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Abstract

In this paper, we provide a new proof of the stable Adams conjecture.
Our proof constructs a canonical null-homotopy of the stable J-homo-
morphism composed with a virtual Adams operation, by applying the
K-theory functor to a multinatural transformation. We also point out that
the original proof of the stable Adams conjecture is incorrect and present
a correction. This correction is crucial to our main application. We settle
the question on the height of higher associative structures on the mod p*
Moore spectrum M, (k) at odd primes. More precisely, for any odd prime p,
we show that M, (k) admits a Thomified A,-structure if and only if n < p*.
We also prove a weaker result for p = 2.
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The celebrated result commonly referred to as “the Adams conjecture”
establishes the fact that for a given odd prime p, and for any integer ¢ serving
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as a topological generator of the p-adic units Zg, the following composite map
of spaces is null homotopic (when localized at p):
(1.1) Jo(p?—-1):BU » BU » BSL1(S),
where 4 represents the corresponding Adams operation, and J represents the
complex J-homomorphism from the classifying space of infinite unitary group
to the classifying space of the group-like E..-space of stable self homotopy
equivalences of degree 1 of the sphere. A similar statement holds for the prime
p = 2 with BU replaced by BO, BSL;(S) replaced by BGL;(S), J replaced by
the real J-homomorphism and ¢ = 3.

A host of important consequences ensuing from this result are well known
to any practitioner of algebraic topology; see [Ada63] and subsequent articles.

Notice that all the spaces and maps involved in the statement of the
Adams conjecture (1.1) are infinite loop spaces and infinite loop maps (when
localized at a prime p). However, the original conjecture did not demand that
the composite be null as an infinite loop map. Demanding that the composite
be null as an infinite loop map is known as the infinite loop Adams conjecture or
the stable Adams conjecture. This stable enhancement of the Adams conjecture
has its own set of important consequences [MP78|, [May78al, [CLM76, I1.10].

The Adams conjecture was solved by Quillen [Qui71] and Sullivan [Sul74]
using different techniques. Quillen made use of modular character theory to
approximate the p-completion of BU (or BO at the prime 2) using classifying
spaces of discrete groups Gl,,(F,), where F, is the algebraic closure of the field
of order ¢ and ¢ is prime to p. On the other hand, Sullivan’s key idea was to
use étale homotopy theory to interpret Adams operations as elements of the
absolute Galois group Aut(C/Q) acting on the profinite completion of BU.

In 1977, Friedlander and R. Seymour [FS77] announced two solutions to
the stable Adams conjecture. However, the paper was later retracted due to

a fatal flaw in the arguments of one of the proofs. The other solution was
later elaborated in [Fri80] and remains the only accepted proof of the stable
Adams conjecture to this date. Unfortunately, however, Friedlander’s proof
now also appears to be incorrect, leaving the literature with an awkward gap;
see Appendix A.

In this paper, we provide two different solutions to the stable Adams con-
jecture. In our first solution we realize the Adams operation as a map of per-
mutative categories. We then realize the J-homomorphism as a multifunctor
and produce a canonical null-homotopy refining the stable Adams conjecture.
In fact, this null-homotopy is constructed in the form of a multinatural trans-
formation exploiting the important work of Elmendorf and Mandell [EMO6],
[EMO09]. This approach avoids results from [Fri80]. Our second proof can be
regarded as a correction to [Fri80] as it uses the classification theorem [Fri80,
Th. 6.1] that Friedlander devised to resolve the stable Adams conjecture.
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Our correction to the stable Adams conjecture is critical to our main
application — detecting homotopy coherence of associativity (in the sense of
Stasheff [Sta63a], [Sta63b]) of multiplicative structures on the mod p’ Moore
spectrum M, (4), a problem that is at least 50 years old!

Remark 1.2. The stable enhancement of the Adams conjecture is not true
if in (1.1), we replace BU by BO, choose J to be the real J-homomorphism and
localize at the prime 2. This was proven by Madsen [Mad75] by studying the
Dyer-Lashof algebra structures.

Notation 1.3. We use the following notation through out the paper:

e Sp — the category of symmetric spectra.

e ku — the (—1)-connected cover of the periodic complex K-theory KU.

e bu — the 0-connected cover of ku.

® ku, — the fiber of the composite map ku(,) — HZ(,) — H(Z,)/Z), where
the first map is the zeroth Postnikov approximation of ku(,). Thus, ma;ku,
= WzikU(p) = Z(p) for all 7 > 0, and Woﬂ(p) = 7.

e pic(R) — the Picard spectrum of an E.-ring R.

° pice"(S(p)) — the even Picard spectrum of the p-local sphere, i.e., the spec-

trum associated to the order 2 subgroup of mg pic(S(p)) & 7 (see Examples 2.7

and 2.8).

picev(gp) — The even Picard spectrum of the p-complete sphere Sp.

GL1(R) — The space of units of the ring spectrum R.

SL1(R) — The identity component of GL;(R).

bgli(R) — The spectrum obtained by delooping BGL;(R) for an E-ring R.

bsli (R) — The 1-connected cover of bgl; (R).

J ¢ kug,y — pic®¥(S(p)) — The stable J-homomorphism (defined in Section 5).

Notation 1.4. For the rest of the paper, p will be used to denote any prime.
For a fixed p, let ¢ denote another prime such that

|1 modp? ifpisodd,
1= —1 mod4 ifp=2,
where [ is a generator of (Z/p?Z)*. By Dirichlet’s theorem there exists infin-

itely many choices for ¢ for a given p. With these properties, ¢ is a topological
generator of Z; , when p is odd. If p = 2, ¢ is a topological generator of an

infinite subgroup of Z; =~ 7/2 x Zs isomorphic to Zs.
The bulk of the work in this paper is to prove the following theorem.

THEOREM 1.5 (Unreduced stable Adams conjecture). The composite map

a_1 ~

kug,) —— pic™ (S()

(1.6) kug)

is null-homotopic, where P4 denotes the corresponding Adams operation.
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The above null-homotopy can be chosen canonically giving rise to an ex-
tension ~
J: COf(ll)q — 1) — piCeV(S(p)).
In Section 6, we prove that

THEOREM 1.7. The map induced by J on (=),

71(3) : Z = m(Cof (7 — 1)) —— mi(pic™ (S(p))) = ),

sends 1 to q.

Theorem 1.7 embodies a crucial fact that contradicts [Fri80]. We address
the matter in more detail in Appendix A.

We also study a reduced version of the stable Adams conjecture, which is
exactly the stable enhancement of the Adams conjecture in its original form
(1.1). The statement of the reduced version of the stable Adams conjecture
remains unchanged (see [Fri80, p. 109]) regardless of the modifications (in par-
ticular Theorem 1.7) in the statement of unreduced Adams conjecture proposed
in this paper.

THEOREM 1.8 (Reduced stable Adams conjecture). The composition of

the maps
Pg—1

bu bupy —2 bsli(S),)

p) p)

18 null-homotopic.

As an application of Theorem 1.7 we study the problem of higher associa-
tivity of Moore spectra. Let M,(i) denote the Moore spectrum given by the
cofiber of the degree p‘-map on the sphere spectrum S. Here is a brief histor-
ical account regarding the development of this problem of higher associative
multiplication on My(¢).

By 1960, it was well known to the experts that My(1) cannot support a
unital multiplication, i.e., an As-structure. This is an easy application of the
Cartan’s formula for Steenrod operations. Perhaps the first non-trivial result
was due to Toda [Tod68] when he proved that the multiplication on M3(1) is
not homotopy associative, i.e., M3(1) does not admit an Ag-structure. Soon
after it was noticed that the work of Kraines [Kra66] and Kochmann [Koc72]
can be combined to generalize Toda’s result to show that My(1) admits an
A,_1-structure that does not extend to an A,-structure. In 1982, Oka [Oka84]
showed that Ma(7) admits an Az-structure for i > 1. Aside from these sporadic
results, the question of A,,-structures on M,() has proved to be intractable and
remained open until the recent work in [Bha20].

Now we summarize the key idea in [Bha20] with minor modifications.
Notice that My(7) is the Thom spectrum associated to a map

fpyi . Sl E— BGLl (Sp)
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representing the class 1 + piu € m; (Sp) = Zp, where u € Z; . If the map fp;
is an A,-map, then M,(7) inherits an A,,-structure. Motivated by this fact, we
make the following definition.

Definition 1.9. A Thomified A,-structure on the Moore spectrum M, (4)
is an A, -structure induced by an A,-map

fpi: St —— BCGLy(S,)

of degree 1+ p'u € m1(S,) = Z,, for some u € Z;

A result of Stasheff [Sta63a], [Sta63b] implies f,; is an A,-map if and only
if there exists a stable lift (up to homotopy) in the diagram

£S P beli(S,).

(1.10) J P

7T )

y2x3

r-lcpr

In [Bha20], the author studied an Atiyah-Hirzebruch spectral sequence and

obtained a lower bound on ¢, dependent on p and n, which guaranteed an
A -structure on M, (7).

In this paper, we resolve [Bha20, Conj. 4.12], which predicts that f,;

factors through the J-homomorphism. Indeed, by Theorem 1.7 we get f,; as

the composite

(111)  foi 2 5S 2 Cof(pt — 1) —2 bely(S(y)) —— beh(S)),
where

L~ ) =Dpt ifpis odd,
(112) ep(l) - { 2i—2 lfp =92,

This leads to a sharp answer to the problem of higher associativity of Moore
spectra, at least at odd primes. In Section 7, we prove

THEOREM 1.13. When p is an odd prime, My(i) admits a Thomified A,,-
structure if and only if n < p'. For i > 1, Ma(i + 1) admits a Thomified
Aqgi_;-structure that does not extend to a Thomified Aqgiv1-structure.

Remark 1.14. At an odd prime, the obstruction to extending the Thomi-
fied A,i_;-structure on M,(i) to a Thomified A -structure is an element in
Topi—3(Mp(i)) represented by a generator of the same degree in the image of J.

Convention 1. Throughout the paper, p-completion, p-localization and
Q-localization of spectra will refer to the Bousfield localization [Bou79] at
M, (1), S() and HQ respectively. In the context of spaces, we will prefer to work
with Bousfield-Kan localization [BK72] since the constructions needed in this
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paper require explicit point-set/simplicial models. These constructions make
use of the natural map (3.11) of simplicial sets whose existence is guaranteed
for Bousfield-Kan localization (see [Goe98]).

Convention 2. Since we have made essential use of étale homotopy theory
in Section 3, that section, and the first part of Section 4, is developed in the
language of simplicial sets and simplicial schemes. However, our applications
are most naturally described in the category of topological spaces. Therefore,
after Section 4.3 we switch from simplicial sets to topological spaces.

A sketch-proof of Theorem 1.5. Our first and the most important step
(also see (1.17)) is to construct a family of {?-equivariant p-local spherical
fibrations

such that 7; is equivalent to the p-localization of the fibration B(x, GL;(C), S*)
— BGI;(C). Therefore, the fiber of 7; is equivalent to S%}’;).

Using the Moore loop space of BGl; as a model for G1;(C) ), we construct
a permutative category Glc, and a monoidal functor

ya . Gl(:’p E— GlQp

with the property that on applying the K-theory functor, we get

(1) K(Glcp) ~ ku(,, and

(ii) K(P?) ~ 9, the ¢-th Adams operation.
There also exists a permutative category Gls?p) such that K(Gls%m ) =pic®™ (S(y))-
The family of fibrations {m; : ¢ > 1} produces a functor J : Glc, — GIS%p),

but unfortunately, it is not guaranteed to be a monoidal functor (see (5.5)).
However, the family of fibrations {m; : ¢ > 1} constructs for us a multifunctor

j:UGQWA——»ng%,
p

where v denotes the forgetful functor from the category of permutative cate-
gories to the category of multicategories (see (2.3)). The K-theory functor of
[EMO09] (denoted by KFM), which constructs spectra starting from multicate-
gories, then produces the stable J-homomorphism J (as in Theorem 1.5).

The Pl-equivariance of 7; leads to a weak-equivalence

§f + S%) ~ Fib(m;) —— Fib(m) ~ S% |

which is a degree ¢* map (Corollary 4.39). The family of maps {1[);1 11 € N}
can be assembled to form a multinatural transformation

(1.16) n:J~Jovll

Thus, we get an explicit null-homotopy of Theorem 1.5 by applying the func-
tor KEM (see Theorem 2.13) or the functor K o ¢ (see Theorem 2.12 and
Remark 5.7).
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In Appendix A, we provide another proof of Theorem 1.5, using a classi-
fication theory of X-fibrations in F-Top [Fri80, Th. 6.1].

Remark 1.17. The family of fibrations (1.15) that we construct in this
paper is the p-local analog of a p-completed family considered in [Fri80]. This
construction allows us to avoid various technical issues arising from the fact
that p-completions are not closed under smash product.

Organization of the paper. In Section 2, we review the construction of the
K-theory functor. In Section 3, we summarize some of the fundamental results
in étale homotopy theory that we use in this paper.

In Section 4 we construct a p-local spherical fibration which is the key
to the proof of Theorem 1.5 — the unreduced stable Adams conjecture. In
Section 5, we prove Theorems 1.5 and 1.8.

In Section 6, we prove Theorem 1.7, a result which is crucial, not only to
the study of A,-structures on M, (), but also to the comparison of our solution
to that in [Fri80]. In Section 7, we study Thomified A,-structures on M,y(7)
and prove Theorem 1.13.

In Appendix A, we discuss [Fri80] and the errors therein. Using [Fri80,
Th. 6.1], we provide another solution to the stable Adams conjecture.
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which led to the improvement of this paper.

2. Permutative categories, multicategories and K-theory

In this section, we review the construction of the K-theory functor, start-
ing with the work of Segal [Seg74] and ending with the work of Elmendorf and
Mandell [EMO06], [EMO09].

Let F denote the category of finite pointed sets. For any category C, let
F-C be the category of functors from F to C. In [Seg74], Segal constructed a
functor

¢ : F-Top —— Ho(Sp),
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where Ho(—) stands for the associated homotopy category, and he showed that
many interesting spectra (such as ku , ko, S among others) can be constructed
using the functor ®.

A few years later, J.P. May [May78b] showed that one can construct spec-
tra starting from permutative categories (see definition below). More precisely,
J.P. May constructed a sequence of functors

(2.1) PC s FpCc —B F-Top,

where PC is the category of small permutative categories and B is the usual
bar construction of categories.
In [EMO6], authors refined the functor ® to obtain a K-theory functor

K*2 . PC — Sp,

where Sp is the modern pointset category of symmetric spectra. The work in
[EMO06], [EMO09] resulted in a new K-theory functor

v KEI\/I
K:PC —— Mult =—— Sp
that factors through the category of small multicategories. They showed

THEOREM 2.2 (Elmendorf-Mandell). For any small permutative category
P, K*¢(P) and K(P) are weakly equivalent.

A permutative category P is a symmetric monoidal category in which
associativity (including unitality) holds strictly. A multicategory M consists
of a set of objects, the data of n-morphisms M,,(a1,...,a,;b) that admits an
action of ¥,, a multiproduct structure

Mn(bl, RN bn; C) X Mkl(an, ceey Ok bl) X -+ X Mlcl (CL11, vy Ok bl)
Ir
My, 4ok, (@115 - - -5 Apg,, 5 €)
and a unit Oyng, which satisfy the conditions listed in [EMO06, Def. 2.1]. An
n-morphism in My, (a1, ..., an;b) should be interpreted as a map whose source

is the n-tuple of objects (ai,...,a,) and target is the object b. There is a
forgetful functor

(2.3) v:PC —— Mult

that assigns to every permutative category P its underlying multicategory vP
where

vP,(a1,...,an;b) :=P(a1 & - @ ap;b).
Its left adjoint, i.e., the free functor

¢ : Mult —— PC,
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constructs a permutative category ¢M from the multicategory M. The cate-
gory @M has as its objects the free monoid on objects of M. Explicit descrip-
tion of morphism sets can be found in the proof of [EM09, Th. 4.2]. The ¢-v
adjunction is comonadic [EMO09, Th. 4.3].

Ezample 2.4. Let Glc be the permutative category whose objects are

{C":n € N} =N and morphisms are
GlL,(C) if m=n,
0 otherwise.

Gle(C",C™) = {

The monoidal product is the “block-diagonal sum.” Upon applying the
K-theory functor we obtain the spectrum ku. By changing the coefficients to
real numbers, one can construct Glg € PC whose K-theory is the spectrum ko.

In the following examples, we let G(X,X’) denote the space of weak-
equivalences between X and X’ with the assumption that G(X,X') = 0 if
X X

Ezample 2.5. Let X be a pointed topological space. Let Glx denote the
permutative category whose objects are pairs

{(n,Y): n€NandY is weakly equivalent to X" }
and morphisms are

G(Y,Y") ifm=n,

0 otherwise.

Glx((n,Y),(m,Y")) = {

The monoidal structure is induced by the smash product in Top,.

Remark 2.6. Let N denote the permutative category with objects (N, +)
whose morphism set consists of identity maps only. Note that K(N) ~ HZ.
There is a monoidal functor

GIX*>N

that is identity on objects and trivial projection on morphisms. This map
induces an isomorphism on the zeroth homotopy groups and thus m(K(Glx))
> 7.

Ezample 2.7. Note that K(Glg1) is the Picard spectrum pic(S). The spec-
trum K(Glgz2) is the even Picard spectrum pic®'(S). The K-theory functor
applied to the obvious monoidal functor

Glsz — Glsl,
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which sends (S%)"" to (S1)"2") results in a map
pic™(S) —— pic(S),

which is multiplication by 2 on the zeroth homotopy. The 0-connected cover
of both pic®(S) and pic(S) are equivalent to the spectrum bgl; (S).

Ezxample 2.8. Similar to the above example, we also have K(GIS% )) ~
V3
pic(S)) and K(Gls%p)) >~ pic™ (Sp))-

Ezample 2.9. We denote by SG(X"" X"") the identity component of
G(x/\n7 X/\n) .

Let Slx denote the category with objects {X"" : n € N} & N and mor-
phisms

SG(XA XA if m = mn,

Slx (X, XN =
x( ) {@ otherwise.

Then Slx can be given a structure of a permutative category using the smash
product provided all coordinate-wise permutations A, : X\ — X" (where
o € ¥,) is an element of SG(X"", X "),

Remark 2.10. When X = S!, Slx is not a permutative category. This is
because the non-trivial permutation of the two-fold smash product S' A S! is
of degree —1. However, Slg2 is a permutative category.

Remark 2.11. Whenever Slx is a permutative category, there is an evident
monoidal functor from Slx — Glx. In fact, K(Slx) is equivalent to the fiber of
amap K(Glx) — YH(m K(Glx)) that induces an isomorphism on fundamental
groups.

The category PC of small permutative categories can be given a multi-
category structure that is enriched over Cat (the category of small categories).
Likewise Mult, the category of small multicategories, is a symmetric monodial
category. Let KFM be a lax monodial functor, and let K be a multifunctor.
Combining the main results of [EMO06] and [EM09] we get, among other things,
that both KM and K admit enrichment over simplicial sets. In particular, we
have

THEOREM 2.12 (Elmendorf-Mandell). Let F,G : P — Q be two lax
monoidal functors that are strict on units. Then a lax monoidal natural trans-
formation n : F — G produces a homotopy

K(n) : K(F) ~ K(G)

on applying the K-theory functor.
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THEOREM 2.13 (Elmendorf-Mandell). Let F,G : M — N be two multi-
functors. Then a multinatural transformation n : ¥ — G produces a homotopy
K™ (n) : K*M(F) ~ KFM(G)

on applying the K-theory functor.

Since we use Theorem 2.13 to resolve the stable Adams conjecture, we
quickly review the definition of a multifunctor and a multinatural transforma-
tion. A multifunctor between two multicategories F : M — N consists of

e a function from the objects of M to the objects of N such that F(0Op) = On,
and
e for all objects b and a tuple (aq,...,a,), a function

M, (a1,...,an;b) —— M/ (F(a1),...,F(a,);F (b))

that preserves ¥,-action, units and multiproduct structures.
Given two multifunctors F,G : M — N, a multinatural transformation 7 :
F — G consists of a collection of maps
N : F(a) = G(a)
for every object a € M so that the diagram

M(ay, ..., an;b) r N(F(a1),...,F(ay); F(b))

Gl J{(m)*

N(G(ar), - Glan); Gb)) — s N(E(@), - Flan); G(8))

commutes for all tuples (a1, ...,a,) and all objects b of M.
The functor K*¢® has the advantage that it constructs an 2-spectrum, i.e.,
for a permutative category P and all n € N, we have an equivalence

B(K*%(P)) ) — K*¥(P)pp1),

where (K% (P)),) is the n-th space of the spectrum K**¢(P). This particular
property of the functor K¢ allows us to track the homotopy type of the resul-
tant spectrum. On the other hand, KM has the advantage that it constructs
spectra out of multicategories (which are arguably less restrictive than permu-
tative categories), but it does not necessarily produce an Q-spectrum, making
it difficult to track the homotopy type of the constructed spectrum. However,
if a multicategory is the underlying multicategory of a permutative category,
then from the ¢-v adjunction we get

(2.14) K(P) = KEM(uP) ~ K(puP).

One should be careful about the fact that KFM(M) may not be equivalent to
K(¢M) without the hypothesis M = vP for some P € PC.
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3. A brief review of étale homotopy theory

Etale homotopy theory began with the work of Artin and Mazur [AM69],
where they constructed a functor

EtAM : Sch —— Pro-Ho(sSet)

from the category of schemes to the procategory of the homotopy category of
simplicial sets, which assigns a scheme to its étale homotopy type. Friedlan-
der [Fri82] developed the notion of rigid étale cover for simplicial schemes to
produce a refinement

Bt : sSch — Pro-sSet

such that EtAM is the composite

FtAM : Sch «— sSch —' Pro-sSet —» Pro-Ho(sSet).

Remark 3.1. Note that any simplicial set can be viewed as a constant pro-
simplicial set by virtue of a fully faithful functor c:sSet —— Pro-sSet.

The étale cohomology of a scheme V with constant coefficients coincides
with the singular cohomology of Et(V) (which is computed as the direct limit of
singular cohomology groups induced by an inverse system representing Et(V))
More precisely,

H;, (V,Ca) = H*(Et(V); A)

for any finite abelian group A. If the absolute Galois group Gal(F/F) of a field
F is finite, then the étale homotopy type of Spec(F) is the classifying space of
its absolute Galois group, i.e.,

Et(SpecF) ~ BGal(F/F)
as pro-simplicial sets. In general, Et(Spec F) is contractible with an action of
Gal(F/F). If K is a field extension of F, VI is a simplicial scheme over F and

VE.=VE % SpecK,
SpecF

then Et(VE) admits an action of Aut(K/F).
For a scheme VI and a field extension K of F, we let

V(K) := Homgep, (Spec K, VF)
denote the set of K-points. The action of Gal(K/F) on V(K) is by conjugation
(3-2) 0. f(=) = af(oe7 ().

Likewise, for a simplicial scheme VE, we let V(K)o € sSet denote the simplicial
set obtained by taking the K-points levelwise.
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By applying the étale homotopy functor Et, we get a natural Gal(F/F)-
invariant map of pro-simplicial sets
(3.3) v : V(F)s —— Hompyosset(Et(SpecF), Et(VE)).

Notation 3.4. For any field K, we let

Etg(—) := Hompyo-sset(Et(Spec K), Et (—)).

Remark 3.5. When K is algebraically closed, the functor Etk can replace
Et because Et(SpecK) is contractible and there is a natural equivalence
(3.6) Et(VE) —— Etg(VX).
Further, when K = F and VE is defined over F, then the natural equivalence
(3.6) is also a Gal(F/F)-equivariant map.

Given an algebraic group GF over F, its bar complex BGF is a simplicial
scheme. The General Isomorphism Conjecture (GIC) of Friedlander and Mislin
[FM84] asserts that (3.3) will induce an isomorphism

(3.7) H;, (BGF, Cz,z) = H*(BG(F); Z/nZ)

for any connected linear algebraic group scheme when F is algebraically closed
and n is invertible in F. They prove GIC when F = F,, the algebraic closure
of the field of order ¢ (see [FM84, Prop. 2.3, Proposition 2.4]).

~ THEOREM 3.8 (Friedlander-Mislin). A connected linear algebraic group
GFa satisfies GIC.

When F = C with the usual topology, then the isomorphism of (3.7) is
known to be true for a larger class of simplicial schemes. It should be noted
that if C is given the usual topology, then V(C), is a simplicial space and not a
simplicial set. However, we obtain a simplicial set by considering the singular
simplex of the geometric realization of V(C),

V(C)™P := Sing|V(C)a|.

The generalized Riemann existence theorem [AM69, Th. 12.9] as exposed by
Friedlander in the context of simplicial schemes [Fri82, Th. 8.4], says that

THEOREM 3.9 (Generalized Riemann Existence Theorem). Let (VS,v) be
a pointed, connected simplicial scheme over C of finite type. Then there is a
weak equivalence

(3.10) V(C)¥*P ~ Bt (VE, v)

in Pro-sSet,.
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A weak equivalence, as in (3.10), is equivalent to saying Etc (VS,v) is the

pro-finite completion of V(C)P. The pro-finite completion functor

—~

(1) : sSet —— Pro-sSet
is the left adjoint of the limit functor
| - || : Pro-sSet —— sSet

that sends a pro-simplicial set to its limiting simplicial set. Morel [Mor96]
constructed the p-pro-finite completion (-), (a functorial p-completion within
Pro-sSet) such that the composite functor

(/-\)p :sSet — s Pro-sSet — % Pro-sSet
can be compared with the p-completion functor of Bousfield and Kan [BK72].

For any Y € sSet, we get a natural map
(3.11) peY, —— Yol

which is an equivalence if H;(Y; Z/pZ) is finite for all k (see [Goe98, Cor. 3.16]).
Thus, we may conclude

THEOREM 3.12. Let (VS$,v) be a pointed, connected simplicial scheme
over C of finite type. Further, if H*(V(C)'*P Z/pZ) is of finite type, then

(1) (V(C)*P), = [[Etc(VE),l, and
(2) H*(v(@)top; Z/pZ) = He:(ViC, CZ/pZ)'

Let WFQ denote the ring of Witt vectors over ﬁq. Then we have a zigzag
of ring maps

(3.13) F, «— WF, —— C,

where 7 is the quotient map that annihilates the unique maximal ideal of
WTF, and ¢ is a choice of Brauer embedding. Friedlander [Fri82, §8] expressed
the comparison results of Artin and Mazur [A7M69, §12] in terms of simplicial

? is a smooth proper connected

schemes to obtain the following result: If VYW
simplicial scheme over Spec Wﬁq, then the maps in the zigzag induced by (3.13)

and (3.6),

o Fy ~ 2 Fy ~ - WF, ~ - C ~ - C
Etg, (Vo' )p ¢—— Et(Ve*)p, —— Et(Ve ™ *)p «—— Et(Vs)p —— Etc (Vo))
are weak equivalences in Pro-sSet. Combining this with Theorems 3.8 and 3.12,

Friedlander and Mislin proved
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THEOREM 3.14 ([FM84, Th. 1.4]). When G is an integral group scheme
such that G(C)*P is a reductive complex Lie group, then

(3.15) BG(F,), ~ (BG(C)"P),.
Ezample 3.16. The general linear group Gl;(C) and its maximal torus
TY(C) := G1;(C)** ¢ GL(CT)

are examples of complex reductive Lie groups and defined over Spec(Z). Thus
(3.15) holds when G is chosen to be G1Z and T%,.

Remark 3.17. The Teichmiiller lift results in a group homomorphism
e: EIX — WFQX =, X
sending elements of F: within roots of unity. Therefore, we have a map of
groups
Ti(e) : TY(F,) — T{(C) —— T¥(C)t°P.
It is known that the induced map on the p-completion of the classifying space
B(']I‘i(e))l; is a weak equivalence. Thus when G = T, the weak equivalence es-

tablished by (3.15) can also be obtained by an explicit map, namely, B(T'(e)),,.
A proof can be found in [FM84].

ProrosiTiON 3.18. Let NiZ =3, X ']I‘% denote the discrete extension of
the torus TiZ. Then

BNZ(E) : BNZ(ﬁq) EE— BNZ'((C)tOp
s an equivalence after p-completion.

Proof. Note that the spaces BN;(F,) and BN;(C)'*P map to BY;,

BNl (Fq) BN;(e) BNZ ((C)top

o~

Bzia

with fibers BT?(F;) and BT?(C)'°P respectively. Thus, using Remark 3.17 and
a Serre spectral sequence argument, we conclude that the map BN;(e) induces
an isomorphism in HIF,-coefficients, and hence, by [BK72, 1.5.5] we get the
result. O
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4. A family of \}?-equivariant spherical fibrations

The main goal of this section is to construct the family (1.15) of P?-equi-
variant p-local spherical fibrations and explore some of its properties. Our
construction of the fibration 7t; can be broken down into three steps:

(i) Construct a Pp9-equivariant p-completed spherical fibration
#; : SBGl, —— BGI,

with fiber equivalent to the p-completed sphere SIQ,‘
(ii) Construct Pp?-equivariant spherical fibration

so that we have a V%-equivariant map
(vi)g — (Tu)g

of fibrations.
(iii) Use Wi-equivariant arithmetic fracture squares, in the sense of [BKT72,
VI1.8.1], to construct 7.

The first two steps make use of étale homotopy theory.

4.1. Constructing p-complete spherical fibrations. Let x := Spec 0 denote
the empty scheme. For any ring R, let AiR — 0 denote the scheme representing
the i-plane without the origin. Define the simplicial scheme

S% =% U (A — 0) x A[1] U,

where we choose and fix one of the two copies of x as the basepoint (see
Remarks 4.2 and 4.3), and let

SBGIy, := B(x,GI}, S%).
There is a natural map of simplicial schemes

(4.1) a; : SBGIS, —— BGIf,

that admits a section oy, i.e., a; o g; is the identity map on BGI(E..

Remark 4.2. For a group scheme G, and schemes X and Y that are paired
with G appropriately, the two-sided bar construction B(X, G,Y) is a simplicial
scheme. If X (or Y) is the empty-scheme %, one should interpret B(x,G,Y)
(likewise B(X, G, %)) as the simplicial scheme obtained by deleting X (likewise
Y) in the resolution of B(X, G,Y) (see [Fri82, Exam. 1.2]). With this conven-
tion, BG, is indeed B(x, G, x).
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Remark 4.3. The simplicial scheme B(x, Gl?, S217§{) should be interpreted
as the pushout in the diagram

B(x, GIF, (A% — 0) x 9A[1]) —— B(x, GI}, 0A[1])

|
B(x, GIF, (AL — 0) x A[1]) ------ > B(x, GI}, S%,).
A choice of basepoint * — Szﬁ is really a choice of section
o; : BGI)Y, —— SBGIf,
of ;.
Remark 4.4. There is a natural map
T S% x 8% —— S

induced by

(1) the usual map of schemes 7; j : (A%, —0) x (AJZ -0) — (Agrj —0), and
(2) amap of simplicial sets ¢ : A[1] x A[1] i)>ecAZ[1], which we described below.
Note that the n-th set of A[l], is homa (n, 1), where

n={0<1< - <n}

is the totally ordered set with n+ 1 elements and can be viewed as a category.
The map c is induced by the functor

1x1——1,

which sends (0,0), (1,0),(0,1) to 0 and (1,1) to 1. Therefore, the restriction

of TZ-ZJ to either S% or SQ% is a trivial map.
Notation 4.5. Set SBGL; := ||Etc(SBGIS,),||, BGL; = ||Etc(BGIS,),| and
7t o= || Bt (o)pll-
LEMMA 4.6. The fiber of the map
#; : SBGl, —— BGI;
18 weakly equivalent to Sgi, the p-completion of 2i-sphere.

Proof. By definition, the map «a; of (4.1) at the level of complex points
gives rise to a spherical fibration over BGL;(C) with fiber S*. By [BK72,
I1.4.8], p-completing the map «; on the level of complex points also gives rise
to a fibration with fiber being Sg’ By Theorem 3.12, we may identify this
fibration with the étale homotopy type as stated in the lemma. ([l
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Now we would like to discuss the “Pp?-equivariance” of the map 71;. Since
&; is induced by a map of simplicial schemes over Z, 71; is equivariant with
respect to the action of Aut(C/Q) on SBG]; and BGl;. Any element

o € Aut(C/Q),

whose cyclotomic character is %, can be regarded as the g-th Adams operation;

see [Sul74] as well as (4.7). Therefore, 7; is a “Pp9-equivariant map.”

Remark 4.7. For the multiplicative group scheme G1% := Spec Z[z*] and
any field F, the action of o € Gal(K/F) (as defined in (3.2)) on

Gl (K) = K~
is given by 0.(2) =0"1(2). If o € Aut(C/Q) has cyclotomic character x(o)= %,
then x(0~!) = ¢ and it sends a root of unity ¢ to its g-th power (9. Therefore,
oy, CX —— C*
agree with the Frobenius automorphism Fr, : F, — F, under the map
e:ﬁ: — WF: SN o
This fact will play a crucial role in the construction of (1.15) as in Section ?7?.

4.2. Constructing p-local spherical fibrations. The space BN;(C)%*P is ra-
tionally equivalent to BGI;(C)*P, and the ¢-th Adams operation

(7 : BN;(C)tP —— BN;(C)®P

is induced by the g-th power map on C'*P. However, Aut(C/Q) may not
act continuously on BN;(C)™P (as it acts discontinuously on C with the usual
topology). Thus, BN;(C)'*P may not necessarily admit a “ip%-equivariant map”
to BGI,. Therefore, we define

Definition 4.8. Let BN; be the pullback in the diagram

(4.9) :lBNi(e)p‘

RBN;(C)*P —£ (BN;(C)tP)

p?

where p; : RBN;(C) — BN;(C), denotes the functorial fibrant replacement of
the natural map from BN;(C)%P to its p-completion.

Note that the automorphism of BN;(F,) induced by the Frobenius Fr,
agree with the automorphism wg under BN;(e). Thus, Fr, and lbg together
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induce an automorphism of BN; which, due to a lack of a better name, will
also be denoted by

P?: BN, —— BN;

and will be referred to as “the ¢g-th Adams operation” on BN;. By construction
BN; ~ BN;(C)*P
and there is a natural map
% : BN; —— BN;(F,),
lBNi(e)z;
(4.10) BN;(C), — BGI;(C)
|#

IBGL(C),|| —— BAL,,

p

where the last map is induced by the universal property of pro-finite comple-
tions.

Remark 4.11. The action of any element o € Gal(C/Q) of cyclotomic
character é on BGI; agrees with the action of ¥ on BN; along the map ;
also see (4.7).

Notation 4.12. For the rest of the paper we choose and fix an element
o € Gal(C/Q)
of cyclotomic character %.

Definition 4.13. Define BGI; as the pullback in the diagram

(4.14) | l

R(BN;)g 098 (BGI,)g,

where R(%i)g : R(BN;)g — (BGl;)q is the functorial fibrant replacement of
the map (9;)q.

It is immediate from the construction that BGl; is weakly equivalent to

BGli((C)E;I)). It follows from Remark 4.11 that the automorphism ] of BN;

together with the action of ¢ on BGliA, induces an automorphism of BGl; which
we also denote by

We refer to it as the “g-th Adams operation” on BGI;.
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Our next goal is to construct the total space SBGI; using an arithmetic
fracture square similar to (4.14). Therefore, we consider the simplicial scheme

SBNZF}, = B(x, NE,, (S%:)™).

7,09

PROPOSITION 4.16. The natural map induced by e : qu — C* defined in
Remark 3.17

SBN;(e) : SBN;(F,) —— SBN;(C)*P
is an isomorphism after p-completion.

Proof. Both the groups N;(F,) and N;(C)*P map to 3; with kernels T*(FF,)
and T*(C)™P respectively. Hence, both the spaces SBN;(F;) and SBN;(C)tP
map to BY;

SBN;(F,) — PN sBN(C)tor

o~

BY;

with fibers B(x, T*(F,), Squ (Fy)"") and B(*, T*(C), S%-(C)")*P. Therefore, by
[BK72, 1.5.5], it is enough to show that the map

B(x, T(F,), 5% (Fy)) —— B(x, Ti(C), $%(C))"

induces an isomorphism in HIF,-homology.
Since GIY = AL — 0 as a GI}-torsor over SpecR, the Gl;(R)-equivariant
cellular structure of S2R(R) is given by the pushout diagram

GL(R) x DA[l] —— OA[1]

|

Gl (R) x A[1] ~----- > SR (R)

for any ring R. Thus, the equivariant cells of <S2Fq (Fy))" and (S%:(C))" are
in bijection and the isotropy subgroup of a cell in SZF (F,)* includes in the
q

isotropy subgroup of the corresponding cell in SQC((C)M as an approximation of
the form T/ (F,) — T/(C) for some j < i. Taking the bar construction converts
this to the inclusion on the level of classifying spaces that is an isomorphism in
HF,-homology; see (3.15) and Remark 3.17. Thus, if we filter both SBN;(F,)
and SBN;(C)P using the T(-)-equivariant cellular filtration of SQ(.)(-)M7 then
the map induced by SBN;(e) on each filtration quotient is an isomorphism in
HF,-homology. Since, (S%;(R))"* consists of finitely many T(R)-equivariant
cells, an inductive argument proves the result. ([l



STABLE ADAMS CONJECTURE AND HIGHER ASSOCIATIVE STRUCTURES 395

Definition 4.17. Define the space SBN; as the pullback along in the dia-
gram

(418) J/SBNi(e)};

RSBN;(C)op 75 (SBN;(C)tP),

p7

where Sp; : RSBN;(C)*P — (SBN;(C)*P),, denotes a functorial fibrant re-
placement of the natural map from SBN;(C)'*P to its p-completion.

The automorphism of RSBN;(C)'*P induced by the g-th power map and
the automorphism of SBN;(F,) induced by the Frobenius map Fr, agree along
SBN;(C)%P. Let the common automorphism be denoted by

1]);] : SBNi E— SBNZ',

and refer to it as the “g-th Adams operation” on SBN;. Straightforward from
the construction, we get a \Pp?-equivariant map

Vi SBNi e BNi
whose fiber is weakly equivalent to S**. Now, we have a map
S : SBN; —2s SBN,(F,),

lSBNi(e)p‘
(4.19) SBN;(C), — SBGI;(C)

. !

ISBGL(C), || —— SBCL,

p

where the last map is induced by the universal property of pro-finite comple-
tions.

Definition 4.20. Define the space SBGI; as the pullback along the diagram

(4.21)

where R(S%;)q : R(SBN;)g — (SBG];)q is the functorial fibrant replacement
of (S%i)q-
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Since the automorphism P? of SBN; commutes with the action of o on
SBGI; along the composite (4.10), SBG]; is also equipped with an automor-
phism

P?: SBGl; —— SBGY;,

which we refer to as the “g-th Adams operation” on SBG;. It follows from the
construction of SBGl; and BGI; that there is a {%-equivariant map

(4.22) m; : SBGl; —— BGI,.
The map 7; admits a Pp?-equivariant section, i.e., a map
o; : BGl; —— SBGI,;,
such that m; o 0; = 1pgy,, for reasons that are explained in Remark ?7.

LEMMA 4.23. The fiber of the map T; is equivalent to the p-local 2i-sphere.

Proof. From Definition 4.20, Fib(7;) fits into the homotopy pullback square

Fib(rm;) ——— Fib(m;, )

| I

Fib((vi)g) — Fib((7; )o)-
It is easy to see Fib((v;)qg) ~ Séf. From Lemma 4.6, Fib(m; ) ~ Szzf, further

Fib((m; )g) ~ Fib(m; )g ~ (5%)q,

and hence, Fib(7;) ~ S%;;).

We end this subsection proving the following result.
THEOREM 4.24. For all 1,5 > 0, there exists a \p2-equivariant commuta-
tive diagram
SBGI; x SBGl; —5 SBGl;,
(4.25) mxnjl lﬂﬂ-j
BGl; x BGl; —~— BGl;;

induced by the block-diagonal sum map. Further, the families {p; ; : i>0,5>0}
and {w;; :i>0,j > 0} satisfy the external associativity condition

Hitjk o (Kij X IBay,,) = Wij+k © (IBGL, X Kjik),

Wigjk o (Wi X Ipa,,) = Wi gk o (IBay,, X Wik):
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Proof. Notice that the maps 7; ; and ¢ of Remark 4.4 satisfy the external
associativity condition

Titjk © (Tij Sos Liak_0)) = Tij+k © (L(az o) ol k),
co (C X ]lAm) =Co (]lAm X C).

This, along with the commutative diagram

SpecZ SpecZ SpecZ SpecZ
(AL = 0) _x (A}~ 0) » (A7 = 0)
SpecZ

implies the commutative diagram of simplicial schemes

Z
SBGIZ, x SBGIZ, —2; SBGIZ, ,,

(4.26) ﬂ%mjzl ln%ﬂ.
Z
BGIZ, x BGIZ, —1 BGIZ,,

such that the families {wl-zJ 24,7 > 1} and {u%j : 4,7 > 1} satisfy external
associativity conditions. Applying the functor ||[Etc((-) x SpecC),|| to the
SpecZ

above diagram one constructs a p-completed version of the diagram in (4.25).
An easy diagram chase leads to the commutative diagram

SBNz X SBNJ — SBNZ‘+]'

l |

BNZ' X BNj —_— BNH_]'

such that its Q-localization maps to the diagram obtained by applying |]Et(~)p llo
to (4.26). Thus we can form an arithmetic fracture square of the diagram (4.26)
and the result follows. U

4.3. Some properties of the fiber of m;. We now discuss some of the im-
portant consequences of Theorem 4.24. An explicit point-set definition for the
fiber of a map is important for the completeness of our arguments.

Convention 3. For the sake of simplicity of arguments, henceforth we work
only in Top and avoid sSet.

Recall that the Moore path space of a space B € Top, is defined as
PB):={(t,f: R0 — B):t >0, f(0) == and f(s) = f(t) for all s > t},
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where * is the base-point. There is a natural evaluation map
ev:P(B)—— B

such that (¢, f) — f(t). For the rest of the paper, we let Q(B) denote the
Moore loop space

Definition 4.27. For B € Top, and a map 7 : E — B in Top, define the
fiber Fib(m) € Top as the pullback

Explicitly, Fib(w) := {(e, (¢, f)) : w(e) = f(t)} € E x P(B). If 7 admits a
section, i.e., a map s : B — E such that m os = 1p, then its reduced fiber
Fib(m) € Top, is defined as the cofiber

Fib(r) := Cof(s' : P(B) — Fib()),

where (¢, f) = ((soev)(t, f), (t, f)) and the collapsed image of P(B) is set as
the basepoint.

A straightforward consequence of Definition 4.27 is the following lemma.

LEMMA 4.28. Let B be a pointed topological space, and let m : E — B be
a sectioned map. Then there exists a strictly associative map of monoids

a: Q(B) —— G(Fib(r), Fib(r))
induced by the concatenation of paths, which is a map P(B) x P(B) — P(B).

Notation 4.29. For the rest of the paper we let S%;) denote the fiber

F\IB(’T(ZD when ¢ > 1. The ¢-th Adams operation on S%;) induced by the
P-invariance of the map 7; will be denoted by

14 . Q2i Q21
(4.30) Pf S —— 82

When i = 0, we set S?p) := 8% and declare 11)8 = Igo.

Notation 4.31. For i > 1, we abbreviate Q|BGl;| to /lei, let
fig = Qpigl) : Gli x G; —— Gliyy
denote the “block-diagonal sum,” and let

B! = (1)) : Gl —— G,
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denote the ¢-th Adams operation on a/lz When ¢ = 0, we designate Eﬁo as the
trivial group, p; 0 and o ; as the identity maps, and lbg as the unique self-map
of Gly.

Immediate from Lemma 4.28, we have a map

L a/lz E— G(g%

Q2i
S

(p)

of strictly associative H-spaces with strict units. Let T; : E}vlZ X S%;) — S%;)
denote the adjoint of ;. Clearly, the map T; is Pp?-equivariant:

Ol G2 4 &2
Gli x5 —— S

(4.32) B | iz
Ol G2 U o &2
Gl; x S(p) — S(p).

Furthermore, Theorem 4.24 implies that for all ¢ > 0 and j7 > 0, we have maps

5. . Q2 Q2Jj q2i+2j
(4.33) Pij = Sy X S(p) — S(p)
that are \9-equivariant,

320 5 G2 Pi,j G2i+2j

(p) (p) (p)
&2i . @2 _Pid ., &2it+2j
S(p) X S(p) S(p) ’

externally associative,
(4.35) Pitjk © (Pij ¥ lg%:)) = Pij+k O (]15%;) X Pjk)s
and satisfy the P?-equivariant diagram

L. &% L &2 i xT &2 o &2
Gl; x Gl; x S(p) X S(p) _— S(p) X S(p)

(436) ﬁi,]’xﬁijﬁl lﬁi-ﬁ—j

L &2i42) [ &2i+27

Glitj x5 Sw)
It will follow, essentially from Remark 4.4, that the maps p; ; can be extended
Pl-equivariantly to SQi) A S?j , which also satisfies (4.34), (4.35) and (4.36)

(p p)
with obvious modifications. More precisely, we prove

LEMMA 4.37. There exists a family of V?-equivariant maps

Som = o1y 5% A 53 S0 120,52 0)

such that
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(1)

(2) pij is a weak equivalence for all i,5 > 0,

(3) Pitj,k © (pZ] A ]ls% ) = Pij+k © (15(2;)> A p],k)7 and
(4)

Pi0 = P0,i = ]lgzz'),

the diagram

Gl x OL x G2 A2 "N\U, &2 , §2
Gl x Gl x §2) A§% ", 521 A 5%

Hi,j Xpi,jl lpl}j

~1 G2i+27 Q2i+27
Glivj x Sy T S

commutes.

Proof. In the commutative diagram of \p?-equivariant sectioned maps

SBGIl, — SBG; x SBCGl; —Ls SBGly;

(438) O¢ I? lﬂe O'iXO'j Z\ \LT(»L' ><7'[j Oj4j E‘\ \Lﬂi«}j
BGl, —**— BGl x BGL, ——— BGlyy,

where € € {7, j}, the composite w; ;o Ac factors through Oit+; (see Remark 4.4).
Consequently, the right commutative square in (4.38) satisfies (4.41). By set-
ting

(m1,m2, 73, 1,2, 72,3, 771,2,3) = (m, TUjy Ty T4 5 TUj 4 ks 7Ti+j+k)

n (4.40), we get (1), (2) and (3). Since all the maps in (4.38) are P?-equi-
variant, the maps p; ; is also a Pp?-equivariant map.
It follows from (4.38) and Lemma 4.28 that the composite

2i Q2j 2i &2i+27
8% VS — Sy xS — SG)

is equivariantly contractible with respect to the action of E}vll X évlj, and hence
the condition (4). O

COROLLARY 4.39. The q-th Adams operation II)q S%;) — S?’) 18 a map

of degree ¢*, hence a weak equivalence.

Proof. The case ¢ = 1 follows from the formal property that the g-th
Adams operation converts a line bundle L to its ¢g-th tensor power L®4. This
is encoded in the fact that the g-th Adams operation on BGl; (C)%P is induced
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by the g-th power map of Gl;(C)*P. The general case follows from the pZ-equi-
variance of the map p; ; (see Lemma 4.37),

G2 A Q% _Pid §2i+2j

(P "~ (p) (p)
i | [,
&2i &2 Pij  &2i+25
St " S Sw)
and an inductive argument. O

PROPOSITION 4.40. Suppose that there exists a commutative diagram of
sectioned maps

w1,2
E1 X E2 —_— ELQ

i LS
s1X82 | lmxm T2 181,2
\ /

N 7

B; x By 25 By,
such that
(4.41) w(my ' (b1) x s2(b2) Us1(br) x w5 (b2)) = s(u(by, ba)).
Then there exists a natural map
@15 : Fib(m;) A Fib(my) — Fib(mr 2).

Further, if there are commutative diagrams of sectioned maps

w2,3
E2 X E3 e E273

n LS
32><33|/ T XT3 2,3 ‘,52,3
\

N

12,3
Bs x B3 E— B273

w(1,2),3 w1,(2,3
E12 xE3 ——= Ei123 E; x Eg3 L Ei23
A Y A )Y
' T12XT3 12,3 i ' TIXT23  T1,2,3 i
81,2X83 \_ L L/ 51,2,3 S§1X82.3 \_ L _/ 51,2,3
(1,2),3 1,(2,3
Bi2 X By — Bi23 By x Ba3 e Bi23

that satisfy (4.41) and
w(1,2)3° (w12 X 1gy) = wy (2.3) © (Lg, X wa,3),
1(1,2),3° (11,2 X 1py) = p1,(2,3) © (I, X p2,3),
then

CZ)(]-v2)73 © (62)172 A ]1%(773)) - (‘017(273) © (lﬁ(ﬂl) A dj273)
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Proof. By assumption, we obtain a commutative diagram

Fib(m) x Fib(ms) —<— Fib(r)

/>{ K\
s xsh { \Lﬂ'i Xl lﬂ-’ )8’
P(B;) x P(By) —~— P(B)
such that
W' ((m1) " (1) x sh(w2) U s (1) x (m5) ' (22)) = &' (1 (1, 22)).
Consequently, the continuous map
@15 : Fib(my) A Fib(my) — Fib(n)

which sends ([f1,t1], [f2,t2]) to [W'(f1, f2), max{t; + t2,1}], where 0 < ¢; < 1is
the cone coordinate with the basepoint at ¢; = 1, is well-defined. Rest of the
assertions can be easily verified from the above formula. O

5. A canonical solution to the stable Adams conjecture

We first construct a new permutative category Glc, equipped with a
monoidal functor
Ve: Gle, —— Glc,

such that K(Glc ) ~ ku, and K(¥?) is equivalent to the ¢g-th Adams opera-
tion on @(p). Then we construct a multifunctor

(5.1) J:vGlg, — vGlg

(p)

and declare KEM(j) to be the map J of Theorem 1.5. Finally, we observe
that the collection of maps {\; : i € N} of (4.31) produces the multinatural
transformation of (1.16). Thus, invoking Theorem 2.13 we produce a canon-
ical null-homotopy that resolves Theorem 1.5 — the unreduced stable Adams
conjecture.

Definition 5.2. Let Gl denote the permutative category whose objects
are the natural numbers (N, +) and morphisms are
Gl ifi=j7,
MOI‘GI i, ) =
C’p( J) {@ otherwise,
with [1; ; (see (4.31)) as the monoidal product on morphisms.

LEMMA 5.3. There is a strict monoidal functor V9 : Gl , — Glc,, such
that

K(W4) : kug) —— kug

s the q-th Adams operation.
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Proof. Define W7 as the map that is identity on objects and maps f €
Morgy , (4,7) = Gl to ﬁ)f(f) for all ¢ € N, where 11)3 is the map defined in
(4.31). It can be readily checked that W9(1;) = 1,. Further, the map p; ; (see
(4.25)) is Pi-equivariant, so we have

Rij o (Wi x ¥f) =i, ;o iy ;.
Hence, the functor W1 is strictly monoidal.

The fact that K(¥?) induces the ¢-th Adams operation is essentially a
well-known observation of Sullivan [Sul74]. O

Although one would ideally like to construct the stable J-homomorphism
3+ kug) —— pic™(S(p)),

by applying the K-theory functor to a monoidal functor J : Glc ), — Gls? | of
p

permutative categories, the obvious functor J, which sends i to S%;) on objects
and
(5.4) L Gli E— G(S%;),S%;))

on morphisms, may not be a monoidal functor; see (5.5). Therefore, we forget
down to Mult.

Remark 5.5. In order for J to be monoidal, we need a family of maps

{pig : 85y ASG) = 867 1025 2 0)

that satisfy
(A) pi; is invertible, i.e., it is a homeomorphism;
(B) pio = Po; = ﬂg(z;); and

(C) pij+ko (]lsgg) A Pij) = Pitjk © (Pij A ﬂsg;))-

While the family §am of Lemma 4.37 satisfies (B) and (C), it may not sat-
isfy (A).

Lemma 4.37 immediately gives rise to the multifunctor J of formula (5.1),
which maps the object i to S%;), and on n-morphisms, sends x € Gl; =

VGlIc (i1, ... ,%n;%) to the composite map

&2i &2in in &2 4@ &
S(p% /\ AR /\ S(p) 7 S 7 S(p).

Let (i1,...,i,) € N**_ and define Pir,...i, inductively using the formula

k

Pitysin 1= Pitigrtin © (ﬂg?zg A Pis,...jin)-
p
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Likewise, define the map p;, ., : a/lil X oo X évlzn — aiil+...+in using the
formula

Wit i+ Higigtetin © (LG, A flig,in)-

The fact that J is a multifunctor follows from the observations that

(i) the map p;,... i,
(i) Piteensin © (Ping iy A+ APint i) = Pittyeesing,, WHENEVeT G514+ +ijp, =
ij for all 1 < j < n; and

(iii) there is a commutative diagram

is a weak equivalence with p; = Ilg%,
p

Iil/\.../\tin

) v (O g2ir A & 262 §2i1 5 & 200
Gliy oo X Gl XSy A - AS ) S N NS
Hzl ..... in X pi1 ,,,,, inl lpzl ,,,,, in
. G261+ +2in G2i1+++2in
Gliypin X S(,) Tyt tin Sw)

Proof of Theorem 1.5 (Unreduced stable Adams conjecture). Theorem 2.12
implies that it is enough to produce a multinatural transformation n : J —
JovWie. We declare

=17 J(6) = 8Py = (JovW9)(i) = SF).
In order for i to be a multinatural transformation, the diagram

~ Ph 7,k(l7«)

,,,,, R &27 ~21

Gl; > G(S() Ao ASESLSE)
(56) o ik(uoﬂ)?)l lm)*
Q21 &2 2 Q21 Q21

G(SG) A~ A S5 S5) Gyt GB6) A ASG)SE)

must commute. Assume i = i1 + - - - 4 ix; otherwise the spaces involved in the
diagram (5.6) are empty. From the 1%-equivariance of the map p; ; we get

&2j Pig . &2it2j
Sty 1Sy — St

77i/\77jl \Lm#j

&2 Pig | &2i42j
S(p)/\s(p) S(p) ’

and therefore,

Piroip © (Miy A A i) =150 Qi i
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Further, from the commutative diagram

Ol « Q2 4 &2
Gli x5 —— S

l’I‘)anil l’ni
Ol G2 U o &2
Gl x 5 —— S,

we conclude
(W () (i) = mi(u(-)) ().

Thus (5.6) commutes:

(D)) © Py © (i A A )) () = (L (W1()) 00 © Piy iy ) ()
= (W) 0 1) (Piy cin ()
= 0i(4())(Pin, .. (+)- 0

Remark 5.7. By choosing
@(p) = Kseg(d)UGl(c), piCeV(S(p)) = Kseg(d)UGls?p)),
P := K8 (pvv?), J:= Kseg(dﬁ),
we can make sure that the maps

W kug) —— kug,

3 . k7U(p) E— piCev(S(p))

are maps of Q-spectrum; see Theorem 2.2 and (2.14). Then K*¢(¢d(n)) is a
homotopy J >~ J o \? that solves Theorem 1.5.

Proof of Theorem 1.8. By definition, bu(,) is the fiber of a ring map
kug) —— HZ
representing a generator of HZOQ(},). Likewise, bgl (S;)) is the fiber of a map
pic®¥(Syy) —— HZ.
Since 7 induces the identity map on 7, we have a lift

Vg : buy) > bu(y)
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by an argument using the five lemma. An identical argument lifts J to a map
Jo : bu(p) — bgli(S(y)). Thus we have a homotopy commutative diagram

ll)q—l J,
bu(p) ’ bu(p) "~ bgly (Sp))

! | L

kug) Gy Kup) —5— Pic™(Sgp))

and consequently ¢ o J( o (Wg — 1) ~ *. In fact, Jj o (W§ — 1) ~ #; if not, then
it must factor through the fiber

Fib(1) ~ £~ HZ

via an essential map. This contradicts the fact that HZ_lbu(p) =0.

Note that bsli(S)(y) is the fiber of bgli(S(,)) — EHZE;). Thus we have a

lift of Jf,, namely Jo,

bSll (S) (p)

Jo ///7

-

-

bup) Ja=p Pup —5 beli(Sg)) —— ZHZG

(»)’

as (HZ;

(p))lbu(p) =~ (. Further, Joo (Y — 1) ~ x as (HZX))Obu(p) >~ 0. O

(p

6. The J-homomorphism and fundamental groups

Note 7o (?) : moku,) — moku(,y is the identity map as Adams operations
on vector bundles do not change the virtual dimension of the bundle. Thus by
running the long exact sequence

0 0 Z
12 12 1%

a_1
mikug,) S mikug,y —— ™ (Cof (W7 — 1))

moku(y) =y Mokug,) —— mo(Cof(h? — 1))

dl Al Al
Z Z Z

associated to the cofiber sequence ku,) — ku,y — Cof (W7 —1), we get

m1(Cof (P? — 1)) =X Z.
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By Theorem 1.5, J o (? — 1) =~ % and thus we have an extension
3 Cof (P — 1) —— pic™(S(y))-

The main purpose of this section is to understand the effect of J on the fun-
damental groups and prove Theorem 1.7.
By Remark 5.7, we may assume that ku(,y and pic®(S,) are 2-spectrum.

By construction, there is a map in Ho(7 op) from Bali to the ¢-th component
of the zeroth space K(Glc,)(o). Thus we get a map (in Ho(Sp))

Ti Ew(BaZ)+ e k7U(p),
such that mo(r;) : Z — Z sends 1 to i. Similarly, we also have a map

S; - ZOOBG(SZZ

)+ — Pic” (Sp)

such that my(s;) : Z — Z sends 1 to i and 7 (s;) : Z

o Z(Xp) is an isomor-

phism. Let
— By —
Cyl(p?, BGl;) := hocolim ¢ BGl; —= BGl;
BCl;
denote the mapping cylinder. By construction, we have a commutative diagram

. TE®-1) ~ ~
2 (BGL) 4+ 2% (BGl)s —— S°Cyl(h?, BGL)4

ni ni lr

kug,) kugpy ———— Cof(¥?—1),

Pi-1

where the rows are cofiber sequences. By comparing the long exact sequences
of homotopy groups associated to each row above, we deduce that
(6.1)

w1 (i) 2 Z 22 my (E°Cyl($9, BGL) 4 ) ————— mi(Cof (9 — 1)) = Z,

sends 1 to 1.

If we view Gl; as well as G(S%}’;), S%;)) as categories with one object, then
the map (; of (5.4) (which defines the J-homomorphism) is a functor and the
map 7; = 11)3 is a natural transformation between ; and ; oﬂ)?. Thus we have
a homotopy Bi; ~ By; o BII)?, and consequently, an induced map

- . . a2 &2
t; : Cyl(p?,BGL) —— BG(S(p),S(p))
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such that the diagram

E ~
$°Cyl(pe, BGL), — 5 EOOBG(S(p)

(6.2) g ~ B

Cof(P? —1) — 3 pic™ (Sp))

21
St)+

commutes in Ho(Sp).

LEMMA 6.3. The map induced by T; on the fundamental groups

T (Il) L= chyl(ll)q, Bé\iz) EE— WlBG(S%;), S%}Z))) ZE;)

sends n to deg(l];g)”.
Proof. The Hurewicz theorem implies
HZ, Cyl(y?, BGL) = m Cyl(}?, BGL) = Z
and
&2\ o &2 &2\ ~v X
HZ\BG(S;), () = mBG(S(,), 55) = Z.
Thus it is enough to show the result for HZ; (1;).

Let 1 be the unit interval category, with objects {0,1} and « : 0 — 1
denoting the only non-trivial morphism. As a simplicial set, Cyl({}?, BGl;) is
a quotient of B(1 x Gl;). More explicitly, its n-th space is the set

={0% ... T o315 ... 81 g e GL}/ ~,
where the equivalence relation is generated by

1,9
0" o8 ~0315 )

The homology of the chain-complex Z[L,] is isomorphic to HZ,Cyl({¥, BE}VI,;)),
and HZ;Cyl({?, BGl;)) is generated by the class [a].

The n-th space of the simplicial set BG(S%Z), S%;)) is
Q2 21 21
W, = {S(p) LY Sy 1 fi € G(S( ) S(p))}

and homology of the chain complex Z[W*] is isomorphic to HZ*BG(S%Z), S%’))

The map 1; on the n-th space is given by
0% ... 950 198 3

I

g2 Wi, Wi §2i tz‘(gz‘+1) ti(gn) §2i |

m&l)) u(b? ( -1)) BN
®» P

21
5%

In particular, [a] — 7], and hence the result. O
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Proof of Theorem 1.7. As a consequence of Corollary 4.39, Lemma 6.3
and (6.1), we get the following diagram when we hit (6.2) by m(—):

Zl—>ZX

(6.4) H{ H

Ly —— Z5..
() m1(J) (»)

It follows that 7 (J) must send 1 to g. O

6.1. The indeterminacy of 71'1( ). Note that Theorem 1.7 depends on the
explicit null-homotopy, namely, K*®(¢(n)) (see Remark 5.7), as it is needed
in the construction of the extension J. Therefore, a different null-homotopy

/ ~ ~
Ny~ Jo?
can result in an extension

3 Cof (P — 1) —— pic™(S(p))

different from J (in Ho(Sp)). Thus, as in Theorem 1.7, 71 (J’) may not send 1
to ¢. Our next goal is to prove the following theorem.

THEOREM 6.5. If ¥ fits into the homotopy commutative diagram

Ppa—1
kug,) ——— kug,) ——— Cof(p? — 1)

(6.6) l /

pPIc (S(p)),

then 1 (J')(1) = +q € Z zfp is odd, and m (J")(1) =q if p=2.
By Remark 2.11 there exists a map

5 piCev(S(p)) E— EHZE;)

that induces isomorphism on fundamental groups. Now notice that in the
following sequence of maps,

Pi-1

(6.7) kug,) 2 kug,) — pic(Sgy)) — SHZY

p) (»)’

Jo(WP?—1) ~ % by Theorem 1.5, and d o J ~ * as HZIQ@) = (0. Thus, the
Toda bracket

NZX

(8,3, W% — 1) C [Skuy,), SHZ 5

(p )}
is well defined.
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LEMMA 6.8. Let p : Cof(Pp? — 1) — Xku,) denote the connecting map.

There exists a map J' satisfying the diagram (6.6) and the equation
m(doJ)1) =k
if and only if there exists an element vy € (8,F,W?—1) such that w1 (yop)(1) = k.

Proof. 1t follows from the definition of Toda bracket that for any choice
of J, there exists an element v € (§,J,1? — 1), and vice versa, that fits in a
diagram

Il)qil J - _ev o
Ku) ———— kug) —— > pic™ (S()) —— BHZ),
= o
Cof(Pp? —1) e
pl /,/’/
k)
and hence the result. O

From the above lemma and Theorem 1.7, we get the following corollary.

COROLLARY 6.9. The Toda bracket (5,J,?— 1) C Z(Xp) contains q.

Proof of Theorem 6.5. By Lemma 6.8, it is enough to show that the inde-
terminacy of the bracket (5, J,? — 1), which is the double coset

do [2@(;,), pic™ (Sp))] + [2@(;,), EHZ(XP)] oX(Pp?-1) C [Z@(py EHZ(XP)] = Z(Xp)

lies in the torsion subgroup {+1} C Z(Xp ) Since P? acts as the identity map on
mo(ku(y)), it follows that

[E@(p), EHZ(XP)] o ¥(p?—1) = {0}.

Notice that [Xku,y, pic® (S(,))] = [Xkug,), bgli(S(p))] and that the composition
(6.10)
S(pI—1
2kup,) ( )E@(p) — bgli ()
12
Sgli(Sg)) — Lgh(KU,) —— SKU,,
where /¢ is logarithm map of [Rez06], must be trivial. This is because the
composite induces zero-map on 7 for £ > 1 as the higher homotopy groups of

bgli (Sp)) are torsion and the homotopy groups of EKUI; are torsion free and
periodic. Thus 7 of the composition map in (6.10) factors through ker(m(¢)),
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which is isomorphic to the torsion subgroup in Z; (because /¢ is an equivalence
after K(1)-localization). Since the map

bgl1(S(y)) — Tgh(KU,)

is injective on 71, it follows that

8 o [Xkuy), pic™ (Sg))] C {£1} = (TorZ,;) N Z(Xp).

When p = 2, the indeterminacy is in fact the trivial group: If there is a map
7y : Xku(y) — bgli(S(z)) such that

m1(7)(1) = —1 € m(bgh (S(z))),

then the composite

52 21, 51 =L, bely(S(y)

must factor through E@(z), and therefore, must be trivial. This is a contra-
diction to the fact that 0 # 7 € ma(bgli(S(y))). O

Remark 6.11. If we consider the p-complete version of the diagram (6.7),

Pa

~ —1 .~ 31; Cev &N 51; <y
kuy, > kup, pic®(Sp), —— (XHZ)),,

then an argument identical to that in the proof of Theorem 6.5 shows that
there is no indeterminacy in this case, i.e.,

<61;731;71Lq - 1> = {Q}

7. Thomified A,-structure of Moore spectra

Having established the unreduced stable Adams conjecture, let us turn
our attention to our main application — detecting Thomified A,,-structures of
M, (¢). The goal of this section is to prove Theorem 1.13.

By (1.10) and (1.11), we obtain an A,-structure on M, (¢) if the diagram

s W w100t — 1)
(7.1) J e
xT2CP"
admits a solution in Ho(Sp); see [Bha20, §4].

THEOREM 7.2. A map f : S — Y 'Cof(P? — 1) representing the class

p' 'k, where k is prime to p, extends to a map from Y 2CPP' ! but does not
extend to a map from L 2CPP".
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Proof. Let KUy, := B_lg(p), where {3 is the Bott class in degree 2. Recall
that

[CP}, KUy)ls = Zgy) [e] [B*]/ ("),
where e = vy — 1 is a class in degree 0 and vy is the tautological line bundle
over CP". Under the natural map induced by ku,y — KUy, the elements of

@(;)CP” = @(Z)C]P’C’; can be identified with a subgroup
W, C KU(],%)CPZ- = Z(p) [[e]]/(en+1){[3—l}
such that KU(]%)(CIP”}r /Wy is isomorphic to Z,le]/(e*, Z{e}). Thus, we may

write an element in @(2)CP2 as

y:=B"'f(e)
such that f(0) =0 and f'(0) € Z.
Now consider the cofiber sequence of spectra:

E_lcOf(ﬂ)q — ].) e @(p) — @(p)

Mapping L 72CP" into this sequence gives rise to a long exact sequence, re-
ducing the question to finding a class y € @(2)@?’” that restricts to p' 'k €

@(i)wl and is fixed under 7. Since P9 = gf and

Wile) = Wiy — 1) =y 1= (1) — 1,
f(e) must satisfy
F(L+e)" =1) = qf(e).

By Lemma 7.3, we know that rationally f must be of the form

. (_1)j+1 j n+1
fley=c) — ¢ €Qlel/(").

k=1
Moreover, ¢ = p'~ 'k as y must restrict to p* 'k € @(g)CPl = 7. From the
above formula, it is clear that f € W, C Z[e]/(e"™) if and only if n < p'.
Hence, the result. O

LEMMA 7.3. Fixm > 1 andr > 1. If f € Q[x]/(z™) satisfies the relation
(7.4) f(14+2z)"—1)=rf(x) mod z™,
then f(z) = cln(1 4+ z) mod =™ for some constant ¢ € Q.
Proof. Putting x =0, we get f(0)=0. Now let f(z)= Z;’;laixi mod 1™
and consider the formal difference
f(A+2) —1)—rf(z) =diz+doz® + - + dpz™ ! mod z™.
2

It is easy to see that dy = 0, do = (1° — r)ag — (;)al and in general, dj, for

k < m, is a linear combination of a1, ..., ay, where coefficient of ay, is 7% — r.
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When r > 1 and f satisfies (7.4), the value of aj for £ > 1 are decided by
the value of a;. Hence, f(x) is uniquely determined by a;, the coefficient of
x. Since a; In(1+x) mod x™ satisfies (7.4) with a; as the coefficient of z, the
result follows. O

An argument almost identical to that of Theorem 7.2 leads to

THEOREM 7.5. A map f : S — LK(l)E_lCof(ll)q — 1) representing the

X

class p"~'\, where \ € Zp,
extend to a map from L 2CPP".

extends to a map from S=2CPP' ! but does not

Proof of Theorem 1.13. Recall from (1.12) that when p is an odd prime
ep(i) = (p — 1)p"~! and when p = 2, we have es(i + 1) = 2"1. Theorem 7.2
implies that an extension of (7.1) exists if and only if ¢ < n. Thus, My(4)
admits a Thomified A:_;-structure when p odd, and at p = 2, Ma(i + 1)
admits a Thomified Aqi_;-structure.

The “non-existential part” of Theorem 1.13, at odd primes, follows from
Theorem 7.5 and the fact that LK(I)Z_lCOf(ﬂ)q —1) ~ LK(I)Sp- To see this,
consider the composite
(7.6)

Yi:S €p—(i)> Zfl(Cof(tl)q — 1)21)

<

>1

y1 bgll (S(p)) ~ gll (S(p)) e gll (Sp)

!

Lkq) gl (S,) —— LK(1)Sp,

where Cof (P?—1)>; is the 0-connected cover of Cof (P?—1) and ¢ is the Rezk’s
logarithm map. By [Kuh89], ¢ is a weak equivalence, and therefore the map
vi of (7.6) belongs to the class

pi)\ € WoLK(l)Sp,

for some \ € Z; Thus, a Thomified Ai-structure on M,(7), i.e., a solution to
(1.10) with n = p’, would contradict Theorem 7.5.

At p =2, LK(I)E_lCof(ll)q — 1) is not equivalent to the K(1)-localization
of Sy. Therefore, we do not know if Ms(i + 1) supports a Thomified Ayi-
structure or not. However, we will show that My(i 4+ 1) cannot support a
Thomified Agit1-structure.

By [Kuh89],

Li(1) gh(Sp) —5= Lk)Sp = Fib(Wf, — 1 : KO, — KO,),
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where lb?R is the ¢-th real Adams operation. Various formulas in [Rez06] imply
that y;4+1 composed with

C: LK(I)SP —_— LK(1)271COf(1I)q — 1)

belongs to the class 2°\ € ﬂoLK(l)E_lcOf(lbq —1). Thus, by Theorem 7.5, a
solution to (1.10) does not exist if n = 2¢+1. Hence, My(i + 1) cannot support
a Thomified Agiti-structure. O

Remark 7.7. There may exist “exotic” A,-structures on M,(7) that are not
Thomified. Our argument does not address such structures. It will be very
interesting to see if there exist exotic A,-structures on My (i) and, if possible,
enumerate them.

Appendix A. Comparison with the work of Friedlander

In [Fri80], Friedlander describes an approach to a p-completed version of
the stable Adams conjecture based on the theory of fibrations of Gamma spaces
(F-Top).

In the first part of [Fri80] (Sections 1 through 6), Friedlander develops the
theory of X-fibrations of Gamma spaces (see (A.5)), and his main result is a
classification theorem for X-fibrations [Fri80, Th. 6.1]. This is an elegant idea.
Indeed, assuming the validity of [Fri80, Th. 6.1] (which we have no reason to
doubt) we shall outline a proof below of the p-local stable Adams conjecture,
taking X to be the localization of the 2-sphere X = S?p).

Subsequent sections of [Fri80] (Sections 7 through 10) extend the theory of
X-fibrations to the theory of completed X-fibrations and prove a corresponding
classification theory for completed X-fibrations [Fri80, Th. 7.9]. Applying the
classification theorem for p-completed S2-fibrations allows Friedlander to claim
the following p-completed version of the stable Adams conjecture.

THEOREM A.1 ([Fri80, Th. 10.4]). The following sequence of maps is null-
homotopic

where 311) is the (canonical) lift of 31; to the fiber pic'i"(gp) of the covering map
5, : pic™(Sy), — (SHZY),.

Remark A.2. Notice that (A.1) stands in contradiction to the conclusion
of (6.11). Indeed, the above theorem would imply that

{1} € <6;;73];711’q - 1>a
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which clearly contradicts (6.11). We thank the referee for pointing out this
apparent contradiction. In fact, the referee offered us an alternate contradiction
to (A.1) based on the following general fact (we leave the proof of this fact to
the interested reader): Assume p is odd and that one has a map

30 Cof(P? — 1) —— pic®(S,),
with the property that the composite of ﬁ;, with the Rezk logarithm

I piCev(Sp) E— LK(l)Sl

is an isomorphism on non-negative even homotopy groups. Then £ o ﬁ; is in
fact an isomorphism on all non-negative homotopy groups on p-completion.
Applying this observation to 71 gives rise to another contradiction in Friedlan-
der’s (A.1). We suspect that the orientability assumptions required to develop
the theory of completed X-fibrations are the most likely source of this contra-
diction (based on the fact that completions of fibrations fail to be fibrations in
general).

Remark A.3. It should be noted that Friedlander also states a 0-connected
version of (A.1) (i.e., a reduced p-complete stable Adams conjecture) in the
introduction to [Fri80]. This version does not trigger a contradiction as above,
and it appears to be valid as stated.

In order to show how one may prove Theorem 1.5 using the first six sec-
tions of [Fri80], let us begin by recalling the notion of an X-fibration of Gamma
spaces. Let N denote the permutative category of natural numbers as intro-
duced in Remark 2.6. The n-th space of the Gamma space N := (p o B)(N)
(where p and B are functors as in (2.1)) is the discrete space

NngNX A XN7
—_———
n-times

where the functors p and B are as in (2.1). Note that if B € F-Top such that
we have a map B — N, then the n-th space of B is a disjoint union

B, = |_| By.
TeNxn

Let X be an object in Top,. An X-fibrations is a map 7 : £ — B over N/
such that

W[:EIHB[

is a sectioned map such that Fib(m;) o~ Xt x. .. xX"in (where [ = (i1, ... ,ip)),
along with additional criteria as listed in [Fri80, Def. 3.2].
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Definition A.4. Two X-fibrations 7 : £ — Band n’ : £ — B are equivalent
if there is a map f : &€ — &£ over B such that

f] : € I — 5}
are fiberwise weak equivalences.

Friedlander showed that the object BGlx := (Bop)(Glx) in F-Top is the
classifying space for X-fibrations [Fri80, Th. 6.1]; i.e., there is an isomorphism

of sets
(A.5) {X-fibrations over B}/(~) = [B,BGlx],
where [—, —| refers to the homotopy classes of maps in F-7 op.

Remark A.6. The universal X-fibration is constructed as follows. Consider
the permutative category UGlx whose objects are pairs (n,y) such that n € N
and y is a point in some Y that is weakly equivalent to X", and morphisms

MorUGIX((nv y), (m, y/)) C G(Y, Y/)

consist of those maps that send y to 3 if m = n, empty otherwise. Note that
there is a functor
m, : UGlx —— Glx

such that m,((n,y)) = (n,Y) if y € Y. This functor admits a section that
sends a space (n,Y) to (n,*), where x is the basepoint of Y. The object
BUGIx := (Bou)(UGlx) € F-Top
is the “total space” of the universal X-fibration
Y = Bo H(T"u) : BUG]X — BGlx.
Note that the 7y, is a map over N.

Using (A.5), one can construct the J-homorphism in the category F-Top
by constructing an S%p)—ﬁbration over (Bop)(Glcp). Consider the permutative
category SGlc, whose objects are the points of | |;cy g%}i) (see (4.30)) and
whose morphisms are those elements

fe MOTSGlCm ($,{L‘/) - @l

for which T;(f,z) = 2’. Tt is understood that Morsgy. ,(z,2) = 0 if = € S(Q;)
2j

s
and 2’ € S(p

) where 7 £ j. If we declare the monoidal product as
@2 = p;i(z,a)
on objects and

f@&g=mwi;(f9)
on morphisms, then it follows from (4.35) and (4.36) that SGlc, € PC.
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There is a functor 7¢ : SGlc , — Glc, which sends z — i if x € S%;). The
functor m¢ admits a section sc : Glc, — SGlc, that sends @ — *;, where *;

is the basepoint of g%;). On applying the functor B o u we get an S%p)—ﬁbration

Bre : BSGle, — BGlc,,.

Thus by the classification theorem of Friedlander’s (A.5) we obtain the J-homo-
morphism

J:BGle, — BGly
P

in Ho(F-Top).
Also note that the maps {\p? : i € N} produce a monoidal functor

S(W9) : SGl¢,, — SGlg,,

such that we have a commutative diagram

sGle, " sale,

| |
GIQP T) Gl(c’p

in PC. On applying the functor B o i, we get a map of X-fibrations

BSGlc, " BSGlc, — BUGI,

(p)
Bmcl l[j‘mc l

B(w9)
BGle, —— BGle, —5— BGlg, .

The map BS(VY) is fiberwise a weak equivalence because of Corollary 4.39.
Thus by (A.5),

J >~ JoB(¥9)
in Ho(F-Top). By applying the Segal functor ®, we obtain another proof of
Theorem 1.5.
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