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A NOTE ON STABLE RECOLLEMENTS

CLARK BARWICK AND SAUL GLASMAN

Abstract. In this short étude, we observe that the full structure of a recolle-
ment on a stable ∞-category can be reconstructed from minimal data: that of
a reflective and coreflective full subcategory. The situation has more symmetry
than one would expect at a glance. We end with a practical lemma on gluing
equivalences along a recollement.

Let X be a stable∞-category and let U be a full subcategory of X that is stable
under equivalences and is both reflective and coreflective – that is, its inclusion
admits both a left and a right adjoint. We’ll denote the inclusion functor U ⊆ X

by j∗ and its two adjoints by j∗ and j×, so that we have a chain of adjunctions

j∗ ⊣ j∗ ⊣ j×.

Let Z∧ ⊆ X denote the right orthogonal complement of U – that is, the full
subcategory ofX spanned by those objects M such that MapX(N,M) = ∗ for every
N ∈ U. Dually, let Z∨ ⊆ X denote the left orthogonal complement of U – that is,
the full subcategory of X spanned by those objects M such that Map

X
(M,N) = ∗

for every N ∈ U. The inclusions of Z∧ ⊆ X and Z∨ ⊆ X will be denoted i∧ and i∨
respectively.

Warning 1. Our notation is chosen to evoke a geometric idea, but the role of open
and closed is reversed from recollements that arise in the theory of constructible
sheaves.

In our thinking, we imagine X as the ∞-category Dqcoh(X) of quasicoherent
complexes over a suitably nice scheme X , which is decomposed as an open sub-
scheme U together with a closed complement Z. In this analogy, we think of U as
the ∞-category of quasicoherent modules on U , embedded via the (derived) push-
forward. The subcategory Z∨ is then the ∞-category of quasicoherent complexes
on X that are set-theoretically supported on Z, and the subcategory Z∧ is the
∞-category of quasicoherent complexes on X that are complete along Z.

Lemma 2. In this situation, Z∧ is reflective and Z∨ is coreflective.

Proof. Denote by κ the cofiber of the counit j∗j
× → idX. Then κ(X) ⊆ Z∧, so we

factor

κ = i∧i
∧

with i∧ ∈ Fun(X,Z∧). We claim that i∧ is left adjoint to i∧. Indeed, for any M ∈ X

and N ∈ Z∧, we have a cofiber sequence of spectra

FZ∧(i∧M,N) ≃ FX(i∧i
∧M, i∧N)→ FX(M, i∧N)→ FX(j∗j

×M, i∧N) ≃ 0.

The proof that Z∨ is coreflective is dual, and we’ll denote the right adjoint of i∨
by i∨. �
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Lemma 3. In the sense of [2, Df. 3.4],

S({0}) = Z∧, S({1}) = U, S(∆1) = X, S(∅) = 0

is a stratification of X along ∆1.

Proof. After unravelling the notation, one sees that this amounts to the following
two claims.

• First, i∧j∗j
∗ = 0. This point is obvious.

• The usual fracture square

id i∧i
∧

j∗j
∗ j∗j

∗i∧i
∧

is cartesian. To see this, take fibers of the horizontal maps to get the map

j∗j
× → j∗j

∗j∗j
×,

which is an equivalence since j∗j∗ is homotopic to the identity. �

Remark 4. Conversely, if S is a stratification of X along ∆1, then S({0}) is core-
flective as well as reflective. Indeed, the fracture square together with the argument
of Lm. 2 shows that the fiber of id→ L1 defines a right adjoint to the inclusion of
S({0}).

Lemma 5. In the sense of [3, Df. A.8.1], X is a recollement of U and Z∧.

Proof. The only claim that isn’t obvious is point e): that j∗ and i∧ are jointly con-
servative. But since they are exact functors of stable∞-categories, this is equivalent
to the claim that if j∗M and i∧M are both zero, then M is zero, and this is clear
from the fracture square. �

Remark 6. Again there’s a converse; indeed, if a stable∞-category X is a recolle-
ment of U and Z, then U is coreflective [3, Rk. A.8.5]. We thus conclude that the
following three pieces of data are essentially equivalent:

• reflective and coreflective subcategories of X,
• stratifications S along ∆1 in the sense of [2, Df. 3.4] with S(∆1) = X, and
• recollements of X in the sense of [3, Df. A.8.1].

As we have described this structure, there’s a surprising intrinsic symmetry that
traditional depictions of recollements don’t really bring out:

Proposition 7. The functors i∧i∨ and i∨i∧ define inverse equivalences of cate-
gories between Z∧ and Z∨.

This proposition is an extreme abstraction of prior results, such as those of [1],
giving equivalences between categories of complete objects and categories of torsion
objects.

Proof. Let’s show that the counit map

η : i∧i∨i
∨i∧ → id

is an equivalence; the other side will of course be dual. The counit factors as

i∧i∨i
∨i∧

η0

−→ i∧i∧
η1

−→ id,
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but of course η1 is an equivalence since i∧ is fully faithful. But η0 fits into a cofiber
sequence

i∧i∨i
∨i∧

η0

−→ i∧i∧ → i∧j∗j
∗i∧,

and the final term is zero since i∧j∗ = 0. �

Finally, we give a useful criterion for when a morphism of recollements gives rise
to an equivalence, the proof of which is unfortunately a little more technical than
the foregoing.

Proposition 8. Let X and X′ be stable ∞-categories with reflective, coreflective
subcategories U ⊆ X and U′ ⊆ X′ and ancillary subcategories

Z∨ ⊆ X, Z∧ ⊆ X, (Z′)∨ ⊆ X′, (Z′)∧ ⊆ X′.

Suppose F : X→ Y is a functor with

F (U) ⊆ U′, F (Z∧) ⊆ (Z′)∧, F (Z∨) ⊆ (Z′)∨.

Suppose moreover that F |U and at least one of F |Z∧ and F |Z∨ is an equivalence.
Then F is an equivalence.

Proof. Let’s suppose that F |Z∧ is an equivalence; once again, the other case is dual.

Lemma 9. Set

Z∧ ↓X U = Z∧ ×X Fun(∆1,X)×X U

be the ∞-category of morphisms in X whose source is in Z∧ and whose target is in
U; we claim that the functor

k : Z∧ ↓X U→ X

that maps a morphism to its cofiber is an equivalence.

Proof. The functor k is really constructed as a zigzag

Z∧ ↓X U
∼
←− E

t
−→ X,

where E is the ∞-category of cofiber sequences M → N → P in X for which
(M → N) ∈ Z∧ ↓X U. The leftward arrow is a trivial Kan fibration. We’d like
to prove that the right hand arrow, t, is also a trivial Kan fibration. It’s clearly a
cartesian fibration, and so it suffices to show that each fiber of t is a contractible
Kan complex.

The fiber of t over P is the ∞-category of cofiber sequences

M → N → P

with M ∈ Z∧ and N ∈ U. Since fibers are unique, this is equivalent to the ∞-
category of morphisms φ : N → P with N ∈ U and fib(φ) ∈ Z∧. But fib(φ) ∈
Z∧ if and only if φ exhibits N as the U-colocalization of P , and such a φ exists
uniquely. �

Corollary 10. The ∞-category X is equivalent to the ∞-category of sections of
the map

p : C→ ∆1

where C ⊆ X ×∆1 is the full subcategory spanned by objects of Z∧ × {0} or U ×
{1}. �



4 CLARK BARWICK AND SAUL GLASMAN

Observe here that p is a cocartesian fibration, and the cocartesian edges corre-
spond to morphisms f : M → N in X which exhibit N as the U localization of
M .

Now we finish the proof of Pr. 8. In fact, F : X→ X′ induces a functor over ∆1

F : C→ C′,

where C′ ⊆ X′ ×∆1 is the full subcategory spanned by objects of (Z′)∧ × {0} or
U′ × {1}. By hypothesis, F induces equivalences on the fibers over {0} and {1}.
If F moreover preserves cocartesian edges, we’ll be able to conclude that F is an
equivalence of ∞-categories, inducing an equivalence on ∞-categories of sections,
whence the result.

The claim that F preserves cocartesian edges is equivalent to the claim that the
naturally lax-commutative square

Z∧ U

(Z′)∧ U′

j∗i∧

F |
Z∧ F |U

(j′)∗(i′)∧

is in fact commutative up to equivalence. In fact, the stronger claim that the lax-
commutative square

X U

X′ U′

j∗

F F |U

(j′)∗

commutes up to equivalence is equivalent to the claim that F takes j∗-equivalences
to (j′)∗-equivalences. But this is the case if and only if F takes left orthogonal
objects to U – that is, objects of Z∨ – to left orthogonal objects to U′ – that is,
objects of (Z′)∨. Since this was one of our hypotheses, the proof is complete.
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