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A guide for computing stable homotopy groups

Agnès Beaudry and Jonathan A. Campbell

Abstract. This paper contains an overview of background from stable ho-
motopy theory used by Freed–Hopkins in their work on invertible extended

topological field theories. We provide a working guide to the stable homo-
topy category, to the Steenrod algebra and to computations using the Adams
spectral sequence. Many examples are worked out in detail to illustrate the
techniques.
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1. Introduction and organization

1.1. Introduction. The main theorem of [FH16] states that deformation
classes of reflection positive invertible n-dimensional extended topological field the-
ories with symmetry group Hn are classified by the torsion in

[MTH,Σn+1IZ].

Here, MTH is the Madsen–Tillmann spectrum associated to a group H which is
a stabilization of Hn, IZ is the Anderson dual of the sphere spectrum, and [−,−]
denotes the stable homotopy classes of maps. These concepts will be discussed in
Section 2.

In order to complete the classification problem, it is necessary to be able to
compute stable homotopy classes of maps from a spectrum X to IZ. This problem
can be reduced to the computation of the stable homotopy groups of X itself as
will be described in Section 2.8.

2010 Mathematics Subject Classification. Primary 55Q10, 55T15, 55R40, 55S10.
This material is based upon work supported by the National Science Foundation under Grant

No. DMS-1725563.

c©2018 American Mathematical Society

89

Licensed to Univ of Rochester.  Prepared on Mon Aug 16 06:47:24 EDT 2021for download from IP 128.151.13.206.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

https://www.ams.org/conm/
https://doi.org/10.1090/conm/718/14476


90 A. BEAUDRY AND J. A. CAMPBELL

In general, it is notoriously difficult, if not impossible, to completely compute
the homotopy groups of a spectrum X. However, homotopy theorists are very good
at doing these computations in small ranges and the problems motivated by physics
only require information in small dimensions, making us a perfect match.

The main tool used to compute low-dimensional homotopy groups of spectra
is the Adams spectral sequence. Adams initially introduced this spectral sequence
in order to resolve the Hopf invariant one problem [Ada58,Ada60]. It has been a
standard tool in homotopy theory since then. In brief, the Adams spectral sequence
takes in information about the cohomology of a space or spectrum and outputs
information about its stable homotopy groups.

The Steenrod algebra, which we denote by A, is one of the classical structures
in homotopy theory. The mod-2 cohomology H∗(X;Z/2) of any space or spectrum
X is a module over A. This module is the input to the Adams spectral sequence.
Although it can be difficult to compute the A-module structure of the cohomology
of an arbitrary space or spectrum X, we work under the favorable circumstance
that the examples we consider are related to the classifying spaces of various Lie
groups. With the A-module structure of H∗(X;Z/2) in hand, and some knowledge
of homological algebra over the Steenrod algebra, the E2-page of the Adams spectral
sequence can be computed. In the low-dimensional range, we are lucky, and every
example we consider is fully computable by hand.

The aim of this paper is to introduce the reader to enough of the machinery of
spectra, the Steenrod algebra and the Adams spectral sequence to understand the
computation of the homotopy groups π∗MTH. To illustrate how one applies the
theory, we do the computations for a few examples. In particular, we go over the
cases when H is Spinc and Pinc in detail, an exercise which was left to the reader
in Section 10 of [FH16] and was not covered in [Cam17].

1.2. Organization. In order to fully explicate the computations for readers
unfamiliar with stable homotopy theory, we include an introduction to spectra in
Section 2. Among other topics, we discuss the category of spectra and its ho-
motopy category (Section 2.1 and Section 2.3), the homotopy groups of spectra
(Section 2.2), the Anderson dual (Section 2.8) and the construction of Thom spec-
tra (Section 2.9). These latter are integral to the Freed–Hopkins classification since
it is Thom spectra that are tightly linked with cobordism groups and the cobordism
hypothesis.

In Section 3 we discuss the Steenrod algebra, A, which is a non-commutative,
infinitely generated algebra that acts on the cohomology of all spaces and spectra.
In Section 3.2, we introduce A1, an eight dimensional sub-algebra of A that will
play a crucial role in the computations. In Section 3.4 we compute the A1-module
structure for some examples of cobordism spectra. This computation depends on
knowing how to determine the A1-module structure of the cohomology of classifying
spaces, along with the Thom isomorphism and the Wu formula. These things are
discussed in Section 3.3.

The Adams spectral sequence is introduced in Section 4. The primary tool
for computation with the Adams spectral sequence is homological algebra over
A and, in our examples, over A1. This section includes a discussion of resolutions
(Section 4.4) and computations of ExtA1

for a menagerie of A1-modules. It includes
explanations of Adams charts (Section 4.3), of certain mulitplicative structures on
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A GUIDE FOR COMPUTING STABLE HOMOTOPY GROUPS 91

Ext (Section 4.2) and a variety of useful tricks. In Section 4.7, we formally construct
the spectral sequence and in Section 4.8, we provide a “user’s manual”.

In Section 5, we come to the main event. In the range 0 ≤ n ≤ 4 we compute
πnMTH(s) and πnMTHc(s) in all of the cases that were not explained in further
detail in [Cam17]. The computations rely on the Adams spectral sequence, and
we use all of the material developed in Section 3 and Section 4 to compute the
E2-pages. In such a small range, and in these cases, the spectral sequences collapse
and the homotopy groups can be read off of the Adams charts.

2. A working guide to spectra

In this section, we give an introduction to spectra. If one is interested in
computing homotopy groups, then one can often get away with an understanding
of the properties of the homotopy category of spectra (see Section 2.3). Some of
the information we include is not strictly necessary for this understanding, but we
tried to strike a balance between too little and too much information.

For a more in-depth introduction to spectra, a starting point would be Section
1.4 of Lurie [Lur] and the introduction by Elmendorff–Kriz–Mandell–May to Chap-
ter 6 of [Jam95] (a book that contains other hidden gems). One could then move
on to Part III of Adams [Ada95], Chapter 10.9 of Weibel [Wei94] and Chapter
12 of Aguilar–Gitler–Carlos [AGP02]. For serious treatments of different modern
models of the category of spectra together with all of its structure, see the first
parts of Schwede [Sch], Mandell–May–Schwede–Shipley [MMSS01], Elmendorff–
Kriz–Mandell–May [EKMM97] or Lurie [Lur]. For the equivariant treatment, see
Lewis–May–Steinberger [LMSM86].

Notation 2.0.1. We let Ab be the category of graded abelian groups. We let
Top∗ be a category of suitably nice based topological spaces with continuous maps
that preserve the base points.

Motivation for the category of spectra comes from at least two directions.
First, there is Brown’s representability theorem that states that a cohomology
theory E∗ : Topop∗ → Ab has a sequence of representing spaces En. That is,
En(X) ∼= [X,En]. We will let Σ(−) be the reduced suspension and Ω(−) be the
based loops functor. The isomorphism [ΣX,En] ∼= [X,ΩEn] together with the
suspension isomorphism En(X) ∼= En+1(ΣX) give rise to an isomorphism

[X,En]
∼= �� [X,ΩEn+1]

which is natural in X. By the Yoneda Lemma, this corresponds to a weak equiv-

alence ωn : En
�−→ ΩEn+1. Further, to discuss natural transformations between

cohomology theories, one is led to discuss maps between these sequences of spaces.
It thus behooves us to construct a category which consists of sequences of spaces.

Another motivation is via Freudenthal’s suspension theorem. Let X be a k-
connected topological space. Freudenthal’s suspension theorem states that the map
πn(X) → πn+1(ΣX) is an isomorphism if n ≤ 2k. For a fixed n and connected X,
this implies that πn+k(Σ

kX) stabilizes as k goes to infinity. This motivates the
definition of the nth stable homotopy group

πs
nX = colimk πn+kΣ

kX ∼= πn+m(ΣmX) m � 0.

Licensed to Univ of Rochester.  Prepared on Mon Aug 16 06:47:24 EDT 2021for download from IP 128.151.13.206.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



92 A. BEAUDRY AND J. A. CAMPBELL

An amazingly useful fact is that πs
∗ : Top∗ → Ab is a homology theory, making the

stable homotopy groups often (slightly) more computable than the usual, unstable,
homotopy groups. It is useful to consider the sequences of spaces {ΣnX} as the
fundamental objects, and we come again to a point where it is necessary to define
some category of sequences of spaces.

We will define the following five categories in the next few sections:

(1) The category of prespectra, denoted PreSp. See Definition 2.1.1.
(2) The category of spectra, denoted Sp. See Definition 2.1.3.
(3) The category of CW-prespectra, denoted CWPreSp. See Definition 2.1.4.
(4) The category of CW-spectra, denoted CWSp. See Definition 2.1.12.
(5) The homotopy category of spectra, denoted hSp. See Section 2.3.

The first four are a means to the fifth. We justify this complication by the following
analogy inspired from Chapter 10 of [Wei94] and, in particular, Analogy 10.9.7.
The reader can skip this analogy now and come back to it at the end of Section 2.3.

Analogy 2.0.2. To justify having both spectra and prespectra, we make an
analogy with the categories of sheaves and presheaves. Although we do homological
algebra in the category of sheaves, some constructions are easier to make in the
category of presheaves. The forgetful functor from sheaves to presheaves has a left
adjoint, the sheafification functor. This allows one to transport constructions from
presheaves to sheaves.

In this part of the analogy, spectra are the sheaves and prespectra are the
presheaves. The analogue of the sheafification functor is called spectrification and
is denoted L : PreSp → Sp. It is the left adjoint to a forgetful functor from Sp to
PreSp. See Remark 2.1.9.

Now, switching gears, we think of the category C of bounded below chain
complexes of R-modules. There are two important kinds of equivalences in this
category, the chain homotopy equivalences and the quasi-isomorphisms. The de-
rived category D(C) is characterized as the initial category which receives a func-
tor C → D(C) such that the quasi-isomorphisms are mapped to isomorphisms in
D(C). Chain homotopy equivalence is an equivalence relation, but the property of
being quasi-isomorphic is not. In theory, it takes more work to invert the quasi-
isomorphisms than it does to invert the chain homotopy equivalences. However, a
quasi-isomorphism between bounded below projective chain complexes is a chain
homotopy equivalence and, further, any chain complex is quasi-isomorphic to a pro-
jective one. Therefore, a model forD(C) is the category whose objects are projective
chain complexes and morphisms are chain homotopy equivalences of maps.

In this part of the analogy, the topological spaces are the R-modules and the
category of spectra is the analogue of C. The chain homotopy equivalences cor-
respond to the homotopy equivalences and the quasi-isomorphisms to the weak
homotopy equivalences. The homotopy category of spectra is analogous to D(C).
The projective chain complexes are the analogues to CW-spectra, and a model
for the homotopy category of spectra is the category of CW-spectra together with
homotopy classes of maps between them.

We have not mentioned CW-prespectra and use it to tie the knot between the
two analogies: CW-prespectra are easy to define in prespectra, and the spectrifica-
tion functor is used to transfer the definition to spectra.
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2.1. The categories.

Definition 2.1.1 (Prespectra). A prespectrum X is a sequence of spaces Xn ∈
Top∗ for n ≥ 0 and continuous maps σn : ΣXn → Xn+1. We let ωn : Xn → ΩXn+1

be the adjoint of σn and note that giving the structure maps σn of a prespectrum
is equivalent to specifying the maps ωn. A map of prespectra f : X → Y of degree
r is a sequence of continuous, based maps fn : Xn → Yn−r such that the following
diagram commutes:

ΣXn
fn ��

σn

��

ΣYn−r

σn−r

��
Xn+1

fn+1

�� Yn+1−r.

We let PreSp denote the category of prespectra. (The plural of prespectrum is
prespectra.)

Remark 2.1.2. If the maps ωn are weak homotopy equivalences, then X is
often called an Ω-prespectrum.

Definition 2.1.3 (Spectra). A prespectrum is called a spectrum if the maps
ωn are homeomorphisms. We let Sp denote the full subcategory of prespectra
generated by the objects which are spectra.

Definition 2.1.4 (CW-prespectra). We call a prespectrum a CW-prespectrum
if the spaces Xn are CW-complexes and the maps ΣXn → Xn+1 are cellular inclu-
sions. We let CWPreSp denote the full subcategory of prespectra generated by the
objects which are CW-prespectra.

Example 2.1.5. The standard example is the suspension prespectrum Σ∞A
of a based topological space A. Its nth space is given by ΣnA and the structure
maps are identities ΣΣnA ∼= Σn+1A → Σn+1A. In fact, this extends to a functor
Σ∞ : Top∗ → PreSp which sends a space A to Σ∞A. The functor Σ∞ is left adjoint
to the functor Ω∞ : PreSp → Top∗ which sends a prespectrum to its zeroth space.

Example 2.1.6. The Eilenberg-MacLane prespectrum HG, where G is an
abelian group, has nth space K(G,n). The structure maps of HG are the adjoints
to the homotopy equivalences ωn : K(G,n) → ΩK(G,n+ 1). A homomorphism of
abelian groups G1 → G2 give rise to a map of prespectra HG1 → HG2.

Example 2.1.7. Another example is given by K-theory. The odd spaces of K
are the infinite unitary group U and the even spaces are Z×BU , where BU is the
classifying space of U . The structure maps ωn are the equivalences given by Bott
Periodicity. Similarly, real K-theory is denoted by KO. Its spaces repeat with
period eight starting with Z×BO, where BO is the classifying space of the infinite
orthogonal group O.

Example 2.1.8. If X = X0 is an infinite loop space so that there exists spaces
Xk so that X � ΩkXk for all k ≥ 0, then the Xk assemble into a prespectrum.

Definition 2.1.9. The spectrification functor L : PreSp → Sp is the left adjoint
to the forgetful functor U : Sp → PreSp.
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94 A. BEAUDRY AND J. A. CAMPBELL

Remark 2.1.10. The functor L exists by Freyd’s adjoint functor theorem. It
can be constructed easily if the maps ωn are inclusions (for example, if X is a
CW-prespectrum). In this case, LX is the spectrum whose kth space is

LXk = colimn Ω
n+kXn,

where the colimit is taken over Ωn+k(ωn) : Ω
n+kXn → Ωn+k+1Xn+1. IfX is already

a spectrum, then LX ∼= X as these maps are all homeomorphisms. For a general
definition, we refer the reader to Appendix A.1 of [LMSM86].

Warning 2.1.11. We abuse notation and write ULX simply as LX. Further,
we often omit the L if we are not emphasizing the replacement. For example, we
write Σ∞A = L(Σ∞A), HG = L(HG), etc..

Definition 2.1.12 (CW-Spectra). The category of CW-spectra, denoted CWSp,
is the full subcategory of spectra generated by the image of the restriction of L to
CW-prespectra. That is, X ∈ CWSp if it is of the form LY for some Y ∈ CWPreSp.

We summarize the discussion by the following diagram of adjunctions, where
Ω∞ : Sp → Top∗ is also the zeroth space functor:

Top∗
Σ∞

��

Σ∞

��
PreSp

Ω∞
��

L �� Sp
U

��

Ω∞

��

The coproduct in Top∗ is the wedge A ∨ B. The category Top∗ is a closed
symmetric monoidal category, where the hom objects are the spaces of continuous
based maps Maps(A,B) and the symmetric monoidal product is the smash product
A ∧B. There is an associated homeomorphism

Maps(A ∧B,C) ∼= Maps(A,Maps(B,C)).

We briefly discuss related constructions in (pre)spectra.
For X a prespectrum and A a based topological space, we let X ∧ A be the

prespectrum whose spaces are given by Xn ∧ A and structure maps by σn ∧ idA.
We define ΣrX = X ∧ Sr with Σ = Σ1.

Similarly, we let F (A,X) be the prespectrum whose nth space is Maps(A,Xn)
and whose structure maps are given f �→ ωn ◦ f , using the identification

ΩMaps(A,Xn+1) ∼= Maps(A,ΩXn+1).

We let Ω(X) = F (S1, X). In the homotopy category (defined in Section 2.3), the
functors Ω(−) and Σ(−) become inverses, so we let Σ−1(−) = Ω(−).

In prespectra, the coproduct is also a wedge construction. The spaces of X ∨Y
are Xn ∨ Yn with structure maps σn ∨ σn, using the fact that Σ(Xn ∨ Yn) ∼=
ΣXn ∨ ΣYn.

These constructions transfer to spectra via the spectrification functor L, and
we abuse notation by dropping the L from the notation. For example, we write
ΣX = L(ΣX).

Remark 2.1.13. Smash products of spectra and function spectra are harder to
construct, and we will not do this here. We do note however that there are versions
of the category of spectra which are closed symmetric monoidal with respect to
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an appropriate smash product. The first such construction is due to Elmendorf–
Kriz–Mandell–May [EKMM97]. However, up to homotopy (see the definition of
homotopy in these categories below), the smash product X ∧ Y was constructed
directly two decades prior. This is called Boardman’s handicrafted smash product
and the construction is described in [Ada95]. One can also construct a function
spectrum F (X,Y ) so that F (X,F (Y, Z)) � F (X ∧ Y, Z). We will only use these
constructions up to homotopy and we take them for granted.

2.2. Homotopies and homotopy groups. Let I+ be the unit interval [0, 1]
with a disjoint basepoint. Then the prespectrum X ∧ I+ admits a map

X ∨X
i0∨i1−−−→ X ∧ I+

defined levelwise on each factor by the inclusions at 0 and 1 respectively. As in
Top∗, we can use the prespectrum X ∧ I+ to define homotopies between maps.

Two maps of prespectra f, g : X → Y are homotopic, denoted f � g, if there is
a map H : X ∧ I+ → Y which restricts to f ∨ g along the inclusion

X ∨X
i0∨i1−−−→ X ∧ I+

H−→ Y.

Maps of spectra are homotopic if they are homotopic as maps of prespectra. We
will let the set of homotopy classes of maps between two (pre)spectra X and Y
be denoted by {X,Y }. If Y is an Ω-prespectrum, this is in fact an abelian group.
Similarly, homotopy classes of maps of degree r are denoted by {X,Y }r. Two
(pre)spectra X and Y are homotopy equivalent if there are maps f : X → Y and
g : Y → X such that f ◦ g � idY and g ◦ f � idX .

Definition 2.2.1. Let X be a (pre)spectrum and n ∈ Z. The nth homotopy
group of X is

πnX = colimk πn+kXk

where the maps in the colimit take an element Sn+k → Xk to the composite

Sn+k+1 → ΣXk
σk−→ Xk+1. A map of (pre)spectra is a weak homotopy equivalence

if it induces an isomorphism on homotopy groups.

Remark 2.2.2. The unit of the adjunctionX → LX is a functorial replacement
of X by the weakly homotopy equivalent spectrum LX.

Remark 2.2.3 (Whitehead’s theorem). A map of CW-spectra which is a weak
homotopy equivalence is also a homotopy equivalence.

2.3. The homotopy category of spectra and its triangulation. First, we
recall the analogous object for Top∗. The homotopy category of based topological
spaces hTop∗ is the initial category receiving a functor from Top∗ which sends
weak homotopy equivalences to isomorphisms. Using Whitehead’s theorem and
CW-approximation, one model for hTop∗ has objects the pointed CW-complexes
and morphisms the based homotopy classes of maps between them. The map
Top∗ → hTop∗ sends A to a CW-approximation ΓA, which is functorial up to
homotopy, and a map f to the homotopy equivalence class of Γf .

There are many constructions of the homotopy category of spectra, which we
denote by hSp, including through the theory of ∞-categories. These all give equiv-
alent categories and hSp is one of the modern settings for homotopy theory. In this
section, we give some of the standard tools to work in hSp.
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96 A. BEAUDRY AND J. A. CAMPBELL

The homotopy category hSp is initial among categories that admit a functor
out of (Pre)Sp which sends the weak homotopy equivalences to isomorphisms. In
particular, any functor (Pre)Sp → D with this property factors through the functor
(Pre)Sp → hSp:

PreSp

���
��

��
��

��
L �� Sp

��

�� hSp

���
�
�
�

D
The objects of hSp are simply called spectra. The category hSp is a triangulated

category with shift operator given by the suspension Σ(−), which in hSp becomes
inverse to Σ−1(−) = Ω(−). We define

[X,Y ]r := hSpr(X,Y ) = hSp(ΣrX,Y )

and let [X,Y ] = [X,Y ]0. These are abelian groups for all X, Y and r. The
isomorphisms in hSp are denoted by � because of their relationship to the weak
homotopy equivalences.

Remark 2.3.1. The morphisms in hSp must be computed with care, and we
remind the reader of Analogy 2.0.2. With this analogy in mind, note that [X,Y ] is
not in general isomorphic to {X,Y }. Here, {X,Y } denotes the homotopy classes
of maps as defined in Section 2.2. This is the essence of the “cells now — maps
later” discussion on p.142 of [Ada95].

Remark 2.3.2 (CW-approximation). For any prespectrum X, there is a CW-
spectrum ΓX connected to X by a zig-zag of weak homotopy equivalences. The
construction is functorial up to homotopy.

Remark 2.3.3. We use CW-approximation to describe models for hSp. The
first has objects CW-spectra and morphisms homotopy classes of maps between
them. In particular, if X and Y are CW-spectra, then [X,Y ] ∼= {X,Y }. The
functor (Pre)Sp → hSp sends X to ΓX and a map f to the homotopy equivalence
class of Γf . A slightly larger model is to let the objects be CW-prespectra and
morphisms [X,Y ] ∼= {LX,LY } ∼= {X,LY }. One can also take objects to be all
prespectra and morphisms to be [X,Y ] ∼= {ΓX,ΓY }.

The point we want to stress here is that, for any two X and Y , whether they be
prespectra, spectra, CW-prespectra or CW-spectra, it makes sense to write down
[X,Y ]. Every point of view yields isomorphic abelian groups. In hSp, we forget the
distinctions: All objects have equal dignity and are called spectra.

We extend Σ∞ to a functor Σ∞ : Top∗ → hSp by sending A to the image of
Σ∞A ∈ hSp. We often simply write A to denote Σ∞A ∈ hSp. For example, St as
a spectrum is

St � Σ∞St � ΣtΣ∞S0 � ΣtS0.

The sphere spectrum is the spectrum S0. On the other hand, Ω∞ induces a functor
Ω∞ : hSp → hTop∗.

We let F (X,Y ) and X∧Y be the function spectrum and smash product in hSp.
See Remark 2.1.13. The category hSp is a closed symmetric monoidal category so
that

F (X ∧ Y, Z) � F (X,F (Y, Z)).(2.3.1)
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A GUIDE FOR COMPUTING STABLE HOMOTOPY GROUPS 97

The sphere spectrum S0 is the unit for the symmetric monoidal structure and

S0 ∧X � X, F (S0, X) � X.

IfX is a spectrum andA is a based topological space, for the constructions described
in Section 2.1, we have A ∧X � (Σ∞A) ∧X and F (A,X) � F (Σ∞A,X).

There is an identity

[X,Y ]t = πtF (X,Y ).

In particular, if π∗X denotes the homotopy groups of X,

πtX ∼= [St, X] ∼= π0F (St, X) ∼= πtF (S0, X).

The category hSp has arbitary products and coproducts. Further, for a collec-
tion of objects Xα, α ∈ I with the property that, for every k ∈ Z, πkXα = 0 for all
but finitely many α ∈ I, the map

(2.3.2)
∨

α∈I Xα
� �� ∏

α∈I Xα

is an isomorphism.
Pushout and pullback diagrams also coincide in hSp. The exact triangles

X → Y → Z → ΣX

are equivalently called cofiber and fiber sequences. The spectrum Z is called the
cofiber of X → Y , while X is called the fiber of Y → Z. A map X → Y is null
homotopic if and only if Z � Y ∨ ΣX.

A standard example of an exact triangle in hSp is constructed by killing an
element in homotopy. For example, if α : Sn → Sm is an element of πnS

m, then
C(α) is defined by the exact triangle

Sn α−→ Sm → C(α) → Sn+1.

If X → Y → Z → ΣX is an exact triangle, then so are the four term sequences
obtained by applying W ∧ (−), F (W,−) or F (−,W ). Further, applying either of
[−, X] and [X,−] to an exact triangle gives rise to a long exact sequence of abelian
groups. In particular, there are long exact sequences on homotopy groups π∗(−).

A useful fact about the functor Σ∞ is that it commutes with ∧ and with ∨.
Also, applying Σ∞ to a homotopy cofiber sequence A → B → C of spaces gives an
exact triangle in hSp. In particular, the cofiber sequence A∨B → A×B → A∧B
gives rise to a split cofiber sequence of spectra so that

Σ∞(A×B) � Σ∞A ∨ Σ∞B ∨ Σ∞(A ∧B).

Warning 2.3.4. From this point onwards, when we say “spectrum”, we mean
an element of hSp unless otherwise specified.

2.4. Cohomology and homology theories. A generalized homology theory
is a collection of functors En : hSp → Ab indexed by Z, together with natural

isomorphisms En+1(Σ−)
∼=−→ En(−) such that En takes arbitrary coproducts to

direct sums and exact triangles to exact sequences. A generalized cohomology
theory is a collection of contravariant functors En : hSpop → Ab indexed by Z

and natural isomorphisms En(−)
∼=−→ En+1(Σ−) such that En that takes arbitrary

coproducts to direct products and exact triangles to exact sequences. We refer the
reader to Whitehead [Whi62, Section 5] for more on generalized homology and
cohomology theories.
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98 A. BEAUDRY AND J. A. CAMPBELL

Any spectrum in hSp gives rise to generalized homology and cohomology the-
ories E∗ : hSp → Ab and E∗ : hSpop → Ab. Further, by precomposing with
Σ∞ : Top∗ → hSp, we obtain (reduced) theories defined on topological spaces. If
E ∈ hSp,

En(X) = [X,E]−n
∼= π−nF (X,E) ∼= [X,ΣnE]

and

En(X) = πn(E ∧X).

Conversely, the Brown representability theorem implies that any homology or co-
homology theory is represented by a spectrum E = {En} so that En(X) = [X,En].

Remark 2.4.1. If E ∈ PreSp is a prespectrum, and A is a topological space,

En(A) ∼= [A, (LE)n]

where the right hand side denotes homotopy classes of maps in Top∗. In partic-
ular, if E ∈ Sp, then En(A) ∼= [A,En]. In fact, for this to hold, it is enough
that the structure maps ωn be weak homotopy equivalences (i.e., that E be an
Ω-prespectrum).

If E ∈ CWPreSp is such that En is n− 1-connected, then

En(A) ∼= πn(E ∧A) ∼= colimk πn+k(Ek ∧A).

Example 2.4.2. If E = HG, the Eilenberg–MacLane spectrum for an abelian
group G and A is a based space, or B+ is an unbased space with a disjoint base
point, then

HG∗(A) = H̃∗(A;G) HG∗(B+) = H∗(B;G).

Further, by definition, H̃∗(A;G) ∼= HG∗(Σ∞A).

2.5. Connective spectra. Let A ∈ Top∗ be a connected CW-complex. For
every m ≥ 0, there is a space Aτ≥m with the property that πnAτ≥m = 0 if n < m,
together with a map Aτ≥m → A which is an isomorphism on πn if n ≥ m. The
space Aτ≥m is called the mth connective cover of A, and is obtained as the mth
stage of the Whitehead tower. This can be done functorially and the spaces Aτ≥m

are unique up to canonical isomorphism in hTop∗.
Note that the homotopy groups of spectra are defined for any integer n ∈ Z.

In particular, some spectra have negative homotopy groups. If X ∈ hSp and
m ∈ Z, the mth connective cover of X is a spectrum Xτ≥m with the property that
πnXτ≥m = 0 for n < m, together with a map Xτ≥m → X which is an isomorphism
on πn if n ≥ m. If X ∈ hSp is represented by a prespectrum with spaces Xn, then
Xτ≥m is represented by a prespectrum whose spaces are (Xτ≥m)n = (Xn)τ≥m+n

and whose structure maps are obtained from those of X using the functoriality and
uniqueness. The spectrum Xτ≥0 is called the connective cover of X.

Notation 2.5.1. The spectrum ku denotes the connective cover of the K-
theory spectrum K. The spectrum ko denotes the connective cover of the real
K-theory spectrum KO.
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2.6. Multiplicative homology theories. One of the main reasons for in-
troducing a symmetric monoidal products on the category of spectra Sp or on its
homotopy category hSp is the discussion of ring spectra. The cohomology theory
that one first encounters, singular cohomology, has the structure of a graded ring.
By the Brown representability theorem, this gives rise to maps HZ∧HZ → HZ for
the Eilenberg–MacLane spectrum HZ. Many cohomology theories come equipped
with this structure; for example, K and KO-theory and nearly all cobordism the-
ories.

We give some definitions in hSp. A ring spectrum is a spectrum R ∈ hSp
together with a multiplication map μ : R∧R → R and a unit map η : S0 → R such
that the diagram

S0 ∧R

�
		��

���
���

���
η∧idR �� R ∧R

μ

��

R ∧ S

�


��
��
��
��
��

idR ∧η��

R

commutes (in hSp). Granted a notion of ring spectrum, we can define commutative
ring spectra, and module spectra. A commutative ring spectrum is one such that
the diagram

R ∧R

μ
���

��
��

��
��

tw �� R ∧R

μ
����
��
��
��
�

R

commutes, where tw is the map that exchanges the two copies of R. For R a ring
spectrum, an R-module spectrum is a spectrumM together with a map R∧M → M
which fits into the commutative diagrams that categorify the notion of a module
over a ring.

Much of the intuition from homological algebra can be carried over to the
context of ring spectra and module spectra. For example, one can define resolutions
in this context. The homotopy groups of a resolution will reflect properties of the
homotopy groups of the spectrum it resolves. See, for example, [Mil81]. This is one
of the ideas in the construction of the Adams spectral sequence. See Section 4.7.

A construction from algebra that requires more care with the smash product
when being adapted to spectra is the notion of quotient modules. This is solved in
the modern categories of spectra, but is not needed here.

2.7. Spanier–Whitehead duality. The functional dual of a spectrum X is
the function spectrum F (X,S0). This is often denoted by DX in analogy with
Spanier–Whitehead duality. If X � Σ∞A for a finite CW-complex A, then DX is
the classical Spanier–Whitehead dual of A.

The enriched adjunction (2.3.1) gives rise to certain important maps. First,
there are the units and the counits which are “coevaluations” and “evaluations”
respectively:

coev : Y → F (X,X ∧ Y ) ev : X ∧ F (X,Y ) → Y

Using the adjunction (2.3.1) and ev, for any spectra X, Y and Z, the adjoint to

the X ∧ F (X,Y ) ∧ Z
ev∧Z−−−→ Y ∧ Z gives a map

(2.7.1) F (X,Y ) ∧ Z → F (X,Y ∧ Z)

which may or may not be an isomorphism in hSp.
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The spectrum Z is called dualizable if this is an isomorphism in hSp for all
spectra X and Y . Examples of dualizable spectra are the spheres St = ΣtS0 and,
more generally, the suspension spectrum Σ∞A of any finite CW-complex A. Finally,
to verify that Z is dualizable, it is enough to check that

DZ ∧ Z � F (Z, S0) ∧ Z → F (Z,Z)

is a weak equivalence.

2.8. Brown-Comenetz and Anderson duality. For any injective abelian
group A, the functor from Top∗ to abelian groups given by

InA(X) = HomZ(πn(Σ
∞X), A)

defines a cohomology theory, which is represented by a spectrum denoted IA. For
example, if A = Q, then

InQ(X) ∼= H̃n(X;Q),

and IQ is equivalent to HQ.
Since Q/Z is an injective abelian group, we also obtain a spectrum IQ/Z, which

is often called the Brown-Comenetz spectrum. The natural map Q → Q/Z together
with the Yoneda Lemma gives rise to a map of spectra IQ → IQ/Z. Then IZ is
defined by the exact triangle in hSp

IZ → IQ → IQ/Z → ΣIZ.(2.8.1)

The spectrum IZ is called the Anderson dual spectrum.
Associated to (2.8.1) is a long exact sequence on cohomology

. . . → IQ
∗−1(X) → I∗−1

Q/Z (X) → I∗Z(X) → IQ
∗(X) → I∗Q/Z(X) → . . .

If the homotopy groups π∗(Σ
∞X) are finitely generated abelian groups in each

degree, one can deduce from this long exact sequence that there is an isomorphism

I∗Z(X) ∼= Torsion(π∗−1(Σ
∞X))⊕ Free(π∗X).

So, computing I∗Z(X) ∼= [X,Σ∗IZ] is equivalent to computing the (stable) homotopy
groups of X.

2.9. Thom spectra. Let B be a topological space and ν : E → B be a n-
dimensional real vector bundle on B. Then Sph(ν) : Sph(E) → B is the n-sphere
bundle whose fibers are the one-point compactification of the fibers of ν. The
bundle Sph(E) has a section s : B → Sph(E) which sends b to the point at infinity
in the fiber Sph(E)b. Then the Thom space of ν is defined as

Bν = Sph(E)/s(B).

The Thom spectrum, also denoted by Bν , is the suspension spectrum of the Thom
space. The composite

Sph(E) → Sph(E)× Sph(E) → B ×Bν ,

which is the diagonal map followed by the product of Sph(ν) and the quotient map,
induces a map Bν → B+ ∧Bν called the Thom diagonal.

If ν = α⊕ n where n is the trivial n-dimensional bundle, then

(2.9.1) Bν � ΣnBα.

In particular, if 0 is the zero bundle, then B0 = Σ∞B+.
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The identity (2.9.1) motivates the definition of Thom spectra for virtual bun-
dles. We give the definition for based spaces B which are CW-complexes with
finitely many cells in each dimension. Recall that a virtual bundle ν over B is
the formal difference ν = α − β of vector bundles α and β over B. If α is an n-
dimensional bundle and β is an m-dimensional bundle, we say that ν has dimension
n−m.

If B is compact, we can choose a bundle β⊥ and an integer k so that β⊕β⊥ ∼= k.
In this case, we define

Bν := Σ−kBα⊕β⊥
.

This is independent of the choice of complement β⊥. Now, let Bq be the q-skeleton
of B. By our assumption on B, the space Bq is compact. The bundle ν pulls back
to virtual bundles νq over Bq for each q. There are induced maps of Thom spectra

B
−νq
q → B

−νq+1

q+1 , and

B−ν := colimq B
−νq
q .

Example 2.9.1. Let On be the nth orthogonal group and BOn its classifying
space. A model for BOn is given by the Grassmanian Gn = lim−→k

Grn(R
k), where

Grn(R
k) is the space of n-dimensional subspaces of Rk and the maps in the colimit

are induced by the inclusions Rk ⊆ Rk+1 into the first k-coordinates. This has
the homotopy type of a CW-complex with finitely many cells in each dimension.
Consider the subspace of Gn × R∞ given by

En = {(P, v) ∈ Gn × R∞ : P ∈ Gn, v ∈ P}.

The map

γn : En → Gn

which sends (P, v) to P is an n-dimensional vector bundle. This is often called the
universal bundle over BOn. The associated Thom space is denoted by MOn, which
is also used to denote the associated Thom spectrum.

If Hn → On is a group homomorphism, then the universal bundle γn pulls
back to a bundle over BHn that we will also denote by γn. The associated Thom
space/spectrum is denoted by MHn.

Finally, in these examples, the Thom spectrum of the virtual bundle −γn is
denoted by MTHn and is called the Madsen–Tillmann spectrum.

Remark 2.9.2. Thom spectra are related to Spanier–Whitehead duality via
the Atiyah duality isomorphism. Let M be an n-manifold and TM be the tangent
space of M , then Atiyah duality is the equivalence M−TM � D(Σ∞M+).

The cohomology of the Thom space is related to the cohomology of the base
space. We treat the case H∗(−;Z/2) as it comes free of orientability conditions.
Given any virtual n-bundle ν, there is an isomorphism

Th: H∗(B;Z/2) ∼= H̃∗(B0;Z/2) → H̃∗+n(Bν ;Z/2).

called the Thom isomorphism. The isomorphism is given by an external cup product
with a class

U = U(ν) ∈ H̃n(Bν ;Z/2)

called the Thom class.
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3. The Steenrod algebra

In this section, we review some basic facts about the Steenrod algebra A at the
prime p = 2. A very good reference for this material is Mosher–Tangora [MT68]
and the interested reader should consult it for a more thorough presentation.

We focus on the prime p = 2, although much of this story has an analogue at
odd primes. We will let

H∗(X) = H̃∗(X;Z/2)

denote the reduced mod 2 cohomology of X if it is a space, or simply the mod 2
cohomology of X if it is a (pre)spectrum. If X ∈ Top and we want to refer to the
unreduced cohomology, we will use the notation H∗(X;Z/2).

3.1. Cohomology operations and the Steenrod algebra. Let Vect(Z/2)
denote the category of Z-graded Z/2 vector spaces, so that mod 2 cohomology is a
functor

H∗(−;Z/2) : Top → Vect(Z/2).

A cohomology operation of degree k is a natural transformation

γ : H∗(−;Z/2) → H∗+k(−;Z/2).

The operation γ is said to be stable if it commutes with the suspension isomorphism

Σ: H∗(−)
∼=−→ H∗+1(Σ(−)).

Example 3.1.1. The short exact sequence

0 → Z/2 → Z/4 → Z/2 → 0

induces a long exact sequence on cohomology

. . . �� H∗(−;Z/4) �� H∗(−;Z/2) �� H∗+1(−;Z/2) �� . . .

The connecting homomorphism H∗(−;Z/2) → H∗+1(−;Z/2) is natural and com-
mutes with the suspension isomorphism, so it is a stable cohomology operation of
degree one. We call this operation Sq1; it is also known as the Bockstein homo-
morphism.

Example 3.1.2. Consider the real projective plane RP 2. Then

H∗(RP 2;Z/2) ∼= Z/2[w1]/w
3
1

for a class w1 in degree 1. (The name w1 will reappear in Section 3.3 and is used
consistently here.) Then Sq1(w1) = w2

1. In fact, RP 2 can be constructed from the
circle S1 via the following pushout diagram:

S1 ��

2
��

D2

��
S1 �� RP 2

The element w1 is dual to the homology class represented by the 1-cell and the
element w2

1 is dual to that represented by the 2-cell. The cohomology operation
Sq1(w1) = w2

1 is recording the fact that the 2-cell of RP 2 is attached to the 1-cell
via the multiplication by 2 map. See Figure 2.
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A GUIDE FOR COMPUTING STABLE HOMOTOPY GROUPS 103

Definition 3.1.3. The Steenrod algebra A is the graded non-commmutative
Z/2-algebra generated in degree k by the stable cohomology operations of that
degree and with multiplication given by composition of operations.

Remark 3.1.4. Let HZ/2 be the mod-2 Eilenberg–MacLane spectrum whose
nth space is given by K(Z/2, n). Since

Ht(−;Z/2) ∼= [(−)+,K(Z/2, n)] ∼= [Σ∞(−)+,Σ
tHZ/2]

it follows from the Yoneda Lemma that degree t cohomology operations are in one
to one correspondence with maps [HZ/2,ΣtHZ/2]. Therefore,

A ∼= HZ/2∗(HZ/2).

Constructing all cohomology operations is rather difficult and a good reference
is given by [MT68]. However, A can be described axiomatically and this is the
approach we take here.

Theorem 3.1.5. For each k ≥ 0, there exists a stable cohomology operation of
degree k

Sqk : H∗(−;Z/2) → H∗+k(−;Z/2)

called the kth Steenrod square. For X a topological space, the Steenrod squares
satisfy the following properties:

(a) Sq0 = 1
(b) For x ∈ Hk(X;Z/2), Sqk(x) = x2.
(c) If x ∈ Hi(X;Z/2) and i < k, then Sqk(x) = 0.
(d) (Cartan Formula) Sqk(xy) =

∑
i+j=k Sq

i(x)Sqj(y), where the multiplica-

tion on H∗(X;Z/2) is given by the cup product.

Remark 3.1.6. In Theorem 3.1.5, the Cartan Formula is only expressed for
the cup product of elements in H∗(X;Z/2). However, it also holds for the cross
product. That is, if x ∈ H∗(X;Z/2) and y ∈ H∗(Y ;Z/2), then for

x⊗ y ∈ H∗(X × Y ;Z/2) ∼= H∗(X;Z/2)⊗Z/2 H
∗(Y ;Z/2),

then
Sqk(x⊗ y) =

∑
i+j=k

Sqi(x)⊗ Sqj(y).

If one is working with the reduced cohomology groups, then the same formula holds
for H∗(X ∧ Y ) ∼= H∗(X)⊗Z/2 H

∗(Y ).
Finally, if there is a continuous map Y → X × Y , so that H∗(Y ;Z/2) becomes

a module over H∗(X;Z/2), then the Cartan Formula implies that

Sqk(x · y) =
∑

i+j=k

Sqi(x) · Sqj(y)

where · denotes the action of H∗(X;Z/2) on H∗(Y ;Z/2).

Theorem 3.1.7. The Steenrod algebra A is the tensor algebra over Z/2 gener-
ated by the Sqi subject to the following relations:

(1) Sq0 = 1
(2) The Adem relations: For 0 < a < 2b,

SqaSqb =

[a/2]∑
c=0

(
b− c− 1

a− 2c

)
Sqa+b−cSqc.
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104 A. BEAUDRY AND J. A. CAMPBELL

Remark 3.1.8. The Steenrod algebra A is a graded, non-commutative, aug-
mented algebra. In fact, it is a cocommutative Hopf algebra over Z/21 whose
coproduct ψ : A → A⊗A is determined by

ψ(Sqk) =
∑

i+j=k

Sqi ⊗ Sqj .

The antipode χ : A → A is defined inductively by the identities

χ(Sq0) = Sq0,
k∑

i=0

Sqiχ(Sqk−i) = 0, k > 0.

We note that A0 = Z/2 and let I(A) be the kernel of the augmentation ε : A → Z/2.

Remark 3.1.9. We let ModA be the category of graded left modules over A.
These are Z-graded Z/2-vector spaces together with a left action of A. Given M
and N in ModA, we let M ⊗Z/2 N be the module whose structure is given by
a(m⊗ n) =

∑
aim⊗ ajn, where a ∈ A and ψ(a) =

∑
ai ⊗ aj .

Modules which satisfy the conditions of Theorem 3.1.5 are called unstable mod-
ules. The cohomology of a spectrum need not be an unstable module in general.

To specify an A-module structure on a graded Z/2-vector space M , one must
describe the action of the Steenrod squares on M . We record this information in
a picture we call an cell diagram. See Figure 1. The following result implies that
specifying the action of Sq2

n

for n ≥ 0 is enough to describe an A-module.

Theorem 3.1.10. A is generated as an algebra by Sq2
n

for n ≥ 0.

Example 3.1.11. Consider the complex projective plane CP 2. Then

H∗(CP 2;Z/2) ∼= Z/2[w2]/w
3
2

for a class w2 in degree 2. (The name w2 reappears in Section 3.3 and is used
consistently here.) It follows from the properties of the squares that Sq2(w2) = w2

2.
In fact, CP 2 can be constructed from the sphere S2 via the following pushout
diagram:

S3 ��

η

��

D4

��
S2 �� CP 2

where η : S3 → S2 is the Hopf fibration. The element w2 is dual to the homology
class represented by the 2-cell and the element w2

2 is dual to that represented by
the 4-cell. The cohomology operation Sq2(w2) = w2

2 is recording the fact that the
4-cell of CP 2 is attached to the 2-cell via the map η. See Figure 2.

Example 3.1.12. The Steenrod operations for the cohomology of RP∞ � BO1

are completely explicit. Writing H∗(RP∞;Z/2) ∼= Z/2[w1] for w1 in degree 1, we
have

Sqn(wm
1 ) =

(
m

n

)
wm+n

1 .

1The authors have heard the following anecdote from Doug Ravenel: During a lecture of
Milnor on Hopf algebras at Princeton many years ago, Steenrod asked if there were any interesting
examples.
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A GUIDE FOR COMPUTING STABLE HOMOTOPY GROUPS 105

Using the naturality of the squares, this example often comes in handy in computing
operations in the cohomology of other spaces. See Figure 4

x

Sq1(x)

Sq2(Sq1(x))

Sq2(x)

Figure 1. A cell diagram, used to depict the Steenrod operations
on the cohomology of a space or spectrum. Each • denotes a
generator of Z/2. The difference in cohomological degree of the
generators is represented vertically. Straight lines denote the action
of Sq1 and curved lines denote the action of Sq2.

w1

w2

Figure 2. The structure of H∗(RP 2) (left), H∗(CP 2) (right) as
modules over A. The class w1 is in H1(RP 2). The class w2 is in
H2(CP 2).

3.2. The subalgebras An. The Steenrod algebra is an infinitely generated
non-commutative algebra. However, it is finitely generated in each degree. In
fact, it is filtered by the finite sub-Hopf algebras generated by Sq1, . . . , Sq2

n

, which
are denoted An. Further, each algebra An contains a commutative subalgebra
generated by elements Q0, . . . , Qn which are defined inductively by

Q0 = Sq1,

Qi = Sq2
i

Qi−1 +Qi−1Sq
2i .

In fact, the Qi’s generate an exterior algebra and we let En = E(Q0, . . . , Qn).
For example, the algebra A1 is the subalgebra of A generated by Sq1 and Sq2.

As a module over itself, A1 admits the cell diagram depicted in Figure 3.

Definition 3.2.1. Let B be a subalgebra of a Z/2-algebra C. Then
C//B := C ⊗B Z/2

where Z/2 denotes the trivial B module concentrated in degree zero.

Remark 3.2.2. The subalgebras A1 and E1 appear naturally in classical com-
putations as they are related to K-theory. Let ku be the connective K-theory
spectrum and ko its real version. See Section 2.5. Then there are isomorphisms of
A-modules

H∗(ku) ∼= A//E1, H∗(ko) ∼= A//A1.
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106 A. BEAUDRY AND J. A. CAMPBELL

Figure 3. A1 (left) and its subalgebra E1 (right). The dashed
lines represent the action of Q1 = Sq1Sq2 + Sq2Sq1.

Similarly, if tmf is the connective spectrum of topological modular forms and BP 〈2〉
is a spectrum obtained from the Brown-Peterson spectrum BP by killing a choice
of generators vk for k ≥ 3, then

H∗(BP 〈2〉) ∼= A//E2, H∗(tmf) ∼= A//A2.

These spectra are the chromatic height 2 analogues of ku and ko respectively.

3.3. Thom spectra and Stiefel–Whitney classes. Given an n-dimensional
vector bundle ν : E → B, we recalled the definition of the Thom space Bν of ν in
Section 2.9. Further, we recalled the Thom isomorphism

Th: H∗(B;Z/2) → H̃∗+n(Bν ;Z/2)

which was given by the cup product with a Thom class U ∈ H̃n(Bν ;Z/2). We note
that Th(1) = U and write

Th(x) = xU.

Warning 3.3.1. The Steenrod operations do not commute with the Thom
isomorphism. This fact is crucial for Definition 3.3.2 below.

The Thom isomorphism is used to define classical invariants of a bundle ν called
the Stiefel–Whitney classes.

Definition 3.3.2. The ith Stiefel–Whitney class wi = wi(ν) of a vector bundle
ν is defined by

wi = Th−1(Sqi(U)) ∈ Hi(B;Z/2).

In particular, they satisfy the identity

wiU = Sqi(U).

The total Stiefel–Whitney class is the formal sum

w = w(ν) = 1 + w1 + w2 + . . .

Remark 3.3.3. If ν is a trivial bundle, the Stiefel–Whitney classes are trivial
except for w0 = 1. Given two vector bundles ν and η, one can show that

w(ν ⊕ η) = w(ν)w(η).

If follows that

w(ν ⊕ ν⊥) = 1
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for any orthogonal complement of an embedding of ν into a trivial bundle m. This
identity allows us to determine the Stiefel–Whitney classes of ν⊥ given those of
ν. It also allows us to define the Stiefel–Whitney classes of a virtual bundle. In
particular,

w(−ν) = w(ν)−1.

The effect of the Steenrod squares on the Stiefel–Whitney classes is given by
the Wu formula.

Theorem 3.3.4 (Wu Formula). Let ν : E → B be a vector bundle over B.
Then

Sqi(wj) =

i∑
k=0

(
(j − i) + (k − 1)

k

)
wi−kwj+k.

Remark 3.3.5. Applying Th(−) to both sides of the display in Definition 3.3.2,
one deduces that

Sqi(U) = wiU ∈ Hi+n(Bν).

Further, the Thom diagonal gives H∗(Bν) the structure of an H∗(B;Z/2)-module.
So using Remark 3.1.6, for x ∈ H∗(B;Z/2) we have

Sqk(xU) =
∑

i+j=k

Sqi(x)Sqj(U) =
∑

i+j=k

Sqi(x)wjU.

This determines the structure of H∗(Bν) as an A-module based on that of H∗(B).

3.4. Examples of computations of Steenrod operations. In this section,
we go through a few selected computations of Steenrod operations. Most of the
examples play a role in Section 10 of [FH16]. Further, the computations illustrate
many of the concepts and techniques mentioned above. We do not do all the
computations in detail but try to give enough information for the reader to learn
the techniques and be able to reproduce them on their own.

Example 3.4.1. The classifying space BOn carries the universal n-plane bundle
γn, and its Thom space is denoted MOn. The cohomology of BOn is

H∗(BOn;Z/2) = Z/2[w1, . . . , wn], H∗(MOn) = Z/2[w1, . . . , wn]{U}.
Similarly, BSOn carries the universal oriented n-plane bundle and its Thom space
is denoted by MSOn. A bundle is oriented if and only if w1 = 0, and so

H∗(BSOn;Z/2) = Z/2[w2, . . . , wn], H∗(MSOn) = Z/2[w2, . . . , wn]{U}.

Example 3.4.2. As special cases of Example 3.4.1 we have

H∗(RP∞;Z/2) ∼= H∗(BO1;Z/2) ∼= Z/2[w1], H∗(MO1) ∼= Z/2[w1]{U}

Further, Sq1(wk
1U) = wk+1

1 U if k is even and zero if k is odd. Using the Cartan

Formula as in Remark 3.1.6, one deduces that Sq2(wk
1U) =

(
k−1
2

)
wk+2

1 U . In fact,
MO1 � RP∞.

Similarly,

H∗(CP∞;Z/2) ∼= H∗(BSO2;Z/2) ∼= Z/2[w2], H∗(MU1) ∼= Z/2[w2]{U},

and Sq2(wk
2U) = wk+1

2 U if k is even and zero if k is odd. All of the Sq1s are zero.
In fact, MU1 � CP∞.
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w1

w2
1

w3
1

w4
1

w5
1

w6
1

w7
1

w8
1

U

w1U

w2
1U

w3
1U

w4
1U

w5
1U

w6
1U

w7
1U

w2

w2
2

w3
2

w4
2

U

w2U

w2
2U

w3
2U

Figure 4. From the left, the structures of H∗(BO1), H
∗(MO1),

H∗(BU1) and H∗(MU1) as A1-modules.

Example 3.4.3. As an exercise that will be relevant in Section 5, we consider
the structure of H∗(MU1 ∧ MO1) as modules over A1. By the Künneth isomor-
phism, we have

H∗(MU1 ∧MO1) ∼= H∗(MU1)⊗Z/2 H
∗(MO1).

We use the Cartan formula as discussed in Remark 3.1.6. Since all of the Sq1s vanish
in H∗(MU1), we deduce from the Cartan formula that for any a ∈ H∗(MU1) and
b ∈ H∗(MO1),

Sq1(a⊗ b) = Sq1(a)⊗ b+ a⊗ Sq1(b) = a⊗ Sq1(b),

Sq2(a⊗ b) = Sq2(a)⊗ b+ Sq1(a)⊗ Sq1(b) + a⊗ Sq2(b)=Sq2(a)⊗ b+ a⊗ Sq2(b).

The A1-module structure is illustrated in a small range in Figure 5.

Example 3.4.4. In this example, we compute part of the structure of H∗(BO3)
as a module over A1. We recall from Section 3.3 that

H∗(BO3;Z/2) ∼= Z/2[w1, w2, w3]

and using the Wu formula, we compute that

Sq1(w1) = w2
1 Sq1(w2) = w1w2 + w3 Sq1(w3) = w1w3

Sq2(w1) = 0 Sq2(w2) = w2
2 Sq2(w3) = w2w3.

With the Cartan formula, this determines all of the operations for A1 on H∗(BO3).
For example,

Sq2(Sq1(w2)) = Sq2(w1w2) + Sq2(w3)

= Sq2(w1)Sq
0(w2) + Sq1(w1)Sq

1(w2) + Sq0(w1)Sq
2(w2) + Sq2(w3)

= w2
1Sq

1(w2) + w1w
2
2 + w2w3

= (w2
1 + w2)Sq

1(w2).

We let

x = Sq1(w2) = w1w2 + w3, w2 = w2
1 + w2.(3.4.1)

A part of the cell diagram for H∗(BO3) is depicted in Figure 6.
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U ⊗ U

U ⊗ w1U

w2U ⊗ U U ⊗ w2
1U + w2U ⊗ U

w2
2U ⊗ U

w2
2U ⊗ w2

1U + w3
2U ⊗ U

Figure 5. The A1-submodule of H∗(MU1 ∧MO1) generated by
U ⊗U , U ⊗w2

1U +w2U ⊗U , w2
2U ⊗U and w2

2U ⊗w2
1U +w3

2U ⊗U .
The class U ⊗U ∈ H3(MU1∧MO1). All classes of of degree ∗ ≤ 5
in H∗(Σ−3MU1 ∧MO1) are contained in this submodule.

Example 3.4.5. To compute the structure of H∗(MO3) as a module over A1,
we use the Thom isomorphism and Remark 3.1.6. The former gives the identifica-
tion

H∗(MO3) ∼= Z/2[w1, w2, w3]{U}
where the Thom class U is in H3(MO3). Remark 3.1.6 allows us to compute the
action of A1 on H∗(MO3) and the result is illustrated in Figure 7. For example,

Sq2(w2U) = Sq2(w2)U + Sq1(w2)Sq
1(U) + w2Sq

2(U)

= w2
2U + xw1U + w2

2U = w1xU.

A few other relations are given by

Sq1(U) = w1U Sq1(w1U) = 0 Sq1(w2U) = w3U Sq1(w3U) = 0

Sq2(U) = w2U Sq2(w1U) = w1w2U Sq2(w2U) = w1xU Sq2(w3U) = w2
1w3U.

Example 3.4.6. We turn to the computation of part of the structure of the
cohomology of MTO3 as a module over A1. Recall that MTO3 is the Thom space
for the virtual bundle −γ3 over BO3. Again, we have a Thom isomorphism

H∗(MTO3) ∼= Z/2[w1, w2, w3]{U}
where the Thom class U = U(−γ3) is in degree −3. However, here wi = wi(γ3), the
Stiefel–Whitney classes of the universal bundle. Let wi = wi(−γ3). To compute
the Steenrod operations using the formula

Sqi(U) = wiU,

of Definition 3.3.2, we need a formula for the wis in terms of the wis. Letting
w = w(γ3) and w = w(−γ3) be the total Stiefel–Whitney classes, Remark 3.3.3
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1w2w2

w4
1x w2

1w2x
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1xw2
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1x

2

Figure 6. The A1-submodule of H∗(BO3) generated by w1, w2,
w3 and w2

1w2. The class w1 ∈ H1(BO3) and w2 ∈ H2(BO3).

U

w2
1U

w2
2U

w2w3U

Figure 7. The A1-submodule of H∗(MO3) generated by the
classes U , w2

1U , w2
2U and w2w3U . The class U ∈ H3(MO3). This

submodule contains all cohomology classes in H∗(Σ−3MO3) of de-
gree ∗ ≤ 5.

gives an identity

w = w−1 =
1

1 + w1 + w2 + w3
=

∑
i≥0

(w1 + w2 + w3)
i.

Collecting the terms of the same degree, we get that

w1 = w1

w2 = w2
1 + w2.
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Therefore, a few relations are given by

Sq1(U)=w1U, Sq1(w1U)=0 Sq1(w2U)=w3U Sq1(w3U)=0

Sq2(U)=(w2
1 + w2)U Sq2(w1U)=w1w2U Sq2(w2U)=w1w3U Sq2(w3U)=0.

A part of the cell diagram for H∗(MTO3) is depicted in Figure 8.

U

w2U

w2
2U w4

1U

w2w3U

w3
2U

Figure 8. The A1-submodule of H∗(MTO3) generated by the
classes U , w2U , w2

2U , w4
1U , w3

2U and w2w3U . The class U ∈
H−3(MTO3). This submodule contains all cohomology classes in
H∗(Σ3MTO3) of degree ∗ ≤ 5.

Exercise 3.4.7. Use the formulas of Example 3.4.5 and Remark 3.1.6 to com-
pute that the A1-submodule of H∗(MO3) generated by U , w2

1U and w2
2U has the

structure depicted in Figure 7. Do the same thing for Figure 8 using the results of
Example 3.4.6.

Example 3.4.8. In this example, we compute the structure of H∗(MSO3) as
a module over A1. Let ι : MSO3 → MO3 be the map of Thom spectra induced
by the inclusion of SO3 into O3. The induced map ι∗ : H∗(MO3) → H∗(MSO3)
is given by moding out w1. The Thom class of γ3 maps to that of the universal
bundle on BSO3. We get an isomorphism

H∗(MSO3) ∼= Z/2[w2, w3]{U}.
Further, the Steenrod operations are natural with maps of spaces or spectra, so
Sqkι∗ = ι∗Sqk.

We use that x ≡ w3 mod (w1) for x as in (3.4.1). We get the following formulas
from Example 3.4.5. First, in the cohomology of BSO3, we have

Sq1(w2) = w3 Sq1(w3) = 0 Sq2(w2) = w2
2 Sq2(w3) = w2w3.
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So, in the cohomology of MSO3, we have

Sq1(U) = 0 Sq1(w2U) = w3U Sq1(w3U) = 0

Sq2(U) = w2U Sq2(w2U) = 0 Sq2(w3U) = 0.

U

w2U

w3U

w2
2U

(w2
3 + w3

2)U

w2
2w3U

w3
3U

w2w3U

w2
3U

w2w
2
3U w4

2U

w5
2U

w4
2w3U

Figure 9. The A1-submodule of H∗(MSO3) generated by the
classes U , w2

2U , w2w3U and w4
2U . The class U ∈ H3(MSO3).

This submodule contains all cohomology classes in H∗(Σ−3MSO3)
of degree ∗ ≤ 5.

4. The Adams spectral sequence

One of the most effective methods for computing stable homotopy groups is
the Adams spectral sequence. The idea is roughly as follows. Take a space or
a spectrum X and resolve it into pieces whose homotopy we understand. The
Eilenberg–MacLane spectra are good candidates — they are constructed to have
homotopy in a single degree. Then, reconstruct the stable homotopy groups of X
from algebraic data associated to this resolution.

We will make this more precise and give a sketch of the construction of the
Adams spectral sequence. In the cases of interest, it has the form

(4.0.1) Es,t
2 = Exts,tA (H∗(X),Z/2) =⇒ (πt−sX)∧2

We will explain the terms in (4.0.1) throughout this section. We begin by defining
ExtA and giving tools to compute it.

4.1. Computing Ext over the Steenrod algebra. Let B be a graded ring.
For any B-module M and r ∈ Z, let ΣrM = M [r] be the graded B-module given
in degree t by

(ΣrM)t = (M [r])t = M t−r.

Let Hom∗
B(M,N) be the graded abelian group given in degree t by

Homt
B(M,N) = HomB(M,ΣtN).

Licensed to Univ of Rochester.  Prepared on Mon Aug 16 06:47:24 EDT 2021for download from IP 128.151.13.206.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



A GUIDE FOR COMPUTING STABLE HOMOTOPY GROUPS 113

The contravariant functor

Hom∗
B(−, N) : B-Mod → Ab

is left exact and has right derived functors ExtsB(−, N). We let

Exts,tB (−, N) = (ExtsB(−, N))t

and treat Ext∗,∗B (−, N) as a functor with values in bi-graded abelian groups. As
always, the value of these functors on a B-module M can be computed by choosing
a resolution P• of M by projective B-modules and forming the cochain complex
Hom∗

B(P•, N). Then

Exts,tB (M,N) = Hs(Homt
B(P•, N)).

A useful tool is the interpretation of elements in Exts,tB (M,N) as equivalence

classes of extensions when s ≥ 1. That is, an element of Exts,tB (M,N) is an exact
complex, or extension,

0 �� ΣtN �� P1
�� . . . �� Ps

�� M �� 0

where two extensions are equivalent if there exists a commutative diagram

0 �� ΣtN

idN

��

�� P1

��

�� . . . �� Ps

��

�� M ��

idM

��

0

0 �� ΣtN �� P ′
1

�� . . . �� P ′
s

�� M �� 0.

Example 4.1.1. The class in Ext1,1A (Z/2,Z/2) represented by the extension

0 → ΣZ/2 → Σ−1H∗(RP 2) → Z/2 → 0,

which is depicted in Figure 10, is called h0. The class in Ext1,2A (Z/2,Z/2) repre-
sented by the extension

0 → Σ2Z/2 → Σ−2H∗(CP 2) → Z/2 → 0,

which is depicted in Figure 11, is called h1.

ΣZ/2

Σ−1H∗(RP2) Z/2

Figure 10. The extension representing h0 in Ext1,1A (Z/2,Z/2).

Σ2Z/2

Σ−2H∗(CP2) Z/2

Figure 11. The extension representing h1 in Ext1,2A (Z/2,Z/2).
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4.2. Module structure on Ext. Let B be a sub-Hopf algebra of the Steenrod
algebra A. Then for any B-module M , there is a map

Exts,tB (M,Z/2)⊗Z/2 Ext
s′,t′

B (Z/2,Z/2) → Exts+s′,t+t′

B (M,Z/2).

This is called the Yoneda product. It is straightforward to describe the product in
terms of extensions. Suppose that s, s′ ≥ 1. Given two extensions

(4.2.1) 0 �� ΣtZ/2 �� P1
�� . . . �� Ps

�� M �� 0

and

(4.2.2) 0 �� Σt′Z/2 �� Q1
�� . . .

ϕs′ �� Qs′
�� Z/2 �� 0,

where (4.2.1) represents an element of Exts,tB (M,Z/2) and (4.2.2) an element of

Exts
′,t′

B (Z/2,Z/2), we can splice the complexes to obtain an extension of length
s+ s′:

0 �� Σt′+tZ/2 �� ΣtQ1
�� . . . �� ΣtQs′

��

		��
���

P1
�� . . . �� Ps

�� M �� 0

ΣtZ/2



�����

which represents the product in Exts+s′,t+t′

B (M,Z/2). This defines the module

structure for elements of degree s ≥ 1 in Exts,tB (M,Z/2). If s = 0, then given a
homomorphism M → ΣtZ/2 in

Ext0,tB (M,Z/2) ∼= HomB(M,ΣtZ/2)

and an element of Exts
′,t′

B (Z/2,Z/2) represented by (4.2.2), we obtain an element

in Exts
′,t+t′

B (M,Z/2) represented by

0 �� Σt′Z/2 �� Q1
�� . . . �� ΣtQs′−1

�� ΣtQs′ ×ΣtZ/2 M �� M �� 0

where ΣtQs′ ×ΣtZ/2 M is the pull-back of A1-modules. There is a commutative
diagram of exact sequences

0 �� ker(Σtϕs′) ��

��

ΣtQs′ ×ΣtZ/2 M

��

�� M

��

�� 0

0 �� ker(Σtϕs′) �� ΣtQs′
�� ΣtZ/2 �� 0

so that we really do get an exact complex. An example when B = A1 is given in
Figure 12.

4.3. Adams charts. For B a sub-Hopf algebra of A, we depict the informa-
tion contained in Exts,tB (M,Z/2) in a picture which we call an Adams chart. See

Figure 13. An Adams chart is an illustration of Exts,tB (M,Z/2) in the (t−s, s)-plane.

A generator for a copy of Z/2 in Exts,tB (M,Z/2) is denoted by a •. Multiplication
by h0 is recorded by drawing a vertical line between two classes and multiplication
by h1 by a line of slope (1, 1). An infinite string of classes connected by multiplica-
tions by h0 is called an h0-tower. Note that the Adams chart for ΣrM is the same
as that of M , but horizontally shifted to the right by r.
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A1//E1 → Z/2

ϕ

ΣZ/2 → A1//E1 ×Z/2 ΣZ/2 → A1//E1

ϕh0

Figure 12. A representative extension for the element ϕh0 in
Ext1,1A1

(A1//E1,Z/2) where the element ϕ : A1//E1 → Z/2 of

Ext0,0A1
(A1//E1,Z/2) is the map which sends the element of degree

two to zero.

x

h0x h1x

s

t − s

Figure 13. An example of an Adams chart for Exts,tB (M,Z/2).

4.4. Minimal resolutions. Let B be a sub-Hopf algebra of A. Recall that A
is an augmented algebra with A0 = Z/2. So this holds for any of its subalgebras.
We let I(B) be the kernel of the augmentation of B. Note that for any B-module
P and Z/2 the trivial B-module, the map

Hom∗
B(P,Z/2) → Hom∗

B(I(B)P,Z/2)
induced by the inclusion I(B)P ↪→ P is zero. So, if P•,

. . . → Ps
fs−→ Ps−1 → . . . → P0 → M

is a projective resolution of M which satisfies

fs(Ps) ⊆ I(B)Ps−1,

then the maps in the cochain complex Hom∗
B(P•,Z/2) are trivial and it follows that

Exts,tB (M,Z/2) ∼= Homt
B(Ps,Z/2).

Such a resolution is called a minimal resolution.
IfM is a B-module which is bounded below, thenM has a minimal resolution by

free B-modules. In such a resolution P• → M , the Ps are direct sums of suspensions
of B and Exts,tB (M,Z/2) is a product of Z/2s indexed over the summands ΣtB ⊆ Ps.
If there are finitely many of these, the product is isomorphic to a direct sum and
each summand corresponds to a generator in Exts,tB (M,Z/2).

If B and M are small, these are straightforward to construct and we do a few
examples here in the case when B = A1.

Remark 4.4.1. Let B a sub-Hopf algebra of A and M a graded B-module of
finite type which is zero in degrees t < n. Using a free minimal resolution of M to
compute Exts,tB (M,Z/2), one deduces that Exts,tB (M,Z/2) = 0 for t− s < n.
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Example 4.4.2. We begin by constructing a resolution of the A1-module M0 =
A1//E0, where E0 is the subalgebra generated by Sq1. It is depicted below. This
example is also treated by a different method in Example 4.5.5. The module M0

has a periodic minimal resolution of the form

(4.4.1) M0 A1
�� ΣA1

�� Σ2A1
�� . . .��

See Figure 16. The horizontal (blue online) arrows indicate the maps in (4.4.1).
The circled (in red online) classes are in the kernel. We have redrawn the kernels
to the right (in red online) to make the next map easier to visualize. The duals of
the boxed classes (in blue online) will form a basis of Ext∗,∗A1

(M0,Z/2). Recall that

h0 was defined in Example 4.1.1. See also Figure 10. The class in Ext1,1A1
(M0,Z/2)

is the h0 multiple of the class in Ext0,0A1
(M0,Z/2). This is read off of the part of

Figure 16 that has been framed (in gray).
The A1-module M0 is not the restriction of any A-module, but it has such

a nice projective resolution that it is often used as a tool to compute resolutions
for other modules. This will be explained below. There are larger versions of the
module M0 that we will denote by Mn obtained by stringing together copies of M0,
including the case n = ∞. For example, M1 is drawn in Figure 17. These all have
periodic minimal resolutions. For example,

M1 A1 ⊕ Σ4A1
�� Σ(A1 ⊕ Σ4A1)�� Σ2(A1 ⊕ Σ4A1)�� . . .��

The Adams chart of Mn has h0-towers starting in (4k, 0) for 0 ≤ k ≤ n. For
example, the Adams chart for M1 is depicted in Figure 17.

Figure

14. The A1

module M0.

Figure 15. The Adams
chart for Exts,tA1

(M0,Z/2).

Example 4.4.3. The module Z/2 has a rather complicated minimal resolution.
It is an excellently annoying exercise to work it out. We have illustrated the first
two terms of such a resolution in Figure 19. We will give a different approach in
Example 4.6.5 to computing the Adams chart for ExtA1

(Z/2,Z/2) but we include
it here in Figure 20.

4.5. Change-of-rings. Let B be a subalgebra of A. We defined A//B in
Definition 3.2.1.

Lemma 4.5.1 (Shearing Isomorphism). Let B be a sub Hopf-algebra of A. Let
M be an A-module. Then there is an isomorphism of A-modules

A⊗B M ∼= A//B ⊗Z/2 M
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−1 0 1

Figure 16. A minimal projective resolution for M0 = A1//E0.
The horizontal (blue online) arrows indicate the maps in the res-
olution. The circled (in red online) classes are in the kernel. The
kernels are redrawn to the right (in red online). The duals of the
boxed classes (in blue online) form a basis of Ext∗,∗A1

(M0,Z/2).

Figure 17. The
A1-module M1.

Figure 18. The Adams chart
for Exts,tA1

(M1,Z/2).

where the action of A on A⊗BM is via the left action of A on itself and the action
of A on A//B ⊗Z/2 M is the one described in Remark 3.1.9.

Remark 4.5.2. If B = Z/2, the isomorphism of Lemma 4.5.1 is induced by the
composite

A ψ⊗M �� A⊗A⊗M
A⊗f �� A⊗M

where f : A⊗M → M is the structure map of the A-module M . The maps ψ and
χ below are as in Remark 3.1.8. The inverse is induced by the composite

A ψ⊗M �� A⊗A⊗M
A⊗χ⊗M �� A⊗A⊗M

A⊗f �� A⊗M.

One verifies that these maps descend to the quotients for more general B.
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−1 0 1

Figure 19. The beginning of a minimal resolution for the trivial
A1-module Z/2. Circled (red online) classes joined by a horizontal
line indicate that the sum of the classes are in the kernel.

Figure 20. The Adams chart for Exts,tA1
(Z/2,Z/2).

From the shearing isomorphism and, from the adjunction

HomB(M,N) ∼= HomA(A⊗B M,N)

one can prove that

Ext∗,∗A (A//B ⊗Z/2 M,N) ∼= Ext∗,∗B (M,N)

for any A-modules M and N . Therefore, in the case of extended modules, compu-
tations over A can be reduced to potentially easier computations over smaller sub-
Hopf algebras B. Some common examples are described below.

Example 4.5.3. Many of the modules relevant in the computations of [FH16]
are of the form A//A1 ⊗Z/2 M0 in some range. By the adjunction

Ext∗,∗A (A//A1 ⊗Z/2 M0,Z/2) ∼= Ext∗,∗A1
(M0,Z/2),

we only need to keep track of the A1-module structure.

Remark 4.5.4. Let R be a graded exterior algebra on n generators over Z/2

R = E(x1, . . . , xn) = Z/2[x1, . . . , xn]/(x
2
1, . . . , x

2
n).
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where xi is in degree ti. Then Ext∗,∗R (Z/2,Z/2) is a polynomial algebra on n
generators

Ext∗,∗R (Z/2,Z/2) ∼= Z/2[y1, . . . , yn]

for yi ∈ Ext1,ti(Z/2,Z/2). This is an example of a phenomenon called Koszul
duality.

Example 4.5.5. The module M0 of Example 4.4.2 is isomorphic to A1//E0,
where E0 is the algebra generated by Sq1. The algebra E0 is an exterior algebra on
one generator in degree 1, so that

Ext∗,∗A1
(M0,Z/2) ∼= Ext∗,∗E0

(Z/2,Z/2) ∼= Z/2[h0]

where h0 ∈ Ext1,1E0
(Z/2,Z/2). The Adams chart for M0 contains one h0-tower

starting in degree (0, 0).

Example 4.5.6. The A1-module A1//E1 is the cohomology of Σ−2H∗(CP 2),
illustrated in Figure 21. By the change-of-rings isomorphism,

Ext∗,∗A1
(A1//E1,Z/2) ∼= Ext∗,∗E1

(Z/2,Z/2).

Since E1 = E(Q0, Q1), it follows that Ext∗,∗A1
(A1//E1,Z/2) is a polynomial algebra

on two generators. It is common to call the generator corresponding to Q0 = Sq1

by h0 ∈ Ext1,1A1
(A1//E1,Z/2). The generator corresponding to Q1 is often called

v1 ∈ Ext1,3A1
(A1//E1,Z/2), so that

Ext∗,∗A1
(A1//E1,Z/2) ∼= Z/2[h0, v1].

The Adams chart is depicted in Figure 22.

Figure 21. A1//E1
1

h0 v1

v2
1

v3
1

Figure 22. The Adams chart
for Exts,tA1

(A1//E1,Z/2).

4.6. Long exact sequences. For some of the computations below we will
need to use the long exact sequence induced on Ext from a short exact sequence of
modules.

Proposition 4.6.1. Let 0 → M → N → P → 0 be an exact sequence of
B-modules. Then there is a long exact sequence

. . . �� Exts,tB (P,Z/2) �� Exts,tB (N,Z/2) �� Exts,tB (M,Z/2)

δ

��������
������

������
������

���

Exts+1,t
B (P,Z/2) �� Exts+1,t

B (N,Z/2) �� . . .
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The map δ can be identified using the description of Ext in terms of extensions
given in Section 4.1. Given an extension

(4.6.1) 0 �� ΣtZ/2 �� P1
�� . . . �� Ps

�� M �� 0

we let Ps+1 = N and get an extension of length s+ 1

0 �� ΣtZ/2 �� P1
�� . . . �� Ps

��

���
��

��
� N = Ps+1

�� P �� 0

M

��								

which corresponds to the boundary of the element of Exts,tB (M,Z/2) represented

by (4.6.1) in Exts+1,t
B (P,Z/2). See, e.g. [McC01, 9.6] for more details.

Computations using Proposition 4.6.1 can be done with the help of an Adams
chart. The trick is to draw both Exts,tB (P,Z/2) and Exts,tB (M,Z/2) in the same chart
and to treat the boundary map δ as a differential of slope (−1, 1). We illustrate
this by an example.

Example 4.6.2. We compute Exts,tA1
(R0,Z/2) for R0 as depicted in Figure 23.

The module R0 sits in an exact sequence

(4.6.2) 0 → ΣZ/2 → R0 → M∞ → 0,

so we use the long exact sequence of Proposition 4.6.1 to compute Exts,tA1
(R0,Z/2):

. . . �� Exts,tA1
(M∞,Z/2) �� Exts,tA1

(R0,Z/2) �� Exts,tA1
(ΣZ/2,Z/2)

δ

h0��


































Exts+1,t
A1

(M∞,Z/2) �� Exts+1,t
A1

(R0,Z/2) �� . . .

The boundary is given by multiplication by h0 since (4.6.2) is a representative

extension for the element h0 · 1 ∈ Ext1,1A1
(M∞,Z/2).

In Figure 24, the classes of Exts,tA1
(ΣZ/2,Z/2) (blue online), which is illustrated

in Figure 20, support boundaries (red online) to the classes of Exts+1,t
A1

(M∞,Z/2)

(green online). The circled classes are the elements of Exts,tA1
(R0,Z/2) in this range.

The dashed line indicates a multiplication by h1 between a class coming from
Exts,tA1

(ΣZ/2,Z/2) and a class coming from Exts+1,t
A1

(M∞,Z/2), which we have not
justified. One way to do this is to compute a minimal resolution for R0 and use the
fact that multiplication by h1 corresponds to the extension depicted in Figure 11.

Example 4.6.3. Consider the A1-module depicted in Figure 25. Using
Proposition 4.6.1, we get the Adams chart depicted in Figure 26.

Remark 4.6.4. We present one last trick which is a variation on Proposi-
tion 4.6.1. It uses the fact that, although the module A1//E0 is not projective, it
has a nice periodic resolution as an A1-module. Given a module M , suppose that
there is an exact complex

(4.6.3) 0 M�� P0
f0�� P1

f1�� P2
f2�� . . .��

where the Ps are direct sums of suspensions of copies of A1 and A1//E0 and with
the property that

fs(Ps) ⊆ I(B)Ps−1,
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ΣZ/2

R0 M∞

Figure 23. An
extension exhibit-
ing an A1-module
we call R0.

Figure 24. The computa-
tion of the Adams chart for
Exts,tA1

(R0,Z/2) using the ex-
act sequence of Figure 23.

A1//E1 R1

ΣM∞

Figure 25. An
exact sequence
of A1-modules
depicting R1.

Figure 26. The computa-
tion of the Adams chart of
Exts,tA1

(R1,Z/2) using the ex-
act sequence of Figure 25.

so that P• → M is a “minimal resolution”, but not by projective modules. We call
this a “modified” minimal resolution. For each summand ΣtA1 in Ps, there will be
a generator of Z/2 ∈ Exts,tA1

(M,Z/2) and for each summand ΣtA1//E0 in Ps, there

will be an h0-tower whose generator is in Exts,tA1
(M,Z/2).

The proof of this fact uses the collapsing of the spectral sequence of a double
complex built from minimal resolutions.

Example 4.6.5. We give a modified minimal resolution forA1 which is periodic
in Figure 27. More precisely, the figure depicts the top row of (4.6.4). The periodic
resolution is obtained by splicing copies of this complex together and is the bottom
row of (4.6.4).
(4.6.4)

0 Z/2�� A1
�� Σ2A1 ⊕ ΣA1//E0�� Σ4A1

�� Σ7A1//E0�� Σ12Z/2�� 0��

0 Z/2�� P0
�� P1

�� P2
�� P3

�� Σ12P0
��

��

Σ12P1
�� . . .��
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Figure 27. A modified minimal resolution for Z/2. The dual of
the boxed classes correspond to a copy of Z/2 if they generate an
A1, or an h0-tower if they generate an A1//E0.

Example 4.6.6. Consider the module R2 depicted in Figure 28. Using the
resolution constructed in Example 4.6.5, we have a modified minimal resolution

0 R2
�� Σ−1P1

�� Σ−1P2
�� . . .��

So the Adams chart for Exts,tA1
(R2,Z/2) is a truncated version of that for

Exts,tA1
(Z/2,Z/2) and is given in Figure 29. Similarly, the A1-modules J , called

the joker, and Q called the “upside down” question mark complex also have Adams
charts which are truncated versions of that for A1. These are depicted in Figure 29.

R2 J Q

Figure 28. An A1-module we call R2 (left), the joker J (center)
and the “upside down” question mark complex Q (right).

4.7. The Adams spectral sequence. We turn to the construction of the
spectral sequence. In this section, we make the following assumption:

Assumption 4.7.1. Let X be the suspension spectrum of a CW-complex that
has finitely many cells in each dimension.

For example, the Thom spectra we are considering have this property since
Grassmanians have cell structures with finitely many n-cells for each n. Some of
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Figure 29. The Adams chart for Exts,tA1
(R2,Z/2) (top),

Exts,tA1
(J,Z/2) (center) and the Adams chart for Exts,tA1

(Q,Z/2)
(bottom).

this can be done in more generality, but all of our examples will have models of this
form so we limit ourselves to this case. A friendly reference to spectral sequences
is Hatcher’s online notes [Hat]. Other great references are McCleary [McC01],
Boardman [Boa99] and Miller [Mil81].

Definition 4.7.2. The Hurewicz homomorphism

h : πtX = [St, X] → HomA(H
∗(X), H∗(St)) ∼= HomA(H

∗(X),ΣtZ/2)

is defined by sending a map f : St → X to the induced map on cohomology,
f∗ : H∗(X) → H∗(St).

If h were an isomorphism, computing the homotopy groups of X would be as
easy as understanding its cohomology. In certain cases, this does happen.

Definition 4.7.3. A spectrum Z is a generalized Eilenberg–MacLane spectrum
of finite type if

Z � HV �
∨
i∈I

ΣiHZ/2

where V is a graded Z/2 vector space which is finite in each degree.
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124 A. BEAUDRY AND J. A. CAMPBELL

The finiteness assumption in Definition 4.7.3 gives an isomorphism∨
i∈I

ΣiHZ/2 �
∏
i∈I

ΣiHZ/2.

See (2.3.2).

Example 4.7.4. Let X be a spectrum that satisfies Assumption 4.7.1. There
is an isomorphism

H∗(HZ/2 ∧X) ∼= A⊗Z/2 H
∗(X)

and a class 1⊗x ∈ H |x|(HZ/2∧X) corresponds to a map HZ/2∧X → Σ|x|HZ/2.
By Assumption 4.7.1, the cohomology of X is finite in each degree, so∏

x∈H∗(X)

Σ|x|HZ/2 �
∨

x∈H∗(X)

Σ|x|HZ/2

and the product of these maps is a weak equivalence:

HZ/2 ∧X �� ∨
x∈H∗(X) Σ

|x|HZ/2

So any spectrum of the form HZ/2 ∧ X for X satisfying Assumption 4.7.1 is a
generalized Eilenberg–MacLane spectrum of finite type.

If Z is a generalized Eilenberg–MacLane spectrum of finite type, then the
Hurewicz homomorphism is an isomorphism. So, the idea is to resolve X by gen-
eralized Eilenberg–MacLane spectra.

Definition 4.7.5. Let X be a spectrum that satisfies Assumption 4.7.1. An
Adams resolution is a sequence of spectra

(4.7.1) X = X0

j0

��

X1

j1

��

i0�� X2

j2

��

i1�� X3
i2��

j3

��

. . .��

K0

δ0

��

K1

δ1

��

K2

δ2

��

K3

δ3

��

where

Xs+1
is �� Xs

js �� Ks
δs �� ΣXs+1

are cofiber sequences (i.e. exact triangles) and such that

(a) Ki �
∨

j∈Ii
ΣjHZ/2 for some indexing set Ii, and

(b) H∗(Ki) → H∗(Xi) is surjective.

Remark 4.7.6. From an Adams resolution, we obtain a sequence

X = X0
�� K0

�� ΣK1
�� Σ2K2

�� . . .

where ΣsKs → Σs+1Ks+1 is the composite js+1 ◦ δs. Further, the resolution is
constructed so that H∗(Σ•K•) → H∗(X) is a projective resolution of H∗(X) as an
A-module.

Licensed to Univ of Rochester.  Prepared on Mon Aug 16 06:47:24 EDT 2021for download from IP 128.151.13.206.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



A GUIDE FOR COMPUTING STABLE HOMOTOPY GROUPS 125

Remark 4.7.7. Let HZ/2 be defined by the fiber sequence HZ/2 → S →
HZ/2. From Remark 4.7.4, it follows that

X

j0

��

HZ/2 ∧X

j1

��

i0�� HZ/2∧2 ∧X

j2

��

i1�� . . .
i2��

HZ/2 ∧X

δ0

��

HZ/2 ∧HZ/2 ∧X

δ1

��

HZ/2 ∧HZ/2∧2 ∧X

δ2

��

is an Adams resolution. So Adams resolutions always exist.

Definition 4.7.8. Let

F s = im(π∗Xs → π∗X).

Then α ∈ π∗X has Adams filtration s if α ∈ F s\F s+1.

The Adams filtration of an element is independent of the choice of Adams
resolution.

Lemma 4.7.9. An element f ∈ πtX has Adams filtration ≥ s if and only if f
factors as

f : St = Us → Us−1 → Us−2 → . . . → U1 → U0 = X

where the maps Ui → Ui−1 induce the zero maps on mod-2 cohomology.

Example 4.7.10. An element of π∗X has Adams filtration 0 if and only if its
image under the Hurewicz homomorphism is non-zero. The image of πtX1 → πtX
is the kernel of the map j0. But j

∗
0 is surjective on cohomology, so

HomA(H
∗(X),ΣtZ/2) → HomA(H

∗(K0),Σ
tZ/2)

is injective. In particular, i∗0 must be zero and the image of i0 consists of elements
of filtration s ≥ 1.

Examples of elements of Adams filtration one are the Hopf maps

η : S3 → S2, ν : S7 → S4, σ : S15 → S8.

We now turn to the construction of the Adams spectral sequence. Fix an Adams
resolution of X as in (4.7.1). Applying π∗(−), we get an unravelled exact couple

π∗X π∗X0

j0

��

π∗X1
i0��

j1

��

π∗X2
i1��

j2

��

π∗X3
i2��

j3

��

. . .��

π∗K0

δ0





π∗K1

δ1





π∗K2

δ2





π∗K3

��

from which we obtain a spectral sequence. More precisely, we let

(a) Es,t
1 = πt−sKs

∼= πtΣ
sKs, and

(b) d1 : E
s,t
1 → Es+1,t

1 be given by d1 = Σjs+1 ◦ δs.
In general, E∗,∗

r = ker(dr−1)/ im(dr−1) and dr : E
s,t
r → Es+r,t+r−1

r is given by
dr(x) = j(y) for any y such that ir−1(y) = δ(x). Here, in = i ◦ . . . ◦ i iterated
n-times and we have left out indices and suspensions.

Proposition 4.7.11. Let X satisfy Assumption 4.7.1. There is an isomor-
phism

Es,t
2

∼= Exts,tA (H∗(X),Z/2).

Licensed to Univ of Rochester.  Prepared on Mon Aug 16 06:47:24 EDT 2021for download from IP 128.151.13.206.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



126 A. BEAUDRY AND J. A. CAMPBELL

Proof. In degree t, the E2 term is the cohomology of

(4.7.2) 0 �� πtK0
�� πtΣK1

�� πtΣ
2K2

�� . . .

However, the Ks are generalized Eilenberg MacLane spectra, so

πtΣ
sKs

∼= HomA(H
∗(ΣsKs),Z/2).

The Adams resolutions are built so that H∗(Σ•K•) → H∗(X) is a projective reso-

lution as A-modules, so the homology of (4.7.2) is Exts,tA (H∗(X),Z/2). �

In general, the Adams spectral sequence does not exactly compute the homo-
topy groups of the spectrum X. However, under Assumption 4.7.1, it does compute
their 2-completion, a construction we review here.

Definition 4.7.12. Let G be an abelian group. For each s ∈ N, let

ps+1 : G/2s+1 → G/2s

be the map induced by reduction modulo 2s. The 2-completion of G, denoted by
G∧

2 , is the inverse limit of G/2s along the maps ps. That is,

G∧
2 = lim←−

s

G/2s.

Remark 4.7.13. Note that in the category of abelian groups, lim←−s
G/2s is

isomorphic to the kernel of the map

p :
∏
s

G/2s →
∏
s

G/2s

where p is the difference of the identity and the map to the product induced by the

composites
∏

s G/2s → G/2k+1 pk+1−−−→ G/2k.

Example 4.7.14. If G = Z, then

Z2 := (Z)∧2 = lim←−
s

Z/2s

are the 2-adic integers. In general, if G is a finitely generated abelian group,

G∧
2
∼= G⊗ Z2.

In particular, if G is a finite abelian 2-group, then G∧
2
∼= G.

Theorem 4.7.15. Let X satisfy Assumption 4.7.1. Then the Adams spectral
sequence for X computes the 2-completion of the homotopy groups of X. That is,
the spectral sequence converges to (π∗X)∧2 :

Exts,tA (H∗(X),Z/2) =⇒ (πt−sX)∧2

Remark 4.7.16. In fact, the Adams spectral sequence for X satisfying
Assumption 4.7.1 computes the homotopy groups of a spectrum X∧

2 that can be
obtained using a construction analogous to completion for abelian group, and which
has the property that π∗(X

∧
2 )

∼= (π∗X)∧2 . In broad strokes, we define X/2s ∈ hSp
via the exact triangle:

X
2s �� X �� X/2s �� ΣX.
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There are induced maps ps+1 : X/2s+1 → X/2s and we define lim←−s
X/2s ∈ hSp by

the exact triangle

lim←−s
X/2s �� ∏

s X/2s
p �� ∏

s X/2s �� Σ lim←−s
X/2s

where p is the difference of the identity and the map to the product induced by the

composites
∏

s X/2s → X/2k+1 pk+1−−−→ X/2k. This is called the homotopy inverse
limit. For a spectrum X that satisfies Assumption 4.7.1, then

X∧
2 = lim←−

s

X/2s.

We refer the reader to Bousfield [Bou79, Section 2] and Ravenel [Rav86, II.2.1]
for more details on this and related topics.

4.8. Using the Adams spectral sequence. In this section, we continue to
assume that X satisfies Assumption 4.7.1, so that the Adams spectral sequence for
X computes the 2-completion of the homotopy groups of X.

Computing Adams differentials is “an art not a science”. There is no algorithm
for determining them in general and it usually is a theorem when one computes a
new differential in a spectral sequence of interest. However, there are rules to the
game and the goal of this section is to share some of the tricks of the trade.

First, the Adams spectral sequence is depicted in an Adams chart as in Fig-
ure 30. In this grading, a dr differential increases s by r and decreases t−s by 1. If
dr(x) = y, we say that x hits, or kills y. The class x is the source and y the target
of the differential. A class which is in the the kernel of dr for every r is called a
permanent cycle. A class which is hit by a differential is called a boundary. We say
that x survives if it is a permanent cycle, but not a boundary.

The Adams spectral sequence for X is a module over the Adams spectral se-
quence for S0. From this it follows that the differentials are h0 and h1-linear
since h0 detects 2 ∈ (π0S0)

∧
2 and h1 detects the Hopf map η ∈ (π1S0)

∧
2 . That is,

dr(hix) = hidr(x) for i = 0, 1.
We draw each page E∗,∗

r of the spectral sequence in subsequent Adams charts,
erasing pairs of classes x and y that are connected by a differential dr(x) = y as
we “turn the pages”. Letting the process go to infinity, or stopping when there are
no possible differentials left, we get the last page, called E∗,∗

∞ . The last page of the
spectral sequence contains the information for (π∗X)∧2 in the form of an associated
graded. That is, there is a filtration

(πtX)∧2 = F 0,t
∞ ⊇ F 1,t+1

∞ ⊇ F 2,t+2
∞ ⊇ . . .

related to E∗,∗
∞ by exact sequences

(4.8.1) 0 → F s+1,t+s+1
∞ → F s,t+s

∞ → Es,t+s
∞ → 0.

So, each box in the t− s column of the Adams chart at E∗,∗
∞ is a subquotient of the

answer (πtX)∧2 and the last problem is to reassemble them together. This is called
solving the extensions, where the word “extension” refers to (4.8.1). We solve for
F 0,t
∞ /F s,t+s inductively, starting with

0 → E1,t+1
∞ → F 0,t

∞ /F 2,t+2
∞ → E0,t

∞ → 0

and continuing on to

0 → Es,t+s
∞ → F 0,t

∞ /F s+1,t+s+1
∞ → F 0,t

∞ /F s,t+s
∞ → 0.

Licensed to Univ of Rochester.  Prepared on Mon Aug 16 06:47:24 EDT 2021for download from IP 128.151.13.206.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



128 A. BEAUDRY AND J. A. CAMPBELL

We take the inverse limit once all of the terms F 0,t
∞ /F s,t+s have been determined.

An element a ∈ Es,t+s
∞ only represents a class α ∈ (πtX)∧2 modulo elements of

higher filtration. The language used is that a detects the element α. Note that if a
detects α, then it detects any class α + β where β ∈ F s+1,t+s+1

∞ , so a class a may
detect multiple elements.

For the Adams spectral sequence, if a ∈ Es,t+s
∞ and b ∈ Es+1,t+s+1

∞ are such that
h0a = b, then a detects an element α and b detects an element β such that 2α = β.
So multiplication by h0 records multiplication by 2 and corresponds to a non-trivial,
but easy to detect, extension as it comes from the module structure of the E2-page.
However, there can be non-trivial extensions coming from multiplications that do
not come from the algebraic structure of the E2-page. These are called exotic
extensions. For example, if 2ζ = ω, for ζ ∈ F s,t+s

∞ and ω ∈ F s+ε,t+s+ε
∞ where

ε > 1. Then ζ will be detected by some z ∈ Es,t+s
∞ and ω will be detected by some

w ∈ Es+ε,t+s+ε
∞ so that these two classes are too far apart to be connected by an

h0. These situations are illustrated in Figure 30.
If there are no non-trivial differentials, we say that the spectral sequence col-

lapses. We say that it collapses at Er if E∗,∗
r = E∗,∗

∞ . Often, there will be no
possibilities for non-trivial differentials as the target of any possible differential will
be zero. In this case, we say that the spectral sequence collapses for degree reasons,
or is too sparse for differentials. Finally, if there are no possibilities for exotic ex-
tensions because no two classes on the E∞-page are aligned in a way that would
allow for one to exist, we again say that there are no exotic extensions for degree
reasons or that the spectral sequence is too sparse for exotic extensions. These are
the best of all possible scenarios since differentials are hard to compute and exotic
extensions are hard to solve. We will be in this situation in all of the examples in
Section 5.

Example 4.8.1. A typical example of solving extensions is when a column
consists of a single h0-tower, say starting in E0,t

∞ . Then

0 �� Es,t+s
∞ �� F 0,t

∞ /F s+1,t+s+1
∞ �� F 0,t

∞ /F s,t+s
∞ �� 0

0 �� Z/2 �� Z/2s+1 �� Z/2s �� 0

and F 0,t
∞ /F s,t+s

∞
∼= Z/2sZ for all s. So

(πtX)∧2
∼= lim←−

s

F 0,t
∞ /F s,t+s

∞
∼= lim←−

s

Z/2s ∼= Z2

where Z2 are the 2-adic integers defined in Example 4.7.14.

5. Examples from the classification problems

In this section, we work out examples to illustrate the methodology. First, some
notation. In [FH16], Freed and Hopkins give a uniform classification of fermionic
symmetric groups ([FH16, 9.2]) in spacetime dimension n. There are two com-
plex symmetry groups, denoted Hc

n(s), and labelled by s = 0, 1 and eight real
symmetry groups, denoted Hn(s), and labelled by s = 0,±1,±2,±3, 4. They also
show [FH16, 2.12] that in each case there are maps Hn(s) ↪→ Hn+1(s) stabilizing
the groups, so that it makes sense to speak of H(s) and Hc(s) (this is precisely
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a

b
h0

x

y

z

w
d3

E3

e

a ∼ α

b ∼ β

z ∼ ζ

w ∼ ω
h0 ∼ 2

2

e

E4 or E∞

Figure 30. Some phenomena in an Adams spectral sequence. The
left chart is an example of an E3-page and the right is the corre-
sponding E4-page, which in this case would be the E∞-page as
there is no possibilities for further differentials. (The class e can-
not support a dr differential to the h0-tower since this would violate
the h0-linearity of the differentials.)

analogous to how O(n) stabilizes to O). The Madsen-Tillman spectra (see Sec-
tion 2.9) MTH(s) are the cobordism theory of manifolds with stable tangential
H(s)-structure. It is this cobordism theory that features in the Freed-Hopkins clas-
sification. This section will be devoted to computing the low dimensional homotopy
groups of these cobordism spectra.

In [FH16], Freed and Hopkins produce the tables of Figure 31. The explana-
tions in [FH16] are brief and some steps are left as exercises. In [Cam17], one of
the authors gave a detailed explanation of the computation forMT Pin−, MT Pin+,
MT Pinc̃−, MT Pinc̃+ andMTG+. For this reason, we choose to apply the methods
to explain the computations for MTG0, MTG−, MT Spinc and MT Pinc, although
we start by reproducing the computation for MTG+ as a warm-up.

∗ s X(H(s)) π0 π1 π2 π3 π4

M Spin 0 MO0 � S0 Z Z/2 Z/2 0 Z

MT Pin− +1 Σ−1MO1 Z/2 Z/2 Z/8 0 0
MT Pin+ −1 ΣMTO1 Z/2 0 Z/2 Z/2 Z/16

MT Pinc̃− +2 Σ−2MO2 Z/2 0 Z× Z/2 0 Z/2

MT Pinc̃+ −2 Σ2MTO2 Z/2 0 Z Z/2 (Z/2)3

MTG+ +3 Σ−3MO3 Z/2 0 Z/2 0 Z/2× Z/4
MTG− −3 Σ3MTO3 Z/2 0 Z/2 0 (Z/2)3

MTG0 +4 Σ−3MSO3 Z 0 0 0 Z2

∗ s X(Hc(s)) π0 π1 π2 π3 π4

MT Spinc 0 Σ−2MU1 Z 0 Z 0 Z2

MT Pinc 1 Σ−3MU1 ∧MO1 Z/2 0 Z/4 0 Z/8× Z/2

Figure 31. The various real (top) and complex (bottom) symme-
try groups studied in [FH16]. Note that M Spin � MT Spin.
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130 A. BEAUDRY AND J. A. CAMPBELL

5.1. Reducing to computations over A1. Computations of A are in gen-
eral difficult to perform without computer assistance. However, if one can reduce
the computation to one over A1, constructing minimal resolutions becomes rather
straightforward and computations can be done by hand, at least in some range.

The key to making the shift from computations over A to computations over
A1 is the fact that the spectra MTH defined above satisfy

MTH � MSpin∧X(H)

where X(H) are the Thom spectra of certain familiar vector bundles [FH16, 10.7].
The values of X(H) for the groups H studied in [FH16] are given in Figure 31.

Since our cohomology is with field coefficients, namely Z/2, the Künneth for-
mula gives an isomorphism

H∗(MTH) ∼= H∗(MSpin)⊗Z/2 H
∗(X(H)).

The key steps in the reductions of computations to an A1-module problem is the
following theorem.

Theorem 5.1.1 (Anderson, Brown, Peterson). There is an isomorphism

H∗(MSpin) ∼= A⊗A1
(Z/2⊕M)

where M is a graded A1-module which is zero in degrees t < 8.

As a consequence of Theorem 5.1.1 and Remark 4.4.1, we have:

Corollary 5.1.2. There is an isomorphism

Exts,tA (H∗(MSpin∧X(H)),Z/2) ∼= Exts,tA1
(H∗(X(H)),Z/2)

if t− s < 8.

So low dimensional computations can be done over A1. We go through the
following steps to compute πtMTH for 0 ≤ t ≤ 4:

(1) Compute H∗(X(H)) as modules over the A1. See Section 3.4.

(2) Compute Exts,tA1
(H∗(X(H)),Z/2) in the range t− s ≤ 5. See Section 4.4,

Section 4.5 and Section 4.6.
(3) Compute the differentials and extensions. See Section 4.8. In all of our

examples, the spectral sequences are too sparse for differentials and exotic
extensions and this step is trivial.

(4) Read off π∗MTH.

We will do this one example at a time.

5.2. The case s = 3. This is the case of H = G+ = Pin+ ×{±1}SU2 and in
this case,

MTG+ � MSpin∧Σ−3MO3.

This example was stated in [FH16] and explicitly computed in [Cam17]. The
cohomology of H∗(Σ−3MO3) is illustrated in Figure 7. Let R3 be the A1-module
depicted in Figure 32, so that R3 sits in an exact sequence

0 → ΣQ → R3 → M∞ → 0.

From Figure 7, we have that

H∗(Σ−3MO3) ≈ R3 ⊕ Σ2A1 ⊕ Σ4A1 ⊕ Σ5A1
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where we will use ≈ to denote that there is an isomorphism in the range necessary
for computations of homotopy groups in degrees less than or equal to 4. We include
the column t − s = 5 to preclude the possibility of incoming differentials into the
column t− s = 4.

To compute the E2-page of the spectral sequence

Exts,tA (H∗(MTG+),Z/2) ≈ Exts,tA1
(H∗(Σ−3MO3),Z/2) ⇒ πt−sMTG+,

we have to compute Ext∗,∗A1
(R3,Z/2). Figure 32 and Figure 33 illustrate this com-

putation.
The Adams spectral sequence computing π∗MTG+ is depicted in Figure 34.

The spectral sequence is too sparse for differentials and exotic extensions, so the
homotopy groups are

π0MTG+ = Z/2

π1MTG+ = 0

π2MTG+ = Z/2

π3MTG+ = 0

π4MTG+ = Z/2× Z/4.

Q

R3 M∞

Figure 32. An
A1-module we
call R3.

Figure 33. The computa-
tion of the Adams chart for
Exts,tA1

(R3,Z/2) using the ex-
act sequence of Figure 32.
The Adams chart for Q is
given in Figure 29 andM∞ is
discussed in Example 4.4.2.

Figure 34. The Adams chart for Exts,tA1
(H∗(Σ−3MO3),Z/2).
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132 A. BEAUDRY AND J. A. CAMPBELL

5.3. The case s = −3. This is the case of H = G− = Pin− ×{±1}SU2 and in
this case,

MTG− � MSpin∧Σ3MTO3.

In the degrees relevant for us, the A1-module structure of H∗(Σ3MTO3) is
given in Figure 8. We have that

H∗(Σ3MTO3) ≈ A1 ⊕ Σ2R0 ⊕ Σ4A1 ⊕ Σ4A1 ⊕ Σ5R5

where R0 is the module depicted in Figure 23 and R5 the module depicted in
Figure 35. The module R5 sits in a short exact sequence of A1-modules (pictured
in Figure 35):

0 → J → R5 → ΣM∞ → 0.

Figure 24 gives Ext∗,∗A1
(R0,Z/2) and Figure 36 gives Ext∗,∗A1

(R5,Z/2). The Adams
chart for
Exts,tA1

(H∗(Σ−3MTO3),Z/2) is depicted in Figure 37 in the range of interest. The
spectral sequence is too sparse for differentials and exotic extensions and the ho-
motopy groups of MTG− are

π0MTG− = Z/2

π1MTG− = 0

π2MTG− = Z/2

π3MTG− = 0

π4MTG− = (Z/2)3.

5.4. The case s = 4. This is the case of H = G0 = Spin×{±1}SU2 and in
this case,

MTG0 � MSpin∧Σ−3MSO3.

The A1-structure of H∗(MSO3) is depicted in Figure 9, and

H∗(Σ−3MSO3) ≈ Q⊕ Σ4R2.

The Adams chart for the modules Q and R2 are depicted in Figure 29, and the
Adams chart for Exts,tA1

(H∗(Σ−3MSO3),Z/2) is in Figure 38. The spectral sequence
is too sparse for differentials and exotic extensions and the homotopy groups of
MTG0 are

π0MTG0 = Z

π1MTG0 = 0

π2MTG0 = 0

π3MTG0 = 0

π4MTG0 = Z2.
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J R5 M∞

Figure 35. An
A1-module we
call R5.

Figure 36. The computa-
tion of the Adams chart for
Exts,tA1

(R5,Z/2) using the ex-
act sequence of Figure 35.
The Adams chart for J is
given in Figure 29 andM∞ is
discussed in Example 4.4.2.

Figure 37. The Adams chart for Exts,tA1
(H∗(Σ3MTO3),Z/2).

Figure 38. The Adams chart for Exts,tA1
(H∗(Σ−3MSO3),Z/2).

5.5. The complex case s = 0. This is the case of Hc = Spinc and in this
case,

MTHc(0) � MSpin∧Σ−2MU1.

The structure of H∗(MU1) as an A1-module is depicted in Figure 4. It is given by
shifted sums of A1//E1, so

H∗(Σ−2MU1) ≈ A1//E1 ⊕ Σ4A1//E1
In Example 4.5.6, we calculated that

Ext∗,∗A1
(A1//E1,Z/2) ∼= Ext∗,∗E1

(Z/2,Z/2) ∼= Z/2[h0, v1]

for v1 in degree (s, t) = (1, 3). The E2-page of the Adams spectral sequence for
π∗MTHc(0) is depicted in Figure 39. The spectral sequence is too sparse for
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134 A. BEAUDRY AND J. A. CAMPBELL

differentials and exotic extensions and the homotopy groups of MTHc(0) are

π0MTHc(0) = Z

π1MTHc(0) = 0

π2MTHc(0) = Z

π3MTHc(0) = 0

π4MTHc(0) = (Z)2

Figure 39. The Adams chart for Exts,tA1
(H∗(MU1),Z/2).

5.6. The complex case s = 1. This is the case of Hc = Pinc and in this
case,

MTHc(1) � MSpin∧Σ−3MU1 ∧MO1.

The structure of H∗(MU1 ∧MO1) is depicted in Figure 5. We have

H∗(Σ−3MU1 ∧MO1) ≈ R6 ⊕ Σ4R6

for the module R6 depicted in Figure 40. In order to compute the E2-page of the
Adams spectral sequence for π∗MTHc(1) we need to compute Ext∗,∗A1

(R6,Z/2). The
module R6 sits in a short exact sequence of A1-modules (pictured in Figure 40):

0 → ΣR1 → R6 → M∞ → 0

and Ext∗,∗A1
(R6,Z/2) is computed in Figure 41. The E2-page of the Adams spectral

sequence for π∗MTHc(1) is depicted in Figure 42. The spectral sequence is too
sparse for differentials and exotic extensions and the homotopy groups of MTHc(1)
are

π0MTHc(1) = Z/2

π1MTHc(1) = 0

π2MTHc(1) = Z/4

π3MTHc(1) = 0

π4MTHc(1) = Z/2× Z/8.
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Figure 40. The
exact sequence
for R6.

Figure 41. The computa-
tion of the Adams chart for
Exts,tA1

(R6,Z/2) using the ex-
act sequence of Figure 40.
The Adams chart for R1 is
given in Figure 26 and M∞
is discussed in Example 4.4.2.

Figure 42. The Adams chart for Exts,tA1
(H∗(MU1 ∧MO1),Z/2).
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