
TRANSCHROMATIC EXTENSIONS IN MOTIVIC AND REAL

BORDISM
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Abstract. We show a number of Toda brackets in the homotopy of the mo-

tivic bordism spectrum MGL and of the Real bordism spectrum MUR. These
brackets are “red-shifting” in the sense that while the terms in the bracket

will be of some chromatic height n, the bracket itself will be of chromatic

height pn ` 1q. Using these, we deduce a family of exotic multiplications in
the πp˚,˚qMGL-module structure of the motivic Morava K-theories, includ-

ing non-trivial multiplications by 2. These in turn imply the analogous family

of exotic multiplications in the π‹MUR-module structure on the Real Morava
K-theories.

1. Introduction

Complex bordism has played a fundamental role in stable homotopy since the
1960s. Work of Quillen connected complex bordism to formal groups, and this gives
rise to the chromatic approach to stable homotopy theory. Building on Atiyah’s
Real K-theory [2], which can be viewed as Galois descent in families, Fujii and
Landweber defined Real bordism [7, 16]. This theory plays an analogous role in
C2-equivariant homotopy theory that ordinary complex bordism does classically,
and a detailed exploration of it was carried out by Hu–Kriz [13].

The Real bordism spectrum has proven central to understanding classical chro-
matic phenomena. By the Goerss–Hopkins–Miller theorem, the Lubin–Tate spectra
En are acted upon by the Morava stabilizer group, and in particular, they can be
viewed as genuine G-equivariant spectra for any finite subgroup G. Work of Hahn
and the third author proved that at the prime 2, there is a Real orientation of all of
the Lubin–Tate spectra, and for a finite subgroup G of the Morava stabilizer group
that contains C2, this extends to a G-equivariant map

MU ppGqq “ NG
C2
MUR Ñ En,

where MU ppGqq is the norm of MUR [8], introduced by Hill–Hopkins–Ravenel in the
solution to the Kervaire invariant one problem [10]. This has turned questions about
computations with the Lubin–Tate theories into questions about computations with
the norms of MUR and its quotients (see, for example [3]).

Motivically, there is a beautifully parallel story. The role of complex bordism
is played by the spectrum MGL. Working over SpecpRq, Galois descent is built
in. Just as in classical and equivariant homotopy theory, MGL is a fundamental
object of study in motivic homotopy, providing not only a chromatic filtration but
also a way to understand the motivic homotopy sheaves of the sphere spectrum via
Voevodsky’s slice filtration.

The first author was supported by NSF Grant DMS–1906227.
The second author was supported by NSF Grant DMS–1811189.
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2 AB, MAH, XDS, AND MZ

Voevodsky’s slice filtration is an analogue of the Postnikov tower, where instead
of killing all maps of spheres of a particular degree, we kill off all maps out of
sufficiently many smash powers of P1. Applied to the algebraic K-theory spectrum
KGL (an MGL-module spectrum), this yields the motivic cohomology to algebraic
K-theory spectral sequence considered by Friedlander–Suslin, Voevodsky, and oth-
ers (See [6, 25]). Hopkins and Morel generalized this, showing that the slices of
MGL are suspensions of the spectrum representing motivic cohomology, and Hoy-
ois provided a careful treatment and generalization of this result [12]. Work of
Levine further connected the slice filtration to MGL, showing that the slice filtra-
tion for the sphere can be built out of the slice filtrations of the Adams–Novikov
resolution based on MGL [17], and for the latter, the Hopkins–Hoyois–Morel result
describes all of the starting pieces.

In this short paper, we produce a surprising family of Toda brackets in the
homotopy groups of MGL which describe unexpected trans-chromatic phenomena.
Recall that there is a canonical map

π2˚MU Ñ πp2˚,˚qMGL

classifying the canonical group law for the motivic orientation (see [4] or [22]), and
hence we have associated to the chromatic classes vn P π2n`1´2MU the motivic
classes v̄n P πp2n`1´2,2n´1qMGL. Recall also that we have a canonical element

ρ P πp´1,´1qS
0 corresponding to the unit ´1 P Rˆ, by Morel’s computation of the

motivic zero stem [21].

Theorem. For all n ě 0, in the motivic homotopy of MGL over R, we have an
inclusion

ρ2
n`1

v̄n`1 P xv̄n, ρ
2n`1

´1, v̄ny,

and for all k ě 1, we have an equality

ρ2
n`1

`kv̄n`1 “ ρkxv̄n, ρ
2n`1

´1, v̄ny.

If we also consider the shifts of v̄n to other weights, using some of the other
motivic lifts v̄npbq of the chromatic classes, then we have even longer transchromatic
connections.

Theorem. For all n ě 0, in the motivic homotopy of MGL over R, we have an
inclusion

ρ2
n`j`2

´2n`1

v̄n`j`1 P xv̄np2
j ´ 1q, ρ2

n`1
´1, v̄ny,

and for all k ě 1, we have an equality

ρ2
n`j`2

´2n`1
`kv̄n`j`1 “ ρkxv̄np2

j ´ 1q, ρ2
n`1

´1, v̄ny.

These transchromatic shifts imply a surprising number of hidden extensions in
very naturally occurring quotients like the motivic Morava K-theories. Put in a
pithy way, killing v̄n without also killing v̄n`1 does not fully kill v̄n:

Theorem. For all n ě 1, for all 0 ď k ď n and for all b ě 0, in the homotopy of
the motivic Morava K-theory spectrum KGLpnq, there are nontrivial multiplications
by v̄kpbq.

As a further example, we deduce exotic multiplications by topological Hopf maps.
Work of Li–Shi–Wang–Xu on the Hurewicz image in MUR goes through without
change motivically [19], and we deduce that the classical hk-family in the homo-
topy groups of spheres are detected motivically. Consideration of the slice spectral
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sequence for MGL and kGLpnq by Kylling allows us to identify these classes, and
we see that hn and h2n are also detected in kGLpnq.

Corollary 1.1. For all k ă n, the class hk is zero in the homotopy of kGLpnq.
However, the class h2n in kGLpnq is divisible by hk for 0 ď k ď n.

We should think of this as an extremely harsh obstruction to a ring structure
existing on these motivic and Real Morava K-theories.

There is a natural functor from motivic spectra over R to C2-equivariant spectra,
extending the functor “take complex points of a variety defined over R”, and this
takes MGL to the Real bordism spectrum MUR [14]. Moreover, as studied by
Hu–Kriz, Hill, and Heard, this connects the motivic slice filtration to Dugger’s
C2-equivariant slice filtration [14], [11], [9], [5].

This functor takes ρ to the Euler class aσ P π
C2
´σMUR and the copy of the Lazard

ring in the homotopy of MGL to the copy of the Lazard ring described by Araki in
the homotopy of MUR [1]. In particular, the motivic classes v̄n are sent to the equi-

variant classes v̄n P π
C2

p2n´1qρ2
MUR, where ρ2 “ 1` σ is the regular representation

of C2. The classes v̄npbq are sent to the classes v̄nu
2nb
2σ , using the notation of [10].

We therefore deduce the equivariant versions of these transchromatic phenomena.
We spell these out for those more familiar with the equivariant literature.

Corollary. For all n ě 0, in the ROpC2q-graded homotopy of MUR, we have an
inclusion

a2
n`j`2

´2n`1

σ v̄n`j`1 P xv̄np2
j ´ 1q, a2

n`1
´1

σ , v̄ny,

In general, the indeterminacy of these brackets may be larger in the C2-equivariant
context. We do not address this here.

We also have similar extensions in the Real Morava K-theories introduced by
Hu–Kriz [13].

Theorem. For all n ě 1 and for all 0 ď k ď n and b ě 0, in the ROpC2q-
graded homotopy of the Real Morava K-theory spectrum KRpnq, there are nontrivial
multiplications by v̄kpbq.

For n “ 1, this recovers the classical observation that multiplication by 2 is not
identically zero in KO{2. For larger n and k, these seems unknown.

Acknowledgements. We thank Dan Isaksen for some very helpful conversations
related to Massey products and to steering us towards a much more direct proof of
our results. We thank Nitu Kitchloo and Steve Wilson for interesting discussions
of Real K-theory and Paul Arne Østvær for his help with the motivic slice spectral
sequence for MGL and kGLpnq. We thank Irina Bobkova, Hans-Werner Henn and
Viet Cuong Pham who made an observation which inspired our study of these
brackets. We thank Mike Hopkins for several helpful conversations.

2. A non-trivial bracket

2.1. The homotopy of MGL. Just as classically, 2-locally we have a splitting of
MGL into various suspensions of a motivic ring spectrum BPGL, and since this
is smaller, we will mainly work with it. The bigraded homotopy ring of BPGL
has been completely determined [11], [15]. We very quickly recall the answer here,
using the description from [11].
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As an algebra, it is generated by the classes

v̄npbq “
”

v̄nτ
2n`1b

ı

P πp2n`1´2,2n´1´2n`1bqBPGL,

for all n ě 0 and b ě 0, together with the class

ρ P πp´1,´1qBPGL.

Here, we use the names which arise from the ρ-Bockstein spectral sequence. We
will also normally use v̄n for v̄np0q.

There are relations which reflect the underlying products with τ : if n ě m, then
we have

v̄mpbq ¨ v̄npcq “ v̄mpb` 2n´mcq ¨ v̄n.

We also have relations involving ρ: for all n and b,

ρ2
n`1

´1v̄npbq “ 0.

The homotopy is actually largely concentrated in a particular bidegree sector.
With the exception of the subalgebra generated by ρ, the first (i.e. “topological”)
dimension is positive.

Proposition 2.1. Outside of the subalgebra spanned by ρ, all elements have non-
negative first coordinate.

The only generators with first coordinate zero are

ρ2
n`1

´2v̄npbq,

with b arbitrary. The products of any of these is zero.

Proof. Of the listed algebra generators, only ρ has a negative first coordinate, and
the bidegree of ρj v̄npbq is

|ρj v̄npbq| “
`

p2n`1 ´ 2q ´ j, p2n ´ 1q ´ j ´ 2n`1b
˘

.

Since the only non-zero values correspond to 0 ď j ď 2n`1´2, we see that the first
coordinate is always non-negative. This gives the first part.

For the second part, note that it is the last ρ power that gives a zero first
coordinate. Since ρ times this is zero, we deduce that the product of any of these
elements with first coordinate zero is zero. �

2.2. An Adams spectral sequence. Just as classically, the homology of BPGL
is cotensored up along a quotient Hopf algebroid. Voevodsky computed the dual
Steenrod algebra over R, showing that as a Hopf algebroid over

M2 “ F2rρ, τ s,

the motivic homology of a point [26], we have

A˚,˚ “M2rξ1, . . . srτ0, . . . s{
`

τ2i ` ρτi`1 ` pτ ` ρτ0qξi`1

˘

.

The element ρ is primitive, the left unit on τ is the obvious inclusion, and the right
unit is τ ` ρτ0. The coproducts on the ξi and the τi are the classical ones [27].

Definition 2.2. Let

Ep8q “M2rτ0, τ1, . . . s{pτ
2
i ´ ρτi`1q

be the quotient of the motivic dual Steenrod algebra by the ideal generated by the
ξis.
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This is a Hopf algebroid under the motivic dual Steenrod algebra, and the gen-
erators τi are now primitive. In particular, all of the interesting behavior in Ext is
determined by the left and right units on τ (since ρ, being in the Hurewicz image,
is necessarily primitive). Just as classically, this Hopf algebroid is related to the
homology of BPGL.

Theorem 2.3 ([4], [23]). We have an isomorphism of A‹-comodule algebras

H˚pBPGL;F2q – A‹ l
Ep8q

M2.

Note that there are no ρ-torsion elements in either M2 or Ep8q. We will make
heavy use of the ability to divide uniquely by ρ various ρ-divisible elements.

Theorem 2.4 ([11, Cor 5.2 and Thm 5.3]). The E2-term of the Adams spectral
sequence computing the homotopy of BPGL is

Es,‹2 “ Exts,‹
pM2,Ep8qqpM2,M2q.

The elements v̄npbq are detected by

dpτ p1`2bq2nq

ρ2n`1´1
“
τ p1`2bq2n ` pτ ` ρτ0q

p1`2bq2n

ρ2n`1´1
P Ext1,p2

n`1
´1,2n´1´2n`1bq

and ρ by itself in Ext0,p´1,´1q. The spectral sequence collapses with no exotic ex-
tensions.

Remark 2.5. We can avoid the change-of-rings by instead working in the category of
BPGL or MGL-modules. The bigraded homotopy of HF2 ^

BPGL
HF2 is isomorphic

to Ep8q as a Hopf algebroid over M2. Working over MGL instead introduces
infinitely more generators with analogous relations.

2.3. Connections between the v̄ns. The Hopf algebroid
`

M2, Ep8q
˘

is compu-
tationally very simple: we have a primitive polynomial generator ρ and a second,
non-primitive element τ . The comorphism ring Ep8q is not polynomial on

τ0 “
ηLpτq ´ ηRpτq

ρ
.

Instead, we have a kind of “ρ-divided power algebra”. The real power of Theo-
rem 2.4 is that all of the generators of Ext1 can be realized as ρ-fractional multiples
of the usual cobar differential on powers of τ . That will allow us to easily compute
Massey products.

It is helpful in what follows to blur the chromatic heights of the elements, focusing
instead on the powers of τ and their differentials.

Notation 2.6. For an integer k, let ν2pkq be its 2-adic valuation. For each k ě 1,
let mk “ 2ν2pkq`1 ´ 1 and let

v̄pkq “
ηLpτq

k ´ ηRpτq
k

ρmk
.

Note that v̄npbq is detected by the element v̄
`

p1` 2bq2n
˘

.

It is not hard to show that ρmk is the largest power of ρ which divides the cobar
differential on τk.
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Theorem 2.7. Let k and ` be non-negative, and let r, s, and t be natural numbers
such that

s` r ě mk and s` t ě m`.

Then we have an inclusion

ρmk``´mk´m``r`s`tv̄pk ` `q P
@

ρrv̄pkq, ρs, ρtv̄p`q
D

.

Proof. There are preferred null-homotopies of v̄pkqρr`s and v̄p`qρs`t:

ρr`s´mkτk ÞÑ ρr`sv̄pkq and ρs`t´m`τ ` ÞÑ ρs`tv̄p`q.

The bracket in question then contains

ρs`t`r´m` v̄pkqηRpτ
`q ` ρr`s`t´mkτkv̄p`q.

Unpacking the ρ-fractions giving v̄pkq and v̄p`q and recalling that the cobar differ-
ential is a bimodule derivation, we see that this particular element is

ρmk``´mk´m``r`s`tv̄pk ` `q. �

Remark 2.8. We have written the statement and proof in a suggestive, but some-
what general way, to emphasize that these same relations will hold for any similar
Hopf algebroid framework with a primitive element playing the role of ρ and the
differential on a class analogous to τ involving only ρ divisibility. A similar story
plays out with the Miller–Ravenel–Wilson Chromatic Spectral Sequence approach
to understanding the classical Adams–Novikov E2-term [20]. For example, we see
the same brackets involving the α-family.

When k and ` have different 2-adic valuations, then this is just recovering the de-
scription of elements like v̄npbq as various brackets given by the ρ-Bockstein spectral
sequence (or equivalently, given by the slice differentials). In both the ρ-Bockstein
and slice spectral sequences, the differentials on the powers of τ depend on the
2-adic valuation of the exponent, and the targets of later differentials annihilate
the lower chromatic classes. This gives the usual rewriting of the v̄npbq as Massey
products.

Example 2.9. We have ρ-Bockstein differentials, d3pτ
2q “ ρ3v̄1 and d7pτ

4q “ ρ7v̄2,
and hence v̄1τ

4 is a d7-cycle which actually represents v̄1p1q. In this formulation,
however, we see that it also represents the bracket

xv̄1, ρ
7, v̄2y “ xv̄p2q, ρ

m4 , v̄p4qy.

When k and ` have the same 2-adic valuation, then we get the exotic new brack-
ets. We rewrite these relations in the usual chromatic names. Although this is an
immediate corollary of Theorem 2.7, we write it as a theorem to stress the central
role in this paper.

Theorem 2.10. Let b and c be nonegative numbers, and let r, s, and t be such
that

r ` s, s` t ě mn “ p2
n`1 ´ 1q.

Let j and d be such that we have

1` b` c “ p1` 2dq2j .

Then we have an inclusion

ρp2
n`j`2

´2n`2
`r`s`t`1qv̄n`j`1pdq P

@

ρrv̄npbq, ρ
s, ρtv̄npcq

D

.
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In particular, Theorem 2.10 recovers the classical bracket involving the Hopf
classes

hn “ ρ2
n
´1v̄n.

Corollary 2.11. For each n, we have an inclusion

h2n`1 P xhn, hn`1, hny.

Proof. Taking r “ t “ p2n ´ 1q and s “ p2n`1 ´ 1q in Theorem 2.10 gives an
inclusion

ρ2
n`1

´1hn`1 “ ρ2
n`2

´2v̄n`1 P xρ
2n´1v̄n, ρ

2n`1
´1, ρ2

n
´1v̄ny.

Multiplying by v̄n`1 and applying the standard shuffle inclusions gives

h2n`1 P v̄n`1xhn, ρ
2n`1

´1, hny Ă xv̄n`1hn, ρ
2n`1

´1, hny Ă xhn, hn`1, hny. �

Remark 2.12. When n “ 0, Theorem 2.10 gives the formula

ρη P x2, ρ, 2y,

since ρv̄1 is the ordinary, topological η. Since 2ρ “ 0, this is recovering a universal
formula in an A8-ring spectrum that forming the balanced bracket with 2 gives η
multiplication [24].

2.4. Indeterminacy. One of the most useful parts of these brackets is that the
indeterminacy is easily controlled.

Theorem 2.13. Fix non-negative numbers m, n, b, and c. If r, s, and t are
non-negative integers such that

r ` s ě p2m`1 ´ 1q and s` t ě p2n`1 ´ 1q,

then the indeterminacy of

xρrv̄mpbq, ρ
s, ρtv̄npcqy

is nonzero in only two cases:

(1) when t “ 0, r` s “ 2m`1´1, m ě n, and m ą 0, where the indeterminacy
is

Zp2q ¨ v̄0
`

p1` 2bq2m´1
˘

v̄npcq,

(2) or when r “ 0, s`t “ 2n`1´1, n ě m, and n ą 0, where the indeterminacy
is

Zp2q ¨ v̄0
`

p1` 2cq2n´1
˘

v̄mpbq.

Proof. The indeterminacy of the bracket xρrv̄mpbq, ρ
s, ρtv̄npcqy is the subgroup

ρrv̄mpbqπpxt,ytqBPGL` ρ
tv̄npcqπpxr,yrqBPGL,

where

pxt, ytq “ |ρ
s`tv̄npcq| ` p1, 0q “

`

2n`1 ´ 1´ s´ t, 2n ´ 1´ s´ t´ 2n`1c
˘

is the degree of the choices of null-homotopy of ρs`tv̄npcq, and similarly for pxr, yrq.
By our assumptions on r, s, and t, the first coordinate is always non-positive.

This gives a huge number of brackets with trivial indeterminacy immediately: if

r ` s ą p2m`1 ´ 1q and s` t ą p2n`1 ´ 1q,

then we have

πpxr,yrqBPGL “ πpxt,ytqBPGL “ 0,
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since the first coordinate is negative and the second does not equal the first. In
particular, this means we have no indeterminacy. We need only consider the cases
that r ` s “ p2m`1 ´ 1q or s` t “ p2n`1 ´ 1q.

There is an obvious symmetry here in m and n, so it suffices to understand the
case r ` s “ p2m`1 ´ 1q. In this case,

pxr, yrq “
`

0,´2m ´ 2m`1b
˘

.

Proposition 2.1 shows that the only classes with zero first coordinate are the classes

ρ2
k`1

´2v̄kpaq, which is in bidegree

|ρ2
k`1

´2v̄kpaq| “
`

0, 1´ 2kp1` 2aq
˘

.

We are therefore looking for all pairs pk, aq such that

1´ 2kp1` 2aq “ ´2mp1` 2bq.

If m ą 0, then we must have k “ 0 and a “ 2m´1p1` 2bq, and this corresponds
to the class

v̄0
`

p1` 2bq2m´1
˘

.

This generates a Zp2q, and hence the contribution to the indeterminacy is the sub-
group generated by

v̄0
`

p1` 2bq2m´1
˘

¨ ρtv̄npcq.

If t ą 0, then this is automatically zero (since ρv̄0paq “ 0), so if r` s “ p2m`1 ´ 1q
and t ą 0, then we have no contribution to the indeterminacy. On the other hand,
if t “ 0, then we have a contribution:

Zp2q ¨ v̄0
`

p1` 2bq2m´1
˘

v̄npcq “ Zp2q ¨ v̄0
`

2m´1 ` 2mb` 2nc
˘

v̄n.

Note that if t “ 0, then the condition that s ` t ě p2n`1 ´ 1q implies that s ě
p2n`1´ 1q. This with the condition that r` s “ p2m`1´ 1q in particular shows the
condition m ě n.

Now let m “ 0. We find k “
`

ν2p1` bq ` 1
˘

, and

a “
21´kp1` bq ´ 1

2
.

Note also that k ě 1, so the contribution to the indeterminacy is

Z{2 ¨ ρ2
k`1

´2v̄kpaqρ
tv̄npcq.

Again, if t ą 0, then this is automatically zero, since

ρ2
k`1

´1v̄kpaq “ 0.

If t “ 0, then the conditions r` s “ 20`1´ 1 “ 1 and s` t “ p2n`1´ 1q imply that
in fact, n “ 0 as well. Since k ě 1, p2k`1 ´ 2q ě 1, and hence

ρ2
k`1

´2v̄kpaqv̄0pcq “ 0.

Thus in all cases, the contribution to indeterminacy here is zero. �

Remark 2.14. Note that the two cases we have indeterminacy actually overlap:
n “ m ą 0, r “ t “ 0, and s “ p2n`1 ´ 1q. Viewing this as the first case, we see
that the indeterminacy is generated by

v̄0
`

p1` 2bq2n´1
˘

v̄npcq “ v̄0
`

p1` 2b` 2cq2n´1
˘

v̄n “ v̄0
`

p1` 2cq2n´1
˘

v̄npbq,

which is the generator of indeterminacy we see viewing it as the second case.
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Corollary 2.15. Let b and c be nonegative numbers, and let r, s, and t be such
that

r ` s, s` t ě mn “ p2
n`1 ´ 1q.

Let j and d be such that we have

1` b` c “ p1` 2dq2j .

Finally, let k ě 1. Then we have an equality

ρ2
n`j`2

´2n`2
`r`s`t`1`kv̄n`j`1pdq “ ρk

@

ρrv̄npbq, ρ
s, ρtv̄npcq

D

.

Proof. Multiplication by ρ kills the class v̄0
`

p1` 2bq2n´1
˘

, and hence

v̄0
`

p1` 2bq2n´1
˘

v̄npcq.

This generated the only indeterminacy for any of the brackets. �

3. Application to Morava K-theories

The transchromatic brackets give us some surprising consequences for the action
of πp˚,˚qMGL on various quotients. Since MGL is a commutative monoid, we have
a good category of MGL-modules. Working here, we can form various iterated
quotients, killing elements in homotopy groups. For a single element, we define the
quotient via the cofiber sequence

Σ|xi|MGL
xi
ÝÑMGLÑMGL{xi,

and for a family of elements x1, x2 . . ., we form

MGL{px1, x2, . . . q “MGL{x1 ^
MGL

MGL{x2 ^
MGL

. . . .

Definition 3.1. For each n ě 0, let

kGLpnq “ BPGL{pv̄0, . . . , v̄n´1, v̄n`1, . . . q

be the nth connective motivic Morava K-theory.
Let KGLpnq “ v̄´1

n kGLpnq be motivic Morava K-theory.

Using the Hopkins–Hoyois–Morel determination of the slices ofMGL [12], Levine–
Tripathi determined the slices for kGLpnq (and related quotients).

Theorem 3.2 ([18, Cor. 4.6]). The slice associated graded for kGLpnq is

GrpkGLpnqq “
ł

mě0

Σp2
n`1

´2qm,p2n´1qmHF2.

Moreover, the associated slice spectral sequence is a spectral sequence of modules
over the slice spectral sequence for BPGL, which has been spelled out explicitly in
[15].

Theorem 3.3 ([15]). The motivic slice E2 term for BPGL is given by

Zp2qrρ, τ2, v̄1, v̄2, . . . s,

where |ρ| “ p´1,´1q, where |τ2| “ p0,´2q, and where |v̄i| “ p2
i`1 ´ 2, 2i ´ 1q.

The differentials are given by

d2n`1´1pτ
2nq “ ρ2

n`1
´1v̄n.
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Remark 3.4. These differentials are the same as the differentials in the equivariant
slice spectral sequence for BPR [10]. Under the map from motivic to C2-equivariant
spectra, the element τ2 is taken to u2σ. This is essential in Kylling’s analysis,
building on work of Hu–Kriz [14] and the second author [11].

For degree reasons, the spectral sequence for kGLpnq is even simpler; we have
thrown away many of the classes which supported or could have supported differ-
entials.

Theorem 3.5 ([15, Theorem 9.6], [28]). The slice spectral sequence for kGLpnq has
E2-term

F2rρ, τ, v̄nstιu.

As an F2rρ, v̄n, τ
2n`1

s-module, the non-trivial differentials are generated by

d2n`1´1pτ
a`2nιq “ ρ2

n`1
´1v̄nτ

aι,

where 0 ď a ď 2n ´ 1.

Away from the subalgebra F2rρs, the localization map

kGLpnq Ñ KGLpnq

is injective. The latter is an MGLrv̄´1
n s-module. In MGLrv̄´1

n s, the class τ2
n`1

is a
permanent cycle and multiplication by this is well-defined in KGLpnq. By injectivity
of the localization, we may therefore view everything as being a module over

Zp2qrρ, v̄n, τ2
n`1

s.

Corollary 3.6. As a module over Zp2qrρ, v̄n, τ2
n`1

s, the homotopy of kGLpnq is
generated by the classes τaι for 0 ď a ď p2n ´ 1q.

Although the spectral sequence collapses here, we have a surprising number
of non-trivial multiplications by the v̄k-generators that we killed to form kGLpnq,
including non-trivial multiplications by 2. These are all detected by our brackets,
using the sparseness of the spectral sequence (and hence sparseness of the bigraded
homotopy groups).

We have a simple consequence of the module structure and the presence of τ2
n`1

:
we need only check a small number of hidden extensions.

Corollary 3.7. We need only determine hidden extensions of the form v̄kpbqτ
aι

for 0 ď b ď p2n´k ´ 1q.

Proof. Since there is a class τ2
n`1

, we have

v̄kpb` 2n´kq “ v̄kpbqτ
2n`1

. �

Remark 3.8. While going through our analysis of extensions, the reader is encour-
aged to consult Figure 1 which shows the slice associated graded for the bigraded
homotopy groups of kGLp3q. The grading is the usual motivic bigrading. The cir-

cled classes are the generators as a module over Zp2qrρ, v̄n, τ2
n`1

s, and the notation
is as follows:

‚ The dotted lines indicate multiplication by ρ.
‚ The dashed blue lines indicate exotic multiplication by v̄2, and the solid

red lines indicate exotic multiplication by v̄1.
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‚ The bullets ‚ and solid black squares � both indicate copies of F2; bullets
complexify to zero while black squares complexify to the corresponding
generator.

‚ The open circles © are copies of Z{4 which complexify to Z{2.

To avoid clutter, we do not draw the exotic multiplications by v̄kpbq for b ą 0 and
k ă 3.
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Figure 1. The slice E8 term for kGLp3q, together with extensions.
See Remark 3.8 for the notation.

Lemma 3.9. Let a and b be non-negative integers and 0 ď k ă n. Then there is
at most one non-zero class that could be v̄kpbqτ

aι.
If

a` 2kp1` 2bq ă 2n or 2n`1 ´ 1 ă a` 2kp1` 2bq,

then we have v̄kpbqτ
aι “ 0.
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Proof. The E8-page of the slice spectral sequence looks like a quilt. Applying the
degree sheer px1, y1q “ px, y´xq, the homotopy groups are built out of rectangles of
size p2n`1´1q by p2nq, with a single non-zero class in each degree. The generator of

each rectangle appears as the top right corner and is given by τ2
n`1mv̄`nι for m ě 0

and ` ě 0.
Since v̄n has sheered bidegree

`

p2n`1 ´ 2q,´p2n ´ 1q
˘

, we see that the rectangle
for α overlaps with the one for v̄nα in exactly one corner: the bottom right for α

and the top left for v̄nα. Multiplication by τ2
n`1

adds in a rectangle with generator
in degree |α| ` p0,´2n`1q. This does not intersect either the original rectangle or
any of its v̄n-multiples. In particular, this proves the first claim, since almost all
degrees have a single non-zero class in them, and the degrees with overlap have a
single class in slice filtration larger than zero (where any hidden extensions must
land).

For the second claim, recall that the degree of v̄kpbqτ
aι is

|v̄kpbqτ
aι| “

`

2k`1 ´ 2, 2k ´ 1´ 2k`1b´ a
˘

.

Since the classes τaι are at the rightmost edge of their rectangle, these extensions
must show up in the rectangle from v̄nι. The top edge of the rectangle for v̄nι
is given by the classes ρmv̄nι. The only class on that edge with first coordinate

p2k`1 ´ 2q is ρ2
n`1

´2k`1

v̄nι, which is in bidegree

|ρ2
n`1

´2k`1

v̄nι| “
`

2k`1 ´ 2, 1´ 2n ` 2k`1 ´ 2
˘

.

Similarly, the bottom edge of the rectangle on v̄nι is given by the classes ρmv̄nτ
2n´1ι.

Rearranging the second coordinates gives the desired vanishing region. �

Theorem 3.10. In the homotopy of kGLpnq, we have the following hidden πp˚,˚qBPGL-
multiplications for 0 ď k ď pn´ 1q:

‚ for 0 ď b ď p2n´k´1 ´ 1q and 0 ď a ď
`

2kp1` 2bq ´ 1
˘

,

v̄kpbqτ
2n´2kp1`2bq`aι “ ρ2

n`1
´2k`1

v̄nτ
aι,

‚ and for 2n´k´1 ď b ď p2n´k ´ 1q, and 0 ď a ď
`

2n`1 ´ 1´ 2kp1` 2bq
˘

,

v̄kpbqτ
aι “ ρ2

n`1
´2k`1

v̄nτ
a`2kp1`2bq´2nι.

Proof. These follow surprisingly quickly from Theorem 2.10. We note that since
multiplication by ρ is injective on both the source and target of any extension
involving v̄kpbq for k ą 0, there is no ambiguity caused by the indeterminacy.
There was no indeterminacy anyway for brackets involving v̄0pbq.

For 0 ď b ď p2n´k´1 ´ 1q, Theorem 2.10 shows that we have a bracket

ρ2
n`1

´2k`1

v̄n “
@

v̄kpbq, ρ
2k`1

´1, v̄kp2
n´k´1 ´ 1´ bq

D

,

(where again, we ignore indeterminacy since it does not contribute). This gives us

ρ2
n`1

´2k`1

v̄nτ
aι “

@

v̄kpbq, ρ
2k`1

´1, v̄kp2
n´k´1 ´ 1´ bq

D

τaι.

Lemma 3.9 shows that for a ă 2kp1` 2bq, we have

v̄kp2
n´k´1 ´ 1´ bqτaι “ 0,

so we can shuffle the bracket, giving:

ρ2
n`1

´2k`1

v̄nτ
aι “ v̄npbq

@

ρ2
k`1

´1, v̄kp2
n´k´1 ´ 1´ bq, τaι

D

.
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A degree check shows that the only possible value for the bracket is
@

ρ2
k`1

´1, v̄kp2
n´k´1 ´ 1´ bq, τaι

D

“ τ2
n
´2kp1`2bq`aι.

For 2n´k´1 ď b ď 2n´k ´ 1, we instead will use brackets with v̄np1q “ v̄nτ
2n`1

,
arguing somewhat indirectly. If we let

c “ 2n´k ` 2n´k´1 ´ b´ 1,

then we have
ρ2

n`1
´2k`1

v̄np1q “
@

v̄kpcq, ρ
2k`1

´1, v̄kpbq
D

.

If v̄kpbqτ
aι “ 0, then we can multiply τaι by both sides and shuffle the bracket,

getting

ρ2
n`1

´2k`1

v̄np1qτ
aι “ v̄kpcq

@

ρ2
k`1

´1, v̄kpbq, τ
aι
D

.

The degree of the bracket is
`

0,´a´ 2kp1` 2bq
˘

. The bounds

0 ď a ď 2n`1 ´ 1´ 2kp1` 2bq

and b ě 2n´k´1 show that we have bounds

´2k ´ 2n ě ´a´ 2kp1` 2bq ě 1´ 2n`1.

We are therefore at the leftmost edge of the “quilt rectangle” generated by v̄nι. All
of the elements with first coordinate zero here are annihilated by ρ, so we reach a
contradiction:

0 ‰ ρ2
n`1

´2k`1
`1v̄np1qτ

aι “ v̄kpcqρ
@

ρ2
k`1

´1, v̄kpbq, τ
aι
D

“ 0.

As always, there is a unique possibility for the value of v̄kpbqτ
aι, and checking

degrees, we see it must be the listed one. �
Specializing to the usual chromatic classes v̄k, we have a series of non-trivial

extensions.

Corollary 3.11. In the homotopy of kGLpnq, we have the following hidden v̄k-
multiplications for 0 ď k ď pn´ 1q and 0 ď a ď p2k ´ 1q:

v̄kτ
2n´2k`aι “ ρ2

n`1
´2k`1

v̄nτ
aι.

Since v̄0 detects multiplication by 2 in MGL-modules, we see that we have non-
trivial additive extensions. This resolves the question described in [15, Remark
9.8].

Remark 3.12. These extensions show just how far the quotient is from being a
ring. One way to parse Theorem 3.10 is that although we cone-off v̄k for 0 ď k ď
n´ 1, and hence we seem to kill all of the classes v̄kpbq, we actually see non-trivial
multiplications by all of the generators of π˚,˚BPGL{pv̄n`1, . . . q.

Even though the indeterminacy for brackets may grow in the passage from mo-
tivic homotopy over R to C2-equivariant homotopy, the extensions we found are
visible just in the homotopy. They will in particular go through without change.
We indicate the result using the usual equivariant names.

Corollary 3.13. In the homotopy groups of KRpnq, we have exotic π‹MUR multi-
plications for 0 ď k ď pn´ 1q:

‚ for 0 ď b ď p2n´k´1 ´ 1q, and 0 ď a ď
`

2kp1` 2bq ´ 1
˘

,

v̄kpbqu
2n´2kp1`2bq`a
σ ι “ a2

n`1
´2k`1

σ v̄nu
a
σι,
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‚ and for 2n´k´1 ď b ď p2n´k ´ 1q, and 0 ď a ď
`

2n`1 ´ 1´ 2kp1` 2bq
˘

,

v̄kpbqu
a
σι “ a2

n`1
´2k`1

σ v̄nu
a`2kp1`2bq´2n

σ ι.
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