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On the algebraic K-theory of higher categories

Clark Barwick

In memoriam Daniel Quillen, 1940–2011, with profound admiration

Abstract

We prove that Waldhausen K-theory, when extended to a very general class of quasicategories,
can be described as a Goodwillie differential. In particular, K-theory spaces admit canonical
(connective) deloopings, and the K-theory functor enjoys a simple universal property. Using this,
we give new, higher categorical proofs of the approximation, additivity, and fibration theorems of
Waldhausen in this article. As applications of this technology, we study the algebraic K-theory
of associative rings in a wide range of homotopical contexts and of spectral Deligne–Mumford
stacks.
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Introduction

We characterize algebraic K-theory as a universal homology theory, which takes suitable higher
categories as input and produces either spaces or spectra as output. What makes K-theory
a homology theory is that it satisfies an excision axiom. This excision axiom is tantamount
to what Waldhausen called additivity, so that an excisive functor is precisely one that splits
short exact sequences. What makes this homology theory universal is this: if we write ι for the
functor that carries a higher category to its moduli space of objects, then algebraic K-theory is
initial among homology theories F that receive a natural transformation ι F . In the lingo
of Tom Goodwillie’s calculus of functors [27, 29, 30], K is the linearization of ι. Algebraic
K-theory is thus the analog of stable homotopy theory in this new class of categorified homology
theories. From this we obtain an explicit universal property that completely characterizes
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algebraic K-theory and permits us to give new, conceptual proofs of the fundamental theorems
of Waldhausen K-theory.

To get a feeling for this universal property, let us first contemplate K0. For any ordinary
category C with a zero object and a reasonable notion of ‘short exact sequence’ (for example,
an exact category in the sense of Quillen, or a category with cofibrations in the sense of
Waldhausen, or a triangulated category in the sense of Verdier), the abelian group K0(C)
is the universal target for Euler characteristics. That is, for any abelian group A, the set
Hom(K0(C), A) is in natural bijection with the set of maps φ : ObjC A such that φ(X) =
φ(X ′) + φ(X ′′) whenever there is a short exact sequence

X ′ X X ′′.

We can reinterpret this as a universal property on the entire functor K0, which we will regard
as valued in the category of sets. Just to fix ideas, let us assume that we are working with
the algebraic K-theory of categories with cofibrations in the sense of Waldhausen. If E(C) is
the category of short exact sequences in a category with cofibrations C, then E(C) is also a
category with cofibrations. Moreover, for any C,

(1) the functors

[X ′ X X ′′] X ′ and [X ′ X X ′′] X ′′

together induce a bijection K0(E(C)) ∼ K0(C) ×K0(C).

The functor [X ′ X X ′′] X now gives a commutative monoid structure K0(C) ×
K0(C) ∼= K0(E(C)) K0(C). With this structure, K0 is an abelian group. We can express
this sentiment diagrammatically by saying that

(2) the functors

[X ′ X X ′′] X ′ and [X ′ X X ′′] X

also induce a bijection K0(E(C)) ∼ K0(C) ×K0(C).

Now our universal characterization of K0 simply says that we have a natural transformation
Obj K0 that is initial with properties (1) and (2).

For the K-theory spaces (whose homotopy groups will be the higher K-theory groups), we
can aim for a homotopical variant of this universal property. We replace the word ‘bijection’
in (1) and (2) with the words ‘weak equivalence’; a functor satisfying these properties is called
an additive functor. Instead of a map from the set of objects of the category with cofibrations
C, we have a map from the moduli space of objects—this is the classifying space NιC of
the groupoid ιC ⊂ C consisting of all isomorphisms in C. An easy case of our main theorem
states that algebraic K-theory is initial in the homotopy category of (suitably finitary) additive
functors F equipped with a natural transformation Nι F .

Now let us enlarge the scope of this story enough to bring in examples such as Waldhausen’s
algebraic K-theory of spaces by introducing homotopy theory in the source of our K-theory
functor. We use ∞-categories that contain a zero object and suitable cofiber sequences, and we
call these Waldhausen ∞-categories. Our homotopical variants of (1) and (2) still make sense,
so we still may speak of additive functors from Waldhausen ∞-categories to spaces. Moreover,
any ∞-category has a moduli space of objects, which is given by the maximal ∞-groupoid
contained therein; this defines a functor ι from Waldhausen ∞-categories to spaces. Our main
theorem (in § 10) is thus the natural extension of the characterization of K0 as the universal
target for Euler characteristics:

Universal Additivity Theorem (in § 10). Algebraic K-theory is homotopy-initial
among (suitably finitary) additive functors F equipped with a natural transformation ι F .
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It is well known that algebraic K-theory is hair-raisingly difficult to compute, and that
various theories that are easier to compute, such as forms of THH and TC, are prime targets
for ‘trace maps’ [47]. The Universal Additivity Theorem actually classifies all such trace maps:
for any additive functor H, the space of natural transformations K H is equivalent to the
space of natural transformations ι H. But since ι is actually represented by the ordinary
category Γop of pointed finite sets, it follows from the Yoneda lemma that the space of natural
transformations K H is equivalent to the space H(Γop). In particular, by Barratt–Priddy–
Quillen, we compute the space of ‘global operations’ on algebraic K-theory:

End(K) � QS0.

The proof of the Universal Additivity Theorem uses a new way of conceptualizing functors
such as algebraic K-theory. Namely, we regard algebraic K-theory as a homology theory on
Waldhausen ∞-categories, and we regard additivity as an excision axiom. But this is not just
some slack-jawed analogy: we will actually pass to a homotopy theory on which functors that
are 1-excisive in the sense of Goodwillie (that is, functors that carry homotopy pushouts to
homotopy pullbacks) correspond to additive functors as described above. (And making sense
of this homotopy theory forces us to pass to the ∞-categorical context.)

The idea here is to regard the homotopy theory Wald∞ of Waldhausen ∞-categories as
formally analogous to the ordinary category V (k) of vector spaces over a field k. The left
derived functor of a right exact functor out of V (k) is defined on the derived category D�0(k)
of chain complexes whose homology vanishes in negative degrees. Objects of D�0(k) can be
regarded as formal geometric realizations of simplicial vector spaces. Correspondingly, we
define a derived ∞-category D(Wald∞) of Wald∞, whose objects can be regarded as formal
geometric realizations of simplicial Waldhausen ∞-categories. This entitles us to speak of the
left derived functor of a functor defined on Wald∞. Then we suitably localize D(Wald∞) in
order to form a universal homotopy theory Dfiss(Wald∞) in which exact sequences split; we
call this the fissile derived ∞-category. Our structure theorem (Theorem 7.4) uncovers the
following relationship between excision on Dfiss(Wald∞) and additivity:

Structure Theorem (Theorem 7.4). A (suitably finitary) functor from Waldhausen ∞-
categories to spaces is additive in the sense above if and only if its left derived functor factors
through an excisive functor on the fissile derived ∞-category Dfiss(Wald∞).

The structure theorem is not some dreary abstract formalism: the technology of Goodwillie’s
calculus of functors tells us that the way to compute the universal excisive approximation to
a functor F is to form the colimit of ΩnFΣn as n ∞. This means that as soon as we
have worked out how to compute the suspension Σ in Dfiss(Wald∞), we will have an explicit
description of the additivization of any functor φ from Wald∞ to spaces, which is the universal
approximation to φ with an additive functor. And when we apply this additivization to the
functor ι, we will obtain a formula for the very thing we are claiming is algebraic K-theory:
the initial object in the homotopy category of additive functors F equipped with a natural
transformation ι F .

So, what is Σ? Here is the answer: it is given by the formal geometric realization of
Waldhausen’s S• construction (suitably adapted for ∞-categories). So, the universal homology
theory with a map from ι is given by the formula

C colimnΩn|ιSn∗ (C )|.
This is exactly Waldhausen’s formula for algebraic K-theory, so our Main Theorem is an easy
consequence of our Structure Theorem and our computation of Σ.

Bringing algebraic K-theory under the umbrella of Goodwillie’s calculus of functors has a
range of exciting consequences, which we are only able to touch upon in this first paper. In
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particular, three key foundational results of Waldhausen’s algebraic K-theory—the Additivity
Theorem [73, Theorem 1.4.2] (our version: Corollary 7.14), the Approximation Theorem [73,
Theorem 1.6.7] (our version: Proposition 8.4), the Fibration Theorem [73, Theorem 1.6.4]
(our version: Proposition 9.24), and the Cofinality Theorem [65, Theorem 2.1] (our version:
Theorem 10.19)—are straightforward consequences of general facts about the calculus of
functors combined with some observations about the homotopy theory of Wald∞.

To get a glimpse of various bits of our framework at work, we offer two examples that
exploit certain features of the algebraic K-theory functor of which we are fond. First (§ 11),
we apply our foundational work to the study of the connective K-theory of E1-algebras in
suitable ground ∞-categories. We define a notion of a perfect left module over an E1-algebra
(Definition 11.2). In the special case of an E1 ring spectrum Λ, for any set S of homogenous
elements of π∗Λ that satisfies a left Ore condition, we obtain a fiber sequence of connective
spectra

K(Nilω(Λ,S)) K(Λ) K(Λ[S−1]),

in which the first term is the K-theory of the ∞-category of S-nilpotent perfect Λ-modules
(Proposition 11.16). (Note that we only work with connective K-theory, so this is only a fiber
sequence in the homotopy theory of connective spectra; in particular, the last map need not be
surjective on π0.) Such a result—at least in special cases—is surely well known among experts;
see for example [15, Proposition 1.4 and Proposition 1.5].

Finally (in § 12), we introduce K-theory in derived algebraic geometry. In particular, we
define the K-theory of quasicompact nonconnective spectral Deligne–Mumford stacks (Defi-
nition 12.10). We prove a result analogous to what Thomason called the ‘proto-localization’
theorem [67, Theorem 5.1]; this is a fiber sequence of connective spectra

K(X \ U ) K(X ) K(U )

corresponding to a quasicompact open immersion j : U X of quasicompact, quasiseparated
spectral algebraic spaces. Here K(X \ U ) is the K-theory of the ∞-category perfect modules
M on X such that j�M � 0 (Proposition 12.13). Our proof is new in the details even in the
setting originally contemplated by Thomason (though of course the general thrust is the same).

Relation to other work

Our universal characterization of algebraic K-theory has probably been known (perhaps in
a more restrictive setting and certainly in a different language) to a variety of experts for
many years. In fact, the universal property stated here has endured a lengthy gestation: the
first version of this characterization emerged during a question-and-answer session between the
author and John Rognes after a talk given by the author at the University of Oslo in 2006.

The idea that algebraic K-theory could be characterized via a universal property goes all
the way back to the beginnings of the subject, when Grothendieck defined what we today
call K0 of an abelian or triangulated category just as we described above [12, 31]. The idea
that algebraic K-theory might be expressible as a linearization was directly inspired by the
ICM talk of Tom Goodwillie [28] and the remarkable flurry of research into the relationship
between algebraic K-theory and the calculus of functors—though, of course, the setting for
our Goodwillie derivative is more primitive than the one studied by Goodwillie et al.

But long before that, of course, came the foundational work of Waldhausen [73]. Since it is
known today that relative categories comprise a model for the homotopy theory of ∞-categories
[4], the work of Waldhausen can be said to represent the first study of the algebraic K-theory of
higher categories. Furthermore, the idea that the defining property of this algebraic K-theory
is additivity is strongly suggested by Waldhausen, and this point is driven home in the work
of Randy McCarthy [48] and Ross Staffeldt [65], both of whom recognized long ago that the
additivity theorem is the ur-theorem of algebraic K-theory.
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In a parallel development, Amnon Neeman has advanced the algebraic K-theory of
triangulated categories [49–57] as a way of extracting K-theoretic data directly from the
triangulated homotopy category of a stable homotopy theory. The idea is that the algebraic
K-theory of a ring or scheme should by approximation depend (in some sense) only on a derived
category of perfect modules; however, this form of K-theory has known limitations: an example
of Marco Schlichting [61] shows that Waldhausen K-theory can distinguish stable ∞-categories
with equivalent triangulated homotopy categories. These limitations are overcome by passing
to the derived ∞-category.

More recently, Bertrand Toën and Gabriele Vezzosi showed [70] that the Waldhausen K-
theory of many of the best-known examples of Waldhausen categories is in fact an invariant
of the simplicial localization; thus Toën and Vezzosi are more explicit in identifying higher
categories as a natural domain for K-theory. In fact, in the final section of [70], the authors
suggest a strategy for constructing the K-theory of a Segal category by means of an ‘S•
construction up to coherent homotopy’. The desired properties of their construction are
reflected precisely in our construction S . These insights were explored more deeply in the
work of Blumberg and Mandell [16]; they give an explicit description of Waldhausen’s S•
construction in terms of the mapping spaces of the simplicial localization, and they extend
Waldhausen’s approximation theorem to show that, in many cases, equivalences of homotopy
categories alone are enough to deduce equivalences of K-theory spectra.

Even more recent work of Andrew Blumberg, David Gepner, and Gonçalo Tabuada [14] has
built upon the brilliant work of the last of these authors in the context of DG categories [66] to
produce another universal characterization of the algebraic K-theory of stable ∞-categories.
One of their main results may be summarized by saying that the algebraic K-theory of stable
∞-categories is a universal additive invariant. They do not deal with general Waldhausen ∞-
categories, but they also study nonconnective deloopings of K-theory, with which we do not
contend here.

Finally, we recall that Waldhausen’s formalism for algebraic K-theory has, of course, been
applied in the context of associative S-algebras by Elmendorf, Kriz, Mandell, and May [24],
and in the context of schemes and algebraic stacks by Thomason and Trobaugh [67], Toën
[68], Joshua [33–35], and others. The applications of the last two sections of this paper are
extensions of their work.

A word on higher categories

When we speak of ∞-categories in this paper, we mean ∞-categories whose k-morphisms for
k � 2 are weakly invertible. We will use the quasicategory model of this sort of ∞-categories.
Quasicategories were invented in the 1970s by Boardman and Vogt [18], who called them
weak Kan complexes, and they were studied extensively by Joyal [36, 37] and Lurie [42]. We
emphasize that quasicategories are but one of an array of equivalent models of ∞-categories
(including simplicial categories [8, 21–23], Segal categories [7, 32, 64], and complete Segal
spaces [10, 60]), and there is no doubt that the results here could be satisfactorily proved in
any one of these models. Indeed, there is a canonical equivalence between any two of these
homotopy theories [9, 11, 38] (or any other homotopy theory that satisfies the axioms of [69]
or of [6]), through which one can surely translate the main theorems here into theorems in the
language of any other model. To underscore this fact, we will frequently use the generic term
∞-category in lieu of the more specialized term quasicategory.

That said, we wish to emphasize that we employ many of the technical details of the
particular theory of quasicategories as presented in [42] in a critical way in this paper. In
particular, beginning in § 3, the theory of fibrations, developed by Joyal and presented in
Chapter 2 of [42], is instrumental to our work here, as it provides a convenient way to finesse
the homotopy-coherence issues that would otherwise plague this paper and its author. Indeed,
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it is the convenience and relative simplicity of this theory that compelled us to work with this
model.

Part I. Pairs and Waldhausen ∞-Categories

In this part, we introduce the basic input for additive functors, including the form of K-theory
that we study. We begin with the notion of a pair of ∞-categories, which is nothing more than
an ∞-category with a subcategory of ingressive morphisms that contains the equivalences.
Among the pairs of ∞-categories, we will then isolate the Waldhausen ∞-categories as the
input for algebraic K-theory; these are pairs that contain a zero object in which the ingressive
morphisms are stable under pushout. This is the ∞-categorical analogue of Waldhausen’s
notion of categories with cofibrations.

We will also need to speak of families of Waldhausen ∞-categories, which are called
Waldhausen (co)cartesian fibrations, and which classify functors valued in the ∞-category
Wald∞ of Waldhausen ∞-categories. We study limits and colimits in Wald∞, and we
construct the ∞-category of virtual Waldhausen ∞-categories, whose homotopy theory serves
as the basis for all the work we do in this paper.

1. Pairs of ∞-categories

The basic input for Waldhausen’s algebraic K-theory [73] is a category equipped with a
subcategory of weak equivalences and a subcategory of cofibrations. These data are then
required to satisfy sundry axioms, which give what today is often called a Waldhausen category.

A category with a subcategory of weak equivalences (or, in the parlance of [4], a relative
category) is one way of exhibiting a homotopy theory. A quasicategory is another. It is known
[4, Corollary 6.11] that these two models of a homotopy theory contain essentially the same
information. Consequently, if one wishes to employ the flexible techniques of quasicategory
theory, one may attempt to replace the category with weak equivalences in Waldhausen’s
definition with a single quasicategory.

But what then is to be done with the cofibrations? In Waldhausen’s framework, the
specification of a subcategory of cofibrations actually serves two distinct functions.

(1) First, Waldhausen’s Gluing Axiom [73, § 1.2, Weq. 2] ensures that pushouts along
these cofibrations are compatible with weak equivalences. For example, pushouts in the
category of simplicial sets along inclusions are compatible with weak equivalences in this
sense; consequently, in the Waldhausen category of finite spaces, the cofibrations are
monomorphisms.

(2) Second, the cofibrations permit one to restrict attention to the particular class of cofiber
sequences one wishes to split inK-theory. For example, an exact category is regarded as a
Waldhausen category by declaring the cofibrations to be the admissible monomorphisms;
consequently, the admissible exact sequences are the only exact sequences that algebraic
K-theory splits.

In a quasicategory, the first function becomes vacuous, as the only sensible notion of pushout
in a quasicategory must preserve equivalences. Thus only the second function for a class of cofi-
brations in a quasicategory will be relevant. This means, in particular, that we need not make
any distinction between a cofibration in a quasicategory and a morphism that is equivalent to a
cofibration. In other words, a suitable class of cofibrations in a quasicategory C will be uniquely
specified by a subcategory of the homotopy category hC. We will thus define a pair of ∞-
categories as an ∞-category along with a subcategory of the homotopy category. (We call these
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ingressive morphisms, in order to distinguish them from the more rigid notion of cofibration.)
Among these pairs, we will isolate the Waldhausen ∞-categories in the next section.

In this section, we introduce the homotopy theory of pairs as a stepping stone on the way
to defining the critically important homotopy theory of Waldhausen ∞-categories. As many
constructions in the theory of Waldhausen ∞-categories begin with a construction at the level
of pairs of ∞-categories, it is convenient to establish robust language and notation for these
objects. To this end, we begin with a brief discussion of some set-theoretic considerations and
a reminder on constructions of ∞-categories from simplicial categories and relative categories.
We apply these to the construction of an ∞-category of ∞-categories and, following a short
reminder on the notion of a subcategory of an ∞-category, an ∞-category Pair∞ of pairs of
∞-categories. Finally, we relate this ∞-category of pairs to an ∞-category of functors between
∞-categories; this permits us to exhibit Pair∞ as a relative nerve.

Set theoretic considerations

In order to circumvent the set-theoretic difficulties arising from the consideration of these
∞-categories of ∞-categories and the like, we must employ some artifice. Hence to the usual
Zermelo–Frankel axioms zfc of set theory (including the Axiom of Choice) we add the following
Universe Axiom of Grothendieck and Verdier [63, Exp I, § 0]. The resulting set theory, called
zfcu, will be employed in this paper.

Axiom 1.1 (Universe). Any set is an element of a universe.

1.2. This axiom is independent of the others of zfc, since any universe U is itself a model
of Zermelo–Frankel set theory. Equivalently, we assume that, for any cardinal τ , there exists
a strongly inaccessible cardinal κ with τ < κ; for any strongly inaccessible cardinal κ, the set
Vκ of sets whose rank is strictly smaller than κ is a universe [75].

Notation 1.3. In addition, we fix, once and for all, three uncountable, strongly inacces-
sible cardinals κ0 < κ1 < κ2 and the corresponding universes Vκ0 ∈ Vκ1 ∈ Vκ2 . Now a set,
simplicial set, category, etc., will be said to be small if it is contained in the universe Vκ0 ; it
will be said to be large if it is contained in the universe Vκ1 ; and it will be said to be huge
if it is contained in the universe Vκ2 . We will say that a set, simplicial set, category, etc., is
essentially small if it is equivalent (in the appropriate sense) to a small one.

Simplicial nerves and relative nerves

There are essentially two ways in which ∞-categories will arise in the sequel. The first of these
is as simplicial categories. We follow the model of [42, Definition 3.0.0.1] for the notation of
simplicial nerves.

Notation 1.4. A simplicial category , that is, a category enriched in the category of
simplicial sets, will frequently be denoted with a superscript (−)Δ.

Suppose CΔ a simplicial category. Then we write (CΔ)0 for the ordinary category given by
taking the 0-simplices of the Mor spaces. That is, (CΔ)0 is the category whose objects are the
objects of C, and whose morphisms are given by

(CΔ)0(x, y) := CΔ(x, y)0.

If the Mor spaces of CΔ are all fibrant, then we will often write

C for the simplicial nerve N(CΔ)

[42, Definition 1.1.5.5], which is an ∞-category [42, Proposition 1.1.5.10].



252 CLARK BARWICK

It will also be convenient to have a model of various ∞-categories as relative categories [4].
To make this precise, we recall the following.

Definition 1.5. A relative category is an ordinary category C along with a subcategory
wC that contains the identity maps of C. The maps of wC will be called weak equivalences.
A relative functor (C,wC) (D,wD) is a functor C D that carries wC to wD.

Suppose (C,wC) a relative category. A relative nerve of (C,wC) consists of an ∞-category
A equipped and a functor p : NC A that satisfies the following universal property. For any
∞-category B, the induced functor

Fun(A,B) Fun(NC,B)

is fully faithful, and its essential image is the full subcategory spanned by those functors
NC B that carry the edges of wC to equivalences in B. We will say that the functor p
exhibits A as a relative nerve of (C,wC).

Since relative nerves are defined via a universal property, they are unique up to a contractible
choice. Conversely, note that the property of being a relative nerve is invariant under
equivalences of ∞-categories. That is, if (C,wC) is a relative category, then for any commutative
diagram

NC

A′ A

p′ p

∼

in which A′ ∼ A is an equivalence of ∞-categories, the functor p′ exhibits A′ as a relative
nerve of (C,wC) if and only if p exhibits A as a relative nerve of (C,wC).

Recollection 1.6. There are several functorial constructions of a relative nerve of a
relative category (C,wC), all of which are (necessarily) equivalent.

(1) One may form the hammock localization LH(C,wC) [21]; then a relative nerve can be
constructed as the simplicial nerve of the natural functor C R(LH(C,wC)), where
R denotes any fibrant replacement for the Bergner model structure [8].

(2) One may mark the edges of NC that correspond to weak equivalences in C to obtain
a marked simplicial set [42, § 3.1]; then one may use the cartesian model structure on
marked simplicial sets (over Δ0) to find a marked anodyne morphism

(NC,NwC) (N(C,wC), ιN(C,wC)),

wherein N(C,wC) is an ∞-category. This map then exhibits the ∞-category N(C,wC)
as a relative nerve of (C,wC).

(3) A relative nerve can be constructed as a fibrant model of the homotopy pushout in the
Joyal model structure [42, § 2.2.5] on simplicial sets of the map∐

φ∈wC
Δ1

∐
φ∈wC

Δ0

along the map
∐
φ∈wC Δ1 NC.

The ∞-category of ∞-categories

The homotopy theory of ∞-categories is encoded first as a simplicial category, and then,
by application of the simplicial nerve [42, Definition 1.1.5.5], as an ∞-category. This is a
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pattern that we will follow to describe the homotopy theory of pairs of ∞-categories below in
Notation 1.14.

To begin, recall that an ordinary category C contains a largest subgroupoid, which consists
of all objects of C and all isomorphisms between them. The higher categorical analogue of this
follows.

Notation 1.7. For any ∞-category A, there exists a simplicial subset ιA ⊂ A, which is the
largest Kan simplicial subset of A [42, 1.2.5.3]. We shall call this space the interior ∞-groupoid
of A. The assignment A ιA defines a right adjoint ι to the inclusion functor u from Kan
simplicial sets to ∞-categories.

We may think of ιA as the moduli space of objects of A, to which we alluded in the
introduction.

Notation 1.8. The large simplicial category KanΔ is the category of small Kan simplicial
sets, with the usual notion of mapping space. The large simplicial category CatΔ

∞ is defined
in the following manner [42, Definition 3.0.0.1]. The objects of CatΔ

∞ are small ∞-categories,
and for any two ∞-categories A and B, the morphism space

CatΔ
∞(A,B) := ιFun(A,B)

is the interior ∞-groupoid of the ∞-category Fun(A,B).
Similarly, we may define the huge simplicial category Kan(κ1)Δ of large simplicial sets and

the huge simplicial category Cat∞(κ1)Δ of large ∞-categories.

Recollection 1.9. Denote by

w(KanΔ)0 ⊂ (KanΔ)0

the subcategory of the ordinary category of Kan simplicial sets (Notation 1.4) consisting of
weak equivalences of simplicial sets. Then, since (KanΔ, w(KanΔ)0) is part of a simplicial
model structure, it follows that Kan is a relative nerve of ((KanΔ)0, w(KanΔ)0). Similarly, if
one denotes by

w(CatΔ
∞)0 ⊂ (CatΔ

∞)0

the subcategory of categorical equivalences of ∞-categories, then Cat∞ is a relative nerve
(Definition 1.5) of (CatΔ

∞)0, w(CatΔ
∞)0). This follows from [42, Propositions 3.1.3.5, 3.1.3.7,

Corollary 3.1.4.4].
Since the functors u and ι (Notation 1.7) each preserve weak equivalences, they give rise to

an adjunction of ∞-categories [42, Definition 5.2.2.1, Corollary 5.2.4.5]

u : Kan Cat∞ : ι.

Subcategories of ∞-categories

The notion of a subcategory of an ∞-category is designed to be completely homotopy-invariant.
Consequently, given an ∞-category A and a simplicial subset A′ ⊂ A, we can only call A′ a
subcategory of A if the following condition holds: any two equivalent morphisms of A both lie
in A′ just in case either of them does. That is, A′ ⊂ A is completely specified by a subcategory
(hA)′ ⊂ hA of the homotopy category hA of A.

Recollection 1.10. Recall [42, § 1.2.11] that a subcategory of an ∞-category A is a
simplicial subset A′ ⊂ A such that for some subcategory (hA)′ of the homotopy category hA,
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the square

A′ A

N(hA)′ N(hA)

is a pullback diagram of simplicial sets. In particular, note that a subcategory of an ∞-
category is uniquely specified by specifying a subcategory of its homotopy category. Note
also that any inclusion A′ A of a subcategory is an inner fibration [42, Definition 2.0.0.3,
Proposition 2.3.1.5].

We will say that A′ ⊂ A is a full subcategory if (hA)′ ⊂ hA is a full subcategory. In this
case, A′ is uniquely determined by the set A′

0 of vertices of A′, and we say that A′ is spanned
by the set A′

0.
We will say that A′ is stable under equivalences if the subcategory (hA)′ ⊂ hA above can

be chosen to be stable under isomorphisms. Note that any inclusion A′ A of a subcategory
that is stable under equivalences is a categorical fibration, that is, a fibration for the Joyal
model structure [42, Corollary 2.4.6.5].

Pairs of ∞-categories

Now we are prepared to introduce the notion of a pair of ∞-categories.

Definition 1.11. (1) By a pair (C ,C†) of ∞-categories (or simply a pair), we shall mean
an ∞-category C along with a subcategory (1.10) C† ⊂ C containing the maximal Kan complex
ιC ⊂ C . We shall call C the underlying ∞-category of the pair (C ,C†). A morphism of C† will
be said to be an ingressive morphism.

(2) A functor of pairs ψ : (C ,C†) (D ,D†) is functor C D that carries ingressive
morphisms to ingressive morphisms; that is, it is a (strictly!) commutative diagram

(3)

C† D†

C D

ψ†

ψ

of ∞-categories.
(4) A functor of pairs C D is said to be strict if a morphism of C is ingressive just in

case its image in D is so; that is, if the diagram (3) is a pullback diagram in Cat∞.
(5) A subpair of a pair (C ,C†) is a subcategory (1.10) D ⊂ C equipped with a pair structure

(D ,D†) such that the inclusion D C is a strict functor of pairs. If the subcategory D ⊂ C
is full, then we will say that (D ,D†) is a full subpair of (C ,C†).

Since a subcategory of an ∞-category is uniquely specified by a subcategory of its homotopy
category, and since a morphism of an ∞-category is an equivalence if and only if the
corresponding morphism of the homotopy category is an isomorphism [42, Proposition 1.2.4.1],
we deduce that a pair (C ,C†) of ∞-categories may simply be described as an ∞-category C
and a subcategory (hC )† ⊂ hC of the homotopy category that contains all the isomorphisms.
In particular, note that C† contains all the objects of C .

Note that pairs are a bit rigid: if (C ,C†) and (C ,C††) are two pairs, then any equivalence
of ∞-categories C† ∼ C†† that is (strictly) compatible with the inclusions into C must be
the identity. It follows that for any equivalence of ∞-categories C ∼ D, the set of pairs with
underlying ∞-category C is in bijection with the set of pairs with underlying ∞-category D.
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Consequently, we will often identify a pair (C ,C†) of ∞-categories by defining the underlying
∞-category C and then declaring which morphisms of C are ingressive. As long as the condition
given holds for all equivalences and is stable under homotopies between morphisms and under
composition, this will specify a well-defined pair of ∞-categories.

Notation 1.12. Suppose (C ,C†) is a pair. Then an ingressive morphism will frequently
be denoted by an arrow with a tail: . We will often abuse notation by simply writing C
for the pair (C ,C†).

Example 1.13. Any ∞-category C can be given the structure of a pair in two ways: the
minimal pair C� := (C, ιC) and the maximal pair C� := (C,C).

The ∞-category of pairs

We describe an ∞-category Pair∞ of pairs of ∞-categories in much the same manner as we
described the ∞-category Cat∞ of ∞-categories (Notation 1.8).

Notation 1.14. Suppose C = (C ,C†) and D = (D ,D†) are two pairs of ∞-categories. Let
us denote by FunPair∞(C ,D) the full subcategory of the ∞-category Fun(C ,D) spanned by
the functors C D that carry ingressives to ingressives.

The large simplicial category PairΔ
∞ is defined in the following manner. The objects of PairΔ

∞
are small pairs of ∞-categories, and for any two pairs of ∞-categories C and D , the morphism
space PairΔ

∞(C ,D) is interior ∞-groupoid (Notation 1.7)

PairΔ
∞(C ,D) := ιFunPair∞(C ,D).

Note that PairΔ
∞(C ,D) is the union of connected components of CatΔ

∞(C ,D) that correspond
to functors of pairs.

Now the ∞-category Pair∞ is the simplicial nerve of this simplicial category (Notation 1.4).

Pair structures

It will be convenient to describe pairs of ∞-categories as certain functors between ∞-
categories. This will permit us to exhibit Pair∞ as a full subcategory of the arrow ∞-category
Fun(Δ1,Cat∞). This description will, in fact, imply (Proposition 4.2) that the ∞-category
Pair∞ is presentable.

Notation 1.15. For any simplicial set X, write O(X) for the simplicial mapping space
from Δ1 to X, whose n-simplices are given by

O(X)n = Mor(Δ1 × Δn,X).

If C is an ∞-category, then O(C) = Fun(Δ1, C) is an ∞-category as well [42, Proposi-
tion 1.2.7.3]; this is the arrow ∞-category of C. (In fact, O is a right Quillen functor for
the Joyal model structure, since this model structure is cartesian.)

Definition 1.16. Suppose C and D ∞-categories. We say that a functor D C exhibits
a pair structure on C if it factors as an equivalence D ∼ E followed by an inclusion E C
of a subcategory (1.10) such that (C,E) is a pair.

Lemma 1.17. Suppose C and D ∞-categories. Then a functor ψ : D C exhibits a pair
structure on C if and only if the following conditions are satisfied.

(1) The functor ψ induces an equivalence ιD ιC.
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(2) The functor ψ is a (homotopy) monomorphism in the ∞-category Cat∞; that is, the
diagonal morphism

D D ×hC D
in hCat∞ is an isomorphism.

Proof. Clearly any equivalence of ∞-categories satisfies these criteria. If ψ is an inclusion
of a subcategory such that (C,D) is a pair, then ψ, restricted to ιD, is the identity map, and
it is an inner fibration such that the diagonal map D D ×C D is an isomorphism. This
shows that if ψ exhibits a pair structure on C, then ψ satisfies the conditions listed.

Conversely, suppose that ψ satisfies the conditions listed. Then it is hard not to show that
for any objects x, y ∈ D, the functor ψ induces a homotopy monomorphism

MapD(x, y) MapC(ψ(x), ψ(y)),

whence the natural map

MapD(x, y) MapNhD(x, y) ×hMapNhC(ψ(x),ψ(y)) MapC(ψ(x), ψ(y))

is a weak equivalence. This, combined with the fact that the map ιD ιC is an equivalence,
now implies that the natural map D NhD ×hNhC C of Cat∞ is an equivalence.

Since isomorphisms in hC are precisely equivalences in C, the induced functor of homotopy
categories hD hC identifies hD with a subcategory of hC that contains all the isomor-
phisms. Denote this subcategory by hE ⊂ hC. Now let E be the corresponding subcategory of
C; we thus have a diagram of ∞-categories

D E C

NhD NhE NhC∼

in which the square on the right and the big rectangle are homotopy pullbacks (for the Joyal
model structure). Thus the square on the left is a homotopy pullback as well, and so the functor
D E is an equivalence, giving our desired factorization.

Construction 1.18. We now consider the following simplicial functor

U ′ : PairΔ
∞ Fun([1],CatΔ

∞).

On objects, U ′ carries a pair (C ,C†) to the inclusion of ∞-categories C† C . On mapping
spaces, U ′ is given by the obvious forgetful maps

ιFunPair∞((C ,C†), (D ,D†)) ιFun(C ,D) ×ιFun(C†,D) ιFun(C†,D†).

Now note that since ιFun(C†,D†) ιFun(C†,D) is the inclusion of a union of connected
components, it follows that the projection

ιFun(C ,D) ×ιFun(C†,D) ιFun(C†,D†) ιFun(C ,D)

is an inclusion of a union of connected components as well; in particular, it is the inclusion of
those connected components corresponding to those functors C D that carry morphisms
of C† to morphisms of D†. That is, the inclusion

ιFunPair∞((C ,C†), (D ,D†)) ιFun(C ,D)

factors through an equivalence

ιFunPair∞((C ,C†), (D ,D†)) ∼ ιFun(C ,D) ×ιFun(C†,D) ιFun(C†,D†).
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In other words, the functor U ′ is fully faithful.

We therefore conclude:

Proposition 1.19. The functor

Pair∞ NFun([1],CatΔ
∞) � O(Cat∞)

induced by U ′ exhibits an equivalence between Pair∞ and the full subcategory of O(Cat∞)
spanned by those functors D C that exhibit a pair structure on C.

The ∞-categories of pairs as a relative nerve

It will be convenient for us to have a description of Pair∞ as a relative nerve (Definition 1.5).
First, we record the following trivial result.

Proposition 1.20. The following are equivalent for a functor of pairs ψ : C D .

(1) The functor of pairs ψ is an equivalence in the ∞-category Pair∞.
(2) The underlying functor of ∞-categories is a categorical equivalence, and ψ is strict.
(3) The underlying functor of ∞-categories is a categorical equivalence that induces an

equivalence hC† � hD†.

Proof. The equivalence of the first two conditions follows from the equivalence between
Pair∞ and a full subcategory of O(Cat∞). The second condition clearly implies the third. To
prove that the third condition implies the second, consider the commutative diagram

D† D

C† C

NhD† NhD .

NhC† NhC

The front and back faces are pullback squares and therefore homotopy pullback squares. Since
both NhC ∼ NhD and NhC† ∼ NhD† are equivalences, the bottom face is a homotopy
pullback as well. Hence the top square is a homotopy pullback. But since (C ,C†) is a pair, it
must be an actual pullback; that is, ψ is strict.

This proposition implies that the ∞-category of functors of pairs is compatible with
equivalences of pairs.

Corollary 1.21. Suppose A is a pair, and suppose C ∼ D is an equivalence of pairs of
∞-categories. Then the induced functor FunPair∞(A ,C ) FunPair∞(A ,D) is an equivalence
of ∞-categories.

Proof. The proposition implies that any homotopy inverse D ∼ C of the equivalence
C ∼ D of underlying ∞-categories must carry ingressives to ingressives. This induces a
homotopy inverse FunPair∞(A ,D) FunPair∞(A ,C ), completing the proof.

Furthermore, Proposition 1.20 may be combined with Propositions 1.19 and 1.9 to yield the
following.
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Corollary 1.22. Denote by w(PairΔ
∞)0 ⊂ (PairΔ

∞)0 the subcategory of the ordinary
category of pairs of ∞-categories (Notation 1.4) consisting of those functors of pairs C D
whose underlying functor of ∞-categories is a categorical equivalence that induces an
equivalence hC† � hD†. Then the ∞-category Pair∞ is a relative nerve (Definition 1.5) of
the relative category ((PairΔ

∞)0, w(PairΔ
∞)0).

The dual picture

Let us conclude this section by briefly outlining the dual picture of ∞-categories with fibrations.

Definition 1.23. Suppose (C op, (C op)†) a pair. Then write C † for the subcategory

((C op)†)op ⊂ C .

We call the morphisms of C † egressive morphisms or fibrations. The pair (C ,C †) will be called
the opposite pair to (C op, (C op)†). One may abuse the terminology slightly by referring to
(C ,C †) as a pair structure on C op.

Notation 1.24. Suppose that (C op, (C op)†) is a pair. Then a fibration of C will frequently
be denoted by a double-headed arrow: . We will often abuse notation by simply writing
C for the opposite pair (C ,C †).

We summarize this discussion with the following.

Proposition 1.25. The formation (C ,C†) (C op, (C op)†) of the opposite pair defines
an involution (−)op of the ∞-category Pair∞.

2. Waldhausen ∞-categories

In developing his abstract framework for K-theory, Waldhausen introduced first [73, § 1.1]
the notion of a category with cofibrations, and then [73, § 1.2] layered the added structure of
a subcategory of weak equivalences satisfying some additional compatibilities to obtain what
today is often called a Waldhausen category. This added structure introduces homotopy theory,
and Waldhausen required that the structure of a category with cofibrations interacts well with
this homotopy theory.

The theory of Waldhausen ∞-categories, which we introduce in this section, reverses these
two priorities. The layer of homotopy theory is already embedded in the implementation of
quasicategories. Then, because it is effectively impossible to formulate ∞-categorical notions
that do not interact well with the homotopy theory, we arrive at a suitable definition
of Waldhausen ∞-categories by writing the quasicategorical analogues of the axioms for
Waldhausen’s categories with cofibrations. Consequently, a Waldhausen ∞-category will be
a pair of ∞-categories that enjoys the following properties.

(A) The underlying ∞-category admits a zero object 0 such that the morphisms 0 X
are all ingressive.

(B) Pushouts of ingressives exist and are ingressives.

Limits and colimits in ∞-categories

To work with these conditions effectively, it is convenient to fix some notations and terminology
for the study of limits and colimits in ∞-categories, as defined in [42, § 1.2.13].



K-THEORY OF HIGHER CATEGORIES 259

Recollection 2.1. Recall [42, Definition 1.2.12.1] that an objectX of an ∞-category C is
said to be initial if for any object Y of C, the mapping space Map(X,Y ) is weakly contractible.
Dually, X is said to be terminal if for any object Y of C, the mapping space Map(Y,X) is
weakly contractible.

Definition 2.2. A zero object of an ∞-category is an object that is both initial and
terminal.

Notation 2.3. For any simplicial set K, one has [42, Notation 1.2.8.4] the right cone
K� := K �Δ0 and the left cone K� := Δ0 � K; we write +∞ for the cone point of K�, and
we write −∞ for the cone point of K�.

Recollection 2.4. Just as in ordinary category theory, a colimit and limit in an ∞-
category can be described as an initial and terminal object of a suitable associated ∞-category.
For any simplicial set K, a limit diagram in an ∞-category C is a diagram

p : K� C

that is a terminal object in the overcategory C/p [42, § 1.2.9], where p = p|K. Dually, a colimit,
diagram in an ∞-category C is a diagram

p : K� C

that is a terminal object in the undercategory Cp/, where p = p|K.
For any ∞-category A and any ∞-category C, we denote by

Colim(A�, C) ⊂ Fun(A�, C)

the full subcategory spanned by colimit diagrams A� C.

Definition 2.5. A pushout square in an ∞-category C is a colimit diagram

X : (Λ2
0)

� ∼= Δ1 × Δ1 C.

Such a diagram may be drawn

X00 X01

X10 X11;

the edge X10 X11 is called the pushout of the edge X00 X01.

Recollection 2.6. A key result of Joyal [42, Proposition 1.2.12.9] states that for any
functor ψ : A C, the fiber of the canonical restriction functor

ρ : Colim(A�, C) Fun(A,C)

over ψ is either empty or a contractible Kan space. One says that C admits all A-shaped
colimits if the fibers of the functor ρ are all nonempty. In this case, ρ is an equivalence of
∞-categories.

More generally, if A is a family of ∞-categories, then one says that C admits all A -shaped
colimits if the fibers of the functor Colim(A�, C) Fun(A,C) are all nonempty for every
A ∈ A .
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Finally, if A is a family of ∞-categories, then a functor f : C ′ C will be said to preserve
all A -shaped colimits if for any A ∈ A , the composite

Colim(A�, C ′) Fun(A�, C ′) Fun(A�, C)

factors through Colim(A�, C) ⊂ Fun(A�, C). We write FunA (C ′, C) ⊂ Fun(C ′, C) for the full
subcategory spanned by those functors that preserve all A -shaped colimits.

Waldhausen ∞-categories

We now introduce the notion of Waldhausen ∞-categories, which are the primary objects of
study in this work.

Definition 2.7. A Waldhausen ∞-category (C ,C†) is a pair of essentially small ∞-
categories such that the following axioms hold.

(1) The ∞-category C contains a zero object.
(2) For any zero object 0, any morphism 0 X is ingressive.
(3) Pushouts of ingressive morphisms exist. That is, for any diagram G : Λ2

0 C
represented as

X Y

X ′

in which the morphism X Y is ingressive, there exists a pushout square G :
(Λ2

0)
� ∼= Δ1 × Δ1 C extending G:

X Y

X ′ Y ′.

(4) Pushouts of ingressives are ingressives. That is, for any pushout square
(Λ2

0)
� ∼= Δ1 × Δ1 C represented as

X Y

X ′ Y ′,

if the morphism X Y is ingressive, then so is the morphism X ′ Y ′.

Call a functor of pairs ψ : C D between two Waldhausen ∞-categories exact if it satisfies
the following conditions.

(5) The underlying functor of ψ carries zero objects of C to zero objects of D .
(6) For any pushout square F : (Λ2

0)
� ∼= Δ1 × Δ1 C represented as

X Y

X ′ Y ′
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in which X Y and hence X ′ Y ′ are ingressive, the induced square ψ ◦ F :
(Λ2

0)
� ∼= Δ1 × Δ1 D represented as

ψ(X) ψ(Y )

ψ(X ′) ψ(Y ′)

is a pushout as well.

A Waldhausen subcategory of a Waldhausen ∞-category C is a subpair D ⊂ C such that
D is a Waldhausen ∞-category, and the inclusion D C is exact.

Let us repackage some of these conditions.

2.8. Denote by Λ0Q2 the pair (Λ2
0,Δ

{0,1} � Δ{2}), which may be represented as

0 1

2.

Denote by Q2 the pair

((Λ2
0)

�,Δ{0,1} � Δ{2,∞}) ∼= (Δ1)� × (Δ1)� ∼= (Δ1 × Δ1, (Δ{0} � Δ{1}) × Δ1)

(Example 1.13), which may be represented as

0 1

2 ∞.

There is an obvious strict inclusion of pairs Λ0Q2 Q2.
Conditions (Definition 2.7.3) and (Definition 2.7.4) can be rephrased as the single condition

that the functor
FunPair∞(Q2,C ) FunPair∞(Λ0Q

2,C )

induces an equivalence of ∞-categories

ColimPair∞(Q2,C ) ∼ FunPair∞(Λ0Q
2,C )

where ColimPair∞(Q2,C ) denotes the full subcategory of FunPair∞(Q2,C ) spanned by those
functors of pairs Q2 C whose underlying functor (Λ2

0)
� C is a pushout square.

Condition (Definition 2.7.6) on a functor of pairs ψ : C D between Waldhausen ∞-
categories is equivalent to the condition that the composite functor

ColimPair∞(Q2,C ) ⊂ FunPair∞(Q2,C ) FunPair∞(Q2,D)

factors through the full subcategory

ColimPair∞(Q2,D) ⊂ FunPair∞(Q2,D).

Some examples

To get a sense of how these axioms apply, let us give some examples of Waldhausen ∞-
categories.
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Example 2.9. When equipped with the minimal pair structure (Example 1.13), an ∞-
category C is a Waldhausen ∞-category C� if and only if C is a contractible Kan complex.

Equipped with the maximal pair structure (Example 1.13), any ∞-category C that admits
a zero object and all finite colimits can be regarded as a Waldhausen ∞-category C�.

Example 2.10. As a special case of the above, suppose that E is an ∞-topos [42,
Definition 6.1.0.2]. For example, one may consider the example E = Fun(S,Kan) for some
simplicial set S. Then the ∞-category E ω

∗ of compact, pointed objects of E , when equipped with
its maximal pair structure, is a Waldhausen ∞-category. Its algebraic K-theory will be called
the A-theory of E . For any Kan simplicial set X, the A-theory of the ∞-topos Fun(X,Kan)
agrees with Waldhausen’s A-theory of X (where one defines the latter via the category Rdf(X)
of finitely dominated retractive spaces over X [73, p. 389]). See Example 10.3 for more.

Example 2.11. Any stable ∞-category A [46, Definition 1.1.1.9], when equipped with
its maximal pair structure, is a Waldhausen ∞-category. If A admits a t-structure [46,
Definition 1.2.1.4], then one may define a pair structure on any of the ∞-categories A�n
by declaring that a morphism X Y be ingressive just in case the induced morphism
πnX πnY is a monomorphism of the heart A ♥. We study the relationship between the
algebraic K-theory of these ∞-categories to the algebraic K-theory of A itself in a follow-up
to this paper [3].

Example 2.12. If (C, cofC) is an ordinary category with cofibrations in the sense of
Waldhausen [73, § 1.1], then the pair (NC,N(cofC)) is easily seen to be a Waldhausen ∞-
category. If (C, cofC,wC) is a category with cofibrations and weak equivalences in the sense
of Waldhausen [73, § 1.2], then one may endow a relative nerve (Definition 1.5) N(C,wC) of
the relative category (C,wC) with a pair structure by defining the subcategory N(C,wC)† ⊂
N(C,wC) as the smallest subcategory containing the equivalences and the images of the edges
in NC corresponding to cofibrations. In Proposition 9.15, we will show that if (C,wC) is a
partial model category in which the weak equivalences and trivial cofibrations are part of a
three-arrow calculus of fractions, then any relative nerve of (C,wC) is in fact a Waldhausen
∞-category with this pair structure.

The ∞-category of Waldhausen ∞-categories

We now define the ∞-category of Waldhausen ∞-categories as a subcategory of the ∞-category
of pairs.

Notation 2.13. (1) Suppose that C and D are two Waldhausen ∞-categories. We denote
by FunWald∞(C ,D) the full subcategory of FunPair∞(C ,D) spanned by the exact functors
C D of Waldhausen ∞-categories.

(2) Define WaldΔ
∞ as the following simplicial subcategory of PairΔ

∞. The objects of WaldΔ
∞

are small Waldhausen ∞-categories, and for any Waldhausen ∞-categories C and D , the
morphism space WaldΔ

∞(C ,D) is defined by the formula

WaldΔ
∞(C ,D) := ιFunWald∞(C ,D),

or, equivalently, WaldΔ
∞(C ,D) is the union of the connected components of PairΔ

∞(C ,D)
corresponding to the exact morphisms.

(3) We now define the ∞-category Wald∞ as the simplicial nerve of WaldΔ
∞ (Notation 1.4),

or, equivalently, as the subcategory of Pair∞ whose objects are Waldhausen ∞-categories and
whose morphisms are exact functors.
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Lemma 2.14. The subcategory Wald∞ ⊂ Pair∞ is stable under equivalences.

Proof. Suppose that C is a Waldhausen ∞-category, and that ψ : C ∼ D is an equivalence
of pairs. The functor of pairs ψ induces an equivalence of underlying ∞-categories, when D
admits a zero object as well. We also have, in the notation of Nt. 2.8, a commutative square

ColimPair∞(Q2,C ) FunPair∞(Λ0Q2,C )

ColimPair∞(Q2,D) FunPair∞(Λ0Q2,D)

in which the top functor is an equivalence since C is a Waldhausen ∞-category, and the vertical
functors are equivalences since C ∼ D is an equivalence of pairs. Hence the bottom functor
is an equivalence of ∞-categories, whence D is a Waldhausen ∞-category.

Equivalences between maximal Waldhausen ∞-categories

Equivalences between Waldhausen ∞-categories with a maximal pair structure (Example 2.9)
are often easy to detect, thanks to the following result.

Proposition 2.15. Suppose that C and D are two ∞-categories each containing zero
objects and all finite colimits. Regard them as Waldhausen ∞-categories equipped with the
maximal pair structure (Example 2.9). Assume that the suspension functor Σ: C C is
essentially surjective. Then an exact functor ψ : C D is an equivalence if and only if it
induces an equivalence of homotopy categories hC ∼ hD .

Proof. We need only to show that ψ is fully faithful. Since ψ preserves all finite colimits [42,
Corollary 4.4.2.5], it follows that ψ preserves the tensor product with any finite Kan complex
[42, Corollary 4.4.4.9]. Thus for any finite simplicial set K and any objects X and Y of C , the
map

[K,MapC (X,Y )] [K,MapD(ψ(X), ψ(Y ))]

can be identified with the map

π0Map(X ⊗K,Y ) π0Map(ψ(X ⊗K), ψ(Y )) ∼= π0Map(ψ(X) ⊗K,ψ(Y )).

This map is a bijection for any finite simplicial set K. In particular, the map
Map(X,Y ) Map(ψ(X), ψ(Y )) is a weak homotopy equivalence on the connected com-
ponents at 0, whence Map(ΣX,Y ) ∼ Map(ψ(ΣX), ψ(Y )) is an equivalence. Now since every
object in C is a suspension, the functor ψ is fully faithful.

The dual picture

Entirely dual to the theory of Waldhausen ∞-categories is the theory of co-Waldhausen ∞-
categories. We record the definition here; clearly any result or construction in the theory of
Waldhausen ∞-categories can be immediately dualized.

Definition 2.16. (1) A co-Waldhausen ∞-category (C ,C †) is an opposite pair (C ,C †)
such that the opposite (C op, (C op)†) is a Waldhausen ∞-category.

(2) A functor of pairs ψ : C D between two co-Waldhausen ∞-categories is said to be
exact if its opposite ψop : C op Dop is exact.



264 CLARK BARWICK

Notation 2.17. (1) Suppose that C and D are two co-Waldhausen ∞-categories. Denote
by FuncoWald(C ,D) the full subcategory of FunPair∞(C ,D) spanned by the exact morphisms
of co-Waldhausen ∞-categories.

(2) Define coWaldΔ
∞ as the following large simplicial subcategory of PairΔ

∞. The objects
of coWaldΔ

∞ are small co-Waldhausen ∞-categories, and for any co-Waldhausen ∞-categories
C and D , the morphism space is defined by the formula

coWaldΔ
∞(C ,D) := ιFuncoWald(C ,D),

or equivalently, coWaldΔ
∞(C ,D) is the union of the connected components of PairΔ

∞(C ,D)
corresponding to the exact morphisms.

(3) We then define an ∞-category coWald as the simplicial nerve (Definition 1.5) of the
simplicial category coWaldΔ

∞.

We summarize these constructions with the following.

Proposition 2.18. The opposite involution on Pair∞ (Proposition 1.25) restricts to an
equivalence between Wald∞ and coWald.

3. Waldhausen fibrations

A key component of Waldhausen’s algebraic K-theory of spaces is his S• construction
[73, § 1.3]. In effect, this is a diagram of categories

S : Δop Cat

such that for any object m ∈ Δ, the category Sm is the category of filtered spaces

∗ = X0 ⊂ X1 ⊂ · · · ⊂ Xm

of length m, and, for any simplicial operator [φ : n m] ∈ Δ, the induced functor
φ! : Sm Sn carries a filtered space ∗ = X0 ⊂ X1 ⊂ · · · ⊂ Xm to a filtered space

∗ = Xφ(0)/Xφ(0) ⊂ Xφ(1)/Xφ(0) ⊂ · · · ⊂ Xφ(n)/Xφ(0).

We will want to construct an ∞-categorical variant of S•, but there is a little wrinkle here: as
written, this is not a functor on the nose. Rather, it is a pseudofunctor, because quotients are
defined only up to (canonical) isomorphism. To rectify this, Waldhausen constructs [73, § 1.3]
an honest functor by replacing each category Sm with a fattening thereof, in which an object
is a filtered space

∗ = X0 ⊂ X1 ⊂ · · · ⊂ Xm

along with compatible choices of all the quotient spaces Xs/Xt.
If one wishes to pass to a more homotopical variant of the S• construction, matters become

even more complicated. After all, any sequence of simplicial sets

∗ � X0 X1 · · · Xm

can, up to homotopy, be regarded as a filtered space. To extend the S• construction to accept
these objects, a simplicial operator should then induce functor that carries such a sequence to a
corresponding sequence of homotopy quotients, in which each map is replaced by a cofibration,
and the suitable quotients are formed. This now presents not only a functoriality problem
but also a homotopy coherence problem, which is precisely solved for Waldhausen categories
satisfying a technical hypothesis (functorial factorizations of weak w-cofibrations) by means of
Blumberg–Mandell’s S′

•-construction [15, Definition 2.7].
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Unfortunately, these homotopy coherence problems grow less tractable as K-theoretic
constructions become more involved. For example, if one seeks multiplicative structures on
algebraic K-theory spectra, it becomes a challenge to perform all the necessary rectifications to
turn a suitable pairing of Waldhausen categories into an Ek multiplication on theK-theory. The
work of Elmendorf and Mandell [25] manages the case k = ∞ by using different (and quite rigid)
inputs for the K-theory functor. More generally, Blumberg and Mandell [17, Theorem 2.6]
generalize this by providing, for any (colored) operad O in categories, an O-algebra structure
on the K-theory of any O-algebra in Waldhausen categories.

However, the theory of ∞-categories provides a powerful alternative to such explicit solutions
to homotopy coherence problems. Namely, the theory of cartesian and co-cartesian fibrations
allows one, in effect, to leave the homotopy coherence problems unsolved yet, at the same time,
to work effectively with the resulting objects. For this reason, these concepts play a central role
in our work here. (For fully general solutions to the problem of finding O structures onK-theory
spectra using machinery of the kind developed here, see either Blumberg–Gepner–Tabuada [13]
or [2].)

Cocartesian fibrations

The idea goes back at least to Grothendieck (and probably further). If X : C Cat is an
(honest) diagram of ordinary categories, then one can define the Grothendieck construction of
X. This is a category G(X) whose objects are pairs (c, x) consisting of an object c ∈ C and an
object x ∈ X(c), in which a morphism (f, φ) : (d, y) (c, x) is a morphism f : d c of C
and a morphism

φ : X(f)(y) x

of X(c). There is an obvious forgetful functor p : G(X) C.
One may now attempt to reverse-engineer the Grothendieck construction by trying to extract

the salient features of the forgetful functor p that ensures that it ‘came from’ a diagram of
categories. What we may notice is that for any morphism f : d c of C and any object
y ∈ X(d) there is a special morphism

F = (f, φ) : (d, y) (c,X(f)(y))

of G(X) in which
φ : X(f)(y) X(f)(y)

is simply the identity morphism. This morphism is initial among all the morphisms F ′ of G(X)
such that p(F ′) = f ; that is, for any morphism F ′ of G(X) such that p(F ′) = f , there exists a
morphism H of G(X) such that p(H) = idc such that F ′ = H ◦ F .

We call morphisms of G(X) that are initial in this sense p-cocartesian. Since a p-cocartesian
edge lying over a morphism d c is defined by a universal property, it is uniquely specified up
to a unique isomorphism lying over idc. The key condition that we are looking for is then that
for any morphism of C and any lift of its source, there is a p-cocartesian morphism with that
source lying over it. A functor p satisfying this condition is called a Grothendieck opfibration.

Now for any Grothendieck opfibration q : D C, let us attempt to extract a functor
Y : C Cat whose Grothendieck construction G(Y ) is equivalent (as a category over C) to
D. We proceed in the following manner. To any object c ∈ C assign the fiber Dc of q over c.
To any morphism f : d c assign a functor Y (f) : Dd Dc that carries any object y ∈ Dd

to the target Y (f)(y) ∈ Dc of ‘the’ q-cocartesian edge lying over f . However, the problem is
already apparent in the scare quotes around the word ‘the’. These functors will not be strictly
compatible with composition; rather, one will obtain natural isomorphisms

Y (g ◦ f) � Y (g) ◦ Y (f)

that will satisfy a secondary layer of coherences that make Y into a pseudofunctor.
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It is in fact possible to rectify any pseudofunctor to an equivalent honest functor, and this
gives an honest functor whose Grothendieck construction is equivalent to our original D.

In light of all this, three options present themselves for contending with weak diagrams of
ordinary categories:

(1) Rectify all pseudofunctors, and keep track of the rectifications as constructions become
more involved.

(2) Work systematically with pseudofunctors, verifying all the coherence laws as needed.
(3) Work directly with Grothendieck opfibrations.

Which of these one selects is largely a matter of taste. When we pass to diagrams of higher
categories, however, the first two options veer sharply into the realm of impracticality. A
pseudofunctor S Cat∞ has not only a secondary level of coherences, but also an infinite
progression of coherences between witnesses of lower-order coherences. Though rectifications
of these pseudofunctors do exist (see Recollection 3.4), they are usually not terribly explicit,
and it would be an onerous task to keep them all straight.

Fortunately, the last option generalizes quite comfortably to the context of quasicategories,
yielding the theory of cocartesian fibrations.

Recollection 3.1. Suppose p : X S is an inner fibration of simplicial sets. Recall [42,
Remark 2.4.1.4] that an edge f : Δ1 X is p-cocartesian just in case, for each integer n � 2,
any extension

Δ{0,1} X,

Λn0

f

F

and any solid arrow commutative diagram

Λn0 X

Δn S,

F

p

F

the dotted arrow F exists, rendering the diagram commutative.
We say that p is a cocartesian fibration [42, Definition 2.4.2.1] if, for any edge η : s t of

S and for every vertex x ∈ X0 such that p(x) = s, there exists a p-cocartesian edge f : x y
such that η = p(f).

Cartesian edges and cartesian fibrations are defined dually, so that an edge of X is p-
cartesian just in case the corresponding edge of Xop is cocartesian for the inner fibration
pop : Xop Sop, and p is a cartesian fibration just in case pop is a cocartesian fibration.

Example 3.2. A functor p : D C between ordinary categories is a Grothendieck
opfibration if and only if the induced functor N(p) : ND NC on nerves is a cocartesian
fibration [42, Rk 2.4.2.2].

Example 3.3. Recall that for any ∞-category C, we write O(C) := Fun(Δ1, C). By [42,
Corollary 2.4.7.12], evaluation at 0 defines a cartesian fibration s : O(C) C, and evaluation
at 1 defines a cocartesian fibration t : O(C) C.
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One can ask whether the functor s : O(C) C is also a cocartesian fibration. One may
observe [42, Lemma 6.1.1.1] that an edge Δ1 O(C) is s-cocartesian just in case the
corresponding diagram (Λ2

0)
� ∼= Δ1 × Δ1 C is a pushout square.

Recollection 3.4. Suppose that S is a simplicial set. Then the collection of cocartesian
fibrations to S with small fibers is naturally organized into an ∞-category Catcocart

∞/S . To
construct it, let Catcocart

∞ be the following subcategory of O(Cat∞): an object X U of
O(Cat∞) lies in Catcocart

∞ if and only if it is a cocartesian fibration, and a morphism p q
in O(Cat∞) between cocartesian fibrations represented as a square

X Y

U V

f

p q

lies in Catcocart
∞ if and only if f carries p-cocartesian edges to q-cocartesian edges. We now

define Catcocart
∞/S as the fiber over S of the target functor

t : Catcocart
∞ ⊂ O(Cat∞) Cat∞.

Equivalently [42, Proposition 3.1.3.7], one may describe Catcocart
∞/S as the simplicial nerve

(Notation 1.4) of the (fibrant) simplicial category of marked simplicial sets [42, Defini-
tion 3.1.0.1] over S that are fibrant for the cocartesian model structure; that is, of the form
X
 S for X S a cocartesian fibration [42, Definition 3.1.1.8].

The straightening/unstraightening Quillen equivalence of [42, Theorem 3.2.0.1] now yields
an equivalence of ∞-categories

Catcocart
∞/S � Fun(S,Cat∞).

So, the dictionary between Grothendieck opfibrations and diagrams of categories generalizes
gracefully to a dictionary between cocartesian fibrations p : X S with small fibers and
functors X : S Cat∞. As for ordinary categories, for any vertex s ∈ S0, the value X(s) is
equivalent to the fiber Xs, and for any edge η : s t, the functor hX(s) hX(t) assigns
to any object x ∈ Xs an object y ∈ Xt with the property that there is a cocartesian edge
x y that covers η. We say that X classifies p [42, Definition 3.3.2.2], and we will abuse the
terminology slightly by speaking of the functor η! : Xs Xt induced by an edge η : s t
of S, even though η! is defined only up to canonical equivalence.

Dually, the collection of cartesian fibrations to S with small fibers is naturally organized into
an ∞-category Catcart

∞/S , and the straightening/unstraightening Quillen equivalence yields an
equivalence of ∞-categories

Catcart
∞/S � Fun(Sop,Cat∞).

Example 3.5. For any ∞-category C, the functor Cop Cat∞ that classifies the
cartesian fibration s : O(C) C is the functor that carries any object X of C to the
undercategory CX/ and any morphism f : Y X to the forgetful functor f� : CX/ CY/.

If C admits all pushouts, then the cocartesian fibration s : O(C) C is classified by
a functor C Cat∞ that carries any object X of C to the undercategory CX/ and any
morphism f : Y X to the functor f! : CY/ CX/ that is given by pushout along f .

Recollection 3.6. A cocartesian fibration with the special property that each fiber is
a Kan complex, or equivalently, with the special property that the functor that classifies
it factors through the full subcategory Kan ⊂ Cat∞, is called a left fibration. These are
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more efficiently described as maps that satisfy the right lifting property with respect to horn
inclusions Λnk Δn such that n � 1 and 0 � k � n− 1 [42, Proposition 2.4.2.4].

For any cocartesian fibration p : X S, one may consider the smallest simplicial subset
ιSX ⊂ X that contains the p-cocartesian edges. The restriction ιS(p) : ιSX S of p to ιSX
is a left fibration. The functor S Kan that classifies ιSp is then the functor given by the
composition

S
F Cat∞

ι Kan,

where F is the functor that classifies p.

Let us recall a particularly powerful construction with cartesian and cocartesian fibrations,
which will form the cornerstone for our study of filtered objects of Waldhausen ∞-categories.

Recollection 3.7. Suppose that S is a simplicial set, and that X : Sop Cat∞ and
Y : S Cat∞ are two diagrams of ∞-categories. Then one may define a functor

Fun(X,Y) : S Cat∞

that carries a vertex s of S to the ∞-category Fun(X(s),Y(s)) and an edge η : s t of S to
the functor

Fun(X(s),Y(s)) Fun(X(t),Y(t))

given by the assignment F Y(η) ◦ F ◦ X(η).
If one wishes to work instead with the cartesian and cocartesian fibrations classified by X

and Y, the following construction provides an elegant way of writing explicitly the cocartesian
fibration classified by the functor Fun(X,Y). If p : X S is the cartesian fibration classified
by X and if q : Y S is the cocartesian fibration classified by Y, one may define a map
r : T S defined by the following universal property: for any map σ : K S, one has a
bijection

MorS(K,T ) ∼= MorS(X ×S K,Y ),

functorial in σ. It is then shown in [42, Corollary 3.2.2.13] that p is a cocartesian fibration,
and an edge g : Δ1 T is r-cocartesian just in case the induced map X ×S Δ1 Y carries
p-cartesian edges to q-cocartesian edges. The fiber of the map T S over a vertex s is the
∞-category Fun(Xs, Ys), and for any edge η : s t of S, the functor η! : Ts Tt induced
by η is equivalent to the functor F Y(η) ◦ F ◦ X(η) described above.

Pair cartesian and cocartesian fibrations

Just as cartesian and cocartesian fibrations are well adapted to the study of weak diagrams of
∞-categories, we will introduce the theory of Waldhausen cartesian and cocartesian fibrations,
which makes available a robust notion of weak diagrams of Waldhausen ∞-categories. To
introduce this notion, we first discuss pair cartesian and cocartesian fibrations in some detail.
These will provide a notion of weak diagrams of pairs of ∞-categories.

Definition 3.8. Suppose that S is an ∞-category. Then a pair cartesian fibration X S
is a pair X and a morphism of pairs p : X S� (where the target is the minimal pair
(S, ιS)—see Example 1.13) such that the following conditions are satisfied.

(1) The underlying functor of p is a cartesian fibration.
(2) For any edge η : s t of S, the induced functor η� : Xt Xs carries ingressive

morphisms to ingressive morphisms.
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Dually, a pair cocartesian fibration X S is a pair X and a morphism of pairs p : X S�

such that pop : X op Sop is a pair cartesian fibration.

Proposition 3.9. If S is an ∞-category and p : X S is a pair cartesian fibration
[respectively, a pair cocartesian fibration] with small fibers, then the functor Sop Cat∞
[respectively, the functor S Cat∞] that classifies p lifts to a functor Sop Pair∞
[respectively, S Pair∞].

Proof. We employ the adjunction (C, N) of [42, § 1.1.5]. Since Pair∞ and Cat∞ are
both defined as simplicial nerves, the data of a lift Sop Pair∞ of Sop Cat∞ are
tantamount to the data of a lift X : C[S]op PairΔ

∞ of the corresponding simplicial functor
X : C[S]op CatΔ

∞. Now for any object s of C[S], the categories X(s) inherit a pair structure
via the canonical equivalence X(s) � Xs. For any two objects s and t of C[S], condition
(Definition 3.8.2) ensures that the map

C[S](t, s) CatΔ
∞(X(s),X(t))

factors through the simplicial subset (Notation 1.14)

PairΔ
∞(X(s),X(t)) ⊂ CatΔ

∞(X(s),X(t)).

This now defines the desired simplicial functor X.

Definition 3.10. In the situation of Proposition 3.9, we will say that the lifted func-
tor Sop Pair∞ [respectively, the lifted functor S Pair∞] classifies the cartesian
[respectively, cocartesian] fibration p.

Proposition 3.11. The classes of pair cartesian fibrations and pair cocartesian fibrations
are each stable under base change. That is, for any pair cartesian [respectively, cocartesian]
fibration X S and for any functor f : S′ S, if the pullback X ′ := X ×S S′ is endowed
with the pair structure in which a morphism is ingressive just in case it is carried to an
equivalence in S′ and to an ingressive morphism of X , then X ′ S′ is a pair cartesian
[respectively, cocartesian] fibration.

Proof. We treat the case of pair cartesian fibrations. Cartesian fibrations are stable under
pullbacks [42, Proposition 2.4.2.3(2)], so it remains to note that for any morphism η : s t
of S′, the induced functor

η� � f(η)� : X ′
t
∼= Xf(t) Xf(s)

∼= X ′
s

carries ingressive morphisms to ingressive morphisms.

The ∞-categories of pair (co)cartesian fibrations

The collection of all pair cocartesian fibrations is organized into an ∞-category Paircocart
∞ ,

which is analogous to the ∞-category Catcocart
∞ of Recollection 3.4. Furthermore, pair

cocartesian fibrations with a fixed base ∞-category S organize themselves into an ∞-category
Paircocart

∞/S .

Notation 3.12. Denote by

Paircart
∞ [respectively, by Paircocart

∞ ]

the following subcategory of O(Pair∞). The objects of Paircart
∞ [respectively, Paircocart

∞ ] are
pair cartesian fibrations (respectively, pair cocartesian fibrations) X S. For any pair
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cartesian (respectively, cocartesian) fibrations p : X S and q : Y T , a commutative
square

X Y

S� T �

ψ

p q

of pairs of ∞-categories is a morphism p q of Paircart
∞ [respectively, of Paircocart

∞ ] if and
only if ψ carries p-cartesian (respectively, p-cocartesian) edges to q-cartesian (respectively,
q-cocartesian) edges.

By an abuse of notation, we will denote by (X /S) an object X S of Paircart
∞

[respectively, of Paircocart
∞ ].

The following is immediate from Proposition 3.11 and [42, Lemma 6.1.1.1].

Lemma 3.13. The target functors

Paircart
∞ Cat∞ and Paircocart

∞ Cat∞

induced by the inclusion {1} ⊂ Δ1 are both cartesian fibrations.

Notation 3.14. The fibers of the cartesian fibrations

Paircart
∞ Cat∞ and Paircocart

∞ Cat∞

over an object {S} ⊂ Cat∞ will be denoted Paircart
∞,/S and Paircocart

∞,/S , respectively.
By an abuse of notation, denote by

(Paircart
∞/S)0 [respectively, by (Paircocart

∞/S )0]

the subcategory of the ordinary category ((PairΔ
∞)0 ↓ S�) whose objects are pair cartesian

fibrations [respectively, pair cocartesian fibrations] X S and whose morphisms are functors
of pairs X Y over S that carry cartesian morphisms to cartesian morphisms [respectively,
that carry cocartesian morphisms to cocartesian morphisms]. Denote by

w(Paircart
∞/S)0 ⊂ (Paircart

∞/S)0 [respectively, by w(Paircocart
∞/S )0 ⊂ (Paircocart

∞/S )0]

the subcategory consisting of those morphisms X Y over S that are fiberwise equivalences
of pairs, that is, such that for any vertex s ∈ S0, the induced functor Xs Ys is a weak
equivalence of pairs. Equivalently, w(Paircart

∞/S)0 is the collection of those equivalences of pairs
X ∼ Y over S that are fiberwise equivalences of ∞-categories, that is, such that for any
vertex s ∈ S0, the induced functor Xs Ys is an equivalence of underlying ∞-categories.

Lemma 3.15. For any ∞-category S, the ∞-category Paircart
∞/S [respectively, the ∞-

category Paircocart
∞/S ] is a relative nerve (Definition 1.5) of

((Paircart
∞/S)0, w(Paircart

∞/S)0) [respectively, of ((Paircocart
∞/S )0, w(Paircocart

∞/S )0)].

Proof. To show that Paircart
∞/S is a relative nerve of ((Paircart

∞/S)0, w(Paircart
∞/S)0), we first

note that the analogous result for ∞-categories of cartesian fibrations X S holds. More
precisely, recall (Recollection 3.4) that Catcart

∞/S may be identified with the nerve of the cartesian
simplicial model category of marked simplicial sets over S, when it is a relative nerve of the
category (Catcart

∞/S)0 of cartesian fibrations over S, equipped with the subcategory w(Catcart
∞/S)0

consisting of fiberwise equivalences.
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To extend this result to a characterization of Paircart
∞/S as a relative nerve, let us contemplate

the square

N((Paircart
∞/S)0,W ) N((Catcart

∞/S)0 ×(Cat∞)0 (Pair∞)0,W )

Paircart
∞/S Catcart

∞/S ×Cat∞ Pair∞,

where we have written W for the obvious classes of weak equivalences. The horizontal maps
are the forgetful functors, and the vertical maps are the ones determined by the universal
property of the relative nerve. The vertical functor on the right is an equivalence, and the
vertical functor on the left is essentially surjective. It therefore remains only to note that the
horizontal functors are fully faithful.

We may now employ this lemma to lift the equivalence of ∞-categories

Catcart
∞/S � Fun(Sop,Cat∞)

of [42, § 3.2] to an equivalence of ∞-categories

Paircart
∞/S � Fun(Sop,Pair∞).

Proposition 3.16. For any ∞-category S, the ∞-category Fun(Sop,Pair∞) [respectively,
the ∞-category Fun(S,Pair∞)] is a relative nerve (Definition 1.5) of

((Paircart
∞/S)0, w(Paircart

∞/S)0) [respectively, of ((Paircocart
∞/S )0, w(Paircocart

∞/S )0)].

Proof. The unstraightening functor of [42, § 3.2] is a weak equivalence-preserving functor

Un+ : (CatΔ
∞)C[S]op (Catcart

∞/S)0

that induces an equivalence of relative nerves. (Here, (CatΔ
∞)C[S]op denotes the relative category

of simplicial functors C[S]op CatΔ
∞.) For any simplicial functor

X : C[S]op PairΔ
∞,

endow the unstraightening Un+(X) with a pair structure by letting Un+(X)† ⊂ Un+(X) be
the smallest subcategory containing all the equivalences as well as any cofibration of any fiber
Un+(X)s ∼= X(s). With this definition, we obtain a weak equivalence-preserving functor

Un+ : (PairΔ
∞)C[S]op (Paircart

∞/S)0.

This functor induces a functor on relative nerves, which is essentially surjective by
Proposition 3.9. Moreover, for any simplicial functors

X,Y : C[S]op PairΔ
∞,

the simplicial set

MapN((PairΔ
∞)C[S]op )(X,Y)

may be identified with the simplicial subset of

MapN((CatΔ∞)C[S]op )(X,Y)

given by the union of the connected components corresponding to natural transformations
X Y such that for any s ∈ S0, the functor X(s) Y(s) is a functor of pairs. Similarly,
the simplicial set

MapPaircart
∞/S

(Un+(X),Un+(Y))
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may be identified with the subspace of

MapCatcart∞/S
(Un+(X),Un+(Y))

given by the union of the connected components corresponding to functors

Un+(X) Un+(Y)

over S that send cartesian edges to cartesian edges with the additional property that for any
s ∈ S0, the functor

Un+(X)s ∼= X(s) Y(s) ∼= Un+(Y)s

is a functor of pairs. We thus conclude that Un+ is fully faithful.

Armed with this, we may characterize colimits of pair cartesian fibrations fiberwise.

Corollary 3.17. Suppose that S is a small ∞-category and K is a small simplicial set.
A functor X : K� Paircart

∞/S [respectively, a functor X : K� Paircocart
∞/S ] is a colimit

diagram if and only if, for every vertex s ∈ S0, the induced functor

Xs : K� Pair∞

is a colimit diagram.

Of course the same characterization of limits holds, but it will not be needed. We will take
up the question of the existence of colimits in the ∞-category Pair∞ in Corollary 4.5.

A pair version of Recollection 3.7

The theory of pair cartesian and cocartesian fibrations is a relatively mild generalization of the
theory of cartesian and cocartesian fibrations, and many of the results extend to this setting.
In particular, we now set about proving a pair version of Recollection 3.7 (that is, of [42,
Corollary 3.2.2.13]).

In effect, the objective is to give a fibration-theoretic version of the following observation.
For any ∞-category S, any diagram X : Sop Pair∞, and any diagram Y : S Pair∞,
there is a functor

FunPair∞(X,Y) : S Cat∞

that carries any object s of S to the ∞-category FunPair∞(X(s),Y(s)).

Notation 3.18. Consider the ordinary category sSet(2) of pairs (V,U) consisting of a
small simplicial set U and a simplicial subset U ⊂ V .

Proposition 3.19. Suppose that p : X S is a pair cartesian fibration, and that
q : Y S is a pair cocartesian fibration. Let r : TpY S be the map defined by the
following universal property. We require, for any simplicial set K and any map σ : K S, a
bijection

MorS(K,TpY ) ∼= MorsSet(2)/(S,ιS)((K ×S X ,K ×S X†), (Y ,Y†))

(Notation 3.18), functorial in σ. Then r is a cocartesian fibration.

Proof. We may use [42, Corollary 3.2.2.13] to define a cocartesian fibration r′ : T ′
pY S

with the universal property

MorS(K,T ′
pY ) ∼= MorS(K ×S X ,Y ).
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Thus T ′
pY is an ∞-category whose objects are pairs (s, φ) consisting of an object s ∈ S0 and

a functor φ : Xs Ys, and TpY ⊂ T ′
pY is the full subcategory spanned by those pairs (s, φ)

such that φ is a functor of pairs. An edge (s, φ) (t, ψ) in T ′
pY over an edge η : s t of

S is r′-cocartesian if and only if the corresponding natural transformation ηY ,! ◦ φ ◦ η�X ψ
is an equivalence. Since composites of functors of pairs are again functors of pairs, it follows
that if (s, φ) is an object of TpY , then so is (t, ψ), whence it follows that r is a cocartesian
fibration.

Suppose that X classifies p and that Y classifies q. Since FunPair∞(X(s),Y(s)) is a full
subcategory of Fun(X(s),Y(s)), it follows from Recollection 3.7 that TpY is in fact classified
by FunPair∞(X,Y).

Suppose S is an ∞-category, and suppose p : X S a pair cartesian fibration. The
construction Tp is visibly a functor

(Paircocart
∞/S )0 (Catcocart

∞/S )0.

To show that Tp defines a functor of ∞-categories Paircocart
∞/S Catcocart

∞/S , it suffices by
Lemma 3.15 just to observe that the functor Tp carries weak equivalences of Paircocart,0

∞/S to
cocartesian equivalences. Hence we have the following.

Proposition 3.20. Suppose that p : X S is a cartesian fibration; then the assignment
Y TpY defines a functor

Paircocart
∞/S Catcocart

∞/S .

Waldhausen cartesian and cocartesian fibrations

Now we have laid the groundwork for our theory of Waldhausen cartesian and cocartesian
fibrations.

Definition 3.21. Suppose that S is an ∞-category. A Waldhausen cartesian fibration
p : X S is a pair cartesian fibration satisfying the following conditions.

(1) For any object s of S, the pair

Xs := (X ×S {s},X† ×S {s})
is a Waldhausen ∞-category.

(2) For any morphism η : s t, the corresponding functor of pairs

η� : Xt Xs

is an exact functor of Waldhausen ∞-categories.

Dually, a Waldhausen cocartesian fibration p : X S is a pair cocartesian fibration
satisfying the following conditions.

(3) For any object s of S, the pair

Xs := (X ×S {s},X† ×S {s})
is a Waldhausen ∞-category.

(4) For any morphism η : s t, the corresponding functor of pairs

η! : Xs Xt

is an exact functor of Waldhausen ∞-categories.
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As with pair cartesian fibrations, Waldhausen cartesian fibrations classify functors to
Wald∞. The following is an immediate consequence of the definition.

Proposition 3.22. Suppose S is an ∞-category. Then a pair cartesian [respectively,
cocartesian] fibration p : X S is a Waldhausen cartesian fibration [respectively, a
Waldhausen cocartesian fibration] if and only if the functor Sop Pair∞ [respectively, the
functor S Pair∞] that classifies p factors through Wald∞ ⊂ Pair∞.

Proposition 3.23. The classes of Waldhausen cartesian fibrations and Waldhausen
cocartesian fibrations are each stable under base change. That is, for any Waldhausen cartesian
[respectively, cocartesian] fibration X S and for any functor f : S′ S, if the pullback
X ′ := X ×S S′ is endowed with the pair structure in which a morphism is ingressive just in
case it is carried to an equivalence in S′ and to an ingressive morphism of X , then X ′ S′

is a Waldhausen cartesian [respectively, cocartesian] fibration.

Proof. We treat the case of Waldhausen cartesian fibrations. By Proposition 3.11, X ′ S′

is a pair cartesian fibration, so it remains to note that for any morphism η : s t of S′, the
induced functor of pairs

η� � f(η)� : X ′
t
∼= Xf(t) Xf(s)

∼= X ′
s

is an exact functor.

Notation 3.24. Denote by

Waldcart
∞ [respectively, by Waldcocart

∞ ]

the following subcategory of

Paircart
∞ [respectively, of Paircocart

∞ ].

The objects of Waldcart
∞ [respectively, of Waldcocart

∞ ] are Waldhausen cartesian fibrations
[respectively, Waldhausen cocartesian fibrations] X S. A morphism

X Y

S� T �

ψ

p q

φ

of Paircart
∞ (respectively, Paircocart

∞ ) is a morphism p q of the subcategory Waldcart
∞

[respectively, of Waldcocart
∞ ] if and only if ψ induces exact functors Xs Yφ(s) for every

vertex s ∈ S0.

The following is again a consequence of Proposition 3.23 and [42, Lemma 6.1.1.1].

Lemma 3.25. The target functors

Waldcart
∞ Cat∞ and Waldcocart

∞ Cat∞

induced by the inclusion {1} ⊂ Δ1 are both cartesian fibrations.

Notation 3.26. The fibers of the cartesian fibrations

Waldcart
∞ Cat∞ and Waldcocart

∞ Cat∞

over an object {S} ⊂ Cat∞ will be denoted Waldcart
∞/S and Waldcocart

∞/S , respectively.
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Proposition 3.27. The equivalence of ∞-categories Paircart
∞/S � Fun(Sop,Pair∞)

[respectively, the equivalence of ∞-categories Paircocart
∞/S � Fun(S,Pair∞)] of Proposition 3.16

restricts to an equivalence of ∞-categories

Waldcart
∞/S � Fun(Sop,Wald∞) [respectively, Waldcocart

∞/S � Fun(S,Wald∞)].

Proof. We treat the cartesian case. Note that Waldcart
∞/S is the subcategory of the

∞-category Paircart
∞/S consisting of those objects and morphisms whose image under

the equivalence Paircart
∞/S � Fun(Sop,Pair∞), lies in the subcategory Fun(Sop,Wald∞) ⊂

Fun(Sop,Pair∞). So one may identify Waldcart
∞/S as the pullback

Waldcart
∞/S Fun(Sop,Wald∞)

Paircart
∞/S Fun(Sop,Pair∞).∼

The result now follows from the fact that because the right-hand vertical map is a categorical
fibration (1.10), this square is a homotopy pullback for the Joyal model structure.

As with pair fibrations (Corollary 3.17), we employ this result to observe that colimits of
Waldhausen cartesian fibrations may be characterized fiberwise.

Corollary 3.28. Suppose S is a small ∞-category, and K is a small simplicial set. A
functor X : K� Waldcart

∞/S [respectively, a functor X : K� Waldcocart
∞/S ] is a colimit

diagram if and only if, for every vertex s ∈ S0, the induced functor

Xs : K� Wald∞

is a colimit diagram.

4. The derived ∞-category of Waldhausen ∞-categories

So far, we have built up a language for talking about the ∞-categories of interest to K-
theorists. Now we want to study the ∞-category Wald∞ of all these objects in some detail.
More importantly, in later sections we’ll need an enlargement of Wald∞ on which we can
define suitable derived functors.

We take our inspiration from the following construction. Let V (k) denote the ordinary
category of vector spaces over a field k, and let D�0(k) be the connective derived ∞-category
of V (k). That is, D�0(k) is a relative nerve of the relative category of (homologically graded)
chain complexes whose homology vanishes in negative degrees, where a weak equivalence is
declared to be a quasi-isomorphism.

The connective derived ∞-category is the vehicle with which one may define left derived
functors of right exact functors: one very general way of formulating this is to characterize
D�0(k) as the ∞-category obtained from V (k) by adding formal geometric realizations; that
is, homotopy colimits of simplicial diagrams. More precisely, for any ∞-category C that admits
all geometric realizations, the functor

Fun(D�0(k), C) Fun(NV (k), C)

induced by the inclusionNV (k) D�0(k) restricts to an equivalence from the full subcategory
of Fun(D�0(k), C) spanned by those functors D�0(k) C that preserve geometric realizations
to Fun(NV (k), C). (This characterization follows from the Dold–Kan correspondence; see [46,
Proposition 1.3.3.8] for a proof.) The objects of D�0(k) can be represented as presheaves (of
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spaces) on the nerve of the category of finite-dimensional vector spaces that carry direct sums
to products.

In this section, we wish to mimic this construction, treating the ∞-category Wald∞
of Waldhausen ∞-categories as formally analogous to the category V (k). We thus define
D(Wald∞) as the ∞-category presheaves (of spaces) on the nerve of the category of suitably
finite Waldhausen ∞-categories that carry direct sums to products. We call these presheaves
virtual Waldhausen ∞-categories. As with D�0(k), virtual Waldhausen ∞-categories can be
viewed as formal geometric realizations of simplicial Waldhausen ∞-categories, and the ∞-
category D(Wald∞) enjoys the following universal property: for any ∞-category C that admits
all geometric realizations, the functor

Fun(D(Wald∞), C) Fun(Wald∞, C)

induced by the Yoneda embedding Wald∞ D(Wald∞) restricts to an equivalence from
the full subcategory of Fun(D(Wald∞), C) spanned by those functors D(Wald∞) C that
preserve geometric realizations to Fun(Wald∞, C).

To get this idea off the ground, it is clear that we must analyze limits and colimits in Wald∞.
Along the way, we’ll find that, indeed, Wald∞ is rather a lot like V (k).

Limits and colimits of pairs of ∞-categories

We first analyze limits and colimits in the ∞-category Pair∞.

Recollection 4.1. Suppose C a locally small ∞-category [42, Definition 5.4.1.3]. For
a regular cardinal κ < κ0, recall [42, Definition 5.5.7.1] that C is said to be κ-compactly
generated (or simply compactly generated if κ = ω) if it is κ-accessible and admits all small
colimits. From this it will follow that C admits all small limits as well. It follows from Simpson’s
theorem [42, Theorem 5.5.1.1] that C is κ-compactly generated if and only if it is a κ-accessible
localization of the ∞-category of presheaves P(C0) = Fun(Cop

0 ,Kan) of small spaces on some
small ∞-category C0.

Proposition 4.2. The ∞-category Pair∞ is an ω-accessible localization of the arrow
∞-category O(Cat∞).

Proof. We use Proposition 1.19 to identify Pair∞ with a full subcategory of O(Cat∞).
Now the condition that an object C ′ C of O(Cat∞) be a monomorphism is equivalent to
the demand that the functors

ιC ′ ιC ′ ×hιC ιC ′ and ιO(C ′) ιO(C ′) ×hιO(C) ιO(C ′)

be isomorphisms of hCat∞. This, in turn, is the requirement that the object C ′ C be
S-local, where S is the set

S :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δp � Δp Δp

Δp Δp

∇

∇
∣∣∣ p ∈ Δ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

of morphisms of O(Cat∞). The condition that an object C ′ C of O(Cat∞) induce an
equivalence ιC ′ ιC is equivalent to the requirement that it be local with respect to the
singleton

{φ : [∅ Δ0] [Δ0 Δ0]}.
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Hence Pair∞ is equivalent to the full subcategory of the S ∪ {φ}-local objects of O(Cat∞).
Now it is easy to see that the S ∪ {φ}-local objects of O(Cat∞) are closed under filtered
colimits; hence by [42, Proposition 5.5.3.6 and Corollary 5.5.7.3], the ∞-category Pair∞ is an
ω-accessible localization.

Corollary 4.3. The ∞-category Pair∞ is compactly generated.

Corollary 4.4. The ∞-category Pair∞ admits all small limits, and the inclusion

Pair∞ O(Cat∞)

preserves them.

Corollary 4.5. The ∞-category Pair∞ admits all small colimits, and the inclusion

Pair∞ O(Cat∞)

preserves small filtered colimits.

Corollary 4.6. Any pair C is the colimit of its compact subpairs.

Example 4.7. Suppose that C is a pair such that C and C† are each compact in Cat∞.
Then C is compact in Pair∞. Indeed, suppose D : Λ� Pair∞ is a colimit of a filtered
diagram of pairs. The compactness of C and C† yields an equivalence

PairΔ
∞(C ,D+∞) � colimαCatΔ

∞(C ,Dα) ×colimβCatΔ∞(C†,Dβ) colimγCatΔ
∞(C†,Dγ,†).

Now since filtered colimits in spaces commute with finite limits, one has

PairΔ
∞(C ,D+∞) � colimαCatΔ

∞(C ,Dα) ×CatΔ∞(C†,Dα) CatΔ
∞(C†,Dα,†),

which implies that C is compact in Pair∞.
In particular, any pair C in which both C and C† are finite simplicial sets is compact.

Limits and filtered colimits of Waldhausen ∞-categories

Now we construct limits and colimits in Wald∞.

Proposition 4.8. The ∞-category Wald∞ admits all small limits, and the inclusion
functor Wald∞ Pair∞ preserves them.

Proof. We employ [42, Proposition 4.4.2.6] to reduce the problem to proving the existence of
products and pullbacks in Wald∞. To complete the proof, we make the following observations.

(1) Suppose that I is a set, (Ci)i∈I an I-tuple of pairs of ∞-categories, and C the product
of these pairs. If, for each i ∈ I, the pair Ci is a Waldhausen ∞-category, then so is C .
Moreover, if D is a Waldhausen ∞-category, then a functor of pairs D C is exact
if and only if the composite

D C Ci

is exact for any i ∈ I. This follows directly from the fact that limits and colimits of a
product are computed objectwise [42, Corollary 5.1.2.3].
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(2) Suppose

E ′ F ′

E F

q′

p′ p

q

is a pullback diagram of pairs of ∞-categories. Suppose, moreover, that E , F , and
F ′ are all Waldhausen ∞-categories, and p and q are exact functors. Then by [42,
Lemma 5.4.5.2] and its dual, E ′ admits both an initial object and a terminal object,
each of which is preserved by p′ and q′, and they are equivalent since they are so in
E , F , and F ′. It now follows from [42, Lemma 5.4.5.5] that E ′ is a Waldhausen ∞-
category, and for any Waldhausen ∞-category D , a functor of pairs ψ : D E is exact
if and only if the composites p′ ◦ ψ and q′ ◦ ψ are exact.

We obtain a similar characterization of filtered colimits in Wald∞.

Proposition 4.9. The ∞-category Wald∞ admits all small filtered colimits, and the
inclusion functor Wald∞ Pair∞ preserves them.

Proof. Suppose that A is a filtered ∞-category, A Wald∞ is a functor given by the
assignment a Ca, and C is the colimit of the composite functor

A Wald∞ Pair∞.

Pushouts of ingressive morphisms in C exist and are ingressive morphisms. Furthermore, the
image of any zero object in any Ca is initial in both C and in C†. Both of these facts follow
by precisely the same argument as [42, Proposition 5.5.7.11]. The dual argument ensures that
this image is also terminal in C , whence it is a zero object.

Direct sums of Waldhausen ∞-categories

The ∞-category Wald∞ also admits finite direct sums, that is, that finite products in Wald∞
are also finite coproducts.

Definition 4.10. Suppose that C is an ∞-category. Then C is said to admit finite direct
sums if the following conditions hold.

(1) The ∞-category C is pointed.
(2) The ∞-category C has all finite products and coproducts.
(3) For any finite set I and any I-tuple (Xi)i∈I of objects of C, the map∐

XI

∏
XI

in hC, given by the maps φij : Xi Xj , where φij is zero unless i = j, in which case
it is the identity, is an isomorphism.

If C admits finite direct sums, then for any finite set I and any I-tuple (Xi)i∈I of objects of
C, we denote by

⊕
XI the product (or, equivalently, the coproduct) of the Xi.

We will say that C is additive if it admits direct sums, and the resulting commutative
monoids MorhA (X,Y ) are all abelian groups.

Proposition 4.11. The ∞-category Wald∞ admits finite direct sums.
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Proof. The Waldhausen ∞-category Δ0 is a zero object. To complete the proof, it suffices
to show that for any finite set I and any I-tuple of Waldhausen ∞-categories (Ci)i∈I with
product C , the functors φi : Ci C , given by the functors φij : Ci Cj , where φij is zero
unless j = i, in which case it is the identity, are exact and exhibit C as the coproduct of (Ci)i∈I .
To prove this, we employ [42, Theorem 4.2.4.1] to reduce the problem to showing that for any
Waldhausen ∞-category D , the map

WaldΔ
∞(C ,D)

∏
i∈I

WaldΔ
∞(Ci,D)

induced by the functor φi is a weak homotopy equivalence. We prove the stronger claim that
the functor

w : FunWald∞(C ,D)
∏
i∈I

FunWald∞(Ci,D)

is an equivalence of ∞-categories.
For this, consider the following composite

Fun(C ,Fun(NI,D)) Fun(C ,Colim((NI)�,D))

∏
i∈I Fun(Ci,D) Fun(C ,D)

r

u e

where u is the functor corresponding to the functor

C ×
∏
i∈I

Fun(Ci,D) ∼=
∏
i∈I

(Ci × Fun(Ci,D))
∏
i∈I

D ,

where r is a section of the trivial fibration

Fun(C ,Colim((NI)�,D)) Fun(C ,Fun(NI,D)),

and e is the functor induced by the functor Colim((NI)�,D) D given by evaluation at the
cone point ∞. This composite restricts to a functor

v :
∏
i∈I

FunWald∞(Ci,D) FunWald∞(C ,D);

indeed, one checks directly that if (ψi : Ci D)i∈I is an I-tuple of exact functors, then a
functor ψ : C D that sends a simplex σ = (σi)i∈I to a coproduct

∐
i∈I ψi(σi) in D is exact,

and the situation is similar for natural transformations of exact functors.
We claim that the functor v is a homotopy inverse to w. A homotopy w ◦ v � id can be

constructed directly from the canonical equivalences

Y � Y �
∐

i∈I−{j}
0i

for any zero objects 0i in D . In the other direction, the existence of a homotopy v ◦ w � id
follows from the observation that the natural transformations φi ◦ pri id exhibit the identity
functor on C as the coproduct

∐
i∈I φi ◦ pri.

Since any small coproduct can be written as a filtered colimit of finite coproducts, we deduce
the following.

Corollary 4.12. The ∞-category Wald∞ admits all small coproducts.

Coproducts in Wald∞ enjoy a description reminiscent of the description of coproducts in
the category of vector spaces over a field: for any set I and an I-tuple (Ci)i∈I of Waldhausen
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∞-categories,
∐
i∈I Ci is equivalent to the full subcategory of

∏
i∈I Ci spanned by those objects

(Xi)i∈I such that all but a finite number of the objects Xi are zero objects.

Accessibility of Wald∞

Finally, we set about showing that Wald∞ is an accessible ∞-category. In fact, we prove the
following stronger result.

Proposition 4.13. The ∞-category Wald∞ is compactly generated.

Proof. The ∞-category Kan is compactly generated, as is the ∞-category Kan∗ of pointed
Kan complexes. We have already seen that Pair∞ is compactly generated. Additionally, we may
contemplate the full subcategory Mono ⊂ Fun(Δ1,Kan) spanned by those functors C D
that are monomorphisms. We claim that Mono is also compactly generated. Indeed, Mono
is nothing more than the full subcategory of {φ}-local objects, where φ denotes the map

∂Δ1 Δ0

Δ0 Δ0,

and Mono ⊂ Fun(Δ1,Kan) is clearly stable under filtered colimits, whence it is an ω-accessible
localization by [42, Corollary 5.5.7.3].

Now we define some functors among these ∞-categories. Denote by ι the interior functor
Pair∞ Kan 1.7. Write F : Pair∞ Kan for the functor C MapPair∞(Q2,C )
corepresented by Q2. We also have the target functor Mono Kan and the forgetful functor
Kan∗ Kan. It is easy to see that all of these functors preserve limits and filtered colimits.
Therefore we may form the fiber product

C := Mono ×Kan,F Pair∞ ×U,Kan Kan∗,

which by [42, Proposition 5.5.7.6] is thus compactly generated.
The objects of C can thus be thought of as 4-tuples (C ,C†, I,M), where (C ,C†) is a pair, I

is an object of C , and M ⊂ MapPair∞(Q2,C ) is a collection of functors of pairs Q2 C . A
morphism (C ,C†, I,M) (D ,D†, J,N) is a functor of pairs (C ,C†) (D ,D†) that carries
I to J and carries any square in M to a square in N . In particular, Wald∞ can be identified
with the full subcategory of C spanned by those objects (C ,C†, I,M) such that (C ,C†) is a
Waldhausen ∞-category, I is a zero object of C , and M is the collection of pushout squares
Q2 C .

Now we have already shown that the inclusion Wald∞ C preserves limits and filtered
colimits. We now intend to construct a left adjoint to this inclusion, whence Wald∞ is
compactly generated by [42, Corollary 5.5.7.3].

In light of [42, Proposition 5.2.7.8], it suffices, for any object (C ,C†, I,M) of C, to give a
localization F : (C ,C†, I,M) (D ,D†, J,N) relative to Wald∞ ⊂ C. To do this, we present
a kind of pair version of [42, § 5.3.6].

First, we form the ∞-category of presheaves of pointed spaces

P∗(C ) := Fun(C op,Kan∗),

and we write j for the composite of the Yoneda embedding C P(C ) with the pointing
functor P(C ) P∗(C ).

Now for any square p : Q2 C in M , select a colimit xp of j ◦ p|Λ0Q2 , and consider the
natural map fp : xp j(p(1, 1)) (which is unique up to a contractible choice). Now let φ be
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the canonical map j(I) 0 from j(I) to the zero object of P(C ). Write S for the set

{fp | p ∈M} ∪ {φ},
and form the ∞-category LSP∗(C ) of S-local objects as P∗(C ). Write L for the left adjoint
to the inclusion LSP∗(C ) P∗(C ).

We define LSP∗(C )† as the smallest subcategory of LSP∗(C )† that contains all the
equivalences, the image of any map of M under L ◦ j, and any map 0 x, and that is
stable under pushouts.

Finally, we select the smallest full subcategory D ⊂ LSP∗(C ) that contains the essential
image of L ◦ j that is closed under pushouts along any morphism of LSP∗(C )†, and we set

D† := D ∩ LSP∗(C )†.

We set F := L ◦ j, and we set J := F (I), and we let N be the collection of all pushout squares
in D along a map of D†.

The claim is now threefold:

(1) The pair (D ,D†) is a Waldhausen ∞-category, J is a zero object, and N consists of
pushout squares Q2 D .

(2) The functor F carries C† to D†, I to J , and M to N .
(3) For any Waldhausen ∞-category E , the functor F induces an equivalence

MapWald∞(D ,E ) MapC(C ,E ).

The first two claims are now obvious from the construction. The last claim is as in the proof
of [42, Proposition 5.3.6.2(2)].

This result shows that in fact the ∞-category Wald∞ admits all small colimits, not only
the filtered ones. However, these other colimits are not preserved by the sorts of invariants in
which we are interested, and so we will regard them as pathological. Nevertheless, we will have
use for the following.

Corollary 4.14. The ∞-category Wald∞ is ω-accessible.

Corollary 4.15. The ∞-category Wald∞ may be identified with the Ind-objects of the
full subcategory Waldω∞ ⊂ Wald∞ spanned by the compact Waldhausen ∞-categories:

Wald∞ � Ind(Waldω∞).

We obtain a further corollary by combining Propositions 4.9–4.13 together with the adjoint
functor theorem [42, Corollary 5.5.2.9].

Corollary 4.16. The forgetful functor Wald∞ Pair∞ admits a left adjoint
W : Pair∞ Wald∞.

4.17. Since the opposite functor Wald∞ coWald is an equivalence of ∞-categories, it
follows that this whole crop of structural results also hold for coWald. That is, coWald admits
all small limits and all small filtered colimits, and the inclusion functor coWald Pair∞
preserves each of them. Similarly, coWald admits finite direct sums and all small coproducts,
and it is compactly generated.

Virtual Waldhausen ∞-categories

Now we are prepared to introduce a convenient enlargement of the ∞-category Wald∞. In
effect, we aim to ‘correct’ the colimits of Wald∞ that we regard as pathological. As with the
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formation of D�0(k) from NV (k) (see the introduction of this section), or indeed with the
formation of the ∞-category of spaces from the nerve of the category of sets, we will add to
Wald∞ formal geometric realizations and nothing more. The result is the derived ∞-category
of Waldhausen ∞-categories, whose homotopy theory forms the basis of our work here.

The definition is exactly as for D�0(k):

Definition 4.18. A virtual Waldhausen ∞-category is a presheaf

X : (Waldω∞)op Kan

that preserves products.

Notation 4.19. Denote by

D(Wald∞) ⊂ Fun(Waldω,op∞ ,Kan)

the full subcategory spanned by the virtual Waldhausen ∞-categories. In other words,
D(Wald∞) is the nonabelian derived ∞-category of Waldω∞ [42, § 5.5.8]. We simply call
D(Wald∞) the derived ∞-category of Waldhausen ∞-categories.

Notation 4.20. For any ∞-category C, we shall write P(C) for the ∞-category
Fun(Cop,Kan) of presheaves of small spaces on C. If C is locally small, then there exists
a Yoneda embedding [42, Proposition 5.1.3.1]

j : C P(C).

Recollection 4.21. Suppose A ⊂ B are two classes of small simplicial sets, and suppose
C is an ∞-category that admits all A -shaped colimits (2.6). Recall [42, § 5.3.6] that there
exist an ∞-category PB

A (C) and a fully faithful functor j : C PB
A (C) such that for any

∞-category D with all B-shaped colimits, j induces an equivalance of ∞-categories (2.6)

FunB(PB
A (C),D) ∼ FunA (C,D).

Recall also [42, Notation 6.1.2.12] that, for any ∞-category C, the colimit of a simplicial
diagram X : NΔop C will be called the geometric realization of X.

4.22. In the notation of Recollection 4.21, the ∞-category D(Wald∞) can be identified
with any of the following ∞-categories:

(1) the ∞-category P
{NΔop}
∅

Wald∞,
(2) the ∞-category PS

R Wald∞, where R is the collection of small, filtered simplicial sets
and S is the collection of small, sifted simplicial sets,

(3) the ∞-category PS
∅

Waldω∞, and
(4) the ∞-category PK

D Waldω∞, where D is the collection of finite discrete simplicial sets,
and K is the collection of small simplicial sets.

The equivalence of these characterizations follows directly from Corollary 4.15, the description
of the nonabelian derived ∞-category of [42, Proposition 5.5.8.16], the fact that sifted colimits
can be decomposed as geometric realizations of filtered colimits [42, Proposition 5.5.8.15], and
the transitivity assertion of [42, Proposition 5.3.6.11].

We may summarize these characterizations by saying that the Yoneda embedding is a fully
faithful functor

j : Wald∞ D(Wald∞)
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that induces, for any ∞-category E that admits geometric realizations, any ∞-category E′ that
admits all sifted colimits, and any ∞-category that admits all small colimits, equivalences (2.6)

Fun{NΔop}(D(Wald∞), E) ∼ Fun(Wald∞, E);
FunJ (D(Wald∞), E′) ∼ FunI (Wald∞, E′);
FunJ (D(Wald∞), E′) ∼ FunI (Waldω∞, E

′);
FunK (D(Wald∞), E′′) ∼ FunD(Waldω∞, E

′′).

Definition 4.23. Suppose that E is an ∞-category that admits all sifted colimits. Then
a functor

Φ: D(Wald∞) E

that preserves all sifted colimits will be said to be the left derived functor of the corresponding
ω-continuous functor φ = Φ ◦ j : Wald∞ E (which preserves filtered colimits) or of the
further restriction Waldω∞ E of φ to Waldω∞.

Proposition 4.24. The ∞-category D(Wald∞) is compactly generated. Moreover, it
admits all direct sums, and the inclusion j preserves them.

Proof. The first statement is [42, Proposition 5.5.8.10(6)]. To see that D(Wald∞) admits
direct sums, we use the fact that we may exhibit any object of D(Wald∞) as a sifted colimit
of compact Waldhausen ∞-categories in P(Waldω∞) [42, Lemma 5.5.8.14]; now since sifted
colimits commute with both finite products [42, Lemma 5.5.8.11] and coproducts, and since j
preserves products and finite coproducts [42, Lemma 5.5.8.10(2)], the proof is complete.

Realizations of Waldhausen cocartesian fibrations

We now give an explicit construction of colimits in D(Wald∞) of sifted diagrams of Waldhausen
∞-categories when they are exhibited as Waldhausen cocartesian fibrations.

The idea behind our construction comes from the following observation.

Recollection 4.25. For any left fibration p : X S (3.6), the total space X is a model
for the colimit of the functor S Kan that classifies p [42, Corollary 3.3.4.6].

If S is an ∞-category and X : S Wald∞ is a diagram of Waldhausen ∞-categories, then
the colimit of the composite

S
X Wald∞

j
P(Wald∞)

is computed objectwise [42, Corollary 5.1.2.3]. If S is sifted, then since D(Wald∞) ⊂ P
(Wald∞) is stable under sifted colimits, the colimit of the composite

S
X Wald∞

j
D(Wald∞)

is also computed objectwise. That is, for any compact Waldhausen ∞-category C , one has

(colims∈SX(s))(C ) � colims∈SιFunWald∞(C ,X(s)).

Suppose that X classifies a Waldhausen cartesian fibration X S; then we aim to produce
a left fibration (3.6)

H(C , (X /S)) := ιSH (C , (X /S)) S
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that classifies the colimit of the composite

S
X Wald∞

j
P(Wald∞)

evC Kan.

We can avoid choosing a straightening of the Waldhausen cocartesian fibration by means of
the following.

Construction 4.26. Suppose that S is a sifted ∞-category and that X S is a
Waldhausen cocartesian fibration. Then for any compact Waldhausen ∞-category C , define a
simplicial set H ′(C , (X /S)) over S via the universal property

MorS(K,H ′(C , (X /S))) ∼= MorS(C ×K,X ),

functorial in simplicial sets K over S. The resulting map

H ′(C , (X /S)) S

is a cocartesian fibration by Recollection 3.7 and [42, Corollary 3.2.2.13]. Denote by
H (C , (X /S)) the full subcategory of H ′(C , (X /S)) spanned by those functors C Xs

that are exact functors of Waldhausen ∞-categories; here too the canonical functor

p : H (C , (X /S)) S

is a cocartesian fibration. Now denote by H(C , (X /S)) the subcategory

ιSH (C , (X /S)) ⊂ H (C , (X /S))

consisting of the p-cocartesian morphisms (3.6). The functor

ιS(p) : H(C , (X /S)) S

is now a left fibration.

Of course, we may simply realize the assignment (C , (X /S)) H(C , (X /S)) as a functor

H: Waldω,op∞ × Waldcocart
∞/S Kan

by choosing both an equivalence Waldcocart
∞/S

∼ Fun(S,Wald∞) and a colimit functor
Fun(S,Kan) Kan. We have given this explicit construction of the values of this functor
in terms of Waldhausen cocartesian fibrations for later use.

In the meantime, since virtual Waldhausen ∞-categories are closed under sifted colimits in
P(Waldω∞), we have the following.

Proposition 4.27. If S is a small sifted ∞-category and X S is a Waldhausen
cocartesian fibration in which X is small, then the corresponding functor H(−, (X /S)) :
Waldop

∞ Kan is a virtual Waldhausen ∞-category.

Corollary 4.28. If S is a small sifted ∞-category, then the functor

H: Waldcocart
∞,/S P(Waldω∞)

factors through the ∞-category of virtual Waldhausen ∞-categories:

| · |S : Waldcocart
∞/S D(Wald∞).

A presheaf on Waldω∞ lies in the nonabelian derived ∞-category just in case it can be written
as the geometric realization of a diagram of Ind-objects of Waldω∞ [42, Lemma 5.5.8.14]. In
other words, we have the following.
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Corollary 4.29. Suppose that X is a virtual Waldhausen ∞-category. Then there exists
a Waldhausen cocartesian fibration Y NΔop and an equivalence X � |Y |NΔop .

Definition 4.30. For any small sifted simplicial set and any Waldhausen cocartesian
fibration X /S, the virtual Waldhausen ∞-category |X |S will be called the realization of X /S.

Part II. Filtered objects and additive theories

In this part, we study reduced and finitary functors from Wald∞ to the ∞-category of
pointed objects of an ∞-topos, which we simply call theories. We begin by studying the
virtual Waldhausen ∞-categories of filtered and totally filtered objects of a Waldhausen ∞-
category. Using these, we study the class of fissile virtual Waldhausen ∞-categories; these form
a localization of D(Wald∞), and we show that suspension in this ∞-category is given by the
formation of the virtual Waldhausen ∞-category of totally filtered objects, which is in turn an
∞-categorical analogue of Waldhausen’s S• construction. We then show that suitable excisive
functors on the ∞-category of fissile virtual Waldhausen ∞-categories correspond to additive
theories that satisfy the consequences of an ∞-categorical analogue of Waldhausen’s additivity
theorem, and we construct an additivization as a Goodwillie derivative, employing our newly
minted suspension functor.

5. Filtered objects of Waldhausen ∞-categories

The phenomenon behind additivity is the interaction between a filtered object and its various
quotients. For example, for a category C with cofibrations in the sense of Waldhausen, the
universal property of K0(C ) ensures that it regards an object with a filtration of finite length

X0 X1 · · · Xn

as the sum of the first term X0 and the filtered object obtained by quotienting by X0:

0 X1/X0 · · · Xn/X0,

or, by induction, as the sum of X0, X1/X0, . . . , Xn/Xn−1. To formulate this condition properly
for the entire K-theory space, it is necessary to study ∞-categories of filtered objects in a
Waldhausen ∞-category and the various quotient functors all as suitable inputs for algebraic
K-theory. This is the subject of this section.

In particular, for any integer m � 0 and any Waldhausen ∞-category C , we construct a
Waldhausen ∞-category Fm(C ) of filtered objects of length m, and we define not only the
exact functors between these Waldhausen ∞-categories corresponding to changing the length
of the filtration (given by morphisms of Δ), but also sundry quotient functors. Since quotient
functors are only defined up to coherent equivalences, we employ the language of Waldhausen
(co)cartesian fibrations (§ 3).

After we pass to suitable colimits in D(Wald∞), we end up with two functors
D(Wald∞) D(Wald∞). The first of these, which we denote F , is a model for the cone in
D(Wald∞) (Proposition 5.25). The second, which we will denote S , will be a suspension, not
quite in D(Wald∞), but in a suitable localization of D(Wald∞) (Corollary 6.12). The study
of these functors is thus central to our interpretation of additive functors as excisive functors
(Theorem 7.4).

The cocartesian fibration of filtered objects

Filtered objects are defined in the familiar manner.
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Definition 5.1. A filtered object of length m of a pair of ∞-categories C is a sequence of
ingressive morphisms

X0 X1 · · · Xm;

that is, it is a functor of pairs X : (Δm)� C (Example 1.13).

For any morphism η : m n of Δ and any filtered objectX of length n, one may precompose
X with the induced functor of pairs (Δm)� (Δn)� to obtain a filtered object ψ�X of
length m:

Xη(0) Xη(1) · · · Xη(m).

One thus obtains a functor NΔop Cat∞ that assigns to any object m ∈ Δ the ∞-category
FunPair∞((Δm)�,C ). This is all simple enough.

But we will soon be forced to make things more complicated: if C is a Waldhausen ∞-
category, we will below have to contemplate not only filtered objects but also totally filtered
objects in C ; these are filtered objects X such that the object X0 is a zero object. The ∞-
category of totally filtered objects of length m is also functorial in m: for any morphism
η : m n of Δ and any totally filtered object X of length n, one may still precompose X
with the induced functor of pairs (Δm)� (Δn)� to obtain the filtered object η�X of length
m, and then one may get a totally filtered object by forming a quotient by the object Xη(0):

0 Xη(1)/Xη(0) · · · Xη(m)/Xη(0).

As we noted just before Recollection 3.1, this does not specify a functor NΔop Cat∞ on
the nose, because the formation of quotients is only unique up to canonical equivalences.

This can be repaired in a variety of ways; for example, one may follow in Waldhausen’s
footsteps [73, § 1.3] and rectify this construction by choosing all the compatible homotopy
quotients at once. (For example, Lurie makes use of Waldhausen’s idea in [46, § 1.2.2].) But
this is overkill: the theory of ∞-categories is precisely designed to finesse these homotopy
coherence problems, and there is a genuine technical advantage in doing so. (For example, the
total space of a left fibration is a ready-to-wear model for the homotopy colimit of the functor
that classifies it; see Recollection 4.25 or [42, Corollary 3.3.4.6].) More specifically, the theory
of cocartesian fibrations allows us to work effectively with this construction without solving
homotopy coherence problems like this.

To that end, let us first use Proposition 3.19 to access the cocartesian fibration

F (C ) NΔop

classified by the functor

m FunPair∞((Δm)�,C ).

At no extra cost, for any Waldhausen cocartesian fibration X S classified by a functor
X : S Wald∞, we can actually write down the cocartesian fibration

F (X /S) NΔop × S

classified by the functor

(m, s) FunPair∞((Δm)�,X(s)).

Once this has been done, we will be in a better position to define a Waldhausen cocartesian
fibration of totally filtered objects.

The first step to using Proposition 3.19 is to identify the pair cartesian fibration
(Definition 3.8) that is classified by the functor m (Δm)�.
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Notation 5.2. Denote by M the ordinary category whose objects are pairs (m, i) consisting
of an object m ∈ Δ and an element i ∈ m and whose morphisms (n, j) (m, i) are maps
φ : m n of Δ such that j � φ(i). This category comes equipped with a natural projection
M Δop.

It is easy to see that the projection M Δop is a Grothendieck fibration, and so the
projection π : NM NΔop is a cartesian fibration. In fact, the category M is nothing more
than the Grothendieck construction applied to the natural inclusion (Δop)op ∼= Δ Cat. So,
the functor Δ Cat∞ that classifies π is given by the assignment m Δm.

The nerve NM can be endowed with a pair structure by setting

(NM)† := NM ×NΔop ιNΔop.

Put differently, an edge of M is ingressive just in case it covers an equivalence of Δop.
Consequently, π is automatically a pair cartesian fibration (Definition 3.8); the functor
NΔ Pair∞ classified by π is given by the assignment m (Δm)�.

Now it is no problem to use the technology from Proposition 3.19 to define the cocartesian
fibration F (X /S) NΔop × S that we seek.

Construction 5.3. For any pair cocartesian fibration X S, define a map
F (X /S) NΔop × S, using the notation of Proposition 3.19 and Example 1.13, as

F (X /S) := Tπ×idS
((NΔop)� × X ).

Equivalently, we require, for any simplicial set K and any map σ : K NΔop × S, a bijection
between the set MorNΔop×S(K,F (X /S)) and the set

MorsSet(2)/(S,ιS)((K ×NΔop NM,K ×NΔop (NM)†), (X ,X†))

(Notation 3.18), functorial in σ.

With this definition, Proposition 3.19 now implies the following.

Proposition 5.4. Suppose that p : X S is a pair cocartesian fibration. Then the
functor

F (X /S) NΔop × S

is a cocartesian fibration.

Furthermore, the functor NΔop × S Cat∞ that classifies the cocartesian fibration
F (X /S) NΔop × S is indeed the functor

(m, s) FunPair∞((Δm)�,X(s)),

where X : S Pair∞ is the functor that classifies p.

Notation 5.5. When S = Δ0, write F (C ) for F (C /S), and for any integer m � 0, write
Fm(C ) for the fiber FunPair∞((Δm)�,C ) of the cocartesian fibration F (C ) NΔop over m.

Hence for any Waldhausen cocartesian fibration X S, the fiber of the cocartesian
fibration F (X /S) NΔop × S over a vertex (m, s) is the Waldhausen ∞-category Fm(Xs).

A Waldhausen structure on filtered objects of a Waldhausen ∞-category

We may endow the ∞-categories F (X /S) of filtered objects with a pair structure in a variety
of ways, but we wish to focus on one pair structure that will retain good formal properties
when we pass to quotients.
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More specifically, suppose C is a Waldhausen ∞-category. A morphism f : X Y of Fm(C )
can be represented as a diagram

X0 X1 · · · Xm

Y0 Y1 · · · Ym.

What should it mean to say that f is ingressive? It is natural to demand, first and foremost,
that each morphism fi : Xi Yi is ingressive, but this will not be enough to ensure that the
morphisms Xj/Xi Yj/Yi are all ingressive. Guaranteeing this turns out to be equivalent
to the claim that in each of the squares

Xi Xj

Yi Yj ,

the morphism from the pushout Xj ∪Xi Yi to Yj is a cofibration as well. This was noted by
Waldhausen [73, Lemma 1.1.2].

Our approach is thus to define a pair structure in such a concrete manner on F1(C ), and
then to declare that a morphism f of Fm(C ) is ingressive just in case η�(f) is so for any
η : Δ1 Δm.

Definition 5.6. Suppose that C is a Waldhausen ∞-category. We now endow the ∞-
category F1(C ) with a pair structure by letting F1(C )† ⊂ F1(C ) be the smallest subcategory
containing the following classes of edges of C :

(1) any edge X Y represented as a square

X0 X1

Y0 Y1

∼

in which X0
∼ Y0 is an equivalence and X1 Y1 is ingressive, and

(2) any edge X Y represented as a pushout square

X0 X1

Y0 Y1

in which X0 Y0 and thus also X1 Y1 are ingressive.

Let us compare this definition to our more concrete one outlined above it. To this end, we
need a bit of notation.

Notation 5.7. Let us denote by R the pair of ∞-categories whose underlying ∞-
category is

(Δ1 × (Λ2
0)

�)/(Δ1 × Λ2
0),
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which may be drawn

0 1

2 ∞′

∞,

in which only the edges 0 1, 2 ∞, and 2 ∞′ are ingressive. In the notation of 2.8,
there is an obvious strict inclusion of pairs Λ0Q2 R, and there are two strict inclusions of
pairs

Q2 ∼= Q2 × Δ{0} R and Q2 ∼= Q2 × Δ{1} R.

Lemma 5.8. Suppose that C is a Waldhausen ∞-category. Then a morphism f : X Y
of F1(C ) is ingressive just in case the morphism X0 Y0 is ingressive and the corresponding
square

F : Q2 ∼= (Δ1)� × (Δ1)� C

has the property that for any diagram F : R C such that F |Q2×Δ{0} is a pushout square,
and F = F |Q2×Δ{1} , the edge F (∞′) F (∞) is ingressive.

Proof. An easy argument shows that morphisms with this property form a subcategory
of F1(C ), and it is clear that morphisms of either type (Definition 5.6.1) or of type
(Definition 5.6.2) enjoy this property. Consequently, every ingressive morphism enjoys this
property. On the other hand, a morphism X Y that enjoys this property can clearly be
factored as X Y ′ Y , where X Y ′ is of type (Definition 5.6.2), and Y ′ Y is of
type (Definition 5.6.1), viz.:

X0 X1

Y0 Y01

Y0 Y1,

where the top square is a pushout square and Y01 Y1 is ingressive.

Definition 5.9. Now suppose X S a Waldhausen cocartesian fibration. We endow
the ∞-category F (X /S) with the following pair structure. Let F (X /S)† ⊂ F (X /S) be the
smallest pair structure containing any edge f : Δ1 F (X /S) covering a degenerate edge
id(m,s) of NΔop × S such that for any edge η : Δ1 Δm, the edge

Δ1 f
Fm(Xs)

η�

F1(Xs)

is ingressive in the sense of Definition 5.6.

Lemma 5.10. Suppose that C is a Waldhausen ∞-category. Then a morphism f : X Y
of Fm(C ) is ingressive just in case, for any integer 1 � i � m, the restricted morphism
X|(Δ{i−1,i})� Y |(Δ{i−1,i})� is ingressive in F{i−1,i}(Xs).
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Proof. Suppose thatf satisfies this condition. It is immediate that every morphismXi Yi
is ingressive, so we can regard f as an m-simplex σ : Δm F1(C ). By Lemma 5.8, this
condition is equivalent to the condition that each edge σ|Δi−1,i is ingressive, and since ingressive
edges are closed under composition, it follows that every edge σ|Δ{i,j} is ingressive.

Proposition 5.11. Suppose that p : X S is a Waldhausen cocartesian fibration. Then
with the pair structure of Definition 5.6, the functor

F (X /S) NΔop × S

is a Waldhausen cocartesian fibration.

Proof. It is easy to see that F (X /S) NΔop × S is a pair cocartesian fibration.
We claim that for any vertex (m, s) ∈ NΔop × S, the pair Fm(Xs) is a Waldhausen ∞-

category. Note that since Xs admits a zero object, so does Fm(Xs). For the remaining two
axioms, one reduces immediately to the case where m = 1. Then Definition 2.7(2) follows from
Definition 5.6(1) among ingressive morphisms. To prove Definition 2.7(3), one may note that
cofibrations of F1(Xs) are, in particular, ingressive morphisms of O(C ), for which the existence
of pushouts is clear. Finally, to prove Definition 2.7(4), it suffices to see that a pushout of any
edge of either of the classes Definition 5.6(1) or Definition 5.6(2) is of the same class. For
the class Definition 5.6(1), this follows from the fact that pushouts in F1(Xs) are computed
pointwise. A pushout of a morphism of the class (Definition 5.6(2)) is a cube

X : (Δ1)� × (Δ1)� × (Δ1)� Xs

in which the faces

X|Δ{0}×(Δ1)�×(Δ1)� , X|(Δ1)�×Δ{0}×(Δ1)� , and X|(Δ1)�×Δ{1}×(Δ1)�

are all pushouts. If X is represented by the commutative diagram

X100 X101

X000 X001

X110 X111

X010 X011,

then the front face, the top face, and the bottom face are all pushouts. By Quetzalcoatl (for
example, by [42, Lemma 4.4.2.1]), the back face X|Δ{1}×(Δ1)�×(Δ1)� must be a pushout as well;
this is precisely the claim that the pushout is of the class (Definition 5.6.2).

For any m ∈ Δ and any edge f : s t of S, since the functor fX ,! : Xs Xt is exact, it
follows directly that the functor

fF ,! : Fm(Xs) Fm(Xt)

is exact as well. Now for any fixed vertex s ∈ S0 and any simplicial operator φ : n m of Δ,
the functor

φF ,! : Fm(Xs) Fn(Xs)

visibly carries ingressive morphisms to ingressive morphisms, and it preserves zero objects as
well as any pushouts that exist, since limits and colimits are formed pointwise.
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Thanks to Proposition 3.20, we have:

Corollary 5.12. The assignment (X /S) F (X /S) defines a functor

F : Waldcocart
∞ Waldcocart

∞

covering the endofunctor S NΔop × S of Cat∞.

Proposition 5.13. Suppose that X S is a Waldhausen cocartesian fibration, and
that

F∗(X /S) : NΔop Fun(S,Wald∞)

is a functor that classifies the Waldhausen cocartesian fibration

F (X /S) NΔop × S.

Then F∗(X /S) is a category object [43, Definition 1.1.1]; that is, the morphisms of Δ of the
form {i− 1, i} m induce morphisms that exhibit Fm(X /S) as the limit in Fun(S,Wald∞)
of the diagram

F{0,1}(X /S) F{1,2}(X /S) F{m−2,m−1}(X /S) F{m−1,m}(X /S).

F{1}(X /S) · · · F{m−1}(X /S)

Proof. Since limits in Fun(S,Wald∞) are computed objectwise, it suffices to assume that
S = Δ0. It is easy to see that (Δm)� decomposes in Pair∞ as the pushout of the diagram

(Δ{1})� · · · (Δ{m−1})�

(Δ{0,1})� (Δ{1,2})� (Δ{m−2,m−1})� (Δ{m−1,m})�,

since the analogous statement is true in Cat∞. Thus Fm(X ) is the desired limit in Cat∞, and
it follows immediately from Lemma 5.10 that Fm(X ) is the desired limit in the ∞-category
Pair∞ and thus also in the ∞-category Wald∞.

Totally filtered objects

Now we are in a good position to study the functoriality of filtered objects X that are separated
in the sense that X0 is a zero object. We call these totally filtered objects.

Definition 5.14. Suppose that C is a Waldhausen ∞-category. Then a filtered object
X : (Δm)� C will be said to be totally filtered if X0 is a zero object.

Notation 5.15. Suppose that p : X S is a Waldhausen cocartesian fibration. Denote
by S (X /S) the full subpair (Definition 1.11.5) of F (X /S) spanned by those filtered objects
X such that X is totally filtered in Xp(X). When S = Δ0, write S (X ) for S (X /S), and for
any integer m � 0, write Sm(X ) for the fiber of S (X ) NΔop over the object m ∈ NΔop.
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Proposition 5.16. Suppose that C is a Waldhausen ∞-category. For any integer m � 0,
the 0th face map defines an equivalence of ∞-categories

S1+m(C ) ∼ Fm(C ),

and the map S0(C ) Δ0 is an equivalence.

Proof. It follows from Joyal’s theorem [42, Proposition 1.2.12.9] that the natural functor
S1+m(C ) Fm(C ) is a left fibration whose fibers are contractible Kan complexes—hence a
trivial fibration.

As m varies, the functoriality of Sm(X ) is, as we have observed, traditionally a matter
of some consternation, as the functors involve various (homotopy) quotients, which are not
uniquely defined on the nose. We all share the intuition that the uniqueness of these quotients
is good enough for all practical purposes and that the coherence issues that appear to arise
are mere technical issues. The theory of cocartesian fibrations allows us to make this intuition
honest.

In Theorem 5.21, we will show that, for any Waldhausen cocartesian fibration X S,
the functor S (X /S) NΔop × S is a Waldhausen cocartesian fibration. Let us reflect on
what this means when S = Δ0; in this case, X is just a Waldhausen ∞-category. An edge
X Y of S (X ) that covers an edge given by a morphism η : m n of Δ is by definition
a commutative diagram

Xη(0) Xη(1) · · · Xη(m)

0 Y1 · · · Ym.

To say that X Y is a cocartesian edge over η is to say that Y is initial among totally filtered
objects under η�X. This is equivalent to the demand that each of the squares above must
be pushout squares, that is, that Yk � Xη(k)/Xη(0). So, if S (C ) NΔop is a Waldhausen
cocartesian fibration, then the functor S∗ : NΔop Wald∞ that classifies it works exactly as
Waldhausen’s S• construction: it carries an object m ∈ NΔop to the Waldhausen ∞-category
Sm(C ) of totally filtered objects of length, and it carries a morphism η : m n of Δ to the
exact functor Sn(C ) Sm(C ) given by

[X0 X1 · · · Xn] [0 Xη(1)/Xη(0) · · · Xη(m)/Xη(0)].

In other words, the data of the ∞-categorical S• construction are already before us; we just
need to confirm that it works as desired.

To prove Theorem 5.21, it turns out to be convenient to study the ‘mapping cylinder’
M (X /S) of the inclusion functor S (X /S) F (X /S). We will discover that this
inclusion admits a left adjoint, and then we will use this left adjoint to complete the proof
of Theorem 5.21.

Notation 5.17. For any Waldhausen cocartesian fibration X S, let us write M (X /S)
for the full subcategory of Δ1 × F (X /S) spanned by those pairs (i,X) such that X is totally
filtered if i = 1. This ∞-category comes equipped with an inner fibration

M (X /S) Δ1 ×NΔop × S.

Define a pair structure on M (X /S) so that it is a subpair of (Δ1)� × F (X /S); that is, let
M (X /S)† ⊂ M (X /S) be the subcategory whose edges are maps (i,X) (j, Y ) such that
i = j and X Y is an ingressive morphism of F (X /S).
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Our first lemma is obvious by construction.

Lemma 5.18. For any Waldhausen cocartesian fibration X S, the natural projection
M (X /S) Δ1 is a pair cartesian fibration.

Our next lemma, however, is subtler.

Lemma 5.19. For any Waldhausen cocartesian fibration X S, the natural projection
M (X /S) Δ1 is a pair cocartesian fibration.

Proof. By [42, 2.4.1.3(3)], it suffices to show that, for any vertex (m, s) ∈ (NΔop × S)0,
the inner fibration

q : Mm(Xs) Δ1

is a pair cocartesian fibration. Note that an edge X Y of Mm(Xs) covering the
nondegenerate edge σ of Δ1 is q-cocartesian if and only if it is an initial object of the fiber
Mm(Xs)X/ ×Δ1

0/
{σ}. If m = 0, then the map

M0(Xs)X/ Δ1
0/

is a trivial fibration [42, Proposition 1.2.12.9], so the fiber over σ is a contractible Kan complex.
Let us now induct on m; assume that m > 0 and that the functor p : Mm−1(Xs) Δ1 is a
cocartesian fibration. It is easy to see that the inclusion {0, 1, . . . ,m− 1} m induces an
inner fibration φ : Mm(Xs) Mm−1(Xs) such that q = p ◦ φ. Again by [42, 2.4.1.3(3)], it
suffices to show that for any object X of Mm(Xs) and any p-cocartesian edge η : φ(X) Y ′

covering σ, there exists a φ-cocartesian edge X Y of Mm(Xs) covering η. But this follows
directly from Definition 2.7.3.

We now show that q is a pair cocartesian fibration. Suppose that

X ′ X

Y ′ Y

is a square of Mm(Xs) in which X ′ X and Y ′ Y are q-cocartesian morphisms and
X Y is ingressive. We aim to show that, for any edge η : Δ{p,q} Δm, the morphism
X ′|Δ{p,q} Y ′|Δ{p,q} is ingressive. For this, we may factor X Y as

X Z Y,

where Z|Δ{0,...,p} = Y |Δ{0,...,p}, and for any r > p, the edge X|Δ{p,r} Z|Δ{p,r} is
cocartesian. Now choose a cocartesian morphism Z ′ Z as well. The proof is now completed
by the following observations.

(1) Since the morphism X|Δ{p,q} Z|Δ{p,q} is of the type Definition 5.6(2), it follows by
Quetzalcoatl that the morphism X ′|Δ{p,q} Z ′|Δ{p,q} is of type Definition 5.6(2) as
well.

(2) The morphism Z|Δ{p,q} Y |Δ{p,q} is of type Definition 5.6(1) and the mor-
phism Z ′

p X ′
p is an equivalence; so again by Quetzalcoatl, the morphism

Z ′|Δ{p,q} Y ′|Δ{p,q} is of type Definition 5.6(1)).

Notation 5.20. Together, these lemmas state that for any Waldhausen cocartesian
fibration X S, the functor M (X /S) Δ1 exhibits an adjunction of ∞-categories
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[42, Definition 5.2.2.1]

F : F (X /S) S (X /S) : J

over NΔop × S in which both F and J are functors of pairs. In particular, for any integerm � 0
and any vertex s ∈ S0, the fiber Mm(Xs) Δ1 over (m, s) also exhibits an adjunction

Fm : Fm(Xs) S (Xs) : Jm.

Let us unravel this a bit. Assume S = Δ0. The functor J is the functor of pairs specified by
the edge Δ1 Pair∞ that classifies the cartesian fibration M (X ) Δ1. By construction,
this is a forgetful functor: it carries a totally filtered object of X to its underlying filtered
object. The functor F is the functor of pairs specified by the edge Δ1 Pair∞ that classifies
the cocartesian fibration M (X ) Δ1, and it is much more interesting: it carries a filtered
object X represented as

X0 X1 · · · Xm

to the totally filtered object FX that is initial among all totally filtered objects under X; in
other words, FX is the quotient of X by X0:

0 � X0/X0 X1/X0 · · · Xm/X0.

This functor F is a cornerstone for the following result:

Theorem 5.21. Suppose that X S is a Waldhausen cocartesian fibration. Then the
functor

S (X /S) NΔop × S

is a Waldhausen cocartesian fibration.

Proof. We first show that the functor S (X /S) NΔop × S is a cocartesian fibration
by proving the stronger assertion that the inner fibration

p : M (X /S) Δ1 ×NΔop × S

is a cocartesian fibration. By Proposition 5.11, the map

Δ{0} ×Δ1 M (X /S) Δ{0} ×NΔop × S (5.1)

is a cocartesian fibration. By Lemma 5.19, for any vertex (m, s) ∈ (NΔop × S)0, the map

M (X /S) ×NΔop×S {(m, s)} Δ1 × {(m, s)} (5.2)

is a cocartesian fibration. Finally, for any m ∈ Δ and any edge f : s t of S, the functor
f! : Xs Xt carries zero objects to zero objects; consequently, any cocartesian edge of
F (X /S) that covers (idm, f) lies in S (X /S) if and only if its source does. Thus the map

(Δ{1} × {m}) ×Δ1×NΔop M (X /S) Δ{1} × {m} × S

is a cocartesian fibration.
Now to complete the proof that p is a cocartesian fibration, thanks to [42, 2.4.1.3(3)] it

remains to show that for any vertex s ∈ S0, any simplicial operator φ : n m, and any
totally m-filtered object X of Xs, there exists a p-cartesian morphism (1,X) (1, Y ) of
F (X /S) covering (id1, φ, ids). Write σ for the nondegenerate edge of Δ1. The p-cartesian
edge e : (0,X) (1,X) covering (σ, idm, ids) is also p-cocartesian. Since (5.1) is a cocartesian
fibration, there exists a p-cocartesian edge η′ : (0,X) (0, Y ′) covering (id0, φ, ids). Since
(5.2) is a cocartesian fibration, there exists a p-cocartesian edge e′ : (0, Y ′) (1, Y ) covering
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(σ, idn, ids). Since e is p-cocartesian, we have a diagram

Δ1 × Δ1 M (X /S) ×S {s}
of the form

(0,X) (0, Y ′)

(1,X) (1, Y ).

η′

e e′

η

It follows from [42, 2.4.1.7] that η is p-cocartesian.
From Propositions 5.16 and 5.11 it follows that the fibers of S (X /S) NΔop × S are

all Waldhausen ∞-categories. For any m ∈ Δ and any edge f : s t of S, the functor
fX ,! : Xs Xt is exact, whence it follows by Proposition 5.16 that the functor

fS ,! : Sm(Xs) � FunPair∞((Δm−1)�,Xs) FunPair∞((Δm−1)�,Xt) � Sm(Xt)

is exact, just as in the proof of Proposition 5.11. Now for any fixed vertex s ∈ S0 and any
simplicial operator φ : n m of Δ, the functor φS ,! : Sm(Xs) Sn(Xs) is by construction
the composite

Sm(Xs)
Jm,s

Fm(Xs)
φF,!

Fn(Xs)
Fn,s

Sn(Xs),

and as φF ,! is an exact functor (Proposition 5.11), we are reduced to checking that the functors
of pairs Jm,s and Fn,s are each exact functors.

For this, it is clear that Jm,s and Fn,s each carry zero objects to zero objects, and as Fn,s
is a left adjoint, it preserves any pushout squares that exist in Fn(Xs). Moreover, a pushout
square in Sm(Xs) is nothing more than a pushout square in Fm(Xs) of totally m-filtered
objects; hence, Jm,s preserves pushouts along ingressive morphisms.

For any Waldhausen cocartesian fibration X S, write

S∗(X /S) : NΔop × S Wald∞

for the diagram of Waldhausen ∞-categories that classifies the Waldhausen cocartesian
fibration S (X /S) NΔop × S, and, similarly, write

F∗(X /S) : NΔop × S Wald∞

for the diagram of Waldhausen ∞-categories that classifies the Waldhausen cocartesian fibra-
tion F (X /S) NΔop × S. An instant consequence of the construction of the functoriality
of S in the proof above is the following.

Corollary 5.22. The functors Fm : Fm(X /S) Sm(X /S) assemble to a morphism
F : F (X /S) S (X /S) of Waldcocart

∞/NΔop×S , or, equivalently, a natural transformation

F : F∗(X /S) S∗(X /S).

Note, however, that it is not the case that the functors Jm assemble to a natural
transformation of this kind.

Virtual Waldhausen ∞-categories of filtered objects

Thanks to Proposition 3.20, the assignments

(X /S) (F (X /S)/(NΔop × S)) and (X /S) (S (X /S)/(NΔop × S))
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define endofunctors of Waldcocart
∞ over the endofunctor S NΔop × S of Cat∞. We now

aim to descend these functors to endofunctors of the ∞-category of virtual Waldhausen ∞-
categories.

Lemma 5.23. The functors Wald∞ Waldcocart
∞/NΔop given by

C (F (C )/NΔop) and C (S (C )/NΔop)

each preserve filtered colimits.

Proof. By Corollary 3.28, it is enough to check the claim fiberwise. The assignment
C S0(C ) is an essentially constant functor whose values are all terminal objects; hence,
since filtered simplicial sets are weakly contractible, this functor preserves filtered colimits. We
are now reduced to the claim that for any natural number m, the assignment C Fm(C )
defines a functor Wald∞ Wald∞ that preserves filtered colimits.

Suppose now that Λ is a filtered simplicial set; by [42, Proposition 5.3.1.16], we may assume
that Λ is the nerve of a filtered poset. Suppose that C : Λ� Wald∞ is a colimit diagram
of Waldhausen ∞-categories. Let F̃m(C ) : Λ� Pair∞ be a colimit diagram such that
F̃m(C )|Λ = Fm(C |Λ). By Proposition 4.9, we are reduced to showing that the natural functor
of pairs

ν : F̃m(C )∞ Fm(C∞)

is an equivalence. Indeed, ν induces an equivalence of the underlying ∞-categories, since
(Δm)� × (Δn)� is a compact object of Pair∞ (Example 4.7); hence it remains to show that ν is
a strict functor of pairs. For this it suffices to show that for any ingressive morphism ψ : X Y
of Fm(C∞), there exists a vertex α ∈ Λ and an edge ψ : X Y of Fm(Cα) lifting ψ. It is
enough to assume that m = 1 and to show that ψ is either of type Definition 5.6.1 or of type
Definition 5.6.2. That is, we may assume that ψ is represented by a square

X Y

X ′ Y ′
(5.3)

of ingressive morphisms such that either X X ′ is an equivalence or else the square (5.3)
is a pushout. Since (Δ1)� × (Δ1)� is compact in Pair∞ (Example 4.7), a square of ingressive
morphisms of the form (5.3) must lift to a square of ingressive morphisms

X Y

X
′

Y
′

(5.4)

of Cα for some vertex α ∈ Λ. Now the argument is completed by the following brace of
observations.

(2) If X X ′ is an equivalence, then, increasing α if necessary, we may assume that its
lift X X

′
in Cα is an equivalence as well, since, for example, the pushout

Δ3 ∪(Δ{0,2}	Δ{1,3}) (Δ0 � Δ0)

is compact in the Joyal model structure; hence, it represents an ingressive morphism of
type Definition 5.6.1 of F1(Cα).
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(2) If (5.3) is a pushout, then one may form the pushout of X
′

X Y in Cα. Since
Cα C∞ preserves such pushouts, we may assume that (5.4) is a pushout square in
Cα; hence, it represents an ingressive morphism of type Definition 5.6.2 of F1(Cα).

Construction 5.24. One may compose the functors

F : Wald∞ Wald∞,/NΔop and S : Wald∞ Wald∞,/NΔop

with the realization functor | · |NΔop of Definition 4.30; the results are models for the functors
Wald∞ D(Wald∞) that assign to any Waldhausen ∞-category C the formal geometric
realizations of the simplicial Waldhausen ∞-categories F∗(C ) and S∗(C ) that classify F (C )
and S (C ). In particular, these composites

|F∗|NΔop , |S∗|NΔop : Wald∞ D(Wald∞)

each preserve filtered colimits, whence one may form their left derived functors (Definition 4.23),
which we will abusively also denote F and S . These are the essentially unique endofunctors
of D(Wald∞) that preserve sifted colimits such that the squares

Wald∞ Waldcocart
∞,/NΔop

D(Wald∞) D(Wald∞)

F

j | · |NΔop

F

and

Wald∞ Waldcocart
∞,/NΔop

D(Wald∞) D(Wald∞)

S

j | · |NΔop

S

commute via a specified homotopy.
Also note that the natural transformation F from Corollary 5.22 descends further to a natural

transformation F : F S of endofunctors of D(Wald∞).

As it happens, the functor F : D(Wald∞) D(Wald∞) is not particularly exciting:

Proposition 5.25. For any virtual Waldhausen ∞-category X , the virtual Waldhausen
∞-category F (X ) is the zero object.

Proof. For any Waldhausen ∞-category C , the virtual Waldhausen ∞-category
|F (C )|NΔop is by definition a functor Waldω∞ Kan that assigns to any compact
Waldhausen ∞-category Y the geometric realization of the simplicial space

m WaldΔ
∞(Y ,Fm(C )).

By Proposition 5.16, this simplicial space is the path space of the simplicial space

m WaldΔ
∞(Y ,Sm(C )).

For any Waldhausen ∞-category C , we have a natural morphism C F (C ) in D(Wald∞),
which is induced by the inclusion of the fiber over 0. The previous result now entitles us to
regard the virtual Waldhausen ∞-category F (C ) as a cone on C . With this perspective, in the
next section, we will end up thinking of the induced morphism F : F (C ) S (C ) induced
by the functor F as the quotient of F (C ) by C , thereby identifying S (C ) as a suspension of
C in a suitable localization of D(Wald∞).

The fact that the extensions F and S to D(Wald∞) preserve sifted colimits now easily
implies the following.
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Proposition 5.26. If S is a small sifted ∞-category, then the squares

Waldcocart
∞,/S Waldcocart

∞,/NΔop×S

D(Wald∞) D(Wald∞)

F

| · |S | · |NΔop×S

F

and

Waldcocart
∞,/S Waldcocart

∞,/NΔop×S

D(Wald∞) D(Wald∞)

S

| · |S | · |NΔop×S

S

commute via a specified homotopy.

Of course, this is no surprise for F : D(Wald∞) D(Wald∞), as we have already seen
that F is constant at zero.

6. The fissile derived ∞-category of Waldhausen ∞-categories

A functor φ : Wald∞ Kan may be described and studied through its left derived functor
(Definition 4.23)

Φ: D(Wald∞) Kan.

In this section, we construct a somewhat peculiar localization Dfiss(Wald∞) of the ∞-category
D(Wald∞) on which the functor S : D(Wald∞) D(Wald∞) constructed in the previous
section can be identified as the suspension (Corollary 6.12). In the next section we will use
this to show that φ is additive in the sense of Waldhausen just in case Φ factors through an
excisive functor on Dfiss(Wald∞) (Theorem 7.4).

Fissile virtual Waldhausen ∞-categories

In Definition 4.18, we defined a virtual Waldhausen ∞-category as a presheaf
X : Waldω,op∞ Kan such that the natural maps

X (C ⊕ D) ∼ X (C ) × X (D)

are equivalences. This condition implies, in particular, that the value of X on the Waldhausen
∞-category of split cofiber sequences in a Waldhausen ∞-category C agrees with the product
X (C ) × X (C ). We can ask for more: we can demand that X be able to split even those cofiber
sequences that are not already split. That is, we can ask that X regard the Waldhausen ∞-
categories of split exact sequences and that of all exact sequences in C as indistinguishable.
This is obviously very closely related to Waldhausen’s additivity, and it is what we will mean by
a fissile virtual Waldhausen ∞-category, and the ∞-category of these will be called the fissile
derived ∞-category of Waldhausen ∞-categories. (The word ‘fissile’ in geology and nuclear
physics means, in essence, ‘easily split’. The intuition is that when we pass to the fissile derived
∞-category, filtered objects can be identified with the sum of their layers.)

But this is asking a lot of our presheaf X . For example, while Waldhausen ∞-categories
always represent virtual Waldhausen ∞-categories, they are almost never fissile. Nevertheless,
any virtual Waldhausen ∞-category has a best fissile approximation. In other words, the
inclusion of fissile virtual Waldhausen ∞-categories into virtual Waldhausen ∞-categories
actually admits a left adjoint, which exhibits the ∞-category of fissile virtual Waldhausen
∞-categories as a localization of the ∞-category of all virtual Waldhausen ∞-categories.

Construction 6.1. Suppose that C is a Waldhausen ∞-category. Then for any integer
m � 0, we may define a fully faithful functor

Em : C � F0(C ) Fm(C )
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that carries an object X of C to the constant filtration of length m:

X X · · · X.

This is the functor induced by the simplicial operator 0 m. One has a similar functor

E′
m : Δ0 � S0(C ) Sm(C ),

which is, of course, just the inclusion of a contractible Kan complex of zero objects into Sm(C ).
We will also need to have a complete picture of how these functors transform as m and C

each vary, so we give the following abstract description of them. Since there is an equivalence
of ∞-categories

Waldcocart
∞/NΔop � Fun(NΔop,Wald∞)

(Proposition 3.27), and since 0 is an initial object of NΔop, it is easy to see that there is an
adjunction

C : Wald∞ Waldcocart
∞/NΔop : R,

where C is the functor C C ×NΔop, which represents the constant functor
Wald∞ Fun(NΔop,Wald∞), and R is the functor (X /NΔop) X0, which represents
evaluation at zero Fun(NΔop,Wald∞) Wald∞. The counit CR id of this adjunction
can now be composed with the natural transformation F : F S (which we regard as a
morphism of Fun(Wald∞,Waldcocart

∞/NΔop)) to give a commutative square

CR ◦ F ×NΔop CR ◦ S

F S

CR ◦ F

E E′

F

in the ∞-category Fun(Wald∞,Waldcocart
∞/NΔop).

Forming the fiber over an object m ∈ NΔop, we obtain a commutative square

F0 S0

Fm Sm

F0

Em E′
m

Fm

in the ∞-category Fun(Wald∞,Wald∞). We see that Em and E′
m are the functors we

identified above.
On the other hand, applying the realization functor | · |NΔop (Definition 4.30), and noting

that
|CR ◦ F |NΔop � |F0 ×NΔop|NΔop � id

and
|CR ◦ S |NΔop � |S0 ×NΔop|NΔop � Δ0,

we obtain a commutative square

id 0

F S ,

E

F

(6.1)

in the ∞-category Fun(D(Wald∞),D(Wald∞)). When we pass to the fissile derived ∞-
category, we will actually force this square to be pushout. Since F is the zero functor
(Proposition 5.25), this will exhibit S as a suspension.
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Before we give our definition of fissibility, we need a spot of abusive notation.

Notation 6.2. Recall (Corollary 4.15) that we have an equivalence of ∞-categories
Wald∞ � Ind(Waldω∞). Consequently, we may use the transitivity result of [42, Proposi-
tion 5.3.6.11] to conclude that, in the notation of Recollection 4.21, we also have an equivalence
P(Waldω∞) � PK

I (Wald∞), where I is the class of all small filtered simplicial sets, and K
is the class of all small simplicial sets.

In particular, every presheaf X : Waldω,op∞ Kan extends to an essentially unique
presheaf Waldop

∞ Kan with the property that it carries filtered colimits in Wald∞ to
the corresponding limits in Kan. We will abuse notation by denoting this extended functor by
X as well. This entitles us to speak of the value of a presheaf X : Waldω,op∞ Kan even on
Waldhausen ∞-categories that may not be compact.

Definition 6.3. A presheaf X : Waldω,op∞ Kan will be said to be fissile if for
every Waldhausen ∞-category C and every integer m � 0, the exact functors Em and Jm
(Construction 6.1 and Notation 5.20) induce functors

X (Fm(C )) X (C ) and X (Fm(C )) X (Sm(C ))

that together exhibit X (Fm(C )) as the product of X (C ) and X (Sm(C )):

(E�m, J
�
m) : X (Fm(C )) ∼ X (C ) × X (Sm(C )).

An induction using Proposition 5.16 demonstrates that the value of a fissile presheaf
X : Waldω,op∞ Kan on the Waldhausen ∞-category of filtered objects Fm(C ) of length m
is split into 1 +m copies of X (C ). That is, the 1 +m different functors C Fm(C ) of the
form

X [0 · · · 0 X · · · X]

induce an equivalence

X (Fm(C )) ∼ X (C )1+m.

We began our discussion of fissile presheaves by thinking of them as special examples of
virtual Waldhausen ∞-categories. That wasn’t wrong:

Lemma 6.4. A presheaf X ∈ P(Waldω∞) is fissile only if X carries direct sums in Waldω∞
to products; that is, only if X is a virtual Waldhausen ∞-category.

Proof. Suppose that C and D are two compact Waldhausen ∞-categories. Consider the
retract diagrams

C C ⊕ D C

C ⊕ D F1(C ⊕ D) C ⊕ D

E1

E1 ⊕ J1 I1,0 ⊕ F1

and

D C ⊕ D D

C ⊕ D F1(C ⊕ D) C ⊕ D .

J1

E1 ⊕ J1 I1,0 ⊕ F1
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Here I1,0 is the functor induced by the morphism 0 0. For any fissile virtual Waldhausen
∞-category X , we have an induced retract diagram

X (C ⊕ D) X (F1(C ⊕ D)) X (C ⊕ D)

X (C ) × X (D) X (C ⊕ D) × X (C ⊕ D) X (C ) × X (D).

(6.2)

Since the center vertical map is an equivalence, and since equivalences are closed under retracts,
so are the outer vertical maps.

Notation 6.5. Denote by

Dfiss(Wald∞) ⊂ D(Wald∞)

the full subcategory spanned by the fissile functors. We’ll call this the fissile derived ∞-category
of Waldhausen ∞-categories.

Since sifted colimits in D(Wald∞) commute with products [42, Lemma 5.5.8.11], we deduce
the following.

Lemma 6.6. The subcategory Dfiss(Wald∞) ⊂ D(Wald∞) is stable under sifted colimits.

Fissile approximations to virtual Waldhausen ∞-categories

Note that representable presheaves are typically not fissile. Consequently, the obvious
fully faithful inclusion Waldω∞ D(Wald∞) does not factor through Dfiss(Wald∞) ⊂
D(Wald∞). Instead, in order to make a representable presheaf fissile, we will have to form
a fissile approximation to it. Fortunately, there is a universal way to do that.

Proposition 6.7. The inclusion functor admits a left adjoint

Lfiss : D(Wald∞) Dfiss(Wald∞),

which exhibits Dfiss(Wald∞) as an accessible localization of D(Wald∞).

Proof. For any compact Waldhausen ∞-category C and every integer m � 0, consider the
exact functor

Em ⊕ Jm : C ⊕ Sm(C ) Fm(C );

let S be the set of morphisms of D(Wald∞) of this form; let S be the strongly saturated class
it generates. Since Waldω∞ is essentially small, the class S is of small generation. Hence we
may form the accessible localization S−1D(Wald∞). Since virtual Waldhausen ∞-categories
are functors X : Waldω,op∞ Kan that preserve products, one sees that S−1D(Wald∞)
coincides with the full subcategory Dfiss(Wald∞) ⊂ D(Wald∞).

The fully faithful inclusion Dfiss(Wald∞) D(Wald∞) preserves finite products, and its
left adjoint Lfiss preserves finite coproducts, whence we deduce the following.

Corollary 6.8. The ∞-category Dfiss(Wald∞) is compactly generated and admits finite
direct sums, which are preserved by the inclusion

Dfiss(Wald∞) D(Wald∞).
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Combining this with Lemma 6.6 and [46, Lemma 1.3.2.9], we deduce the following somewhat
surprising fact.

Corollary 6.9. The subcategory Dfiss(Wald∞) ⊂ D(Wald∞) is stable under all small
colimits.

Suspension of fissile virtual Waldhausen ∞-categories

We now show that the suspension in the fissile derived ∞-category is essentially given by the
functor S . This is the key to showing that Waldhausen’s additivity is essentially equivalent to
excision on the fissile derived ∞-category (Theorem 7.4). As a first step, we have the following
observation.

Proposition 6.10. The diagram

D(Wald∞) D(Wald∞)

Dfiss(Wald∞) Dfiss(Wald∞)

S

Lfiss Lfiss

Σ

commutes (up to homotopy), where Σ is the suspension endofunctor on the fissile derived
∞-category Dfiss(Wald∞).

Proof. Apply Lfiss to the square (6.1) to obtain a square

Lfiss 0

Lfiss ◦ F Lfiss ◦ S
F

(6.3)

of natural transformations between functors D(Wald∞) Dfiss(Wald∞). Since F is
essentially constant with value the zero object, this gives rise to a natural transformation
Σ ◦ Lfiss Lfiss ◦ S . To see that this natural transformation is an equivalence, it suffices to
consider its value on a compact Waldhausen ∞-category C . Now for any m ∈ NΔop, we have
a diagram

LfissS0(C ) LfissF0(C ) LfissS0(C )

LfissSm(C ) LfissFm(C ) LfissSm(C )

J0

E′
m

Jm

F0

Em E′
m

Fm

of Waldhausen ∞-categories in which the horizontal composites are equivalences. Since S0(C )
is a zero object, the left-hand square is a pushout by definition; hence the right-hand square is
as well. The geometric realization of the right-hand square is precisely the value of the square
(6.3) on C .

The observation that Σ ◦ Lfiss � Lfiss ◦ S , nice though it is, does not quite cut it: we
want an even closer relationship between S and the suspension in the fissile derived ∞-
category. More precisely, we would like to know that it is not necessary to apply Lfiss

to S (C ) in order to get ΣLfissC . So, we conclude this section with a proof that the
functor S : D(Wald∞) D(Wald∞) already takes values in the fissile derived ∞-category
Dfiss(Wald∞).
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Proposition 6.11. For any virtual Waldhausen ∞-category X , the virtual Waldhausen
∞-category S X is fissile.

Proof. We may write X as a geometric realization of a simplicial diagram Y∗ of Waldhausen
∞-categories. So, our claim is that for any compact Waldhausen ∞-category C and any integer
m � 0, the map

(colim S (Y∗))(Fm(C )) (colim S (Y∗))(C ) × (colim S (Y∗))(Sm(C ))

induced by (Em, Jm) is an equivalence. Since geometric realization commutes with products,
we reduce to the case in which Y∗ is constant at a Waldhausen ∞-category Y . Now our claim
is that for any compact Waldhausen ∞-category C and any integer m � 0, the map

H(Fm(C ), (S (Y )/NΔop))

H(C , (S (Y )/NΔop)) × H(Sm(C ), (S (Y )/NΔop))

(Construction 4.26) induced by (Em, Jm) is a weak homotopy equivalence. To simplify notation,
we write H(−,S (Y )) for H(−, (S (Y )/NΔop)) in what follows.

Let us use Joyal’s ∞-categorical variant of Quillen’s Theorem A [42, Theorem 4.1.3.1]. Fix
an object

((p, α), (q, β)) ∈ H(C ,S (Y )) × H(Sm(C ),S (Y )).

So, p and q are objects of NΔop, α is an exact functor C Sp(Y ), and β is an exact functor
Sm(C ) Sp(Y ). Write J((p, α), (q, β)) for the pullback

J((p, α), (q, β)) H(C ,S (Y )) × H(Sm(C ),S (Y ))

H(Fm(C ),S (Y )) (H(C ,S (Y )) × H(Sm(C ),S (Y )))((p,α),(q,β))/.

We may identify J((p, α), (q, β)) with a quasicategory whose objects are tuples (r, γ, μ, ν, σ, τ)
consisting of:

(i) r is an object of Δ,
(ii) γ : Sm(C ) SrY is an exact functor,
(iii) μ : r p and ν : r q are morphisms of Δ, and
(iv) σ : μ∗α ∼ γ|C and τ : ν∗β ∼ γ|Sm(C ) are equivalences of exact functors.

Denote by κ the constant functor J((p, α), (q, β)) J((p, α), (q, β)) at the object

(0, 0, {0} p, {0} q, 0, 0) .

To prove that J((p, α), (q, β)) is contractible, we construct an endofunctor λ and natural
transformations

id λ κ.

We define the functor λ by

λ(r, γ, μ, ν, σ, τ) := (r�, s0 ◦ γ, μ′, ν′, σ′, τ ′),

where μ′|r = μ and μ′(−∞) = 0, ν′|r = ν and ν′(−∞) = 0, and σ′ and τ ′ are the obvious
extensions of σ and τ . The inclusion r r� induces a natural transformation λ id, and
the inclusion {−∞} r� induces a natural transformation λ κ.

We thus have the following enhancement of Proposition 6.10.
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Corollary 6.12. The diagram

D(Wald∞)

Dfiss(Wald∞)

Dfiss(Wald∞)

S

Lfiss

Σ

commutes (up to homotopy), where Σ is the suspension endofunctor on the fissile derived
∞-category Dfiss(Wald∞).

7. Additive theories

In this section we introduce the ∞-categorical analogue of Waldhausen’s notion of additivity,
and we prove our structure theorem (Theorem 7.4), which identifies the homotopy theory
of additive functors Wald∞ Kan with the homotopy theory of certain excisive functors
Dfiss(Wald∞) Kan on the fissile derived ∞-category of the previous section. Using this, we
can find the best additive approximation to any functor φ : Wald∞ Kan as a Goodwillie
differential. Since suspension in this ∞-category is given by the functor S , this best excisive
approximation Dφ can be exhibited by a formula

C colimnΩn|φ(Sn∗ (C ))|.
If φ preserves finite products, the colimit turns out to be unnecessary, and Dφ can be given by
an even simpler formula:

C Ω|φ(S∗(C ))|.
In the next section, we will use this perspective on additivity to prove some fundamental

things, such as the Eilenberg Swindle and Waldhausen’s Fibration Theorem, for general
additive functors. In § 10, we will apply our additive approximation to the ‘moduli space
of objects’ functor ι to give a universal description of algebraic K-theory of Waldhausen
∞-categories, and the formula above shows that our algebraic K-theory extends Waldhausen’s.

Theories and additive theories

The kinds of functors we’re going to be thinking about are called theories. What we’ll show
is that among theories, one can isolate the class of additive theories, which split all exact
sequences.

Definition 7.1. Suppose that C and D are ∞-categories and C is pointed. Recall ([27,
p. 1] or [46, Definition 1.4.2.1(ii)]) that a functor C D is reduced if it carries the zero
object of C to the terminal object of D. We write Fun∗(C,D) ⊂ Fun(C,D) for the full
subcategory spanned by the reduced functors, and if A is a collection of simplicial sets, then
we write Fun∗

A (C,D) ⊂ Fun(C,D) for the full subcategory spanned by the reduced functors
that preserve A -shaped colimits (2.6).

Similarly, recall that a functor C D is excisive if it carries pushout squares in C to
pullback squares in D.

Suppose that E is an ∞-topos. By an E -valued theory, we shall here mean a reduced functor
Wald∞ E that preserves filtered colimits. We write Thy(E ) for the full subcategory of
Fun(Wald∞,E ) spanned by E -valued theories.
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Those who grimace at the prospect of contemplating general ∞-topoi can enjoy a complete
picture of what is going on by thinking only of examples of the form E = Fun(S,Kan). The
extra generality comes at no added expense, but we would not get around to using it here.

Note that a theory φ : Wald∞ E may be uniquely identified in different ways. On one
hand, φ is (Corollary 4.15) the left Kan extension of its restriction

φ|Waldω
∞ : Waldω∞ E ;

on the other hand, we can extend φ to its left derived functor (Definition 4.23)

Φ: D(Wald∞) E ,

which is the unique extension of φ that preserves all sifted colimits.
Many examples of theories that arise in practice have the property that the natural morphism

φ(C ⊕ D) φ(C ) × φ(D) is an equivalence. We will look at these theories more closely below
(Definition 7.12). In any case, when this happens, the sum functor C ⊕ C C defines a
monoid structure on π0φ(C ). For invariants like K-theory, we will want to demand that this
monoid actually be a group. We thus make the following definition, which is sensible for any
theory.

Definition 7.2. A theory φ ∈ Thy(E ) will be said to be group-like if, for any Wald-
hausen ∞-category C , the shear functor C ⊕ C C ⊕ C defined by the assignment
(X,Y ) (X,X ∨ Y ) induces an equivalence π0φ(C ⊕ C ) ∼ π0φ(C ⊕ C ).

To formulate our structure theorem, we need to stare at a few functors between various
Waldhausen ∞-categories of filtered objects.

Construction 7.3. Suppose that m � 0 is an integer, and that 0 � k � m. We consider
the morphism ik : 0 ∼= {k} m of Δ. For any Waldhausen ∞-category C , write Im,k for the
induced functor Fm(C ) F0(C ) and write I ′m,k for the induced functor Sm(C ) S0(C ).
Of course, F0(C ) � C and S0(C ) � 0. So, the functor Im,k extracts from a filtered object

X0 X1 · · · Xm

its kth filtered piece Xk, and the functor I ′m,k is, by necessity, the trivial functor.
We may now contemplate a square of retract diagrams

(Δ2/Δ{0,2}) × (Δ2/Δ{0,2}) Wald∞

given by

S0(C ) F0(C ) S0(C )

Sm(C ) Fm(C ) Sm(C )

S0(C ) F0(C ) S0(C ).

J0

E′
m

F0

Em E′
m

Jm

I′m,k

Fm

Im,k Im,k

J0 F0

(7.1)

Only the upper right square of (7.1) is (by Construction 6.1) functorial in m.
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We may now apply the localization functor Lfiss to (7.1). In the resulting diagram

LfissS0(C ) LfissF0(C ) LfissS0(C )

LfissSm(C ) LfissFm(C ) LfissSm(C )

LfissS0(C ) LfissF0(C ) LfissS0(C ),

J0

E′
m

F0

Em E′
m

Jm

I′m,k

Fm

Im,k Im,k

J0 F0

(7.2)

the square in the upper left corner is a pushout, whence every square is a pushout.

Now we are ready to state the structure theorem.

Theorem 7.4 (Structure Theorem for Additive Theories). Suppose that E is an ∞-topos.
Suppose that φ is an E -valued theory. Then the following are equivalent.

(1) For any Waldhausen ∞-category C , any integer m � 1, and any integer 0 � k � m, the
functors

φ(Fm) : φ(Fm(C )) φ(Sm(C )) and φ(Im,k) : φ(Fm(C )) φ(F0(C ))

exhibit φ(Fm(C )) as a product of φ(Sm(C )) and φ(F0(C )).
(2) For any Waldhausen ∞-category C and for any functor

S∗(C ) : NΔop Wald∞

that classifies the Waldhausen cocartesian fibration S (C ) NΔop, the induced
functor φ ◦ S∗(C ) : NΔop E∗ is a group object [42, Definition 7.2.2.1].

(3) The theory φ is group-like, and for any Waldhausen ∞-category C and any integer
m � 1, the functors

φ(Fm) : φ(Fm(C )) φ(Sm(C )) and φ(Im,0) : φ(Fm(C )) φ(F0(C ))

exhibit φ(Fm(C )) as a product of φ(Sm(C )) and φ(F0(C )).
(4) The theory φ is group-like, and for any Waldhausen ∞-category C , the functors

φ(F1) : φ(F1(C )) φ(S1(C )) and φ(I1,0) : φ(F1(C )) φ(F0(C ))

exhibit φ(F1(C )) as a product of φ(S1(C )) and φ(F0(C )).
(5) The theory φ is group-like, it carries direct sums to products, and, for any Waldhausen

∞-category C , the images of φ(I1,1) and φ(I1,0 ⊕ F1) in the set MorhE∗(F1(C ),C ) are
equal.

(6) The theory φ is group-like, and for any Waldhausen ∞-category C and any func-
tor S∗(C ) : NΔop Wald∞ that classifies the Waldhausen cocartesian fibration
S (C ) NΔop, the induced functor φ ◦ S∗(C ) : NΔop E∗ is a category object
(see Proposition 5.13 or [43, Definition 1.1.1]).

(7) The left derived functor Φ: D(Wald∞) E of φ factors through an excisive functor

Φadd : Dfiss(Wald∞) E .

Proof. The equivalence of conditions (7.4.1) and (7.4.2) follows from Proposition 5.16 and
the proof of [42, Proposition 6.1.2.6]. (Also see [42, Remark 6.1.2.8].) Conditions (7.4.3) and
(7.4.6) are clearly special cases of (7.4.1) and (7.4.2), respectively, and condition (7.4.4) is
a special case of (7.4.3). The equivalence of (7.4.3) and (7.4.6) also follows directly from
Proposition 5.16.
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Let us show that (7.4.4) implies (7.4.5). We begin by noting that we have an analogue of the
commutative diagram (6.2):

φ(C ⊕ D) φ(F1(C ⊕ D)) φ(C ⊕ D)

φ(C ) × φ(D) φ(C ⊕ D) × φ(C ⊕ D) φ(C ) × φ(D),

and once again it is a retract diagram in E . Since E admits filtered colimits, equivalences
therein are closed under retracts, so since the center vertical morphism is an equivalence, the
outer vertical morphisms are as well. Hence φ carries direct sums to products. Now the exact
functor I1,0 ⊕ F1 admits a (homotopy) section σ : C ⊕ C F1(C ) such that I1,1 ◦ σ � ∇.
Hence if φ satisfies (7.4.4), then φ(I1,0 ⊕ F1) is an equivalence with homotopy inverse φ(σ),
whence φ(I1,1) and φ(I1,0 ⊕ F1) are equal in MorhE (F1(C ),C ).

It is now easy to see that (7.4.6) implies (7.4.2).
We now show that (7.4.5) implies (7.4.3). For any natural number m, suppose the

images of φ(I1,1) and φ(I1,0 ⊕ F1) in MorhE (F1(Fm(C )),Fm(C )) are equal; we must show
that φ(Im,0 ⊕ Fm) is an equivalence. Compose I1,1 and I1,0 ⊕ F1 with the exact functor
Fm(C ) F1(Fm(C )) that sends a filtered object

X0 X1 X2 · · · Xm

to the ingressive morphism of filtered objects given by the diagram

X0 X0 X0 · · · X0

X0 X1 X2 · · · Xm;

the exact functor Im,0 ⊕ Fm also admits a section σ : C ⊕ Sm(C ) Fm(C ) (up to homotopy)
such that Im,1 ◦ σ � ∇, and applying our condition on φ, we find that φ(σ ◦ (Im,0 ⊕ Fm)) �
φ(id).

We now set about showing that (7.4.3) implies (7.4.7). First, we show that Φ factors through
a functor

Φadd : Dfiss(Wald∞) E .

As above, we find that Φ carries direct sums to products, and from this we deduce that Φ
carries morphisms of the class S described in Proposition 6.7 to equivalences. We further claim
that the family T of those morphisms of D(Wald∞) that are carried to equivalences by Φ is a
strongly saturated class. Since Φ sends direct sums to products, it carries any finite coproduct
of elements of T to equivalences. Moreover, since Φ preserves sifted colimits, it preserves any
morphism that can be exhibited as a small sifted colimit of elements of T . Hence the full
subcategory of O(D(Wald∞)) spanned by the elements of T is closed under all small colimits.
Finally, to prove that any pushout ψ′ : X ′ Y ′ of an element ψ : X Y of T (along any
morphism X X ′) lies again in T , we note that we may exhibit ψ′ as the natural morphism
of geometric realizations (We are grateful to Jacob Lurie for this observation.).

|B∗(X ′,X ,X )| |B∗(X ′,X ,Y )|,
where the simplicial objects B∗(X ′,X ,X ) and B∗(X ′,X ,Y ) are two-sided bar construc-
tions defined by

Bn(X ′,X ,X ) := X ′ ⊕ X ⊕n ⊕ X and Bn(X ′,X ,Y ) := X ′ ⊕ X ⊕n ⊕ Y .

Since T is closed under formation of products, each map

Bn(X ′,X ,X ) Bn(X ′,X ,Y )
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is an element of T , and since T is closed under geometric realizations, the morphism X ′ Y ′

is an element of T . Hence T is strongly saturated and therefore contains S; thus Φ factors
through a functor Φadd : Dfiss(Wald∞) E .

We now show that Φadd is excisive. For any nonnegative integer m, apply φ to the diagram
(7.1) with k = 0. The lower right corner of the resulting diagram is a pullback. Hence the upper
right corner of the diagram resulting from applying φ to the diagram (7.1) is also a pullback.
Now we may form the geometric realization of this simplicial diagram of squares to obtain a
square

Φ(F0(C )) Φ(S0(C ))

Φ(F (C )) Φ(S (C )).

It follows from the Segal delooping machine ([42, Lemma 7.2.2.11, 62]) that this square is a
pullback as well, since for any functor S∗(C ) : NΔop Wald∞ classified by the Waldhausen
cocartesian fibration S (C ) NΔop, the simplicial object Φ ◦ S∗(C ) is a group object, and
F (C ) and S0(C ) are zero objects. Since S is a suspension functor in Dfiss(Wald∞), we
find that the natural transformation Φadd ΩE ◦ Φadd ◦ Σ is an equivalence, whence Fadd is
excisive [46, Proposition 1.4.2.13].

To complete the proof, it remains to show that (7.4.7) implies (7.4.1). It follows from (7.4.7)
that for any nonnegative integer m and any integer 0 � k � m, applying Φ to (7.1) yields the
same result as applying Φadd to (7.2). Since the lower right square of the latter diagram is a
pushout in Dfiss(Wald∞), the excisive functor Fadd carries it to a pullback square in E , whence
we obtain the first condition.

Definition 7.5. Suppose that E is an ∞-topos. An E -valued theory φ will be said to be
additive just in case it satisfies any of the equivalent conditions of Theorem 7.4. We denote by
Add(E ) the full subcategory of Thy(E ) spanned by the additive theories.

Theorem 7.4 yields an identification of additive theories and excisive functors on fissile virtual
Waldhausen ∞-categories.

Theorem 7.6. Suppose that E is an ∞-topos. The functor Lfiss ◦ j induces an equivalence
of ∞-categories

ExcG (Dfiss(Wald∞),E ) ∼ Add(E ),

where ExcG (Dfiss(Wald∞),E ) ⊂ Fun∗(Dfiss(Wald∞),E ) is the full subcategory spanned by
the reduced excisive functors that preserve small sifted colimits.

Proof. It follows from Theorem 7.4 that composition with Lfiss ◦ j defines an essentially
surjective functor

ExcG (Dfiss(Wald∞),E ) Add(E ).

To see that this functor is fully faithful, it suffices to note that we have a commutative diagram

ExcG (Dfiss(Wald∞),E ) Add(E )

Fun(Dfiss(Wald∞),E ) Fun(D(Wald∞),E )
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in which the vertical functors are fully faithful by definition, and the bottom functor
is fully faithful because the ∞-category Dfiss(Wald∞) is a localization of D(Wald∞)
(Proposition 6.7).

By virtue of [46, Proposition 1.4.2.22], this result now yields a canonical delooping of any
additive functor.

Corollary 7.7. Suppose that E is an ∞-topos. Then composition with the canonical
functor Ω∞ : Sp(E ) E∗ induces an equivalence of ∞-categories

Funrex
G (Dfiss(Wald∞),Sp(E )) Add(E ),

where Funrex
G (Dfiss(Wald∞),Sp(E )) ⊂ Fun(Dfiss(Wald∞),Sp(E )) denotes the full subcate-

gory spanned by the right exact functors Φ : Dfiss(Wald∞) Sp(E ) such that Ω∞ ◦
Φ : Dfiss(Wald∞) E preserves sifted colimits.

Additivization

We now find that any theory admits an additive approximation given by a Goodwillie
differential. The nature of colimits computed in Dfiss(Wald∞) will then permit us to describe
this additive approximation as an ∞-categorical S• construction. As a result, we find that any
such theory deloops to a connective spectrum.

We first need the following well-known lemma, which follows from [46, Lemma 5.3.6.17] or,
alternately, from a suitable generalization of [46, Corollary 5.1.3.7].

Lemma 7.8. For any ∞-topos E , the loop functor ΩE : E∗ E∗ preserves sifted colimits
of connected objects.

Theorem 7.9. Suppose that E is an ∞-topos. The inclusion functor

Add(E ) Thy(E )

admits a left adjoint D given by a Goodwillie differential [27, 29, 30]

Dφ � colim
n→∞ ΩnE ◦ Φ ◦ S n ◦ j,

where Φ: D(Wald∞) E is the left derived functor of φ.

Proof. Let us write F for the class of small filtered colimits. By [30, Theorem 1.8] or [46,
Corollary 7.1.1.10], the inclusion

ExcF (Dfiss(Wald∞),E ) Fun∗
F (Dfiss(Wald∞),E )

(Definition 7.1) admits a left adjoint given by the assignment

Φ colim
n→∞ ΩnE ◦ Φ ◦ ΣnDfiss(Wald∞).

Now the inclusion i : Dfiss(Wald∞) D(Wald∞) induces a left adjoint

Fun∗
F (D(Wald∞),E ) Fun∗

F (Dfiss(Wald∞),E )

to the forgetful functor induced by Lfiss. By composing these adjoints, we thus obtain a left
adjoint D to the forgetful functor

ExcF (Dfiss(Wald∞),E ) Fun∗
F (D(Wald∞),E ).

The left adjoint D is given by the assignment

Φ colim
n→∞ ΩnE ◦ Φ ◦ i ◦ ΣnDfiss(Wald∞).
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By Corollary 6.12, if n � 1, then one may rewrite the functor ΩnE ◦ F ◦ i ◦ ΣnDfiss(Wald∞) as

ΩnE ◦ Φ ◦ i ◦ ΣnDfiss(Wald∞) ◦ Lfiss ◦ i � ΩnE ◦ Φ ◦ i ◦ S n.

Now if Φ: D(Wald∞) E is the left derived functor of a theory, then for any virtual
Waldhausen ∞-category Y , since Φ is reduced, and since S (Y ) is the colimit of a simplicial
virtual Waldhausen ∞-category S∗(Y ) with S0(Y ) � 0, the object Φ(S (Y )) is connected as
well. By Lemma 7.8, ΩE commutes with sifted colimits of connected objects of E , whence it
follows that the restriction of D : Fun�F (D(Wald∞),E ) ExcF (Dfiss(Wald∞),E ) to

Thy(E ) � Fun�G (D(Wald∞),E ) ⊂ Fun�F (D(Wald∞),E )

in fact factors through the full subcategory

ExcG (Dfiss(Wald∞),E ) ⊂ ExcF (Dfiss(Wald∞),E ).

Thanks to Theorem 7.6, the functor D consequently descends to a functor

D : Thy(E ) Add(E )

given by the assignment

Φ colim
n→∞ ΩnE ◦ Φ ◦ ΣnDfiss(Wald∞) ◦ Lfiss ◦ j.

Now another application of Corollary 6.12 completes the proof.

Definition 7.10. The left adjoint

D : Thy(E ) Add(E )

of the previous corollary will be called the additivization.

Suppose φ : Wald∞ E is a theory; denote by Φ its left derived functor. For any virtual
Waldhausen ∞-category Y and any natural number n, since the virtual Waldhausen ∞-
category S n(Y ) is the colimit of a reduced n-simplicial diagram S∗(S∗(· · ·S∗(Y ) · · · )), it
follows that the object Φ(S n(Y )) is n-connected. This proves the following.

Proposition 7.11. The canonical delooping (Corollary 7.7) of the additivization Dφ of a
theory φ : Wald∞ E∗ is valued in connective spectra:

Wald∞ Sp(E )�0.

Pre-additive theories

We have already mentioned that many of the theories that arise in practice have the property
that they carry direct sums of Waldhausen ∞-categories to products. What is really useful
about theories φ that enjoy this property is that the colimit

colim[φ Ω ◦ Φ ◦ S ◦ j Ω2 ◦ Φ ◦ S 2 ◦ j · · · ]
that appears in the formula for the additivization (Theorem 7.9) stabilizes after the first term;
that is, only one loop is necessary to get an additive theory.

Definition 7.12. Suppose that E is an ∞-topos. Then a theory φ ∈ Thy(E ) is said to be
pre-additive if it carries direct sums of Waldhausen ∞-categories to products in E .

Proposition 7.13. Suppose that E is an ∞-topos and that φ ∈ Thy(E ) is a pre-additive
theory with left derived functor Φ. Then the morphisms

Φ(S (Fm(C ))) Φ(S (C )) and Φ(S (Fm(C ))) Φ(S (Sm(C )))
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induced by Im,0 and Fm together exhibit Φ(S (Fm(C ))) as a product of Φ(S (C )) and
Φ(S (Sm(C ))).

Proof. Since φ is pre-additive, the morphism from Φ(S (Fm(C ))) to the desired product
may be identified with the morphism

Φ(S (Fm(C ))) Φ(S (C ) ⊕ S (Sm(C ))),

which can, in turn, be identified with the natural morphism

Φ(i ◦ ΣDfiss(Wald∞) ◦ Lfiss(Fm(C ))) Φ(i ◦ ΣDfiss(Wald∞) ◦ Lfiss(C ⊕ Sm(C )))

by Corollary 6.12. The upper right corner of (7.2) is a pushout, and since Em ⊕ Jm is a section
of Im,0 ⊕ Fm, the natural morphism Lfiss(Fm(C )) Lfiss(C ⊕ Sm(C )) is an equivalence.

By Theorem 7.4, we obtain the following repackaging of Waldhausen’s additivity theorem.

Corollary 7.14. Suppose that E is an ∞-topos and that φ ∈ Thy(E ) is a pre-additive
theory with left derived functor Φ. Then the additivization is given by

Dφ � Ω ◦ Φ ◦ S ◦ j.

Suppose that E is an ∞-topos and that φ ∈ Thy(E ) is a pre-additive theory. Then the counit
φ Dφ is the initial object of the ∞-category Add(E ) ×Thy(E ) Thy(E )φ/. By Theorem 7.4,
this means that Dφ is the initial object of the full subcategory of Thy(E )φ/ spanned by
those natural transformations φ φ′ such that for any Waldhausen ∞-category C and
for any functor S∗(C ) : NΔop Wald∞ that classifies the Waldhausen cocartesian fibration
S (C ) NΔop, the induced functor φ′ ◦ S∗(C ) : NΔop E∗ is a group object.

Motivated by this, we may now note that the inclusion of the full subcategory Grp(E ) of
Fun(NΔop,E ) spanned by the group objects admits a left adjoint L. (It is a straightforward
matter to note that Grp(E ) ⊂ Fun(NΔop,E ) is stable under arbitrary limits and filtered
colimits; alternatively, one may find a small set S of morphisms of Fun(NΔop,E ) such that a
simplicial object X of E is a group object if and only if X is S-local.) Hence one may consider
the following composite functor Lφ∗ :

Wald∞
S∗ Fun(NΔop,Wald∞)

φ
Fun(NΔop,E ) L Grp(E ).

If ev1 : Grp(E ) E is the functor given by evaluation at 1, then the functor ev1 ◦ L may be
identified with the functor ΩE ◦ colimNΔop . (This is Segal’s delooping machine.) It therefore
follows from the previous corollary that the functor Lφ1 = ev1 ◦ Lφ∗ can be identified with the
additivization of φ. This provides us with a local recognition principle for Dφ.

Proposition 7.15. Suppose that E is an ∞-topos, φ ∈ Thy(E ) is a pre-additive theory,
and C is a Waldhausen ∞-category. Write

S∗(C ) : NΔop Wald∞

for the functor that classifies the Waldhausen cocartesian fibration S (C ) NΔop. Then the
object Dφ(C ) is canonically equivalent to the underlying object of the group object that is
initial in the ∞-category

Grp(E ) ×Fun(NΔop,E ) Fun(NΔop,E )φ◦S∗(C )/.

7.16. One may hope to study the rest of the Taylor tower of a theory. In particular, for
any positive integer n and any theory φ ∈ Thy(E ), one may define a symmetric ‘multi-additive’
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theory D(n)φ via a formula

D(n)φ(C1, . . . ,Cn) = colim
(j1,...,jn)

Ωj1+···+jn
E crnΦ(S j1C1, . . . ,S

jnCn),

where Φ is the left derived functor of φ, and crnΦ is the nth cross-effect functor of the
restriction of Φ to Dfiss(Wald∞). However, if φ is pre-additive, then for n � 2, the cross-
effect functor crnΦ vanishes, whence D(n)φ vanishes as well. As a result, the Taylor tower for
Φ is constant above the first level. More informally, the best polynomial approximation to Φ is
linear. Consequently, if φ : Wald∞ E∗ is pre-additive, then Φ factors through an n-excisive
functor Dfiss(Wald∞) E∗ for some n � 1 if and only if φ is an additive theory, in which case
n may be allowed to be 1. This seems to suggest a rather peculiar dichotomy: a pre-additive
theory is either additive or staunchly non-analytic.

8. Easy consequences of additivity

Additive theories, which we introduced in the last section, are quite special. In this section,
we will prove some simple results that will illustrate just how special they really are.
We will show that additive theories vanish on any Waldhausen ∞-category that is ‘too
large’ (Proposition 8.1), and we will show that additive functors do not distinguish between
Waldhausen ∞-categories whose pair structure is maximal and suitable stable ∞-categories
extracted from them. As a side note, we will remark that, rather curiously, the fissile derived
∞-category is only one loop away from being stable. Finally, and most importantly, we will
prove our ∞-categorical variant of Waldhausen’s fibration theorem. In the next section, we will
introduce a richer structure into this story, to prove a more useful variant of this result.

The Eilenberg Swindle

We now show that Waldhausen ∞-categories with ‘too many’ coproducts are invisible to
additive theories.

Proposition 8.1 (Eilenberg Swindle). Suppose that E is an ∞-topos and that φ ∈
Add(E ). Then for any Waldhausen ∞-category C that admits countable coproducts, φ(C )
is terminal in E .

Proof. Denote by I the set of natural numbers, regarded as a discrete ∞-category, and
denote by ψ : C C the composite of the constant functor C Fun(I,C ) followed by its left
adjoint Fun(I,C ) C . The inclusion {0} I and the successor bijection σ : I ∼ I − {0}
together specify a natural ingressive id ψ. This defines an exact functor C F1(C ).
Applying I1,1 and I1,0 ⊕ F1 to this functor, we find that φ(ψ) = φ(id) + φ(ψ), whence
φ(id) = 0.

Stabilization and approximation

We prove that the value of an additive theory on a Waldhausen ∞-category whose pair structure
is maximal agrees with its value on a certain stable ∞-category. Using this, we show that
for these Waldhausen ∞-categories, equivalences on the homotopy category suffice to give
equivalences under any additive theory.

Proposition 8.2 (Suspension Theorem). Suppose that A is a Waldhausen ∞-category
whose pair structure is maximal. Then for any additive theory φ ∈ Add(E ), the suspension
functor Σ: A A induces multiplication by −1 on the group object φ(A ).
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Proof. This follows directly from the existence of the pushout square of endofunctors of A

id 0

0 Σ.

Corollary 8.3. Suppose that A is a Waldhausen ∞-category whose pair structure is
maximal. Write S̃p(A ) for the colimit

A
Σ

A
Σ · · · Σ

A
Σ · · ·

in Wald∞. Then for any additive theory φ ∈ Add(E ), the canonical functor

Σ∞ : A S̃p(A )

induces an equivalence φ(A ) φ(S̃p(A )).

We now obtain the following corollary, which we can regard as a version of Waldhausen’s
approximation theorem. Very similar results appear in the works of Cisinski [19, Theorem 2.15]
and Blumberg–Mandell [16, Theorem 1.3], and an interesting generalization has recently
appeared in a preprint of Fiore [26].

Corollary 8.4 (Approximation). Suppose that C and D are two ∞-categories that each
contain zero objects and all finite colimits, and regard them as Waldhausen ∞-categories
equipped with the maximal pair structure (Example 2.9). Then any exact functor ψ : C D
that induces an equivalence of homotopy categories hC ∼ hD also induces an equivalence
φ(ψ) : φ(C ) ∼ φ(D) for any additive theory φ ∈ Add(E ).

Proof. We note that since the homotopy category functor C hC preserves colimits, the
induced functor hS̃p(C ) hS̃p(D) is an equivalence. Now we combine Propositions 8.3 and
2.15.

The ∞-category S̃p(A ) is not always the stabilization of A , but when A is idempotent
complete, it is.

Proposition 8.5. Suppose that A is an idempotent complete ∞-category that contains
a zero object and all finite colimits. Regard A as a Waldhausen ∞-category with its maximal
pair structure. Then S̃p(A ) is equivalent to the stabilization Sp(A ) of A .

Proof. The colimit of the sequence

A
Σ

A
Σ · · · Σ

A
Σ · · ·

in Wald∞ agrees with the same colimit taken in Cat∞(κ1)Rex by [42, Proposition 5.5.7.11]
and Proposition 4.9. Since Ind is a left adjoint [42, Proposition 5.5.7.10], the colimit of the
sequence

IndA
Σ IndA

Σ · · · Σ IndA
Σ · · ·

in PrLω is Ind(S̃p(A )). By [42, Notation 5.5.7.7], there is an equivalence between PrLω and
(PrRω )op, whence Ind(S̃p(A )) can be identified with the limit of the sequence

· · · Ω IndA
Ω · · · Ω IndA

Ω IndA
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in PrRω . Since the inclusion PrRω Cat∞(κ1) preserves limits [42, Proposition 5.5.7.6], it
follows that Ind(S̃p(A )) � Sp(Ind(A )). Now the functor C Cω is an equivalence of ∞-
categories between PrRω and the full subcategory of Cat∞(κ1)Lex spanned by the essentially
small, idempotent complete ∞-categories, whence it follows that

S̃p(A ) � Ind(S̃p(A ))ω � Sp(Ind(A ))ω � Sp(Ind(A )ω) � Sp(A ).

Example 8.6. Suppose that E is an ∞-topos. (One may, again, think of Fun(X,Kan)
for a simplicial set X.) For any additive theory φ, the results above show that one has an
equivalence

φ(E ω
∗ ) � φ(Sp(E ω)).

Digression: the near-stability of the fissile derived ∞-category

By analyzing the additivization of the Yoneda embedding, we now find that a fissile virtual
Waldhausen ∞-category is one step away from being an infinite loop object. This implies that
the ∞-category Dfiss(Wald∞) can be said to admit a much stronger form of the Blakers–
Massey excision theorem than the ∞-category of spaces. Armed with this, we give an easy
necessary and sufficient criterion for a morphism of virtual Waldhausen ∞-categories to induce
an equivalence on every additive theory.

Definition 8.7. We shall call a theory φ ∈ Thy(E ) left exact just in case its left derived
functor Φ preserves finite limits.

Clearly every left exact theory is pre-additive. Moreover, the best excisive approximation
P1(G ◦ F ) to the composite G ◦ F of a suitable functor F : C D with a functor G : D D′

that preserves finite limits is simply the composite G ◦ P1(F ). Accordingly, we have the
following.

Lemma 8.8. Suppose that φ ∈ Thy(E ) is a left exact theory. Then

Dφ � Φ ◦ ΩDfiss(Wald∞) ◦ S .

Example 8.9. The Yoneda embedding y : Wald∞ P(Waldω∞) is a left exact theory;
its left derived functor Y : D(Wald∞) P(Waldω∞) is simply the canonical inclusion.
Consequently, thanks to Corollary 7.14, the additivization of y is now given by the formula

Dy � Ω ◦ S ◦ j.
Let us give some equivalent descriptions of the functor Dy. Since F (C ) is contractible, one

may write

Dy(C ) � F (C ) ×S (C ) F (C ).

Alternately, since suspension in Dfiss(Wald∞) is given by S , the functor

Dy(C ) : Waldω,op∞ Kan

can be described by the formula

Dy(C )(D) � MapD(Wald∞)(S (D),S (C )).

In other words, ΩΣ � ΩS is the Goodwillie differential of the identity on Dfiss(Wald∞).



K-THEORY OF HIGHER CATEGORIES 315

Waldhausen’s Generic Fibration Theorem

Let us now examine the circumstances under which a sequence of virtual Waldhausen ∞-
categories gives rise to a fiber sequence under any additive functor. In this direction, we
have Proposition 8.11, which is an analogue of Waldhausen’s [73, Proposition 1.5.5 and
Corollary 1.5.7]. We will deduce from this a necessary and sufficient condition for an exact
functor to induce an equivalence under every additive theory (Proposition 8.12).

Notation 8.10. Suppose that ψ : B A is an exact functor of Waldhausen ∞-
categories. Write

K (ψ) := |F (A ) ×S (A ) S (B)|NΔop

for the realization (Definition 4.30) of the Waldhausen cocartesian fibration

F (A ) ×S (A ) S (B) NΔop.

In other words, the virtual Waldhausen ∞-category K (ψ) is the geometric realization of
the simplicial Waldhausen ∞-category whose m-simplices consist of a totally filtered object

0 U1 U2 . . . Um

of B, a filtered object

X0 X1 X2 . . . Xm

of A , and a diagram

X0 X1 X2 . . . Xm

0 ψ(U1) ψ(U2) . . . ψ(Um)

of A in which every square is a pushout.
The object K (ψ) is not itself the corresponding fiber product of virtual Waldhausen

∞-categories; however, for any additive functor φ : Wald∞ E with left derived func-
tor Φ, we shall now show that Φ(K (ψ)) is in fact the fiber of the induced morphism
Φ(S (B)) Φ(S (A )).

Theorem 8.11 (Generic Fibration Theorem I). Suppose that ψ : B A is an exact
functor of Waldhausen ∞-categories. Then for any additive theory φ : Wald∞ E with left
derived functor Φ, there is a diagram

φ(B) φ(A ) ∗

∗ Φ(K (ψ)) Φ(S (B))

∗ Φ(S (A ))

of E in which each square is a pullback.

Proof. For any vertex m ∈ NΔop, there exist functors

s := (Em ⊕ Sm(ψ),pr2) : F0(A ) ⊕ Sm(B) Fm(A ) ×Sm(A ) Sm(B)
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and

p := (Im,0 ◦ pr1) ⊕ pr2 : Fm(A ) ×Sm(A ) Sm(B) F0(A ) ⊕ Sm(B).

Clearly p ◦ s � id; we claim that φ(s ◦ p) � φ(id) in E∗. This follows from additivity applied to
the functor

Fm(A ) ×Sm(A ) Sm(B) F1(Fm(A ) ×Sm(A ) Sm(B))

given by the ingressive morphism of functors (Em ◦ Im,0 ◦ pr1, 0) id. Thus the value
φ(Fm(A ) ×Sm(A ) Sm(B)) is exhibited as the product φ(F0(A )) × φ(Sm(B)).

We may therefore consider the following commutative diagram of E∗:

φ(F0(B)) φ(F0(A )) φ(S0(B))

φ(Fm(B)) φ(Fm(A ) ×Sm(A ) Sm(B)) φ(Sm(B))

φ(Fm(A )) φ(Sm(A ))

φ(F0(A )) φ(S0(A )).

F0(ψ)

Em

F0

E′
m

(0, Fm)

pr1

pr2 Sm(ψ)

Fm

Im,0 I′m,0

F0

The lower right-hand square is a pullback square by additivity; hence, in light of the
identification above, all the squares on the right-hand side are pullbacks as well. Again by
additivity the wide rectangle of the top row is carried to a pullback square under φ, whence
all the squares of this diagram are carried to pullback squares.

Since φ is additive, so is Φ ◦ S . Hence we obtain a commutative diagram in E∗:

Φ(S (F0(B))) Φ(S (F0(A ))) Φ(S (S0(B)))

Φ(S (Fm(B))) Φ(S (Fm(A ) ×Sm(A ) Sm(B))) Φ(S (Sm(B)))

Φ(S (Fm(A ))) Φ(S (Sm(A ))),

in which every square is a pullback. All the squares in this diagram are functorial in m, and
since the objects that appear are all connected, it follows from [46, Lemma 5.3.6.17] that the
squares of the colimit diagram

Φ(S (F0(B))) Φ(S (F0(A ))) Φ(S (S0(B)))

Φ(S (F (B))) Φ(S (K (ψ))) Φ(S (S (B)))

Φ(S (F (A ))) Φ(S (S (A ))),
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are all pullbacks. Applying the loopspace functor ΩE to this diagram now produces a diagram
equivalent to the diagram

φ(F0(B)) φ(F0(A )) φ(S0(B))

Φ(F (B)) Φ(K (ψ)) Φ(S (B))

Φ(F (A )) Φ(S (A )),

in which every square again is a pullback.

Proposition 8.12. The following are equivalent for an exact functor ψ : B A of
Waldhausen ∞-categories.

(1) For any ∞-topos E and any φ ∈ Add(E ) with left derived functor

Φ: D(Wald∞) E ,

the induced morphism Φ(ψ) : Φ(B) Φ(A ) is an equivalence of E .
(2) For any ∞-topos E and any φ ∈ Add(E ) with left derived functor

Φ: D(Wald∞) E ,

the object Φ(K (ψ)) is contractible.
(3) The virtual Waldhausen ∞-category S (K (ψ)) is contractible.

Proof. In light of Lemma 8.8 and Example 8.9, if (8.12.1) holds, then the induced morphism

ΩS (ψ) : ΩS (B) ΩS (A )

is an equivalence of virtual Waldhausen ∞-categories. Since S (B) and S (A ) are connected
objects of P(Waldω∞), this in turn implies (using, say, [46, Corollary 5.1.3.7]) that the induced
morphism of virtual Waldhausen ∞-categories

S (ψ) : S (B) S (A )

is an equivalence and therefore by Proposition 8.11 that (8.12.2) holds.
Now if (8.12.2) holds, then in particular, ΩS (K (ψ)) is contractible. Since the virtual

Waldhausen ∞-category S (K (ψ)) is connected, it is contractible, yielding (8.12.3).
That the last condition implies the first now follows immediately from Proposition 8.11.

9. Labeled Waldhausen ∞-categories and Waldhausen’s fibration theorem

We have remarked (Example 2.12) that nerves of Waldhausen’s categories with cofibrations are
natural examples of Waldhausen ∞-categories. But Waldhausen’s categories with cofibrations
and weak equivalences do not fit so easily into this story. One may attempt to form the relative
nerve (Definition 1.5) of the underlying relative category and to endow the resulting ∞-category
with a suitable pair structure, but part of the point of Waldhausen’s set-up was precisely that
one did not need to assume things such as the two-out-of-three axiom. For example, Waldhausen
considers ([73, Part 3] or [74]) categories of spaces in which the weak equivalences are chosen
to be the simple maps. In these situations the K-theory of the relative nerve will not correctly
encode the Waldhausen K-theory.

The time has come to address this issue. Fortunately, the machinery we have developed
provides a useful alternative. Namely, we introduce the notion of a labeled Waldhausen ∞-
category (Definition 9.1), which is a Waldhausen ∞-category equipped with a subcategory of
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labeled edges that satisfy the analogue of Waldhausen’s axioms for a category with cofibrations
and weak equivalences. There is a relative form of this, too, as an example, we show how to
label Waldhausen cocartesian fibrations of filtered objects.

It is possible to extract from these categories with cofibrations and weak equivalences useful
virtual Waldhausen ∞-categories (Notation 9.9). These virtual Waldhausen ∞-categories are
constructed as realizations of certain Waldhausen cocartesian fibrations over NΔop; they are
not Waldhausen ∞-categories, but they are ‘close’ (Proposition 9.13). We also discuss the
relationship between the virtual Waldhausen ∞-categories attached to a labeled Waldhausen
∞-category and the result from formally inverting (in the ∞-categorical sense, of course) the
labeled edges (Notation 9.18).

The main result of this section is a familiar case of the Generic Fibration Theorem I
(Theorem 8.11). This result (Theorem 9.24) gives, for any labeled Waldhausen ∞-category
(A , wA ) satisfying a certain compatibility between the ingressives and the labeled edges
(Definition 9.21) a fiber sequence

φ(A w) φ(A ) Φ(B(A , wA ))

for any additive theory φ with left derived functor Φ. This result is the foundation of virtually
all fiber sequences that arise in K-theory.

Labeled Waldhausen ∞-categories

In analogy with Waldhausen’s theory of categories with cofibrations and weak equivalences, we
study here Waldhausen ∞-categories with certain compatible classes of labeled morphisms.

Definition 9.1. Suppose that C is a Waldhausen ∞-category. Then a gluing diagram in
C is a functor of pairs

X : Q2 × (Δ1)� C

(Example 1.13 and 2.8), such that the squares X|(Q2×Δ{0}) and X|(Q2×Δ{1}) are pushouts. We
may depict such gluing diagrams as cubes

X00 X10

X20 X∞0

X01 X11

X21 X∞1

in which the top and bottom faces are pushout squares.

Definition 9.2. A labeling of a Waldhausen ∞-category is a subcategory wC of C that
contains ιC (that is, a pair structure on C ) such that for any gluing diagram X of C in which
the morphisms

X00 X01, X10 X11, and X20 X21

lie in wC , the morphism X∞0 X∞1 lies in wC as well. In this case, the edges of wC will
be called labeled edges, and the pair (C , wC ) is called a labeled Waldhausen ∞-category.

A labeled exact functor between two labeled Waldhausen ∞-categories C and D is an exact
functor C D that carries labeled edges to labeled edges.
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Note that a labeled Waldhausen ∞-category has two pair structures: the ingressives and the
labeled edges.

Example 9.3. We have remarked (Example 2.12) that the nerve of an ordinary category
with cofibrations in the sense of Waldhausen is a Waldhausen ∞-category. Similarly, if
(C, cofC,wC) is a category with cofibrations and weak equivalences in the sense of Waldhausen
[73, § 1.2], then (NC,NcofC,NwC) is a labeled Waldhausen ∞-category.

Suppose (C , wC ) is a labeled Waldhausen ∞-category. For gluing diagrams X of C in which
the edges

X00 X20, X00 X01,

X10 X∞0, X10 X11

are all degenerate, the condition above reduces to a guarantee that pushouts of labeled
morphisms along ingressive morphisms are labeled. For gluing diagrams X of C in which
the edges

X00 X10, X00 X01,

X20 X∞0, X20 X21

are all degenerate, the condition above reduces to a guarantee that the pushout of any labeled
ingressive morphism along any morphism exists and is again a labeled ingressive morphism.

Notation 9.4. Denote by

�Wald∞ ⊂ Wald∞ ×Cat∞ Pair∞

the full subcategory spanned by the labeled Waldhausen ∞-categories.

Proposition 9.5. The ∞-category �Wald∞ is presentable.

Proof. The inclusion

�Wald∞ Wald∞ ×Cat∞ Pair∞

admits a left adjoint, which assigns to any object (C ,C†, wC ) the labeled Waldhausen ∞-
category (C ,C†, wC ), where wC is the smallest labeling containing wC . It is easy to see
that �Wald∞ is stable under filtered colimits in Wald∞ ×Cat∞ Pair∞; hence �Wald∞ is
an accessible localization of Wald∞ ×Cat∞ Pair∞. Since the latter ∞-category is locally
presentable by [42, Proposition 5.5.7.6], the proof is complete.

The Waldhausen cocartesian fibration attached to a labeled Waldhausen ∞-category

In § 5, we defined the virtual Waldhausen ∞-category of filtered objects of a Waldhausen ∞-
category C . We did this by first using Proposition 3.19 to write down a cocartesian fibration
that is classified by the simplicial ∞-category

F∗(C ) : NΔop Cat

such that for any integer m � 0, the ∞-category Fm(C ) has as objects sequences of ingressive
morphisms

X0 X1 · · · Xm.

Then we defined the virtual Waldhausen ∞-category we were after by forming the formal
geometric realization of the diagram F∗(C ).
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Here, we introduce an analogous construction when C admits a labeling, in which the role
of the cofibrations is played instead by the labeled edges. That is, we will define a cocartesian
fibration B(C , wC ) NΔop that is classified by the simplicial ∞-category

B∗(C , wC ) : NΔop Cat∞

such that for any integerm � 0, the ∞-category Bm(C , wC ) has as objects sequences of labeled
edges

X0 X1 · · · Xm.

The pair structure will be simpler than in § 5, but once again we will define the virtual
Waldhausen ∞-category we are after by forming the formal geometric realization of the diagram
B∗(C , wC ).

Construction 9.6. Suppose that C is a Waldhausen ∞-category, and suppose wC ⊂ C
a labeling thereof. Define a map B(C , wC ) NΔop, using the notation of Proposition 3.19,
Example 1.13, and Notation 5.2, as

B(C , wC ) := Tπ((NΔop)� × (C , wC )).

Equivalently, we require, for any simplicial set K and any map σ : K NΔop, a bijection
between the set MorNΔop(K,B(C , wC )) and the set

MorsSet(2)((K ×NΔop NM,K ×NΔop (NM)†), (C , wC ))

(Notation 3.18), functorial in σ.
In other words, B(C , wC ) is the simplicial set F (C , wC ), where C is regarded as a pair

with its subcategory of labeled edges, rather than its subcategory of cofibrations.

It follows from Proposition 3.19 that B(C , wC ) NΔop is a cocartesian fibration.

9.7. For any Waldhausen ∞-category C and any labeling wC ⊂ C thereof, we endow the
∞-category B(C , wC ) with a pair structure in the following manner. We let B†(C , wC ) be the
smallest pair structure containing morphisms of the form (id, ψ) : (m, Y ) (m,X), where
for any integer 0 � k � m, the induced morphism Yk Xk is ingressive.

Lemma 9.8. For any Waldhausen ∞-category C and any labeling wC ⊂ C thereof, the
cocartesian fibration p : B(C , wC ) NΔop is a Waldhausen cocartesian fibration.

Proof. It is plain to see that p is a pair cocartesian fibration.
Now suppose m � 0 is an integer. Since limits and colimits of the ∞-category Fun(Δm,C )

are computed pointwise, a zero object in Fun(Δm,C ) is an essentially constant functor whose
value at any point of Δm is a zero object. Since any equivalence of C is contained in wC ,
this zero object is contained in B(C , wC )m as well. Again since pushouts in Fun(Δm,C ) are
formed objectwise, a pushout square in Fun(Δm,C ) is a functor

X : Δ1 × Δ1 × Δ{0,k} C

such that for any integer 0 � k � m, the restriction X|(Δ1×Δ1×Δ{0,k}) is a pushout square; now
if X is in addition a functor of pairs Q2 × (Δm)� C , then it follows from the gluing axiom
that if X|({0}×Δ{0,k}), X|({1}×Δ{0,k}), and X|({2}×Δ{0,k}) all factor through wC ⊂ C , then so
does X|({∞}×Δ{0,k}). Hence the fibers Bm(C , wC ) of p are Waldhausen ∞-categories, and,
again using the fact that colimits and limits are computed objectwise, we conclude that p is a
Waldhausen cocartesian fibration.
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The virtual Waldhausen ∞-category attached to a labeled Waldhausen ∞-category

It follows from Proposition 3.20 that the assignment

(C , wC ) B(C , wC )

defines a functor

B : �Wald∞ Waldcocart
∞/NΔop .

By composing with the realization functor (Definition 4.30), we find a functorial construction
of virtual Waldhausen ∞-categories from labeled Waldhausen ∞-categories:

Notation 9.9. By a small abuse of notation, we denote also as B the composite functor

�Wald∞
B Waldcocart

∞/NΔop

| · |NΔop

D(Wald∞).

Example 9.10. One deduces from Example 9.3 that a category (C, cofC,wC) with
cofibrations and weak equivalences gives rise to a virtual Waldhausen ∞-category
B(NC,NcofC,NwC).

Notation 9.11. Note that the pair cartesian fibration π : NM NΔop of Notation 5.2
admits a section σ that assigns to any object m ∈ Δ the pair (m, 0) ∈ M. For any labeled
Waldhausen ∞-category (C , wC ), this section induces a functor of pairs over NΔop

σ�(C ,wC ) : B(C , wC ) (NΔop)� × C ,

which carries any object (m,X) of B(C , wC ) to the pair (m,X0) and any morphism
(φ, ψ) : (n, Y ) (m,X) to the composite

Y0 Yφ(0)

ψ0
X0.

The section σ induces a map of simplicial sets

H(D ,B(C , wC )) wFunWald∞(D ,C ),

natural in D , where wFunWald∞(D ,C ) ⊂ FunWald∞(D ,C ) denotes the subcategory containing
all exact functors D C and those natural transformations that are pointwise labeled.

Lemma 9.12. For any labeled Waldhausen ∞-category (C , wC ) and any compact Wald-
hausen ∞-category D , the map H(D ,B(C , wC )) wFunWald∞(D ,C ) induced by σ is a
weak homotopy equivalence.

Proof A. Using (the dual of) Joyal’s ∞-categorical version of Quillen’s Theorem A [42,
Theorem 4.1.3.1], we are reduced to showing that for any exact functor X : D C , the
simplicial set

H(D ,B(C , wC )) ×wFunWald∞ (D,C ) wFunWald∞(D ,C )X/

is weakly contractible. This simplicial set is the geometric realization of the simplicial space

n H1+n(D ,B(C , wC )) ×wFunWald∞ (D,C ) {X};
in particular, it may be identified with the path space of the fiber of the map

H(D ,B(C , wC )) wFunWald∞(D ,C )

over the vertex X.
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Proof B. Consider the ordinary category ΔwFun�
Wald∞ (D,C ) of simplices of the simplicial set

wFunWald∞(D ,C ). Corresponding to the natural map

N(Δop
wFunWald∞ (D,C ) ×Δop M†) FunWald∞(D ,C )

is a map

NΔop
wFunWald∞ (D,C ) H(D ,B(C , wC )).

This map identifies the nerve NΔop
wFunWald∞ (D,C ) with the simplicial subset of H(D ,B(C , wC ))

whose simplices correspond to maps

Δn ×Δop M† FunWald∞(D ,C )

that carry cocartesian edges (over Δn) to degenerate edges. The composite

NΔop
wFunWald∞ (D,C ) H(D ,B(C , wC )) wFunWald∞(D ,C )

is the ‘initial vertex map’, which is a well-known weak equivalence. A simple argument now
shows that the map NΔop

wFunWald∞ (D,C ) H(D ,B(C , wC )) is also a weak equivalence.

In other words, the virtual Waldhausen ∞-category B(C , wC ) attached to a labeled
Waldhausen ∞-category (C , wC ) is not itself representable, but it’s close:

Proposition 9.13. The virtual Waldhausen ∞-category B(C , wC ) attached to a labeled
Waldhausen ∞-category (C , wC ) is equivalent to the functor

D wFunWald∞(D ,C ).

Inverting labeled edges

Unfortunately, for a labeled Waldhausen ∞-category (C , wC ), the functor (Notation 9.11)

σ�(C ,wC ) : B(C , wC ) (NΔop)� × C

will typically fail to be a morphism of Waldcocart
∞/NΔop , because the cocartesian edges of B(C , wC )

will be carried to labeled edges, but not necessarily to equivalences. Hence one may not regard
σ�(C ,wC ) as a natural transformation of functors NΔop Wald∞. To rectify this, we may
formally invert the edges in wC in the ∞-categorical sense.

Lemma 9.14. The inclusion functor Wald∞ �Wald∞ defined by the assignment
(C ,C†) (C ,C†, ιC ) admits a left adjoint �Wald∞ Wald∞.

Proof. The inclusion functor Wald∞ �Wald∞ preserves all limits and all filtered
colimits. Now the result follows from the adjoint functor theorem [42, Corollary 5.5.2.9] along
with Proposition 9.5.

Let us denote by wC−1C the image of a labeled Waldhausen ∞-category (C , wC ) under the
left adjoint above. The canonical exact functor C wC−1C is initial with the property that
it carries labeled edges to equivalences. As an example, let us consider the case of an ordinary
category with cofibrations and weak equivalences in the sense of Waldhausen [73, § 1.2].

Proposition 9.15. If (C, cofC,wC) is a category with cofibrations and weak equivalences
that is a partial model category [5] in the sense that: (1) the weak equivalences satisfy the two-
out-of-six axiom [20, 9.1], and (2) the weak equivalences and trivial cofibrations are part of a
three-arrow calculus of fractions [20, 11.1], then the Waldhausen ∞-category (NwC)−1(NC) is
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equivalent to the relative nerve N(C,wC), equipped with the smallest pair structure containing
the images of cofC (Example 2.12).

Proof. We first claim that N(C,wC) is a Waldhausen ∞-category.
First, by [20, 38.3(iii)], the image of the zero object 0 ∈ C is again a zero object of

N(C,wC). It is also an initial object of N(C,wC)†, since for any object X, the mapping
space MapN(C,wC)†(0,X) is a union of connected components of MapN(C,wC)(0,X), whence it
is either empty or contractible, but the image of the edge 0 X is ingressive by definition.

Now let us see that pushouts along ingressives exist and are ingressives. The ∞-category
FunPair∞(Λ0Q2, N(C,wC)) is the relative nerve of the full subcategory C� of Fun(1 ∪{0} 1, C)
spanned by those functors that carry the first arrow 0 1 to a cofibration, equipped with
the objectwise weak equivalences. Similarly, FunPair∞(Q2, N(C,wC)) is the relative nerve of
the full subcategory C� of Fun(1 × 1, C) spanned by those functors that carry the arrows
(0, 0) (0, 1) and (1, 0) (1, 1) each to cofibrations, equipped with the objectwise weak
equivalences. The forgetful functor U : C� C� and its left adjoint F : C� C� are each
relative functors, whence they descend to an adjunction

F : Ho(C�) Ho(C�) : U

on the HosSet-enriched homotopy categories, using the description [20, 36.3]. Furthermore,
the unit is clearly an equivalence id � UF . Hence the forgetful functor

FunPair∞(Q2, N(C,wC)) FunPair∞(Λ0Q
2, N(C,wC))

admits a left adjoint, and the unit for this adjunction is an equivalence. This is precisely
the condition that pushouts along ingressives exist and are ingressives. Thus N(C,wC) is a
Waldhausen ∞-category.

Moreover, if X Y is a cofibration of C and if X X ′ is an arrow of C, a square

X Y

X ′ Y ′

in N(C,wC) is a pushout just in case it is the essential image of the left adjoint above. This,
in turn, holds just in case it is equivalent to the image of a pushout square in C.

Now suppose D is a Waldhausen ∞-category. Since the canonical functor

NC N(C,wC)

is exact, there is an induced functor

R : FunWald∞(N(C,wC),D) Fun′
Wald∞(NC,D),

where Fun′
Wald∞(NC,D) ⊂ FunWald∞(NC,D) is the full subcategory spanned by those exact

functors that carry arrows in wC to equivalences in D. The universal property of N(C,wC),
combined with the definition of its pair structure, guarantees an equivalence

FunPair∞(N(C,wC),D) ∼ Fun′
Pair∞(NC,D),

where Fun′
Pair∞(NC,D) ⊂ FunPair∞(NC,D) is the full subcategory spanned by those functors

of pairs that carry arrows in wC to equivalences in D . Hence R is fully faithful. Since an object
(respectively, a morphism, a square) in N(C,wC) is a zero object (respectively, an ingressive
morphism, a pushout square along an ingressive morphism) just in case it is equivalent to
the image of one under the functor NC N(C,wC), it follows that a functor of pairs
N(C,wC) D that induces an exact functor C D is itself exact. Thus R is essentially
surjective.
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Let us give another example of a situation in which we can identify the Waldhausen ∞-
category wC−1C , up to splitting certain idempotents. We thank an anonymous referee and
Peter Scholze for identifying an error in the original formulation of this result.

Definition 9.16. We say that a full Waldhausen subcategory C ′ ⊂ C of a Waldhausen
∞-category is strongly cofinal if, for any object X ∈ C , there exists an object Y ∈ C such that
X ∨ Y ∈ C ′.

We will show below in Theorem 10.19 that a strongly cofinal subcategory C ′ ⊂ C of a
Waldhausen ∞-category has the same algebraic K-theory as C in positive degrees.

Proposition 9.17. Suppose that C is a compactly generated ∞-category containing a
zero object, that L : C D is an accessible localization of C, and that the inclusion D C
preserves filtered colimits. Assume also that the class of all L-equivalences of C is generated
(as a strongly saturated class) by the L-equivalences between compact objects. Then if wCω ⊂
Cω is the subcategory consisting of L-equivalences between compact objects, then Dω is the
idempotent completion of (wCω)−1Cω.

In particular, C andD are additive (Definition 4.10), then with their maximal pair structures,
the inclusion (wCω)−1Cω Dω is strongly cofinal.

Proof. Let us begin by giving, for any labeled Waldhausen ∞-category A with a maximal
pair structure, a construction of wA−1A. We begin by inverting the edges of wA in A as an
∞-category; the result is an ∞-category A′ and a functor i : A A′ that induces, for any
∞-category B, a fully faithful functor

Fun(A′, B) Fun(A,B)

whose essential image is spanned by those functors that carry the edges in wA to equivalences
in B. Now we will use the ideas of [42, § 5.3.6]. Consider the class R consisting of the following
diagrams: the composite

∅
� z A i A′,

in which z is the inclusion of the zero object, and the composites

(Λ2
0)

� p A i A′

in which p is a pushout square. Now let F denote the collection of all finite simplicial sets. In
the notation of [42, Proposition 5.3.6.2], we claim that wA−1A � PF

R (A′), where the latter
∞-category is endowed with its maximal pair structure.

To prove this claim, let us first note that the inclusion of the full subcategory CatRex,z
∞ ⊂

Wald∞ spanned by those Waldhausen ∞-categories equipped with the maximal pair structure
admits a left adjoint. This much follows from the adjoint functor theorem, but in fact we can
be more precise: it is the construction C PF

W C , where W consists of the initial object
∅

� C and the pushouts (Λ2
0)

� C of cofibrations, and F consists of all finite simplicial
sets. Note that since the diagrams of W are colimits in C , it follows that the unit j : C PF

W C
is fully faithful.

Now for any Waldhausen ∞-category C , let us consider the square

FunWald∞(PF
R (A′),C ) Fun′

Wald∞(A,C )

FunWald∞(PF
R (A′),PF

W (C )) Fun′
Wald∞(A,PF

W (C )),
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where Fun′ denotes the full subcategory spanned by those exact functors that carry the edges
of wA to equivalences. Unwinding the universal properties, one sees immediately that the
bottom horizontal functor is an equivalence; our claim is that the top horizontal functor is an
equivalence. Hence we aim to show that the square above is homotopy cartesian; this amounts
to the claim that in a commutative diagram of exact functors

A C

PF
R (A′) PF

W (C ),

i j

F

the functor F factors through j. This now follows from the minimality of the construction of
PF

R (A′), as in the proof of [42, Proposition 5.3.6.2]. This completes the proof that wA−1A �
PF

R (A′).
Let us now note that the inclusion of the full subcategory CatRex,z,∨

∞ ⊂ CatRex,z
∞ spanned by

those Waldhausen ∞-categories equipped with the maximal pair structure, which also admits
a left adjoint. This is given by the idempotent completion A A∨ of [42, § 5.1.4].

We turn to our localization. For any idempotent complete ∞-category A that admits all
finite colimits, the localization Cω Dω induces an equivalence

FunRex(Dω, A) ∼ Fun′
Rex(Cω, A),

where Fun′
Rex(Cω, A) ⊂ FunRex(Cω, A) is the full subcategory spanned by those finite colimit-

preserving functors that carry L-equivalences to equivalences. (Here we are using the mutually
inverse equivalences A Ind(A) and B Bω of [42, Proposition 5.5.7.10].) This target
∞-category is of course equivalent to the full subcategory of FunWald∞(Cω, A), spanned by
those exact functors, that carries L-equivalences to equivalences. We therefore deduce that the
natural functor (wCω)−1Cω Dω induces an equivalence

FunWald∞(Dω, A) ∼ FunWald∞((wCω)−1Cω, A)∨.

Consequently, we deduce that

Dω � PF
W ((Cω)′)∨ � ((wCω)−1Cω)∨,

as desired.

Notation 9.18. Composing the canonical exact functor C wC−1C with the functor

B(C , wC ) (NΔop)� × C ,

we obtain a morphism of Waldcocart
∞/NΔop

B(C , wC ) (NΔop)� × wC−1C

that carries cocartesian edges of B(C , wC ) to equivalences. Applying the realization | · |NΔop

(Definition 4.30), we obtain a morphism of D(Wald∞)

γ(C ,wC ) : B(C , wC ) wC−1C .

We emphasize that for a general labeled Waldhausen ∞-category (C , wC ), the com-
parison morphism γ(C ,wC ) is not an equivalence of D(Wald∞); nevertheless, we will find
(Proposition 10.17) that γ(C ,wC ) often induces an equivalence on K-theory.

Waldhausen’s fibration theorem, redux

We now aim to prove an analogue of Waldhausen’s generic fibration theorem [73, Theo-
rem 1.6.4]. For this we require a suitable analogue of Waldhausen’s cylinder functor in the
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∞-categorical context. This should reflect the idea that a labeled edge can, to some extent, be
replaced by a labeled ingressive.

Notation 9.19. To this end, for any labeled Waldhausen ∞-category (A ,A†), write
w†A := wA ∩ A†. The subcategory w†A ⊂ A defines a new pair structure, but not a new
labeling, of A . Nevertheless, we may consider the full subcategory B(A , w†A ) ⊂ F (A )
spanned by those filtered objects

X0 X1 · · · Xm

such that each ingressive Xi Xi+1 is labeled; we shall regard it as a subpair. One may
verify that Bm(A , w†A ) ⊂ Fm(A ) is a Waldhausen subcategory, and B(A , w†A ) NΔop

is a Waldhausen cocartesian fibration.
For any pair D , write w†FunPair∞(D ,A ) ⊂ FunPair∞(D ,A ) for the following pair structure.

A natural transformation
η : D × Δ1 A

lies in w†FunPair∞(D ,A ) if and only if it satisfies the following two conditions.

(1) For any object X of D , the edge Δ1 ∼= Δ1 × {X} ⊂ Δ1 × D A is both ingressive
and labeled.

(2) For any ingressive f : X Y of D , the corresponding edge

Δ1 F1(A )

is ingressive in the sense of Definition 5.6.

If D is a Waldhausen ∞-category, write

w†FunWald∞(D ,A ) ⊂ w†FunPair∞(D ,A )

for the full subcategory spanned by the exact functors.

9.20. Note that the proofs of Lemma 9.12 apply also to the pair (A , w†A ) to guarantee
that for any compact Waldhausen ∞-category D , the natural map

H(D , (B(A , w†A )/NΔop)) w†FunWald∞(D ,A )

induced by σ is a weak homotopy equivalence.

Definition 9.21. Suppose (A , wA ) a labeled Waldhausen ∞-category. We shall say that
(A , wA ) has enough cofibrations if for any small pair of ∞-categories D , the inclusion

w†FunPair∞(D ,A ) wFunPair∞(D ,A )

is a weak homotopy equivalence.

In particular, if every labeled edge of (A , wA ) is ingressive, then (A , wA ) has enough
cofibrations. More generally, this may prove to be an extremely difficult condition to verify,
but the following lemma simplifies matters somewhat.

Lemma 9.22. Suppose (A ,A†, wA ) is a labeled Waldhausen ∞-category. Suppose that
there exists a functor

F : Fun(Δ1,A ) Fun(Δ1,A )

along with a natural transformation η : id F such that:

(1) The functor F carries Fun(Δ1, wA ) to Fun(Δ1, w†A ).



K-THEORY OF HIGHER CATEGORIES 327

(2) If f is a labeled ingressive, then ηf is an equivalence.
(3) If f is labeled, then ηf is objectwise labeled.

Then (A ,A†, wA ) has enough cofibrations.

Proof. For any pair D , the functor F induces a functor

Fun(Δ1, wFunPair∞(D ,A )) Fun(Δ1, w†FunPair∞(D ,A )),

and η induces natural transformations that exhibit this functor as a homotopy inverse to the
inclusion

Fun(Δ1, w†FunPair∞(D ,A )) Fun(Δ1, wFunPair∞(D ,A )).

The result now follows from the homotopy equivalence between a simplicial set and its
(unbased) path space.

Lemma 9.23. If a labeled Waldhausen ∞-category (A , wA ) has enough cofibrations, then
for any Waldhausen ∞-category D , the inclusion

w†FunWald∞(D ,A ) wFunWald∞(D ,A )

is a weak homotopy equivalence.

Proof. For any Waldhausen ∞-category B, the square

w†FunWald∞(D ,A ) wFunWald∞(D ,A )

w†FunPair∞(D ,A ) wFunPair∞(D ,A )

is a pullback, and the vertical maps are inclusions of connected components.

Theorem 9.24 (Generic Fibration Theorem II). Suppose that (A , wA ) is a labeled
Waldhausen ∞-category that has enough cofibrations. Suppose that φ : Wald∞ E is an
additive theory with left derived functor Φ. Write A w ⊂ A for the full subcategory spanned
by those objects X such that a map from a zero object to X is labeled, with the pair structure
inherited from A . Then A w is a Waldhausen ∞-category, the inclusion i : A w A is exact,
and it along with the morphism of virtual Waldhausen ∞-categories e : A B(A , wA ) give
rise to a fiber sequence

φ(A w) φ(A )

∗ Φ(B(A , wA )).

Proof. It follows from Proposition 8.11 that it is enough to exhibit an equivalence between
Φ(B(A , wA )) and Φ(K (i)) as objects of Eφ(A )/.

The forgetful functor K (i) FA is fully faithful, and its essential image F̃wA consists
of those filtered objects

X0 X1 · · · Xm

such that the induced ingressive Xi/X0 Xi+1/X0 is labeled; this contains
the subcategory B(A , w†A ). We claim that for any m � 0, the induced morphism
φ(Bm(A , w†A )) φ(F̃w

m(A )) is an equivalence. Indeed, one may select an exact functor
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p : Km(i) Bm(A , w†A ) that carries an object

X0 X1 X2 . . . Xm

0 U1 U2 . . . Um

to the filtered object

X0 X0 ∨ U1 X0 ∨ U2 · · · X0 ∨ Um.
When m = 0, this functor is compatible with the canonical equivalences from A . Additivity
now guarantees that p defines a (homotopy) inverse to the morphism φ(Bm(A , w†A )) φ

(F̃w
mA ).
One has an obvious forgetful functor B(A , w†A ) B(A , wA ) over NΔop. We claim

that this induces an equivalence of virtual Waldhausen ∞-categories |B(A , w†A )|NΔop

|B(A , wA )|NΔop . So we wish to show that for any compact Waldhausen ∞-category D , the
morphism

H(D , (B(A , w†A )/NΔop)) H(D , (B(A , wA )/NΔop))

of simplicial sets is a weak homotopy equivalence.
By Lemma 9.12 and its extension to the pair (A , w†A ), we have a square

H(D , (B(A , w†A )/NΔop)) H(D , (B(A , wA )/NΔop))

w†FunWald∞(D ,C ) wFunWald∞(D ,C )

in which the vertical maps are weak homotopy equivalences. Since (A , wA ) has enough
cofibrations, the horizontal map along the bottom is a weak homotopy equivalence as well
by Lemma 9.23.

Part III. Algebraic K-theory

We are finally prepared to describe the Waldhausen K-theory of ∞-categories. We define
(Definition 10.1) K-theory as the additivization of the theory ι that assigns to any Waldhausen
∞-category the maximal ∞-groupoid (Notation 1.7) contained therein. Since the theory ι is
representable by the particularly simple Waldhausen ∞-category NΓop of pointed finite sets
(Proposition 10.5), we obtain, for any additive theory φ, a description of the space of natural
transformations K φ as the value of φ on NΓop.

Following this, we briefly describe two key examples that exploit certain features of the
algebraic K-theory functor of which we are fond. The first of these (§ 11) lays the foundations
for the algebraic K-theory of E1-algebras in a variety of monoidal ∞-categories, and we prove
a straightforward localization theorem. Second (§ 12), we extend algebraic K-theory to the
context of spectral Deligne–Mumford stacks in the sense of Lurie, and we prove Thomason’s
‘proto-localization’ theorem in this context.

10. The universal property of Waldhausen K-theory

In this section, we define algberaic K-theory as the additivization of the functor that assigns
to any Waldhausen ∞-category its moduli space of objects. More precisely, the functor
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ι : Wald∞ Kan that assigns to any Waldhausen ∞-category its interior ∞-groupoid
(Notation 1.7) is a theory.

Definition 10.1. The algebraic K-theory functor

K : Wald∞ Kan

is defined as the additivization K := Dι of the interior functor ι : Wald∞ Kan. We denote
by K : Wald∞ Sp�0 its canonical connective delooping, as guaranteed by Corollary 7.7
and Proposition 7.11.

Unpacking this definition, we obtain a global universal property of the natural morphism
ι K.

Proposition 10.2. For any additive theory φ, the morphism ι K induces a natural
homotopy equivalence

Map(K,φ) ∼ Map(ι, φ).

We will prove in Corollaries 10.10 and 10.16 that our definition extends Waldhausen’s.

Example 10.3. For any ∞-topos E , one may define the A-theory space

A(E ) := K(E ω
∗ )

(Example 2.10). In light of Example 8.6, we have

A(E ) � K(Sp(E ω)).

For any Kan simplicial set X, if

E = Fun(X,Kan) � Kan/X ,

then it will follow from Corollary 10.18 that A(E ) agrees with Waldhausen’s A(X), where one
defines the latter via the category Rdf(X) of finitely dominated retractive spaces over X [73,
p. 389]. Then, of course, one has A(E ) � K(Fun(X,Spω)).

Representability of algebraic K-theory

Algebraic K-theory is controlled, as an additive theory, by the theory ι. It is therefore valuable
to study this functor as a theory. As a first step, we find that it is corepresentable.

Notation 10.4. For any finite set I, write I+ for the finite set I � {∞}. Denote by Γop

the ordinary category of pointed finite sets. Denote by Γop
† ⊂ Γop the subcategory comprising

monomorphisms J+ I+.

Proposition 10.5. For any Waldhausen ∞-category C , the inclusion

{∗} NΓop

induces an equivalence of ∞-categories

FunWald∞(NΓop,C ) ∼ C .

In particular, the functor ι : Wald∞ Kan is corepresented by the object NΓop.

Proof. Write NΓop
�1 for the full subcategory of NΓop spanned by the objects ∅ and ∗. Then

it follows from Joyal’s theorem [42, Proposition 1.2.12.9] that the inclusion {∗} NΓop
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induces an equivalence between C and the full subcategory Fun∗(NΓop
�1,C ) of Fun(NΓop

�1,C )
spanned by functors z : NΓop

�1 C such that z(∅) is a zero object. Now the result follows
from the observation that the ∞-category FunWald∞(NΓop,C ) can be identified as the full
subcategory of the ∞-category Fun(NΓop,C ) spanned by those functors Z : NΓop C such
that (1) Z(∅) is a zero object, and (2) the identity exhibits Z as a left Kan extension of
Z|(NΓop

�1)
along the inclusion NΓop

�1 NΓop.

In the language of Corollary 4.16, we find that W (Δ0) � NΓop. Note also that it follows that
the left derived functor I : D(Wald∞) Kan of ι is given by evaluation at W (Δ0) � NΓop.
From this, the Yoneda lemma combines with Proposition 10.2 to imply the following.

Corollary 10.6. For any additive theory φ : Wald∞ Kan∗, there is a homotopy
equivalence

Map(K,φ) � φ(NΓop),

natural in φ.

In particular, the theorem of Barratt–Priddy–Quillen [58] implies the following.

Corollary 10.7. The space of endomorphisms of the K-theory functor

K : Wald∞ Kan

is given by

End(K) � QS0.

The local universal property of algebraic K-theory

Though conceptually pleasant, the universal property of K-theory as an object of Add(Kan)
does not obviously provide an easy recognition principle for the K-theory of any partic-
ular Waldhausen ∞-category. For that, we note that ι is pre-additive, and we appeal to
Corollary 7.14 to obtain the following result.

Proposition 10.8. For any virtual Waldhausen ∞-category X , the K-theory space
K(X ) is homotopy equivalent to the loop space ΩI(S (X )), where I is the left derived functor
of ι.

We observe that for any sifted ∞-category and any Waldhausen cocartesian fibration
Y S, the space I(S (|Y |S)) may be computed as the underlying space of the subcategory
ιNΔop×SS (Y /S) of the ∞-category S (Y ) comprising the cocartesian edges with respect to
the cocartesian fibration S (Y /S) NΔop × S (Definition 3.6). This provides us with a
(singly delooped) model of the algebraic K-theory space K(|Y |S) as the underlying simplicial
set of an ∞-category.

Corollary 10.9. For any sifted ∞-category S and any Waldhausen cocartesian fibra-
tion Y S, the K-theory space K(|Y |S) is homotopy equivalent to the loop space
Ωι(NΔop×S)S (Y /S).

The total space of a left fibration is weakly equivalent to the homotopy colimit of the functor
that classifies it. So the K-theory space K(C ) of a Waldhausen ∞-category is given by

K(C ) � Ω(colim ιS∗(C )),
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where

S∗(C ) : NΔop Wald∞

classifies the Waldhausen cocartesian fibration S (C ) NΔop. Since this is precisely how
Waldhausen’sK-theory is defined [73, § 1.3], we obtain a comparison between our ∞-categorical
K-theory and Waldhausen K-theory.

Corollary 10.10. If (C, cofC) is an ordinary category with cofibrations in the sense
of Waldhausen [73, § 1.1], then the algebraic K-theory of the Waldhausen ∞-category
(NC,N(cofC)) is naturally equivalent to Waldhausen’s algebraic K-theory of (C, cofC).

The fact that the algebraic K-theory space K(X ) of a virtual Waldhausen ∞-category X
can be exhibited as the loop space of the underlying simplicial set of an ∞-category permits us
to find the following sufficient condition that a morphism of Waldhausen cocartesian fibrations
induce an equivalence on K-theory.

Corollary 10.11. For any sifted ∞-category S, a morphism (Y ′/S) (Y ′/S) of
Waldhausen cocartesian fibrations induces an equivalence

K(|Y ′|S) ∼ K(|Y |S)

if the following two conditions are satisfied.

(1) For any object X ∈ ιSY , the simplicial set

ιSY ′ ×ιSY (ιSY )/X

is weakly contractible.
(2) For any object Y ∈ ιSF1(Y /S), the simplicial set

ιSF1(Y ′/S) ×ιSF1(Y /S) ιSF1(Y /S)/Y

is weakly contractible.

Proof. We aim to show that the map ιNΔop×SS (Y ′/S) ιNΔop×SS (Y /S) is
a weak homotopy equivalence; it is enough to show that for any n ∈ Δ, the map
ιSFn(Y ′/S) ιSFn(Y /S) is a weak homotopy equivalence. Since F (Y ′/S) and F (Y /S)
are each category objects (Proposition 5.13), it is enough to prove this claim for n ∈ {0, 1}.
The result now follows from Joyal’s ∞-categorical version of Quillen’s Theorem A [42,
Theorem 4.1.3.1].

Using Proposition 7.15, we further deduce the following recognition principle for theK-theory
of a Waldhausen ∞-category.

Proposition 10.12. For any Waldhausen ∞-category C , and any functor

S∗(C ) : NΔop Wald∞

that classifies the Waldhausen cocartesian fibration S (C ) NΔop, theK-theory spaceK(C )
is the underlying space of the initial object of the ∞-category

Grp(Kan) ×Fun(NΔop,Kan) Fun(NΔop,Kan)ιS∗(C )/.

The algebraic K-theory of labeled Waldhausen ∞-category

We now study the K-theory of labeled Waldhausen ∞-categories.
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Definition 10.13. Suppose that (C , wC ) is a labeled Waldhausen ∞-category (Defini-
tion 9.2). Then we define K(C , wC ) as the K-theory space K(B(C , wC )).

Notation 10.14. If C is a Waldhausen ∞-category, and if wC ⊂ C is a labeling, then
define wNΔopS (C ) ⊂ S (C ) as the smallest subcategory containing all cocartesian edges and
all morphisms of the form (id, ψ) : (m, Y ) (m,X), where for any integer 0 � k � m, the
induced morphism Yk Xk is labeled.

In light of Lemma 9.12, we now immediately deduce the following.

Proposition 10.15. For any labeled Waldhausen ∞-category (C , wC ), the K-theory
space K(C , wC ) is weakly homotopy equivalent to the loopspace

Ω(wNΔopS (C )).

In other words, for any labeled Waldhausen ∞-category (C , wC ), the simplicial set
K(C , wC ) is weakly homotopy equivalent to the loopspace

ΩcolimwS∗(C ).

Since this again is precisely how Waldhausen’s K-theory is defined [73, § 1.3], we obtain a
further comparison between our ∞-categorical K-theory for labeled Waldhausen ∞-categories
and Waldhausen K-theory, analogous to Corollary 10.10.

Corollary 10.16. If (C, cofC,wC) is an ordinary category with cofibrations and weak
equivalences in the sense of Waldhausen [73, § 1.2], then the algebraic K-theory of the labeled
Waldhausen ∞-category (NC,N(cofC), wC) is naturally equivalent to Waldhausen’s algebraic
K-theory of (C, cofC,wC).

Using Corollary 10.11, we obtain the following.

Corollary 10.17. Suppose that (C , wC ) is a labeled Waldhausen ∞-category. Then the
comparison morphism γ(C ,wC ) (Notation 9.18) induces an equivalence

K(C , wC ) K(wC−1C )

of K-theory spaces if the following conditions are satisfied.

(1) For any object X of wC−1C , the simplicial set

wC ×ι(wC−1C ) ι(wC−1C )/X

is weakly contractible.
(2) For any object Y of F1(wC−1C ), the simplicial set

wF1(C ) ×ιF1(wC−1C ) ιF1(wC−1C )/Y

is weakly contractible.

Proposition 9.15, combined with Corollary 10.17, yields a further corollary.

Corollary 10.18. Suppose that C is a full subcategory of a model category M that is
stable under weak equivalences, then the Waldhausen K-theory of (C,C ∩ cofM,C ∩ wM) is
canonically equivalent to the K-theory of a relative nerve N(C,C ∩ wM), equipped with the
smallest pair structure containing the image of cofC (Example 2.12).
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Proof. The only nontrivial point is to check the conditions of Lemma 9.22 for the
labeled Waldhausen ∞-category (NC,N(C ∩ cofM), N(C ∩ wM)). Fix a functorial factor-
ization of any map of C into a trivial cofibration followed by a fibration. The functor
F : Fun(Δ1, NC) Fun(Δ1, NC) that carries any map to the trivial cofibration in its
factorization now does the job.

Cofinality and more fibration theorems

We may also use Corollary 10.17 in combination with Proposition 9.17 to specialize the second
Generic Fibration Theorem (Theorem 9.24). We first prove a cofinality result, which states that
strongly cofinal inclusions (Definition 9.16) of Waldhausen ∞-categories do not affect the K-
theory in high degrees. We are thankful to Peter Scholze for noticing an error that necessitated
the inclusion of this result. We follow closely the model of Staffeldt [65, Theorem 2.1], which
works in our setting with only superficial changes.

Theorem 10.19 (Cofinality). The map on K-theory induced by the inclusion i : C ′ C
of a strongly cofinal subcategory fits into a fiber sequence

K(C ′) −→ K(C ) −→ A,

where A is the abelian group K0(C )/K0(C ′), regarded as a discrete simplicial set.

Proof. It is convenient to describe the classifying space BA in the following manner. Denote
by BA the nerve of the following ordinary category. An object (m, (xi)) consists of an integer
m � 0 and a tuple (xi)i∈{1,...,m}, and a morphism

(m, (xi)) (n, (yj))

is a morphism φ : n m of Δ such that for any j ∈ {1, . . . , n},

yj =
∏

φ(j−1)�i−1�φ(j)−1

xi.

The projection BA NΔop clearly induces a left fibration, and the simplicial space
NΔop Kan that classifies it visibly satisfies the Segal condition and thus exhibits
(BA)1 ∼= A as the loop space ΩBA.

We appeal to the Generic Fibration Theorem 8.11. Consider the left fibration

p : ιN(Δop×Δop)S K (i) N(Δop × Δop)

and more particularly its composite q := pr2 ◦ p with the projection

pr2 : N(Δop × Δop) NΔop

(whose fiber over n ∈ Δ is ιN(Δop×Δop)SnK (i)). The Generic Fibration Theorem will imply
the cofinality theorem once we have furnished an equivalence ιN(Δop×Δop)S K (i) � BA over
NΔop.
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Observe that an object X of the ∞-category ιN(Δop×Δop)S K (i) consists of a diagram in C
of the form

0 0 · · · 0

X01 X11 · · · Xm1

...
...

...

X0n X1n · · · Xmn,

such that each Xk�/X(k−1)� ∈ C ′ and the maps

X(k−1)� ∪X(k−1)(�−1) Xk(�−1) Xk�

are all ingressive. Consequently, we may define a map

Φ: ιN(Δop×Δop)SK (i) BA

that carries an n-simplex

X(0) −→ · · · −→ X(n)

of ιN(Δop×Δop)SK (i) to the obvious n-simplex whose ith vertex is(
q(X(i)), ([X(i)0�/X(i)0(�−1)])�∈{1,...,q(X(i))}

)
of BA, where [Z] denotes the image of any object Z ∈ C in K0(C )/K0(C ′). This is easily seen
to be a map of simplicial sets over NΔop.

Our aim is now to show that Φ is a fiberwise equivalence. Note that the target satisfies the
Segal condition by construction, and the source satisfies it thanks to the additivity theorem.
Consequently, we are reduced to checking that the induced map

Φ1 : ιNΔopK (i) (BA)1 ∼= A

is a weak equivalence. This is the unique map determined by the condition that it carry an
object

X0 · · · Xn

of ιK (i) to the class [X0] = [X1] = · · · = [Xn] ∈ A.
One may check that Φ1 induces a bijection π0ιNΔopK (i) ∼ A exactly as in [65, p. 517].
Now fix an object Z ∈ C , and write ιNΔopK (i)Z ⊂ ιNΔopK (i) for the connected component

corresponding to the class [Z]. This is the full subcategory spanned by those objects

X0 · · · Xn

such that [X0] = [Z] in A. We may construct a functor

T : ιNΔopF (C ′) ιNΔopK (i)Z

that carries an object

Y0 · · · Yn

to an object

Y0 ∨ Z · · · Yn ∨ Z.
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In the other direction, choose an object W ∈ C such that Z ∨W ∈ C ′. Let S : ιNΔopK (i)Z
ιNΔopF (C ′) be the obvious functor that carries an object

X0 · · · Xn

to an object
X0 ∨W · · · Xn ∨W.

Now for any finite simplicial set K and any map g : K ιNΔopF (C ′), we construct a map

G : K × Δ1 ιNΔopF (C ′)

such that
G|(K × Δ{0}) ∼= g and G|(K × Δ{1}) ∼= S ◦ T ◦ g

in the following manner. We let the map K × Δ1 NΔop induced by G be the projection
onto K followed by the map K NΔop induced by g. The natural transformation from the
identity on C ′ to the functor X X ∨ Z ∨W now gives a map (K × Δ1) ×NΔop NM C ,
which by definition corresponds to the desired map G.

In almost exactly the same manner, for any map f : K ιNΔopK (i)Z , one may construct
a map

F : K × Δ1 ιNΔopK (i)Z

such that
F |(K × Δ{0}) ∼= f and F |(K × Δ{1}) ∼= T ◦ S ◦ f.

We therefore conclude that, for any simplicial set K, the functors T and S induce a bijection

[K, ιNΔopF (C ′)] ∼= [K, ιNΔopK (i)Z ],

whence S and T are homotopy inverses. Now since ιNΔopF (C ′) is contractible, it follows
that ιNΔopK (i)Z is as well. Thus ιNΔopK (i) is equivalent to the discrete simplicial set A, as
desired.

In the situation of Proposition 9.17, we find that the natural map

K((wCω)−1Cω) K(Dω)

is a homotopy monomorphism; that is, it induces an inclusion on π0 and an isomorphism on
πk for k � 1. We therefore obtain the following.

Proposition 10.20 (Special Fibration Theorem). Suppose that C is a compactly gener-
ated ∞-category that is additive (Definition 4.10). Suppose that L : C D is an accessible
localization, and that the inclusion D C preserves filtered colimits. Assume also that the
class of all L-equivalences of C is generated (as a strongly saturated class) by the L-equivalences
between compact objects. Then L induces a pullback square of spaces

K(Eω) K(Cω)

∗ K(Dω),

where Cω and Dω are equipped with the maximal pair structure, and Eω ⊂ Cω is the full
subcategory spanned by those objects X such that LX � 0.

A further specialization of this result is now possible. Suppose that C is a compactly
generated stable ∞-category. Then C = Ind(A) for some small ∞-category A, and so, since
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Ind(A) ⊂ P(A) is closed under filtered colimits and finite limits, it follows that filtered colimits
of C are left exact [42, Definition 7.3.4.2]. Suppose also that C is equipped with a t-structure
such that C�0 ⊂ C is stable under filtered colimits. Then the localization τ�1 : C C, being
the fiber of the natural transformation id τ�0, preserves filtered colimits as well. Now by
[46, Proposition 1.2.1.16], the class S of morphisms f such that τ�0(f) is an equivalence is
generated as a quasi-saturated class by the class {0 X | X ∈ C�1}. But now writing X as a
filtered colimit of compact objects and applying τ�1, we find that S is generated under filtered
colimits in Fun(Δ1, C) by the set {0 X | X ∈ Cω ∩ C�1}. Hence the τ�0-equivalences are
generated by τ�0-equivalences between compact objects, and we have the following.

Corollary 10.21. Suppose that C is a compactly generated stable ∞-category. Suppose
also that C is equipped with a t-structure such that C�0 ⊂ C is stable under filtered colimits.
Then the functor τ�0 induces a pullback square

K(Cω ∩ C�1) K(Cω)

∗ K(Cω ∩ C�0),

where the ∞-categories that appear are equipped with their maximal pair structure.

In particular, we can exploit the equivalence of [42, Proposition 5.5.7.8] to deduce the
following.

Corollary 10.22. Suppose that A is a small stable ∞-category that is equipped with a
t-structure. Then the functor τ�0 induces a pullback square

K(A�1) K(A)

∗ K(A�0),

where the ∞-categories that appear are equipped with their maximal pair structure.

Proof. If A is idempotent-complete, then we can appeal to Corollary 10.21 and [42,
Proposition 5.5.7.8] directly. If not, then we may embed A in its idempotent completion A′,
and we extend the t-structure using the condition that any summand of an object X ∈ A�0

(respectively, X ∈ A�1) must lie in A′
�0 (respectively, A′

�1). Now we appeal to the Cofinality
Theorem 10.19 to complete the proof.

11. Example: Algebraic K-theory of E1-algebras

To any associative ring in any suitable monoidal ∞-category, we can attach its ∞-category of
modules. We may then impose suitable finiteness hypotheses on these modules and extract a
K-theory spectrum. Here we identify some important examples of these K-theory spectra.

Notation 11.1. Suppose that A is a presentable, symmetric monoidal ∞-category [46,
Definition 2.0.0.7] with the property that the tensor product ⊗ : A × A A preserves
(small) colimits separately in each variable; assume also that A is additive (Definition 4.10).
We denote by Alg(A ) the ∞-category of E1-algebras in A , and we denote by Mod�(A ) the
∞-category LMod(A ) defined in [46, Definition 4.2.1.13]. We have the canonical presentable
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fibration

θ : Mod�(A ) Alg(A )

[46, Corollary 4.2.3.7], whose fiber over any E1-algebra Λ is the presentable ∞-category Mod�Λ
of left Λ-modules. Informally, we describe the objects of Mod�(A ) as pairs (Λ, E) consisting
of an E1-algebra Λ in A and a left Λ-module E.

Our aim now is to impose hypotheses on the objects of (Λ, E) and pair structures on the
resulting full subcategories to ensure that the restriction of θ is a Waldhausen cocartesian
fibration.

Definition 11.2. For any E1-algebra Λ in A , a left Λ-module E will be said to be perfect
if it satisfies the following two conditions.

(1) As an object of the ∞-category Mod�Λ of left Λ-modules, E is compact.
(2) The functor Mod�Λ A corepresented by E is exact.

Denote by Perf �(A ) ⊂ Mod�(A ) the full subcategory spanned by those pairs (Λ, E) in which
E is perfect.

These two conditions can be more efficiently expressed by saying that E is perfect just in
case the functor Mod�Λ A corepresented by E preserves all small colimits. Note that this
is not the same as complete compactness, that is, requiring that the functor Mod�Λ Kan
corepresented by E preserves all small colimits.

Example 11.3. When A is the nerve of the ordinary category of abelian groups, Alg(A )
is the category of associative rings, and Mod�(A ) is the nerve of the ordinary category of pairs
(Λ, E) consisting of an associative ring Λ and a left Λ-module E. An Λ-module E is perfect just
in case it is (1) finitely presented and (2) projective. Thus Perf �Λ is the nerve of the ordinary
category of finitely generated projective Λ-modules.

Example 11.4. When A is the ∞-category of connective spectra, Alg(A ) can be
identified with the ∞-category of connective E1-rings, and Mod�(A ) can be identified with the
∞-category of pairs (Λ, E) consisting of a connective E1-ring Λ and a connective left Λ-module
E. Since the functor Ω∞ : Sp�0 Kan is conservative [46, Corollary 5.1.3.9] and preserves
sifted colimits [46, Proposition 1.4.3.9], it follows using [46, Lemma 1.3.3.10] that the second
condition of Definition 11.2 amounts to the requirement that E be a projective object. Now
[46, Proposition 8.2.2.6 and Corollary 8.2.2.9] guarantees that the following are equivalent for
a left Λ-module E.

(1) The left Λ-module E is perfect.
(2) The left Λ-module E is projective, and π0E is finitely generated as a π0Λ-module.
(3) The π0Λ-module π0E is finitely generated, and for every π0A-module M and every

integer m � 1, the abelian group Extm(E,M) vanishes.
(4) There exists a finitely generated free Λ-module F such that E is a retract of F .

Example 11.5. The situation for modules over simplicial associative rings is nearly
identical. When A is the ∞-category of simplicial abelian groups, Alg(A ) can be identified
with the ∞-category of simplicial associative rings, and Mod�(A ) can be identified with the
∞-category of pairs (Λ, E) consisting of a simplicial associative ring Λ and a left Λ-module E.
Since the forgetful functor A Kan is conservative and preserves sifted colimits, it follows
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that the second condition of Definition 11.2 amounts to the requirement that E be a projective
object. One may show that the following are equivalent for a left Λ-module E.

(1) The left Λ-module E is perfect.
(2) The left Λ-module E is projective, and π0E is finitely generated as a π0A-module.
(3) The π0Λ-module π0E is finitely generated, and for every π0Λ-module M and every

integer m � 1, the abelian group Extm(E,M) vanishes.
(4) There exists a finitely generated free Λ-module F such that E is a retract of F .

Example 11.6. When A is the ∞-category of all spectra, Alg(A ) is the ∞-category of
E1-rings, and Mod�(A ) is the ∞-category of pairs (Λ, E) consisting of an E1-ring Λ and a left
Λ-module E. Suppose that Λ is an E1-ring. The second condition of Definition 11.2 is vacuous
since A is stable. Hence by [46, Proposition 8.2.5.4], the following are equivalent for a left
Λ-module E.

(1) The left Λ-module E is perfect.
(2) The left Λ-module E is contained in the smallest stable subcategory of the ∞-category

Mod�Λ of left Λ-modules that contains Λ itself and is closed under retracts.
(3) The left Λ-module E is compact as an object of Mod�Λ.
(4) There exists a right Λ-module E∨ such that the functor Mod�Λ Kan informally

written as Ω∞(E∨ ⊗Λ −) is corepresented by E.

Now we wish to endow Perf �(A ) with a suitable pair structure. In general, this may not be
possible, but we can isolate those situations in which it is possible.

Definition 11.7. Denote by S the class of morphisms (Λ′, E′) (Λ, E) of the ∞-category
Perf �(A ) with the following two properties.

(1) The morphism Λ′ Λ of Alg(A ) is an equivalence.
(2) Any pushout diagram

(Λ′, E′) (Λ, E)

(Λ′, 0) (Λ, E′′)

in Mod�(A ) in which 0 ∈ Mod�Λ′ is a zero object is also a pullback diagram, and the
Λ-module E′′ is perfect.

We shall say that A is admissible if the class S is stable under pushout in Perf �(A ) and
composition. (Note that pushouts in Perf �(A ) are.)

Example 11.8. When A is the nerve of the category of abelian groups, S is the class of
morphisms (Λ′, E′) (Λ, E) such that Λ′ Λ is an isomorphism, and the induced map
of Λ′-modules E′ E is an admissible monomorphism. It is a familiar fact that these are
closed under pushout and composition, so that the nerve of the category of abelian groups is
admissible.

Example 11.9. When A is the ∞-category of connective spectra or the ∞-category of
simplicial abelian groups, S is the class of morphisms (Λ′, E′) (Λ, E) such that Λ′ Λ is
an equivalence, and the induced homomorphism

Ext0(E,M) Ext0(E′,M)
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is a surjection for every π0Λ′-module M . This is visibly closed under composition. To see that
these are closed under pushouts, let us proceed in two steps. First, for any morphism Λ Λ′

of Alg(A ), the functor informally described as E E ⊗Λ Λ′ clearly carries morphisms of
Perf �Λ that lie in S to morphisms of Perf �Λ′ that lie in S. Now, for a fixed E1-algebra Λ in A ,
suppose

E′ E

F ′ F

a pushout square in Perf �Λ in which E′ E lies in the class S, and suppose M a π0Λ-
module. For any morphism F ′ M , one may precompose to obtain a morphism E′ M .
Our criterion on the morphism E′ E now guarantees that there is a commutative square

E′ E

F ′ M

up to homotopy. Now the universal property of the pushout yields a morphism F M that
extends the morphism F ′ M , up to homotopy. Thus both connective spectra and simplicial
abelian groups are admissible ∞-categories.

Example 11.10. When A is the ∞-category of all spectra, every morphism is contained
in the class S. Hence the ∞-category of all spectra is an admissible ∞-category.

Notation 11.11. If A is admissible, denote by Perf �†(A ) the subcategory of Perf �(A )
whose morphisms are those that lie in the class S. With this pair structure, the ∞-category
Perf �(A ) is a Waldhausen ∞-category.

Lemma 11.12. If A is admissible, then the functor Perf �(A ) Alg(A ) is a Waldhausen
cocartesian fibration.

Proof. It is clear that the fibers of this cocartesian fibration are Waldhausen ∞-categories.
We claim that for any morphism Λ′ Λ of E1-algebras, the corresponding functor

Mod�Λ′ Mod�Λ

given informally by the assignment E′ Λ ⊗Λ′ E′ carries perfect modules to perfect modules.
Indeed, it is enough to show that the right adjoint functor

Mod�Λ Mod�Λ′

preserves small colimits. This is immediate, since colimits are computed in the underlying
∞-category A [46, Proposition 3.2.3.1].

The induced functor Perf �Λ′ Perf �Λ carries an ingressive morphism F ′ E′ to the
morphism of left Λ-modules F ′ ⊗Λ′ Λ E′ ⊗Λ′ Λ, which fits into a pushout square

(Λ′, F ′) (Λ′, E′)

(Λ, F ′ ⊗Λ′ Λ) (Λ, E′ ⊗Λ′ Λ)

in Perf �(A ); hence F ′ ⊗Λ′ Λ E′ ⊗Λ′ Λ is ingressive.
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Definition 11.13. The algebraic K-theory of E1-rings, which we will abusively denote

K : Alg(A ) Sp�0,

is the composite functor K ◦ P , where P : Alg(A ) Wald∞ is the functor classified by the
Waldhausen cocartesian fibration Perf �(A ) Alg(A ).

Construction 11.14. The preceding definition ensures that K is well-defined up to a
contractible ambiguity. To obtain an explicit model of K, we proceed in the following manner.
Apply S to Perf �(A ) Alg(A ) in order to obtain a Waldhausen cocartesian fibration
S (Perf �(A )) NΔop × Alg(A ). Now consider the subcategory

ι(NΔop×Alg(A ))S (Perf �(A )) ⊂ S (Perf �(A ))

consisting of cocartesian edges. The composite

ι(NΔop×Alg(A ))S Perf �(A ) NΔop × Alg(A ) Alg(A )

is now a left fibration with a contractible space of sections given by

Alg(A ) ∼= {0} × Alg(A ) ∼ ιS0Perf �(A ) ι(NΔop×Alg(A ))S Perf �(A ).

It is clear by construction that this left fibration classifies a functor

L : Alg(A ) Kan

such that K � Ω ◦ L.

Let us now concentrate on the case in which A is the ∞-category of spectra.

Example 11.15. Combining Examples 8.6 and 10.3, and the identification of Fun(X,Sp)
with Mod�(Σ∞

+ X), we obtain the well-known equivalence

A(X) � K(Σ∞
+ X).

Proposition 11.16. Suppose that Λ is an E1 ring spectrum, and that S ⊂ π∗Λ is a
collection of homogeneous elements satisfying the left Ore condition [46, Definition 8.2.4.1].
Then the morphism Λ Λ[S−1] of Alg(Sp) induces a fiber sequence of connective spectra

K(Nil�,ω(Λ,S)) K(Λ) K(Λ[S−1]),

where Nil�,ω(Λ,S) ⊂ Perf �Λ is the full subcategory spanned by those perfect left Λ-modules that
are S-nilpotent.

Proof. Consider the t-structure

(Nil�(Λ,S),Loc�(Λ,S)),

where Nil�(Λ,S) ⊂ Mod�Λ is the full subcategory spanned by the S-nilpotent left Λ-modules,
and Loc�(Λ,S) ⊂ Mod�A is the full subcategory spanned by the S-local left Λ-modules. We claim
that this t-structure restricts to one on Perf �Λ. To this end, we note that Mod�Λ is compactly
generated, and Loc�(Λ,S) ⊂ Mod�Λ is in fact stable under all colimits [46, Remark 8.2.4.16].
Now we apply Corollary 10.21, and our description of the cofiber term now follows from the
discussion preceding [46, Remark 8.2.4.26].

Such a result is surely well known among experts; see, for example, [15, Propositions 1.4
and 1.5].
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Example 11.17. For a prime p (suppressed from the notation) and an integer n � 0, the
truncated Brown–Peterson spectra BP〈n〉, with coefficient ring

π∗BP〈n〉 ∼= Z(p)[v1, v2, . . . , vn]

admit compatible E1 structures [39, p. 506]. We may consider the multiplicative system
S ⊂ π∗BP〈n〉 of homogeneous elements generated by vn. Then BP〈n〉[v−1

n ] is an E1-algebra
equivalent to the Johnson–Wilson spectrum E(n). The exact sequence above yields a fiber
sequence of connective spectra

K(Nil�,ω(BP〈n〉,S)) K(BP〈n〉) K(E(n)).

The content of a well-known conjecture of Ausoni–Rognes [1, (0.2)] identifies the fiber
term (possibly after p-adic completion) as K(BP〈n− 1〉). In light of results such as [46,
Lemma 8.4.2.13], such a result will follow from a suitable form of a Dévissage Theorem [59,
Theorem 4]; we hope to return to such a result in later work (cf. [67, 1.11.1]).

Of course, when n = 1, such a Dévissage Theorem has already been provided thanks to
beautiful work of Andrew Blumberg and Mike Mandell [15]. They prove that the K-theory
of the ∞-category of perfect, β-nilpotent modules over the p-local Adams summand can be
identified with the K-theory of Z(p). Consequently, they provide a fiber sequence

K(Z(p)) K(�) K(L).

12. Example: Algebraic K-theory of derived stacks

Here we introduce the algebraic K-theory of spectral Deligne–Mumford stacks in the sense
of Lurie, and we prove an easy localization theorem (analogous to what Thomason called the
‘Proto-localization Theorem’) in this context.

We appeal here to the theory of nonconnective spectral Deligne–Mumford stacks and their
module theory as exposed in [44, 45]. Much of what we will say can probably be done in
other contexts of derived algebraic geometry as well, such as [71, 72]; we have opted to use
Lurie’s approach only because that is the one with which we are least unfamiliar. We begin
by summarizing some general facts about quasicoherent modules over nonconnective spectral
Deligne–Mumford stacks. Since Lurie at times concentrates on connective Deligne–Mumford
stacks, we will at some points comment on how to extend the relevant definitions and results
to the nonconnective case.

Notation 12.1. Recall from [45, § 2.3, Proposition 2.5.1] that the functor

Sch(G nM
ét )op Stknc

is a cocartesian fibration, and its fiber over a nonconnective spectral Deligne–Mumford stack
(E ,O) is the stable, presentable ∞-category QCoh(E ,O) of quasicoherent O-modules.

For any nonconnective Deligne–Mumford stack (E ,O), the following are equivalent for an
O-module M .

(1) The O-module M is quasicoherent.
(2) For any morphism U V of E such that (X/U ,O|U ) and (X/V ,O|V ) are affine, the

natural morphism M (V ) ⊗O(V ) O(U) M (U) is an equivalence.
(3) The following conditions obtain.

(a) For every integer n, the homotopy sheaf πnM is a quasicoherent module on the
underlying ordinary Deligne–Mumford stack of (E ,O)

(b) The object Ω∞M is hypercomplete in the ∞-topos E .
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Using ideas from [45, § 2.7], we shall now make sense of the notion of quasicoherent module
over any functor CAlg Kan(κ1). As suggested in [45, Remark 2.7.9], write

QCoh : Fun(CAlg,Kan(κ1))op Cat∞(κ1)

for the right Kan extension of the functor CAlg Cat∞(κ1) that classifies the cocartesian
fibration Mod CAlg. Then for any functor X : CAlg Kan(κ1), we obtain the ∞-
category of quasicoherent modules QCoh(X) on the functor X. Many of the results of [45,
§ 2.7] hold in this context with precisely the same proofs, including the following brace of
results.

Proposition 12.2 (cf. [45, Remark 2.7.17]). For any functor X : CAlg Kan(κ1), the
∞-category QCoh(X) is stable.

Proposition 12.3 (cf. [45, Remark 2.7.18]). Suppose that (E ,O) is a nonconnective
Deligne–Mumford stack representing a functor X : CAlg Kan(κ1). Then there is a
canonical equivalence of ∞-categories

QCoh(E ,O) � QCoh(X).

Definition 12.4. Suppose that X : CAlg Kan(κ1) is a functor. We say that a
quasicoherent module M on X is perfect if for any E∞ ring A and any point x ∈ X(A), the A-
module M (x) is perfect (Definition 11.2). Write Perf(X) ⊂ QCoh(X) for the full subcategory
spanned by the perfect modules.

In particular, we can now use Proposition 12.3 to specialize the notion of perfect module to
the setting of nonconnective Deligne–Mumford stacks.

Notation 12.5. Denote by Perf ⊂ Sch(G M
ét )op the full subcategory of those objects

(E ,O,M ) such that M is perfect.

12.6. For any functor X : CAlg Kan(κ1), the ∞-category QCoh(X) admits a
symmetric monoidal structure [45, Notation 2.7.27]. Moreover, this is functorial, yielding a
functor

QCoh⊗ : Fun(CAlg,Kan(κ1))op CAlg(Cat∞(κ1)).

Proposition 12.7 (cf. [45, Proposition 2.7.28]). For any functor X : CAlg Kan(κ1)
a quasicoherent module M on X is perfect if and only if it is a dualizable object of QCoh(X).

Since the pullback functors are symmetric monoidal, they preserve dualizable objects. This
proves the following.

Corollary 12.8. The functor Perf Stknc is a cocartesian fibration.

We endow Perf with a pair structure by Perf † := Perf ×Stknc ιStknc, so that the fibers are
equipped with the maximal pair structure.

Proposition 12.9. The functor Perf Stknc is a Waldhausen cocartesian fibration.

In fact, the fiber over a nonconnective Deligne–Mumford stack (E ,O) is a stable ∞-category
Perf(E ,O).
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Definition 12.10. We now define the algebraic K-theory of nonconnective Deligne–
Mumford stacks as a functor that we abusively denote

K : Stknc Sp�0

given by the composite K ◦ P , where P is the functor Stknc,op Wald∞ classified by the
Waldhausen cocartesian fibration Perf Stknc.

Lemma 12.11. For any open immersion of quasicompact nonconnective spectral Deligne–
Mumford stacks j : U X , the induced functor

j� : QCoh(U ) QCoh(X )

is fully faithful.

Proof. When X is of the form SpecétA, this is proved in [45, Corollary 2.4.6]. For any
map x : SpecétA X , we have the open immersion

U ×X SpecétA SpecétA,

which induces a fully faithful functor

QCoh(U ×X SpecétA) QCoh(SpecétA).

Now letting A vary and applying [45, Proposition 2.4.5(3)], we obtain a functor

CAlgX / O(Cat∞(κ1))

whose values are all fully faithful functors. Thanks to Proposition 12.3, the limit of this functor
is then equivalent to a functor

α : lim
A∈CAlgX /

QCoh(U ×X SpecétA) QCoh(X ),

which is thus fully faithful. We aim to identify this functor with j�.
Since each of the ∞-categories QCoh(U ×X SpecétA) can itself be described as the limit

of the ∞-categories ModB for B ∈ CAlg
U ×X SpecétA/, it follows that the source of α can

be expressed as the limit of the ∞-categories ModB over the ∞-category C of squares of
nonconnective Deligne–Mumford stacks of the form

SpecétB SpecétA

U X .
j

Now there is a forgetful functor g : C CAlgU / that carries an object as above to the

morphism SpecétB U . This is the functor that induces the canonical functor

lim
A∈CAlgX /

QCoh(U ×X SpecétA) QCoh(U );

hence it suffices to show that g is right cofinal. This now follows from the fact that the functor
g admits a right adjoint CAlgU / C, which carries a morphism x : SpecétC U to the
object

SpecétC SpecétC

U X .

x j ◦ x

j

The proof is complete.



344 CLARK BARWICK

Notation 12.12. For any open immersion j : U X of quasicompact nonconnective
spectral Deligne–Mumford stacks, let us write Perf(X ,X \ U ) for the full subcategory of
Perf(X ) spanned by those perfect modules M on X such that j�M � 0. Write

K(X ,X \ U ) := K(Perf(X ,X \ U )).

Proposition 12.13 (‘Proto-localization’, cf. [67, Theorem 5.1]). For any quasicompact
open immersion j : U X of quasicompact, quasiseparated spectral algebraic spaces [45,
Definition 1.3.1, 41, Definition 1.3.1], the functor j� : Perf(X ) Perf(U ) induces a fiber
sequence of connective spectra

K(X ,X \ U ) K(X ) K(U ).

Proof. We wish to employ the Special Fibration Theorem 10.20. We note that by [41,
Corollary 1.5.12], the ∞-category QCoh(X ) is compactly generated, and one has Perf(X ) =
QCoh(X )ω; the analogous claim holds for U . It thus remains to show that j�-equivalences
of QCoh(X ), that is, the class of morphisms of QCoh(X ) whose restriction to U is an
equivalence, is generated (as a strongly saturated class) by j�-equivalences between compact
objects. Since QCoh(X ) is stable, we find that it suffices to show that the full subcategory
QCoh(X ,X − U ) of QCoh(X ) spanned by the j�-acyclics, that is, those quasicoherent
modules M such that j�M � 0, is generated by compact objects of QCoh(X ). This will follow
from [41, Theorem 1.5.10] once we know that the quasicoherent stack ΦX (QCoh(X ,X − U ))
of [40, Constr. 8.5] is locally compactly generated.

So, suppose that R is a connective E∞ ring spectrum, and that η ∈ X (R). We wish to show
that the ∞-category

ΦX (QCoh(X ,X − U ))(η) � ModR ⊗QCoh(X ) QCoh(X ,X \ U )

is compactly generated. It is easy to see that this ∞-category can be identified with the full
subcategory of ModR spanned by those modules M that are carried to zero by the functor

ModR � ModR ⊗QCoh(X ) QCoh(X ) ModR ⊗QCoh(X ) QCoh(U ).

By a theorem of Ben Zvi, Francis, and Nadler [40, Corollary 8.22], this functor may be identified
with the restriction functor along the open embedding

j′ : U ′ := SpecétR×X U SpecétR.

The open immersion j′ is determined by a quasicompact open U ⊂ SpecZA, which consists of
those prime ideals of π0A that do not contain a finitely generated ideal I. The proof is now
completed by [45, Propositions 4.1.15 and 5.1.3].

When j is the open complement of a closed immersion i : Z X , one may ask whether
K(X \ U ) can be identified with K(Z ). In general, the answer is no, but in special situations,
such an identification is possible. Classically, this is the result of a Dévissage Theorem [59,
Theorem 4]; we hope to return to a higher categorical analogue of such a result in later work
(cf. [67, 1.11.1])
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of André Joyal and Jacob Lurie on quasicategories, the results here would not admit such
simple statements or such straightforward proofs. I thank Jacob also for generously answering
a number of questions during the course of the work represented here.

My conversations with Andrew Blumberg over the past few years have been consistently
enlightening, and I suspect that a number of the results here amount to elaborations of insights
he had long ago. I have also benefitted from conversations with Dan Kan.



K-THEORY OF HIGHER CATEGORIES 345

In the spring of 2012, I gave a course at MIT on the subject of this paper. During that time,
several sharp-eyed students spotted errors, especially Rune Haugseng, Luis Alexandre Pereira,
and Guozhen Wang. I owe them my thanks for their scrupulousness.

John Rognes has declined to be listed as a coauthor, but his influence on this work has been
tremendous. He was present at the conception of the main result, and this paper is teeming
with insights I inherited from him.

I thank Peter Scholze for noticing an error that led to the inclusion of the Cofinality
Theorem 10.19.

Advice from the first referee and from Mike Hopkins has led to great improvements in the
exposition of this paper. The second referee expended huge effort to provide me with a huge,
detailed list of little errors and omissions, and I thank him or her most heartily.

On a more personal note, I thank Alexandra Sear for her unfailing patience and support
during this paper’s ridiculously protracted writing process.

References

1. C. Ausoni and J. Rognes, ‘Algebraic K-theory of topological K-theory’, Acta Math. 188 (2002) 1–39.
2. C. Barwick, ‘Multiplicative structures on algebraic K-theory’, Doc. Math. 20 (2015) 859–878.
3. C. Barwick, ‘On exact ∞-categories and the theorem of the heart’, Preprint, 2012, arXiv:1212.5232.
4. C. Barwick and D. M. Kan, ‘Relative categories: another model for the homotopy theory of homotopy

theories’, Indag. Math. 23 (2012) 42–68.
5. C. Barwick and D. M. Kan, ‘From partial model categories to ∞-categories’, Preprint from the web page

of the author, 2013.
6. C. Barwick and C. Schommer-Pries, ‘On the unicity of the homotopy theory of higher categories’,

Preprint, 2011, arXiv:1112.0040.
7. J. E. Bergner, ‘A characterization of fibrant Segal categories’, Proc. Amer. Math. Soc. 135 (2007) 4031–

4037 (electronic).
8. J. E. Bergner, ‘A model category structure on the category of simplicial categories’, Trans. Amer. Math.

Soc. 359 (2007) 2043–2058.
9. J. E. Bergner, ‘Three models for the homotopy theory of homotopy theories’, Topology 46 (2007) 397–436.

10. J. E. Bergner, ‘Complete Segal spaces arising from simplicial categories’, Trans. Amer. Math. Soc. 361
(2009) 525–546.

11. J. E. Bergner, ‘A survey of (∞, 1)-categories’, Towards higher categories (eds J. Baez and J. P. May),
IMA Volumes in Mathematics and Its Applications 152 (Springer, New York, 2010) 69–83.

12. P. Berthelot, A. Grothendieck and L. Illusie, ‘Théorie des intersections et théorème de Riemann-
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