A NOTE ON STABLE RECOLLEMENTS

CLARK BARWICK AND SAUL GLASMAN

ABSTRACT. In this short étude, we observe that the full structure of a recollement on a stable ∞ -category can be reconstructed from minimal data: that of a reflective and coreflective full subcategory. The situation has more symmetry than one would expect at a glance. We end with a practical lemma on gluing equivalences along a recollement.

Let **X** be a stable ∞ -category and let **U** be a full subcategory of **X** that is stable under equivalences and is both reflective and coreflective – that is, its inclusion admits both a left and a right adjoint. We'll denote the inclusion functor $\mathbf{U} \subseteq \mathbf{X}$ by j_* and its two adjoints by j^* and j^{\times} , so that we have a chain of adjunctions

 $j^* \dashv j_* \dashv j^{\times}.$

Let $\mathbf{Z}^{\wedge} \subseteq \mathbf{X}$ denote the right orthogonal complement of \mathbf{U} – that is, the full subcategory of \mathbf{X} spanned by those objects M such that $\operatorname{Map}_{\mathbf{X}}(N, M) = *$ for every $N \in \mathbf{U}$. Dually, let $\mathbf{Z}^{\vee} \subseteq \mathbf{X}$ denote the left orthogonal complement of \mathbf{U} – that is, the full subcategory of \mathbf{X} spanned by those objects M such that $\operatorname{Map}_{\mathbf{X}}(M, N) = *$ for every $N \in \mathbf{U}$. The inclusions of $\mathbf{Z}^{\wedge} \subseteq \mathbf{X}$ and $\mathbf{Z}^{\vee} \subseteq \mathbf{X}$ will be denoted i_{\wedge} and i_{\vee} respectively.

Warning 1. Our notation is chosen to evoke a geometric idea, but the role of open and closed is reversed from recollements that arise in the theory of constructible sheaves.

In our thinking, we imagine **X** as the ∞ -category $\mathbf{D}_{qcoh}(X)$ of quasicoherent complexes over a suitably nice scheme X, which is decomposed as an open subscheme U together with a closed complement Z. In this analogy, we think of **U** as the ∞ -category of quasicoherent modules on U, embedded via the (derived) pushforward. The subcategory \mathbf{Z}^{\vee} is then the ∞ -category of quasicoherent complexes on X that are set-theoretically supported on Z, and the subcategory \mathbf{Z}^{\wedge} is the ∞ -category of quasicoherent complexes on X that are complete along Z.

Lemma 2. In this situation, \mathbf{Z}^{\wedge} is reflective and \mathbf{Z}^{\vee} is coreflective.

Proof. Denote by κ the cofiber of the counit $j_*j^{\times} \to \mathrm{id}_{\mathbf{X}}$. Then $\kappa(\mathbf{X}) \subseteq \mathbf{Z}^{\wedge}$, so we factor

$$\kappa = i_{\wedge} i^{\wedge}$$

with $i^{\wedge} \in \text{Fun}(\mathbf{X}, \mathbf{Z}^{\wedge})$. We claim that i^{\wedge} is left adjoint to i_{\wedge} . Indeed, for any $M \in \mathbf{X}$ and $N \in \mathbf{Z}^{\wedge}$, we have a cofiber sequence of spectra

$$F_{\mathbf{Z}^{\wedge}}(i^{\wedge}M,N) \simeq F_{\mathbf{X}}(i_{\wedge}i^{\wedge}M,i_{\wedge}N) \to F_{\mathbf{X}}(M,i_{\wedge}N) \to F_{\mathbf{X}}(j_{*}j^{\times}M,i_{\wedge}N) \simeq 0.$$

The proof that \mathbf{Z}^{\vee} is coreflective is dual, and we'll denote the right adjoint of i_{\vee} by i^{\vee} .

Lemma 3. In the sense of [2, Df. 3.4],

$$\mathfrak{S}(\{0\}) = \mathbf{Z}^{\wedge}, \ \mathfrak{S}(\{1\}) = \mathbf{U}, \ \mathfrak{S}(\Delta^1) = \mathbf{X}, \ \mathfrak{S}(\emptyset) = 0$$

is a stratification of **X** along Δ^1 .

Proof. After unravelling the notation, one sees that this amounts to the following two claims.

- First, $i^{\wedge}j_*j^* = 0$. This point is obvious.
- The usual fracture square

is cartesian. To see this, take fibers of the horizontal maps to get the map

$$j_*j^{\times} \to j_*j^*j_*j^{\times}$$

which is an equivalence since j^*j_* is homotopic to the identity.

Remark 4. Conversely, if \mathfrak{S} is a stratification of \mathbf{X} along Δ^1 , then $\mathfrak{S}(\{0\})$ is coreflective as well as reflective. Indeed, the fracture square together with the argument of Lm. 2 shows that the fiber of $\mathrm{id} \to \mathcal{L}_1$ defines a right adjoint to the inclusion of $\mathfrak{S}(\{0\})$.

Lemma 5. In the sense of [3, Df. A.8.1], \mathbf{X} is a recollement of \mathbf{U} and \mathbf{Z}^{\wedge} .

Proof. The only claim that isn't obvious is point e): that j^* and i^{\wedge} are jointly conservative. But since they are exact functors of stable ∞ -categories, this is equivalent to the claim that if j^*M and $i^{\wedge}M$ are both zero, then M is zero, and this is clear from the fracture square.

Remark 6. Again there's a converse; indeed, if a stable ∞ -category **X** is a recollement of **U** and **Z**, then **U** is coreflective [3, Rk. A.8.5]. We thus conclude that the following three pieces of data are essentially equivalent:

- reflective and coreflective subcategories of **X**,
- stratifications \mathfrak{S} along Δ^1 in the sense of [2, Df. 3.4] with $\mathfrak{S}(\Delta^1) = \mathbf{X}$, and
- recollements of **X** in the sense of [3, Df. A.8.1].

As we have described this structure, there's a surprising intrinsic symmetry that traditional depictions of recollements don't really bring out:

Proposition 7. The functors $i^{\wedge}i_{\vee}$ and $i^{\vee}i_{\wedge}$ define inverse equivalences of categories between \mathbf{Z}^{\wedge} and \mathbf{Z}^{\vee} .

This proposition is an extreme abstraction of prior results, such as those of [1], giving equivalences between categories of complete objects and categories of torsion objects.

Proof. Let's show that the counit map

$$\eta: i^{\wedge} i_{\vee} i^{\vee} i_{\wedge} \to \mathrm{id}$$

is an equivalence; the other side will of course be dual. The counit factors as

$$i^{\wedge}i_{\vee}i^{\vee}i_{\wedge} \xrightarrow{\eta_0} i^{\wedge}i_{\wedge} \xrightarrow{\eta_1} \mathrm{id},$$

but of course η_1 is an equivalence since i_{\wedge} is fully faithful. But η_0 fits into a cofiber sequence

$$i^{\wedge}i_{\vee}i^{\vee}i_{\wedge} \xrightarrow{\eta_0} i^{\wedge}i_{\wedge} \to i^{\wedge}j_*j^*i_{\wedge},$$

and the final term is zero since $i^{\wedge}j_* = 0$.

Finally, we give a useful criterion for when a morphism of recollements gives rise to an equivalence, the proof of which is unfortunately a little more technical than the foregoing.

Proposition 8. Let X and X' be stable ∞ -categories with reflective, coreflective subcategories $U \subseteq X$ and $U' \subseteq X'$ and ancillary subcategories

$$\mathbf{Z}^{ee} \subseteq \mathbf{X}, \ \mathbf{Z}^{\wedge} \subseteq \mathbf{X}, \ (\mathbf{Z}')^{ee} \subseteq \mathbf{X}', \ (\mathbf{Z}')^{\wedge} \subseteq \mathbf{X}'$$

Suppose $F: \mathbf{X} \to \mathbf{Y}$ is a functor with

$$F(\mathbf{U}) \subseteq \mathbf{U}', \ F(\mathbf{Z}^{\wedge}) \subseteq (\mathbf{Z}')^{\wedge}, \ F(\mathbf{Z}^{\vee}) \subseteq (\mathbf{Z}')^{\vee}.$$

Suppose moreover that $F|_{\mathbf{U}}$ and at least one of $F|_{\mathbf{Z}^{\wedge}}$ and $F|_{\mathbf{Z}^{\vee}}$ is an equivalence. Then F is an equivalence.

Proof. Let's suppose that $F|_{\mathbf{Z}^{\wedge}}$ is an equivalence; once again, the other case is dual.

Lemma 9. Set

$$\mathbf{Z}^{\wedge} \downarrow_{\mathbf{X}} \mathbf{U} = \mathbf{Z}^{\wedge} \times_{\mathbf{X}} \operatorname{Fun}(\Delta^{1}, \mathbf{X}) \times_{\mathbf{X}} \mathbf{U}$$

be the ∞ -category of morphisms in \mathbf{X} whose source is in \mathbf{Z}^{\wedge} and whose target is in \mathbf{U} ; we claim that the functor

 $k \colon \mathbf{Z}^{\wedge} \downarrow_{\mathbf{X}} \mathbf{U} \to \mathbf{X}$

that maps a morphism to its cofiber is an equivalence.

Proof. The functor k is really constructed as a zigzag

$$\mathbf{Z}^{\wedge}\downarrow_{\mathbf{X}}\mathbf{U}\xleftarrow{\sim}\mathbf{E}\overset{t}{\longrightarrow}\mathbf{X}$$

where **E** is the ∞ -category of cofiber sequences $M \to N \to P$ in **X** for which $(M \to N) \in \mathbf{Z}^{\wedge} \downarrow_{\mathbf{X}} \mathbf{U}$. The leftward arrow is a trivial Kan fibration. We'd like to prove that the right hand arrow, t, is also a trivial Kan fibration. It's clearly a cartesian fibration, and so it suffices to show that each fiber of t is a contractible Kan complex.

The fiber of t over P is the ∞ -category of cofiber sequences

$$M \to N \to P$$

with $M \in \mathbf{Z}^{\wedge}$ and $N \in \mathbf{U}$. Since fibers are unique, this is equivalent to the ∞ -category of morphisms $\phi: N \to P$ with $N \in \mathbf{U}$ and $\operatorname{fib}(\phi) \in \mathbf{Z}^{\wedge}$. But $\operatorname{fib}(\phi) \in \mathbf{Z}^{\wedge}$ if and only if ϕ exhibits N as the U-colocalization of P, and such a ϕ exists uniquely.

Corollary 10. The ∞ -category **X** is equivalent to the ∞ -category of sections of the map

$$p: \mathbf{C} \to \Delta^1$$

where $\mathbf{C} \subseteq \mathbf{X} \times \Delta^1$ is the full subcategory spanned by objects of $\mathbf{Z}^{\wedge} \times \{0\}$ or $\mathbf{U} \times \{1\}$.

Observe here that p is a cocartesian fibration, and the cocartesian edges correspond to morphisms $f: M \to N$ in **X** which exhibit N as the **U** localization of M.

Now we finish the proof of Pr. 8. In fact, $F: \mathbf{X} \to \mathbf{X}'$ induces a functor over Δ^1 $\overline{F}: \mathbf{C} \to \mathbf{C}'$,

where $\mathbf{C}' \subseteq \mathbf{X}' \times \Delta^1$ is the full subcategory spanned by objects of $(\mathbf{Z}')^{\wedge} \times \{0\}$ or $\mathbf{U}' \times \{1\}$. By hypothesis, \overline{F} induces equivalences on the fibers over $\{0\}$ and $\{1\}$. If \overline{F} moreover preserves cocartesian edges, we'll be able to conclude that \overline{F} is an equivalence of ∞ -categories, inducing an equivalence on ∞ -categories of sections, whence the result.

The claim that \overline{F} preserves cocartesian edges is equivalent to the claim that the naturally lax-commutative square

$$\begin{array}{c} \mathbf{Z}^{\wedge} \xrightarrow{j^{*}i_{\wedge}} \mathbf{U} \\ F|_{\mathbf{Z}^{\wedge}} \downarrow & \downarrow F|_{\mathbf{U}} \\ (\mathbf{Z}')^{\wedge}_{(\overline{j'})^{*}(i')^{\wedge}} \mathbf{U}' \end{array}$$

is in fact commutative up to equivalence. In fact, the stronger claim that the laxcommutative square

$$\begin{array}{c} \mathbf{X} \xrightarrow{j^*} \mathbf{U} \\ F \downarrow & \downarrow F|_{\mathbf{U}} \\ \mathbf{X}' \xrightarrow{(j')^*} \mathbf{U}' \end{array}$$

commutes up to equivalence is equivalent to the claim that F takes j^* -equivalences to $(j')^*$ -equivalences. But this is the case if and only if F takes left orthogonal objects to \mathbf{U} – that is, objects of \mathbf{Z}^{\vee} – to left orthogonal objects to \mathbf{U}' – that is, objects of $(\mathbf{Z}')^{\vee}$. Since this was one of our hypotheses, the proof is complete.

References

- William G Dwyer and John Patrick Campbell Greenlees. Complete modules and torsion modules. *American Journal of Mathematics*, 124(1):199–220, 2002.
- [2] Saul Glasman. Stratified categories, geometric fixed points and a generalized Arone-Ching theorem. arXiv preprint arXiv:1507.01976, 2015.
- [3] Jacob Lurie. Higher Algebra. 2012.