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N∞-OPERADS AND ASSOCIAHEDRA

SCOTT BALCHIN, DAVID BARNES AND CONSTANZE ROITZHEIM

We provide a combinatorial approach to studying the collection of N∞-
operads in G-equivariant homotopy theory for G a finite cyclic group of
prime power order. In particular, we show that for G = Cpn the natural
order on the collection of N∞-operads is in bijection with the poset struc-
ture of the (n + 1)-associahedron. We further provide a lower bound for
the number of possible N∞-operads for any finite cyclic group G. As such,
we have reduced an intricate problem in equivariant homotopy theory to a
manageable combinatorial problem.

1. Introduction

Let X be a topological space equipped with a multiplication m : X × X→ X . We
say that the multiplication is homotopy commutative if the diagram

X × X m //

twist
��

X

X × X
m

<<

commutes up to homotopy, and all higher coherences are satisfied up to homotopy.
Homotopy commutativity is neatly encoded by the theory of E∞-operads [May
1972]. These are those symmetric topological operads such that the space On is
6n-contractible for all n ≥ 0. As the homotopy type of such operads is determined
by the homotopy theory of the underlying spaces On , it follows that all E∞-operads
are homotopy equivalent [Berger and Moerdijk 2003]. In particular, there is a
unique (up to homotopy) way for a space to be homotopy commutative.

We now move to an equivariant setting. We fix a finite group G and consider
topological spaces equipped with a G-action. In this setting, constructing an
appropriate version of homotopy commutativity via E∞-operads has its difficulties.
For example, there are G-operads whose underlying nonequivariant operads are E∞,
but whose derived category of algebras are inequivalent.
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To correctly encode homotopy commutativity in the equivariant setting, N∞-
operads were developed. Each N∞-operad encodes a different notion of homotopy
commutativity with respect to the structure of the group. This is in stark contrast
to the nonequivariant case where there was a unique way of being homotopy
commutative. Understanding different N∞-operads for a group G is, however, in
general, challenging. As such, having access to a combinatorial framework in which
to study them is of great value.

Recent work by Blumberg and Hill [2015] led to the conjecture, soon verified
by [Bonventre and Pereira 2021; Gutiérrez and White 2018; Rubin 2021], that for a
group G, the data of an N∞-operad is equivalent to a certain “indexing system”.
In Section 2 we show that this again is equivalent to a subgraph of the lattice of
subgroups satisfying two rules. Such a description appears under the name of
transfer systems in [Rubin 2019]. This opens the door to a more combinatorial
approach to studying these operads for a fixed group G, which sets the stage for
this current paper.

We start with the case of G being a cyclic group Cpn in Section 3. A constructive
approach leads to our first result that there are Cat(n+1)many N∞-operads for Cpn ,
where Cat(n) denotes the n-th Catalan number. In particular, there are as many
N∞-operads for Cpn as there are binary trees with n+ 2 leaves.

The relation does not just stop there, though. Binary trees are one way of
encoding associahedra (also known as Tamari lattices or Stasheff polytopes), where
a binary tree corresponds to a vertex, and two vertices are related by a directed
edge if one tree can be obtained from another by moving a branch to the right. On
the other side, the set of all N∞-operads for Cpn can be ordered by inclusion of the
corresponding graphs. We prove that these two posets are in fact isomorphic as
posets, i.e., there is an isomorphism between N∞-operads and binary trees which
is order-preserving and order-reflecting.

When moving to a general cyclic group, unfortunately, one will quickly find the
combinatorics of the N∞-operads unmanageable. This is due to the fact that in the
corresponding graph diagram of an N∞-operad for Cp

n1
1 ···p

nk
k

, the edges not induced
from the Cpi become hard to describe. We explain this phenomenon in Section 4
by developing the terms of pure and mixed N∞-operads and give a nontrivial lower
bound for the number of N∞-operads for an arbitrary finite cyclic group G.

This new approach of N∞-operads as graph diagrams sheds light on the mysteri-
ous nature of the theory of equivariant homotopy commutativity. In particular, we
have provided a finite and therefore computable approach to an involved problem.

2. A brief tour of the theory of N∞-operads

We shall assume that the reader is somewhat familiar with G-equivariant homotopy
theory in the sense of May [1996]. We shall assume that G is a finite group
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throughout. Our objects of interest, N∞-operads, are a special class of G-operad,
whence we begin our exposition.

Definition 1. A G-operad O is a symmetric operad in G-spaces. That is, we have
a sequence of (G×6n)-spaces On for all n > 0 such that

(1) there is a G-fixed identity element 1 ∈O1,

(2) there are G-equivariant composition maps

Ok ×On1 × · · ·×Onk →On1+···+nk

which satisfy the usual compatibility conditions with each other and the sym-
metric group actions.

A certain subclass of G-operads, known as N∞-operads, is used to describe
different levels of homotopy commutativity in genuine G-equivariant stable homo-
topy theory; see Blumberg and Hill [2015]. That is, they are a generalization of
E∞-operads to the equivariant setting. Recall that for a group G, a family F is a
collection of subgroups which is closed under passage to subgroups and conjugacy.
A universal space for a family F is a G-space EF such that for all subgroups H ,

(EF)H
'

{
∗ H ∈ F
∅ H 6∈ F

}
.

Definition 2. An N∞-operad is a G-operad O such that

(1) the space O0 is G-contractible,

(2) the action of 6n on On is free,

(3) On is a universal space for a family Fn(O) of subgroups of G ×6n which
contains all subgroups of the form H ×{1} for H 6 G.

We will denote by N∞(G) the collection of all (homotopy classes of) N∞-operads
for a given group G.

Although Definition 2 is perfectly good for theoretical purposes, we need a
more computationally exploitable definition of N∞-operads. We first introduce the
intermediary notion of indexing systems.

Definition 3. A categorical coefficient system is a contravariant functor C : Oop
G →

Cat from the orbit category of G to the category of small categories. Such a
coefficient system is called symmetric monoidal if it takes values in symmetric
monoidal categories and strong monoidal functors. We are particularly interested in
the coefficient system Set with disjoint union which sends a subgroup H to the cate-
gory SetH of H -sets, where Set denotes the category of finite sets. A subsymmetric
coefficient C of Set is said to be an indexing system if it is closed under subobjects
and self-induction (i.e., T ∈ C(K ) and H/K ∈ C(H) implies H ×K T ∈ C(H)).
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The following result was first conjectured in [Blumberg and Hill 2015] and has
subsequently been proven to hold in three independent articles by Bonventre and
Pereira; Gutiérrez and White; and Rubin. The result uses the existence of a model
structure on the category of N∞-operads whose weak equivalences are those maps
which (at level n) induce weak homotopy equivalences after taking 0-fixed points
for all 0 ⊆ G×6n .

Proposition 4 [Bonventre and Pereira 2021; Gutiérrez and White 2018; Rubin
2021]. The homotopy category of N∞-operads is equivalent to the poset category
of indexing systems.

An algebra for an N∞-operad has structure above and beyond being a G-spectrum
whose underlying nonequivariant spectrum is an E∞-algebra. This additional
structure was fundamental to Hill, Hopkins and Ravenel [Hill et al. 2016].

Theorem 5 [Blumberg and Hill 2018, Theorems 4.13 and 4.14]. Let G be a finite
group and O an N∞-operad. If R is an O-algebra in G-spectra, then the Mackey
functor π0(R) is an O-Tambara functor.

That is, each π0(R)(G/H) :=πH
0 (R) is a commutative ring, the restriction maps

are monoidal and the transfer maps satisfy the Frobenius relations. Furthermore, if
H/K ∈ C(H), for C the indexing system determined by O, there is a multiplicative
(but not usually additive) norm map

N H
K : π

K
0 (R)−→ πH

0 (R).

The norm maps satisfy Frobenius-type relations describing their interaction with
addition and the restriction and transfer maps. An O-Tambara functor is also known
as an incomplete Tambara functor. In particular, the maps N H

H are always present
and are the identity maps. If one has a norm map for each pair of subgroups K 6 H
of G, then the homotopy groups of an O-algebra are a Tambara functor in the
original sense of [Tambara 1993].

We now compare the notion of indexing systems to transfer systems from [Rubin
2019]. This notion was also independently discovered by the authors.

Lemma 6 [Rubin 2019, §6]. An indexing system determines, and is determined
by, a set FH for each H 6 G consisting of subgroups K of H , written as H/K ,
satisfying the following axioms:

(identity) H/H ∈ FH .

(conjugation) H/K ∈ FH implies gHg−1/gK g−1
∈ FgHg−1 .

(restriction) H/K ∈ FH implies M/(M ∩ K ) ∈ FM for all M 6 H.

(composition) H/K ∈ FH and K/L ∈ FK implies H/L ∈ FH .

We call this data a transfer system.
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We rewrite this definition into a form more directly useful for our purposes.

Definition 7. Given a transfer system FH , define a set (of abstract symbols)

{N H
K | H/K ∈ FH , H 6 G}

and call the symbol N H
K a norm map from K to H .

Corollary 8. Let G be a finite group. Up to homotopy, an N∞-operad for G is the
data of a set of norm maps X = {N H

K }16K<H6G satisfying the following rules (and
all conjugates thereof ):

(restriction) If N H
K ∈ X and M < H , then N M

K∩M ∈ X.

(composition) If N K
L ∈ X and N H

K ∈ X , then N H
L ∈ X.

In particular, homotopy classes of N∞-operads can be described as certain
subgraphs of the lattice of subgroups of G.

Proof. Up to homotopy, an N∞-operad O uniquely specifies a transfer system F .
We know that H/K ∈ FH implies

M/(M ∩ K ) ∈ FM .

In terms of norm maps, this is precisely the restriction rule. The second axiom of a
transfer system says that H/K ∈ FH and K/L ∈ FK implies H/L ∈ FH . In terms
of norm maps, this is precisely the composition rule.

For the converse, we construct a transfer system from a set of norm maps X
satisfying the two axioms of the statement. We define FH as the set of H/K such
that N H

K ∈ X and H/H . One can check this defines a transfer system and hence a
homotopy class of N∞-operads. �

Remark 9. Our notation has been chosen so that the Mackey functor of an algebra R
over an N∞-operad O has multiplicative norm maps N H

K : π
K
0 (R) → πH

0 (R)
whenever N H

K is in the (abstract) set of norm maps.

Remark 10. Given a set of norm maps {N H
K } which do not satisfy the rules of

Corollary 8, then one can find a minimal set X containing {N H
K } which does satisfy

the rules. We refer to this as the completion of the set {N H
K } to a transfer system X .

See also [Rubin 2019, Theorem A.2].

This result leads to the following corollary, which motivates the results in this
paper, namely, that for a finite group G, it makes sense to attempt to enumerate the
number of N∞-operad structures, and to understand the associated poset structure.

Corollary 11. Let G be a finite group. Then the number of N∞-operads for G
is finite. Moreover, the set N∞(G) admits a canonical poset structure given by
inclusions of sets of the corresponding transfer systems.
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3. The case G = Cpn

We will begin with the case of cyclic groups of the form Cpn . We note that the choice
of p here is arbitrary as the subgroup lattices of Cpn and Cqn are both isomorphic
to the poset n = {0< 1< · · ·< n}. To ease the notation we shall denote by N j

i the
norm map N Cp j

Cpi
for i 6 j .

Before we continue to the theoretics, let us manually compute the first handful of
values of |N∞(Cpn )|. The purpose of this is two-fold. Firstly it will give the reader
an idea of how such computations are done, and second, for the avid integer sequence
fan, these examples will suggest the general form for the sequence {|N∞(Cpn )|}n∈N.
Note that we will not write the identity norm maps N i

i and shall only consider the
nontrivial norm maps.

Example 12. The case of G = Cp0 is trivial. That is, there are no choices of
nontrivial indexing systems to make, and therefore |N∞(Cp0)| = 1. This is exactly
the fact that for nonequivariant stable homotopy theory, there is only a single notion
of commutativity as one may expect. We will write the single (up to homotopy)
N∞-operad structure as {∅} to indicate that there are no nontrivial norm maps.

Example 13. The situation for G = C p is only marginally more involved than the
trivial case. Here we have a subgroup lattice {Cp0 <Cp1}. Therefore the only choice
to make is if we wish to include the nontrivial norm map N 1

0 or not. Therefore
there are two N∞-operad structures (up to homotopy), namely {∅} and {N 1

0 }.

Example 14. We shall now look at G = Cp2 . This is the first case where we need
to take care of the rules appearing in Corollary 8. As always, we have the trivial
N∞-operad {∅} which we shall write diagrammatically as

Cp0 Cp1 Cp2

( )
= {∅} .

At the other extreme, we could add in all of the norm maps. One can easily
check the conditions to see that this will always be a valid N∞-operad. We shall
display this N∞-operad as

Cp2Cp1Cp0

( )
= {N 1

0 , N 2
1 , N 2

0 }

where an arrow from Cpi to Cp j indicates the existence of the norm map N j
i for i < j .

The technical part then, of course, is to identify what other N∞-operads can
appear between these two extremes. There are 23 different possibilities to try
(indeed, there are three different norm maps which we must choose whether to
include or not). Instead of investigating all of the remaining cases, we shall just
show the failure of the ones that do not have an N∞-operad structure. Figures 1,
2 and 3 give the invalid diagrams.
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Cp2Cp1Cp0 {N 1
0 , N 2

1 }7
( )

=

Figure 1. This diagram is not valid as it violates the composition
rule of Corollary 8. If we were to complete this diagram in the
sense of Remark 10 to get a valid N∞-operad then we would need
to add in the norm map N 2

0 , and we would get the previous operad.

Cp2Cp1Cp0

( )
= {N 2

0 }7

Figure 2. This diagram is not valid as it does not satisfy the re-
striction rules. To satisfy the rule we would need to also have the
norm map N 1

0 , and then all of the rules would be satisfied. The
resulting operad would be different from the above two.

Cp2Cp1Cp0 {N 2
1 , N 2

0 }7
( )

=

Figure 3. This is the final invalid diagram, which suffers from the
same deficiency as the one above; that is, it does not satisfy the
restriction rules.

Consequently, we can write down the elements of N∞(Cp2). Note that in particu-
lar, |N∞(Cp2)|= 5. We implore the reader to check these for themselves to gain con-
fidence with the rules of Corollary 8. The valid N∞-operad structures are as follows:

Cp2Cp1Cp0 {∅}X
( )

=

Cp2Cp1Cp0 {N 1
0 }X

( )
=

Cp2Cp1Cp0 {N 1
0 , N 2

0 }X
( )

=

Cp2Cp1Cp0 {N 2
1 }X

( )
=

Cp2Cp1Cp0 {N 1
0 , N 2

1 , N 2
0 }X

( )
=

From our first analysis, we have obtained the integer sequence 1, 2, 5 counting
the number of N∞-operads for Cp0 , Cp1 and Cp2 respectively. If one were to take the
time to check the possibilities for Cp3 , they would see that there are 14 possibilities.
Therefore the examples suggest a relation to the Catalan numbers. The next section
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Figure 4. The two binary trees giving the second Catalan number.

will be devoted to recalling the necessary results regarding the Catalan numbers
before we prove the first main result, Theorem 20, which says that |N∞(Cpn )|

coincides with the (n+1)-st Catalan number.

3.1. A recollection of the Catalan numbers. The Catalan numbers are a sequence
of numbers which regularly appear in enumeration problems. The n-th Catalan
number, which we denote Cat(n), is given as

Cat(n)=
(2n)!

(n+ 1)!n!
.

The first few terms of the sequence are therefore Cat(0)= 1, Cat(1)= 1, Cat(2)= 2,
Cat(3)= 5 and Cat(4)= 14. There are many surprising and amusing ways to define
the Catalan numbers. Let us recall a few.

• Cat(n) is the number of valid expressions containing n pairs of parentheses.

• Cat(n) is the number of triangulations of a regular (n+2)-gon.

• Cat(n) is the number of rooted binary trees with n+ 1 leaves.

This is but a few of a multitude of descriptions given in [Stanley 1999]. The last
interpretation involving binary trees will be our canonical representation. Figure 4
gives the corresponding binary trees in the case of n = 2.

The following well-known recurrence relation will be fundamental to the proof
of the main result in this section.

Lemma 15. The Catalan numbers satisfy, and are determined by, the recurrence
relation

Cat(0)= 1,

Cat(n+ 1)=
n∑

i=0

Cat(i)Cat(n− i) for n > 0.

3.2. An operation on N∞-operads. To facilitate the proof of Theorem 20, we first
introduce a binary operation

� : N∞(Cpi )× N∞(Cp j )→ N∞(Cpi+ j+2).

To be able to define this function explicitly, we need some auxiliary notation.
We consider an X ∈ N∞(Cpi ) as being described by its finite set of norm maps.
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Secondly, for formal reasons, we will fix the convention that N∞(Cp−1) is defined
to be the set containing only the empty set.

For X ∈ N∞(Cpi ) and Y ∈ N∞(Cp j ), we now define X�Y ∈ N∞(Cpi+ j+2) to be
the N∞-operad described by the set of norm maps

X � Y := X
∐

6i+2Y
∐
{N k

i+1}i+1<k≤i+ j+2.

Here, 6 is the following notation. For a norm map N k2
k1

, we write

6n N k2
k1
:= N k2+n

k1+n

and let 6nY denote the set resulting from applying 6n to each norm map in Y . The
symbol 6 is used to invoke the idea of a suspension or shift.

Figures 5, 6 and 7 give a pictorial presentation of X � Y . We exclude the norm
maps for X and Y from the diagrams for clarity. Note that, in particular, we can
see that this operation is not commutative (nor is it associative).

· · ·· · ·

X ∈ N∞(Cpi ) Y ∈ N∞(Cp j )

X � Y ∈ N∞(Cpi+ j+2)

Figure 5. The general picture for the operation X � Y . We high-
light that the last vertex in X occurs at position i , the pivot point is
in spot i + 1, and the first vertex of the suspension of Y occurs at
position i + 2.

· · ·

Y ∈ N∞(Cp j )

∅� Y ∈ N∞(Cp j+1)

Figure 6. The general picture for the operation ∅� Y .

· · ·

X ∈ N∞(Cpi )

X �∅ ∈ N∞(Cpi+1)

Figure 7. The general picture for the operation X �∅.
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Let us give some explicit examples of this construction before we prove that the
resulting set of norm maps does indeed give an N∞-operad as we have claimed.

Example 16. Let

X =
(

Cp1Cp0

)
∈ N∞(Cp1), Y =

(
Cp1Cp0

)
∈ N∞(Cp1).

Then

X � Y =
(

Cp1Cp0 Cp2 Cp3 Cp4

)
∈ N∞(Cp4),

and

Y � X =
(

Cp1Cp0 Cp2 Cp3 Cp4

)
∈ N∞(Cp4).

Example 17. Let

X =
(

Cp3Cp2Cp1Cp0

)
∈ N∞(Cp3)

Y = N∞(Cp−1)=∅.

Then

X�Y =
(

Cp4Cp3Cp2Cp1Cp0

)
∈ N∞(Cp4)

and

Y�X =
(

Cp4Cp3Cp2Cp1Cp0

)
∈ N∞(Cp4).

Proposition 18. For X ∈ N∞(Cpi ) and Y ∈ N∞(Cp j ), X � Y satisfies the rules of
Corollary 8, and therefore is a valid object in N∞(Cpi+ j+2) for−16 i, j . Moreover,
the converse is true; that is, if X � Y ∈ N∞(Cpi+ j+2), then it follows that X and Y
are both valid N∞-operads for their respective groups.

Proof. We must check that X�Y satisfies the restriction and composition conditions.
The simplest way to do this is to appeal to Figure 5. First of all, note that the norm
maps coming from X are disjoint from the rest of the structure, and as we have
assumed that X is a valid N∞-operad for G = Cpi , this part does not need further
consideration.

The restriction rule for the remaining norm maps is clear. This rule is satisfied
due to the addition of the norm maps {N k

i+1}i+1<k≤i+ j+2. The composition rule
will be satisfied because Y was chosen to be in N∞(Cp j ), and suspending it to its
new position will not affect this.

To see the converse of the statement, take two lattices X and Y of size i and j
respectively such that X � Y ∈ N∞(Cpi+ j+2). We first of all note that X must be
an object of N∞(Cpi ). Clearly if Y was not an object in N∞(Cp j ), then neither
would its shift. Therefore it only remains to show that the addition of the norm



N∞-OPERADS AND ASSOCIAHEDRA 295

maps {N k
i+1}i+1<k≤i+ j+2 has no possibility of invalidating Y . As mentioned above,

adding these maps only serves to ensure the restriction rule is satisfied for the
additional point, hence they cannot turn Y into a invalid diagram. �

Remark 19. The � operation has an operadic interpretation, as explained to the
authors by J. Rubin. Suppose that we have two transfer systems X and Y which
realise the operads O and P which are Cpi and Cp j N∞-operads, respectively.

The inclusion Cpi ↪→Cpi+ j+2 gives rise to a left derived induction functor, which,
when applied to O, realises X as a Cpi+ j+2 N∞-operad. Similarly, the quotient map
π :Cpi+ j+2→Cp j gives a left derived restriction functor, which, when applied to P ,
realises 6i+2Y . Finally, there is a little disks operad D which realises the set of
norm maps {N k

i+1}i+1<k≤i+ j+2. The homotopy coproduct of these three operads
realises X � Y .

In particular, this result tells us that it is possible to use a homotopy colimit con-
struction to inductively form the homotopy categories of N∞-operads for G = Cpn .
Of course, one hopes for a general result like this for arbitrary G, but as we will
see in Section 4, the situation becomes extremely complex.

3.3. Computing the cardinality of N∞(Cpn). We now come to the first main result
of this paper which gives the link between the set of N∞-operads for Cpn and the
Catalan numbers. We shall prove that the cardinalities of these sets satisfy the
defining recurrence relation for the Catalan numbers, and then we show how to
construct a bijection between these N∞-operads and binary trees.

Theorem 20. The cardinalities |N∞(Cpn )| satisfy the recurrence relation

|N∞(Cp−1)| = 1,

|N∞(Cpn )| =

n∑
i=0

|N∞(Cpi−1)||N∞(Cpn−i−1)| for n > 0.

In particular we have that |N∞(Cpn )| = Cat(n+ 1).

Proof. To prove this we shall show that every N∞-operad in Z ∈ N∞(Cpn ) can be
written in the form X �Y for (unique) X ∈ N∞(Cpi−1) and Y ∈ N∞(Cpn−i−1). This
fact, along with Proposition 18, completes the argument.

Suppose that Z ∈ N∞(Cpn ). We let k ∈ Z be the minimum integer such that the
norm map N n

k is in Z . We have three cases to deal with here, either k= 0, 0< k< n
or k = n (i.e., there is no such norm map). We start with the two extreme cases
before dealing with the intermediate one.

• When k = 0, we construct Z as X � Y for X = ∅ ∈ N∞(Cp−1), and Y an
N∞-operad for G = Cpn−1 as in Figure 6.
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• When k = n, we construct Z as X � Y for Y = ∅ ∈ N∞(Cp−1)), and X an
N∞-operad for G = Cpn−1 as in Figure 7.

• When 0< k < n, we observe that we have two disjoint parts to Z ; namely we
are able to split off the subgroups Cpi for 06 i < k. Let us denote this part as X
(which lives in N∞(Cpk−1), and the remaining part Z ′. The crucial observation to
make now is that Z ′ looks like ∅� Y for some Y ∈ N∞(Cpn−k−1). We therefore
conclude that Z = X � Y as required. �

Corollary 21. Every N∞-operad Z for G = Cpn can be decomposed uniquely as
Z = X � Y for some N∞-operads X and Y .

Corollary 22. There is a bijection of sets

{N∞(Cpn )} ⇔ {rooted binary trees with n+2 leaves}.

Proof. This follows immediately from Theorem 20 and the discussion in Section 3.1;
however, it will be beneficial to the next section to spell out exactly how the
correspondence works inductively. To the trivial N∞-operad for G =Cp0 we assign
the following binary tree:

We will make the convention that ∅ is the empty tree. Assume that n > 0; we
know from Theorem 20 that any N∞-operad is of the form X � Y . We then have a
binary tree associated to X and a binary tree associated to Y , and we can form the
binary tree associated to X � Y in the following way:

X
�

Y
=

X Y

· · ·· · ·⇔

Following the convention of the empty diagram, we see that

∅
�

Y
=

Y

· · ·⇔

and

X
�

∅
=

X
⇔

�
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Example 23. One may use the above algorithm to compute the binary trees associ-
ated to the objects of N∞(Cp2) as follows:

Cp2Cp1Cp0 ⇔

( )

Cp2Cp1Cp0 ⇔

( )

Cp2Cp1Cp0 ⇔

( )

Cp2Cp1Cp0 ⇔

( )

Cp2Cp1Cp0 ⇔

( )

3.4. The relation to the associahedron. We shall now see that the relationship
between N∞(Cpn ) and the Catalan numbers runs deeper than just the result of
Theorem 20. Recall that we can put an order on binary trees. Indeed, let X and
Y be binary trees with n+ 1 edges. Then we say that X < Y if Y can be obtained
from X by a (finite sequence of) clockwise tree rotation operations, i.e., by moving
a branch from left to right.

<

Figure 8. An example of an order relation between two binary trees.

CBA

<

A B C

Figure 9. A general example of an order relation between two binary trees.
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· · · · · · · · ·

· · · · · · · · ·

Figure 10. The diagrams corresponding to the trees in Figure 9.

A more general example is given by Figure 9. Furthermore, if a binary tree X
were to contain the left-hand side as a subtree, then we could make a binary tree Y
by replacing that subtree with the right-hand side. We would see that Y is obtained
from X by a (finite sequence of) clockwise tree rotation operations, so X < Y .

The poset structure on the set of binary trees with n+ 1 edges is known as the
n-associahedron; see [Stasheff 1963]. We shall denote this poset structure as An .

We can also implement a poset structure on N∞(Cpn ) by fixing that X < Y if Y
can be obtained from X via the addition of norm maps. For example, we have

Cp1Cp0

( )
< Cp1Cp0

( )
Remark 24. Note that Z �− and −� Z preserve this ordering. That is, if X < Y
then it follows that Z � X < Z � Y and X � Z < Y � Z .

We now prove our main theorem which tells us that these poset structures actually
agree.

Theorem 25. There is an order-preserving and order-reflecting bijection of posets

{N∞(Cpn )} ⇔ {rooted binary trees with n+2 leaves} ⇔An+1.

Proof. Let us begin by showing that a clockwise tree rotation corresponds to
the addition of an arrow in the corresponding N∞-diagram, or more specifically,
the addition of a norm map. We shall do this by appealing to the diagrammatic
representations, as it provides the cleanest proof. Consider a branch move as in
Figure 9. The left-hand tree in Figure 9 corresponds to the first norm diagram in
Figure 10, which we may call (A� B)�C . The right-hand tree corresponds to
the second (where restrictions of the largest arrow are omitted for clarity), which is
A� (B�C).

We now show that adding an arrow in a norm diagram induces a clockwise tree
rotation in the corresponding binary trees. We shall do this by induction on n. Note
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that the base case can be easily checked, see Figure 8, and the corresponding discus-
sion of the general case. Example 23 then illustrates the next case. Suppose that we
begin with an arbitrary norm diagram A� Z to which we have added the red arrow.

· · ·· · ·

We can assume that the new arrow starts in A and ends in Z . By the composition
and restriction rule, we can, without loss of generality, assume that the new arrow
ends at the pivot (the added vertex in A� Z ).

· · ·· · ·

We can split up the left-hand block into a diagram of the form X � Y for some
smaller diagrams X and Y . This gives three different cases to consider based on
where the new arrow begins. These situations are summarised in Figure 11. In
particular, the new arrow could start in Y , giving Case 1, it could start in X , giving
Case 3, or the final option is that the new arrow begins at the vertex arising from
the � operation in X � Y .

Case 2 has already been covered in the beginning of this proof, as adding an arrow
connecting the two pivots is equivalent to adding an arrow from the first pivot to the
rightmost vertex. Therefore, it is the situation described in Figures 9 and 10. In that
part we illustrated the corresponding tree move to the addition of such an arrow.

For Case 1, it is important to note that adding the arrow (1) creates the arrow
(2) via composition, but that adding the arrow (2) does not create arrow (1) by any
of the rules. However, we can say that adding arrow (1) is equivalent to first adding
arrow (2) and then arrow (1).

· · · · · · · · ·1
2

3

Figure 11. The three cases for adding a nontrivial norm map to
(X � Y )� Z
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Hence, we add arrow (2) to (X � Y )� Z . By Case 2, this gives X � (Y � Z)
and in terms of trees gives Figure 9. We then add arrow (1). This only affects the
term Y � Z , giving a new diagram T with Y � Z < T . Moreover, Y � Z and T
are in {N∞(Cpk )} for k < n. By induction, we have that the trees corresponding
to Y � Z and T are ordered correctly.

Y Z
<

T

As the order on norm maps is preserved by X�−, we have X�(Y�Z)< X�T ;
see Remark 24. The corresponding operation on trees also preserves the order to
give the following:

ZYX
<

X Y Z
<

X T

For Case 3, we repeat our earlier decomposition. Either, the new arrow starts
at the leftmost vertex or we can split X into X1� X2 and see that we are in Case
1 or Case 2 (which are solved) or we are in Case 3 for this new decomposition. For
Case 3, we can continue to split up X1 into smaller diagrams X1 = X ′1� X ′2, and so
on. Continuing in this way, the only new case is the following, which we recognise
as adding the arrow (3′) from the leftmost vertex to the pivot of Y � Z :

· · · · · · · · ·

3′

The arrow (3′) adds the arrow (α) in Figure 12 by restriction (but not vice
versa). Therefore, we can obtain our diagram by first adding (α) and then (3′). The
diagram X�Y with (α) added is of the form ∅� B for some other B. In particular,
X�Y ≤∅�B, which by induction induces the correct ordering on the corresponding
trees. Using the order-preserving properties of�we have (X�Y )�Z ≤ (∅�B)�Z .

If we now add the arrow (3′) to ((∅� B)� Z , we are adding a new arrow from
a pivot to a pivot, which is Case 2. �
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· · · · · · · · ·

α
3′

Figure 12. The arrow additions for Case 3.

4. Generalising to other cyclic groups

We would like to have a closed formula for the cardinality of N∞(G) for all finite
cyclic G. We shall explore the obstructions to obtaining such a result in this section.
The main result is the construction of a lower bound of the number of such operads
for G = Cp

n1
1
· · ·Cp

nk
k

. Let us highlight the style of norm maps that we must deal
with in this situation. Figure 13 gives the 10 possible N∞-operads for G = Cpq .

A key observation to make is that there is an “odd one out” among these diagrams.
In particular, consider the following:

CpC1

CpqCq

This transfer system is different from the other nine because it is the only
one where the diagonal is not forced by the composition and restriction rules of
Corollary 8. That is, if we were to remove the norm map N pq

1 , then the resulting
diagram is still a valid N∞-operad. It follows that this N∞-operad cannot be formed
by just combining those for G = C p and G = Cq . We will call such an operad
mixed. If it can be obtained from the component groups, then we will call it pure.

The main result of this section will be to give a closed expression for the number
of pure N∞-operads for G = Cp

n1
1 p

n2
2 ···p

nk
k

, which provides a nontrivial lower bound
for the total number of N∞-operads for G.

CpC1

CpqCq

CpC1

CpqCq

CpC1

CpqCq

CpC1

CpqCq

CpC1

CpqCq

CpC1

CpqCq

CpC1

CpqCq

CpC1

CpqCq

CpC1

CpqCq

CpC1

CpqCq

Figure 13. The 10 possible N∞-operad structures for G = Cpq .
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Trying to manually enumerate the norm maps for G =Cpnqm , p 6= q or even just
Cp3q shows that the situation is already intangibly complicated. Indeed, we have
computationally verified that there are 544 N∞-operads for Cp3q .

4.1. Enumerating pure operads. We begin with a more formal definition of “pure”
and “mixed”.

Let Z be an N∞-operad for G = Cpnqm . That is, Z is an N∞-diagram on the
lattice below:

. . .

...

. . .

.... .
.

m+ 1

n
+

1

Then we can consider the rows and columns of these diagrams to obtain a
family of diagrams for G = Cpm , namely {X i }16i6n+1 and a family of diagrams for
G = Cpn , namely {Yi }16i6m+1. Note that these are indeed valid diagrams as can be
seen from observing the restriction and composition rules:

. . .

...

. . .

.... .
.

m+ 1

n
+

1

Xn+1

X1 . . .

...

. . .

.... .
.

m+ 1

n
+

1

Ym+1 Y1

We shall say that an N∞-operad is pure if it is completely determined by the
systems {X i } and {Y j } in the sense of Remark 10. If an operad is not pure, then we
will say that it is mixed. Note that an operad is mixed if and only if after removing
all norm maps of the form N p j q

pi , j 6= i , and completing the set of norm maps
according to the rules of Corollary 8, one does not recover the original operad one
started with.

Example 26. The following operad is pure as it has no diagonals, that is, no norm
maps of the form N p j q

pi . Therefore there is no condition to check
CpC1

CpqCq

The following is also pure, as when we remove the diagonal (highlighted in red)
then the composition rule of Corollary 8 is violated. Completing the set of norm
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maps according to the rules forces the diagonal, and we recover the original operad
that we started with:

CpC1

CpqCq

By using the restriction rules, we see that there is a natural ordering on the
systems {X i } and {Y j }. Indeed, X1 6 X2 6 · · ·6 Xn+1 and Y1 6 Y2 6 · · ·6 Ym+1.

Definition 27. We will denote by P(n, r) the number of length r paths in the
n-Tamari lattice An . For example, P(n, 2) gives the sequence 1, 1, 3, 13, 68, 399,
2530, 16965, . . . (starting at n = 0). In [Châtel and Pons 2015] this is given the
closed form

2(4n+ 1)!
(n+ 1)!(3n+ 2)!

.

Theorem 28. The number of pure N∞-operads for G = Cpn Cqm is given as

P(n+ 1,m)P(m+ 1, n).

In general, for G = Cp
n1
1
· · ·Cp

nk
k

the number of pure operads is
k∏

j,i=1

P(ni + 1, n j ).

Proof. This is an exercise in counting using the orderings X1 6 X2 6 · · ·6 Xn+1

and Y1 6 Y2 6 · · · 6 Ym+1. Once we have picked X1, we must take a (possibly
stationary) path of length n through the Tamari lattice Am+1 to pick the other
entries. Therefore, there are P(m+ 1, n) such options for the X i . We then have the
choices for the Y j giving us a total of P(n+ 1,m) options via a similar argument.
Combining these, we get the required total of P(n+ 1,m)P(m+ 1, n).

The proof for the general case follows similarly. �

Example 29. One can compute the first few values for the sequence appearing in
Theorem 28 (starting at n= 0 for m = 1) to be 1, 9, 52, 340, 2394, 17710, . . . . This
sequence does not appear on the OEIS at the time of writing.
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