
GALOIS RECONSTRUCTION OF ARTIN–TATE R-MOTIVIC
SPECTRA

ROBERT BURKLUND, JEREMY HAHN, AND ANDREW SENGER

Abstract. We explain how to reconstruct the category of Artin–Tate R-motivic
spectra as a deformation of the purely topological C2-equivariant stable category.
The special fiber of this deformation is algebraic, and equivalent to an appropriate
category of C2-equivariant sheaves on the moduli stack of formal groups. As such,
our results directly generalize the cofiber of τ philosophy that has revolutionized
classical stable homotopy theory.

A key observation is that the Artin–Tate subcategory of R-motivic spectra is
easier to understand than the previously studied cellular subcategory. In partic-
ular, the Artin–Tate category contains a variant of the τ map, which is a feature
conspicuously absent from the cellular category.
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1. Introduction

A striking surprise of modern computational stable homotopy theory is that the
category SH(C) of C-motivic spectra, as introduced by Morel and Voevodsky [MV99],
has found use not only in algebraic geometry, but also in the computation of stable
homotopy groups of spheres, a question of purely topological origin. In particular,
the p-completed bi-graded homotopy groups of the unit in SH(C) record—in a precise
sense—the Adams–Novikov spectral sequence for the sphere spectrum, including all
differentials and extensions. The ultimate expression of this connection is the discovery
that the cellular subcategory of p-complete C-motivic spectra is equivalent to a category
of synthetic Adams–Novikov spectral sequences, and in particular has a purely homotopy
theoretic description without reference to algebraic geometry.
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The first evidence that a large sector of the motivic category contains only topological
information appears in the work of Thomason on algebraic K-theory and étale cohomol-
ogy [Tho85]. As a consequence of this work, Thomason proves that for well-behaved
C-schemes X, there is an equivalence Kalg(X)[β−1]∧` ' KU(X(C))∧` , where β is a certain
Bott element. These ideas have been refined over the years, culminating in the following
theorem.

Theorem 1.1 ([Voe02, DI10, Lev14, Lev15, Ghe18, GWX20, Pst18, GIKR18]).
In SH(C) there is a map τ : S1 → (Gm)p which enjoys the following properties:

(1. Generically Topological) The full subcategory of τ -local objects in SH(C)cellp is
equivalent to Spp.

(2. Algebraic Degeneration) The cofiber of τ (often denoted Cτ) is a commutative
algebra, and the category of dualizable modules over Cτ is equivalent to the
category of p-completions of dualizable objects in QCoh(Mfg), whereMfg is the
moduli stack of formal groups.

(3. Galois Reconstruction) There is a purely topological construction of SH(C)cellp .

We summarize this situation by saying that SH(C)cellp is a 1-parameter deformation
of p-complete spectra with parameter τ and a purely algebraic special fiber.

Although it does not appear in the statement, understanding the algebraic cobordism
spectrum, MGL, is key to proving this theorem. The importance of MGL to the study
of cellular motivic spectra goes back to Voevodsky’s work on the effective slice filtration
[Voe02]. In that work, Voevosky conjectured that the effective slice filtration of the
unit over an algebraically closed field may be described in terms of the Adams-Novikov
spectral sequence. Levine later proved Voevodsky’s conjectures [Lev14, Lev15]. Voevod-
sky’s notion of “rigid homotopy groups” also foreshadowed algebraic degeneration. In
this framework he and Rezk predicted that the rigid Adams spectral sequence is equiva-
lent to the algebraic Novikov spectral sequence [Voe02, p. 20-21], a result later proven in
different language by Gheorghe–Wang–Xu [GWX20, Theorem 1.17]. The fact that the
category of p-complete C-motivic spectra is generically topological is strongly suggested
by results of Dugger–Isaksen [DI10, Section 2.6], though to the best of our knowledge the
full result did not appear in print until [Pst18]. The commutative algebra structure on
Cτ was first constructed by Gheorghe [Ghe18], and the category of modules over Cτ was
then identified by Gheorghe–Wang–Xu in [GWX20]. Finally, Pstragowski [Pst18] and
Gheorghe–Isaksen–Krause–Ricka [GIKR18] independently provided two different Galois
reconstructions of cellular p-complete C-motivic spectra.

With the case of C resolved we raise the following natural question:

Question 1.2. To what extent can this theorem be extended to a general field k?

As stated, this question is too imprecise to admit a definitive answer, so we begin
by refining two points of ambiguity: the appropriate subcategory of SH(k) one should
consider and the meaning of purely topological. In our study of this question we have
found that the appropriate subcategory is the category of Artin–Tate motivic spectra
(defined below). Notably, over R, if one restricts to the further subcategory of cellular
objects, it becomes significantly more difficult to construct a topological model.

Definition 1.3. The category of Artin–Tate motivic spectra over k is the smallest
stable full subcategory SH(k)AT ⊂ SH(k), closed under tensor products and colimits,
that contains the motives of finite étale k-algebras, P1

k and (P1
k)−1.

The phrase ‘purely topological’ has a double meaning. On the one hand it refers
to the input to the construction; it should not depend directly on the arithmetic of k,
instead using only the absolute Galois group, G, together with the character G → Ẑ×
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induced by the maximal cyclotomic extension of k 1. On the other hand it asks for a
construction which uses only the “standard machinery of homotopy theory.”

The authors are not the first to take up questions of this nature. Positselski has
studied the question of Galois reconstruction for the category DM(k;F`)AT of mixed
Artin-Tate motives with mod ` coefficients [Pos11, Pos14]. With a few exceptions, he
has shown that when k is a finite, local or global field, then DM(k,F`)AT may be viewed
as a derived category of filtered discrete G-modules with restricted sub-quotients.

In a different direction, work of Bachmann, Elmanto and Østvær shows that, up to a
completion, SH(S) is generically étale for a wide range of schemes S [Bac20, BEØ20].
In particular, Bachmann–Elmanto–Østvær show that, after a suitable completion, étale
localization corresponds to inverting τ . Note that τ may not exist in the homotopy of
the completed unit, so care must be taken to interpret this statement. Furthermore,
Bachmann showed that, again up to completion, the étale motivic category is equivalent
to the category of hypercomplete sheaves of spectra on the small étale site. Specializing
to the case S = Spec k, we find that, up to completion, the category of τ -local objects
in SH(k) admits a description in terms of Borel G-equivariant spectra.

Previously, work of Behrens and Shah [BS20] had taken up the question of when a
suitable map τ exists over R. Although there is no map τ : S1 → (Gm)∧2 in SH(R), they
prove that τ exists whenever a different class ρ : S0 → Gm has been killed. If only ρ2

is killed, but not ρ itself, then τ does not necessarily exist, but τ2 does. Continuing in
this way, they make sense of inverting τ in any ρ-complete situation.

In this paper we resolve Question 1.2 in the case k = R. This begins with the
observation that if one does not insist that the target of τ must be a completion of Gm,
then a suitable replacement can easily be constructed.

Theorem 1.4. In SH(R)ATi2 there is an invertible object Q and a map t : S1 → Q2

which enjoys the following properties:
(GT) The full subcategory of t-local objects in SH(R)ATi2 is equivalent to SpC2,i2.
(AD) The cofiber of t (denoted Ct) is a commutative algebra, and the category of

dualizable modules over Ct is equivalent to the category of dualizable objects in
the derived category of Mackey-functor MU∗MU-comodules 2.

(GR) There is a purely topological construction of SH(R)ATi2 . In particular, we con-
struct a commutative algebra R• in filtered, C2-equivariant spectra such that the
category of filtered modules over R• is equivalent to SH(R)ATi2 . The commutative
algebra R• is the even slice–decalage of the MUR-Adams tower for the sphere 3.

We summarize this by saying that SH(R)ATi2 is a 1-parameter deformation of C2-
equivariant stable homotopy theory with parameter t and purely algebraic special fiber.

The romanization of the Devanagari letter t is ‘ta’ 4 and our choice of this symbol
will be explained in Remark 1.34. As in the case over C, we are also able to give an
explicit formula for the homotopy groups of Ct, though since we have not yet set up the
appropriate notion of homotopy groups we will defer an explicit statement until later.
The subscript i2 appearing in the theorem statement refers to the category of modules
over the 2-completion of the unit. The reader who is worried by this departure from the
norm may wish to read the section on notations and conventions before proceeding.

With the resolution of Question 1.2 in the case of R, the authors are hopeful that we
might see this question resolved in its entirety in the near future.

1More specifically, the p-complete category should only depend on the Z×p component of this map.
2See Section 5 for a precise definition of this category.
3See Section 4 for precise definitions.
4However, the reader who is not familiar with the Devanagari alphabet is advised that the pronun-

ciation of t is closer to ‘tuh.’ Moreover, the ‘t’ sound should be dental and unaspirated.
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1.1. Examples of Artin–Tate motivic spectra.
In this subsection, which is preparatory to all later material, we give a more compre-

hensive introduction to the category of Artin–Tate motivic spectra over a field. This
begins with introducing the smaller subcategories of Artin and Tate objects, which to-
gether generate the category of Artin–Tate objects. The bulk of the subsection is spent
building a collection of important examples of Artin–Tate motivic spectra. Over R a
special role is played by the invertible objects and so we focus specific attention there.
We close the section by discussing homotopy groups.

Definition 1.5. The categories of Artin, Tate and Artin–Tate motivic spectra over k
are the stable, full subcategories of SH(k), closed under tensor products and colimits,
with the following generators:

• The category of Artin motivic spectra, SH(k)A, is generated by the motives of
finite étale k-algebras.

• The category of Tate motivic spectra, SH(k)T, is generated by the motives of
P1
k and (P1

k)−1 5.
• The category of Artin–Tate motivic spectra, SH(k)AT, is generated by the mo-

tives of finite étale k-algebras together with P1
k and (P1

k)−1.
Since these subcategories are closed under tensor products and colimits, they each inherit
the structure of a stable, presentably symmetric monoidal category from SH(k). 6

We now turn to examples of objects in each of these categories, starting with the
trivial and heading towards the non-trival.

Example 1.6. Every stable, presentably symmetric monoidal category admits a unique
symmetric monoidal functor from the category of spectra [Lur17, Corollary 4.8.2.19] 7.
This gives us objects X⊗1k for every spectrum X. Of particular interest are the integer
simplicial suspensions of the unit, Sn⊗1k.

Inductively applying the homotopy purity theorem [MV99, Theorem 3.2.23] to the
decomposition Pnk = Ank

∐
Pn−1
k , we learn that:

Example 1.7 ([DI05, Example 2.12]). For each n, the motivic spectrum associated to
Pnk is Tate.

More generally, using a Bialynicki-Birula decomposition, Wendt shows that any
smooth projective variety which admits a Gm-action whose fixed points are discrete
and rational is Tate [Wen10] 8.

Example 1.8 ([DI05, Theorem 6.4], [Hoy15, Proposition 8.1], [BH20a, Proposition
8.12]). Each of the following commutative algebras is Tate,

MGL, kq, kgl, MZ, MFp .

Example 1.9. Essentially by definition, the Galois correspondence provides functors{
finite, continuous
Gal(k/k)-sets

} {
finite, etale
k-algebras

}op
Smk

SH(k)A SH(k),

5This category is sometimes referred to as the cellular category following [DI05].
6In the sequel, we will state without remark results that are only known to be true after the char-

acteristic of k is inverted. The reader is invited to restrict themself to k of characteristic zero if they
prefer.

7Another way of saying this is that Sp is the initial object of CAlg(PrL,stab).
8In the case where the fixed points are not rational, the authors wonder what conditions are necessary

to gaurantees the motive is Artin–Tate.
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which give our first examples of Artin objects.

Since the functor in the example above sends disjoint unions to sums there is no loss
in generality if we restrict to transitive Gal(k/k)-sets (field extensions). In the case of
R this gives only two objects: Spec(R), which we will temporarily denote 1R since is it
the monoidal unit of the category, and Spec(C). Using the natural map we get a cofiber
sequence,

Spec(C)→ 1R
a−→ SC . (1)

On the level of C-points (with Galois action), this cofiber sequence gives the represen-
tation sphere Sσ.

Given a quadric in the plane, V , we can take its closure in P2
k to obtain V which is

a form of P1
k. If we let x1, . . . , xn denote the points at infinity, then by the homotopy

purity theorem [MV99, Theorem 3.2.23] we have a cofiber sequence,

V → V →
⊕

i=1,...,n

P1
k(xi)

.

Under the assumption that V admits a rational point V is just P1
k, and so we obtain our

first non-trivial example of a motive which is neither Artin nor Tate, but is Artin–Tate:

Example 1.10. The motive of an affine quadric which admits a rational point is Artin–
Tate.

Over R there is a particular affine quadric of interest to us. It is the object Q which
appeared in the statement of Theorem 1.4.

Example 1.11. Let Q := {x2 + y2 = 1} ⊂ A2
R, which we shall call the algebraic circle.

Q has the additional property that it is a form of Gm 9. Its group scheme structure
comes from the usual rule for multiplication of complex numbers, namely

(x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + y1x2).

In Section 2 we will construct the maps t : S1 → Qp using our explicit understanding
of this group scheme.

Proposition 1.12 ([Hu05, Proposition 1.1]). There is an equivalence Q⊗ SC ' P1
R. In

particular, both SC and Q are invertible.

At the point we are now ready to define the appropriate notion of homotopy groups
for studying SH(R)AT. In the case of SH(C)AT, the category has a bi-graded family
of compact invertible generators given by the spheres Sp−2w ⊗(P1

C)⊗w. Therefore, it is
typical to study objects at the level of their bigraded homotopy groups, given by

πC
p,w(X) := π0 Map(Sp−2w ⊗(P1

C)⊗w, X).

Similarly, SH(R)T has a bi-graded family of compact invertible generators given by the
spheres Sp−2w ⊗(P1

R)⊗w, and it is typical to study objects through their bi-graded homo-
topy groups. Using Proposition 1.12 and Equation (1), the category SH(R)AT has a tri-
graded family of compact invertible generators given by the spheres Sp−w ⊗(SC)⊗q−w ⊗
(P1

R)⊗w, and we will study most objects through their tri-graded homotopy groups.

Notation 1.13. We endow the categories Sp, SpC2
, SH(C) and SH(R) with Picard

gradings by spheres as follows:

9By Cartier duality, forms of Gm are classified by rank 1 lattices with Galois action. Q corresponds
to the unique nontrival action.
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Category Picard Spheres
Sp Z Sp ' (S1)⊗p

SpC2
Z× Z Sp+qσ ' (S1)⊗p ⊗ (Sσ)⊗q

SH(C) Z× Z Sp,w ' (S1)⊗p−2w ⊗ (P1
C)⊗w

SH(R) Z× Z× Z Sp,q,w ' (S1)⊗p−w ⊗ (SC)⊗q−w ⊗ (P1
R)⊗w

For any p, q, w ∈ Z, and any R-motivic spectrum X, we let πR
p,q,wX denote the group

of homotopy classes of maps,

(S1)⊗p−w ⊗ (SC)⊗q−w ⊗ (P1
R)⊗w → X.

Example 1.14. For convenience we record what the invertible objects considered in
this section look like under this new notation:

S0,0,0 ∼= 1R S1,0,0 ∼= S1 S0,1,0 ∼= SC

S0,1,1 ∼= Gm S1,0,1 ∼= Q S1,1,1 ∼= P1
R

In the case of S0,0,0 we will often drop the indices for brevity, writing only S. The two
maps between picard elements, t and a, considered thus far, become

t ∈ πR
0,0,−1 Sp and a ∈ πR

0,−1,0 S .

Remark 1.15. The tri-graded spheres in SH(R)AT which are Tate are precisely the
spheres of the form Sp,q,q. For this reason the Tate category only sees a ‘slice’ of the
total information present in the homotopy groups.

The tri-graded spheres in SH(R)AT which are Artin are precisely the spheres of the
form Sp,q,0. The Artin category similarly only sees a ‘slice’ of the total homotopy groups.

1.2. Comparison functors.
The two simplest ways to interrogate a category are to study specific objects and to

study the network of functors which relate it to other categories. While the previous
subsection provided preperatory background on specific objects, this subsection sets up
the suite of functors which we will use to produce and study more general objects. In the
specific case of R this means studying the various ways we can move between SH(R),
SH(C), SpC2

and Sp.

Recollection 1.16. Given a finite extension of fields i : k → `, there are two pairs of
adjunctions and one extra functor coming from the six functor formalism,

i∗ : SH(k) � SH(`) : i∗, i! : SH(`) � SH(k) : i! and i] : SH(`)→ SH(k)

where i∗ is symmetric monoidal. Since i is smooth, proper and unramified we have
equivalences i! ' i∗ ' i] and i! ' i∗ [Hoy17, Theorems 6.9 and 6.18]. These equivalences
tell us that,

(1) i∗ and i∗ both commute with all limits and colimits.
(2) If X is a smooth `-scheme, then i∗X ' X, where the second copy of X is

considered as a k-scheme.

In Appendix A, as an example of the techniques showcased there, we show that for
fields of characteristic zero there is an equivalence of presentably symmetric monoidal
categories,

SH(`) ' Mod(SH(k); Spec(`))

and i∗i∗(−) ' Spec(`) ⊗ −. This equivalence tells us that no new information enters
the picture when we pass to a field extension. Specializing to the case of C/R the above
equivalence becomes,

SH(C) ' Mod(SH(R); Spec(C)).
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Using the descriptions of i∗ and i∗i∗ we can conclude that both i∗ and i∗ restrict to
the full subcategory of Artin–Tate objects. Thus, we obtain a similar description of the
Artin–Tate category of a field extension,

SH(`)AT ' Mod(SH(k)AT; Spec(`)).

Specializing to the case of C/R we will sometimes denote Spec(C) by Ca since it is (by
the definition of a) the cofiber of the map a : S0,−1,0 → S0,0,0. The above equivalence
becomes,

SH(C)AT ' Mod(SH(R)AT;Ca).

At this point we turn to studying the case of R more closely. Though some of the
things we do after this point have obvious analogs in other cases, many of our key
maneuvers implicitly rely on the fact that R has a finite (and well-understood) absolute
galois group. In particular, we will now assume that the reader is familiar with C2-
equivariant homotopy theory as in [HHR16]. Equivariant homotopy theory first enters
the picture through the Betti realization functors of [MV99, Section 3.3].

Recollection 1.17. There is a commutative diagram of symmetric monoidal left ad-
joints:

SH(R) SH(C)

Sp,q,w Sp+q,w

Sp+qσ Sp+q

SpC2
Sp .

(−)C

Be Be

Φe

In the above diagram, (−)C is the base change functor, Φe is the underlying functor
and Be are the Betti realization functors, induced by the assigment X 7→ X(C). The
inner square describing these functors on picard objects can be verified by considering
Q, Gm and S1 directly 10.

Remark 1.18. Since the Betti realization of Sp,q,w is Sp+qσ, we think of w as recording
the motivic weight and p, q as providing a copy of RO(C2) in each weight. The Tate
spheres are those of the form Sp,q,q, so in the bigraded world the number of σ’s in
the RO(C2)-grading must equal the motivic weight. This restriction blinds one to the
existence of a weight shifting element t in RO(C2) grading 0 which is the true analog
of the C-motivic τ .

Having discussed Betti realization, we now introduce the less well-known functors c
and cC/R which provide sections of Betti realization.

Recollection 1.19. There are symmetric monoidal left adjoints c and cC/R, which fit
into the commutative diagram,

10The observation that spurred the authors to begin this project was that upon restricting to cat-
egories of Tate objects the induced square on picard groups is not a pullback, but with Artin–Tate
objects it is in fact a pullback.
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Sp+qσ Sp,q,0 Sp+qσ

SpC2
SH(R) SpC2

Sp SH(C) Sp

Sp Sp,0 Sp .

idSpC2

cC/R

Φe

Be

(−)C Φe

idSp

c Be

The functor c is just the unique symmetric monoidal left adjoint coming from the
fact that Sp is the unit of PrL,stab (see Example 1.6). The functor cC/R is constructed
in [HO16] by beginning with the functor

{finite C2−sets} → SH(R)

from Example 1.9 and then extending it to all of SpC2
.

Since they are symmetric monoidal left adjoints, it is easy to see that the composites
Be◦c : Sp→ Sp and Be◦cC/R : SpC2

→ SpC2
are equivalent to the identity. In fact, upon

restricting to the appropriate target category we uncover something more interesting:

Theorem 1.20 ([Lev14, HO16, HO18]). The symmetric monoidal functors c and cC/R
factor through the respective categories of Artin objects and provide equivalences,

c : Sp
'−→ SH(C)A and cC/R : SpC2

'−→ SH(R)A.

Corollary 1.21. The induced maps,

πp S
c−→ πC

p,0 S
Be−→ πp S and πC2

p+qσ S
cC/R−−−→ πR

p,q,0 S
Be−→ πC2

p+qσ S

are isomorphisms for all p and q.

Remark 1.22. This corollary provides an identification of πR
0,0,0 S with the Burnside

ring of C2. It is Z⊕ Z with generators 1 and [C2] and the relation [C2]2 = 2[C2].
Morel’s identification of πn,n1k in terms of Milnor–Witt K-theory provides another

way of assigning names to elements of πR
0,0,0 S [Mor06]. In these terms πR

0,0,0 S is gen-
erated by 1 and η[−1] subject to the relation (η[−1])2 = −2η[−1]. We introduce the
elment ρ which is defined to be −[−1]. The translation between these two bases given
by ηρ = 2− [C2].

Remark 1.23. When working over a general field one might think to replace the Betti
realization by some variant of etale localization (see [ES19]). The analog of this the-
orem would be that the category of Artin objects is already etale local. However, in
many examples (such as finite fields) one consequence of the Morel connectivity theorem
[Mor05] is that this is not true. An important precursor to answering Question 1.2 will
be producing the variant of equivariant homotopy theory which appears as the category
of Artin objects.

Remark 1.24. Using the functors c and cC/R the mapping spaces in SH(C) and SH(R)
can be upgraded into mapping spectra and mapping C2-spectra respectively.

Summary 1.25. There are commuting diagram,
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SH(R) SH(C) SpC2
SH(R) SpC2

SpC2
Sp Sp SH(C) Sp

(−)C

Be Be

idSpC2

cC/R

Φe

Be

(−)C Φe

Φe

idSp

c Be

and various functors considered in this section enjoy the following properties:
(1) Each of (−)C, Be, Φe, ΦC2 , c and cC/R is a symmetric monoidal left adjoint.
(2) Both (−)C and Φe are right adjoints as well.
(3) All of the functors restrict to the categories of Artin–Tate objects and retain the

properties listed in (1) and (2). In later sections we will almost exclusively deal
with these restrictions so we will not use distinct notation for them.

(4) On picard elements the functors in the digrams above behave as follows,
Be(1p,q,wR ) ∼= 1

p+qσ
C2

Be(1s,wC ) ∼= Ss cC/R(1p+qσC2
) ∼= 1

p,q,0
R c(Ss) ∼= 1

s,0
C

(1p,q,wR )C ∼= 1
p+q,w
C Φe(1p+qσC2

) ∼= Sp+q ΦC2(1p+qσC2
) ∼= Sp

Proof. The only of this which we have not already discussed is (2). The functor (−)C
can be described as tensoring up to Ca. Since Ca is dualizable this functor commutes
with all limits and colimits. Similarly, we may conclude that Φe commutes with all
limits and colimits. �

1.3. R-motivic spectra as a deformation.
In this subsection we refine the statement of Theorem 1.4 into a sequence of precise

claims which we will verify across the remainder of the paper. We summarized both
Theorem 1.1 and Theorem 1.4 by saying that the category of Artin–Tate motivic spectra
is a 1-parameter deformation of a purely topological category, a phrase without precise
meaning. To start, we clarify this, first over C and then over R.

(1) There is a distinguished element of the p-complete homotopy groups over C,
τ ∈ π0,−1 Sp, which maps to 1 under Betti realization 11. [HKO11b, Lemma 23]

(2) The Betti realization functor factors through the category of τ -local objects and
provides a symmetric monoidal equivalence

Mod(SH(C)ATip ;Sp[τ−1]) ' Spip .

The idea for this goes back to [DI10, Section 2.6], but was first proven in [Pst18].
(3) The category SH(C)ATip can be equipped with the structure of a SpFil

ip -algebra.
More explicitly, this means we have a symmetric monoidal left adjoint

i∗ : SpFil
ip → SH(C)ATip ,

which sends the shift map in SpFil
ip to τ . As a consequence of this Cτ acquires

the structure of a commutative algebra, a fact originally proven by Gheorghe
[Ghe18].

(4) The category of modules over Cτ is equivalent to a renormalization of the derived
category of even BP∗BP-comodules. More specifically we have

Mod(SH(C)ATip ;Cτ) ' IndCoh(Mfg)ip.

This equivalence sends Ct⊗Ss,w to Σs−2wω⊗wG/Mfg
, and on the level of homotopy

groups it induces an equivalence

πC
s,w(Cτ) ∼= Ext2w−s,w

BP∗BP (BP∗,BP∗).

11The Betti realization map πC
0,−1 Sp → π0 Sp is an isomorphism so the latter property uniquely

identifies τ .
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The equivalence of categories is due to Gheorghe–Wang–Xu [GWX20], though
the above isomorphism of groups was first proven by Isaksen [Isa19, Proposition
6.2.5] and then upgraded to an isomorphism of rings with all higher structure
by Gheorghe [Ghe18].

(5) There is an equivalence of symmetric monoidal categories between SH(C)ATip and
Syneven

MU,ip, where the latter is the category of MU-synthetic spectra constructed in
[Pst18]. Notably this construction used no algebraic geometry and only required
knowledge of the commutative ring object MU in hSp. The comparison between
these two categories proceeds via the close relationship between MGL and MU.

(6) The adjunction i is affine in the sense that there is a commutative algebra RC
•

in SpFil
ip and an equivalence of symmetric monoidal categories under SpFil

ip

SH(C)ATip ' Mod(SpFil
ip ;RC

• ).

Moreover, the commutative algebra RC
• admits an explicit construction which

uses no algebraic geometry. It is given by

RC
• := Tot∗

(
τ≥2•MU⊗∗+1

p

)
.

This construction uses only the commutative algebra MU in Sp and again the
comparison proceeds via the close relationship between MGL and MU. This
approach is due to Gheorghe–Isaksen–Krause–Ricka [GIKR18].

The key to understanding why we view SH(C)ATip as a 1-parameter deformation is
point (2). Geometrically, a 1-parameter deformation is a family over A1. At the level
of categories this means having a QCoh(A1)-algebra structure. Certain 1-parameter
deformations come with the extra structure of compatible isomorphisms relating the
fiber over λ and the fiber over aλ for a invertible. In the language of stacks we may
describe this as having a family over A1/Gm. At the level of categories this means
having a QCoh(A1/Gm)-algebra structure. Finally, we recall that in spectral algebraic
geometry there is an equivalence, QCoh(A1/Gm) ' SpFil 12. Tracking through the
various maps one further finds that the coordinate on A1 corresponds to the shift map
on filtered objects.

In practice deformations typically come in two flavors. The first is where we examine
how a central fiber of interest can deform (often over a formal base). Visually one might
image a central object spreading outwards. An example of this is the picture suggested
by the Bogomolov–Tian–Todorov theorem on the unobstructedness of deformations of
Calabi-Yau varieties over C. The second is where we see a family of objects of interest
degenerating inward to some special fiber. An example of this is the picture suggested by
an elliptic fibration, with a family of elliptic curves degenerating towards a special point
where we get a singular curve. Our situation of interest is firmly of the second type.
Thus, if we wish to be more specific SH(C)ATip provides a degeneration of Spip inward to
an algebraic special fiber. More than just algebraic, the special fiber is algorithmic, i.e.
any specific question about finite objects can be answered by a computer in finite time.

In fact, every aspect of the picture over C extends to R in the simplest reasonable
way. The reader who has previously studied R-motivic spectra may find this rather
surprising (as the authors did), and we suggest that this highlights the primacy of the
Artin–Tate category over the Tate category.

(1) There is a distinguished element of the p-complete homotopy groups over R,
t ∈ π0,0,−1 Sp, which maps to 1 under Betti realization 13. We will construct t
in Section 2.

12By base-change a similar results holds over any base.
13As above, the Betti realization map πR

0,0,−1 Sp → πC2
0 Sp is an isomorphism so t is uniquely

identified.
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(2) The Betti realization functor factors through the category of t-local objects,
and provides a symmetric monoidal equivalence

Mod(SH(R)ATi2 ;S2[t−1]) ' SpC2,i2 .

This will be proven as the main theorem of Section 3.
(3) The category SH(R)ATi2 can be equipped with the structure of a SpFil

i2 -algebra.
More explicitly, this means we have a symmetric monoidal left adjoint

i∗ : SpFil
i2 → SH(R)ATi2

which sends the shift map in SpFil
i2 to t. As a consequence of this Ct acquires

the structure of a commutative algebra. We may also regard SH(R)ATi2 as a
SpC2

-algebra via the functor cC/R. Tensoring these two functors together we
obtain a symmetric monoidal left adjoint

i∗ : SpFil
C2,i2 → SH(R)ATi2 .

These statements will be proven in Section 4 as part of Proposition 4.5.
(4) The category of modules over Ct is equivalent to a renormalization of the de-

rived category of an abelian category of equivariant BP∗BP-comodules. More
precisely, we have an equivalence of presentably symmetric monoidal categories

Mod(SH(R)ATi2 ;Ct) ' Mod(SpC2
;Z2)⊗Z IndCoh(Mfg).

This equivalence sends Ct ⊗ Sp,q,w to Σ(p−w)+(q−w)σZ2 ⊗ ω⊗wG/Mfg
and on the

level of tri-graded rings of homotopy groups it induces an isomorphism 14

πR
p,q,wCt ∼=

⊕
w+a−s=p

Exts,2wBP∗BP(BP∗,BP∗ ⊗ πC2

a+(q−w)σZ2).

This will be proven as the main theorem of Section 5.
(5) The adjunction i is affine in the sense that there is a commutative algebra RR

• in
SpFil

C2,i2 and an equivalence of presentably symmetric monoidal categories under
SpFil

C2,i2

SH(R)ATi2 ' Mod(SpFil
C2,i2;RR

• ).

Moreover, the commutative algebra RR
• admits an explicit construction which

uses no algebraic geometry. It is given by

RR
• := Tot∗

(
P2•MU⊗∗+1

R,2

)
,

where Pn is the functor which takes the nth slice cover of a C2 spectrum. This
construction uses only the commutative algebra MUR in SpC2

introduced by
Landweber [Lan67, Lan68]. The comparison proceeds via understanding the
close relationship between MGL and MUR over R. This will be proven as the
main theorem of Section 4.

Using the second special element of the tri-graded homotopy groups of the sphere,
a ∈ πR

0,−1,0 S, we can delve further into the structure of SH(R)ATi2 . In order to do this we
begin with a digression on the element aσ in C2-equivariant homotopy theory.

Proposition 1.26. The category SpC2
can be viewed as a 1-parameter family with

coordinate aσ, special fiber Sp and generic fiber Sp in the sense that:
• The category of a-local objects can be identified with spectra, i.e. there is an
equivalence of presentably symmetric monoidal categories

Mod(SpC2
;S[a−1

σ ]) ' Sp .

14If one wants the tensor product can be moved outside the Ext, but then it must be taken in a
derived sense.
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• The cofiber of aσ which we will denote Caσ can be endowed with a commutative
algebra structure and there is an equivalence of presentably symmetric monoidal
categories,

Mod(SpC2
;Caσ) ' Sp .

• There is a monoidal left adjoint

i∗ : SpGr → SpC2
,

which sends 1(1) to Sσ 15. Moreover, this adjunction is affine in the sense that
we have an equivalence of categories

SpC2
' Mod(SpGr;RC2

• ),

where RC2
n ' ΣRP−n−1

−∞ .

This result is certainly well known to experts. We give a proof in Appendix A
as Examples A.8 and A.9. Since therein the pair of functors Φe and ΦC2 out of SpC2

become identified with modding out by aσ and inverting aσ respectively, this proposition
produces a diagram of symmetric monoidal left adjoints,

Sp SpC2
Sp

Mod(SpC2
;S[a−1

σ ]) Mod(SpC2
;Ca).

ΦC2

(−)[a−1
σ ] Ca⊗−

Φe

' '

We are now free to use the functor cC/R to push our description of SpC2
as a 1-

parameter deformation into SH(R)ATi2 and obtain a description of that category as a
2-parameter deformation of Spi2 with coordinates t and a. For example, we can give Ca
the structure of a commutative algebra since cC/R(aσ) = a. Note that by Summary 1.25
the commutative algebra structure obtained in this way is the same as the one coming
from the equivalence Ca ' Spec(C)+.

While the 1-parameter deformations considered up to now had only a special and
a generic fiber, when considered as a 2-parameter deformation SH(R)ATi2 has various
“limiting behavoirs” which we presently study. Since, each parameter can be set to
either 0 or 1, or left unspecified there are 9 total categories of interest. We summarize
what we know in the following table.

unspecified t = 0 t = 1
un SH(R)ATi2 Mod(SpC2,i2;Z2)⊗Z IndCoh(Mfg) SpC2,i2

a = 0 SH(C)ATi2 IndCoh(Mfg)i2 Spi2
a = 1 ? Mod(Sp;F2[u2σ])⊗Z IndCoh(Mfg) Spi2

The only identification in this table which we have not yet discussed is the one in
the bottom middle. However, one can easily obtain this from the identification of Ct-
modules and Lemma A.10,

Mod(SH(R)ATi2 ;Ct[a−1]) ' Spi2⊗SpC2,i2
Mod(SH(R)ATi2 ;Ct)

' Spi2⊗SpC2,i2
Mod(SpC2,i2;Z2)⊗Z IndCoh(Mfg)

' Mod(Spi2; ΦC2Z2)⊗Z IndCoh(Mfg)

' Mod(Sp;F2[u2σ])⊗Z IndCoh(Mfg)

where the final step is just the identification of ΦC2Z with F2[u2σ] where u2σ is a poly-
nomial generator in degree 2. As a corollary, we can give a description of the tri-graded
homotopy groups of several objects in SH(R)ATi2 in terms of better understood categories.

Corollary 1.27. There are isomorphisms of rings,

15The authors will return to the question of whether this functor can be upgraded to a monoidal
functor in from filtered spectra in a future work.
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(1) πR
p,q,w(Ca) ∼= πC

p+q,w S,
(2) πR

p,q,w(Ca⊗ Ct) ∼= Ext2w−p−q,w
BP∗BP (BP∗,BP∗),

(3) πR
p,q,w(Ca[t−1]p) ∼= πp+q Sp,

(4) πR
p,q,w(Ct) ∼=

⊕
w+a−s=p Exts,2wBP∗BP(BP∗,BP∗ ⊗ πC2

a+(q−w)σZ2),

(5) πR
p,q,w(Ct[a−1]) ∼=

⊕
w+2a−s=p

(
F2{u2a} ⊗F2

Exts,2wBP∗BP(BP∗,BP∗/2)
)
,

(6) πR
p,q,w(S2[t−1]) ∼= πC2

p,q S2,
(7) πp,q,w(S2[a−1, t−1]) ∼= πp S2.

We now turn to the category of a-local objects, only labelled “?” in the table above.
It is one of the most mysterious actors in the story told in this paper and we shall devote
Section 7 to its study. As we shall see, it records a deformation of the category of spectra
sitting between that which corresponds to the Adams–Novikov spectral sequence and
that which corresponds to the Adams spectral sequence. The role it plays in mediating
between these two spectral sequences remains to be understood.

Since a = cC/R(aσ) and aσ = Be(a) we can construct a diagram of symmetric
monoidal left adjoints,

SH(R) Mod(SH(R);S[a−1])

SpC2
Sp .

(−)[a−1]

Be Be

ΦC2

As the diagram shows, the category Mod(SH(R);S2[a−1]) can be viewed as the target
category of an “R-motivic geometric fixed points” functor. Since ΦC2(MUR) ' MO, one
might guess that Mod(SH(R)ATi2 ;S2[a−1]) is related to Pstragowski’s synthetic category
SynMO

16. Indeed, we construct a comparison functor,

Proposition 1.28. There is a symmetric monoidal left adjoint

ReF2
: Mod(SH(R)ATi2 ;S2[a−1])→ SynF2

which sends Sp,q,w to Sp,w.
On the other side, an interesting functor into Mod(SH(R)ATi2 ;S2[a−1]) may be con-

structed using the Bachmann–Hoyois motivic norm functors.

Recollection 1.29. In [BH20b], Bachmann and Hoyois construct symmetric monoidal
norm functors along finite etale maps. These norm functors may be thought of as an
indexed tensor product and in the case of R they fit into the following diagram showing
compatability with the Hill–Hopkins–Ravenel norm functors in equivariant homotopy
theory [BH20b, Section 11],

SH(C) SH(R)

Sp SpC2
.

NmR
C

Be Be

NmC2
e

From [BH20b, Example 3.5, Lemma 4.4, Example 4.10] we can conclude that on bigraded
spheres NmR

C(Ss,wC ) ' Ss,s,2w. The functor NmR
C is polynomial of degree 2 and when

applied to a direct sum we have a formula [BH20b, Corollary 5.13]

NmR
C(X ⊕ Y ) ' NmR

C(X)⊕ i∗(X ⊗ Y )⊕NmR
C(Y ).

Since NmR
C commutes with sifted colimits, it follows from the above that it restricts to

a functor on the categories of Artin–Tate objects,

NmR
C : SH(R)AT → SH(C)AT.

16The spectrum MO is a sum of copies of F2 and as we shall see this implies SynMO ' SynF2 .
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While the norm functor NmR
C is not exact, it becomes exact after a is inverted.

Proposition 1.30. The composite

SH(C)ATi2
NmR

C−−−→ SH(R)ATi2
(−)[a−1]−−−−−→ Mod(SH(R)ATi2 ;S2[a−1])

is a symmetric monoidal left adjoint. On Picard elements this composite sends Ss,w2 to
Ss,∗,2w2 [a−1]. The map τ is sent to t2.

In conclusion, we have a pair of functors

SH(C)ATi2
NmR

C(−)[a−1]−−−−−−−−→ Mod(SH(R)ATi2 ;S2[a−1])
ReF2−−−→ SynF2

,

which are each the identity on spectra after inverting t and τ . It would be very inter-
esting to obtain a better computational understanding of the a-local category and the
behavoir of these two functors. More ambitously, we ask,

Question 1.31. Is there a good description of the full subcategory of a-local objects in
SH(R)ATi2? What geometric information does the a-localization of a smooth projective
variety X remember?

The careful reader will have noticed that we switched from p-completing when dis-
cussing C to 2-completing when discussing R. The reason for this is that at an odd prime
the category SH(R)ATip admits the following simple description in terms of SH(C)ATip .

Proposition 1.32. There is an equivalence of categories,

SH(R)ATip ' Spip×SH(C)ATip × SH(C)ATip .

This will be proven in Section 9.

1.4. Potpurri.
In this subsection, we collect a number of additional results about the category of

Artin–Tate R-motivic spectra that are worth highlighting, but which didn’t fit into the
previous sections.

1.4.1. Trigraded R-motivic homology and Steenrod algebra. From a computational point
of view, an important first step in studying the trigraded homotopy groups of R-motivic
spectra is the computation of the trigraded homology of a point and the trigraded dual
Steenrod algebra. Leaning on known bigraded computations, we make these computa-
tions in Section 3.

Proposition 1.33. As trigraded commutative rings, with |t| = (0, 0,−1), there are
isomorphisms

πR
p,q,wMZ2

∼=
(
πC2
p+qσZ2

)
[t],

πR
p,q,wMF2

∼=
(
πC2
p+qσF2

)
[t].

Here, πC2
p+qσZ2 and πC2

p+qσF2 are placed in degrees (p, q, 0)

Remark 1.34. There are well-known elements τ ∈ πR
1,−1−1MF2 and uσ ∈ πC2

1−σF2.
Write u ∈ πR

1,−1,0MF2 for the corresponding element. Then there is a relation (see
Corollary 3.6)

τ = t · u,
i.e.

tau = ta · u.
This was the original motivation for our choice of the character t.
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Proposition 1.35. The trigraded dual Steenrod algebra πR
∗,∗,∗ (MF2 ⊗MF2) is isomor-

phic to

(MF2)∗∗∗ [τ0, τ1, · · · , ξ1, ξ2, · · · ]/(τ2
i = t(aτi+1 + uξi+1 + aτ0ξi+1))

Here, |τi| = (2i, 2i − 1, 2i − 1) and |ξi| = (2i − 1, 2i − 1, 2i − 1).

Remark 1.36. The reader may notice that the ‘negative cone’ in the C2-equivariant
homology of a point appears in the above formulas. This is a feature of the Artin–Tate
category, as opposed to the Tate category.

We expect that a computer could be coaxed into computing the MF2-Adams spectral
sequence for the tri-graded homotopy of Ct, and that the natural maps between this
spectral sequence and the MF2-Adams spectral sequence for the tri-graded homotopy of
the sphere would provide many of the differentials in the latter. This technique would
likely be the most efficient way of computing both tri-graded R-motivic stems and (in the
long-run) the bi-graded C2-equivariant homotopy groups. However, as the quad-graded
nature of this computation would begin to tax our ability to visualize data it is unlikely
that such a computation could be accomplished without the aid of a well-developed
software suite for manipulating spectral sequence data.

1.4.2. The effective slice filtration. In Section 4.2, we study Voevodsky’s effective slice
filtration. The effective slice filtration associates to any object E ∈ SH(k) a tower,

· · · → f2E → f1E → f0E → f−1E → f−2E → · · · → E.

The main result of the section is the following proposition which identifies the Betti
realization of this tower.

Proposition 1.37. The functor i∗ : SH(R)ATi2 → SpFil
C2,i2 sending E to the tower

· · · → MapSH(R)AT
i2

(S0,0,1
2 , E)

t−→ MapSH(R)AT
i2

(S0,0,0
2 , E)

t−→ MapSH(R)AT
i2

(S0,0,−1
2 , E)→ . . .

is equivalent to the functor Be ◦ f• : SH(R)ATi2 → SpFil
C2,i2 taking E ∈ SH(R)ATi2 to the

Betti realization of its effective slice tower.

Recollection 1.38. Voevodsky has defined the “rigid homotopy groups” [Voe02, Defi-
nition 5.1] of an R-motivic spectrum X to be

πR,rig
p,q,wX := πR

p,q,wswX,

where swX is nth effective slice of X, i.e. the cofiber of fn+1X → fnX.

Using the notion of rigid homotopy groups, he observed the phenomenon of algebraic
degeneration in motivic homotopy theory. Since the associated graded of this tower
also computes the homotopy groups of X ⊗ Ct, it follows from the proposition that
πR,rig
p,q,wX

∼= πR
p,q,wX ⊗Ct when X ∈ SH(R)ATi2 . This shows that Voevodsky’s ideas about

algebraic degeneration line up with notion coming from the cofiber of t (or τ) philosophy.
The proposition also implies that the so-called C2-effective spectral sequence (see

[Kon20]) is interchangeable with the t-Bockstein spectral sequence.

1.4.3. The functor νR. In Section 6.2, we will construct a lax symmetric monoidal func-
tor,

νR : SpC2,i2 → SH(R)ATi2 ,

which is a section of the Betti realization functor and sends Snρ2 to Sn,n,n2 . This functor
is defined similarly to Pstragowski’s synthetic analog functor [Pst18, Definition 4.3].
Unlike the section cC/R of Heller–Ormsby, the functor νR is not exact. However, it is
better adapted to the construction of interesting R-motivic spectra, as the following
result shows.

Proposition 1.39. There are equivalences of commutative algebras,
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νRF2 ' MF2, νRZ2 ' MZ2, νR MUR,2 ' MGL2,
νRkuR,2 ' kgl2, νRkoC2,2 ' kq2.

On the one hand, this proposition suggests that each of the 2-complete R-motivic
homology theories above is not particularly far from being purely topological. On the
other hand, it suggests that one may profitably define R-motivic analogs of 2-complete
C2-equivariant homology theories by applying νR. For example, if we had a good defi-
nition of 2-complete C2-equivariant connective topological modular forms tmfC2,2, then
we could define a spectrum of R-motivic modular forms as νRtmfC2,2. Unfortunately,
no such definition is currently known.

1.4.4. Further deformations. One of our motivations for this project was the hope that
a deformation-theoretic description of Artin–Tate R-motivic stable homotopy theory
would suggest other profitable deformations of classical stable homotopy theories.

In Appendix C.1, we show how a 1-parameter deformation of a stable presentably
symmetric monoidal category C may be associated to a choice of object E ∈ C and
filtration {C≥k} of C. The case of SH(C)ATip is associated to the case where E = MUp

and C = Spip, C≥k consists of the 2k-connective objects. The case of SH(R)ATi2 , on the
other hand, is associated to the case where E = MUR,2 and C = SpC2,i2, C≥k consists of
the regular slice 2k-connective objects. Note that while the completions are necessary
for the link to motivic homotopy theory, for the purpose of studying classical homotopy
theory one may just as well work with integral deformations.

This suggests several other deformations that may be profitable to study.
(1) We can take the deformation of C2n -equivariant homotopy theory with respect

to the norm NC2n

C2
MUR and the even slice filtration.

(2) At odd primes, one could try to construct the deformation associated to the
hypothetical spectrum BPµp and the even regular slice filtration.

(3) One could take the deformation of SpCp associated to Fp and the regular slice
filtration. At the prime 2, this is connected to a variant of the F2-Adams spectral
sequence. Dylan Wilson has suggested that this variant may be more tractable
at odd primes than the Fp-Adams spectral sequence, considering his forthcoming
work with Krishanu Sankar proving that Fp ⊗ Fp is not a free Fp-module.

(4) The deformation of SynMU based on ν Fp and an appropriately chosen filtration
would likely shed much light on the motivic Adams spectral sequence over C.
Such a category might be called a “bisynthetic”.

Notations and conventions.
Throughout this paper the term category will refer to an ∞-category as developed

by Joyal and Lurie. In some places use the term 1-category, which is short-hand for
1-truncated ∞-category. We will also assume the reader is familiar with higher algebra
as developed in [Lur17].

Throughout this paper, filtered and graded objects will be ubiquitous. We adopt the
convention that a filtered object in a category C is a diagram of the form

· · · → C2 → C1 → C0 → C−1 → C−2 → · · · ,
i.e. that the maps decrease the index variable. We provide a more complete introduc-
tion to filtered objects in Appendix B where we set up notation for several standard
constructions.

Let C denote a stable, presentably symmetric monoidal category. We will let Cp
denote the category of p-complete objects in C, this category acquires a symmetric
monoidal structure through the completion of the symmetric monoidal structure on C.
Similarly, if X ∈ X is an an object of C, we let Xp denote the p-completion of X. If C
has a set of compact generators, then we let Cip denote the ind-completion of the full
subcategory of C generated under finite colimits and retracts by the p-completions of
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compact objects. In the situation where C the unit is compact and all compact objects
are dualizable, this definition admits the following simplification: Cip ' Mod(C;1p).
The tensor product can then be described as the relative tensor product over 1p. The
reason for this equivalence is that tensoring with a dualizable object commutes with
limits, so for X dualizable Xp ' X ⊗ 1p.

Our reason for using Cip over Cp is that, even if the unit in C is compact, the unit in Cp
may not be compact. On the other hand, compactness of unit in C implies compactness
of the unit in Cip. This will make certain arguments more direct in the ip case. The
reader who strongly prefers the usual notion of p-completion will be relieved to know
that in covenient cases (such those in which we work throughout this paper) (Cip)p ' Cp.
Therefore, all the main theorems above admits p-complete analogs.

When C is a stable category andX,Y ∈ C are objects, we will typically let MapC(X,Y )
denote the spectrum of maps from X to Y . One exception is when C comes with a
natural enrichment to C2-spectra, such as when C = SH(R). In that case, we will
regard MapC(X,Y ) as a C2-spectrum. When we want to access the underlying space of
maps, we shall use the notation Ω∞MapC(X,Y ).
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2. Constructing the element ta

The map τ and its properties are the most striking feature of the category of p-
complete motives over C. In this section we construct a map t which plays the role of
τ over R and verify its basic propety: its Betti realization is 1.

Theorem 2.1. For all primes p, there is a class t ∈ πR
0,0,−1 Sp with the following

properties:
(1) Under Betti realization, t goes to 1 ∈ πC2

0 Sp.
(2) Under base change to C, t goes to τ ∈ πC

0,−1 Sp.

Surprisingly, as with the element τ in previous work, we will not need to use any
information about the construction of t besides properties (1) and (2) outside this
section. Since the construction of t will be completely analogous to the construction of
τ over C, we begin by recalling this construction. The construction below is inspired by
[HKO11b, Remark on p. 22] and [BEØ20, Section 4].

2.1. Constructing τ over C.
We begin by fixing a compatible sequence of primitive (pk)th roots of unity {ζpk}k≥0.

We may then construct the following diagram of varieties over C,

Spec(C)
∐

Spec(C) Spec(C)

Gm Gm.

(ζ
pk
,1) 1

[pk]

After passing to the associated diagram of motivic spaces we can add a third column by
taking cofibers:

Spec(C)
∐

Spec(C) Spec(C) S1

Gm Gm Gm/[pk].

(ζ
pk
,1) 1 τk

[pk]
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Using the compatibility of the chosen primitive (pk)th roots of unity, the maps τk so
defined are compatible in the sense that there are commutative diagrams

S1 S1

Gm/[pk] Gm/[pk−1].

id

τk τk−1

Stabilizing and using the fact that Σ∞[pk] : S1,1 → S1,1 is equivalent to pk over C,17
we find that we have constructed a compatible system of elements τk ∈ πC

0,−1 S /pk.
Passing to the limit, we obtain the element τ ∈ πC

0,−1 Sp.

Proposition 2.2. For some choice of {ζpk}k≥0, we have Be(τ) = 1 18.

Proof. We will show that Be(τ) ∈ π0 Sp = Zp is a p-adic unit. Then, using the action of
Aut(µp∞) = Z×p on systems of (pk)th roots of unity, we may change τ by multiplication
by any p-adic unit.

It now suffices to show that the Betti realizations of the unstable maps τk : S1 →
Gm/[pk] are surjective on π1. Since [pk] : C× → C× is a principal µpk -fibration, it is
classified by a map C× → Bµpk and we can form the following diagram:

S0 S0 ∗ S1

µpk C× C× C×/[pk]

Bµpk

(ζ
pk
,1) (ζ

pk
,1)

[pk]

The dashed map C×/[pk] → Bµpk is an isomorphism on π1, so it suffices to show
that the composite map S1 → C×/[pk] → Bµpk is surjective on π1. This follows from

the fact that the map S1 → Bµpk is adjoint to the map S0
(ζ
pk
,1)

−−−−→ µpk . �

2.2. Constructing t over R.
We now imitate the construction of τ above to construct t and prove Theorem 2.1.

The key point to note is that in descending Gm from C to R there are two forms to
consider. Thus, while the roots of unity ζn do not lie in

{±1} ⊂ Gm(R) ⊆ Gm(C) = C×,

the other form of Gm over R which is the “algebraic circle”, Q, given by {x2 + y2 = 1}
has

S1 = Q(R) ⊆ Q(C) ∼= Gm(C) = C×.
As such, we are free to imitate the construction of τ above with Gm replaced by the
algebraic circle Q.

Let {ζpk}k≥0 be the system of primitive (pk)th roots of unity satisfying the conclusion
of Proposition 2.2. As before, we form the diagram of R-motivic spaces:

Spec(R)
∐

Spec(R) Spec(R) S1

Q Q Q/[pk].

(ζ
pk
,1) 1 tk

[pk]

17This follows from Corollary 1.21, since the Betti realization of [pk] is clearly pk.
18It seems likely that the choice of roots of unity which yields 1 is exp

(
2πi
pk

)
.
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Before finishing the construction and proving Theorem 2.1 we need a short lemma which
identifies the map [pk].

Lemma 2.3. The map Σ∞[pk] : S1,0,1 → S1,0,1 is homotopic to pk : S1,0,1 → S1,0,1.

Proof. Since the map πR
0,0,0 → πC2

0 induced by Betti realization is an isomorphism by
Corollary 1.21, it suffices to show this after Betti realization. Upon Betti realization,
this is a map S1 → S1 which induces multiplication by pk on both geometric fixed points
and on the underlying spectrum. Since the map πC2

0 to Z ⊕ Z given by ( underlying,
geometric fixed points ) is injective we’re done. �

Proof of Theorem 2.1. Stabilizing and applying Lemma 2.3 to maps tk constructed
above, we obtain a compatible system of classes tk ∈ πR

0,0,−1 S /pk which give rise to a
class t ∈ πR

0,0,−1 Sp. It follows immediately from the definition that the base change of
t to C is τ . Since the Betti realization of τ is 1, we find that the underlying of the Betti
realization of t is 1.

In order to show that the Betti realization of t is 1, it therefore suffices to show
that it is multiplication by some p-adic integer. To do this, it suffices to do so modulo
pk for all k. Modulo pk, the Betti realization of t arises as the stabilization of a map
S1 → S1/pk of C2-equivariant spaces, and all such maps are given by multiplication by
a p-adic integer. �

3. The ta-local category

In this section, we show that Betti realization identifies the category of t-local Artin-
Tate R-motivic spectra with the category of C2-spectra. Indeed, we know from Theo-
rem 2.1 that Be(t) = 1, so that Be factors through the category of t-local objects. The
main theorem of this section is that the induced functor is an equivalence.

Definition 3.1. Let S2[t−1] denote the commutative algebra given by

S2[t−1] := colim
(
S0,0,0

2
t→ S0,0,1

2
t→ S0,0,2

2
t→ · · ·

)
.

The category of modules over S2[t−1] in SH(R)ATi2 is equivalent to the catgoery of t-local
objects in SH(R)ATi2 .

19. Since the Betti realization of t is 1, Betti realization factors
through t-localization providing a symmetric monoidal functor

Be : Mod(SH(R)ATi2 ;S2[t−1])→ SpC2,i2 .

Theorem 3.2. Betti realization induces an equivalence of symmetric monoidal cate-
gories

Be : Mod(SH(R)ATi2 ;S2[t−1])
'−→ SpC2,i2

with inverse equivalence given by Y (−) := cC/R(−)[t−1]. Simply put, inverting t in
SH(R)ATi2 recovers SpC2,i2.

The main content of the proof of this theorem consists in showing that Y is fully-
faithful. Since cC/R is fully-faithful, as proved by Heller and Ormsby (see Theorem 1.20),
this reduces to studying the interaction of t and cC/R. Our method of proof is to
prove the appropriate statement at the level of MF2 by direct computation, extend
to dualizable objects by descent, then extend to all objects by colimits. This stategy
requires knowledge of the tri-graded homology of a point and the strucutre of the tri-
graded dual Steenrod algebra as an input. Since this is of independent interest we have
separated it out as its own subsection.

19Here we use the fact that one may invert an element in the Picard-graded homotopy of a commu-
tative algebra and the associated description of the module category as a localization from the proof of
[Lur18a, Proposition 4.3.17].
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3.1. The homology of a point.
In this subsection we compute the tri-graded homology of a point and the structure

of the dual Steenrod algebra. Although we only use coarse information extracted from
these computations in this paper, we hope that they are useful to readers more interested
in computations. The reader who has heard that R-motivic computations are simplified
by the absence of the “negative cone” may be surprised to learn that it is present in the
tri-graded picture.

Proposition 3.3. As tri-graded commutative rings, with |t| = (0, 0,−1), there are
isomorphisms

πR
p,q,wMZ2

∼=
(
πC2
p+qσZ2

)
[t] and πR

p,q,wMF2
∼=
(
πC2
p+qσF2

)
[t],

where πC2
p+qσZ2 and πC2

p+qσF2 are each placed in tri-degree (p, q, 0).

Before we move on to the proof of Proposition 3.3, we remind the reader of the
structure of πC2

p+qσZ2 and πC2
p+qσF2. We also explain how to translate between the older

names of elements in the bi-graded homology of a point and the names arising from this
proposition.

Recollection 3.4. The bi-graded homotopy groups of F2 are given by

πC2
p+qσF2

∼= F2[aσ, uσ]⊕ F2

{
θ

akσu
n
σ

|k, n ≥ 0

}
where |aσ| = −σ, |uσ| = 1−σ, |θ| = 2σ−2 and the term after the plus sits in square-zero
extension with the polynomial part. This is pictured in Figure 1.

The bi-graded homotopy groups of Z2 are given by

πC2
p+qσZ2

∼= Z2[aσ, u2σ]/(2aσ)⊕ Z2

{
2

un2σ
|n ≥ 1

}
⊕ F2

{
θ

akσu
n
2σ

|k, n ≥ 0

}
where |aσ| = −σ, |u2σ| = 2 − 2σ, |θ| = 3σ − 3 and the term involving θ sits in a
square-zero extension with rest of the ring. This is pictured in Figure 2.

Recollection 3.5. Under Betti realization MZ2 and MF2 are sent to Z2 and F2 [HO16].
The following are some commonly encountered homotopy elements and their Betti re-
alizations,

• Stabilizing the inclusion of the fixed points S0 → Sσ we obtain aσ ∈ πC2
−σ S.

This class maps to the corresponding class in Z2 and F2.
• We let u ∈ πR

1,−1,0MF2 denote the element corresponding to uσ ∈ πC2
1−σF2 under

the isomorphism of Proposition 3.3.
• The class ρ ∈ πR

0,−1,−1 S is defined to be the stabilization of the inclusion {±1} ↪→
Gm. Under Betti realization ρ goes to aσ.

• The element τ ∈ πR
1,−1,−1MF2 corresponds to−1 under the isomorphism πR

1,−1,−1MF2
∼=

µ2(R). Under Betti realization τ goes to uσ.

Corollary 3.6. There are relations ρ = t ·a in πR
0,−1,−1 S2 and τ = t ·u ∈ πR

1,−1,−1MF2.

Proof. In Lemma 3.12 we will show that Betti realization induces an isomorphism
πR

0,−1,−1 S2 → πC2
−σ S2, therefore for the first relation it suffices to note that Be(ρ) =

1 · aσ = Be(t · a). Similarly, by Proposition 3.3 and Recollection 3.4, we know that
πR

1,−1,−1MF2
∼= F2{t · u}. Since Be(τ) = uσ 6= 0, the second relation follows. �

Assuming the tri-graded homology of a point, the tri-graded dual Steenrod algebra
can easily by deduced from results of Voevodsky.
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The C2-equivariant F2-homology of a point

−4 −2 0 2

−2

0

2

4

1

aσ uσ

θ

Figure 1. The bigraded homotopy groups of F2 depicted on a (p, q) coordinate
system. Vertical lines going down denote multiplication by aσ . Diagonal lines going
down-right denote multiplication by uσ .

Theorem 3.7. The tri-graded R-motivic dual Steenrod algebra πR
∗,∗,∗ (MF2 ⊗MF2) is

isomorphic to

(MF2)∗,∗,∗ [τ0, τ1, · · · , ξ1, ξ2, · · · ]/(τ2
i = taτi+1 + tuξi+1 + taτ0ξi+1),

where |τi| = (2i, 2i − 1, 2i − 1) and |ξi| = (2i − 1, 2i − 1, 2i − 1).

Proof. We will deduce this from the classical bigraded computation of the R-motivic
Steenrod algebra. The key input is the fact that MF2 ⊗MF2 decomposes as a direct
sum of R-motivic spectra of the form Σp,q,qMF2. This is stated as [HKØ17, Theorem
1.1 (3)], which in the case of a characteristic zero base field such as R follows from work
of Voevodsky [Voe03b, Voe10].

The decomposition of MF2 ⊗MF2 given in [HKØ17, Theorem 1.1] shows that, as a
(MF2)∗,∗,∗-module, π∗,∗,∗(MF2 ⊗MF2) is freely generated by monomials in the ξi and
τi. Since each τi and ξi is represented by a map of the form Sa⊗Gbm → MF2 ⊗MF2

(with no copies of SC in the domain), we may read off the formulas for products of τi
and ξi from the standard bigraded computations [Voe03b, Theorem 12.6]. To translate
the formulas into tri-graded notation, we need only make use of the relations ρ = t · a
and τ = t · u of Corollary 3.6. �

We now proceed to the proof of Proposition 3.3. The main steps of the proof are
split accross the next several lemmas, the key input being our knowledge of the bigraded
2-complete motivic cohomology of both R and C.

Lemma 3.8. For integers p, w ∈ Z, there are isomorphisms

πR
p,w,wMZ2

∼= Z2[τ2, ρ]/(2ρ).

For integers p, q, w ∈ Z, there are isomorphisms

πR
p,q,w (Spec(C)⊗MZ2) ∼= πC

p+q,w(MZ2)
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The C2-equivariant integral homology of a point

−6 −4 −2 0 2 4

−4

−2

0

2

4

6

1

aσ

u2σ

2
u2σ

θ

Figure 2. The bigraded homotopy groups of Z2 depicted on a (p, q) coordinate
system. Squares denote copies of Z2 and circles denotes copies of F2. Vertical lines
going down denote multiplication by aσ . Diagonal lines going down-right denote
multiplication by u2σ . The red line indicates a u2σ multiplication that hits twice a
generator. Not all u2σ multiplications are shown.

and

πC
p,wMZ2

∼= Z2[τ ].

Proof. The base change isomorphism isomorphism is a corollary of the six functor for-
malism. The statements about motivic cohomology are a corollary of Voevodsky’s
solution of the Bloch–Kato and Beilinson–Lichtenbaum conjectures [Voe03a].

�

Lemma 3.9. The groups πR
p,q,wMZ2 and πR

p,q,wMF2 are zero for w > 0.

Proof. Considering the cofiber sequence MZ2
2−→ MZ2 → MF2, we reduce to the case

of MZ2. Using Lemma 3.8 we see that this lemma is true for tri-degrees of the form
(p, w,w). For each integer n, consider the cofiber sequence

Spec(C)⊗ (SC)⊗n−1 → (SC)⊗n−1 → (SC)⊗n.

Tensoring this with MZ2 and applying πp,w,w, we obtain a long exact sequence

πC
p+w−n+1,wMZ2 → πR

p,w−n+1,wMZ2 → πR
p,w−n,wMZ2 → πC

p+w−n,wMZ2.
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When w > 0, Lemma 3.8 thus ensures an isomorphism between πR
p,w−n+1,wMZ2 and

πR
p,w−n,wMZ2. As n varies, using the base case n = 0, we conclude that these groups

always vanish. �

Lemma 3.10. When w ≤ 0, the Betti realization maps πR
p,q,wMZ2 → πC2

p+qσZ2 and
πR
p,q,wMF2 → πC2

p+qσF2 are isomorphisms.

Proof. Considering the cofiber sequence MZ2
2−→ MZ2 → MF2, we reduce to the case of

MZ2. We first check that this true when w = q. Recollection 3.4, Recollection 3.5 and
Lemma 3.8 imply that the Betti realization map is an isomorphism for degrees of the
form (p, w,w) with w ≤ 0. As in the previous lemma we tensor the cofiber sequence

Spec(C)⊗ (SC)⊗n−1 → (SC)⊗n−1 → (SC)⊗n

with MZ2 and take homotopy groups in order to spread out to other cases. Using β as
notation for Betti realization we obtain maps of of exact sequences of abelian groups

πC
p+w−n+1,wMZ2 πR

p,w−n+1,wMZ2 πR
p,w−n,wMZ2 πC

p+w−n,wMZ2

πp+w−n+1Z2 πC2

p+(w−n+1)σZ2 πC2

p+(w−n)σZ2 πp+w−nZ2,

∼= βp,n−1 βp,n ∼=

with our goal being to prove that the Betti realization maps βp,n are isomorphisms for
all p, n ∈ Z.

Using the 5-lemma we conclude that (βp,n−1 is iso) + (βp−1,n−1 is iso) implies (βp,n
is iso). Similarly, the 5-lemma also implies that (βp,n is iso) + (βp+1,n is iso) implies
(βp,n−1 is iso). As noted above, we have already learned that βp,0 is an isomorphism for
all p so we may now induct outwards from this case to conclude.

�

Proof of Proposition 3.3. By Lemma 3.10, the map

πR
p,q,0MZ2 → πC2

p+qσZ2,

induced by Betti realization is an isomorphism. Taking the inverse, we obtain a ring
map

πC2
p+qσZ2 → πR

p,q,0MZ2.

This extends to a ring map (
πC2
p+qσZ2

)
[t]→ πp,q,∗MZ2.

It follows from Theorem 2.1 and Lemmas 3.9 and 3.10 that this map is an isomorphism.
The same proof works for MF2. �

3.2. The proof of Theorem 3.2.
Recall that we are proving that Be is an equivalence with inverse Y . We will check

directly that Y is an equivalence of categories by showing that it is fully faithful and
essentially surjective. That Be is the inverse of Y follows from the fact that Be ◦ Y =
Be ◦ cC/R is the identity on SpC2,i2. Before we can make progress on this goal we will
need a pair of lemmas.

Lemma 3.11. The tri-graded homotopy of Ct is zero in negative weights.

Proof. Our method of proof will be to apply the motivic Adams spectral sequence to Ct.
Since this spectral sequence converges strongly for S2 by [HKO11a], it also converges
strongly for Ct. This spectral sequence takes the form

Es,t1 = πt,q,w(Ct⊗MF⊗s+1
2 ) =⇒ πt−s,q,wCt.
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It suffices therefore to check at the level of the E1-page that πt,q,wMF⊗s+1
2 = 0 for w < 0.

For this, we use the known [Voe03b, Voe10, HKØ17] description of MF2 ⊗MF2 in
SH(R). One has that MF2 ⊗MF2 ' ⊕(xi,yi,yi)Σ

xi,yi,yiMF2, where the xi and yi range
over non-negative integers. The result now follows immediately from Proposition 3.3. �

Lemma 3.12. Let n denote a non-negative integer. Given a pair of C2-spectra X,Y ∈
SpC2,i2 the natural map induced by tn,

MapSH(R)AT
i2

(cC/RX, cC/RY )→ MapSH(R)AT
i2

(cC/RX,S0,0,n
2 ⊗cC/RY )

is an equivalence.

Proof. Since cC/R commutes with colimits it will suffice to prove the proposition as X
ranges through a family of compact generators of SpC2,i2. In particular, it will suffice
to assume X ' Sp+qσ2 is a representation sphere. Since cC/RX ' Sp,q,02 is compact, it
furthermore suffices to prove the proposition as Y ranges through a family of compact
generators. In particular, it suffices to assume that Y ' Sa+bσ

2 is also a representation
sphere.

At this point, the proposition reduces to a claim about

MapSH(R)AT
i2

(cC/R Sp+qσ2 ,S0,0,n
2 ⊗cC/R Sa+bσ

2 ) ' MapSH(R)AT
i2

(Sp−a,q−b,−n2 ,S2),

or in other words a claim about the tri-graded stable stems πR
∗,∗,∗ S2. We must show that

multiplication by tn is an isomorphism πR
∗,∗,0 S2 → πR

∗,∗,−n S2. Equivalently, we must
check that t : πR

∗,∗,−n S2 → πR
∗,∗,−n−1 S2 is an isomorphism for each n ≥ 0. Examining

the cofiber sequence
Σ−1,0,0Ct→ S0,0,−1

2
t→ S2 → Ct,

we may use Lemma 3.11 to conclude. �

We are now ready to complete the proof of Theorem 3.2.
To check that Y is fully faithful, we must prove that for any pair A,B ∈ SpC2,i2 the

composite

MapSpC2,i2
(A,B)→ MapSH(R)AT

i2
(cC/RA, cC/RB)→ MapSH(R)AT

i2
(cC/RA[t−1], cC/RB[t−1])

is an equivalence. The first map is an equivalence as a consequence of the fully-
faithfulness of cC/R as proven by Heller-Ormsby, see Theorem 1.20. The second map
factors as

MapSH(R)AT
i2

(cC/RA, cC/RB)
'−→ MapSH(R)AT

i2
(cC/RA, cC/RB[t−1])

'−→ MapSH(R)AT
i2

(cC/RA[t−1], cC/RB[t−1])

where first map is an equivalence as a consequence of Lemma 3.12 and the second map
is an equivalence since inverting t is a localization.

Since Y is now fully-faithful and colimit preserving, to check that it is essentially
surjective it suffices to check that its image contains a family of compact generators.
One such family consists of the objects Sp,q,w2 [t−1] as p, q, w range over the integers,
since Sp,q,w2 [t−1] ' Sp,q,02 [t−1] ' Y (Sp+qσ2 ).

4. Galois reconstruction

In this section, we provide a Galois reconstruction of SH(R)ATi2 . In other words, we
show how to reconstruct SH(R)ATi2 from C2-equivariant homotopy theory. As in the case
of C, understanding the close connection between MGL and its Betti realization is the
essential step in reconstruction. In Appendix C, we have set up a general framework
for reconstruction results of this kind. We will heavily rely on the work there, so we
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suggest the reader familiarize themself with the material and notations therein before
proceeding.

Before we state the main theorem, we must discuss the regular slice filtration of
C2-spectra.

Definition 4.1. We say that a C2-spectrum X is regular slice n-connective if ΦeX is
n-connective and ΦC2X is dn2 e-connective.20

We let Sp≥nC2
denote the full subcategory of SpC2

consisting of the regular slice n-
connective C2-spectra. It is a coreflective subcategory, and we let Pn : SpC2

→ Sp≥nC2

denote the right adjoint to the inclusion. Let Pn denote the functor which takes the nth

regular slice truncation and let Pnn denote the nth regular slice functor.

Construction 4.2. Since the functors Φe and ΦC2 are monoidal, the hypotheses of Con-
struction C.6 are satisfied and we may assemble the categories Sp≥nC2

into a coreflective
symmetric monoidal subcategory SpFil,2slice

C2,≥0 ⊂ SpFil
C2

which consists of those X• which
are regular slice 2n-connective in position n. This provides a lax symmetric monoidal
connective cover functor τ2slice

≥0 which takes the (2n)th-slice cover at position n. The com-
position τ2slice

≥0 (Y (−)) is equivalent to even slice tower functor P2• and demonstrates that
this functor is lax symmetric monoidal.

The fundamental construction of the section is the following:

R• := Tot∗
(
P2•MU⊗∗+1

R,2

)
.

Theorem 4.3 (Galois reconstruction). There is an equivalence of presentably symmetric
monoidal categories under SpFil

C2,i2,

SH(R)ATi2 ' Mod(SpFil
C2,i2;R•),

where SpC2,i2 acts on the left through cC/R.

The commutative algebra R• can be called the “decalage of the MUR,2-Adams tower
with respect to the even slice filtration”. The commutative algebra R• is also the image
of the unit under a certain lax symmetric monoidal functor.

Construction 4.4. Applying Construction C.9, we obtain a lax symmetric monoidal
functor

Sh(P2•; MUR,2) : SpC2,i2 → SpFil
C2,i2 .

By construction R• ' Sh(P2•; MUR,2)(S2), so this functor factors through the category
of modules over R•. Composing with the equivalence of Theorem 4.3, this defines a lax
symmetric monoidal functor,

Γ∗ : SpC2,i2 → SH(R)ATi2 .

This functor is analogous to the functor Γ∗ : Sp2 → SH(C)2 studied in [GIKR18],
and may also be compared with the synthetic analogue functor of Pstragowski [Pst18].
We will study this functor more closely in Section 6.

The proof of Theorem 4.3 will be carried out in two steps: first we will prove that
there is an equivalence

SH(R)ATi2 ' Mod(SpFil
C2,i2; i∗(S2))

for some lax symmetric monoidal functor i∗ : SH(R)ATi2 → SpFil
C2,i2. We will then construct

an equivalence of commutative rings i∗(S2) ' R•. The key step in the construction of
this equivalence is an identification of i∗(MGL2). In order make this identification we
will show that i∗ admits a description in terms of Voevodsky’s effective slice filtration.

20Here we work with the regular slice filtration because of its good multiplicative properties.
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4.1. The filtered model.
In this subsection we prove the first half of Galois reconstruction, namely that there

is a filtered model for SH(R)ATi2 .

Proposition 4.5. There is a diagram of symmetric monoidal left adjoints

SpC2,i2 SpFil
C2,i2 Mod(SpFil

C2,i2; i∗ S2) SpC2,i2

SpC2,i2 SH(R)ATi2 SpC2,i2

Id

−⊗i∗ S

i∗

Re

' Id

cC/R Be

such that i∗(Sp+qσ2 (w)) ' Sp,q,w2 .

Note that Proposition C.19 produces a diagram of this type, so in order to prove
the proposition we only need to endow SH(R)ATi2 and SpC2,i2 with the structure of a
deformation pair in the sense of Definition C.13.

Proof. We begin with the diagram,

SH(R)ATi2

SpC2,i2 SpC2,i2.

BecC/R

Id

In order to make i∗ behave as desired on Picard elements, we pick i0(w) = S0,0,w
2 . Since

Be(S0,0,w
2 ) ' S0

2, this factors through the kernel of the map on Picard groups induced
by Be.

To conclude, we now need to verify the two conditions in the definition of a deforma-
tion pair. The first condition is implied by Lemma 3.12. To verify the second condition,
we note that the representation spheres Sp+qσ2 form a set of compact dualizable gen-
erators for SpC2,i2 and the tri-graded spheres Sp,q,w2 form a set of compact dualizable
generators for SH(R)ATi2 . �

Remark 4.6. Unraveling the definitions in Appendix C, we find that for X ∈ SH(R)ATi2
there is a natural identification

i∗(X)n ' MapSH(R)AT
i2

(S0,0,n
2 , X),

and that the natural maps

MapSH(R)AT
i2

(S0,0,n
2 , X) ' i∗(X)n → i∗(X)n−1 ' MapSH(R)AT

i2
(S0,0,n−1

2 , X)

are induced by t : S0,0,n−1
2 → S0,0,n

2 .

The task of identifying i∗ S2 with R• will occupy us for the remainder of the section.

4.2. The effective slice filtration.
In this section, we relate the functor i∗ defined in the previous subsection to Voevod-

sky’s effective slice filtration. We begin by recalling the definition of the effective slice
filtration [Voe02].

Definition 4.7. Let Sm/R denote the category of smooth and separated R-schemes of
finite type. We let SH(R)eff

i2,≥n ⊂ SH(R)i2 denote the full subcategory generated under
small colimits by the collection {Sp,q,q2 ⊗X+|X ∈ Sm/R, p, q ∈ Z, q ≥ n}. We denote
the right adjoint of the inclusion by fn : SH(R)i2 → SH(R)eff

i2,≥n. There are natural
transformations fn+1 → fn and we let sn denote the cofiber of this map.

Since SH(R)eff
i2,≥n ⊂ SH(R)i2 is a compactly generated stable subcategory, the func-

tors fn and sn preserve all colimits. Moreover, the tensor product of an n-effective
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object with an m-connective object is (m+ n)-effective, so that the effective slice tower
functor f• : SH(R)i2 → SH(R)Fil

i2 is lax symmetric monoidal.

The main result of this section is the following:

Proposition 4.8. The lax symmetric monoidal functor i∗ : SH(R)ATi2 → SpFil
C2,i2 of

the previous subsection is equivalent to the lax symmetric monoidal functor Be ◦ f• :
SH(R)ATi2 → SpFil

C2,i2 taking E ∈ SH(R)ATi2 to the Betti realization of its effective slice
tower

· · · → Be(f2E)→ Be(f1E)→ Be(f0E)→ Be(f−1E)→ Be(f−2E)→ . . . .

As a first step, we rephrase Definition 4.7 to be more natural in our trigraded context:

Lemma 4.9. The full subcategory SH(R)eff
i2,≥n ⊂ SH(R)i2 is generated under small col-

imits by the collection {Sp,q,w2 ⊗X+|X ∈ Sm/R, p, q, w ∈ Z, w ≥ n}. As a consequence,
the suspension functors provide equivalences,

Σp,q,w : SH(R)eff
i2,≥n → SH(R)eff

i2,≥n+w.

Proof. Since Σ0,1,1 : SH(R)eff
i2,≥n → SH(R)eff

i2,≥n+1 is clearly an equivalence of categories,
it suffices to prove the generation statement in the case that n = 0. Since SH(R)eff

i2,≥0

is closed under tensor products, it suffices to show that S0,−1,0
2 ∈ SH(R)eff

i2,≥0.
Now, SH(R)eff

i2,≥0 is clearly closed under Σ−1,0,0, so it suffices to show that S1,−1,0
2 ∈

SH(R)eff
i2,≥0. This follows from the existence of a cofiber sequence

S0,0,0 → SpecC→ S1,−1,0 .

The second statement is a clear consequence of the generation statement. �

We now define an alternative filtration on SH(R)ATi2 which is easier to analyze; follow-
ing an argument of Heard [Hea19], itself an adaptation of an argument of Pelaez [Pel13],
we will prove that this filtration is in fact equivalent to the effective slice filtration.

Definition 4.10. We let SH(R)AT,AT−eff
i2,≥n denote the full subcategory generated under

small colimits by the collection {Sp,q,w2 |p, q, w ∈ Z, w ≥ n}. We let

fAT
n : SH(R)ATi2 → SH(R)AT,AT−eff

i2,≥n

denote the right adjoint of the inclusion. There are natural transformations fAT
n+1 → fAT

n ,
and we denote the cofiber by sATn .

Since SH(R)AT,AT−eff
i2,≥n ⊂ SH(R)ATi2 is a compactly generated stable subcategory, the

functors fAT
n and sATn preserve colimits.

It is clear that SH(R)AT,AT−eff
i2,≥n ⊂ SH(R)ATi2 ∩ SH(R)eff

i2,≥n.

Lemma 4.11. Given E ∈ SH(R)i2, there are natural equivalences fkΣp,q,wE ' Σp,q,wfk−wE
and skΣp,q,wE ' Σp,q,wsk−wE. If E ∈ SH(R)ATi2 , the analagous fact holds for fAT

k and
sATk .

Proof. This follows directly from the fact that Σp,q,w : SH(R)eff
i2,≥k → SH(R)eff

i2,≥k+w

and Σp,q,w : SH(R)AT,AT−eff
i2,≥k → SH(R)AT,AT−eff

i2,≥k+w are equivalences of categories. �

Lemma 4.12. Given E ∈ SH(R)ATi2 , there are natural equivalences fnE ' fAT
n E for all

n ∈ Z.

Proof. It is easy to see that the categories SH(R)eff
i2,≥n ⊂ SH(R)i2 and SH(R)AT,AT−eff

i2,≥n ⊂
SH(R)ATi2 define slice filtrations in the sense of [Hea19, Definition 2.1]. The result will
therefore follow from [Hea19, Theorem 2.20] if we can verify three conditions. Let
ι : SH(R)ATi2 ↪→ SH(R)i2 denote the inclusion. Then we must show that the following
hold for all E ∈ SH(R)ATi2 :
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(1) The natural map lim−→n
ι(fAT

n E)→ ι(lim−→n
fAT
n E)) is an equivalence.

(2) ι(fAT
n E) ∈ SH(R)eff

i2,≥n.
(3) MapSH(R)i2(X, ι(sATn E)) ' 0 for all X ∈ SH(R)eff

i2,≥n+1.
Condition (1) is clear from the fact that SH(R)ATi2 is closed under colimits in SH(R)i2,
and condition (2) follows from the fact that SH(R)AT,AT−eff

i2,≥n ⊂ SH(R)eff
i2,≥n.

To prove condition (3), we note that, since sATn commutes with filtered colimits and
SH(R)eff

i2,≥n+1 is compactly generated, it suffices to prove the statement for generators
of SH(R)AT,AT−eff

i2,≥n , namely the trigraded spheres Sp,q,w2 where w ≥ n. Since sATn Sp,q,w2 '
Σp,q,wsATn−w S0,0,0

2 by Lemma 4.11, it suffices to show this for S0,0,0
2 .

This follows from the equivalence sATn S0,0,0
2 ' sn S0,0,0

2 , which may be proved exactly
as in [Hea19, Theorem 3.15]. �

We are now free use fn and fAT
n interchangeably. The following proposition gives us

the needed control over fAT
n :

Proposition 4.13. Let E ∈ SH(R)ATi2 . Then E ∈ SH(R)AT,AT−eff
i2,≥n if and only if

πR
p,q,w(Ct⊗ E) = 0

for all w < n, i.e. if and only if t : πR
p,q,w+1E → πR

p,q,wE is an isomorphism for all
w < n.

Proof. To show that πR
p,q,w(Ct⊗ E) = 0 for all w < n if E ∈ SH(R)AT,AT−eff

i2,≥n , it suffices
to prove this when E = Sp,q,w for w ≥ n, which follows from Lemma 3.12.

On the other hand, suppose that E ∈ SH(R)ATi2 satisfies πR
p,q,w(Ct⊗E) = 0 for all w <

n. We will show that fAT
n E → E is an equivalence. First, we note that it is an equivalence

on πR
p,q,w for all w ≥ n by definition. By assumption, t : πR

p,q,w+1E → πR
p,q,wE is an

isomorphism for all w < n. On the other hand, by the above t : πR
p,q,w+1(fAT

n E) →
πR
p,q,w(fAT

n E) is also an isomorphism for all w < n. This implies that fAT
n E → E in fact

induces an isomorphism on all πR
p,q,w, as desired. �

Finally, we are ready to prove Proposition 4.8.

Proof of Proposition 4.8. Given a bifiltered object X•,∗, we let Diag(X•,∗) = X•,• de-
note the filtered object obtained by restricting along the diagonal map ZFil ↪→ ZFil ×
ZFil. Then there is a span of lax symmetric monoidal functors:

Diag ◦ i∗ ◦ f• i∗

Be ◦ f•,

where the horizontal map is induced by the natural transformation f• → Y and the ver-
tical map is induced by the natural transformation i∗ → Y ◦Be. (Here as in Appendix B,
Y is the functor taking an object to its constant filtered object.)

Applied to E ∈ SH(R)ATi2 , in filtration n this span looks like

MapSH(R)AT
i2

(S0,0,n
2 , fnE) MapSH(R)AT

i2
(S0,0,n

2 , E)

Be(fnE).

The horizontal map is an equivalence by n-effectivity of S0,0,n
2 , and the vertical map is

an equivalence by Theorem 3.2 and Proposition 4.13. �
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4.3. Identification of i∗MGL2.
In this subsection, we will identify the commutative algebra in filtered C2-spectra

given by i∗MGL2. This requires two main inputs. The first is the description of the
underlying filtered object in terms of the effective slice filtration from the previous
subsection. The second is a theorem of Heard which relates the effective slice filtration
of MGL to the regular slice filtration of its Betti realization MUR.

Proposition 4.14. There is an equivalence of commutative algebras in filtered C2-
spectra,

i∗MGL2 ' P2•MUR,2 .

We prove this as a special case of a slightly stronger result where we allow tensor
powers of MGL2. This generalization will be useful in the sequel.

Proposition 4.15. The objects i∗MGL⊗k2 are regular slice 2n-connective in position n.
This yields a natural factorization of the map to the constant filtered object

P2•MU⊗kR,2

i∗MGL⊗k2 Y MU⊗kR,2,

'

where the indicated map is an equivalence of commutative algebras in filtered C2-spectra.

The result of Heard that we will need is the following:

Theorem 4.16 ([Hea19]). Under Betti realization, the slice tower of MGL⊗k goes to
the even part of the regular slice tower of MU⊗kR . More precisely, there is a commutative
diagram,

· · · Be(f2MGL⊗k) Be(f1MGL⊗k) Be(f0MGL⊗k) · · ·Be(MGL⊗k)

· · · P4(MU⊗kR ) P2(MU⊗kR ) P0(MU⊗kR ) · · ·MU⊗kR

' ' ' '

Moreover, the odd regular slices of MUR vanish.

Applying Theorem 8.1, we are able to deduce the 2-completed analogue of Theo-
rem 4.16.

Proof. For notational brevity we set E := MGL⊗k2 . Note that it is a consequence
of Theorem 8.1 that Be(E) is equivalent as a commutative algebra to MU⊗nR,2. Using
Proposition 4.8, we can conclude that i∗E is given by the filtered C2-spectrum,

· · · → Be(f2E)→ Be(f1E)→ Be(f0E)→ Be(f−1E)→ Be(f−2E)→ · · · .
By Theorem 4.16, this is equivalent to the tower

· → P4Be(E)→ P2Be(E)→ P0Be(E)→ P−2Be(E)→ P−4Be(E)→ · · · .
Now, consider the natural map of commutative algebras i∗E → Y (Be(E)). Looking at
the explicit description of i∗E we can conclude it lies in the coreflective subcategory
SpFil,2slice

C2,≥0 . Thus we obtain a diagram of commutative algebras

P2•(Be(E))

i∗E Y (Be(E)),

'

where the first map is an equivalence by the above. �
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4.4. Identification of i∗(S2).
In order to finish the proof of Theorem 4.3, we need to prove the following proposition:

Proposition 4.17. There is an equivalence of commutative algebras in SpFil
C2,i2 between

i∗ S2 and R•.

The proof is surprisingly straighforward once one is familiar with the strategy of
producing interesting comparison maps from trivial comparison maps using truncation.

Proof. Recall that cb is the functor which sends a commutative algebra to the cosimpli-
cial commutative algebra given by its cobar complex. Consider the natural map

cb(MGL2)→ cb(MGL2[t−1])

in SH(R)ATi2 . After applying i∗, we may use i∗((−)[t−1]) ' Y (Be(−)) and the equivalence
Be(MGL2) ' MUR,2 to obtain a map

i∗cb(MGL2)→ Y (cb(MUR,2)).

Applying Proposition 4.15, we obtain a factorization

i∗cb(MGL2)
'−→ τ2slice

≥0 Y (cb(MUR,2))→ Y (cb(MUR,2)).

Taking totalizations, we obtain

i∗(S2) ' i∗((S2)∧MGL2
) ' i∗(Tot(cb(MGL2))) ' Tot(i∗(cb(MGL2)))

' Tot(τ2slice
≥0 Y (cb(MUR,2))) ' Sh(P2•; MUR,2)(1) ' R•

where the first equivalence is the MGL2-completeness of S2
21 and the final equivalence

is the definition of R•. �

We close with a simple corollary which we will make use of in Section 6.

Corollary 4.18. There is an equivalence MGL2 ' Γ∗(MUR,2) of commutative algebras
in SH(R)ATi2 .

Proof. By Theorem 4.3, it suffices to show that there is an equivalence i∗MGL2 '
Sh(P2•; MUR,2)(MUR,2) of commutative algebras over i∗ S2. Unraveling the construction
of the equivalence i∗ S2 ' Sh(P2•; MUR,2)(S2) we can build a diagram of commutative
algebras in SpFil

C2,i2

i∗ S2 Sh(P2•; MUR,2)(S2) Sh(P2•; MUR,2)(MUR,2)

i∗MGL2 P2•MUR,2,

'

'
'

where the dashed equivalence comes from Example C.10. �

5. Modules over the cofiber of ta

In this section, we study the category of Ct-modules. Our main theorem states that
this category admits an explicit, algebraic description.

Theorem 5.1. There is an equivalence of presentably symmetric monoidal categories
under SpC2,i2

Mod(SH(R)ATi2 ;Ct) ' Mod(SpC2,i2;Z2)⊗Z IndCoh(Mfg) (2)

21One argument for this is that MF2-completeness implies MGL2-completeness and S2 is MF2-
complete by [HKO11a].
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where SpC2,i2 acts on the left-hand-side through cC/R and on the left factor of the right-
hand-side. 22 On Picard elements this equivalence takes

Ct⊗ Sp,q,w2 7→ Σ(p−w)+(q−w)σZ2 ⊗ ω⊗wG/Mfg
.

As a consequence of this equivalence of categories, there is an isomorphism of tri-graded
commutative rings:23

πR
p,q,w(Ct) ∼=

⊕
w+a−s=p

Exts,2wMU∗MU(MU∗,MU∗⊗πC2

a+(q−w)σZ2).

Over C the corresponding result is the main theorem of [GWX20]. Upon tensoring
with Spec(C), our theorem recovers theirs. Just as in the C case the significance of this
result is that special fiber of the deformation with parameter t is algebraic.

Notation 5.2. In the above theorem and throughout the section, we follow the con-
vention of writing C ⊗R D for the tensor product of two presentable R-linear categories
instead of C ⊗ModR D.
Remark 5.3. In the above theorem, we used the Z-linear structure on Mod(SpC2,i2;Z2)
coming from the symmetric monoidal functor (_) ⊗Z Z2 : ModZ → Mod(SpC2,i2;Z2),
where _ : ModZ → Mod(SpC2

;Z) is the symmetric monoidal functor discussed in Re-
mark 5.11 below.

Remark 5.4. We will prove in Lemma 5.16 that the category Mod(SpC2,i2;Z2) ⊗Z
IndCoh(Mfg) admits a t-structure with heart the category of comodules in C2-Mackey
functors over the Hopf algebroid (πC2∗ρ (MUR,2), πC2∗ρ (MUR,2⊗MUR,2)).

We may therefore view any such comodule as an element of Mod(SpC2,i2;Z2) ⊗Z
IndCoh(Mfg).

In fact, we are able to explicitly describe the trigraded homotopy groups for a some-
what larger of collection of Ct-modules.

Definition 5.5. We say that X ∈ SpC2,i2 is MUR,2-projective if MUR,2⊗X is a retract
(as an MUR,2-module) of

⊕
α Σnαρ MUR,2 for some set of integers nα.

Examples of MUR,2-projective X include S0
2 and MUR,2, as well as any object of

SpC2,i2 built out of cells of the form Snρ2 .

Theorem 5.6. If X ∈ SpC2,i2 is MUR-projective, then under the equivalence of Theo-
rem 5.1 Ct⊗Γ∗(X) corresponds to the πC2∗ρ (MUR,2⊗MUR,2)-comodule πC2∗ρ (MUR,2⊗X).

Moreover, there is an isomorphism of trigraded groups,

πR
p,q,w(Γ∗(X)⊗Ct) ∼=

⊕
w+a−s=p

Exts,2w(MU2)∗MU2
((MU2)∗, (MU2)∗(Φ

e(X))⊗Z2
πC2

a+(q−w)σZ2),

compatible with the πR
p,q,wCt-module structure in the expected way.

The proof of Theorems 5.1 and 5.6 will be quite long, and correctly handling the
symmetric monoidal structures involved requires us to take a rather circuitous route.
For this reason, before proceeding we provide a sketch of the argument.

The proof of the equivalence

Mod(SH(R)ATi2 ;Ct) ' Mod(SpC2,i2;Z2)⊗Z IndCoh(Mfg)

has three main steps, one main subtlety and one minor miracle. First, we produce
symmetric monoidal functors into each side of Equation (2) from SpFil

C2,i2. Second, we

22In other language, IndCoh(Mfg) is the evenly-graded version of Hovey’s category StableMU∗MU

of stable MU∗MU comodules.
23The tensor product may be moved outside the Ext, but then it must be taken in the derived sense.
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show that the there are commutative algebras R1 and R2 such that the left-hand-side
is equivalent to Mod(C;R1) and the right-hand-side is equivalent to Mod(C;R2). Third,
we examine R1 and R2 directly and find that they are in fact equivalent.

The functor into Ct-modules from SpFil
C2,i2 is the composite of the functor i∗ from

Section 4 with Ct⊗−. The functor into the right-hand-side is more delicate to construct.
A first guess would be to use the equivalence SpFil

C2,i2
∼= SpC2,i2⊗SpFil and produce the

map in by tensoring the following pair of maps,

SpC2,i2 → Mod(SpC2,i2;Z2),

SpFil → Mod(SpFil;Z)
Gr−−→ Mod(SpGr;Z)→ IndCoh(Mfg).

In fact, this does not produce the correct functor. The reason is that in Ct-modules the
periodicity class v1 lives in C2-degree ρ while the given functor puts v1 in C2 degree 0.
In order to fix this, we twist by a functor

Mod(SpGr
C2,i2;Z2)

twρ−−→ Mod(SpGr
C2,i2;Z2)

which has the effect of tensoring with Snρ on the nth graded piece. The presence of this
twist, and its interaction with the symmetric monoidal structure, is the main subtlety
of the argument.

The second step is in fact quite easy and demonstrates the power of higher algebra in
proving “Koszul duality” statements as a corollary of Barr–Beck–Lurie monadicity. At
this point we have two commutative algebras R1 and R2 and all we need to do is show
they are equivalent.

The third step relies on special properties of R1 and R2. Both commutative algebras
come equippped with a preferred presentation as a totalization of a cosimplicial diagram
of commutative algebras. What we do is show that these cosimplicial diagrams are level-
wise equivalent. In proving this we encounter a minor miracle. The pair of cosimplicial
diagrams in fact takes values in in the heart of a t-structure and in particular are deter-
mined by 1-categorical data. Thus it is genuinely possible to write down a comparison
map by hand and check that it is an equivalence (usually the infinite quantity of higher
coherence data would make this approach unworkable).

Since this proof sketch doesn’t track too closely with the division of the material into
subsections, we also provide an outline of the section below.

(1) In Section 5.1, we review the categories which appear in the right-hand-side of
Theorem 5.1. We also construct a t-structure on the right-hand-side of Theo-
rem 5.1 which will play an important role in our argument.

(2) In Section 5.2, we collect some material on twisted t-structures on categories of
graded and filtered objects, as well as on twisting isomorphisms between them.

(3) In Section 5.3, we relate twisted t-structures to the slice filtration in C2-equivariant
homotopy theory. This finishes the construction of the comparison functors.

(4) In Section 5.4, we use Koszul duality to reduce the proof of Theorems 5.1 and
5.6 to understanding a specific pair of commutative algebras.

(5) In Section 5.5, we prove Lemma 5.40, which is the key result that allows us to
compare the commutative algebras R1 and R2 above. Using this lemma, we
then complete the proof of Theorems 5.1 and 5.6.

5.1. Categories of interest.
In this subsection we set up the various categories of interest. Our goal here is to

provide a gentle introduction so that reader interested in working with Ct-modules has
good computational control over the category. This means digesting the category on
the right-hand-side of Theorem 5.1

Mod(SpC2,i2;Z2)⊗Z IndCoh(Mfg).
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Proceeding from inside out, we start by fixing some notation for the category of Z-
modules.

Definition 5.7. Let Ab♥ denote the abelian category of discrete abelian groups. Let
Ab denote the category of Z-modules with its standard t-structure, so that Ab♥ is the
heart of Ab.

From here this subsection now breaks into three parts. First, we discuss the relevant
categories of equivariant objects. Next, we discuss the relevant category of MU∗MU-
comodules, or equivalently sheaves on the moduli stack of formal groupsMfg. Finally,
we explain how to combine these two pieces. Thankfully, the equivariant and comodule
aspects are only weakly coupled so we will be able to give simple descriptions.

Definition 5.8. Let M(C2)♥ denote the abelian category of discrete Mackey functors
for the group C2, which may be explicitly described as follows. A Mackey functor
B ∈M(C2)♥ consists of the following:

• abelian groups B(C2) and B(∗),
• an involution σ : B(C2)→ B(C2),
• and homomorphisms r : B(∗)→ B(C2) and t : B(C2)→ B(∗),
• which satisfy the relations σ ◦ r = r, t ◦ σ = t and r ◦ t = 1 + σ.

We will somtimes write [C2] for the endomorphism t ◦ r of B(∗). Let M(C2) denote the
unbounded derived category of M(C2)♥ equipped with its standard t-structure24.

The reason M(C2) arises naturally in our situtation is that it is equivalent to the
category of πC2

0 S-modules in SpC2
[PSW20, Theorem 5.10]. This description equips

M(C2) with a symmetric monoidal structure compatible with the t-structure. The
induced symmetric monoidal structure on M(C2)♥ is known as the box product and
admits an explicit description as in [Loy17].

Example 5.9. Given a discrete abelian group A, we may consider the constant Mackey
functor A ∈ M(C2)♥. This Mackey functor is determined by A(C2) = A(∗) = A,
r = σ = idA and t = 2 · idA. This construction provides an exact colimit-preserving
functor

_ : Ab♥ →M(C2)♥.

Examining the explicit description of the box product in [Loy17], we find that _ ac-
quires the structure of a tensor-product preserving lax symmetric monoidal functor. In
particular, we obtain a commutative algebra Z in M(C2)♥.

Definition 5.10. Let Ab denote the the symmetric monoidal category of Z-modules in
M(C2) (or equivalently SpC2

) equipped with its standard t-structure. This is equivalent
to the derived category of Mod(M(C2)♥;Z); in particular, we have Ab♥ = Mod(M(C2)♥;Z).

Remark 5.11. Since Z is the unit of Ab♥, we learn that _ factors through an exact
colimit-preserving symmetric monoidal functor

_ : Ab♥ → Ab♥.

Since _ is exact, colimit-preserving and symmetric monoidal it extends uniquely to
a colimit-preserving symmetric monoidal functor _ : Ab → Ab of derived categories.
Moreover, the pair of functors A → A(∗) and A → A(C2) extend to limit-preserving
functors on the level of the derived category. Since this pair of functors is jointly conser-
vative we can use the fact that A(∗) ∼= A and A(C2) ∼= A to conclude that _ preserves
limits as well.

Before proceeding to the comodule part of this section we record a couple lemmas for
later use.

24As defined, for example, in [Lur17, Definition 1.3.5.8].
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Lemma 5.12. The functor _ : Ab♥ → Ab♥ is fully faithful and left adjoint to the
functor B 7→ B(∗). Its essential image is therefore a coreflective subcategory of Ab♥

with coreflector given by counit map B(∗)→ B. In particular, for any B in the essential
image of _, there are canonical isomorphisms

B ∼= B(∗) ∼= B(C2).

Proof. Clear. �

Lemma 5.13. The forgetful functor Ab♥ →M(C2)♥ is fully faithful with image spanned
by the Mackey functors B for which [C2] = 2 as endomorphisms of B(∗).
Proof. The unit ofM(C2)♥ is the Burnside Mackey functor A, whose values are given by
A(C2) = Z and A(∗) = Z[[C2]]/([C2]2 − 2[C2]). As a commutative algebra in M(C2)♥,
Z is the quotient of A by the relation [C2] = 2. The result follows. �

The following definition and construction sum up what we need to know about cate-
gories of quasicoherent and ind-coherent sheaves onMfg:

Definition 5.14. We letMfg denote the moduli stack of formal groups and let QCoh(Mfg)
denote the category of quasicoherent sheaves on Mfg. It is equivalent to the derived
category of evenly graded MU∗MU-comodules [Goe08, Remarks 2.38 and 3.14].

Let D ⊂ QCoh(Mfg) denote the thick subcategory generated by the sheaves ω⊗kG/Mfg

for k ∈ Z, where ωG/Mfg
is the sheaf of invariant differentials on the universal formal

group G/Mfg. We define IndCoh(Mfg) := Ind(D). The category IndCoh(Mfg) is
equivalent to Hovey’s category of evenly graded stable comodules StableMU∗MU, c.f.
[BHV18, Remark 4.30].

Both QCoh(Mfg) and IndCoh(Mfg) are naturally stable presentably symmetric monoidal
categories and come equipped with compatible t-structures whose hearts are equivalent
to the 1-category of MU∗MU-comodules.

Construction 5.15. Since QCoh(Mfg) is equivalent to the derived category of a
Grothendieck abelian category, it is equipped with the structure of a colimit-preserving
symmetric monoidal functor Ab → QCoh(Mfg). Letting Abfin denote the full sub-
category of compact objects, this restricts to an exact symmetric monoidal functor
Abfin → D, where D is defined as in Definition 5.14. Taking Ind and using the fact that
Ab is compactly generated, we obtain a colimit-preserving symmetric monoidal functor

Ab ' Ind(Abfin)→ Ind(D) = IndCoh(Mfg).

Using this functor and the functor Ab
_−→ Ab

−⊗ZZ2−−−−→ Abi2, we are able to define the
stable presentably symmetric monoidal category

Abi2 ⊗Z IndCoh(Mfg),

which appeared in Theorem 5.1 with slightly different notation.

The core of our understanding of Abi2⊗Z IndCoh(Mfg) rests on the following lemma,
where we put a t-structure on this category whose heart we can describe explicitly.

Lemma 5.16. There exists a t-structure on Abi2 ⊗Ab IndCoh(Mfg) with the following
properties:

(1) It is compatible with the symmetric monoidal structure, accessible, compatible
with filtered colimits and right complete.

(2) The natural functor

Abi2,≥0 ⊗Ab≥0
IndCoh(Mfg)≥0 → Abi2 ⊗Ab IndCoh(Mfg)

is fully faithful with essential image the connective objects.
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(3) The natural functor

Ab♥i2 ⊗Ab♥ IndCoh(Mfg)♥ → Abi2 ⊗Ab IndCoh(Mfg)

is fully faithful with essential image the heart of Abi2 ⊗Ab IndCoh(Mfg).

Using the explicit description of Ab♥ given by Definition 5.8 and Lemma 5.13 and
the fact that IndCoh(Mfg)♥ is equivalent to the category of evenly-graded MU∗MU-
comodules, we obtain the following description of

Ab♥i2 ⊗Ab♥ IndCoh(Mfg)♥ :

this is the category of pairs of (MU2)∗MU2-comodules A(C2) and A(∗) equipped with
following strucutre (all of which are compatible with the comodule structure),

• maps r : A(∗) → A(C2) and t : A(C2) → A(∗), along with an involution
σ : A(C2)→ A(C2),

• which satisfy the relations σ ◦ r = r, t ◦ σ = t, t ◦ r = 2 and r ◦ t = 1 + σ.
In other words, Ab♥i2⊗Ab♥ IndCoh(Mfg)♥ is the category of evenly graded comodules

over the Hopf algebroid ((MU2)∗, (MU2)∗MU2) in graded C2-Mackey functors.

Remark 5.17. Using the fact that

((MUR,2)∗ρ, (MUR,2)∗ρ MUR,2) ∼= ((MU2)2∗, (MU2)2∗MU2),

see [HK01, Theorems 2.25 and 2.28], this category may equally well be described as the
category of graded comodules over the Hopf algebroid ((MUR,2)∗ρ, (MUR,2)∗ρ MUR,2) in
graded C2-Mackey functors.

The proof of Lemma 5.16 isn’t difficult, but it will rely on material from [Lur18b,
Appendix C] which we presently recount. We begin with a simple method for producing
t-structures.

Construction 5.18. Given a pointed presentable category C, we let Sp⊗C ' Sp(C)
denote the category of spectrum objects in C. It is a stable presentable category.

The category Sp⊗C admits a t-structure with (Sp⊗C)≥0 equal to the essential image
of the functor Σ∞ : C → Sp⊗C. This t-structure is accessible and right complete.

Note that if C is endowed with the structure of a presentably symmetric monoidal
category, then Sp⊗C naturally inherits this structure and the t-structure defined above
is compatible with it.

In fact, the following lemma, which follows from [Lur18b, Remark C.3.1.5], demon-
strates that this construction is the universal way to produce a (well-behaved) t-structure
on a presentable stable category.

Lemma 5.19. Suppose that (C, C≥0) is a stable presentably symmetric monoidal category
with compatible t-structure. Suppose that the t-structure is accessible, compatible with
filtered colimits and right complete.

Then there is a natural equivalence of symmetric monoidal categories with compatible
t-structure

(C, C≥0) ' (Sp⊗C≥0, (Sp⊗C≥0)≥0).

In conclusion, we may as well work with the categories of connective objects. For
Ab,Abi2, and IndCoh(Mfg), these are all Grothendieck prestable categories in the sense
of [Lur18b, Definition C.1.4.2].

Recollection 5.20. We let Groth∞ denote the category of Grothendieck prestable
categories [Lur18b, Definition C.3.0.5]. By [Lur18b, Theorem C.4.2.1], Groth∞ is a
symmetric monoidal category with tensor product given by the usual tensor product of
presentable categories and unit Sp≥0.
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Moreover, let Groth1 denote the category of Grothendieck abelian 1-categories. It is
a symmetric monoidal category with tensor product given by the usual tensor product
of presentable categories and unit Ab [Lur18b, Corollary C.5.4.19]. There is a functor
τ≤0 : Groth∞ → Groth1 sending a Grothendieck prestable category to its subcategory of
discrete objects. By [Lur18b, Remark C.5.4.20], the functor τ≤0 is symmetric monoidal.

We summarize this in the following span of symmetric monoidal categories

Groth∞

PrL,Stab Groth1.

Sp⊗−
τ≤0

Proof (of Lemma 5.16). Using the lemma above and [Lur18b, Remark C.4.2.3], we have

Sp⊗
(
Abi2,≥0 ⊗Ab≥0

IndCoh(Mfg)≥0

)
' Abi2 ⊗Ab IndCoh(Mfg).

Moreover, since Abi2,≥0⊗Ab≥0
IndCoh(Mfg)≥0 is prestable, the Σ∞ functor identifies it

with
(
Sp⊗

(
Abi2,≥0 ⊗Ab≥0

IndCoh(Mfg)≥0

))
≥0

.
This immediately implies the first two properties, with the exception of compatibility

with filtered colimits. This follows from the fact that Abi2,≥0 ⊗Ab≥0
IndCoh(Mfg)≥0 is

compactly generated, which holds becuase each one of Abi2,≥0, Ab≥0 and IndCoh(Mfg)≥0

is compactly generated [Lur18b, Corollary C.6.2.3].
The third property follows from the fact that C♥ = τ≤0 (C≥0) and the fact that

τ≥0 : Groth∞ → Groth1 is symmetric monoidal. �

5.2. Twistings I: t-structures on filtered objects.
We begin this subsection with a discussion of several natural t-structures on categories

of graded and filtered objects. In the filtered case our constructions are a straightforward
generalization of a construction of Beilinson. Although these constructions are simple,
they have the effect of modifying the symmetric monoidal structure on the heart of a
category. Next we explicitly describe this modification at the level of the heart, where
it admits a description in terms of an Euler characteristic. Read another way, there is
an Euler characteristic obstruction to producing symmetric monoidal twisting functors.
We close the subsection by producing symmetric monoidal twisting functors whenever
this Euler characteristic obstruction vanishes.

Definition 5.21. For the remainder of this subsection, we fix the following data:
a stable, presentably symmetric monoidal category C equipped with a compatible t-
structure25 and a Picard element L.

We then define the L-twisted t-structure on CGr and CFil as follows:
• An object X• of CGr is ≥ 0 in the L-twisted t-structure if for all n, L⊗−n ⊗Xn

is ≥ 0 in the original t-structure.
• Similarly, an object X• of CFil is ≥ 0 in the L-twisted t-structure if L⊗−n⊗Xn

is ≥ 0 in the original t-structure for all n.
We denote the hearts of these t-structures by CGr,L,♥ and CFil,L,♥ respectively. We
denote the ith L-twisted t-structure homotopy objects by πL,Gr

i and πL,Fil
i respectively.

When L = 1, we frequently omit it from the notation.

We summarize the basic properties of this definition in the following lemma.

Lemma 5.22. In the graded case:
(1) The L-twisted t-structure on CGr is compatible with the symmetric monoidal

structure.

25Here compatible means that a tensor product of objects which are ≥ 0 is ≥ 0 itself and that the
unit is ≥ 0.
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(2) An object X• is < 0 in the L-twisted t-structure if and only if for all n, L⊗−n⊗
Xn is < 0 in the original t-structure.

(3) The t-structure homotopy groups are determined by the following formula,

(πL,Gr
0 X•)n ∼= L⊗nπ0(L⊗−n ⊗Xn).

Assuming that L ≥ 0, we obtain similar results in the filtered case:
(1’) The L-twisted t-structure on CFil is compatible with the symmetric monoidal

structure.
(2’) An object X• is < 0 in the L-twisted t-structure if and only if L⊗−n ⊗Xn < 0.
(3’) The t-structure homotopy groups are given the by following formula:

(πL,Fil
0 X•)n ∼= L⊗nπ0(L⊗−n ⊗Xn).

Under the stronger assumption that L ≥ 1, the functor CGr → CFil which is right ad-
joing to the associated graded functor restricts to an equivalence of symmetric monoidal
1-categories

CGr,L,♥ ' CFil,L,♥.

Notation 5.23. We write −⊗♥,L − for the tensor product induced on either CGr,L,♥

or CFil,L,♥. In the case that L = 1, we simply write −⊗♥ −.
Proof. The statements (1), (2) and (3) are all clear. We therefore restrct ourselves to
the filtered case for the rest of the proof.

From the expression of the tensor product as a Day convolution, we observe that a
tensor product of connective objects has nth term presented as a colimit over a diagram
of connective objects tensored with L at least n times. Since L ≥ 0 we may conclude
that (1’) holds.

The expression for the homotopy objects in (3’) follows from (2’) in a straightforward
way. Suppose that X• is an object such that L⊗−n ⊗Xn < 0. We want to show that
X• < 0 i.e. that it recieves no maps from Y• ≥ 0. Using the condition that L ≥ 0, we
learn that [Yn, Xm] = 0 for all n > m, which is enough to imply that [Y•, X•] = 0.

Suppose that X• < 0, then we would like to show that L⊗−n ⊗Xn < 0. Associated
to every Y ≥ 0 in C we can consider the filtered object Y ⊗ L⊗n(n) which is depicted
below,

· · · → 0→ 0→ Y ⊗ L⊗n id−→ Y ⊗ L⊗n id−→ . . .

where the first nonzero object occurs at position n. Using the asssumption that L ≥ 0
we can conclude that Y ⊗ L⊗n(n) ≥ 0. Now, on mapping out of this object we have

∗ ' Ω∞MapCFil(Y ⊗ L⊗n(n), X) ' Ω∞MapC(Y ⊗ L⊗n, Xn)

which implies that L⊗−n ⊗Xn < 0 for all n, as desired.
We now proceed to proving the final statement. Let τ : 1CFil(−1)→ 1CFil denote the

shift map in CFil. Then Cτ admits a unique E∞-algebra structure in CFil, and there
is an equivalence of symmetric monoidal categories CGr ' Mod(CFil;Cτ). Using the
assumption that L ≥ 0, we learn that 1CFil and Cτ are ≥ 0. As a consequence, we find
that CGr,L,♥ may be identified with Mod(CFil,L,♥;πL0Cτ).

The proposition will thefore follow if we prove that πL0 1CFil → πL0Cτ is an equivalence.
By Lemma 5.22, we find that

(πL,Fil
0 1CFil)n ∼=

{
L⊗nπ0(L⊗−n) if n ≤ 0,

0 otherwise.

Since L ≥ 1 by assumption, we find that for n < 0 we have L⊗nπ0L⊗−n ∼= 0, whereas
for n = 0 we just get π01C .
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On the other hand, we have that

(πL,Fil
0 Cτ)n ∼=

{
π01C if n = 0,

0 otherwise.

It follows from this that the map πL,Fil
0 1CFil → πL,Fil

0 Cτ is an equivalence, as desired.
�

At this point we can now profitably define the twist functors.

Construction 5.24. Given a symmetric monoidal abelian category A and an invertible
object a ∈ A, we can construct a monoidal functor ia : ZGr → A which sends 1 to a. If
the swap map sa,a is the identity, then we can make this functor symmetric monoidal.
Tensoring up with Ab♥ we obtain a monoidal (or symmetric monoidal) functor

ia : AbGr,♥ 1(1)7→a−−−−−→ A.
In our situation of interest we take A = CGr,L,♥ and a = (π01)⊗L(1). Then we can

define the functor twL as the composite,

CGr,♥ ∼= C♥ ⊗AbGr,♥ Id⊗i(π01)⊗L(1)−−−−−−−−−→ C♥ ⊗ CGr,L,♥ ⊗−→ CGr,L,♥.

On objects this has the effect of sending {Xn} to {Xn ⊗ L⊗n}. It is easy to see that
this is a monoidal equivalence between CGr,♥ and CGr,L,♥, and is further symmetric
monoidal if sL(1),L(1) is the identity.

This construction succintly explains how much the symmetric monoidal structure on
CGr,L,♥ has been twisted in terms of the quantity sL(1),L(1). We would now like to give
a simple description of this quantity. This starts with a definition:

Definition 5.25. Given a dualizable object X, with dual X∨, unit η and counit ε, the
trace of an endomorphism f : X → X is the element tr(f) ∈ π0 End(1) given by the
composite

1
η−→ X ⊗X∨ f⊗X∨−−−−→ X ⊗X∨ sX,X∨−−−−→ X∨ ⊗X ε−→ 1.

The trace of the identity is called the Euler characteristic and denoted χ(X).

A simple diagram chase tells us that the Euler characteristic is multiplicative and
defines an End(1)-linear map tr : End(X)→ End(1). Moreover, one can compute that
the trace of the swap map sX,X is equal to χ(X) 26. In the case where X is invertible
the trace map is an isomorphism and we can use this to conclude that the condition
sa,a = Ida⊗a in Construction 5.24 is equivalent to asking that χ(a) = 1. Specializing
further to the case a = (π01) ⊗ L(1), we can use the fact that the diagram computing
the Euler characteristic of (π01)⊗L(1) is just πL,Gr

0 applied to the diagram computing
the Euler characteristic of L(1) in the ambient category, CGr, to conclude that

χ(a) = χ(L(1)) = χ(L)χ(1(1)) = χ(L) · 1.
Thus, we have proved:

Lemma 5.26. The functor twL can be made symmetric monoidal if χ(L) = 1.

Conversely, if we assume that twL is symmetric monoidal, then we can make the
following Euler characteristic computation,

1 = twL(1) = twL(χ(1(1))) = χ(twL(1(1))) = χ(L(1)) = χ(L).

Remark 5.27. Examining the failure of twL to be symmetric monoidal, we find that
in general the symmetric monoidal structure on CGr,L,♥ is twisted by the Euler charac-
teristic χ(L).

26Using string diagrams makes verifying these claims easy.
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Example 5.28. If we take C = Sp with its usual t-structure, then S1-twisted category
SpGr,S1,♥ is equivalent to the symmetric monoidal category of graded abelian groups
with the Koszul sign convention, since χ(S1) = −1.

On the other hand, SpGr,S2,♥ is symmetric monoidally equivalent to the category of
graded abelian groups by Lemma 5.26 since χ(S2) = 1.

Lemma 5.29. Suppose that C is equivalent to the derived category of its heart C♥
as a symmetric monoidal category with compatible t-structure. Then there exists an
equivalence of monoidal categories twL : CGr ' CGr making the following diagram of
monoidal functors commute:

CGr,♥ CGr,L,♥

CGr CGr.

twL

twL

If χ(L) = 1, then the above square naturally lifts to a diagram of symmetric monoidal
functors. On objects, twL : CGr → CGr is given by {Xn} 7→ {Xn ⊗ L⊗n}.
Proof. The assumption implies that CGr, equipped with the usual t-structure, is equiv-
alent as a symmteric monoidal category with compatible t-struture to D(CGr,♥). It
also implies that CGr, when equipped with the L-twisted t-structure, is equivalent as a
symmteric monoidal category with compatible t-struture to D(CGr,L,♥).

It follows that the equivalence of monoidal 1-categories twL : CGr,♥ → CGr,L,♥ of
Lemma 5.26 determines a compatible equivalence of monoidal categories twL : CGr →
CGr via taking derived categories. If χ(L) = 1, these are equivalences of symmetric
monoidal categories by Lemma 5.26. �

5.3. Twistings II: the slice filtration.
In this short subsection, we specialize the material from the previous subsection to

the case of interest. This means we look at SpC2,i2 with picard element Sρ2. In order to
connect this with the information we know about MUR,2 and the material from Section 4
we then relate the ρ-twisted t-structure to the regular slice filtration.

Example 5.30. If we take C = SpC2
, then the following Euler characteristic computa-

tions provide the three possible nontrivial twists on graded Mackey functors:

χ(Sσ) = 1− [C2], χ(S1) = −1, χ(Sρ) = [C2]− 1.

To verify this, one uses the compatibility of the Euler characteristic with the symmetric
monoidal functors Φe and ΦC2 .

Example 5.31. Write AbGr,ρ,♥
i2 for Ab

Gr,ΣρZ2,♥
i2 . Then, since the image of χ(Sρ) in

π0Z2 is 1 there is a symmetric monoidal equivalence

twρ : AbGr,♥
i2

'−→ AbGr,ρ,♥
i2 ,

by Lemma 5.26. Applying Lemma 5.29, we can then upgrade this to a diagram of
symmetric monoidal functors

AbGr,♥
i2 AbGr,ρ,♥

i2

AbGr
i2 AbGr

i2 .

twρ

twρ

Convention 5.32. From this point on, our category C will be one of SpC2,i2, M(C2)i2,
Abi2 or Abi2 with its usual t-structure, and the Picard element we work with will be
Sρ2,Σρπ

C2
0 S2,Σ

ρZ2 or Σ2Z2, respectively. In order to reduce the notational burden, the
former three Picard objects with ρ and the final Picard object with 2 in superscripts.
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So, in the example of SpC2,i2, we will write τρ≥0 for the connective cover, πρ0 for the 0th

homotopy object and SpFil,ρ,♥
C2,i2

for the heart of SpFil
C2,i2.

This key result of this section is the following:

Lemma 5.33. Let E ∈ SpC2,i2, then

τρ≥0Y (E) ' (· · · → P4E → P2E → P0E → P−2E → P−4E → . . . )

where Y is the functor that sends an object to the associated constant filtered object. If
we further suppose that πC2

nρ−1E = 0 for all n, there is a natural equivalence

Gr(τρ≥0E) ' πρ0E ∼= {ΣnρπC2
nρE}.

Finally, if πnρE is a constant Mackey functor for all n, then πρ0E factors through the
full subcategory

AbGr,ρ,♥
i2 ⊂M(C2)Gr,ρ,♥

i2 ' SpFil,ρ,♥
C2,i2

.

Proof. This lemma has three statements. For the first statement, it suffices to note the
following:

(1) A C2-spectrum is t-structure 0-connective if and only if it is regular slice 0-
connective.

(2) A C2-spectrum E is regular slice 2n-connective if and only if E ⊗ S−nρ is slice
0-connective.

For the second statement, since Sρ2 ≥ 1 we can use the final statement of Lemma 5.22
to obtain a canonical map

Gr(τρ≥0E)→ πρ0E.

On the one hand, we have πρ0E ∼= {ΣnρπC2
nρE} by Lemma 5.22(3’). Since by assumption

the odd slices of E vanish, we learn that the (2n)th slice of E is equivalent to ΣnρπC2
nρE

and that there are cofiber sequences

P2n+2E → P2nE → ΣnρπC2
nρE.

The desired equivalence now follows from the first statement.
The third statement now follows from the fact that any discrete C2-Mackey functor

which is constant admits a (necessarily unique) Z-module structure. �

5.4. Reductions.
In this subsection we seperately reduce each side of the equivalence 2 of Theorem 5.1

to a category of modules over some commutative algebra in SpFil
C2,i2. Almost everything

in this section is a standard application of Lurie’s theory of higher algebra. We have
extracted the necessary material in Appendix A where we present it in a digested form.

We begin with the left-hand-side of 2.

Lemma 5.34. The cofiber of t : S0,0,−1
2 → S0,0,0

2 is a commutative algebra in SH(R)i2.
Furthermore, there is an equivalence of symmetric monoidal categoies

Mod(SH(R)ATi2 ;Ct) ' Mod(SpGr
C2,i2;Gr(R•)).

Proof. Recall that the shift map S2(−1)→ S2 in SpFil
C2,i2 is denoted by τ . Tensoring the

equivalence of Example A.6 with SpC2,i2 and applying Lemma A.10, we see that there
is an equivalence of presentably symmetric monoidal categories,

SpGr
C2,i2 ' Mod(SpFil

C2,i2;Cτ).

Under the symmetric monoidal functor i∗ : SpFil
C2,i2 → SH(R)ATi2 constructed in Propo-

sition 4.5, the commutative algebra Cτ maps to Ct. Therefore, using Lemma A.10, we
have

Mod(SH(R)ATi2 ;Ct) ' SpGr
C2,i2⊗SpFil

C2,i2
SH(R)ATi2 .
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Using Theorem 4.3, there is an equivalence of presentably symmetric monoidal cate-
gories under SpFil

C2,i2 between SH(R)ATi2 and Mod(SpFil
C2,i2;R•). Tensoring down along the

associated graded ring map and using Lemma A.10, we obtain equivalences,

SpGr
C2,i2⊗SpFil

C2,i2
SH(R)ATi2 ' SpGr

C2,i2⊗SpFil
C2,i2

Mod(SpFil
C2,i2;R•)

' Mod(SpFil
C2,i2;Gr(R•)). �

Now we proceed to the right-hand-side of Equation (2).

Lemma 5.35. The Euler characteristic of ωG/Mfg
∈ IndCoh(Mfg)♥ is equal to 1. As

a consequence, Construction 5.24 provides a symmetric monoidal left adjoint

p∗ : AbGr,♥ → IndCoh(Mfg)♥

which sends Z(1) to ωG/Mfg
.

Proof. Let L denote the Lazard ring. Then the flat cover Spec(L) → Mfg determines
a pullback map IndCoh(Mfg) → ModL. This determines an injective pullback map
π0 End(OMfg

) → π0 End(L). Since the pullback of ωG/Mfg
is equivalent to L we learn

that χ(ωG/Mfg
) = 1. �

Since p∗ sends a family of compact dualizable objects (the powers of Z(1)) to a family
of compact dualizable generators (the powers of ωG/Mfg

), we may apply Proposition A.4
to obtain the following lemma:

Lemma 5.36. There is an equivalence of presentably symmetric monoidal categories,

IndCoh(Mfg) ' Mod(AbGr; p∗OMfg
).

Using Lemma 5.36 and Lemma A.10 we obtain the following corollary.

Corollary 5.37. There is an equivalence of presentably symmetric monoidal categories

Abi2 ⊗Ab IndCoh(Mfg) ' Mod(AbGr
i2 ; p∗OMfg

⊗Z Z2).

5.5. The main lemma.
In this subsection, we prove our main lemma, Lemma 5.40, and use it to prove

Theorems 5.1 and 5.6. This lemma gives us an explicit formula for Gr(i∗(Γ∗(−))) on a
restricted class of objects. Once we have this formula the remaining work is relatively
easy. We begin with a definition and a couple of useful lemmas.

Definition 5.38.
• Let Spproj

C2,i2
denote the full subcategory of E ∈ SpC2,i2 for which MUR,2⊗E is a

retract of a sum of pure suspensions of MUR,2.
• Let Spproj

i2 denote the full subcategory of E ∈ Spi2 for which MU2⊗E is a retract
of a sum of even suspensions of MU2.

Since πC2
nρ−1 MUR,2 = 0, we have that Spproj

C2,i2
is contained in Sp

MUR,2−even
C2,i2

. Since the
underling of MUR,2 is MU2, the underlying of an object of Spproj

C2,i2
is contained in Spproj

i2 .
Note that Spproj

C2,i2
and Spproj

i2 contain the unit and are closed under the tensor product,
so that they inherit the structure of a symmetric monoidal category.

Lemma 5.39. Suppose that E ∈ Spproj
C2,i2

. Then

(MUR,2)
C2

nρ
(E) ∼= (MU2)2∗(E).

As a consequence, (MUR,2)
C2

nρ
(E) acquires the structure of a Z2-module.

Proof. By definition of Spproj
C2,i2

, it suffices to note that this is true for E = S2, which
follows from [HK01, Theorem 2.28]. �
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Lemma 5.40. Let h denote the symmetric monoidal functor h : Spproj
i2 → IndCoh(Mfg)♥i2

which sends a spectrum to its associated ((MU2)∗, (MU2)∗MU2)-comodule. There is a
commutative diagram of lax symmetric monoidal functors,

Spproj
C2,i2

SpFil
C2,i2

Spproj
i2 IndCoh(Mfg)♥i2 AbGr

i2 AbGr
i2 SpGr

C2,i2 .

i∗◦Γ∗

Φe Gr

h p∗ _ twρ

Proof. Our argument will rest on the existence of the following commuting diagram of
lax symmetric monoidal functors.

Spproj
i2 Spproj

C2,i2

Sp∆
i2 Sp∆

C2,i2 SpFil,∆
C2,i2

IndCoh(Mfg)♥i2 AbGr,2,♥,∆
i2 AbGr,ρ,♥,∆

i2 SpGr,ρ,♥,∆
C2,i2

SpGr,∆
C2,i2

AbGr,♥,∆
i2 AbGr,♥,∆

i2

AbGr
i2 AbGr

i2 AbGr
i2 SpGr

C2,i2 .

h

−⊗cb(MU2) −⊗cb(MUR,i2)

f

Φe

π2
0Y

Φe τρ≥0
Y

πρ0Y Gr

p∗

tw−2

Φe

tw−ρ

forget

Tot

Tot

Φe

Tot

twρ

Φe
forget

The squares formed by the underlying functor, Φe, commute since underlying com-
mutes with limits and colimits, the underlying of Sρ2 is S2

2 and the underlying of MUR,2 is
MU2. In grid position (4, 3) we have implicitly made use of the equivalence SpFil,ρ,♥,∆

C2
'

SpGr,ρ,♥,∆
C2

to identify the target of πρ0Y with the latter. The upper-right square com-
mutes by Lemma 5.33. The dashed arrow, labelled f , is unique (and lax symmetric
monoidal) if it exists since the forgetful functor is fully-faithful. The dashed arrow then
exists by Lemma 5.39. The large bottom-right square commutes because twρ commutes
with Tot. Finally, the existence of the factorization along the left side is a corollary of our
ability to identify the E2-page of the Adams–Novikov spectral sequence (see [Ada95]).

Using the fact that Gr and Tot commute we have equivalences,

i∗ ◦ Γ∗ ' TotGr(τρ≥0Y (−⊗ cb(MUR,2))) ' twρ(Tot(tw−ρ(f(−)))).

By Lemma 5.39, the functor f (and its composition with the twist) lands in the full
subcategory of the target which is spanned, in each grading and cosimplicial degree,
by Z2-modules for which the restriction map r is an equivalence. Thus, we have an
equivalence of lax symmetric monoidal functors,

twρ(Tot(tw−ρ(f(−)))) ' twρ(Tot(Φetw−ρ(f(−)))).

Since _ commutes with limits we then have further equivalences,

twρ(Tot(Φetw−ρ(f(−)))) ' twρ(Tot(Φetw−ρ(f(−)))) ' twρ(p∗hΦe(−)). �

Finally, we are able to prove our main theorems:
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Proof of Theorem 5.1 and Theorem 5.6 (part 1).

Mod(SH(R)ATi2 ;Ct)
'−−→

5.34
Mod(SpGr

C2,i2;Gr(R•))
'−−→

5.40
Mod(AbGr

i2 ; twρ(p∗OMfg
))

'−−−→
tw−ρ

Mod(AbGr
i2 ; p∗OMfg

)
'−−→

5.37
Abi2 ⊗Ab IndCoh(Mfg)

The claim about the SpC2,i2-algebra structure follows once we know SpC2,i2 acts
through the ambient category at each step. The key points here are that the equivalence
from Lemma 5.40 was induced by an equivalence of algebras and that the twist functor
is a Abi2-algebra map.

Using the SpC2,i2-linearity, the claim about Picard elements reduces to tracking Ct⊗
S0,0,1

2 around the diagram. Under the first equivalence, Ct ⊗ S0,0,1
2 goes to 1(1). The

twist by −ρ sends this to Σρ1(1). The final equivalence sends 1(1) to Z2 ⊗ ωG/Mfg
.

Altogether we learn that Ct⊗ S0,0,1
2 is sent to Σ−ρZ2 ⊗ ωG/Mfg

, as desired.
Now suppose that X ∈ Spproj

C2
. Then, using Lemma 5.40 we have

Gr(i∗(Γ∗X)) ' twρ(p∗hΦe(X)).

Continuing along the sequence of equivalences above, we see that this object is sent to
Z2 ⊗ h(Φe(X)), as desired. �

In order to calculate the homotopy groups of Ct-modules we begin with a simple
lemma.

Lemma 5.41. Given any A ∈ Ab, we have

πC2
p+qσA

∼=
⊕
a

πp−a (A⊗ πa+qσZ) .

Proof. Consider the composite Ab → Ab → AbGr given by A 7→ A 7→ {Map(Sqσ, A)}.
This composite is colimit-preserving, hence is equivalent to A 7→ {A ⊗Map(Sqσ,Z)}.
Now, we have

Map(Sqσ,Z) '
⊕
a

Σaπa+qσZ

because it’s a Z-module, so the result follows from applying πp. �

Proof of Theorem 5.1 and Theorem 5.6 (part 2). We now turn to our assertions about
homotopy groups. Tracing through the various equivalences, we find that for X which
is MUR,2-projective,

πR
p,q,w(Ct⊗X) ∼= πC2

(p−w)+(q−w)σ((Z2 ⊗Z2
p∗hΦe(X))w).

We can commute taking the wth component past the tensor product and then apply
Lemma 5.41 and the fact that p∗h computes Ext(MU2)∗MU2

to conclude that

πR
p,q,w(Ct⊗X) ∼= πC2

(p−w)+(q−w)σ(Z2 ⊗Z2
(p∗hΦe(X))w)

∼=
⊕
a

πp−w−a(πa+(q−w)σZ2 ⊗Z2
Ext∗,2w(MU2)∗MU2

((MU2)∗, (MU2)∗Φ
e(X)))

∼=
⊕
a

πp−w−a(Ext∗,2w(MU2)∗MU2
((MU2)∗, πa+(q−w)σZ2 ⊗Z2

(MU2)∗Φ
e(X)))

∼=
⊕
a

Exta+w−p,2w
(MU2)∗MU2

((MU2)∗, πa+(q−w)σZ2 ⊗Z2
(MU2)∗Φ

e(X)).

Since πC2
a+qσZ2 is isomorphic to Z2 or F2, and (MU2)∗X is torsion-free (since it is a

projective (MU2)∗-module), the tensor product inside the Ext can be taken in a 1-
categorical sense.

�
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6. The Chow t-structure and νR

In this section, we discuss the Chow t-structure on SH(R)ATi2 and how it can be used
to define an interesting lax symmetric monoidal functor

νR : SpC2,i2 → SH(R)ATi2 .

In the context of DM(k), the Chow t-structure was first studied by Bondarko [Bon10],27.
In the context of SH(C)AT it was studied by Pstragowski in [Pst18]. The Chow t-
structure on SH(k) is the subject of forthcoming work of Bachmann–Kong–Wang–Xu
who we thank for carefully explaining their results to us, among which is a determination
of the heart of the Chow t-structure in full generality.

In Section 6.1, we define the Chow t-structure on SH(R)ATi2 , determine its heart and
give a formula for the t-structure homotopy objects. In Section 6.2, we use the Chow
t-structure to define the functor

νR : SpC2
→ SH(R)ATi2 .

We prove several basic properties of this functor, compare it with the functor Γ∗ defined
in Section 4, and show that several Artin-Tate R-motivic spectra may be recovered from
their Betti realizations via νR.

6.1. The Chow t-structure.
In this section, we define the Chow t-structure on Artin-Tate R-motivic spectra,

compute its heart, and describe the t-structure homotopy objects πC−♥
k .

Definition 6.1. By [Lur17, Proposition 1.2.1.16], we can construct a t-structure on
SH(R)ATi2 with connective part (SH(R)ATi2 )C

≥0 generated under colimits and extensions
by {Sn+k1,n+k2,n

2 | k1 ≥ 0 and k1 + k2 ≥ 0} and (−1)-coconnective part (SH(R)ATi2 )C
<0

spanned by those X ∈ SH(R)ATi2 with πR
n+k1,n+k2,n

X = 0 for all n, k1, k2 ∈ Z satisfying
k1 ≥ 0 and k1 + k2 ≥ 0.

We call this t-structure the Chow t-structure on SH(R)ATi2 . Moreover, we let τC
≥0 :

SH(R)ATi2 → (SH(R)ATi2 )C
≥0 denote connective cover with respect to the Chow t-structure,

and let πC−♥
n : SH(R)ATi2 → SH(R)AT,C−♥i2 denote the homotopy functors.

The following result is clear from the defintion:

Proposition 6.2. The Chow t-structure on SH(R)ATi2 is compatible with the symmet-
ric monoidal structure, right complete and compatible with filtered colimits. Moreover,
Σn,n,n restricts to an equivalence Σn,n,n : (SH(R)ATi2 )C

≥0 → (SH(R)ATi2 )C
≥0.

The main two theorems that we prove in this section are as follows:

Theorem 6.3. Let SH(R)AT,C−♥i2 denote the heart of SH(R)ATi2 with respect to the Chow
t-structure. Then there is a symmetric monoidal equivalence of categories

SH(R)AT,C−♥i2 ' Comod(Ab♥i2; (MU2)2∗MU2),

where Comod(Ab♥; (MU2)2∗MU2) is the category of evenly-graded ((MU2)∗, (MU2)∗MU2)-
comodules in C2-Mackey functors.

Theorem 6.4. Given any X ∈ SH(R)ATi2 and n, k ∈ Z, there is an isomorphism

(πC−♥
k X)n ∼= (MGL2)

R
n+k,n,n

(X).

27The publication history of this definition is somewhat complicated. In the published version of
[Bon10], the Chow t-structure is only conjectured, not shown, to exist. However, in a later version of
[Bon10] which appeared on the arXiv, Bondarko gave a construction of the Chow t-structure.
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Recollection 6.5. In Theorem 5.1, we constructed a symmetric monoidal equivalence

Mod(SH(R)ATi2 ;Ct) ' Mod(SpC2,i2;Z2)⊗Z IndCoh(Mfg).

Moreover, in Lemma 5.16 we equipped Mod(SpC2
;Z2)⊗ZIndCoh(Mfg) with a t-structure

whose heart is identified with Comod(Ab♥; (MU2)2∗MU2). We call the induced t-
structure on Mod(SH(R)ATi2 ;Ct) the tensor t-structure and write Mod(SH(R)ATi2 ;Ct)⊗−♥

for the heart.

To prove Theorem 6.3, it therefore suffices to prove the following:

Proposition 6.6. The tensor t-structure on Mod(SH(R)ATi2 ;Ct) is induced by the Chow
t-structure on SH(R)ATi2 : a Ct-module X is tensor (co)connective if and only if its
underlying Artin-Tate R-motivic spectrum is Chow (co)connective.

Moreover, the induced symmetric monoidal functor

Mod(SH(R)ATi2 ;Ct)⊗−♥ → SH(R)AT,C−♥i2

is an equivalence of categories.

Before the proof, we need a lemma:

Lemma 6.7. We have Ct ∈ SH(R)AT,C−♥i2 and the unit map S0,0,0
2 → Ct induces an

equivalence πC−♥
0 S0,0,0

2 ' Ct.
Proof. First, we note that S0,0,−1

2 ≥ 1 in the Chow t-structure. Since

S0,0,−1
2 ' Σ S0,1,0

2 ⊗S−1,−1,−1
2 ,

it suffices to show that S0,1,0
2 ≥ 0. This follows immediately from the cofiber sequence

Σ∞+ Spec(C)2 → S0,0,0
2 → S0,1,0

2 .
Combining this fact with the cofiber sequence S0,0,−1

2
t−→ S0,0,0

2 → Ct, we find that
Ct ≥ 0 and that S0,0,0

2 → Ct induces an equivalence on πC−♥
0 .

To conclude, it suffices to show that Ct ≤ 0. By definition, we must show that
πR
n+k1,n+k2,n

Ct = 0 for all n, k1, k2 satisfying k1 > 0 and k1 + k2 > 0. This follows
directly from Theorem 10.1(2). �

We note down the following corollary for later use:

Corollary 6.8. Suppose that X ∈ SH(R)ATi2 is a filtered colimit of Artin-Tate R-motivic
spectra admitting a finite cell structure with all cells of the form Sn,n,n2 . Then X⊗Ct ∈
SH(R)AT,C−♥i2 and X → X ⊗ Ct induces an equivalence πC−♥

0 X → X ⊗ Ct.
Proof. It is clear that the collection of X which satisfy the conclusions of the corollary
is closed under filtered colimits and extensions, so it suffices to assume that X ' Sn,n,n2

Since Σn,n,n is an automorphism of the Chow t-structure, we may reduce to the case of
X ' S0,0,0

2 , which is precisely Lemma 6.7. �

Proof of Proposition 6.6. We first show that the tensor t-structure is induced by the
Chow t-structure. We begin by showing that the connective part of the tensor t-structure
on Mod(SH(R)ATi2 ;Ct) is generated under colimits and extensions by

{Σn+k1,n+k2,nCt | k1 ≥ 0 and k1 + k2 ≥ 0}.
The t-structure on IndCoh(Mfg) has connective part generated under colimits and

extensions by ω⊗nG/Mfg
for n ∈ Z. On the other hand, the t-structure on Mod(SpC2,i2;Z2)

has connective part generated under colimits and extensions by Σk1+k2σZ2, where k1 ≥ 0
and k1 + k2 ≥ 0.

By defintion, it follows that the connective part of the induced t-structure on Mod(SpC2,i2;Z2)⊗Z
IndCoh(Mfg) is generated under colimits and extensions by the tensor products Σk1+k2σZ2⊗
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ω⊗nG/Mfg
, where k1 ≥ 0 and k1 + k2 ≥ 0. Under the equivalence of Theorem 5.1, these

correspond to Σn+k1,n+k2,nCt, as desired.
It follows directly from the above identification of the tensor connective category that

a Ct-module is is tensor coconnective if and only if it is Chow coconnective. By Chow
connectivity of Ct, which follows from Lemma 6.7, it also follows that a Ct-module is
Chow connective if it is tensor connective. On the other hand, if X is Chow connective,
then X⊗Ct is clearly tensor connective. Using the equivalence X⊗Ct ' X⊕Σ1,0,−1X,
we see that X itself is also tensor connective.

As a consequence of the above, we obtain a symmetric monoidal functor

Mod(SH(R)ATi2 ;Ct)⊗−♥ → SH(R)AT,C−♥i2 .

Since the tensor t-structure is induced by the Chow t-struture, the fact that Ct lies
in the Chow heart from Lemma 6.7 implies that the above functor factors through a
symmetric monoidal equivalence

Mod(SH(R)ATi2 ;Ct)⊗−♥ ' Mod(SH(R)AT,C−♥i2 ;Ct).

Finally, the equivalence πC−♥
0 S0,0,0

2 ' Ct of Lemma 6.7 implies that Ct is the unit of
SH(R)AT,C−♥i2 , so that the forgetful functor

Mod(SH(R)AT,C−♥i2 ;Ct)→ SH(R)AT,C−♥i2

is a symmetric monoidal equivalence. �

We now move on to the proof of Theorem 6.4. First we need to recall some basic
facts about cell structures on finite approximations of MGL.

Definition 6.9. Let Grk(An+k) denote the Grassmannian scheme of k-planes in An+k,
and let γ denote the tautological k-dimensional vector bundle over Grk(An+k).

We let MGL(n, k) denote the Thom spectrum of the virtual bundle γ−k · triv. Then
there is a canonical map MGL(n1, k1) → MGL(n2, k2) whenever n2 ≥ n1 and k2 ≥ n2,
and we have lim−→MGL(n, n) ' MGL.

Proposition 6.10 ([DI05]). The R-motivic spectrum MGL(n, k) admits a finite cell
structure with cells of the form Sm,m,m.

As a consequence, MGL(n, k)2, its Spanier-Whitehead dual D(MGL(n, k)2), and MGL2

are all Chow connective.

Proof. The cell structure is a consequence of [DI05]. It follows from Theorem 8.1 and
Proposition 8.2(1) that there are equivalences:

MGL(n, k)⊗ S2 ' MGL(n, k)2

D(MGL(n, k))⊗ S2 ' D(MGL(n, k)2)

MGL⊗ S2 ' MGL2.

Therefore these spectra continue to have the same cell structure after 2-completion, from
which the statements about Chow connectivity follow immediately. �

Proposition 6.11. The map MGL2 → MGL2⊗Ct induces an equivalence πC−♥
0 MGL2 '

MGL2 ⊗ Ct, and the corresponding (MU2)2∗MU2-comodule is (MU2)2∗MU2.

Proof. The first part of the statement follows directly from Corollary 6.8 and Propo-
sition 6.10. On the other hand, Corollary 4.18 states that MGL2 ' Γ∗(MUR,2), so
that Theorem 5.6 and Proposition 6.6 together imply that MGL2 ⊗ Ct coreponds to
πC2∗ρ (MUR,2⊗MUR,2) ∼= (MU2)2∗MU2. �
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Notation 6.12. We let⊗♥ denote the symmetric monoidal structure on SH(R)AT,C−♥i2 '
Comod(Ab♥2 ; (MU2)2∗MU2).

Given a graded (MU2)2∗MU2-comodule M∗, we let M [n]∗ denote the shift with
M [n]k+n = Mk.

Lemma 6.13. Let M∗ be a graded (MU2)2∗MU2-comodule in C2-Mackey functors,
viewed as a element of SH(R)AT,C−♥i2 . Then M∗ ⊗ MGL2 lies in SH(R)AT,C−♥i2 and
corresponds to M∗ ⊗♥ (MU2)2∗MU2.

Proof. It follows from Proposition 6.10 that M∗ ⊗ MGL2 is Chow connective. As a
consequence, Proposition 6.11 implies that there are equivalences

πC−♥
0 (M∗ ⊗MGL2) 'M∗ ⊗♥ πC−♥

0 MGL2

'M∗ ⊗♥ (MU2)2∗MU2.

It therefore suffices to show that M∗ ⊗ MGL2 is Chow coconnective. For this, we
compute for n, k1, k2 ∈ Z with k1 > 0 and k1 + k2 > 0:

πR
n+k1,n+k2,n(M∗ ⊗MGL2) ∼= [Sn+k1,n+k2,n

2 ,M∗ ⊗MGL2]SH(R)AT
i2

∼= lim−→[Sn+k1,n+k2,n
2 ,M∗ ⊗MGL(m,m)2]SH(R)AT

i2

∼= lim−→[Sn+k1,n+k2,n
2 ⊗D(MGL(m,m)2),M∗]SH(R)AT

i2

∼= 0

since D(MGL(m,m)2) is Chow connective by Proposition 6.10. It follows that M∗ ⊗
MGL2 is Chow coconnective, as desired. �

Lemma 6.14. Suppose that X is Chow connective. Then the map X ⊗ MGL2 →
πC−♥

0 (X) ⊗ MGL2 induces an equivalence on πR
n−k1,n−k2,n for all n, k1, k2 ∈ Z with

k1 ≥ 0 and k1 + k2 ≥ 0.

Proof. It suffices to show that πR
n−k1,n−k2,nY ⊗MGL2 = 0 for all Chow 1-connective

Y . Since this condition is closed under filtered colimits, suspensions and extensions, it
is closed under all colimits and extensions. It therefore suffices to assume that Y =
Sm+a1,m+a2,m

2 for m, a1, a2 ∈ Z satisfying a1 > 0 and a1 + a2 > 0. In other words,
we must show that πR

n−k1,n−k2,nMGL2 for all n, k1, k2 ∈ Z now satisfying k1 > 0 and
k1 + k2 > 0.

By Proposition 4.14, there is an isomorphism πR
n−k1,n−k2,nMGL2

∼= πC2

n−k1+(n−k2)σP2n MUR,2.

This is zero because Φe(Sn−k1+(n−k2)σ
2 ) ' S2n−k1−k2

2 is of dimension< 2n and ΦC2(Sn−k1+(n−k2)σ
2 ) '

Sn−k12 is of dimension < n. �

Proof of Theorem 6.4. We have

πC−♥
0 (X)n ∼= Hom(MU2)2∗−mod((MU2)2∗[n], πC−♥

0 (X))

∼= Hom(MU2)2∗MU2−comod((MU2)2∗, π
C−♥
0 (X)⊗♥ (MU2)2∗MU2)

∼= πC2
0 MapSH(R)AT

i2
(Sn,n,n2 , πC−♥

0 (X)⊗MGL2)

∼= πC2
0 MapSH(R)AT

i2
(Sn,n,n2 , X ⊗MGL2)

∼= (MGL2)
R
n+k,n,n

(X),

where the third and fourth isomorphisms follow from Lemma 6.13 and Lemma 6.14,
respectively. �

Finally, we record the following proposition for use in Section 6.2.
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Proposition 6.15. An Artin-Tate R-motivic spectrum X ∈ SH(R)ATi2 is left complete
with respect to the Chow t-structure if and only if it is MGL2-local.

The proof will make use of the following lemma:

Lemma 6.16. The functors X 7→ πR
n+k,n,nX are jointly conservative on SH(R)ATi2 .

Proof. Since the functorsX 7→ MapSH(R)AT
i2

(Sn,n,n2 , X) are jointly conservative, it suffices
to note that the functors Y 7→ πC2

k Y are jointly conservative on SpC2
. �

Proof of Proposition 6.15. Since the Chow t-structure is right complete, it is equivalent
to show that X ⊗MGL2 ' 0 if and only if πC−♥

n X = 0 for all n. This is an immediate
consequence of Theorem 6.4 and Lemma 6.16. �

6.2. The functor νR.
In this section, we will study the functor defined below:

Definition 6.17. We define a lax symmetric monoidal functor

νR : SpC2,i2 → SH(R)ATi2

to be the composite

SpC2,i2
Be−1

−−−→ Mod(SH(R)ATi2 ;S2[t−1])
τC
≥0−−→ SH(R)ATi2 .

One of the main results of this section is the following theorem, which summarizes
the basic properties of νR:

Theorem 6.18. Let X,Y, Z ∈ SpC2,i2. The lax symmetric monoidal functor νR :
SpC2,i2 → SH(R)ATi2 satisfies the following properties:

(1) There is a natural equivalence Be(νR(X)) ' X.
(2) The functor X 7→ νR(X) commutes with filtered colimits.
(3) Given any k ∈ Z, there is a natural equivalence νR(ΣkρX) ' Σk,k,kνR(X).
(4) Suppose that X → Y → Z is a cofiber sequence. Then

νR(X)→ νR(Y )→ νR(Z)

is a cofiber sequence if and only if πC2
nρ−1(X ⊗MUR,2)→ πC2

nρ−1(Y ⊗MUR,2) is
a monomorphism.

(5) Suppose that X is a filtered colimit of C2-spectra which admit a finite cell struc-
ture with all cells of the form Snρ2 for n ∈ Z. Then for all Y , the natural map

νR(X)⊗ νR(Y )→ νR(X ⊗ Y )

is an equivalence.
(6) The C2-spectrum X is MUR,2-local if and only if νR(X) is MGL2-local.

We also compare νR to the functor Γ∗ : SpC2,i2 → SH(R)ATi2 constructed in Construc-
tion 4.4.

Theorem 6.19. For X ∈ SpC2,i2, there is a natural equivalence

Γ∗(X) ' νR(X)∧MGL2
.

As evidence that the functor νR is a good way to produce Artin-Tate R-motivic
spectra, we prove that several R-motivic spectra of interest may be recovered from their
Betti realizations via νR:
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Theorem 6.20. There are natural equivalences of commutative rings in SH(R)ATi2 :

MGL2 ' νR(MUR,2)

MF2 ' νR(F2)

MZ2 ' νR(Z2)

kgl2 ' νR(kuR,2)

kq2 ' νR(koC2,2).

Remark 6.21. In light of Theorem 6.20, it would be reasonable to define an R-motivic
spectrum of motivic modular forms as νR(tmfC2,2), assuming that one had a suitable
C2-equivariant spectrum of connective topological modular forms tmfC2,2. Since no such
equivariant spectrum has yet been constructed, we leave this to future work.

Remark 6.22. Since all of the Artin-Tate R-motivic spectra in question are MGL2-
complete, in light of Theorem 6.19 we may replace νR in Theorem 6.20 by Γ∗.

We now begin with the proof of Theorem 6.18.

Proof of Theorem 6.18.
Proof of (1): Equivalently, we are to show that νR(X)[t−1] ' Be−1(X). Using

the cofiber sequence νR(X) → Be−1(X) → τC
≤−1(Be−1(X)), we find that the cofiber of

νR(X)[t−1]→ Be−1(X)[t−1] ' Be−1(X) is may be expressed as lim−→Σ0,0,mτC
≤−1(Be−1(X)).

Now, we know that πR
n+k1,n+k2,n

(τC
≤−1(Be−1(X))) ∼= 0 for all n, k1, k2 ∈ Z with

k1 > 0 and k1 + k2 > 0. It follows that πR
n+k1,n+k2,n

(Σ0,0,mτC
≤−1(Be−1(X))) ∼= 0 for all

n, k1, k2 ∈ Z with k1 > −m and k1+k2 > −2m. This implies that lim−→Σ0,0,mτC
≤−1(Be−1(X))

is null, as desired.
Proof of (2): This is immediate from the fact that the Chow t-structure is compat-

ible with filtered colimits.
Proof of (3): It is clear that there is a natural equivalence Be−1(ΣkρX) ' Σk,k,kBe−1(X).

Moreover, since Σm,m,m induces an automorphism of the Chow t-structure, we find fur-
ther that τC

≥0 commutes with Σm,m,m. Combining these facts, we obtain the desired
result.

Proof of (4): It is clear that X → Y → Z is a cofiber sequence if and only if
Be−1(X) → Be−1(Y ) → Be−1(Z) is. Applying a general fact about t-strutures, we see
that

τC
≥0(Be−1(X))→ τC

≥0(Be−1(Y ))→ τC
≥0(Be−1(Z))

is a cofiber sequence if and only if πC−♥
−1 (Be−1(X)) → πC−♥

−1 (Be−1(Y )) is a monomor-
phism. The result then follows from Theorem 6.4 and the isomorphism πR

p,q,w(MGL2 ⊗
Be−1(X)) ∼= πC2

p+qσ(MUR,2⊗X).
Proof of (5): By compatibility with filtered colimits, we may assume that X admits

a finite cell structure with all cells of the form Snρ2 . Let us write

Sn1ρ
2 ' X1 → X2 → · · · → Xk = X

with Xi/Xi−1 ' Sniρ2 . Then it is easy to prove that πC2
nρ−1(Xi ⊗MUR,2) = 0 for all n

and i by induction, so that by (3) and (4) there are cofiber sequences

νR(Xi−1)→ νR(Xi)→ Sni,ni,ni2 .

It follows that D(νR(X)) is Chow connective. To show that the natural map νR(X)⊗
νR(Y )→ νR(X ⊗ Y ) is an equivalence, it suffices to show that it induces an equivalence



50 ROBERT BURKLUND, JEREMY HAHN, AND ANDREW SENGER

on Ω∞MapSH(R)AT
i2

(Z,−) for all Chow connective Z. For such Z, we have

Ω∞MapSH(R)AT
i2

(Z, νR(X)⊗ νR(Y )) ' Ω∞MapSH(R)AT
i2

(Z ⊗ D(νR(X)), νR(Y ))

' Ω∞MapSH(R)AT
i2

(Z ⊗ D(νR(X)),Be−1(Y ))

' Ω∞MapSH(R)AT
i2

(Z, νR(X)⊗ Be−1(Y ))

' Ω∞MapSH(R)AT
i2

(Z,Be−1(X)⊗ Be−1(Y ))

' Ω∞MapSH(R)AT
i2

(Z, νR(X ⊗ Y )),

as desired. We have used Chow connectivity of D(νR(X)) in the second equivalence and
(1) in the fourth.

Proof of (6): It is clear that X is MUR,2-local if and only Be−1(X) is MGL2-local.
By Proposition 6.15, it sufficess to show that Be−1(X) is left complete with respect to
the Chow t-structure if and only if νR(X) = τC

≥0(Be−1(X)) is. This follows from the
fact that left completeness is invariant under taking connective cover. �

We now move on to the proof of Theorem 6.19. We being by studying the interaction
of the Chow t-structure with MGL2.

Proposition 6.23. Let X ∈ SH(R)ATi2 . Then the following statements hold:
(1) If X is Chow connective, then

MapSH(R)AT
i2

(S0,0,n
2 ,MGL2 ⊗X)

is slice 2n-connective for all n.
(2) There is a natural equivalence

MGL2 ⊗ (τC
≥0X) ' τC

≥0(MGL2 ⊗X).

(3) The natural map

MapSH(R)AT
i2

(S0,0,n
2 ,MGL2 ⊗ τC

≥0X)→ MapSH(R)AT
i2

(S0,0,n
2 ,MGL2 ⊗X)

induced by the counit τC
≥0X → X is equivalent to the canonical map

P2n MapSH(R)AT
i2

(S0,0,n
2 ,MGL2 ⊗X)→ MapSH(R)AT

i2
(S0,0,n

2 ,MGL2 ⊗X).

Proof. We begin with the proof of (1). Since the full subcategory of X for which
MapSH(R)AT

i2
(S0,0,n

2 ,MGL2⊗X) is 2n-slice connective is closed under colimits and exten-
sions, it suffices to prove this for X = Sm+k1,m+k2,m

2 for all m, k1, k2 ∈ Z where k1 ≥ 0
and k1 + k2 ≥ 0.

In the case that X = SpecC, we have πR
p,q,w(MGL2 ⊗ SpecC) ∼= πC

p+q,wMGL2. This
is 0 when p+ q < w, from which the result follows.

Now, we have

MapSH(R)AT
i2

(S0,0,n
2 ,MGL2⊗Sm+k1,m+k2,m

2 ) ' Σm+k1+(m+k2)σ MapSH(R)AT
i2

(S0,0,n−m
2 ,MGL2).

Since Σm+k1+(m+k2)σ of a slice 2(n−m)-connective C2-spectrum is slice 2n-connective,
this reduces us to the case where X = S0,0,0

2 , where this follows from Proposition 4.14.
We now prove (2). Since MGL2 is Chow connective, there is a natural map

(τC
≥0X)⊗MGL2 → τC

≥0(X ⊗MGL2).

To show that this is an equivalence, it suffices to show that

Ω∞MapSH(R)AT
i2

(Y, (τC
≥0X)⊗MGL2)→ Ω∞MapSH(R)AT

i2
(Y, τC

≥0(X ⊗MGL2))

is an equivalence for all Y compact and Chow connective. This is equivalent to the map

Ω∞MapSH(R)AT
i2

(Y, (τC
≥0X)⊗MGL2)→ Ω∞MapSH(R)AT

i2
(Y,X ⊗MGL2).
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Now, using compactness of Y , the identification MGL2 ' lim−→k
MGL(k, k), and duality,

we may rewrite this map as

lim−→
k

Ω∞MapSH(R)AT
i2

(Y⊗D(MGL(k, k)), (τC
≥0X))→ lim−→

k

Ω∞MapSH(R)AT
i2

(Y⊗D(MGL(k, k)), X).

This is an equivalence by Proposition 6.10.
Finally, we prove (3). By (1), the map

MapSH(R)AT
i2

(S0,0,n
2 ,MGL2 ⊗ τC

≥0X)→ MapSH(R)AT
i2

(S0,0,n
2 ,MGL2 ⊗X)

factors through a map

MapSH(R)AT
i2

(S0,0,n
2 ,MGL2 ⊗ τC

≥0X)→ P2n MapSH(R)AT
i2

(S0,0,n
2 ,MGL2 ⊗X).

Since both sides are slice 2n-connective, it suffices to show that this map is an equiv-
alence after applying Ω∞Σ−nρ. Making some basic manipulations, this is equivalent to
showing that

Ω∞MapSH(R)AT
i2

(Sn,n,n2 ,MGL2 ⊗ τC
≥0X)→ Ω∞MapSH(R)AT

i2
(Sn,n,n2 ,MGL2 ⊗X)

is an equivalence. This is equivalence by (2) and the Chow connectivity of Sn,n,n2 . �

We are now ready to prove Theorem 6.19.

Proof of Theorem 6.19. In this proof, we freely use the notation of Section 4 and Ap-
pendix C.2, in particular the funtors i∗, τ2slice

≥0 , and cb.
Let X be a C2-spectrum. By Proposition 6.23(2), there are equivalences

νR(X)∧MGL2
' Tot•(νR(X)⊗ cb(MGL2))

' Tot•(νR(X ⊗ cb(MUR,2))).

Applying i∗ to the map νR(X ⊗ cb(MUR,2)) → Be−1(X ⊗ cb(MUR,2)) of cb(MGL2)-
modules in cosimplicial Artin-Tate R-motivic spectra, we obtain a map

i∗(νR(X ⊗ cb(MUR,2)))→ X ⊗ cb(MUR,2)

of i∗(cb(MGL2)) ' τ2slice
≥0 cb(MUR,2)-modules in cosimplicial filtered C2-spectra, where

the target is constant in the filtered direction.
By Proposition 6.23(3), this factors through an equivalence

i∗(νR(X ⊗ cb(MUR,2)))
∼−→ τ2slice

≥0 (X ⊗ cb(MUR,2))

of τ2slice
≥0 cb(MUR,2)-modules. Totalizing, we obtain an equivalence

i∗(νR(X)∧MGL2
) ' i∗(Γ∗(X))

of R•-modules. Finally, translating back along the equivalence i∗, we obtain the desired
equivalence

νR(X)∧MGL2
' Γ∗(X)

in SH(R)ATi2 . �

We now move on to the proof of Theorem 6.20. We will prove Theorem 6.20 as
an application of a general criterion for there to be an MGL2-local equivalence X '
νR(Be(X)). This will be based on the following definition:

Definition 6.24. We say that X ∈ SH(R)ATi2 is slice simple if, for all n ∈ Z, the natural
map

MapSH(R)AT
i2

(S0,0,n
2 , X)→ Be(X)

factors through an equivalence

MapSH(R)AT
i2

(S0,0,n
2 , X) ' P2nBe(X).
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Proposition 6.25. Let X ∈ SH(R)AT, and let LMGL2
denote MGL2-localization. Then

LMGL2
X ' LMGL2

νR(Be(X)) if and only if MGL2 ⊗X is slice simple.
If X is a commutative algebra, then the equivalence LMGL2

X ' LMGL2
νR(Be(X)) is

one of commutative algebras.

Proof. Suppose that LMGL2
X ' LMGL2

νR(Be(X)), so that MGL2 ⊗ X ' MGL2 ⊗
νR(Be(X)). Then we have

MapSH(R)AT
i2

(S0,0,n
2 ,MGL2 ⊗X) ' MapSH(R)AT

i2
(S0,0,n

2 ,MGL2 ⊗ νR(Be(X))

as C2-spectra over Be(X). By Proposition 6.23(3), the map

MapSH(R)AT
i2

(S0,0,n
2 ,MGL2 ⊗ νR(Be(X))→ Be(MGL2 ⊗X)

factors through an equivalence

MapSH(R)AT
i2

(S0,0,n
2 ,MGL2 ⊗ νR(Be(X)) ' P2nBe(MGL2 ⊗X),

so that MGL2 ⊗X is slice simple.
Now suppose that MGL2 ⊗X is slice simple, and consider the following diagram:

X X[t−1]

τC
≥0X τC

≥0(X[t−1]).

If X is a commutative algebra, then this is a diagram of commutative algebras. Applying
MapSH(R)AT

i2
(S0,0,n

2 ,−⊗MGL2), we obtain the diagram:

MapSH(R)AT
i2

(S0,0,n
2 , X ⊗MGL2) Be(X)⊗MUR,2

MapSH(R)AT
i2

(S0,0,n
2 , (τC

≥0X)⊗MGL2) MapSH(R)AT
i2

(S0,0,n
2 , (τC

≥0(X[t−1]))⊗MGL2).

Finally, applying Proposition 6.23(3) and slice simplicity of MGL2⊗X, we may identify
this diagram with

P2n(Be(X)⊗MUR,2) Be(X)⊗MUR,2

P2n(Be(X)⊗MUR,2) P2n(Be(X)⊗MUR,2).

In conclusion, we find that the maps τC
≥0X → X and τC

≥0X → τC
≥0(X[t−1]) ' νR(Be(X))

are MGL2-equivalences, as desired. �

To prove Theorem 6.20, we now need to show that the R-motivic spectra in question
are slice simple after being tensored with MGL2. To this end, we record the following
simple proposition:

Proposition 6.26. The collection of slice simple Artin-Tate R-motivic spectra is closed
under direct sums, retracts, and pure suspensions Σn,n,n.

Proof of Theorem 6.20. By Proposition 6.25, it suffices to show that MGL2 ⊗E is slice
simple for E = MGL2,MF2,MZ2, kgl2, kq2. Indeed, each of these E is MGL2-local, and
νR(Be(E)) is also MGL2-local by Theorem 6.18(6) by the fact that Be(E) is MUR,2-local.

Now, for E = MGL2,MF2,MZ2, kgl2, MGL2 ⊗E is a direct sum of pure suspensions
of E, so it suffices to show that E itself is slice simple. For MGL2, this follows from
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Proposition 4.14. For MZ2 and MF2, it follows from Lemma 3.10. For kgl2, it follows
from Proposition 4.8 and [Hea19, Theorem 1.1].

Finally, for the case of kq2, we use the equivalence kq2⊗Cη ' kgl2 and the fact that
η = 0 in πR

0,1,1MGL2 to deduce that MGL2⊗kgl2 ' MGL2⊗kq2⊗Cη ' MGL2⊗kq2⊕
Σ1,1,1MGL2 ⊗ kq2. It follows that MGL2 ⊗ kq2 is a retract of MGL2 ⊗ kgl2, so that
MGL2 ⊗ kq2 is slice simple. �

7. The a-local category

In this section, we study the a-localized category, Mod(SH(R)AT;S2[a−1]). The au-
thors find this category to be the most enduring mystery in our study of Artin–Tate
motivic spectra over R.

In the category of C2-equivariant spectra, inverting the class aσ ∈ πC2
−σ S corresponds

to taking geometric fixed points. As a consequence, since a = cC/R(aσ), we may in-
terpret this category as the natural target for some kind of “motivic geometric fixed
points” operation. Using t we may also view the category Mod(SH(R)ATi2 ;S2[a−1]) as
a deformation of Spi2 with algebraic special fiber. Since ΦC2 MUR,2 ' MO, one might
imagine that this degeneration is related to SynMO ' SynF2

. In Proposition 7.4, we will
construct a comparison functor between Mod(SH(R)ATi2 ;S2[a−1]) and SynF2

. However,
it is not an equivalence.

Another feature of the equivariant setting is the existence of the diagram,
SpC2

Sp Sp .

ΦC2NmC2
e

Id

This suggests we study the composite NmR
C(−)[a−1]. Although the norm functor itself is

not exact, in Lemma 7.3 we observe that this composite preserves all colimits. However,
it is not an equivalence.

Altogether, we conclude that the a-local category sits between the even BP-synthetic
category and the F2-synthetic category in a nontrivial way. In fact, although we are
able to identify the three algebraic categories which arise as the special fibers, the maps
between them are surprisingly nontrival.

7.1. The a-local category as a deformation.
The symmetric monoidal category Mod(SH(R);S[a−1, t−1]) is equivalent to Sp by

[Bac18] and Corollary 3.6. As a consequence, there is an equivalence 28

Mod(SH(R)ATi2 ;S2[a−1, t−1]) ' Spi2 .

On the other hand, the following is an immediate corollary of Theorem 5.1.

Corollary 7.1. There is an equivalence of symmetric monoidal categories,

Mod(SH(R)ATi2 ;Ct[a−1]) ' Mod(Spi2; ΦC2Z2)⊗Z IndCoh(Mfg).

On homotopy groups this induces an isomorphism 29,

πR
p,q,w(Ct[a−1]) ∼=

⊕
w+2a−s=p

(
F2{u2a} ⊗F2

Exts,2wBP∗BP(BP∗,BP∗/2)
)
.

Recollection 7.2. There is an isomorphism π∗ΦC2Z2
∼= F2[y], where |y| = 2. Viewing

ΦC2Z2 as Z2[a−1
σ ], y may be identified with u2σ

a2σ
=

u2
σ

a2σ
.

28Of course, this can also be deduced directly from Theorem 3.2 and the equivalence
Mod(SpC2,i2

; S2[a−1
σ ]) ' Spi2.

29Since |a| = (0,−1, 0), the trigraded homotopy groups of an a-local R-motivic spectrum are periodic
in the q degree. This is reflected by the fact that the given formula has no dependence on q.
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The presence of the non-nilpotent element u in the homotopy of Ct[a−1] prevents
this category from being equivalent to either a BP-synthetic category or an F2-synthetic
category.

The simplest way to gain computational access to the a-local category seems to be
the t-Bockstein spectral sequence.

7.2. Norming into the a-local category.
Equivariantly, the composition of the norm functor with geometric fixed points is the

identity. As we shall see, over R the situation isn’t so straightforward.

Lemma 7.3. The composite

SH(C)ATi2
NmR

C−−−→ SH(R)ATi2
(−)[a−1]−−−−−→ Mod(SH(R)ATi2 ;S2[a−1])

is a symmetric monoidal left adjoint. On Picard elements this composite sends Ss,w2 to
Ss,∗,2w2 [a−1]. The map τ is sent to t2.

Proof. The norm functor NmR
C is symmetric monoidal, commutes with sifted colimits

[BH20b, Proposition 4.5]. Since we’ve composed it with a symmetric monoidal left
adjoint, in order to prove the first claim we only need to show the composite preserves
binary sums. From [BH20b, Corollary 5.13] we have a formula,

NmR
C(X ⊕ Y ) ' NmR

C(X)⊕ i∗(X ⊗ Y )⊕NmR
C(Y )

where i is the inclusion R → C. Since the image of i∗ is modules over the cofiber
of a, the middle term vanishes upon inverting a, as desired. The claim about Picard
elements is just a restatement of what we already know about Picard elements from
Recollection 1.29.

Now we examine NmR
C(τ) ∈ πR

0,0,−2 S2. Since the map inverting t is an isomorphism
in this degree we learn that is uniquely determined by

NmR
C(τ)[t−1] = NmC2

e ((τ)[τ−1]) = NmC2
e (1) = 1.

From this we can read off that NmR
C(τ) = t2. �

Despite the fact that upon inverting t this functor becomes the identity on Spi2, for
degree reasons the class η in πC

1,1 S2 cannot map to the class 1⊗ α1 in the homotopy of
Ct[a−1] which one might expect detects η.

The commutaive algebra Cτ gets mapped to Ct2. Postcomposing with the quotient
map down to Ct we get a comparison map on the level of special fibers. It seems likely
that this factors as shown:

IndCoh(Mfg)i2 Mod(Ab; ΦC2Z2)⊗Z2 IndCoh(Mfg)i2

VectF2 ⊗Z2 IndCoh(Mfg)i2 VectF2 ⊗Z2 IndCoh(Mfg)i2.

−⊗F2

Frobenius

7.3. Mapping down to F2-synthetic spectra.
The realization functor out to F2-synthetic spectra which we construct is in some

ways even more surprising than the norm functor. While that functor seemed to double
degrees on the special fiber, this functor will appear to cut degrees in half.

Proposition 7.4. There is a symmetric monoidal left adjoint,

ReF2 : Mod(SH(R)ATi2 ;S2[a−1])→ SynF2,iτ

which sends Sp,q,w2 to Sp,wτ and t to τ .
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Proof. We begin by noting that under the equivalence SH(R)ATi2 ' Mod(SpFil
C2,i2;R•) '

Mod(SpFil
C2

;R•) from Theorem 4.3, inverting a becomes levelwise geometric fixed points.
Thus, Mod(SH(R)ATi2 ;S2[a−1]) is equivalent to modules over the commutative algebra
ΦC2R• obtained by applying ΦC2 levelwise. Now recall that

R• := Tot∗
(
P2•MU∗+1

R,2

)
.

We may then construct a chain of comparison maps,

ΦC2R•
'−→ ΦC2Tot∗

(
P2•MU∗+1

R,2

)
→ Tot∗ΦC2

(
P2•MU∗+1

R,2

)
→ Tot∗τ≥•

(
ΦC2 MU∗+1

R,2

) '−→ Tot∗τ≥•
(
MO∗+1

)
where the key step is a use of the fact that the geometric fixed points of a regular slice
2n-connective C2-spectrum are n-connective to produce the map accross the line-break.

In Proposition C.21, we produced a symmetric monoidal equivalence,

Mod
(

SpFil; Tot∗τ≥•
(
MO∗+1

))
' SyncellMO,iτ .

Since the category of MO-finite-projective spectra is equivalent to the category of F2-
finite-projective spectra, and a map X → Y of spectra is an MO∗-surjection if and only
if it’s an (F2)∗-surjection, there is a symmetric monoidal equivalence SynMO ' SynF2

.
Finally, we can use the fact that SyncellF2

' SynF2
to drop the decoration. Altogether,

base-change along this ring map produces a symmetric monoidal left adjoint,

Mod(SH(R)ATi2 ;S2[a−1])→ SynF2,iτ . �

Much of what was said in this section can be summarized with the existence of the
following diagram of symmetric monoidal left adjoints.

Spi2 Spi2 Spi2

SH(C)ATi2 SH(R)ATi2 SynF2,iτ

IndCoh(Mfg)i2 Mod(Ab;F2[u2σ])⊗Z2
IndCoh(Mfg)i2 Mod(SynF2

;Cτ)

Id Id

(−)[τ−1]

−⊗Cτ
(NmR

C(−))[a−1]

(−)[t−1]

−⊗Ct
ReF2

(−)[τ−1]

−⊗Cτ

The bottom right corner can be described in terms of comodules over the dual Steen-
rod algebra [Pst18, Section 4.5]. It seems likely that the map from the bottom middle
to the bottom right is induced by the map of Hopf algebroids (BP∗,BP∗BP)→ (Fp,A)
which sends ti to ζi. Note that this map is not the usual Thom reduction map as that
map sends ti to ζ2

i . It also seems likely that the map from the left to the right is the
comparison map from the Adams–Novikov to the Adams spectral sequence.

8. Completions

In this paper correctly handling a variety of different types of completion has been a
key point. The purpose of this section is to give a single uniform source of information
on completeness questions and how we handle them.

In Section 8.1, we show that 2-completion agrees with tensoring with S2 for some
important R-motivic spectra. Since these R-motivic spectra are cellular, this implies
that their 2-completions in SH(R) lie in SH(R)ATi2 and that that their cell decompositions
carry over unchanged to the 2-completion. In the case of MGL, this is an important
technical point in the rest of the paper.

In Section 8.2, we record the fact that every dualizable object of SH(R)ATi2 is t-
complete.

Finally, in Section 8.3, we make some remarks about a-completion.
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8.1. 2 completion and i2 completion.
The main goal of this section is to prove the following theorem:

Theorem 8.1. There are natural equivalences in SH(R):

MGL⊗ S2 → MGL2

HZ⊗ S2 → HZ2

kgl⊗ S2 → kgl2

kq⊗ S2 → kq2.

The proof for MGL, HZ and kgl will be completely independent of the rest of this
paper. On the other hand, the proof for kq will use results from Sections 2 through 4.

We begin with some basic facts about the situation:

Proposition 8.2. Given X ∈ SH(R), the following statements are true:
(1) If X is dualizable, then

X ⊗ S2 → X2

is an equivalence.
(2) If X is n-connective with respect to the homotopy t-structure, then X2 is (n−1)-

connective.
(3) Suppose that lim−→X(n) ' X and that the connectivity of the maps X(n) → X

tend to infinity with respect to the homotopy t-structure. Then if

X(n)⊗ S2 → X(n)2

is an equivalence for all n, we also learn that

X ⊗ S2 → X2

is an equivalence.

Proof. To prove (1), it simply suffices to note that since X is dualizable, the functor
−⊗X preserves limits.

To prove (2), we make use of the presentation

X2 ' lim←−
k

X/2k ' fib

(∏
k

X/2k →
∏
k

X/2k

)
.

Since infinite products preserve connectivity in the homotopy t-structure, it suffices to
note that the cofiber sequences

X → X/2k → Σ1,0,0X

imply that X/2k is n-connective if X is.
To prove (3), we note that, since tensoring with S2 preserves colimits, it is equivalent

to show that
lim−→X(n)2 → X2

is an equivalence, i.e. that

lim−→(X2/X(n)2) ' lim−→(X/X(n))2 ' 0.

Since the homotopy t-structure is left complete, it suffices to show that the connec-
tivity of (X/X(n))2 tends to infinity. This follows from (2) and the assumption that the
connectivity of X/X(n) tends to infinity. �

The key input to our proof will be the following:

Lemma 8.3. Let MGL(n, k) denote the Thom spectrum of the bundle γ − k · triv over
Grk(An+k). Then the cofiber of the natural map MGL(n, n) → MGL is n-connective
with respect to the homotopy t-structure.
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Proof. This is an immediate consequence of [Hoy15, Lemma 3.4]. �

Proof of Theorem 8.1 for MGL, HZ and kgl. Since MGL(n, k) is dualizable, the result
for MGL follows from the combination of Proposition 8.2(1) and (3) with Lemma 8.3.

We now turn to the case of HZ. By the Hopkins–Morel theorem [Hoy15], there is an
equivalence

MGL/(a1, a2, . . . ) ' HZ
for certain classes ai ∈ πR

i,i,iMGL. In other words,

lim−→MGL/(a1, a2, . . . , ak) ' HZ.

By the result for MGL, we know that the result holds for all MGL/(a1, a2, . . . , ak). By
Proposition 8.2(3), it therefore suffices to show that the connectivity of

MGL/(a1, a2, . . . , ak)→ MGL/(a1, a2, . . . ) ' HZ
goes to infinity. To do this, it suffices to show that the connectivity of

MGL/(a1, a2, . . . , ak)→ MGL/(a1, a2, . . . , ak, ak+1)

goes to infinity, which follows from the cofiber sequences

MGL/(a1, a2, . . . , ak)→ MGL/(a1, a2, . . . , ak, ak+1)→ Σk+2,k+1,k+1MGL/(a1, a2, . . . , ak).

Finally, we handle the case of kgl. Combining the Hopkins–Morel theorem and con-
vergence of the effective slice towers for MGL and kgl [Hoy15, Lemmas 8.10 and 8.11]
with [Spi10, Proposition 5.4], we find that there is an equivalence

MGL/(a2, a3, . . . ) ' kgl.

We may therefore prove the result for kgl exactly as we did for HZ. �

Before we move on to the case of kq, we collect some facts that we will need:

Proposition 8.4. The following are true:
(1) Suppose that X ∈ SH(R)ATi2 is effective slice connective. Then the natural map

MapSH(R)(S
0,0,n, X)→ Be(X)

is an equivalence for any n ≤ 0.
(2) There is a canonical equivalence

ΦC2(koC2,2) ' ΦC2(koC2)2.

Proof. GivenX ∈ SH(R)ATi2 , it follows from Theorem 3.2 that Be(X) ' lim−→MapSH(R)(S
0,0,n, X).

Part (1) therefore follows from Proposition 4.8.
We now prove (2). By the cofiber sequence

(koC2)hC2 → (koC2)C2 → ΦC2(koC2)

and the fact that (−)C2 commutes with limits, it suffices to show that the canonical
map

(koC2,2)hC2
→ (koC2

)hC2,2

is an equivalence. This map is equivalent to

ko2 ⊗ RP∞+ → (ko⊗ RP∞+ )2,

so this follows from connectivity of ko and the fact that RP∞+ is of finite type. �

The key input will be the following special case:

Proposition 8.5. The map

(kq⊗ S2)[1/2, 1/η]→ kq2[1/2, 1/η]

is an equivalence.
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This will make essential use of the following result of Bachmann.

Proposition 8.6. The assignment X 7→ X(R) induces an equivalence

SH(R)[1/ρ] ' Sp .

Moreover, we have

SH(R)(2)[1/2, 1/η] = SH(R)(2)[1/2, 1/ρ] ' ModQ.

Proof. The first statement follows from [Bac18, Theorem 35 and Proposition 36]. The
second statment is a consequence of the first and [Bac18, Lemma 39]. �

It follows that Proposition 8.5 would follow from the following proposition:

Proposition 8.7. There are isomorphisms:

πR
∗,0,0(kq(2)[1/2, 1/η]) ∼= Q[β], |β| = 4

πR
∗,0,0(S2[1/2, 1/η]) ∼= Q2

πR
∗,0,0(kq2[1/2, 1/η]) ∼= Q2[β], |β| = 4.

Proof. Let W(R) denote the Witt group of the real numbers. There is an isomorphism
W(R) ∼= Z. It follows from [BH20a, Section 6.3.2] that

πR
∗,0,0kq[1/η] ∼= W(R)[β] ∼= Z[β],

from which we deduce the first isomorphism.
By Theorem 3.2, Betti realization induces an isomorphism

πR
∗,∗,0(S2)[1/t] ∼= πC2

∗+∗σ(S2).

As a consequence, we find

πR
∗,0,0(S2)[1/ρ] ∼= πR

∗,0,0(S2)[1/t, 1/a]

∼= πC2
∗ (S2)[1/aσ]

∼= π∗Φ
C2(S2)

∼= π∗ S2 .

Inverting 2 and applying Proposition 8.6, we deduce the second isomorphism.
For the third isomorphism, we make use of the sequence of equivalences

MapSH(R)(S
0,0,n, kq2) ' lim←−MapSH(R)(S

0,0,n, kq/2k)

' lim←−Be(kq/2k)

' Be(kq)2

' koC2,2,

where the second equivalence follows from Proposition 8.4(1) and the fourth equivalence
follows from [Kon20, Corollary 2.30].

As a consequence, we find that

πR
∗,0,0kq2[1/ρ] ∼= πR

∗,0,0kq2[1/t, 1/a]

∼= πC2
∗ koC2,2[1/aσ]

∼= π∗Φ
C2(koC2,2)

∼= π∗Φ
C2(koC2

)2

∼= Z2[β],

where the fourth isomorphism follows from Proposition 8.4(2) and the fifth isomorphism
follows from [GHIR20, Propositon 10.18]. Inverting 2 and applying Proposition 8.6, we
obtain the result. �
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Proof of Theorem 8.1 for kq. We want to prove that

kq⊗ S2 → kq2

is an equivalence. It is clearly an equivalence after smashing with C(2), so it suffices to
show that it is an equivalence after inverting 2. Moreover, by the equivalence kq⊗C(η) '
kgl and the kgl case, it is also an equivalence after smashing with C(η). It therefore
suffices to show that

(kq⊗ S2)[1/2, 1/η]→ kq2[1/2, 1/η]

is an equivalence, which is Proposition 8.5. �

8.2. Ta completion.
At several points we have suggested that from a computational viewpoint the t-

Bockstein spectral sequence is probably the best way to gain access to various objects.
We now finally show that such a computation would converge to the correct answer.

Proposition 8.8. The unit in SH(R)ATi2 is t-complete.

Before proving this proposition we give a corollary of it.

Corollary 8.9. Every dualizable object of SH(R)ATi2 is t-complete.

Now we turn to the proof of this proposition. We begin with the following lemma.

Lemma 8.10. MZ2 is t-complete.

Proof. Since the tri-graded spheres are a family of compact generators it will suffice to
show that

lim←−
(
· · · → πR

p,q,2(MZ2)→ πR
p,q,1(MZ2)→ πR

p,q,0(MZ2)
)

is zero and there’s no lim-1 term. Both of these claims follow from the fact that
πR
p,q,w(MZ2) = 0 for w ≥ 0. �

Proof of Proposition 8.8. Since the MZ2-Adams spectral sequence converges [HKO11a]
and limits of complete objects are complete we may use Lemma 8.10 to conclude. �

8.3. a-completion.
Almost none of the objects we have encountered are a-complete. The reason for this

is that if an object X is a-complete then Ct⊗X is also a-complete. On the other hand,
looking at the formulas for the homotopy groups of Ct we see that this often contains
copies of the homotopy of Z2, which is not a-complete.

Example 8.11. The elements θ
an ⊗ 1 in the homotopy of Ct give an explicit example

of non-a-completeness. If we consider the image of θ
an under the connecting map δ :

Σ−1,0,1Ct → S we obtain an example of an infinitely a-divisible element in the sphere
30

On the other hand, it often happens that after inverting t objects becomes a-complete.

Lemma 8.12. On dualizable objects of SH(R)ATi2 the following functors are equivalent:
(−)[t−1], (−)∧a [t−1] and (−)[t−1]∧a .

Proof. For any dualizable object X there is an n such that πR
p,q,w(Ct⊗X) = 0 for w ≤ n.

Using this we learn that on the level of trigraded homotopy groups the colimit inverting
t commutes with the inverse limit completing at a. Now, we only need to explain why
(−)[t−1] is already a-complete on dualizable inputs. If we invert t on a dualizable i2-
complete R-motivic spectrum we get a dualizable i2-complete C2-spectrum. Thus, we’re
reduced to showing that dualizable i2-complete C2-spectra are aσ-complete. Using the

30This image is non-trivial for n sufficiently large, though we don’t prove it. Of course if the image
is trivial for all n, then a lift of these classes to the sphere gives a different example of non-completeness.
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fact that tensoring with a dualizable object commutes with limits it suffices to show this
is true for the unit. The 2-complete sphere in C2-spectra is aσ-complete as a consequence
of Lin’s theorem [Lin80]. �

The tension this introduces is heightened when one recalls Gregersen’s motivic analog
of Lin’s theorem which is proved over any field of characteristic zero [Gre12]. However,
Gregersen’s result only asserts a π∗∗-isomorphism, i.e. an equivalence after reflecting into
the Tate category. In fact, a careful examination of the formula for the homotopy groups
of Ct reveals that the copies of the negative cone (from which the non-a-completeness
originates) all lie below the plane of Tate spheres. Therefore, upon running the t-
bockstein spectral sequence the tri-degrees (p, w,w) never recieve contributions from
copies of the negative cone.

9. Odd primes

In this section we show that, when working at an odd prime p, the category SH(R)ATip
admits a simple description in terms of SH(C)ATip .

Proposition 9.1. There is an equivalence of categories,

SH(R)ATip ' Spip×SH(C)ATip × SH(C)ATip .

We begin by decomposing SH(R)ATip into its plus and minus parts following [Bac18].
An idempotent in π01 produces a product decomposition of the category. After inverting
2 we have

(
2−1[C2]

)2
= 2−1[C2] in πC2

0 S[2−1] ∼= πR
0,0,0 S[2−1]. This splits the category

SH(R)[2−1] into two pieces. In one summand we have [C2] = 0 and ρ is invertible. In the
other summand [C2] is invertible. In [Bac18], Bachmann shows that SH(R)[2−1, ρ−1] '
Sp.

The contribution of this section will be an identification of the plus part (after re-
striction to the Artin–Tate category). Following [BS20, Proposition 6.7] we can identify
the unit in the plus part with Sp,η.

Definition 9.2. Let SH(R)AT,+ip denote the category Mod(SH(R)AT;Sp,η).

The proposition will now follow from showing that SH(R)AT,+ip splits as a product of
two copies of SH(C)ATip . This splitting will come from a decomposition of the category
into two blocks (in the sense of representation theory). We begin with the following pair
of lemmas.

Lemma 9.3. In SH(R)AT,+ip , there is a splitting Spec(C) ' S0,0,0
p,η ⊕S1,−1,0

p,η .

Proof. It suffices to show that a : S0,−1,0
p,η → Sp,η is zero. This follows from the facts that

cC/R is fully-faithful (see [HO18]) and that aσ = 0 in the C2-equivariant category after
inverting 2 and η-completing.

�

Lemma 9.4. The groups πR
s,q,w Sp,η are zero for q odd.

The proof of this lemma will take us farther afield so we defer it for the moment.

Proof of Proposition 9.1. At this point we only need to show that

SH(R)AT,+ip ' SH(C)ATip × SH(C)ATip .

Let Aeven (resp. Aodd) denote the stable full subcategory of SH(R)AT,+ip generated under
colimits by the objects Ss,q,wp,η for s, w ∈ Z and q even (resp. odd).

We begin by showing that if A ∈ Aeven and B ∈ Aodd, then there are no nontrivial
maps between A and B. It suffices to show this for compact generators, where it follows
from Lemma 9.4. From this we may conclude that SH(R)AT,+ip ' Aeven×Aodd.
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Since tensoring with S0,1,0 provides an equivalence between Aeven and Aodd it will
now suffice to show that the composite,

Aeven → SH(R)AT,+ip → SH(C)ATip

is an equivalence. Since Ss,0,w is sent to Ss,w we know this map hits a family of compact
generators, so it will suffice to show that it is fully faithful. By the usual argument it
will suffice to have fully-faithfulness on compact generators. Thus, we are reduced to
showing that the map

πR
s,q,w Sp,η → πC

s+q,w Sp,η .
is an isomorphism for q even. Using Lemma 9.3 this map factors as

πR
s,q,w Sp,η ↪→ πR

s,q,w(S0,0,0
p,η ⊕S1,−1,0

p,η )
∼=−→ πC

s+q,w Sp,η,

where the first map is the inclusion of the left summand. We conclude by noting that
the relevant homotopy group of the right summand vanishes by Lemma 9.4. �

We now return to proving Lemma 9.4. The proof will be via an Adams spectral
sequence argument so we begin by computing the homology of a point. Note that MFp
is η-complete so it lives inside the plus part of the category.

Lemma 9.5. The tri-graded homotopy of MFp is given by

πR
s,q,wMFp ∼= Fp[u±2σ, t],

where |u2σ| = (2,−2, 0).

Proof. From the computation of the homology of a point over C in [Voe03b] we may
conclude that πR

s,q,w(Spec(C)⊗MFp) ∼= Fp[u±σ , t]. Using the splitting of Spec(C) we may
conclude that the homology of a point over R is an index 2 subalgebra which contains
t (since t is defined in the sphere). There is a unique such subalgebra. �

Lemma 9.6. The tensor product MFp ⊗MFp splits as a sum of tri-graded suspensions
of copies of MFp whose q-components are even.

Proof. From [HKØ17, Theorem 1.1 (3)] (which follows from work of Voevodsky [Voe03b,
Voe10] in case of R where we work) we know that MFp ⊗MFp decomposes as a sum of
copies of Σa,b,bMFp. More specifically, the copies of MFp are indexed by monomials in
the ξi and τi which live in degrees,

|ξi| = (pi − 1, pi − 1, pi − 1) and |τi| = (pi, pi − 1, pi − 1).

Since p is odd the q-component of every such monomial is even. �

Proof of Lemma 9.4. Since the motivic Adams spectral sequence for the sphere con-
verges strongly to Sp,η by [HKO11a], it will suffice to show the desired vanishing result
on the E1-page. This spectral sequence takes the form,

Es,t1 = πt,q,w(MF⊗s+1
2 ) =⇒ πt−s,q,w Sp,η .

Using Lemma 9.5 and Lemma 9.6 we may conclude that the spectral sequence is zero
at the E1 page for q odd. �

10. Examples and computations

In this section we will use the technology deployed across this paper to give some
example computations of tri-graded homotopy groups. In the present version this section
is a stub. We hope to return to this at a later date.
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10.1. Vanishing regions for trigraded homotopy.
The coarsest information about the trigraded homotopy groups of Artin–Tate R-

motivic spectra comes from understanding which regions of space we expect to have
only the zero group. We summarize what we know in the following omnibus theorem.

Theorem 10.1. Using the elements a ∈ πR
0,−1,0 S and t ∈ πR

0,0,−1 S2 we can build 9
rather natural objects. The trigraded homotopy groups of these objects are conecntrated
in the following regions.

(1) πR
p,q,w(S2) is concentrated in the region,

{p+ q ≥ w ≥ 0} ∪ {p+ q ≥ 0, w ≤ 0} ∪ {p ≥ 0}.
(2) πR

p,q,w(Ct) is concentrated in the region,

{0 ≤ p ≤ 2w − q, w ≥ 0} ∪ {w − q ≤ p ≤ w − 2, w ≥ 0}.
(3) πR

p,q,w(S2[t−1]) is periodic in the w-degree and concentrated in the region,

{p ≥ 0} ∪ {p+ q ≥ 0}.
(4) πR

p,q,w(Ca) is periodic along lines of the form (1,−1, 0) and concentrated in the
region,

{0 ≤ w ≤ p+ q} ∪ {0 ≤ p+ q, w ≤ 0}.
(5) πR

p,q,w(Ca ⊗ Ct) is periodic along lines of the form (1,−1, 0) and concentrated
in the region,

{w ≤ p+ q ≤ 2w}.
(6) πR

p,q,w(Ca⊗S2[t−1]) is periodic in the w-degree, periodic along lines of the form
(1,−1, 0) and concentrated in the region,

{p+ q ≥ 0}.
(7) πR

p,q,w(S2[a−1]) is periodic in the q-degree and concentrated in the region,

{p ≥ 0}.
(8) πR

p,q,w(S2[a−1]⊗ Ct) is periodic in the q-degree and concentrated in the region,

{p ≥ 0, w ≥ 0}.
(9) πR

p,q,w(S2[a−1, t−1]) is periodic in the q-degree, periodic in the w-degree and con-
centrated in the region,

{p ≥ 0}.
Proof. We begin with four easy observations. First, we observe that (4), (5) and (6)
all follow from the identification of Ca-modules with the C-motivic category and well-
known vanishing regions in the p-complete stems over C. Second, we observe that (3)
and (9) follow from Theorem 3.2 and well-known vanishing regions in C2-equivariant
homotopy of the sphere. Third, we observe that upon inverting a in (1) and (2) we
obtain (7) and (8) respectively. Fourth, we know from Proposition 8.8 that S2 is t-
complete, so we obtain (1) from (2) together with an examination of the E1-page of the
t-Bockstein spectral sequence.

In order to prove (2) we directly examine the homotopy of Ct. In Theorem 5.1 we
computed that

πR
p,q,w(Ct) ∼=

⊕
w+a−s=p

Exts,2w(MU2)∗MU2
((MU2)∗, (MU2)∗ ⊗Z2

πC2

a+(q−w)σZ2).

The result then follows by combining the following vanishing results:
• Exts,2w(MU2)∗MU2

((MU2)∗, (MU2)∗) and Exts,2w(MU2)∗MU2
((MU2)∗, (MU2)∗/2) are con-

centrated in the region {0 ≤ s ≤ 2w}.
• πC2

p+qσZ2 is concentrated in the region {p ≥ 0, p+ q ≤ 0} ∪ {p ≤ −2, p+ q ≥ 0}.
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�

Remark 10.2. As a corollary of the vanishing region for Ct and t-completeness of
the unit we recover [BGI20, Theorem 1.1] which describes the region in which Be :

πR
p,w,w S2 → πC2

p+wσ S2 is an isomorphism.

10.2. The homotopy of kq2. To aid the computationally minded reader, we give
below some charts of the trigraded homotopy groups of kq2. These charts are meant to
be read in concert with those of [Kon20, §6.5], and the notation here matches that in
Kong’s work. Indeed, all of the information within these charts is easily accessed within
Kong’s work, and we merely repackage it here.

We focus on the homotopy groups πp,q,w(kq2 ⊗ Ct) and πp,q,w(kq2) for p = 0 and
p = −1. In the language of [Kon20], this corresponds to a focus on coweights 0 and −1.

π0,q,w(Ct⊗ kq2)

q

w

−2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

5

6

7

8

1

h1

γ
uv

2
1

γ
u3 v

4
1

γ
u5 v

6
1

1

Red lines denote multiplication by a ∈ π0,−1,0 S. Black lines denote multiplication by
the motivic η : Gm → S, which in our grading convention lives in π0,1,1 S.
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π−1,q,w(Ct⊗ kq2)

q

w

−2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

3

4

5

6

7

8

γ
u2 v

2
1

γ
u4 v

4
1

γ
u6 v

6
1

1

Below, we depict some of the E∞-page of the t-Bockstein spectral sequence for
π∗,∗,∗kq2. We follow the convention introduced in [BHS19, §A.2] and [Bur20] of us-
ing blue symbols to denote t-torsion classes, while black symbols denote t-torsion free
classes. In particular, black symbols contribute not only to the homotopy group cor-
responding to the box in which they appear, but also to the groups corresponding to
boxes directly below where they appear. In the language of [Kon20], the blue dots in our
charts contain information about which dots on the E1-page of the C2-effective spectral
sequence are targets of differentials, as opposed to sources of differentials.

The E∞-page of the t-Bockstein spectral sequence for π0,q,w(kq2)

q

w

−2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

5

6

7

8

1

h1

1
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The E∞-page of the t-Bockstein spectral sequence for π−1,q,w(kq2)

q

w

−2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

3

4

5

6

7

8

γ
a2u2 v

2
1h

2
1 +

γ
u4 v

4
1

1

Remark 10.3. The groups π−1,∗,∗kq2 and π0,∗,∗kq2 assemble, via the multiplication
by a long exact sequence, into the homotopy groups π0,∗,∗ (Ca⊗ kq2). These groups
in turn record the bigraded homotopy of the C-motivic kq2. The reader may note an
interesting extension, of the form

2Z2[τ ]⊕ τZ2[τ ]→ Z2[τ ]→ F2,

which appears when computing π0,8,∗(kq∧2 ⊗Ca). This extension is related to the orange
dashed line in the final chart of [Kon20].

Appendix A. Recollections on compact rigid generation

In this appendix we recall some useful material on compact rigid generation. Most
of this material has appeared elsewhere and all of it is certainly known to experts. This
appendix was mostly included for the convenience of the authors, though we do hope
the reader finds it to be a concise summary of a basic technique in higher algebra.

Definition A.1. A stable, presentably monoidal category C is rigidly generated if it
has a family of compact dualizable generators 31.

Our goal will be to study some properties of monoidal left adjoints out of a rigidly
generated category. This begins with the following construction.

Construction A.2. Given an En-monoidal left adjoint f∗ : C → D, its right adjoint f∗
is lax En-monoidal. In particular, f∗(1) is an En-ring, so we obtain a factorization of
f∗ as an En−1-monoidal left adjoint into

C −⊗f∗1−−−−→ Mod(C; f∗1)
g∗−→ D.

We will say that the adjunction f is 0-affine if g is an adjoint equivalence. Note that
being 0-affine is a property of the underlying monoidal functor.

31Here and throughout this appendix we only require that an object has a one-sided dual. The side
on which an object has a dual will not be important.
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The main result of this appendix is a convenient criterion for f to be 0-affine. Before
we can state that result we make a preperatory defintion.

Definition A.3. Given a monoidal left adjoint f∗ : C → D, we may consider the
projection map,

X ⊗ f∗Y
ηf−→ f∗f

∗(X ⊗ f∗Y ) ' f∗(f∗X ⊗ f∗f∗Y )
εf−→ f∗(f

∗X ⊗ Y ).

We will say that f satisfies the projection formula at X, if for all Y the projection map
is an equivalence. If f satisfies the projection formula at X for all X, then we say that
f satisfies the projection formula.

Proposition A.4. Suppose we are given a monoidal left adjoint f∗ : C → D between
presentable categories.

(1) f satisfies the projection formula for dualizable objects in C.
(2) If C is rigidly generated and D has compact unit, then f∗ preserves colimits.
(3) If C is rigidly generated and f∗ preserves colimits, then f satisfies the projection

formula.
(4) f∗ is conservative if and only if the essential image of f∗ contains a family of

generators.
(5) If f satisfies the projection formula, f∗ preserves colimits and f∗ is conservative,

then f is 0-affine.

Our arguments follow those from [MNN17] fairly closely, though the hypotheses are
somewhat different. Before proceeding to the proof of this proposition we give some
examples to demonstrate its effectiveness.

Example A.5. Given a finite extension of characteristic zero fields `/k we have a
symmetric monoidal left adjoint i∗ : SH(k)→ SH(`).

As explained by Hoyois, following ideas of Ayoub we can show that each of these cat-
egories are rigidly generated. Using resolution of singularities, Nagata compactification
and purity we know that each of these categories is generated by the motives of smooth
projective schemes. Now, using ambidexterity we learn that each of these are dualizable.
Thus, we may conclude that both the source and target categories are rigidly generated
with a family of compact dualizable generators given by Sm⊗(P1)⊗n ⊗X where X is a
smooth projective scheme over the base.

In order to show that i is 0-affine we only need to show that the image of i∗ contains
a family of generators. Given a smooth projective `-scheme X the projection formula
Proposition A.4(1) gives us an equivalence,

i∗(Sm⊗(P1)⊗n ⊗X) ' Sm⊗(P1)⊗n ⊗ i∗X.
Since for field extensions i] = i∗, we learn that i∗X = X where the second copy of X is
considered as a k-scheme. It will now suffice to show that X is a retract of i∗i∗X. At
the level of schemes this means looking at X×Spec(`) Spec(`)×Spec(k) Spec(`). Using the
maps `→ `⊗k `→ ` we may conclude.

Stated more explicitly, we have an equivalence of presentably symmetric monoidal
categories,

SH(`) ∼= Mod(SH(k); Spec(`)).

Using the fact that i restricts to the subcategories of Artin–Tate objects [cite] the same
argument provides an equivalecne of presentably symmetric monoidal categories,

SH(`)AT ∼= Mod(SH(k)AT; Spec(`)).

Example A.6. Recall that we denote the shift map 1(−1) → 1 in SpFil by τ . The
associated graded functor Gr : SpFil → SpGr satisfies the conditions of Proposition A.4
so we obtain an equivalence of presentably symmetric monoidal categories,

SpGr ∼= Mod(SpFil;Cτ),
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where Cτ acquires a commutative algebra structure from the fact that it equivalent to
the image of the unit under the right adjoint of Gr.

Example A.7. Again working with SpFil, the realization functor Re : SpFil → Sp
satisfies the conditions of Proposition A.4 so we obtain an equivalence of presentably
symmetric monoidal categories,

Sp ∼= Mod(SpFil;1[τ−1]),

where 1[τ−1] acquires a commutative algebra structure from the fact that it equivalent
to the image of the unit under Y (the right adjoint of Re).

Example A.8. The category of C2-spectra is rigidly generated and the underlying
spectrum functor, Φe, is essentially surjective so we may apply Proposition A.4 to obtain
a symmetric monoidal equivalence,

Mod(SpC2
;R1) ' Sp

where R1 is the image of S under the right adjoint to underlying. Since underlying can be
described as the homotopy fixed points (or homotopy orbits) composed with C2,+⊗−, we
find that its right adjoint is given by tensoring with C2,+ ' Caσ. Therefore, R1 ' Caσ.

Similarly, with Φe replaced by ΦC2 we obtain a symmetric monoidal equivalence,

Mod(SpC2
;R2) ' Sp

where R2 is the image of S under the right adjoint to geometric fixed points. We
can compute that R2 ' S[a−1

σ ] using the presentation of C2-spectra via an isotropy
seperation square.

Example A.9. Taking loops on the map i : S1 → B Pic(SpC2
) which sends a generator

to Sσ we get a monoidal functor i : Z → Pic(SpC2
). Embedding the target into SpC2

and tensoring up to spectra we obtain a monoidal left adjoint,

i∗ : SpGr → SpC2

which sends S(1) to Sσ. Since SpGr is rigidly generated, the unit in SpC2
is compact and

the representation spheres generate SpC2
we may apply Proposition A.4 to conclude that

i is 0-affine. Stated more explicitly, we have an equivalence of presentable categories,

SpC2
∼= Mod(SpGr; i∗ S).

The graded ring i∗ S has nth term given by MapSp(Snσ,S). Expressed in terms of stunted
projective spaces we have (i∗ S)n ' ΣRP−n−1

−∞ . The authors will return to the question
of whether this example can be upgraded to an E1-deformation of spectra in the sense
of the Appendix C in the future.

Proof (of Proposition A.4(1)). Consider the following commutative diagrams which is
natural in X ∈ Cdbl, Y ∈ D and Z ∈ C.

MapC(X
∨ ⊗ Z, f∗Y ) MapD(f

∗(X∨ ⊗ Z), f∗f∗Y ) MapD(f
∗(X∨ ⊗ Z), Y )

MapD(f
∗(X∨)⊗ f∗Z, f∗f∗Y ) MapD(f

∗(X∨)⊗ f∗Z, Y )

MapC(Z,X ⊗ f∗Y ) MapD((f
∗X)∨ ⊗ f∗Z, f∗f∗Y ) MapD((f

∗X)∨ ⊗ f∗Z, Y )

MapD(f
∗Z, f∗(X ⊗ f∗Y )) MapD(f

∗Z, f∗X ⊗ f∗f∗Y ) MapD(f
∗Z, f∗X ⊗ Y )

'

' '

' '

'

' '

'
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The rectangle on the left commutes due to the compatibility of dualization with the
monoidal structure on f∗. The remaining squares commute for easier reasons. Now
observe that starting in the middle of the left side and proceeding counter-clockwise
gives the projection map, while proceeding clockwise given an equivalence. �

Proof (of Proposition A.4(2)). Since C is rigidly generated it has a family of compact
dualizable generators. Monoidal functors send dualizable objects to dualizable objects.
Since the unit of D is compact we learn that f∗ sends dualizable objects to compact
objects. Thus, since f∗ sends a family of compact generators to compact objects its
right adjoint f∗ preserves colimits. �

Proof (of Proposition A.4(3)). The projection formula asks that the natural projection
map

X ⊗ f∗Y → f∗(f
∗X ⊗ Y )

be an equivalence. Using the hypotheses that f∗ preserves colimits and C is rigidly
generated we can reduce to the case where X is a compact dualizable generator. We
may now use Proposition A.4(1) to conclude. �

Proof (of Proposition A.4(4)). Clear. �

Proof (of Proposition A.4(5)). We begin by showing that g∗ is fully faithful. This is
equivalent to showing that the unit map X → g∗g∗X is an equivalence. Applying
the projection formula with Y = 1, we can conclude that this is true for induced
f∗1-modules. Since f∗ preserves colimits and Mod(C; f∗1) is generated by induced f∗1-
modules this is sufficient to conclude.

Now, we show that g∗ is essentially surjective. By Proposition A.4(4) we know the
essential image of f∗ contains a family of generators (and g∗ has the same property).
Using fully-faithfulness we can now conclude that g∗ is essentially surjective. �

We close the appendix with another useful lemma.

Lemma A.10. Suppose that C and D are stable presentably symmetric monoidal cat-
egories, and let R be a commutative algebra in C. Given a symmetric monoidal left
adjoint f∗ : C → D, there is an of presentably symmetric moniodal categories

Mod(D; f∗R) ' Mod(C;R)⊗C D .
Proof. This follows from [Lur17, Theorem 4.8.5.16] after unraveling the definitions. �

Example A.11. Given a stable presentably symmetric monoidal category C and a
commutative algebra R ∈ CFil, this lemma provides an equivalence,

SpGr⊗SpFilMod(CFil;R) ' CGr ⊗CFil Mod(CFil;R) ' Mod(CGr;Gr(R))

Appendix B. Recollections on filtered objects

In this appendix we give a more detailed introduction to filtered objects. The results
here are mostly well-known (cf. [Lur15]), and we aim mainly to fix notation.

Convention B.1. In this appendix, C will denote a stable, presentable category. We
will use 1 to denote the unit of C when it is monoidal.

Definition B.2. We let Z denote the symmetric monoidal category with underlying
category given by the discrete set Z and symmetric monoidal structure given by addition.

Similarly, we let ZFil denote the symmetric monoidal category with underlying cat-
egory given by the poset Z with its order ≤, so that there is a unique map n → m
whenever n ≤ m, and symmetric monoidal structure given by addition.
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Definition B.3. Given a category C, we let CFil := Fun(ZFil,op, C) denote the category
of filtered objects in C. Objects of CFil are diagrams

· · · → C2 → C1 → C0 → C−1 → C−2 → . . .

in the category C. We will sometimes use the notation C• for an object of CFil.
• There is a natural left adjoint c : C → CFil, which sends C to the constant object

· · · → 0→ 0→ C
id−→ C

id−→ C
id−→ . . .

that is equal to C in nonpositive degrees and 0 in positive degrees.
• There is a natural left adjoint Y : C → CFil, which sends C to the constant

object
. . .

id−→ C
id−→ C

id−→ C
id−→ C

id−→ C
id−→ . . .

that is equal to C in each degree.
• The functor Y admits a left adjoint Re : CFil → C, which sends C• to lim−→n

C−n.
• The category CFil admits natural automorphisms (k) : CFil → CFil that send C•

to C•−k.
• There is a natural transformation τ : (−1) → Id, which captures the shift map

in the filtration. We depict τ on cX below,
. . . 0 0 0 X X . . .

. . . 0 0 X X X . . .

If C is monoidal, then we will refer to the cofiber of τ : 1(−1)→ 1 as Cτ .
We let CGr := Fun(Zop, C) denote the category of graded objects in C. Objects of

CGr are collections {Cn}n of objects of C. We will sometimes use the notation C∗ for
an object of CGr.

• There is a natural fully-faithful left adjoint c : C → CGr, which sends C to C∗
with C0 = C and Ck = 0 for k 6= 0.

• There is a natural left adjoint Gr : CFil → CGr, which sends

· · · → C2 → C1 → C0 → C−1 → C−2 → . . .

to {Cn/Cn+1}n.
If C is a presentably En-monoidal category, then CFil and CGr inherit the structure

of En-monoidal categories under Day convolution, and the functors c, Y , Re, c and Gr
are all En-monoidal.

Remark B.4. Using the assumption that C is stable and presentable we can offer
another description of the categories of filtered and graded objects, which is often useful
in proofs.

CFil ' SpFil⊗ C and CGr ' SpGr⊗ C.
Since it is well-known that the analogs of c, Y , Re, c and Gr are symmetric monoidal
in the case of spectra, the claims about En monoidality made above follow by tensoring
up.

Using the fact that 1(1)⊗ 1(−1) ' 1, we learn that if X is a dualizable object of C,
then c(X)(n) is a dualizable object of CFil. Similarly, we have that if {Xα} is a set of
compact (dualizable) generators of C, then {c(Xα)(k)} is a set of compact (dualizable)
generators of CFil.

Lemma B.5. Given an En-monoidal category C, the image of 1 under the right adjoint
of Re is 1[τ−1]; therefore this object is an En-algebra and there is an equivalence of
En−1-monoidal categories Mod(CFil;1[τ−1]) ' C. Similarly, the image of 1 ∈ CGr

under the right adjoint of Gr is Cτ ; therefore this object is an En-algebra and there
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is an equivalence of En−1-monoidal categories Mod(CFil;Cτ) ' CGr. Moreover, the
functors −⊗1[τ−1] and −⊗Cτ are identified under these equivalences with Re and Gr,
respectively.

Proof. The case of spectra was handled in Examples A.6 and A.7. For a general C we
just tensor the case of spectra with C. �

Appendix C. A machine for deforming homotopy theories

In this appendix, we have two goals. The first is to identify a technique which
produces 1-parameter deformations in homotopy theory. This technique is essentially
an elaboration of [GIKR18, Definition 3.2]. The second goal is to provide a recognition
criterion for 1-parameter deformations. This criterion will be applied in Section 4 of
the main paper to identify SH(R)ATi2 with the category of modules over a commutative
algebra in i2-complete filtered C2-spectra.

The approach to deforming categories taken here is different than the approach taken
in Pstrągowski’s theory of synthetic spectra [Pst18], which is a theory specifically about
deformations of Sp. Notably, the input to define a category of synthetic spectra is much
less rigid. On the other hand, when both are defined we will show that they agree for
the most part. This in turn suggests that a far more general version of Pstrągowski’s
approach is possible, where an arbitrary (symmetric monoidal) presentable category is
deformed.

This appendix is not intended to be a definitive treatment of deformations. Instead,
we view at as an illustration of a variety of elementary techniques, which in combination
produce a large collection of interesting examples.

C.1. Constructing deformations.
In this section we will give techniques for producing 1-parameter deformations. The

deformations we produce will all be of the form

Mod(CFil;R)

for some kind of algebra R 32. Therefore, what we really do is give methods for con-
structing algebras in filtered objects.

Convention C.1. In this section, C will denote a stable presentably symmetric monoidal
category. We will use 1 to denote the unit of C.

We will produce commutative algebras in CFil through the following method. Given
a lax symmetric monoidal functor F : C → CFil, the image of the unit F (1) is a
commutative algebra in CFil. If we let L denote the composite Re ◦F , then we have the
following proposition.

Proposition C.2. The presentably symmetric monoidal category Mod(CFil;F (1)) is a
1-parameter deformation in the sense that,

(1) There is a colimit-preserving symmetic monoidal functor out of CFil with target
Mod(CFil;F (1)).

(2) The generic fiber is given by Mod(C;L(1)), in the sense that there is an equiv-
alences of presentably symmetric monoidal categories

Mod(CFil;F (1)[τ−1]) ' Mod(C;L(1)).

(3) The special fiber is given by Mod(CGr;GrF (1)), in the sense that there is an
equivalences of presentably symmetric monoidal categories

Mod(CFil;F (1)⊗ Cτ) ' Mod(CGr;Gr(F (1))).

32Although much of the material in this appendix applies for En-algebras in En-monoidal categories,
the extra generality was not necessary for this work.



GALOIS RECONSTRUCTION OF ARTIN–TATE R-MOTIVIC SPECTRA 71

Moreover, when viewed as a lax symmetric monoidal functor, F factors as

C G−→ Mod(CFil;F (1))→ CFil.

Proof. This follows immediately from Lemma B.5 and Lemma A.10. �

We will refer to lax symmetric monoidal functors T : C → CFil as tower functors and
give several examples.

Example C.3. The functors c and Y are tower functors.

Example C.4. The functor τ≥• : Sp→ SpFil is a tower functor.

Example C.5. If C has a t-structure which is compatible with the tensor product in
the sense that the unit is connective and the tensor product of two connective objects
is connective, then

τ≥• : C → CFil

is a tower functor. More generally we have a tower functor, τ≥m• : C → CFil for natural
numbers m.

Construction C.6. Suppose we are given a collection A of coreflective subcategories
CA≥k ⊂ C, such that

• if X ∈ CA≥k and Y ∈ CA≥`, then X ⊗ Y ∈ CA≥k+`.
• CA≥k+1 ⊂ CA≥k and 1 ∈ CA≥0.

Let τ≥k : C → CA≥k denote the right adjoints of the inclusions. Then, we can assemble
these categories into a single coreflective subcategory CFil,A

≥0 consisting of filtered objects

· · · → X2 → X1 → X0 → X−1 → X−2 → . . .

for which Xi ∈ CA≥i. The right adjoint τA≥0 : CFil → CFil,A
≥0 to the inclusion is given by

applying τ≥i in position i.
Our assumptions guarantee that CFil,A

≥0 is closed under the tensor product and so
admits a natural presentably symmetric monoidal structure for which the inclusion
CFil,A
≥0 ⊂ CFil is a symmetric monoidal functor. As a consequence, we obtain a lax

symmetric monoidal endofunctor,

τA≥0 : CFil → CFil.

Example C.7. If C is the category of G-equivariant spectra for some finite group G,
then we can let Cslice

≥k be the regular slice k-connective G-spectra (as a variant we could
also take regular slice mk-connective for some positive integer m) 33.

Each of the examples of tower functors given above can be described as a composite
of Y with an appropriately chosen τ≥0. This construction can be considered a general-
ization of the twisted t-structures on filtered objects considered in Section 5.2. Thus, so
far we have only produced “truncation type towers”. We now give a construction which
takes in a tower functor T and a commutative algebra in C and produces a new tower
functor. This construction will have the effect of shearing the Adams spectral sequence
based on E along the tower T . This begins with a review of the monoidal properties of
the cobar construction.

Construction C.8. Since the coproduct of commutative algebras in C is given by the
tensor product, the cobar construction can be upgraded into a functor

cb : CAlg(C)→ CAlg(C∆).

33Note that we cannot use the classical slice filtration here, unless m is divisible by |G| in which
case it agrees with the regular one, since it is not compatible with the tensor product.
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Construction C.9. Given a tower functor T and a commutative algebra E in C, we
define a new tower functor Sh(T ;E) which is the composite,

C −⊗cb(E)−−−−−−→ C∆ T−→ CFil,∆ Tot−−→ CFil.

On spectra the tower functor Sh(τ≥•;Fp) produces the decalage of the Fp-Adams
tower on the input. More generally, given a t-structure t that is compatible with the
monoidal structure, we can let Ct≥n be the n-connective objects. Then Sh(τ t≥0;E)(X)
captures the E-based Adams spectral sequence for the t-structure homotopy groups of
X. As an analog of the fact that the E-Adams spectral sequence for E collapses we
have the following:

Example C.10. The cosimplicial diagram E ⊗ cb(E) admits a contracting homotopy,
and therefore the totalization commutes with any functor. In particular, we obtain an
equivalence of commutaive algebras, Sh(T ;E)(E) ' T (E).

We close with a simple lemma which lets us identify the generic fiber in certain cases.

Lemma C.11. Suppose we are given a collection of coreflective subcategories A that
satisfy the conditions of Construction C.6, together with a commutative algebra E ∈ CA≥0.
Then for any X ∈ CA≥k there is an equivalence Re(Sh(τA≥0;E)) ' X∧E, where the second
object is the E-nilpotent completion of X.

Proof. By construction τA≥0 comes equipped with a natural transformation τA≥0 → Y .
Since Sh(Y ;E) ' Y (−)∧E , we have a natural transformation

Sh(τA≥0;E)→ Y (X)∧E ,

In sufficiently negative degrees the τ≥i’s have no effect by hypothesis, so the totalizations
are levelwise equivalences. There is thus an equivalence

Re(Sh(τA≥0;E)) ' ReY (X)∧E ' (X)∧E . �

Under the assumptions of Lemma C.11, we have an equivalence

Mod(CFil; Sh(τA≥0;E)(1)[τ−1]) ' Mod(C;1∧E).

C.2. Recognizing Deformations.
In this section, we give one answer to the following open-ended question:

Question C.12. Given a pair of presentably symmetric monoidal categories Cdef and
C, when can we identify Cdef with Mod(CFil;R) for some commutative algebra R ∈ CFil?

This section grew out of a recognition that our original arguments in Section 4, which
related SH(R)ATi2 and SpC2,i2, used only very general information.

Definition C.13. A deformation pair consists of the following data:
• A diagram of symmetric monoidal left adjoints

Cdef

C C.

Rec

Id

• A map of abelian groups34

i0 : Z→ ker (Pic0(Cdef)→ Pic0(C)) .
We denote the invertible object corresponding to i0(n) by 1(n).

These data are subject to the following conditions:

34In the below, we set Pic0 = π0 Pic.
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• For a ≤ b, the map on mapping spaces

HomCdef
(1(a),1(b))→ HomC(1,1)

induced by Re is an equivalence.
• The category C is rigidly generated, and there is a set {Cα} of compact dualizable

objects in C with the property that {c(Cα)⊗1(n)} is a set of compact dualizable
generators for Cdef .

We now give a couple examples of deformation pairs to illustrate the definition.

Example C.14. Suppose that C is a rigidly generated, stable, presentably symmetric
monoidal category. Then it is easy to verify that (CFil, C) is a deformation pair where
i0 : Z→ Pic(CFil) sends n to 1(n).

Example C.15. Let E denote an Adams type homology theory, and let SynE denote
Pstrągowski’s category of E-synthetic spectra [Pst18]. This category is equipped with
a natural notion of bigraded sphere, and we let Syncell

E ⊂ SynE denote the cellular
subcategory generated under colimits by Sp,q 35. There is a natural realization functor
SynE → Sp, as well as a symmetric monoidal left adjoint Sp → SynE provided by
[Lur17, Corollary 4.8.2.19].

Then (Syncell
E ,Sp) is a deformation pair, where the map i0 picks out the spheres S0,n.

The first condition is satisfied by [Pst18, Corollary 4.12] and the second is satisfied since
we restricted to the full subcategory generated by the bi-graded spheres.

Example C.16. Another example is given by (SH(C)cell
ip ,Spip) where the map i0 picks

out the Tate twists. The realization functor here is Betti realization and we set c to
be the unital, colimit-preserving map in from Spip from Example 1.6. By restricting
to cellular objects the second condition is automatically satisfied. The first condition is
ultimately a corollary of the vanishing of the homotopy of Cτ in positive Chow degrees.
This example is discussed at length in [GIKR18].

Given a deformation pair (Cdef , C), we would like to construct a symmetric monoidal
left adjoint CFil → Cdef to which we may apply Proposition A.4. We will do this in two
steps:

(1) We construct a symmetric monoidal functor i : ZFil → Cdef , which sends n to
1(n).

(2) We tensor iFil up to C using c.

Construction C.17. Given a deformation pair (Cdef , C), we construct a square of sym-
metric monoidal functors,

ZFil Cdef

∗ C

i

Re

such that i(n) = 1(n).

Details. Let D denote the full subcategory of C on the unit. Let Ddef denote the full
subcategory of Cdef on the objects 1(n) in the image of i0. Since Ddef and D are closed
under the tensor product they are each symmetric monoidal categories.

We now form the following diagram of symmetric monoidal categories

D′ Ddef × ZFil D × ZFil ZFil

Ddef D ∗,

f Re×Id

π1

π2

π1

Re

35When E is Fp or MU, then SyncellE = SynE .
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where D′ is the full subcategory of Ddef × ZFil spanned by the objects (1(n), n). Since
D′ is closed under the monoidal structure, it canonically inherits a symmetric monoidal
structure from Ddef × ZFil.

We claim that the composite D′ → D × ZFil is an equivalence. The objects of D′
may be identified with pairs (1(n), n) and the objects of D×ZFil may be identified with
pairs (1, n). The mapping spaces are given by:

HomD′((1(n), n), (1(m),m)) =

{
HomDdef

(1(n),1(m)) n ≤ m
∅ n > m

HomD×ZFil((1, n), (1,m)) =

{
HomD(1,1) n ≤ m
∅ n > m,

with maps between them induced by Re. Observe that by hypothesis all of these maps
are equivalences.

The composition of symmetric monoidal functors

ZFil ι−→ D × ZFil '←− D′ → Ddef × ZFil → Ddef ⊂ Cdef

is the desired symmetric monoidal functor. It is easy to see that this functor does the
right thing on objects. The square above commutes, because

Re ◦ π1 ◦ f ◦ (Re× Id)−1 ◦ ι = π1 ◦ (Re× Id) ◦ f ◦ ((Re× Id) ◦ f)−1 ◦ ι = π1 ◦ ι = ∗.
�

Construction C.18. Now that we have the symmetric monoidal functor i : ZFil → Cdef ,
we may induce it up to a symmetric monoidal left adjoint, i∗ : SpFil → Cdef . Tensoring
up to C using c, we can use Construction C.17 to build a diagram of symmetric monoidal
left adjoints,

C CFil C

C Cdef C.

c

Id

Re

i∗ Id

c Re

Proposition C.19. Suppose that (Cdef , C) is a deformation pair. Then, the symmetric
monoidal left adjoint i∗ from Construction C.17 is 0-affine. Stated more explicitly, we
have a diagram of symmetric monoidal left adjoints as shown.

C CFil Mod(CFil; i∗1) C

C Cdef C.

c

Id
i∗

−⊗i∗1

'

Re

Id

c Re

Proof. Construction C.18 produces most of the desired diagram. The remaining claims
will follow from an application of Proposition A.4.

Recall that by hypothesis C and Cdef are both rigidly generated. Therefore, in order
to apply Proposition A.4 we only need to check that the essential image of i∗ contains a
family of generators. Since i∗(Cα⊗1(n)) ' c(Cα)⊗1(n), this is true by hypothesis. �

Remark C.20. The nth piece of i∗X can be extracted by taking the C-enriched map-
ping object, i.e. there is an equivalence (i∗X)n ' MapC(1(n), i∗X). Now, since the
adjunction i is C-linear, we have an equivalence MapC(1(n), i∗X) ' MapC(i

∗
1(n), X).

We close by showing that in the example of synthetic spectra discussed above we can
(nearly) identify i∗1 with a commutative algebra produced via the constructions from
the previous subsection.
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Proposition C.21. Given an Adams-type, commutative algebra E in Sp, there is an
equivalence of prsentably symmetric monoidal categories,

Mod(Syncell
E ;1∧τ ) ' Mod(SpFil; Sh(τ≥•;E)(S)).

Proof. In Example C.15 we showed that Syncell
E and Sp form a deformation pair. Using

Proposition C.19 we obtain an adjunction i and an equivalence, Syncell
E ' Mod(SpFil; i∗ S).

The proposition will now follow from an identification of the τ -completion of i∗ S.
The identification of i∗ S will follow the pattern established in Section 4. We begin

by identifying i∗ν(E⊗k). By [Pst18, Proposition 4.21] we know that the nth piece of this
object is n-connective. Therefore, the natural comparison map i∗ν(E⊗k) → Y (E⊗k)
factors as

i∗ν(E⊗k)→ τ≥•E
⊗k → Y (E⊗k).

Examining [Pst18, Proposition 4.21] more closely we can actually conclude that the first
map is an equivalence.

Now, we can pass to totalizations and conclude,

(i∗ν S)∧τ
'−→ i∗((ν S)∧τ )

'−→ i∗Tot∗(cb(νE))
'−→ i∗Tot∗(ν(cb(E)))

'−→ Tot∗(i∗ν(cb(E)))
'−→ Tot∗(τ≥•cb(E))

'−→ Sh(τ≥•;E)(S).

The first equivalence uses that i∗ is a right adjoint. The second equivalence follows from
[BHS19, Proposition A.11]. The third equivalence follows from [Pst18, Lemma 4.24],
together with the assumption that E is Adams type. �
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