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ENUMERATING PARTITIONS ARISING IN HOMOTOPY THEORY

SCOTT M. BAILEY AND DONALD M. LARSON

Abstract. We present an infinite family of recursive formulas that count binary integer partitions
satisfying natural divisibility conditions and show that these counts are interrelated via partial

sums. Moreover, we interpret the partitions we study in the language of graded polynomial rings
and apply this to the mod 2 Steenrod algebra to compute the free rank of certain homology
modules in stable homotopy theory.
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1. Introduction

A binary partition of an integer n ≥ 0 is a partition of n whose parts are powers of 2. Such
partitions have the form n = α1 · 2

0 + α2 · 2
1 + · · ·+ αk · 2

k−1 for 0 ≤ αi ∈ Z, and it is well-known
how to count them recursively. Indeed, if r−1(n) denotes the number of binary partitions of n, then
r−1(n) = r−1(n − 1) for n odd and r−1(n) = r−1(n− 1) + r−1(n/2) for n even, where r−1(0) = 1.
The sequence r−1(n) has as its first few terms

1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, 26, 26, . . .

and appears as entry A018819 in the On-Line Encyclopedia of Integer Sequences (OEIS) [OEI].
The subscript −1 is a notational convenience, as the sequence r−1(n) will be subsumed into an
infinite family of sequences {rm(n) : m ≥ −1} whose provenance we shall now begin to describe.

The conspicuous two-fold repetition in the sequence {r−1(n)} disappears if we instead count
binary partitions of n for which 2 | α1 (that is to say, binary partitions with an even number of
1s). If r0(n) denotes the number of binary partitions with the aforementioned divisibility condition
on α1, then r0(n) = r0(n − 2) + r0((n − 2)/2) for n ≡ 2 mod 4 and r0(n) = r0(n − 2) + r0(n/2)
for n ≡ 0 mod 4, where r0(0) = 1. Ignoring the obvious zeros occurring when n is odd yields the
sequence r0(2n) which has as its first few terms

1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 60, 74, 94, 114, 140, 166, . . .

and appears as entry A000123 of the OEIS, where it is also observed that r0(2n) is the sum of
r−1(i) from i = 0 to i = n.

A desire to perpetuate the partial sum relationship would dictate setting r1(n) equal to the
number of binary partitions of n for which 4 | α1 and 2 | α2 (see entry A131205 in the OEIS). In
fact, the entire infinite family of counts that is the subject of this paper emerges in precisely this
fashion. Let rm(n) denote the number of binary partitions of n for which the m + 1 divisibility
conditions

(1) 2m+2−i | αi, 1 ≤ i ≤ m+ 1
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hold. Our main result is a recursive formula for rm(n).

Theorem 1.1. For 0 < n ≡ 2m+1 mod 2m+2, we have the recursive formula

rm(n) = rm(n− 2m+1) +

⌊m/2⌋
∑

j=0

(
m+ 1

2j + 1

)

rm

(
n− (2j + 1)2m+1

2

)

.

Similarly, for 0 ≤ n ≡ 0 mod 2m+2,

rm(n) = rm(n− 2m+1) +

⌊(m+1)/2⌋
∑

j=0

(
m+ 1

2j

)

rm

(
n− 2j · 2m+1

2

)

.

For all other n, rm(n) = 0.

Furthermore, the sequences rm(n) are all related to each other via partial sums.

Theorem 1.2. For m ≥ 0 and n ≡ 0 mod 2m+1, rm(n) =

n/2m+1

∑

k=0

rm−1(2
mk).

Theorem 1.1 can be framed in terms of the combinatorics of graded polynomial rings. Let

H(m) = F2[X
2m+1

1 , X2m

2 , X2m−1

3 , . . . , X2
m+1, Xm+2, Xm+3, . . .]

where the indeterminateXi has grading |Xi| = 2i−1. Then a monomial x ∈ H(m) of grading n of the
form x = Xα1

1 Xα2
2 · · ·Xαk

k is precisely the same data as a partition n = α1 ·2
0+α2 ·2

1+· · ·+αk ·2
k−1

of n satisfying the divisibility conditions (1), yielding the following corollary.

Corollary 1.3. The number of monomials x ∈ H(m) with grading n is rm(n).

While of possible independent interest in number theory and theoretical computer science, the
quantities rm(n) and their interpretation in Corollary 1.3 also have a natural application in stable
homotopy theory to splittings of the homology of Brown-Gitler spectra.

Theorem 1.4. Let 0 ≤ j ∈ Z. As a module over the subalgebra A (1) of the mod 2 Steenrod algebra

A generated by Sq1 and Sq2, the mod 2 homology of the jth integral Brown-Gitler spectrum B1(j)
has free rank (r1(4j)− b(j))/8 where

(2) b(j) =

{

4j − 2α(j) + 1, if α(j) ≡ 0, 1 mod 4,

4j − 2α(j) + 5, if α(j) ≡ 2, 3 mod 4

and where α(j) is number of 1s in the binary expansion of j.

(Compare with Theorem 2.2.)
Section 2 is devoted to a discussion of Theorem 1.4 and its proof, including all the requisite

definitions and a sketch of the relevant background material. Sections 3, 4, and 5 comprise the
technical heart of the paper. Section 3 gives results required for the proof of Theorem 1.1 in
Section 4. Section 5 contains the proof of the partial sums result given by Theorem 1.2.

Acknowledgements. The authors would like to thank Paul Goerss, Mark Behrens, and the anony-
mous referee for useful comments and suggestions.
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2. The homology of Brown-Gitler spectra

Originally introduced for the purpose of studying obstructions to immersions of manifolds,
Brown-Gitler spectra are geometric objects tailored to have (co)homology modules with certain
properties. Among the surprisingly numerous results in stable homotopy theory they have spawned
are the wedge sum splittings of spectra related to connective real K-theory found by Mahowald
[Mah81] and the first author [Bai10]. In this section, we apply Corollary 1.3 to compute the free
rank of the homology (with coefficients in F2) of a certain family of Brown-Gitler spectra as mod-
ules over A (1), the submodule of the mod 2 Steenrod algebra A generated by Sq1 and Sq2. We
avail ourselves of the language of stable homotopy theory to describe our result: spectra and the
cohomology theories they represent, completion of spectra at a prime p, the Steenrod algebra, and
the Adams spectral sequence. Readers unfamiliar with this material may consult the Chicago lec-
tures of Adams [Ada74], the guide to computations in homotopy theory at the prime 2 by Beaudry
and Campbell [BC18], or the survey of connective real K-theory by Bruner and Greenlees [BG10].
Readers unconcerned with homotopy theoretic applications may safely skip to Section 3.

Throughout this section, all spectra are implicitly completed at the prime 2, and [X,Y ] denotes
the graded abelian group of homotopy classes of maps from the spectrum X to the spectrum Y .

2.1. The impetus from homotopy theory. The mod 2 cohomology H∗X of a spectrum X is
represented by the mod 2 Eilenberg-Mac Lane spectrum HF2, i.e., H

∗X = [X,HF2]. The mod 2
Steenrod algebra A = [HF2, HF2] is the algebra of (stable) cohomology operations. As an algebra
over F2, A is generated by Sqi for i ≥ 0 which act by post-composition. Modules over A have
been well-studied in the literature, especially in light of the Adams spectral sequence

ExtA (H∗Y,H∗X) ⇒ [X,Y ]⊗ Z2

which approximates the stable homotopy groups of spheres when X = Y = S, the sphere spectrum.
Given the subalgebra A (m) of A generated by {Sq1, Sq2, . . . , Sq2

m

}, consider the A (m)-module
A ⊗A (m) F2, where the right action of A (m) on A is induced by the inclusion and the left action

of A (m) on F2 is induced by Sq0 7→ 1 and Sqi 7→ 0 for i > 0. The inclusions A (m) → A (m+ 1)
give rise to an infinite tower of surjections

(3) A → A ⊗A (0) F2 → A ⊗A (1) F2 → A ⊗A (2) F2 → A ⊗A (3) F2 → · · · .

It will be convenient to put A (−1) = {Sq0} = F2, so that A ∼= A ⊗A (−1) F2. Noting that
A ∼= H∗HF2, one can ask if the remaining modules in (3) can be realized as the mod 2 cohomology
of some spectrum. The case m ≥ 3 requires the existence of a non-trivial map of spheres which has
been shown not to exist. However, it is well-known that such spectra exist for 0 ≤ n ≤ 2, namely

H∗HZ ∼= A ⊗A (0) F2,

H∗bo ∼= A ⊗A (1) F2,

H∗ tmf ∼= A ⊗A (2) F2,

whereHZ is the integral Eilenberg-Mac Lane spectrum, bo is the connective realK-theory spectrum,
and tmf is the connective spectrum of topological modular forms—an analog of K-theory with
connections to modular forms in number theory (see [Lar20] for an instance of such a connection
away from the prime 2). Indeed, these spectra and their associated cohomology theories have become
essential for computations inside the stable homotopy groups of spheres, and are interesting in their
own right.
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A change-of-rings theorem yields

Exts,t
A
(A ⊗A (m) F2, H

∗X) ∼= Exts,t
A (m)(F2, H

∗X).

In particular, the E2-term approximating the integral cohomology of X can be determined by an
understanding of the A (0)-module structure of H∗X . Similarly, the E2-terms approximating the
connective real K-theory of X and the tmf-cohomology of X can be determined by understanding
the A (1)- and A (2)-module structures of H∗X , respectively.

Modules over A (1) have been fully classified up to stable A (1) isomorphism [AP76, Section 3].
Two R-modules M1 and M2 are stably R isomorphic if there exist free R-modules F1 and F2 such
that M1 ⊕F1

∼= M2 ⊕F2. The original impetus of the current paper was a better understanding of
the free A (1)-module summands of A ⊗A (m) F2. Such an understanding would ultimately provide
a clearer picture of important computations currently in the literature, as we shall discuss in the
following subsections. See for example [Dav87] and [BBB+20].

2.2. Connection with binary partitions. It is often convenient to perform computations in
the dual A∗ = HomF2(A ,F2). Indeed, while A is a graded noncommutative algebra with many
relations, its dual A∗

∼= F2[ξ1, ξ2, ξ3, . . . ] is a polynomial ring with grading |ξi| = 2i−1. Furthermore,

H∗HF2
∼= (A ⊗A (−1) F2)∗ ∼= A∗,

H∗HZ ∼= (A ⊗A (0) F2)∗ ∼= F2[ξ
2
1 , ξ2, ξ3, ξ4, . . . ],

H∗bo ∼= (A ⊗A (1) F2)∗ ∼= F2[ξ
4
1 , ξ

2
2 , ξ3, ξ4, . . . ],

H∗ tmf ∼= (A ⊗A (2) F2)∗ ∼= F2[ξ
8
1 , ξ

4
2 , ξ

2
3 , ξ4, . . . ]

(see [Mil58, Koc82, Mah81, Rez07]). Upon replacing the grading mentioned above by the alternative
grading convention |ξi| = 2i−1 (hereafter called a “weight” and denoted ω(ξi) = 2i−1 following the
language and notation of [Mah81, §3]) the reader should observe that H(m) ∼= (A ⊗A (m) F2)∗.
Hence, Theorem 1.1 and Corollary 1.3 together provide a recursive formula for the number of
generators of (A ⊗A (m) F2)∗ of a given weight.

Example 2.1. The number of monomials of weight n in H∗HF2 and the number of monomials of
weight 2n in H∗HZ are counted by the sequences r−1(n) and r0(2n), respectively, exhibited at the
start of Section 1. Moreover,

r1(n) =







1, n = 0,

r1(n− 4) + 2r1((n− 4)/2), 0 < n ≡ 4 mod 8,

r1(n− 4) + r1(n/2) + r1((n− 8)/2), 0 < n ≡ 0 mod 8,

0, otherwise.

and so the sequence r1(4n) counting the number of monomials of weight 4n in H∗bo has

1, 3, 7, 13, 23, 37, 57, 83, 119, 165, 225, 299, 393, 507, 647, 813, . . .

as its first few terms.

Example 2.2. Since

r2(n) =







1, n = 0,

r2(n− 8) + 3r2((n− 8)/2) + r2((n− 24)/2), 0 < n ≡ 8 mod 16,

r2(n− 8) + r2(n/2) + 3r2((n− 16)/2), 0 < n ≡ 0 mod 16,

0, otherwise,
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it follows that the sequence r2(8n) counting the number of monomials of weight 8n in H∗ tmf has

1, 4, 11, 24, 47, 84, 141, 224, 343, 508, 733, 1032, 1425, 1932, 2579, 3392, . . .

as its first few terms.

Example 2.3. As noted above, there does not exist a spectrum with mod 2 homology isomorphic
to (A ⊗A (m) F2)∗ for m ≥ 3. Theorem 1.1 implies

r3(n) =







1, n = 0,

r3(n− 16) + 4r3((n− 16)/2) + 4r3((n− 48)/2), 0 < n ≡ 16 mod 32,

r3(n− 16) + r3(n/2) + 6r3((n− 32)/2) + r3((n− 64)/2), 0 < n ≡ 0 mod 32,

0, otherwise.

and so H(3), the first of the polynomial algebras H(m) not realizable as the mod 2 homology of a
spectrum, has r3(16n) monomials of weight 16n, where r3(16n) has as its first few terms

1, 5, 16, 40, 87, 171, 312, 536, 879, 1387, 2120, 3152, 4577, 6509, 9088, 12480, . . .

One can observe the partial sum relationships between the sequences in the above examples given
by Theorem 1.2.

2.3. Integral Brown-Gitler spectra. Brown and Gitler [BG73] constructed a family {B(j) | j ≥
0} of Z/2Z-complete spectra whose cohomology algebras are cyclic as modules over A . For a given
j, the generator α : B(j) → HF2 gives rise to a surjection α∗ : B(j)kX → (HF2)kX in homology
for k < 2j + 2 and any CW-complex X , resulting in these Brown-Gitler spectra having many
applications in homotopy theory. This led Goerss, Jones, and Mahowald [GJM86] to construct
analogous families of Brown-Gitler spectra over HZ and bo (as well as BP 〈1〉). For the purposes
of this paper, we will denote the Brown-Gitler, integral Brown-Gitler, and bo Brown-Gitler spectra
by B0(j), B1(j), and B2(j), respectively. With the weight ω defined above, the homology of these
Brown-Gitler spectra are given by

(4) H∗Bi(j) ∼= {x ∈ (A ⊗A (i−1) F2)∗ | ω(x) ≤ j2i}

where (A ⊗A (i−1) F2)∗ denotes the F2-dual of (A ⊗A (i−1) F2).
The stable A (1)-isomorphism classes of H∗B1(j) are related to the family of Milgram modules

[Mil75] which Davis, Gitler, and Mahowald [DGM81] denote Qi,n for i ≥ 0 and n ∈ {0, 1, 2, 3}.
These modules are displayed in Figure 1. The circles represent generators of F2 in the degree
indicated by the column, while straight and curved lines represent an action of Sq1 and Sq2,
respectively.

2.4. Rank of free A (1)-module summands.

Lemma 2.1 (Lemma 3.12 [DGM81]). There is an isomorphism H∗B1(j) ∼= F1,j ⊕ Qα(j),j−D of

A (1)-modules, where

D =

{

2ℓ, if α(j) = 4ℓ,

2ℓ+ 1, if 4ℓ+ 1 ≤ α(j) ≤ 4ℓ+ 3,

F1,j is a free A (1)-module, and the first subscript α(j) of Qα(j),j−D is taken modulo 4.

An application of Theorem 1.1 therefore determines the free rank of F1,j , yielding the following
theorem (which is merely a restatement of Theorem 1.4).
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· · ·

· · ·

· · ·

· · ·

Q0,n

Q1,n

Q2,n

Q3,n

0 4 4n

Figure 1. Milgram modules Qi,n (0 ≤ i ≤ 3)

Theorem 2.2. The rank of F1,j as an A (1)-module is f1,j =
1

8
(r1(4j)− b(j)) where

(5) b(j) =

{

4j − 2α(j) + 1, if α(j) ≡ 0, 1 mod 4,

4j − 2α(j) + 5, if α(j) ≡ 2, 3 mod 4.

Proof. From Figure 1, we see that

dimF2(Qi,n) = 4n+







1, i = 0,

3 i = 1, 3,

5, i = 2.
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Lemma 2.1 therefore yields

dimF2(Qα(j),j−D) = 4j − 4

{

2⌊α(j)/4⌋, α(j) ≡ 0 mod 4

2⌊α(j)/4⌋+ 1, α(j) 6≡ 0 mod 4
+







1, α(j) ≡ 0 mod 4

3, α(j) ≡ 1, 3 mod 4

5, α(j) ≡ 2 mod 4

= 4j +







−2α(j) + 1, α(j) ≡ 0 mod 4

−2(α(j)− 1)− 1, α(j) ≡ 1 mod 4

−2(α(j)− 2) + 1, α(j) ≡ 2 mod 4

−2(α(j)− 3)− 1, α(j) ≡ 3 mod 4.

Note that Theorem 1.1 and (4) together imply that r1(4j) is the F2-dimension of H∗B1(j). By
Lemma 2.1, the remaining classes generate F1,j . Since A (1) has 8 classes, the result follows. �

Remark 2.4. The sequence {f1,j} has as its first few terms

0, 0, 0, 0, 1, 2, 4, 7, 11, 16, 23, 32, 43, 57, 74, 95, . . . .

The reader should notice the first appearance of a free A (1)-summand among the homologies of
integral Brown-Gitler spectra is in H∗B1(4).

Consider the elements Nn(ℓ) = {x ∈ (A ⊗A (n) F2)∗ | ω(s) = ℓ} of homogeneous weight ℓ. For
m ≤ n, there is an A (m)-module isomorphism

(6)
(
A ⊗A (n) F2

)

∗
∼=

⊕

j≥0

Nn(j2
n+1).

This is a straightforward extension of [Mah81, Lemma 2.1] for m = n = 1 and [Bai10, Proposition
2.3] for m = 1 and n = 2. The Verschiebung is the algebra homomorphism V : A∗ → A∗ defined
on generators by

V (ξi) =

{

1, i = 0, 1,

ξi−1, i ≥ 2.

An extension of the proof of [Bai10, Proposition 2.3] shows that V induces an A (m)-module
isomorphism

Nn(j2
n+1) ∼= Σj2n+1

{x ∈ (A ⊗A (n−1) F2)∗ | ω(x) ≤ j2n}.

In particular Σj2i+1

H∗Bi(j) ∼= Ni(j2
i+1) and, as a result, Theorem 2.2 can be used to compute the

number of free copies of A (1) in (A ⊗A (m) F2)∗ for all m ≥ 1. An example of this is given by the
following theorem of the first author for m = 2.

Theorem 2.3 (Theorem 4.1 [Bai10]). There is an isomorphism of graded bo∗-algebras

(7) π∗(bo ∧ tmf) ∼=
bo∗[σ, bi, µi | i ≥ 0]

(µb2i − 8bi+1, µbi − 4µi, ηbi)
⊕ F

where |σ| = 8, |bi| = 2i+4 − 4, |µi| = 2i+4 and F is a direct sum of F2 in varying dimensions.

The proof of Theorem 2.3 involves a computation of the Adams E2-term

Es,t
2 = Exts,t

A
(H∗(bo ∧ tmf),F2) ⇒ πt−s(bo ∧ tmf)
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which, after applying a change-of-rings theorem and dualizing, becomes Exts,t
A (1)(F2, H∗ tmf). By

the argument immediately preceding Theorem 2.3, H∗ tmf ∼=
⊕

j≥0

⊕

0≤i≤j Σ
4i+8jH∗B1(j). In

particular

H∗ tmf ∼=
⊕

j≥0

⊕

0≤i≤j

Σ4i+8j
(
F1,j ⊕Qα(j),j−D

)

∼=
⊕

j≥0

⊕

0≤i≤j

Σ4i+8jQα(j),j−D ⊕
⊕

j≥0

⊕

0≤i≤j

Σ4i+8jF1,j

∼=
⊕

j≥0

⊕

0≤i≤j

Σ4i+8jQα(j),j−D ⊕
⊕

j≥0

F2,j

where F2,j =
⊕

0≤i≤j Σ
4i+8jF1,j can be regarded as the analog of F1,j for H∗B2(j). With this nota-

tion, the module F in Theorem 2.3 is given by F = Exts,t
A (1)(

⊕

j≥0 F2,j ,F2) ∼=
⊕

j≥0 F
dimA (1)(F2,j)
2 .

If we put f2,j = dimA (1)(F2,j), then

f2,j =

j
∑

i=0

dimA (1)(F1,j)

so that f2,j is the number of free A (1) summands in H∗B2(j) and {f2,j} is the sequence of partial
sums of {f1,j}. This partial sum pattern can be continued inductively, even though a geometric
interpretation of the relevant polynomial rings is lost for m ≥ 3 as we noted in Subsection 2.1.

Remark 2.5. As a result of (6), the Verschiebung homomorphism V : Nn(2
n+1k) →

⊕k
i=0 Nn−1(2

ni)
is an isomorphism of A (m)-modules for m ≤ n− 1. Since dimF2(Nℓ(k)) = rℓ(k) for all k ≥ 0, the
Verschiebung gives us another way of viewing Theorem 1.2.

Remark 2.6. While we have provided a method for counting the rank of the free A (1) summands
of (A ⊗A (m) F2)∗ for m ≥ 1, it would be desirable to determine the degree of the corresponding
generators. This will be the subject of future work.

3. Preliminary results on binary partitions

Let π = (n;α1, α2, . . .) denote the binary partition π of n with α1 the coefficient on 20, α2 the
coefficient on 21, etc., and let Pm(n) denote the set of all binary partitions π = (n;α1, α2, . . .) of n
satisfying the divisibility conditions given by (1), so that rm(n) = |Pm(n)|. We begin this section
by bifurcating Pm(n) according to whether or not a 1 appears as a part in a given partition. Define

Pm,1(n) = {π ∈ Pm(n) : α1 > 0},

Pm,0(n) = {π ∈ Pm(n) : α1 = 0}

so that Pm(n) = Pm,1(n)⊔Pm,0(n). We now divide Pm,0(n) into 2m+1 disjoint collections according
to whether αi is congruent to 0 or 2m+2−i modulo 2m+3−i for 2 ≤ i ≤ m+ 2. Let ε2, . . . , εm+2 be
a finite sequence of integers taking values in {0, 1}. If we define

P
ε2,...,εm+2

m,0 (n) = {π ∈ Pm,0(n) : αi ≡ εi2
m+2−i mod 2m+3−i, 2 ≤ i ≤ m+ 2}

then

Pm,0(n) =
⊔

εi∈{0,1}

P
ε2,...,εm+2

m,0 .
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Lemma 3.1. The map σ : P 0,0,...,0
m,0 (n) → Pm

(
n
2

)
defined by

σ : (n; 0, α2, α3, . . .) 7→
(n

2
;α2, α3 . . .

)

is a bijection.

Proof. A partition π = (n; 0, α2, α3, . . .) ∈ P 0,0,...,0
m,0 (n) satisfies 2m+3−i | αi for 2 ≤ i ≤ m + 2.

Therefore

σ(π) =
(n

2
;α2, α3, . . .

)

=
(n

2
;β1, β2, . . .

)

where 2m+2−i | αi+1 = βi for 1 ≤ i ≤ m+1, which implies σ(π) ∈ Pm

(
n
2

)
. If π′ =

(
n
2 ;α1, α2, . . .

)
∈

Pm

(
n
2

)
and we define σ−1 by

σ−1(π′) = (n; 0, α1, α2, . . .) = (n; 0, γ2, γ3, . . .)

we see that 2m+3−i | αi−1 = γi for 2 ≤ i ≤ m+2. Hence σ−1(π′) ∈ P 0,0,...,0
m,0 (n), and it follows from

the formulas for σ and σ−1 that σ ◦ σ−1 = 1P 0,0,...,0
m,0 (n) and σ−1 ◦ σ = 1Pm(n

2 )
. �

Lemma 3.2. If εi = 1 for some i, 2 ≤ i ≤ m+ 2, the map

τi : P
ε2,...,εi,...,εm+2

m,0 (n) → P
ε2,...,0,...,εm+2

m,0 (n− 2m+1)

defined by

τi : (n; 0, α2, α3, . . .) 7→ (n− 2m+1; 0, α2, . . . , αi − 2m+2−i, . . .)

is a bijection.

Proof. If εi = 1 and π = (n; 0, α2, α3, . . .) ∈ P
ε2,...,εi,...,εm+2

m,0 (n), then εi = 2m+2−i mod 2m+3−i,

which means αi − 2m+2−i ≡ 0 mod 2m+3−i. Hence τi(π) ∈ P
ε2,...,0,...,εm+2

m,0 (n − 2m+1). If π′ =

(n− 2m+1; 0, α2, α3, . . .) ∈ P
ε2,...,0,...,εm+2

m,0 (n− 2m+1) and we define τ−1
i by

τ−1
i (π′) = (n; 0, α2, . . . , αi + 2m+2−i, . . .) = (n; 0, β2, β3, . . .)

we see that βi = 2m+2−i mod 2m+3−i. Hence τ−1
i (π′) ∈ P

ε2,...,εi,...,εm+2

m,0 (n). It follows that τi ◦

τ−1
i = 1P ε2,...,εi,...,εm+2

m,0
and τ−1

i ◦ τi = 1
P

ε2,...,0,...,εm+2
m,0

. �

Lemma 3.3. The map τ1 : Pm,1(n) → Pm(n − 2m+1) defined by τ1 : (n;α1, α2, . . .) 7→ (n −
2m+1;α1 − 2m+1, α2, α3, . . .) is a bijection.

Proof. Let π = (n;α1, α2, . . .) ∈ Pm,1(n). Then 2m+1α1 ≥ 1, which implies α1 ≥ 2m+1. Hence

τ1(π) ∈ Pm(n − 2m+1. For π′ = (n− 2m+1, α1, α2, . . .) ∈ Pm(n − 2m+1), we may define τ−1
1 (π′) =

(n;α1 + 2m+1, α2, α3, . . .). �

Lemma 3.4. Suppose εi = 1 for indices 2 ≤ i1 < i2 < · · · < ik ≤ m+ 1 where k ≥ 0, and εi = 0
for all other i such that 2 ≤ i ≤ m+ 1.

(1) If either n ≡ 2m+1 mod 2m+2 and k is even, or n ≡ 0 mod 2m+2 and k is odd, then

P
ε2,...,εm+2

m,0 (n) = P
ε2,...,εm+1,1
m,0 (n), and the map

σ ◦ τi1 ◦ τi2 ◦ · · · ◦ τik ◦ τm+2 : P
ε2,...,εm+2

m,0 → Pm

(
n− (k + 1)2m+1

2

)

is a bijection.



10 SCOTT M. BAILEY AND DONALD M. LARSON

(2) If either n ≡ 2m+1 mod 2m+2 and k is odd, or n ≡ 0 mod 2m+2 and k is even, then

P
ε2,...,εm+2

m,0 (n) = P
ε2,...,εm+1,0
m,0 (n), and the map

σ ◦ τi1 ◦ τi2 ◦ · · · ◦ τik : P
ε2,...,εm+2

m,0 → Pm

(
n− k · 2m+1

2

)

is a bijection.

Proof. Let π = (n; 0, α2, α3, . . .) ∈ P
ε2,...,εm+2

m,0 (n). Since n =
∑

i≥1

αi · 2
i−1, we have

n ≡

m+2∑

i=1

αi · 2
i−1 mod 2m+2.

If i /∈ {i1, . . . , ik}, then αi · 2
i−1 ≡ 0 mod 2m+2, whereas if i ∈ {i1, . . . , ik}, then αi · 2

i−1 ≡ 2m+1

mod 2m+2. This implies 2m+1 ≡ n ≡ αi1 ·2
i1−1+· · ·+αik ·2

ik−1+αm+2·2
m+1 ≡ k·2m+1+αm+2·2

m+1

mod 2m+2. Thus, whether we assume that n ≡ 2m+1 mod 2m+2 and k is even, or that n ≡ 0
mod 2m+2 and k is odd, it follows that αm+2 must be odd, i.e., εm+2 must equal 1. An argument

similar to the proof of Lemma 3.2 shows that the map τm+2 : P
ε2,...,εm+1,1
m,0 (n) → P

ε2,...,εm+1,0
m,0 (n−

2m+1) defined by τm+2 : π 7→ (n − 2m+1; 0, α2, . . . , αm+2 − 1, . . .) is a bijection. Therefore, by
Lemmas 3.1 and 3.2, the map σ ◦ τi1 ◦ τi2 ◦ · · · ◦ τik ◦ τm+2 is a bijection between the indicated source
and target. This proves (1).

Note similarly that either pair of hypotheses in (2) forces P
ε2,...,εm+2

m,0 (n) = P
ε1,...,εm+1,0
m,0 (n).

Therefore, by Lemmas 3.1 and 3.2, the map σ ◦τi1 ◦τi2 ◦ · · ·◦τik is a bijection between the indicated
source and target. �

4. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. It is evident that rm(n) = 0 if 2m+1 ∤ n. Assume
2m+1 | n. We established in Section 3 that

Pm(n) = Pm,1(n) ⊔
⊔

i∈{0,1}

P
ε2,...,εm+2

m,0 .

Lemma 3.3 implies Pm,1(n) and Pm(n − 2m+1) are in bijective correspondence. This contributes
rm(n− 2m+1) to the total size of Pm(n).

It remains to obtain similar correspondences for the 2m+1 disjoint sets P
ε2,...,εm+2

m,0 (n) that com-

prise Pm,0(n). To do this, we divide into the two cases corresponding to the formulas given in
Theorem 1.1: n ≡ 2m+1 mod 2m+2 and n ≡ 0 mod 2m+2.

Suppose first that n ≡ 2m+1 mod 2m+2. If exactly 2j of the m− 1 superscripts ε2, . . . , εm+1 are
equal to 1, where 0 ≤ j ≤ ⌊m/2⌋, Lemma 3.4(1) implies P

ε2,...,εm+2

m,0 (n) and Pm((n−(2j+1)2m+1)/2)
are in bijective correspondence. Therefore, each such j contributes

(
m

2j

)

rm

(
n− (2j + 1)2m+1

2

)

to the total size of Pm(n). If exactly 2j + 1 of the superscripts ε2, . . . , εm+1 are equal to 1, where
0 ≤ j ≤ ⌊(m − 1)/2⌋, Lemma 3.4(2) implies P

ε2,...,εm+2

m,0 (n) and Pm((n − (2j + 1)2m+1)/2) are in
bijective correspondence. Therefore, each such j contributes

(
m

2j + 1

)

rm

(
n− (2j + 1)2m+1

2

)
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to the total size of Pm(n). Thus

rm(n) = rm(n− 2m+1) +

⌊m/2⌋
∑

j=0

(
m

2j

)

rm

(
n− (2j + 1)2m+1

2

)

+

⌊(m−1)/2⌋
∑

j=0

(
m

2j + 1

)

rm

(
n− (2j + 1)2m+1

2

)

= rm(n− 2m+1) +

⌊m/2⌋
∑

j=0

(
m+ 1

2j + 1

)

rm

(
n− (2j + 1)2m+1

2

)

by Pascal’s rule.
Next, suppose n ≡ 0 mod 2m+2. If exactly 2j of the superscripts ε2, . . . , εm+1 are equal to

1, where 0 ≤ j ≤ ⌊m/2⌋, Lemma 3.4(2) implies P
ε2,...,εm+2

0,m (n) and Pm((n − 2j · 2m+1)/2) are in
bijective correspondence. Therefore, each such j contributes

(
m

2j

)

rm

(
n− 2j · 2m+1

2

)

to the total size of Pm(n). If exactly 2j − 1 of the superscripts ε2, . . . , εm+1 are equal to 1, where
0 < j ≤ ⌊(m+1)/2⌋, Lemma 3.4(1) implies P

ε2,...,εm+2

0,m (n) and Pm((n−2j ·2m+1)/2) are in bijective
correspondence. Therefore, each such j contributes

(
m

2j − 1

)

rm

(
n− 2j · 2m+1

2

)

to the total size of Pm(n). Thus

rm(n) = rm(n− 2m+1) +

⌊m/2⌋
∑

j=0

(
m

2j

)

rm

(
n− 2j · 2m+1

2

)

+

⌊(m+1)/2⌋
∑

j=1

(
m

2j − 1

)

rm

(
n− 2j · 2m+1

2

)

= rm(n− 2m+1) +

⌊(m+1)/2⌋
∑

j=0

(
m+ 1

2j

)

rm

(
n− 2j · 2m+1

2

)

by Pascal’s rule.

5. Proof of Theorem 1.2

In this section, we show that rm(n) is a sequence of partial sums of rm−1(n) for m ≥ 0. It will
be convenient to have the following lemma, which identifies two special cases of Theorem 1.1.

Lemma 5.1. For m ≥ 0, rm−1(2
m) = m+ 1 and rm−1(2

m+1) = 2m+ 2 +
(
m
2

)
.

Let Sm(n) =

n/2m+1

∑

k=0

rm−1(2
mk). Then Sm(0) = rm(0) = 1. It therefore suffices to show that

Sm(n) obeys the recursive formula for rm(n) given in Theorem 1.1.
Suppose n ≡ 2m+1 mod 2m+2. Let n = 2m+2n′+2m+1. We shall use induction on n′. The base

case n′ = 0 holds since, by Lemma 5.1,

Sm(2m+1) =

1∑

k=0

rm−1(2
mk) = rm−1(0) + rm−1(2

m) = 1 +m+ 1 = m+ 2
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while

Sm(2m+1 − 2m+1) +

⌊m/2⌋
∑

j=0

(
m+ 1

2j + 1

)

Sm

(
2m+1 − (2j + 1)2m+1

2

)

= (m+ 2)Sm(0) = m+ 2.

Assume that, for a fixed n′ ≥ 0,

Sm(2m+2n′ + 2m+1) = Sm(2m+2n′) +

⌊m/2⌋
∑

j=0

(
m+ 1

2j + 1

)

Sm

(
2m+2n′ + 2m+1 − (2j + 1)2m+1

2

)

.

Then

Sm(2m+2(n′ + 1) + 2m+1) =

2n′+3∑

k=0

rm−1(2
mk)

= Sm(2m+2n′ + 2m+1)
︸ ︷︷ ︸

A

+ rm−1(2
m(2n′ + 2))

︸ ︷︷ ︸

B

+ rm−1(2
m(2n′ + 3))

︸ ︷︷ ︸

C

.

We know an expression for A by hypothesis. By Theorem 1.1,

B = rm−1(2
m(2n′ + 2)− 2m) +

⌊m/2⌋
∑

j=0

(
m

2j

)

rm−1

(
2m(2n′ + 2)− 2j · 2m

2

)

= rm−1(2
m(2n′ + 1)) +

⌊m/2⌋
∑

j=0

(
m

2j

)

rm−1(2
m(n′ − j + 1))

and

C = rm−1(2
m(2n′ + 3)− 2m) +

⌊(m−1)/2⌋
∑

j=0

(
m

2j + 1

)

rm−1

(
2m(2n′ + 3)− (2j + 1)2m

2

)

= rm−1(2
m(2n′ + 2)) +

⌊(m−1)/2⌋
∑

j=0

(
m

2j + 1

)

rm−1(2
m(n′ − j + 1)),

which implies

B + C =

2n′+2∑

k=2n′+1

rm−1(2
mk) +

⌊m/2⌋
∑

j=0

((
m

2j

)

+

(
m

2j + 1

))

rm(2m(n′ − j + 1))

=
2n′+2∑

k=2n′+1

rm−1(2
mk) +

⌊m/2⌋
∑

j=0

(
m+ 1

2j + 1

)

rm(2m(n′ − j + 1)).
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It follows from the induction hypothesis that

Sm(2m+2(n′ + 1) + 2m+1) = A+B + C

= Sm(2m+2n′ + 2m+2) +

⌊m/2⌋
∑

j=0

(
m+ 1

2j + 1

)

Sm(2m+1(n′ − j + 1))

= Sm(2m+2(n′ + 1))

+

⌊m/2⌋
∑

j=0

(
m+ 1

2j + 1

)

Sm

(
2m+2(n′ + 1) + 2m+1 − (2j + 1)2m+1

2

)

.

Next, suppose n ≡ 0 mod 2m+2. Let n = 2m+2n′. We shall use induction on n′. The base case
n′ = 1 holds since, by Lemma 5.1,

Sm(2m+2) =

2∑

k=0

rm−1(2
mk) = rm−1(0) + rm−1(2

m) + rm−1(2
m+1) = 3m+ 4 +

(
m

2

)

while

Sm(2m+2 − 2m+1) +

⌊(m+1)/2⌋
∑

j=0

(
m+ 1

2j

)

Sm

(
2m+2 − 2j · 2m+1

2

)

= Sm(2m+1) +

⌊(m+1)/2⌋
∑

j=0

(
m+ 1

2j

)

Sm(2m+1(1− j))

= 2Sm(2m+1) +

(
m+ 1

2

)

Sm(0)

= 2(rm−1(0) + rm−1(2
m)) +

(
m+ 1

2

)

= 2m+ 4 +

(
m+ 1

2

)

= 3m+ 4 +

(
m

2

)

.

Assume that, for a fixed n′ ≥ 1,

Sm(2m+2n′) = Sm(2m+2n′ − 2m+1) +

⌊(m+1)/2⌋
∑

j=0

(
m+ 1

2j

)

Sm

(
2m+2n′ − 2j · 2m+1

2

)

.

Then

Sm(2m+2(n′ + 1)) =

2n′+2∑

k=0

rm−1(2
mk)

= Sm(2m+2n′)
︸ ︷︷ ︸

A

+ rm−1(2
m(2n′ + 1))

︸ ︷︷ ︸

B

+ rm−1(2
m(2n′ + 2))

︸ ︷︷ ︸

C

.
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We know an expression for A by hypothesis. By Theorem 1.1,

B = rm−1(2
m(2n′ + 1)− 2m) +

⌊(m−1)/2⌋
∑

j=0

(
m

2j + 1

)

rm−1

(
2m(2n′ + 1)− (2j + 1)2m

2

)

= rm−1(2
m(2n′)) +

⌊(m−1)/2⌋
∑

j=0

(
m

2j + 1

)

rm−1(2
m(n′ − j))

and

C = rm−1(2
m(2n′ + 2)− 2m) +

⌊m/2⌋
∑

j=0

(
m

2j

)

rm−1

(
2m(2n′ + 2)− 2j · 2m

2

)

= rm−1(2
m(2n′ + 1)) +

⌊m/2⌋
∑

j=0

(
m

2j

)

rm−1(2
m(n′ − j + 1)).

After a change of indexing variable in the sum appearing in B, we obtain

B + C =

2n′+1∑

k=2n′

rm−1(2
mk) +

⌊(m+1)/2⌋
∑

j=0

((
m

2j − 1

)

+

(
m

2j

))

rm−1(2
m(n′ − j + 1))

=

2n′+1∑

k=2n′

rm−1(2
mk) +

⌊(m+1)/2⌋
∑

j=0

(
m+ 1

2j

)

rm−1(2
m(n′ − j + 1)).

It follows from the induction hypothesis that

Sm(2m+2(n′ + 1)) = A+B + C

= Sm(2m+2n′ + 2m+1) +

⌊(m+1)/2⌋
∑

j=0

(
m+ 1

2j

)

Sm(2m+1(n− j + 1))

= Sm(2m+2(n′ + 1)− 2m+1) +

⌊(m+1)/2⌋
∑

j=0

(
m+ 1

2j

)

Sm

(
2m+2(n′ + 1)− 2j · 2m+1

2

)

.

This concludes the proof of Theorem 1.2.
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