition 4.8]). We have the equiv-
alence ΣρQHQmg

∗ ' Σ2HQm. For j ≥ 2, the homotopy Mackey functors of

ΣjρQHQmg
∗ are

πi(Σ
jρQHQmg

∗) ∼=


φ∗LDRF2 i = 2j
g3 i ∈ [j + 2, 2j − 1]
g i = j + 1.

Proposition 7.10 ([S1, Proposition 9.8]). We have equivalences

ΣjρQHφ∗LDRF2
∗ '

{
Σ2Hφ∗LDRf j = 1
Σ4Hφ∗LDRF2 j = 2.

Then for j ≥ 3, the nontrivial homotopy Mackey functors of ΣjρQHφ∗LDRF2
∗ are

πi(Σ
jρQHQφ

∗
LDRF2

∗) =

{
φ∗LDRF2 i = 2j
g3 i ∈ [j + 2, 2j − 1].

7.3. The 8k + 4-slices. Similarly, the homotopy Mackey functors of the (8k + 4)-
slices follow from [S1, Proposition 9.8] and [GY, Corollary 7.2, Propositions 7.3,
7.4].

Proposition 7.11 ([GY, Proposition 3.6]). For j ≥ 1, the homotopy Mackey func-
tors of ΣjρQHQφ

∗
LDRF2 are

πi(Σ
jρQHQφ

∗
LDRF2) ∼=

{
φ∗LDRF2 i = 2j
g3 i ∈ [j, 2j − 1].
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Proposition 7.12 ([GY, Corollary 7.2]). For j ≥ 1, the homotopy Mackey functors
of ΣjρQHQφ

∗
ZF2 are

πi(Σ
jρQHQφ

∗
ZF2) ∼=


φ∗ZF2 i = 4j
mg i = 4j − 1
φ∗LDRF2 ⊕ g4j−2−i i ∈ [2j, 4j − 2]
g2(i−j)+1 i ∈ [j, 2j − 1].

Proposition 7.13 ([GY, Proposition 7.3]). For j ≥ 1, the homotopy Mackey func-
tors of ΣjρQHQm are

πi(Σ
jρQHQm) ∼=


φ∗LDRF2 i = 2j
g3 i ∈ [j + 1, 2j − 1]
g i = j.

Proposition 7.14 ([GY, Proposition 7.4]). For j ≥ 1, the homotopy Mackey func-
tors of ΣjρQHQmg are

πi(Σ
jρQHQmg) ∼=


φ∗LDRF2 i = 2j
g3 i ∈ [j + 1, 2j − 1].
g2 i = j.

7.4. The 4k + 2-slices. The homotopy Mackey functors of the (4k + 2)-slice
Σ1+kρQHQφ

∗
ZF2 are given in Proposition 7.12. The homotopy Mackey functors

of the remaining (4k + 2)-slices are as follows.

Proposition 7.15 ([GY, Proposition 4.8, Corollary 7.2]). We have the equiva-
lence ΣρQHQφ

∗
ZF2

∗ ' Σ4HQφ
∗
ZF2. For j ≥ 2, the homotopy Mackey functors of

ΣjρQHQφ
∗
ZF2

∗ are

πi(Σ
jρQHQφ

∗
ZF2

∗) ∼=


φ∗ZF2 i = 4j
mg i = 4j − 1
φ∗LDRF2 ⊕ g4j−2−i i ∈ [2j + 2, 4j − 2]
g2(i−j)−5 i ∈ [j + 3, 2j + 1].

Finally, we have the homotopy of ΣjρQHQw and ΣjρQHQw
∗.

Proposition 7.16. For j ≥ 1, the homotopy Mackey functors of ΣjρQHQw are

πi(Σ
jρQHQw) ∼=


φ∗ZF2 i = 4j
mg i = 4j − 1
φ∗LDRF2 ⊕ g4j−2−i i ∈ [2j, 4j − 2]
g2(i−j)+1 i ∈ [j + 1, 2j − 1].

Proof. The underlying spectrum of ΣjρQHQw is contractible; thus,

ΣjρQHQw ' ΣjρKHQw.

Then, because w is a pullback over Z, the calculation is essentially K-equivariant.
Consider the short exact sequence of K-Mackey functors w −→ F2 −→ g and the

corresponding cofiber sequence ΣjρKHKw −→ ΣjρKHKF2 −→ ΣjρKHKg. The
statement follows immediately from the resulting long exact sequence in homotopy.

�
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Proposition 7.17. For j = 1, the homotopy Mackey functors of ΣjρQHQw
∗ are

πi(Σ
jρQHQw

∗) ∼=
{
φ∗ZF2 i = 4
g i = 2.

For j ≥ 2, they are

πi(Σ
jρQHQw

∗) ∼=


φ∗ZF2 i = 4j
mg i = 4j − 1
φ∗LDRF2 ⊕ g4j−2−i i ∈ [2j + 2, 4j − 2]
g2(i−j)−5 i ∈ [j + 3, 2j + 1]
g i = j + 1.

Proof. The proof is the same as that in Proposition 7.16, except that we start with
the exact sequence of K-Mackey functors g −→ F2

∗ −→ w∗. �

8. Slice spectral sequences

Here we include the slice spectral sequences for ΣnHQZ for several values of n
between 5 and 15. In some cases, we use the restriction to the C4-subgroups to
determine some of the slice differentials.

The grading is the same as that in [HHR1, Section 4.4.2]. The Mackey functor

Et−n,t2 is πnP
t
t (X). We also follow the Adams convention, where πnP

t
t (X) has

coordinates (n, t− n) and the differential

dr : Es,tr −→ Es+r,t+r−1
r

points left one and up r.
The Q-Mackey functors that appear in these spectral sequences are listed in

Table 4. We also display some companion C4-slice spectral sequences, and the
C4-Mackey functors that appear are listed in Table 5.

Table 4. Symbols for Q-Mackey functors

� = Z = φ∗ZF2 = φ∗LDRF2

= mgw ◦ = B(3, 0) = φ∗ZB(2, 0)

= mg n = gn

Table 5. Symbols for C4-Mackey functors

� = Z = φ∗C2
F2 ◦ = B(2, 0) • = g

Example 8.1. In the spectral sequences for Σ5HQZ, Σ6HQZ, and Σ7HQZ, because
we must be left with

πn(PnnΣnHQZ) ∼= Z,

all differentials are forced.
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Example 8.2. For Σ8HQZ, the pattern of differentials emanating from the Mackey
functor π6(P 8

8 Σ8HQZ) is forced; no other pattern of differentials wipes out all
classes in this region. The shorter differentials clearing out the smaller region are
then similarly forced.

Example 8.3. In the cases of ΣnHQZ for n = 10, 12, and 15, we also display the
corresponding slice spectral sequence for ΣnHC4

Z, where we use C4 to indiscrim-
inately refer to any of the subgroups L,D,R ≤ Q. The slice differentials in the
C4-case force many of the slice differentials for the Q-equivariant spectra.
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