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A SHORT INTRODUCTION TO THE TELESCOPE AND CHROMATIC

SPLITTING CONJECTURES

TOBIAS BARTHEL

Abstract. In this note, we give a brief overview of the telescope conjecture and the chro-
matic splitting conjecture in stable homotopy theory. In particular, we provide a proof of
the folklore result that Ravenel’s telescope conjecture for all heights combined is equivalent
to the generalized telescope conjecture for the stable homotopy category, and explain some
similarities with modular representation theory.
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This document contains a slightly expanded and updated version of an overview talk, deliv-
ered at the Talbot Workshop 2013 on chromatic homotopy theory, on two of the major open
conjectures in stable homotopy theory: the telescope conjecture and the chromatic splitting con-
jecture. As such, these notes are entirely expositional and are not aimed to give a comprehensive
account; rather, we hope some might see them as an invitation to the subject.

We have augmented the original content of the talk by some material which is well-known to
the experts but difficult to trace in the literature. In particular, we prove the folklore result that
the telescope conjecture for all heights combined is equivalent to the classification of smashing
Bousfield localizations of the stable homotopy category. In the final section, we discuss algebraic
incarnations of chromatic structures in modular representation theory.

We will assume some familiarity with basic notions from stable homotopy theory, and refer
the interested reader to [43] as well as [5] for a more thorough discussion of chromatic homotopy
theory.
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2 TOBIAS BARTHEL

1. Motivation: Freyd’s generating hypothesis

In 1966, Freyd [22] proposed one of the most fundamental conjectures in stable homotopy
theory:

Conjecture 1.1 (Generating hypothesis). Let f : X → Y be a map of finite spectra with π∗f = 0,
then f is nullhomotopic.

As of today, this hypothesis is completely open—since the computation of stable homotopy
groups of finite complexes is notoriously difficult, there is essentially no evidence supporting
either conclusion. However, one important statement that would follow if the hypothesis was
true is that the map

π∗ : [X,Y ]∗ −→ Homπ∗S0(π∗X, π∗Y )

is an isomorphism for all finite spectra X and Y , the target being the group of graded homo-
morphisms of π∗S

0-modules. The generating hypothesis also has a number of other curious
consequences, see for example [29].

In the early 1990s, Devinatz and Hopkins described a chromatic approach to the generating
hypothesis in the special case when Y = S0 is the sphere spectrum [17]. We explain their idea
first in the global setting. Suppose f : X → S0 is not null and write f∨ : S0 → DX for its
Spanier–Whitehead dual; we have to show that π∗f 6= 0. If f is of infinite order, then the
question reduces to a rational statement, so suppose f has finite order d. Recall that by Brown
representability there exists a spectrum I with

[W, I] ∼= HomZ(π0W,Q/Z)

for all W , the so-called Brown–Comenetz dual of the sphere spectrum.
This can be used to reduce the generating hypothesis with target S0 to a set of universal

examples, a strategy reminiscent of the proof of the nilpotence theorem [21]. Indeed, there is
a map fd : [X,S0] → Q/Z sending f to 1/d. By construction of I, fd corresponds to a map
fd : DX → I. Writing I as a directed colimit of finite spectra Iα, we see that fd factors through
some fα

d : DX → Iα, i.e., there is a commutative diagram

S0 f∨

//

1/d
""❉

❉
❉
❉
❉
❉
❉
❉
❉

DX

fd
��

fα

d

""❊
❊

❊

❊

I Iα.oo

Spanier–Whitehead duality gives a map (fα
d )

∨ : DIα → X such that the composite

DIα
(fα

d
)∨
// X

f
// S0

is not nullhomotopic and depends only on α and d. Therefore, it suffices to prove the claim for
these universal examples DIα → S0.

In order to deal with them, we need to construct suitable models for the Iα and then prove
the generating hypothesis for these examples. Instead of running this programme for S0 directly,
Devinatz and Hopkins propose to use the chromatic convergence theorem [43, 3], which says
that, p-locally, S0 is equivalent to the limit of the chromatic tower

. . . // LnS
0 // Ln−1S

0 // . . . // L1S
0 // L0S

0 ≃ S0
Q, (1.2)

where Ln denotes E(n)-localization (reviewed below). It consequently suffices to prove an ana-
logue of the generating hypothesis for the E(n)-local analogues of the universal examples con-
sidered above, for each height n ≥ 0. The filtration steps of the chromatic tower are built out of
the monochromatic layers MnS

0 = fib(LnS
0 → Ln−1S

0), which leads to the study of IMnS
0 via
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Gross–Hopkins duality [25] and the K(n)-local Picard group [26]. The original approach relied
on the telescope conjecture as well as the chromatic splitting conjecture in order to control the
universal examples, and it has been carried out successfully at height 1 [17]:

Theorem 1.3 (Devinatz). If p > 2 and f : X → S0 a map between p-local finite spectra with
π∗f = 0, then L1f is nullhomotopic.

In response to subsequent progress on the telescope conjecture and the chromatic splitting
conjecture as outlined in the next sections, Devinatz describes a modified approach in [19], which
appears to be the current state of the art.

2. Recollections on Bousfield localization

Throughout this section, we will implicitly work locally at a fixed prime p. Let E be a
spectrum. A spectrum X is called E-acyclic if E ∧ X ≃ 0 and X is called E-local if any map
from an E-acyclic spectrum into X is nullhomotopic. Moreover, a map f : X → Y is called
an E-equivalence if E ∧ f is an equivalence or, equivalently, if the fiber of f is E-acyclic. A
localization functor is an endofunctor L of the stable homotopy category together with a natural
transformation η : id → L such that Lη : L → L2 is an equivalence and Lη ≃ ηL. Based on
ideas of Adams, Bousfield [14] rigorously constructed a localization functor which forces the
E-equivalences to be invertible; more precisely:

Theorem 2.1 (Bousfield, 1979). If E is a spectrum, there is a localization functor LE on the
stable homotopy category together with a natural transformation ηE : id → LE such that, for any
spectrum X, the map ηE(X) : X → LEX exhibits LEX as the initial E-local spectrum with a
map from X. The functor LE is called Bousfield localization at E and the fiber CE of ηE is
called E-acyclization.

It follows formally that ηE(X) is also the terminal E-equivalence out of X . The proof of
this theorem relies on verifying the existence of a set of suitable generators for the category of
E-acyclics. It is an open problem [30, Conj. 9.1] whether every localization functor on the stable
homotopy category arises as localization with respect to some spectrum E.

The fiber sequence CE → id → LE can be thought of as providing a way to decompose the
stable homotopy category into two subcategories in a well-behaved way. We might therefore ask
for a classification of all Bousfield localizations. The first result in this direction was proven by
Ohkawa [40]. To state it, recall that two spectra E and F are said to be Bousfield equivalent if
they have identical categories of acyclics, i.e., ker(LE) = ker(LF ). The corresponding equivalence
class of E is denoted by 〈E〉, so we have 〈E〉 = 〈F 〉 if and only if LE ≃ LF . As usual, we define
〈E〉 ∨ 〈F 〉 = 〈E ∨ F 〉 and 〈E〉 ∧ 〈F 〉 = 〈E ∧ F 〉.

Theorem 2.2 (Ohkawa). The collection of Bousfield classes of spectra forms a set of cardinality

at least 2ℵ0 and at most 22
ℵ0
.

In light of this result, a classification of all Bousfield localizations does not seem to be feasible,
see [30] for some partial results. Instead, we will single out two particularly well-behaved families
among all Bousfield localizations:

Definition 2.3. A localization functor L is called smashing if it commutes with set-indexed
direct sums or, equivalently, if the natural transformation X ∧ LS0 → LX is an equivalence for
all spectra X . Moreover, L is finite if there exists a collection of finite spectra that generates the
category ker(L) of L-acyclics.

Miller [37] proves that any finite localization is smashing and any smashing localization functor
L is equivalent to Bousfield localization at LS0 by [42], so from now on all localization functors
we consider are assumed to be Bousfield localizations.
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3. The telescope conjecture

We start with some examples of finite and smashing localizations; as before, everything is
implicitly localized at a prime p. Let K(n) and E(n) be the nth Morava K-theory and nth
Johnson–Wilson theory, respectively, with coefficients

K(n)∗ = Fp[v
±1
n ] and E(n)∗ = Z(p)[v1, . . . , vn−1, vn][v

−1
n ],

where vi is of degree 2(pi − 1). By [42], if a finite spectrum F is K(n)-acyclic, then it is also
K(n−1)-acyclic1; since 〈E(n)〉 = 〈

∨n
i=0 K(i)〉, this spectrum F is then also E(n)-acyclic. A finite

spectrum F is of type n if n is minimal with the property that K(n)∗(F ) 6= 0, and such a finite
number n exists for any nontrivial finite spectrum. By the periodicity theorem [27], any finite
type n spectrum F admits an (essentially unique) vn-self map, and we write Tel(F ) = F [v−1

n ]
for the associated telescope. It then follows from the thick subcategory theorem [27] that the
Bousfield class of Tel(F ) depends only on n, so we will also write Tel(n) for Tel(F ).

Definition 3.1. Let n ≥ 0, then we define two localization functors on the stable homotopy
category by

Lf
n = LTel(0)∨Tel(1)∨...∨Tel(n) and Ln = LE(n) ≃ LK(0)∨K(1)∨...∨K(n),

referred to as the finite Ln-localization and Ln-localization, respectively.

As the terminology suggests, the functors Lf
n are in fact finite localizations, with ker(Lf

n)
generated by any finite type (n+1)-spectrum [36, 45]. It then follows from the thick subcategory
theorem that any finite localization functor of the category of spectra which is not equal to the
identity or the zero functor must be one of the Lf

n. Their key features are summarized in the
next proposition, see [45, 36, 37].

Proposition 3.2 (Mahowald–Sadofsky, Miller, Ravenel). For each n, the functor Lf
n is a finite

and thus smashing localization. If F is a finite type n spectrum then Lf
nF ≃ Tel(F ).

Having classified all finite localizations, we now turn to the a priori larger set of smashing
localizations. The smash product theorem [43] and its proof establish the first part of the next
result:

Theorem 3.3 (Hopkins–Ravenel). For any n ≥ 0, the localization functor Ln is smashing.

There is a natural transformation Lf
n → Ln which is an equivalence on all MU -module

spectra and all Li-local spectra for any i ≥ 0, as shown in [28, 31]. In other words, there is a
close relationship between the functors Ln and their finite counterparts Lf

n. As explained in [43],
if the two localizations were in fact equivalent for all n, then two naturally arising filtrations on
the stable homotopy groups of spheres would coincide, making the computation of π∗S

0 more
amenable to algebraic techniques. This led Ravenel [42] to:

Conjecture 3.4 (Telescope conjecture). For any n ≥ 0, the natural map Lf
n → Ln is an

equivalence.

For n = 0, both Lf
0 and L0 identify with rationalization. Based on explicit computations of

the homotopy groups of L1S
0/p and Lf

1S
0/p = Tel(S0/p) by Mahowald (p = 2, [34]) and Miller

(p > 2, [38]), Bousfield [14] deduced:

Theorem 3.5 (Bousfield, Mahowald, Miller). The telescope conjecture holds at height n = 1.

1In fact, as long as n > 1, this result has been extended to all suspension spectra by Bousfield [15]. For n = 1,
a counterexample is given by K(Z, 3).
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One might thus hope for an inductive approach to the telescope conjecture, passing from
height n − 1 to height n. The corresponding relative version admits a number of equivalent
formulations, see [35]:

Proposition 3.6. Let n ≥ 1 and suppose F is finite of type n, then the following are equivalent:

(1) If Lf
n−1 ≃ Ln−1, then Lf

n ≃ Ln.
(2) Tel(F ) ≃ LnF .
(3) 〈Tel(F )〉 = 〈K(n)〉.
(4) The Adams–Novikov spectral sequence for Tel(F ) converges to π∗ Tel(F ).

Note that, by the thick subcategory theorem, a single example or counterexample that is finite
of type n is enough to settle the passage from height n− 1 to height n.

For n = 2 and p ≥ 5, Ravenel [44] began the analogue of Miller’s height 1 calculation for
V (1) = S0/(p, v1), attempting to show that the telescope conjecture is false in these cases,
but this computation has not yet been completed due to its considerable complexity. In [35],
Mahowald, Ravenel, and Shick describe an alternative approach based on a spectrum Y (n) such
that π∗LnY (n) is finitely generated over R(n)∗ = K(n)∗[vn+1, . . . , v2n], but π∗L

f
nY (n) can only

be finitely generated overR(n)∗ if there is a “bizarre pattern of differentials” in the corresponding
localized Adams spectral sequence. Thus, if these patterns could be ruled out, we would disprove
the telescope conjecture at heights n ≥ 2. At this time, the telescope conjecture is still open for
all n ≥ 2 and all p, and generally believed to be false.

4. Classification of smashing Bousfield localizations

This section discusses the classification of smashing Bousfield localizations of the (p-local)
stable homotopy category. In particular, we prove that the telescope conjecture for all heights n is
equivalent to the so-called generalized telescope conjecture (or generalized smashing conjecture).
Since this material is more technical than the rest of this survey, the reader may want to skip
ahead to the conclusion at the end of this section. We start with two lemmas, the first of which
is reminiscent of the type classification of finite spectra.

Lemma 4.1. Let L be a smashing localization functor. If LK(n) 6≃ 0, then LK(n− 1) 6≃ 0.

Proof. Suppose LK(n) 6≃ 0. Since K(n)∧LS0 ≃ LK(n) is a module over K(n) and hence splits
into a wedge of shifted copies of K(n), we see that K(n) is L-local and thus the canonical map
K(n) → LK(n) is an equivalence. This implies that 〈LS0〉 ≥ 〈K(n)〉: Indeed, if X ∧ LS0 ≃ 0,
then 0 ≃ X ∧ LS0 ∧K(n) ≃ X ∧K(n) as well.

The next claim is that 〈LS0〉 ≥ 〈
∨n

i=0 K(i)〉. To this end, note that LK(n)S
0 is K(n)-local,

hence LS0-local. Because L is smashing, we get an equality 〈LS0∧LK(n)S
0〉 = 〈LK(n)S

0〉, which
then yields

〈LS0〉 ≥ 〈LS0 ∧ LK(n)S
0〉 = 〈LK(n)S

0〉 = 〈
∨n

i=0K(i)〉, (4.2)

where the last equality is [28, Cor. 2.4]. Therefore, we have LK(n− 1) 6≃ 0. �

The proof of the next lemma requires the nilpotence theorem.

Lemma 4.3. Suppose L is a smashing localization and n ≥ 0, then LK(n) ≃ 0 if and only if
any finite spectrum of type at least n is in ker(L).

Proof. Suppose LK(n) ≃ 0 and let F be a finite spectrum of type at least n. Replacing F with
End(F ) ≃ DF ∧ F if necessary, we may assume that F and thus LF are ring spectra. By the
nilpotence theorem, it thus suffices to show that K(i) ∧ LF ≃ 0 for all 0 ≤ i ≤ ∞. Since L is
smashing, K(i) ∧ LF ≃ LK(i) ∧ F ≃ 0 for n ≤ i ≤ ∞ using the assumption and Lemma 4.1,
while the hypothesis on F guarantees that it also vanishes for 0 ≤ i < n.
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Conversely, let F be a finite type n spectrum so that LF ≃ 0. It follows that F ∧LK(n) ≃ 0.
But K(n) is a retract of LK(n) provided LK(n) 6≃ 0, so F ∧K(n) ≃ 0 as well, contradicting the
assumption on F . Therefore, LK(n) ≃ 0. �

As the next proof shows, we can use Lemma 4.1 to detect smashing localizations.

Proposition 4.4. If L is a smashing localization which is neither 0 nor the identity functor,
then there exists an n ≥ 0 such that ker(Lf

n) ⊆ ker(L) ⊆ ker(Ln).

Proof. By Lemma 4.1, any smashing localization functor L belongs to one of the following three
classes:

(1) LK(n) = 0 for all n, or
(2) there exists an n such that LK(n) 6≃ 0 and LK(m) ≃ 0 for all m > n, or
(3) LK(n) ≃ K(n) for all n.

In Case (1), ker(L) contains the sphere spectrum S0 by Lemma 4.3, so L ≃ 0. If L belongs
to the second class, then Lemma 4.3 shows that ker(Lf

n) ⊆ ker(L), so it remains to show that
ker(L) ⊆ ker(Ln). To this end, let X ∈ ker(L). Because L is smashing, this implies LS0∧X ≃ 0
and thus

∨n
i=0 K(i) ∧X ≃ 0 by (4.2). Therefore, X ∈ ker(Ln) as desired.

Finally, if LK(n) ≃ K(n) for all n, then (4.2) implies that any Ln-local spectrum is L-local,
so S0 ≃ limn LnS

0 is L-local by the chromatic convergence theorem. Therefore, L must be
equivalent to the identity functor, again using that L is smashing. �

Corollary 4.5. The telescope conjecture holds for all n if and only if all smashing localization
functors on the stable homotopy category are finite.

This latter formulation, originally due to Bousfield [14, Conj. 3.4], generalizes well to other
compactly generated triangulated categories where it has been studied extensively, see for exam-
ple [32, 33].

5. The chromatic splitting conjecture

The chromatic splitting conjecture describes how the localizations LnS
0 for varying n assemble

into S0 via the chromatic tower (1.2), working p-locally as before. Informally speaking, it asserts
that this gluing process is as simple as it can be without being trivial, but there are various
refinements of its statement. We will focus on the weakest form here and refer the interested
reader to [28] for further details.

For each n ≥ 1 there is a map of fiber sequences, where the right square—known as the
chromatic fracture square—is a homotopy pullback:

F (Ln−1S
0, LnX) //

≃

��

LnX //

��

LK(n)X

��

αn

xxq
q
q
q
q
q

F (Ln−1S
0, LnX)

βn

// Ln−1X // Ln−1LK(n)X.
γn

oo❴ ❴ ❴

(5.1)

Consider the question whether there exists a map αn as indicated making the top triangle in
the chromatic fracture square commute. By chasing the diagram, such a map exists if and only
if βn is nullhomotopic, which in turn is equivalent to the existence of a map γn splitting the map
Ln−1X → Ln−1LK(n)X . Based on explicit computations of the cohomology of Morava stabilizer

groups as well as of π∗LK(n)S
0 for small n, Hopkins (see [28]) arrived at the following:

Conjecture 5.2 (Chromatic splitting conjecture). If X is the p-completion of a finite spectrum,
then a splitting γn exists for all n.
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The finiteness assumption on X is essential in this conjecture: Indeed, Devinatz [18] proves
that, for X = BPp the p-completion of the Brown–Peterson spectrum, the map Ln−1BPp →
Ln−1LK(n)BPp splits if and only if n = 1. If the chromatic splitting conjecture holds for a finite
spectrum X , then we obtain the following consequences:

(1) The canonical map Xp →
∏

n LK(n)Xp is the inclusion of a summand, as proven in [28].

(2) Taking the limit over the compositions LK(n+1)X
αn+1

−−−→ LnX → LK(n)X gives an equiv-
alence X → limn LK(n)X . This follows follows from the chromatic convergence theorem
by cofinality.

In other words, the chromatic splitting conjecture implies that a finite spectrum X can be
recovered from its monochromatic pieces LK(n)X .

We now review what is known about the chromatic splitting conjecture for S0
p , the p-complete

sphere spectrum. Take n = 1 and p > 2, then a classical computation with complex K-theory,
originally due to Adams and Baird [1] and then revisited by Ravenel [42], shows that

πiLK(1)S
0
p
∼=











Zp for i ∈ {−1, 0},

Z/ps+1 for i = 2(p− 1)psm− 1 with p ∤ m,

0 otherwise.

Thus π∗L0LK(1)S
0
p
∼= Qp for i = 0 and i = −1 and is 0 otherwise; of course, π∗L0S

0
p is isomorphic

to Qp in degree 0. One can then see that L0LK(1)S
0
p splits as L0S

0
p ∨L0S

−1
p . Replacing complex

K-theory by real K-theory yields the same conclusion for n = 1 and p = 2. The analogous
computations at height n = 2 are considerably more complex and are the subject of extensive
work by Shimomura–Yabe [46] (p ≥ 5), Goerss–Henn–Mahowald–Rezk [23, 24] (p = 3), and
Beaudry–Goerss–Henn [9] (p = 2). Their results can be summarized as follows:

Theorem 5.3 (Beaudry–Goerss–Henn–Mahwald–Rezk–Shimomura–Yabe). The chromatic split-
ting conjecture holds for n = 2 and all p. If p ≥ 3, then

L1LK(2)S
0
p ≃ L1(S

0
p ∨ S−1

p ) ∨ L0(S
−3
p ∨ S−4

p ),

while for p = 2, we have

L1LK(2)S
0
p ≃ L1(S

0
p ∨ S−1

p ∨ S−2
p /p ∨ S−3

p /p) ∨ L0(S
−3
p ∨ S−4

p ).

There is a stronger version of Conjecture 5.2 which additionally describes how the fiber term
F (Ln−1S

0, LnX) in (5.1) decomposes into spectra of the form LiX with 0 ≤ i ≤ n−1. If correct,
it would imply (see [6]) that the stable homotopy groups of LK(n)S

0 are finitely generated over
Zp for n ≥ 1, another major open problem in chromatic homotopy theory, see [20] for partial
results. However, this conjecture is open for all heights n ≥ 3 and primes p; there are hints [8, 41]
that the problem might at least be approachable for large primes with respect to the height n.

We end this section with the following result by Minami [39], which provides some evidence
for the chromatic splitting conjecture at general heights. He introduces a class of so-called robust
spectra including finite spectra as well as BP and proves:

Theorem 5.4 (Minami). Fix a height n and prime p. If X is a robust spectrum and m and k
are positive integers satisfying m− k ≥ n+ s0 + 1 where s0 is the vanishing line intercept of the
E(n)-based Adams–Novikov spectral sequence for S0, then the map LmX → LnX factors through
LK(k+1)∨...∨K(m)X.

6. An algebraic analogue

We conclude this survey by discussing an algebraic analogue of the stable homotopy category
in which algebraic versions of the generating hypothesis, the telescope conjecture, as well as the
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chromatic splitting conjecture have been settled. This is just one instance of the observation that
the chromatic programme and consequently the above chromatic conjectures can be formulated
in many other contexts, thereby providing a plethora of test cases as well as motivation for
a fruitful transfer of techniques. Other examples include derived categories of quasi-coherent
sheaves on schemes or stacks, stable equivariant homotopy categories, motivic categories, or
categories arising in non-commutative geometry, see [2] for an overview.

Let G be a finite group, let k be a field of characteristic p, and write kG for the associated
group algebra. Recall that the stable module category StModkG is the quotient of ModkG by the
projectives and that it comes equipped with the structure of a symmetric monoidal triangulated
category with tensor unit k. As in [12] we write Proj(H∗(G; k)) for the projective variety of the
Noetherian graded commutative ring H∗(G; k); the underlying set of Proj(H∗(G; k)) consists of
the homogeneous prime ideals in H∗(G; k) different from the ideal of all positive degree elements.

The finite localization functors on StModkG have been classified in the work of Benson, Carl-
son, and Rickard [10]. As a result of a series of papers culminating in [12], Benson, Iyengar, and
Krause generalized this to a complete classification of all localization functors: They develop a
theory of support and employ it to establish a bijection between the set of localizing tensor ideals
of StModkG and arbitrary subsets of Proj(H∗(G; k)). Their theory yields in particular a proof
of the telescope conjecture in this context.

Theorem 6.1 (Benson–Iyengar–Krause). The generalized telescope conjecture holds in StModkG,
i.e., the category of acyclics of any smashing localization functor is generated by compact objects.
Furthermore, the smashing localization functors on StModkG are in bijection with specialization
closed2 subsets of Proj(H∗(G; k)).

In fact, they establish an analogous classification for the larger category StablekG of un-
bounded complexes of injective kG-modules up to homotopy, which fits into a recollement be-
tween StModkG and the derived category of kG-modules [13]. In this case, the role of the

parametrizing variety is played by Spech(H∗(G; k)), the Zariski spectrum of all homogeneous

prime ideals of H∗(G; k). In particular, any specialization closed subset V ⊆ Spech(H∗(G; k))
gives rise to a localization functor LV on StablekG. For example, if p is a homogeneous prime
ideal, then V(p) = {q | p ⊆ q} ⊆ Spech(H∗(G; k)) is specialization closed, and thus provides a
localization functor LV(p) and a completion functor Λp. These functors should be thought of as
algebraic analogues of the functor Ln−1 and LK(n).

Before we can state the analogue of the chromatic splitting conjecture in this context, we
need to introduce some terminology: To emphasize the analogy to stable homotopy category, we
write π∗M for the graded abelian group of homotopy classes of maps from k to M in StablekG.
Call two prime ideals p, p′ ∈ Spech(H∗(G; k)) adjacent if p′ ( p and this chain does not refine,

i.e., there does not exist q ∈ Spech(H∗(G; k)) such that p′ ( q ( p. Furthermore, a module
M ∈ StablekG is said to be p-local if π∗M is a p-local H∗(G; k)-module, and a compact M is
said to be of type p′ if π∗M is p′-torsion as a graded H∗(G; k)-module.

Theorem 6.2 ([7]). Suppose G is a finite p-group. Let p, p′ ∈ Spech(H∗(G; k)) be adjacent
prime ideals and let M ∈ StablekG be p-local. There is a homotopy pullback square

M //

��

ΛpM

��

LV(p)M // LV(p)Λ
pM.

If M is compact and of type p′, then the bottom map in this square is split.

2A subset V is called specialization closed if p ∈ V and p ⊆ q imply q ∈ V.
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Finally, we consider the analogue of the generating hypothesis in StModkG, which asserts that
a map f : M → N between finitely generated modules is nullhomotopic, i.e., factors through a
projective module, if and only if π∗f = 0. Based on earlier work of [11] in the p-group case, [16]
gives a complete answer:

Theorem 6.3 (Benson–Carlson–Chebolu–Christensen–Mináč). The generating hypothesis holds
for StModkG if and only if the p-Sylow subgroup of G is isomorphic to either C2 or C3.

The techniques used in their proof, namely Auslander–Reiten theory, carry over to the chro-
matic setting to establish the failure of a K(n)-local analogue of the generating hypothesis [4],
thereby bringing us back to our starting point.
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(Boston, MA, 1993), volume 181 of Contemp. Math., pages 225–250. Amer. Math. Soc., Providence, RI, 1995.
(cit on pp. 4, 5, 6, 7).

[29] Mark Hovey. On Freyd’s generating hypothesis. Q. J. Math., 58(1):31–45, 2007. (cit. on p. 2).
[30] Mark Hovey and John H. Palmieri. The structure of the Bousfield lattice. In Homotopy invariant alge-

braic structures (Baltimore, MD, 1998), volume 239 of Contemp. Math., pages 175–196. Amer. Math. Soc.,
Providence, RI, 1999. (cit. on p. 3).

[31] Mark A Hovey and Neil P Strickland. Morava K-theories and localisation. Mem. Am. Math. Soc.,
139(666):viii+100–100, 1999. (cit. on p. 4).

[32] Bernhard Keller. A remark on the generalized smashing conjecture. Manuscripta Math., 84(2):193–198, 1994.
(cit. on p. 6).

[33] Henning Krause. Smashing subcategories and the telescope conjecture—an algebraic approach. Invent. Math.,
139(1):99–133, 2000. (cit. on p. 6).

[34] Mark Mahowald. bo-resolutions. Pacific J. Math., 92(2):365–383, 1981. (cit. on p. 4).
[35] Mark Mahowald, Douglas Ravenel, and Paul Shick. The triple loop space approach to the telescope conjecture.

In Homotopy methods in algebraic topology (Boulder, CO, 1999), volume 271 of Contemp. Math., pages 217–
284. Amer. Math. Soc., Providence, RI, 2001. (cit. on p. 5).

[36] Mark Mahowald and Hal Sadofsky. vn telescopes and the Adams spectral sequence. Duke Math. J., 78(1):101–
129, 1995. (cit. on p. 4).

[37] Haynes Miller. Finite localizations. Bol. Soc. Mat. Mexicana (2), 37(1-2):383–389, 1992. Papers in honor of
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