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1. Introduction

1.1. Overview

The results of this paper fall into two categories. First, we prove a series of algebraic 
results on formal group laws with group actions. Then, we use these results to con-
struct equivariant refinements of spectra that play a central role in chromatic homotopy 
theory.

• Algebraic results. We study a family of formal group laws Γh of height h = 2n−1m

over a finite field k of characteristic 2 and certain universal deformations Fh. Such 
formal group laws come equipped with an action of C2n and we describe deformation 
parameters that allow for an explicit description of the action of C2n on the associated 
Lubin–Tate ring. This reproduces an unpublished result of Hill–Hopkins–Ravenel 
[19] which presents the Lubin–Tate ring with its structure of a C2n-module as the 
completion of a periodization of the symmetric algebra on a sum of copies of the 
induced sign representation of C2n . We also incorporate the action of roots of unity 
in k as part of our narrative.

• Topological results. With the formal group law Γh and its universal deformation Fh in 
hand, we obtain a Lubin–Tate spectrum E(k, Γh). These are “higher chromatic ana-
logues” of topological K-theory and the group actions we study are higher analogues 
of Adams operations. Our approach automatically gives us formulas for the action of 
C2n on π∗E(k, Γh). We then upgrade E(k, Γh) to an equivariant spectrum receiving 
a map from NC2n

C2
BPR, the Hill–Hopkins–Ravenel norm of the Real Brown–Peterson 

spectrum BPR. The effect of the map on underlying homotopy groups is clear and 
this opens the door for generalizations of [23,25] which use the slice spectral sequence 
to study the homotopy fixed points of E(k, Γh). These homotopy fixed point spectra 
play a central role in the chromatic approach to stable homotopy theory. Next, we 
study the chromatic height of truncations of NC2n

C2
BPR. Although we do not make 

this precise in this paper, this is data necessary for a study of the height filtration 
of a “moduli stack of formal group laws equipped with group actions”.
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In the rest of this introduction, we will describe our motivation for this project (which 
comes from homotopy theory) and state our main results.

1.2. Motivation

Topological K-theory is a remarkably useful cohomology theory that has produced 
important homotopy-theoretic invariants in topology. Deep facts in topology have been 
proved using topological K-theory. Most famously perhaps, Adams used the K-theory 
of real projective spaces together with the action of the Adams operations to resolve the 
vector fields on spheres problem [2]. Adams and Atiyah also used K-theory to give a 
simpler solution to the Hopf invariant one problem [3], first solved by Adams in [1].

Atiyah [6] describes a version of vector bundles motivated by Galois descent for C
over R. The complex conjugation action on complex vector bundles induces a natural 
C2-action on KU . In fact, this corresponds to the action of the Adams operations (±1). 
Under this action, the C2-homotopy fixed points of KU are KO. Furthermore, there 
is a homotopy fixed points spectral sequence computing the homotopy groups of KO, 
starting from the action of C2 on the homotopy groups of KU . The spectrum KU , 
equipped with this C2-action and considered as a C2-spectrum, is called Real K-theory 
KR.

The main topic of this paper is to construct generalizations of KR, namely Lubin–
Tate theories, with explicit actions of higher Adams operations. Our construction of 
these theories and actions is inspired by the work of Hill, Hopkins and Ravenel [22] and 
makes heavy use of the Real bordism spectrum, which we now introduce.

Conner–Floyd connected complex K-theory to complex cobordism MU∗ [12], showing 
that the Todd genus induces an isomorphism

K∗(X) ∼= MU∗(X) ⊗MU∗ Z.

This refines to a map of spectra MU −→ KU .
Early work on MU due to Milnor [32], Novikov [33–35], and Quillen [36] established 

the complex bordism spectrum as a critical tool in modern stable homotopy theory, 
with connections to algebraic geometry and number theory through the theory of formal 
groups. In this language, the map MU −→ KU classifies the multiplicative formal group 
over Z.

Analogously as in the case of KU , the complex conjugation action on complex man-
ifolds induces a natural C2-action on MU . This action produces the Real bordism 
spectrum MUR of Landweber [28] and Fujii [15], studied extensively by Araki [5] and 
by Hu–Kriz [27]. The underlying spectrum of MUR is MU , with the C2-action given by 
complex conjugation.

Complex conjugation acts on KU and MU by coherently commutative (E∞) maps, 
making KR and MUR commutative C2-spectra. The Conner–Floyd map is compatible 
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with the complex conjugation action, and it can be refined to a Real orientation, i.e., a 
C2-equivariant ring map

MUR −→ KR.

The spectrum MUR is at the roots of the techniques used in Hill, Hopkins and 
Ravenel’s solution to the Kervaire invariant one problem [22]. Since the appearance of 
these results, there has been an incredible amount of development in equivariant stable 
homotopy theory.

The techniques of Hill–Hopkins–Ravenel are intimately tied to a subfield of homotopy 
theory called chromatic homotopy theory. Chromatic homotopy theory is a powerful tool 
which studies periodic phenomena in stable homotopy theory by analyzing the algebraic 
geometry of smooth one-parameter formal groups. More precisely, the moduli stack of 
formal groups has a stratification by height h ≥ 0, which corresponds in the stable 
homotopy category to localizations with respect to generalizations of the complex K-
theory spectrum. These are the Lubin–Tate theories Eh, also often called the Morava 
E-theories.

As the height increases, this stratification carries increasingly more information about 
the stable homotopy category, but also becomes harder to understand. Therefore, it is 
crucial to study higher structures of these spectra, for example, the associated cohomol-
ogy operations. At all heights h, there is a group of cohomology operations generalizing 
the stable Adams operations on p-completed K-theory. This group is called the Morava 
stabilizer group Gh.

In this paper, we focus our attention at the prime p = 2 and study the height of 
spectra obtained from the Hill–Hopkins–Ravenel norms of MUR. Using this, we construct 
equivariant Real oriented models of Lubin–Tate spectra Eh with explicit formulas for the 
actions of finite subgroups of Gh on their coefficient rings. This is the input needed to 
determine the E2-pages of the corresponding homotopy fixed points spectral sequences, 
which in turn compute the homotopy groups of higher real K-theory spectra. These 
are periodic spectra that generalize the real K-theory spectrum KO. The connection 
between our Lubin–Tate theories and MUR also provides information about differentials 
in the homotopy fixed points spectral sequences.

Periodic spectra such as the higher real K-theories also play a central role in modern 
detection theorems. These are results about families in the stable homotopy groups of 
spheres obtained by studying the Hurewicz homomorphisms of these periodic spectra 
[37,22,29].

More specifically, let (k, Γh) be the pair consisting of a finite field k of characteristic 
2 and a fixed height-h formal group law Γh defined over k. Lubin and Tate [30] showed 
that the pair (k, Γh) admits a universal deformation Fh defined over a complete local 
ring with residue field k. This ring is abstractly isomorphic to

R(k,Γh) := W (k)�u1, . . . , uh−1�[u±1]. (1.1)
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Here, W (k) is the 2-typical Witt vectors of k, |ui| = 0, and |u| = 2.
The Morava stabilizer group G(k, Γh) is the group of automorphisms of (k, Γh) (Def-

inition 2.13). By the universality of the deformation (R(k, Γh), Fh) and naturality, there 
is an action of G(k, Γh) on R(k, Γh).

The group G(k, Γh) always contains a subgroup of order two, corresponding to the 
automorphism [−1]Γh

(x) of Γh. This C2 subgroup is central in G(k, Γh). Hewett [18]
showed that if h = 2n−1m, then there is a subgroup of the Morava stabilizer group 
isomorphic to C2n that contains this central C2 subgroup. Furthermore, if m is odd, 
then this C2n-subgroup is a maximal finite 2-subgroup in G(k, Γh). See also [11].

The formal group law Fh is classified by a map

MU∗ −→ R(k,Γh),

which is Landweber exact ([40, Section 5]). A Lubin–Tate spectrum E(k, Γh) is a com-
plex oriented ring spectrum with π∗E(k, Γh) = R(k, Γh) whose formal group law is Fh. 
Topologically, the action of G(k, Γh) on π∗E(k, Γh) can be lifted as well. The Goerss–
Hopkins–Miller theorem [40,16] shows that E(k, Γh) is a complex orientable E∞-ring 
spectrum with a continuous action of G(k, Γh) by maps of E∞-ring spectra which re-
fines the action of G(k, Γh) on π∗E(k, Γh). By a continuous action here, we mean in the 
sense of Devinatz–Hopkins [13,7].

Now, let G be a finite subgroup of G(k, Γh). Classically, the homotopy fixed points 
spectrum E(k, Γh)hG is computed by using the homotopy fixed points spectral sequence. 
However, at height h > 2 (and p = 2), the spectrum E(k, Γh)hG is very difficult to 
compute: given an arbitrary Lubin–Tate spectrum E(k, Γh), a general formula describing 
the action of G on π∗E(k, Γh) is not known. As a result of this, it is hard to compute 
the E2-page of its homotopy fixed points spectral sequence. Even worse, the G-action 
on the spectrum E(k, Γh) is constructed purely from obstruction theory [40,16], so there 
is no systematic method to compute differentials in the homotopy fixed points spectral 
sequence.

A major motivation for our work, which arises in [25,8], is to construct models of 
Lubin–Tate spectra as equivariant spectra with explicit group actions. Our construction 
presents π∗E(k, Γh) explicitly as an C2n-algebra. As a result, our construction renders the 
spectra E(k, Γh)hC2n accessible to computations via equivariant techniques developed by 
Hill, Hopkins, and Ravenel [22].

1.3. Main results

The motivation behind our constructions of Lubin–Tate spectra comes from the equiv-
ariant spectra constructed by Hill, Hopkins, and Ravenel in their solution of the Kervaire 
invariant one problem [22]. To give precise statements of our results and to motivate our 
proofs, we recall some constructions from [22] and use this as an opportunity to introduce 
some of our notations.
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A key construction in Hill–Hopkins–Ravenel’s proof of the Kervaire invariant one 
problem is the detecting spectrum Ω. This spectrum detects all the Kervaire invariant 
elements in the sense that if θj ∈ π2j+1−2S

0 is an element of Kervaire invariant 1, then 
the Hurewicz image of θj under the map π∗S0 −→ π∗Ω is nonzero (see also [31,20,21]
for surveys on the result).

The detecting spectrum Ω is constructed using equivariant homotopy theory as the 
fixed points of a C8-spectrum ΩO, which in turn is a chromatic-type localization of 
MU ((C8)) := NC8

C2
MUR. Here, NC8

C2
(−) is the Hill–Hopkins–Ravenel norm functor.

Let BPR be the Real Brown–Peterson spectrum, obtained from the Real bordism 
spectrum MUR by the Quillen idempotent (see [27, Theorem 2.33] and [5, Theorem 
7.14]). Let F be the universal 2-typical formal group law over πe

∗BPR = π∗BP . For C2n

the cyclic group of order 2n with generator γn we can form the spectrum

BP ((C2n )) := NC2n
C2

BPR,

and we let

Rn := πe
∗BP ((C2n )).

For n ≥ 2, the group C2n contains a unique subgroup of order 2n−1 whose generator 
we will call γn−1 := γ2

n. The maps

ηL : BP ((C2n−1 )) −→ i∗C2n−1BP ((C2n )) � BP ((C2n−1 )) ∧BP ((C2n−1 ))

induce ring inclusions

Rn−1 Rn (1.2)

which are equivariant with respect to the C2n−1-action. The formal group law F , which 
is originally defined over R1, can also be viewed as a formal group law over Rn for each 
n ≥ 1 via the ring inclusions R1 ↪→ Rn.

In fact, we can use the formal group law F to specify generators for Rn as follows. 
For a group G acting on a ring R, we use

fg : R −→ R

to denote the ring automorphism that specifies the action of g on R. For every n, there 
is a canonical strict isomorphism

ψγn
: F −→ Fγn

where Fγn is the formal group law obtained from F by applying the automorphism 
fγn

of Rn to the coefficients of F . Since the formal group laws are 2-typical, the strict 
isomorphism ψγn

admits the form
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ψγn
(x) = x +

∑
i≥1

Fγn
tC2n
i x2i

, (1.3)

where tC2n
i ∈ πe

2(2i−1)BP ((C2n )) for all i ≥ 1.
It follows from [22, Section 5.4] that the elements tC2n

i , i ≥ 1 form a set of C2n-algebra 
generators for Rn. More precisely, as a C2n -algebra,

Rn
∼= Z(2)[C2n · tC2n

1 , C2n · tC2n
2 , . . .]

where the notation C2n · x represents the set

C2n · x := {x, γnx, γ2
nx, γ

3
nx, . . . , γ

2n−1−1
n x}

with 2n−1 elements whose degrees are all equal to |x|.
The C2n -action on the generators tC2n

i is specified by the formulas

fγn
(γj

nt
C2n
i ) =

{
γj+1
n tC2n

i j < 2n−1 − 1
−tC2n

i j = 2n−1 − 1.

Using the inclusions (1.2), we may view the generators C2r · tC2r
i of Rr as elements of 

Rn for every r ≤ n.
The underlying spectra of MU ((C2n)) and BP ((C2n )) are smash products of 2n−1-copies 

of MU and BP respectively. As result of [22, Proposition 11.28], C2n -equivariant maps 
from the underlying homotopy of MU ((C2n)) (resp. BP ((C2n ))) to a graded C2n-equivariant 
commutative ring R are in bijection with formal group laws (resp. 2-typical formal group 
laws) F over R that are equipped with strict isomorphisms

ψγi+1
n

: Fγi
n −→ Fγ(i+1)

n , 0 ≤ i ≤ 2n−1 − 1

with ψγi+1
n

= (γi
n)∗ψγn

such that the composition of all the ψγi+1
n

’s is the formal inversion 
on F .

Associated to the universal deformation (E(k, Γh)∗, Fh) and the action of the gener-
ator γn ∈ C2n , there is a C2n -equivariant map

πe
∗BP ((C2n )) −→ E(k,Γh)∗.

As is customary, let vi ∈ π2(2i−1)BP be the Araki generators, so that

[2]F (x) =
∑
i≥0

Fvix
2i

.

Recall that a 2-typical formal group law H over a Z(2)-algebra S is classified by a map

BP∗ ∼= Z(2)[v1, v2, . . .] −→ S.
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It is said to have height h if there is a unit λ ∈ S such that

[2]H(x) = λ · xph

+ higher order terms mod (2, v1, . . . , vh−1).

The main result of this paper arises from an observation of Hill–Hopkins–Ravenel [22]
that the formal group law F over πe

∗BP ((C8)) should be of height h = 4 after inverting 
some carefully chosen element D [22, Section 11.2]. More generally, for

h = 2n−1m,

where m ≥ 1 is any natural number, then there is an element D so that F has height h
over πe

∗D
−1BP ((C2n )). In practice, choosing an appropriate element D to invert appears 

to become tedious when m in h = 2n−1m is large. This is not hard when n = 2 and 
m = 1 [23, (9.3)], but already becomes tricky when n = 2 and m = 2 [25, Theorem 1.1].

Studying the height of a formal group law over R is done by studying the image of the 
elements vi in R. One reason that this is difficult in our case is that the image of the vi’s in 
πe
∗BP ((C2n )) is given by intricate formulas in terms of the generators tC2n

i . For example, 
when n = 2, πe

∗BP ((C2n )) ∼= BP∗BP and giving formulas for the vi’s is equivalent to 
giving formulas for the conjugation on the Hopf algebroid. This is essentially the task of 
giving an analogue of Milnor’s formula in A∗ = (HF2)∗HF2 which relates the generators 
ξi with their conjugates, but in the case of BP instead of HF2. One contribution of 
this paper and a key result is to give these formulas in terms of explicit, clean recursive 
relations.

Theorem 1.1. For every n ≥ 2 and k ≥ 1,

t
C2n−1
k ≡ tC2n

k + γnt
C2n
k +

k−1∑
j=1

γnt
C2n
j (tC2n

k−j)
2j

(mod Ik) (1.4)

where Ik = (2, v1, . . . , vk−1).

Section 3 is dedicated to the proof of this result, which involves a detailed analysis of 
the relationship between the vi and the tC2r

i generators. An important result contained 
in this section is Proposition 3.7, which states that the ideals Ik ⊆ Rn are preserved by 
the action of C2n .

With this in hand, we are ready to study the chromatic filtration arising from 
BP ((C2n )). In analogy with the truncation BP 〈h〉 of the Brown–Peterson spectrum BP , 
one can form equivariant quotients

BP ((C2n ))〈m〉 := BP ((C2n ))/(C2n · t̄m+1, C2n · t̄m+2, . . .).

The quotient here is done by using the method of twisted monoid rings [22, Section 2.4]. 
Let
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Rn〈m〉 := πe
∗BP ((C2n ))〈m〉 ∼= Z(2)[C2n · tC2n

1 , . . . , C2n · tC2n
m ].

The left unit induces a map

BP∗ −→ Rn〈m〉

and so Rn〈m〉 carries a formal group law which we will continue to denote by F .
Our paper studies the height of the spectra BP ((C2n))〈m〉 and proves that they are of 

height h = 2n−1m. The first step of our analysis is completely algebraic and consists of 
studying the image of the vi generators in Rn〈m〉.

Theorem 1.2. There is an element D ∈ Rn〈m〉 such that

• vh divides D in Rn〈m〉,
• (2, v1, v2, . . . , vh) is a regular sequence in D−1Rn〈m〉,
• vr ∈ Ir for r > h,
• D−1Rn〈m〉/Ih ∼= F2[(tC2n

m )±1] with vh = t
(2h−1)/(2m−1)
m , and

• the formal group law F has height exactly h over D−1Rn〈m〉/Ih.

The results of Theorem 1.2, discussed in Propositions 7.1 and 7.3 below, are actually 
proved by passing to a completion of an extension of Rn〈m〉. For k a finite field of 
characteristic 2, we let W (k) be the ring of Witt vectors on k. Let

R(k,m) := W (k)[C2n · tC2n
1 , . . . , C2n · tC2n

m−1, C2n · u][C2n · u−1]∧m,

where |tC2n
i | = 2(2i − 1) for 1 ≤ i ≤ m − 1 and |u| = 2. The ideal m is given by

m = (C2n · tC2n
1 , . . . , C2n · tC2n

m−1, C2n · (u− γnu)).

Note that the ring R(k, m) is an unramified extension of a completion of the ring 
Rn〈m〉[C2n · (tC2n

m )−1]. The action of C2n on R(k, m) is dictated by the notation.
The advantage of working in R(k, m) is that it is a complete local ring whose Krull 

dimension is easily determined. The following, which is Proposition 4.5 below, is the 
most technical argument of the paper and is the main goal of Section 4.

Theorem 1.3. In R(k, m), the ideal Ih = (2, v1, . . . , vh−1) is equal to the maximal ideal 
m = (C2n · tC2n

1 , . . . , C2n · tC2n
m−1, C2n · (u − γnu)).

Using a Krull dimension argument, this result implies that (2, v1, v2, . . .) forms a 
regular sequence in R(k, m). We let

Γh = p∗F
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where p : R(k, m) −→ R(k, m)/Ih ∼= K := k[u±1] is the quotient map. The following 
corollary is an immediate consequence of Theorem 1.3.

Corollary 1.4. The pair (R(k, m), F) is a universal deformation of (K, Γh).

In other words, R(k, m) is the Lubin-Tate ring of a universal deformation of the formal 
group law Γh of height h.

Once Theorem 1.3 and Corollary 1.4 have been established, we begin to upgrade our 
results to homotopy theory via the Landweber Exact Functor Theorem. This gives rise 
to a complex orientable cohomology theory

X �−→ R(k,m) ⊗BP∗ BP∗(X)

represented by a spectrum whose homotopy groups are R(k, m). We call the representing 
spectrum E(k, Γh), as it is a form of the Lubin–Tate spectrum.

Before stating this as one of our results, we introduce more details with respect to the 
natural group actions at hand. Let

q = 2m − 1

and k×[q] ⊆ k× be the subgroup of q-torsion elements. This is the subgroup of elements 
ζ ∈ k× so that ζq = 1. We let

Gal := Gal(k/F2)

and

C(k,m) := Gal � k×[q]

where the action of Gal on k×[q] is the natural action of the Galois group. Let G(k, m)
denote the group

G(k,m) := C2n × (Gal � k×[q]).

We note that G(k, m) depends on n also, but we think of n as being fixed while allowing 
m and k to vary.

There is an obvious action of G(k, m) on R(k, m) defined as follows: The action of 
C2n on R(k, m) is the W (k)-linear action determined by

fγn
(γr

nx) =
{

γr+1
n x r < 2n−1 − 1

−x r = 2n−1 − 1
(1.5)

for x = tC2n
i (1 ≤ i ≤ m − 1) and x = u. The group Gal(k/F2) acts on R(k, m) via its 

action on the coefficients W (k). The group k×[q] acts on R(k, m) by
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fζ(u) = ζ−1u, (1.6)

and

fζ(tC2n
i ) = tC2n

i (1.7)

for every ζ ∈ k×[q] and 1 ≤ i ≤ m − 1. All together, these three actions combine to give 
an action of G(k, m) on R(k, m).

We can now state our next main result, which is also one of the main motivations for 
our work, and is proved in Section 5.1.

Theorem 1.5. There exists a height-h formal group law Γh defined over F2 such that for 
any finite field k of characteristic 2, there is a Lubin–Tate theory E(k, Γh), functorial in 
k, such that

π∗E(k,Γh) ∼= R(k,m). (1.8)

Furthermore, there is a subgroup G(k, m) inside the Morava stabilizer group G(k, Γh) so 
that the isomorphism (1.8) is equivariant for the action of G(k, m) where the action of 
G(k, m) on R(k, m) is described in (1.5), (1.6), and (1.7).

Remark 1.6. The ring π∗E(k, Γh) ∼= R(k, m) is usually described in a way that em-
phasizes the structure of π0E(k, Γh) ∼= R(k, m)0 as in Equation (1.1) above (where 
R(k, Γh) ∼= π∗E(k, Γh)), that is, as a power series ring over W (k) on h − 1 deformation 
parameters u1, . . . , uh−1. In order to give a more familiar description of π∗E(k, Γh), in 
Proposition 5.2, we give a description of R(k, m) which displays the structure of R(k, m)0. 
We show that there are elements

C2n · τi = {τi, γnτi, . . . , γ2n−1−1
n τi} ⊆ R(k,m)0

for 1 ≤ i ≤ m − 1 and

C2n · τm = {τm, γnτm, . . . , γ2n−1−2
n τm} ⊆ π0E(k,Γh)

such that

R(k,m) ∼= W (k)�C2n · τ1, . . . , C2n · τm−1, C2n · τm�[u±1].

Note that there are h −1 power series generators in this description of R(k, m) and once 
we realize R(k, m)0 as the Lubin-Tate ring for the universal deformation of a formal 
group law of height h, these will be deformation parameters. We also describe the action 
of G(k, m) explicitly in terms of these generators in Proposition 5.2.
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Once Theorem 1.5 has been established, given that its construction was motivated by 
the spectra BP ((C2n ))〈m〉 which are equivariant spectra, it is natural to seek to refine 
E(k, Γh) to an equivariant spectrum. As discussed earlier, by the Goerss–Hopkins–Miller 
theorem [40,16], E(k, Γh) is a complex orientable E∞-ring spectrum with a continuous 
action of G(k, Γh) by maps of E∞-ring spectra which refines the action of G(k, Γh) on 
π∗E(k, Γh) ∼= R(k, m). In other words, for any G ⊆ G(k, Γh), we may view E(k, Γh) as 
a commutative ring object in naive G-spectra.

The functor

X �−→ F (EG+, X)

takes naive equivalences to genuine equivariant equivalences, and hence allows us to view 
E(k, Γh) as a genuine G-equivariant spectrum. The commutative ring spectrum structure 
on E(k, Γh) gives an action of a trivial E∞-operad on the spectrum F (EG+, E(k, Γh)). 
Work of Blumberg–Hill [9] shows that this is sufficient to ensure that F (EG+, E(k, Γh))
is actually a genuine equivariant commutative ring spectrum, and hence it has norm 
maps.

The spectrum E(k, Γh) has an action of G(k, m) by maps of E∞-ring spectra that 
refines the G(k, m)-action on π∗E(k, Γh) described in Theorem 1.5 (or rather, in Equa-
tions (1.5), (1.6), and (1.7)). By passing to the cofree localization F (EC2n+, E(k, Γh)), 
we may view E(k, Γh) as a commutative C2n-spectrum.

Recent work of Hahn–Shi [17] establishes the first known connection between the 
obstruction-theoretic actions on Lubin–Tate theories and the geometry of complex con-
jugation. More specifically, there is a Real orientation for any of the E(k, Γh): there is a 
C2-equivariant homotopy commutative ring map

MUR −→ i∗C2
E(k,Γh).

Using the norm-forget adjunction, for any finite G ⊂ G(k, Γh) that contains the central 
C2-subgroup, there is a G-equivariant homotopy commutative ring map

MU ((G)) −→ NG
C2

i∗C2
E(k,Γh) −→ E(k,Γh).

For our explicit forms of E(k, Γh), we have the following theorem, which is proved at 
the beginning of Section 5.2.

Theorem 1.7. There is a C2n-equivariant homotopy commutative ring map

MU ((C2n )) −→ E(k,Γh).

This map factors through a homotopy commutative ring map

φ : BP ((C2n )) −→ E(k,Γh)
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such that πe
∗φ is the map Rn −→ π∗E(k, Γh) determined by

tC2n
i �−→

⎧⎪⎪⎨⎪⎪⎩
tC2n
i 1 ≤ i ≤ m− 1,
u2m−1 i = m,

0 i > m.

The C2n-equivariant spectra MU ((C2n )) and BP ((C2n )) are accessible to computations, 
and the existence of equivariant orientations renders computations that rely on the slice 
spectral sequence tractable. Using differentials in the slice spectral sequence of MUR

and the Real orientation MUR −→ E(k, Γh), Hahn and Shi [17, Theorem 1.2] computed 
E(k, Γh)hC2 , valid for arbitrarily large heights h. Computations of [22, Section 9], [23], 
[25], and [8] show that there are systematic ways of obtaining differentials in the slice 
spectral sequences of MU ((C2n)), BP ((C2n )), and their localizations using techniques in 
equivariant homotopy theory.

We prove the following theorem in Section 6:

Theorem 1.8. There is an element D ∈ πC2n∗ρC2n
MU ((C2n )), where ρC2n is the real regular 

representation, that becomes invertible under the map πC2n
� MU ((C2n )) −→ πC2n

� E(k, Γh)
such that there are factorizations

MU ((C2n )) E(k,Γh)

D−1MU ((C2n ))

BP ((C2n )) E(k,Γh)

D−1BP ((C2n ))

of the C2n-equivariant orientations through D−1MU ((C2n )) and D−1BP ((C2n )). Further-
more, the spectra D−1MU ((C2n )) and D−1BP ((C2n )) are cofree and satisfy the Hill–
Hopkins–Ravenel periodicity theorem [22, Theorem 9.19].

When G = C8 and h = 4, the Hill–Hopkins–Ravenel detecting spectrum Ω is defined 
as the C8-fixed points of ΩO := D−1

HHRMU ((C8)), where

DHHR = (NC8
C2

r̄C8
1 )(NC8

C2
r̄C4
3 )(NC8

C2
r̄C2
15 ) ∈ πC8

19ρ8
MU ((C8))

is defined in [22, Section 9]. Our proof of Theorem 1.8 implies that D is divisible by 
DHHR, and there is a factorization

MU ((C8)) E(k,Γ4)

ΩO

of the C8-equivariant orientation of E(k, Γ4) through ΩO.
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We finally return to our analysis of the chromatic filtration arising from BP ((C2n)). 
We have already discussed some algebraic properties of this filtration in Theorem 1.2. 
In Section 7 we also study the chromatic localizations of BP ((C2n )). We let K(r) be 
any form of Morava K-theory at height r. The Bousfield localization functor LK(r) is 
independent of this choice. Among other results on localizations, we prove the following 
result in Theorem 7.5.

Theorem 1.9. The K(r)-localization of the spectrum i∗eBP ((G))〈m〉 is non-zero for 0 ≤
r ≤ h and trivial when r > h.

1.4. Summary of the contents

We now turn to a summary of the contents of this paper. Sections 2, 3 and 4 contain 
our algebraic results and Sections 5, 6 and 7 focus on the topological results.

Section 2 provides the necessary background for Lubin–Tate deformation theory and 
sets up a framework for studying formal group laws with actions of finite groups. We 
then use this framework to study formal group laws equipped with a C2n-action that is 
compatible with certain cyclic groups of orders coprime to 2 and the associated Galois 
groups. In Section 3, we study the deformation parameters tCr

k prove recursive formu-
las relating the tCr

k -generators for various values of r. The key result of this section is 
Theorem 1.1, which expresses tC2n−1

k in terms of tC2n
i for every n ≥ 2 and k ≥ 1. These 

formulas will be essential for proving our main theorems. In Section 4, we prove that the 
maximal ideal of m of R(k, m) is equal to Ih and introduce the formal group law Γh.

In Section 5, we construct the spectrum E(k, Γh). We then refine it to an equivariant 
spectrum and study some properties of that equivariant theory in Section 6. In particular, 
we introduce the periodicity generator D ∈ π�BP ((C2n )). In Section 7, we examine the 
Bousfield localizations of BP ((C2n ))〈m〉 and of D−1BP ((C2n ))〈m〉 with respect to the 
Morava K-theories K(r).
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2. Formal group laws with group actions

The goal of this section is to set up a framework for formal group laws with a G-action. 
We then use this framework to study formal group laws equipped with a C2n-action that 
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is compatible with the actions of certain cyclic groups of orders coprime to 2 and the 
associated Galois groups.

2.1. Formal group laws with C2n-action

In this subsection, we carry out a discussion similar to that of [22, Section 11.3]. By 
an even periodic graded ring R, we mean a graded commutative Z(2)-algebra R such that

(1) R2k+1 = 0 for all k ∈ Z; and
(2) there exists a unit in R2.

Note that condition (2) implies that R2k ∼= R0 for all k ∈ Z.
Consider the category Mh,per

FG , whose objects are triples (R, u, F ), where

(1) R is an even periodic graded ring;
(2) u ∈ R2 is a unit; and
(3) F is a homogenous formal group law of degree −2 over R. That is,

F (x, y) ∈ (R�x, y�)−2,

where the formal variables x and y both have degree −2 in R�x, y�.

Morphisms in Mh,per
FG are pairs

(f, ψ) : (R, u, F ) −→ (S,w,G),

where f : R −→ S is a graded ring homomorphism and

ψ : G −→ f∗F

is a strict isomorphism of formal group laws. Note that there is no condition on the 
morphism relating u and w.

Consider also the category Mper
FG, whose objects are triples (R, u, F̃ ), where

(1) R is an even periodic graded ring;
(2) u ∈ R2 a unit; and
(3) F̃ is a formal group law of degree 0 over R0. That is,

F̃ (x̃, ỹ) ∈ R0�x̃, ỹ�,

with x̃, ̃y of degree 0 in R0�x̃, ̃y�.
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Morphisms in this category are pairs

(f, ψ̃) : (R, u, F̃ ) −→ (S,w, G̃)

with f : R −→ S a homomorphism of graded rings and

ψ̃ : G̃ −→ f∗F̃

an isomorphism of formal group laws, not necessarily strict, such that

f(u) = ψ̃′(0)w.

There is an isomorphism of categories

Ψ : Mper
FG Mh,per

FG : Φ, (2.1)

given by

Ψ(R, u, F̃ (x̃, ỹ)) = (R, u−1F̃ (ux, uy)),

Ψ(f, ψ̃(x̃)) = (f, (ψ̃′(0)w)−1ψ̃(wx)),

and

Φ(R, u, F (x, y)) = (R, uF (u−1x̃, u−1ỹ)),

Φ(f, ψ(x)) = (f, f(u)ψ(w−1x̃)).

Notation 2.1. For (R, u, F ) ∈ Mh,per
FG , we let

F̃ (x̃, ỹ) := uF (u−1x̃, u−1ỹ).

Next, we turn to group actions on formal group laws.

Definition 2.2. An action of a group G on a formal group law F over R is a functor

BG −→ Mh,per
FG

such that (R, u, F ) is the image of the unique object in BG.

Remark 2.3. By the equivalence (2.1), an action on a homogenous formal group law in 
Mh,per

FG corresponds to an action on the associated non-homogenous object in Mper
FG, and 

vice versa.
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Definition 2.4. For an even periodic graded ring R, let c : R −→ R be the ring isomor-
phism which is multiplication by (−1)n on R2n. We call c the involution.

For (R, u, F ) ∈ Mh,per
FG ,

c∗F = −F (−x,−y).

Furthermore, there is an automorphism

(c, c(x)) : (R, u, F ) −→ (R, u, F )

in Mh,per
FG , where c(x) = −[−1]F (x). Since c2 = id, this determines a functor

BC2
(R,u,F )−−−−−→ Mh,per

FG ,

where the unique object in the category BC2 is mapped to (R, u, F ) and the non-identity 
morphism is mapped to (c, c(x)). In other words, every object of Mh,per

FG comes with a 
natural C2-action.

Definition 2.5. The action of C2 on (R, u, F ) ∈ Mh,per
FG where the generator of C2 acts 

by (c, c(x)) is called the conjugation action.

Recall that Rn = πe
∗BP ((C2n )) and we are letting F denote the image of the universal 

2-typical formal group law under the left unit. Let

Rper
n := Rn[C2n · u±1],

where C2n · u ⊆ (Rper
n )2.

Proposition 2.6. Let R be an even periodic graded ring with an action of C2n that restricts 
to the involution action on C2. A C2n-equivariant graded ring homomorphism

f : Rper
n −→ R

determines a 2-typical formal group law (R, f(u), f∗F) ∈ Mh,per
FG . This formal group law 

is equipped with a C2n-action by maps of 2-typical formal group laws that extends the 
C2-conjugation action.

This follows from [22, Proposition 11.28], adapted to the 2-typical, periodic case. In 
this section, we abbreviate γ = γn for the generator of C2n . Let

(fγ , ψγ(x)) : (Rper
n , u,F) −→ (Rper

n , u,F)

(where ψγ is as in (1.3)) be the action induced by γ, so that
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ψγ : F −→ Fγ = f∗
γF

is the strict isomorphism. We will sometimes abuse notation and write γ = fγ . Note that 
F has coefficients in BP∗ = R1 ⊂ Rn and ψγ has coefficients in Rn.

2.2. Compatible action by roots of unity

Let k be a finite field of characteristic 2 and W (k) the ring of Witt vectors over k. 
For a Z(2)-algebra R, let

R(k) := W (k) ⊗Z(2) R.

Note that there is a unique group homomorphism

T : k× −→ R(k)×0 ,

which defines the Teichmüller lifts. This allows us to embed k× in R(k).
There is an action of k× on (Rper

1 (k), u, F) ∈ Mh,per
FG given as follows. Here,

Rper
1 (k) ∼= W (k)[v1, v2, . . .][u±1].

Let ζ ∈ k×. Then

fζ : Rper
1 (k) −→ Rper

1 (k)

is the W (k)-linear map that is determined by

fζ(u) = ζ−1u, (2.2)

fζ(vi) = vi.

Since F is defined over R1, f∗
ζF = F . Let

ψζ : F −→ f∗
ζF = F

be the strict isomorphism given by the identity ψζ(x) = x. Then the pair (fζ , ψζ)
is an automorphism of (Rper

1 (k), u, F) and this defines an action of k× on the object 
(Rper

1 (k), u, F) of Mh,per
FG .

As an immediate consequence, we have:

Proposition 2.7. Let R be an even periodic graded ring with an action of a subgroup 
C ⊆ k×. A C-equivariant ring homomorphism f : Rper

1 (k) −→ R determines a 2-typical
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formal group law (R, f(u), f∗F) with a C-action by maps of 2-typical formal group 
laws.

Remark 2.8. Under the functor Φ: Mh,per
FG −→ Mper

FG, the morphism (fζ , ψζ(x)) maps to 
(fζ , ψ̃ζ) where ψ̃ζ(x̃) = ζ−1x̃.

Finally, we want to extend this to an action of (Rper
n (k), u, F) in a way that commutes 

with the C2n -action defined in the last subsection. Here, note that

Rper
n (k) ∼= W (k)[C2n · tC2n

1 , C2n · tC2n
2 , . . .][C2n · u±1]. (2.3)

We will define an action of

C2n × k×

on (Rper
n (k), u, F). First, extend the C2n -action on Rper

n to Rper
n (k) linearly with respect 

to W (k). Since elements of C2n and k× commute in the product, our definition of the 
action fζ must satisfy

fζ(fγ(x)) = fγ(fζ(x)) (2.4)

for all ζ ∈ k×. We let fζ be as in (2.2) on Rper
1 (k) ⊆ Rper

n (k). Also, let

fζ(tC2n
i ) = tC2n

i

for all i ≥ 1. Then, the identity (2.4) determines the action of C2n ×k× on all of Rper
n (k). 

Note in particular that the k×-action fixes Rn ⊂ Rper
n (k).

Since the inclusion Rper
1 (k) −→ Rper

n (k) is a k×-equivariant map, (Rper
n (k), u, F)

inherits a k×-action from (Rper
1 (k), u, F) by Proposition 2.7.

Proposition 2.9. The formulas above give an action of C2n × k× on the object 
(Rper

n (k), u, F) of Mh,per
FG .

Proof. It remains to verify that (fζ , ψζ) and (fγ , ψγ) commute, i.e., that the morphism

(fζ , ψζ(x))(fγ , ψγ(x)) = (fζfγ , f∗
ζ ψγ(ψζ(x))),

which is the composite

F
ψζ

f∗
ζF

f∗
ζ ψγ

f∗
ζ f

∗
γF ,

is equal to the morphism
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(fγ , ψγ(x))(fζ , ψζ(x)) = (fγfζ , f∗
γψζ(ψγ(x))),

which is the composite

F
ψγ

f∗
γF

f∗
γψζ

f∗
γ f

∗
ζF .

By construction, fζfγ = fγfζ . Since ψγ is defined over Rn, f∗
ζ ψγ = ψγ . Also, f∗

γψζ = ψζ

since ψζ(x) = x. Finally, ψγ(ψζ(x)) = ψζ(ψγ(x)) since ψζ(x) = x is the identity for 
composition of power series. �
2.3. Action of the Galois group

The Galois group Gal = Gal(k/F2) acts on W (k), and this gives an action of Gal on 
Rper

n (k) by acting on the coefficients. Let σ ∈ Gal be the Frobenius. The action of σ on 
Rper

n (k) is a ring isomorphism which we denote by fσ. Note that

Rper
n (k)Gal = Z2 ⊗Z(2) Rper

n = Rper
n (F2).

Since F is defined over Rn, f∗
σF = F . So, letting ψσ(x) = x, we get an action of Gal on 

(Rper
n (k), u, F) via the morphism

(fσ, ψσ) : F −→ σ∗F .

The group Gal acts on k× via its action on k. This extends the actions of Gal and k× to 
an action of Gal�k× on (Rper

n (k), u, F). Both the Gal-action and the k×-action commute 
with the C2n -action, so we get an action of

G(k) := C2n × C(k,m)

on (Rper
n (k), u, F), where C(k, m) = Gal � k×.

We now have the following result, which combines all of these actions:

Proposition 2.10. Let R be an even periodic graded ring with an action of G(k) which 
restricts to the involution on C2. A G(k)-equivariant ring homomorphism

f : Rper
n (k) −→ R

determines a formal group law (R, f(u), f∗F) over R with an action of G(k) by maps of 
2-typical formal group laws that extends the C2-conjugation action.

In the next sections, we will be considering quotients of the ring Rn, and the action 
of G(k) does not descend to these quotients. However, the action of certain subgroups 
of G(k) does.
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Let m ≥ 1 and q = 2m − 1. Let k×[q] ⊆ k× be the q-torsion, that is, the subgroup of 
elements ζ ∈ k× so that ζq = 1. Let G(k, m) ⊆ G(k) be the subgroup

G(k,m) = C2n × (Gal � k×[q]). (2.5)

Now, let

Rper
n (k)〈m〉 := W (k)[C2n · tC2n

1 , . . . , C2n · tC2n
m ][C2n · u±1]/(C2n · (tC2n

m − u2m−1)).
(2.6)

Proposition 2.11. The ring Rper
n (k)〈m〉 is the quotient of Rper

n (k) by an invariant ideal, 
and thus inherits an action of G(k, m) via the quotient map.

Proof. The ideal (C2n · tC2n
m+1, C2n · tC2n

m+2, . . .) is invariant by definition. We also have that

fζ(tC2n
m ) = tC2n

m

and

fζ(uq) = ζ−quq = uq

since ζ is a qth root of unity. It follows that the ideal

(C2n · (tC2n
m − u2m−1)) = (tC2n

m − uq, γtC2n
m − γuq, . . . , γ2n−1−1tC2n

m − γ2n−1−1uq)

is invariant. �
Proposition 2.12. Let R be an even periodic graded ring with an action of G(k, m) which 
restricts to the involution on C2. A G(k, m)-equivariant ring homomorphism

f : Rper
n (k)〈m〉 −→ R

gives rise to a formal group law (R, f(u), f∗F) over R with an action of G(k, m) by maps 
of 2-typical formal group laws that extends the C2-conjugation action.

2.4. Lubin–Tate theories and the Morava stabilizer group

Consider the subcategory Mh,per,c
FG of Mh,per

FG whose objects are triples (R, u, F ) with R
a complete local ring. Morphisms in this subcategory are pairs (f, ψ) where f : R −→ S is 
a continuous morphism, so that the image under f of the maximal ideal of R is contained 
in the maximal ideal of S.

Let MFG be as in [22, Section 11]. Its objects are non-graded formal group laws 
over non-graded rings. Morphisms in MFG are pairs (f, ψ) : (R, F ) −→ (S, G) where 
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ψ : G −→ f∗F is any non-graded isomorphism. Let Mc
FG be the subcategory of MFG, 

where we restrict as above to complete local rings and continuous homomorphisms.
Let K = k[ū±1] be an even periodic graded ring with the property that k is a finite 

field of characteristic 2 and ū has degree 2. Then Gal(k/F2) acts on K via its action on 
k. Let Γh be a homogenous formal group law of height h = 2n−1m defined over K. Then 
(K, ̄u, Γh) ∈ Mh,per

FG .

Definition 2.13. The (big) Morava stabilizer group G(k, Γh) is the group of automor-
phisms of (K, ̄u, Γh) ∈ Mh,per

FG . Let S(k, Γh) be the subgroup whose elements are those 
the pairs of the form (id, ψ).

Remark 2.14. Suppose that Γh is defined over KGal ∼= F2[ū±1]. Then there is a split 
exact sequence

1 S(k,Γh) G(k,Γh) Gal(k/F2) 1 .

Remark 2.15. Using the equivalence Φ of (2.1), G(k, Γh) is the group of automorphisms 
of

(K, ū, Γ̃h) ∈ Mper
FG

where Γ̃h is as in Notation 2.1. This, in turn, is isomorphic to the group of automorphisms 
of the pair (k, ̃Γh) ∈ MFG. So, G(k, Γh) as defined above is just the usual (big) Morava 
stabilizer group.

Remark 2.16. Note that any automorphism of K is continuous so G(k, Γh) is also the 
group of automorphisms of (K, ̄u, Γh) ∈ Mh,per,c

FG .

Let R(k, m) be an even periodic complete local ring with maximal ideal m and u ∈
R(k, m)2 a choice of unit. Let p : R(k, m) −→ R(k, m)/m be the quotient map and

ι : K
∼=−→ R(k,m)/m

be an isomorphism such that ι(ū) = p(u). Let Fh be a 2-typical homogenous formal 
group law over R. Suppose further that

ι∗Γh = p∗Fh

and that (R(k, m)0, F̃h) is a universal deformation of (k, ̃Γh) in the sense of Lubin and 
Tate [30]. The Lubin–Tate theorem implies that there are isomorphisms

G(k,Γh) ∼= AutMc ((R(k,m)0, F̃h)) ∼= Aut h,per,c((R(k,m), u, Fh)). (2.7)

FG MFG
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Remark 2.17. Note that the data (R(k, m), u, Fh) together with ι is not unique. How-
ever, it is unique up to unique �-isomorphism. That is, for i = 1, 2, given two choices 
(R(k, m)i, ui, Fh,i) with

ιi : K
∼=−→ R(k,m)i/mi

and pi : R(k, m)i −→ R(k, m)i/mi, there exists a unique isomorphism

(f, ψ) : (R(k,m)1, u1, Fh,1) −→ (R(k,m)2, u2, Fh,2)

with the following properties.

• f is continuous, and so induces an isomorphism f̄ on residue fields.
• f̄ ◦ ι1 = ι2
• p∗2ψ : p∗2Fh,2 −→ p∗2f

∗Fh,1 is the identity on ι∗2Γh. This makes sense since both 
p∗2Fh,2 = ι∗2Γh and

p∗2f
∗Fh,1 = f̄∗p∗1Fh,1 = f̄∗ι∗1Γh = ι∗2Γh.

3. Equivariant deformation parameters and recursion formulas

Recall from Section 1 that

Rn := πe
∗BP ((C2n )) = Z(2)[C2n · tC2n

1 , C2n · tC2n
2 , . . .]

for all n ≥ 1. Under the inclusion map Rr ↪→ Rn, we can view the generators C2r · tC2r
k

of Rr as elements of Rn for every 1 ≤ r ≤ n.
The goal of this section is to prove Theorem 1.1, which gives a recursive formula 

relating the tC2r
k -generators for various values of r. This formula will be essential for 

proving Theorem 1.5. Recall that the ideals Ik ⊂ Rn are defined as

Ik := (2, v1, . . . , vk−1),

where the elements vi ∈ π∗BP = R1 ⊂ Rn are the Araki generators, so the coefficients 
of the 2-series of the formal group law F .

As stated in Theorem 1.1, we prove that for every n ≥ 2 and k ≥ 1,

t
C2n−1
k ≡ tC2n

k + γnt
C2n
k +

k−1∑
j=1

γnt
C2n
j (tC2n

k−j)
2j

(mod Ik).

In this section, we will also prove the equality

vk ≡ tC2
k (mod Ik)
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for all k ≥ 1. Once we have established this, Equation (1.4) will give a formula for the 
vk-generators in terms of the tC2n

j -generators for all n ≥ 1.

3.1. The logarithms of F and Fadd

To prove Theorem 1.1, we begin by studying the relationship between the logarithms 
of the formal group laws F and Fγn . Since Rn is 2-torsion free, the formal group law F
admits a logarithm over Rn ⊗Q. This is an isomorphism

logF : F Fadd,
∼=

where Fadd(x, y) = x + y is the additive formal group law. Define �i ∈ Rn ⊗Q to be the 
coefficients of the logarithm of F :

logF (x) =
∑
i≥0

�ix
2i

,

and the elements vi ∈ Rn to be the coefficients of the 2-series of F :

[2]F (x) =
∑
i≥0

Fvix
2i

.

These are the Araki generators, [4]. We provide the proof for the following standard 
result which will be crucial below. See also [38, A2.2].

Proposition 3.1. For every k ≥ 1,

2�k = 22k

�k +
k−1∑
j=1

�k−jv
2k−j

j + vk. (3.1)

Furthermore, there exists xk ∈ Rn so that

�k = 2−kxk

and xk �= 0 modulo 2. That is, the denominator of �k in Rn ⊗Q is exactly 2k.

Proof. Since logF is a homomorphism of formal group laws,

logF ([2]F (x)) = [2]Fadd(logF (x)) = 2 logF (x).

This implies that

∑
2�kx2k

= logF

⎛⎝∑
Fvix

2i

⎞⎠ =
∑

�jv
2j

i x2i+j

.

k≥0 i≥0 i,j≥0
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For k ≥ 1, comparing the coefficients of x2k on both sides of the equation above produces 
the equality

2�k = 22k

�k +
k∑

j=1
�k−jv

2k−j

j

= 22k

�k +
k−1∑
j=1

�k−jv
2k−j

j + vk.

This proves the first claim.
To prove that the denominator of �k in Rn ⊗Q is exactly 2k, we use induction on k. 

For the base case, when k = 1, the equation above gives the equality

�1 = v1

2 − 22 = −v1

2 .

For the induction step, suppose that for all 1 ≤ i ≤ k − 1, we have �i = 2−ixi where 
xi ∈ Rn and xi �= 0 (mod 2). Then solving for �k in the formula above gives

�k = 1
2 − 22k

⎛⎝ k∑
j=1

2−(k−j)xk−jv
2k−j

j

⎞⎠
= 2−k 1

1 − 22k−1

⎛⎝ k∑
j=1

2j−1xk−jv
2k−j

j

⎞⎠ .

Let xk = 1
1−22k−1

(∑k
j=1 2j−1xk−jv

2k−j

j

)
. Then, xk ∈ Rn and xk = xk−1v

2k−1

1 modulo 
2, which, by the induction hypothesis, is non-zero. This proves the second claim. �
3.2. The Rn-modules Lk and the ideals Ik

Definition 3.2. Let Lk be the Rn-submodule of Rn ⊗ Q generated by the elements 
{2, �1, . . . , �k−1}. More specifically, a generic element of Lk has the form

r0 · 2 + r1 · �1 + r2 · �2 + · · · + rk−1 · �k−1,

where ri ∈ Rn for all 0 ≤ i ≤ k − 1.
More generally, for 1 ≤ r ≤ n and 0 ≤ j ≤ 2r − 1, let γj

rLk be the Rn-submodule of 
Rn ⊗Q generated by the elements {2, γj

r�1, . . . , γ
j
r�k−1}. A generic element of γj

rLk has 
the form

r0 · 2 + r1 · γj
r�1 + . . . + rk−1 · γj

r�k−1,

where ri ∈ Rn for all 0 ≤ i ≤ k − 1.
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We will first deduce an analogue of Theorem 1.1, but modulo γn−1Lk rather than Ik. 
We will also establish that Rn∩γrLk = Ik for all n, k, and 1 ≤ r ≤ n, thus the relevance 
of the modules γrLk. The first step for this is the following proposition.

Proposition 3.3. For every k ≥ 1,

Lk ∩Rn = Ik.

Proof. We prove the claim by using induction on k. The base case when k = 1 is clear: 
an element in L1 is of the form r0 · 2, where r0 ∈ Rn. Therefore,

L1 = L1 ∩Rn = (2) = I1.

Now, suppose that Lk−1 ∩Rn = Ik−1. Let

x = r0 · 2 + r1 · �1 + · · · + rk−2 · �k−2 + rk−1 · �k−1

be an element in Lk ∩Rn. By Proposition 3.1, the denominator of �i is exactly 2i for all 
0 ≤ i ≤ k − 1. Since x ∈ Rn, we must have that rk−1 = 2r′k−1 for some r′k−1 ∈ Rn. We 
can rewrite x as

x = r0 · 2 + r1 · �1 + · · · + rk−2 · �k−2 + 2r′k−1 · �k−1

= r0 · 2 + r1 · �1 + · · · + rk−2 · �k−2 + r′k−1 · (2�k−1).

Now, note that r0 · 2 + r1 · �1 + · · ·+ rk−2 · �k−2 is in Lk−1. Furthermore, Equation (3.1)
implies that

2�k−1 ≡ vk−1 (mod Lk−1).

Therefore,

x− r′k−1 · vk−1 = � ∈ Lk−1.

Since the left hand side is in Rn, so is the right hand side. By the induction hypothesis, 
Lk−1 ∩Rn = Ik−1. Therefore

x− vk−1rk−1 ∈ Ik−1

and so x ∈ Ik. This proves that Lk ∩ Rn ⊆ Ik. The other inclusion is an immediate 
consequence of Proposition 3.1. �
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3.3. Comparison of generators

Next, we establish a formula which relates the tC2n
k -generators and the �k-generators. 

To do this, note that the logarithm logFγn : Fγn −→ Fadd is given by

logFγn (x) =
∑
i≥0

(γn�i)x2i

.

Furthermore, there is a commutative diagram

F
ψγn

logF

Fγn

logFγn

Fadd

(3.2)

From this, we deduce the following key formulas which will be used throughout this 
section.

Proposition 3.4. For every n ≥ 1,

�k − γn�k =
k−1∑
j=0

γn�j(tC2n
k−j)

2j

, (3.3)

γn�k − γn−1�k =
k−1∑
j=0

γn−1�j(γntC2n
k−j)

2j

, (3.4)

�k − γn−1�k =
k−1∑
j=0

(
γn�j(tC2n

k−j)
2j

+ γn−1�j(γntC2n
k−j)

2j
)
. (3.5)

Proof. The commutativity of the diagram (3.2) implies∑
i≥0

�ix
2i

= logF (x)

= logFγn (ψγn
(x))

= logFγn

⎛⎝∑
i≥0

Fγn
tC2n
i x2i

⎞⎠
=

∑
i≥0

logFγn (tC2n
i x2i

)

=
∑
i,j≥0

γn�j(tC2n
i )2

j

x2i+j

.
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Comparing the coefficients for x2k gives the equation

�k =
∑

i+j=k

γn�j(tC2n
i )2

j

=
k∑

j=0
γn�j(tC2n

k−j)
2j

= γn�k +
k−1∑
j=0

γn�j(tC2n
k−j)

2j

.

This proves the first equation. Applying γn to the first equation and using the fact that 
γ2
n = γn−1 proves the second equation. Adding the first two equations together proves 

the third equation. �
We can now relate the elements tC2

k to the coefficients vk of the 2-series of F .

Proposition 3.5. For all k ≥ 1, in Rn, we have the equality

tC2
k ≡ vk (mod Ik).

Proof. Letting n = 1 in Equation (3.3) gives the equation

tC2
k = 2�k −

k−1∑
j=1

�j(tC2
k−j)

2j

.

Multiplying this equation by the unit (1 − 22k−1) yields the formula

(1 − 22k−1)tC2
k = (2 − 22k

)�k − (1 − 22k−1)
k−1∑
j=1

�j(tC2
k−j)

2j

From Proposition 3.1, we also have the formula

vk = (2 − 22k

)�k −
k−1∑
j=1

�k−jv
2k−j

j = (2 − 22k

)�k −
k−1∑
j=1

�jv
2j

k−j .

Subtracting these two formulas and rearranging terms gives

tC2
k − vk = −(1 − 22k−1)

k−1∑
j=1

�j(tC2
k−j)

2j

+
k−1∑
j=1

�jv
2j

k−j + 22k−1tC2
k

The right hand side is in Lk. Since tC2
k − vk is also in Rn,
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tC2
k − vk ∈ Lk ∩Rn = Ik

by Proposition 3.3. It follows that tC2
k ≡ vk (mod Ik). �

In the following results, we establish the relationship between the Rn-submodules 
γrLk of Rn ⊗Q and the ideals Ik = (2, v1, . . . , vk−1) of Rn.

Proposition 3.6. For all n, k ≥ 1,

�k − γn�k ∈ Rn + Lk.

Proof. We will fix n and abbreviate notations by writing R = Rn, γ = γn and ti = tC2n
i . 

We will prove the claim by using induction on k. The base case when k = 1 is immediate 
because by Equation (3.3),

�1 − γ�1 = t1 ∈ R.

Now, suppose that we have proven that

�i − γ�i ∈ R + Li

for all 1 ≤ i ≤ k − 1. Equation (3.3) shows that

�k − γ�k =
k−1∑
j=0

γ�jt
2j

k−j

=
k−1∑
j=0

(γ�j − �j)t2
j

k−j +
k−1∑
j=0

�jt
2j

k−j .

By our induction hypothesis, every term in the first sum is an element in R + Lk. The 
second sum is also in R + Lk. Therefore,

�k − γ�k ∈ R + Lk. �
This completes the inductive step.

Proposition 3.7. For all n, k ≥ 1,

vk − γnvk ∈ Ik.

In other words, the ideals Ik ⊆ Rn are invariant under the C2n-action.
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Proof. We will again fix a specific n and write R = Rn, γ = γn and ti = tC2n
i . First 

note that by Proposition 3.1 and Equation (3.3),

v1 − γv1 = −2(�1 − γ�1) = −2t1 ∈ I1.

So the claim holds when k = 1.
Assume that the claim holds for v1, . . . , vk−1. We will show that vk − γvk ∈ Lk. The 

fact that vk − γvk ∈ R will imply that it is actually in Lk ∩ R, which is equal to Ik by 
Proposition 3.3.

We use Proposition 3.1 to make the following computation:

vk − γvk =

⎛⎝(2 − 22k

)�k −
k−1∑
j=1

�jv
2j

k−j

⎞⎠−

⎛⎝(2 − 2k)γ�k −
k−1∑
j=1

γ�jγv
2j

k−j

⎞⎠
≡ (2 − 22k

)(�k − γ�k) −
k−1∑
j=1

γ�jγv
2j

k−j (mod Lk)

≡ (2 − 22k

)(�k − γ�k) +
k−1∑
j=1

(�j − γ�j)γv2j

k−j (mod Lk).

By Proposition 3.6, for all 1 ≤ j ≤ k, �j − γ�j = rj modulo Lj ⊆ Lk for some rj ∈ R. 
Using the inductive hypothesis that

γvi ≡ vi (mod Ii ⊆ Lk),

the expression above can be further reduced modulo Lk to show that

vk − γvk ≡ (2 − 22k

)rk +
k−1∑
j=1

rjv
2j

k−j (mod Lk).

Since the right-hand side is in Ik ⊆ Lk, this shows that vk − γvk ∈ Lk. It follows that 
vk − γvk ∈ Lk ∩R = Ik. �
Corollary 3.8. For every n, k ≥ 1 and 1 ≤ r ≤ n,

γrLk ∩Rn = Ik.

Proof. Proposition 3.3 and Proposition 3.7 imply that

γrLk ∩Rn = γrIk = Ik = Lk ∩Rn. �
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Proposition 3.9. For every n ≥ 2,

t
C2n−1
k ≡

k∑
j=0

γnt
C2n
j (tC2n

k−j)
2j

(mod γn−1Lk)

Proof. Equation (3.3), with n replaced by n − 1, states that

�k − γn−1�k =
k−1∑
j=0

γn−1�j(t
C2n−1
k−j )2

j

≡ t
C2n−1
k (mod γn−1Lk).

In the following steps, we use the relations in Proposition 3.4 repeatedly:

t
C2n−1
k ≡ �k − γn−1�k (mod γn−1Lk)

≡
k−1∑
j=0

(
γn�j(tC2n

k−j)
2j

+ γn−1�j(γntC2n
k−j)

2j
)

(mod γn−1Lk) (by Equation (3.5))

≡ tC2n
k + γnt

C2n
k +

k−1∑
j=1

(
γn�j(tC2n

k−j)
2j

+ γn−1�j(γntC2n
k−j)

2j
)

(mod γn−1Lk)

≡ tC2n
k + γnt

C2n
k +

k−1∑
j=1

γn�j(tC2n
k−j)

2j

(mod γn−1Lk)

≡ tC2n
k + γnt

C2n
k +

k−1∑
j=1

(γn�j − γn−1�j)(tC2n
k−j)

2j

(mod γn−1Lk)

≡ tC2n
k + γnt

C2n
k +

k−1∑
j=1

(
j−1∑
r=0

γn−1�r(γntC2n
j−r )2

r

)
(tC2n

k−j)
2j

(mod γn−1Lk)

(by Equation (3.4))

≡ tC2n
k + γnt

C2n
k +

k−1∑
j=1

γnt
C2n
j (tC2n

k−j)
2j

(mod γn−1Lk). �

Proof of Theorem 1.1. By Proposition 3.9,

t
C2n−1
k −

⎛⎝tC2n
k + γnt

C2n
k +

k−1∑
j=1

γnt
C2n
j (tC2n

k−j)
2j

⎞⎠ ∈ γn−1Lk.

However, all terms are in Rn. Therefore, this difference is in γn−1Lk ∩ Rn = Ik by 
Corollary 3.8. The result follows. �
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4. Deformations with group actions

In this section, we construct a formal group law Γh of height h = 2n−1m, together 
with a universal deformation Fh of Γh. The formal group law Γh comes with an obvious 
action of

G(k,m) = C2n × (Gal � k×[q])

and we study its universal deformation together with its action of G(k, m).

4.1. The formal group law Γh

Let h = 2n−1m. Consider the functor from the category of finite fields of characteristic 
2 to the category of complete local rings which takes k to the ring

R(k,m) = W (k)[C2n · tC2n
1 , . . . , C2n · tC2n

m−1, C2n · u][C2n · u−1]∧m,

where

m = (C2n · tC2n
1 , . . . , C2n · tC2n

m−1, C2n · (u− γnu)).

Here, |tC2n
i | = 2(2i − 1) for 1 ≤ i ≤ m − 1 and |u| = 2. Note further that, for a graded 

ring A with graded ideal I, by A∧
I we mean the graded ring whose sth homogenous 

component is (A∧
I )s = lim←−−i

As/I
i
0As for I0 = A ∩ I.

There is an action of the group G(k, m) on the ring R(k, m). To describe this action, 
note that there is an action of C2n on R(k, m) by W (k)-linear maps, determined by

γn(γr
nx) =

{
γr+1
n x r < 2n−1 − 1

−x r = 2n−1 − 1

for x = tC2n
i , 1 ≤ i ≤ m − 1, and x = u. The Galois group Gal = Gal(k/F2) also acts on 

R(k, m) via its action on the coefficients W (k). Lastly, the group k×[q] for q = 2m − 1
acts on R(k, m) by

fζ(u) = ζ−1u,

fζ(tC2n
i ) = tC2n

i

for every ζ ∈ k×[q] and 1 ≤ i ≤ m − 1. All together, these three actions combine to give 
an action of the group G(k, m) on R(k, m). The ring R(k, m) and this action of G(k, m)
were already discussed in Section 1.3.
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Remark 4.1. Note that 2 ∈ m as

γ2n−1−1
n (u− γnu) = γ2n−1−1

n u + u

=
2n−1−2∑
r=0

γr
n(u− γnu) + 2γ2n−1−1

n u

and γ2n−1−1
n u is a unit.

From Remark 4.1, it is clear that R(k, m) is a complete local ring with maximal 
ideal m. The action of G(k, m) is continuous in the topology on R(k, m) defined by the 
maximal ideal m.

Let Rper
n (k)〈m〉 be as in (2.6). There is a G(k, m)-equivariant ring homomorphism

f : Rn −→ R(k,m), (4.1)

determined by sending

tC2n
i �−→

⎧⎪⎪⎨⎪⎪⎩
tC2n
i 1 ≤ i ≤ m− 1,
u2m−1 i = m,

0 i > m.

Note in particular that the map f factors through Rper
n (k)〈m〉. Let Fh = f∗F , where F , 

as before, is the image of the universal formal group law under the inclusion R1 −→ Rn. 
Let

p : R(k,m) −→ R(k,m)/m =: K

be the projection, where K = k[ū±1] and ū = p(u). Define

Γh := p∗Fh. (4.2)

By Proposition 2.12, (R(k, m), u, Fh) and (K, ̄u, Γh) are formal group laws with G(k, m)-
actions that extend the C2-conjugation action.

4.2. Universal deformation of Γh

For i ≥ 1 and 1 ≤ r ≤ n, we will also denote vi and tC2r
i for their images in R(k, m)

under the map f . Let Ih ⊂ R(k, m) be the ideal

Ih = (2, v1, . . . , vh−1).

For 1 ≤ r ≤ n, let IC2r denote the ideal
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IC2r = (2, C2r · tC2r
1 , . . . , C2r · tC2r

2n−rm−1, C2r · (tC2r
2n−rm − γrt

C2r
2n−rm)).

More explicitly, we have

IC2 = (2, tC2
1 , . . . , tC2

2n−1m−1, 2t
C2
2n−1m)

IC4 = (2, C4 · tC4
1 , . . . , C4 · tC4

2n−2m−1, C4 · (tC4
2n−2m − γ2t

C4
2n−2m))

...

IC2n−1 = (2, C2n−1 · tC2n−1
1 , . . . , C2n−1 · tC2n−1

2m−1 , C2n−1 · (tC2n−1
2m − γn−1t

C2n−1
2m ))

IC2n = (2, C2n · tC2n
1 , . . . , C2n · tC2n

m−1, C2n · (tC2n
m − γnt

C2n
m ))

By Proposition 3.5, we have the equality

IC2 = Ih.

In the next results, we prove that m = IC2n = IC2 . It is clear from Theorem 1.1 that we 
have the following chain of inclusions:

IC2 ⊂ IC4 ⊂ · · · ⊂ IC2n .

Proposition 4.2. The ideals m and IC2n are equal in R(k, m).

Proof. Since tC2n
m = u2m−1, we have the equality

tC2n
m − γnt

C2n
m =u2m−1 − (γnu)2

m−1

=(u− γnu) ·
2m−2∑
i=0

ui(γnu)2
m−2−i

=(u− γnu) · unit.

Since 2 ∈ m by Remark 4.1, this proves the claim. �
Proposition 4.3. For 1 ≤ i ≤ n, the images of the elements C2i · tC2i

2n−im ∈ Ri ⊂ Rn are 

invertible in R(k, m) and the images of the elements C2i · tC2i
k for 2n−im < k ≤ h =

2n−1m are zero modulo Ih.

Proof. We will use downward induction on i. The base case, when i = n, is immediate 
because the elements C2n · tC2n

m are invertible in R(k, m) and the elements C2n · tC2n
k are 

identically zero for k > m.
Now, suppose we have proven the claim for i, where 1 < i ≤ n. More specifically, 

suppose we have proven that the images of the elements C2i · tC2i
n−i are invertible in 
2 m
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R(k, m) and the images of the elements C2i · tC2i
k are zero modulo Ih for 2n−im < k ≤ h. 

Theorem 1.1 and the fact that 2n−(i−1)m ≤ h implies that

t
C2i−1

2n−(i−1)m
≡ t

C2i

2n−(i−1)m
+ γit

C2i

2n−(i−1)m
+

2n−(i−1)m−1∑
j=1

γit
C2i
j (tC2i

2n−(i−1)m−j
)2

j

(mod Ih)

≡ γit
C2i
2n−im · (tC2i

2n−im)2
2n−im

(mod Ih).

This is because every other term in the first line of the equation has a factor in the set 
C2i · tC2i

k , 2n−im < k ≤ h, which is zero modulo Ih by the induction hypothesis.
Since γit

C2i
2n−im · (tC2i

2n−im)22n−im is invertible in R(k, m) by the induction hypothesis 
and

Ih = IC2 ⊆ IC2n = m,

the element tC2i−1

2n−(i−1)m
is invertible in R(k, m).

Now, for all k such that 2n−(i−1)m < k ≤ h, we have

t
C2i−1
k ≡ t

C2i
k + γit

C2i
k +

k−1∑
j=1

γit
C2i
j (tC2i

k−j)
2j

(mod Ih).

Again, using the fact that the elements C2i · tC2i
k are zero modulo Ih for 2n−im < k ≤ h, 

every term in this sum vanishes modulo Ih. This completes the induction step. �
By letting i = 1 in Proposition 4.3 and using Proposition 3.5, we obtain the following 

corollary.

Corollary 4.4. The element vh is invertible in R(k, m).

Proposition 4.5. The ideals m and Ih are equal in R(k, m).

Proof. By Proposition 3.5 and Proposition 4.2, it suffices to prove that IC2 = IC2n . We 
will prove that IC2 = IC2r for all 1 ≤ r ≤ n by using induction on r. The base case, 
when r = 1, is trivial.

Let 1 < r ≤ n and suppose we have shown that

IC2 = IC2r−1 .

For simplicity of notations, let k := 2n−rm. Consider the ideals

IC2r−1 = (2, C2r−1 · tC2r−1
1 , . . . , C2r−1 · tC2r−1

2k−1 , C2r−1 · (tC2r−1
2k − γr−1t

C2r−1
2k )),

IC2r = (2, C2r · tC2r
1 , . . . , C2r · tC2r

k−1, C2r · (tC2r
k − γrt

C2r
k )).
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For 1 ≤ i ≤ k − 1, define Ji to be the ideal

Ji = IC2r−1 + (2, C2r · tC2r
1 , . . . , C2r · tC2r

i−1)

= IC2 + (2, C2r · tC2r
1 , . . . , C2r · tC2r

i−1).

Note that the equality holds because of our inductive hypothesis. Also, by Proposi-
tion 3.7, the ideal Ji is γr-invariant and

Ji+1 = Ji + (C2r · tC2r
i ).

We will use downward induction on i to show that the elements

{C2r · tC2r
i , . . . , C2r · tC2r

k−1}

are in the ideal Ji for all 1 ≤ i ≤ k − 1. In particular, at i = 1, this will imply that the 
elements

{C2r · tC2r
1 , . . . , C2r · tC2r

k−1}

are in the ideal J1 = IC2r−1 = IC2 .
The base case, when i = k − 1, is proven as follows. By Theorem 1.1, we have the 

formulas

t
C2r−1
k−1 ≡ tC2r

k−1 + γrt
C2r
k−1 +

k−2∑
j=1

γrt
C2r
j (tC2r

k−1−j)
2j

(mod IC2)

≡ tC2r
k−1 + γrt

C2r
k−1 (mod Jk−1)

and

t
C2r−1
2k−1 ≡ γrt

C2r
k−1(t

C2r
k )2

k−1
+ γrt

C2r
k (tC2r

k−1)
2k

(mod IC2).

Since t
C2r−1
k−1 ∈ Jk−1, the first equation implies that

tC2r
k−1 ≡ γrt

C2r
k−1 (mod Jk−1).

Substituting this into the second equation and using the fact that tC2r−1
2k−1 ∈ IC2 from 

Proposition 4.3 yields the relation

tC2r
k−1(t

C2r
k )2

k−1
+ γrt

C2r
k (tC2r

k−1)
2k ≡ 0 (mod Jk−1)

=⇒ tC2r
k−1

(
(tC2r

k )2
k−1

+ γrt
C2r
k (tC2r

k−1)
2k−1

)
≡ 0 (mod Jk−1).

By Proposition 4.3, the element (tC2r
k )2k−1 is a unit in R(k, m). Since
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γrt
C2r
k (tC2r

k−1)
2k−1 ∈ m,

the sum

(tC2r
k )2

k−1
+ γrt

C2r
k (tC2r

k−1)
2k−1

is a unit in R(k, m). Therefore,

tC2r
k−1 ≡ 0 (mod Jk−1).

By Proposition 3.7, the ideal Jk−1 is γr-invariant. It follows from this that all the elements 
C2r · tC2r

k−1 are in Jk−1. This proves the base case of the induction.
Suppose we have proven the claim for i +1 ≤ k−1. To prove the claim for i, it suffices 

to show that the elements C2r · tC2r
i are in the ideal Ji. Once we have established this, 

it will follow from the induction hypothesis that all the elements in

{C2r · tC2r
i , . . . , C2r · tC2r

k−1}

are also in the ideal Ji. Indeed, the induction hypothesis implies that the elements

{C2r · tC2r
i+1 , . . . , C2r · tC2r

k−1}

are in the ideal Ji+1 and Ji+1 = Ji + (C2r · tC2r
i ).

By Theorem 1.1, we have

t
C2r−1
i ≡ tC2r

i + γrt
C2r
i +

i−1∑
j=1

γrt
C2r
j (tC2r

i−j )2
j

(mod IC2)

≡ tC2r
i + γrt

C2r
i (mod Ji).

Since t
C2r−1
i ∈ Ji, this implies that

tC2r
i ≡ γrt

C2r
i (mod Ji). (4.3)

By Theorem 1.1 again, we have

t
C2r−1
k+i ≡ tC2r

k+i + γrt
C2r
k+i +

k+i−1∑
j=1

γrt
C2r
j (tC2r

k+i−j)
2j

(mod IC2)

≡ γrt
C2r
i (tC2r

k )2
i

+ γrt
C2r
i+1 (tC2r

k−1)
2i+1

+ · · · + γrt
C2r
k (tC2r

i )2
k

(mod Ji),

where the second equality uses Proposition 4.3. Since the induction hypothesis implies 
that tC2r−1

k+i ∈ IC2 , this gives
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0 ≡ γrt
C2r
i (tC2r

k )2
i

+ γrt
C2r
i+1 (tC2r

k−1)
2i+1

+ · · · + γrt
C2r
k (tC2r

i )2
k

(mod Ji). (4.4)

Substituting Equation (4.3) into Equation (4.4), we obtain the equality

0 ≡ tC2r
i (tC2r

k )2
i

+ γrt
C2r
i+1 (tC2r

k−1)
2i+1

+ · · · + γrt
C2r
k (tC2r

i )2
k

(mod Ji)

≡ tC2r
i (tC2r

k )2
i

+ (tC2r
i )2 · x (mod Ji) (by induction hypothesis)

≡ tC2r
i

(
(tC2r

k )2
i

+ tC2r
i · x

)
(mod Ji)

≡ tC2r
i · unit (mod Ji).

Here,

x ≡ (tC2r
i )−2

(
γrt

C2r
i+1 (tC2r

k−1)
2i+1

+ · · · + γrt
C2r
k (tC2r

i )2
k
)

(mod Ji).

This makes sense because each of the elements in C2r · tC2r
i+1 , . . ., C2r · tC2r

k−1 is divisible 
by tC2r

i modulo Ji. Indeed, tC2r
i ≡ γrt

C2r
i modulo Ji as shown above and the elements 

C2r · tC2r
i+1 , . . ., C2r · tC2r

k−1 are in Ji+1 by the induction hypothesis. So,

Ji+1 = Ji + (C2r · tC2r
i ) ≡ (tC2r

i ) (mod Ji).

The last equality holds because tC2r
k is a unit in π∗Eh and tC2r

i · x ∈ m. This implies 
that tC2r

i ≡ 0 (mod Ji). Since the ideal Ji is γr-invariant by Proposition 3.7, all of the 
elements C2r · tC2r

i are in Ji. This finishes the induction step.
When i = 1, the elements

{C2r · tC2r
1 , . . . , C2r · tC2r

k−1}

are all in J1 = IC2 . Applying Theorem 1.1 produces the relation

t
C2r−1
k ≡ tC2r

k + γrt
C2r
k +

k−1∑
j=1

γrt
C2r
j (tC2r

k−j)
2j

(mod IC2).

Therefore,

0 ≡ tC2r
k + γnt

C2r
k (mod IC2),

and the elements C2r ·(tC2r
k −γrt

C2r
k ) are in IC2 . It follows that IC2r = IC2 . This completes 

the induction step. �
Theorem 4.6. The formal group law (K, ̄u, Γh) of Equation (4.2) has height h. Further-
more, the formal group law (R(k, m), u, Fh) is a universal deformation of (K, ̄u, Γh) and
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G(k,m) ⊆ G(k,Γh),

where G(k, m) is defined as in (2.5).

Proof. The ring R(k, m) has Krull dimension h. In particular, the regular sequence of 
elements

{C2n · tC2n
1 , . . . , C2n · tC2n

m−1, C2n · (u− γnu)}

in R(k, m) forms a generating set for m. Since Ih = m by Proposition 4.5 and Ih is 
generated by the h elements {2, v1, . . . , vh−1}, these elements also form a regular sequence 
in R(k, m) that generates the maximal ideal m.

By Corollary 4.4, the element vh is a unit in R(k, m). This shows that

Γh := p∗Fh

is a formal group law of height h over the residue field R(k, m)/m = K. We conjugate 
Fh and Γh by u to obtain formal group laws F 0

h and Γ0
h over R(k, m)0, the homogenous 

elements of degree zero, and k respectively. Let m0 = R(k, m)0 ∩m and ui = viu
1−2i in 

R(k, m)0. The map

W (k)�u1, . . . , uh−1� −→ R(k,m)0

is an isomorphism, as can be verified by filtering both sides by the maximal ideal 
(2, u1, . . . , uh−1) = m0. Because of its relationship to vi, the element ui is by defini-
tion the coefficients of x2i in the 2-series of F 0

h modulo (2, u1, . . . , ui−1). It follows that 
(R(k, m)0, F 0

h ) satisfies all the conditions of [30, Proposition 1.1], and so is a universal 
deformation for (k, Γ0

h).
Finally, since the action of G(k, m) on R(k, m) is faithful and via continuous ring 

isomorphisms, G(k, m) ⊆ G(k, Γh) by (2.7). �
This concludes the algebra needed to establish Theorem 1.5.

5. An equivariant Lubin–Tate spectrum

In this section, we turn to study the Lubin–Tate spectrum E(k, Γh) and prove The-
orems 1.5 and 1.7. The universal deformation Fh of Γh studied in the previous section 
defines a Lubin–Tate spectrum E(k, Γh). By the Goerss–Hopkins–Miller theorem, the 
action of G(k, m) on Γh gives rise to an action of G(k, m) on our Lubin–Tate theory 
E(k, Γh) by maps of E∞-ring spectra. We then promote our spectrum E(k, Γh) to a 
C2n -spectrum and show that as a C2n-spectrum, E(k, Γh) has an equivariant orientation 
in the sense that there is a C2n-equivariant map
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MU ((C2n )) −→ E(k,Γh)

that classifies Fh on underlying homotopy groups.
We will also prove that the homotopy fixed point spectrum E(k, Γh)hC(k,m) of E(k, Γh)

by a subgroup C(k, m) ⊂ G(k, Γh) of order coprime to 2 also admits a C2n-equivariant 
orientation.

5.1. The classical Lubin–Tate spectrum

To obtain E(k, Γh), we simply apply the Landweber exact functor theorem and the 
Goerss–Hopkins–Miller theorem. Combined, these give the following result.

Theorem 5.1. There is a complex orientable E∞-ring spectrum E(k, Γh) such that 
π∗E(k, Γh) = R(k, m). The spectrum E(k, Γh) has a continuous action of G(k, Γh) by 
maps of E∞-ring spectra which refines the action of G(k, Γh) on R(k, m).

This finishes the proof of Theorem 1.5. We will now give a description of π∗E(k, Γh)
which emphasizes the structure of π0, as mentioned in Remark 1.6.

Proposition 5.2. There are elements

C2n · τi = {τi, γnτi, . . . , γ2n−1−1
n τi} ⊆ R(k,m)0

for 1 ≤ i ≤ m − 1 and

C2n · τm = {τm, γnτm, . . . , γ2n−1−2
n τm} ⊆ R(k,m)0

(note that there is no generator “γ2n−1−1
n τm”) such that

R(k,m) ∼= W (k)�C2n · τ1, . . . , C2n · τm−1, C2n · τm�[u±1].

The C2n-action on R(k, m) is determined by the formula

fγn
(γr

nx) = γr+1
n x

for x = τi (1 ≤ i ≤ m) and r ≤ 2n−1 − 2. Furthermore

(1) for 1 ≤ i ≤ m, fγn
(γ2n−1−1

n τi) = τi,
(2)

fγn
(γ2n−1−2

n τm) = 1 + 1
2n−1−2 .
(1 − τm)(1 − γnτm) . . . (1 − γn τm)
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(3) For 1 ≤ r ≤ 2n−1 − 1,

fγr
n
(u) = (1 − γr−1τm)(1 − γr−2τm) . . . (1 − τm)u

and fγ2n−1
n

(u) = −u.

The group Gal(k/F2) acts on R(k, m) via its action on the coefficients W (k), and the 
action of ζ ∈ k×[q] fixes τm and is determined by

fζ(u) = ζ−1u,

fζ(τi) = ζ2i−1τi

for 1 ≤ i ≤ m − 1.

Proof. Let γ = γn. For 1 ≤ i < m and 0 ≤ r ≤ 2n−1 − 1, let γrτi = γr(tC2n
i u1−2i). Then

γ(γr−1τi) =
{
γrτi 0 < r < 2n−1,

τi r = 2n−1.

For 0 ≤ r ≤ 2n−1 − 2, let γr(τm) = γr(1 − u−1γu). Clearly, for 0 < r ≤ 2n−1 − 2, 
γ(γr−1τm) = γrτm. Furthermore,

γ(γ2n−1−2τm) = 1 + u

γ2n−1−1u
.

Since

1
1 − γrτm

= γru

γr+1u

for 0 ≤ r ≤ 2n−1 − 2, we conclude that

γ(γ2n−1−2τm) = 1 + 1
(1 − τm) · · · (1 − γ2n−1−2τm)

,

which proves the claim in the statement of the theorem. The action of C(k, m) is clear 
from the definition of the τis. �

Theorem 5.1 implies that E(k, Γh) has an action of G(k, m) by maps of E∞-ring 
spectra. Before promoting E(k, Γh) to an equivariant spectrum, we prove the following 
splitting result.

Theorem 5.3. Let

C(k,m) = Gal � k×[q] ⊆ G(k,m).
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There is a G(k, m)-equivariant map

E(k,Γh) −→ E(k,Γh)hC(k,m)

which splits the natural map E(k, Γh)hC(k,m) −→ E(k, Γh).

Proof. In this proof, let E = E(k, Γh), G = G(k, Γh) and S = S(k, Γh). Note that the 
group k×[q] is cyclic. Let � be its order and ζ be a generator so that ζ� = 1. Define

ε := 1
q

�−1∑
i=0

[ζi].

Letting [ζi] act on E via the action of k×[q], we obtain a map

E
ε−→ E.

Let ε−1E be the telescope of ε. Note that since any element of Gal permutes the set 
{ζi}�−1

i=0 , ε commutes with the action of Gal. Similarly, ε commutes with the action of 
C2n and k×[q]. Therefore, G(k, m) acts on ε−1E and the map

E −→ ε−1E

is G(k, m)-equivariant. Furthermore, the composite

Ehk×[q] −→ E −→ ε−1E

is a G(k, m)-equivariant map which is an isomorphism on homotopy groups. This can be 
verified by using the collapse of the homotopy fixed points spectral sequence for Ehk×[q]. 
Therefore, the composite is a G(k, m)-equivariant equivalence.

Now, note that

EhC(k,m) � (Ehk×[q])hGal.

By [10, Lemma 1.37], there is a Gal-equivariant equivalence

Gal+ ∧EhC(k,m) −→ Ehk×[q].

This is shown by first proving that the composite

EhS ∧EhC(k,m) −→ Ehk×[q] ∧Ehk×[q] −→ Ehk×[q] (5.1)

obtained by the natural maps followed by multiplication is a weak equivalence, and then 
appealing to the Gal-equivariant equivalence
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Gal+ ∧EhG −→ EhS

proved in [10, Lemma 1.36]. However, note that the latter map is a G(k, m)-equivalence 
if we equip both spectra with trivial C2n × k×[q]-actions. Furthermore, (5.1) is also a 
G(k, m)-equivariant map. Therefore, the equivalence

Gal+ ∧EhC(k,m) � Ehk×[q]

is G(k, m)-equivariant. It follows that EhC(k,m) splits off equivariantly from Ehk×[q], 
hence from E. �
5.2. E(k, Γh) as an equivariant spectrum

We will now upgrade E(k, Γh) to a commutative C2n-spectrum. By Theorem 5.1, we 
may view E(k, Γh) as a commutative ring object in naive C2n-spectra. The functor

X �−→ F (EC2n+, X)

takes naive equivalences to genuine equivariant equivalences, and hence allows us to view 
E(k, Γh) as a genuine C2n-equivariant spectrum.

The commutative ring spectrum structure on E(k, Γh) gives rise to an action of a 
trivial E∞-operad on F (EC2n+, E(k, Γh)). Work of Blumberg–Hill [9] shows that this is 
sufficient to ensure that F (EC2n+, E(k, Γh)) is a genuine equivariant commutative ring 
spectrum (see also [24, Section 2.2]). Therefore, by passing to the cofree localizations, 
we may view E(k, Γh) and E(k, Γh)hC(k,m) as commutative C2n-spectra.

Proof of Theorem 1.7. The Real orientation theorem of [17] implies that the complex 
orientation

MU = i∗eMUR −→ i∗eE(k,Γh)

refines to a Real orientation

MUR −→ i∗C2
E(k,Γh).

The 2-typical nature of our formal group laws implies that these maps factor through 
BP = i∗eBPR and BPR respectively.

Applying the norm functor to the maps

MUR −→ BPR −→ i∗C2
E(k,Γh)

and post-composing with the counit map of the norm-restriction adjunction gives maps

MU ((C2n )) −→ BP ((C2n )) −→ NC2n
C i∗C E(k,Γh) −→ E(k,Γh)
2 2
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of C2n -ring spectra. Consider the composite

φ : BP ((C2n )) −→ NC2n
C2

i∗C2
E(k,Γh) −→ E(k,Γh).

By construction, πe
∗φ is the map f : Rn −→ R(k, m) defined in (4.1), which is the same 

map as in the statement of Theorem 1.7. �
In fact, we can obtain a refinement of Theorem 1.7. There is a similar C2n -equivariant 

map from MU ((C2n )) to the fixed point spectrum E(k, Γh)hC(k,m), where C(k, m) ⊂
G(k, Γh) is the subgroup defined in Theorem 5.3. Suppose k×[q] has α elements, where 
1 ≤ α ≤ 2m − 1 = q. It follows from the description of the G(k, m)-action on π∗E(k, Γh)
(Theorem 1.5) that

(π∗E(k,Γ))C(k,m) ∼= Z2[C2n · tC2n
1 , . . . , C2n · tC2n

m−1, C2n · uα][C2m · (uα)−1]∧m′ ,

where

m′ = (C2n · tC2n
1 , . . . , C2n · tC2n

m−1, C2n · (uα − γnu
α)).

If α = q, then uα = u2m−1 = tC2n
m and

(π∗E(k,Γ))C(k,m) ∼= Z2[C2n · tC2n
1 , . . . , C2n · tC2n

m−1, C2n · tC2n
m ][C2m · (tC2n

m )−1]∧m′ ,

where

m′ = (C2n · tC2n
1 , . . . , C2n · tC2n

m−1, C2n · (tC2n
m − γnt

C2n
m )).

Furthermore, the homotopy fixed points spectral sequence

Es,t
2 = Hs(C(k,m), πtE(k,Γh)) =⇒ πt−sE(k,Γh)hC(k,m)

has the property that E>0,∗
2 = 0. This follows from the fact that the action of Gal on 

π∗E(k, Γ) is free, and that the order of k×[q] is odd. Therefore, the homotopy fixed points 
spectral sequence collapses and we have the following result.

Proposition 5.4. There is an isomorphism

π∗E(k,Γh)hC(k,m) ∼= Z2[C2n · tC2n
1 , . . . , C2n · tC2n

m−1, C2n · uα][C2m · (uα)−1]∧m′ ,

where

m′ = (C2n · tC2n
1 , . . . , C2n · tC2n

m−1, C2n · (uα − γnu
α)).

If α = q, then uα = u2m−1 = tC2n
m .
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On the underlying homotopy groups, the map

πe
∗E(k,Γh) −→ πe

∗E(k,Γh)hC(k,m)

is not a ring map, but it is a C2n-equivariant map that sends tC2n
i �→ tC2n

i for 1 ≤ i ≤
m − 1, and uα �→ uα.

For simplicity, for our next theorem we will choose our field k so that k×[q] has 
(2m − 1)-elements.

Theorem 5.5. There is a C2n-equivariant homotopy commutative ring map

MU ((C2n )) −→ E(k,Γh)hC(k,m).

This map factors through a homotopy commutative ring map

ψ : BP ((C2n )) −→ E(k,Γh)hC(k,m)

such that the map πe
∗ψ is the map Rn −→ πe

∗E(k, Γh)hC(k,m) determined by

tC2n
i �−→

{
tC2n
i 1 ≤ i ≤ m,

0 i > m.

Proof. Consider the splitting map

E(k,Γh) −→ E(k,Γh)hC(k,m)

in Theorem 5.1. Although this map is not a ring map, it is still a C2n -equivariant map 
and hence induces a map

C2- HFPSS(E(k,Γh)) −→ C2- HFPSS(E(k,Γh)hC(k,m)) (5.2)

of C2-equivariant homotopy fixed points spectral sequences (HFPSS).
On the other hand, we also have the map

E(k,Γh)hC(k,m) −→ E(k,Γh),

which is a map of commutative C2n-spectra. This map induces a map

C2- HFPSS(E(k,Γh)hC(k,m)) −→ C2- HFPSS(E(k,Γh)). (5.3)

The composition map of spectral sequences

C2- HFPSS(E(k,Γh)hC(k,m)) −→ C2- HFPSS(E(k,Γh))

−→ C - HFPSS(E(k,Γ )hC(k,m))
2 h
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is the identity map.
By Theorem 1.5, and [24, Theorem 4.7], the E2-page of the RO(C2)-graded C2-

homotopy fixed points spectral sequence for E(k, Γh) is

W (k)[C2n · t̄C2n
1 , . . . , C2n · t̄C2n

m−1, C2n · ū][C2n · ū−1]∧m̄ ⊗ Z[u±
2σ, aσ]/(2aσ).

By Proposition 5.4, the E2-page of the RO(C2)-graded C2-homotopy fixed points spectral 
sequence for E(k, Γh)hC(k,m) is

Z2[C2n · t̄C2n
1 , . . . , C2n · t̄C2n

m−1, C2n · ūα][C2m · (ūα)−1]∧m̄′ ⊗ Z[u±
2σ, aσ]/(2aσ).

The map (5.3) induces an injection on the E2-page. Hahn–Shi [17, Theorem 1.2] have 
completely computed all the differentials in C2- HFPSS(E(k, Γh)). By naturality of the 
maps (5.2) and (5.3), we deduce that the map

C2- HFPSS(E(k,Γh)hC(k,m)) −→ C2- HFPSS(E(k,Γh))

also induces injections on the set of differentials on each page. More specifically, 
for any nonzero differential dr(x) = y in C2- HFPSS(E(k, Γh)hC(k,m)), its image in 
C2- HFPSS(E(k, Γh)) is also the nonzero differential dr(x) = y.

As a consequence, we deduce that

πC2
kρ2−1(E(k,Γh)hC(k,m)) = 0

for all k ∈ Z (this is because πC2
kρ2−1(E(k, Γh)) = 0 for all k ∈ Z). By [24, Lemma 3.3], the 

spectrum i∗C2
E(k, Γh)hC(k,m) is Real orientable, and we obtain a homotopy commutative 

ring map

MUR −→ i∗C2
E(k,Γh)hC(k,m)

that factors through BPR.
Since E(k, Γh)hC(k,m) is a C2n-equivariant commutative ring, applying the norm func-

tor NC2n
C2

(−) to

MUR −→ BPR −→ i∗C2
E(k,Γh)hC(k,m)

and using the norm-forget adjunction produces the homotopy commutative ring maps

MU ((C2n )) BP ((C2n )) E(k,Γh)hC(k,m).
ψ

The map πe
∗ψ is determined by the C2n-action on the formal group law over 

πe
∗E(k, Γh)hC(k,m) defined via the map
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BP∗ −→ πe
∗E(k,Γh)hC(k,m).

By construction, it is the map we claimed in the statement of the theorem. �
6. Equivariant orientation and localization

In this section, we prove Theorem 1.8. Throughout this section we will denote the 
group C2n by G and the Lubin–Tate theory E(k, Γh) by Eh. We let ρG be the real 
regular representation of G and we abbreviate ρ2 = ρC2 . We need to specify an element 
D ∈ πG

∗ρG
MU ((C2n )) so that there are the desired factorizations as stated in the theorem 

and the following three properties hold:

(1) The spectra D−1MU ((G)), D−1BP ((G)) are cofree.
(2) The Hill–Hopkins–Ravenel periodicity theorem [22, Theorem 9.19] holds for

D−1MU ((G)) and D−1BP ((G)).
(3) In πe

∗D
−1BP ((G))〈m〉, IC2 = IG, where

IC2 = (2, tC2
1 , . . . , tC2

2n−1m−1, 2t
C2
2n−1m) = (2, v1, . . . , v2n−1m−1)

IG = (2, G · tG1 , . . . , G · tGm−1, G · (tGm − γnt
G
m))

are the ideals defined in the proof of Proposition 4.5.

Before specifying the element D so that properties (1)–(3) hold, we will first explain 
how to obtain the factorizations in Theorem 1.8 once we have chosen an arbitrary element 
D ∈ πG

�MU ((G)) that becomes invertible in πG
�Eh.

Given a homotopy commutative spectrum R, the spectrum D−1R is defined to be the 
homotopy colimit of the sequence

R S−V ∧R S−2V ∧R · · · .D D D

The C2n -equivariant orientation

MU ((G)) −→ Eh

is a map of homotopy commutative ring spectra, and there is a commutative diagram

MU ((G)) S−V ∧MU ((G)) S−2V ∧MU ((G)) · · ·

Eh S−V ∧ Eh S−2V ∧ Eh · · ·

D D D

D D D

Passing to the colimit and using the fact that D−1Eh � Eh produces the factorization 
map
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D−1MU ((G)) −→ Eh.

This proves the first diagram. The proof for factorization through D−1BP ((G)) is exactly 
the same.

Remark 6.1. As we will see, the element D ∈ πG
∗ρG

MU ((G)) also becomes invertible in 

πG
�E

hC(k,m)
h under the map

πG
�MU ((G)) −→ πG

�E
hC(k,m)
h .

It follows from Theorem 1.8 and the discussion above that there are factorizations

MU ((G)) E
hC(k,m)
h

D−1MU ((G))

BP ((G)) E
hC(k,m)
h

D−1BP ((G))

for the G-equivariant orientations of EhC(k,m)
h through D−1MU ((G)) and D−1BP ((G)).

We will now specify the element D ∈ πG
�MU ((G)) so that Theorem 1.8 holds. By [22, 

Section 5] and [17, Theorem 6.7], the spectra i∗C2
MU ((G)), i∗C2

BP ((G)), i∗C2
BP ((G))〈m〉 and 

i∗C2
Eh are strongly even, which means in particular that the restriction maps

πC2
∗ρ2

(−) −→ πe
∗(−)

from the (∗ρ2)-graded C2-equivariant homotopy groups to the non-equivariant homo-
topy groups are isomorphisms. Therefore, we have complete knowledge of the homotopy 
groups of πC2∗ρ2

MU ((G)), πC2∗ρ2
BP ((G)), πC2∗ρ2

BP ((G))〈m〉, and πC2∗ρ2
Eh. They are

πC2
∗ρ2

MU ((G)) = Z[G · r̄G1 , G · r̄G2 , . . .],

πC2
∗ρ2

BP ((G)) = Z(2)[G · t̄G1 , G · t̄G2 , . . .],
πC2
∗ρ2

BP ((G))〈m〉 = Z(2)[G · t̄G1 , G · t̄G2 , . . . , G · t̄Gm],

πC2
∗ρ2

Eh = Z2[G · t̄G1 , . . . , G · t̄Gm−1, G · ū][G · ū−1]∧m̄

where

m̄ = (C2n · t̄C2n
1 , . . . , C2n · t̄C2n

m−1, C2n · (ū− γnū))

= (C2n · t̄C2n
1 , . . . , C2n · t̄C2n

m−1, C2n · (t̄m − γnt̄m)).

The following proposition gives a criterion to identify elements in πG
∗ρG

MU ((G)) that 
becomes invertible under the induced map
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πG
∗ρG

MU ((G)) −→ πG
∗ρG

Eh

of G-equivariant homotopy groups. The same result holds for BP ((G)) as well.

Proposition 6.2. If the element x ∈ πC2∗ρ2
MU ((G)) becomes invertible under the map

πC2
∗ρ2

MU ((G)) −→ πC2
∗ρ2

Eh

of C2-equivariant homotopy groups, then the element NG
C2

(x) ∈ πG
∗ρG

MU ((G)) also be-
comes invertible under the map

πG
∗ρG

MU ((G)) −→ πG
∗ρG

Eh

of G-equivariant homotopy groups.

Proof. Let the image of x under the map

πC2
∗ρ2

MU ((G)) −→ πC2
∗ρ2

Eh

be y. We will prove that the image of NG
C2

(x) under the map

πG
∗ρG

MU ((G)) −→ πG
∗ρG

Eh

is NG
C2

(y), which is invertible.
We will denote the slice spectral sequence and the homotopy fixed points spectral 

sequence by SliceSS(−) and HFPSS(−), respectively. Consider the maps

C2- SliceSS(MU ((G))) −→ C2- HFPSS(MU ((G))) −→ C2- HFPSS(Eh)

of RO(C2)-graded spectral sequences. The element x is represented by a class on the 
E2-page of C2- SliceSS(MU ((G))), which, by an abuse of notation, will also be denoted 
by x. On the E2-page, the maps of spectral sequences above send

x �−→ x′ �−→ y,

where x′ and y are classes on the E2-page of C2- HFPSS(MU ((G))) and the E2-page of 
C2- HFPSS(Eh), respectively. Since x is a permanent cycle, x′ and y are also permanent 
cycles. The element y survives to become the element which, again, we also call y ∈
πC2∗ρ2

Eh in homotopy.
Now, consider the maps

G- SliceSS(MU ((G))) −→ G- HFPSS(MU ((G))) −→ G- HFPSS(Eh)
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of RO(G)-graded spectral sequences. On the E2-page, the class NG
C2

(x) is first mapped 
to NG

C2
(x′), and then mapped to NG

C2
(y). This is because the second map on the E2-page 

is completely determined by the G-equivariant map

πe
∗MU ((G)) −→ πe

∗Eh.

The classes NG
C2

(x), NG
C2

(x′), and NG
C2

(y) are permanent cycles, and they all survive to 
the E∞-page. It follows that as elements in the G-equivariant homotopy groups πG

∗ρG
(−),

NG
C2

(x) �−→ NG
C2

(y)

under the map

πG
∗ρG

MU ((G)) −→ πG
∗ρG

Eh. �
We will now specify the element D ∈ πG

�MU ((G)) so that properties (1)–(3) hold. 
Our method is as follows: first, we will identify elements x ∈ πC2∗ρ2

BP ((G)) that become 
invertible under the map

πC2
∗ρ2

BP ((G)) −→ πC2
∗ρ2

Eh.

By Proposition 6.2, the elements NG
C2

(x) ∈ πG
∗ρG

BP ((G)) (formed by considering x as 
elements in πC2∗ρ2

MU ((G)) under the map πC2∗ρ2
BP ((G)) −→ πC2∗ρ2

MU ((G))) will also become 
invertible in πG

∗ρG
Eh under the map

πG
∗ρG

BP ((G)) −→ πG
∗ρG

Eh.

We will define

D :=
∏

NG
C2

(x)

to be the product of the elements NG
C2

(x).

Proposition 6.3. The images of the elements t̄C2i
2n−im ∈ πC2∗ρ2

BP ((G)) for 1 ≤ i ≤ n are 
invertible in πC2∗ρ2

Eh.

Proof. This is an immediate consequence of Proposition 4.3. �
Proof of Theorem 1.8. Proposition 6.3 shows that we can include the product

n∏
i=1

NG
C2

(t̄C2i
2n−im) = NG

C2
(t̄C2

2n−1m) ·NG
C2

(t̄C4
2n−2m) · · ·NG

C2
(t̄C2n

m ) (6.1)
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into D. By the arguments in [22, Section 9] and [22, Section 10], inverting these el-
ements will produce periodicity and homotopy fixed points theorems for the spectra 
D−1MU ((G)), D−1BP ((G)), and their quotients. Therefore properties (1) and (2) hold.

Now, we will include elements into D so that property (3) holds. We will describe an 
iterative algorithm to accomplish this. In the proof of Proposition 4.5, we used induction 
on n to show that IC2 = IC2n in π∗Eh. For each step of the induction process, we defined 
intermediate ideals Ji ⊂ πe

∗BP ((G))〈m〉 and used downward induction on i to show that 
certain elements are in the images of ideals Ji in π∗Eh.

In the argument of the downward induction, we identified certain elements in 
πe
∗BP ((G))〈m〉 that become invertible in π∗Eh. For instance, the elements

(tC2r
k )2

k−1
+ γrt

C2r
k (tC2r

k−1)
2k−1

and

(tC2r
k )2

i

+ tC2r
i · x

are such elements (see the proof of Proposition 4.5). Our algorithm is as follows: ev-
erytime we identify such an element t ∈ πe

∗BP ((G))〈m〉, include NG
C2

(t̄) into the product 
defining D, where t̄ ∈ πC2∗ρ2

BP ((G))〈m〉 is the (unique) C2-equivariant lift of t. For the 
two elements mentioned above, we will include

NG
C2

((t̄C2r
k )2

k−1
+ γr t̄

C2r
k (t̄C2r

k−1)
2k−1)

and

NG
C2

((t̄C2r
k )2

i

+ t̄C2r
i · x̄)

into the product. Including all such elements to the product defining D will guarantee 
that the proof for IC2 = IG will carry through in πe

∗D
−1BP ((G))〈m〉 as well. This proves 

property (3). �
7. The height of BP ((C2n))〈m〉

In this section, we continue to let G = C2n and h = 2n−1m. We now turn to analyze 
the height of the formal group law over BP ((G))〈m〉. We start by making a few remarks 
that will render this analysis easier. By Proposition 3.5, we have

tC2
k ≡ vk (mod Ik)

in BP∗. In the equivalence above, the generators vk are the Araki generators. The gen-
erators “vk” are only well defined modulo Ik and any choice of these generators will give 
the same chromatic story. So, instead of using classical choices of generators for BP∗
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such as the Araki or Hazewinkel generators, we can use generators tC2
k in our analysis of 

the heights of various BP -modules. For instance, since the Bousfield class of E(h) is the 
same as that of v−1

h BP [39, Theorem 7.3.2], which is the same as that of (tC2
h )−1BP , we 

have

LhX = L(tC2
h )−1BP

X

for any spectrum X.
For this reason, from now on, we redefine

vk := tC2
k ∈ BP∗. (7.1)

As usual, we let Ir = (2, v1, . . . , vr−1). As an immediate consequence of our work in the 
previous sections, we have the following result. Note that in the introduction, we called

Rn〈m〉 := πe
∗i

∗
eBP ((G))〈m〉.

Proposition 7.1. In πe
∗D

−1BP ((G))〈m〉, Ih = IG and πe
∗D

−1BP ((G))〈m〉 is a regular local 
ring with maximal ideal Ih generated by the regular sequence (2, v1, . . . , vh−1). Further-
more, vh maps to tβm in

πe
∗D

−1BP ((G))〈m〉/Ih ∼= F2[t±1
m ],

where β = (2h − 1)/(2m − 1). In particular, modulo Ih, the formal group law over 
πe
∗D

−1BP ((G))〈m〉 has height exactly h.

Proof. In the proof of Theorem 1.8, we show that Ih = IG. Now, as in the proof of 
Theorem 4.6, we get that (2, v1, . . . , vh−1) is a regular sequence by analyzing the Krull 
dimension of πe

∗D
−1BP ((G))〈m〉. Finally, vh (which is tC2

h ) is a factor in i∗eD (see Equa-
tion (6.1)). Therefore, vh is a unit and so maps to a unit in πe

∗D
−1BP ((G))〈m〉/Ih. The 

identification of πe
∗D

−1BP ((G))〈m〉/Ih is straightforward by using the fact that IG = Ih. 
It follows by degree reasons that vh maps to tβm. �

Note that, as we have mentioned in the proof above, the element vh is invertible in 
π∗i∗eD

−1BP ((G)) because it is a factor in i∗eD. Therefore i∗eD
−1BP ((G)) is a v−1

h BP -module 
and so is E(h)-local.

Lemma 7.2. For all 0 ≤ k ≤ n − 1 and r > 2km, under the composite map

πe
∗BP ((C2n−k )) −→ πe

∗BP ((C2n )) −→ πe
∗BP ((C2n ))〈m〉,

the images of tC2n−k
r and its conjugates by C2n−k are contained in the ideal Ir =

(2, v1, . . . , vr−1).



A. Beaudry et al. / Advances in Mathematics 392 (2021) 108020 53
Proof. We will use induction on k. The base case when k = 0 is immediate because for 
r > m, under the map

πe
∗BP ((C2n )) −→ πe

∗BP ((C2n ))〈m〉,

tC2n
r and its conjugates by C2n are all sent to 0.

Now, suppose the claim is true for k. By Theorem 1.1, we have the following equality 
in πe

∗BP ((C2n ))〈m〉 modulo Ir:

t
C2n−k−1
r ≡ t

C2n−k
r + γn−kt

C2n−k
r +

r−1∑
j=1

(tC2n−k

r−j )2
j

γn−kt
C2n−k

j .

For r > 2k+1m, every summand on the right hand side contains some t
C2n−k

i or its 
conjugate with i ≥ r/2 > 2km. By the induction hypothesis, these elements are all in 
the ideal Ii ⊆ Ir. It follows that tC2n−k−1

r = 0 modulo Ir for r > 2k+1m. The same proof 
applies to its conjugates. This finishes the induction. �
Proposition 7.3. Let h = 2n−1m. Under the composite map

π∗BP −→ πe
∗BP ((G)) −→ πe

∗BP ((G))〈m〉,

the images of the vi generators satisfy vr ∈ (2, v1, . . . , vh) for r > h.

Proof. Set k = n − 1 in Lemma 7.2. The result of the lemma implies that for all r > h, 
vr = tC2

r is contained in the ideal Ir = (2, v1, . . . , vr−1). In other words, Ir+1 = Ir. 
Applying the lemma iteratively shows that

Ir+1 = Ir = · · · = Ih+1 = (2, v1, . . . , vh).

It follows that vr ∈ (2, v1, . . . , vh), as desired. �
Proposition 7.4.

(1) For 0 ≤ r ≤ h,

π∗LK(r)i
∗
eD

−1BP ((G))〈m〉 ∼=
(
v−1
r π∗i

∗
eD

−1BP ((G))〈m〉
)∧

Ir
,

and LK(r)i
∗
eD

−1BP ((G))〈m〉 �� ∗.
(2) For r > h, LK(r)i

∗
eD

−1BP ((G))〈m〉 � ∗.

Proof. In [26, Section 4], the authors produce a cofinal sequence J(i) = (j0, j1, . . . , jr−1)
of positive integers and generalized Moore spectra



54 A. Beaudry et al. / Advances in Mathematics 392 (2021) 108020
MJ(i) = S0/(vj00 , . . . , v
jr−1
r−1 )

with maps MJ(i+1) −→ MJ(i) so that, for any spectrum X,

LK(r)X � holimiMJ(i) ∧LrX.

This gives a lim1-sequence

0 −→ lim
i

1π∗+1(MJ(i) ∧LrX) −→ π∗LK(r)X −→ lim
i

π∗(MJ(i) ∧LrX) −→ 0.

We apply this to X = i∗eD
−1BP ((G))〈m〉. First, we show that LrX = v−1

r X. Note 
that v−1

r X is E(r)-local because LrBP = v−1
r BP , and v−1

r X is a v−1
r BP -module. For 

any E(r)-local spectrum Y and a map X −→ Y , we get a map v−1
r BP −→ Y from the 

composition map BP −→ X −→ Y . This implies that the map X −→ Y factors through 
the map X −→ v−1

r X. It follows from the universal property of LrX that LrX � v−1
r X.

We can obtain MJ(i) ∧LrX by a series of cofiber sequences

Σjk|vk|S0/(vj00 , . . . , v
jk−1
k−1 )∧LrX

v
jk
k−−→ S0/(vj00 , . . . , v

jk−1
k−1 )∧LrX

−→ S0/(vj00 , . . . , vjkk )∧LrX.

We start with the case when r ≤ h. Since the sequence (v0, v1, . . . , vr−1) is regular in 
π∗LrX, so is the sequence (vj00 , vj11 , . . . , vjr−1

r−1 ). It follows that we get a series of exact 
sequences

0 −→ π∗LrX/(vj00 , . . . , v
jk−1
k−1 )

v
jk
k−−→ π∗LrX/(vj00 , . . . , v

jk−1
k−1 )

−→ π∗LrX/(vj00 , . . . , vjkk ) −→ 0,

which lead to an isomorphism

π∗(MJ(i) ∧LrX) ∼= (π∗LrX)/(vj00 , . . . , v
jr−1
r−1 ).

The maps in the inverse system limi π∗(MJ(i) ∧LrX) are then obviously surjective and 
so limi

1π∗+1(MJ(i) ∧LrX) = 0. The exact sequence above gives an isomorphism

π∗LK(r)X
∼=−→ lim

i
π∗(MJ(i) ∧LrX) ∼= (v−1

r π∗X)∧Ir .

To show that this is not 0, note that since (2, v1, . . . , vr) is a regular sequence, 
vr : π∗X/Ikr −→ π∗X/Ikr is injective. Therefore, π∗X/Ikr (which is clearly non-zero) in-
jects into v−1

r π∗X/Ikr . It follows that limk π∗X/Ikr injects into limk v
−1
r π∗X/Ikr , and so 

the latter is nontrivial. This proves (1).
For (2), note that vh is in D by definition. In the series of cofiber sequences forming 

MJ(i) ∧ LrX, the first map below induces an equivalence:



A. Beaudry et al. / Advances in Mathematics 392 (2021) 108020 55
Σjh|vh|S0/(vj00 , . . . , v
jh−1
h−1 )∧LrX

v
jh
h−−→ S0/(vj00 , . . . , v

jh−1
h−1 )∧LrX

−→ S0/(vj00 , . . . , vjhh )∧LrX.

This implies that S0/(vj00 , . . . , vjhh ) ∧LrX = 0 and therefore MJ(i) ∧LrX = 0. It follows 
that every term in the tower {MJ(i) ∧ LrX} is contractible and LK(r)X � ∗. �
Theorem 7.5.

(1) For 0 ≤ r ≤ h, LK(r)i
∗
eBP ((G))〈m〉 �� ∗.

(2) For r > h, LK(r)i
∗
eBP ((G))〈m〉 � ∗.

Proof. For (1), note that the maps

S0 −→ LK(r)i
∗
eBP ((G))〈m〉 −→ LK(r)i

∗
eD

−1BP ((G))〈m〉

are ring maps. Since LK(r)i
∗
eD

−1BP ((G))〈m〉 �� ∗ by Proposition 7.4, it follows that 
LK(r)i

∗
eBP ((G))〈m〉 �� ∗.

For (2), let X = i∗eBP ((G))〈m〉. We will show that LrX ∧MJ(i) � ∗ for the generalized 
Moore spectra

MJ(i) = S0/(vj00 , . . . , v
jr−1
r−1 ).

This will imply every term in the tower {LrX ∧MJ(i)} is contractible and LK(r)X � ∗. 
Note that

LrX ∧MJ(i) = LrX ∧MU MU/(vj00 , . . . , v
jr−1
r−1 ).

There is a Künneth spectral sequence [14, Theorem IV.4.1]

Es,t
2 = TorMU∗

−s,t (π∗X,π∗MU/(vj00 , . . . , v
jr−1
r−1 )) =⇒ πt−s

(
X ∧MU MU/(vj00 , . . . , v

jr−1
r−1 )

)
.

We have graded the spectral sequence cohomologically. As such, it is a lower half-plane 
spectral sequence. Note that

π∗MU/(vj00 , . . . , v
jr−1
r−1 ) ∼= MU∗/(vj00 , . . . , v

jr−1
r−1 )

and the E2-page is a module over

TorMU∗
0,∗ (π∗X,MU∗/(vj00 , . . . , v

jr−1
r−1 )) = (π∗X)/(vj00 , . . . , v

jr−1
r−1 ).

Since vr ∈ (v0, . . . , vr−1) by Proposition 7.3, vqr ∈ (vj00 , . . . , vjr−1
r−1 ) for q =

∑r−1
i=0 ji. 

This implies that vqr is zero on the E2-page. Any element in the homotopy groups of 
X ∧MU MU/(vj00 , . . . , vjr−1

r−1 ) is represented by some element of filtration s ≤ 0 on the 
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E∞-page of the Künneth spectral sequence. Since vqr is zero on the E2-page, this element 
must be annihilated by vq(s+1)

r in homotopy. Therefore, every element in the homotopy 
groups of X ∧MU MU/(vj00 , . . . , vjr−1

r−1 ) is killed by some finite power of vr. It follows that

π∗(LrX ∧MU MU/(vj00 , . . . , v
jr−1
r−1 )) = v−1

r π∗(X ∧MU MU/(vj00 , . . . , v
jr−1
r−1 )) = 0. �

Proposition 7.6. Let q = 2m − 1. If Fq ⊆ k then the natural map i∗eBP ((G)) −→
i∗eE(k, Γh)hC(k,m) of Theorem 5.5 factors through an equivalence

LK(h)(i∗eD−1BP ((G))〈m〉) 	−→ i∗eE(k,Γh)hC(k,m).

Proof. Let Eh = E(k, Γh). The complex orientation BP −→ i∗eEh is a map of A∞-
algebras and therefore so is the map i∗eBP ((G)) −→ i∗eEh. It follows that i∗eEh is a 
i∗eBP ((G))-module. Constructing i∗eBP ((G))〈m〉 as the quotient

i∗eBP ((G))/(tm+1, γtm+1, . . . , γ
2n−1−1tm+1, tm+2, γtm+2, . . . , γ

2n−1−1tm+2, . . .)

via a series of cofiber sequences and noting that γitk maps to zero for k ≥ m + 1, we get 
a factorization

i∗eBP ((G)) i∗eEh

i∗eBP ((G))〈m〉

Composing the dotted arrow with the splitting of Theorem 5.3 gives a map

i∗eBP ((G))〈m〉 −→ i∗eE
hC(k,m)
h .

Since D is mapped to a unit in πe
∗Eh, this dotted arrow factors as a map

i∗eD
−1BP ((G))〈m〉 −→ i∗eE

hC(k,m)
h .

We apply the functor LK(h)(−) to this map. Since the target is already K(h)-local, we 
obtain a map

ϕ : LK(h)(i∗eD−1BP ((G))〈m〉) −→ i∗eE
hC(k,m)
h .

It suffices to prove that ϕ induces an isomorphism on homotopy groups.
In Proposition 7.4, we proved that

π∗LK(h)(i∗eD−1BP ((G))〈m〉) ∼= (πe
∗D

−1BP ((G))〈m〉)∧Ih .
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Proposition 7.1 implies that Ih = IG in πe
∗D

−1BP ((G)). By Proposition 5.4, we have an 
isomorphism

π∗E(k,Γh)hC(k,m) ∼= Z2[G · tG1 , . . . , G · tGm−1, G · tm][C2m · (tm)−1]∧IG .

Here, we have used the fact that m′ = IG if tm is a unit and that Fq ⊆ k (so that 
α = 2m−1 in our application of Proposition 5.4). Furthermore, by design, ϕ maps ti and 
its conjugates in πe

∗D
−1BP ((G))〈m〉 to the same named generators in πe

∗E(k, Γh)hC(k,m). 
Therefore, ϕ induces an isomorphism on homotopy groups. �
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