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HOMOLOGICAL SUPPORT OF BIG OBJECTS

IN TENSOR-TRIANGULATED CATEGORIES

by Paul Balmer

Abstract. — Using homological residue fields, we define supports for big objects in tensor-
triangulated categories and prove a tensor-product formula.

Résumé (Support homologique des grands objets dans les catégories triangulées tensorielles)
À l’aide des corps résiduels homologiques, nous définissons le support des grands objets

dans les catégories triangulées tensorielles et prouvons une formule pour le support du produit
tensoriel.
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1. Introduction

1.1. Hypothesis. — Let T be a ‘big’ tensor-triangulated category, meaning a rigidly-
compactly generated one, as in [BF11]. So T admits small coproducts; its subcate-
gory Tc of compact objects coincides with that of rigid (strongly-dualizable) objects;
Tc is essentially small and generates T as a localizing subcategory.

Here are our main results. Explanations are given after the statement.
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1070 P. Balmer

1.2. Theorem (Section 4). — One can assign to every object X of T a subset Supp(X)

of the homological spectrum Spch(Tc) of [Bal20], with the following properties:

(a) For every compact x ∈ Tc, this support agrees with the usual one in Spc(Tc),
as in [Bal05]. In particular Supp(0) = ∅ and Supp(1) = Spch(Tc).

(b) For every family {Xi}i∈I in T, we have Supp(
⊔
i∈I Xi) =

⋃
i∈I Supp(Xi).

(c) For every exact triangle X → Y → Z → ΣX in T, we have Supp(Z) ⊆
Supp(X) ∪ Supp(Y ). Moreover Supp(ΣX) = Supp(X).

(d) The Tensor-Product Formula holds: for every X,Y ∈ T we have

Supp(X ⊗ Y ) = Supp(X) ∩ Supp(Y ).

In order to appreciate the homological spectrum Spch(Tc), in which our support
theory takes its values, let us give some context.

Big tt-categories T are used across homotopy theory, algebraic geometry and rep-
resentation theory. They appear as ‘unital algebraic stable homotopy categories’
in [HPS97]. More recent examples include derived categories of motives and stable
A1-homotopy categories. Symmetric monoidal presentable stable∞-categories [Lur17]
provide another possible source of examples.

In all cases, the optimal support theory on the essentially small subcategory Tc of
compact objects is the one borne by the triangular spectrum Spc(Tc) of [Bal05]. This
space Spc(Tc) is now known in many examples; see the survey [Bal19]. On the other
hand, it is not clear how to properly define the support of non-compact objects in
general. This is the problem we want to address here.

In the famous BIK series [BIK08, BIK11b, BIK11a, BIK12b, BIK12a], Benson,
Iyengar and Krause approach the question via a deus ex machina: They assume the
existence of a noetherian ring R acting nicely on T. Then BIK define a support theory
with values in Spec(R) and prove many strong results, that apply particularly well to
the representation theory of finite groups over fields. However the BIK setup is some-
what restrictive. Unsurprisingly, it does not cover derived categories of non-noetherian
schemes – but who cares about non-noetherian schemes? The real drawback is that
some very reasonable tt-categories T are not stratified by any noetherian ring R.
Even in representation theory of finite groups, replacing the field of scalars by a com-
mutative ring (like Z) sends the deus reeling in the machina, as discovered by BIK
themselves in [BIK13]. More importantly, topologists have long known that the chro-
matic tower of the stable homotopy category SH is not a noetherian phenomenon.
And SH is the initial tt-category: What happens in SH has repercussions throughout
the field. So the general problem remains wide open and important, beyond the BIK
setting.

In the joint work with Favi [BF11] and in Stevenson [Ste13], the spectrum of the
BIK ring R is replaced by the more canonical Spc(Tc). A support for big objects was
proposed in [BF11] but we could not prove the Tensor-Product Formula for it. So,
among the properties listed in Theorem 1.2, the most remarkable is probably (d).
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Homological support in big tt-categories 1071

In recent years, new tools have emerged, among which the homological residue fields
of [BKS19, Bal20]. These consist of homological tensor-functors

(1.3) hB : T −→ AB

from our big tt-category T to various tensor-abelian categories AB. The parame-
ter B lives in the aforementioned homological spectrum Spch(Tc) and the abelian
categories AB are ‘simple’ (Remark 3.4), as one would expect of the category of vec-
tor spaces over a field, for instance. We review this material in Recollection 3.1. For
now, suffice it to say that these functors hB are abstract versions of:

– ordinary residue fields in algebraic geometry,
– Morava K-theories in homotopy theory,
– cyclic shifted subgroups and π-points in modular representation theory.

They also give rise to a Nilpotence Theorem [Bal20, Th. 1.1]. In summary, the
homological spectrum Spch(Tc) and the residue fields hB have a life of their own:
They were not invented for the sake of the present paper. This homological spec-
trum Spch(Tc) is also very close to the triangular one. Indeed there is a map

(1.4) φ : Spch(Tc) −→−→ Spc(Tc)

that is always surjective and actually bijective in all known examples, see [Bal20, §5].
So in first approximation, the reader can think of Spch(Tc) as equal to the more
familiar triangular spectrum Spc(Tc) of compact objects. In second approximation,
the appendix gives a reformulation of injectivity of φ. (This also explains the meaning
of ‘agreement on compacts’ in Theorem 1.2 (a); see details in Proposition 4.4.)

Following the sibylline suggestion of [Bal20, Rem. 4.6], it is tempting to define the
support of every big object X in T as the following subset of Spch(Tc)

(1.5)
{
B ∈ Spch(Tc)

∣∣hB(X) 6= 0
}
.

This ‘naive’ support is almost the right thing to do. It will work fine for small ob-
jects and for ring objects but it might still fail the Tensor-Product Formula. Our
construction ends up being one notch more involved.

To explain how Supp(X) is constructed, we need to know a little more about
the homological residue fields hB of (1.3) and their target categories AB. In such a
‘residue’ Grothendieck category AB, the subcategory of finitely presented objects Afp

B

has only 0 and A
fp
B as Serre ⊗-ideals (Remark 3.4) but a similar property for the big

category AB is not known to be true, nor is it really expected. However, AB admits
a unique maximal localizing ⊗-ideal (Theorem 3.11). Our definition of the support of
an object X in T is the collection of those B in Spch(Tc) where X does not belong to
that unique maximal localizing ⊗-ideal.

One can make this more explicit in terms of T. In AB, the ⊗-unit 1 admits an
injective hull, EB = hB(EB), that comes via hB from a canonical pure-injective
object EB in T. One has hB(X) = 0 if and only if X⊗EB = 0. So the ‘naive’ support

J.É.P. — M., 2020, tome 7



1072 P. Balmer

of (1.5) is
{
B
∣∣X ⊗ EB 6= 0

}
. Our support is defined as

(1.6) Supp(X) =
{
B ∈ Spch(Tc)

∣∣ [X,EB] 6= 0
}
,

where [−,−] stands for the internal-hom in T. It is a subset of the naive support.
When given a support theory, it is natural to wonder whether Supp(X) = ∅ implies

X = 0. We point out that there is no hope for such a result in our glorious generality,
if one wants the Tensor-Product Formula. Indeed, if T contains a non-zero object X
such that X⊗X = 0 then Supp(X) must be empty by (d). Following Neeman [Nee00],
Dwyer-Palmieri [DP08, Th.B] give examples of such X 6= 0 with X⊗X = 0 in derived
categories T = D(R) of commutative rings R. The Brown-Comenetz dual of the sphere
is another example of such an object X in T = SH itself, see [HS99, §7].

Things are a little nicer with ring objects, as we now explain.

1.7. Definition. — We say that an object A in T with a map η : 1→ A (its ‘unit’) is a
weak ring if A⊗η : A→ A⊗A is a split monomorphism (whose retraction A⊗A→ A

can be thought of as a unital non-associative multiplication on A).

Of course, actual ring objects are weak rings. The pure-injective objects EB dis-
cussed above are weak rings as well, although they are not known to be rings in
general. We then prove in Theorem 4.7:

1.8. Theorem. — For all (weak) rings A, the support coincides with the naive support

Supp(A) =
{
B ∈ Spch(Tc)

∣∣hB(A) 6= 0
}
.

Furthermore, if Supp(A) = ∅ then A = 0.

In other words, our support theory is particularly effective for (weak) rings. As an
application, we revisit the problem of determining the image of the map of spectra
induced by a tt-functor, see [Bal18]. Let F : T → S be a tensor-triangulated functor
admitting a right adjoint U : S → T. Note that F restricts to compact-rigid objects
F : Tc → Sc. As U is lax-monoidal, U(1S) is a ring object in T. In [Bal18], it is shown
that when U(1) is compact then supp(U(1)) in Spc(Tc) coincides with the image of
the map Spc(Sc) → Spc(Tc) induced by F . However, this assumption that the right
adjoint U maps 1 to a compact object is very, very restrictive. We prove here an
unconditional generalization:

1.9. Theorem (Theorem 5.12). — As above, let F : T → S be a tt-functor between ‘big’
tt-categories, with right-adjoint U : S → T. Then the image of the map Spch(F ) :

Spch(Sc) → Spch(Tc) is exactly the support Supp(U(1)) of the ring object U(1).
Consequently, the image of Spc(F ) : Spc(Sc)→ Spc(Tc) is φ(Supp(U(1))).

Acknowledgements. — I am very thankful to Greg Stevenson for his comments, and
in particular for catching an excessively enthusiastic claim in a previous version of
this work. I also thank the referee for useful suggestions.
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2. Yoneda and modules

Many readers can safely skip this section and refer back to it as needed, especially
those familiar with the module category

A := Mod-Tc = Add((Tc)op,Ab)

of additive contravariant functors from Tc to abelian groups.

2.1. Recollection. — The abelian category A = Mod-Tc is a Grothendieck category,
whose subcategory of finitely presented objects Afp = mod-Tc coincides with the
Freyd envelope of Tc ([Nee01, Chap. 5]). The (restricted) Yoneda embedding h

Tc
� � h //
� _

��

mod-Tc = Afp
� _

��

T
h // Mod-Tc = A

is defined by h(X) = X̂ where X̂ = HomT(−, X)|Tc . This functor h : T → A is
homological (maps distinguished triangles to exact sequences), preserves coproducts
and is universal among those ([Kra00, Cor. 2.4]). It is also conservative.

Restricted-Yoneda h is fully faithful on Tc, and identifies the latter with finitely
presented projective objects in A. Every (big) object M ∈ A is a filtered colimit of
finitely presented objects. (Indeed A is locally coherent; see [BKS20, A.7].) Also, every
object M ∈ A is a quotient of a coproduct

⊔
i∈I x̂i of rigid-compact objects xi ∈ Tc.

For an object P =
⊔
i∈I xi with all xi ∈ Tc (or a summand of such a coproduct) and

for Y ∈ T arbitrary, restricted-Yoneda yields an isomorphism

(2.2) h : HomT(P, Y )
∼−→ HomA(P̂ , Ŷ ).

Hence all projectives in A are P̂ for P a summand of some
⊔
i∈I xi with all xi ∈ Tc.

The category A also has enough injectives and they also come from T. By [Kra00],
they are all of the form Ê for a unique E ∈ T, called a pure-injective. For every
object X and every pure-injective E in T, restricted-Yoneda gives an isomorphism

(2.3) h : HomT(X,E)
∼−→ HomA(X̂, Ê).

2.4. Recollection. — An essential feature of the module category is its tensor prod-
uct, obtained by Day convolution, and discussed in [BKS20, App.A]. This tensor
is colimit-preserving in each variable, in particular it is right-exact. It makes the
restricted-Yoneda functor (not just the part on Tc) into a tensor functor h : T → A

and every object in the image of T is ⊗-flat, i.e., X̂ ⊗− is exact for all X ∈ T.
As a consequence of this, all projective objects of A and, perhaps more remarkably,

all injective objects of A are ⊗-flat.
By general Grothendieck-category theory A is then closed monoidal, i.e., it admits

an internal-hom functor [−,−]A : Aop×A−→A. Beware that h might not be a closed
functor but one can easily upgrade (2.3) into an isomorphism

(2.5) h([X,E]T) ∼= [X̂, Ê]A

J.É.P. — M., 2020, tome 7



1074 P. Balmer

for every X,E ∈ T with E pure-injective, by testing via HomA(ĉ,−) with c ∈ Tc and
using that h is a tensor functor.

2.6. Recollection. — Let C in A be a localizing subcategory (i.e., closed under
coproducts, extensions, subobjects and quotients). We have a Gabriel quotient A/C

(2.7)

A

QC
����

A/C

� ?
RC

OO

where QC is the universal exact functor with kernel C, its right adjoint RC is fully-
faithful and QC ◦RC

∼= IdA/C. We shall only consider subcategories C that are ⊗-ideal
(A⊗ C ⊆ C), in which case A/C inherits a unique tensor structure such that QC is a
tensor functor. When C is clear from the context, we often write X instead of QC(X̂)

for X ∈ T. We also write AC (or just A) for A/C and

(2.8) hC : T−→AC = A/C

for the composite QC ◦ h, a coproduct-preserving cohomological tensor-functor.

Those quotients A/C inherit a number of properties that hold for A.

2.9. Proposition. — With notation as in Recollection 2.6, we have:
(a) The Gabriel quotient A = A/C is a Grothendieck category, that is closed

monoidal. Its tensor product preserves colimits in each variable.
(b) Every X ∈ T has ⊗-flat image X = QC(X̂) in A. If x ∈ Tc then x is rigid.
(c) Every object of A is a quotient of a coproduct

⊔
i∈I xi with all xi ∈ Tc.

(d) Every injective object of A is of the form E for some pure-injective E in T,
uniquely characterized by the property Ê ∼= RC(E) in A. In particular, E is ⊗-flat.
Furthermore, hC : T → A induces, for every X ∈ T, an isomorphism

HomT(X,E)
∼−→ HomA(X,E).

(e) The right adjoint RC : A → A is lax-monoidal and closed; more precisely for
every M ∈ A and N ∈ A, if we denote by [−,−] the internal-homs, we have

[M,RC(N)]A ∼= RC([QC(M), N ]A).

(f) For every injective E in A, the internal-hom [−, E]A : A
op → A is exact.

Proof. — These claims follow from [BKS20, App.A] and [BKS19, §2&App.A]. Let
us prove (f), for [BKS19, Lem. 2.8] is only stated for A. We have

[−, E]A ◦QC = [QC(−), E]A
∼= QCRC([QC(−), E]A) ∼=

(e)
QC ◦ [−, RC(E)]A

and the latter is exact by [BKS19, Lem. 2.8], since RCE is injective in A itself. As pre-
composition with QC detects exactness for functors on A, we get the result. �

J.É.P. — M., 2020, tome 7



Homological support in big tt-categories 1075

2.10. Remark. — Note that Σ: T → T induces an auto-equivalence Σ: A→ A which
is isomorphic to h(Σ1)⊗−. Hence all our ⊗-ideals C in A are stable under Σ and all
quotients inherit a suspension Σ: AC

∼−→ AC such that QCΣ ∼= ΣQC.

An important construction is the one of [BKS19, §3], slightly generalized:

2.11. Construction. — For C ⊆ A localizing ⊗-ideal, the injective hull of 1 in AC

comes from hC, by Proposition 2.9 (d). So there exists a morphism

ηC : 1 −→ EC

in T such that ηC = hC(ηC) : 1 // // EC is the injective hull. It is characterized by
RC(EC) ∼= ÊC in A. Since EC is flat and injective, EC ⊗ ηC is a split monomorphism
in AC, hence by Proposition 2.9 (d) again, the retraction exists in T, meaning that
(EC, ηC) is a weak ring in T in the sense of Definition 1.7.

2.12. Recollection. — A particular class of localizing ⊗-ideals C ⊆ A are those
generated by Serre ⊗-ideals B ⊆ Afp = mod-Tc of finitely presented objects (where
⊗-ideal only means Afp ⊗ B ⊆ B of course). Explicitly C = Loc(B) is the smallest
localizing subcategory containing B, which is then automatically ⊗-ideal in A. In some
notation, typically in indices, we drop the ‘Loc’ part and write only B, like for instance
with the canonical cohomological tensor-functor (2.8):

(2.13) hB : T−→AB := A/Loc(B).

Similarly, EB means ELoc(B) as in Construction 2.11 for C = Loc(B).

Under these additional assumptions, we know more than in Proposition 2.9:

2.14. Proposition. — With notation as in Recollection 2.12, we have:
(a) The Grothendieck category AB is still locally coherent. Its finitely presented

objects Afp = Afp/B coincide with the Gabriel quotient of Afp by B.
(b) We can recover B and Loc(B) from the pure-injective weak ring EB of Con-

struction 2.11, as B =
{
M ∈ Afp

∣∣ ÊB ⊗M = 0
}
and Loc(B) = Ker(ÊB ⊗−).

(c) Every subobject of a finitely presented object in AB is the colimit of its finitely
presented subobjects. In particular, if I // // 1 in AB then I = colim

f.p.M // // I
M .

Proof. — All this is in [BKS19, §3]. �

We shall need the following general observation.

2.15. Lemma. — Let E be an injective object in A. Then the subcategory Ker[−, E]A ={
M ∈ A

∣∣ [M,E]A = 0
}
is a localizing ⊗-ideal of A.

Proof. — This kernel Ker[−, E]A is a localizing (in particular, Serre) subcategory
because the internal-hom functor [−, E]A turns coproducts into products and is exact
by Proposition 2.9 (f) (or [BKS19, Lem. 2.8]). This kernel is closed under tensoring
since [M ⊗N,E]A ∼= [M, [N,E]A]A vanishes if [N,E]A does. �

2.16. Remark. — The same statement holds in any AC, with a similar proof.

J.É.P. — M., 2020, tome 7



1076 P. Balmer

3. Maximal localizing tensor-ideals

We recall the homological spectrum Spch(Tc) and prove that every prime B ∈
Spch(Tc) is contained in a unique maximal localizing ⊗-ideal (Theorem 3.11).

3.1. Recollection. — The homological spectrum Spch(Tc) consists of all maximal
Serre ⊗-ideals B of the abelian subcategory Afp = mod-Tc of finitely presented
Tc-modules. We call those B the homological primes of T. Note that they only depend
on the subcategory Tc. For each B ∈ Spch(Tc), its preimage in Tc under Yoneda

φ(B) = h
−1(B) ∩ Tc =

{
x ∈ Tc

∣∣ x̂ ∈ B
}

is a (triangular) prime ideal in Tc. This defines a surjection φ : Spch(Tc)→→ Spc(Tc)

by [Bal20, Cor. 3.9]. Each B ∈ Spch(Tc) yields a coproduct-preserving homological
tensor-functor hB : T → AB = A/Loc(B) as in (2.13).

3.2. Examples. — A list of examples of big tt-categories appears in [HPS97, §1.2].
We said in the introduction that the functors hB provide an abstract form, for any

big tt-category, of ordinary residue fields in algebraic geometry, of Morava K-theories
in stable homotopy theory and of π-points in modular representation theory. In fact
the hB improve those examples in that they are always tensor functors (i.e., sym-
metric monoidal functors) whereas the functors induced by Morava K-theories are
sometimes not symmetric monoidal (at the prime 2) and π-points almost never are.
(Also, π-points are only well-defined up to some notion of equivalence whereas the hB

are intrinsical. And the hB always give us a Nilpotence Theorem, which was not known
with π-points.) See further details in [Bal20, §5].

Now, it is one thing to know that φ is a bijection Spch(Tc)
∼−→ Spc(Tc) and thus to

know ‘how many’ homological primes B there are in the many examples listed above.
It is another thing to describe the functors hB and the weak rings EB in T in concrete
terms. These descriptions appear in a separate work [BC20].

3.3. Remark. — A puzzling feature of the examples treated in [Bal20] is that in all
cases φ is a bijection. We do not know how general that is but we translate this
property in relatively down-to-earth terms in Theorem A.1, in the appendix.

3.4. Remark. — The maximality of B ∈ Spch(Tc) among the Serre ⊗-ideals of Afp

tells us that A
fp
B is ‘simple’: it has only the two trivial Serre ⊗-ideals, zero and A

fp
B .

(See Recollection 2.12 if necessary.) Simplicity has the following consequence.

3.5. Proposition. — Let B ∈ Spch(Tc) and A ∈ AB be a weak ring (Definition 1.7)
that is ⊗-flat, like A = E for some weak ring E ∈ T. Then either A = 0 or its unit is
a monomorphism 1 // // A.

Proof. — This is a basic trick in the proof of the Nilpotence Theorem [Bal20]. Con-
sider the exact sequence Ker(η) // // 1

η−→ A in AB. Since A is flat and A ⊗ η is a
(split) monomorphism, we have A ⊗ Ker(η) = 0. Suppose that Ker(η) 6= 0 and let
us show that A = 0. By Proposition 2.14 (c), we know that Ker(η) is the colimit of

J.É.P. — M., 2020, tome 7



Homological support in big tt-categories 1077

its finitely presented subobjects. Take a finitely presented M 6= 0 with M // // Ker(η).
By flatness of A and A⊗Ker(η) = 0, we see that A⊗M = 0. Hence Ker(A⊗−)∩Afp

B

is a non-zero Serre (by flatness) ⊗-ideal of Afp
B . As Afp

B is ‘simple’ (Remark 3.4) this
forces Ker(A⊗−) ∩A

fp
B = A

fp
B to contain 1, giving A = 0. �

3.6. Remark. — During the year the author spent in Bielefeld working with Krause
and Stevenson on [BKS19], we hesitated between maximal Serre ⊗-ideals B ⊂ Afp

and maximal localizing ⊗-ideals C ⊂ A. We opted for the finitely presented ones for
the extra properties of Proposition 2.14, that turned out to be useful in [BKS19] and
later in the proof of the Nilpotence Theorem [Bal20]. It remains an open question
to relate the two notions. Let us first see that every localizing ⊗-ideal bigger than a
homological prime has the ‘same’ pure-injective weak ring EB.

3.7. Proposition. — Let B ∈ Spch(Tc) and C ⊂ A be a proper localizing ⊗-ideal,
containing B or equivalently containing Loc(B). Let EB and EC be the correspond-
ing weak rings of Construction 2.11. Then there is an isomorphism EB ' EC in T

compatible with the unit maps 1→ EB and 1→ EC.

Proof. — Since Loc(B) ⊆ C, we can perform the Gabriel quotient A/C in two steps:

A

QB
����

QC

�� ��

ÊC

AB

� ?

RB

OO

Q
����

Ẽ

_

OO

AC

� ?
R

OO

� 1

RC

]]

EC

_

OO

for an intermediate Gabriel localization Q a R. Let Ẽ := R(EC) the injective object
in AB associated to the injective hull 1 // // EC in AC. By construction of EC ∈ T, we
have ÊC

∼= RC(EC) ∼= RB(Ẽ) and therefore Ẽ ∼= QB(ÊC) = hB(EC). Since EC is a
weak ring in T, its image Ẽ is a weak ring inAB, that is non-zero sinceQ(Ẽ) ∼= EC 6= 0.
By Proposition 3.5, the unit hB(ηC) : 1 // // Ẽ is therefore a monomorphism in AB.
On the other hand, hB(ηB) : 1 // // EB is by definition the injective hull of 1 in AB.
Hence there exists a commutative diagram in AB

(3.8)
1 //

hB(ηB)
//

&&

hB(ηC)
&&

EB
��

∃ϕ
��

Ẽ

where ϕ is a split monomorphism. Applying the exact functor Q to this diagram and
using that Q(Ẽ) = EC is the injective hull of 1 in AC, we see that Q(ϕ) must be an
isomorphism. In summary, Ẽ ∼= EB ⊕N in AB for an object N such that Q(N) = 0.
But since Ẽ = R(EC) and R is fully faithful, this forces the object N to be in the
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image of R as well (it is ‘R-local’). It follows that N ∼= RQ(N) = 0. Therefore ϕ is
already an isomorphism EB ' Ẽ ' R(EC) in AB. By Proposition 2.9 (d) (applied to
A = A/Loc(B)) the isomorphism ϕ in (3.8) comes from T and is compatible with the
units there. �

3.9. Remark. — Recall from Proposition 2.14 (b) that Loc(B) = Ker(ÊB⊗−). What
Proposition 3.7 tells us is that a strictly larger localizing ⊗-ideal Loc(B) ( C ( A will
share the same pure-injective weak ring EC = EB and in particular cannot be equal
to Ker(ÊC⊗−). On the other hand, we saw in Lemma 2.15 that there is another way
of constructing a localizing ⊗-ideal. Let us compare them.

3.10. Proposition. — Let C ⊂ A be a localizing ⊗-ideal and EC the associated weak
ring (Construction 2.11). Then we have Ker(ÊC ⊗−) ⊆ C ⊆ Ker([−, ÊC]).

Proof. — The first inclusion can be found in [BKS19]: Every M ∈ A admits an
injective hull, say M // // F , with F necessarily ⊗-flat (Recollection 2.4). Suppose
that ÊC ⊗M = 0. Down in AC, tensoring M // // F with ηC : 1 // // EC we see that
EC ⊗M = 0 forces M = 0. For the second inclusion, we have by Proposition 2.9 (e)

[−, ÊC]A ∼= [−, RC(EC)]A ∼= RC

(
[QC(−), EC]AC

)
.

It follows that C, which is Ker(QC), is contained in Ker([−, ÊC]A) as claimed. �

We have made all the preparation for the following result.

3.11. Theorem. — Under Hypothesis 1.1, let B ∈ Spch(Tc) be a maximal Serre ⊗-ideal
of Afp. Let EB be its associated weak ring in T (Construction 2.11) and

(3.12) B′ = Ker([−, ÊB]) =
{
M ∈ Mod-Tc

∣∣ [M, ÊB] = 0
}
,

where [−,−] denotes the internal-hom functor in A = Mod-Tc (see Lemma 2.15).
Then B′ ( A is a maximal localizing ⊗-ideal such that B′ ∩ Afp = B. Furthermore,
B′ is the unique maximal localizing ⊗-ideal containing B.

Proof. — We have seen in Lemma 2.15 that such B′ is indeed a localizing ⊗-ideal.
As η̂B : 1̂→ ÊB is non-zero, B′ is certainly proper. It contains B by Proposition 3.10.

To show both that B′ is maximal and unique, it suffices to show that if C ( A

is a localizing ⊗-ideal that contains B then C ⊆ B′. To see this, note that in that
case EB ' EC by Proposition 3.7. Using Proposition 3.10 again, we conclude that
C ⊆ Ker([−, ÊC]) = Ker([−, ÊB]) = B′ as claimed. �

We can easily compare the respective residue functors of B and B′.
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3.13. Proposition. — Let B∈Spch(Tc) be a homological prime and B′=Ker([−, ÊB])

the maximal localizing ⊗-ideal of Theorem 3.11. We have a commutative diagram

(3.14)
T

h //

hB

&&

hB′ --

A
QB

// //

QB′

"" ""

AB

Q
����

AB′

where Q : AB →→ AB′ is the quotient of AB by its unique maximal localizing ⊗-ideal.
In particular, the only localizing ⊗-ideals of AB′ are zero and AB′ .

Proof. — By Theorem 3.11, the maximal localizing ⊗-ideal B′ is the unique one
containing B. The Gabriel quotient AB′ of A by B′ can then be done in two steps,
first by Loc(B), giving us AB, and then by the maximal localizing ⊗-ideal of AB. �

3.15. Remark. — We must confess that we do not know of an example where B′ 6=
Loc(B), i.e., where the above Q is not an equivalence. So it is possible that the
construction of Theorem 3.11 simply sends B ∈ Spc(Tc) to Loc(B). This would come
as a surprise to the author though.

3.16. Remark. — Here are some possible misconceptions:
(a) Perhaps when 1 generates Tc as a triangulated category, we can forget the

tensor and all localizing subcategories in A = Mod-Tc are automatically ⊗-ideal?
(b) Perhaps the maximal localizing subcategories are automatically ⊗-ideal, i.e.,

perhaps maximal localizing ⊗-ideals are also maximal localizing?
(c) Perhaps in those residue fields AB or AB′ every object is a sum of spheres

(suspensions of the unit, or invertible objects)?
There are implications between those claims. Unfortunately, they are all false, as

the following example will show.

3.17. Example. — Let p > 5 be a prime number, Cp the cyclic group of order p
and k a field of characteristic p. Let T = Stab(kCp) be the stable module category of
kCp-modules modulo projectives. This is an ‘exotic’ tt-field of [BKS19]. The ⊗-unit
1 = k generates Tc and all big objects are coproducts of compacts, although not
only of ⊗-invertibles (for p 6= 2, 3). This category T is pure semi-simple, meaning
for instance that h : T ↪→ A is fully faithful, or that all objects are pure-injective.
The only possible EB or EB′ is 1. This shows that the only proper Serre ⊗-ideal
of Afp and the only proper localizing ⊗-ideal of A are zero. Pretty fieldy... Yet, under
kCp ∼= k[t]/tp, if we write 〈i〉 for the indecomposable object k[t]/ti, then one can show
that the map t· : 〈2〉 → 〈2〉 is seen as zero by 1 = 〈1〉 and Σ(1) = 〈p − 1〉. In other
words, the homological functor H = Hom•T(〈1〉,−) is not faithful. In particular, its
kernel defines a non-zero proper Serre subcategory of Afp, that cannot be tensor-ideal.
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4. Support for big objects

We come to the central definition of this paper. See Recollection 3.1 for Spch(Tc).

4.1. Definition. — The (homological) support of an arbitrary object X in the big
tt-category T is the following subset of the homological spectrum Spch(Tc):

Supp(X) :=
{
B ∈ Spch(Tc)

∣∣ [X,EB]T 6= 0
}
.

4.2. Proposition. — Under the construction B 7→ B′ of Theorem 3.11, the above
support Supp(X) of an object X ∈ T is the following

Supp(X) :=
{
B ∈ Spch(Tc)

∣∣hB′(X) 6= 0 in AB′
}
.

Proof. — Let B ∈ Spch(Tc) and B′ = Ker([−, ÊB]) the corresponding maximal local-
izing ⊗-ideal of A. By (2.5) and conservativity of restricted-Yoneda h : T → A, the
vanishing of [X,EB]T is equivalent to the vanishing of h([X,EB]T) ∼= [X̂, ÊB] and the
latter is equivalent to X̂ ∈ B′ by (3.12), which in turn is equivalent to the vanishing
of QB′(X̂) = hB′(X). �

We are now ready to prove the basic properties listed in Theorem 1.2.

4.3. Proposition. — The support of Definition 4.1 satisfies the following properties.
(a) We have Supp(ΣX) = Supp(X) for all X ∈ T.
(b) We have Supp(

⊔
i∈I Xi) =

⋃
i∈I Supp(Xi) for every family {Xi}i∈I in T.

(c) For every distinguished triangle X → Y → Z → ΣX in T, we have Supp(Z) ⊆
Supp(X) ∪ Supp(Y ).

Proof. — These are immediate consequences of the description of Supp(X) in Propo-
sition 4.2 and the fact that hB′ : T → AB′ is coproduct-preserving, homological and
compatible with suspension (see Remark 2.10) for every B ∈ Spch(Tc). �

Let us check agreement with the usual support on compact-rigid objects.

4.4. Proposition. — For every x ∈ Tc, the three notions of support coincide:

Supp(x) =
{
B ∈ Spch(Tc)

∣∣hB(x) 6= 0
}

= φ−1(supp(x))

where φ : Spch(Tc) →→ Spc(Tc) is as in Recollection 3.1. In particular, Supp(0) = ∅
and Supp(1) = Spch(Tc). Consequently, if Supp(x) = ∅ for x ∈ Tc then x = 0.

Proof. — Restricted-Yoneda on Tc is the actual Yoneda, Tc ↪→ mod-Tc, and in par-
ticular x̂ ∈ Afp is finitely presented for all x ∈ Tc. Hence for B ∈ Spch(Tc) and
x ∈ Tc, the condition [x̂, ÊB] = 0, meaning x̂ ∈ B′, is equivalent to x̂ ∈ B′ ∩Afp = B.
The latter reads x ∈ h−1(B) = φ(B). This gives the main part. Since φ is surjective,
Supp(x) = ∅ implies supp(x) = ∅ which in turn forces x = 0 as Tc is rigid. �

Let us check the Tensor-Product Formula. With Theorem 3.11 and Proposition 4.2
under our belt, it is now easy.

4.5. Theorem. — We have Supp(X ⊗ Y ) = Supp(X) ∩ Supp(Y ) for all X,Y ∈ T.
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Proof. — Using the description of the support given in Proposition 4.2, and using
that hB′ : T → AB′ is a tensor functor, it suffices to show that hB′(X)⊗hB′(Y ) = 0

implies hB′(X) = 0 or hB′(Y ) = 0, the other direction being obvious. Suppose
that hB′(X) 6= 0. Then since hB′(X) is ⊗-flat, the subcategory Ker(hB′(X) ⊗ −)

is a proper localizing ⊗-ideal of AB′ , hence it must be zero (see Proposition 3.13).
So hB′(X)⊗ hB′(Y ) = 0 forces hB′(Y ) = 0. �

4.6. Remark. — A heads-on proof of Theorem 4.5 from Definition 4.1, i.e., from the
vanishing of [X,EB] and [Y,EB], would not be that easy. The difficulty has been
entirely pushed in the translation B B′ between maximal Serre ⊗-ideals of Afp and
maximal localizing ⊗-ideals of A, obtained in Theorem 3.11.

Another case where the naive support (1.5) works is the following:

4.7. Theorem. — Under Hypothesis 1.1, let A be a weak ring in T (Definition 1.7).
Then we have

Supp(A) =
{
B ∈ Spch(Tc)

∣∣hB(A) 6= 0
}
.

Furthermore, if Supp(A) = ∅ then A = 0.

Proof. — We have done some preparation. Let B∈Spch(Tc) and let B′=Ker([−, EB])

the corresponding maximal localizing ⊗-ideal. In view of Proposition 3.13, we only
need to show that if hB(A) 6= 0 then hB′(A) 6= 0. In Proposition 3.5, we saw that
if hB(A) 6= 0 then its unit 1 // // hB(A) is a monomorphism. This uses that hB(A)

is ⊗-flat in AB by Proposition 2.9 (b). Applying the exact functor Q : AB →→ AB′

coming from Proposition 3.13, we have a monomorphism 1 // // hB′(A) in AB′ , forc-
ing hB′(A) 6= 0. For the ‘furthermore’ part, suppose that Supp(A) = ∅, i.e., that
hB(A) = 0 for all B ∈ Spch(Tc). Then we can invoke the Nilpotence Theorem
of [Bal20] for the unit η : 1 → A of the weak ring A. Clearly, hB(η) = 0 for all B,
since the target of these maps are all zero. Hence η⊗n = 0 for some n � 1. How-
ever, A⊗ η : A // // A⊗A is a split monomorphism by definition of a weak ring, hence
A ⊗ η⊗n : A // // A⊗n+1 is a composite of split monomorphisms. Thus η⊗n = 0 forces
A = 0 as claimed. �

4.8. Example. — Let B ∈ Spch(Tc). Then Supp(EB) = {B}. Indeed, by Theorem 4.7,
we can use the ‘naive’ support Supp(EB) =

{
C ∈ Spch(Tc)

∣∣EB ⊗ EC 6= 0
}
. But we

know that EB ⊗ EB 6= 0 (as EB is a direct summand) whereas EB ⊗ EC = 0 for
all B 6= C; see [Bal20, Prop. 5.3].

4.9. Corollary. — Let B and C be distinct homological primes in Spch(Tc). Then we
have [EB, EC] = 0 in T and [ÊB, ÊC] = 0 in A. �

5. The image of Spc(F )

5.1. Recollection. — We consider a tensor-triangulated functor F : T → S between
big tt-categories as in Hypothesis 1.1. Because every tensor functor preserves rigid-
ity and because we assume that rigid and compact objects coincide, F restricts
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to a tt-functor F : Tc → Sc. We assume that our functor F preserves coproducts.
By Brown-Neeman Representability [Nee96], this is equivalent to the existence of a
right adjoint U : S → T, that is then lax-monoidal since F is monoidal. This implies
that U(1) is a commutative ring object in T. In fact, since F preserves compacts, U
preserves coproducts (and thus admits another right adjoint).

By Krause [Kra00, Cor. 2.4], both F and U induce exact coproduct-preserving
functors F̂ : Mod-Tc → Mod-Sc and Û : Mod-Sc → Mod-Tc such that F̂ ◦hT

∼= hS◦F̂
and Û ◦ hS

∼= hT ◦ Û . These can be described by the usual Kan formulas

F̂ (M) = colim
(x̂→M)∈(hT/M)

hS(F (x)) and Û(N) = colim
(ŷ→N)∈(hS/N)

hT(U(y)).

Alternatively, when viewing N ∈ Mod-Sc as an additive functor (Sc)op → Ab, we
have Û(N) = N ◦ F : (Tc)op → Ab. Since ⊗ is colimit-preserving and F is symmetric
monoidal, it follows that F̂ is also symmetric monoidal. The adjunction F a U yields
an adjunction F̂ a Û making the following diagram of adjunctions commute:

(5.2)

T

F

��

hT // Mod-Tc

F̂

��

S

U

OO

hS // Mod-Sc.

Û

OO

Note also that F̂ preserves finitely presented objects F̂ (mod-Tc) ⊆ mod-Sc since they
are generated by the compact objects. See details in [BKS19, Constr. 6.10]. Finally,
since F and U satisfy a projection formula U(Y ⊗ F (X)) ∼= U(Y ) ⊗ X by [BDS16,
2.16], the same holds for F̂ and Û :

(5.3) Û(N ⊗ F̂ (M)) ∼= Û(N)⊗M

by using that F̂ , Û and ⊗ commute with colimits and the above explicit formulas.

5.4. Remark. — We want to show functoriality of Spch(−). The following result is
not entirely obvious, as the commutative algebraists will recognize. For a homomor-
phism of commutative rings, it is not true in general that the preimage of a maximal
ideal is maximal. This vindicates again the use of maximal ideals B in mod-Tc when
constructing Spch(Tc), as opposed to some kind of prime ideals.

The following is extracted from [Bal20]:

5.5. Proposition. — Let T be a big tt-category as in Hypothesis 1.1. Let H : T → D

be a homological functor to a locally coherent Grothendieck category D admitting a
colimit-preserving tensor. Assume that H is monoidal (1) and maps compact objects
of T to finitely presented objects. Assume furthermore that H(X) is ⊗-flat in D for
every X ∈ T. Let Ĥ : A = Mod-Tc → D be the exact coproduct-preserving functor
induced by H. Then Ker(Ĥ) is a localizing ⊗-ideal generated by its finitely presented

(1)not necessarily symmetric monoidal.
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part B := Ker(Ĥ) ∩ Afp. If moreover Dfp is simple, i.e., has only zero and Dfp as
Serre ⊗-ideals, then B is a homological prime, i.e., it is maximal in Afp.

Proof. — This is the first page of the proof of [Bal20, Th. 5.6]. As the notation in
loc. cit. depends on some triangular primes P, we outline a cleaned-up version here
for the reader’s convenience. The kernel Ker(Ĥ : A→ D) = Loc(B) is generated by its
finitely presented part B by [BKS19, Prop.A.6]. To show that B is maximal when Dfp

is simple, assume that C ) B is larger and show C = A. For that, pick M ∈ C r B,
so that M ⊗ ÊB 6= 0 whereas M ⊗ ÊC = 0. From the former deduce that Ĥ(M) 6= 0

in Dfp and from the latter deduce that Ĥ(M) ⊗ H(EC) = 0 in D. Use simplicity
of Dfp and ⊗-flatness of H(EC) to deduce that H(EC) = 0, i.e., ÊC ∈ Ker(Ĥ) =

Loc(B) ⊂ Loc(C), forcing 1̂ ∈ C as well, from the exact sequence J // // 1̂→ ÊC where
J ∈ Loc(C), as always, and EC ∈ Loc(C) as just proved. �

5.6. Lemma. — With notation as in Recollection 5.1, let C ∈ Spch(Sc). Then B :={
M ∈ mod-Tc

∣∣ F̂ (M) ∈ C
}
is a maximal Serre ⊗-ideal of mod-Tc. Furthermore, we

have a diagram

(5.7)

T

F

��

hT // A = Mod-Tc

F̂

��

QB
** **

AB = Mod-Tc/Loc(B)

F

��

7 W
RB

jj

S

U

OO

hS // Mod-Sc

Û

OO

QC
** **

Mod-Sc/Loc(C)

U

OO

7 W

RC
jj

with hS F ∼= F̂ hT and hT U ∼= Û hS and QC F̂ ∼= F QB and Û RC
∼= RB U . Finally,

the pure-injective EB is a direct summand of U(EC) in T (see Construction 2.11).

Proof. — The left-hand square of (5.7) is (5.2), repeated for cognitive help. Since F̂ is
exact, Û preserves injectives hence U(EC) is pure-injective. Since U is lax-monoidal,
U(EC) is a weak ring, with unit 1 → U(EC) adjoint to ηC : 1S = F (1T) → EC. In
particular, U(EC) 6= 0. The internal-hom version of the adjunction reads

(5.8) [M, Û(ÊC)] ∼= Û [F̂ (M), ÊC]

for every M ∈ A, as can be checked by testing under HomA(x̂,−) for x ∈ Tc.
Consider now the functor H := QC ◦ F̂ ◦ hT

H : T −→ Mod-Tc −→ Mod-Sc −→−→ Mod-Sc/Loc(C) =: D.

This is a homological functor to which we can apply Proposition 5.5, with Ĥ being nec-
essarily QC ◦ F̂ . It tells us that B = Ker(Ĥ) ∩Afp is indeed a maximal Serre ⊗-ideal
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of Afp. We can then factor Ĥ via QB, yielding a unique tensor-exact coproduct-
preserving functor F : Mod-Tc/Loc(B)→ Mod-Sc/Loc(C) making the following dia-
gram commute

Mod-Tc

F̂

��

QB
// //

Ĥ
''

Mod-Tc/Loc(B) = AB

F∃ !

��

Mod-Sc
QC

// // Mod-Sc/Loc(C)

U

dd

By general Grothendieck-category theory, F admits a right adjoint U . This gives
us (5.7). Note that RBU is the right adjoint to F QB

∼= QC F̂ , whose right adjoint is
also Û RC. Hence we have

(5.9) RB ◦ U ∼= Û ◦RC.

Consider 1 // // EC the injective hull of the unit in Mod-Sc/Loc(C), as in the statement.
The pure-injective EC ∈ S corresponding to C is then characterized by ÊC = RC(EC).
Therefore, by (5.9), we have RB(U(EC)) ∼= Û(ÊC) = hT(U(EC)). Applying QB to
this relation, we see that the injective U(EC) is the image in AB of U(EC). By
Proposition 3.5 the unit of this non-trivial weak ring U(EC) is a monomorphism
1 // // U(EC) in AB and U(EC) is injective. Therefore the injective hull EB of 1 is
a direct summand of U(EC). As usual, this decomposition holds in T already, by
Proposition 2.9 (d). �

Summarizing our discussion:

5.10. Theorem. — Let F : T → S be a coproduct-preserving tt-functor between big
tt-categories. Then the map Spch(F ) : Spch(Sc)→ Spch(Tc)

Spch(Sc) −→ Spch(Tc)

C 7−→ F̂−1(C)

is well-defined and makes the following square commute

(5.11)
Spch(Sc)

Spch(F )
//

φS
����

Spch(Tc)

φT
����

Spc(Sc)
Spc(F )

// Spc(Tc)

where φ : Spch → Spc is as in Recollection 3.1.

Proof. — We use Lemma 5.6 to show that the map Spch(F ) is well-defined. The
commutativity of the square then follows from F̂ ◦ hT

∼= hS ◦ F : Tc → Mod-Sc. �
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5.12. Theorem. — Let F : T → S be a tt-functor between big tt-categories as in Hy-
pothesis 1.1 with a right adjoint U : S → T (Recollection 5.1). Then the image of
Spch(F ) : Spch(Sc)→ Spch(Tc) is equal to Supp(U(1)).

Proof. — Let ψ = Spch(F ) : Spch(Sc) → Spch(Tc) and U(1) ∈ T. Since U(1) is a
ring object, we have Supp(U(1)) =

{
B ∈ Spch(Tc)

∣∣hB(U(1)) 6= 0
}
by Theorem 4.7.

The inclusion Im(ψ) ⊆ Supp(U(1)) is relatively easy. Suppose that B belongs to
the image of ψ and let C ∈ Spch(Sc) such that B = F̂−1(C). We apply Lemma 5.6
and we have in particular the diagram (5.7). The lax-monoidal functor U maps 1S

to a commutative ring object U(1) which acts on every object of the form U(Y ),
since 1S acts on every object Y ∈ S. (This action is as a ‘module’ but we avoid
this terminology since we already mean something else by ‘modules’.) We apply this
to Y = EC the pure-injective object corresponding to C. So, the ring U(1) acts
on U(EC) in T. Applying the tensor functor hB : T → AB, we see that the ring
object hB(U(1)) acts on hB(U(EC)) in AB. In particular if, ab absurdo, the ring
hB(U(1)) vanished then so would the object hB(U(EC)). By Lemma 5.6, we also know
that EB is a direct summand of U(EC), hence hB(EB) would be a direct summand
of hB(U(EC)) = 0. This implies the vanishing of the injective hull hB(EB) = EB of 1
in AB, a contradiction. So hB(U(1)) cannot be zero, meaning B ∈ Supp(U(1)).

Conversely, let B be such that hB(U(1)) 6= 0 and let us show that B ∈ Im(ψ).
Let I be the kernel of η̂B : 1̂ → ÊB in A. We have an exact sequence I // // 1̂ → ÊB

and therefore F̂ (I) // // F̂ (1̂)→ F̂ (ÊB) in Mod-Sc. Note that F̂ (ÊB) = F̂ (EB) is flat.
Consider in mod-Sc the Serre ⊗-ideal

C0 := Ker
(
(F̂ (ÊB)⊗−)|mod-Sc

)
=
{
N ∈ mod-Sc

∣∣ F̂ (ÊB)⊗N = 0
}
.

If, ab absurdo, C0 = mod-Sc then F̂ (ÊB) = 0, hence F̂ (I) = 1̂. Since we have I =

colimf.p.M // // IM by Proposition 2.14 (c), and since 1̂S is finitely presented, there exists
M // // I finitely presented such that F̂ (M) = 1̂ already. Note that M // // I ∈ Loc(B)

implies M ∈ B. Now, we use Û F̂ ∼= Û(1) ⊗ − by the projection formula (5.3).
In short we have M ⊗ Û(1) ∼= Û(1) with M ∈ B ⊂ Ker(ÊB ⊗ −). This implies
that ÊB ⊗ Û(1) ∼= ÊB ⊗ M ⊗ Û(1) ∼= 0 and thus EB ⊗ U(1) = 0 meaning that
B /∈ Supp(U(1)), a contradiction. So C0 is a proper ⊗-ideal of mod-Sc. Then choose
any maximal ⊗-ideal C ∈ Spch(Sc) containing C0. Then F̂−1(C) ⊇ B by construction
hence by maximality B = F̂−1(C) = ψ(C) and indeed B ∈ Im(ψ). �

5.13. Corollary. — With hypotheses as in Theorem 5.12, the image of the ordi-
nary map Spc(F ) : Spc(Sc)→ Spc(Tc) on triangular spectra is φ(Supp(U(1))), where
φ : Spch → Spc is as in Recollection 3.1.

Proof. — Recall the commutative diagram (5.11). Since φS is onto, the image
of Spc(F ) is also the image of φT ◦Spch(F ), that is, the image under φT of the image
of Spch(F ) determined in Theorem 5.12 to be Supp(U(1)). �
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5.14. Remark. — We emphasize that φ : Spch(Tc)→→ Spc(Tc) is a bijection in many
examples by [Bal20, §5]. In practice, it is very common that a tt-functor on the small
part F : Tc → Sc is the restriction of coproduct-preserving tt-functor F : T → S. So
the last corollary provides a vast improvement on [Bal18].

Appendix. Comparing homological and triangular spectra

We want to discuss the injectivity of the map φ : Spch(Tc) →→ Spc(Tc), from the
homological spectrum (Recollection 3.1) to the usual triangular spectrum Spc(Tc).
By a general finite-smashing localization argument, we can reduce to the case where
(0) ∈ Spc(Tc), meaning that Tc is local. For instance, T could be SH(p) the p-local
stable homotopy category or D(R) the derived category of a commutative local ring R.
Under this assumption, we have the following characterization:

A.1. Theorem. — Let T be a big tt-category as in Hypothesis 1.1 and assume its
subcategory of rigid-compact Tc is local, meaning that c⊗ d = 0 with c, d ∈ Tc forces
c = 0 or d = 0. Then the following are equivalent:

(i) The fiber of φ : Spch(Tc)→→ Spc(Tc) over (0) is reduced to a single point.
(ii) Whenever two maps f , g in Tc satisfy f ⊗ g = 0 then either f is ⊗-nilpotent

on some non-zero compact (that is, there exists z ∈ Tc, z 6= 0 such that f⊗n ⊗ z = 0

for n� 1) or g is ⊗-nilpotent on some non-zero compact.

Proof. — Suppose (i) and let us prove (ii). By standard adjunction tricks using rigid-
ity, we can assume that f : 1→ x and g : 1→ y both start from 1. Let A = Mod-Tc
as before and consider the subcategory of Afp = mod-Tc given as follows

B0 :=
{
M ∈ Afp ∣∣ there exists z ∈ Tc, z 6= 0 with ẑ ⊗M = 0

}
.

Since Tc is local, B0 is closed under extensions, hence B0 is a Serre ⊗-ideal of Afp.
Consider the Gabriel quotient

Q : Afp −→−→ Ãfp := Afp/B0.

Let us write z̃ ∈ Ãfp for Q(ẑ) for all z ∈ Tc. The maximal ⊗-ideals of Ãfp are in
one-to-one correspondence with those of Afp containing B0. We claim that these are
exactly those in φ−1(0). Indeed, the kernel of the unit coev : 1→ ẑ∨⊗ ẑ in Afp, being
killed by ẑ (in Tc already), becomes zero in Ãfp whenever z 6= 0. In other words, 1̃ is
a subobject of z̃∨ ⊗ z̃ for every z ∈ Tc non-zero and in particular no proper ⊗-ideal
of Ãfp contains any z̃ for z 6= 0. Hence the preimage φ(B) = h

−1(B) = (0) is zero for
every maximal ⊗-ideal of Afp containing B0. Under (i), we just proved that Ãfp has

a unique maximal Serre ⊗-ideal, say B. Consider now the kernels M // // 1̃
f̃−→ x̃ and

N // // 1̃
g̃−→ ỹ in Ãfp. Since f̃⊗M = 0 and g̃⊗N = 0 by the standard argument (using

flatness of x̃ and ỹ), we see that f̃ is ⊗-nilpotent on the Serre ⊗-ideal 〈M〉 generated
by M and similarly for g̃ on 〈N〉. If, ab absurdo, both 〈M〉 and 〈N〉 are proper then
they are both contained in the unique maximal Serre ⊗-ideal B of Ãfp. Descending
to Ãfp/B, we therefore have two monomorphisms f : 1 // // x and g : 1 // // y, with x
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and y ⊗-flat. This implies that f ⊗ g : 1 // // x ⊗ y is still a monomorphism. This
contradicts the assumption that f⊗g = 0. Consequently, one of the Serre⊗-ideals 〈M〉
or 〈N〉 contains 1̃, hence f̃ or g̃ is ⊗-nilpotent in Ãfp = Afp/B0, and we conclude by
definition of B0 that f or g is nilpotent on a non-zero compact.

Conversely, suppose (ii) and let us prove (i). Assume ab absurdo, that there exist
two different homological primes B,C ∈ φ−1((0)) in the fiber of φ above zero. Then by
[Bal20, Prop. 5.3], we have EB ⊗EC = 0 and in particular the tensor of ηB : 1→ EB

with ηC : 1 → EC is zero. It follows from the fact that ÊB and ÊC are colimits
of representables and from finite presentation of 1̂ that there exist factorizations
ηB : 1

f−→ x→ EB and ηC : 1
g−→ y → EC with f ⊗ g = 0 and x, y ∈ Tc. By (ii), one

of f or g is ⊗-nilpotent on some non-zero compact, say f is. Hence there exists z 6= 0

in Tc such that f⊗n ⊗ z = 0 for some n � 1. But then η⊗nB ⊗ z = 0. Since EB is a
weak ring, ηB ⊗ EB is a split monomorphism, hence η⊗nB ⊗ z = 0 forces EB ⊗ z = 0.
The latter implies 0 6= ẑ ∈ B, or φ(B) = h

−1(B) 6= 0, contradicting the choice of B
in the fiber of (0). So the existence of two points in that fiber is absurd. �

A.2. Example. — There are of course many examples where Theorem A.1 applies,
since we know that φ is a bijection in all examples where Spch(Tc) and Spc(Tc) have
been computed, see [Bal20, §5]. One can also cook up a direct verification of (ii) in
Theorem A.1 in the derived category of a local ring, for instance. It is conceivable that
my stable ∞-friends could find a direct general proof of (ii) in Theorem A.1, without
assuming knowledge of Spc(Tc), thus giving an abstract proof that φ is a bijection in
some generality. The challenge is open!
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