A NOTE ON STABLE RECOLLEMENTS

CLARK BARWICK AND SAUL GLASMAN

Abstract

In this short étude, we observe that the full structure of a recollement on a stable ∞-category can be reconstructed from minimal data: that of a reflective and coreflective full subcategory. The situation has more symmetry than one would expect at a glance. We end with a practical lemma on gluing equivalences along a recollement.

Let \mathbf{X} be a stable ∞-category and let \mathbf{U} be a full subcategory of \mathbf{X} that is stable under equivalences and is both reflective and coreflective - that is, its inclusion admits both a left and a right adjoint. We'll denote the inclusion functor $\mathbf{U} \subseteq \mathbf{X}$ by j_{*} and its two adjoints by j^{*} and j^{\times}, so that we have a chain of adjunctions

$$
j^{*} \dashv j_{*} \dashv j^{\times}
$$

Let $\mathbf{Z}^{\wedge} \subseteq \mathbf{X}$ denote the right orthogonal complement of \mathbf{U} - that is, the full subcategory of \mathbf{X} spanned by those objects M such that $\operatorname{Map}_{\mathbf{X}}(N, M)=*$ for every $N \in \mathbf{U}$. Dually, let $\mathbf{Z}^{\vee} \subseteq \mathbf{X}$ denote the left orthogonal complement of \mathbf{U} - that is, the full subcategory of \mathbf{X} spanned by those objects M such that $\operatorname{Map}_{\mathbf{X}}(M, N)=*$ for every $N \in \mathbf{U}$. The inclusions of $\mathbf{Z}^{\wedge} \subseteq \mathbf{X}$ and $\mathbf{Z}^{\vee} \subseteq \mathbf{X}$ will be denoted i_{\wedge} and i_{\vee} respectively.

Warning 1. Our notation is chosen to evoke a geometric idea, but the role of open and closed is reversed from recollements that arise in the theory of constructible sheaves.

In our thinking, we imagine \mathbf{X} as the ∞-category $\mathbf{D}_{q c o h}(X)$ of quasicoherent complexes over a suitably nice scheme X, which is decomposed as an open subscheme U together with a closed complement Z. In this analogy, we think of \mathbf{U} as the ∞-category of quasicoherent modules on U, embedded via the (derived) pushforward. The subcategory \mathbf{Z}^{\vee} is then the ∞-category of quasicoherent complexes on X that are set-theoretically supported on Z, and the subcategory \mathbf{Z}^{\wedge} is the ∞-category of quasicoherent complexes on X that are complete along Z.

Lemma 2. In this situation, \mathbf{Z}^{\wedge} is reflective and \mathbf{Z}^{\vee} is coreflective.
Proof. Denote by κ the cofiber of the counit $j_{*} j^{\times} \rightarrow \operatorname{id} \mathbf{x}$. Then $\kappa(\mathbf{X}) \subseteq \mathbf{Z}^{\wedge}$, so we factor

$$
\kappa=i_{\wedge} i^{\wedge}
$$

with $i^{\wedge} \in \operatorname{Fun}\left(\mathbf{X}, \mathbf{Z}^{\wedge}\right)$. We claim that i^{\wedge} is left adjoint to i_{\wedge}. Indeed, for any $M \in \mathbf{X}$ and $N \in \mathbf{Z}^{\wedge}$, we have a cofiber sequence of spectra

$$
F_{\mathbf{Z}^{\wedge}}\left(i^{\wedge} M, N\right) \simeq F_{\mathbf{X}}\left(i_{\wedge} i^{\wedge} M, i_{\wedge} N\right) \rightarrow F_{\mathbf{X}}\left(M, i_{\wedge} N\right) \rightarrow F_{\mathbf{X}}\left(j_{*} j^{\times} M, i_{\wedge} N\right) \simeq 0
$$

The proof that \mathbf{Z}^{\vee} is coreflective is dual, and we'll denote the right adjoint of i_{\vee} by i^{\vee}.

Lemma 3. In the sense of [2, Df. 3.4],

$$
\mathfrak{S}(\{0\})=\mathbf{Z}^{\wedge}, \mathfrak{S}(\{1\})=\mathbf{U}, \mathfrak{S}\left(\Delta^{1}\right)=\mathbf{X}, \mathfrak{S}(\emptyset)=0
$$

is a stratification of \mathbf{X} along Δ^{1} 。
Proof. After unravelling the notation, one sees that this amounts to the following two claims.

- First, $i^{\wedge} j_{*} j^{*}=0$. This point is obvious.
- The usual fracture square

is cartesian. To see this, take fibers of the horizontal maps to get the map

$$
j_{*} j^{\times} \rightarrow j_{*} j^{*} j_{*} j^{\times}
$$

which is an equivalence since $j^{*} j_{*}$ is homotopic to the identity.
Remark 4. Conversely, if \mathfrak{S} is a stratification of \mathbf{X} along Δ^{1}, then $\mathfrak{S}(\{0\})$ is coreflective as well as reflective. Indeed, the fracture square together with the argument of Lm. 2 shows that the fiber of id $\rightarrow \mathcal{L}_{1}$ defines a right adjoint to the inclusion of $\mathfrak{S}(\{0\})$.

Lemma 5. In the sense of [3, Df. A.8.1], \mathbf{X} is a recollement of \mathbf{U} and \mathbf{Z}^{\wedge}.
Proof. The only claim that isn't obvious is point e): that j^{*} and i^{\wedge} are jointly conservative. But since they are exact functors of stable ∞-categories, this is equivalent to the claim that if $j^{*} M$ and $i^{\wedge} M$ are both zero, then M is zero, and this is clear from the fracture square.

Remark 6. Again there's a converse; indeed, if a stable ∞-category \mathbf{X} is a recollement of \mathbf{U} and \mathbf{Z}, then \mathbf{U} is coreflective [3, Rk. A.8.5]. We thus conclude that the following three pieces of data are essentially equivalent:

- reflective and coreflective subcategories of \mathbf{X},
- stratifications \mathfrak{S} along Δ^{1} in the sense of [2, Df. 3.4] with $\mathfrak{S}\left(\Delta^{1}\right)=\mathbf{X}$, and - recollements of \mathbf{X} in the sense of [3, Df. A.8.1].

As we have described this structure, there's a surprising intrinsic symmetry that traditional depictions of recollements don't really bring out:

Proposition 7. The functors $i^{\wedge} i_{\vee}$ and $i^{\vee} i_{\wedge}$ define inverse equivalences of categories between \mathbf{Z}^{\wedge} and \mathbf{Z}^{\vee}.

This proposition is an extreme abstraction of prior results, such as those of [1], giving equivalences between categories of complete objects and categories of torsion objects.

Proof. Let's show that the counit map

$$
\eta: i^{\wedge} i_{\vee} i^{\vee} i_{\wedge} \rightarrow \mathrm{id}
$$

is an equivalence; the other side will of course be dual. The counit factors as

$$
i^{\wedge} i_{\vee} i^{\vee} i_{\wedge} \xrightarrow{\eta_{0}} i^{\wedge} i_{\wedge} \xrightarrow{\eta_{1}} \mathrm{id},
$$

but of course η_{1} is an equivalence since i_{\wedge} is fully faithful. But η_{0} fits into a cofiber sequence

$$
i^{\wedge} i_{\vee} i^{\vee} i_{\wedge} \xrightarrow{\eta_{0}} i^{\wedge} i_{\wedge} \rightarrow i^{\wedge} j_{*} j^{*} i_{\wedge},
$$

and the final term is zero since $i^{\wedge} j_{*}=0$.
Finally, we give a useful criterion for when a morphism of recollements gives rise to an equivalence, the proof of which is unfortunately a little more technical than the foregoing.
Proposition 8. Let \mathbf{X} and \mathbf{X}^{\prime} be stable ∞-categories with reflective, coreflective subcategories $\mathbf{U} \subseteq \mathbf{X}$ and $\mathbf{U}^{\prime} \subseteq \mathbf{X}^{\prime}$ and ancillary subcategories

$$
\mathbf{Z}^{\vee} \subseteq \mathbf{X}, \quad \mathbf{Z}^{\wedge} \subseteq \mathbf{X},\left(\mathbf{Z}^{\prime}\right)^{\vee} \subseteq \mathbf{X}^{\prime},\left(\mathbf{Z}^{\prime}\right)^{\wedge} \subseteq \mathbf{X}^{\prime}
$$

Suppose $F: \mathbf{X} \rightarrow \mathbf{Y}$ is a functor with

$$
F(\mathbf{U}) \subseteq \mathbf{U}^{\prime}, F\left(\mathbf{Z}^{\wedge}\right) \subseteq\left(\mathbf{Z}^{\prime}\right)^{\wedge}, F\left(\mathbf{Z}^{\vee}\right) \subseteq\left(\mathbf{Z}^{\prime}\right)^{\vee}
$$

Suppose moreover that $\left.F\right|_{\mathbf{U}}$ and at least one of $\left.F\right|_{\mathbf{z} \wedge}$ and $\left.F\right|_{\mathbf{z}} \vee$ is an equivalence. Then F is an equivalence.

Proof. Let's suppose that $\left.F\right|_{\mathbf{z}^{\wedge}}$ is an equivalence; once again, the other case is dual.
Lemma 9. Set

$$
\mathbf{Z}^{\wedge} \downarrow_{\mathbf{X}} \mathbf{U}=\mathbf{Z}^{\wedge} \times_{\mathbf{X}} \operatorname{Fun}\left(\Delta^{1}, \mathbf{X}\right) \times_{\mathbf{X}} \mathbf{U}
$$

be the ∞-category of morphisms in \mathbf{X} whose source is in \mathbf{Z}^{\wedge} and whose target is in \mathbf{U}; we claim that the functor

$$
k: \mathbf{Z}^{\wedge} \downarrow \mathbf{X} \mathbf{U} \rightarrow \mathbf{X}
$$

that maps a morphism to its cofiber is an equivalence.
Proof. The functor k is really constructed as a zigzag

$$
\mathbf{Z}^{\wedge} \downarrow_{\mathbf{X}} \mathbf{U} \stackrel{\sim}{\sim} \stackrel{t}{\leftrightarrows} \mathbf{X}
$$

where \mathbf{E} is the ∞-category of cofiber sequences $M \rightarrow N \rightarrow P$ in \mathbf{X} for which $(M \rightarrow N) \in \mathbf{Z}^{\wedge} \downarrow \mathbf{x} \mathbf{U}$. The leftward arrow is a trivial Kan fibration. We'd like to prove that the right hand arrow, t, is also a trivial Kan fibration. It's clearly a cartesian fibration, and so it suffices to show that each fiber of t is a contractible Kan complex.

The fiber of t over P is the ∞-category of cofiber sequences

$$
M \rightarrow N \rightarrow P
$$

with $M \in \mathbf{Z}^{\wedge}$ and $N \in \mathbf{U}$. Since fibers are unique, this is equivalent to the ∞ category of morphisms $\phi: N \rightarrow P$ with $N \in \mathbf{U}$ and $\operatorname{fib}(\phi) \in \mathbf{Z}^{\wedge}$. But fib $(\phi) \in$ \mathbf{Z}^{\wedge} if and only if ϕ exhibits N as the \mathbf{U}-colocalization of P, and such a ϕ exists uniquely.

Corollary 10. The ∞-category \mathbf{X} is equivalent to the ∞-category of sections of the map

$$
p: \mathbf{C} \rightarrow \Delta^{1}
$$

where $\mathbf{C} \subseteq \mathbf{X} \times \Delta^{1}$ is the full subcategory spanned by objects of $\mathbf{Z}^{\wedge} \times\{0\}$ or $\mathbf{U} \times$ $\{1\}$.

Observe here that p is a cocartesian fibration, and the cocartesian edges correspond to morphisms $f: M \rightarrow N$ in \mathbf{X} which exhibit N as the \mathbf{U} localization of M.

Now we finish the proof of Pr. 8. In fact, $F: \mathbf{X} \rightarrow \mathbf{X}^{\prime}$ induces a functor over Δ^{1}

$$
\bar{F}: \mathbf{C} \rightarrow \mathbf{C}^{\prime}
$$

where $\mathbf{C}^{\prime} \subseteq \mathbf{X}^{\prime} \times \Delta^{1}$ is the full subcategory spanned by objects of $\left(\mathbf{Z}^{\prime}\right)^{\wedge} \times\{0\}$ or $\mathbf{U}^{\prime} \times\{1\}$. By hypothesis, \bar{F} induces equivalences on the fibers over $\{0\}$ and $\{1\}$. If \bar{F} moreover preserves cocartesian edges, we'll be able to conclude that \bar{F} is an equivalence of ∞-categories, inducing an equivalence on ∞-categories of sections, whence the result.

The claim that \bar{F} preserves cocartesian edges is equivalent to the claim that the naturally lax-commutative square

is in fact commutative up to equivalence. In fact, the stronger claim that the laxcommutative square

commutes up to equivalence is equivalent to the claim that F takes j^{*}-equivalences to $\left(j^{\prime}\right)^{*}$-equivalences. But this is the case if and only if F takes left orthogonal objects to \mathbf{U} - that is, objects of \mathbf{Z}^{\vee} - to left orthogonal objects to \mathbf{U}^{\prime} - that is, objects of $\left(\mathbf{Z}^{\prime}\right)^{\vee}$. Since this was one of our hypotheses, the proof is complete.

References

[1] William G Dwyer and John Patrick Campbell Greenlees. Complete modules and torsion modules. American Journal of Mathematics, 124(1):199-220, 2002.
[2] Saul Glasman. Stratified categories, geometric fixed points and a generalized Arone-Ching theorem. arXiv preprint arXiv:1507.01976, 2015.
[3] Jacob Lurie. Higher Algebra. 2012.

