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ABSTRACT. In mixed characteristic and in equal characteristic p we define a filtration on topological
Hochschild homology and its variants. This filtration is an analogue of the filtration of algebraic K-
theory by motivic cohomology. Its graded pieces are related in mixed characteristic to the complex
A€ constructed in our previous work, and in equal characteristic p to crystalline cohomology. Our
construction of the filtration on THH is via flat descent to semiperfectoid rings.

As one application, we refine the construction of the AQ-complex by giving a cohomological
construction of Breuil-Kisin modules for proper smooth formal schemes over Ok, where K is a
discretely valued extension of QQ, with perfect residue field. As another application, we define
syntomic sheaves Zp(n) for all n > 0 on a large class of Zp-algebras, and identify them in terms of
p-adic nearby cycles in mixed characteristic, and in terms of logarithmic de Rham-Witt sheaves in
equal characteristic p.
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1. INTRODUCTION

This paper proves various foundational results on topological cyclic homology TC (and its cousins
THH, TC™, TP) in mixed characteristic, notably the existence of certain filtrations mirroring the
motivic filtration on algebraic K-theory. As a concrete arithmetic consequence, we refine the A;,¢-
cohomology theory from [BMSI18] to proper smooth (formal) schemes defined over O, where K is
a discretely valued extension of @, with perfect residue field £, and relate this cohomology theory
to topological cyclic homology, leading to new computations of algebraic K-theory.
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1.1. Breuil-Kisin modules. Let us start by explaining more precisely the arithmetic application.
Let X be a proper smooth (formal) scheme over O . If C is a completed algebraic closure of K with
ring of integers Oc, then in [BMS18] we associate to the base change Xo, a cohomology theory
RT 4, (X0 ) with coefficients in Fontaine’s period ring Aj,s. We recall that there is a natural
surjective map 6 : Apr — Oc¢ whose kernel is generated by a non-zero-divisor &, and a natural
Frobenius automorphism ¢ : Ajys — Ajps. Then £ = ¢(€) € Ajnr is a generator of the kernel of
=00 0~ : Ajpg — O¢. The main properties of this construction are as follows.

(1) The complex RT' 4, (X0, ) is a perfect complex of Aj,s-modules, and each cohomology group
is a finitely presented A;,r-module that is free over Ainf[%] after inverting p.

(2) There is a natural Frobenius endomorphism ¢ : RT'4, (Xo.) = R4, (X0, ) that is semi-
linearNWith respect to ¢ : Ajnr — Ajnr, and becomes an isomorphism after inverting &
resp. § = ¢(§):

v RFAinf(xOC)[%] = RFAinf(%OC)[%] .
(3) After scalar extension along 0 : Aj,y — O¢, one recovers de Rham cohomology:
RPAinf(%Oc)(X’HAmeC = RPdR(%Oc/OC) .

(4) After inverting a generator p € Ajys of the kernel of the canonical map A,y — W(O¢), one
recovers étale cohomology:

RFAinf(%OC)[%] = Rrét(%Cv Zp) ®Zp Ainf[%] )

where the isomorphism is p-equivariant, where the action on the right-hand side is only via

the action on Ainf[%].

(5) After scalar extension along A;,s — W (k), one recovers crystalline cohomology of the special
fiber,

RFAinf(%OC)®£ian(E) = chryS(%E/W(E)) )
p-equivariantly.
In particular, the first two parts ensure that each Hginf(f{(gc) = HY(RT 4
Kisin-Fargues module in the sense of [BMS18, Definition 4.22].
On the other hand, in abstract p-adic Hodge theory, there is the more classical notion of Breuil-

Kisin modules as defined by Breuil, [Bre00] and and studied further by Kisin [Kis06]. The theory
depends on the choice of a uniformizer @ € Of. One gets the associated ring & = W (k)][[z]], which

(X0.)) is a Breuil-

inf

has a surjective W (k)-linear map 6 : 6 — Ok sending z to w. The kernel of § is generated by
E(z) € &, where E is an Eisenstein polynomial for w. Also, there is a Frobenius ¢ : & — & which
is the Frobenius on W (k) and sends z to zP. One can regard & as a subring of Aj,s by using the
Frobenius on W (k) and sending z to [@’]? for a compatible choice of p-power roots @!/?" € O¢.
This embedding is compatible with ¢ and 6.

Definition 1.1. A Breuil-Kisin module is a finitely generated &-module M together with an iso-
morphism
M ®e., S[%] = M[£] .

Our first main theorem states roughly that there exists a well-behaved cohomology theory on
proper smooth formal schemes X/Op that is valued in Breuil-Kisin modules, and recovers most
other standard p-adic cohomology theories attached to X by a functorial procedure; the existence
of this construction geometrizes the results of [[{is06] attaching Breuil-Kisin modules to lattices in
crystalline Galois representations, proving a conjecture of Kisin; see [CL19, OB12] for some prior
work on this question.
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Theorem 1.2. There is a S-linear cohomology theory RT'(X) equipped with a p-linear Frobenius
map ¢ : RI's(X) = RU'g(X), with the following properties:
(1) After base extension to A, it recovers the Ayng-cohomology theory:

Rrg(:{) Qe Ainf =~ RFAinf (:{OC) .
In particular, RT's(X) is a perfect complex of G-modules, and ¢ induces an isomorphism
RIg(X) ®¢,, 6[g] =~ Rl (X)[4]

and so all H5(X) := H'(RT's(X)) are Breuil-Kisin modules. Moreover, after scalar exten-
sion to Ainf[%], one recovers étale cohomology.
(2) After scalar extension along 6 := fo¢:& — O, one recovers de Rham cohomology:
RF@(%)@%(’)K ~ RT4r(%/0k) .

(8) After scalar extension along the map & — W (k) which is the Frobenius on W (k) and sends
z to 0, one recovers crystalline cohomology of the special fiber:

The constructions of [BMSI8] are not enough to get such a descent. In this paper, we deduce
this theorem as a consequence of a different construction of the Aj,¢-cohomology theory, in terms of
topological Hochschild homology. This alternative construction was actually historically our first
construction, except that we were at first unable to make it work.

Remark 1.3. In [BS], this theorem will be reproved using the theory of the prismatic site, which is
something like a mixed-characteristic version of the crystalline site. In particular, this gives a proof
of Theorem 1.2 that is independent of topological Hochschild homology. Moreover, that approach
clarifies the various Frobenius twists that appear: In parts (1), (2) and (3), one always uses a base
change along the Frobenius map of W (k), which may seem confusing.

Remark 1.4. The Frobenius twists appearing in Theorem 1.2 are not merely an artifact of the
methods, but have concrete implications for torsion in de Rham cohomology. Let us give one
example. Take K = Qp(pl/ P). In this case, the map # appearing in Theorem 1.2 (2) carries z to
(pl/ PYP = p, and thus factors over Z, C Og. It follows from the theorem that the Og-complex
RT4r(X/Ok) is the pullback of a complex defined over Z,. In particular, the length of each
H éR(%/ Ok )tors 18 a multiple of p; in fact, each indecomposable summand of this group has length
a multiple of p.

1.2. Quick reminder on topological Hochschild homology (THH). The theory of topolog-
ical Hochschild homology was first introduced in [Bok&5a], following on some ideas of Goodwillie.
Roughly, it is the theory obtained by replacing the ring Z with the sphere spectrum S in the defini-
tion of Hochschild homology. We shall use this theory to prove Theorem 1.2. Thus, let us recall the
essential features of this theory from our perspective; we shall use [NS18] as our primary reference.

THH(—) is a functor that takes an associative ring spectrum A and builds a spectrum THH(A)
that is equipped with an action of the circle group T = S* and a T = T/Cp-equivariant Frobenius
map

¢p : THH(A) — THH(A)'“ |

where Cp, = Z/pZ C T is the cyclic subgroup of order p, and (—)tcp is the Tate construction, i.e. the
cone of the norm map (—)hcp — (—)hcp from homotopy orbits to homotopy fixed points. These
Frobenius maps are an essential feature of the topological theory, and are (provably) not present
in the purely algebraic theory of Hochschild homology.

In the commutative case, the definition of THH is relatively easy to give (cf. [NS18, §IV.2]), as
we now recall. Say A is an F.-ring spectrum. Then:
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(1) THH(A) is naturally a T-equivariant F-ring spectrum equipped with a non-equivariant
map i : A — THH(A) of Ew-ring spectra, and is initial among such.

(2) The map i : A — THH(A) induces a Cp-equivariant map A ® --- ® A — THH(A) of E-
ring spectra, given by a9 ® - ® a,_1 +— i(ag)o(i(ar)) - - P~ (i(ap—1)), where o € C, is the
generator, and the Cj-action on the left permutes the tensor factors cyclically. Applying
the Tate construction, this induces a map

(A®-- - ® A)C» — THH(A)!Cr
of E-ring spectra. Moreover, there is a canonical map of E..-ring spectra
Ap: A= (A @ A)Cr

given by the Tate diagonal of [NS18, §IV.1]. This gives a map A — THH(A)!®r of E.-
ring spectra, where the target has a natural residual T/C), = T-action. By the universal
property of THH(A), this factors over a unique T = T/C)-equivariant map ¢, : THH(A) —
THH(A)r.

We shall ultimately be interested in other functors obtained from THH. Thus, recall that using
the circle action, one can form the homotopy fixed points TC™(A) = THH(A)"T and the periodic
topological cyclic homology TP(A) = THH(A)'", both of which are again E..-ring spectra. There
is a canonical map

can : TC™(4) — TP(A)
relating these constructions, arising from the natural map (—)"T — (=)!T. Writing THH(—;Z,)
for the p-completion of THH(—) (and similarly for other spectra), it is easy to see that if A is
connective, then moTC™(A;Z,) = m9TP(A;Z,) via the canonical map. On the other hand, again
assuming that A is connective, there is also a Frobenius map

ohT TC™(4;Z,) — (THH(A)'“?)"" ~ TP(A; Z,,)

induced by ¢,; the displayed equivalence comes from [N518, Lemma I1.4.2]. Combining these obser-
vations, the ring myTC™ (A4;Z,) acquires a “Frobenius” endomorphism ¢ = @ZT :moTC™ (4;Zy) —
moTP(A;Zy) = moTC™ (A; Zy). This map is the ultimate source of the endomorphism ¢ of RI'g(X)
in Theorem 1.2. In certain situations, our results show that this map is a lift of the Frobenius
modulo p, justifying its name.

Remark 1.5. In this paper, we shall apply the preceding constructions only in the case that A
is (the Eilenberg-MacLane spectrum corresponding to) a usual commutative ring. Even in this
relatively simple case, THH(A) is manifestly an F.-ring spectrum, so we are relying on some
rather heavy machinery from algebraic topology. On the other hand, we rely largely on the “formal”
aspects of this theory, with the only exception being Bokstedt’s calculation that 7, THH(F,) = Fp[u]
for u € mTHH(F,). Moreover, we will extract our desired information from the level of homotopy
groups; in fact, understanding moTC™ (—; Z,,) will suffice for the application to Theorem 1.2.

1.3. From THH to Breuil-Kisin modules. Let us first explain how to recover the AQ2-complexes
of [BMS18] from THH, and then indicate the modifications necessary for Theorem 1.2. We begin
with the following theorem, which is due to Hesselholt [Hes06] if R = Oc,, and was the starting
point for our investigations.

Theorem 1.6 (cf. §6). Let R be a perfectoid ring in the sense of [BMS18, Definition 3.5]. Then
there is a canonical (in R) @-equivariant isomorphism
7TOTC_(R; Zp) = Ainf(R) .

In fact, one can explicitly identify 7. TC™ (R;Zy), 7 TP(R;Z,), 7, THH(R;Z,) as well as the stan-
dard maps relating them, cf. §0.
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Now let A be the p-adic completion of a smooth O¢-algebra as in [BMS18]. We will recover
AQy via flat descent from myTC™(—;Z,) by passage to a perfectoid cover A — R. A convenient
home for the rings encountered while performing the descent (such as R®4R) is provided by the
following:

Definition 1.7 (The quasisyntomic site, cf. Definition 4.10). A ring A is quasisyntomic' if it is
p-complete, has bounded p*>-torsion (i..e, the p-primary torsion is killed by a fized power of p),
and LA/ZP®£A/pA € D(A/pA) has Tor-amplitude in [—1,0]. A map A — B of such rings is a
quasisyntomic map (resp. cover) if A/p"A — B/p"B is flat (resp. faithfully flat) for alln > 1 and
L(gpB)/(a/pa) € D(B/pB) has Tor-amplitude in [—1,0].

Let QSyn be the category of quasisyntomic rings. For A € QSyn, let qSyny, denote the category
of all quasisyntomic A-algebras B. Both these categories are endowed with a site structure with the
topology defined by quasisyntomic covers.

For any abelian presheaf F' on qSyn 4, we write RT'syn(A, F') = RI'(qSyny, F') for the cohomology
of its sheafification.

The category QSyn contains many Noetherian rings of interest, for example all p-complete regular
rings; even more generally, all p-complete local complete intersection rings are in QSyn. It also
contains the objects encountered above, i.e., p-adic completions of smooth Og-algebras, as well as
perfectoid rings.

The association B — mTC™(B;Z,) defines a presheaf of rings on qSyn,. The next result
identifies the cohomology of this presheaf with the AQ2-complexes:

Theorem 1.8 (cf. Theorem 9.6). Let A be an Oc-algebra that can be written as the p-adic com-
pletion of a smooth O¢-algebra. There is a functorial (in A) p-equivariant isomorphism of Eso-
Ajnr-algebras

AQ ~ Rlgyn (A, 1oTC™ (= Zp)) .

Remark 1.9. While proving Theorem 1.8, we will actually show that on a base of the site qSyn 4
(given by the quasiregular semiperfectoid rings S), the presheaf 7¢TC™(—;Z,) is already a sheaf
with vanishing higher cohomology.

There is also the following variant of this theorem in equal characteristic p, recovering crystalline
cohomology.

Theorem 1.10 (cf. §8.3). Let k be a perfect field of characteristic p, and A a smooth k-algebra.
There is a functorial (in A) @-equivariant isomorphism of Ex-W (k)-algebras
RTrys(A/W (k)) =~ RUsyn (A, moTC™(—;Zp)) .
In this case, this is related to Fontaine-Messing’s approach to crystalline cohomology via syn-
tomic cohomology, [FM&7]. More precisely, they identify crystalline cohomology with syntomic
cohomology of a certain sheaf A.ys. The previous theorem is actually proved by identifying the

sheaf moTC™(—;Z,) with (the Nygaard completion of) the sheaf A¢ys. It is also possible to deduce
Theorem 1.10 from Theorem 1.8 and the results of [BMSI18].

Remark 1.11. The topological perspective seems very well-suited to handling certain naturally
arising filtrations on both crystalline cohomology and A;,s-cohomology, as we now explain. For any
quasisyntomic ring A, define the E.-Z,-algebra

Ap = RUgyn (A, 1o TC™ (= Zp)) -
The homotopy fixed point spectral sequence endows myTC™ (—;Z,) with a natural abutment filtra-
tion. Passing to cohomology, we learn that A4 comes equipped with a natural complete filtration

11t would be better to write “p-completely quasisyntomic”.
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N Z*EA called the Nygaard filtration. We shall identify this filtration with the classical Nygaard
filtration [Nyg&1] on crystalline cohomology in the situation of Theorem 1.10, and with a mixed-
characteristic version of it in the situation of Theorem 1.8. In fact, these identifications are crucial
to our proof strategy for both theorems. The notation A4 here is chosen in anticipation of the pris-
matic cohomology defined in [B5], where we will prove that ha agrees with the Nygaard completion
of the cohomology of the structure sheaf on the prismatic site.

For a proper smooth formal scheme X/O¢, Theorem 1.8 gives an alternate construction of the
cohomology theory RI'4, (X) from [BMS18] without any recourse to the generic fibre: one can
simply define it as

R 7,6 (X) := Rlgyn (X, mTC™ (= Zp))
where one defines the quasisyntomic site qSyny in the natural way. Similarly, for a proper smooth
formal scheme X/Ok as in Theorem 1.2, one can construct the cohomology theory RT'g(X) from
Theorem 1.2 in essentially the same way: using the choice of the uniformizer w € O, we produce
a complex of G-modules by repeating the above construction, replacing THH(—) by its relative
variant THH(—/S[z]), where S[z] is a polynomial ring” over S, i.e., we work with

RTsyn (X, m0TC™ (—/S[2]; Zp)).
There is a slight subtlety here due to the non-perfectoid nature of Og: the above complex is

actually ¢* R['¢(X) where ¢ : & — & is the Frobenius; the Frobenius descended object RI's(X) is
then constructed using an analog of the Segal conjecture, cf. §11.

1.4. “Motivic” filtrations on THH and its variants. In the proof of Theorem 1.2 as sketched
above, we only needed myTC™(—;Z,) locally on QSyn. In the next result, we show that by con-
sidering the entire Postnikov filtration of TC™(—;Z,) (and variants), we obtain a filtration of
TC™(—;Z,) that is reminiscent of the motivic filtration on algebraic K-theory whose graded pieces
are motivic cohomology, cf. [F'S02]. In fact, one should expect a precise relation between the two
filtrations through the cyclotomic trace, but we have not addressed this question. Our precise result
is as follows; the existence of the filtration mentioned below has been conjectured by Hesselholt.

Theorem 1.12 (cf. §7). Let A be a quasisyntomic ring.

(1) Locally on qSyny, the spectra THH(—;Z,), TC™(—;Zy) and TP(—;Z,) are concentrated in
even degrees.

(2) Define

Fil"THH(A; Zp) = RUsyn(A, 752, THH(—; Z),))
Fil"TC™ (A;Zp) = Rlsyn(A, 752, TC™ (—;Zp))
Fil"TP(A; Zp) = Rlsyn(A, 752, TP(—;Zp)) .
These are complete exhaustive decreasing multiplicative Z-indexed filtrations.

(8) The filtered Eso-ring by = g9 TC™ (A;Zy) = gr"TP(A;Z,) with its Nygaard filtration
NZ*Ay is an Es -algebra in the completed filtered derived category DF( p) (cf §5.1).
We write N ”AA for the n-th graded piece of this filtration.

The complex ha{1} = gr'TP(A;Z »)[—2| with the Nygaard ﬁltmtion NZ*p {1} (defined
via quaszsyntomzc descent of the abutment filtration) is a module in DF (Zy) over the filtered
ring AA, and is invertible as such.® In particular, for any n > 1, AA{l}/N>”AA{1} s an

2Formally, one can define S[z] as the free Eoo-algebra generated by the Eo-monoid N. In particular, m.(S[z]) ~
7+ (S)[2]. We caution the reader that S[z] is not the free Foo-ring on one generator: the latter coincides with @,>0Shx,,
as a spectrum, so its 7, is not flat over m.(S).
3We warn the reader that this statement does not imply that A {1} is an invertible module over the non-filtered
ring A 4, as that deduction would need the passage to an inverse limit over all filtration steps.
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invertible KA/NZI@A—module. If A admits a map from a perfectoid ring, then in fact KA{I}
s isomorphic to Ay . R
The base change ha{1} ®z, A 1s canonically trivialized to A, where the map by — A
is the map grOTC_(A;Zp)A—) grOTHH(A;Zp) = A. For any A -module M in ﬁ’(Zp), we
denote by M{i} = M %, Aa{1}®" for i € 7 its Breuil-Kisin twists.
(4) There are natural isomorphisms
gr"THH(A; Z,)) ~ N B a{n}[2n] ~ N"h[2n] ,
gr"TC™ (4; Z,) ~ NZ"ha{n}[2n] ,
gr"TP(A;Z,) ~ Aa{n}[2n] .
These induce multiplicative spectral sequences
EY = HI(NIh4) = n_; jTHH(A; Z,,)
By = HIWNZTha{~j}) = 7 ;TC™ (4 Zy)
ES = HI (M a{—j}) = 7_i_jTP(A; Zy) .
(5) The map ¢ : TC(A;Z,) — TP(A;Z,) induces natural maps ¢ : Fil"TC™ (4;Z,) —
Fil"TP(A; Z,), thereby giving a natural filtration
Fil"TC(A; Zy) = hofib(¢ — can : Fil"TC™ (A;Z,) — Fil"TP(A;Zy))
on topological cyclic homology
TC(A;Zy,) = hofib(p — can : TC™(A;Z,) — TP(A;Z,)) .
The graded pieces
Zp(n)(A) := gr"TC(A; Zp)[—2n]
are given by
Zy(n)(A) = hofib(¢ — can : NZ"A{n} — ha{n}) ,

where ¢ : N="ha{n} — ha{n} is a natural Frobenius endomorphism of the Breuil-Kisin
twist. In particular, there is a spectral sequence

= H'(2,(—)(4)) = 7 TO(A;Z,) |

Remark 1.13. Our methods can be extended to give similar filtrations on the spectra TR (A;Z))
studied in the classical approach to cyclotomic spectra. In this case, one gets /z_i\ielation to the
de Rham-Witt complexes W€ if A is of characteristic p, and the complexes W, €24 of [BMS18]
if A lives over O¢.

Remark 1.14. In the situation of (5), if A is an R-algebra for a perfectoid ring R, then after a
trivialization Ajne(R){1} = Ap¢(R) of the Breuil-Kisin twist, a multiple £7¢ : N4 A{n} — A A{n}
gets identified with the restriction to NZp a4 C A A of the Frobenius endomorphism ¢ : A A= A A;
in other words, ¢ : N2"A{n} — Aa{n} is a divided Frobenius, identifying the complexes Z »(1)
with a version of (what is traditionally called) syntomic cohomology.

It follows from the definition that Z,(n) is locally on qSyn, concentrated in degrees 0 and 1.
We expect that the contribution in degree 1 vanishes after sheafification, but we can currently only
prove this in characteristic p, or when n < 1. In fact, in degree 0, one can check that Z,(0) =
Zp = lim_ Z/p"Z is the usual (“constant”) sheaf; in degree 1 we prove that Z,(1) ~ 7,,G,,[0]; and
for n < 0, the complexes Zy(n) = 0 vanish. Meanwhile, in characteristic p, the trace map from
algebraic K-theory induces an identification Ky, (—;Z,)[0] =~ Zp(n).
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Assuming that Z,(n) is indeed locally concentrated in degree 0, one can write
Zp(n)(A) = Rlsyn(A, Zy(n))

as the cohomology of a sheaf on the (quasi)syntomic site of A, justifying the name syntomic coho-
mology.

We identify the complexes Z,(n)(A) when A is a smooth k-algebra or the p-adic completion of
a smooth O¢-algebra. In the formulation we use the pro-étale site [BS15] as we work with p-adic
coeflicients.

Theorem 1.15 (cf. Corollary 8.21, Theorem 10.1).

(1) Let A be a smooth k-algebra, where k is a perfect field of characteristic p. Then there is an
isomorphism of sheaves of complexes on the pro-étale site of X = Spec A,

Zp(n) = WQr)l(',log[_n] :

(2) Let A be the p-adic completion of a smooth Oc-algebra, where C' is an algebraically closed
complete extension of Q,. Then there is an isomorphism of sheaves of complexes on the
pro-étale site of X = Spf A,

Zp(n) =~ TS”RT/’ZP(H) )

where on the right-hand side, Zy(n) denotes the usual (pro-)étale sheaf on the generic fibre
X of X, and Ry denotes the nearby cycles functor.

Theorem 1.15 (1) is closely is related to the results of Hesselholt [Hes96] and Geisser—Hesselholt
[GHO99]. Theorem 1.15 (2) gives a description of p-adic nearby cycles as syntomic cohomology that
works integrally; this description is related to the results of Geisser—Hesselholt [GH0G]. We expect
that at least in the case of good reduction, this will yield refinements of earlier results relating

p-adic nearby cycles with syntomic cohomology, such as Fontaine-Messing [F'M87], Tsuji [Tsu99],
and Colmez—Niziol [CN17].

Remark 1.16. If X is a smooth Og-scheme, étale sheaves of complexes T, (n) on X have been
defined by Schneider, [Sch94], and the construction has been extended to the semistable case
by Sato, [Sat07] (and we follow Sato’s notation). A direct comparison with our construction is
complicated by a difference in the setups as all our rings are p-complete, but modulo this problem
we expect that T, (n) is the restriction of the syntomic sheaves of complexes Z/p"Z(n) = Zy(n)/p"
to the étale site of X. In particular, we expect a canonical isomorphism in case A = Og:

T (n)(Ok) ~Z/p"Z(n)(Ok) .
If k is algebraically closed, then in light of Schneider’s definition of T, (n)(Ok) and passage to the
limit over r, this means that there should be a triangle

Zp(n—1)(k) = WQZIolg[—n + 1] = Zp(n)(Ok) — 7" RT & (Spec K, Z,(n))

where on the right-most term, Zy(n) denotes the usual (pro-)étale sheaf in characteristic 0." Via
comparison with the cofiber sequence

K(k;Zy) - K(Ok;Zy) — K(K;Zy)

4f k is not algebraically closed, one needs to interpret the objects as sheaves on the pro-étale site of Spf Ok.
More generally, one can expect a similar triangle involving logarithmic de Rham-Witt sheaves of the special fibre, the
complexes Zy(n), and truncations of p-adic nearby cycles, on the pro-étale site of smooth formal Og-schemes; this
would give the comparison to the theory of [Sch94]. Comparing with the theory of [Sat07] would then correspond to
a generalization of this picture to semistable formal Ox-schemes.
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in K-theory and the identifications K(k;Z,) = TC(k;Z,), K(Ok;Z,) = TC(Ok;Zy), such a
comparison should recover the result of Hesselholt-Madsen, [HMO03], that K (K;Z,) has a filtration
with graded pieces

<" RT¢ (Spec K, Z,(n)) ,

verifying the Lichtenbaum-Quillen conjecture in this case.

1.5. Complements on cyclic homology. We can also apply our methods to usual Hochschild
homology. In that case, we get a relation between negative cyclic homology and de Rham cohomol-
ogy that seems to be slightly finer than the results in the literature, and is related to a question of
Kaledin, [Kall8, §6.5].

Theorem 1.17 (cf. §5.2). Fiz R € QSyn and A € qSyng. There are functorial (in A) complete
exhaustive decreasing multiplicative Z-indexed filtrations

Fil"HC™ (A/R;Z) = RTgyn(A, 752,HC™ (—/R; Z,,))
Fil"HP(A/R; Z,) = RUgyn(A, 752,HP(—/R; Z,,))

on HC™ (A/R;Z,) and HP(A/R;Z,) with
gr"HC™ (A/R; Zy) ~ L?zf;‘an] ,
gr"HP(A/R; Zy) ~ E?ZA/R[2n] ,

where the right-hand side denotes the p-adically and Hodge completed derived (naively truncated)
de Rham complex. In particular, there are multiplicative spectral sequences

EY = HI(LO ) = 7 HC (A/R;Z,) |
By = H™9(LQy/R) = 7-i-HP(4/R: Z,) .

We would expect that this results holds true without p-completion.” In fact, rationally, one
gets such a filtration by using eigenspaces of Adams operations; in that case, the filtration is in
fact split [Lod92, §5.1.12]. We can actually identify the action of the Adams operation 1, on
gr"THH(—; Z,) and its variants gr"TC™ (—;Z,), TP(—;Z,) and gr"HC™ (—;Z,), for any integer m
prime to p (acting via multiplication on T); it is given by multiplication by m™, cf. Proposition 9.14.

1.6. Overview of the paper. Now let us briefly summarize the contents of the different sections.
We start in §2 by recalling very briefly the basic definitions on Hochschild homology and topological
Hochschild homology. In §3 we prove that all our theories satisfy flat descent, which is our central
technique. In §4 we then set up the quasisyntomic sites that we will use to perform the flat
descent. Moreover, we isolate a base for the topology given by the quasiregular semiperfectoid
rings; essentially these are quotients of perfectoid rings by regular sequences, and they come up in
the Cech nerves of the flat covers of a smooth algebra by a perfectoid algebra. As a first application
of these descent results, we construct the filtration on HC™ by de Rham cohomology in §5. For
the proof, we use some facts about filtered derived oo-categories that we recall, in particular the
Beilinson t-structure.

Afterwards, we start to investigate topological Hochschild homology. We start with a description
for perfectoid rings, proving Theorem 1.6 in §6. Morever, in the same section, we identify THH
of smooth algebras over perfectoid rings. This information is then used in §7 to control the THH,
TC™ and TP of quasiregular semiperfectoid rings, and prove Theorem 1.12. At this point, we have
defined our new complexes A4, and it remains to compare them to the known constructions.

5Antieau, [Ant18], has recently obtained such results.
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In §8, we handle the case of characteristic p, and prove Theorem 1.10, and the characteristic
p case of Theorem 1.15. Afterwards, in §9, we show that this recovers the AQ-theory by proving
Theorem 1.8. As an application of this comparison, we also identify the Adams operations. In §10,
we identify the sheaves of complexes Zy(n) in terms of p-adic nearby cycles, proving the second
part of Theorem 1.15. Finally, we use relative THH to construct Breuil-Kisin modules by proving
Theorem 1.2 in §11.

Remark 1.18 (Comparison with [BMS18]). As made clear by this introduction, a number of results
are proved in this paper that go beyond the problems addressed in [BMSI8]; the intersection is
largely restricted to the application to the construction of the Breuil-Kisin cohomology theory. In
particular:

(1) The methods used in [BMS18] (such as perfectoid spaces, the Ln-operator) lie squarely
within arithmetic geometry. On the other hand, the methods used in this paper (such as
oo-categories, the formalism surrounding THH) are much closer to homotopy theory.

(2) The construction in [BMS18] was engineered to admit a comparison with étale cohomology;
this comparison is crucial for applications to the cohomology of algebraic varieties over C.
In contrast, the present construction begins life close to de Rham cohomology, and there is
no easy way to compare to étale cohomology.

(3) A primary goal of the present paper is to construct the motivic filtration on THH and its
variants (Theorem 1.12). The comparison with [BMS18] shows that the methods of p-adic
Hodge theory have impact on questions in algebraic topology and algebraic K-theory. For
example, we can compute algebraic K-theory in new cases, cf. Theorem 8.23. Another
application to K-theory is the calculation that Ly 1)K (Z/p"Z) ~ 0 for n > 1 (to appear in
forthcoming work of the first author with Clausen and Mathew).

We see that the fact that both approaches yield the same information yields interesting new
information on both sides.

Acknowledgments. The main ideas behind this paper were already known to the authors in 2015.
However, the results of this paper are significantly clearer when expressed in the language of [NS18];
giving a formula for A in terms of the spectra TR” is a nontrivial translation, and the discussion
of the syntomic complexes Z,(n) is more transparent using the new formula for TC. Therefore, we
only formalized our results now. We apologize for the resulting long delay. It is a pleasure to thank
Clark Barwick, Sasha Beilinson, Dustin Clausen, Vladimir Drinfeld, Saul Glasman, Lars Hesselholt,
Igor Kriz, Jacob Lurie, Akhil Mathew, Thomas Nikolaus and Wiesia Niziol for discussions of the
constructions of this paper.

During the period in which this work was carried out, the first author was supported by National
Science Foundation under grant number 1501461 and a Packard fellowship, the second author was
partly supported by the Hausdorff Center for Mathematics, and the third author was supported by
a DFG Leibniz grant.

Conventions. We will freely use oo-categories and the language, methods and results of [Lur(9]
and [Lurl8a] throughout the paper. All our derived categories are understood to be the natural
oo-categorical enhancements. When we work with usual rings, we reserve the word module for
usual modules, and write ® for the derived tensor product. However, when we work over E.o-ring
spectra, the only notion of module is a module spectrum and corresponds to a complex of modules
in the case of discrete rings; similarly, only the derived tensor product retains meaning. For this
reason, we simply say “module” and write ® for the derived notions when working over an Fo-
ring spectrum. Often, in particular when applying THH to a usual ring, we regard usual rings as
FE-ring spectra and also usual modules as module spectra, via passage to the Eilenberg—MacLane
spectrum; this is often denoted via R — HR and M — HM. Under this translation, the derived
10



oo-category D(R) of a usual ring R agrees with the co-category of module spectra over the Eoo-ring
spectrum H R. In this paper, we will omit the symbol H in order to lighten notation.

Given a complex C, we denote by C[1] its shift satisfying C[1]* = C™*! (or, in homological
indexing, Cy,[1] = Cy,_1); under this convention, the Eilenberg-MacLane functor takes the shift [1]
to the suspension 3.

We tend to use the notation =2 to denote isomorphisms between 1-categorical objects such as
rings, modules and actual complexes; conversely, ~ is used for equivalences in oo-categories (and,
in particular, quasi-isomorphisms between complexes).

Degrees of complexes, simplicial objects, etc. are denoted by e, e.g., K*®; for graded objects we
use *, e.g., m/THH(A); finally, for filtrations we use x, e.g., Q}Sz;k denotes the Hodge filtration on
the complex 3, Ik When we regard an actual complex K*® as an object of the derived category, we
write simply K; so for example {2/, denotes the de Rham complex considered as an object of the
derived category.

We often need to use completions of modules or spectra with respect to a finitely generated ideal.
For the latter, we use the existing notion in stable homotopy theory (see, e.g., [Lurl8h, §7.3] for a
modern presentation). For modules and chain complexes, we use the notion of derived completions
(see, e.g., [BS15, §3.4, 3.5], [BMS18, §6.2]).
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2. REMINDERS ON THE COTANGENT COMPLEX AND (TOPOLOGICAL) HOCHSCHILD HOMOLOGY

In this section, we recall the basic results about the cotangent complex and (topological) Hoch-
schild homology that we will use.

2.1. The cotangent complex. Let R be a commutative ring. Given a commutative R-algebra A,
let P, — A be a simplicial resolution of A by polynomial R-algebras, and define (following [Qui70])
the cotangent complex of R — A to be the simplicial A-module L,,p := Q}D. /i ©P, A. Tts wedge
powers will be denoted by /\f4 Lag= Q%./R ®p, A for each i > 1. Note that the map P, — A is an

equivalence in the oo-category of simplicial commutative R-algebras, and thus the object in D(R)
defined by L 4,p coincides with that attached to the simplicial R-module Q}D. /R via the Dold-Kan

correspondence (and similarly for the wedge powers).
As such constructions appear repeatedly in the sequel, let us give an oo-categorical account,
following [Lur09, §5.5.9].

Construction 2.1 (Non-abelian derived functors on commutative rings as left Kan extensions).
Consider the category CAlg’}’; W of finitely generated polynomial R-algebras and the oco-category
sCAlgp, so one has an obvious fully faithful embedding i : CAlg%)ly — sCAlgp. Using [Lur09,
Corollary 5.5.9.3], one can identify sCAlgp as the oco-category Ps;(CAlgl ') obtained from CAlghy y
by freely adjoining sifted colimits: this amounts to the observation that any contravariant set-valued
functor F' on CAlg%Oly that carries coproducts in CAlg%O W to products of sets is representable by
the commutative ring F(R[x]). By [Lur09, Proposition 5.5.8.15], one has the following universal
property of the inclusion i: for any oo-category D that admits sifted colimits, any functor f :
CAlg%OIy — D extends uniquely to a sifted colimit preserving functor F' : sCAlgp — D. In this
case, we call F' the left Kan extension of f along the inclusion ¢. If f preserves finite coproducts,
then F' preserves all colimits.

In this language, the cotangent complex construction has a simple description.
Example 2.2 (The cotangent complex as a left Kan extension). Applying Construction 2.1 to
D := D(R) the derived oo-category of R-modules and f = Q' /R> One obtains a functor F :
sCAlggp — D(R). We claim that F'(—) = L_/p. To see this, note that F' commutes with sifted
colimits and agrees with Q! /R O polynomial R-algebras. It follows that if P, — A is a simplicial
resolution of A € CAlgp by a simplicial polynomial R-algebra P,, then F'(A) ~~ ]Q}D. / rl = La/g, as
asserted. We can summarize this situation by saying that the cotangent complex functor L_ g is
obtained by left Kan extension of the Kihler differentials functor Q /R from polynomial R-algebras

to all simplicial commutative R-algebras. Similarly, for each j > 0, the functor AJL_ /R is the left
Kan extension of (7 /R from polynomial R-algebras to all simplicial commutative R-algebras.
‘Next, recall from [[1171, §II1.3.1] that if A is a smooth R-algebra, then the adjunction map
NyLa/r — QQ/R is an isomorphism for each i > 0.
Finally, if A — B — C' are homomorphisms of commutative rings, then from [[1171, §I1.2.1] one
has an associated transitivity triangle

Lpja®sC = Leja — Loy
in D(C). Taking wedge powers induces a natural filtration on A’L¢ /4 as in [III71, §V.4]:
/\iC«LC/A = Filo/\iCLC/A — Fill/\iC«LC/A = Fﬂi/\iC«LC/A = /\iBLB/A(X)EBC — Fili+1/\ichC/A =0
of length ¢, with graded pieces

gt/ A Leya ~ (N Lp a®5C)88 A6 Loy (j=0,...,1)
12



2.2. Hochschild homology. Let R be a commutative ring. Let A be a commutative R-algebra.’
Following [Lod92], the “usual” Hochschild homology of A is defined to be HH""!(A4) = C,(A/R),
where Co(A/R) = {[n] — A®r"T1} is the usual simplicial R-module. However, we will work
throughout with the derived version of Hochschild homology (also known as Shukla homology
following [Shu61]), which we now explain. Letting P, — A be a simplicial resolution of A by
flat R-algebras, let HH(A/R) denote the diagonal of the bisimplicial R-module Co(Ps/R); the
homotopy type of HH(A/R) does not depend on the choice of resolution. The canonical map
HH(A/R) — HH""!(A/R) is an isomorphism if A is flat over R. When R = Z we omit it from
the notation, so HH(A) = HH(A/Z).

Remark 2.3 (Hochschild homology as a left Kan extension). On the category CAlg%Oly from
Construction 2.1, consider the functor A — HH""!(A/R) valued in the derived co-category D(R).
As polynomial R-algebras are R-flat, we have HH""/(A/R) ~ HH(A/R) for polynomial R-algebras
A. The left Kan extension of this functor along i : CAIg%Oly — sCAlgp defines a functor F :
sCAlgp — D(R) that coincides with the HH(—/R) functor introduced above: the functor F
commutes with sifted colimits as in Construction 2.1, so we have F(A) ~ |HH(FP, /R)| ~ HH(A/R)
for all commutative R-algebras A and simplicial resolutions P, — A.

As C4(A/R) is actually a cyclic module, there are natural T = S'-actions on HH(A/R) considered
as an object of the oo-derived category D(R) for all R-algebras A, and the negative cyclic and
periodic cyclic homologies are defined by

HC™(A/R) = HH(A/R)"", HP(A/R) = HH(A/R)'" = cofib(Nm : HH(A/R),r[1] — HH(A/R)"T).

For a comparison with the classical definitions via explicit double complexes, see [Hoy15]. The
homotopy fixed point and Tate spectral sequences

EY = H(T,x_jHH(A/R)) = =_;_jHC™(A/R) , EY = H(T,r=_;HH(A/R)) = =_;_;HP(A/R)
are basic tools to analyse HC™(A/R) and HP(A/R).

Remark 2.4 (The universal property of HH(A/R)). In anticipation of §2.3, let us explain a higher
algebra perspective on HH(—/R). The simplicial R-module Co(A/R) is naturally a simplicial
commutative R-algebra, and the multiplication is compatible with the T-action. By left Kan
extension from the flat case, we learn:

(1) HH(A/R) is naturally a T-equivariant- E-R-algebra.
(2) One has a non-equivariant E-R-algebra map A — HH(A/R) induced by the 0 cells.

In fact, one can also show that HH(A/R) is initial with respect to these features; we will use this
perspective when introducing topological Hochschild homology. To see this, write A ® g T for
the universal’ T-equivariant-F.o-R-algebra equipped with a non-equivariant map A — A ® Euo-R

T. Then one has a natural T-equivariant map A ®p__r T — HH(A/R) of E..-R-algebras by

universality. To show this is an equivalence, it is enough to do so for A € CAlg%O " and work

non-equivariantly. In this case, if we write T as the colimit of % < x Ll % — %, then it follows that
A®p pT~ A®HA®RAA, which is also the object in D(R) being computed by Ce(A/R).

6Hochschild homology can also be defined for noncommutative (and nonunital) R-algebras, but we will not need
this generality.

"Even more generally, for any oo-groupoid X and any FE-R-algebra A, the oco-groupoid valued functor B >
Map(X, MapEm_R(A, B)) on the oo-category of E.o-R-algebras preserves limits, and is thus corepresented by some
A ®g..-r X. The resulting functor X — A ®pg_-r X commutes with all colimits by construction. The discussion
above pertains to the special case X = T. In this case, the T-action on A ®g_-r T is induced by functoriality, and
the unit element 1 € T defines a map A - A®g_-r T.
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Recall that the Hochschild—Kostant—Rosenberg theorem asserts that if A is smooth over R, then
the antisymmetrisation map '} /R HH,,(A/R) is an isomorphism for each n > 0. Here, in degree
1, the element da maps to a®1—1®a for any a € A. Hence by left Kan extension of the Postnikov
filtration, it follows that the functor HH(—/R) on sCAlgp comes equipped with a T-equivariant
complete descending N-indexed filtration Filfjxg with grij g HH(—/R) ~ A'L_ g[i] (with the trivial
T-action). As each A‘L_ /rli] is i-connective, the HKR filtration gives a weak Postnikov tower
{HH(—/R)/Filiky } with limit HH(—/R) in the sense of the forthcoming Lemma 3.3.

2.3. Topological Hochschild homology. Topological Hochschild homology is the analogue of
Hochschild homology over the base ring S given by the sphere spectrum. This is not a classical
ring, but an Foo-ring spectrum (or equivalently an E-algebra in the co-category of spectra). The
definition is due to Bokstedt, [Bok85a], and the full structure of topological Hochschild homology
as a cyclotomic spectrum was obtained by Bokstedt—Hsiang—Madsen, [BHM93], cf. also [HHM97].
We will use the recent discussion in [NS18] as our basic reference.

In particular, if A is an E.-ring spectrum, then THH(A) is a T-equivariant E-ring spectrum
with a non-equivariant map A — THH(A) of E-ring spectra, and THH(A) is initial with these
properties. Moreover, if C), C T is the cyclic subgroup of order p, then there is a natural Frobenius
map

¢p : THH(A) — THH(A)!>
that is a map of E-ring spectra which is equivariant for the T-actions, where the target has the
T-action coming from the residual T/Cj-action via the isomorphism T = T/C,. The Frobenius
maps exist only on THH(A), not on HH(A), cf. [NS18, Remark II1.1.9].

The negative topological cyclic and periodic topological cyclic homologies are given by

TC~(A) = THH(A)"T | TP(A) = THH(A)'T = cofib(Nm : THH(A),7[1] — THH(A)"T)

There are homotopy fixed point and Tate spectral sequences analogous to those for Hochschild
homology.

We will often work with the corresponding p-completed objects. We denote these by THH(A; Z,,),
HH(A;Z,), TC™(A;Zy) etc. We note that if A is connective, then

TC™(A4;Z,) = THH(A; Z,)"T | TP(A;2,) = THH(A;Z,)'T .

Here, we use that if a spectrum X is p-complete, then so is X"T by closure of p-completeness under

limits. If X is moreover assumed to be homologically bounded below, then the homotopy orbit

spectrum Xpr (and thus also the Tate construction X ﬂlq) is also p-complete: by writing X as the

limit of 7<, X (and Xpr as the limit of (7<,X)pr, using Lemma 3.3), this reduces by induction to

the case that X is concentrated in degree 0, in which case the result follows by direct computation.
Interestingly, if A is connective, there is a natural equivalence

TP(4;2,) = (THH(A)')'T = (THH(A; 2,)'C)"T
by [NS18, Lemma I1.4.2], and therefore ¢, induces a map
ol TC™(A;Zy) — (THH(A; Z,)'?)"™ ~ TP(A; Zy)

of p-completed F..-ring spectra. As p is fixed throughout the paper, we will often write abbreviate
o = ohT.

Wepuse only “formal” properties of THH throughout the paper, with the one exception of
Bokstedt’s computation of 7,THH(F,). In particular, we do not need Bokstedt’s computation
of m,THH(Z).

We will often use the following well-known lemma, which we briefly reprove in the language of
this paper.

14



Lemma 2.5. For any commutative ring A, there is a natural T-equivariant isomorphism of Fuo-
ring spectra
THH(A) GOTHH(Z) Z ~HH(A) .
Moreover, this induces an isomorphism of p-complete Eo.-1ing spectra
THH(A; Zy) @runzy Z ~ HH(A; Zy)
The homotopy groups m;,THH(Z) are finite for i > 0.%

Proof. The final statement follows from the description of THH(Z) as the colimit of the simplicial
spectrum with terms Z ®s ... ®s Z and the finiteness of the stable homotopy groups of spheres.
The first statement follows from the universal properties of THH(A), respectively HH(A), as the
universal T-equivariant F-ring spectrum, respectively T-equivariant F..-Z-algebra, equipped with
a non-equivariant map from A. The statement about p-completions follows as soon as one checks
that THH(A;Zp) @7au(z) Z is still p-complete, which follows from finiteness of m; THH(Z) for
1> 0. O

8In fact, they are Z for i = 0 and Z/3Z if i =2j — 1 > 0 is odd and 0 else, by Bokstedt, [Bok85b].
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3. FLAT DESCENT FOR COTANGENT COMPLEXES AND HOCHSCHILD HOMOLOGY

In this section, we prove flat descent for topological Hochschild homology via reduction to the
case of (exterior powers of) the cotangent complex, which was first proved by the first author in
[Bhal2a).

Theorem 3.1. Fiz a base ring R. For each i > 0, the functor A — /\QLA/R is an fpgc sheaf with
values in the oo-derived category D(R) of R-modules, i.e., if A — B is a faithfully flat map of
R-algebras, then the natural map gives an equivalence

/\iLA/R ~ lim(/\iLB/R:; A L(B®AB)/R3 Al L(B®AB®AB)/R—>"')

Proof. The i = 0 case amounts to faithfully flat descent. We explain the ¢ = 1 case in depth, and
then indicate the modifications necessary to tackle larger 7.
Write B® for the Cech nerve of A — B. The transitivity triangle for R - A — B® is a
cosimplicial exact triangle
LA/R ®4 B* — LB'/R — LB'/A'
Thus, to prove the theorem for i = 1, we are reduced to showing the following two assertions:
(1) The map A — B* induces an isomorphism L4, — lim (LA/R ®4 B’).
(2) One has Tot(Lpge/4) =~ 0.

Assertion (1) holds true more generally for any M € D(A) (with the assertion above correspond-
ing to M = L,/g) by fpqc descent.

We now prove assertion (2). By the convergence of the Postnikov filtration, it is enough to show
that for each i, the A-cochain complex corresponding to m;Le,4 under the Dold-Kan equivalence
is acyclic. By faithful flatness of A — B, this reduces to showing acyclicity of (m;Lpe/4) ®a B =~
mi(Lpeja ®a B). If we set B — C* to be the base change of A — B*® along A — B, then by flat
base change for the cotangent complex, we have reduced to showing that m;Lce/p is acyclic. But
B — C°® is a cosimplicial homotopy-equivalence of B-algebras: it is the Cech nerve of the map
B — B ®4 B, which has a section. It follows that for any abelian group valued functor F'(—)
on B-algebras, we have an induced cosimplicial homotopy equivalence F(B) — F(C*®). Taking
F =mL_,p then shows that the cochain complex ;Lce,p is homotopy-equivalent to the abelian
group m;Lg,p ~ 0, as wanted.

To handle larger i, one follows the same steps as above with the following change: instead of
using the transitivity triangle to reduce to proving (1) and (2) above, one uses the length i filtration
of A'Lge /r induced by applying A? to the transitivity triangle above used above (and induction on
i) to reduce to proving the analog of (1) and (2) for exterior powers of the cotangent complex. [

Remark 3.2. We do not know if the functors appearing in Theorem 3.1 satisfy hyperdescent:
if A — B* is a hypercover for the faithfully flat topology on (the opposite of) the category of
R-algebras, is the natural map L,/r — lim Lg- /g an equivalence?

Lemma 3.3. Let S be a connective E1-ring spectrum. Assume {My} is a weak Postnikov tower of
connective S-module spectra, i.e., the fiber of My,+1 — M, is n-connected. Write M for the inverse
limit. Then for any right t-exact functor F': D(S) — Sp, the tower {F(M,)} is a weak Postnikov
tower with limit F(M).

Proof. The assertion that {F(M,)} is a weak Postnikov tower is immediate from the exactness
hypothesis on F'. For the rest, note that the fiber of M — M,, is n-connected: it is the inverse limit
of the fibers Py of M, — M,, and each Py is n-connected with P11 — Py being an isomorphism
on mp+1(—). Then F(M) — F(M,) also has an n-connected fiber by the exactness hypothesis on
F, and hence F(M) — lim F(M,,) is an equivalence, as wanted. O

Corollary 3.4.
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(1) For any commutative ring R, the functors
HH(-/R) , HC™(=/R) , HH(=/R)pr , HP(—/R)

on the category of commutative R-algebras are fpgc sheaves.
(2) Similarly, the functors

THH(-) , TC™(=) , THH(=)pr , TP(-)
on the category of commutative rings are fpqc sheaves.

Proof. (1) Theorem 3.1 and induction imply that each HH(—/R)/Filjkr is a sheaf. Taking the
limit over n then implies HH(—/R) is a sheaf. Likewise, HC™(—/R) is a sheaf as it is the limit of
a diagram of sheaves.

For HH(—/R)pt, using Lemma 3.3 for S = R[T]| and F' = (—)u applied to the weak Postnikov
tower {HH(—/R)/Filfjkg } with limit HH(—/R), it suffices to prove that each (HH(—/R)/Filfixgr)nt
is a sheaf. Using the filtration, this immediately reduces to checking that (grijg HH(—/R))st is
a sheaf. But the T-action on grijzgHH(—/R) is trivial, so we can write (gri g HH(—/R))pT =~
gripHH(—/R)®% Ryr. Using that grij g HH(—/R) ~ A'L_,p[i] is connective, we see that the
tower {grij g HH(—/R)®@%7<,Ry1}s is a weak Postnikov tower, and so we reduce to showing that
gr%IKRHH(— / R)@HéTgnRhT is a sheaf. But each 7<, Ryt is a perfect R-complex, so the claim follows
from Theorem 3.1 again.

Combining the assertions for HC™(—/R) and HH(—/R)pr then trivially implies that HP(—/R)
is also a sheaf.

(2) As above, it is enough to prove the claims for THH(—) and THH(—)pt. For THH(—), we use
that for any commutative ring A, the tower {THH(A) ®@rpnz) 7<n THH(Z)} is a weak Postnikov
tower with limit THH(A) by applying Lemma 3.3 to S = THH(Z) and F' = THH(A) ®Tup(z) —
to the Postnikov tower {7<, THH(Z)} with limit THH(Z). We are thus reduced to checking that
THH(—) ®Tauz) T<n THH(Z) is a sheaf for each n. By induction, this immediately reduces to
checking that THH(—) ®ryunz) 7 THH(Z) =~ (THH(-) ®THH(Z Z) @z m THH(Z) is a sheaf for
each n. Now 7, THH(Z) is a perfect Z-complex by Lemma 2.5, so we reduce to showing that
THH(—) ®Tam(z) Z is a sheaf. But this last functor is HH(—) = HH(—/Z), so we are done by
reduction to (1).

For THH(—)pr, one repeats the argument in the previous paragraph by applying (—)xr to the T-
equivariant weak Postnikov tower { THH(R)®rn(z) 7<n THH(Z)} to reduce to the case of HH(— )T,
which was handled in (1). O

Remark 3.5. The previous proof also applies to HH(—/R)pe, and THH(—)pe, for any finite
subgroup C,, C T, and thus to HH(—/R)!“», THH(—)!“" and by induction all TR™(—), using the
isotropy separation squares.
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4. THE QUASISYNTOMIC SITE

This section studies the category of quasisyntomic rings, which is where all our later constructions
take place. In §4.2, we define the notion of a quasisyntomic ring as well as the quasisyntomic site.
An extremely important class of examples comes from quasiregular semiperfectoid rings: these
are roughly the quasisyntomic rings whose mod p reduction is semiperfect (i.e., has a surjective
Frobenius), and are studied in §4.4. The key result of this section is that quasiregular semiperfectoid
rings form a basis for the quasisyntomic topology (Proposition 4.31). As p-adic completions show up
repeatedly in the sequel, we spend some time in §4.1 exploring the interaction of p-adic completion
with notions such as flatness.

4.1. p-complete flatness. Let us begin by defining a notion of p-complete Tor amplitude’ for
complexes over commutative rings."

Definition 4.1. Let A be a commutative ring, fix M € D(A), and a,b € Z 11 {£oc}.

(1) We say that M € D(A) has p-complete Tor amplitude in [a,b] if M@4A/pA € D(A/pA)
has Tor amplitude in [a,b]. If a = b, we say that M € D(A) has p-complete Tor amplitude
concentrated in degree a.

(2) We say that M € D(A) is p-completely (faithfully) flat if M®%A/pA € D(A/pA) is con-
centrated in degree 0, and a (faithfully) flat A/pA-module.

In particular, by definition M € D(A) has p-complete Tor amplitude [0,0] if and only if it is
p-completely flat.

Remark 4.2. One may replace A/pA with A/p"A for any n > 1 in the above definition without
changing its meaning. Indeed, if R — S = R/I with I? = 0 is a square-zero thickening, then
M € D(R) has Tor-amplitude in [a,b] if and only if M®%S € D(S) has Tor-amplitude in [a, b]:
The forward direction follows from the stability of Tor-amplitude under base change, and for the
converse one uses the triangle

(MR%S)REI — M — Me%S
in D(R).

Remark 4.3. We will see in Lemma 4.6 below that if A has bounded p>-torsion, then if M € D(A)
has p-complete Tor-amplitude in [a,b] and is derived p-complete, one has M € Dlab] (A4). In
particular, if M € D(A) is derived p-complete and p-completely flat, then M is an A-module
concentrated in degree 0. In that case, the condition implies that M/p™M is a flat A/p™ A-module
for all n, and a precise characterization of the p-completely flat A-modules is given by Lemma 4.7.

Lemma 4.4. Fiz a ring A, an M € D(A) and a,b € Z U {£oo}. Let M e D(A) be the derived
p-completion of M. The following are equivalent:
(1) M € D(A) has p-complete Tor amplitude in [a,b] (resp. is p-completely (faithfully) flat)
(2) M e D(A) has p-complete Tor amplitude in [a,b] (resp. is p-completely (faithfully) flat).

Proof. The map M — M induces an isomorphism M®%Z/pZ ~ M ®%7Z/pZ. In particular, after
further base change along A®%Z/pZ — A/pA, it induces an isomorphism

M5 A/pA ~ M@gA/pA ,

9Recall the classical definitions: given a,b € ZU{too}, a commutative ring R and M € D(R), we say that M has
Tor amplitude in [a, b] if for any R-module N, we have M@%N € Dbl (R). If a = b, then we say that M has Tor
amplitude concentrated in degree a; note that if a = b = 0, then the condition simply says that M is concentrated
in degree 0 and flat. These conditions are preserved under base change, and can be checked after faithfully flat base
change.
0For a more general discussion of such matters, see work of Yekutieli, [Yek18].
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which immediately gives the result. O

Lemma 4.5. Fiz a map A — B of rings, a complex M € D(A) and a,b € Z I {£oo}.
(1) If M € D(A) has p-complete Tor amplitude in [a,b] (resp. is p-completely (faithfully) flat),
then the same holds true for M®4% B € D(B).
(2) If A — B is p-completely faithfully flat, then the converse to (1) holds true.

Proof. This is immediate from the corresponding assertions in the discrete case, noting that the
condition in part (2) implies in particular that A/pA — B/pB is faithfully flat. O

Lemma 4.6. Fiz a ring A with bounded p*>-torsion and a derived p-complete M € D(A) with
p-complete Tor amplitude in [a,b] for a,b € Z. Then M € Dl*(A).

Here we say that an abelian group N has bounded p>-torsion if N[p>°] = N|p¢| for ¢ > 0.
In this case, the derived p-completion N of N coincides with the classical p-adic completion
lim,, N/p™ N, and this completion also has bounded p®°-torsion. In fact, the pro-systems {N/p" N}
and {N®%Z/p"Z} in D(Z) are pro-isomorphic.

Proof. As A has bounded p™-torsion, the pro-systems {A4/p" A} and {A®5Z/p"Z} are pro-isomor-
phic. Thus, M being derived p-complete implies that M is the derived limit of M ®HAA/p”A. On
the other hand, by assumption all M ®HAA/p”A € D[a’b}(A/p”A), and the transition maps on the
highest degree H®(M ®H;1A/ p" A) are surjective. By passage to the limit, we get the result. O

Over rings with bounded p®°-torsion, we can describe p-completely flat complexes as modules:

Lemma 4.7. Fiz a ring A with bounded p*°-torsion.

(1) If a derived p-complete M € D(A) is p-completely flat, then M is a classically p-complete
A-module concentrated in degree 0, with bounded p>-torsion, such that M /p™M is flat over
A/p™A for all n > 1. Moreover, for all n > 1, the map

M @4 Alp"] — M[p"]

is an isomorphism.
(2) Conversely, if N is a classically p-complete A-module with bounded p™-torsion such that
N/p"N s flat over A/p™A for alln > 1, then N € D(A) is p-completely flat.

Proof. (1) Lemma 4.6 implies that M is an A-module concentrated in degree 0. The condition that
M is p-completely flat implies that M /p"M = M ®%A/ p"A is a flat A/p™A-module for all n > 1.
Moreover, M is the limit of M ®HAA/ p"A = M/p"M, so M is classically p-complete. It remains to
prove that M[p"] = M ®4 A[p"] for all n > 1; this implies boundedness of p*-torsion. To see this,
consider the A,, = A®HZ‘Z /p"Z-module M, = M ®HZ‘Z /p"Z; tensoring the triangle
(Alp"D[A] = A — A/p"A
in D(A,) with M,, gives a triangle
M,&% (A[p™)[1] — M, — M,®% A/p"A.
Here, Mn®HAnA/p"A = M®%A/p"A = M/p"M is concentrated in degree 0 and flat over A/p"A,
and then also Mn®HAnA[p"] = (Mn®HAnA/p"A)®HA/pnAA[p"] is concentrated in degree 0. Thus,
using the above triangle in the second equality,
M[p"] = H™'(My) = H* (M @5, Alp"]) = H(M /p" M@} 4 Alp"])
= M/p"M ®a/ma Alp"] = M @4 Alp"] ,

as desired.
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(2) Note first that the pro-system Z/p"Z®5Z/pZ € D(Z/pZ) is pro-isomorphic to Z/pZ. We
may extend scalars to A/pA to get a pro-isomorphism

A/pA ~{Z/p"L&5A/pA}y
in D(A/pA), in particular in D(A). Taking the derived tensor product N®4—, we get a pro-
isomorphism
N@3A/pA ~ {(NGZL/p"L)®5A/pAby -
On the other hand, the pro-system {N®5Z/p"Z}, is pro-isomorphic to {N/p"N}, as N has
bounded p*>°-torsion. Thus, we get a pro-isomorphism

N&@Y{A/pA ~ {N/p" N5 A/pA}, .
We need to see that N®% A/pA is concentrated in degree 0. But
N/p"N@3A/pA = N/p"N&G 4 (A/p" ARG A/pA)

and N/p"N is a flat A/p™ A-module, so it suffices to see that {H~¢(A/p"Ax%A/pA)}, for i <0
is pro-zero. But the above discussion for N = A shows that this pro-system is pro-isomorphic to
H™"(A/pA) =0, as desired. O

Corollary 4.8. Let A — B be a map of derived p-complete rings.

(1) If A has bounded p>-torsion and A — B is p-completely flat, then B has bounded p™-
torsion.

(2) Conversely, if B has bounded p®-torsion and A — B is p-completely faithfully flat, then A
has bounded p°-torsion.

(8) Assume that A and B have bounded p™-torsion. Then the map A — B is p-completely flat
(resp. p-completely faithfully flat) if and only if A/p"A — B/p"B is flat (resp. faithfully
flat) for all n > 1.

Proof. Parts (1) and (3) follow immediately from Lemma 4.7. For part (2), note that the proof of
Lemma 4.7 shows that if B is p-completely flat, then

Alp"] ®a/pna B/p"B — B[p"]

is an isomorphism. By faithful flatness of A/p"A — B/p" B, this implies that A[p"| C Bp"] for all
n > 1, which implies that if B[p] = B[p>], then also A[p°] = A[p*°], as desired. O

Remark 4.9. In particular, if R is some ring and A — B is a p-completely faithfully flat map of
derived p-complete R-algebras with bounded p®°-torsion, then

/\ZLQK/R:hm(/\iL%/R—> N L(AB®AB)/R—>> N L(AB®AB®AB)/R:>>"')'

Indeed, this follows by applying Theorem 3.1 to A/p™ — B/p™ and passing to the limit over n,
noting that {A/p"} and {A ®% Z/p"} are pro-isomorphic.

4.2. The quasisyntomic site. In the following, we will work with p-complete rings A with
bounded p*>°-torsion (in which case classical and derived p-completeness are equivalent). To state
our results in optimal generality, it will be convenient to generalize the usual notions of smooth
and syntomic morphisms by omitting finiteness conditions and merely requiring good behaviour of
the cotangent complex.

We note that it would be better to say “p-completely quasisyntomic/quasismooth” in place of
“quasisyntomic/quasismooth” below; but that would get excessive for the purposes of this paper.

Definition 4.10 (The quasisyntomic site). We need the following notions.

(1) A ring A is quasisyntomic if the following conditions are satisfied.
(a) The ring A is p-complete with bounded p>-torsion.
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(b) Layz, € D(A) has p-complete Tor amplitude in [—1,0].
We denote by QSyn the category of quasisyntomic rings.
Let A — B be a map of p-complete rings with bounded p*>° -torsion.

(2) We say that A — B is a quasismooth'' map (resp. cover) if:
(a) B is p-completely flat over A (resp. p-completely faithfully flat over A).
(b) Lp/a € D(B) is p-completely flat.
(3) We say that A — B is a quasisyntomic map (resp. cover) if:
(a) B is p-completely flat over A (resp. p-completely faithfully flat over A).
(b) Lg/a € D(B) has p-complete Tor amplitude in [—1,0].
We endow QSyn®P with the structure of a site via the quasisyntomic covers, cf. Lemma 4.17
below.

Remark 4.11 (Relation to Quillen’s definition). In [(Qui70], Quillen defines a notion of quasiregular
and regular ideals I C A. In particular, by [Qui70, Theorem 6.13], an ideal I C A is quasiregular
if and only if L(4,5)/4 has Tor-amplitude concentrated in degree —1. A map of rings A — B
is classically called syntomic if it is flat and a local complete intersection. Note that if A, B are
Noetherian and A — B is of finite type, then it is a local complete intersection if and only if L, 4
has Tor amplitude in [—1,0] [Qui70, Theorem 5.5]; this equivalence even remains valid without the
finite type hypothesis provided that “local complete intersection” is replaced by a more general
notion for non-finite type morphisms of Noetherian rings, [Avr99]. Thus, ignoring p-completion
issues, the above definition of quasisyntomic is designed to extend the usual notion of syntomic to
the non-Noetherian, non-finite-type setting.

Example 4.12. (1) The p-adic completion of a smooth algebra over a perfectoid ring lies in QSyn
by Example 4.24 below and Corollary 4.8.

(2) Any p-complete local complete intersection Noetherian ring A lies in QSyn (cf. [Stal8, Tag
09Q3] for the definition of a local complete intersection ring; it is equivalent to the map Z — A
being a local complete intersection in the sense of [Avr99]). The boundedness of the p>-torsion
is clear as A is Noetherian. The rest follows from (the easy direction of) the following theorem of
Avramov.

Theorem 4.13 ([Avr99, Theorem 1.2]). A Noetherian ring A is a local complete intersection if
and only if L a/z has Tor-amplitude in [—1,0].

Remark 4.14 (HKR for quasismooth maps). Say A — B is a map of p-complete rings with
bounded p>-torsion. Consider the p-completion HH(B/A;Z,) of the Hochschild complex. By p-
completing the HKR filtration from §2.2, we obtain a T-equivariant complete descending N-indexed
filtration Filfgg with griyggHH(B/A; Zy) ~ (A'L_4li]);,; (with the trivial T-action). If A — B
is quasismooth, then each (A'Lpg sali])y = (Qy / )pli] is concentrated in homological degree i by
Lemma 4.7. Thus, it follows that 7,HH(B/A;Z,) is the p-completion of the exterior algebra 27, A0
thus giving a p-complete HKR theorem for quasismooth maps.

Lemma 4.15. Let A — B be a quasisyntomic cover of p-complete rings. Then A € QSyn if and
only if B € QSyn.

Proof. By Corollary 4.8, we can assume that A and B have bounded p*>°-torsion. Assuming A €
QSyn, the transitivity triangle for Z, - A — B and the quasisyntomicity of A and A — B imply

U This notion is distinct from other notions with the same name used sometimes in the literature. For instance, it
differs from Berthelot’s notion of a quasismooth map (which is in terms of a lifting property with respect to nilideals,
cf. [Ber74, IV.1.5]) or Lurie’s notion of a quasismooth map of derived schemes (which, in fact, is much closer to our
notion of quasisyntomic, cf. [Lurl8b, page 9]).
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that B € QSyn. Conversely, assume B € QSyn. The transitivity triangle for Z, — A — B and the
quasisyntomicity of B and A — B show that L,z p®HAB € D(B) has p-complete Tor amplitude
n [—1,1]. By connectivity, this trivially improves to [—1,0]. As A — B is p-completely faithfully
flat, it follows that L4z, € D(A) also has p-complete Tor amplitude in [-1,0]. O

Lemma 4.16. All rings below are assumed to be p-complete with bounded p™°-torsion.

(1) If A — B and B — C are quasisyntomic (resp. quasismooth), then A — C' is quasisyntomic
(resp. quasismooth). If A — B and B — C are covers, then so is A — C.

(2) If A — B is quasisyntomic (resp. quasismooth) and A — C' is arbitrary, then the p-adically
completed pushout C — D := B&4C of A — B is also quasisyntomic (resp. quasismooth).
If A — B is a cover, then so is C' — D.

Proof. (1) This is clear from the transitivity triangle and stability of faithful flatness under com-
position.

(2) Let D' := B®%C, so D’ is p-completely flat over C' by base change and D = H(D'). As
D’ is p-completely flat over C, it is discrete by Lemma 4.7, so D ~ D’. As the formation of
cotangent complexes commutes with derived base change, we get that C — D is quasisyntomic
(resp. quasismooth). Moreover, faithful flatness is preserved under base change. O

We follow the conventions of [Stal8, Tag 00VG] for sites. Recall that the axioms for a covering
family are: (a) isomorphisms are covers, (b) covers are stable under compositions, and (c) the
pushout of a cover along an arbitrary map is required to exist and be a cover.

Lemma 4.17. The category QSyn®® forms a site.

Proof. The only nontrivial assertion is the existence of pushouts of covers. Fix a diagram C <«
A — B in QSyn with A — B being a quasisyntomic cover. Let D := B&4C be the pushout in p-
complete rings. As C has bounded p®°-torsion, Lemma 4.16 implies that C' — D is a quasisyntomic
cover. Lemma 4.15 then implies that D € QSyn. It is then immediate that C — D provides a
pushout of A — B in QSyn. O

4.3. Perfectoid rings. For later reference, we recall a few facts about perfectoid rings in the sense
of [BMS18, Definition 3.5], sometimes also called integral perfectoid rings to distinguish them from
the perfectoid Tate rings usually studied in relation to perfectoid spaces.

Definition 4.18. A ring R is perfectoid if it is p-adically complete, there is some m € R such that
P = pu for some unit u € R*, the Frobenius map = +— zP on R/p is surjective, and the kernel
of the map 0 : Apg(R) — R is generated by one element. Here Aine(R) = W(R®) where R’ is the
inverse limit of R/p along the Frobenius map, and 0 : Ains(R) — R is Fontaine’s map (written 0
if there is any chance of confusion), cf. [BMS18, Lemma 3.2].

The main properties of perfectoid rings that we need are summarized in the following proposition.

Proposition 4.19. Let R be a perfectoid ring.

(1) The kernel of 6 : Aine(R) — R is generated by a non-zero-divisor & of the form p + [1°Pa,
where ©° = (7T,7T1/p,...) € R’ is a system of p-power roots of an element ® as in the
definition and o € Apns(R) is some element.

(2) The cotangent complex Ly /2, has p-complete Tor-amplitude concentrated in degree —1, and
its derived p-completion is isomorphic to R[1].

(3) The p>-torsion in R is bounded. More precisely, R[p*°] = R|[p].

In particular, R € QSyn.
22



Proof. Part (1) follows from the proof of [BMS18, Lemma 3.10], in particular the construction of
the element ¢ in the beginning. For part (2), it is enough to see that the p-completion of Lp /7, 18

isomorphic to R[1] by Lemma 4.4. We use the transitivity triangle for Z, — Ajn¢(R) % R to see
that the p-completions of Lg/7, and Lg/a; .(r) agree, as Z, — Aing(R) is relatively perfect modulo
p. But Ly 4, (r) = ker(0)/ ker(0)?[1] = R[1] as ker § is generated by a non-zero-divisor.

For part (3), we give two proofs. We start with a proof by “overkill”. As valuation rings have
bounded p>-torsion (as they are domains), it suffices to show that R embeds into a product of
perfectoid valuation rings. When R has characteristic p, this is clear: any reduced ring embeds
into a product of domains, and any domain embeds into a valuation ring, and any valuation ring of
characteristic p embeds into its perfection. In general, we use v-descent techniques from [BS17]. Let
R’ — S be a v-cover of R” with each connected component of S being a perfect valuation ring (see
[BS17, Lemma 6.2]). If S* denotes the Cech nerve of R” — S, then R’ ~ lim S* by the v-descent
result [BS17, Theorem 4.1] for the structure sheaf. Applying the functor W (—) ®€V( R R (which
commutes with limits) then shows that R ~ lim S*f. Now any distinguished element (in the sense
of [BMS18, Remark 3.11]) in W(S) with S perfect is automatically a nonzerodivisor (see [BMS18,
Lemma 3.10]). So each St is concentrated in degree 0. In particular, the map R — S%f = S% is
injective. As S was a product of perfect valuation rings, S? is a product of perfectoid valuation
rings, to the claim follows.

Now we give a more elementary proof. Write R = Aj(R)/€. If € R[p"], then z lifts to
T € Apne(R) with p"Z € (€). Tt is thus enough to show the following: if f € Aju(R) and p?f € (£),
then pf € (£). Assume p*f = g¢ for some g € Apr(R). Write g = > isolgilp' and £ = 3.5 oailp’
for the p-adic expansions of ¢ and & with ¢;,a; € R’. We shall show that gy = 0 € R”; this will
imply p | g, and hence pf = %{ € (&) as Ajue(R) is p-torsionfree, as wanted. We can write

9€ = [aogo] + (Jaog1] + [a190])p + hp*
for some h € Apg(R) = W(R). As p? | g€, we get
apgo =0 and then agg; +a190 =0

in R’. Multiplying the second equation by g and using the first equation yields algg =0€eR.
But a; € R>* by the choice of ¢ in (1), so g8 = 0, which implies gy = 0 as R is perfect. g

Note that Ajne(R) = W (R) carries a natural Frobenius automorphism ¢. We will also often use
the map 6 = 0o ! : A (R) — R, whose kernel is generated by & = ¢(€).

4.4. Quasiregular semiperfectoid rings. A basis for the topology of QSyn is given by the
quasiregular semiperfectoid rings, defined as follows.

Definition 4.20. A ring S is quasiregular semiperfectoid if:

(1) The ring S is quasisyntomic, i.e. S € QSyn.
(2) There exists a map R — S with R perfectoid.
(8) The Frobenius of S/pS is surjective, i.e. S/pS is semiperfect.

Write QRSPerfd for the category of quasireqular semiperfectoid rings. We equip QRSPerfd with
the topology determined by quasisyntomic covers.

Remark 4.21. For S € QRSPerfd, condition (3) in the definition ensures that Q%S IpS)/Fy = 0, and

thus LS/R®H§S/pS € D=71(S/pS) for any map R — S. This observation shall be used often in the
sequel. Moreover, it implies that Lg,z, has p-complete Tor amplitude concentrated in degree —1.
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Remark 4.22. Conditions (2) and (3) can be replaced by the condition that there exists a surjective
map R — S from a perfectoid ring R. This is clearly sufficient; conversely, R@ZPW(SI’) is a
perfectoid ring surjecting onto S, where S” is the inverse limit perfection of S /pS.

Remark 4.23. In Definition 4.20, condition (2) is not implied by the other conditions. For example,
the ring Z, itself satisfies (1) and (3) but not (2).

Example 4.24. Any perfectoid ring R lies in QRSPerfd. Indeed, conditions (2) and (3) in Defini-
tion 4.20 are automatic. For (1), use Proposition 4.19.

Lemma 4.25. Fiz a p-complete ring S with bounded p™-torsion such that S/pS is semiperfect.
Then S is quasireqular semiperfectoid if and only if there exists a map R — S with R perfectoid
such that Lg/r € D(S) has p-complete Tor amplitude concentrated in degree —1. In this case, the
latter condition holds true for every map R — S with R perfectoid.

In particular, a ring S is quasiregular semiperfectoid if and only if it is p-complete with bounded
p*>-torsion and can be written as the quotient S = R/I of a perfectoid ring R by a “p-completely
quasiregular” ideal I (i.e. Lg /r has p-complete Tor amplitude concentrated in degree —1); in that
case, whenever S = R/I for some perfectoid ring R, the ideal I is p-completely quasiregular.

Proof. Assume that there exists a map R — S with R perfectoid such that Lg/r € D(S) has p-
complete Tor amplitude concentrated in degree —1. Then the transitivity triangle for Z, - R — S
and Example 4.24 ensure that Lg/z, € D(S) also has p-complete Tor amplitude concentrated in
degree —1, whence S is quasisyntomic, and thus satisfies Definition 4.20.

Conversely, assume that S is quasiregular semiperfectoid. Fix a map R — S with R perfectoid.
We shall show that Lg/r € D(S) has p-complete Tor amplitude concentrated in degree —1. The
transitivity triangle for Z, — R — S, base changed to S/pS, gives

LR/ZP(X)H}%S/])S a—s) Ls/Zp®H§S/pS — Ls/R®H§S/pS

As the first two terms have Tor amplitude concentrated in degree —1 (by Example 4.24 and the
assumption S € QRSPerfd), it is sufficient to show that the map Sg := m(ag) of flat S/pS-modules
is pure (i.e., injective after tensoring with any discrete S/pS-module). We shall use the following
criterion:

Lemma 4.26. Let A be a commutative ring. Fix a map B : F — N of A-modules with F finite
free and N flat. Assume that 8 ® A k is injective for every field k. Then B is pure.

Proof. Write N as filtered colimit colim; N; with N; finite free (by Lazard’s theorem). By finite
presentation of F', we may choose a map f3; : I' — N; factoring 3. For j > 4, write 3; : F' — N; for
the resulting map that also factors 8. The assumption on 3 trivially implies that §; ®4 k is also
injective for every residue field k£ of A and all j > 4. But then 8; must be split injective for j > 4
as both F' and Nj; are finite free. The claim follows as filtered colimits of split injective maps are
pure. ]

As the p-completion of Lg/z  coincides with ker(0r)/ ker(6%)[1] = R[1] (cf. Example 4.24), Bg
can be viewed as the map

ker(65)/ ker(05)> @k S/pS 225 71 (Lgyz, ®%S/pS)

of S/pS-modules. Note that the source of this map is a free S/pS-module whose formation com-

mutes with base change in S, and the target is flat over S/pS. By the above lemma, it is enough

to show that Sg ® k is injective for all perfect fields k under S/pS. But g ® k factors fj by

functoriality, and [ is an isomorphism (as ay is so for any perfectoid ring k by [BMSI18, Lemma

3.14]). This gives injectivity for Sg ® k, as wanted. d
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Lemma 4.27. The category QRSPerfd® forms a site.

Proof. The only nontrivial assertion is the existence of pushouts of covers. Fix a diagram C <«
A — B in QRSPerfd with A — B be a quasisyntomic cover. Let D := B&4C be the pushout in
p-complete rings. Lemma 4.16 implies that C' — D is a quasisyntomic cover. It is then enough
to check that D € QRSPerfd. Lemma 4.16 implies that D has bounded p®-torsion as the same
holds for C'. It is also clear that D receives a map from a perfectoid ring. Finally, the formula
D/pD = B/pB ®4/,4 C/pC shows that the Frobenius is surjective on D/pD as the same holds
true for B/pB and C/pC. O

Lemma 4.28. A p-complete ring A lies in QSyn ezactly when there exists a quasisyntomic cover
A — S with S € QRSPerfd.

Proof. If there exists a quasisyntomic cover A — S with § € QRSPerfd, then A € QSyn by
Lemma 4.15. .

Conversely, assume A € QSyn. Choose a free p-complete algebra F' = Zy[{x;}icr] on a set I
with a surjection F' — A. Let F' — F, be the quasisyntomic cover obtained by formally adjoining
p-power roots of {p} LI {x;}icr in the p-complete sense, so Fi, is perfectoid. Let A — S be the base
change of FF — F,, along FF — A in the p-complete sense; we shall check that A — S solves the
problem. By Lemma 4.16, A — S is a quasisyntomic cover and thus S € QSyn by Lemma 4.15.
To finish proving S € QRSPerfd, it is now enough to observe that the ring F,, is perfectoid, and
the map F, — S is surjective. g

Remark 4.29. The construction of the cover A — S in the second paragraph of the proof of
Lemma 4.28 shows a bit more: the map A/pA — S/pS displays S/pS as a free A/pA-module,
and L(s/ps)/(4/pa)[—1] is a free S/pS-module (as the analogous assertions are true for F' — F).
Moreover, the ring S € QRSPerfd receives a map from a p-torsionfree perfectoid ring.

Lemma 4.30. Let A — S be a quasisyntomic cover in QSyn with S € QRSPerfd. Then all terms
of the Cech nerve S® lie in QRSPerfd.

Proof. Each term S° is a quasisyntomic cover of S. In particular, each S° has bounded p>-torsion
by Lemma 4.16 and receives a map from a perfectoid ring (as S does). As S*/pS* is a quotient of
(S/pS)®=(+1) its Frobenius is surjective. O

Proposition 4.31. Restriction along u : QRSPerfd®® — QSyn°? induces an equivalence
Shve (QSyn®P) ~ Shve(QRSPerfd®P)
for any presentable co-category C.

Denote the inverse Shve(QRSPerfd®®) — Shve(QSyn®) by F s F=: we shall call F= the
unfolding of F. Explicitly, given A € QSyn, one computes F :‘(A) as the totalization of F'(S*®)
where S*® is chosen as in Lemma 4.30.

Proof. Tt is enough to see that the corresponding oo-topoi Shv(QRSPerfd°?) and Shv(QSyn°®P) are
equivalent (corresponding to the case where C is the co-category of spaces); both sides are equiv-
alent to the contravariant functors from the corresponding oco-topos to C taking colimits to limits
by [Lurl&b, Proposition 1.3.17]. We define an inverse functor Shv(QRSPerfd°?) — Shv(QSyn°P)
as follows. There is a functor QSyn°® — Shv(QRSPerfd?) sending any A € QSyn°? to the
sheaf hy it represents on QRSPerfd®®. This functors takes covers to effective epimorphisms (as
pullbacks of quasisyntomic maps are quasisyntomic, and can be covered by quasiregular semiper-
fectoids), and preserves their Cech nerves. This implies that for any F' € Shv(QRSPerfd?),
the presheaf A — Homgp,(qrsperfaor)(ha,F') defines a sheaf on QSyn°P, defining the desired
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functor Shv(QRSPerfd®?) — Shv(QSyn®?). It is clear that the composite Shv(QRSPerfd’?) —
Shv(QSyn°?) — Shv(QRSPerfd®P) is the identity. In the other direction, the composite

Shv(QSyn°?) — Shv(QRSPerfd°?) — Shv(QSyn°P)

is the identity by using the previous lemma: For any F' € Shv(QSyn°?) and A € QSyn°P, we have
to show that

F(A) = Homgpy(Qrsperfacr) (4, F|QrSPerfaer)

noting that there is a natural map from left to right. But h4 is the colimit of the Cech nerve hge
as in the previous lemma, and thus

Homgyy (rspertacr) (ha, FlQrsperfacr) = lim Homgyy (qrspertacr) (hse , FlQrspertaor)
_lim F(S*) = F(A) ,

as desired. O

Rem/aik 4.32. We shall often use Proposition 4.31 for the complete filtered derived category
C = DF(R), which we will be recalled in §5.1 (and which the reader should consult for the ensuing
notation). Therefore we remark that the unfolding process is compatible with the evaluation and
associated graded functors for such sheaves, i.e., if F' € Sth)‘F( R)(QRSPerfd) unfolds to F=, then
F=(i) = F(i)2 and gr'(F=) = (gr'F)2. In particular, if F corresponds to an N-filtered object
(i.e., gr' = 0 for i < 0), then passage to the underlying non-filtered sheaf is also compatible with
unfolding, i.e., F=(—o00) = F(—o0)? as they both coincide with F(0)= by the previous observations.

4.5. Variants. In applications, we shall often need to restrict attention to smaller subcategories
of QSyn and QRSPerfd which are still related by an analog of Proposition 4.31; in particular, we
will often fix a base ring.

Variant 4.33 (Slice categories, I). Fix a ring A. We can consider the category QSyn, of maps
A — B with B € QSyn as well as the full subcategory QRSPerfd, C QSyn, spanned by maps
A — S with § € QRSPerfd. One can then check that the analogs of Lemma 4.27, Lemma 4.17,
Lemma 4.28 and Proposition 4.31 hold true for these categories. The following lemma is quite
useful in working in these categories in practice:

Lemma 4.34. Assume A is perfectoid or A = Z,. For any B € QSyny, the compler Ly €
D(B) has p-complete Tor amplitude in [—1,0]. Hence, the p-adic completion of AiLB/A[—i] lies in
D>9(B).

Proof. Let us explain the assertion about the cotangent complex first. If A = Z,, this is true
by definition, so assume that A is perfectoid. Choose a quasisyntomic cover B — S with S €
QRSPerfd. By Lemma 4.25, we know that Lg/4 € D(C) has p-complete Tor amplitude concentrated
in degree —1. The transitivity triangle for A — B — S and the quasisyntomicity of B — S then
shows that LB/A®H§S € D(S) has p-complete Tor amplitude in [—1,1], and thus in [-1,0] by
connectivity. We conclude using p-complete faithful flatness of B — S.

For exterior powers: it follows formally from the previous paragraph (and the corresponding
statement over B/pB) that AL Lp /4 has p-complete Tor amplitude in [—i,0]. The claim now
follows from Lemma 4.6. O

Variant 4.35 (Slice categories, IT). There is another variant of the slice category. Fix a quasisyn-
tomic ring A. We consider the category qSyn 4 of quasisyntomic A-algebras, with the quasisyntomic
topology. Again, it has a full subcategory qrsPerfd, C qSyn,, and the previous results including
Proposition 4.31 stay true. In fact, all statements about covers of A in QSyn or QRSPerfd are
immediately statements about covers in qSyn 4 and qrsPerfd 4.
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For a map A — B of quasisyntomic rings, there is an associated functor qSyn, — qSynp sending
C to C®4B. It is however not clear that this induces a morphism of topoi, as our sites do not have
finite limits. For this reason, we prefer to work in big sites like QSyn or QSyn 4 to get functoriality
of our constructions in the algebras.

Variant 4.36 (Restricting to topologically free objects over O¢). In this variant, we specialize
to working over O¢ where C' is a perfectoid field of characteristic 0, and explain an analog of the
preceding theory where, roughly, all instances of “flat” are replaced by “projective”; this will be
used in the proof of Theorem 9.6. Define a map A — B of p-complete and p-torsionfree rings to be
a proj-quasisyntomic map (resp. cover) if the following properties hold:

(1) B/p is a projective (resp. projective and faithfully flat) A/p-module.

(2) Lg/p)/ca/p) € D(B/p) has projective amplitude!? in [—1,0].

Let qSyn%rgj C aSynp,, be the full subcategory spanned by proj-quasisyntomic O¢-algebras. Let

qrsPerfd%rgj = qSyn%rCOj N QRSPerfdy,,, 50 L(s/p) /00 /p)[—1] is a projective S/p-module for S €
qrsPerfd%rgj. Note that p-adic completions of smooth O¢-algebras lie in qSyn%rgj: the condition on

cotangent complexes is clear, and any finitely presented flat O¢ /p-algebra is free'®.

We equip (the opposites of) qSanggj and o‘[rsPerfd%rgj with the topology determined by proj-

quasisyntomic covers. It is easy to see that proj-quasisyntomic maps (resp. covers) are stable under
base change and composition, which gives analogs of Lemma 4.27 and Lemma 4.17. Remark 4.29
then ensures that objects in qSyn%rSJ’Op can be covered by those in quPerdegCOJ’OP, giving an analog
of Lemma 4.28. It is then easy to see that the analog of Proposition 4.31 holds true for these

categories.

125 complex K over a commutative ring R has projective amplitude in [a, b] if it can be represented by a complex
of projective modules located in degrees a, ..., b. This is equivalent to requiring that Ext% (K, N) = 0 for any R-module
N whenever i ¢ [—b, —al; see [Stal8, Tag 05AM] for more.

Bwrite O¢ /p as a direct limit of artinian local rings R; C O¢/p. Then any finitely presented flat O¢ /p-algebra
A descends to a finitely presented flat R;-algebra A; for some i > 0. As flat modules over artinian local rings are
free, A; is free over R;, and hence A is free over O¢ /p.
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5. NEGATIVE CYCLIC HOMOLOGY AND DE RHAM COHOMOLOGY

The goal of this section is to prove Theorem 1.17. As this theorem concerns the existence of
filtrations on objects of the derived category, we start with some reminders about the filtered derived
category in §5.1; the main results here are the existence of a Beilinson ¢-structure (Theorem 5.4) and
the interaction of this t-structure with the Berthelot-Ogus-Deligne Ln-functor (Proposition 5.8).
With this language in place, we study some important examples of sheaves on the quasisyntomic
site (such as de Rham complexes or negative cyclic homology) in §5.2 and prove Theorem 1.17.

5.1. Recollections on the filtered derived category. We review some formalism surrounding
the filtered derived category'®. Recall the following notion, where Z°P is the category whose objects
are the integers n € 7Z, and there is at most one map n — m, which exists precisely when n > m.

Definition 5.1 (Filtered derived category). For any Eo-ring R, write
DF(R) := Fun(Z°?, D(R))

for the filtered derived category of R; write DF = DF(S). We view these as symmetric monoidal
presentable stable co-categories via the Day convolution symmetric monoidal structure, cf. [GP18].
Recall that this means that, for F,G € DF(R), one has

(F@RG)(i) = colim F(j)@RG (k) -
Jjt+k>i

Given F € DF(R), we call F(—0) := colim; F(i) the underlying spectrum with F (i) — F(—o0)
specifying the i-th filtration level. Such an F is called complete if F(00) := lim; F'(i) vanishes; in
this case, we have F(—o0) ~ lim; F(—o0)/F(i). Write EI\T(R) C DF(R) for the complete filtered
derived category, i.e., the full subcategory spanned by complete objects.

For F € DF(R), write gr'(F) = F(i)/F(i — 1). We shall often denote F € EI\T(R) as
(F(—00), F(x)) or simply F(%); the former notation reflects the intuition that F' gives a com-
plete descending Z-indexed filtration F'(x) on the underlying spectrum F(—o0), and will typically
be used only in the N-indexed case (i.e., when gr'F' = 0 all i < 0, whence F(0) ~ F(—00)).
The next lemma summarizes the basic properties of the filtered derived category that we shall use
repeatedly, and is well-known.

Lemma 5.2. With notation as above:

(1) The collection of functors given by {gr'(—)}icz and F — F(c0) is conservative on DF(R).
On the subcategory ﬁ’(R), the collection {gr'(—)}icz is already conservative.

(2) The inclusion ﬁ(R) C DF(R) has a left-adjoint F +— F called completion. Explicitly,
this is given by the formula F(i) = F(i)/F(co) for alli. The completion functor commutes
with the associated graded functors gr'(—).

(3) Both DF(R) and ﬁ(R) have all limits and colimits. The evaluation functors F — F(i)
and the associated graded functors gr'(—) commute with all limits and colimits in DF(R).
The associated graded functors gr'(—) commute with all limits and colimits in DF (R).

(4) There is a unique symmetric monoidal structure on ﬁ(R) compatible with the one on
DF(R) under the completion map.

(5) For F,G € DF(R) or F,G € Z/)F’(R), we have a functorial isomorphism gr™"(FR%G) ~
@it j=ner (F)@per! (G).

M1y our applications, it will be useful to work with unbounded complexes with unbounded filtrations. Moreover,
since we use the oo-categorical perspective of [NS18], we also need the filtered derived category as an oco-category.
For these reasons, we adopt the language of oco-categories when discussing the filtered derived category, instead of
the more classical language used to discuss this notion, e.g., as in [BBD82].
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Proof. See the first 8 pages of [GP18]. O

The next results of this section are an elaboration of [Bei87, Appendix A]. From now on, as-
sume that R is connective. Recall that the oo-category D(R) carries a natural t-structure whose
connective objects DF<C(R) are those R-module spectra whose underlying spectrum is connec-
tive ([Lurl8&a, Proposition 7.1.1.13]). In the following, we explain why this endows DF'(R) with a
natural t-structure as well.

Definition 5.3. Let DF<°(R) C DF(R) be the full subcategory spanned those F’s with gr'(F) €
D=Y(R) for all i; dually, DF=%(R) C DF(R) is the full subcategory spanned by those F’s with
F(i) € DZY(R) for all i. We shall refer to the pair (DF<°(R), DFZ°(R)) as the Beilinson t-
structure on DF(R); this name is justified by Theorem 5./ below.

The Beilinson t-structure is not left-complete: the oo-connected objects of DF(R) (i.e., objects
in N;DF<"Y(R)) are exactly those F’s with gr'(F) = 0 for all i, i.e., constant diagrams. In
particular, no complete objects are co-connected. The next result summarizes the existence of this
t-structure and describes the truncation and homology functors. Note that it is a statement about
the homotopy category of DF(R), i.e. the usual filtered derived category as a triangulated category.

Theorem 5.4 (Beilinson). With notation as above.

(1) The Beilinson t-structure (DF<°(R), DF=°(R)) is a t-structure on DF(R). This t-structure
is compatible with the symmetric monoidal structure, i.e., DF<(R) C DF(R) is a sym-
metric monoidal subcategory.

(2) If TES;O denotes the connective cover functor for the t-structure from (1), then there is a
natural isomorphism gr' o 7’50(—) ~ 750 gri(—).

(3) Assume R is discrete, i.e. m;R =0 for i # 0. The heart DF(R)" := DF<°(R) N DFZ°(R)
is equivalent to the abelian category Ch(R) of chain complexes of R-modules via the fol-
lowing recipe: given F € DF(R), its 0-th cohomology H%(F) in the Beilinson t-structure
corresponds to the chain complex (H®(gr®(F')),d) where d is induced as the boundary map
for the standard triangle

et (F) = F(i +1)/F(i +2) - F(i)/F(i +2) = g'(F) := F(i)/F(i + 1)

by shifting. The resulting functor H% : DF<C(R) — DF(R)Y ~ Ch(R) is symmetric
monoidal with respect to the standard symmetric monoidal structure on the category of
chain complezes.

Remark 5.5. At the level of explicit filtered complexes, the formation of connective covers in
the Beilinson t-structure is implemented by Deligne’s construction of the filtration décalée for any
filtered complex (see [Del71, §1.3.3]). Thus, even though the language of ¢-structures was invented
later, [Del71] already contained an essential idea of the proof of Theorem 5.4.

Proof. (1) Let us explain why we get a t-structure. As each DS(R) C D(R) is stable under
colimits, and because each grf(—) commutes with colimits, DF<°(R) c DF(R) is also closed under
colimits. Thus, by presentability, there is a functor R : DF(R) — DF<9(R) that is right adjoint
to the inclusion. For any Y € DF(R), this gives an exact triangle

RY)—=Y = Q(Y)

defining Q(Y). We must check that Q(Y) € DF>%(R), i.e., Q(Y)(i) € D> (R) or equivalently

that Map(X,Q(Y)(7)) = 0 if X € D</(R). The functor F' — F(i) has a left-adjoint L; such

that L;(X)(j) equals 0 if j > i and equals X if j < i (with all transition maps being the iden-

tity). In particular, we have gr'(L;(X)) = X and gr/(L;(X)) = 0 for j # i. Thus, if X € D=

then L;(X) € DF<°(R). By adjointness, we have an identification Mapppr) (Li(X),Q(Y)) =
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Map pg) (X, Q(Y)(4)), so it is enough to show that each map 1 : L;(X) — Q(Y") is nullhomotopic
if X € DSY(R). Pulling back the preceding fiber sequence along 7 gives a map of fiber sequences

R(Y) — F —— Ly(X)

R

R(YY)—=Y —= Q(Y).

As X € DSY(R), we have L;(X) € DF<9(R). Also, R(Y) € DF<°(R) by construction. Stability
of DF<°(R) under extensions shows that F € DF<°(R). But then by the defining property of
R(Y) — Y, the map F — Y above factors uniquely over R(Y) — Y. As the left vertical map
is identity, this implies that F' splits uniquely as R(Y) & L;(X), and thus the first fiber sequence
above is split (i.e., has 0 boundary map). On the other hand, since F' — Y factors over R(Y), it
follows that n factors over the boundary L;(X) — R(Y')[1]; as we just explained that the latter is
0, we must also have n = 0, as wanted.
The assertion about symmetric monoidal structures follows from Lemma 5.2 (5).

(2) We shall use the following fact: any exact and t-exact functor between stable oo-categories
equipped with ¢-structures commutes with the truncation functors associated to the t-structures.
Now for each i € Z, by definition of the t-structure, the exact functor gr' : DF(R) — D(R)
is t-exact if DF(R) is equipped with the Beilinson t-structure (DEF<°(R), DFZ°(R)) and D(R) is
equipped with the shift (D=!(R), D=*(R)) of the usual t-structure. The desired formula now follows
immediately from the previous quoted fact about stable co-categories with t-structures.

(3) The heart comprises those F with gri(F) € DY(R) and F(i) € DZ(R). It is easy to see
that this forces the following;:

(a) gr'(F) is concentrated in cohomological degree i.
(b) F is complete.

Conversely, any F' satisfying these conditions necessarily lies in the heart: it is clear that F' €
DF=°(R) by (a), and the inclusion F' € DF=°(R) follows from the formula F(i) = lim;j>; F(i)/F(j)
(by (b)), the hypothesis that gr/(F) € DZ!(R) for j > i (by (a)), and the stability of DZ*(R) C
D(R) under limits. In particular, there is a natural functor G : Ch(R) — DF(R)" given by
G(K*)(i) = K= and obvious transition maps; this functor is exact. We shall check that G is fully
faithful and essentially surjective by first handling the bounded case, then the bounded above case
(by passage to filtered direct limits along the stupid truncation), and then the general case (by
passage to cofiltered inverse limits along the stupid truncation).

Let us first check the result in the bounded case. Write Ch®(R) C Ch(R) for the full subcategory
of bounded chain complexes; this is an abelian subcategory. Similarly, write DF(R)Y* ¢ DF(R)"
for the full subcategory spanned by bounded filtrations, i.e., those F’s with gré(F) = 0 for |i| > 0. It
is clear that G restricts to a functor G® : Ch®(R) — DF(R)®. Tt is proven in [BBD82, Proposition
3.1.8] (see also [3ei87, Proposition A.5]) that G® is an equivalence. As the definitions in [BBDS2]
and here are not obviously the same, we briefly sketch a proof. Note that every K*® € Chb(R) admits
a functorial finite filtration with graded pieces of the form M[—i], where M is an R-module, i is
an integer, and as usual M[—i] indicates the R-complex given by M concentrated in cohomological
degree i. Similarly, any F € DF(R)Y"* admits a functorial finite filtration with graded pieces of the
form L;(M[—i]), where L; is the functor from (1), M is an R-module, and i is an integer. Moreover,
these pieces match up: for an R-module and an integer ¢, we have G(M[—i]) = L;(M[—i]), as one
readily checks by unwinding definitions. By Lemma 5.7, it is enough to show the following: for
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R-modules M and N and integers ¢ and j, the functor G induces isomorphisms

Extn gy (M=), N[=j]) = Ext]p(g) (Li(M[=i]), Lj(N[=j]))-
Using the definition of L; as a left-adjoint as well as the explicit definition of L;, one computes
that Extf, g p) (Li(M[—1]), Lj(N[-7])) vanishes if i > j and equals Exty " (M,N) if i < j. On
the other hand, by twisting, the left side above identifies with Ext¢y, z) (M, N[i — j]). The claim
now follows from Proposition 5.6 applied with ¢ =i — j.

Let us now extend the result to complexes that are bounded above. Let Ch™(R) C Ch(R)
be the full subcategory of bounded above complexes K* (i.e., K’ = 0 for i > 0). Any such
K*® can be written functorially as the filtered colimit colim; K=~% of bounded complexes. Here
K=~" — K* is the displayed truncation of K*, and can be viewed as the universal object in Ch(R)
mapping to K which vanishes in degrees < —i. Similarly, write DF(R)Y~ c DF(R)" for the
full subcategory spanned by those F' which are bounded above (i.e., grf(F) = 0 for i > 0). Any
such F can be written functorially as the filtered colimit colim; FZ~¢ of bounded filtrations. Here
FZ~' ¢ DF(R)V? is defined by FZ7%(j) = F(j) if j > —i and F(j) = F(—i) if j < —i, and has
a similarly universal property to the one for KZ~%. One then checks by reduction to the bounded
case (and using that G : Ch(R) — DF(R)"Y commutes with filtered colimits) that G induces an
equivalence Ch™(R) ~ DF(R)”~ on bounded above objects.

Finally, we handle the general case. Any K*® € Ch(R) can be written functorially as the N-indexed
inverse limit lim; K'<* of bounded above complexes; here K* — K=! is the displayed truncation of
K, and is the universal map from K*® into a complex that vanishes in degrees > i. Note that the
N-indexed diagram {K<'} is essentially constant in each degree j. Similarly, any F € DF(R)"
can be written as the N-indexed inverse limit lim; F< of bounded above filtrations. Here F=<' is
defined by F<%(j) is 0 if j > 4 and F<(j) = F(j)/F(i + 1) for j < i, and the map F — F<'is
the universal map from F into an object G of DF(R)" with gr/(G) = 0 for j > i. Note that the
N-indexed diagram {F<'} is essentially constant on applying gr’/ for each j. One then checks by
reduction to the bounded above case (and using that G carries the N-indexed limit diagrams in
Ch(R) which are essentially constant in each degree to N-indexed limit diagrams in DF(R)" that
are essentially constant after applying each gr/) that G induces an equivalence Ch(R) ~ DF(R)”
of abelian categories.

The final statement follows from Lemma 5.2 (5). O

The proof above used the following description of Ext-groups in the abelian category of chain
complexes of R-modules.

Proposition 5.6. Let R be a commutative ring. For an integer ¢, write K® — K|c|® for the “shift to
the left by c¢” autoequivalence of the abelian category Ch(R) of chain complexes, i.e., K|c]" = K'*¢.
Then for R-modules M and N regarded as complexes with trivial differential, Exty, ) (M, Nlc]) =0

for alli € Z if ¢ > 0, and identifies with Ext'y (M, N) if ¢ < 0.

Proof. We work in the abelian category of Z-graded R-modules. For a graded R-module K*®, write
K*{c} for the “shift to the left by ¢” autoequivalence of graded R-modules, i.e., (K*{c})’ = K**¢.
Write S for the graded ring R[e]/(€?) where € has degree 1, so S = R®R{—1} as a graded R-module.
Then Ch(R) can be thought of as the abelian category of graded S-modules in the abelian category
of graded R-modules: restriction of scalars along R — S gives the underlying graded R-module,
while the action of € € R yields the differential. Under this correspondence, the twisting notations
are compatible. Thus, we must compute Extism(M ,N{c}) for R-modules M and N (regarded
as graded S-modules placed in degree 0 with € acting as 0). We shall use the standard infinite
resolution

( S S{—i} R M = S{—(i—1)} @ M — .. > S{~-1}®r M — S ®p M) XM
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of graded S-modules, where all the transition maps are induced by multiplication by e. Applying
RHomg 4r(—, N) to this resolution and noting that RHompg (M, N{i}) = 0 for ¢ # 0 for grading
reasons, we learn that RHomg g (M, N{c}) vanishes if ¢ > 0, and equals RHompg(M, N)[c] if ¢ <0,
as wanted. O

The following lemma was also used above.

Lemma 5.7. Let G : A — B be an exact functor between abelian categories. Assume that there
exists a collection S C A of objects of A with the following properties:

(1) Each object of A admits a finite filtration with graded pieces in S.
(2) Each object of B admits a finite filtration with graded pieces in G(S5).
(3) For X,Y €S, the functor G induces bijections Ext(X,Y) = Extp(G(X),G(Y)).

Then G is an equivalence.

Proof. Let us first show that if X € S, then Ext’ (X, Z) = Extiz(G(X),G(Z)) for all Z € A. This
holds true for Z € S by assumption. Applying (1) and the 5-lemma using (3) then implies the claim
for all Z. Next, holding Z fixed but letting X vary through all of A and repeating the previous
argument gives Ext® (W, Z) = Extz(G(W),G(Z)) for all W, Z € A. In particular, we have shown
full faithfulness. Essential surjectivity follows from (2) by induction on the length of the filtration
using the statement about Ext!'-groups just proven to facilitate the induction. ([l

Theorem 5.4 (3) is somewhat surprising at first glance: it extracts an honest chain complex out
from a construction involving derived categories, thus implementing a “strictification” procedure.
Another such construction is the Berthelot-Ogus-Deligne Ln-functor that played a central role in
[BMS18] (see Proposition 6.12 in op.cit. for an explicit example of the “strictification” implemented
by Ln). We now explain why the latter is a special case of the former by explaining a description
of the Ln-functor in terms of filtered derived categories. This result is crucial to the sequel and will
be used in particular in Corollary 7.10.

Proposition 5.8. Let R be a ring, and let I C R be an ideal defining a Cartier divisor. Fiz
K € D(R). Let I* ® K € DF(R) be the I-adic filtration on K, i.e., the i-th level of the filtration
is I' ®p K with obvious maps. Then Ln;K identifies with the R-complex underlying TEO(I* ® K).

The reader familiar with [Del71] will have no difficulty deducing Proposition 5.8 from Remark 5.5:
the object 177 K*® defined below coincides with Dec(F)?(K*®) in the notation of [Del71, §1.3.3], where
F denotes the I-adic filtration on K.

Proof. Choose a complex K*® representing K such that each K* is I-torsion-free. Then we have an
evident filtered complex (I*K*®) representing I* ® K € DF(R). By definition, n;K*® C K*[1/I] is
the subcomplex with (n;K*)" = {x € I"K™ | dx € I"TT K"}

Define a filtration G** on nyK*® via G"* = I'K*NnrK*® as subcomplexes of K*[1/I]. Then there
is an evident inclusion

B:G"* - I"K*®
of filtered complexes, and hence a map
B:G"—=TI"K

in DF(R). We shall check that this map is a connective cover map for the Beilinson-t-structure,
which will prove the proposition.

To check this, we need to check that griA : gr'G* — gr'I*K identifies the source with 7<% of the
target, and that §(c0) is an equivalence. Note that 5(oc) is an equivalence as in any given degree
n, the map G** — I'K*® is an isomorphism in degrees i > n.
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On the other hand, by construction the map of complexes griG*® — gr'I* K® is injective, and the
inclusions 1" K™ C (n;K*®)® C I"K"™ imply that is an isomorphism for n < i and the left-hand
side is zero for n > i. It remains to see that in degree i, the image is precisely the set of cocycles.
But this follows from the exact definition of n; K*. O

Remark 5.9. The interpretation of Ln; coming from Proposition 5.8 gives a concrete measure of
the failure of Ln; to preserve exact triangles: if K — L — M is an exact triangle in D(R), then
the induced sequence on applying Ln; is an exact triangle if the boundary map H%(M ) — H}B (K)
is the 0 map. Via Theorem 5.4 (3), the latter is equivalent to requiring that the boundary map
H{(M®%R/I) — H(K®%R/I) be the zero map for all i.

Corollary 5.10. With notation from Proposition 5.8, the functor Ln; : D(R) — D(R) of co-
categories has a natural structure as a lax symmetric monoidal functor. In particular, it takes
E-R-algebras to Eo-R-algebras.

Proof. By the previous proposition, the functor L7y can be written as a composite of the following
three functors:

(1) The functor K — I*®%K : D(R) — DF(R).

(2) The connective cover functor TES;O :DF(R) — DF(R).

(3) The functor F +— F(c0) : DF(R) — D(R).
It is a general fact that the connective cover functor is lax symmetric monoidal. In fact, a right
adjoint to a symmetric monoidal functor is always lax symmetric monoidal by [Lurl8a, Corollary
7.3.2.7], and 7';0 : DF(R) — DF=<(R) is right adjoint to the symmetric monoidal inclusion
DF<%(R) C DF(R).

The functor F' +— F(—o0) : DF(R) — D(R) is symmetric monoidal; for this, note that

(F&%G)(—00) = colim colim F(j)®@EG(k) = colim F(5)®%G (k)
i——00 j+k>i Jk——00
= colim F(j)®% colim G(k) = F(—o0)®@EG(—o0) .
Jj—r—o00 k——o0

Finally, the functor K +— [ *®H}§K can be written as the composite of the symmetric monoidal
functor K + Lo(K) (from the proof of Theorem 5.4) and the functor F' — I*®%F that is lax
symmetric monoidal as I* € DF(R) has a natural structure as Ey-algebra in DF(R). In fact, I*
has a strict commutative ring structure on the level of filtered R-modules (thus, of filtered chain
complexes). O

5.2. De Rham complexes and negative cyclic homology. Now we return to the quasisyn-
tomic site, and fix a base ring R € QSyn. Our goal in this section is to prove Theorem 1.17 relating
negative cyclic homology to de Rham cohomology.

Example 5.11 (Hodge-completed derived de Rham complex). Consider the DF (R)-valued pre-

sheaf on QSyn%p determined by the p-adic completion (m_ / R,KZ%;R) of the Hodge-completed
derived de Rham complex. We claim that this is a sheaf. By closure of the sheaf property under
limits and the behaviour of limits in DF (R), we are reduced to checking that A — (AL g)) is
a sheaf on QSyn}’zp for all 4, which follows from Theorem 3.1.

Example 5.12 (p-completed derived de Rham complex). Consider the D(R)-valued presheaf on
qSy]a(j%p determined by the p-adic completion of the derived de Rham complex; we will simply
denote this as L{)_x and leave the p-adic completion implicit. We claim that this is a sheaf. It is
enough to check that A — Ly, R®HZ“Z /pZ is a sheaf. The conjugate filtration on derived de Rham

cohomology modulo p endows Ly, R®HZ“Z/pZ with a functorial increasing exhaustive N-indexed
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filtration with graded pieces A4 L4 /R[—i]®HZ‘Z/pZ. As any A € Synp is quasisyntomic over R,
each graded piece, and hence each finite level of the filtration, takes values in DZ~1(R). The claim
now follows as sheaves valued in DZ~!(R) are closed under filtered colimits in the corresponding
presheaf category.

If R is perfectoid or R = Zj, the same discussion applies to the larger site QSyn%, using
Lemma 4.34.

The next example is a toy example of the key construction of this paper:

Example 5.13 (Recovering Hodge- and p-completed derived de Rham complex from HC™).
We shall need the following result describing the Hochschild homology of quasiregular semiperfec-
toid R-algebras:

Lemma 5.14. Fiz S € qrsPerfdg; if R is perfectoid or R = Z,, we allow more generally S €
QRSPerfd,.
(1) For each i > 0, the S-complex /\fgLS/R[—Z'] 1s p-completely flat, and in particular its p-
completion is concentrated in degree 0.
(2) We have moqqHH(S/R; Zy) = 0, and there is multiplicative identification of mo; HH(S/R; Z,)
with the p-completion of N'Lg,p[—i].

Proof. Tt suffices to prove part (1): The HKR filtration then implies (2) as the p-completion of
griicg HH(S/R) ~ N4Lg/gli] is concentrated in degree 2 by part (1). Moreover, by stability of
p-completely flat modules under divided powers, it suffices to handle the case i = 1.

If R = Z, and S € QRSPerfdg, then Lg/p[—1] is p-completely flat by Remark 4.21. If R is
perfectoid and S € QRSPerfdy, we use Lemma 4.25 for the same conclusion. Finally, if R € QSyn
is general and S € qrsPerfdp, then Lg/r has p-complete Tor-amplitude in [—1,0] but Qé /R = 0, so
Lg/g[—1] is p-completely flat. O

In particular, for S € qrsPerfdy, as m,HH(S/R;Z,) lives only in even degrees, the homotopy
fixed point spectral sequence calculating HC™ (S/R;Z,,) degenerates to yield a complete descending
multiplicative filtration on moHC™(S/R;Z,) with the i-th graded piece being the p-completion
of N§Lg/g[—i]. By the same reasoning used in Example 5.11, it follows that moHC™(—/R) is a
D(R)-valued sheaf on qrsPerfdy, and thus unfolds to a sheaf (mgHC™(—/R;Z,))= on qSyng by
Proposition 4.31. Again, if R is perfectoid or R = Z,, the dicussion applies also to QSyng.

Proposition 5.15. The sheaf (moHC™(—/R;Z,))> on qSyng is canonically identified with the
p-adic completion LQ_p of the Hodge-completed derived de Rham complex from Example 5.11.

Proof. 1t is convenient to use filtrations. Thus, for S € qrsPerfdy, viewing moHC™ (S/R;Z,) with

—

the filtration defined via homotopy fixed point spectral sequence as above gives a DF(R)-valued
sheaf F' on qrsPerfdp. This unfolds to a DF (R)-valued sheaf F* 7 on qSyn r; the underlying sheaf of
complexes coincides with the sheaf (mgHC™(—/R;Z,)) of interest. In the paragraph above, for a
quasismooth R-algebra A, we have identified gr’(F=)(A) with the p-adic completion of Q4 / rl—i; as
R has bounded p°°-torsion, so does A by Lemma 4.16, and hence this graded piece is concentrated
in cohomological degree i by quasismoothness and Lemma 4.7. In particular, F2(A) € DF (R)Y.
As the equivalence in Proposition 4.31 is symmetric monoidal, Theorem 5.4(3) tells us that F=(A)
is given by a commutative differential graded R-algebra of the form

A— (9,14/1%);;\ — (9,24/1%);;\ —
By checking in the example of A = ﬁ[;], one concludes that the differential coincides with the
de Rham differential (see [NS18, Lemma IV.4.7] for a similar calculation). In other words, F-
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coincides with L /r on the category of quasismooth R-algebras. Hence, their left Kan extensions

(as functors to DF (R)) to all p-complete simplicial commutative R-algebras also coincide. But
these extensions, when restricted to qSynp, agree with the original functors as the same holds
true for the associated graded functors of either functor (as they are given by the p-completions of
A'L_g[—i]). The result follows. O

In fact, we can now prove Theorem 1.17.

Proof of Theorem 1.17. We analyze the sheaf (19, HC™ (—/R;Z,))= on qSyng, for any n € Z. For
n < 0, periodicity (given by multiplication by the generator of mo, HC™ (R/R;Z,) ~ R) shows that
it gets identified with (mgHC™(—/R;Z,))>, as desired. For n > 0, the analysis of the previous proof
shows that on quasismooth R-algebras A, it is given by a complex

(U R)p = (@R =

and one can identify this as a subcomplex of the complex for (moHC™ (—/R; Z,))= via multiplication
by the generator of m_3, HC™(R/R;Z,) = R. By left Kan extension, we get this description in
general.

It remains to see that the filtration is complete and exhaustive. Completeness can be checked
locally on qSynp, and is evident on qrsPerfdy as the Postnikov filtration is complete. To see that it
is exhaustive, we note that on any homotopy group mFil"HC™ (A/R;Z,), the filtration is eventually
constant and equal to m;HC™ (A/R;Z,); indeed, it suffices to take n sufficiently negative so that
1> 2n.

The case of HP is similar, but easier by 2-periodicity. ([l
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6. THH OVER PERFECTOID BASE RINGS

The first goal in this section, realized in §6.1, is to analyze the theories THH, TC™ and TP
for perfectoid rings, and in particular prove Theorem 1.6. In fact, with little extra effort, we can
also identify THH of a smooth algebra over a perfectoid ring in §6.3, which generalizes a result of
Hesselholt; the key tool here is Theorem 6.7, which explains why the topological theory provides
a l-parameter deformation of the algebraic theory. The formulation of these theorems in explicit
terms entails making certain choices; one can formulate the results in a more invariant way in the
language of Breuil-Kisin twists, which is discussed in §6.2.

For the rest of this section, fix a perfectoid ring R, and set Ay = Ajne(R) with the map
QZQR:Ainf%R.

6.1. THH,TC™ and TP for perfectoid rings. Bokstedt calculated 7,THH(F,) to be a poly-
nomial ring on a degree 2 generator [Bok85a]. Using his result, we can prove the analog for any
perfectoid ring:

Theorem 6.1. The ring m,THH(R;Z,) = Ru] is a polynomial ring, where u € moTHH(R;Z,) =
moHH(R; Z,) = ker(0)/ ker(0)? is a generator of ker(6)/ ker(6)?.

Proof. We first claim that m,HH(R;Z,) = R if i > 0 is even and = 0 else (however without
identifying the multiplicative structure, which would be a divided power algebra). This follows from
the HKR filtration, as the graded pieces are given by (ARLg/z, ), [i] ~ R[2i], cf. Proposition 4.19.

In particular, HH(R;Z,) is a pseudocoherent complex of R-modules, i.e. it can be represented
by a complex of finite free R-modules that is bounded to the right (but not to the left). Thus, the
same is true for

THH(R; Zp) ®@1unz) Z = HH(R; Zy) |

where we use Lemma 2.5. By induction using the finiteness in Lemma 2.5, all THH(R; Z;) ®rxp(z)
T7<p THH(Z) are pseudocoherent, which implies that THH(R;Z,) itself is pseudocoherent.
Next, we check that for any map R — R’ between perfectoid rings the induced map

THH(R; Z,)®% R — THH(R'; Z,)

is an equivalence. It suffices to check the assertion after tensoring over THH(Z) with Z (as then
by induction it follows for the tensor product over THH(Z) with 7<, THH(Z), and one can pass to
the limit). Thus, it suffices to see that

HH(R;Z,)®% R — HH(R'; Z,)

is an equivalence, which the HKR filtration reduces to (A% Lg /Zp)é\@]]j%R’ ~ (Ao Ly /7,)p; but this
follows from the description (L7, ), [—1] = (ker 6)/(ker )2 = R -u, which is compatible with base
change [BMS18, Lemma 3.14].

We know by Bokstedt’s theorem that the theorem holds true for R = F,, cf. [NS18, Theorem
IV.4.4]. Thus, the base change property implies that it holds if R is of characteristic p.

In general, we argue by induction on i, so assume the result is known in degrees < i. As
then 7.,THH(R;Z,) is a perfect complex of R-modules, it follows that 7>, THH(R;Z,) is still
pseudocoherent, and in particular M = m;THH(R;Z,) is a finitely generated R-module. Consider
the map

— M = m; THH(R; Z))

o R-u'? ijeven >0,
1o else

and let R is the direct limit perfection of R/p. Then R — R is surjective, the kernel lies in the
Jacobson radical, and R is a perfect ring of characteristic p. By the base change property and
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freeness of m; THH(R;Z,) for j < i, we see that
M ®gr R = mTHH(R; Z,),

which by the known case of characteristic p is given by M’ ® g R = R - u*/? (if 4 is even, or 0 else).
Thus, the map

M @rR— M®grR
is an isomorphism.

In particular, if 7 is odd, then M ® R = 0, which by Nakayama’s lemma implies that M = 0, as
desired. If 7 is even, then Nakayama’s lemma implies that M’ = R — M is surjective. To see that
it is an isomorphism, it suffices to see that the rank of M at all points of Spec R is at least 1, as R
is reduced. All points of characteristic p lie in Spec R C Spec R, and we know that M @ R = R,
giving the result in that case. On the other hand, rationally we have

M ®7 Q = mTHH(R; Z,) ®7 Q = m;HH(R; Z,) ®7 Q ~ R®7 Q

using THH(Z) ®7 Q = Q (Lemma 2.5), showing that the rank of M at characteristic 0 points is
also at least 1. O

Write ¢ : THH(R; Z,) — THH(R; Z,)!“" for the cyclotomic Frobenius, and ¢"T : TC™(R; Z,) —
TP(R;Zy) ~ (THH(R; Z,)'?)"T for the induced map (using [NS18, Lemma I1.4.2]). These fit into
a commutative diagram

SD}L’]T

TC™(R; Zy) TP(R;Zy) (1)

can l l can

THH(R; Zy) —> THH(R; Z,)"

of Ewo-ring spectra, where the vertical maps are the usual ones (cf. also [NS18, Corollary 1.4.3] for
the right vertical map).

Proposition 6.2. The square obtained by applying 7. to the square (1) above is given by

u—ra, vp(€)o!

Aing [u7 U]/(UU - 5) o—lincar Aing [Ua U_l]
G—Zinearlu»—m, v—0 60— linearl""m
U0 1
R[u] R—linear R[(L g ]

Here & has degree 0 and is a generator of the ideal ker(6), u and o have degree 2, while v has
degree —2.

Before embarking on the proof, we note that in addition, we also have the canonical map
TC™(R;Zy) = TP(R; Zy). (2)
Proposition 6.3. The map on m, obtained from the canonical map in (2) above is given by

u—éo, v—o !

Ainf[ur ?}]/(UU - 6) Ainf[a’ 0_1]’

Aipe—linear
where we use the presentations from 6.2.

More precisely, the statement is that generators u, v, ¢ and £ can be chosen such that these
descriptions hold true. Now we prove both propositions together.
37



Proof. First, we identify F(R) := mnoTP(R;Z,). Note that by the Tate spectral sequence, TP(R;Z,)
is concentrated in even degrees, and F(R) has a multiplicative complete descending filtration
Fil'F(R) C F(R) with gr'F(R) = 7o THH(R;Z,) = R in degrees i > 0, and = 0 else. In par-
ticular, F(R) — moTHH(R;Z,) = R is a p-adically complete pro-nilpotent thickening. By the
universal property of Ajy s [Fon94, §1.2], we get a unique map A,y — F(R) over R. Moreover, this
sends the ideal ker(#) into Fil' F(R) = ker(F(R) — R), and thus by multiplicativity ker(#)* into
Fil'F(R). We claim that this induces a graded isomorphism Aj,s — F(R). For this, we need to
check that the maps on gr’ are isomorphisms, i.e. certain maps R — R are isomorphisms. This can
be checked after base change to perfect fields of characteristic p. As all constructions are functorial
in R, we can therefore assume that R = k is a perfect field of characteristic p. But then there is a
map F, — k, and using functoriality again, we are reduced to the case of IF,, where it follows from
[NS18, Corollary IV.4.8].

Moreover, the Tate spectral sequence implies that TP(R;Z,,) is 2-periodic, so we find an isomor-
phism 7, TP(R; Z,) & Aintlo, 071] by choosing a generator o € moTP(R;Zy).

Looking at the homotopy fixed point spectral sequence for TC™ (R;Z,), which maps to the Tate
spectral sequence via the canonical map, we see again that everything is concentrated in even
degrees, and that generators in degree 2 and —2 multiply to a generator for Fil' F(R) = ker(f) C
F(R) = Ajyy; thus, we can find an isomorphism m, TC™(R;Z,) = A, v]/(uv — &) C Ajne[oF!]
under which v + ¢~! and v +— £o under the canonical map.

Next, we identify

70" mTC™(R; Lp) = Aing = 10TP(R;Z)) = Ains -

For this, we look at the commutative diagram

10 TC™(R; Zy) 0 TP(R; Zy) moR"T = R

| l |

R ——=n¢THH(R; Z,) — myTHH(R; Zp)tcp ——= R = R/p .

By [NS18, Corollary IV.2.4], the lower composite is given by the Frobenius map x — zP. The left
vertical map is given by 6 : Ajs — R by construction. The right upper horizontal map is also
0 : Ajns — R, and the right-most vertical map is the canonical reduction map R — R/p. It follows
that the map f = mop"T makes the diagram

f
Ajpf —— Ainf

|

R———=R/p

commute. As Ajy¢ is the universal p-adically complete pro-nilpotent thickening of R/p, this shows
that f must be the Frobenius map ¢.
Now we claim that the map

mop" i TC™ (R Zy) = Aing - u — T TP(R; Z) = Aing - 0

is an isomorphism. Again, this can be checked after replacing R by a perfect field, and then by IF,
where it follows from [NS18, Proposition IV.4.9]. In particular, v maps to ao for some unit o € Ajys.
Replacing € by ¢~ !(a)¢, we can then arrange that u maps to o on the nose. By multiplicativity, it
follows that v maps to ¢(&)o~ 1.
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It remains to get the description of THH(R; Zp)tcp. We have a commutative diagram of rings

urso, v p(€)o !

Ajnt [u, ’U]/(U’U —$) o—lincar Ajnf [Ua U_l]
G—linearlw—)u, v—0 l
R[u] . THH(R; Z,) !> .

As v+ 0 on the left (for degree reasons), this induces a natural map
Aint[o,071/p(€)0™" = Rlo,07"] = m THH(R; Z,)""

which is f-linear. It remains to see that this is an isomorphism. For this, it is enough to see that
the natural map of E.-ring spectra

TP(R; Zp) @1 (r.z,) THH(R; Zy) — THH(R; Z,)"

is an equivalence, i.e. (1) is a pushout. More generally, for any T-equivariant THH(R; Z,)-module
M (such as M = THH(R; Z,)!“» via ¢), we claim that the natural map

M"™ @10~ (peg,) THH(R; Z,) — M

is an equivalence. For this, we note that THH(R;Z,) = TC™ (R;Z,)/v is a perfect TC™ (R;Z,)-
module, so both sides commute with limits in M. By Postnikov towers, we can therefore assume
that M is bounded below, so after shifting coconnective. In that case, both sides commute with
filtered colimits in M, and we may assume that M is bounded above as well, and then by induction
concentrated in degree 0. But then the result follows from M"T /v = M, which is the first part of
[NS18, Lemma IV.4.12]. O

We note that the final paragraph of this proof actually implies the following result for R-algebras
A.

Proposition 6.4. For any connective En-R-algebra A, the natural maps
TC(A;Zy) /v =TC™ (A;Zp) ®re-(ryz,) THH(R; Zp) — THH(A; Zy)
and
TP(A;Zy) /& = TP(A; Zy) ®1p(riz,) THH(R; Z,)"“? — THH(A; Z,)"
are equivalences of Eo-ring spectra.
In particular, the map ¢ : THH(A;Z,) — THH(A;Z,)!“? can be recovered from the map ¢ :
TC™(A;Z,) — TP(A;Z,) by modding out by v. In traditional approaches to the cyclotomic
structure on THH, one would first analyze ¢ : THH(A;Z,) — THH(A; Zp)tcp by hand; here, we

will not do such an analysis but instead identify directly ¢"T. The present discussion shows that
the identification of ©"T then also leads to an identification of (.

Proof. This follows by applying the equivalence
M"™ @10~ (peg,) THH(R; Z,) — M
valid for any T-equivariant THH(R; Z,)-module M to M = THH(A;Z,) resp. M = THH(A;Z,)!"".

In the second case, we also use that

TP(R; Zp) @1~ (r.z,) THH(R; Zp) — THH(R; Z,)"

is an equivalence. O
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6.2. Breuil-Kisin twists. Before going on, we want to make the previous identifications more
canonical. Let Aj,i{1} := mTP(R;Z,); this is a free Ajys-module of rank 1. For any Ajn¢-module
M and i € Z, we define the Breuil-Kisin twist M{i} = M ®a4,,, Aine{1}®". If M is an R-module,

then M{i} denotes the corresponding twist when M is considered as Ajys-module via 6.
With these notations, there is a natural isomorphism of graded rings

7 TP(R; Zp) = @D Aine{i}

€L

where Ajn¢{i} sits in degree 2i. The canonical map 7, TC™(R;Z,) — m.TP(R;Z,) is an isomor-
phism in negative degrees, and has image (ker )" A ¢{i} in degree 2i > 0. On the other hand,
the Frobenius map ¢ : m,TC™(R;Z,) — m.TP(R;Z,) induces on m_y a ¢-linear Frobenius endo-
morphism o4, 1y : Ain{—1} — Ainr{—1} that becomes an isomorphism after inverting £ on the
source, respectively € on the target. In particular, we have a map ¢ A {1} - Amf{l}[ | — Amf{l}[ =]
It sends £Ajue{1} into Aje{1}. Below, we will relate this to the Breuil-Kisin-Fargues twist from
[BMS18, Example 4.24]. ' ' '
Defining the Nygaard filtration on Ains as N2 Ajps = ' Ajne for 4 > 0 and N 24 Ajpp = Ajye for

1 < 0, we see that

m.TC™(R; Zy) = PN Aine {i} -

€L

Moreover, if we set NiAjr = NZ0Ap /N Ay =2 R - €8 then the formula THH(A;Z,) =
TC™(A;Z,)/v implies that

m.THH(R; Z,) = PN Aine{i} .

>0

But we know that there is a canonical isomorphism mTHH(R; Z,,) = (ker 6)/(ker 0)% = N1 Ay, Tt
follows that N Aje{1} ~ N1 A;y¢ canonically, or in other words Aje{1} ®4, ;9 R = R canonically.
This explains our choice above to define R{1} = Ajn¢{1} ®, 5 R as the base change via 6; the

base change via 6 is canonically trivial. 3
On the other hand, THH(R; Z,)!» = TP(R;Z,)/¢, and so

m THH(R; Z,)'" = @) (Aine /E){i} = €D R{i} -
€L iE€Z
Next, we know that
¢ : THH(R; Z,) — THH(R; Z,)!"

identifies the source with the conmnective cover of the target. We see that R{1} = N1A;; =
(ker )/ (ker 6)? canonically.

Let us summarize the discussion.

Proposition 6.5. Consider the Ajys-module Ain{1} = moTP(R; Zy) with the p-linear map

P ane(1y = 29 Aime{1}[g] = Aime{1}[F]

=

which induces an isomorphism §Apns{1} = Apne{1}.
(1) There are natural isomorphisms
At{l} @a,,0 RER

Aine{1} a0 R = (ker6)/(ker 6)* = R{1} .
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(2) There are natural isomorphisms

7 THH(R; Z,) = P R{i} = PN At

i>0 i>0
T TC™ (R Zy) = (PN Aue{i}
€L
7. TP(R;Z,) @Amf{z ,
1EL

under which the canonical map TC™ — TP corresponds to the inclusion N =t A — Aint,
and the Frobenius map TC™ — TP corresponds to the Frobenius Ainf{i}[%] — Amf{i}[%],

which sends N2 Aiye{i} into Ape{i}.

Remark 6.6. In this remark, we show that these Breuil-Kisin twists agree with those of [BMSI8,
Example 4.24]; this is essentially the only spot in the paper that uses “classical” results about
topological Hochschild homology. We recall the construction of loc.cit. which works in the case
that R is p-torsion-free. Starting from the description Ajns = gn P W,.(R) identifying the projection

A — Wi(R) with 0, : Aips — W, (R) as in [BMS}S, Lemma 3.2], where the kernel of 0, is
generated by the non-zero-divisor &, = £p(€)--- ¢ 1(€), one has canonical isomorphisms
Aine{l} ®, g Wr(R) = (ker 0,)/(ker 6,.)

Varying r, the natural maps on the right correspond to p times the natural map on the left. This
determines the transition maps when R is p-torsion-free, and then A;,¢{1} as

Ape{l} = l.glAinf{l} ®Ai,,f,6~7. Wi (R) .

Coming back to THH, we know that as THH(R;Z,) — THH(R;Z,)!°r is a connective cover,
also the map

THH(R; Z,)"%" — (THH(R; Z,)'%")"%" ~ THH(R; Z,)""»"*!
induces an equivalence of connective covers. Moreover, the same input implies that the map from
the genuine fixed points

TR""Y(R;Z,) = THH(R; Z,)°"" — THH(R;Z,)""

is again a connective cover by a result of Tsalidis, [T'sa98], cf. also [NS18, Corollary 11.4.9]. By
[HMO7, Theorem 3.3], there is a natural isomorphism mo TR (R;Z,) = W, 1(R) under which
the transition maps for varying r correspond to the Frobenius F' : W,4i(R) — W,(R). Thus,
THH(R; Zp)tcp"“ is an even 2-periodic ring spectrum with mo given by W, (R). The equivalence

TP(R;Z,) ~ lim THH(R; Z,)"°""

from the proof of [NS18, Lemma II.4.2] then induces an isomorphism Aj,¢ & @T W, (R) = Ajps on

the level of my. This must be the identity by compatibility with 6 and the universal property of
Aip¢e. This implies that the map

At = 1 TP(R; Z)) — moTHH(R; Z,,)'¢»" = W,.(R)
is given by 6, and in particular is surjective. As both spectra are 2-periodic, it follows that
THH(R; Z,)"" = TP(R; Zy) /&r |
and thus
m.THH(R; Z,)'%" = H W, (R){i} .

€L
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On the other hand,
TP(R; Z,) = (THH(R; Z,)"C Y1 (/Cor)

by [NS18, Lemma I1.4.1, I1.4.2]. Looking at the resulting spectral sequence computing my (whose
abutment filtration is determined by multiplicativity to be given by powers of ker 6,), we see that
there is a canonical isomorphism

W (R){1} = H*(T/Cyr, W,.(R){1}) = (ker 8,/ (ker §,)* .

Moreover, the natural transition maps on the left correspond to multiplication by p on the right
(the factor of p coming from the covering T/Cpr — T/Cprt1). This shows that Ajye{1} has the
description given in [BMS18, Example 4.24]; we leave it to the reader to check compatibility with
the Frobenius map.

6.3. THH for smooth algebras over perfectoid rings. Let R be a perfectoid ring. The following
theorem expresses why the topological theory yields a deformation of the algebraic theory; it will
be useful in controlling the topological theory. Here and in the following, when a perfectoid base
ring is fixed, we will usually omit Breuil-Kisin twists.

Theorem 6.7. Let A be an R-algebra. Then there is a T-equivariant cofiber sequence
THH(A;Z,)[2] = THH(A;Z,) — HH(A/R;Z,)

of THH(A; Zy,)-module spectra. In particular, by passage to fized points, there is an induced cofiber
sequence

TC(4;Z,)[2] & TC(A;Z,) — HC™ (A/R;Z,)

of TC™(A;Zy,)-module spectra. Likewise, by passage to the Tate construction, there is an induced
cofiber sequence

TP(A: 7Z,)[2] £% TP(A;Z,) — HP(A/R;Z,)
of TP(A;Z,)-module spectra.
Proof. As HH(A/R) = THH(A) ®run(r) R by Lemma 2.5, and HH(R/R) = R, it is enough to
prove the first statement for R itself. In this case, note that u € mTC™(R;Z,) can be viewed
a T-equivariant map A[2] — THH(R;Z,), and hence a THH(R;Z,)-linear T-equivariant map
THH(R;Z,)[2] & THH(R;Z,). The cofiber of this map is the discrete THH(R;Z,)-module R

non-equivariantly, and thus also T-equivariantly: any discrete module over a T-equivariant connec-
tive Foo-ring carries a unique T-action (the trivial one). O

Next, we shall describe m, THH(A;Z,) for a quasismooth R-algebra A. First, we give a general
construction relating differential forms and THH.

Construction 6.8. For any R-algebra A, we shall construct a natural graded A-algebra map
pa: (Qhg)y — mTHH(A; Zy)

of graded derived p-complete A-modules; here the left side denotes the graded A-module obtained
as HC of the termwise derived p-completion of the exterior algebra o R To see this, observe that

we have a natural (often called “antisymmetrization”) A-module map

Q4 /7 — mHH(A)
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for any ring A'>. Now the canonical map THH(A) — HH(A) is an isomorphism on 7<3 [NS18,
Proposition IV.4.2]. Applying this observation for 7<; thus gives an A-module map

Oz — m THH(A).
Applying the observation for 7<5, and using that m,HH(A) is an anticommutative graded ring, the
preceding map extends to a map
QZ/Z — m. THH(A)
of graded A-algebras. Composing with p-completions gives a graded A-algebra map
Q7 — mTHH(A; Zy).
By the universal property of H? of derived p-completions, this gives a graded A-algebra map
(QA/Z) — m THH(A; Zy),

where the left side is defined as HY of the termwise derived p-completion of the graded ring ) Iz
To finish constructing 4, it is now enough to show that for any R-algebra A, the natural map
9% Y Yy /R induces an isomorphism on H after applying derived p-completion. Note that the

map (2’ Wz~ 9% A/R is surjective with p-divisible kernel (as this holds true for i = 1 since Q! R/ is

_

p-divisible by the perfectoid nature of R). But then the homotopy fiber of the map 2% z QO /R
in D(A) obtained by applying the derived p-completion functor lies in D=~!, so applying H° gives
the claim.

The map constructed above linearizes to an isomorphism in favorable cases:

Corollary 6.9 (Hesselholt). For any R-algebra A, the map in Construction 0.8 linearizes to give
a map

(QA/R) ®r mTHH(R; Z,) — 7, THH(A; Z),)
of graded A @ g m,THH(R; Z,)-algebras. If A is quasismooth, this map is an isomorphism.

Proof. Only the last statement requires proof. We begin by noting that the composite
(QA/R) — m, THH(A; Z),) — m.HH(A/R;Z,)

is an isomorphism of graded rings by the HKR filtration. This implies that the long exact sequence
on 7, obtained from the first fiber sequence in Theorem 6.7 decomposes into short exact sequences

0 — m_oTHH(A; Z,) = mTHH(A; Z,) — mHH(A/R; Z,) = ( A/R) —0

where the surjective map comes equipped with a preferred section, and the final isomorphism comes
from Remark 4.14. This easily implies the assertion in the corollary by induction on i. g

The following filtration will only play a technical role.

Corollary 6.10. The functor THH(—;Z,) on the category of p-complete R-algebras admits a com-
plete descending multiplicative N-indexed filtration P*(—) with gr)y THH(—; Z)) being naturally iden-

tified with '
D L))

0<i<n
1—n even

15The $'-action on HH(A) endows 7. HH(A) with the structure of a commutative differential graded algebra whose
0-th term is A; the differential is usually called the Connes differential. As HH(A) can be computed by a simplicial
commutative ring, m.HH(A) is strictly graded commutative (i.e., odd degree elements square to 0). The universal
property of the de Rham complex gives a map 2} ,;, — m.HH(A) carrying the de Rham differential to the Connes
differential.
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Proof. The assertion of the corollary holds true on the category of quasismooth R-algebras by
Corollary 6.9 simply by using the Postnikov filtration. By left Kan extension in p-complete spectra,
one gets a filtration P*(—) as in the statement above as THH(—) commutes with sifted colimits of
R-algebras; the completeness of THH(—) with respect to P*(—) is a consequence of the fact that
P} is n-connective for any p-complete R-algebra A (by left Kan extension from the quasismooth
case). O
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7. p-ADIC NYGAARD COMPLEXES

Let R be a perfectoid ring and write Ajys = Ajpe(R). We shall explain in §7.2 how to extract
an Aj,¢-valued cohomology theory @S for quasismooth R-algebras S by unfolding m¢TC™(—;Z,).
The abutment filtration for the homotopy fixed point spectral sequence unfolds to give a filtration,
called the Nygaard filtration, on Ag that will be crucial in the sequel. To carry out the unfolding
effectively, we describe TC™ for quasiregular semiperfectoid rings in §7.1. This description is also
used in §7.3 to prove Theorem 1.12.

7.1. TC™ for quasiregular semiperfectoids. First, we discuss the topological Hochschild ho-
mology of a quasiregular semiperfectoid R-algebra.

Theorem 7.1. Let S € QRSPerfdp and let M = Wl(LS/R)Q be the associated p-completely flat
S-module.

(1) m,THH(S;Z,) is concentrated in even degrees.

(2) Multiplication by the generator u € mTHH(R; Zy) gives a natural injective map

T2 THH(S;Z,) % 7o, THH(S; Z))).

(3) Write o THH(S; Z,) = colim; mo; THH(S; Z,,) = moTHH(S; Z,)[u™1] for the colimit of mul-
tiplication by u; we may view this object as an increasingly filtered commutative R-algebra.
There is a functorial identification

(T5M)) = gr.mo THH(S; Z,)

of graded rings (where the left side denotes the p-completion in graded rings). In particular,
each mo; THH(S; Zy) admits a finite increasing filtration with graded pieces given in ascending
order by (F]SM);,\ for 0 < j <i.

(4) Each mo; THH(S; Zy) is p-completely flat over S.

Proof. By Corollary 6.10, the spectrum THH(S;Z,) admits a complete descending multiplicative
N-indexed filtration with gr" THH(S) being

D (WsLsr)plnl.
0<i<n
1—n even
Note that ( iSL s/ R);\ has p-complete Tor amplitude concentrated in homological degree i by
Lemma 5.14, and hence it lives in degree ¢ by Lemma 4.7. But then the displayed terms above live
in degree i + n, which is even. This implies (1) by completeness of the filtration.
For (2) and (3), we use the T-equivariant fiber sequence

THH(S; Z,)[2] < THH(S;Z,) — HH(S/R;Z,)
from Theorem 6.7. The preceding paragraph shows that 7,THH(S;Z,) lives in even degrees, and

the same holds for HH(S/R;Z,) by Lemma 5.14. Thus, the long exact sequence on homotopy for
the previous fiber sequence gives short exact sequences

0 — 2,2 THH(S;Z,) = 1o, THH(S; Z,)) — mo,HH(S/R; Z,) — 0.

Using the identification moHH(S/R; Zy) = mi(NgLg/g)p = (I'gM))y from Lemma 5.14, we can write
this as
0 — moi—o THH(S) = mo THH(S) — (I M), — 0.

This proves (2) and (3) by induction; the assertion about multiplicativity is a consequence of the
multiplicativity of the map THH(S;Z,) — HH(S/R;Z,).

Finally, (4) follows from the last exact sequence above by induction as (F’SM );\ is a p-completely
flat S-module. O
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For any R-algebra A, we view m,TC™(A;Z,) resp. m,TP(A;Z,) as a graded algebra over the
graded ring
. TC™(R; Zp) = Ajng[u,v]/(uv — &) resp. mTP(R;Z,) = Ajtlo, 0] .
In particular, 7, TP(A;Z,) is 2-periodic. By passing to fixed points, Theorem 7.1 yields:

Theorem 7.2. Let S € QRSPerfdy.
(1) The homotopy fized point spectral sequence calculating TC™(S;Zy,) and the Tate spectral
sequence calculating TP(S;Z,) degenerate. Both m,TC™(S;Zy,) and m.TP(S;Z,) live only

in even degrees. Moreover, the canonical map 7. TC™(S;Z,) <= m.TP(S;Z,) is injective
i all degrees, and an isomorphism in degrees < 0.

(2) The (degenerate) homotopy fized point spectral calculating TC™(R;Zy) or the (degenerate)
Tate spectral sequence calculating TP(R;Z,) endows

Bs = moTC™(S;Z,) = mTP(S;Z,)

with the same complete descending N-indexed filtration N 2*@5, called the Nygaard filtra-
tion, for which it is complete. There are natural identifications of the associated graded
Nihg = 1o, THH(S; Zy) for all i > 0.

(3) The filtration level NZihg C Ay = mTC™(S; Zy) s identified with mo; TC™(S;Z,) via
multiplication by the element v* € m_9, TC™ (R; Zy),

12 TC™(8; Z,) 2 onc—(s; Z,).

(4) The cyclotomic Frobenius m. TC™ (S;Zp) —> W*TP(S Z ) induces an endomorphism g :
AS — AS by (2). This endomorphzsm maps N>%S to 5%5 This gives a natural divided
Frobenius ¢g,; : NZihg — g such that

oslysin, = E¢sii -
(5) There is a natural isomorphism of R-algebras Xg/é = EE)S/R, and bg is &-torsion-free.

Proof. As m,THH(S;Z,) lives in even degrees, (1) and (2) are immediate. Part (3) follows by
unwinding the statement that THH(S;Z,) is a T-equivariant THH(R; Z,)-module spectrum at the
level of the homotopy fixed point spectral sequences. B

For (4), we use the last statement of (2) and the identity ¢(v) = &0~ 1.

For (5), we use Theorem 6.7 to obtain myTC™(S;Zy)/¢ = moHC™ (S/R;Z,), Proposition 5.15
then implies that myTC™(S;Zp)/{ = LO s/r- Moreover, that theorem shows that any ¢-torsion in
moTP(S;Z,) would be detected by HP;(S/R;Z,), but this is 0 by the Tate spectral sequence and
the fact that HHoqq(S/R;Zy) = 0 by Lemma 5.14(2). O

Remark 7.3. Let S € QRSPerfd but do not fix a perfectoid ring mapping to S. Then (1) and (4)
in Theorem 7.1, and (1) and (2) in Theorem 7.2 continue to hold, i.e., do not depend on the choice
of a perfectoid ring mapping to S.

7.2. Unfolding to X(_). We begin by unfolding THH:

Construction 7.4 (Unfolding mo; THH). By Theorem 7.1 (3), for each S € QRSPerfdy, the S-
module mo; THH(S;Z,) admits a functorial finite increasing filtration with graded pieces given by
(/\gLS/R);\[—j] for 0 < j < i in ascending order. Theorem 3.1 then implies that mo; THH(—;Z))
is a D(R)-valued sheaf on QRSPerdep. By Proposition 4.31, it unfolds to a D(R)-valued sheaf
(7o THH(—; Z))= on QSyn%’; this sheaf admits a similar filtration by functoriality of unfolding.

In particular, it takes values in D</(R).
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A tangible consequence of this discussion is the construction of the “motivic” filtration on THH:

Proposition 7.5. For any A € QSynpg, the spectrum THH(A;Z,) admits a functorial complete
descending N-indexed T-equivariant filtration such that gr' THH(A; Zy) is canonically an A-module
spectrum with trivial T-action that admits a finite increasing filtration with graded pieces given by
(N LA/R) [2i — j] for 0 < j < in ascending order.

Proof. The claim holds true on QRSPerfdy simply by using the double speed Postnikov filtration
thanks to Construction 7.4. It then follows in general thanks to Theorem 3.1 and Corollary 3.4
and functoriality of unfolding. d

Remark 7.6. By left Kan extension in p-complete T-equivariant spectra, Proposition 7.5 extends
to all p-complete R-algebras.

We now lift the discussion to TC™. First, let us give the analog of Construction 7.4 by con-
structing p-adic Nygaard complexes; these are the main objects of interest from the perspective of
a comparison with integral p-adic Hodge theory.

Construction 7.7 (Unfolding moTC™). Consider the DF (Ajpt)-valued functor on QRSPerfdp
given by ( N >*A( ) with notation as in Theorem 7.2. By the same theorem, this functor is
a sheaf, and thus unfolds to a sheaf (E(_),N z*l )) on QSynR As the equivalence in Proposi-
tion 4.31 is symmetric monoidal, this sheaf is Valued in FE-algebras in DF (Ajnt). By construction,
for any A € QSynp, the underlying Eo-A;,s-algebra Dy is (p, €)-complete (as it is given by a limit
of the values for objects of QRSPerfdp, which are all (p,§)- complete) and comes equipped with a
complete descending multiplicative N-indexed filtration N 23 A. Write N in A g for the i-th graded
piece. The cyclotomic Frobenius induces a Frobenius semilinear map ¢4 : A A — A A. When F is
a perfectoid R-algebra, then Ap = Aine(F), NZipp = ker(fr)’, and ¢p is the usual Frobenius on
Ainf(F)'

The associated graded pieces N i A constructed above coincide with those in Construction 7.4.

Proposition 7.8. For A € QSyng, each Nihy ~ gr'THH(A; Z,)[—2i] is functorially an A-
complex that admits a finite increasing filtration with graded pieces given in ascending order by
(NyLasr)pl=3] for 0 <j <.

Proof. As N il(_) = (mg; THH(—; Z,))> by Theorem 7.2 (2), this assertion is simply a reformulation
of Construction 7.4. O

The complexes A A constructed above deform de Rham cohomology across 6 : Ajnf — R.

Proposition 7.9. For A € QSyng, there is a natural identification of Eo-R-algebras EA/g ~
Ly R-

Proof. This follows from Theorem 7.2 (5) by descent. O

For the purposes of our later comparison with the AQ-theory, we record some features of the
Nygaard complexes for p-adic completions of smooth R-algebras.

Corollary 7.10. Assume A € QSynp is the p-adic completion of a smooth R-algebra of relative
dimension d. Then
(1) For each i > 0, we have Nihy € DOmax(d)( Ay ) and NZipy € DA (A ). In particular,
we have (@A,NZ*KA) € DF<(Ayy).
(2) The ring HO(A4) has no ¢ (€)-torsion for any r € Z.
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(3) The linearization of the Frobenius map @4 factors functorially over a map
EA — Lnggp*lA ~ cp*LnélA
of Exo-algebras in D(Aint).

Proof. For (1), everything follows from Proposition 7.8.

For (2), we may assume by Zariski localization that A admits an étale map to a torus, so that
we can choose a quasisyntomic cover A — F' in QSynp with F' perfectoid by extracting p-power
roots of the coordinates on the torus. As l(_) takes values in D=0, the map H(A4) — HO(Ap)
is injective by the sheaf property. But Ap ~ Aing(F'), and this ring has no ¢"(&)-torsion for any
r € Z: as F is perfectoid, the image of £ € Aj,¢(F) is a nonzerodivisor and ¢ is an automorphism.

For (3), we shall use Proposition 5.8 (including its notation). Note that for any A € QSynpg, the
Frobenius map ¢ : A A — A 4 defines a map

NZ*ZA\A — gp*é*ZA\A = f*(p*zA

of FE..-algebras in DF (Ajnf): this is clear for A € QRSPerfdp by Theorem 7.2 and thus follows
in general by descent. For A as in the corollary, the left side lies in the connective part DEF<?
by (1), so the map above factors uniquely over TES;O of the target. This gives the desired map by
Proposition 5.8. U

Remark 7.11. Iterating Corollary 7.10 (3) gives a functorial map
EA — (Lnggo*)orlA ~ LngrgoiﬁA.

factoring r-fold Frobenius on A 4; here &. = E@71(€) -+~ 7L (€) generates the kernel of 0, : Ajyp —
W,(R), and the natural identification of functors (Lngp.)°" ~ Lne, ¢} falls out immediately by
expanding both sides. For instance, when r = 2, we have

LnepuLneps = L Lny-1(6)9037 ~ Le, 2,
where the last isomorphism uses LngLng ~ Lnyg, cf. [BMS18, Lemma 6.11]

We shall also need the following non-Nygaard-completed variant of A in the sequel.

Construction 7.12 (Non-complete variant of A). For A the p-adic completion of a smooth R-
algebra, we have A A/€ ~ LQy /r by Proposition 7.9 and the fact that the combined Hodge and
p-adic filtration is commensurate with the p-adic filtration for smooth R-algebras. By left Kan
extension in (p,§)-complete Ajpe-complexes, we obtain a new functor A — A4 on all p-complete
simplicial commutative R-algebras. By construction, we have an identification A _) /& ~ LQ_ /R-
This implies A(_y is a D(Ajns)-valued sheaf on QSyn};’ (by Example 5.12) and that it takes discrete
values on QRSPerfd%p. We warn the reader that unlike A A, the E-algebra A4 depends on the
choice of the perfectoid ring R mapping to A, at least a priori.

7.3. Motivic filtrations. The “motivic” filtration for TC™ is given by the following proposition,
which proves most of Theorem 1.12 when working over a fixed perfectoid base ring.

Proposition 7.13. For any A € QSynpg, we have:

(1) The spectrum TC™(A;Zy,) admits a functorial complete and exhaustive descending multi-
plicative Z-indezed filtration with gr'TC™(A; Z,) = N=ha[2i]. In particular, there ezists a
spectral sequence

EJ  H™I(NZTIhy) = 7 jTC™(A;Z,).
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(2) The spectrum TP(A;Z,) admits a functorial complete and exhaustive descending multiplica-
tive Z-indexed filtration with gr'TP(A;Z,) = A Al2i]. In particular, there exists a spectral
sequence

EY H™(hy) = m_i—;TP(A;Z,),
For A € QRSPerfdy (and thus for A = R itself), both filtrations are given by the double speed
Postnikov filtration on the corresponding spectra.

Proof. (1) For each n € Z, the functor A — 7592, TC™(A;Z,) on QRSPerfdy is a sheaf by The-
orem 7.2 and Theorem 7.1 (and stability of sheaves under limits). Write Fil"TC™(—;Z,) for
its unfolding. As n varies, this gives a DF (Aint)-valued sheaf Fil*TC™(—;Z,) on QSyng; here
the completeness follows from the completeness of the Postnikov filtration and the fact that a
DF(Ains)-valued sheaf on QSynp takes complete values if and only if its restriction to QRSPerfdp
does so. The i-th graded piece of this sheaf is (mo; TC™ (—; Zp)[Qi]): =N 2@(_)[2@']. It remains to
prove that the filtration is exhaustive; but on any homotopy group m;Fil"TC™ (4;Z,), the filtration
is eventually constant and equal to m; TC™(A;Z,); indeed, it suffices to take n sufficiently negative
so that 7 > 2n.

For part (2), the argument is identical. g

The use of the perfectoid base ring R above is rather mild: the spectra TC™(A4;Z,) and TP(A;Z,)
as well as their Postnikov filtrations are obviously independent of the choice of R, and the only role
played by R is in making sense of the Breuil-Kisin twist. In fact, this can also be done in a direct
way, thus proving Theorem 1.12 in general:

Proof of Theorem 1.12. Parts (1) and (2) clear; part (4) follows formally by reduction to the case
of a perfectoid base ring once (3) is known, and part (5) follows formally from part (4). Thus, it
remains to prove part (3).

Assume first that A is an R-algebra with R perfectoid. Then the Breuil-Kisin twist ha{l} =
AR{l} % AA is trivial by the above discussion. After base change along A A — A, it is even
canonlcally trivial: The map

gr' TP(A; Zy) @3, A — gr"HP(A/A; Zp)
is an equivalence, and thus
ba{1} @3, A=gr'TP(4;2,)[-2) @5 A= gr'HP(A/A;Z,)[-2] = A
canonically. R R
In the general case, it suffices to prove that A4{1} is an invertible A4-module in the presentably

symmetric monoidal stable co-category I/?TW(Z), and commutes with base change: As tensoring with
the invertible module sz{l} is an equivalence on the category of completed filtered Ezp-modules,
and in paﬁi\cular commutes with all limits, all other statements of Theorem 1.12 follow via descent.

Write DF'>o(Z) for the oo-category of N-filtered complexes of abelian groups. This is a pre-
sentably symmetric monoidal stable oo-subcategory of DF (Z). Write Gr(Z)>o := Fun(N, D(Z))
for the oo-category of N-graded objects in D(Z); this is also a presentably symmetric monoidal
stable oo-category (via the Day convolution symmetric monoidal structure). Taking associated
graded gives an exact and conservative symmetric monoidal functor

gI‘* : ﬁ(Z)ZO — GI‘(Z)Z().
In particular, if A € CAlg(EF(Z)ZO), then gr*(A) € CAlg(Gr(Z)>¢), and taking associated gradeds
gives an exact and conservative symmetric monoidal functor

gr* : ModA(EI\T(Z)ZO) — Modg,«(a)(Gr(Z)>0)-
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We need the following lemma:

Lemma 7.14. Fiz M,N € ModA(l/)l\?(Z)Zo) with a map n: M ®a N — A in ModA(l/)I\TZO(Z)).
Assume the following:
(1) The natural map gr’(M) @go(4) gr*(A) — gr*(M) is an equivalence, and similarly for N.
(2) The map n induces an isomorphism gr’(M) @go(a) gr'(N) — gr'(A).
Then n is an equivalence. In particular, both M and N are invertible A-modules.

Proof. As gr* is conservative, it is enough to show that gr*(n) is an equivalence. By (1), this reduces
to checking that gr'(n) is an equivalence, but this is exactly ensured by (2). O

We apply the lemma to M = As{1} and N = As{—1} as completed filtered modules over A 4. By
the above discussion, we know that there is a canonical isomorphism gro(z a{1}) ~ gro(l A) locally
for the quasisyntomic topology, which thus glues to such an isomorphism by descent. In particular,
condition (2) follows (as there is a compatible such isomorphism for gr®(As{—1})). On the other
hand, condition (1) can be checked locally in the quasisyntomic topology, and for quasiregular
semiperfectoid A, it follows by 2-periodicity of the Tate spectral sequence for TP(A;Z,). O

7.4. The syntomic sheaves Z,(i) and K-theory. As in the statement of Theorem 1.12(4), for
any quasisyntomic ring A we introduce its “syntomic cohomology”

Zy(i)(A) := gr"TC(A; Z,)[—2i] = hofib(p — can : NZA,{i} — Aa{i}).
In the case of S € QRSPerfd, this is given by the two term complex
Zp(i)(S) = (T12i—1,20 TC(S; Zp))[—2i] = hofib(p — can : mo; TC™(S;Zy) — o TP(S;Zy))
with cohomology
HOZ,(0)(S)) = TCu(S:Z,),  HZy(i)(S)) = TCai1(S5Z,).
We can relate these Zj(i) to algebraic K-theory using the following theorem; this will appear in

forthcoming work of Clausen, Mathew, and the second author. We denote by K (—) the connective
algebraic K-theory of a ring, and by K(—;Z,) its p-completion.

Theorem 7.15 ([CMMI18]). Let S be a ring which is Henselian along pS and such that S/pS is
semiperfect, e.g., S € QRSPerfd. Then the trace map K(S;Z,) — 7>0TC(S;Z,) is an equivalence.

Using this, we can identify the complexes Zy,(n) for n < 1. First, we handle the case n < 0.

Proposition 7.16. For n < 0, the sheaf of complexes Z,(n) = 0 vanishes. For n = 0, there is a
natural isomorphism Zy(0) = lim 7 /D" L.

Proof. For any connective ring spectrum A, one has m;TC(A;Z,) = 0 for i < —1 by comparison
with the classical definition of TC, cf. [NS18, Theorem I1.4.10] noting that the spectra TR"(A) are
all connective. Moreover, using the identification myTR"(A) = W,.(A), one sees that 7_1TC(A4;Z,)
is given by the cokernel of ' — 1: W(A) — W (A). As one can extract infinite sequences of Artin-
Schreier covers in QRSPerfd, this map is locally surjective. Thus, Z,(0) is locally concentrated in
degree 0.

Finally, locally in QRSPerfd, the ring S is w-local (in the sense of [BS15], so in particular any
Zariski cover of Spec S is split), by passing to the p-completion of the ind-étale w-localization of
[BS15]. As any Zariski cover splits, it follows that the rank function from Ky(S) to locally constant
functions from Spec S to Z is an isomorphism. This implies the identification Z,(0) = l'&nr Z/p"Z
by passage to the p-completion, using Theorem 7.15. O

Using Theorem 7.15 and results on algebraic K-theory in low degrees more seriously, we can
identify Zy(1).
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Proposition 7.17. The sheaf of complexes Zy,(1) on QRSPerfd is locally concentrated in degree 0,
gwen by T,G,,

Proof. We begin by proving that, for any S € QRSPerfd which is both w-local and for which S*
is p-divisible, there are natural isomorphisms

K5(S;Z,) = T,(5%), K.(S;7Z,) =0.

It is classical that, for any local ring B, the symbol map B* — K;(B) (splitting the determinant)
is an isomorphism, that the resulting product B* ®z B* — K»(B) is surjective, and that Ky(B) is
torsion-free (it is = 7Z). Since any Zariski cover of Spec S is split, these properties remain true for
S. Therefore K1(S) = S* and K5(S) are both p-divisible and K(.S) is p-torsion-free. The desired
identities immediately follow.

It remains to show that such rings S provide a basis for QRSPerfd. Given any S € QRSPerfd,
let S — SZ denote its w-localization, which is a faithfully flat, ind-Zariski-localization, whence
Lgz,g ~ 0 and 5% /pS% is still semiperfect. Next, denote by S¥/P the S-algebra obtained by

formally adjoining p*P-roots of all units, i.e.,
SUP = S[X, :ue 8¥)/(Xy —uP:ueS¥).

Then S — SY/? is a composition of an ind-smooth map followed by a quotient by a quasiregular
ideal, whence Lg1/, /S has Tor amplitude in [—1,0]. Iterating these two processes countably many
times, we set

57 := colim(5Z — (S%)VP — ((§2)1/P)Z — (((S%)VP)2)HP — ...
Observe that Lgq/g has Tor-amplitude in [1,0], that S — S7 is faithfully flat, and that the units
in S7 are p-divisible; moreover, S? is w-local, since w-localisation is a left adjoint, [BS15, Lemma
2.2.4], and hence commutes with all colimits.
Let S7 be the p-adic completion of S; then 57 is a quasisyntomic semiperfectoid which is a
quasisyntomic cover of S. Moreover 54 is still w-local: indeed, since it is p-adically complete, this
is equivalent to the w-locality of Sa /p =54 / p, which follows from that of S? [BS15, Lemmas 2.1.3

& 2.1.7). Flnally observe that all units of S¢ admit a p'-root, by using Hensel’s lemma to lift a
root from S9/p? (59/23 in the case p = 2). O

The previous proposition proves the case n = 1 of the following conjecture, which will be proved
in characteristic p in §8.4.

Conjecture 7.18. The sheaf of complezes Zy(i) on QRSPerfd is locally concentrated in degree 0,
given by a p-torsion-free sheaf.

Remark 7.19. K-theoretically, the conjecture predicts that on QRSPerfd the sheafification of

Kyi(—;Zy) is p-torsion-free and that the sheafification of Kg;_1(—;Z,) vanishes; this vanishing is
equivalent to the surjectivity of ¢; — 1 : N>%( {i} = A i}

Remark 7.20. Let S € QRSPerfd. Once AS has been identified with the prismatic cohomology of
[BS] (see Remark 1.11), the p-torsion-freeness part of the conjecture will follow, as we now explain.

That identification will show that the Frobenius ¢ on AS arises from the finer structure of a
p-derivation in the sense of J. Buium, i.e., there exists § : Ag — Ag satisfying pd(x) = ¢(x) — 2P,
4 2Py ()
3(1) =0, d(xy) = 2Po(y) + yPd(x) + po(z )5( ), 0(z +y) = 0(z) + 0(y) + ———". A standard
lemma about p-derivations shows that if px = 0 then ¢(z) = 0.
Given a p-torsion element x € H%(Z,(i)(S)) = ker(NZing{i} 2= Ag{z}), we can now show that

xz = 0. Let R — S be a perfectoid ring mapping to S so that we can identify {Nigpi with @ : /\/’2’@5 —
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As. Then the lemma on p-derivations tells us that ¢(z) = 0, whence Ex = E¢i(x) = p(z) = 0.
But £ = ¢(¢) = €P mod p, so we deduce Pz = 0, whence x = 0 thanks to the ¢-torsion-freeness of
Ag (Theorem 7.2(5)).

Proposition 7.21. The sheaf Z/p" (i) := Zy(i)/p" commutes with filtered colimits in QSyn.

We give two proofs. The first proof (which was our original proof) uses the above remark
along with K-theory and [CMNM18], while the second proof (discovered while this paper was being
refereed) is more elementary and self-contained, relying ultimately on the contracting property of
the Frobenius in characteristic p (Lemma 7.22).

Proof via K-theory. It is enough to prove this for a filtered colimit in QRSPerfd by passing to
functorial quasiregular semiperfectoid covers and quasisyntomic descent. But given S € QRSPerfd,
we have explained in the previous remark that HY(Z,(i)(5)) is p-torsion-free for all i. Therefore
Z[p"Z(i)(S) =~ (Tj2i—1,20TC(S; Z/p"Z))[—2i], which commutes with filtered colimits of rings by
Theorem 7.15 and the commutation of algebraic K-theory with filtered colimits. g

Direct proof of Proposition 7.21. By induction, we may assume r = 1. Recall that we have defined
Z/pZ(i)(A) = hofib(gi — 1 : N> B a{i}/p — Bali}/p). (3)

Fix the perfectoid field C' = ngd of characteristic 0. By quasisyntomic descent, we can assume
that A is a O¢-algebra.

First, we observe that the desired compatibility with filtered colimits on the category of p-
torsionfree quasisyntomic Oc-algebras follows immediately from Lemma 7.22: the lemma implies
that, for m > 0, we can work modulo N=™A4{i}/p when computing Z/pZ(i)(A) via (3), and it is

easy to see that (N Zip{i}/ p) / (N =mpa{i}/ p> commutes with filtered colimits for all m > .

In fact, by left Kan extension and Nygaard completion, one can define an endomorphism ¢; of
NZ"p {3} /p for any m > I;’jll and any quasisyntomic ring A over O¢. This still has the property

that the resulting map
i — 1: N2 a{i})p — NZ"ha{i}/p
is an equivalence. Thus, one can repeat the above argument for any A. O

Lemma 7.22. Fiz a perfectoid field C of characteristic 0 as well as a p-torsionfree quasisyntomic
Oc¢-algebra A. For m > ’;’jll, both @; and 1 preserve NZmha{i}/p functorially in A, and the
resulting map

p;i—1: NZmlA{i}/p — ./\/'ZmZAEA{Z'}/p
s an equivalence.

Proof. As we work over our fixed perfectoid ring O, we can ignore the Breuil-Kisin twists. By
quasisyntomic descent, we may assume A is quasiregular semiperfectoid and p-torsionfree. In
particular, each N '%A/p is concentrated in degree 0. The complexes N 2"%A/p are then also
concentrated in degree 0, and moreover are {-torsionfree, where { € Aj,¢ generates ker(6). Setting
¢ := ¢(§), we can then compute the map
;- N 2’@ A — E A

as induced by the map £ ¢ of A 4[1/€]. One then computes that

PiNZTha) CEmha
for all m > 4. Working modulo p and using that §~ = &P mod pAjue, this gives

Pi(NZ"B 4 /p) C P /p.
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As SI@A C NZI@A for all k, taking m > % then shows that

0i(NZ"ha/p) € NZ" D4 /p.

Thus, for such m, not only does ¢; preserve N 2’”@A/p, but in fact it induces a topologically

nilpotent endomorphism of N Zm A/p. But then ¢; — 1 is an automorphism of N Zm A/p, as
wanted. O
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8. THE CHARACTERISTIC p SITUATION

The goal of this section is to specialize the previous discussion to IF,-algebras and prove Theo-
rem 1.10 as well as Theorem 1.15 (1). We begin in §8.1 by discussing the Nygaard filtration on
the de Rham-Witt complex in multiple different ways. This discussion is put to use in §8.2 where
we record some structural features of Agys(S) for S quasiregular semiperfect. These tools are then
used to prove Theorem 1.10 in §8.3. Finally, the explicit description of the Nygaard filtration on
Acrys(S) obtained in §8.2 is employed in §8.4 to prove Theorem 1.15 (1).

8.1. The Nygaard filtration on the de Rham-Witt complex. As preparation, we recall the
Nygaard filtration on the de Rham-Witt complex. Let k be a perfect field of characteristic p and
A a smooth k-algebra; let WQ% = WQ$% Ik be the usual de Rham-Witt complex of Bloch—Deligne—

Mlusie [I1179]. Various versions of the Nygaard filtration have appeared in the literature [Kat&7,
I1.1], [IR&3, IIL.3], [Nyg&81]; here we fix the version of interest to us and explain its relation to the
filtered Ln, functor. The general theme will be that the Nygaard filtration is the filtration by the
subobjects where ¢ is divisible by p’. As we are dealing with complexes, it is not a priori clear what
this means, but it is true on the level of the actual de Rham-Witt complex (for smooth algebras),
on the level of the de Rham-Witt complex in the derived category (for smooth algebras) when
formulated in terms of the filtered L, and also on the level of the derived de Rham-Witt complex
for quasiregular semiperfect algebras, where the derived de Rham-Witt complex is concentrated in
degree 0.

Definition 8.1. Let NZZ'WQ;‘ C WQS be the subcomplex
PTIVIW(A) - p VWO = - = pV QLT 5 VIO 5 WY - WO —
This defines a descending, complete multiplicative N-indexed filtration on WQS. We define
NWQY = NZTWQY /N QY
as the associated graded.

Recalling that the groups VVQ{4 are p-torsion-free, that F'V = p, and that ¢ = p/F, one sees
immediately that the restriction of the absolute Frobenius ¢ : WQ% — WQ% to NZ'WQY is
uniquely divisible by p?, thereby defining the divided Frobenius

0 = ]% CNZITWQY — WQS.

In fact, the proof of Proposition 8.5 below even shows that N ZiWQ;‘ is the largest subcomplex of
W% on which ¢ is divisible by p'.

Both the conjugate and Hodge filtration on 2% can be recovered from the Nygaard filtration; we
begin with the conjugate filtration:

Lemma 8.2. The composition
NZWQY 25 Was, — Q%
lands in TSiQA/k and kills N=H1W Q. Moreover, the induced map
@i mod p: ./\/'iWQ;l — 75"91'4
18 a quasi-isomorphism.
Proof. The comments immediately above show that ; is injective with image given by the complex

W(A) — - = W = FWQY — pFWQY! — p? FWQ? — -
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Since dF' = pF'd, the composition to Q% has image in TSZ'Q;‘. Similarly, the restriction of ; to
NZHW QY has image

PW(A) = - = pW QL = pW QY — pFWQL! — pP? FWQY? — -

which vanishes in %.
Therefore ¢; sends N*W Q% isomorphically to

W(A)/p— - =W /p— FWQY /pWQY =0 — -,
which is precisely the canonical truncation 7<{(WQ% /p) (which maps quasi-isomorphically to
7SI0%) since d—1 (pW QYY) = FW QY by [1179, Eqn. 1.3.21.1.5]. O
Noting that clearly pN =W Q% C NZFIWQY, and secondly that the canonical projection
way — Q% — Q%i kills N 2i+1WQ:4, we now explain how to recover the Hodge filtration:
Lemma 8.3. The sequence
WO/ NZWOs & WO NZTWay — Q5
is a cofiber sequence.
Proof. The indicated multiplication by p map is clearly injective with cokernel
WA /pS . Swairlp S wal  vwal S0
The natural map from this to Qfx’/k is a quasi-isomorphism by [I1179, Corol. 11.3.20]. O

In the following we recall the well-known result that the divided-Frobenius-fixed points on the
Nygaard filtration recover the dlog forms in the de Rham-Witt complex. For any smooth k-scheme
X, denote by WTQ’X’IOg C W,£Y% the pro-étale subsheaf given by the image of the map of pro-étale

sheaves
dlogl] : GE1 . — Wy, fi@-- o fi o DL o A
7 [f1] [fi]

and set WQS(JOg = lim,. WrQé{,log as a pro-étale sheaf.

Proposition 8.4. Let X be a smooth k-scheme. Then the sequence of complexes of pro-étale
sheaves

0 = WO opl—i] = NZWOY L5 WO — 0
is exact (i.e., exact in each degree). Moreover, WQf'X’lOg coincides with the derived inverse limit
Rlim, Wy Q' 1,

Proof. Let Spec A be an affine open of X. Then, in degrees n > 4, the map ¢; — 1 is given
by p"7'F — 1 : WQ% — WQ7, which is an isomorphism since p"~'F' is p-adically contracting.
Meanwhile, in degrees n < i there is a commutative diagram

piflfnv . pi—1
waon —— =W waon,
l_piflfnv

in which the curved arrow (hence also ¢; — 1) is an isomorphism since WQ; is p-adically complete
(resp. V-adically complete in the boundary case i = n — 1).

It remains only to analyse the behaviour of FF — 1 : WQL — WQ%. To do this, we recall that
the sequence of pro-sheaves on Xg;

0 = {(WnQ 1ogtn — (WnQi}n T8 (W05}, — 0
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is exact [[1179, Thm. 1.5.7.2]. In particular, taking the inverse limit of this sequence of pro sheaves
gives an exact sequence of pro-étale sheaves and shows that WQY log coincides with the derived

inverse limit Rlierngﬂog. ]
We continue with two different perspectives on the Nygaard filtration.

8.1.1. Nygaard filtration via Ln. First, we explain that the Nygaard filtration naturally appears as
the canonical filtration on the Ln-functor (Proposition 5.8) via Ogus’s generalization of Mazur’s

theorem.

Proposition 8.5. The absolute Frobenius ¢ : WQ$% — WQS induces an isomorphism
0 WQY = Wy C WaQy

of complexes as well as isomorphisms
¢ NZTWQY = Filln, W QY |

of complexes for all i > 0, where FilianQk = p'WQ N, WQS is the filtration on n, defined in
(the proof of ) Proposition 5.8.

Proof. Since W'} is p-torsion-free for all n > 0, the standard relations ¢ = p*F and F'V = VF =p
on the de Rham-Witt complex show that ¢ : NZ'WQ% — WQS is injective with image given by
the subcomplex

PW(A) = piWQY — - = p WO = P FWQY — p TLEFWQY — -

But [11179, Eqn. 1.3.21.1.5] states that d_l(pWQZH) = FWQ", whence this complex is precisely
Fil'n, W Q. O

Given a smooth k-variety X, we define the Nygaard filtration on Ru, (’);;;’;V( y to be that induced

by the Nygaard filtration via Illusie’s comparison quasi-isomorphism Ru*Ogg‘s,V(k) ~ WQ$. Here

u : Xerys — Xzar denotes the projection from the crystalline site to the Zariski site.

Corollary 8.6. Let X be a smooth k-variety. Then Berthelot—-Ogus’ quasi-isomorphism ¢ :
Ru*Ogg‘S)V(k) ~ anRu*(’)iﬁV(k) may be upgraded to a filtered quasi-isomorphism, in which the
source has the Nygaard filtration and the target has the filtered décalage filtration.

Proof. This is the content of the previous lemma since ¢ is given by the absolute Frobenius after
identifying Ru*Ogg‘S)V(k) with WQS,. O
8.1.2. Nygaard filtration in the presence of smooth lift. Recall that if A is the p-adic completion of
a smooth W (k)-algebra lifting A, there is a natural quasi-isomorphism
AW wQy

where the left-hand side is understood to be p-completed. Assuming that a Frobenius lift ¢ : A A
has been chosen, we explain how to identify the Nygaard filtration under this isomorphism. We
expect that the Nygaard filtration (in filtration degrees > p) cannot be obtained without the choice
of a Frobenius lift.

In the following proposition, the complex jt)ma"(i_"o)Q;i W) denotes
if 4 i—10l d d i—1 d i d, (yit+l d
pPA=Dp QA/W(k) o pQA/W(k) - Qii/W(k) ~ QA/W(k) -
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Proposition 8.7. The comparison map o : Q% — WQS induces quasi-isomorphisms

AJW (k)

max(i—e,0) e >4 °
o s prax( >QA/W(k—>N—WQA

for all i > 0.

Proof. We first recall that construction of o. The lifted Frobenius ¢ induces the (unique) Dieudonné-
Cartier-Witt homomorphism § : A — W (A) compatible with the Frobenius maps and the projec-
tions to A. This in turn induces Illusie’s comparison map

0% W WS
(which is a quasi-isomorphism). In fact, it may be quickly seen that o is a quasi-isomorphism
as the composition QA/W I S wWQs/p ~ A/k is the identity map, whence ¢ modulo p is a

quasi-isomorphism, which is enough to deduce that it is a quasi-isomorphism.

Note that o indeed maps p™@x(i—* O)Q;/W(k) to NZ1WQ%, since p = VF. To prove that it is a

quasi-isomorphism we proceed by induction on ¢ > 0, the case i = 0 having already been treated
by the previous paragraph. Easily calculating the graded pieces of the filtration (in particular, we

point out that the graded pieces of the filtration on Q% A have zero differential), one must check

that each of the maps
VW,
AW (k )/p W,

O0<j<i), o:Q W

po = QY Aww/P VW,

induces an isomorphism

Vi j_ pri(VW(A) pd VWQY pd  pd VWQLI' 4 WO,
QA/W(k /p— H :=H (pVW(A) T avwal T T pvwan ! VWQQ)
for 0 < j <i. The de Rham—Witt identities already used in the proof of Proposition 8.5 easily

show that .
pW QY
Hi — ) pYWtpdveit
= W, .
VW taven, T D
which is isomorphic via the restriction map (and dividing out the extraneous copy of p when j < 7)
to qu Ik Therefore the map which must be checked to be an isomorphism is simply the canonical

Jj<i

identification o : Qi‘ Wk / p— o’ ’4» completing the proof. O

8.2. The case of quasiregular semiperfect rings. Asin Construction 2.1, we define the derived
de Rham-Witt complex LWy and its Nygaard filtration N Z*LVVQ(_) on the category of all
simplicial [Fj-algebras via left Kan extension from the category of smooth IFj-algebras, as functors
to the oo-category of p-complete E-algebras in DF(Zy).

Our goal will be to study these in the case of quasireqular semiperfect Fp-algebras (Definition
8.8), i.e. quasiregular semiperfectoid rings of characteristic p. As is relatively well-known, for such
rings the above theories are closely related to divided powers and crystalline period rings. However,
here we want to emphasize that the relevant filtration is not the Hodge filtration (corresponding to
the divided power filtration) but rather the Nygaard filtration.

The results of §8.1 immediately induce derived analogues, as we now explain. By taking the first
part of Lemma 8.2 and left Kan extension, we obtain a natural fiber sequence

NZHLWQ ) = NZLWQy 2% rsige (4)
Secondly, Lemma 8.3 implies the existence of a natural fiber sequence
LWQ ) INZLWQY ) & LW /NZTILWQ? ) — LQQ/F : (5)
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where the quotients in the first and middle terms really denote cofibers.
Now we wish to compute the derived de Rham—Witt cohomology of the following class of rings:

Definition 8.8. An Fj-algebra S is called semiperfect if and only if the Frobenius ¢ : S — §
is surjective; in other words, the canonical map S° — S is surjective, where S° := lim, S is the
inverse limit perfection of S.

A semuperfect Fp-algebra S is quasiregular if and only if Lg/r, (which we note is ~ ]LS/Sb) s a
flat S-module supported in homological degree 1; in other words, if and only if S = SI’/I where I is
a quasiregular ideal of S°.

In particular, an F)-algebra S is quasiregular semiperfect if and only if it is quasiregular semiper-
fectoid in the sense of Definition 4.20.

Definition 8.9. Given a semiperfect F-algebra S, let Ag((S) be the divided power envelope of
W (S°) — S (where our divided powers are required to be compatible with those on (p) C W (S?)),
and let Aqys(S) be its p-adic completion. Note that Acys(S)/p = Dg(I) is the divided power
envelope of S° along the ideal I C S°.
Denote by ¢ : Acrys(S) = Acrys(S) the endomorphism induced via functoriality from the absolute
Frobenius ¢ : S — S, and define the decreasing Nygaard filtration on Acys(S) by

NziAcryS(S) = {:E S Acrys(s) : (70(33‘) € piAcrys(S)}

fori > 0. Let Kcrys(S) denote the completion of Acys(S) with respect to the Nygaard filtration,
with its completed Nygaard filtration N'Z"Acrys(S).

As usual, we write N"Aqys(S) = /\/'ZZACWS(S)/J\/'Z”lAcrys(S) for the induced graded of the
Nygaard filtration.

As a consequence of a comparison with derived de Rham—Witt cohomology, we will eventually
see in Theorem 8.14 that if S is quasiregular semiperfect, then Ag.ys(S) is p-torsion-free. However
we first need an additional piece of structural information about Acys(S), namely the conjugate
filtration on Acys(S)/p.

Definition 8.10. If A is an Fp,-algebra and I C A an ideal with divided power envelope D4 (I), the
increasing conjugate filtration

0=Fil®MD4(I) CFISND4(I) C

on Ds(I) is the filtration by A-submodules defined by letting FilS D 4(I) be the A-submodule

generated by elements of the form a[ll 1) a%{”] wherem >0, a1,...,am € I, and > 1; < (n+1)p.

Proposition 8.11. The conjugate filtration on DA(I) has the following properties:

(1) It is multiplicative and exhaustive.

(2) FilS°Y D A(I) is the A-submodule of DA(I) generated by elements of the form a[lpkl] e a[r],'ibkm],
where m >0, ay,...,am €I, and >0 ki < n.

(3) There is a well-defined surjective map of graded A-algebras

3

i) @aprp Alp(D) = D1y, af . aff™') . alpe]

(pk)!
PEET

one checks that the map in part (3) is compatlble with divided powers.
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Proof. (1) The filtration is clearly multiplicative and exhaustive.
(2) Recall that, for any a € I, kK > 1, and 0 < r < p, there is a divided power relation

4] — gl gl B

where the fraction (pk!)/(pk + 7)! on the right side is a p-adic unit; since rlal”l = a” € A, we have
shown that alP**7] belongs to the A-submodule generated by alP*l. By writing the exponent of each
generator as l; = pk; + r;, one easily proves (2).

(3) Note that, if a,b € I, then (ab)P* = pl(a®)PIplPk] = 0 for all k > 1; the same argument as
in (2) then shows that (ab)l! € FilS™D4(I) for all [ > 0 (it even vanishes if [ > p). Recalling
the behaviour of divided powers on the sum of two elements now reveals that, if x € I 2 then
e Filg"™ D4 (1) for all [ > 0. This shows that the desired map is well-defined, i.e., depends only
on the residue classes of a; modulo I2.

Moreover, the map is surjective, as all generators of the divided power algebra are in the image.
The factor in front is chosen so as to make the map compatible with multiplication. O

The conjugate filtration is actually related to the conjugate filtration on (derived) de Rham
cohomology.

Proposition 8.12. Let S be a quasiregular semiperfect F,-algebra and I = ker(S” — S). Then
LQg/p, ~ LQS/sb s concentrated in degree 0, and there is a natural isomorphism

Acrys(S)/p = LQgyr,, -

Under this isomorphism, the conjugate filtration on Acys(S)/p = Dy (ker(S” — S)) agrees with
the conjugate filtration LTS"QS/FP, and the surjective map

P*S(I/[z) - grionj (AcryS(S)/p)

from Proposition 8.11(3) is an isomorphism (note: since A = S
®a/1,0A/p(I) from 8.11(3).)
Moreover, the divided power filtration on Agys(S)/p gets identified with the Hodge filtration

>1
LQ§/]FP'

b s perfect, we may omit the

Proof. Concentration in degree 0 follows from Lg/p, =~ Lg /s> being a flat module in degree 1. By
[Bhal2b, Proposition 3.25], there is a comparison map

LQg/p, = Aays(S)/p -

By [Bhal2b, Theorem 3.27], this is an isomorphism if S is the quotient of a perfect Fj-algebra by
a regular sequence; we actually only need the case S = F,[X 1 P*]/X and tensor products thereof
(and the case of perfect rings themselves). In fact, the proof of [Bhal2b, Theorem 3.27] even
shows compatibility with the conjugate and Hodge filtrations, and the divided power structures on
associated gradeds for the conjugate filtration. Thus, the proposition holds true in this case.

Now for any quasiregular semiperfect IF,,-algebra S, we may consider the quasiregular semiperfect
ring S = Sb[Xil/poo,i € I1/(X;,i € I) where i ranges over all i € I = ker(S” — S); this maps
surjectively onto S via sending Xil/pn to the image of '/?" in S. Then also LS/FP[—l] =1/ -
Lgp,[-1] = 1/1 2 is surjective, and hence the same is true on all divided powers. It follows that
both LQg w, LQg/r, and Acrys(g) /P — Auys(S)/p are surjective, and in fact the maps on all
graded pieces are surjective. The result is true for S as it is a filtered colimit of tensor products of

algebras for which we know the result.
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This has the consequence that L) S/F, = Acrys(S)/p is surjective, and preserves the filtrations;

on associated gradeds for the conjugate filtration, one gets the surjections
FZ‘(I/I2) = gr, LQg/r, — g™ (Acrys(S)/p) -

To finish the proof, it suffices to show that L{g/r, — S is a divided power thickening; indeed,
this will induce an inverse map Agys(S)/p — LQ s/F, by the universal property. For this, we will
actually show that LW Qg — S is a divided power thickening. Note that LW )g is concentrated in
degree 0 and flat over Zj, as its reduction modulo p is Lg. Thus, it suffices to see that for any
z € ker(LWQg — S), all " lie in n!ker(LW Qg — S). For this, we can again replace S by S. But
then we have a natural map

LWQg — AcryS(S)
by left Kan extension of the equivalence WQy ~ Rl 1ys(A/Z,) in the case of smooth [F,-algebras.
This map is an equivalence as it is an equivalence modulo p by what we have already shown, and
Acrys(S) is p-torsion free for a ring S of the form S” [Xil/poo,z' € I1/(Xi,1 € I), cf. [SW13, Proposition
4.1.11] and the discussion before it. In particular, we have the desired divided powers. O

At the end of the proof, we have used the derived de Rham-Witt cohomology of S. Its basic
properties are as follows.

Proposition 8.13. Let S be a quasireqular semiperfect Fp,-algebra. Then:
(1) The derived de Rham-Witt complex LW Qg is concentrated in degree 0 and flat over Zy.
(2) The Nygaard filtration N='LW Qg is concentrated in degree 0 and a submodule of LWQgp, -
(8) The map

@i mod p: NZ'LWQg = Lt5'Qg/p — LWQg/p = LQg/p,
1s injective.
(4) The map LW Qg — S is a divided power thickening.
Proof. Part (1) follows from LWQg/p = LQg/r,. The second part follows from the description
of the graded pieces N*LW Qg in terms of wedge powers of the cotangent complex which are all

concentrated in degree 0; the same holds for part (3). The last part was proved at the end of the
proof of the last proposition. O

The following result is the main structural result about Agys(S) in case S is quasiregular semiper-
fect; related results may be found in [Bhal2b, F.J13].

Theorem 8.14. Let S be a quasiregular semiperfect ring.
(1) The ring Acrys(S) is p-torsion-free.
(2) The map
@i mod p: N Aerys(S) = Arys(S)/p

is injective and has image Fil;xmj (Acrys(S)/p), for each i > 0.
(3) There is a natural @-equivariant isomorphism Acys(S) =2 LW Qg compatible with the Ny-
gaard filtrations.

(4) The image of NZAcrys(S) = Acrys(S)/p = LQgp, agrees with the Hodge filtration LQE/ile'

In particular, the Nygaard-completed &crys(S) reduces modulo p to the Hodge-completed
derived de Rham complex:

A\cryS(S)/p = LQS/IFP )

which by Proposition 8.12 is also the divided power completion of Acrys(S)/p.
(5) The map ¢ mod p : Aurys(S)/p = Aarys(S)/p satisfies p(x) = 2P for all x € Acrys(S)/p.
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We warn the reader that the Nygaard completion differs from the divided power completion: for
p = 2, the divided power completion of the Nygaard complete ring Zs is simply Fo as (22" /(27)!) =
(2) in Zy for all n > 1.

Proof. By part (4) of the previous proposition, there is a natural map Agys(S) — LWQg. At
the end of the proof of Proposition 8.12, we proved that this is an isomorphism for S of the form
S° [le /p oo,z' € I1/(X;,i € I). Moreover, in that case, the map is compatible with the isomorphism
of Proposition 8.12. By surjectivity of the maps induced by S — S, we see that in general, the
map is compatible with that isomorphism. As the target is p-torsion-free, it follows that the map
Acrys(S) = LW Qg is an isomorphism in general, and in particular part (1) follows.

It follows by induction from part (3) of Proposition 8.13 that the Nygaard filtration on LW Qg
is precisely the submodule on which ¢ is divisible by p’. Thus, we see that the Nygaard filtrations
are identified, proving part (3). Then part (2) follows from Proposition 8.13 (3).

Part (4) is now a consequence of the derived version of Lemma 8.3. For part (5), we may again
reduce to the case of S [Xil/poo,z' € I1/(X;,i € I), and then to S = F,[X'/?”]/X by decomposition
into tensor products. Then as an F,[X/P™]-algebra, A.ys(S)/p is generated by X?/i!, and both
©(X/il) = XPi/il and (X*/i!)P = XP'/(i!)P are divisible by p, as (pi)! is divisible by p(i!)P. O

Remark 8.15 (Canonical representative for crystalline cohomology). Let A be aregular F)-algebra,

and let S = Apes denote the perfection of A, i.e., the direct limit of A % A % ... Write (S/A)*
for the Cech nerve of A — S. We shall explain why'® Rl'¢ys(A/Z,) € D(Z,) is computed by the
cochain complex

Acrys((S/A)) i= Acrys(S) = Acrys (S ®45) = Acrys(S @4 S ®4 ) — ...,

thus giving a canonical cochain complex calculating RI'crys(A/Zy). Note that A, S € QSyng , and
the map A — S is a quasisyntomic cover of A by a perfect ring: the faithful flatness of A — S
follows from the regularity of A (by the easy direction of Kunz’s theorem), whilst Popescu’s theorem
[Stal8, Tag 07GB] ensures that Lg/4 =~ L4p,[1] has Tor amplitude concentrated in degree —1.
By quasisyntomic descent, it is thus enough to show that the D(Z,)-valued presheaf A.ys(—) on
QRSPerfdy  is a sheaf, and that its unfolding Acrys(—)= coincides with RT¢pys(—/Z,) on regular F,-
algebras. By Theorem 8.14 (3), the first assertion reduces to checking that B — LW p is a sheaf on
QSyan, which follows from Example 5.12 and the isomorphism LWQpg/p ~ LQp JF,- The second
assertion then reduces (by another application of Popescu) to checking that LW Qp ~ RT ;ys(B/Zp)
for smooth F,-algebras B. But for such B, the canonical map gives an quasi-isomorphism LW §lp ~
WQ%: this reduces to the the analogous isomorphism LQpr, ~ Qf /F, for derived de Rham

complex, cf. [Bhal2b, Corollary 3.14]. It remains to observe that there is a canonical isomorphism
WQ% ~ RUqys(B/Z,) by Hlusie [11179, §I1.1].

Question 8.16 (Drinfeld). Remark 8.15 gives a canonical cochain complex Acys((S/A)*) com-
puting the crystalline cohomology RI'cys(A/Zy) of a regular F-algebra A. Another such complex
is given by the Illusie’s de Rham-Witt complex WQ%. Thus, there is a canonical isomorphism
Acrys((S/A)*) ~ WQY in the derived category D(Zp). Is there a natural map (as opposed to a
zig-zag) between these two complexes realizing this isomorphism in the derived category?

8.3. Relation to TC™. Finally, we want to obtain the relation to TC™, as follows. Recall that
by Theorem 7.2, for a quasiregular semiperfect S, the ring Ag = moTC™(S;Z,) is a p-complete p-
torsion-free Z,-algebra complete for the Nygaard filtration N ZiNg C Ag, and there are compatible

16A careful exposition with additional context has recently been provided by Drinfeld [Drilg].
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divided Frobenius maps
¥
(2

(,Oi:p ./\/>ZA —)AS

One subtlety is that in addition to the cyclotomic Frobenius map ¢, there is also the map ¢’ induced
by the Frobenius endomorphism of S, and moreover ls /p has its own Frobenius endomorphism.
These maps turn out to be all the same a posteriori, but we need to distinguish between them in
the proof.

The main result is as follows.

Theorem 8.17. The maps ¢ and ¢ on XS agree, and induce the Frobenius map x +— zP on
Ag /p. There is a functorial @-equivariant isomorphism Ag = &crys(S) ~ L/VV\QS with the Nygaard
completion of the derived de Rham Witt complex that identifies Nygaard filtrations.
The isomorphism Ag = LWQS lifts the isomorphism
BAs/p = moHC™ (S/F,) 2 L,
from Theorem 7.2 (5) and Proposition 5.15.

This theorem implies Theorem 1.10 by quasisyntomic descent, as L/VV\QS unfolds to LWQ 4 for
all A € QSyny, , and restricts to the de Rham-Witt complex on smooth algebras.

Proof. We give the proof as a series of steps. The key step of the proof is the i/(\ientiﬁcation for
S = F,[T*/P™]/(T — 1). Once that case has been settled, one can show that Ag — S is a pd

thickening, which provides us with a functorial map Acrys(S) — @s, which can be shown to extend
to the Nygaard completion and be an isomorphism.

Preliminaries. If S is perfect, then the result follows from Proposition 6.2. Moreover, for general
S, we know that modulo p, there is a functorial isomorphism

ES/p = LQS/FP = ;&cryS(S)/p
by Theorem 7.2 (5) and Theorem 8.14 (4). In particular, by functoriality in S, this identifies ¢’
with the Frobenius map of Ag/p by Theorem 8.14 (5).

The case of S = F,[TT/P*| /(T —1) = F,[Q,/Z,]. For this, we use an argument that we learned
from Akhil Mathew. Consider the E-ring spectrum B = S[Q,/Z,], a spherical group algebra.
Then

THH(S) = THH(B) ®s THH(F,)
as THH is a symmetric monoidal functor, cf. [NS18, §IV.2]. On the other hand,
THH(B) ©s Z = (THH(B) ®s THH(Z)) @1z Z

= THH(B ®s Z) @Tau(z) Z

= THH(Z[Qp/Zy]) @Thn(z) Z

= HH(Z[Qy/Zy))
using Lemma 2.5. By [NS18, Corollary IV.4.10], there is a natural T-equivariant map Z — THH(IF,)
of E-ring spectra, and so we get a natural T-equivalence

THH(S) = THH(B) ®s THH(F,) = (THH(B) ®s Z) ®7z THH(IF,)
= HH(Z[Qp/Zy]) ®z THH(Fp) .

Now we claim that for any connective T-equivariant M € D(Z) (such as M = HH(Z[|Q,/Z,))), the
map

M — M @7 THH(F,)
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induces a map

M — (M ®z THH(F,))"
that identifies the target as the p-completion of the source. Indeed, the target is always p-complete,
so we need to prove that it is an equivalence after modding out by p. By [NS18, Lemma IV.4.12],
it is thus enough to prove that

M — (M ®7 THH(F,))!Cr

is an equivalence. Both sides commute with writing M as the limit of 7<,, M by using Lemma 3.3,

so we can assume that M is bounded, and then by induction concentrated in one degree. We can

also assume that M is killed by p, and thus an F,-vector space. The result is true if M = Z by

[NS18, Corollary IV.4.13], and thus for M = TF,. It then follows formally that it holds for arbitrary

products of copies of F,,, and thus for every F,-vector space by passing to direct summands.
Applied to M = HH(Z[Q,/Z,)]), we arrive at an equivalence of E-ring spectra

HP(Z[Qy/Zy); Zy) ~ TP (Fp[Qp/Zy)) -
On the other hand, Theorem 1.17 gives an isomorphism
moHP(Z(Qp/ Zy); Zp) = (L0, /2,1/2)y -
If R is a flat Zy,-algebra with a Frobenius lift and R = ]?/ p, there is a natural quasi-isomorphism

(Q}z /2 )Q — W% by Proposition 8.7 that moreover intertwines the combined p-adic and Hodge
P

filtration on the left with the Nygaard filtration on the right. By left Kan extension and using the
natural Frobenius lift on Z[Q,/Z,], this implies that there is a natural isomorphism

(LOQz(g,/2,)/2)p = LW s, [0, /z,) -
In summary,
WoTP(Fp[Qp/Zp]) = WoHP(Z[Qp/Zpk Lp) = LWQIFI,[QZ,/ZP] .
It follows from the construction that this isomorphism is compatible with the isomorphism

mTP(S)/p = mHP(S/F,) = L), -
This shows that for S = F),[Q,/Z,], there is indeed an isomorphism of rings
T0TP(S) 2 Acrys(S) -

The same arguments apply to Fp[Til/ P¥] (which is a perfect ring for which we already know the
result), and so we see by functoriality that the map

W (B, [T1/77]) = mo TP [T*/77]) = moTP(S) = Acrys (S)
is the natural injective map. On its image, we know that ¢ = ¢’. As the map
W (E TP D] = Berys(S)[3)
has dense image, it follows that ¢ = ¢’ on XS = mTP(S), and agrees with the Frobenius of
Acrys(S). As on NZAg, the Frobenius ¢ is divisible by p’, it follows that it maps into N'=%Agys(S).
To prove that they agree, we argue by induction and use the short exact sequence (5). Using this,

it is enough to prove that

bs/(phs + N>"*hg) = LOG),

as quotients of Ag/p = &CWS(S) /p = L/hgﬂgp. But the Nygaard filtration was defined in terms of

the abutment filtration for the Tate spectral sequence, and modulo p this reduces to the abutment

filtration for the Tate spectral sequence for moHP(S/F,) (equivalently, the homotopy fixed point

spectral sequence for moHC™(S/F,)), which was identified with the Hodge filtration in the proof
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of Proposition 5.15. Thus, the theorem holds true for S = F,[T*/?™]/(T — 1), or equivalently for
S =T,[TY/P™|/T.

More reductions. If the result holds true for S1 and Sz, then it holds true for S; ®p, S2, as both
ES@SQ and &Crys(Sl ®9S9) are given by completions of lgl ®z, lg2 respectively &Crys(sl)(gzp &Crys(Sg)
for the tensor product of the Nygaard filtrations; indeed, this can be checked modulo p, where it
follows from the above discussion. By passage to tensor products and filtered colimits, the theorem
holds true for any algebra of the form R[Xil/ P oo,z' € I1/(X;,i € I), where R is any perfect algebra.

The general case. For a general ring S, we know now that if S = S°[X; X7 i e I/(X;,i € 1),
where I = ker(S” — ), which has its natural surjection S — S, then the theorem holds true for
S. The natural map K — ls is surjective, and is surjective on all steps of the Nygaard filtration
(by checking on assomated gradeds for the Nygaard filtration). In particular, we see that ¢ = ¢’
on Ag Moreover, we see that the ideal ker(Ag — S) has divided powers, by reduction to the case
of S. In particular, we get a functorial map Acrys(S) — Ag This map is compatible with the
Nygaard filtration, again by reduction to the case of S. Therefore, it induces a functorial map
AcryS(S ) — AS By reduction to the case of S this is surjective, and induces SllI‘JGCthIlS on all steps
of the Nygaard filtration. To finish the proof, it remains to see that the map Acrys( )/p — Ag /D
is an isomorphism. But this is an endomorphism O S/F, — O s/r,, and we know that for S it is
the identity endomorphism. Thus, the same holds true for S, as desired. g

A consequence of the discussion is the following description of THH and THH!“?, and a version
of the Segal conjecture.

Corollary 8.18. Let A be a smooth k-algebra of dimension d. For all i € Z, there are natural
isomorphisms ' '
gr' THH(A) ~ (75'Q 1. [21]
and '
gr' THH(A)'“r ~ Q4 4[24
where the filtration on THH(—)!? is defined as usual via quasisyntomic desqent of the double-
speed Postnikov filtration. Under this equivalence, the map ¢ : gr'THH(A) — gr'THH(A)!C? is the
natural map TSZQA/k = Q-
In particular,
¢ : THH(A) — THH(A)!“?
18 an equivalence in degrees > d.

The last part was observed earlier by Hesselholt [Hes18, Proposition 6.6].

Proof. The identificaton THH(A)!“» ~ TP(A)/p from Proposition 6.4 is compatible with filtrations
(by checking for quasiregular semiperfect rings) and thus induces equivalences griTHH(A)!Cr ~
WQa/p2i] = Qa/x[2i]. Under the general equivalence between N iy and gr'THH(A)[—2i], the

compatibility with filtrations (Nygaard respectively Ln) of the equivalence A A an@ 4 is equivalent
to the assertion that the maps gr'THH(A) — grTHH(A)'*“» induced by ¢ induce isomorphisms
gr'THH(A) ~ 7=~gr' THH(A)!?, giving the result. O

8.4. K-theory, TC, and logarithmic de Rham-Witt sheaves in characteristic p. Here
we apply the results obtained so far in this section to analyse the syntomic sheaves from §7.4 in
characteristic p, identify them in terms of algebraic K-theory, and show that their pushforwards
to the étale world recover p-adic motivic cohomology in its guise as a logarithmic de Rham-Witt
sheaf.
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Lemma 8.19.

1) For any quasiregular semiperfect F,-algebra S and i > 0, the operator
2
@i — 1: N7 Arys(S) = Aerys(S)

18 surjective.
(2) For any i > 0, the operator

Yi — 1: Nzi&mys(_) — &Crys(_)
is surjective as a map of sheaves on QRSPerfd]Fp.

Proof. (1) By p-completeness of both sides it is enough to prove surjectivity modulo p. When
restricted to A= Ay(S), the map

©; — 1: NZH_IACI‘ys(S) — &crys(s)/p

agrees with minus the canonical map, as (; is divisible by p on A/ 2i+ll§crys(5 ). It follows that the
image ‘

E?Z?/ZI;_: - f/?ZS/IFP = &cryS(S)/p
of N 2i+11&crys(5 ) lies in the image of ¢; — 1; this can be identified with the divided power filtration
Fill i Acrys(S) /p € Aarys(S)/p by Theorem 8.14 (4).

When restricted to p/N ZZ'_1&@%(5 ), the map
@i = 1 pNZ Rerys(8) = Rerys(S) /p

agrees with

Yi—1 = Pi—1 — P NZi_ll&crys(S) — Acrys(s)/p .
This factors over the map

N Berys(S) = LT Qg0 — LQg/w, = Aarys(S)/p -
Thus, also LTSi_IQS/FP = Filfﬂrij&crys(S)/p lies in the image of ¢; — 1. But for 7 > 0, one has
FilY Acrys (S)/p + FILT Aerys(S) /p = Aerys(S)/p

as in general for all j > 1,
Fﬂ;(inlecryS(S)/p + Fﬂ%AcryS(s)/p = AcryS(S)/p )
giving the result.

(2) The case ¢ > 0 is covered by part (1), which also shows that ¢ —1 mod p : Acrys(S) —
Acys(S)/p hits all of FillljdAcrys(S )/p. Moreover, the composition

~ _1 ~

Acrys(S) T Acrys(S) — S
is surjective, when viewed as a sheaf over S € QRSPerfdy , since Artin-Schreier extensions exist
in QRSPerfdg . Since Kcrys(S) is p-adically complete and the union of a tower of Artin—Schreier

extensions is still a cover in QRSPerdep, this proves the desired surjectivity. ([l

Combining the previous lemma with the identifications of Theorem 8.17, we obtain exact se-
quences of sheaves
hT _
0 — 1 TC(—) = m TC™ (=) L5 1 TP(=) — 0
on QRSPerfd]Fp. In particular, this shows that the syntomic sheaf Z,(i) on QRSPerdep is con-

centrated in degree 0 and identifies with m9; TC(—), which is p-torsion-free (since we know from
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Theorem 8.17 that 79, TC™(S) X N Zif&crys(S ), which is p-torsion-free by Theorem 8.14 — to be pre-
cise, it easily follows from the definition of the Nygaard filtration that p-torsion-freeness of Acpys(S)
implies the same for its Nygaard completion). We have proved most of:

Proposition 8.20. Conjecture 7.18 is true in characteristic p. More precisely, for any S €
QRSPerfdg , the complex Zp(1)(S) is concentrated in degree 0 and given by the p-torsion-free group

Acrys ()7
Proof. We claim that the natural map
0t ker (N2 A rys () 25 Aorys(S)) = ker (N Brys(S) L5 Aerys(S))

is an isomorphism. This implies the result, as the left-hand side is in fact equal to Acyys(S)?=P,
using the definition of the Nygaard filtration. By the definition of the Nygaard filtration, the
Frobenius map Acrys(S) — Acrys(S) factors canonically over the Nygaard completion Agys(S). In
fact, we have a natural commutative diagram

NZiAcrys(S) ‘Pl_} Acrys(S)

o
NZB s (S) 2 Berys(S)

This implies that « is injective. Indeed, assume that x € N'Z"As(9) satisfies ;() = x, and that
a(z) = 0. Then in particular p;(x) = S(a(z)) = 0, and thus z = ¢;(z) = 0.

On the other hand, if y € NZZ':ASCWS(S) satisfies ;(y) =y, then z = (y) € Acys(S) maps to y
and satisfies o(z) = ¢(B(y)) = B(p(y)) = p'B(y) = p'x, and therefore lies in

Aerys(9)P77" = ker(NZ Acrys(S) £ Acrys(S)) |
as desired. g
For smooth A, passing to quasisyntomic cohomology yields the following corollary.

Corollary 8.21. Assume that A is a smooth k-algebra and X = Spec A. Let X : qSynZp — Xproét
be the natural map of sites. For all i > 0, there is a natural isomorphism

RAZp (i) = W 1001 -
Proof. This follows from the description of grfTC™ and gr'TP and Proposition 8.4. O

Remark 8.22. In the setting of the previous corollary, it is classical that the projection map
Xippt — X4 sends the sheaf ppn to WnQAlX',log[_lh cf. [11179, §I1.5]. The previous corollary may
be viewed as an analogue for higher weight p-adic motivic cohomology in characteristic p, as was
conjectured by Milne [Mil76, Remark 1.12], except that we use the quasisyntomic rather than the
flat topology.

We also record the following calculation of connective algebraic K-theory. It may be applied, for
example, when S = Oc, /p, in which case @iZO(ACWS(S)@:pZ)[%] = Di>o By (5)?=P" is the graded
ring defining the Fargues—Fontaine curve, [F'F'18]. This was conjectured in 2013 by the third author
(based on evidence in degrees < 2) and sparked much of this work. Indeed, the formula for TC as
Frobenius fix points on something else made it natural to guess that this “something else” should

have homotopy groups Acys(S), and this is what we have realized here in terms of TC™ and TP.'"

17Tt was also one of the inspirations for [NS18] as the classical TR or TF do not have the right form.
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Corollary 8.23. For any quasireqular semiperfect IF,-algebra S, the K-theory K.(S;Z,) vanishes
in odd degrees, while

Keven(S:Zp) = €D Acrys(9)777"
i>0

Proof. As in §7.4, Theorem 7.15 allows us to identify
H(Zy(i)(5)) & Kai(S5Zp) ,  H'(Zp(i)(S)) = Kaim1(S5Zy)

so this follows from Proposition 8.20. O
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9. THE MIXED-CHARACTERISTIC SITUATION

The goal of this section is to prove Theorem 1.8, i.e., we compare A 4 with AQ4 in case A is
the p-adic completion of a smooth Oc-algebra. This goal is realized in §9.2 using some lemmas
iAn almost mathematics collected together in §9.1. Next, in §9.3, we check that the identification

~ AQ 4 constructed earlier carries the Nygaard filtration on the left to the filtration on AQ 4
comlng from its definition via Proposition 5.8. Finally, in §9.4, we check that the Adams operations
act with weight i on gr'TC™(A;Z,) (and variants) for any A € QSyn; even though this statement
has nothing to do with O¢, its proof reduces to the case where A is as above, whence we can use
Theorem 1.8.

The following notation will be held fixed throughout this section.

Notation 9.1. Let C/Q, be a perfectoid field containing iy, and set Aips = Aine(Oc). Let
=[] —1 € Ajr where e € Obc = limgy.0 Oc/p is a compatible system of primitive p-power roots

of unity. Then ¢~'(u) | . For r > 1, set &, = ’"(u) € Aijpr and £ = &1, 80 & | &rqq | p for all 7.

9.1. Some almost homological algebra. As preparation, we recall some facts from almost math-
ematics. We shall be interested in almost mathematics over Amf in the p-complete setting, i.e.,
we are interested in the quotient D(A?nf) of the co-category D(Amf) of p-complete A;y;- complexes
by the full subcategory of those whose cohomology groups are killed by W(mb). Recall that such
complexes form a stable subcategory, so that one can pass to the Verdier quotient (for the oo-
categorical version, cf. e.g. [NS18, §1.3]). In fact, complexes whose cohomology groups are killed by
W (m") form a ®@-ideal, so lA?(Ai“nf) is a symmetric monoidal stable oo-category by [NS18, Theorem
1.3.6]. The following lemma allows us to replace W(m") in the preceding definition by much smaller
ideals:

Lemma 9.2. For d > 1, set Jg = Up(¢ " (1)?) C Aing, 50 Jg C J1 C W(m®) for all d. Then p is
a nonzero divisor on Ayg/Jq for all d. Moreover, the p-adic completion of any Jg coincides with
W (m?).

Proof. Note that o=+ (1) | =" (1), so we may regard each J; as a filtering union of the principal
ideals (¢™"(1)%). To show that p is a nonzerodivisor on Aj,¢/Jy, it thus suffices to show that p is
a nonzerodivisor modulo ¢~"(1)?. By Frobenius twisting, we may assume r = 0. Note that y is
a nonzero divisor modulo p, so (p, 1) and then also (p, u?) forms a regular sequence. We are now
done by the general fact that if (x,y) form a regular sequence in a commutative ring A, then x is
a nonzerodivisor modulo y: if za = by, then x | b as y is regular mod x, whence y | a (as we can
divide xa = x%y by x as x is a nonzerodivisor in A), and thus x is a nonzerodivisor modulo y.

It follows from the previous paragraph that By := Aj,¢/Jy is a p-torsionfree ring. Moreover,
since it is clear that (Jy,p) = (J1,p) = (p, W(m”)) as ideals of Ajy, the ring By/p identifies with
Apng/ (W(mb),p) ~ k, and is thus perfect and independent of d. But then the p-adic completion
of By is a p-torsionfree and p-complete ring lifting k, and must thus coincide with W (k) for all
d. This implies in particular that J; C J; C W (m?) give the same ideal on p-adic completion, as
wanted. O

Consider now the evident natural transformations
Lny, — .. = Lne,,y — Lne, — ... — L
of endofunctors on the full subcategory DthO(Ainf) of DZ(A;,¢) where HY is torsion-free.

Lemma 9.3. Fiz K € DthO(Ainf) that is p-complete. Then each cohomology group of the cofiber Q

of the natural map Ln, K — Rlim, Ln¢ K of p-complete complexes is killed by W(mb).
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Proof. As K is p-complete, the same holds true for Ln;K for any nonzero f € Ay by [BMSIS,
Lemma 6.19]. Applying this for f = p,&, and using stability of p-completeness under limits, it
follows that both Ln,K and Rlim, Ln¢ K are p-complete, and hence so is ). By Lemma 9.2, it is
enough to show that for each i, there is some d > 0 such that H*(Q) is annihilated by .Jj.

As Ln preserves cohomological amplitude by [BMSI18, Corollary 6.5] while Rlim changes it by
at most 1, we may assume after shift that K € D% (A;,¢) for some d > 1 with H°(K) torsion-free.
We may then represent K by some K® with K* = 0 for i < 0 and for i > d, and K* torsionfree.
Consider the following diagram of subcomplexes of K*:

nuK®C...Cng, K*C...Cne  K® Cne, K°.

As = o " (p) - &, we can write 7, K® = M= () e, K°. As K has cohomological amplitude d,
multiplication by ¢~ ()¢ on e, K® thus factors over 1, K*. It formally follows that multiplication
by ¢~ " (1)® on both the source and target of the map

Ln,K — Rliin Lne, K ~ Rlim Lne K
s>r B

factors over the map. But then @~ " (p)?® annihilates each H*(Q). As this is true for all r, we have
shown that J; - H(Q) = 0 for all 7, as wanted. O

The following technical result shall be used later.

Lemma 9.4. If M is the (p,&)-completion of a free Ayns-module, then the natural map

M — Homy, (W (m’), M)

inf

18 an isomorphism.

Proof. As everything in sight is £&-complete and &-torsionfree, this reduces to checking that M /¢ —
Hom(m, M/¢) is an isomcg\phism. Injectivity is clear as M/ is a torsionfree Oc-module. For
surjectivity, write M /¢ = @, ;Oc as the p-adic completion of a free Og-module. Regard M/¢ as
a submodule of N = [[..; Oc¢ in the usual way: M /¢ C N is the set of sequences (a;) € [[;c; 07,
such that for all n > 0, we have |a;| < |p"| for all but finitely many i € 1.

Now it is clear for valuative reasons that N = Hom(m, N). Under this identification, the subgroup
Hom(m, M/§) C Hom(m, N) corresponds to the set of sequences (a;) € N = [[;c; Oc such that, for
each € € m, we have (e-a;) € M/E, i.e., for each such € and each n > 0, we must have |e - a;| < [p"]
for all but finitely many ¢ € I. Applying this condition for € = p then shows that for all n > 0, we
have |a;| < |p"~!| for all but finitely many i € I; as this holds true for all n, we immediately get
(a;) € M/¢ C N, as wanted. O

For future reference, we note that the functor RHom (W (m”), —) kills all the “almost zero”

objects, i.e., those M € B(Ainf) whose cohomology groups are killed by W (m?): this follows because
W ()L 4, Awg/W () ~ 0.
In particular, we may regard RHom 4, (W (m”), —) as a functor D(A9 ) — D(Aipg). One can show

inf
that this functor is right adjoint to the quotient map.

9.2. The comparison map. Our goal now is to compare the l(_) theory constructed by unfolding

moTC™ to the AQ-theory from [BMS18]. We shall need the following variant of the latter that makes
sense for all p-complete Og-algebras:

Construction 9.5 (Noncomplete AQ-complexes for arbitrary rings). Recall that [BMS18, Theorem
1.10] gives a functor
A — AQy = Ln, RT(Spf(A)c, Ainf)
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from p-adic completions of smooth Og-algebras to Eo.-Ajn-algebras. Two important features of
this construction are:

(1) AQy4 is (p,€)-complete.

(2) There is a natural isomorphism AQ4 /¢ >~ Ly /0,
Following Construction 7.12, by left Kan extension in (p,£)-complete Ay e-complexes, we obtain
a functor A€y on all p-complete simplicial commutative O¢-algebras. This functor satisfies the
obvious analogs of (1) and (2) above. As in Construction 7.12, it follows that AQ_y is a sheaf of
FE - A;-algebras on QSyn(()ng and takes discrete values on QRSPerfd(()gpc.

We can now state and prove the main theorem.

Theorem 9.6. Let A be an Oc¢-algebra that can be written as the p-adic completion of a smooth
Oc-algebra. There is a natural isomorphism Ay = AQ4 of Eoo-Ain-algebras that is compatible
with Frobenius.

Proof. Before explaining the proof, let us explain the idea informally. As we understand XS for S
perfectoid, it is easy to construct a comparison map Ay — RT'(Spf(A)c, Aie). To factor this over
Ln, of the target (and thus producing a map to A€Q4), we use the criterion from Lemma 9.3 as
well as the behaviour of Frobenius on the Nygaard filtration on A A coming from Corollary 7.10. At
the end, this only gives a factorization in the almost category, so we employ a trick involving left
Kan extensions to topologically free objects in QRSPerfdy , to get back to the real world.

Let us now explain the proof as a series of steps.

A primitive comparison map. Let us first construct a functorial p-equivariant comparison map
bA : AA — RP(Spf(A)C,Ainf)

for the p-adic completion A of a smooth Oc-algebra. For thiSA, observe that for every map A — R
with R perfectoid, we have an induced functorial map Ay — Ar = Ajne(R). As RT'(Spf(A4)c, Aing)
can be regarded as a limit of the functor R — A;ys(R) on a subcategory of perfectoid A-algebras,
we formally obtain the map b4.

Constructing the comparison map in the almost category. We shall now refine by to obtain a

functorial comparison map
¢ DY — AQY

of E-algebras in ZA)(A?Hf) for the p-adic completion A of a smooth Oc-algebra. Consider the
oo-category C of E-algebras in B(Ai“nf). The oco-category C comes equipped with an endofunctor
F :C — C given by A — Lne¢p,A. Given any oo-category with an endofunctor F', we have the
oo-category of fixed points Cf" of pairs of an object X € C and an equivalence X ~ F(X). Moreover,
we have the co-category C7F of objects X € C with a map X — F(X); and the oo-category CF'~ of
objects X € C with a map F(X) — X. If C admits sequential limits, then there is an endofunctor
R of C¥= given by sending F(X) — X to the inverse limit R(X) of ... = F(F(X)) = F(X) = X
with its natural map F(R(X)) — R(X). If Y — F(Y) is an object of C7?¥ and F(X) — X an
object of CF'~ together with a commutative diagram

Y — = F(Y)
‘(f lF(f)
X <—F(X),

then this factors canonically over a similar map from Y — F(Y) to F(R(X)) — R(X).
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C—)F

In our case, A9 lies in as there is a natural map

KA — LUESD*KA

by Corollary 7.10. On the other hand, RI'(Spf(A)c, Ajnt) lies in CF~, as ¢ is an automorphism
and there is a natural map LneRT'(Spf(A)c, Ains) = RI'(Spf(A)c, Aint) since RI'(Spf(A)c, Aint) €
DthO(Ainf). Moreover, the diagram

~

can

Ay Lnggp*EA el g
LL%%IJA lso*bA
ba Lnep. RU(Spf(A)c, Aing) —> @+ RT(Spf(A) ¢, Aine)
_ - @

—
—_—

—_— ~

— —

£

RT'(Spf(A)c, Aint)

commutes without the dashed arrow, and thus also with the dashed arrow by inverting the lower
equivalence. Thus, by passing to the almost category, we are in the abstract setup, and get a map
of F..-algebras

B4 — lim(Lnew.)* RU(SpE(A) o, Aing)®

in ZA)(A?Hf) that commutes with the respective maps to/from their Lnep,—. But the right-hand side
is equivalent to AQY by Lemma 9.3. More precisely, applying the same argument for AQ 4 with its
equivalence to Lng A4, we get a natural map of F.-algebras

AQY = Ly, RT(SpE(A) e, Aung)* — Im(Lnei.)” RT(SpE(A)c, Aunp)*

in lA?(Ai“nf) that commutes with the respective maps to/from Lnep,—, and this map is an equivalence
by Lemma 9.3.

Lifting the almost comparison map c% to the real world. By left Kan extension in (p, §)-complete
Ajps-complexes, we obtain an almost map ¢4 : A% — AQY for any p-complete Oc-algebra A (see
Construction 7.12 and Construction 9.5 for the definitions). For S € QRSPerfdy,,, both Ag and
AQg are discrete. Hence, we can identify ¢% with an honest map Ag — Hom (W (m”), AQg) for
S € QRSPerfdy,,, recalling that Hom A, (W(m®), —) is the right adjoint to the forgetful functor

M — M*®. Now if S € qrsPerfdlggj (see Variant 4.36 for the definition), then Lemma 9.8 identifies
this with an honest map
dR : As — AQS.

In other words, on the category qrsPerfd%rgj C QRSPerfdy,, from Variant 4.36, we have constructed
the comparison map dg as above. Using the equivalence in the last statement of Variant 4.36, we
may unfold the map dg to a functorial comparison map

dA:AA%AQA

forany A € qSyn%rgJ. As p-adic completions of smooth O¢-algebras lie in qSyn%rgJ, this construction
restricts to a functorial comparison map on the category of p-adic completions of smooth O¢-
algebras. It is also clear by descent that d4 is a map of F..-Aj,-algebras that is compatible with
Frobenius.

Showing da is an isomorphism. Note that both A 4/& and AQ 4 /¢ are naturally identified with
LQy 0. By completeness, to show d4 is an isomorphism, it is enough to check that da /€ is an
isomorphism. Using Lemma 9.9, we must verify the following:
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Claim 9.7. If A is the p-adic completion of a smooth Og-algebra, the map H®(da/(p,€)) induces
the identity map on (4/p)1) == A/p @0, /oo Oc/p under the isomorphisms

HO(ba/(p,€)) = H (L) /(00 /) = (A/p)Y
and

HO(AQ4/(p,€)) = HY(LQ 4 )00 ) = (A/p)V
coming from the Cartier isomorphism.

But this follows from the analogous statement in the perfectoid case. Indeed, after a localization,
we may choose a cover A — R in qSanggj with R perfectoid. Then dg is the identity map by the
construction of the primitive comparison map b4, and hence H°(dg/(p, £)) is also the identity map.
As A — Ris injective modulo p, the map LQ(4/p) /(00 /p) = L (R/p) /(0 /p) ls0 induces an injective
map on H°, and hence it follows that H°(d4/(p,£)) is the identity map. O

The following two lemmas were used above.
Lemma 9.8. Assume S € qrsPerfd%r(C)j (see Variant /.56 for the definition). Then
AQg = Homy, (W (m®), AQs) .

Proof. As S is Oc-flat, we have AQgs/(p,€) ~ LQ(s/p)/00/p)- By assumption S/p is a free
Oc /p-module and Ls/p) /(00 /p)[—1] is a projective S/p-module. But then A'Ls/p) /(0c/p)[—i] =
F%s /p) (m1L(s/p)/(0c /p)) 18 @ Projective S/p-module (and free over O¢/p) for all i. By (non-canoni-
cally) splitting the conjugate filtration, one sees that L(s/p) /0. /p) 1 also a free O /p-module.
It follows that AQg is the (p,&)-completion of a free Ajy-module: the sequence (p,§) is regular in
AQg as the derived quotient AQg/(p,§) = L (s/p) /(0 /p) 18 discrete, and then a basis of AQg/(p, §)
lifts to a topological basis of A€lg. The claim now follows from Lemma 9.4. O

Lemma 9.9. Let A be the p-adic completion of a smooth Oc-algebra. Let n : Q4/0, — Qa0
be a map of p-completed En-Oc-algebras with mod p reduction 7. If H(R) is the identity, then
H*(7m) is the identity, and thus n is an isomorphism.

Proof. View H*(7) as a graded endomorphism of a graded ring R* := H*(Q(4/p)/ (00 /p))- By the
Cartier isomorphism, R* is generated in degree 1. As we have assumed H°(%) is the identity on
RV, it is enough to show that the resulting R’-linear map H'(7) : R — R! is also the identity.
Now H*(7) is compatible with the Bockstein differential 8, : R® — Rl so the map H'(7) acts as
the identity on BP(RO) C R!'. But, by the Cartier isomorphism, R' is generated as an R%-module
by ﬁp(RO): under the Cartier isomorphism, the Bockstein corresponds to the de Rham differential.
As H'(m) is R%-linear, the claim follows. O

9.3. Nygaard filtrations. Moreover, we identify the Nygaard filtration.

Proposition 9.10. Let A be the p-adic completion of a smooth O¢-algebra. The map EA —
Lnepibg from Corollary 7.10 (3) is an isomorphism, and identifies the Nygaard filtration NZipy
with the filtration on Ln¢ from Proposition 5.8.

In other words, the equivalence A A =~ AQ 4 carries the Nygaard filtration N >ip 4 to the filtration
on AQ 4 coming from the equivalence AQ4 ~ Lnep, A 4.

Proof. As the equivalence Ay ~ AQ4 commutes with the maps to their Ln¢p,—, the first statement
follows from the corresponding statement for A 4.
For the statement on Nygaard ﬁlt@tions, we need to see that the maps of associated gradeds
is an equivalence. We know that N?A4 is a complex of A-modules concentrated in degrees [0, ]
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with cohomology groups QQ O 0 < j <, by Proposition 7.8. For the right-hand side, we use the
equivalence Lngcp*l A gp*LngAQ 4 to see that the graded pieces are isomorphic to ¢, 7' Ay /5 .
By [BMS18, Theorem 8.3, Theorem 9.4 (i)], its cohomology groups are also given by QQ 106 for

0 <7 <1, and 0 else. Thus, we must check that certain endomorphisms QQ oc Qi‘ o, are

isomorphisms. This can be checked after base extension along A — A®p,, k, where k is the residue
field of O¢. Then it follows from the results in characteristic p. O

Remark 9.11. We briefly explain how to make the Nygaard filtration explicit in coordinates.
Recall that if one fixes a framing O : O¢ (T 1117 o, T f1> — A that is the p-adic completion of an
étale map, one gets a corresponding flat deformation A of A to Ay (along 0 : A — O¢) and
there is an explicit complex computing A4, given by a ¢-de Rham complex

d
q—Q;i/Amf:A%EBA%...%A%O
i=1
that can be defined as a Koszul complex Kﬁ(aq 1(?;(T1) R loag‘f(Td)), cf. [BMS18, Definition 9.5].

Here, ¢ = [e] — 1 € Ajy¢. Under this equivalence, the map
AQa = L Ay = 0. Lnz Ay
is given by the map of complexes
(‘D : q_QA/Ainf - (p*ngq_QA/Amf < (p*q_QA/Ainf

induced by the map ¢ : A — A sending all T} to TP. Now a direct computation shows that this
implies that one can describe the Nygaard filtration as the filtration

max(i—e,0 ° °
5 ( )q-QA/Ainf = q-QA/Ainf

as in Proposition 8.7.

Having identified the Nygaard filtration, we can now identify THH and THH» more precisely,
and verify a version of the Segal conjecture. Recall the complex Q4 = AQ4 ® A g A from [BMSI18,
§8], whose cohomology groups are QZ /OC{—i}.

Corollary 9.12. Let A be the p-adic completion of a smooth Oc-algebra of dimension d. For all
1 € Z, there are natural isomorphisms

gr'THH(A; Z,) ~ (751Q4{i})[2i]
and ' N

er' THH(A; Z,) ' ~ Qa{i}[2i] ,
where the filtration on THH(—;Zp)tCP is defined as usual via quasisyntomic descent of the double-
speed Postnikov filtration. Under this equivalence, the map ¢ : gt' THH(A; Z,) — gr* THH(A; Zp)tcp
is the natural map (757 4){i}[2i] — Qa{i}[24].

In particular,
¢ : THH(A; Z,) — THH(A; Z,)""

18 an equivalence in degrees > d.

Proof. The identificaton THH(A;Z,)!? ~ TP(A;Z,) /€ from Proposition 6.4 is compatible with
filtrations (by checking for quasiregular semiperfectoids) and thus induces equivalences

gr'THH(A; Z,)'% ~ AQ, /E{i}[2i] = Qa{i}[2d] .
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Under the general equivalence between N in 4 and gr'THH(4; Zp)|—2i], Proposition 9.10 is equiv-
alent to the assertion that the maps gr'THH(A;Z,) — gr'THH(A;Z,)!C? induced by ¢ induce
isomorphisms gr'THH(A;Z,) ~ 7=~ er!THH(A; Z,)!“", giving the result. O

9.4. Adams operations. A consequence of the functorial identification between A 4 and AQy4 is
the identification of the Adams operations. Let us recall their construction first.

Construction 9.13. Note that p-completed THH(A;Z,) can also be defined as the p-completion
of A®p_ & ']T;)\, where we consider the p-completion ']I‘;)\ = K(Zy,1) of the circle. This implies that
the automorphisms Z of TZA, act functorially on the F-algebra in cyclotomic spectra THH(A;Z,).
In particular, there are natural Z;-actions on all objects considered throughout, such as the qua-
sisyntomic sheaves l(_) and the Breuil-Kisin twist l(_){l}; these operations are called the Adams
operations.

We can now identify the Adams operations.

Proposition 9.14. The Zg—action on the quasisyntomic sheaf X(_) 1s trivial, and the action

on E(_){l} is giwen by the natural multiplication action. The same holds true for all steps of
the Nygaard filtration. In particular, v € Z, acts via multiplication with 7 on griTHH(—;Zp),
gr'TC™ (—;Zyp), gr'TP(—; Z,) and gr'TC(—;Zy), for all i € Z.

Proof. First, note that as ls is concentrated in degree 0 for S quasiregular semiperfectoid, the
triviality of the action is a condition, not a datum. Moreover, N 2"@5 C ls is an ideal in this case,
so if the action is trivial on lg, then this also holds for the Nygaard filtration. Similar remarks
apply to the Breuil-Kisin twist.

Assume first that R is perfectoid. Then the universal property of Aj¢(R) = ER — R as the
universal p-complete pro-infinitesimal thickening, together with the triviality of the Z;-action on
R, implies that the Z)-action on Aj,¢(R) is trivial. To identify the action on ER{l}, we use
the identification of Breuil-Kisin twists after Proposition 6.5; this shows that there are natural
isomorphisms N

H*(T/Cyr, br{1}/&) = ker 0,/ (ker 0,)?
equivariant for the Z;—action. In particular, the Z;—action is trivial on the right. As Z; acts
through multiplication by the inverse on H?(T,Z,) = H> (']T;)\, Zp), we see that Z) must act through
multiplication on A r{1}/ &, and then also on the inverse limit A r{1}.

By the base change property of l(_){l}, it remains to show that in general the Z;-action on ls
is trivial if S is quasiregular semiperfectoid. We may assume that S is an Og-algebra by passing
to a quasisyntomic cover. Going through the proof of the equivalence between EA and AQ 4, we
see that all maps are equivariant for the Z;—action when the source is equipped with the Adams
operations and the target with the trivial action. Moreover, this equivariance persists for the
Nygaard filtration. Thus, the Z;-action on the E-algebra A4 in DF (Ajnt) is functorially trivial
on the category of p-adic completions of smooth O¢-algebras. By left Kan extension, it follows
that the Z;-action on ZAES is trivial if S is quasiregular semiperfectoid and admits an O¢c-algebra
structure. O
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10. p-ADIC NEARBY CYCLES

Our goal in this section is to prove the following theorem. On the one hand, this gives a
very precise assertion relating p-adic nearby cycles to syntomic cohomology; on the other hand,
as explained by the second author in [Morl8], it is also closely related to the results of Geisser-
Hesselholt, [GHOG].

In the following result, Z/p™Z(i) denotes the usual étale sheaf on the space X on which p is
invertible, and on the p-adic formal scheme X, it denotes the syntomic sheaf of complexes from §7.4

Z/p"L(i) = Zp(i) /p" = hofib(p — 1 : NZ'A{i} — b{i})/p" |
which we in fact restrict to the étale site of X, where Theorem 9.6 tells us that we get the complex
Z/p"Z(i) = hofib(p; — 1 : N=AQ{i} — AQ{i})/p" .
So far, these objects are entirely unrelated.

Theorem 10.1. Let X be a smooth formal scheme over Spf O¢ with generic fibre X. Consider
the map of sites ¢ : X¢g — Xg. There is a natural equivalence

Z)p"Z(i) ~ TSRy L) p"Z(3)
of sheaves of complexes on X¢, compatible in n.

Remark 10.2. The complexes Ri.Z/p"Z(i) appearing in Theorem 10.1 are essentially the nearby
cycles complexes for the morphism X — Spf(O¢), as introduced by Deligne in [GDIK, §XIII.1.3].
The key differences are: (a) X is merely a formal scheme in our context (and thus X is a rigid
space), while loc. cit. works with schemes, and (b) we can ignore the passage to the algebraic
closure that is present in loc. cit. (as the residue fields of O¢ are algebraically closed). We do not
use any non-trivial theory concerning nearby cycles complexes in the sequel.

Remark 10.3. From Theorem 10.1, one obtains a similar statement on the pro-étale site after
passing to the inverse limit over n. The statement at finite level n has the advantage that the
compatibility for varying n implies that the individual étale nearby cycle sheaves R't),Z/p"7Z =~
R4, Z/p"Z(3) are flat over Z/p"Z.

Remark 10.4. For future use, note that any sheaf F' on QSyny  naturally yields a sheaf on Xet:
for any étale map U — X, one defines F'({) = lim F'(R), where the limit runs over the category of
affine open subsets Spf(R) C 4. This gives a sheaf because p-completely étale (or even smooth)
covers give quasisyntomic covers.

By Remark 10.4, we obtain sheaves N'=AQ{i}/p™ on X&. We start by showing that as a sheaf
of complexes on Xg4;, the complex

hofib(p; — 1 : NZPAQ{i} — AQ{i})/p"

is concentrated in degrees < i; for this, we may assume that n = 1. We can assume that X = Spf A
is affine and that A admits a framing 0 : Oc(T, ..., T, ;d) — A that is the p-adic completion

of an étale map. This induces a flat deformation A of A to Ay, which is formally étale over

Ainf<T1:tl, . ,Tjﬁl>. In that case, we have equivalences
Afa = q_Q:&/Ainf NZiAQA - gmaX(i_.’O)q_Q:‘i/f“inf ’

as explained in Remark 9.11. Trivializing the Breuil-Kisin twist, the map ¢; : N2 AQ 4 — AQy is
given by
g—z(p . gmax(z—o,O)q_Q}x/Ainf — ¢
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Recall that in degree j, the A-module q'Qi{ . is free with basis given by d,log(T,,) A ... A
dglog(Ty,) for varying integers 1 < a; < ... < a; < d. On this basis, ¢ acts by multiplication by
& as B
(p(dq log(74,)) = £dg log(Ta) -
In particular, in degree 7, the basis elements d, log(T;,)A. . .Adg log(T;;) are fixed points of ¢; = é_igp.
Using these representatives, it suffices to see that the map of complexes

~ . >i >;
g Z(p B 1 : q-Q‘Z;Ainf /p — q-Q‘Z;Ainf /p

is an isomorphism on q—Qi~1 . /p for j > i and is étale locally surjective for j = i. Writing

everything in terms of the above basis, we need to see that
p—1: /Nl/ D — fl/ D
is étale locally surjective, and for j > i the map
§7o—1:4/p— AJp
is an automorphism. The former statement follows from the existence of Artin-Schreier covers in
X¢ (noting that this étale site is equivalent to the étale site of Spf A/p, both being equivalent

to the étale site of Spec A/p), and the latter statement follows from the existence of the inverse
operator

—1 - — g_icf — =T~ Alp— Alp .
In summary, we get the following result.

Proposition 10.5. The natural map is an equivalence of sheaves of complexes on Xg
rSihofib(rSINZIAQLEY pt £h 7S1AQLY /p7) — hofib(NZTAQY £iTh AQ{i)) /pn .
O

We note that 7SINVZPAQ ~ 757 AQ via ;. Under this equivalence, the homotopy fibre above
may be rewritten as

. . el
7<hofib(7=¢AQ /p" 1ge TSUAQ/p")

where £p™1 1 7SIAQ — 7STAQ is the composite

. . -1 . i . .
TSAQ = L, 7S Ruching x = Dty ()7 RvsAing x5 Lne L1 (7 RusAimg x = 750 AQ .

We will continue with this description.

We formulate the next step somewhat more abstractly for convenience. Assume that A is a
p-power-torsion ring in some topos equipped with an automorphism ¢, and suppose that u,& € A
are non-zero-divisors satisfying the relation pu = o~ 1(u); set & = Ep~1(€)--- ! 7"(€) so that
w==E&p "(u) for all » > 1.

Suppose that C € D=%(A) is a complex such that H°(C) is u-torsion-free, and that ¢ : C ~ C
is a given ¢-semi-linear quasi-isomorphism. In our application, we will take A = Aj¢/p™ on the
topos X7, and C = Rv, Ay x /p". In the next two lemmas we make the following assumption.

(As) The map 1—¢&'p™! : C/u/C — C /i C is a quasi-isomorphism for all i > j > 0.
Remark 10.6. The assumption (As) is satisfied for C' = Rv,Ajps x /p"; indeed, for this, it suffices
to see that 1 — ™! is an automorphism of Ajne x /(p™, #?). It is enough to handle the case n = 1,
where one gets A x/(p, /) = Og;r/,uj. The map 1 — £~ is injective, as if f € Ogg’ satisfies
f=&o Y(f) e ,ujogj—', then g = uif satisfies g — u* I~ (g) € Og;r, which by integral closedness of

(532’ C (/9\3( implies that g € (/9\32' For surjectivity, it is enough to see that 1 — £'¢~! is surjective on
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@g?’, which by integral closedness of @g;r C (53( reduces to surjectivity of 1 — &o~! on (53( This
follows from the existence of Artin-Schreier covers in characteristic p, and the tilting equivalence.
Some further details of these arguments may be found in [Morl8].

Lemma 10.7. Assume (As). Leti >0 and j > 1. Then
(1) the endomorphism 1 — £4ip~1 of H(C)/p? HY(C) is injective for £ = 0 and an automor-
phism for £ > 0; ' _
(2) the endomorphism 1 — o™ of H(C)[p?] is surjective for £ = 0 and an automorphism for
{>0;
(3) the endomorphism 1 — o™t of HY(C)[u!]/H (C)[] is an automorphism for £ > 0.

Proof. (1) & (2): The fibre sequence C LNy C/1?C is compatible with the endomorphisms
1 -l 1 —eftip=1 1 — et~ respectively; therefore the Bockstein sequence
0— H'(C)/ H'(C) — H'(C/iW C) = HH(C)[i!] — 0

is compatible with the endomorphisms 1 — ¢7p=1 1 — ¢+ip=1 1 — £¢p~1 respectively. Since the
endomorphism on the middle term is an automorphism by assumption, the desired injectivity and
surjectivity claims in (1) and (2) follow. Moreover, to prove the rest of (i) and (ii) it remains only
to show that 1 — &%~ is injective on H*T1(C)[u] for all £ > 0 (because then we deduce the desired
surjectivity on the left term thanks to the Bockstein sequence). Considering the exact sequence
0= HHY(C)[p] = HHO) W) = HHH(CO) 1),

which is compatible with the operators 1 — &fo™ 1, 1 — €fp™t 1 — €611 respectively, a trivial
induction reduces us to the case j = 1. But the map

o™t HHO) U] — HHH(O)[u]
is the restriction of

pgﬁ—l(p—l :Hz-i-l(c) N Hz-i-l(C)
since £ = p mod ¢~ (u). So, finally, we must show that 1 - pef~1p~1 is injective on H*1(C);
but this operator is even an automorphism of C' (hence of H*+1(C)), since C' was assumed to be

derived p-adically complete.
(3): The assertion is trivial if j = 1, so assume j > 1. The injection

p o HY(C) W]/ H (C)[u] = H(C) [~

is compatible with the endomorphisms 1 —&¢p=1, 1 — 1o ™1 respectively. But the endomorphism
on the right side is injective by (2), whence the endomorphism is also injective on the left side; but
it is also surjective by (2). O

For any i > 0, we define £p! : TSiLU“C — TSiLn“C’ to be the composition
. -1 . i . .
<'Ln,C ~ TSZLUW1(H)C’ LN TSZLnganq(“)C =75"Ln,C.
The ¢! -fixed-points are essentially unchanged under L.

Lemma 10.8. Assume (As). Associated to the commutative diagram

. 1-¢gip—1 .
TSZLnuC' e TSZLnuC'
C _ C,
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the induced map
7=hofib(1 — &'p~! on TSiLnuC) — 75%hofib(1 — &'p~! on C)
1S a quasi-isomorphism.
Proof. Tt is enough (we leave it to the reader to draw the necessary nine-term diagram of fibre se-

quences) to show that 1—¢&%p~! acts automorphically on the kernel and cokernel of ¢ : H7 (Ln,C) —
HI(C) for all j < i, automorphically on the kernel when j = i, and injectively on the cokernel when
j=1.

For j = 0, we have H°(Ln,C) = H°(C) as H°(C) is p-torsion-free, so there is nothing to prove.
Assume now that j > 0. Recalling the isomorphisms p/ : H(C)/H?(C)[u] = H?(Ln,C) [BMSI8,
Lemma 6.4], we see that for each 0 < j < i the canonical map ¢ fits into a natural exact sequence

0 — H(C)[u] — H’(O)[w] — H (Ln,C) = H(C) — HY(C)/1/ H’(C) — 0,

which is compatible with the operators 1 — Edp1, 1= E70p™l 1 — gip™l 1 — gipl 1 -
£'o~ ! respectively. Then all desired properties of 1 — £'¢~! on the kernel and cokernel of ¢ follow
immediately from the previous lemma. O

Finally, we can finish the proof of Theorem 10.1. By Proposition 10.5,
hofib(NVZTAQ{i} /p™ 278 AQ{iY /p™) = r<"hofib(rSINZIAQ i} /p Lh %_1 TSTAQ{i} /")
Now Lemma 10.8 says that under the identification
FSihofib(rSNZ ALY p" LY+ ALY /) = TS hofib(r S AQ/p" S5 rSiAQ Y |
one has
TSihoﬁb(TSiAQ/p" % TSiAQ/p”) = TSihOﬁb(RV*Ainﬁx/pn % Rv, Aine x /p") .
On the other hand, on the pro-étale site of the generic fibre X, the map

£
Ajpt x /D" L Aipt x /D"

is surjective (by the argument of Remark 10.6), and the kernel is given by Z/p"Z(i) ~ Z/p"Z - u*.
In summary,

hofib W21 AQ{} /p" 275 AQLY /p) = rSERUZIp"Z(T) = 75 R T /p L)

as desired.
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11. BREUIL-KISIN MODULES

In this section, we use relative THH to prove Theorem 1.2. Before explaining what we do, let us
gather the relevant notation.

Notation 11.1. Let K be a discretely valued extension of QQ, with perfect residue field £, ring of
integers Ok and fix a uniformizer w € Og. Let K, be the p-adic completion of K (wl/ pw) and let
C' be the completion of an algebraic closure of K, and Ajys = Ajne(O¢). Let & = W(k)[z]; there is
a surjective map 6 : & — Ok determined via the standard map on W (k) and z — w. The kernel of
this map is generated by an Eisenstein polynomial F(z) € & for w. Let ¢ be the endomorphism of &
determined by the Frobenius on W (k) and z — zP. We regard & as a p-stable Subrlng of Ains(Ok..)

or Ay by the Frobenius on W (k) and sending z to [@’]? where @’ = (w, wp wrﬂ o) €O s

our chosen compatible system of p-power roots of w; the resulting map & — Amf is falthfully “Rat
and even topologically free (see [BMS18, Lemma 4.30 and its proof]). Write ¢ = fop:6 — Ok.
The embedding & C Aj,s is compatible with the # and ¢ maps.

Our goal in this section is to prove the following more precise local assertion that implies Theo-
rem 1.2.

Theorem 11.2. To any smooth affine formal scheme Spf(A)/Ok, one can functorially attach a
(p, z)-complete E-algebra Ay € D(6) together with a @-linear Frobenius endomorphism ¢ :
EA/G — EA/G inducing an isomorphism KA/g ®6,0 6[%] ~ @A/G[%], and having the following
features:

(1) (AQY comparison) After base extension to A, there is a functorial Frobenius equivariant
isomorphism

Ay js@g Aing ~ AQap,
of Exo-Aing-algebras.
(2) (de Rham comparison) After scalar extension along 6 = 6o ¢ : & — Ok, there is a
functorial isomorphism

A a/s®8 40K = (Qajo,)"
of Exo-Ox -algebras.
(3) (Crystalline comparison) After scalar extension along the map & — W (k) which is the
Frobenius on W (k) and sends z to 0, there is a functorial Frobenius equivariant isomorphism

Baje@SW (k) = RTcrys(A/W (k).

In particular, for a proper smooth formal scheme X/Ok, setting RI's(X) := RI'(X, l_/g) (see
Remark 10.4) gives the cohomology theory wanted in Theorem 1.2.'°

As explained already in §1.3, the construction of A 4 /& uses relative THH. Thus, let S[z] := S[N]
be the free F-ring spectrum generated by the commutative monoid N, so m.(S[z]) = (7.S)[z]; we
regard G as an S[z]-algebra via z — z, and thus Ok is an S|z]-algebra via z — w. Roughly, we
construct A4 /@ by repeating the construction of A4 using THH(—/S[z]) instead of THH(—). More
precisely, we use this idea in §11.2 to construct the Frobenius pullback gp*ZAE 46 (Corollary 11.12).
In §11.3, we then descend this construction along the Frobenius on & to construct A A/e; this
additional descent uses the structure of THH(Ok /S[z]) (and variants) as well as the analog of the

Segal conjecture proven in Corollary 8.18. To carry out this outline, we need a good handle on
THH(—/S[z]), and we record the relevant features in §11.1.

18To see that it is a perfect complex of G-modules, reduce modulo p and 2z and use the crystalline comparison.
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11.1. Relative THH. We recall the structure of THH(S|z]) and use that to endow THH(—/S[z])
with a cyclotomic structure. Recall the definition: for any E.-S[z]-algebra A, the spectrum

THH(A/S[z]) = THH(A) ®Tuus)) S[z] ® A®p, sz T

is the universal T-equivariant E.-S[z]-algebra with a non-equivariant map from A. To endow
THH(A/S|z]) with a Frobenius map

¢p : THH(A/S[2]) — THH(A/S[2])! .
we recall a few results about THH(S[z]).

Proposition 11.3. The T-equivariant Ex-ring spectrum THH(S[z]) is given by S[BYN], where
B denotes the cyclic bar construction, with its natural T-action. Concretely, BYN 1is equivalent
to the topological abelian monoid which is the closed submonoid of S x Z given by the union of
S x Nsg and the zero element 0 = (1,0) € S' x Z; the T-action is given via letting t € T act on
(s,n) € S' x Z wia (s,n) — (t"s,n), where we write the group structure on S* multiplicatively.

The map THH(S[z]) = S[BYN] — S[z] = S|N] is induced by the map BYN — N : (s,n) — n.
The map ¢, : THH(S[z]) — THH(S[2])!“" factors naturally over THH(S[2])"“» = S[BYNJ"“r and
in fact over S[(BYN)'?], and is induced by the T = T/C,-equivariant map BYN — (BYN)hCr
given by (s,n) +— (sP,pn). In particular, the diagram

THH(S[2]) —% THH(S|z])!Cr

l |

S[z] — 222~ S[2]1Cr .

is a T-equivariant commutative diagram of E-ring spectra.

Remark 11.4. By the Segal conjecture S*» ~ S/

is
§2 )
the p-completion of S[z] as a spectrum.

so one can compute that S[z]/“r ~ (S[z]),

Proof. See for example [NS18, Lemma IV.3.1]. The explicit description of BYN can be deduced
from the description of BYZ as the free loop space of S (which is equivalent to S' x Z with given
T-action), cf. [NS18, Proposition IV.3.2]. The final commutative diagram follows formally. d

Next, let us explain why relative THH carries a cyclotomic structure.

Construction 11.5 (Construction of the cyclotomic structure on THH(—/S[z])). For any Fuo-
S[z]-algebra A, there is a natural map

®1
THH(A/S[z]) = THH(A) ®@Tnns() S[7] s THH(A)' ®THH(S[]) S[?]

— THH(A)th ®THH(§[Z])th S[Z]tcp — THH(A/S[Z])th )

where the first map comes from the cyclotomic structure of THH(A), the second map exists thanks
to the commutative square in Proposition 11.3, and the last map comes from the lax symmetric
monoidal nature of (—)!“». By construction, this map is T = T/Cj,-equivariant and linear over
S[z] — S|z] given by z +— 2P provided we regard the target as S[z]-algebra via the natural map
S[2] — S[z]*» — THH(A/S[2])¥>.

In particular, THH(A/S[z]) is a cyclotomic spectrum in the sense of [NS18], and in fact a cy-
clotomic E-algebra over the cyclotomic E-ring spectrum S[z], where S[z] is equipped with the
trivial T-action and the T = T/Cp-equivariant map ¢, : S[z] — S[2]/“» sending 2 to zP.

There are two simple comparisons between the relative theory and the absolute theory. The first
describes the specialization z +— 0 and is the main source of the crystalline comparison.
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Lemma 11.6. Assume that A is an Og-algebra, regarded as S|z|-algebra via z — w. Base exten-
sion along S[z] — S sending z to 0 gives

THH(A/S[Z]) ®§[z] S~ THH(A ®(9K k) s
compatibly with the T-action and pp.

Proof. The base change property and its compatibility with the T-actions follows from the base
change property of THH together with the observation that both commutative squares in

S[2] o A
lz»—ﬂ] l l
S k A®oy k

are Cartesian in E-rings. The compatibility with ¢, follows by observing that the map S|z] 220 s
intertwines the Frobenius map on S|z]| (determined by z +— 2P and used to define the cyclotomic
structure) with the identity on S. O

For the second, we observe the following proposition.
Proposition 11.7. After p-completion, the map
THH(S[z'/7™]) — S['/77]
s an equivalence.

Proof. By tensoring with THH(Z) over S and using Lemma 2.5, this reduces to the same question
for HH(Z[ZI/ P*]), which in turn follows from the vanishing of the p-completion of L)z, =0
by the HKR filtration.

From this, we learn what relative THH looks like after base change to S[zz%"’].
Corollary 11.8. For any Og-algebra A, the p-completion of
THH(A/S[2]) ®sp.) S[z'/7"] > THH(A[w'/7™]/S[:1/77])
agrees with
THH(A[w'/7™);Z,) = THH(A ®0,, Ok Zp) ,
compatibly with the T-action and pp,.

Remark 11.9. Philosophically, the equality (after p-completion) between relative THH over “per-
fect” base rings such as S[z'/P”] and absolute THH is the reason that one can define the AQ-theory
in terms of absolute THH while one needs relative THH for the Breuil-Kisin descent.

11.2. Frobenius twisted Breuil-Kisin modules. In this section, we construct complexes that
will end up equalling go*@ 4/e in the context of Theorem 11.2. As the latter complexes have not
yet been defined, this notation does not yet make sense; instead, we rename the map ¢ : 6 - &
as the map & — &=, and construct complexes A A/S(-D) that will eventually descend to &.
Thus, let us write (1) for a copy of &, which we regard as G-algebra via ¢ : & — & = &1,

We write 8- : 8- — O for the usual map & — Ok, z — w, that was denoted 6 : & — O
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before. Then there is a natural inclusion &1 < A (O ) which is W (k)-linear and sends z to
[@’]; on & € &1 this is the inclusion & < Aj(Ok) fixed earlier. The diagram

S —— A (Ok..)

b

Ok OKee
commutes, and there is a natural diagram
Sl Aint(Ok..)
‘/é(l) lé
Ok[w!'/?] Ok »

where 61D : 6D 5 O [wl/p] is defined to make the diagram commute; in particular, z — wl/P.
Using the base change properties for relative THH, it is easy to check the following by reduction
to the perfectoid case:

Proposition 11.10. On homotopy groups,
T THH(OK /S[z]; Z,) = Ok |u]

where u is of degree 2,

. TC™(Ok /S[2]; Zp) = &V, v]/(wv — E)
where u is of degree 2 and v is of degree —2,

. TP(Ok /S[z]; Z,) = 6V [o*]

and

. THH (O /S[2]; Z,)' " = Ok [w'7][0™*']
where o has degree 2. The canonical map

1 TC™ (Ok /S[z]; Zp) — m/TP(Ok /S[2]; Zy)

1

sends u to Eo and v to c=". The diagram

hT

7. TC™ (O /S|2); Z,) —2—= m, TP(Ox [S[2]; Z,)

| |

m THH(Ox /S[2); Zp) —2 m, THH(Ox /S[2]; Z,)1Cr

s given by
& u, o] (up — E) P40 e Do S [o*1]
le(l),u»—)u,v»—m l(é(l),m—m
Ok |u] S Ok [w"/7)[0*]
Proof. This follows from the results of §6 by base change. O

Moreover, if S is quasiregular semiperfectoid, then also S&®p, Ok, is quasiregular semiperfectoid.
This implies the following proposition, using Theorem 7.2.
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Proposition 11.11. If S € QRSPerfdy,. is quasiregular semiperfectoid, then THH(S/S[z];Zy),
TC™(S/S|z]; Zp) and TP(S/S[z]; Zy) are concentrated in even degrees, and S — m; THH(S/S[z]; Z,)
respectively S +— mTC™(S/S[z]; Zy), S — mTP(S/S[z]; Zy) define sheaves on QRSPerfdy, with
vanishing cohomology on any S € QRSPerfdy, .

In particular, we can define a sheaf
gr'TC™(=/S[2]; Z,) = gr"TP(—/S[2]; Z,)
of Eqs-&(~Y-algebras on QSyn,, . by unfolding moTC™ (—/S[z]; Zy); it is equipped with a natural
Frobenius endomorphism compatible with the one on &(~1. This construction proves Theorem 11.2
up to a missing Frobenius pullback:

Corollary 11.12. Let X = Spf(A) be an affine smooth formal scheme over Ok. The complex
byjs-n = gr'TC™(A/S[2); Z,) is a (p, 2)-complete object of D(G\™V) that admits a natural Frobe-
nius endomorphism @. This construction has the following properties:

(1) There is a natural p-equivariant isomorphism

D g 651 g1y Ainf (O, ) = hao,

of Exo-Aint(Ok.,)-algebras, and thus a @-equivariant isomorphism

b g 61 Og -1y Aint (Oc) = AQuq,

of Foo-Aint(O¢)-algebras.

(2) There is a natural isomorphism
EA/G(,1)®%(71)79(71)0K = (QA/OK)A

of Exo-Ox-algebras.
(3) After scalar extension along the map &Y — W (k) which is the identity on W (k) and

sends z to 0, there is a functorial Frobenius equivariant isomorphism

Baje-1 @0 W (k) = Rl orgs(Ar/W ()

of Eoo-W (k)-algebras.

(4) The Frobenius ¢ induces an isomorphism

Bajsi-n Bet-n 6(_1)[ﬁ] = B g e o)

All completions are above are with respect to (p, z).

Proof. Part (2) comes from the natural equivalence gr®TP(A/S[z]; Z,)/E ~ gt’HP(A/Ok;7Z,) and
Theorem 1.17. The first equality of part (1) now comes from the identification

@1 TP (A/S[2]; Z,) 851512 /P™] ~ g1 TP (A0, Ok i Z,) -

obtained by passing to graded pieces in the similar statement for TP itself (which follows from
the same statement for THH). The second equality of part (1) follows from Theorem 1.8 and the
identification

AB(X)x‘linf(om,o)Ainf(oc) = AB@OKOO Oc

for any B € QSynoKoo, for which it suffices to observe that modulo ker 6, both sides compute
Hodge-completed derived de Rham cohomology, which satisfies the required base change. Part (3)
now comes from Theorem 1.10 and the identification

gr"TP(A/S[2]; Zp) @51 S = gr’TP(A @0, k)
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since A is flat over Ok . For part (4), we shall check that the cofiber of (ID*EA/G(—U — XA/G(A)

becomes acyclic on inverting ¢(E). The map &1 — Aj¢(O¢) is a topological direct summand,
so by part (1), it suffices to show that the cofiber of ¢* A Aoy, — AQ4p,, is acyclic on inverting

w(§) = ¢; this follows immediately from the definition of ASQ. O

Remark 11.13. The complex A A& from Corollary 11.12 does not give the complex A A/S
desired in Theorem 11.2. Concretely, one cannot recover the consequence discussed in Remark 1.4
from Corollary 11.12.

Remark 11.14. Our construction naturally equips A A/&(-1) with a complete descending multiplica-

tive N-indexed filtration NZ*A A/&(-1) coming from the homotopy fixed point spectral sequence.
This filtration is compatible with the Nygaard filtration via the identifications in Corollary 11.12
(1) and (3), and with the Hodge filtration via the identification in Theorem 11.2 (2). It is thus

reasonable to refer to this as the Nygaard filtration on A A/S-D-

11.3. Frobenius descent. We now explain how to descend the complex A A/S(-D) from Corol-
lary 11.12 along & — &= This relies on the following observation.

Proposition 11.15. For any Og-algebra A, the map ¢ : TC™(A/S[z]; Zy,) — TP(A/S[z];Zp)
extends naturally to a map
TC™ (A/S[]; Zp)[3] @1 SV — TP(A/S[]; Zp) -
If A is quasiregular semiperfectoid, then the source is concentrated in even degrees, and A
mo(TC™ (A/S[z]; Zp)[L]) defines a sheaf with vanishing cohomology on QRSPerfdy, . Denote its
unfolding to QSyng,. by gr?(TC™ (—/Slz]; Zp)[%]). By functoriality of unfolding, we have a natural
map
gt (TC™ (A/S[2); Zp)[2]) ®zpz) Z[z"/P] — er® TP(A/S[2]; Z,)

for A € QSynp, . If A is the p-adic completion of a smooth Ok -algebra, this map is an equivalence.
Proof. The extension of the map follows from the observation that for A = O, the element u maps
to o under ¢, and thus becomes invertible; and that the map is linear over S[z] — S[z], z > 2P.

As for A quasiregular semiperfetoid, each mTC™(A/S[z];Z,) is a sheaf with vanishing higher

cohomology, it follows by passage to filtered colimits that the same is true for 7 TC™(A/S[2]; Z,)[2].
To check that

g1’ (TC™ (A/S[): Z,)[3]) ®zp) ZI='7) — er"TP(A/S[2]; Z,)

is an equivalence for the p-adic completion A of a smooth Og-algebra, it suffices to see that for 4
at least the dimension of A, the map

gr'(TC™(A/S[2]; Zy)) @31y Z[="/7] — gr' TP(A/S[2]; Z,)

is an equivalence. For this, we can reduce modulo 21/P; then it suffices to see that for a smooth
k-algebra A, the Frobenius map

gr'(TC™(A)) — gr'TP(A)
is an equivalence for i at least the dimension of A. But this follows from the version of the Segal
conjecture, Corollary 8.18, by passing to homotopy-T-fixed points. g

Proof of Theorem 11.2. For the p-adic completion A of a smooth Og-algebra, define

bajs = gr’(TC™(4;Z,)[3))
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as in Proposition 11.15. It follows from this proposition that we have a natural identification
Bass ®c,can ST > By ). (6)
We can also define the (linearized) Frobenius
Bass P66 = B ajs O can O = Bye
as the following composition

XA/G R can &Y = XA/S(*U

can

= gt (TP(A/S[z]; Zp)) = gr’(TC™(A/S[z]; Zy))
LY, er®(TC (A/S[2): Zp) (L))
= ZA/G
One verifies that this base changes to the Frobenius endomorphism of A A/&(-D) under (6), thus
descending the pair (ZAE A/e(-1,p) along & — &=, All assertions of Theorem 11.2 now follow
from Corollary 11.12. O
We end with two remarks on the Nygaard filtration. First, we explain why the Nygaard filtration

does not descend along ¢.

Remark 11.16. The Nygaard filtration on @*EA/G ~ EA/G(A) from Remark 11.14 does not obvi-
ously descend along ¢ to a filtration on A A/e- In fact, there cannot be a functorial descent. For
instance, if the projection KA/S(—D — grolA/G(fl) ~ A descended functorially along ¢ : & — &(=1),
then one could globalize to conclude that each smooth formal scheme X/Ok descends canonically

to the subring W (k)[w?] C Ok (which is the image of & I Ok ), which is clearly nonsensical: any
elliptic curve with good reduction whose j invariant lies in O — W (k)[wP] gives a counterexample.

Secondly, we prove that cp*@ 4/e identifies with LnEl A/s via the Frobenius, in analogy with Af2.
Remark 11.17. In the situation of Theorem 11.2, consider the Frobenius map

AP bass =Dy s = bass
of E-algebras in D(G). The source of this map comes equipped with the Nygaard filtration
NZxA A/&(-D) from Remark 11.14. The target of the map comes equipped with the E-adic filtration
(E)* ® KA/G. We claim that the map ¢4 above lifts to a map of E-algebras in DF(S) of the
form )

NZ*by g1 =2 (E)* ® baye,
and that this map is a connective cover for the Beilinson t-structure. In particular, by Proposi-
tion 5.8, this implies that ¢4 factors as

P hajs = Lnpb g = hyys.

To prove the above assertion, one checks that NZ*EA/G(—D € DF<°(@) just as in Corollary 7.10.
Once we have shown that ¢4 lifts to a filtered map @4 as above, the rest will follow by base change
to O¢ (i.e., via Theorem 11.2 (1)) as & — Aj,r is topologically free. Thus, we are reduced to
checking that the restriction of @4 to N i A/&(-1) is functorially divisible by E? compatibly in
i. Unwinding definitions and unfolding, this reduces to checking that for S € QRSPerfdy, , the
composite

o TC™(S/S[2]: Zp) 2 moTC(S/S[2]: Zy) < mo (TC(S/S[2]: Z,) [2])
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is functorially divisible by E? compatibly in i. The divisibility follows as
vl = B € 1, TC™ (O /S[2]; Z,)[2] -

u
To get functoriality as well as compatibility in ¢, it is enough to check that F is a nonzerodivisor
in 7. (TC™(S/S[z}; Zp)[L]) =~ 7 (TC(S/S[2]; Zy))[L]. As inverting u is flat, we are reduced to
showing that E is a nonzerodivisor in the graded ring 7, (TC™(S/S[z]; Zp)) C m(TP(S/S[z]; Zy)).
As the larger graded ring is 2-periodic and concentrated in even degrees, it is enough to check
that the cone of multiplication by E on myTP(S/S|z]; Zy) is discrete. But this cone identifies with

I//QS/@K (see proof of Corollary 11.12 (2)), which is discrete as S € QRSPerfd, .
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