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Abstract
This paper is the first in a series in which we offer a new framework for hermitian
K-theory in the realm of stable ∞-categories. Our perspective yields solutions to a
variety of classical problems involvingGrothendieck-Witt groups of rings and clarifies
the behaviour of these invariants when 2 is not invertible. In the present article we
lay the foundations of our approach by considering Lurie’s notion of a Poincaré ∞-
category, which permits an abstract counterpart of unimodular forms called Poincaré
objects. We analyse the special cases of hyperbolic and metabolic Poincaré objects,
and establish a version of Ranicki’s algebraic Thom construction. For derived ∞-
categories of rings, we classify all Poincaré structures and study in detail the process
of deriving them from classical input, thereby locating the usual setting of forms
over rings within our framework. We also develop the example of visible Poincaré
structures on ∞-categories of parametrised spectra, recovering the visible signature
of aPoincaré duality space.Weconduct a thorough investigation of the global structural
properties of Poincaré∞-categories, showing in particular that they formabicomplete,
closed symmetric monoidal ∞-category. We also study the process of tensoring and
cotensoring a Poincaré ∞-category over a finite simplicial complex, a construction
featuring prominently in the definition of the L- andGrothendieck-Witt spectra that we
consider in the next instalment. Finally, we define already here the 0th Grothendieck-
Witt group of a Poincaré ∞-category using generators and relations. We extract its
basic properties, relating it in particular to the 0th L- and algebraic K-groups, a relation
upgraded in the second instalment to a fibre sequence of spectra which plays a key
role in our applications.
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Introduction

Quadratic forms are among the most ubiquitous notions in mathematics. In a pioneer-
ing paper [75], Witt suggested a way to understand quadratic forms over a field k in
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terms of an abelian groupWq(k), now known as the Witt group of quadratic forms. By
definition, the Witt group is generated by isomorphism classes [V , q] of finite dimen-
sional k-vector spaces equippedwith a unimodular quadratic form q, where we impose
the relations [V ⊕ V ′, q ⊥ q ′] = [V , q]+ [V ′, q ′] and declare as trivial the classes of
hyperbolic forms [V⊕V ∗, h]given by the canonical pairing betweenV and its dualV ∗.
In arithmetic geometry the Witt group became an important invariant of fields, related
to their Milnor K-theory and Galois cohomology via the famous Milnor conjecture.
The definition of theWitt group naturally extends from fields to commutative rings R,
where one replaces vector spaces by finitely generated projective R-modules. More
generally, instead of starting with a commutative ring R and taking R-valued forms,
one can study unimodular hermitian forms valued in an invertible (R⊗ R)-module M
equipped with an involution, a notion which makes sense also for non-commutative
R. This includes for example the case of a ring R with anti-involution by considering
M = R, and also allows to consider skew-quadratic forms by changing the involution
on M by a sign. Quadratic forms at this level of generality also show up naturally in
the purely geometric context of surgery theory through the quadratic L-groups of the
group ringZ[π1(X)] for a topological space X . The latter groups, whose name, coined
by Wall, suggests their relation with algebraic K-theory, are a sequence of groups Lq

i
associated to a ring with anti-involution R, or more generally, a ring equipped with
an invertible (R ⊗ R)-module with involution M as above, with Lq

0(R, M) being the
Witt group of M-valued quadratic forms over R. They are 4-periodic, or more pre-
cisely, satisfy the skew-periodic relation Lq

n+2(R, M) ∼= Lq
n(R,−M), where −M is

obtained from M by twisting the involution by a sign. In particular, for a ring with
anti-involution R the even quadratic L-groups consist of the Witt groups of quadratic
and skew-quadratic forms.

To obtain richer information about quadratic forms over a given R, the Witt group
Wq(R, M) was often compared to the larger group generated by the isomorphism
classes of unimodular quadratic M-valued forms [P, q] over R under the relation
[P ⊕ P ′, q ⊥ q ′] = [P, q] + [P ′, q ′], but without taking the quotient by hyperbolic
forms. The latter construction leads to the notion of the Grothendieck-Witt group
GWq

0(R, M) of quadratic forms. The Witt and Grothendieck-Witt groups are then
related by an exact sequence

K0(R)C2

hyp−−→ GWq
0(R, M) → Wq(R, M) → 0, (1)

where the first term denotes the orbits for the C2-action on the K-theory group K0(R)
which sends the class of a finitely generated projective R-module P to the class
of its M-dual HomR(P, M). The left hand map then sends [P] to the class of the
associated hyperbolic form on P ⊕ HomR(P, M), and is invariant under this C2-
action. The sequence (1) can often be used to compute GWq

0(R, M) from the two
outer groups, and consequently obtain more complete information about quadratic
forms. For example, in the case of the integers this sequence is split short exact and
we have an isomorphism Wq(Z) ∼= Z given by taking the signature divided by 8 and
an isomorphism K0(Z)C2

∼= Z given by the dimension.
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In this paper we begin a four-part investigation revisiting classical questions about
Witt, Grothendieck-Witt, and L-groups of rings from a new perspective. One of our
main motivating applications is to extend the short exact sequence (1) to a long
exact sequence involving Quillen’s higher K-theory and the higher Grothendieck-Witt
groups GWq

i (R, M) introduced by Karoubi and Villamayor [39], see below for more
details. In this paper we, among many other things, define abelian groups Lgq

i (R, M),
called genuine quadratic L-groups, which are the correct higher Witt groups from
this point of view: We show in Paper [3] that we have Lgq

0 (R, M) = Wq(R, M) and
that the sequence (1) can be extended to a long exact sequence involving the groups
Lgq

i (R, M) which starts off as

· · · → GWq
1(R, M) → Lgq1 (R, M) → K0(R)C2

hyp−−→ GWq
0(R, M) → Lgq0 (R, M) → 0.

The groups Lgq
i (R, M) are generally different fromWall’s quadratic L-groups, and in

particular are usually not 4-periodic. They are, however, relatively accessible for study
by means of algebraic surgery. Combining this with the above long exact sequence
allows us to obtain many new results about the Grothendieck-Witt groups GWq

i (R) of
rings in Paper [3]. For example, we obtain an essentially complete calculation of these
groups in the case of the integers R = Z. In what follows we give more background,
outline our approach and its main applications, and elaborate more on the content of
the present paper.

Background

The higherGrothendieck-Witt groupsGWq
i (R, M)mentioned abovewere first defined

by Karoubi and Villamayor [39] by applying Quillen’s foundational techniques from
algebraic K-theory. This is done by producing a homotopy-theoretical refinement of
the 0th Grothendieck-Witt group into a Grothendieck-Witt space and then defining
GWi (R, M) as the i th homotopy group of this space. Given R and M as above,
one organises the collection of unimodular quadratic M-valued forms (P, q) into
a groupoid Unimodq(R, M), which is viewed as an E∞-space using the symmetric
monoidal structure on Unimodq(R) arising from the orthogonal sum. One can then
take its group completion to obtain an E∞-group

GWq
cl(R, M) := Unimodq(R, M)grp,

whose group of components is the Grothendieck-Witt group described above. Here the
subscript cl stands for classical, and is meant to avoid confusion with the constructions
of the present paper series. This construction can equally well be applied for other
interesting types of forms, such as symmetric bilinear, or symmetric bilinear forms
which admit a quadratic refinement, also known as even forms, and these can be taken
with values in an arbitrary invertible module with involution M as above. Taking the
polarisation of a quadratic form determines maps

GWq
cl(R, M) −→ GWev

cl (R, M) −→ GWs
cl(R, M),
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which are equivalences if 2 is a unit in R. In this latter case Grothendieck-Witt groups
are generally much more accessible. For example, if 2 is invertible in R, Schlichting
[59] has produced a (generally non-connective) delooping of the Grothendieck-Witt
space to a Grothendieck-Witt spectrum GWcl(R, M), in which case the forgetful and
hyperbolic maps can be refined to spectrum level C2-equivariant maps

K(R)
hyp−−→ GWcl(R, M)

fgt−→ K(R).

He then showed in loc. cit. that the cofibre of the induced map

K(R)hC2 → GWcl(R, M) (2)

has 4-periodic homotopy groups, whose even values are given by the Witt groups
W(R, M) andW(R,−M). More precisely, Schlichting’s identification of these homo-
topy groupsmatches the L-groups of Ranicki–Wall, which has lead to the folk theorem
that, if 2 is a unit in R, then the cofibre of (2) is naturally equivalent to Ranicki’s L-
spectum Lq(R, M) from [58]. This allows one to produce an extension of (1) to a
long exact sequence, whenever 2 is invertible, and obtain information about higher
Grothendieck-Witt groups from information about higher K- and L-groups. A closely
related connection betweenGrothendieck-Witt spaces with coefficients in±M when 2
is invertible was established by Karoubi in his influential paper [37], where he proved
what is now known as Karoubi’s fundamental theorem, forming one of the conceptual
pillars of hermitian K-theory, as well as part of its standard tool kit. It permits, for
example, to inductively deduce results on higherGrothendieck-Witt groups from infor-
mation about algebraic K-theory and about the low order Grothendieck-Witt groups
GW0(R,±M) and GW1(R,±M).

By contrast, when 2 is not invertible none of these assertions hold as stated. In
particular, the relation between Grothendieck-Witt theory and L-theory remained, in
this generality, completely mysterious. Karoubi, in turn, conjectured in [38] that his
fundamental theorem should have an extension to general rings, relatingGrothendieck-
Witt spaces for two different form parameters, as was also suggested earlier by Giffen
[74]. In the context of motivic homotopy theory, crucial properties such as dévissage
and A1-invariance of Grothendieck-Witt theory were only known to hold when 2
is invertible by the work of Schlichting and Hornbostel [34], [36]. Consequently,
hermitianK-theorywas available to study as amotivic spectrum exclusively overZ[ 12 ],
see [35]. Finally, while all the above tools could be used to calculateGrothendieck-Witt
groups of rings in which 2 is invertible, such as the ring Z[ 12 ] whose Grothendieck-
Witt groups were calculated by Berrick andKaroubi in [13], higher Grothendieck-Witt
groups of general rings remain largely unknown.

Hermitian K-theory of Poincaré∞-categories

The goal of the present paper series is to offer new foundations for hermitian K-theory
in a framework that unites its algebraic and surgery theoretic incarnations and that is
robustly adapted to handle the subtleties involved when 2 is not invertible. We begin
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by situating hermitian K-theory in the general framework of Poincaré ∞-categories,
a notion suggested by Lurie in his treatise of L-theory [45]. A Poincaré ∞-category
consists of a stable ∞-category C together with a functor Ϙ : Cop → Sp which is
quadratic in the sense of Goodwillie calculus and satisfies a suitable unimodularity

condition, the latter determining in particular a duality DϘ : Cop 
−→ C on C. We refer
to such a Ϙ as a Poincaré structure on C. Roughly speaking, the role of the Poincaré
structure Ϙ is to encode the flavour of forms that we want to consider. For example,
for a commutative ring R one may take C = Dp(R) to be the perfect derived category
of R. One should then think of the mapping spectrum homDp(R)(X ⊗R X , R) as the
spectrum of bilinear forms on the chain complex X , which acquires a natural C2-action
by flipping the components in the domain term. In this case the Poincaré structure

ϘsR(X) = homDp(R)(X ⊗R X , R)hC2

encodes a homotopy coherent version of the notion of symmetric bilinear forms, while

ϘqR(X) = homDp(R)(X ⊗R X , R)hC2

encodes a homotopy coherent version of quadratic forms. Both these Poincaré struc-
tures have the same underlying duality, given by X �→ Homcx

R (X , R).
Alternatively, as we develop in the present paper, one may also obtain Poincaré

structures onDp(R) by taking a non-abelian derived functor associated to a quadratic
functor Proj(R)op → Ab fromfinitely generated projectivemodules to abelian groups.
For example, taking the functors which associate to a projective module P the abelian
groups of quadratic, even and symmetric forms on P one obtains Poincaré structures
ϘgqR , ϘgeR and ϘgsR on Dp(R), respectively. We call these the genuine quadratic, even
and symmetric functors, and consider them as encoding the classical, rigid notions
of hermitian forms in the present setting, whereas ϘqR and ϘsR encode their homotopy
coherent counterparts. More generally, one can apply this construction to any asso-
ciative ring R equipped with an invertible (R ⊗ R)-module with involution M as
above. The resulting Poincaré structures are then all related by a sequence of natural
transformations

ϘqM ⇒ ϘgqM ⇒ ϘgeM ⇒ ϘgsM ⇒ ϘsM ,

which encode the polarisationmap between the quadratic, even and symmetric flavours
of hermitian forms and at the same time the comparison between homotopy coherent
and rigid variants of such forms. The fact that these two types of distinctions are not
entirely unrelated leads to some of the more surprising applications of our approach.
When 2 is invertible in R, all these maps are equivalences.

The fundamental invariant of a Poincaré ∞-category is its space Pn(C, Ϙ) of
Poincaré objects, which are pairs (x, q) consisting of an object x ∈ C and a point
q ∈ �∞Ϙ(x) whose associated map q� : x → DϘ(x) is an equivalence. These are
the avatars in the present context of the notion of a unimodular hermitian form. From
this raw invariant one may produce two principal spectrum valued invariants—the
Grothendieck-Witt spectrum GW(C, Ϙ) and L-theory spectrum L(C, Ϙ). The L-theory
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spectrum was transported by Lurie from the classical work of Wall–Ranicki to
the context of Poincaré ∞-categories in [45]. In particular, the L-theory spec-
trum Lq(R, M) := L(Dp(R), ϘqM ) and Ls(R, M) := L(Dp(R), ϘsM ) coincide with
Ranicki’s 4-periodic quadratic and symmetric L-theory spectra, respectively. When
applied to the genuine Poincaré structures this yields new types of L-theory spectra
Lgq(R, M),Lge(R, M) and Lgs(R, M). It turns out that these are in fact not entirely
new: We show in Paper [3] that for the genuine symmetric structure the homotopy
groups of Lgs(R, M) coincide with Ranicki’s original non-periodic variant of sym-
metric L-groups, as defined in [57]. Somewhat surprisingly, the genuine quadratic
L-theory spectrum Lgq(R, M) is a 4-fold shift of Lgs(R, M).

The Grothendieck-Witt spectrum GW(C, Ϙ) of a Poincaré ∞-category is defined
in Paper [2], though in the present paper we already introduce its zeroth homotopy
group GW0(C, Ϙ), namely, the Grothendieck-Witt group. The underlying infinite loop
space

GW(C, Ϙ) := �∞ GW(C, Ϙ)

is then called the Grothendieck-Witt space of (C, Ϙ). If 2 is invertible in R, we show in
Paper [2] that GW(R, M) := GW(Dp(R), ϘM ) is equivalent to the Grothendieck-Witt
spectrum defined by Schlichting in [59] (where ϘM is any of the Poincaré struc-
tures considered above, which coincide due to the invertibility condition on 2). When
2 is not invertible, the fourth and ninth author show in the companion paper [28]
that the Grothendieck-Witt spaces of Dp(R) with respect to the genuine Poincaré
structures ϘgqM , ϘgeM and ϘgsM coincide with the classical Grothendieck-Witt spaces of
quadratic, even and symmetric M-valued forms, respectively. On the other hand,
the Grothendieck-Witt spectra of (Dp(R), ϘqM ) and (Dp(R), ϘsM ) are actually new
invariants of rings, which are based on the homotopy coherent avatars of quadratic
and symmetric forms. These sometimes have better formal properties. For example,
in the upcoming work [16], the first, third and seventh authors show that the GW-
and L-theory spectra associated to the symmetric Poincaré structures ϘsR satisfy A1-
invariance, and can further be encoded via motivic spectra over the integers. This
statement does not hold for any of the other Poincaré structures above, including the
genuine symmetric one.

One of the principal results we prove in Paper [2] is that the relation between
Grothendieck-Witt-, L- and algebraic K-theory is governed by the fundamental fibre
sequence

K(C)hC2 → GW(C, Ϙ) → L(C, Ϙ), (3)

where the first term is the homotopy orbits of the algebraic K-theory spectra of C
with respect to the C2-action induced by the duality of Ϙ. In the case of the genuine
symmetric Poincaré structure ϘgsM , this gives a relation between classical symmetric
Grothendieck-Witt groups and Ranicki’s non-periodic symmetric L-groups, which to
our knowledge is completely new. In the case of the genuine quadratic structure the
consequence is even more surprising: The resulting long exact sequence in homotopy
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groups extends the classical exact sequence (1) to a long exact sequence involving a
shifted copy of Ranicki’s non-periodic L-groups.

Themain role of the present instalment is to lay down themathematical foundations
that enable the arguments of the next three papers, and eventually their fruits, to take
place. In particular, we carefully develop the main concepts of Poincaré∞-categories
and Poincaré objects, discuss hyperbolic objects and Lagrangians, and prove a version
of Ranicki’s algebraic Thom construction in the present setting. We also define the
L-groups and zeroth Grothendieck-Witt group of a Poincaré∞-category, and conduct
a thorough investigation of the global structural properties enjoyed by the∞-category
of Poincaré ∞-categories. In addition to the general framework, we also introduce
and study important constructions of Poincaré ∞-categories, which give rise to our
motivating examples of interest. In particular:

i) We classify all Poincaré structures in the casewhereC is the∞-category of perfect
modules over a ring spectrum, and show that they can be efficiently encoded by
the notion of a module with genuine involution.

ii) WhenC is the perfect derived category of a discrete ring,we develop the procedure
of deriving Poincaré structures used to produce the genuine Poincaré structures
above. Here, we pick up on some recent ideas of Brantner, Glasman and Illusie,
and show that Poincaré structures on C are in fact uniquely determined by their
values on projective modules. This allows for the connection between the present
set-up and Grothendieck-Witt theory of rings in [28], through which the applica-
tions of Paper [2] and Paper [3] to classical problems can be carried out.

iii) We develop in some detail the example of visible Poincaré structures on ∞-
categories of parametrised spectra, which allows us to reproduce visible L-theory
as well as LA-theory of Weiss–Williams in the present setting. This leads to
applications in surgery theory, which we will pursue in future work.

iv) Following Lurie’s treatment of L-theory we study the process of tensoring and
cotensoring a Poincaré ∞-category over a finite simplicial complex. This con-
struction is later exploited in Paper [2] to define and study the Grothendieck-Witt
spectrum.

v) We show that the∞-category of Poincaré∞-categories has all limits and colimits.
This enables one, for example, to produce new Poincaré∞-categories by taking
fibres and cofibres of Poincaré functors, and enables the notion ofadditivity, which
lies at the heart of Grothendieck-Witt theory, to be properly set-up in Paper [2].

vi) We show that Poincaré ∞-categories can be tensored with each other. This can
be used to produce new Poincaré ∞-categories from old, but also to identify
additional important structures, such as a Poincaré symmetric monoidal structure,
which arises in many examples of interest and entails the refinement of their
Grothendieck-Witt and L-theory spectra to E∞-rings. This last claim is proven
in Paper [4], though we construct the consequent multiplicative structure on the
Grothendieck-Witt and L-groups already in the present paper.
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Applications

Our framework of Poincaré ∞-categories is motivated by a series of applications
which we extract in the following instalments, many of which pertain to classical
questions in hermitian K-theory. To give a brief overview of what’s ahead, we first
mention that a key feature of the Grothendieck-Witt spectrum we construct in Paper
[2] is its additivity. In the setting of Poincaré∞-categories, this can be neatly phrased
by saying that the functor (C, Ϙ) �→ GW(C, Ϙ) sends split bifibre sequences

(C, Ϙ) → (C′, Ϙ′) → (C′′, Ϙ′′)

of Poincaré∞-categories to bifibre sequences of spectra, where a split bifibre sequence
is one in which C′ → C′′ admits both a left and a right adjoint. One of the main results
of Paper [2] is that GW is additive, and is, furthermore, universally characterised by
this property as initial among additive functors from Poincaré∞-categories to spectra
equipped with a natural transformation from�∞Pn. This is analogous to the universal
property characterising algebraic K-theory of stable∞-categories established in [14].
In fact, we show in Paper [2] that GW is not only additive but also Verdier localising,
a property formulated as above but with the splitness condition removed. This will
be used in [16] by the first, third and seventh author in order to show that the GW-
spectrum satisfies Nisnevich descent over smooth schemes. It also plays a key role in
the study of Grothendieck-Witt theory of Dedekind rings in Paper [3].

One major consequence of additivity is that the hyperbolic and forgetful maps fit
to form the Bott–Genauer sequence

GW(C, Ϙ[−1]) fgt−→ K(C) hyp−−→ GW(C, Ϙ),

where Ϙ[n] = �nϘ is the shifting operation on Poincaré functors. Such a sequence
was established in the setting of rings in which 2 is invertible by Schlichting [59],
who used it to produce another proof of Karoubi’s fundamental theorem. The same
argument then yields a version of Karoubi’s fundamental theorem in the setting of
Poincaré∞-categories. When applied to the genuine Poincaré structures we construct
in the present paper, this yields an extension of Karoubi’s fundamental theorem to
rings in which 2 is not assumed invertible, establishing, in particular, a conjecture of
Karoubi and Giffen.

The fundamental fibre sequence (3) is heavily exploited in Paper [3] to obtain
applications for classical Grothendieck-Witt groups of rings. In particular, improving
a comparison bound of Ranicki we show in Paper [3] that, if R is Noetherian of global
dimension d, the maps

Lgq(R, M) −→ Lge(R, M) −→ Lgs(R, M) −→ Ls(R, M)

are equivalences in degrees past d + 2, d and d − 2, respectively. Thus, even though
the genuine L-theory spectra are not 4-periodic, they become so in degrees sufficiently
large compared to the global dimension. In addition, when combined with the funda-
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mental fibre sequence (3) this implies that the maps of classical Grothendieck-Witt
spaces

GWq
cl(R, M) → GWev

cl (R, M) → GWs
cl(R, M)

are isomorphisms on homotopy groups in sufficiently high degrees. This is a new and
quite unexpected result about classicalGrothendieck-Witt groups and, to the best of our
knowledge, it is the first time that the global dimension of a ring has been related in any
way to the gap between its quadratic and symmetric GW-groups. Combined with our
extension ofKaroubi’s fundamental theorem this implies that in the case of finite global
dimension Karoubi’s fundamental theorem holds in its classical form in sufficiently
high degrees, allowing for many of the associated arguments to be picked up in this
context. In a different direction, for such rings one can eventually deduce results
about classical symmetric GW-groups from results on the corresponding homotopy
coherent symmetric GW-groups, allowing one to exploit some of the useful properties
of the latter, such as a dévissage property we prove in Paper [3] and theA1-invariance,
which will be established in [16], for the benefit of the former. We exploit these ideas
in Paper [3] to solve the homotopy limit problem for number rings, show that their
Grothendieck-Witt groups are finitely generated, and produce an essentially complete
calculation of the quadratic and symmetric Grothendieck-Witt groups (and their skew
variants) of the integers, affirming, in particular, a conjecture of Berrick and Karoubi
from [13].

Organisation of the paper

Let us now describe the structure and the content of the present paper in more detail. In
Sect. 1 we define Poincaré ∞-categories. As indicated before, a Poincaré∞-category
is a stable ∞-category C equipped with a quadratic functor Ϙ : Cop → Sp which is
perfect in a suitable sense.We give the precise definition in Sect. 1.2, after a discussion
of quadratic functors in Sect. 1.1. We also consider the weaker notion of a hermitian
∞-category, obtained by removing the perfectness condition on Ϙ, and explain how to

extract from a Poincaré structure Ϙ a duality DϘ : Cop 
−→ C. In Sect. 1.3 we describe
how one can classify hermitian and Poincaré structures on a given stable∞-category
in terms of their linear and bilinear parts. Finally, in Sect. 1.4 we discuss the functorial
dependence of hermitian structures on the underlying stable∞-category, and relate it
to the classification discussed in Sect. 1.3.

In Sect. 2 we define the notion of a Poincaré object in a given Poincaré∞-category
(C, Ϙ). Such a Poincaré object consists of an object x ∈ C together with a map q : S →
Ϙ(x), to be thought of as a form in X , such that a certain induced map q� : x → DϘx is
an equivalence. The precise definition is given in Sect. 2.1. We then proceed to discuss
hyperbolic Poincaré objects in Sect. 2.2, and in Sect. 2.3 the slightly more general
notion of metabolic Poincaré objects, that is, Poincaré objects that admit a Lagrangian.
We show how one can understand metabolic Poincaré objects via Poincaré objects
in a certain Poincaré ∞-category Met(C, Ϙ) constructed from (C, Ϙ). The notion of
metabolic Poincaré objects is the main input in the definition of the L-groups of a
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given Poincaré ∞-category, which we also give in this section. Finally, in Sect. 2.5
we define the Grothendieck-Witt group GW0(C, Ϙ) of a given Poincaré ∞-category
and develop its basic properties.

In Sect. 3 we study Poincaré structures on the ∞-category ModωA of perfect mod-
ules over a ring spectrum A. To this end, we introduce the notion of a module with
involution in Sect. 3.1 and show how it can be used to model bilinear functors on
module∞-categories. We then refine this notion in Sect. 3.2 to a module with genuine
involution, that allows us to encode not only bilinear functors but also hermitian and
Poincaré structures. Then, in Sect. 3.4 we discuss the basic operations of restriction
and induction of modules with genuine involution along maps of ring spectra.

In Sect. 4 we discuss several examples of interest of Poincaré ∞-categories in
further detail. We begin in Sect. 4.1 with the important example of the universal
Poincaré ∞-category (Spf , Ϙu), which is characterised by the property that Poincaré
functors out of it pick out Poincaré objects in the codomain. In Sect. 4.2 we consider
perfect derived∞-categories of ordinary rings and show how to translate the classical
language of forms on projective modules into that of the present paper via the process
of deriving quadratic functors. In Sects. 4.3 and 4.4 we explain how to construct
Poincaré structures producing visible L-theory as studied byWeiss [70], Ranicki [58],
and more recently Weiss–Williams [73].

In Sect. 5 we show that the tensor product of stable ∞-categories refines to give
a symmetric monoidal structure on the ∞-category Catp∞ of Poincaré ∞-categories.
The precise definition and main properties of this monoidal product are spelt out in
Sects. 5.1 and 5.2. In Sect. 5.3 we analyse what it means for a Poincaré∞-category to
be an algebra with respect to this structure, and use this analysis in Sect. 5.4 in order to
identify various examples of interest of symmetric monoidal Poincaré∞-categories.

In Sect. 6 we study the global structural properties of the ∞-categories Catp∞ and
Cath∞ of Poincaré and hermitian∞-categories, respectively. We begin in Sect. 6.1 by
showing that these two∞-categories have all small limits and colimits, and describe
how these can be computed. In Sect. 6.2 we prove that the symmetric monoidal struc-
tures on Catp∞ and Cath∞ constructed in Sect. 5.2 are closed, that is, admit internal
mapping objects. We then show in Sects. 6.3 and 6.4 that Cath∞ is tensored and coten-
sored over Cat∞. A special role is played by indexing diagrams coming from the poset
of faces of a finite simplicial complex, which we study in Sect. 6.5 and 6.6, showing
in particular that in this case this procedure preserves Poincaré ∞-categories. The
cotensor construction is used in Paper [2] to define the hermitian Q-construction and
eventually Grothendieck-Witt theory, while the tensor construction plays a role in
proving the universal property of Grothendieck-Witt theory.

In Sect. 7 we consider the relationship between Catp∞ and Cath∞, and between
both of them and various coarser variants, such as bilinear and symmetric bilinear
∞-categories. By categorifying the relationship between Poincaré forms, hermitian
forms and bilinear forms we construct in Sect. 7.2 and 7.3 left and right adjoints to
all relevant forgetful functors. In Sect. 7.3 we also prove a generalised version of the
algebraic Thom construction, which is used in Paper [2] for the formation of algebraic
surgery. In Sect. 7.4 we use this to study Catp∞ and Cath∞ from the perspective of C2-
category theory as developed by Barwick and collaborators, and set-up some of the
foundations leading to the genuine C2-refinement of the Grothendieck-Witt spectrum
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we construct in Paper [2]. Finally, in Sect. 7.5 we show that the Grothendieck-Witt
group and the L-groups are lax symmetric monoidal functors with respect to the tensor
product of Poincaré∞-categories.

1 Poincaré categories

In this section we introduce the principal notion of this paper, namely that of Poincaré
∞-categories. These were first defined by Lurie in [45], though no name was chosen
there. Succinctly stated, Poincaré ∞-categories are stable ∞-categories C equipped
with a quadratic functor Ϙ : Cop → Sp to spectra, which is perfect in a sense we
explain below. We then refer to Ϙ as a Poincaré structure on C. It is also convenient
to consider the more general setting where Ϙ is not necessarily perfect, leading to a
notion that we call a hermitian ∞-category. We present both of these in Sect. 1.2,
after devoting Sect. 1.1 to surveying quadratic functors and their basic properties. In
Sect. 1.3 we describe how one can classify hermitian and Poincaré structures on a
given stable∞-category in terms of their linear and bilinear parts. This is a particular
case of the general structure theory of Goodwillie calculus, but we elaborate the details
relevant to the case at hand, as we rely on this classification very frequently, both in
explicit constructions of examples and in general arguments. Finally, in Sect. 1.4 we
discuss the functorial dependence of hermitian structures on the underlying stable
∞-category, and relate it to the classification discussed in Sect. 1.3.

1.1 Quadratic and bilinear functors

In this subsection we will recall the notions of quadratic and bilinear functors, and sur-
vey their basic properties. These notions fit most naturally in the context ofGoodwillie
calculus, as adapted to the∞-categorical setting in [47, §6]. Our scope of interest here
specializes that of loc. cit. in two ways: first, we will only consider the Goodwillie
calculus up to degree 2, and second, we will focus our attention on functors from a
stable∞-category C to the stable∞-category Sp of spectra. This highly simplifies the
general theory, and will allow us to give direct arguments for most claims, instead of
quoting [47, §6]. The reader should however keep in mind that the discussion below
is simply a particular case of Goodwillie calculus, to which we make no claim of
originality.

Recall that an∞-category C is said to be pointed if it admits an object which is both
initial and terminal. Such objects are then called zero objects. A functor f : C → D
between two pointed∞-categories is called reduced if it preserves zero objects. Given
two pointed ∞-categories C,D we will denote by Fun∗(C,D) ⊆ Fun(C,D) the full
subcategory spanned by the reduced functors. A stable ∞-category is by definition a
pointed∞-category which admits pushouts and pullbacks and in which a square is a
pushout square if and only if it is a pullback square. To avoid breaking the symmetry
one then refers to such squares as exact. Any stable∞-category is canonically enriched
in spectra, and we will denote by homC(x, y) the mapping spectrum from x to y. It
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is related to the corresponding mapping space in C by the formula MapC(x, y) =
�∞ homC(x, y).

A functor f : C → D between two stable∞-categories is called exact if it preserves
zero objects and exact squares. We note that stable∞-categories automatically admit
all finite limits and colimits, and that a functor between stable ∞-categories is exact
if and only if it preserves finite colimits, and if and only if it preserves finite limits.
If D is a stable ∞-category and C ⊆ D is a full subcategory which is closed under
finite limits and finite colimits then C is also stable and the inclusion C ⊆ D is an
exact functor. In this case we will say that C is a stable subcategory of D. Given two
stable ∞-categories C,D with C small we will denote by Funex(C,D) ⊆ Fun(C,D)

the full subcategory spanned by the exact functors. We note that when C and D are
stable one has that Fun(C,D) is also stable and Fun∗(C,D) and Funex(C,D) are stable
subcategories. We will denote by Catex∞ the (non-full) subcategory of Cat∞ spanned
by the stable∞-categories and exact functors between them.

If one considers stable∞-categories as a categorified version of a vector space, then
reduced functors correspond to zero-preservingmaps, while exact functors correspond
to linear maps. If a functor f : C → D is only required to preserves exact squares,
but is not necessarily reduced, then one says that f is 1-excisive. More generally, if
C is an ∞-category with finite colimits and D an ∞-category with finite limits, then
f : C → D is said to be 1-excisive if it sends pushout squares to pullback squares. In
the above analogy with linear algebra, these correspond to affine maps, that is, maps
which contain a linear part and a constant term, or said differently: polynomial maps
of degree 1. In the theory of Goodwillie calculus this point of view is generalized to
higher degrees as follows:

Definition 1.1.1 A3-cube ρ : (�1)3 → C is said to be cartesian if it exhibits ρ(0, 0, 0)
as the limit of the restriction of ρ to the subsimplicial set of (�1)3 spanned by the
complement of (0, 0, 0). Such a 3-cube ρ is called strongly cartesian if its restriction to
each 2-dimensional face of (�1)3 is a cartesian square. In particular, strongly cartesian
3-cubes are cartesian. Dually, ρ is said to be (strongly) cocartesian if ρop is a (strongly)
cartesian cube in Cop. A functor f : C → D whose domain admits finite colimits and
whose target admits finite limits is called 2-excisive if it sends strongly cocartesian
3-cubes to cartesian 3-cubes.

If C is stable then a 3-cube is (strongly) cartesian if and only if it is (strongly)
cocartesian, in which case we simply say that ρ is (strongly) exact. A functor f : C →
D between stable∞-categories is then 2-excisive if it sends strongly exact 3-cubes to
exact 3-cubes.

Remark 1.1.2 Though in the present paper we will focus almost entirely on the case
of stable ∞-categories, we chose to formulate the above definition in the slightly
more general setting where f : C → D is a functor from an ∞-category with finite
colimits to an∞-category with finite limits. This level of generality, in which most of
Goodwillie calculus can be carried out, will be used in Sect. 4.2, but will otherwise
not be needed in the present paper.

We note that every 1-excisive functor is in particular 2-excisive. If the former
are analogous to affine maps between vector spaces, the latter are then analogous
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to maps between vector spaces which are polynomial of degree 2, that is, contain a
homogeneous quadratic part, a linear part, and a constant term. If we restrict attention
to 2-excisive functors which are reduced, then we get the analogue of maps with terms
in degrees 1 and 2, but no constant term. These are going to be the functors we consider
in this paper.

In the present work it will be convenient to take a slightly different route to the defi-
nition of reduced 2-excisive functors, which proceeds as follows. Given a small stable
∞-category C, let us denote by BiFun(C) ⊆ Fun∗(Cop×Cop,Sp) the full subcategory
spanned by those reduced functors B : Cop × Cop → Sp such that B(x, y) 
 0 if
either x or y is a zero object. Such functors may be referred to as bi-reduced. Then
BiFun(C) is closed under all limits and colimits in Fun∗(Cop × Cop,Sp), and hence
the inclusion of the former in the latter admits both a left and a right adjoint. These
left and right adjoints are in fact canonically equivalent, and can be described by the
following explicit formula: given a reduced functor B : Cop × Cop → Sp we have a
canonically associated retract diagram

B(x, 0)⊕ B(0, y) → B(x, y) → B(x, 0)⊕ B(0, y), (4)

where 0 ∈ C is a chosen zero object, and all the maps are induced by the essentially
unique maps 0 → x → 0 and 0 → y → 0. The composition of these two maps is the
identity thanks to the assumption that B is reduced, that is, B(0, 0) 
 0. The above
retract diagram then induces a canonical splitting

B(x, y) 
 Bred(x, y)⊕ B(x, 0)⊕ B(0, y),

where Bred(x, y) can be identified with both the cofibre of the left map in (4) and the
fibre of the right map in (4). We note that by construction the resulting functor

Bred(−,−) : Cop × Cop → Sp

is bi-reduced. The following lemma records the fact that the association B �→ Bred

yields both a left and a right adjoint to the inclusion BiFun(C) ⊆ Fun∗(Cop×Cop,Sp).

Lemma 1.1.3 The split inclusion Bred(−,−) ⇒ B(−,−) is universal among natural
transformations to B from a bi-reduced functor, while the projection B(−,−) ⇒
Bred(−,−) is universal among natural transformations fromB to a bi-reduced functor.
In particular, the associationB �→ Bred is both left and right adjoint to the full inclusion
BiFun(C) ⊆ Fun∗(Cop × Cop,Sp).

Proof Given that Fun∗(Cop × Cop,Sp) is stable and BiFun(C) is a stable full subcat-
egory, to prove both claims it suffices to show that for B ∈ Fun∗(Cop × Cop,Sp), the
associated functors

(x, y) �→ B(x, 0) and (x, y) �→ B(0, y)

considered as functors in Fun∗(Cop × Cop,Sp) have a trivial mapping spectrum to
any and from any bi-reduced functor. Indeed, since 0 ∈ Cop is both final and initial it
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follows that the inclusion Cop × {0} ⊆ Cop × Cop is both left and right adjoint to the
projection Cop×Cop → Cop×{0}, and hence restricting along this inclusion is both left
and right adjoint to restricting along this projection. The same statement holds for the
inclusion {0}×Cop ⊆ Cop×Cop of the second factor. The mapping spectrum between
any bi-reduced functor and a functor restricted along either projection is consequently
trivial.

Definition 1.1.4 Let C be a stable ∞-category and Ϙ : Cop → Sp a reduced functor.
We will denote by BϘ ∈ BiFun(C) the bi-reduced functor

BϘ(−,−) := Ϙ((−)⊕ (−))red : Cop × Cop → Sp

obtained by taking the universal bi-reduced replacement described above of the
reduced 2-variable functor (x, y) �→ Ϙ(x ⊕ y). Following the terminology of Good-
willie calculus we will refer to BϘ(−,−) as the cross effect of Ϙ. The formation of
cross effects then yields a functor

B(−) : Fun∗(Cop,Sp) → BiFun(C) (5)

sending Ϙ to BϘ.

Remark 1.1.5 In [45] the term polarization is used for what we called above cross
effect, though in [47, §6] the term cross effect is employed.

Remark 1.1.6 If f , g : C → D are reduced functors then the associated restriction
functor

( f × g)∗ : Fun∗(Dop ×Dop,Sp) → Fun∗(Cop × Cop,Sp)

along ( f × g)op : Cop × Cop → Dop ×Dop sends the retract diagram

B(x, 0)⊕ B(0, y) → B(x, y) → B(x, 0)⊕ B(0, y)

to the retract diagram

B( f (x), 0)⊕ B(0, g(y)) → B( f (x), g(y)) → B( f (x), 0)⊕ B(0, g(y)),

where we have used the symbols x and y to distinguish the two entries. It then follows
that the universal bi-reduction procedure described above commutes with restriction
(along pairs of reduced functors). Similarly, if f : C → D furthermore preserves direct
sums, then the formation of cross effects is compatible with restriction along f , that
is, the square

Fun∗(Dop,Sp) Fun∗(Cop,Sp)

BiFun(D) BiFun(C)

f ∗

B(−) B(−)

( f × f )∗
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naturally commutes.

Given a stable∞-category C, the diagonal functor� : Cop → Cop × Cop induces a
pullback functor

�∗ : BiFun(C) → Fun∗(Cop,Sp).

In what follows, for any B : Cop × Cop → Sp, we will denote by B� := �∗B the
restriction of B along the diagonal. Now the maps Ϙ(x ⊕ x) → Ϙ(x) and Ϙ(x) →
Ϙ(x ⊕ x) induced by the diagonal�x : x → x ⊕ x and collapse map ∇x : x ⊕ x → x
induce natural maps

BϘ(x, x) → Ϙ(x) → BϘ(x, x), (6)

which can be considered as natural transformations

B�
Ϙ ⇒ Ϙ⇒ B�

Ϙ . (7)

The formation of cross effects then enjoys the following universal property:

Lemma 1.1.7 The two natural transformations in (7) act as a unit and counit exhibiting
the cross effect functor (5) as left and right adjoint respectively to the restriction functor
�∗ : BiFun(C) → Fun∗(Cop,Sp).

Proof The direct sum functor Cop×Cop → Cop realizes both the product and coproduct
(since Cop is stable) and is hence both left and right adjoint to � : Cop → Cop × Cop,
with units and counits given by the diagonal and collapse maps of the objects in C. It
then follows that restriction along the direct sum functor is both right and left adjoint
to restriction along�, with unit and counit induced by the diagonal and collapse maps.
The desired result now follows from Lemma 1.1.3.

Remark 1.1.8 The two sided adjunction of Lemma 1.1.7 is obtained by composing a
pair of two-sided adjunctions

Fun∗(Cop,Sp) � Fun∗(Cop × Cop,Sp) � BiFun(C),

where the one on the left is induced by the two sided adjunction Cop
�

�
⊕

Cop × Cop

witnessing the existence of biproducts in Cop, and the one of the right exhibits the
full subcategory BiFun(C) ⊆ Fun∗(Cop × Cop,Sp) as reflective and coreflective
(Lemma 1.1.3). In particular, we may express the unit and counit of the two sided
adjunction Fun∗(Cop,Sp) � BiFun(C) which are not specified in Lemma 1.1.7 via
the unit (x, y) → (x ⊕ y, x ⊕ y) of the adjunction Cop × Cop ⊥ C and counit
(x ⊕ y, x ⊕ y) → (x, y) of the adjunction Cop ⊥ Cop × Cop, which are all given by
the corresponding component inclusions and projections. Unwinding the definitions,
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we get that the unit of the adjunction BiFun(C) ⊥ Fun∗(Cop,Sp) is given by the
induced map

B(x, y) → fib[B(x ⊕ y, x ⊕ y) → B(x, x)⊕ B(y, y)]

and the counit of the adjunction Fun∗(Cop,Sp) ⊥ BiFun(C) is given by the induced
map

cof[B(x, x)⊕ B(y, y) → B(x ⊕ y, x ⊕ y)] → B(x, y).

Lemma 1.1.9 Let Ϙ : Cop → Sp be a reduced functor. Then the cross effect BϘ is
symmetric, i.e. it canonically refines to an element of Fun(Cop × Cop,Sp)hC2 , where
the cyclic group with two elements C2 acts by flipping the two input variables.

Proof By [47, Proposition 6.1.4.3, Remark 6.1.4.4] the bi-reduction functor

(−)red : Fun∗(Cop × Cop,Sp) → BiFun(C)

discussed above refines to a compatible functor

Fun∗(Cop × Cop,Sp)hC2 → BiFun(C)hC2

on C2-equivariant objects. It will hence suffice to show that the functor (x, y) �→
Ϙ(x ⊕ y) naturally refines to a C2-equivariant object. For this, it suffices to note that
the direct sum functor Cop × Cop → Cop is equipped with a C2-equivariant structure
with respect to the flip action on Cop × Cop and the trivial action on Cop. Indeed, this
is part of the symmetric monoidal structure afforded to the direct sum, canonically
determined by its universal description as the coproduct in Cop.

Keeping in mind the proofs of Lemmas 1.1.7 and 1.1.9, we now note that the
diagonal functor � : Cop → Cop × Cop, which is both left and right adjoint to the
C2-equivariant direct sum functor, is also canonically invariant under the C2-action
on the right hand side switching the two components. This means that the associated
restriction functor

�∗ : BiFun(C) → Fun∗(Cop,Sp)

is equivariant for the trivial C2-action on the target, and so the restricted functor
B�
Ϙ = �∗BϘ becomes a C2-object of Fun(Cop,Sp). In particular, BϘ(x, x) is naturally

a spectrum with a C2-action for every x ∈ C. Explicitly, this action is induced by the
canonical action of C2 on x ⊕ x by swapping the components.

Lemma 1.1.10 The natural transformations in (7) both naturally refine to C2-
equivariant maps with respect to the aboveC2-action onB�. In particular, the maps (7)
induces natural transformations

[B�
Ϙ ]hC2 ⇒ Ϙ⇒ [B�

Ϙ ]hC2 . (8)
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Proof Inspecting the construction of the natural transformations in (7) we see that
it will suffice to put a C2-equivariant structure on the diagonal and collapse natural
transformations

� : id ⇒ id ⊕ id and ∇ : id ⊕ id ⇒ id

of functors C → C. This in turn follows from the fact that the direct sum monoidal
structure is both cartesian and cocartesian and every object is canonically a commu-
tative algebra object with respect to coproducts ([47, Proposition 2.4.3.8]).

Definition 1.1.11 ForC,D andE stable∞-categories, wewill say that a functor b : C×
D → E is bilinear if it is exact in each variable separately. For a stable ∞-category
C we will denote by Funb(C) ⊆ Fun(Cop × Cop,Sp) the full subcategory spanned by
the bilinear functors. We note that this full subcategory is closed under, and hence
inherits, the flip action of C2. We will then denote by Funs(C) := [Funb(C)]hC2 the
∞-category of C2-equivariant objects in Funb(C) with respect to the flip action in the
entries, and refer to them as symmetric bilinear functors on C.

Example 1.1.12 Suppose that C is a stable ∞-category equipped with a monoidal
structure which is exact in each variable separately. Then for every object a ∈ C we
have an associated bilinear functor Ba : Cop × Cop → Sp defined by

Ba(x, y) := homC(x ⊗ y, a),

where homC(−,−) refers to the canonical enrichment of C in spectra. If the monoidal
structure refines to a symmetric one then Ba refines to a symmetric bilinear functor.
Natural examples of interest to keep in mind are when C is the perfect derived category
of a commutative ring (or, more generally, an E∞-ring spectrum), or the∞-category
of perfect quasi-coherent sheaves on a scheme.

Proposition 1.1.13 Let Ϙ : Cop → Sp be a reduced functor. Then the following are
equivalent:

i) Ϙ is 2-excisive;
ii) the cross effect BϘ is bilinear and the fibre of the natural transformation Ϙ(x) →

BϘ(x, x)hC2 from (8) is an exact functor in x;
iii) the cross effect BϘ is bilinear and the cofibre of the natural transformation

BϘ(x, x)hC2 → Ϙ(x) from (8) is an exact functor in x.

Proof Since Sp is stable the property of being reduced and 2-excisive is preserved
under limits and colimits of functors Cop → Sp. It then follows that both ii) and
iii) imply i), since exact functors and diagonal restrictions of bilinear functors are in
particular reduced and 2-excisive (see [47, Cor. 6.1.3.5]).

In the other direction, if Ϙ is 2-excisive then its cross effect is bilinear by [47,
Pr. 6.1.3.22].Moreover, since taking the cross effect commuteswithfibres and cofibres,
the functors in the statement of ii) and iii) have trivial cross effect. But they are also
reduced and 2-excisive by the first part of the argument, and are hence exact by [47,
Pr. 6.1.4.10].
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Definition 1.1.14 We will say that Ϙ : Cop → Sp is quadratic if it satisfies the equiv-
alent conditions of Proposition 1.1.13. For a small stable ∞-category C we will then
denote by Funq(C) ⊆ Fun(Cop,Sp) the full subcategory spanned by the quadratic
functors.

Remark 1.1.15 It follows from the first criterion in Proposition 1.1.13 that Funq(C) is
closed under limits and colimits in Fun(Cop,Sp). Since the latter is stable it follows
that Funq(C) is stable as well.

In light of Lemma 1.1.9 and Proposition 1.1.13, the cross effect functor refines to
a functor

B(−) : Funq(C) −→ Funs(C).

We will then refer to BϘ ∈ Funs(C) as the symmetric bilinear part of Ϙ ∈ Funq(C),
and refer to the underlying bilinear functor of BϘ as the bilinear part of Ϙ.

Examples 1.1.16 i) Any exact functor Cop → Sp is quadratic. These are exactly the
quadratic functors whose bilinear part vanishes. In particular, we have an exact
full inclusion of stable∞-categories Funex(Cop,Sp) ⊆ Funq(C).

ii) If B : Cop × Cop → Sp is a bilinear functor then the functor B�(x) = B(x, x)
is a quadratic functor ([47, Cor. 6.1.3.5]). Its symmetric bilinear part is given by
the symmetrization (x, y) �→ B(x, y)⊕B(y, x) of B, equipped with its canonical
symmetric structure.

Example 1.1.17 If B ∈ Funs(C) is a symmetric bilinear functor then the functors

ϘqB(x) := B�
hC2

(x) = B(x, x)hC2

and

ϘsB(x) := (B�)hC2(x) = B(x, x)hC2

are both quadratic functors. Indeed, this follows from the previous example by noting
that the symmetry induces a C2-action on B� and invoking Remark 1.1.15. Since
taking cross-effects commutes with all limits and colimits the symmetric bilinear
parts of these functors are given respectively by

[B(x, y)⊕ B(y, x)]hC2 and [B(x, y)⊕ B(y, x)]hC2 ,

which are both canonically equivalent to B itself: indeed, when B is symmetric its
symmetrization canonically identifies with B[C2] = B⊕B as a C2-object in Funs(C),
which, since the latter is stable, is the C2-object both induced and coinduced from B.

The superscript (−)q and (−)s above refer to the relation between these construc-
tions and the notions of quadratic and symmetric forms in algebra. To see this, consider
the case where C := Dp(R) is the perfect derived∞-category of a commutative ring
R, that is, the ∞-categorical localisation of the category of bounded complexes of
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finitely generated projective R-modules by quasi-isomorphisms. We then have a nat-
ural choice of a bilinear functor BR : Cop × Cop → Sp given by

BR(X ,Y ) = homR(X ⊗R Y , R)

where ⊗R denotes the (derived) tensor product over R. A point β ∈ �∞BR(X ,Y )

then corresponds to a map X ⊗R Y → R, which we can consider as a bilinear form on
the pair (X ,Y ). If X ,Y are ordinary projective modules then π0BR(X ,Y ) is simply
the abelian group of bilinear forms on (X ,Y ) in the ordinary sense. For a projective
R-module X we may then identify the C2-fixed subgroup π0BR(X , X)C2 with the
group of symmetric bilinear forms on X , while the C2-quotient group π0BR(X , X)C2

can be identified with the group of quadratic forms on X via the map sending the
orbit of bilinear form b : X ⊗R X → R to the quadratic form qb(x) = b(x, x). In
this case the quadratic functors ϘqR := ϘqBR

and ϘsR := ϘsBR
defined as above can be

considered as associating to a perfect R-complex X a suitable spectrum of quadratic
and symmetric forms on X , respectively.

Remark 1.1.18 By definition the cross effect of a quadratic functor is bilinear, and on
the other hand by Example 1.1.16ii) the diagonal restriction of any bilinear functor is
quadratic. It then follows fromLemma 1.1.7 that diagonal restriction�∗ : Funb(C) →
Funq(C) determines a two-sided adjoint to the bilinear part functor B(−) : Funq(C) →
Funb(C), with unit and counit given by the natural maps

BϘ(x, x) ⇒ Ϙ(x) ⇒ BϘ(x, x).

By Remark 1.1.8 the other unit and counit are given by the component inclusion and
projections

B(x, y) ⇒ B(x, y)⊕ B(y, x) ⇒ B(x, y)

As quadratic functors are only 2-excisive, but not 1-excisive, they generally don’t
preserve exact squares. Their failure to preserve exact squares is however completely
controlled by the associated symmetric bilinear parts. More precisely, we have the
following:

Lemma 1.1.19 Let Ϙ : Cop → Sp be a quadratic functor with bilinear part B = BϘ
and let

x y

z w

α′

β ′ β
α

(9)

be an exact square in C. Then in the diagram

Ϙ(w) B(z, y) B(cof(β ′), cof(α′))

Ϙ(z)×Ϙ(x) Ϙ(y) B(z, x)×B(x,x) B(x, y) 0

(10)
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both squares are exact. In particular, there is a natural equivalence

cof[Ϙ(w) → Ϙ(z)×Ϙ(x) Ϙ(y)] 
 cof[B(z, y) → B(z, x)×B(x,x) B(x, y)]

 �B(cof(β ′), cof(α′)) 
 B(fib(β ′), cof(α′)).

Proof Consider the following pair of maps between commutative squares

Ϙ(w) Ϙ(y)

Ϙ(z) Ϙ(x)

⇒
Ϙ(z ⊕ y) Ϙ(x ⊕ y)

Ϙ(z ⊕ x) Ϙ(x ⊕ x)

⇒
B(z, y) B(x, y)

B(z, x) B(x, x)

(11)

where the left one is induced by the strongly cocartesian cube

(12)

Here, the map x ⊕ x → x is the collapse map, the map z ⊕ y → w is the one
whose components are α and β, and the maps x ⊕ y → y and x ⊕ z → z have one
component the identity and one component α′ or β ′, respectively. Since Ϙ is quadratic
it is in particular 2-excisive by the first characterization in Proposition 1.1.13, and so Ϙ
maps (12) to a cartesian cube of spectra. This means that the first map in (11) induces
an equivalence on total fibres. On the other hand, the second map in (11) also induces
an equivalence on total fibres since its cofibre is the square

Ϙ(z)⊕ Ϙ(y) Ϙ(x)⊕ Ϙ(y)

Ϙ(z)⊕ Ϙ(x) Ϙ(x)⊕ Ϙ(x)

whose total fibre is trivial. We then deduce that the composite of the two maps in (11)
induces an equivalence on total fibres, and hence the left square in (10) is exact.
Finally, the right square in (10) is exact because B(−,−) is exact in each variable
separately and hence the total fibre of the right most square in (11) identifies with
B(cof(β ′), cof(α′)) via the natural map B(cof(β ′), cof(α′)) → B(z, y).

Remark 1.1.20 Lemma 1.1.19 admits a natural dual variant. Given a quadratic functor
Ϙ : Cop → Sp with bilinear part B = BϘ and an exact square as in (9), one may form
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instead the diagram

Ϙ(z)⊕Ϙ(w) Ϙ(y) B(z, w)⊕B(w,w) B(w, y) 0

Ϙ(x) B(z, y) B(fib(α),fib(β))

(13)

obtained using the maps on the left hand side of (6) instead of the right. The dual of
the argument in the proof of Lemma 1.1.19 then shows that (13) consists of two exact
squares, yielding a natural equivalence

fib[Ϙ(z)⊕Ϙ(w) Ϙ(y) → Ϙ(x)] 
 fib[B(z, w)⊕B(w,w) B(w, y) → B(z, y)]

 �B(fib(α),fib(β)) 
 B(cof(α),fib(β)).

Applying Lemma 1.1.19 in the case where z = 0 we obtain:

Corollary 1.1.21 (cf. [45, Lecture 9, Theorem 5]) For an exact sequence x → y → w

in C, the natural map

Ϙ(w) totfib

⎡
⎢⎢⎣

Ϙ(y) Ϙ(x)

BϘ(x, y) BϘ(x, x)

⎤
⎥⎥⎦

from Ϙ(w) to the total fibre of the square on the right, is an equivalence.

Definition 1.1.22 For a quadratic functor Ϙwewill denote by�Ϙ : Cop → Sp the cofi-
bre of the natural transformation (B�

Ϙ )hC2 ⇒ Ϙ, which is exact by Proposition 1.1.13,
and refer to it as the linear part of Ϙ. By construction, the linear part �Ϙ sits in an
exact sequence

BϘ(x, x)hC2 → Ϙ(x) → �Ϙ(x). (14)

The formation of linear parts can be organized into a functor

�(−) : Funq(C) −→ Funex(Cop,Sp) (15)

whose post-composition with the inclusion Funex(Cop,Sp) ⊆ Funq(C) carries a nat-
ural transformation from the identity Ϙ ⇒ �Ϙ, corresponding to the second arrow
in (14).

Remark 1.1.23 It follows fromRemark 1.1.6 that the formation of linear parts naturally
commutes with restriction along an exact functor f : C → D.

Lemma 1.1.24 The natural map Ϙ ⇒ �Ϙ is a unit exhibiting �(−) as left adjoint to
the inclusion

Funex(Cop,Sp) ⊆ Funq(C).
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Proof Since Funex(Cop,Sp) ⊆ Funq(C) is a full inclusion it will suffice to show that
Ϙ ⇒ �Ϙ induces an equivalence on mapping spectra to every exact functor. Since
Funq(C) is stable this is the same as saying that the fibre of Ϙ⇒ �Ϙ maps trivially to
any exact functor. This fibre is [B�

Ϙ ]hC2 by construction, and so it will hence suffice
to show that B�

Ϙ maps trivially to any exact functor. Indeed, this follows from the
adjunction of Remark 1.1.18 since the bilinear part of every linear functor vanishes.

Let us also remark that equivalences of quadratic functors can be detected on their
connective covers.

Lemma 1.1.25 Let C be a stable∞-category and Ϙ : Cop → Sp be a quadratic functor.
Suppose that for every x ∈ C the spectrum Ϙ(x) is coconnective. Then Ϙ is the zero
functor. In particular, if a natural transformation of quadratic functors f : Ϙ→ Ϙ′ is
an equivalence after applying �∞, then it is itself an equivalence.

Proof First suppose that Ϙ is exact. Then, for every x ∈ C and n ∈ Z, πnϘ(x) =
π1Ϙ(�n−1x) = 0, and so Ϙ = 0.

Let us now prove the general case. For every x, y ∈ C, the spectrum BϘ(x, y) is a
direct summand of Ϙ(x ⊕ y). In particular it is also coconnective. Hence, if we fix an
x ∈ C, then BϘ(x,−) : Cop → Sp is an exact functor taking values in coconnective
spectra, and therefore the zero functor by the previous argument. The cross-effect BϘ
is therefore the zero functor. In particular, Ϙ is exact, and is hence the zero functor by
the same argument.

The final statement follows by applying the previous argument to the fibre
of f .

We finish this subsection with a discussion of the left and right adjoints to the
inclusion of quadratic functors inside reduced functors.

Construction 1.1.26 LetE be a stable∞-category.Given aquadratic functorϘ : Eop →
Sp, Lemma 1.1.19 applied in the case where both z and y are zero objects implies that
the sequence

Ϙ(w) → �Ϙ(�w) → �BϘ(�w,�w) (16)

is exact, and hence that the natural map

Ϙ(w)

−→ �fib[Ϙ(�w) → BϘ(�w,�w)]

is an equivalence. This map itself is however defined for any reduced Ϙ, and is natural
in Ϙ. In particular, given a stable∞-category we may define a functor

TE2 : Fun∗(Eop,Sp) → Fun∗(Eop,Sp)

which sends a reduced functor R : Eop → Sp to the reduced functor

TE2 (R) := �fib[R(�w) → BR(�w,�w)]. (17)
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The operation TE2 is equipped with a natural map

θR : R ⇒ TE2 (R)

which is an equivalence when R is quadratic by Lemma 1.1.19. Unwinding the def-
initions, we see that the association R �→ TE2 (R) identifies with the one defined in
[47, Construction 6.1.1.22] for C = Eop and D = Sp. Since Sp is stable and admits
small colimits it is in particular differentiable in the sense of [47, Definition 6.1.1.6].
By [47, Theorem 6.1.1.10] we may then conclude that the association

P2(R) := colim[R θR−→ TE2 (R)

θ
TE2 (R)−−−−→ TE2 TE2 (R) → · · · ]

gives a left adjoint to the inclusion Funq(E) ⊆ Fun∗(Eop, Sp). This procedure is often
referred to as 2-excisive approximation.

In a dual manner, if we use Remark 1.1.20 instead of Lemma 1.1.19 then we get
that for a quadratic functor Ϙ the sequence

�BϘ(�w,�w) → �Ϙ(�w) → Ϙ(w) (18)

is exact, and so the natural map

� cof[BϘ(�w,�w) → Ϙ(�w)] 
−→ Ϙ(w)

is an equivalence. As above, for a general reduced functorRwe can define the functor

T2
E (R) = � cof[BR(�w,�w) → R(�w)], (19)

equipped with a natural map

τR : T2
E (R) ⇒ R,

which is an equivalence whenR is quadratic. We may also identify T2
E with the result

of [47, Construction 6.1.1.22] applied to C = E and D = Spop. Since Spop is also
differentiable by the same argument it follows from [47, Theorem 6.1.1.10] that the
association

P2(R) := lim[· · · → T2
ET

2
E (R)

τ
T2E (R)−−−−→ T2

E (R)
τR−→ R]

provides a right adjoint to the inclusion Funq(E) ⊆ Fun∗(Eop, Sp).

1.2 Hermitian and Poincaré∞-categories

In this subsection we introduce the key player in this paper—the notion of a Poincaré
∞-category. For this, it will be convenient to pass first through the following weaker
notion:
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Definition 1.2.1 A hermitian ∞-category is a pair (C, Ϙ)where C is a small stable∞-
category and Ϙ : Cop→ Sp is a quadratic functor in the sense of Definition 1.1.14. We
will then also refer to Ϙ as a hermitian structure on C. The collection of hermitian∞-
categories can be organized into a (large)∞-category Cath∞, obtained as the cartesian
Grothendieck construction of the functor

(Catex∞)op −→ CAT∞, C �−→ Funq(C).

(here CAT∞ stands for the∞-category of possibly large∞-categories). We shall also
refer to its morphisms as hermitian functors.

Unpacking this definition, we find that a hermitian functor from (C, Ϙ) to (C′, Ϙ′)
consists of an exact functor f : C → C′ and a natural transformation η : Ϙ⇒ f ∗Ϙ′ :=
Ϙ′ ◦ f op. We will thus generally denote hermitian functors as pairs ( f , η) of this form.
If ( f , η) : (C, Ϙ) → (C′, Ϙ′) is a hermitian functor then by Remark 1.1.6 we have a
natural equivalence ( f × f )∗BϘ′ 
 B f ∗Ϙ′ , and consequently the natural transformation
η determines a natural transformation

βη : BϘ ⇒ ( f × f )∗BϘ′ , (20)

which we then denote by βη.
The notion of Poincaré∞-category is obtained from that of a hermitian∞-category

(C, Ϙ)by requiringϘ to satisfy twonon-degeneracy conditions.Both of these conditions
depend only on the underlying symmetric bilinear part BϘ ∈ Funs(C). To formulate
the first one we first note that the exponential equivalence

Fun(Cop × Cop,Sp)

−→ Fun(Cop,Fun(Cop,Sp))

restricts to an equivalence

Funb(C) 
−→ Funex(Cop,Funex(Cop,Sp)). (21)

We then consider the following condition:

Definition 1.2.2 We will say that a bilinear functor B ∈ Funb(C) is right non-
degenerate if the associated exact functor

Cop → Funex(Cop,Sp) y �→ B(−, y) (22)

takes values in the essential image of the stable Yoneda embedding

C ↪→ Funlex(Cop,S) 
 Funex(Cop,Sp),

where Funlex denotes left exact (that is, finite limit preserving) functors, and the equiv-
alence to the last term is by [47, Corollary 1.4.2.23]. In other words, if for each y ∈ C
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the presheaf of spectra B(−, y) is representable by an object in C. In this case we can
factor (22) essentially uniquely as a functor

DB : Cop → C

followed by C ↪→ Funex(Cop,Sp), so that we obtain an equivalence

B(x, y) 
 homC(x,DBy).

Similarly, B ∈ Funb(C) is called left non-degenerate if the associated exact functor
x �→ B(x,−) takes values in the essential image of the stable Yoneda embedding. If
B ∈ Funb(C) is left and right non-degenerate, then it is called non-degenerate. In this
case the two resulting dualities are, essentially by definition, adjoint to each other.

We will say that a symmetric bilinear functor is non-degenerate if the underlying
bilinear functor is. In this case it of course suffices to check that it is right non-
degenerate. The two dualities are in this case equivalent and we will refer to the
representing functor DB as the duality associated to the non-degenerate symmetric
bilinear functor B (though we point out that DB is not in general an equivalence).
Given a hermitian structure Ϙ on a stable ∞-category C, we will say that Ϙ is non-
degenerate if its underlying bilinear part is. In this case we will also say that (C, Ϙ) is
a non-degenerate hermitian∞-category and will denote the associated duality by DϘ.

The full subcategories of Funb(C),Funs(C) and Funq(C) spanned by the non-
degenerate functors will be denoted Funnb(C),Funns(C) and Funnq(C), respectively.
The bilinear exponential equivalence (21) then restricts to an equivalence

Funnb(C) 
−→ FunR(Cop, C),

where FunR denotes the right adjoint functors. To see this it suffices to observe that
B ∈ Funb(C) is non-degenerate precisely if it is right non-degenerate and the resulting
duality admits a left adjoint. Under this equivalence the C2-action on the left corre-
sponds to the C2-action on the right given by passing to adjoints and taking opposites,
so that we get an equivalence

Funns(C) 
−→ FunR(Cop, C)hC2 .

Both of these equivalences will be denoted by B �→ DB. Similarly, we will also denote
the composition

Funnq(C)
B(−)−−→ Funns(C)

D(−)−−→ FunR(Cop, C)

by Ϙ �→ DϘ.
Let us make these adjointability statements explicit: if B ∈ Funs(C) is a non-

degenerate symmetric bilinear functor with associated duality D = DB : Cop → C
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then the symmetric structure of B determines a natural equivalence

homC(x,D(y)) 
 B(x, y) 
 B(y, x) 
 homC(y,D(x)) 
 homCop(Dop(x), y)

(23)

where Dop : C → Cop is the functor induced by D upon taking opposites. Such a
natural equivalence exhibits in particular Dop as left adjoint to D. We will denote by

ev : id ⇒ DDop (24)

the unit of this adjunction, and refer it as the evaluation map of D. Its individual
components

evx : x → DDop(x) (25)

are then the maps corresponding to identity Dop(x) → Dop(x) under the equiv-
alence (23). The counit of this adjunction is given again by natural transforma-
tion (24), but interpreted as an arrow from DopD to the identity in the ∞-category
Fun(Cop, Cop) 
 Fun(C, C)op.

Remark 1.2.3 The process of viewing the equivalence (23) as an adjunction between
D and Dop and extracting its unit as above can be reversed: knowing that ev is a unit
of an adjunction we can reproduce the equivalence homC(y,D(x)) 
 homC(x,D(y))
as the composite

homC(y,D(x)) 
 homCop(Dop(x), y) → homC(DDop(x),D(y)) → homC(x,D(y)),

where the last map is induced by pre-composition with the evaluation map.

Lemma 1.2.4 Let (C, Ϙ), (C′, Ϙ′) be two non-degenerate hermitian ∞-categories with
associated dualities DϘ and DϘ′ , and let f , g : C → C′ be two exact functors. Then
there is a natural equivalence

nat(BϘ, ( f × g)∗BϘ′) 
 nat( f DϘ,DϘ′g
op),

where nat stands for the spectrum of (non-symmetric) natural transformations, on the
left between two spectrum valued functors on Cop×Cop, and on the right between two
functors Cop → C′.

Proof Consider the left Kan extension functor

( f × id)! : Fun(Cop × Cop,Sp) → Fun(C′op × Cop,Sp),

which is left adjoint to the corresponding restriction functor. Natural transformations

BϘ ⇒ ( f × g)∗BϘ′ 
 ( f × id)∗(id × g)∗BϘ′
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then correspond under this adjunction to natural transformations

( f × id)!BϘ ⇒ (id × g)∗BϘ′ . (26)

Now for y ∈ C we have

(( f × id)!BϘ)|C′op×{y} 
 ( f × {y})!((BϘ)|Cop×{y}),

as can be seen by the pointwise formula for left Kan extension. Since BϘ(−, y) is
represented by DϘ(y) and left Kan extension preserves representable functors it then
follows that

( f × id)!BϘ(x ′, y) 
 homC′(x ′, f (DϘ(y)))

for (x ′, y) ∈ C′op × Cop. On the other hand, we have (id × g)∗BϘ′(x ′, y) 

homC′(x ′,DϘ′(g(y))), and so by the fully-faithfulness of the Yoneda embedding we
thus obtain

nat(BϘ, ( f × g)∗BϘ′) 
 nat( f DϘ,DϘ′g
op),

as desired.

Definition 1.2.5 Given a hermitian functor ( f , η) : (C, Ϙ) → (C′, Ϙ′), we will denote
by

τη : f DϘ ⇒ DϘ′ f op

the natural transformation corresponding to the natural transformation βη : BϘ ⇒
( f × f )∗BϘ′ of (20), via Lemma 1.2.4.

Remark 1.2.6 In the situation of Definition 1.2.5, it follows from the triangle identities
of the adjunction ( f × id)! � ( f × id)∗ that the natural transformation βη : BϘ ⇒
( f × f )∗BϘ′ can be recovered from τη : f DϘ ⇒ DϘ′ f op as the composite

BϘ(x, y) 
 homC(x,DϘ(y)) → homC( f (x), f DϘ(y))

→ homC( f (x),DϘ′ f (y)) 
 BϘ( f (x), f (y)),

where the two middle maps are induced by the action of f on mapping spectra and
post-composition with τη, respectively.

Definition 1.2.7 A hermitian functor ( f , η) : (C, Ϙ) → (C′, Ϙ′) between non-
degenerate hermitian ∞-categories is called duality preserving if the transformation
τη : f DϘ′ f op constructed above is an equivalence.

Definition 1.2.8 A symmetric bilinear functor B is called perfect if the evaluation map
idC ⇒ DBD

op
B of (24) is an equivalence. An hermitian structure Ϙ is called Poincaré
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if the underlying bilinear functor of Ϙ is perfect. In this case we will say that (C, Ϙ) is
a Poincaré ∞-category. We will denote by

Catp∞ ⊆ Cath∞

the (non-full) subcategory spanned by the Poincaré∞-categories and duality preserv-
ing functors, and will generally refer to duality-preserving hermitian functors between
Poincaré∞-categories asPoincaré functors. For a stable∞-category C, wewill denote
by

Funp(C) ⊆ Funq(C)

the subcategory spanned by those hermitian structures which are Poincaré, and those
natural transformations η : Ϙ⇒ Ϙ′ which are duality preserving, that is, for which the
associated hermitian functor (id, η) : (C, Ϙ) → (C, Ϙ′) is Poincaré.
Remark 1.2.9 A symmetric bilinear functor B is perfect if and only if it is non-
degenerate and DB : Cop → C is an equivalence of categories. Indeed, an adjunction
consists of a pair of inverse equivalences if and only if its unit and counit are equiva-
lences.

If B is a perfect bilinear functor on C then the duality DB : Cop 
−→ C is not just an
equivalence of ∞-categories, but carries a significant amount of extra structure. To
make this precise note that there is a C2-action on Catex∞ given by sending C �→ Cop.
This can be seen by using simplicial sets as a model where taking the opposite gives an
action on the nose. Alternatively one can also use that the space of autoequivalences
of Catex∞ is equivalent to the discrete group C2 as shown in [67], see also [44, Theorem
4.4.1].

Definition 1.2.10 A stable ∞-category with perfect duality is a homotopy fixed point
of Catex∞ with respect to the C2-action given by taking the opposite∞-category. Equiv-

alently, it is, a section BC2 → C̃atex∞ of the fibration C̃atex∞ → BC2 encoding the
C2-action on the∞-category Catex∞ given by taking opposites.

We note that a stable ∞-category with perfect duality consists in particular of
a stable ∞-category C and an equivalence D : C → Cop, equipped with additional
coherence structure of being a homotopyC2-fixed point. For example, the composition
DDop is equippedwith a natural equivalence ev : id 
 DDop,which itself carries higher
coherence homotopies relating it with its opposite, and so forth. By a perfect duality on
a given stable∞-category C we will mean a refinement of C to a homotopy C2-fixed
point of Catex∞. We may also identify the notion of a perfect duality with that of a

C2-fixed equivalence Cop 
−→ C, where the C2-action on FunR(Cop, C) is obtained via
its identification with the ∞-category Funnb(C) of non-degenerate bilinear functors.
We will often abuse notation and denote a perfect duality simply by its underlying
equivalence D : Cop → C.

In their work on∞-categories with duality, Heine–Lopez–Avila–Spitzweck prove
that the duality functor DB associated to a perfect bilinear functor B on a stable ∞-
category C, naturally refines to a perfect duality on C in the above sense. Furthermore,
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the association B �→ DB determines an equivalence between perfect bilinear functors
on C and perfect dualities on C see [29, Corollary 7.3], and [63, Proposition 2.1] for
the stable variant. Together with Lemma 1.2.4, this association determines a forgetful
functor

Catp∞ → (Catex∞)hC2 (C, Ϙ) �→ (C,DϘ) (27)

from Poincaré∞-categories to stable∞-categories with perfect duality. This provides
a key link between the present setup and the existing literature on stable∞-categories
with duality.

Definition 1.2.11 Given a stable ∞-category and a symmetric bilinear functor
B : Cop × Cop → Sp we will refer to the hermitian structures ϘsB, Ϙ

q
B ∈ Funq(C)

of Example 1.1.17 as the symmetric and quadratic hermitian structures associated to
B, respectively. As the symmetric bilinear parts of both ϘsB and ϘqB are canonically
equivalent to B, these hermitian structures are Poincaré if and only if B is perfect.

Example 1.2.12 Let R be an ordinary commutative ring and let C = Dp(R) be the
perfect derived∞-category of R. Similar as in Example 1.1.17 we may then consider
the symmetric bilinear functor BR ∈ Funb(C) given by

BR(X ,Y ) = homR(X ⊗R Y , R),

with symmetric structure induced by the symmetric structure of the tensor product⊗.
This bilinear functor is perfect with duality given by

DR(Y ) = Homcx
R (Y , R),

where the right hand side stands for the internal mapping complex. An element β ∈
�∞BR(X ,Y ) then corresponds to a map X ⊗R Y → R, which we can consider as a
bilinear form on the pair (X ,Y ). To this perfect bilinear functor we can associate the
corresponding symmetric and quadratic Poincaré structures

ϘsR(X) := BR(X , X)hC2 and ϘqR(X) := BR(X , X)hC2 ,

as in Definition 1.2.11. The space�∞ϘsR(X) is then the space of (homotopy) C2-fixed
points of�∞BR(X , X), which should be viewed as the homotopical counterpart of the
notion of a symmetric form on X . The space�∞ϘqR(X), on the other hand, is the space
of (homotopy) C2-orbits of �∞BR(X , X), which we can consider as a homotopical
analogue of that a quadratic form on X , see Example 1.1.17.

Example 1.2.13 In the situation of Example 1.2.12we could also consider the symmet-
ric bilinear functor B−R whose underlying bilinear functor is BR but whose symmetric
structure is twisted by the sign action of C2. In other words, the symmetry equiva-

lence B−R(X ⊗R Y , R)

−→ B−R(Y ⊗R X , R) of B−R is minus the one of BR . This

bilinear functor is again perfect with duality which coincides with DR on the level
of the underlying equivalence Dp(R)op → Dp(R), but which has a different double
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dual identification. We may then consider the corresponding symmetric and quadratic
Poincaré structures

Ϙs−R(X) := B−R(X , X)hC2 and Ϙq−R(X) := B−R(X , X)hC2 ,

as in Definition 1.2.11. The space�∞Ϙs−R(X) is then a homotopical counterpart of the
notion of an anti-symmetric form on X , while�∞Ϙq−R(X) is its quadratic counterpart.

Example 1.2.14 In the spirit of Example 1.2.12, one may also fix a scheme X and
consider the stable∞-categoryDp(X) of perfect complexes of quasi-coherent sheaves
on X . Given a line bundle L on X we have an associated bilinear form BL on Dp(X)

given by

BL(F ,G) = homX (F ⊗X G, L),

which is perfect with duality

DL(F) = Homcx
X (F , L).

To this perfect duality we can then associate the corresponding symmetric and
quadratic Poincaré structures

ϘsL(F) := BL(F ,F)hC2 and ϘqL(F) := BL(F ,F)hC2 .

Example 1.2.15 Let Spf be the ∞-category of finite spectra. We define a hermitian
structure on Spf via the pullback square

Ϙu(X) D(X)

D(X ⊗ X)hC2 D(X ⊗ X)tC2

where D(X) = hom(X ,S) denotes the Spanier–Whitehead dual and the right vertical
map is the Tate diagonal DX → (DX⊗DX)tC2 of DX . This hermitian structure is then
Poincaré with duality given by Spanier–Whitehead duality. We note that this Poincaré
structure is neither quadratic nor symmetric (Definition 1.2.11). The superscript u is
suggestive for universal, see Sect. 4.1. The Poincaré ∞-category also functions as
the unit of the symmetric monoidal structure on Poincaré ∞-categories that we will
construct in Sect. 5.

Defining hermitian structures as spectrum valued functors allows us to easily imple-
ment various useful manipulations. One of them, which plays a recurring role in this
paper, is the procedure of shifting hermitian structures:
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Definition 1.2.16 Let C be a stable∞-category and Ϙ : Cop → Sp a quadratic functor.
For n ∈ Z we will denote by Ϙ[n] : Cop → Sp the n-fold suspension of Ϙ, given by

Ϙ[n](x) = �nϘ(x).

We note that Ϙ[n] is again a quadratic functor with bilinear part B�nϘ = �nBϘ and
linear part ��nϘ = �n�Ϙ; indeed, Funq(C) is a stable subcategory of Fun(Cop,Sp)
and B(−) and�(−) are both exact functors. In particular, if Ϙ non-degenerate or perfect
then so is Ϙ[n] with duality DϘ[n](x) = �nDϘ(x). We refer to Ϙ[n] as the n-fold shift of
Ϙ, and to the hermitian∞-category (C, Ϙ[n]) as the n-fold shift of (C, Ϙ).

Remark 1.2.17 The hermitian∞-category (C, Ϙ[n]) is Poincaré if and only if (C, Ϙ) is.

Example 1.2.18 In the situation of Example 1.2.12, if we shift the Poincaré structures
ϘsR and ϘqR on Dp(R) by n ∈ Z then we get Poincaré structures

(ϘsR)
[n](X) = homR(X ⊗R X , R[n])hC2

and

(ϘqR)
[n](X) = homR(X ⊗R X , R[n])hC2 .

respectively, which we consider as encoding n-shifted symmetric and quadratic forms.
Here, R[n] denotes the R-complex which is R in degree n and zero everywhere else.

We note that the full subcategories of Funq(C) spanned by non-degenerate and
perfect functors respectively are not preserved under pullback along exact functors
f : C → C′. For example, the hermitian structure Ϙs

Q
on Dp(Q) is perfect (see Exam-

ple 1.2.12), but its pullback toDp(Z) is not even non-degenerate. A notable exception
to this is however the following:

Observation 1.2.19 If (C, Ϙ) is a non-degenerate hermitian or Poincaré ∞-category
and D ⊆ C is a full stable subcategory such that the duality DϘ maps D to itself
then (D, Ϙ|D) is again non-degenerate with DϘ|D = DϘ|Dop . In particular, if (C, Ϙ) is
Poincaré then (D, Ϙ|D) is again Poincaré.

Example 1.2.20 If (C, Ϙ) is a non-degenerate hermitian∞-category then the full sub-
category Crefl ⊆ C spanned by those objects x ∈ C for which the evaluation map
evx : x → DopD(x) is an equivalence is preserved under the duality by the triangle
identities, and hence the hermitian∞-category (Crefl, Ϙ|Crefl) is again non-degenerate,
and even Poincaré, since the evaluation map is now an equivalence by construction.

1.3 Classification of hermitian structures

In this section we discuss the classification of hermitian and Poincaré structures on a
fixed stable∞-category C, in terms of their linear and bilinear parts. For the hermitian
part, this is essentially then = 2 case classificationofn-excisive functors inGoodwillie



Hermitian K-theory for stable ∞-categories I: Foundations Page 33 of 269 10

calculus, and is also a particular instance of the structure theory of stable recollements
(see [47, §A.8], [12], [55]). For the purpose of self containment we however provide
full proofs of the statements that we need in the present setting. In order to formulate
these statements we first need to better understand the role played by the quadratic
and symmetric hermitian structures ϘqB, Ϙ

s
B associated to a given symmetric bilinear

form B.

Lemma 1.3.1 Let Ϙ : Cop → Sp be a quadratic functor on a small stable ∞-category
C. Then the following are equivalent:

i) The map BϘ(x, x)hC2 → Ϙ(x) of (8) is an equivalence for every x ∈ C.
ii) Ϙ is equivalent to a quadratic functor of the form ϘqB for some symmetric bilinear

functor B ∈ Funs(C) (see Example 1.1.17).
iii) The spectrum of natural transformations nat(Ϙ,L) is trivial for any exact functor

L ∈ Funex(Cop,Sp) ⊆ Funq(C).

Definition 1.3.2 Following the conventions of Goodwillie calculus, we will refer
to quadratic functors Ϙ : Cop → Sp which satisfy the equivalent conditions of
Lemma 1.3.1 as homogeneous. We will denote by Funhom(C) ⊆ Funq(C) the full
subcategory spanned by the homogeneous functors.

Proof (Proof of Lemma 1.3.1) Clearly i)⇒ ii). If we assume ii) then iii) follows from
Lemma 1.1.24 since the linear part of ϘqB vanishes by definition. Similarly if we assume
iii) then i) follows by Lemma 1.1.24 since the linear part vanishes.

Corollary 1.3.3 (cf. [47, Proposition 6.1.4.14]) The functor

Funs(C) → Funq(C) B �→ ϘqB (28)

is fully-faithful and its essential image is spanned by those quadratic functors which
are homogeneous in the above sense.

Proof By Lemma 1.3.1 the functor (28) takes values in homogeneous functors,
and hence determines a functor ϕ : Funs(C) → Funhom(C) ⊆ Funq(C), where
the latter denotes the full subcategory spanned by homogeneous quadratic func-
tors. On the other hand, the formation of cross effects determines a functor in the
other direction ψ : Funhom(C) → Funs(C). By Lemma 1.3.1 the composed func-
tor ϕ ◦ ψ : Funhom(C) → Funhom(C) is naturally equivalent to the identity, and
by Examples 1.1.17 the composite ψ ◦ ϕ is naturally equivalent to the identity
Funs(C) → Funs(C) as well. It then follows that ϕ is an equivalence from Funs(C) to
Funhom(C) ⊆ Funq(C), as desired.

The notion of a homogeneous quadratic functor has a dual counterpart, which
consists of the quadratic functors which have a trivial mapping spectrum from any
exact functor. The argument of Lemma 1.3.1 then runs in a completely dual manner
to show that this property is equivalent to the canonical map Ϙ(x) → BϘ(x, x)hC2

being an equivalence and is satisfied by quadratic functors of the form ϘsB for any B ∈
Funs(C).Wewill refer to such functors as cohomogeneous, and denote by Funcoh(C) ⊆
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Funq(C) the full subcategory spanned by the cohomogeneous functors. The argument
of Corollary 1.3.3 then runs in a completely dual manner to show that the functor

Funs(C) → Funq(C) B �→ ϘsB (29)

is fully-faithful and its essential image is spanned by the cohomogeneous quadratic
functors.

Remark 1.3.4 Given a bilinear functor B, the quadratic functor x �→ B(x, x) is both
homogeneous and cohomogeneous.

Proposition 1.3.5 The natural transformation ε : [B�
Ϙ ]hC2 ⇒ Ϙ exhibits [B�

Ϙ ]hC2 as
final among homogeneous functors equipped with a map to Ϙ. Dually, the natural
transformation η : Ϙ ⇒ [B�

Ϙ ]hC2 exhibits [B�
Ϙ ]hC2 as initial among cohomogeneous

functors equipped with a map from Ϙ.

Proof This first statement is equivalent to Lemma 1.1.24 and the second is dual.

Corollary 1.3.6 For a small stable ∞-category C the functor

B(−) : Funq(C) → Funs(C)

admits left and right adjoints, both of which are fully faithful, given by sending B to
ϘqB and ϘsB respectively.

Remark 1.3.7 By Corollary 1.3.6 with Lemma 1.1.24 the pair of fully-faithful inclu-
sions

Funs(C)
Ϙs
(−)−−→ Funq(C) ← Funex(Cop,Sp)

form a recollement in the sense of [47, Definition A.8.1], and more precisely a stable
recollement in the sense of [12] and [55] since all ∞-categories involved are stable
and all functors involved are exact.

Given a symmetric bilinear functor B ∈ Funs(C), Lemma 1.3.1 implies that the
linear part of the quadratic functor ϘqB is trivial. This however need not be the case for
the quadratic functor ϘsB. To identify the linear part of the latter, recall that the sym-
metric bilinear part of ϘqB is canonically identified with B itself (see Example 1.1.17),
and so by Corollary 1.3.6 natural transformations ϘqB ⇒ ϘsB correspond to natural
transformations B ⇒ B. In particular, there is a distinguished transformation

ϘqB ⇒ ϘsB (30)

which corresponds to the identity B ⇒ B. In terms of the adjunctions of Corol-
lary 1.3.6, this map can also be identified with the counit of the adjunction (−)�hC2

�
B(−) evaluated at ϘsB, or the unit of B(−) � ((−)�)hC2 evaluated at ϘqB.
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Lemma 1.3.8 For B ∈ Funs(C) the map (30) is canonically equivalent to the trace
map associated to the C2-action on the object B� ∈ Funq(C).

Proof Given the bijective correspondence between natural transformations ϘqB ⇒ ϘsB
and natural transformationsB ⇒ B itwill suffice to construct an identification between
the map B ⇒ B induced by the trace map of B� and the identity on B. For this, note
that since the functor B(−) : Funq(C) → Funs(C) preserves all limits and colimits it
also sends trace maps to trace maps. In particular, the map B ⇒ B induced on bilinear
parts by the trace map ϘqB ⇒ ϘsB is itself the trace map

(B⊕ B)hC2 ⇒ (B⊕ B)hC2

associated to the C2-action on the symmetric bilinear part of B�, which we iden-
tify with the induced/coinduced C2-object B ⊕ B as in Example 1.1.17. The desired
result now follows from the following completely general property of trace maps:
given a semi-additive ∞-category D and an object x ∈ D, the trace map of the
induced/coinduced C2-object x ⊕ x identifies with the identity id : x → x under the
canonical identifications (x ⊕ x)hC2 
 x 
 (x ⊕ x)hC2 .

Remark 1.3.9 Lemma1.3.8 implies that Ϙ naturally lifts to a functorwith values in gen-
uine C2-spectra. We will discuss this issue in greater detail and precision in Sect. 7.4.

Corollary 1.3.10 For a symmetric bilinear functor B ∈ Funs(C) the linear part of
ϘsB(x) = B(x, x)hC2 is naturally equivalent to the Tate construction (B�)tC2(x) =
B(x, x)tC2 . In particular, the latter is always an exact functor.

By virtue of Lemma 1.3.8 and Corollary 1.3.10, any quadratic functor Ϙ on C
determines a diagram of quadratic functors

BϘ(x, x)hC2 Ϙ(x) �Ϙ(x)

BϘ(x, x)hC2 BϘ(x, x)hC2 BϘ(x, x)tC2

(31)

in which the right square is exact and the right most vertical map is obtained from
the middle vertical map by taking linear parts. Conversely, by Proposition 1.1.13 a
symmetric bilinear functor B : Cop × Cop → Sp, an exact functor � : Cop → Sp and
a natural transformation τ : � �⇒ (B�)tC2 together determine a quadratic functor
Ϙ : Cop → Sp by declaring the square

Ϙ(x) �(x)

B(x, x)hC2 B(x, x)tC2

τx
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cartesian. This observation leads to a well-known classification of quadratic functors,
which we now explain. To formulate it, let us first note that for a quadratic functor
Ϙ, Lemma 1.1.24 tells us that the natural transformation Ϙ⇒ �Ϙ is universally char-
acterized by the property that it induces an equivalence on mapping spectra to every
exact functor. In particular, if ϕ : Ϙ ⇒ � is any map from Ϙ to an exact functor �
which induces an equivalence on mapping spectra to any exact functor, then ϕ factors

through an equivalence Ϙ→ �Ϙ

−→ � in an essentially unique manner. In this case,

we will also say that ϕ exhibits � as the linear part of Ϙ. Similarly, we will say that a
mapψ : Ϙ→ Ϙ′ exhibits Ϙ′ as the cohomogeneous part of Ϙ if Ϙ′ is cohomogeneous and
ψ induces an equivalence on mapping spectra to any cohomogeneous functor. In this
case, Corollary 1.3.6 tells us that ψ factors through an essentially unique equivalence

Ϙ(x) → BϘ(x, x)hC2

−→ Ϙ′(x). Let us now denote by E ⊆ Fun(�1 × �1,Funq(C))

the full subcategory spanned by those squares of quadratic functors

Ϙ �

Ϙ′ �′
(32)

which are exact and for which the top horizontal map exhibits� as the linear part of Ϙ
and the left vertical map exhibits Ϙ′ as the cohomogeneous part of Ϙ. In particular, any
square in E is equivalent to a square as of the form appearing on the right side of (31) in
an essentially unique way.Wemay consider E as the∞-category of quadratic functors
equipped with a “cohomogeneous-linear decomposition”.

Proposition 1.3.11 The evaluation at (0, 0) ∈ �1×�1 map E → Funq(C) sending a
square as in (32) to Ϙ is an equivalence of∞-categories. In particular, every quadratic
functor can be written as a pullback of cohomogeneous and exact functors.

Proof Given Remark 1.3.7 this can be deduced from [12, Lemma 9].We however spell
out the details for completeness. Let E�⊆ Fun(�2

0,Fun
q(C)) be the full subcategory

spanned by those �2
0-diagrams

Ϙ �

Ϙ′
(33)

for which the top horizontal map exhibits� as the linear part of Ϙ and the left vertical
map exhibits Ϙ′ the cohomogeneous part of Ϙ. Then the restriction of any square in E to
�2

0 ⊆ �1×�1 lies in E� and the resulting projection E → E� is a trivial Kan fibration
since every square in E is exact and hence a left Kan extension of its restriction to
�2

0. It will hence suffice to show that the projection E�→ Funq(C) sending a diagram
as in (33) to Ϙ is an equivalence. Now the ∞-category E� can be embedded in the
larger ∞-category E ′ ⊆ Fun(�2

0,Fun
q(C)) consisting of those diagrams as in (33)

for which � is exact and Ϙ′ is cohomogeneous. Then the projection E ′ → Funq(C)
sending (33) to Ϙ is a cartesian fibration classified by the functor sending Ϙ to the
product of the comma category of exact functors under Ϙ and the comma category of
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cohomogeneous functors under Ϙ. We may then identify E� with the full subcategory
of E ′ spanned by those objects which are initial in their fibres. It then follows that the
projection E�→ Funq(C) is a trivial Kan fibration, and so the proof is complete.

We may now deduce the classification theorem for hermitian structures (cf. the
general classification of recollements [47, Proposition A.8.11]):

Corollary 1.3.12 (Classification of hermitian structures) The square

Funq(C) Ar(Funex(Cop,Sp))

Funs(C) Funex(Cop,Sp),

τ

B t (34)

is cartesian. Here the lower horizontal functor sendsB to (B�)tC2 and the right vertical
functor sends an arrow to its target.

Proof Let E� ⊆ Fun(�2
2,Fun

q(C)) be the full subcategory spanned by those �2
2-

diagrams
�

Ϙ′ �′
(35)

for which Ϙ′ is cohomogeneous, � is exact and the bottom horizontal map exhibits
�′ as the linear part of Ϙ′. Then restriction along �2

2 ⊆ �1 ×�1 sends every square
in E to a square in E�. On the other hand, if we complete a diagram of the form (35)
which belongs to E� to a cartesian square, then this squarewill belong to E : indeed, this
follows from the fact that a map Ϙ′′ → �′′ from a quadratic to an exact functor exhibits
the latter as the linear part of the former if and only if its fibre maps trivially to any
exact functor, that is, if its fibre is homogeneous. We then conclude that the projection
E → E� induced by restriction along�2

2 is a trivial Kan fibration. On the other hand,
the∞-category E� is by construction a fibre product Ar(Funex(C))×Funex(C)E ′′ where
E ′′ is the full subcategory of Fun(�1,Funq(C)) spanned by those arrows ψ : Ϙ′ → �′
such that Ϙ′ is cohomogeneous and ψ exhibits �′ as the linear part of Ϙ′. As in the
proof of Proposition 1.3.11 the projection E ′′ → Funcoh(C) sending Ϙ′′ → �′′ to Ϙ′′
is a trivial Kan fibration onto the full subcategory Funcoh(C) ⊆ Funq(C) spanned by
the cohomogeneous functors, and the section is given by sending a cohomogeneous
functor Ϙ′ to the arrow Ϙ′ → �Ϙ′ . We hence see that the projection E ′′ → Funex(C)
is equivalent as an arrow to the functor Funcoh(C) → Funex(C) taking linear parts.
Finally, by Corollary 1.3.6 and Corollary 1.3.10 the latter arrow is also equivalent to
the arrow Funb(C)hC2 → Funex(C) sending B to (B�)tC2 . Since E ′′ → Funex(C) is a
categorical fibration the fibre product E� is a model for the homotopy fibre product in
the square (34). The desired result now follows from Proposition 1.3.11 and the fact
that the projection E → E� is an equivalence.

Finally, let us also deduce an analogous classification for Poincaré structures. For
this, let us denote by Funpb(C) ⊆ Funb(C) the non-full subcategory spanned by the
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perfect bilinear functors and duality preserving natural transformations, that is, the
natural transformationsβ : B ⇒ B′ forwhich the associated transformation τβ : DB ⇒
DB′ is an equivalence. We then define Funps(C) to be the ∞-category sitting in the
pullback square

Funps(C) Funs(C)

Funpb(C) Funb(C).

It then follows directly from the definitions that the subcategory inclusion Funp(C) ⊆
Funq(C) (see Definition 1.2.8) features in a commutative diagram

Funp(C) Funq(C)

Funps(C) Funs(C)

Funpb(C) Funb(C)

in which both squares are pullback squares. The following is now a direct consequence
of Corollary 1.3.12:

Corollary 1.3.13 (Classification of Poincaré structures) The square

Funp(C) Ar(Funex(Cop,Sp))

Funps(C) Funex(Cop,Sp),

τ

B t (36)

is cartesian.

1.4 Functoriality of hermitian structures

In this subsection, we discuss the functorial dependence of Funq(C) on C from the
perspective of the classification described in Sect. 1.3, not only contravariantly via
restriction along exact functors, but also covariantly via left Kan extensions. Recall
that in Sect. 1.2 we defined Cath∞ as the total∞-category of the cartesian fibration

Cath∞ → Catex∞ (37)

which classifies the functor C �→ Funq(C). In particular, being a cartesian fibration,
the projection (37) encodes the contravariant dependence of Funq(C) in C. We will
now show that Funq(C) also depends covariantly in C via the formations of left Kan
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extensions. In particular, it will follow that the projection (37) is also a cocartesian
fibration. Sincewe constantlyworkwith contravariant functors to spectra let us employ
the following notation: given a functor g : D → E between ∞-categories we denote
by g! : Fun(Dop,Sp) → Fun(Eop,Sp) the operation of left Kan extension along
gop : Dop → Eop.

Lemma 1.4.1 i) If f : C → D is an exact functor between stable ∞-categories then
the associated left Kan extension functor

f! : Fun(Cop,Sp) → Fun(Dop,Sp)

sends exact functors to exact functors.
ii) If f : C → D and g : A → B are exact functors between stable ∞-categories

then the associated left Kan extension functor

( f × g)! : Fun(Cop ×Aop,Sp) → Fun(Dop × Bop,Sp)

sends bilinear functors to bilinear functors.
iii) If f : C → D is an exact functor between stable ∞-categories then the associated

left Kan extension functor

f! : Fun(Cop,Sp) → Fun(Dop,Sp)

sends quadratic functors to quadratic functors.

Proof We first note that left Kan extension along any functor between pointed ∞-
categories preserve reduced functors by the pointwise formula for left Kan extension.
Let now f : C → D be an exact functor andR : Cop → Sp a reduced functor. Consider
the following commutative diagram of stable∞-categories

C D

Pro(C) Pro(D)

f

i j
f̃

Then the bottom arrow admits a left adjoint g : Pro(D) −→ Pro(C), which corre-
sponds to restriction along C → D under the identification of Pro(−) 
 Ind((−)op)op

with (the opposite category of) right exact functors to spaces. Now since the Yoneda
embedding j : D → Pro(D) is fully faithful we have that j∗ j! : Fun(Dop,Sp) →
Fun(Dop,Sp) is equivalent to the identity, and so

f!R 
 j∗ j! f!R 
 j∗ f̃!i!R .

Moreover, since g is left adjoint to f̃ we have that the left Kan extension functor
f̃! : Funex(Pro(C)op,Sp) → Funex(Pro(D)op,Sp) is equivalent to restriction along
gop : Pro(D)op → Pro(C)op, and so

f!R 
 j∗g∗i!R 
 (g j)∗i!R .
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Applying [47, Proposition 6.1.5.4] we now get that i!R is exact (resp. quadratic) ifR
is exact (resp. quadratic). Precomposition with the exact functor g j then preserve the
properties of being exact or quadratic, and so f!R is exact (resp. quadratic) ifR is exact
(resp. quadratic). This proves i) and iii). To prove ii), we now argue as follows. By the
compatibility of left Kan extensions with composition of functors we may reduce to
the case where either f or g are the identity functor. By symmetry it will suffice to
assume that it is f which is the identity C → C. For any functorR : Cop×Aop → Sp
and every x ∈ C we then have

((id × g)!R)|{x}×Bop 
 g!(R|{x}×A),

as can be seen by the pointwise formula for left Kan extension. We may then conclude
that under the exponential equivalences

Fun(Cop ×Aop,Sp) 
 Fun(Cop,Fun(Aop,Sp)) and

Fun(Cop × Bop,Sp) 
 Fun(Cop,Fun(Bop,Sp))

the leftKan extension functor (id×g)! corresponds to post-composingwith the leftKan
extension functor g! : Fun(Aop,Sp) → Fun(Bop,Sp). Under the same equivalence
the bilinear functors correspond to those functor Cop → Fun(Aop,Sp) which are
exact and which take values in Funex(Aop,Sp) ⊆ Fun(Aop,Sp). Since g! preserve
exact functors by the first part of the lemma and post-composition with g! preserves
exact functors since g! is colimit preserving (being a left adjoint), it now follows that
(id × g)! preserves bilinear functors, as desired.

Corollary 1.4.2 The projection

Cath∞ −→ Catex∞

is also a cocartesian fibration, with pushforward along f : C −→ D given by Ϙ �→ f!Ϙ.

Let us now discuss the compatibility of restriction and left Kan extensions with the
decomposition of the∞-category of quadratic functors given by Corollary 1.3.12. We
first observe that, given an exact functor f : C → D, the associated restriction functor
f ∗ : Funq(D) → Funq(C) respects the square (34) in its entirety: indeed, taking linear
and bilinear parts is compatible with restriction by Remarks 1.1.6 and 1.1.23, and the
bottom functor in (34) is also visibly compatible with restriction. We then get that if
Ϙ is a quadratic functor on D with bilinear part B, linear part � and structure map
α : � → [B�]tC2 , then f ∗Ϙ is the quadratic functor with bilinear part ( f × f )∗B,
linear part f ∗� and structure map

f ∗α : f ∗� → f ∗[B�]tC2 
 [(( f × f )∗B)�]tC2 .

We now give a similar statement for left Kan extensions:



Hermitian K-theory for stable ∞-categories I: Foundations Page 41 of 269 10

Proposition 1.4.3 Let f : C −→ D be an exact functor between stable ∞-categories
and let Ϙ ∈ Funq(C) be a quadratic functor on C. Then the natural transformations

( f × f )!BϘ ⇒ B f!Ϙ f!�Ϙ ⇒ � f!Ϙ (38)

and

f!(�∞Ϙ) −→ �∞( f!Ϙ)

are equivalences.

Proof Let i : C → Pro(C) and j : D → Pro(D) be the respective Yoneda embeddings.
Arguing as in the proof of Lemma 1.4.1 using that ( j × j)∗( j × j)! is equivalent to
the identity and that restriction commutes with taking bilinear parts (Remark 1.1.6)
we may identify the first map in (38) with the restriction along g j × g j : D × D →
Pro(C)× Pro(C) of

(i × i)! : BϘ ⇒ Bi!Ϙ. (39)

We may hence assume without loss of generality that D = Pro(C) and f = i . To
prove the latter special case, we see that the component of the transformation (39) at
a pair of pro-objects {xα}α∈I , {yβ}β∈J in C identifies with the natural map

colim
(α,β)∈Iop×J op

fib[Ϙ(xα ⊕ yβ) → Ϙ(xα)⊕ Ϙ(yβ)]

→ fib

[
colim

(α,β)∈Iop×J op
Ϙ(xα ⊕ yβ) → colim

α∈Iop
Ϙ(xα)⊕ colim

β∈J op
Ϙ(yβ)

]
.

Now since I andJ are cofiltered the projections Iop×J op → Iop and Iop×J op →
J op are cofinal and hence we can also rewrite the above map as

colim
(α,β)∈Iop×J op

fib[Ϙ(xα ⊕ yβ) → Ϙ(xα)⊕ Ϙ(yβ)]

→ fib

[
colim

(α,β)∈Iop×J op
Ϙ(xα ⊕ yβ) → colim

(α,β)∈Iop×J op
Ϙ(xα)⊕ colim

(α,β)∈Iop×J op
Ϙ(yβ)

]

and so the desired result follows from the commutation of finite limits and filtered
colimits in Sp. This also implies that the second map in (38) is an equivalence since
the formation of linear parts is obtained by �Ϙ(x) := cof[BϘ(x, x)hC2 → Ϙ(x)] and
left Kan extension commutes with colimits. Finally, the proof that the map

f!(�∞Ϙ) −→ �∞( f!Ϙ)

is an equivalence is obtained via the same argument by reducing to the case of D =
Pro(C) and using that the formation of infinite loop spaces commutes with filtered
colimits.
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Proposition 1.4.3 tells us that the formation of linear and bilinear parts is compatible
with left Kan extensions. The situation is however slightly less simple then with
restriction, since the bottom arrow in (34) does not commute with left Kan extensions.
This is essentially due to the fact that the formation of symmetric hermitian structures
B �→ ϘsB = B(x, x)hC2 does not commute with left Kan extension. Instead, given
B ∈ Funs(C) we have a natural map

f!ϘsB → Ϙs( f × f )!B

which is generally not an equivalence. This leads to the following description of the
behavior of structure maps under left Kan extensions:

Corollary 1.4.4 Let f : C → D be an exact functor. If Ϙ : Cop → Sp is a quadratics
functor on C with bilinear part B, linear part � and structure map α : � → [B�]tC2

then f!Ϙ is the quadratic functor on D with bilinear part f!B, linear part f!�, and
structure map the composite

f!� → f![B�]tC2 → [(( f × f )!B)�]tC2 , (40)

which is the map induced on linear parts by the composite

f!Ϙ→ f!ϘsB → Ϙs( f × f )!B.

Remark 1.4.5 In the situation of Corollary 1.4.4 we can also identify the second map
in (40) with the Beck–Chevalley transformation on the lax commuting square on the
right

Funs(D) Funex(Dop,Sp)

Funs(C) Funex(Cop,Sp)

(−)
tC2
�

(−)
tC2
�

Funs(C) Funex(Cop,Sp)

Funs(D) Funex(Dop,Sp)

(−)
tC2
�

(−)
tC2
�

(41)

which is obtained from the commuting square on the left by replacing the vertical
restriction functors ( f × f )∗ and f ∗ by their left adjoints ( f × f )! and f!, respectively.

2 Poincaré objects

In this section we introduce and study another key element of the present paper, the
notion of a Poincaré object in a given Poincaré ∞-category (C, Ϙ). As reflected by
Examples 1.2.12 and 1.2.13, we think of a Poincaré structure on a given stable ∞-
category C as a way of encoding a particular notion of hermitian form, e.g., quadratic,
symmetric, or anti-symmetric forms on modules over rings. In the context of a general
Poincaré ∞-category (C, Ϙ) and an object x ∈ C, we will consequently call points
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in the underlying infinite loop space �∞Ϙ(x) hermitian forms on x . Such a form
determines in particular a map x → Dx from x to its dual, and we say that a form is
Poincaré if this map is an equivalence. A Poincaré object is then the abstract analogue
of a module equipped with (some flavour of) a hermitian form which is unimodular.

We begin in Sect. 2.1 by introducing the main definitions and establishing a few
basic consequences. One of the simplest forms of Poincaré objects are the hyperbolic
ones, which are the abstract analogue of the notion of hyperbolic quadratic forms. We
discuss these types of Poincaré objects in Sect. 2.2 and see how their formation can
be encoded as the action of a suitable Poincaré functor Hyp(C) → C from a certain
Poincaré∞-category Hyp(C) constructed from C. The Poincaré∞-category Hyp(C)
displays the interesting property that its Poincaré objects correspond to just objects in
C, and we study it in further depth in Sect. 7. We also exploit this construction in order
to prove that Poincaré objects with respect to symmetric Poincaré structures (Defi-
nition 1.2.11) correspond to C2-fixed objects in C (see Proposition 2.2.11 below). In
Sect. 2.3 we study another important kind of Poincaré objects-the metabolic Poincaré
objects. These correspond to metabolic forms in the classical sense, that is, forms
which admit a Lagrangian. Similarly to the hyperbolic case we show how one can
understand metabolic Poincaré objects via Poincaré objects in a certain Poincaré ∞-
category Met(C, Ϙ) constructed from (C, Ϙ). The notion of metabolic Poincaré objects
is the main input in the definition of the L-groups of a given Poincaré ∞-category
(see Definition 2.3.11 below). These are in fact the homotopy groups of the L-theory
spectrum which was classically defined and studied in the seminal work of Ranicki
[58], and transported to the context of Poincaré ∞-categories by Lurie [45]. A key
technique in studying L-groups is Ranicki’s algebraic Thom construction, which we
present in Sect. 2.4 in the setting of Poincaré∞-categories, and revisit in greater depth
in Sect. 7.3.

A key role in the present series of papers is played by the Grothendieck-Witt spec-
trum of a Poincaré∞-category, an invariant we will construct using the framework of
cobordism categories in Paper [2]. The zero’th homotopy group of the Grothendieck-
Witt spectrum, also known as the Grothendieck-Witt group, was classically defined in
the context of rings as the group completion of the groupoid of unimodular forms (with
respect to orthogonal sum). We will see how to define the Grothendieck-Witt group
in the abstract setting of Poincaré ∞-categories in Sect. 2.5, and extract some of its
basic properties. In particular, the Grothendieck-Witt group GW0(C, Ϙ) of a Poincaré
∞-category (C, Ϙ) sits in an exact sequence

K0(C)C2 → GW0(C, Ϙ) → L0(C, Ϙ) → 0

between the zero’th L-group of (C, Ϙ) and the C2-orbits of the algebraic K-theory of
C. This exact sequence is in fact the tail of a long exact sequence issued from a fibre
sequence of spectra

K(C)hC2 → GW(C, Ϙ) → L(C, Ϙ)
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that we will construct in Paper [2]. The existence of the above fibre sequence in this
generality is a principal novelty of our approach to hermitian K-theory, and yields a
variety of consequences we will exploit in Paper [2], Paper [3] and Paper [4].

2.1 Hermitian and Poincaré objects

In this sectionwewill present the notions of hermitian and Poincaré objects and extract
some of their basic properties.

Definition 2.1.1 Let (C, Ϙ) be a hermitian ∞-category and x ∈ C an object. By a
hermitian form on x we will mean a point q in the space �∞Ϙ(x). We will then refer
to the pair (x, q) as a hermitian object in (C, Ϙ). Hermitian objects can be organized
into an∞-category given by the total∞-category of the right fibration

He(C, Ϙ) :=
∫

x∈C
�∞Ϙ(x) → C

classified by the functor �∞Ϙ : Cop −→ S. We will refer to He(C, Ϙ) as the ∞-
category of hermitian objects in (C, Ϙ). We will denote by Fm(C, Ϙ) ⊆ He(C, Ϙ) the
maximal subgroupoid of He(C, Ϙ), and refer to it as the space of hermitian objects.

Lemma 2.1.2 The assignment (C, Ϙ) �→ He(C, Ϙ) canonically extends to a functor
He : Cath∞ → Cat∞, together with a natural transformation to the forgetful functor
(C, Ϙ) �→ C, whose component for a given (C, Ϙ) ∈ Cath∞ is the defining right fibration
He(C, Ϙ) → C.

Proof The functorCatex∞ ↪→ Cat∞, togetherwith the composednatural transformation

Funq(−) ⇒ Fun((−)op,Sp)
�∞∗�⇒ Fun((−)op,S),

where�∞∗ denotes post-composition with the infinite loop space functor�∞ : Sp →
S, together induces under unstraightening a functor

Cath∞ →
∫
C∈Cat∞

Fun(Cop,S).

Invoking (the dual of) [23, Corollary A.31], we may identify the Grothendieck con-
struction on the right as

∫
C∈Cat∞

Fun(Cop,S) 

∫
C∈Cat∞

RFib(C) 
 RFib

where RFib(C) denotes the ∞-category of right fibrations over C and RFib ⊆
Ar(Cat∞) is the full subcategory of the arrow category of Cat∞ consisting of right
fibrations. The resulting functor Cath∞ → RFib → Ar(Cat∞) then associates to a
hermitian ∞-category (C, Ϙ) the right fibration He(C, Ϙ) → C, yielding the desired
functoriality.
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We will mostly be interested in hermitian forms which satisfy a unimodularity
condition. To formulate it, we need to assume that (C, Ϙ) is non-degenerate. In that
case any hermitian object (x, q) determines a map q� : x → DϘ(x) as the image of q
under

�∞Ϙ(x) −→ �∞BϘ(x, x) = MapC(x,DϘ(x)).

Definition 2.1.3 We will say that a hermitian form q on x ∈ C is Poincaré if the
associated map q� : x → DϘ(x) is an equivalence. In this case we will also say
that (x, q) is a Poincaré object. We will denote by Pn(C, Ϙ) ⊆ Fm(C, Ϙ) the full
subgroupoid of Fm(C, Ϙ) spanned by the Poincaré objects. We will refer to Pn(C, Ϙ) ∈
S as the space of Poincaré objects in (C, Ϙ).

Remark 2.1.4 Similarly to the ∞-category He(C, Ϙ) one could also form an ∞-
category of Poincaré objects as a full subcategory of He(C, Ϙ). This construction is
rather poorly behaved formally and will not play any role in this paper. Therefore we
will only consider the space Pn(C, Ϙ) of Poincaré objects here.

Lemma 2.1.5 If ( f , η) : (C, Ϙ) → (C′, Ϙ′) is a duality preserving hermitian functor
between non-degenerate hermitian ∞-categories then the induced functor

f∗ : Fm(C, Ϙ) → Fm(C′, Ϙ′)

preserves Poincaré objects, that is, it maps the full subgroupoid Pn(C, Ϙ) ⊆ Fm(C, Ϙ)
to the full subgroupoidPn(C′, Ϙ′) ⊆ Fm(C′, Ϙ′). In particular, the association (C, Ϙ) �→
Pn(C, Ϙ) thus extends to a functor

Pn : Catp∞ → S.

It is this functor Pn that plays a pivotal role in the rest of the paper.

Proof of Lemma 2.1.5 ByRemark 1.2.6 the natural transformation η : Ϙ→ f ∗Ϙ′ deter-
mines a commutative diagram

�∞Ϙ(x) �∞Ϙ′( f (x))

�∞BϘ(x, x) �∞BϘ′( f (x), f (x))

MapC(x,DϘ(x)) MapC′( f (x), f DϘ(x)) MapC′( f (x),DϘ′ f (x))

�∞η

�∞βη


 

f (τη)∗

In particular, if ( f , η) is duality preserving then τη is an equivalence and hence the
top horizontal arrow sends Poincaré forms on x to Poincaré forms on f (x).

Remark 2.1.6 The map Ϙ(x) → BϘ(x, x) factors as Ϙ(x) → BϘ(x, x)hC2 →
BϘ(x, x), see (8). It then follows that for any hermitian form q on x the correspond-
ing map q� : x → DϘ(x) is self-dual, that is, it is invariant under the C2-action on
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hom(x,DϘx) 
 BϘ(x, x). In particular, by Remark 1.2.3 there is a canonical homo-
topy rendering the diagram

x DϘD
op
Ϙ (x)

DϘ(x)
q�

evx

DϘ(q�)

commutative.

Remark 2.1.7 Every Poincaré form q on x gives rise to a form q̂ on DϘ(x) via
the inverse of the induced map (q�)∗ : �∞Ϙ(DϘ(x)) → �∞Ϙ(x). By construction
q� : (x, q) → (DϘ(x), q̂) is an equivalence in Pn(C, Ϙ) and from Remark 2.1.6 we
find q̂� 
 DϘ(q�)−1 : DϘ(x) → DϘDϘ(x). In particular, q−1

� 
 ev−1
x ◦ q̂�.

Example 2.1.8 Let M be a compact oriented topological n-manifold with boundary
∂M ⊆ M and fundamental class [M] ∈ Hn(M, ∂M). Then the fundamental class
together with the cup-product induces a (−n)-shifted hermitian form

q[M] ∈ �∞Ϙs[−n]
Z

(C∗(M, ∂M)) = MapZ(C
∗(M, ∂M)⊗ C∗(M, ∂M),Z[−n])hC2

sending (ϕ, ψ) to (ϕ ∪ ψ)([M]). We note that we are working with homological
grading conventions, so that, for example, the complex C∗(M, ∂M) is concentrated in
non-positive degrees with trivial homology outside the range [−n, 0]. The associated
map q[M]

� from C∗(M, ∂M) to its dual can then be identified with the canonical map

C∗(M, ∂M) → C∗(M),

which is an equivalence if and only if C∗(∂M) 
 0, i.e., if and only if ∂M is empty.
In particular, the hermitian form q[M] is Poincaré if and only if M is closed.

2.2 Hyperbolic and symmetric Poincaré objects

Given a Poincaré∞-category (C, Ϙ), the space of Poincaré objects Pn(C, Ϙ) is related
to the underlying space of objects ιC in two different ways. First, one can of course take
a Poincaré object and forget its Poincaré form, yielding a forgetfulmapPn(C, Ϙ) → ιC.
There is however also an interesting construction in the other direction, which takes
an object x ∈ C and associates to it the object x ⊕ Dx endowed with its hyperbolic
Poincaré form, leading to a map ιC → Pn(C, Ϙ). Though these constructions seem
different in nature, they are in fact closely related, andwill both occupy our attention in
this present section. A common feature they both share is equivariance with respect to
the C2-action on ιC induced by the duality. In the final part of this section we will show
that when the Poincaré structure is symmetric the resulting map Pn(C, Ϙ) → ιChC2

is an equivalence. We will further study the relationship between the hyperbolic and
forgetful functors in Sect. 7.4 in the setting of C2-categories.
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Definition 2.2.1 Let (C, Ϙ) be a Poincaré∞-category with duality D. Given an object
x ∈ C we will denote by hyp(x) ∈ Pn(C, Ϙ) the Poincaré object whose underlying
object is x ⊕Dx and whose Poincaré form is given by the image of the identity under

MapC(x, x)
(evx )∗−−−→ MapC(x,DD(x)) 
 �∞BϘ(x,D(x)) −→ �∞Ϙ(x ⊕ D(x)).

Unwinding the definitions one easily checks that this indeed defines a Poincaré object.
We will refer to hyp(x) as the hyperbolic Poincaré object on x .

To understand systematically the role played by hyperbolic Poincaré objects in C
it is most useful to describe them as Poincaré objects in another Poincaré∞-category
built from C.

Definition 2.2.2 Let C be a stable ∞-category. We define its hyperbolic category
Hyp(C) to be thehermitian∞-categorywhoseunderlying stable∞-category isC⊕Cop,
equipped with the hermitian structure Ϙhyp(x, y) = homC(x, y).

Unwinding the definitions, we see that the symmetric bilinear functor associated to
the hyperbolic hermitian structure is given by

Bhyp((x, y), (x ′, y′)) = homC(x, y′)⊕ homC(x ′, y),

and its linear approximation is trivial. In particular, the bilinear functor Bhyp is perfect
with associated duality Dhyp(x, y) = (y, x) and consequently Hyp(C) is always a
Poincaré∞-category.

Remark 2.2.3 By construction, the quadratic functor Ϙhyp is obtained by diagonally
restricting the bilinear functor ((x, y), (x ′, y′)) �→ homC(x, y′). It then follows that
the canonical maps

Bhyp((x, y), (x, y)) → Ϙhyp(x, y) → Bhyp((x, y), (x, y))

are given by the collapse and diagonal maps

homC(x, y)⊕ homC(x, y) → homC(x, y) → homC(x, y)⊕ homC(x, y),

and Ϙhyp coincideswith both the quadratic and symmetric Poincaré structure associated
to the symmetric bilinear functor Bhyp.

Remark 2.2.4 The Poincaré ∞-category Hyp(C) is shift-invariant: for every n ∈ Z

the functor �n × id : C × Cop → C × Cop refines to an equivalence (C × Cop, Ϙhyp) 
(
C × Cop, Ϙ[n]hyp

)
, see Definition 1.2.16.

For (C, Ϙ) a Poincaré∞-categorywith dualityD, the associated hyperbolic category
Hyp(C) relates to C via Poincaré functors

Hyp(C) hyp−−→ (C, Ϙ) fgt−→ Hyp(C) (42)



10 Page 48 of 269 B. Calmès et al.

in both directions. Here the functor on the left in (42) is given by the exact functor
(x, y) �→ x ⊕ Dy, promoted to a hermitian functor via the natural transformation

homC(x, y)
(evy)∗−−−→ homC(x,DDy) 
 BϘ(x,Dy) −→ Ϙ(x ⊕ Dy),

while the second functor is given by the exact functor x �→ (x,Dx), promoted to a
hermitian functor via the natural transformation

Ϙ(x) → BϘ(x, x) → homC(x,Dx) 
 Ϙhyp(x,Dx).

By definition, the∞-category He(Hyp(C)) sits in a right fibration

He(Hyp(C)) → C ⊕ Cop

classified by the functorCop⊕C → S sending (x, y) to themapping spaceMapC(x, y).
But this functor is already known to classify the right fibration

TwAr(C) → C ⊕ Cop

where TwAr(C) is the twisted arrow category of C (see, e.g., [47, §5.2.1]), and we
consequently obtain an equivalence

He(Hyp(C)) 
 TwAr(C)

over C ⊕ Cop. In particular, hermitian objects in Hyp(C) are simply given by arrows
α : x → y in C, while morphisms between hermitian objects correspond to diagrams
in C of the form

x x ′

y y′.
α α′

Proposition 2.2.5 For a stable ∞-category C, the composite

Pn(Hyp(C)) → ιC ⊕ ιCop → ιC

is an equivalence of spaces. Here the first map is induced by the forgetful functor
Catp∞ → Catex∞ and the second is given by the projection onto the first factor. Under
this equivalence, the natural map Pn(Hyp(C)) → He(Hyp(C)) corresponds to the
map

ιC 
 TwAr(ιC) → TwAr(C).
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Proof An object [α : x → y] ∈ TwAr(C) viewed as hermitian object (x, y, α) in
Hyp(C), has as associated self dual map (x, y) → D(x, y) = (y, x) the map α on
both factors (viewed as either amap x → y in C or amap y → x in Cop). Consequently,
the hermitian form (x, y, α) is Poincaré if and only if α is an equivalence. Together
with the fact that right fibrations detect equivalences we obtain that

Pn(Hyp(C)) 
 TwAr(ιC) ⊆ ιTwAr(C) 
 Fm(Hyp(C)).

We finish the proof by observing that the projection TwAr(ιC) → ιC is an equivalence
since ιC is an∞-groupoid.

Remark 2.2.6 We will show in Sect. 7.4 that the association C �→ Hyp(C) organizes
into a functor Catex∞ → Catp∞ which is both left and right adjoint to the forgetful
functor Catp∞ → Catex∞, with unit and counit given by (42), see Corollary 7.2.21.
Together with the corepresentability of Pn (Proposition 4.1.3) this will give another
proof of Proposition 2.2.5.

In light of Proposition 2.2.5 the Poincaré functors (42) now induce a pair of maps

ιC → Pn(C, Ϙ) → ιC (43)

Unwinding the definitions we see that the functor on the left sends an object x to the
associated hyperbolic Poincaré object hyp(x), while, the functor on the right sends a
Poincaré object (x, q) to the underlying object x . A key feature of both these maps is
that they are C2-equivariant with respect to the C2-action on ιC induced by the duality
of Ϙ and the trivial action on Pn(C, Ϙ). To make this idea precise we will first construct
this action on the level of the Poincaré∞-category Hyp(C).

Construction 2.2.7 Let (C, Ϙ) be a Poincaré∞-category with associated duality D =
DϘ. We construct a C2-action on Hyp(C) ∈ Catp∞ as follows. To begin, consider the
equivalence of stable∞-categories

id × Dop : C × C 
−→ C × Cop.

Transporting the flip C2-action on C × C to C × Cop we thus obtain a C2-action on
C × Cop, given informally by the formula (x, y) �→ (Dy,Dopx). We wish to promote
this action to aC2-action on the Poincaré∞-categoryHyp(C). Since every equivalence
in Cath∞ is a Poincaré functor we may equivalently construct a C2-action on Hyp(C)
as a hermitian∞-category. By the construction of Cath∞ as the unstraightening of the
functor C �→ Funq(C), lifting the aboveC2-action on C×Cop toHyp(C) is equivalent to
giving a C2-fixed point structure on Ϙhyp ∈ Funq(C× Cop) with respect to the induced
C2-action on Funq(C × Cop). Since the relevant C2-action was transported from the
flip action on C × C via the equivalence (id,Dop) we may equivalently construct a
C2-fixed point structure on the quadratic functor (id×Dop)∗Ϙhyp. The latter is readily
discovered to be

[(id × Dop)∗Ϙhyp](x, y) = homC(x,Dy) = BϘ(x, y)
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and so we need to construct a C2-fixed point structure on BϘ, considered as an object
of Funq(C × C). But BϘ lies in the full subcategory Funb(C) ⊆ Funq(C × C), where
it is equipped with a C2-fixed structure by virtue of Lemma 1.1.9.

Remark 2.2.8 The C2-action on Hyp(C) constructed in 2.2.7 induces a C2-action on
He(Hyp(C)) 
 TwAr(C). Unwinding the definitions, this action sends an arrow [x →
y] ∈ TwAr(C) to the dual arrow DϘy → DϘx . Similarly, this C2-action determines an
action on Pn(Hyp(C)). Under the identification Pn(Hyp(C)) 
 ιC of Proposition 2.2.5
this action can be written simply by x �→ DϘx . Here we point out that since ιC is
an ∞-groupoid it is canonically equivalent to its opposite via an equivalence which
sends every arrow to its inverse. Hence the contravariant equivalence D becomes a
self-equivalence on the level of ιC. We may also state this as follows: the C2-action
(−)op : Cat∞ → Cat∞ admits a canonical trivialization along the full subcategory
S ⊆ Cat∞ (in fact, the space of self-equivalences of S is contractible by its universal
property [43, Theorem 5.1.5.6]), yielding an identification ShC2 
 Fun(BC2,S). The
duality DϘ then induces a duality on ιC and hence a C2-action.

Lemma 2.2.9 Let (C, Ϙ) be a Poincaré ∞-category with duality D = DϘ. Then the
functors

Hyp(C) hyp−−→ (C, Ϙ) fgt−→ Hyp(C)

both admit a distinguished refinement to C2-equivariant maps with respect to the
C2-action on Hyp(C) constructed in 2.2.7 and the trivial action on (C, Ϙ).

Corollary 2.2.10 The induced maps on Poincaré objects (which we denote by the same
name)

ιC hyp−−→ Pn(C, Ϙ) fgt−→ ιC

are C2-equivariant with respect to the duality induced action on ιC and the trivial
action on Pn(C, Ϙ).

Proof of Lemma 2.2.9 Wefirst construct the C2-equivariant structure on the underlying
exact functors. For this, note that since the C2-action on Hyp(C) was constructed by
transporting the flip action along the equivalence id × Dop : C × C → C × Cop and
DopD 
 id it will suffice to to promote the resulting exact functors

C × C → C → C × C

to C2-equivariant exact functors. Indeed, these are just the diagonal and fold map of
C as an object in the semi-additive∞-category Catex∞, which are both canonically C2-
equivariant. To lift the resulting C2-equivariant structure on (id,Dop) : C → C × Cop
to a C2-equivariant structure on the Poincaré functor fgt we need to promote the
associated natural transformation

Ϙ⇒ (id,Dop)∗Ϙhyp
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to a C2-equivariant map in Funq(C). Transporting the problem again along the equiva-
lence id×Dop we need to put a C2-equivariant structure on the natural transformation

Ϙ⇒ �∗B

where� : C → C×C is the diagonal. Indeed, this is established in Lemma 1.1.10. By
the same argument we see that in order to obtain the desired C2-equivariant structure
on hyp it will suffice to put a C2-equivariant structure on the natural transformation

B ⇒ ∇∗Ϙ,

where ∇ : C ⊕ C → C is the collapse functor (x, y) �→ x ⊕ y. Using the adjunc-
tion between restriction and left Kan extension we may instead put a C2-equivariant
structure on the adjoint transformation

∇!B 
 �∗B ⇒ Ϙ

where we used that left Kan extension along ∇op is obtained by restriction along its
right adjoint �op : Cop → Cop × Cop. The desired C2-equivariant structure was again
established in Lemma 1.1.10.

Let us now focus on the Poincaré functor fgt : (C, Ϙ) → Hyp(C). Upon taking
hermitian and Poincaré objects (and using Proposition 2.2.5) this Poincaré functor
induces a commutative diagram

Pn(C, Ϙ) Fm(C, Ϙ) He(C, Ϙ) (x, q)

ιC ιTwAr(C) TwAr(C) [q� : x → DϘx]

�

�
(44)

in which the vertical maps inherit from fgt a C2-equivariant structure with respect
to the trivial action on their domains and the C2-action induced by the C2-action on
Hyp(C) on the target. Here the left square consists only of spaces and the horizontal
maps are (up to equivalence) inclusions of components: for the upper left map these
are the components of He(C, Ϙ) consisting of Poincaré objects and for the lower left
map these are the components of ιTwAr(C) consisting of those arrows [x → y]which
are equivalences. Since by definition a hermitian object (x, q) is Poincaré if and only
if q� is an equivalence we see in particular that the left square is cartesian. Now by the
C2-equivariance above the external rectangle in (44) induces a commutative square

Pn(C, Ϙ) He(C, Ϙ) (x, q)

(ιC)hC2 TwAr(C)hC2 [q� : x → DϘx]

�

�
(45)
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Proposition 2.2.11 If Ϙ = ϘsB is a symmetric Poincaré structure of some symmetric
bilinear form B then the vertical maps in (45) are equivalences.

Proof Consider the extended diagram

Pn(C, Ϙ) Fm(C, Ϙ) He(C, Ϙ) C

TwAr(ιC)hC2 ιTwAr(C)hC2 TwAr(C)hC2 (C × Cop)hC2

TwAr(ιC) ιTwAr(C) TwAr(C) C × Cop

(46)

in which the external rectangle of the left column is cartesian as observed above.
In addition, since the fibres of the map TwAr(ιC) → ιTwAr(C) are (−1)-truncated
the bottom left square is cartesian as well, and hence the top left square is cartesian.
Similarly, since the map from the homotopy fixed point is conservative, the bottom
central square and therefore the top central square, are cartesian.

Now the map C → C × Cop is equivalent as a C2-equivariant arrow to the diagonal
inclusion C → C × C, which exhibits the C2-object C × C as coinduced from C. This
implies in particular that the top right vertical map in (46) is an equivalence. Thus to
conclude it suffices to show that the top right square is cartesian.

Now consider the right most column in (46). Since homotopy fixed points commute
with fibre products the fibres of the middle horizontal map over a fixed object in C is
the homotopy fixed points of the corresponding fibre of the bottom horizontal map in
the same column. We hence obtain that the map on horizontal fibre in the top right
square can be identified with the induced map

�∞Ϙ(x) → MapC(x,Dx)hC2 ,

which is an equivalence by the assumption that Ϙ = ϘsB for some B. It then follows
that the second and third vertical arrows in the top of (46) are equivalences. The left
most vertical map in that row is consequently an equivalence as well since the top left
square is cartesian.

2.3 Metabolic objects and L-groups

In this section we will introduce the notion of a metabolic Poincaré object and use it
to define the L-groups of a Poincaré∞-category. In the context of modules over rings
these were first defined by Wall and Ranicki in their seminal work on surgery theory
[69], andwere transported to the setting of Poincaré∞-categories in [45].Wewill then
develop an analogue of Ranicki’s algebraic Thom construction [57, Proposition 3.4]
in this context. This construction will play an important role in the framework of
algebraic surgery which we will set up in Paper [2].

Definition 2.3.1 Let (C, Ϙ) be a Poincaré∞-category and (x, q) a Poincaré object. By
an isotropic object over x we will mean a pair ( f : w → x, η) where f : w → x is a
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map in C and η : f ∗q ∼ 0 ∈ �∞Ϙ(w) is a null-homotopy of the restriction of q to w.
We will say that an isotropic object (w → x, η) is a Lagrangian if the null-homotopy
of w → x 
 Dx → Dw given by the image of η in �∞BϘ(w,w) = MapC(w,Dw)

exhibits the sequence

w → x → Dw

as exact. We will say that (x, q) is metabolic if it admits a Lagrangian.

Example 2.3.2 If (C, Ϙ) is a Poincaré ∞-category and x ∈ C an object then the asso-
ciated hyperbolic Poincaré object hyp(x) is metabolic with Lagrangian given by the
component inclusion x → x ⊕ Dx .

Example 2.3.3 In Dp(F2), let V be a 2-dimensional F2-vector space with basis v, u
equippedwith the symmetric bilinear formb : V⊗F2 V → F2 given byb(v, v) = 0 and
b(v, u) = b(u, v) = b(u, u) = 1. Then the Poincaré object (V , b) ∈ Pn(Dp(F2), ϘsF2)
is metabolic with Lagrangian L = 〈v〉 ↪→ V but (V , b) is not isomorphic to hyp(U )

for any U ∈ Dp(F2). Indeed, since any object in Dp(F2) breaks as a direct sum of
shifts of F2 the only possible candidate is U = F2, but (V , b) is not isomorphic to
hyp(F2). In particular, not every metabolic object is hyperbolic.

Example 2.3.4 Let M be a closed oriented n-manifold with fundamental class [M] ∈
Hn(M;Z), so that we have a symmetric Poincaré form q[M] ∈ �∞Ϙs[−n]

Z
(C∗(M)) as

in Example 2.1.8. If W is now an oriented (n + 1)-manifold with boundary M then
the relative fundamental class [W ] ∈ Hn+1(W , M) can be used to promote the map

C∗(W ) → C∗(M)

to a Lagrangian of (C∗(M), q[M]). This can be considered as an algebraic reflection
of the fact that W exhibits M as a boundary. In particular, if (C∗(M), q[M]) is not
metabolic then M is not the boundary of any oriented (n + 1)-manifold, that is, M is
not (oriented-ly) null-cobordant.

As in the case of hyperbolic Poincaré objects, it would be desirable to have a
description of metabolic Poincaré objects in terms of Poincaré objects in another
Poincaré∞-category constructed from (C, Ϙ).
Definition 2.3.5 For a Poincaré∞-category (C, Ϙ), we define the associatedmetabolic
category Met(C, Ϙ) to be the hermitian ∞-category with underlying ∞-category
Ar(C) = Fun(�1, C) and hermitian structure

Ϙmet : Ar(C)op = Ar(Cop) Ar(Ϙ)−−−→ Ar(Sp)
fib−→ Sp

whose value on arrows is Ϙmet([w → x]) = fib(Ϙ(x) → Ϙ(w)).

Unwinding the definitions we see that the underlying symmetric bilinear functor of
Ϙmet is

Bmet(w → x, w′ → x ′) = fib[BϘ(x, x ′) → BϘ(w,w′)].
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From this formula we see that if BϘ is perfect with duality D then Bmet is perfect with
duality

Dmet(w → x) = (
fib[Dx → Dw] → Dx

)
,

so that Met(C, Ϙ) is Poincaré whenever (C, Ϙ) is so. We note that by definition a
hermitian form on [ f : w → x] with respect to Ϙmet consists of a form q ∈ �∞Ϙ(x)
together with a null-homotopy η of f ∗q ∈ �∞Ϙ(w). Such a Ϙmet-form (q, η) is
Poincaré if and only if the associated self dual map encoded by the horizontal maps
of the square

w fib[Dx → Dw]

x Dx

η�

q�

(47)

is an equivalence.Hereq� is the self dualmapdetermined byq andwedenoted byη� the
map corresponding to the null-homotopy of the composedmapw → x → Dx → Dw
determined by the image of η in�∞BϘ(w,w) = Map(w,Dw). We then see that (47)
constitutes an equivalence between the vertical arrows if and only if q� : x → Dx is
an equivalence and the resulting sequence w → x 
 Dx → Dw is exact, that is,
if ( f : w → x, η) is a Lagrangian. We may thus conclude that Poincaré objects in
Met(C, Ϙ) correspond to metabolic objects in (C, Ϙ), or, more precisely, to Poincaré
objects in C equipped with a specified Lagrangian.

Definition 2.3.6 For a Poincaré∞-category (C, Ϙ) we will denote by

Pn∂ (C, Ϙ) := Pn(Met(C, Ϙ))

the space of Poincaré objects in Met(C, Ϙ), which we consider as above as the space
of Poincaré objects equipped with a specified Lagrangian.

Lemma 2.3.7 The maps

(C, Ϙ[−1]) i−→ Met(C, Ϙ) met−−→ (C, Ϙ) (48)

given respectively by i(x) = [x → 0] and met([w → x]) = x extend to morphisms
in Catp∞.

Proof For the first we observe that the map i is fully faithful, that i∗Ϙmet 
 �Ϙ and
that the image of i is closed under the duality in Met(C, Ϙ), so the result follows from
Observation 1.2.19. For the second map we take the hermitian structure associated to
the canonical map

Ϙmet([w → x]) = fib[Ϙ(x) → Ϙ(w)] → Ϙ(x).

By the explicit description of the duality above we see that the resulting hermitian
functor is Poincaré.



Hermitian K-theory for stable ∞-categories I: Foundations Page 55 of 269 10

Unwinding the definitions we see that the map

Pn∂ (C, Ϙ) → Pn(C, Ϙ) (49)

induced by the right hand Poincaré functor in (48) corresponds to the forgetful map
which takes a Poincaré object equipped with a Lagrangian and forgets the Lagrangian.
In particular, a Poincaré object in (C, Ϙ) is metabolic if and only if it is in the image
of (49)

As observed earlier, every hyperbolic form is metabolic, but not every metabolic
object is equivalent to the associated hyperbolic form on its Lagrangian. This relation
between metabolic and hyperbolic objects is best expressed by relating the Poincaré
∞-categories Met(C, Ϙ) and Hyp(C) via suitable Poincaré functors.
Construction 2.3.8 Let (C, Ϙ) be a Poincaré∞-category.We define Poincaré functors

Hyp(C) Met(C, Ϙ) Met(C, Ϙ) Hyp(C)

(x, y) (x → x ⊕ Dy) (w → x) (w,Dcof[w → x])

can lag

and

Hyp(C) Met(C, Ϙ) Met(C, Ϙ) Hyp(C)

(x, y) (Dy → x ⊕ Dy) (w → x) (cof[w → x],Dw)

dcan dlag

via the indicated formulas on the level of the underlying exact functors, and with
hermitian structures as follows. For the two functors on the left hand side the hermitian
structure is obtained via the identification

homC(x, y) 
 BϘ(x,Dy) 
 fib[Ϙ(x ⊕ Dy) → Ϙ(x)⊕ Ϙ(Dy)],

whose target visibly projects to both fib[Ϙ(x ⊕ Dy) → Ϙ(x)] and fib[Ϙ(x ⊕ Dy) →
Ϙ(Dy)]. For the functors on the right hand side the hermitian structure is given by the
natural transformation

fib[Ϙ(x) → Ϙ(w)] → fib[BϘ(x, w) → BϘ(w,w)] 
 BϘ(cof[w → x], w)

where we recognize the target as naturally equivalent to both lag∗ Bhyp and dlag∗Bhyp.
The preservation of the duality by these hermitian functors is visible by the explicit
descriptions of Dmet and Dhyp above. We also note that the composites

Hyp(C) can−→ Met(C, Ϙ) lag−→ Hyp(C)

and

Hyp(C) dcan−−→ Met(C, Ϙ) dlag−−→ Hyp(C)
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are naturally equivalent to the identity, and so exhibit Hyp(C) as a retract of Met(C, Ϙ)
in Catp∞.

Remark 2.3.9 The Poincaré functors lag, dlag : Met(C) → Hyp(C) are closely

related: they differ by post-composition with the Poincaré involution Hyp(C) 
−→
Hyp(C) of Construction 2.2.7. Similarly, the Poincaré functors can, dcan : Hyp(C) →
Met(C) differ by pre-composition with this involution. It then follows from
Lemma 2.2.9 that the composite

Met(C, Ϙ) → Hyp(C) hyp−−→ (C, Ϙ)

is independent of whether the first functor is lag or dlag. The action of this composed
functor on Pn(−) sends a Poincaré object (x, q) equipped with a Lagrangian w → x
to the associated hyperbolic object hyp(w) 
 hyp(Dw). The difference between
a metabolic Poincaré object and its hyperbolic counterpart plays a key role in the
definition of the Grothendieck-Witt group, see Sect. 2.5 below. On the other hand, we
also observe that the composite Poincaré functor

Hyp(C) → Met(C, Ϙ) met−−→ (C, Ϙ)

coincides with the functor hyp of (42), independently of whether the first functor is
can or dcan. On the level of Poincaré objects we may interpret this as the observation
that a hyperbolic Poincaré object hyp(w) can be considered as a metabolic object in
two canonical ways: one via the Lagrangianw → w⊕Dw and one via the Lagrangian
Dw → w ⊕ Dw.

A fundamental invariant of Poincaré ∞-categories is their L-groups. To define
them, we first observe that the set π0Pn(C, Ϙ) of equivalence classes of Poincaré
objects carries a natural commutative monoid structure, with sum given by

[x, q] + [x ′, q ′] = [x ⊕ x ′, q ⦹ q ′]

for [x, q], [x ′, q ′] ∈ π0Pn(C, Ϙ), where

q ⦹ q ′ ∈ �∞Ϙ(x ⊕ x ′) 
 �∞Ϙ(x)×�∞Ϙ(x ′)×�∞BϘ(x, x ′)

corresponds to the tuple (q, q ′, 0). Though this commutative monoid is generally not a
group, every element is invertible up to the class of a metabolic object. More precisely,
we have the following:

Lemma 2.3.10 Let (C, Ϙ) be a Poincaré ∞-category. Then the cokernel of the map
π0Pn∂ (C, Ϙ) → π0Pn(C, Ϙ) in the category of commutative monoids is a group. Explic-
itly, the inverse to [x, q] is given by [x,−q].
Proof This follows from the fact that (x ⊕ x, q ⦹−q) is metabolic with Lagrangian
given by the diagonal inclusion x → x ⊕ x with the canonical null-homotopy q +
(−q) ∼ 0.
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Definition 2.3.11 Let (C, Ϙ) be a Poincaré ∞-category. For n ∈ Z we define the n’th
L-group of (C, Ϙ) by

Ln(C, Ϙ) := coker[π0Pn
∂ (C, Ϙ[−n]) → π0Pn(C, Ϙ[−n])]

which is an abelian group by Lemma 2.3.10.

Remark 2.3.12 A standard description of cokernels in commutative monoids gives
that [x, q], [x ′, q ′] ∈ π0Pn(C, Ϙ[−n]) map to the same class in Ln(C, Ϙ) if and only
if there exists metabolic Poincaré objects [y, p], [y′, p′] such that [x, q] + [y, p] =
[x ′, q ′] + [y′, p′] in π0Pn(C, Ϙ[−n]). In particular, [x, q] maps to zero in Ln(C, Ϙ) if
and only if it is stably metabolic, that is [x, q]+[y, p] is metabolic for somemetabolic
Poincaré object [y, p]. In the setting of Poincaré∞-categories this property is actually
equivalent to [x, q] itself being metabolic. Indeed, suppose that z → y is a Lagrangian
for p and z′ → x ⊕ y is a Lagrangian for q ⦹ p. Setting w = [x ⊕ z] ×x⊕y z′ and
using the null-homotopies of p|z and (q ⦹ p)|z′ we then obtain

q|w ∼ (q ⦹ p)|w ∼ 0,

and one can verify that this null-homotopy exhibits w as a Lagrangian for q, so
that [x, q] is metabolic. It then follows from Lemma 2.3.10 that [x, q], [x ′, q ′] ∈
π0Pn(C, Ϙ[−n]) map to the same class in Ln(C, Ϙ) if and only if the Poincaré object
[x, q] + [x ′,−q ′] = [x ⊕ x ′, q ⦹−q ′] is metabolic.

Remark 2.3.13 It follows from Lemma 2.3.10 that if ( f , η) : (C, Ϙ) → (C′, Ϙ′) is a
Poincaré functor then the two induced abelian group homomorphisms

( f , η)∗, ( f ,−η)∗ : Ln(C, Ϙ) → Ln(C′, Ϙ′)

differ by a sign, where −η is an additive inverse to η in the E∞-group of natural
transformations Ϙ→ f ∗Ϙ′ (well-defined up to homotopy).

Remark 2.3.14 We note that the Poincaré functor

(i, η) : (C, Ϙ[−1]) → Met(C, Ϙ)

constructed in Lemma 2.3.7 is fully-faithful and the natural transformation η : Ϙ ⇒
i∗Ϙmet is an equivalence. It then follows that the induced map π0Pn(C, Ϙ[−1]) →
π0Pn(Met(C, Ϙ)) = π0Pn∂ (C, Ϙ) is injective. Since the essential image of i coin-
cides with the full subcategory spanned by those objects whose image under
met : Met(C, Ϙ) → (C, Ϙ) is zero it follows that the sequence of monoids

0 → π0Pn(C, Ϙ[−1]) → π0Pn
∂ (C, Ϙ) → π0Pn(C, Ϙ)

is exact. We may consequently identify Ln(C, Ϙ) with the “middle homology” of the
sequence of monoids

π0Pn
∂ (C, Ϙ[−n]) → π0Pn

∂ (C, Ϙ[−n+1]) → π0Pn
∂ (C, Ϙ[−n+2]).
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The terminology of L-groups goes back to Wall [69], who defined the quadratic L-
groups of a (not necessarily commutative) ring with anti-involution. These play a key
role in the surgery theoretic classification of higher dimensional manifolds. In the case
of fields the zero’th quadratic L-group was first studied byWitt [75], and later became
known in this context as the Witt group. The zero’th L/Witt group of fields plays an
important role in arithmetic geometry through its relation to Milnor’s K-theory and
Galois cohomology, as formulated in Milnor’s conjecture and eventually proven by
Voevodsky. For more on the relation between classical L-groups of rings and the ones
defined above, see Example 2.3.17 and Remark 4.2.25.

The notion of L-groups was subsequently generalized from rings to categories by
various authors: by Ranicki [58] for categories of bounded complexes over an additive
category equipped with a chain duality, and later by Weiss and Williams [72] for
Waldhausen categories equipped with a Spanier–Whitehead product. Higher L-groups
were also studied by Balmer [9] under the name higher Witt groups in the context of
triangulated categories. When applied to the triangulated bounded derived categories
of Z[ 12 ]-linear categories with chain duality these agree with Ranicki’s L-groups, and
the latter are a particular case of the construction in [72] (see Example 1.A.1 of loc.
cit.). Let us hence briefly explain how to compare the definition of L-groups given in
[72] with the one considered here.

Recall that in [72]Weiss andWilliams consider aWaldhausen category E satisfying
certain additional axioms. In particular, E is equipped with an initial object ∅ ∈ E and
two distinguished classes of morphisms, called cofibrations and weak equivalences,
and the additional axioms ensure that this structure exhibits E as a category of cofibrant
objects in the sense of [17]. One may then view E as a model for the ∞-category
E∞ = E[W−1] obtained by localising at the weak equivalences, and the auxiliary
structure given by the cofibrations allows one to access certain aspects of E∞ while
working entirely within E . For example, the initial object of E is also initial in E∞
(this is true in any localisation) and one can compute pushouts in E∞ by forming in
E pushouts with one leg cofibration. In fact, the axioms of a category with cofibrant
objects ensure that any map in E∞ can be represented by a cofibration in E (and this is
true even if we fix the domain), and so all homotopy pushouts in E∞ can be computed
in this way.

In the case considered in [72] the∞-categoryE∞ obtainedby localisedE at theweak
equivalences is assumed to be stable, so that one can contemplate the constructions
of the present paper for E∞. We then point out a second difference with [72]: while
here we consider forms on objects x ∈ E∞, which can then be restricted along maps,
in [72] one works with the dual notion of co-forms on a given object, which roughly
correspond to forms on the dual object. In particular, the rule which associates to
any object its space (or spectrum) of co-forms is encoded by a covariant, rather than a
contravariant functor on the underlying category. In addition, if one is workingwith the
1-categorical model E for the stable∞-category E∞ then it is natural to also work with
a 1-categorical model for spaces or spectra, which in [72] is done by using the category
Top of compactly generated Hausdorff spaces and the category Sp� of sequential �-
spectra in such.When localised at the class of weak homotopy equivalences these yield
the ∞-categories of spaces and spectra, respectively, and we will treat the former as
models for the latter. By a stable Spanier–Whitehead (SW) product the authors of [72]
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then mean a symmetric functor

B : E × E → Sp�

which is invariant under weak equivalences and exact in each variable, that is, for each
x ∈ E the functor B(x,−) sends initial objects to zero�-spectra and pushout squares
with one leg cofibration to homotopy pullback squares of �-spectra. In particular, by
the above discussion we see that a stable SW-product always descends to symmetric
bilinear functor

B∞ : E∞ × E∞ → Sp

in the sense of Sect. 1.1. Weiss and Williams then require that the resulting functor

π0B(−,−) : Ho(E)× Ho(E) → Set

is represented in Ho(E) by an equivalence D : Ho(E) → Ho(E)op. This condition is
implied by the condition that B∞ is perfect in the sense of Definition 1.2.8, and so to
compare [72] with the present setting we simply assume that B∞ is perfect. One may
then speak of symmetric Poincaré objects in E , which are objects x ∈ E equipped
with a point q ∈ �∞B(x, x)hC2 whose corresponding map Dx → x in Ho(E) is
an isomorphism. In [72] these are simply considered as a set sp0(E), which one can
endow with a commutative monoid structure via orthogonal sums.

The notion of a metabolic Poincaré object can naturally be set in the context of
[72] by associating to the Waldhausen category E the Waldhausen category Met(E)
whose objects are cofibrations x → w, the weak equivalences are defined levelwise,
and the cofibrations are the Reedy cofibrations. One may then put a stable SW-product
on Met(E) by setting B([x → w, x ′ → w′]) = hofib[B(x, x ′) → B(w,w′)], so that
one has a functor of Waldhausen categories with stable SW-products

Met(E) → E [x → w] �→ x .

A Poincaré object (x, q) in the context of Weiss–Williams is then identified as
metabolic if it is the image of a Poincaré object in Met(E). Though not explicitly
defined in this manner, the zero’th L-group of [72] can be identified with the quo-
tient of sp0(E) by the sub-monoid of metabolic objects. These constructions naturally
compare with those of the present paper, and one obtains a commutative diagram of
commutative monoids

sp0(Met(E)) sp0(E) L0(E,B)

π0Pn
(
Met

(
Eop∞ , Ϙs∞

))
π0Pn

(
Eop∞ , Ϙs∞

)
L0

(
Eop∞ , Ϙs∞

)
,
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where Ϙs∞ := ϘsB∞ is the symmetric Poincaré structure associated to the bilinear
functor B∞. Here, the composite of the two maps in every row is zero, and the bottom
row is exact by Remark 2.3.12. We then have the following comparison statement:

Proposition 2.3.15 The right most vertical map L0(E,B) → L0
(
Eop∞ , Ϙs∞

)
is an iso-

morphism.

Proof To begin, note that E → E∞ is essentially surjective by virtue of being a local-
isation. In addition, for every x ∈ E with image x ∈ E∞ one has B(x, x)hC2 

B∞(x, x)hC2 essentially by definition, and since the functor E → Ho(E) is conserva-
tive we have that a given co-form on x is Poincaré in E if and only if the corresponding
form on Dx is Poincaré in Eop

∞ . Combining all this yields that the map of monoids
sp0(E) → π0Pn

(
Eop∞ , Ϙs∞

)
is surjective, and so the map L0(E,B) → L0

(
Eop∞ , Ϙs∞

)
is

surjective. To show that the last map is also injective it will now suffice to show that
for every (x, q) ∈ sp0(E), the map

sp0(Met(E))×sp0(E) {(x, q)} → π0Pn(Met(Eop, Ϙs∞))×π0Pn(Eop,Ϙs∞) {(x, q)}

is surjective. Arguing as for the surjectivity on Poincaré objects, it will suffice to show
that the induced functor

Met(E)×E {x} → Met(Eop∞ )×Eop∞ {x}

is essentially surjective, which amounts in this case to showing that every map x → y
out of x in E∞ can be represented by a cofibration x → y out of x in E . This is a
general property of categories of cofibrant objects: indeed, since these admit a left
calculus of fractions [17, §7.2] one may represent x → y by some map x → y in E ,
which can then be replaced by a cofibration by using the factorization axiom for such
categories (which assures that every map can be written as a composite of a cofibration
followed by a weak equivalence).

Remark 2.3.16 In [72] Weiss and Williams also define quadratic L-groups associated
to a Waldhausen category with a Spanier–Whitehead product, by replacing homotopy
fixed points by homotopy orbits in the definition of co-forms. The proof of Proposi-
tion 2.3.15 then adapts verbatim to show that the quadratic L-groups of [72] identify
with the L-groups of the Poincaré structure Ϙq∞ := ϘqB∞ .

Example 2.3.17 Let R be a commutative ring and Chb(R) the category of bounded
complexes of finitely generated projective R-modules. Then Chb(R) has the struc-
ture of a Waldhausen category with cofibrations being the maps which are levelwise
injective with projective cokernel, and weak equivalences the collection qIso of quasi-
isomorphisms. We may endow this Waldhausen category with a Spanier–Whitehead
product B⊗(X ,Y ) := H(X ⊗R Y ) which sends X ,Y to the Eilenberg–Maclane
spectrum of X ⊗R Y . The symmetric and quadratic L-groups associated to this
Spanier–Whitehead product by [72] then coincide with Ranicki’s (4-periodic) sym-
metric and quadratic L-groups, respectively, see [72, Example 1.A.1]. Let Dp(R) =
Chb(R)[qIso−1] be the perfect derived ∞-category of R obtained by taking the
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∞-categorical localisation of Chb(R) by the quasi-isomorphisms. Then under the
equivalenceDR : Dp(R)op 
 Dp(R) the descended bilinear functorB⊗∞ identifieswith
the bilinear functor BR of Example 1.2.12. By Proposition 2.3.15 and Remark 2.3.16
we may then identify Ranicki’s symmetric and quadratic L-groups with the L-groups
of the Poincaré structures ϘsR and ϘqR described in that example. More generally, the
same holds (for the same reason) over a not-necessarily-commutative ring R with
respect to a fixed invertible module with involution M , see Sect. 4.2.

Remark 2.3.18 The collection of L-groups are in fact the homotopy groups of a spec-
trum valued invariant L(C, Ϙ), known as the L-theory spectrum. A definition in the
setting of Poincaré ∞-categories was given in [45], but was defined much earlier
in the setting of rings with anti-involution by Ranicki [58], and plays a key role in
surgery theory. We will recall the definition of this invariant in Paper [2], prove its
main properties and characterize it by a universal property. The interaction between the
L-spectrum and the closely related Grothendieck-Witt spectrum is one of the principal
themes of the present series of papers.

2.4 The algebraic Thom construction

Given a Poincaré∞-category (C, Ϙ), the map

Pn(C, Ϙ[−1]) → Pn∂ (C, Ϙ)

induced by the Poincaré functor of Lemma 2.3.7 sends a (−1)-shifted Poincaré object
(x, q) to the metabolic Poincaré object 0 equipped with x as its Lagrangian. In partic-
ular, the data of a Lagrangian of 0 is equivalent to that of a Poincaré object with respect
to the shifted Poincaré structure Ϙ[−1]. This idea fits in the more general paradigm of
the algebraic Thom isomorphism developed by Ranicki [57, Proposition 3.4], under
which Poincaré objects in (C, Ϙ) equipped with a Lagrangian can equivalently be
encoded via a hermitian object with respect to Ϙ[−1]. To discuss this equivalence, it
will be useful to introduce the following construction:

Definition 2.4.1 Let (C, Ϙ) be a Poincaré ∞-category. We will denote by Ar(C, Ϙ)
the hermitian∞-category whose underlying stable∞-category is the arrow category
Ar(C) and whose quadratic functor Ϙar sits in a pullback diagram

Ϙar([ f : z → w]) Ϙ(z)

BϘ(z, w) BϘ(z, z)
f ∗

(50)

where the vertical map is the canonical one from a quadratic functor to its diagonally
restricted bilinear part while the bottom horizontal map is the natural transformation
whose component at f is given by restriction along f .
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Remark 2.4.2 For [z → w] ∈ Ar(C), the commutative square

Ϙ(w) Ϙ(z)

BϘ(z, w) BϘ(z, z)
f ∗

determines a natural map Ϙ(w) → Ϙar(z → w). From Corollary 1.1.21 we then get
that for an exact sequence z → w → x the associated sequence

Ϙ(x) → Ϙ(w) → Ϙar(z → w)

is exact.

Unwinding the definitions we see that the underlying symmetric bilinear functor of
Ϙar sits in a fibre square

Bar([z → w], [z′ → w′]) BϘ(w, z′)

BϘ(z, w′) BϘ(z, z′)

from which we see that when BϘ is perfect with duality D then Bar is perfect with
duality

Dar([ f : z → w]) = [D f : Dw → Dz].

In this case, identifying BϘ(z, w) 
 homC(w,Dz), we see that a hermitian form on an
arrow [ f : z → w] ∈ Ar(C) consists of a triple (q, g, η)where q is a hermitian formon
z with respect to Ϙ, g : w → Dz is a map in C, and η is a homotopy q� ∼ g◦ f between
the resulting two maps from z to Dz. The self-dual map [z → w] → [Dw → Dz]
associated to such a triple can then be expressed as the map between the two vertical
arrows in the square

z Dw

w Dz

Dg

f
q�

D f
g

In particular, a triple (q, g, η) constitutes a Poincaré form if and only if g is an equiv-
alence. We now note that the map Ϙar([z → w]) → Ϙ(z) appearing in the defining
square (50) promotes the domain projection

Ar(C) → C [z → w] �→ z
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to a hermitian functor and hence determines a map

He(Ar(C, Ϙ)) → He(C, Ϙ) (51)

given on the level of tuples as above by (z → w, q, g, η) �→ (z, q). We then have the
following:

Proposition 2.4.3 The map (51) restricts to an equivalence

Pn(Ar(C, Ϙ)) → Fm(C, Ϙ) (z → w, q, g, η) �→ (z, q).

An explicit inverse is given by the association (z, q) �→ (q� : z → Dz, q, id, id).

Concisely stated, Proposition 2.4.3 says that for a Poincaré ∞-category (C, Ϙ),
hermitian objects in C can be described via Poincaré objects in its arrow category.
Though a direct proof is perfectly possible at the moment, we will postpone it to
Sect. 7.3, where we will prove this statement in a more general context in Proposi-
tion 7.3.5. Meanwhile, let us connect the present conclusions to the above discussion
of metabolic objects.

Notation 2.4.4 For a stable ∞-category C we will denote by Seq(C) ⊆ Fun(�1 ×
�1, C) the full subcategory spanned by the exact squares of the form

z w

0 x

(52)

In other words, Seq(C) is the ∞-category of exact sequences [z → w → x] in C,
where we will often omit the null-homotopy encoded by the commutative square (52)
to simplify notation.

We have two projections

Ar(C) Seq(C) Ar(C)

[z → w] [z → w → x] [w → x]
(53)

Lemma 2.4.5 The projections (53) are both equivalences. In addition, the restrictions
of Ϙar and Ϙ[1]met to Seq(C) via the left and right projection respectively, are naturally
equivalent.

Proof The first claim follows from the fact that exact squares as in (52) are both
left Kan extended from their restriction to �2

0 ⊆ �1 × �1 and right Kan extended
from their restriction to �2

2 ⊆ �1 × �1. The natural homotopy between Ϙar|Seq(C)
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and Ϙ[1]met|Seq(C) is then encoded by the 4-fold exact sequence of quadratic functors on
Seq(C) given by

Ϙmet([w → x]) → Ϙ(x) → Ϙ(w) → Ϙar(z → w),

where the last exact sequence is by Remark 2.4.2.

Lemma 2.4.5 identifies the Poincaré ∞-category Met(C, Ϙ) with the Poincaré
∞-category Ar(C, Ϙ) up to a shift of the Poincaré structure. We note however that
(Ar(C), Ϙ[1]ar ) 
 Ar(C, Ϙ[1]), that is, the formation of arrow Poincaré ∞-categories
commutes with shifting the Poincaré structure. Using Lemma 2.4.5 and Proposi-
tion 2.4.3 we then obtain a sequence of equivalences

Pn(Met(C, Ϙ)) 
 Pn(Ar(C, Ϙ[−1])) 
 Fm(C, Ϙ[−1]).

Unwinding the definitions, this composedmap sends a tuple (w → x, q, η), consisting
of a Poincaré object (x, q) equipped with a Lagrangian (w → x, η), to the object
z := fib(w → x), equipped with the shifted hermitian structure encoded by the pair
of null-homotopies of q|z (one restricted from η and one induced by the null-homotopy
of the composed map z → w → x).

Corollary 2.4.6 (The algebraic Thom isomorphism) The association [w → x] �→
fib(w → x) underlines a natural equivalence of spaces

Pn(Met(C, Ϙ)) 
 Fm(C, Ϙ[−1])

between Poincaré objects in C equipped with a Lagrangian and (−1)-shifted hermitian
objects in C.

Remark 2.4.7 Combining Remark 2.3.14 with the algebraic Thom isomorphism of
Corollary 2.4.6 we may identify the L-groups of (C, Ϙ) with the homology monoids
of the chain complex of monoids of the form

... → π0Fm(C, Ϙ[−n−1]) → π0Fm(C, Ϙ[−n]) → π0Fm(C, Ϙ[−n+1]) → ...

where the map π0Fm(C, Ϙ[−i]) → π0Fm(C, Ϙ[−i+1]) sends an (−i)-fold hermitian
object (x, q) to its Ranicki boundary cof[x → �iDϘ(x)], endowed with its associated
(−i + 1)-fold Poincaré form.

We finish this section by framing the observation that the hyperbolic and arrow
constructions naturally commute with each other

Lemma 2.4.8 For a stable ∞-category C, the natural equivalence

Ar(C × Cop) 
 Ar(C)× Ar(Cop) 
 Ar(C)× Ar(C)op (54)
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in which the second equivalence sends ( f : z → w, f ′ : z′ → w′) to ( f : z →
w,w′ ← z′ : f ′), extends to an equivalence of Poincaré ∞-categories

Ar(Hyp(C)) 
 Hyp(Ar(C)).

Proof Transporting the Poincaré structure of Ar(Hyp(C)) along the equivalence (54)
yields the quadratic functor

( f : z → w, f ′ : z′ → w′) �→ Ϙhyp(z, w′)×Bhyp((z,w′),(z,w′)) Bhyp((z, w
′), (w, z′))


 homC(z, w′)×homC(z,w′)× homC(z,w′) [homC(z, z′)× homC(w,w′)]
 homC(z, z′)
×homC(z,w′) homC(w,w′) 
 homAr(C)( f , f ′).

We thus finish the proof by recognizing the last term as the quadratic functor of
Hyp(Ar(C)).

Combining Lemma 2.4.8 with Lemma 2.4.5 and Remark 2.2.4 we immediately
conclude

Corollary 2.4.9 For a stable ∞-category C there is a natural equivalence of Poincaré
∞-categories

Met(Hyp(C)) 
 Hyp(Ar(C)),

which, on the underlying stable ∞-categories, is given by the equivalence

Ar(C × Cop) 
 Ar(C)× Ar(Cop) 
 Ar(C)× Ar(C)op,

where the second equivalence is the product of the identity ofAr(C)and the equivalence
Ar(Cop) 
 Ar(C)op which sends an arrow x ← w : g in Cop to the canonical arrow
fib(g) → w. In particular, the Poincaré functor met : Met Hyp(C) → Hyp(C) from
Lemma 2.3.7 (applied to Hyp(C)) admits a section in Catp∞.

2.5 The Grothendieck-Witt group

In this section we define the Grothendieck-Witt group of a Poincaré ∞-category. In
the setting of ordinary rings, the Grothendieck-Witt group was classically defined as
the group completion of the monoid of isomorphism classes of pairs (P, q) where P
is a finite dimensional projective module and q is a non-degenerate hermitian form
of some flavour (symmetric, quadratic, anti-symmetric, etc.). It was later extended
to more general contexts such as vectors bundles over algebraic varieties [41] and
forms in abstract additive categories with duality [54]. In doing so it was realized that
the simple definition via group completion needs to be slightly modified to take into
account information coming from non-split short exact sequences. In particular, one
had to quotient out the group completion by the relation [x, q] ∼ [hyp(w)] identifying
the class of ametabolic objectwith Lagrangianwwith that of the associated hyperbolic
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object. In fact, the latter relation already implies the group property for the resulting
quotient (as we will see below in our context), and hence can be done on the level
of monoids without explicitly group completing. On the other hand, in the case of
modules over rings (or, more generally, in contexts in which all short exact sequences
split) the relation [x, q] ∼ [hyp(w)] automatically holds in the group completion since
every metabolic object is stably hyperbolic.

In the present section we will give a definition of the Grothendieck-Witt group in
the context of Poincaré∞-categories, and extract some of its basic properties. Using
the work of the fourth and ninth authors [28], this definition can be compared with the
classical one in the case of modules over rings using suitable Poincaré structures on
Dp(R), see Remark 4.2.28 below for the precise statement.

For the following definition, recall the map hyp : ιC → Pn(C, Ϙ) induced on
Poincaré objects by the Poincaré functor hyp : Hyp(C) → (C, Ϙ) under the equiv-
alence Pn(Hyp(C)) 
 ιC of Proposition 2.2.5. Explicitly, this map sends an object
x ∈ C to the Poincaré object hyp(x) = x ⊕ Dx equipped with its canonical Poincaré
form, see Sect. 2.2.

Definition 2.5.1 Let (C, Ϙ) be a Poincaré∞-category. We define GW0(C, Ϙ) to be the
quotient in the category of commutative monoids of π0Pn(C, Ϙ) (with its commutative
monoid structure given by direct sums) by the relations

[x, q] ∼ [hyp(w)] (55)

for every Poincaré object (x, q) with Lagrangian w → x .

Remark 2.5.2 By definition we may identify GW0(C, Ϙ) with the coequalizer of the
pair of maps

π0PnMet(C, Ϙ) ⇒ π0Pn(C, Ϙ),

where the first map is induced by the Poincaré functor met : Met(C, Ϙ) → (C, Ϙ) and
the second is induced by the composed Poincaré functor Met(C, Ϙ) lag−→ Hyp(C) hyp−−→
(C, Ϙ) discussed in Remark 2.3.9.

We quickly summarize a few properties which follow directly from the definition
of GW0.

Lemma 2.5.3 i) For every exact sequence z′ → z → z′′ in C the relation

[hyp(z)] ∼ [hyp(z′)] + [hyp(z′′)]

holds in GW0(C, Ϙ).
ii) For every Poincaré object [x, q] ∈ Pn(C, Ϙ) the relation

[x, q] + [x,−q] + [hyp(�x)] ∼ [hyp(x)] + [hyp(�x)] ∼ 0

holds in GW0(C, Ϙ).
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Proof For i) note that if z′ → z → z′′ is an exact sequence in C then w := z′ ⊕DϘz′′
is naturally a Lagrangian in hyp(z), and hyp(w) 
 hyp(z′)⊕ hyp(z′′).

To prove ii), the first identification is given by (55) applied to the metabolic object

(x
�−→ x ⊕ x, q ⊕ −q) and the second relation is given by i) applied to the exact

sequence �x → 0 → x .

Corollary 2.5.4 The commutative monoid GW0(C, Ϙ) is always a group. We refer to it
as the Grothendieck-Witt group of (C, Ϙ).
Example 2.5.5 For a stable∞-category C, the isomorphism

π0Pn(Hyp(C)) ∼= π0ι(C) (56)

induced on components of the equivalence of Proposition 2.2.5, descends to a group
isomorphism

GW0(Hyp(C)) ∼= K0(C).

Indeed, the isomorphism (56) relates the class of z ∈ C to the Poincaré class of (z, z) ∈
C × Cop equipped with its canonical Poincaré form idz ∈ homC(z, z) = Ϙhyp(z, z).
An isotropic object in ((z, z), idz) is then given by a pair of maps z′ → z, z → z′′ in
C, such that the composite z′ → z → z′′, which corresponds to the pullback of the
Poincaré form idz to Ϙhyp(z′, z′′) = homC(z′, z′′), vanishes. Such an isotropic object is
a Lagrangian precisely when the resulting sequence z′ → z → z′′ is exact. Moreover
the hyperbolic object on (z′, z′′) is given by the object (z′⊕z′′, z′⊕z′′) ∈ C×Cop. It then
follows that under the isomorphism (56), the defining relations of the Grothendieck-
Witt group can be written as [z] = [z′] + [z′′] for every exact sequence z′ → z → z′′,
which are exactly the relations defining the quotient π0ι(C) � K0(C).

Recall from Definition 2.3.11 that the zero’th L-group L0(C, Ϙ) is defined as the
cokernel of the monoid homomorphism π0Pn∂ (C, Ϙ) → π0Pn(C, Ϙ). In particular,
the quotient map π0Pn(C, Ϙ) → L0(C, Ϙ) sends the class of any metabolic object
(and in particular any hyperbolic object) to zero, and hence factors through a group
homomorphism

GW0(C, Ϙ) → L0(C, Ϙ),

which is necessarily surjective, as we can identify L0(C, Ϙ) with the quotient group
of GW0(C, Ϙ) by the subgroup spanned by the classes of metabolic objects. To obtain
more information about this kernel, we note that the map

π0Pn
∂ (C, Ϙ) → π0(ιC) [w → x] �→ w

induced by the Poincaré functor lag : Met(C, Ϙ) → Hyp(C) of Construction 2.3.8, is
surjective: any object z ∈ C is a Lagrangian in the Poincaré object hyp(z). In addition,
the canonical map

π0(ιC) → K0(C)
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to the zero’th algebraic K-theory group of C is surjective as well: we may identify
K0(C) with the quotient of π0(ιC) in the category of commutative monoids by the
relations [z] ∼ [z′] + [z′′] for every exact sequence z′ → z → z′′. By Lemma 2.5.3i)
the homomorphism hyp : π0(ιC) → π0Pn(C, Ϙ) then descends to a homomorphism
of abelian groups

[hyp] : K0(C) → GW0(C, Ϙ), (57)

which by Example 2.5.5 we may also identify with the map induced on GW0 by the
Poincaré functor hyp : Hyp(C) → C. Comparing the relevant universal properties we
then see that GW0(C, Ϙ) sits in a pushout square of commutative monoids of the form

π0Pn∂ (C, Ϙ) π0Pn(C, Ϙ)

K0(C) GW0(C, Ϙ)

[met]

[lag]
[hyp]

(58)

where [lag] denotes the composed map π0Pn∂ (C, Ϙ) → π0(ιC) → K0(C). It then
follows that L0(C, Ϙ) can equivalently be obtained as the cokernel of the map of
abelian groups [hyp] : K0(C) → GW0(C, Ϙ). On the other hand, by Corollary 2.2.10
the map [hyp] is C2-equivariant with respect to the induced C2-action on K0 and the
trivial C2-action on GW0(C, Ϙ). We then obtain an induced exact sequence of abelian
groups

K0(C)C2 → GW0(C, Ϙ) → L0(C, Ϙ) → 0. (59)

In Paper [2] we will show that this sequence comes from an exact sequence of spectra

K(C)hC2 → GW(C, Ϙ) → L(C, Ϙ),

the Tate exact sequence, encoding the fundamental relationship between these three
invariants. In particular, this allows one to extend (59) to a long exact sequence involv-
ing the higher L-groups and higherGrothendieck-Witt groups, yielding a powerful tool
for computing the latter. In Paper [3] we will exploit these ideas for computing the
higher Grothendieck-Witt groups of the integers.

3 Poincaré structures onmodule categories

In this section we discuss hermitian and Poincaré structures on∞-categories of mod-
ules over ring spectra. In particular, we fix a base E∞-ring spectrum k and consider
an E1-algebra A in the symmetric monoidal ∞-category Modk of k-module spectra.
We denote by AlgE1

:= AlgE1
(Modk) the∞-category of E1-algebra objects in Modk ,

which we simply refer to as E1-algebras. Given an E1-algebra A ∈ AlgE1
, we denote

by ModA the ∞-category of left A-module objects in Modk , which we refer to as
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A-modules. Our goal is to describe and study hermitian and Poincaré structures on the
full subcategory ModωA ⊆ ModA of compact A-modules in Modk , as these account
for many examples of interest motivating the present work (see also Sect. 4 for some
more specific examples). More generally, one often wishes to consider a dense stable
subcategory ofModωA, that is, a stable (and in particular full) subcategory which gener-
ates all of ModωA under retracts. For example, one may consider the stable subcategory
ModfA ⊆ ModωA of finitely presented A-module spectra, which is the smallest stable
subcategory containing the A-module A. By the work of Thomason [65], the dense
stable subcategories of ModωA are classified by subgroups c ⊆ K0(ModωA), where
to such a c corresponds the dense subcategory Modc

A ⊆ ModωA consisting of those
compact A-modules M whose class [M] ∈ K0(ModωA) lies in c. In this context, let
us point out that studying hermitian and Poincaré structures on Modc

A for a general
c ⊆ K0(ModωA) is not really more complicated then studying hermitian and Poincaré
structures in the maximal case of ModωA. Indeed, by Lemma 1.4.1 left Kan extension
and restriction form an adjunction

Funq(Modc
A)

⊥ Funq(ModωA),

and Modc
A ⊆ ModωA being a dense full subcategory implies that this adjunction is an

equivalence (cf. [2], Remark 1.3.4). As will follow from our more detailed analysis
below, this equivalence identifies the ∞-category Funp(Modc

A) of Poincaré struc-
tures on Modc

A with the full subcategory of Funp(ModωA) spanned by those Poincaré
structures whose associated duality preserves Modc

A, or, equivalently, preserves the
subgroup c ⊆ K0(ModωA) (see Remark 3.3.4).

The present section is organised as follows. We begin in Sect. 3.1 by introducing
the notion of a k-module with involution, and show how it can be used to construct
bilinear functors on module ∞-categories. We then extend this notion in Sect. 3.2 to
a k-module with genuine involution, which allows us to refine the associated bilinear
functor to a hermitian or Poincaré structure. The basic operations of restriction and
induction of modules with genuine involution alongmaps of ring spectra are discussed
in Sect. 3.4.

We point out that the∞-categories Modc
A wewill consider do not depend on k, that

is, they only depend on the underlying E1-ring spectrum of A. However, the notion of a
k-modulewith (genuine) involution does depend on k, and affects the type of hermitian
structures onModc

A one can obtain in this way. More precisely, we will see in Sect. 3.3
that when k = S, modules with genuine involution precisely correspond to hermitian
structure on ModωA, while for a general k one recovers hermitian structures equipped
with a certain additional k-linear structure, the precise meaning of which is described
in Remark 3.3.2 and Example 5.4.13. The reader who wishes to avoid this additional
layer of structure is invited to assume k = S throughout. On the other hand, the reader
who prefers to reason in terms of chain-complexes instead of spectra is invited to
consider k = Z. The latter case (and more generally, that of a complex-oriented k)
also leads to better periodicity properties, as we discuss Sect. 3.5.
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3.1 Ring spectra and involutions

In this section we will define the notion of a k-module with involution over an E1-
algebra A and show how it can be used to construct bilinear functors onModωA.Wewill
identify the k-modules with involution which lead to perfect bilinear functors as those
which are invertible in a suitable sense. An important class of invertible k-modules
with involution arise from E1-algebras with anti-involutions, a case for which we will
present a convenient recognition criterion, see Proposition 3.1.14.

To begin, we note that since ⊗k is a symmetric monoidal structure on Modk the
monoidal product

⊗k : Modk ×Modk → Modk

itself refines to a monoidal functor, which then sends the algebra object (A, A) in
Modk ×Modk to the algebra object A ⊗k A in Modk , and thus refines to a functor

ModA ×ModA → ModA⊗k A (X ,Y ) �→ X ⊗k Y . (60)

In addition, since ⊗k is a symmetric monoidal structure the functor
⊗k : Modk ×Modk → Modk is C2-equivariant with respect the flip action on the
domain and trivial action on the target, and consequently (60) inherits a C2-equivariant
structure with respect to the flip action on the domain and the C2-action on the target
induced by the flip action on A⊗k A. Given an (A⊗k A)-module M , let us denote by

BM : ModωA ×ModωA → Sp (X ,Y ) �→ homA⊗k A(X ⊗k Y , M)

the resulting bilinear form. The association M �→ BM then assembles to form a
functor

B(−) : ModA⊗k A → Funb(ModωA) (61)

which by the above inherits a C2-equivariant structure with respect to the flip-induced
C2-actions on both sides.

Definition 3.1.1 Let A be an E1-algebra over k. By a k-module with involution over
A we will mean an object M of the ∞-category (ModA⊗k A)

hC2 , where as above C2
acts on ModA⊗k A via its flip action on A ⊗k A. When k = S we will often omit k and
simply write module with involution.

Concretely, a k-module with involution over A consists of a spectrum M with a C2-
action and an (A⊗k A)-module structure, such that the involution is linear over the ring
map A ⊗k A → A ⊗k A which switches the two factors. Since (61) is C2-equivariant
the bilinear functor

BM (X ,Y ) = homA⊗k A(X ⊗k Y , M).
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on ModωA associated to M consequently inherits the structure of a symmetric bilinear
functor.

Definition 3.1.2 Let M be a k-modulewith involution over anE1-algebra A.We denote
by

ϘqM , ϘsM : (ModωA)
op → Sp

the quadratic and symmetric hermitian structures associated to the symmetric bilinear
functor BM ∈ Funs(ModωA) as in Example 1.1.17 and Definition 1.2.11.

If M is a k-module with involution over A, these are given explicitly by the formulas

ϘqM (X) = homA⊗k A(X ⊗k X , M)hC2 and ϘsM (X) = homA⊗k A(X ⊗k X , M)hC2 .

Remark 3.1.3 Given a subgroup c ⊆ K0(ModωA) we may restrict BM to obtain a sym-
metric bilinear functor on Modc

A, and similarly for the associated hermitian structures
ϘqM and ϘsM . For simplicity we will generally not distinguish in notation between these
functors and their respective restrictions to Modc

A for a given c.

We may consider an (A ⊗k A)-module M as a k-module spectrum equipped with
two commuting actions of A. The first A-action then promotes M to an object of
ModA, while the second action refines to an action of A on M via A-module maps. In
particular, the second A-action can be encoded via a map

A → homA(M, M). (62)

If M is a k-module with involution over A then the involution determines an equiva-
lence between the two different A-module structures. In particular, in this case it does
not matter which action is considered first and which is considered second.

Definition 3.1.4 We will say that a k-module with involution M over A is invertible if
it is compact as an A-module (with respect to either the first or the second A-action)
and the map (62) is an equivalence.

Notation 3.1.5 If M is a k-module with involution over A then for every A-module
X we may form the mapping spectrum homA(X , M), where we consider M as an A-
module via its first A-action. This spectrum then carries an A-action via the residual
second A-action on M , and so we may view homA(X , M) as an A-module. In what
follows we will always consider homA(X , M) as an A-module in this manner, without
indicating it explicitly in the notation.

Proposition 3.1.6 Let A be an E1-algebra and M a k-module with involution over A.
Then for a subgroup c ⊆ K0(ModωA) the following statements hold:

i) The restriction of BM to Modc
A is non-degenerate if and only if the A-module

homA(X , M) (see Notation 3.1.5) belongs to Modc
A for every X ∈ Modc

A.
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ii) When the equivalent conditions of i) hold the associated duality on Modc
A is given

by

DM (X) := homA(X , M).

This duality is furthermore an equivalence if and only if M is in addition invertible.

Remark 3.1.7 In the situation of Proposition 3.1.6, if Modc
A contains A then the con-

dition in i) necessitates in particular that M belongs to Modc
A (take X = A). If Modc

A
is either ModωA or ModfA then M belonging to Modc

A is also sufficient: for ModfA this
is because A generates ModfA under finite colimits and desuspensions and for ModωA
it is because A generates ModωA under finite colimits, desuspensions and retracts, and
ModωA is furthermore idempotent complete.

Remark 3.1.8 It follows from Proposition 3.1.6 and Remark 3.1.7 that M is invertible
if and only if it is compact as an A-module and the contravariant functor X �→
homA(X , M) from ModωA to itself is an equivalence. Now for any E1-algebra A the
functor X �→ homA(X , A) determines an equivalence

ModωA −→ (ModωAop)
op.

In addition, for M compact the natural map homA(X , A)⊗A M → homA(X , M) is an
equivalence. It then follows that for a k-module with involution M which is compact
as an A-module the condition of being invertible is equivalent to the condition that

(−)⊗A M : ModωAop → ModωA

is an equivalence of∞-categories.

Proof of Proposition 3.1.6 Webegin with the first claim. For a fixed compact A-module
Y , the functor X �→ homA⊗k A(X ⊗k Y , M) from ModopA to Sp is represented by
the A-module homA(Y , M), where the latter is considered as an A-module via its
second A-action. Since the functor ModA → Ind(Modc

A) = Funex((Modc
A)

op,Sp)
sending a module to the presheaf it represents on Modc

A is fully-faithful (in fact, it
is an equivalence) it follows that BM (−,Y ) is representable in Modc

A if and only if
homA(Y , M) lies inModc

A, in which case homA(Y , M) serves as a representing object
already in Modc

A. This proves i) and the first part of ii).
To prove the second part of ii) let now suppose that the condition in i) holds, that

is, homA(X , M) belongs to Modc
A for every X ∈ Modc

A. This means in particular
that homA(X , M) is compact for every X ∈ Modc

A. Since Modc
A is dense in ModωA

it follows that A is a retract of an object in Modc
A, and hence M = homA(A, M) is

compact as well. We now wish to show that the evaluation map

X → DMDM (X) = homA(homA(X , M), M)

is an equivalence for every X ∈ Modc
A if and only if M is furthermore invertible.

Using again that Modc
A generates ModωA under retracts the above evaluation map is an
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equivalence on Modc
A if and only if it is an equivalence on all of ModωA. On the other

hand, since ModωA is generated under finite colimits and retracts by A it will suffice to
check the component of the evaluation map at X = A, in which case it becomes the
map

A → homA(homA(A, M), M)) = homA(M, M)

which by definition is an equivalence if and only if M is invertible.

We now consider some examples. An E1-algebra with anti-involution (over k) is
an object of AlghC2

E1
= AlgE1

(Modk)
hC2 , where the action of C2 on the∞-category of

E1-algebras is given by sending an algebra A to its opposite Aop.

Example 3.1.9 Let A be an E1-algebra with anti-involution τ : Aop → A. Then A can
be naturally considered as an invertible k-module with involution over itself. Indeed,
by using that the forgetful functor AlgE1

→ Sp is equivariant with respect to the

trivial action on the target, we obtain a functor AlghC2
E1

→ Fun(BC2,Sp), which
allows us to view A as a spectrum with C2-action. In addition, by construction this
action switches between the canonical left and right actions of A on itself. More
precisely, viewing A as an (A ⊗k Aop)-module, this C2-action is linear over the C2-
action on A⊗k Aop which flips the two components and applies the anti-involution τ .
Equivalently, the anti-involution determines an equivalence of E1-algebras A⊗k Aop 

A ⊗k A intertwining the above C2-action with the flip action on A ⊗k A, and we may
hence view A as an object of ModhC2

A⊗k A. Informally, the A ⊗k A-action on A is given
by (a ⊗ b) · x = a · x · τ(b). We may then recover the anti-involution τ as the induced
map of E1-algebras A → homA(A, A) = Aop. The latter is therefore an equivalence,
and so A is invertible.

Example 3.1.10 The restriction of the C2-action on AlgE1
to E∞-algebras is canoni-

cally trivialised, so that we obtain a functor

Fun(BC2,AlgE∞) → AlghC2
E1

.

In particular, E∞-algebras with C2-actions give rise to an E1-algebra with involution.
For example, any E∞-algebra equipped with the trivial C2-action, determines an E1-
algebra with involution.

More generally, when A is an E∞-algebra, any A-module M with C2-action
canonically defines a k-module with involution over A, with A ⊗k A acting via the
multiplication map A ⊗k A → A. By Remark 3.1.8, the invertibility condition from
3.1.4 is in this case equivalent to the ⊗A-invertibility of M , or in other words to
M ∈ Pic(A) upon disregarding C2-actions.

Example 3.1.11 An important source of E1-algebras with anti-involution arises from
the group algebra construction. We will study this example and its relation to visible
L-theory in further detail in Sect. 4.3.
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Examples 3.1.12 Let R be an ordinary associative ring.Using theEilenberg–MacLane
embedding H : Ab ↪→ Sp we may associate to R an E1-ring spectrum HR, and by
[47, Theorem 7.1.2.1] we have a natural equivalence

ModωHR 
 Dp(R)

between the ∞-category of compact HR-module spectra and the perfect derived ∞-
category of R, defined as in Example 1.2.12. An anti-involution on HR is then the
same as an anti-involution on R, that is, an isomorphism τ : R → Rop such that
τ 2 = id. We will study this case in further detail in Sect. 4.2. Ordinary rings which
carry anti-involutions are then fairly common, see Examples 4.2.7.

Example 3.1.13 As in Example 3.1.12, suppose that R is an ordinary associative ring.
Recall that a Wall anti-structure [68] on R consists of an anti-automorphism τ : R →
Rop and a unit ε ∈ R∗ such that τ(r) = ε−1rε and τ(ε) = ε−1. The most common
type of these are the central Wall anti-structures, namely, those in which ε is in the
center and τ is an anti-involution. Given a Wall anti-structure we can consider R as an
(R⊗Z R)-module via the action (a⊗b)(c) = abτ(c), and endow it with an involution
given by x �→ ετ(x). Applying the Eilenberg–Mac Lane functor this results in an
invertible k-module with involution over the E1-ring spectrum HR, whose underlying
HR-module is HR, but which is generally not the one associated to any anti-involution
on HR.

The following lemma gives a recognition criterion for k-modules with involution
over A which come from anti-involutions of A. Essentially, it reflects the idea that the
datum of an anti-involution on A is equivalent to that of a perfect duality D : ModωA →
(ModωA)

op together with a symmetric Poincaré form u ∈ homA(A,D(A))hC2 on the
A-module A:

Proposition 3.1.14 Let A be an E1-algebra and M a k-module with involution over
A. Then M comes from an anti-involution on A as in Example 3.1.9 if and only if
there exists a C2-equivariant map of spectra u : S → M (where C2-acts trivially on
S) such that the induced A-module map A → M (using, say the first A-action on M),
is an equivalence. In this case, the anti-involution on A can be recovered via the map
A → homA(M, M) 
 homA(A, A) = Aop associated to the second A-action on M.

The proof of Proposition 3.1.14 will require some preparation. Given a stable ∞-
category C, the formation of mapping spectra allows one to consider C as an ∞-
category enriched in spectra, see [22, Example 7.4.14]. This enrichment is functorial
in C, that is, it can be organised into a functor

Catex∞ → CatSp C �→ CSp (63)

where the latter is the∞-category of Sp-enriched∞-categories, see [14, Proposition
4.10] (and [26, Theorem 1.1] for the comparison of the model categorical and ∞-
categorical approaches to spectrally enriched categories). The functor (63) is in fact
fully-faithful and exhibits Catex∞ as an accessible localisation of CatSp by the collection
of triangulated equivalences, see [14, Theorem 4.22].
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Remark 3.1.15 Every spectrally enriched∞-categoryhas an “underlying∞-category”
obtained by applying the functor�∞ = Map(S,−) : Sp → S to all mapping spectra.
In particular, the underlying ∞-category of the spectrally enriched category CSp is
just C itself (or rather, its image in Cat∞). More formally, the functor (63) consti-
tutes a lift of the inclusion Catex∞ ↪→ Cat∞ along the underlying ∞-category functor
CatSp → Cat∞.

Let Catex∞,∗ := Catex∞ ×Cat∞ (Cat∞)�0/ denote the ∞-category of stable ∞-
categories C equipped with a distinguished object x ∈ C, and similarly, let CatSp,∗ =
CatSp ×Cat∞ (Cat∞)�0/ denote the ∞-category of spectrally enriched categories
equipped with a distinguished object. Then we may consider the composite

Catex∞,∗ → CatSp,∗ → AlgE1
(64)

where the first functor is induced from (63) and the second is the functor of [22,
Theorem 6.3.2(iii)], which can be described on objects as sending a pointed spectrally
enriched category (D, x) to the endomorphism spectrum MapD(x, x). As shown in
loc. cit. this functor has a fully-faithful left adjoint B : AlgE1

→ CatSp,∗ which sends
a ring spectrum A to the pointed spectrally enriched category (BA, x) containing a
single object x whose endomorphism ring is A. The essential image of B is then given
by those pointed spectrally enriched categories (D, x) for which x is the only object
up to equivalence.

Proposition 3.1.16 Let (C, Ϙ) be a Poincaré ∞-category and (x, q) a Poincaré object
in C. Then the image homC(x, x) ∈ AlgE1

of (C, x) under (64) inherits a canonical

anti-involution, that it, it lifts to an object of AlghC2
E1

.

Proof We first note that the spectral enrichment functor (63) commutes with taking
opposites. Indeed, since (63) is fully-faithful and its essential image, spanned by the
pre-triangulated spectrally enriched categories, is closed under opposites, the op action
on CatSp induces a C2-action on Catex∞. This action then coincides with the action
induced by the inclusion of Catex∞ in Cat∞ by Remark 3.1.15 and the fact that the
underlying ∞-category functor CatSp → Cat∞ visibly commutes with opposites
since it is induced by a functor Sp → S on the level of enriching∞-categories.

Now since �0 
 (�0)op via an essentially unique isomorphism the op action on
Catex∞ induces aC2-action onCatex∞,∗, which can be described on objects by the formula
(C, x) �→ (Cop, x). Similarly, the op action on CatSp induces a C2-action on CatSp,∗.
In addition, the endomorphism functor CatSp,∗ → AlgE1

in (64) is C2-equivariant
with respect to the op actions on both sides, as can be seen by the fact that it admits a
fully-faithful right adjoint B : AlgE1

→ CatSp,∗ which is itself compatible with taking
opposites essentially by construction. Now consider the diagram

(C, x) Catex∞,∗ AlgE1
homC(x, x)

C Catex∞

∈ �

∈
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in which both arrows are C2-equivariant with respect to the op action. The perfect
duality DϘ promotes C to a C2-fixed object of Catex∞ (see (27)). The fibre of Catex∞,∗ →
Catex∞ over C can be identified with ιC, with its C2-action induced by DϘ. To finish the
proof it will suffice to show that x ∈ ιC refines to a C2-fixed point. Indeed, this now
follows from Corollary 2.2.10.

Proof of Proposition 3.1.14 The only if direction is clear, since any anti-involution on
A preserves the unit map u : S → A. To prove the other direction, suppose that M is a
k-module with involution over A and we are given a C2-equivariant map u : S → M
with respect to the trivial C2-action onS, such that the induced A-modulemap A → M
is an equivalence. Since u is C2-invariant it follows that this condition holds for both
the first and second A-actions. On the other hand, it also holds for the Aop-action on A
that the analogously defined map is an equivalence. The corresponding statement also
holds for the homA(M, M)-action on M . We hence obtain a commutative diagram

A homA(M, M) Aop

M M


 






(65)

in which both vertical maps (induced by the base point u : S → M) are equivalences,
and the bottom horizontal map is the involution on M . It then follows that the top hori-
zontal map A → homA(M, M) is an equivalence as well. In particular, M is invertible
and hence the induced bilinear functor onModωA is perfect by Lemma 3.1.6, with asso-
ciated duality X �→ homA(X , M) onModωA. The C2-equivariant map u : S → M then
determines a form

qu ∈ ϘsM (A) = homA(A ⊗k A, M)hC2

which is Poincaré by the condition that the induced map A → M = D(A) is an equiv-
alence. We may then identify the top horizontal equivalence in (65) as the underlying
equivalence of the anti-involution on homA(A, A) = homA(D(A),D(A))op induced
by the Poincaré form qu by Proposition 3.1.16.

3.2 Modules with genuine involution

Our goal in this section is to refine the definition of a k-module with involution studied
in Sect. 3.1 above in order to obtain a notion capable of encoding not just bilinear
but also quadratic functors on ModωA, and similarly on Modc

A for a given subgroup
c ⊆ K0(ModωA). To begin, recall that for a spectrum X there is a canonical map
X → (X ⊗S X)tC2 , known as the Tate diagonal, which enjoys a variety of favourable
formal properties, see [53]. If X is now a k-module thenwe can consider the composite
map

X → (X ⊗S X)tC2 → (X ⊗k X)tC2 , (66)
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where the second map is induced by the lax monoidal structure of the forgetful functor
Modk → Sp. For X = k the map (66) gives the composite map

Fr : k → (k ⊗S k)tC2 → ktC2

which is known as the Tate Frobenius map. For a k-module spectrum X we may
then consider the spectrum (X ⊗k X)tC2 , which is naturally a ktC2 -module, as a k-
module spectrum, by restricting structure along the Tate Frobenius.With this k-module
structure the map (66) becomes k-linear, and we will henceforth refer to it as the k-
linear Tate diagonal.

Remark 3.2.1 The functor id : Sp → Sp is stably corepresented by S, and so for any
exact functor F : Sp → Sp, the space of natural transformations id ⇒ F identifies, via
evaluation at S, with the space�∞F(S) of maps S → F(S). Under this identification,
the Tate diagonal id ⇒ ((−)⊗ (−))tC2 corresponds to the image in �∞[StC2 ] of the
unit e ∈ [�∞

S]hC2 = �∞[ShC2 ] (where we consider�∞
S = Map(S,S) as a monoid

with respect to composition, and the C2-equivariant structure, as the C2-action on S,
is constant). On the other hand, the functor �∞ : Sp → S is the space valued functor
corepresented by S, and hence natural transformations �∞ ⇒ G identify with maps
∗ → G(S) for any functor G : Sp → S. The point e ∈ [�∞

S]hC2 then determines a
factorization of �∞� : �∞(−) ⇒ �∞[((−)⊗ (−))tC2 ] as

�∞(−) ⇒ [�∞((−)⊗ (−))]hC2 = �∞[((−)⊗ (−))hC2 ] ⇒ �∞[((−)⊗ (−))tC2 ].

Furthermore, since e is a monoid unit it lifts along�∞
S×�∞

S → �∞
S to the point

(e, e), and this can be done also on the level of C2-homotopy fixed points where C2 acts
on the domain by flipping the components. We conclude that the above factorization
of �∞� : �∞(−) ⇒ �∞[((−)⊗ (−))tC2 ] refines to a factorization

�∞(−) ⇒ [�∞(−)×�∞(−)]hC2 ⇒ [�∞((−)

⊗(−))]hC2 = �∞[((−)⊗ (−))hC2 ] ⇒ �∞[((−)⊗ (−))tC2 ],

where the first map is simply the C2-equivariant diagonal. Wewill use this observation
in the proof of Lemma 67 below.

Warning 3.2.2 Since k is the unit of Modk the flip C2-action on k ⊗k k 
 k is trivial.
However, the Tate Frobenius k → ktC2 is generally not equivalent to the composite
k → khC2 → ktC2 . In particular, if we were to endow (X ⊗k X)tC2 with the k-module
structure restricted from its ktC2 -module structure along k → khC2 → ktC2 (which
would be the k-module structure we would obtain by applying to X ⊗k X the Tate
construction internally in Modk) then (66) would generally not be k-linear.

Definition 3.2.3 Let A be a E1-algebra. A module with genuine involution over A is a
triple (M, N , α) which consists of

– a k-module with involution M over A in the sense of Definition 3.1.1,
– an A-module N , and
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– an A-linear map f : N → M tC2

Here we view M tC2 , which is canonically an (A ⊗k A)tC2 -module, as an A-module
through the k-linear Tate diagonal A → (A ⊗k A)tC2 .

Remark 3.2.4 When k = S the data of a module with genuine involution over A can
equivalently be described as a genuine C2-spectrum equipped with an action of the
Hill–Hopkins–Ravenel norm NA of A, first introduced in [31] and later reinterpreted
from the ∞-categorical perspective in [11]. The genuine C2-spectrum NA has as
underlying C2-spectrum A⊗S A with the flip C2-action, geometric fixed points A, and
reference map A → (A⊗S A)tC2 the Tate-diagonal considered in [53]. It is an algebra
object with respect to the symmetric monoidal structure on genuine C2-spectra, and
the data of a module over this algebra object consists exactly of an (A ⊗S A)-module
with C2-action (which is M in our case), a module over the geometric fixed points A
(which is N in our case), and a reference map α : N → M tC2 refining M to a genuine
C2-spectrum with geometric fixed points N .

More generally, for an arbitrary base E∞-ring spectrum k and E1-algebra A over
k, the notion of a k-module with genuine involution over A is equivalent to that of
a genuine C2-spectrum equipped with an action of the k-linear norm Nk A of A: this
is the genuine C2-spectrum whose underlying C2-spectrum is A ⊗k A with the flip
C2-action, whose geometric fixed point spectrum is A, and whose reference map
A → (A ⊗k A)tC2 is the k-linear Tate-diagonal mentioned above.

Lemma 3.2.5 For M ∈ ModhC2
A⊗k A and X ∈ ModωA there is an equivalence

homA⊗k A(X ⊗k X , M)tC2 
 homA(X , M tC2) (67)

natural in M and X.

Proof Consider the functor F : (ModωA)
op → Sp given by X �→ homA⊗k A(X ⊗k

X , M)tC2 . This functor is exact, thus by Morita theory it is of the form homA(X , N )

for some A-module N . Setting X = A we find that N = M tC2 as a spectrum.
Furthermore, the right action of �∞A on A translates under the functor F to the
diagonal action of �∞A on M tC2 , i.e., the action through the composite

�∞A
�−→ (�∞A ×�∞A)hC2 → �∞(A ⊗S A)hC2 → �∞(A ⊗S A)tC2 → �∞(A ⊗k A)tC2 ,

which at the same time also underlines the k-linear Tate diagonal by Remark 3.2.1.
Applying the same observation to shifts of A and using exactness then fully identifies
the A-module structure on M tC2 , showing the claim.

Construction 3.2.6 Let (M, N , α) be a k-module with genuine involution over A. We
define a quadratic functor ϘαM on perfect A-modules by the pullback
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ϘαM (X) homA(X , N )

ϘsM (X) homA(X , M tC2)

(68)

where the lower horizontal map is given by the composite

ϘsM (X)= homA⊗k A(X ⊗k X , M)hC2→ homA⊗k A(X ⊗k X , M)tC2
 homA(X , M tC2),

where the last equivalence is via Lemma 3.2.5.
By construction the underlying bilinear part of ϘαM is BM , and hence the condition

that ϘαM is Poincaré depends only on M , via the criterion of Proposition 3.1.6. In
addition, by Lemma 1.1.10 the trace map ϘqM → ϘsM factors canonically as

ϘqM −→ ϘαM −→ ϘsM .

If M tC2 = 0, for example if A is an S[ 12 ]-algebra, then Ϙα(X) 
 ϘsM (X) ⊕
homA(X , N ).

Example 3.2.7 Let M be a k-module with involution over an E1-algebra A. The k-
modules with genuine involution (M, 0, 0 → M tC2) and (M, M tC2 , M tC2 = M tC2)

give rise respectively to the quadratic and symmetric functors ϘqM and ϘsM of Defini-
tion 3.1.2.

Example 3.2.8 Let M be a k-module with involution over an E1-algebra A and assume
that A is connective (so that the truncation of an A-module admits a canonical A-
module structure). Then there is for every m ∈ Z a k-module with genuine involution
given by

(M, τ≥m M tC2 , τ≥m M tC2 → M tC2)

with the reference map being the m-connective cover. Applying Construction 3.2.6
these give rise to quadratic functors Ϙ≥m

M that sit between the quadratic and the sym-
metric one, i.e., there are maps

ϘqM → · · · → Ϙ≥1M → Ϙ≥0M → Ϙ≥−1
M → · · · → ϘsM . (69)

If M tC2 vanishes, e.g. if 2 is invertible in A, then all of these maps are equivalences.
The limit and colimit of these diagrams of Poincaré structures are given by

lim[· · · → Ϙ≥m
M → Ϙ≥m−1

M → · · · ] 
 ϘqM
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and

colim[· · · → Ϙ≥m
M → Ϙ≥m−1

M → · · · ] 
 ϘsM .

Indeed, inspecting the defining pullback squares (68) for Ϙ≥m
M and using that pull-

backs and mapping spectra out of compact A-modules respect both limits and
colimits this follows from the fact that lim τ≥m M tC2 = 0 while the induced map
colim τ≥m M tC2 → M tC2 is an equivalence. We may hence consider the tower (69) as
interpolating between the quadratic and symmetric Poincaré structures on ModωA. We
will study this construction in further detail in Sect. 4.2 in the case where A is (the
Eilenberg–Mac Lane spectrum of) an ordinary ring.

Example 3.2.9 Let A be a E1-algebra with anti-involution. In Example 3.1.9 we have
seen that A can be considered as an invertible k-module with involution over itself. In
order to promote A to a k-module with genuine involution we need an A-module N
and a map N → AtC2 of A-modules. Such a triple (A, N , α) is called an E1-algebra
with genuine anti-involution. Any such E1-algebra with genuine anti-involution has
an underlying genuine C2-spectrum, the module N taking the role of the geometric
fixed points. Since A is invertible as a k-module with involution by Proposition 3.1.6
and Remark 3.1.7 imply that the associated hermitian structure ϘαA on ModωA and on
ModfA are both Poincaré.

Example 3.2.10 Let A be an orthogonal ring spectrum with anti-involution in the
sense of [20]. This gives rise to a genuine C2-spectrum whose underlying spectrum
with C2-action is the underlying spectrum of A, whose geometric fixed points AϕC2

is canonically an A-module, and where the map α : AϕC2 → AtC2 is A-linear. We
therefore obtain a ring spectrum with genuine anti-involution (A, AϕC2 , α).

Example 3.2.11 Consider the sphere spectrum S with the trivial C2-action. We may
then view S as an associative ring spectrum with anti-involution, and refine it to
a ring spectrum with genuine anti-involution using as reference map the composite
S → S

hC2 → S
tC2 , which also agrees in this case with the Tate diagonal. The Poincaré

structure associated to this genuine anti-involution on S is the universal Poincaré
structure Ϙu of Example 1.2.15.

Example 3.2.12 Let A be an E∞-k-algebra equipped with a C2-action. We may then
view A as an associative k-algebra with anti-involution, and refine it to a k-algebra
with genuine anti-involution using as reference map the composite

t : A → (A ⊗k A)tC2 → AtC2 ,
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where the first map is the k-linear Tate diagonal and the second map is induced by the
C2-equivariant commutative k-algebra map A⊗k A → A whose restriction to the first
component is the identity A → A and restriction to the second component is given
by the generator of the C2-action. This yields a Poincaré structure on ModωA, which
we denote by ϘtA, and refer to as the Tate Poincaré structure associated to the given
C2-action. The universal Poincaré structure Ϙu on Spf then corresponds to the case
where A = k = S and the C2-action is trivial.

Example 3.2.13 Given an E1-algebra A we may form the E1-algebra with anti-
involution A ⊕ Aop where the involution flips the two factors. We may then refine
this involution to a genuine one by taking the zero map 0 → (A⊕ Aop)tC2 = 0, which
at the same time is also an equivalence. The resulting Poincaré structure Ϙ0A⊕Aop on
ModωA⊕Aop is then both quadratic and symmetric (see Example 3.2.7). We now note
that the projections A ⊕ Aop → A and A ⊕ Aop → Aop induce an equivalence

ModωA⊕Aop → ModωA ×ModωAop 
 ModωA ×(ModωA)
op,

under which the Poincaré structure in question corresponds to the hyperbolic structure
of Definition 2.2.2, and so

(ModωA⊕Aop , Ϙ0A⊕Aop) 
 Hyp(ModωA).

3.3 Classification of hermitian structures

We shall henceforth focus on the case where k = S is the sphere spectrum. We
will show that in this case, modules with genuine involution do not only provide a
convenient way of producing hermitian structures on ModωA but that these two notions
become in fact equivalent. To formulate this more precisely, we proceed to organise
modules with genuine involution over A into an ∞-category ModNA, defined as the
pullback

ModNA Ar(ModA)

ModhC2
A⊗S A ModA

t
(−)tC2

(70)

of the arrow category Ar(ModA) and the∞-category (ModA⊗S A)
hC2 of modules with

involution. The right vertical map is the projection onto the target, and the bottom
horizontal map sends a module with involution M to the Tate construction M tC2 ,
considered as an A-module via the Tate diagonal map A → (A ⊗S A)tC2 .
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We would like to relate ModNA and Funq(ModωA) by constructing a commutative
diagram

ModNA Ar(ModA)

Funq(ModωA) Ar(Funex((ModωA)
op
,Sp))

ModhC2
A⊗S A ModA

Funs(ModωA) Funex((ModωA)
op
,Sp)

(71)

where the front square is the pullback square of Corollary 1.3.12 which exhibits the
analogous decomposition of the ∞-category of quadratic functors Funq(ModωA) into
linear and bilinear parts. We then define the right face of (71) to be the square induced
by the Yoneda map

ModA → Funex((ModωA)
op,Sp) N �→ homA(−, N ),

and the bottom arrow in the left face is the functor

ModhC2
A⊗S A → Funs(ModωA) M �→ homA⊗S A((−)⊗S (−), M)

introduced above. The commuting homotopy in the bottom square of (71) is then
provided by Lemma 3.2.5. The cube is then uniquely determined by the fact that its
front face is a cartesian square.

Theorem 3.3.1 The cube (71), considered as a natural transformation from its back
face to its front face, is an equivalence. In particular, the resulting arrow

ModNA → Funq(ModωA)

is an equivalence of ∞-categories, whose action on objects is given by (M, N , α) �→
ϘαM .

Remark 3.3.2 For a general k one can still define the pullback of∞-categories

ModNk A = ModhC2
A⊗k A ×ModA Ar(ModA),

and construct a functor

ModNk A → Funq(ModωA), (72)
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which in general will not be an equivalence. Here we use the notation ModNk A to
indicate that we may think of this as the ∞-category of modules in genuine C2-
spectra over the k-linear norm Nk A of A, see Remark 3.2.4. Alternatively, we may
also identify ModNk A with the∞-category of hermitian structures onModωA equipped
with an action of the Tate hermitian structure Ϙtk ∈ Funq(Modωk ) of Example 3.2.12.
Here we have that Modωk acts on ModωA by the fact that A is a k-algebra, and this
induces an action of Funq(Modωk ) on Fun

q(ModωA) by means of Day convolution, see
Sect. 5.3 and Example 5.4.13. The functor (72) then corresponds to forgetting the
Ϙtk-module structure.

Proof of Theorem 3.3.1 Since the back and front faces are both cartesian squares it will
suffice to show that its right and back faces determine equivalences from their back
edge to their front edge. For this, it will suffice to show that the functors

ModA → Funex((ModωA)
op,Sp) and ModhC2

A⊗S A → Funs(ModωA)

are equivalences. For the former, we note that since Sp is stable we have that post-
composition with �∞ : Sp → S induces an equivalence

Funex((ModωA)
op,Sp) 
 Funrex((ModωA)

op,S) 
 Ind(ModωA)

and consequently the claim follows from the fact that ModA is generated by ModωA
under colimits. For the second map, by its construction it will suffice to show that the
functor

ModA⊗S A → Funb(ModωA) M �→ homA⊗S A((−)⊗S (−), M) (73)

is an equivalence of∞-categories. For this, recall that by [47, Theorem 4.8.5.16] and
[47, Remark 4.8.5.19] the association A �→ ModA refines to a symmetric monoidal
functor

�Sp : AlgE1
= AlgE1

(Sp) → LModSp(Pr
L)

from E1-ring spectra to the ∞-category of Sp-modules in presentable ∞-categories,
and the latter can be identified with the full subcategory of PrL spanned by the stable
presentable∞-categories. In particular, the bilinear functor

ModA ×ModA → ModA⊗S A (X ,Y ) �→ X ⊗S Y

induces an equivalence

ModA ⊗Sp ModA

−→ ModA⊗S A, (74)

where ⊗Sp denotes the tensor product of stable presentable ∞-categories (which
can also be viewed as Sp-modules in presentable ∞-categories). Since ModA and
ModA⊗S A are compactly generated by ModωA and ModωA⊗S A respectively and the
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bilinear functor (X ,Y ) �→ X ⊗S Y maps a pair of compact A-modules to a compact
(A ⊗S A)-module we see that the equivalence (74) is induced on Ind-categories by
the functor

ModωA ⊗ModωA → ModωA⊗S A, (75)

induced by the same bilinear functor (X ,Y ) �→ X⊗SY , where⊗ is the tensor product
of stable∞-categories, and we use the fact that Ind(−) is symmetric monoidal. It then
follows that restriction along (75) induces an equivalence

Funex((ModωA⊗S A)
op,Sp)


−→ Funex((ModωA ⊗ModωA)
op,Sp) 


Funex((ModωA)
op ⊗ (ModωA)

op,Sp) 
 Funb(ModωA).

Since the Yoneda map ModA⊗S A → Funex((ModωA⊗S A)
op,Sp) is an equivalence by

the argument above wemay now conclude that (73) is an equivalence, and so the proof
is complete.

Remark 3.3.3 As explained in the introduction of the present section, left Kan
extension and restriction determine inverse equivalences between Funq(Modc

A) and
Funq(ModωA) for every subgroup c ⊆ K0(ModωA). Theorem 3.3.1 then implies that the
association (M, N , α) �→ ϘαM also determines an equivalenceModNA 
 Funq(Modc

A)

for every c ⊆ K0(ModωA).

Remark 3.3.4 It follows fromTheorem 3.3.1 and Proposition 3.1.6 that the association
(M, N , α) �→ ϘαM determines a bijective correspondence between equivalence classes
of invertible modules with genuine involution (M, N , α) ∈ ModNA and equivalence
classes of Poincaré structures on ModωA. More generally, for a given subgroup c ⊆
K0(ModωA) we obtain a classification of Poincaré structures on Modc

A via invertible
modules with genuine involution (M, N , α) such that the associated duality DM =
homA(−, M) onModωA preserves Modc

A (or, equivalently, preserves c ⊆ K0(ModωA)).
In the case of ModfA the last condition amounts to M itself being in ModfA, see
Remark 3.1.7. We note that under these correspondences maps of Poincaré structures
(see Definition 1.2.8) correspond to those maps (M, N , α) → (M ′, N ′, α′) in ModNA

for which the map M → M ′ is an equivalence.

3.4 Restriction and induction

In the present subsectionwe keep the assumption that k = S and consider the functorial
dependence of ModNA in A, and the compatibility of this functoriality with the one
for hermitian structures along the equivalence of Theorem 3.3.1. Let φ : A → B be a
map of E1-algebras and let

pφ : ModωA → ModωB (76)
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be the induction functor sending X to B ⊗A X . Then the restriction functor

p∗φ : Funq(ModωB) → Funq(ModωA)

corresponds, under the equivalence of Theorem 3.3.1, to a functor

φ∗ : ModNB → ModNA, (77)

which we consider as the restriction of structure operation for modules with gen-
uine involution. As explained in Sect. 1.3, restriction of quadratic functors commutes
with taking linear and bilinear parts and with the formation of symmetric Poincaré
structures, that is, it acts compatibly on the entire pullback square

Funq(C) Ar(Funex(Cop,Sp))

Funs(C) Funex(Cop,Sp).

τ

B t (78)

Under the equivalence of Theorem 3.3.1 we obtain the same for the restriction
functor (77), that is, it extends to the entire defining squares (70) for A and B.
On the other hand, the Yoneda equivalences ModA 
 Funex((ModωA)

op,Sp) and
ModB 
 Funex((ModωB)

op,Sp) fit into a commutative square

ModB ModA

Funex((ModωB)
op,Sp) Funex((ModωA)

op,Sp)




φ∗



p∗φ

(79)

inwhich the tophorizontal arrow is the forgetful functor from B-modules to A-modules
and the bottom horizontal functor is restriction along pφ . Indeed, the commutativity is
given by the adjunction equivalence homB(pφ X , M) 
 homA(X , φ∗M). Similarly,
the equivalences ModA⊗S A 
 Funb(ModωA) and ModB⊗SB 
 Funb(ModωB) fit into a
commutative square

ModB⊗SB ModA⊗S A

Funb(ModωB) Funb(ModωA)




(φ⊗φ)∗



(pφ×pφ)∗

(80)

We may thus conclude that for (M, N , α) ∈ ModNB the restriction functor (77) is
obtained by simply restricting the (B ⊗S B)-module structure on M to A ⊗S A, the
B-module structure on N to A, and viewing α as a map of A-modules by forgetting
its compatibility with the B-module structures on its domain and codomain.
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We now proceed to discuss how the operation of left Kan extension is mirrored
along the equivalence of Theorem 3.3.1. Recall that by Lemma 1.4.1 the operation of
left Kan extensions Fun((ModωA)

op,Sp) → Fun((ModωB)
op,Sp) preserves quadratic

functors, and the resulting functor

(pφ)! : Funq(ModωA) → Funq(ModωB) (81)

is compatible with taking linear and bilinear parts, that is

B(pφ)!Ϙ 
 (pφ × pφ)!BϘ and �(pφ)!Ϙ 
 (pφ)!�Ϙ.

By Lemma 1.4.1 and Corollary 1.4.4 we may then conclude the following:

Corollary 3.4.1 Under the equivalence of Theorem 3.3.1, the left Kan extension func-
tor (81) corresponds to the functor

φ! : ModNA → ModNB

sending a module with genuine involution (M, N , α) ∈ ModNA to the module with
genuine involution

φ!(M, N , α) = (pφ⊗φ M, pφ N , φ!α) = ((B ⊗S B)⊗A⊗S A M, B ⊗A N , φ!α) ∈ ModNB

where φ!α is given by the composite

B ⊗A N → B ⊗A M tC2 → ((B ⊗S B)⊗A⊗S A M)tC2

of B ⊗A α and the Beck–Chevalley transformation on the lax commuting square on
the right

(ModB⊗SB)
hC2 ModB

(ModA⊗S A)
hC2 ModA

(−)tC2

(−)tC2

(ModA⊗S A)
hC2 ModA

(ModB⊗SB)
hC2 ModB

(−)tC2

(−)tC2

(82)

which is obtained from the commuting square on the left after replacing the vertical
forgetful functors by their left adjoints B⊗A(−) and (B⊗SB)⊗A⊗S A(−), respectively.

We now wish to apply the above discussion in order to obtain explicit data which
permits us to refine pφ : ModωA → ModωB to a hermitian functor with respect to a pair
of hermitian structures coming frommodules with genuine involution (MA, NA, α) ∈
ModNA and (MB, NB , β) ∈ ModNB . In terms of quadratic functors, this data is a
natural transformation

η : ϘαMA
⇒ p∗φϘ

β
MB

.
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Under the above equivalences, the transformation η corresponds to a map
(MA, NA, α) → φ∗(MB, NB , β) in ModNA, or equivalently by adjunction, to a map
φ!(MA, NA, α) → (MB, NB , β). Let us summarise the situation in explicit terms as
follows:

Corollary 3.4.2 Keeping the notation above, the data of a hermitian
functor (ModωA, Ϙ

α
MA

) → (ModωB, Ϙ
β
MB

) covering the induction functor pφ can be

encoded by a triple (δ, γ, σ ) where δ : MA → MB and γ : NA → NB in ModhC2
A⊗S A

and ModA respectively, and σ is a commutation homotopy in the square

NA NB

M tC2
A M tC2

B

γ

α β

δtC2

Equivalently, we may provide the adjoints δ : (B ⊗S B) ⊗A⊗S A MA → MB and
γ : B⊗A NA → NB inModhC2

B⊗SB andModB respectively, together with a commutative
square of the form

B ⊗A NA NB

B ⊗A M tC2
A

(
(B ⊗S B)⊗A⊗S A MA

)tC2 M tC2
B

γ

id⊗Aα β

δ
tC2

where the left lower horizontal map is the Beck–Chevalley map (82). It can also be
identified with the composition of the Tate diagonal and the lax monoidal structure of
(−)tC2 .

Lemma 3.4.3 In the situation of Corollary 3.4.2, the hermitian functor

(pφ, η) : (ModωA, Ϙ
α
MA

) → (ModωB, Ϙ
β
MB

)

associated to a map (δ, γ, σ ) : (MA, NA, α) → φ∗(MB, NB, β) is Poincaré if and
only if the composite

B ⊗A MA → (B ⊗S B)⊗A⊗S A MA
δ−→ MB

is an equivalence, where the first map is induced by the left unit B → B ⊗S B.

Proof By definition, the hermitian functor (pϕ, η) is Poincaré if and only if the induced
map

B ⊗A DMA (X) = B ⊗A homA(X , MA) −→ homB(B ⊗A X , MB) = DMB (B ⊗A X)
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is an equivalence of B-modules for every perfect A-module X . Since ModωA is gen-
erated under finite colimits and retracts by A this map is an equivalence for every
X ∈ ModωA if and only if it is an equivalence for X = A. But this is exactly the
statement that the induced map

B ⊗A MA = B ⊗A homA(A, MA) → homB(B, MB) = MB

is an equivalence, as desired.

Definition 3.4.4 In the situation of Lemma 3.4.3, when the condition that the induced
map B ⊗A MA → MB is an equivalence holds, we say that the morphism (δ, γ, σ )

is φ-invertible. In particular, Lemma 3.4.3 says that the hermitian functor induced by
(δ, γ, σ ) is Poincaré if and only if (δ, γ, σ ) is φ-invertible.

Example 3.4.5 Suppose that (φ, τ ) : (A, NA, α) → (B, NB , β) is a map of E1-
algebras with genuine anti-involution (Example 3.2.9), so that φ : A → B is a map
of rings with anti-involution and τ : NA → φ∗NB is a map of A-modules. Then both
(A, NA, α) and (B, NB, β) are invertible as modules with genuine involution over
A and B respectively and τ is φ-invertible. In particular, in this situation we always
obtain an induced Poincaré functor (pφ, τ ) : (ModωA, Ϙ

α
A) → (ModωB, Ϙ

β
B).

Example 3.4.6 Suppose that φ : A → B is a map of E1-algebras. A module with
involution MA ∈ (ModA⊗S A)

hC2 then determines a symmetric bilinear functor with
associated quadratic hermitian structureϘqMA

on A encodedby themodulewith genuine

involution (MA, 0, 0 → M tC2
A ). The left Kan extension of ϘqMA

to ModωB is then

encoded by the module with genuine involution (MB, 0, 0 → M tC2
B ) for MB :=

MA ⊗A⊗S A (B ⊗S B), and so

(pφ)!ϘqMA

 ϘqMB

.

On the other hand, the associated symmetric hermitian structure ϘsMA
is encoded by the

module with genuine involution (MA, M tC2
A , id : M tC2

A → M tC2
A ), and hence its left

Kan extension toModωB is encoded by the module with genuine involution (MB, B⊗A

M tC2
A , B⊗A M tC2

A → M tC2
B ), which is generally not the symmetric hermitian structure

ϘsMB
, unless B is perfect as an Aop-module (indeed, for a fixed M the underlying map

of spectra B ⊗A M tC2 → (B ⊗A M)tC2 can be considered as a natural transformation
between two exact functors in the argument B ∈ ModωAop which is an equivalence on
B = Aop and hence on any perfect B). As a counter-example consider S → S[ 12 ]:
by Lin’s theorem [42] one has that S

tC2 
 S
∧
2 so S[ 12 ] ⊗S S

tC2 
 HQ2 whereas
(S[ 12 ] ⊗S S[ 12 ])tC2 
 0 since 2 is invertible on S[ 12 ] ⊗S S[ 12 ] 
 S[ 12 ].

3.5 Ranicki periodicity

In this final section we will discuss the effect of shifting Poincaré structures onmodule
∞-categories. In the case of ordinary rings, this is the basis for the classical 4-fold
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periodicity in L-theory. To unravel the essence of this phenomenon, we introduce the
notion of an nσ -orientation on modules with involution, and explain how it combines
with shifting to yield a 2n-fold periodicity effect on the level of L-groups. In Paper
[2] we will extend these results to the level of both L-spectra and Grothendieck-Witt
spectra, yielding in particular a generalisation of Karoubi’s fundamental theorem. For
the remainder of this subsection we fix an arbitrary base E∞-ring k.

Recall that for a quadratic functor Ϙ on a stable ∞-category C, and an integer
n ∈ Z, we denoted by Ϙ[n] the quadratic functor on C given by Ϙ[n](x) = �nϘ(x) (see
Definition 1.2.16). Since the formation of linear and bilinear parts is exact the shifted
quadratic functor Ϙ[n] has bilinear part �nBϘ, linear part �n�Ϙ, and structure map
�n�Ϙ(x) → �nB(x, x)tC2 induced by the structure map of Ϙ on n-fold suspensions.
If C is now of the form ModωA for some E1-algebra A over k and Ϙ = ϘαM for some k-
module with genuine involution (M, N , α) over A, then Ϙ[n] = �nϘαM is the quadratic
functor associated to the k-module with genuine involution (�n M, �n N , �nα), and
we write

(ϘαM )[n] 
 Ϙ�nα
�n M . (83)

A second natural operation we can perform on the quadratic functor ϘαM is to pre-
compose it with �n . In this case the hermitian ∞-category (ModωA, Ϙ

α
M ◦ �n) is

canonically equivalent to (ModωA, Ϙ
α
M ) via the functor �n : ModωA → ModωA. How-

ever, the reparametrised quadratic functor ϘαM ◦�n is also directly identified with the
quadratic functor associated to another k-module with genuine involution. To deter-
mine it, let us introduce some notation. Given a finite dimensional real representation
V for the group C2, let us denote by SV the associated one-point compactification of
V , which is a sphere of dimension dim(V ) equipped with a based C2-action. Similarly,
we will denote by S

V = �∞(SV ) the associated suspension spectrum with C2-action.
Given a spectrum X with a C2-action, we will denote by�V X := S

V ⊗S X the smash
product of S

V and X equipped with its diagonal C2-action. Similarly, the∞-category
ModhC2

A⊗k A of k-modules with involution over A is naturally tensored over spectra
with C2-action, and given a k-module with involution M over A we will denote by
�V M = S

V ⊗S M the associated tensor of M by S
V . We will denote by σ the 1-

dimensional sign representation of C2 and ρ the 2-dimensional regular representation
of C2. In particular, ρ decomposes of the direct sum of a trivial representation and a
sign representation, which we write as ρ = 1+ σ . More generally, we will denote by
a + bρ + cσ the direct sum of a copies of the 1-dimensional trivial representation, b
copies of ρ, and c copies of σ .

We will require the following lemma:

Lemma 3.5.1 Let X be a spectrum with a C2-action. Then the map

X tC2 → (�σ X)tC2 ,

induced by theC2-equivariant map S0 → Sσ , is an equivalence. In particular, the Tate
construction is invariant under tensoring with the sign representation sphere spectrum
S
σ .
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Proof The cofibre of the map S0 → Sσ is given by the pointed C2-space�(C2)+ and
so the cofibre of X → �σ X is given by �∞+1+ (C2) ⊗S X . The claim now follows
since the latter is an induced C2-spectrum and thus its Tate construction vanishes.

Remark 3.5.2 Instead of tensoring with the map S0 → Sσ we may also cotensor with
it, yielding a map �σ X → X , which induces an equivalence on Tate constructions
since its fibre is an induced C2-spectrum by the same argument as in the proof of
Lemma 3.5.1. Iterating these constructions we then obtain for every non-negative n

equivalences of the form X tC2

−→ (�nσ X)tC2 and (�nσ X)tC2


−→ X tC2 .

Proposition 3.5.3 Let (M, N , α) be a k-module with genuine involution over an E1-
algebra A. Then for n ∈ Z there are equivalences of quadratic functors

(ϘαM )[n+m] ◦�n 
 Ϙ�mα
�m−nσ M

where the right hand side is the quadratic functor associated to the k-module with
genuine involution

(�m−nσ M, �m N , �mα)

defined using the identification (�m−nσ M)tC2 
 �m M tC2 issued from Lemma 3.5.1
and Remark 3.5.2. In particular, the functor �n : ModωA → ModωA refines to an
equivalence

(ModωA, (Ϙ
α
M )[2n]) 
−→ (ModωA, (Ϙ

α
M )[2n] ◦ (�n)op) 
 (ModωA, Ϙ

�nα
�n(1−σ)M )

of hermitian ∞-categories (or Poincaré when M is invertible). The same statement
holds if we replace ModωA by Modc

A for some subgroup c ⊆ K0(ModωA).

Proof In light of (83) it will suffice to prove the case m = −n. In this case we need
to show that ϘαM ◦ �n 
 Ϙ�nα

�nρ M . Replacing (M, N , α) by (�nρ M, �n N , �nα) we
observe that the claim for n implies the same for −n, and so we may assume that n
is positive. Arguing by induction, it is then enough to prove the case n = 1 = −m.
Inspecting the explicit formula for the linear and bilinear parts one directly sees that
they commute with pre-composing with�op, that is, for a quadratic functor Ϙwe have
natural equivalences

BϘ◦�op 
 BϘ ◦ (�op, �op) and �Ϙ◦�op 
 �Ϙ ◦�op.

It then follows that the canonical interchange map Ϙ ◦ �op ⇒ � ◦ Ϙ induces an
equivalences on linear parts, and on bilinear parts gives the corresponding interchange
map

BϘ(�X , �Y ) → �BϘ(X ,Y )
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associated to BϘ, where herewe viewBϘ as a functor in a single input, the tuple (X ,Y ).
If we however break this input into two separate variables and take into account the
symmetric structure of B, then the above interchange map factors as a composite

BϘ(�X , �Y )

−→ �ρBϘ(X ,Y ) → �BϘ(X ,Y ),

where the secondmap is induced by cotensoring along the “smash diagonal” S1 → Sρ ,
and the first arises from the interchange map of each variable separately, which is an
equivalence since BϘ is bilinear. If we now evaluate at Y = X then we obtain a
composite of C2-equivariant maps

BϘ(�X , �X)

−→ �ρBϘ(X , X) → �BϘ(X , X),

which induces an equivalence on Tate constructions by Lemma 3.5.1 andRemark 3.5.2
(indeed, under the representation sphere isomorphism Sρ ∼= S1+σ , the smash diagonal
identifies with the suspension of the map S0 → Sσ ). We therefore conclude that the
interchange map Ϙ◦�op ⇒ �◦Ϙ identifies the reference map�Ϙ◦�op ⇒ (B�

Ϙ◦�op)
tC2

of Ϙ ◦ �op with the desuspension of the reference map α : �Ϙ ⇒ (BϘ ◦ �)tC2 of Ϙ.
We summarize the above arguments in the following commutative diagram

which may be viewed as an equivalence between the top left square and the external
rectangle. As such, it identifies the classifying square of Ϙ ◦ �op with one having
bilinear term �ρ ◦ BϘ, linear term � ◦ �Ϙ, and reference map �α. Applying this
in the case of Ϙ = ϘαM ◦ �op we now conclude that ϘαM ◦ �op is represented by
the module with genuine involution (�ρ M,�N ,�α) defined using the identification
(�ρ M)tC2 
 �M tC2 , as desired.

Remark 3.5.4 We will show in Sect. 7.4 (see Corollary 7.4.17) that any quadratic
functor Ϙ : Cop → Sp canonically refines to the genuine fixed points of a functor
Ϙ̃ : Cop → SpgC2 to genuine C2-spectra. Thus one can make sense of tensoring any
quadratic functor with S

n−mσ , equipped with its genuine C2-structure in which the
geometric fixed points are S

n . A version of the above calculations also holds in this
generality, see Proposition 7.4.19. For example, one finds that twisting a quadratic
functor by S

1−σ corresponds to the operation Ϙ �→ Ϙ[2] ◦ �, while twisting by S
σ−1

corresponds to the operation Ϙ �→ Ϙ[−2] ◦�. We shall see in the examples below that
these really are two inequivalent operations.
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Our next goal is to use the above calculations to deduce periodicity properties for
the L-groups of certain rings. For this, we will use the notion of orientation, suitably
adapted to the present setting.

Construction 3.5.5 Suppose given an E1-group G and a spherical character of G, that
is, a map of E1-groups χ : G → gl1(S) = AutSp(S). We may consequently view G
as acting on the sphere spectrum S, and will write S

χ for the associated G-spectrum.
Moreover, since every stable ∞-category C is canonically tensored over Spf , the
character χ determines an action of G on any object X ∈ C, by identifying X with the
underlying object of Xχ := S

χ ⊗ X . More generally, if X is already equipped with a
G-action, then we may tensor X with S

χ to obtain a new G-object Xχ = S
χ ⊗ X with

the same underlying object X , that which can be called twisting X by χ . Even more
generally, if C itself admits a G-action, then we can similarly twist a G-fixed object
X ∈ ChG by χ to obtain a new G-fixed object Xχ ∈ ChG . By a χ -orientation on such
a G-fixed object X we will then mean an equivalence

Xχ 
−→ X

of G-fixed objects, refining the identity X = X in C. When the G-action on both C
and X is trivial and C admits quotients for G-objects, the data of a χ -orientation can
equivalently by encoded via a factorisation

X → (Xχ )hG → X

of the identity X = X , where the first map is the canonical map from the underlying
object to the quotient.

Given an E1-group G and a spherical character χ : G → gl1(S), we will refer to
the homotopy quotient S

χ
hG as the Thom spectrum of χ , and will denote it also by

Th(χ). Recall that Bgl1(S) identifies with the classifying space for stable spherical
fibrations. In particular, it carries the universal stable spherical fibration γ and the
definition above coincides with the usual Thom spectrum for (Bχ)∗(γ ). In particular,
when χ factors over the J -homomorphism

G −→ O
J−→ gl1(S),

the spectrumTh(χ) is indeed theThomspectrumof the associated stable vector bundle.
If C is now a cocomplete, stable∞-category, so that the action of Spf extends to all of
Sp in a colimit preserving manner, then we may use the Thom spectrum to describe
orientations, at least for objects with trivial G-action. In particular, a χ -orientation on
such an X ∈ C is equivalent to the data of a factorisation of the identity map X = X as

X → Th(χ)⊗ X → X ,

where the first map is the tensor with X of the map to the quotient S → S
χ
hG = Th(χ)

induced by the initial E1-group map ∗ → G. In that case, an orientation also deter-
mines an equivalence Xχ

hG = Th(χ)⊗ X 
 BG ⊗ X = XhG , a generalisation of the
classical Thom isomorphism, where the last term refers to the homotopy quotient of
X by the trivial G-action.



Hermitian K-theory for stable ∞-categories I: Foundations Page 93 of 269 10

Notation 3.5.6 Let G be an E1-group equipped with a spherical character χ . By a
χ -oriented E∞-ring spectrum we will mean an E∞-ring spectrum E , which, when
considered as a module over itself acted trivially upon by G, is equipped with a
χ -orientation. In particular, identifying homE (E, E) = homSp(S, E) such a χ -
orientation is equivalent to a refinement of the unit map S → E to a G-equivariant
map S → Eχ , where S is considered as having trivial G-action. As above, may also
encode this data as a factorisation of the unit map as a composite S → Th(χ) → E .

Remark 3.5.7 Let G be an E1-group equipped with a spherical character χ and C
a stable presentable ∞-category (so that Sp acts on C). If E is a χ -oriented E∞-
ring spectrum (in the sense of Notation 3.5.6) then any E-module object in ChG is
automatically χ -oriented. Indeed, for such an X the χ -orientation of E induces a

χ -orientation Xχ = S
χ ⊗ X = (Sχ ⊗S E)⊗E X


−→ E ⊗E X = X .

Example 3.5.8 Consider the E1-group U(1) together with its standard spherical char-
acterχ : U(1) → gl1(S) coming from the tautological complex representation ofU(1).
As the Thom space of the associated line bundle on BU(1) = CP∞ is equivalent via
the zero section to CP∞ one has

Th(χ) = MU(1) = �∞−2
CP∞.

For an E∞-ring spectrum E , the data of a χ -orientation on E (as an E-module with
constant action, see Notation 3.5.6) is given by a factorisation in the ∞-category of
spectra

S
2 → �∞

CP∞ → �2E

of the 2-fold suspended unit S → E , a structure otherwise known as a complex
orientation on E .

Remark 3.5.9 Suppose that G is not just an E1-group but an E∞-group, and that
χ : G → gl1(S) is an E∞-map. Then the corresponding Thom spectrumTh(χ) = S

χ
hG

inherits the structure of an E∞-ring with unit the canonical map S → S
χ
hG = Th(χ) to

the quotient. This unit then tautologically factors through Th(χ), and hence Th(χ) is
canonically χ -oriented. This means, in particular, that any E∞-algebra over Th(χ) is
canonically χ -oriented.We note however that the structure of a Th(χ)-algebra (that is,
the structure of an E∞-map Th(χ) → E) is generally finer then that of aχ -orientation,
which in turn corresponds to a map Th(χ) → E merely on the level of plain spectrum
under S. This is a reflection of the fact that G has a much richer structure than just an
E1-group, namely, an E∞-group structure. One may take this additional structure into
account by defining a suitable notion of an E∞-χ -orientation on an E∞-ring spectra
E , in which case one would obtain a notion equivalent to that of an E∞-algebra over
Th(χ).
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Example 3.5.10 For concrete examples of the previous remark, consider the diagram
of E∞-groups

Sp U

String Spin Spinc SO O gl1(S)

yielding by restriction spherical characters on all the appearing E∞-groups. We then
have that the correspondingThomspectraMSp,MU,MString,MSpin,MSpinc,MSO
and MO are each oriented with respect to its respective spherical character. Similarly,
any E∞-algebra over any of these Thom spectra will inherit the corresponding orien-
tation.

Remark 3.5.11 The notions of a complex (or U(1)-) orientation appearing in Exam-
ple 3.5.8 and the notion of a U-orientation appearing in Example 3.5.10 are closely
related. On the one hand, the E1-group map U(1) → U allows one to restrict any U-
orientation to aU(1)-orientation. In concrete terms, thismeans that anymapMU → E
on the level of plain spectra under S restricts to a map MU(1) = �∞−2

CP∞ → E
of the same nature. On the other hand, it is a well-known consequence of the splitting
principle that any complex orientation MU(1) → E extends to a map MU → E ,
which is furthermore compatible with the ring spectrum structure on both sides up to
(non-coherent) homotopy, see [5, Part II], or [48, Lecture 6]. In particular, the map
from the space of U-orientations on E to the space of complex orientations on E is
surjective on components, though is generally not an equivalence. Both these struc-
tures are weaker than that of being an E∞-algebra over MU, which would correspond,
as in Remark 3.5.9, to a suitable E∞-enhancement of the notion of a U-orientation,
see [32].

We now return to our context of modules with involutions and hermitian structures.

Definition 3.5.12 For n ≥ 0 we will use the term nσ -orientation to refer to an ori-
entation with respect to the spherical character χnσ : C2 → gl1(S) determined by
S

nσ−n .

Fixing an E1-algebra over k, wewill be interested in the notion of nσ -orientation for
k-modules with involution M over an E1-algebra A over k, viewed as C2-fixed objects
with respect to the C2-action on ModA⊗k A. We note that for A = k, the notion of an
nσ -orientation on M = k with trivial C2-action reduces to that of an nσ -orientation
on the E∞-ring k in the sense of Notation 3.5.6.

Remarks 3.5.13 i) Every object in ModhC2
A⊗k A is canonically a k-module object, and

so by Remark 3.5.7 we have that an nσ -orientation on k itself determines such an
orientation on any k-module with involution over any E1-algebra A over k.

ii) An nσ -orientation determines an Nσ -orientation for any multiple N of n.
iii) By Lemma 3.5.1 the Tate construction swallows sign suspensions, and so if M is

nσ -oriented then M tC2 is n-periodic, that is �n M tC2 
 M tC2 .
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Of particular importance are the cases n = 1, 2. In particular, a 2σ -orientation
determines a refinement of the identity map M = M to a C2-equivariant map

S
1−σ ⊗S M 
 S

σ−1 ⊗S M,

and we shall denote this common value by −M . If the 2σ -orientation comes from a
σ -orientation, then −M 
 M .

Examples 3.5.14 i) If k is an E∞-algebra over HZ (e.g., k = HR for some discrete
ring R) then k admits a 2σ -orientation. Indeed, it suffices to check this for k =
HZ. Since MapHZ(HZ,HZ) = Z is discrete and the action of the generator of
C2 on S

2σ−2 is homotopic to the identity, it follows that the induced action on
S
2−2σ ⊗S HZ is trivial, and consequently 1 ∈ Z admits a unique lift to a fixed

point. For such a k we then have byRemark 3.5.7 that any k-modulewith involution
M over any k-E1-algebra A is 2σ -oriented. More generally, even if k itself is not
an E∞-algebra over HZ, it is still true that any HZ-module object in ModhC2

A⊗k A is
canonically 2σ -oriented, see Remark 3.5.7. When M is furthermore discrete (that
is, in the image of the Eilenberg–Mac Lane functor) the meaning of −M reduces
to the naive one, that simply inserts a sign into the involution.

ii) If k is an E∞-algebra over HF2 then the same argument applied to S
σ provides a

σ -orientation, since the action of the generator of C2 on S
σ is the negative of the

identity. Any k-modulewith involution over any k-E1-algebra A is thenσ -oriented.
More generally, even if k itself is not an E∞-algebra over HF2, it still true that any
HF2-module object in ModhC2

A⊗k A is canonically σ -oriented, see Remark 3.5.7.
iii) As a partial converse to the above we note that if the E∞-ring k is σ -oriented then

at least the underlying E2-algebra of k refines to a E2-HF2-algebra, and hence any
module with involution over any E1-k-algebra A is canonically an HF2-module
object inModhC2

A⊗k A. This is because any σ -orientation on k determines a homotopy
2 ∼ 0 on it, and by Mahowald’s theorem HF2 is the initial E2-ring spectrum with
a homotopy 2 ∼ 0 (see [6, Theorem 5.1] for a recent treatment, where we recall
that for p = 2 no completion is necessary).

iv) The module with involution HF2⊗SHF2 over HF2 (equipped with the flip action)
does not admit an nσ -orientation for any n, even though the underlying spectrum
of M is an HF2-module. Indeed, by Lin’s theorem [42] (see [53, Theorem III.1.7]
for a treatment in the present language), the Tate diagonal provides an equivalence

HF2 −→ (HF2 ⊗S HF2)
tC2 .

In particular, the latter spectrum is not periodic, and so HF2⊗SHF2 cannot be nσ -
oriented, see Remark 3.5.13iii).We note that this does not contradict Remark 3.5.7,
since the HF2-action on the underlying spectrum of M is not compatible with its
C2-action.

v) In a similar vein, the sphere does not admit an nσ -orientation for any n, since we
would obtain an equivalence

S
n ⊗S (S

tC2) 
 (Sn)tC2 
 (Snσ )tC2 
 S
tC2 ,
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but from Segal’s conjecture (a consequence of Lin’s theorem) S
tC2 is the 2-

completion of S, which is not periodic.
vi) The E∞-ring S[1/2] admits a unique 2σ -orientation. To see this, one can compute

π∗(Snσ−n[1/2])hC2 using the (collapsing) homotopy fixed point spectral sequence,
to see

π∗(Snσ−n[1/2])hC2 = π∗(S[1/2])C2 .

But if n is even, the induced C2-action on π∗(S[1/2]) is trivial, so we in particular
get that the forgetful map

(S2σ−2[1/2])hC2 −→ S[1/2]

is an equivalence, so S[1/2] admits a unique 2σ -orientation. It follows that if k is
anS[1/2]-algebra (that is, 2 acts invertibly on k) then any k-modulewith involution
over any k-E1-algebra A is 2σ -oriented. More generally, it is enough to assume
that 2 acts invertibly on M itself, rather than on k. Indeed, in this case M refines to
an S[1/2]-module object in ModhC2

A⊗k A, and is hence 2σ -oriented by Remark 3.5.7.
vii) The representation σ being real we find that the spherical character χσ factors

through the E∞-group map χO : O → gl1(S), and so any χO-orientation deter-
mines a σ -orientation. By Example 3.5.10 we consequently deduce that MO, as
well as any E∞-algebra over MO, is σ -oriented.

viii) Similarly, the representation 2σ refines to a complex representation and the spher-
ical character χ2σ factors through U. By Example 3.5.10 we consequently deduce
that MU, as well as any E∞-algebra over MU, is 2σ -oriented. Since the map
U → O factors through Spinc, this applies in particular to any E∞-algebra over
MSpinc, such as ku or KU.More generally, sinceχσ actually factors throughU(1),
any complex orientation on k determines a 2σ -orientation on it, see Example 3.5.8
and Remark 3.5.11. In particular, if k is a complex oriented E∞-ring spectrum
(e.g., k = MU, ku,KU or any of the Lubin–Tate spectra) then any k-module with
involution M over any k-E1-algebra A is 2σ -oriented.

ix) Further up, the representation 4σ is quaternion and the spherical character χ4σ
factors through Sp, and so any E∞-algebra over MSp, is 4σ -oriented. Since
the map Sp → O factors through Spin, this applies in particular to any E∞-
algebra over MSpin, such as ko or KO. Finally, the representation 8σ refines to a
string representation since its Steifel–Whitney classes vanish in degrees < 8 and
H4(C2,Z) = H4(C2,Z/2), and so any E∞-algebra over MString (such as tmf)
is 8σ -oriented.

We can now specialise Proposition 3.5.3 to the case of oriented modules with
involutions.

Corollary 3.5.15 Let A be an E1-algebra and let (M, N , α : N → M tC2) be an invert-
ible k-module with genuine involution over A, such that M is nσ -oriented, and
c ⊆ K0(A) a subgroup closed under the induced involution. Then the n-fold loop
functor �n refines to an equivalence of Poincaré ∞-categories
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(
Modc

A, (Ϙ
α
M )[2n]) 
−→ (

Modc
A, Ϙ

�nα
M

)
.

If n = 2, e.g., if k is discrete or complex oriented, or if 2 acts invertibly on M, then
the loop functor � furthermore refines to an equivalence

(
Modc

A, (Ϙ
α
M )[2]

) 
−→ (
Modc

A, Ϙ
�α−M

)
.

Proof Apply Proposition 3.5.3 with m = n and use that �nσ−n M 
 M when M
is nσ -oriented. The second claim is essentially by definition (but is useful to note
nonetheless, since −M := �σ−1M is explicitly given by a sign twist when M is
discrete).

Corollary 3.5.16 Let A be an E1-algebra over k and let M be an invertible k-module
with involution over A, such that M is nσ -oriented, and c ⊆ K0(A) a subgroup
closed under the induced involution. Then the n-fold loop functor �n refines to give
equivalences of Poincaré ∞-categories

(
Modc

A, (Ϙ
s
M )[2n]) 
−→ (

Modc
A, Ϙ

s
M

)
and

(
Modc

A, (Ϙ
q
M )[2n]) 
−→ (

Modc
A, Ϙ

q
M

)
.

For n = 2, e.g., if k is discrete or complex oriented, or if 2 acts invertibly on M, then
the loop functor � refines to give equivalences of Poincaré ∞-categories

(
Modc

A, (Ϙ
s
M )[2]

) 
−→ (
Modc

A, Ϙ
s−M

)
and

(
Modc

A, (Ϙ
q
M )[2]

) 
−→ (
Modc

A, Ϙ
q
−M

)
.

Corollary 3.5.17 Let A be an E1-algebra over k and let M be an invertible k-module
with involution over A, such that M is nσ -oriented and c ⊆ K0(A) a subgroup
closed under the induced involution. Then the n-fold loop functor �n refines to give
equivalences of Poincaré ∞-categories

(
Modc

A, (Ϙ
≥m
M )[2n]) 
−→ (

Modc
A, Ϙ

≥m+n
M

)

For n = 2, e.g., if k is discrete or complex oriented, or if 2 acts invertibly on M, then
the loop functor � refines to give equivalences of Poincaré ∞-categories

(
Modc

A, (Ϙ
≥m
M )[2]

) 
−→ (
Modc

A, Ϙ
≥m+1
−M

)
.

Proof This is a particular case of Corollary 3.5.15 since the operation α �→ �nα sends
the m-connective cover map τ≥m M tC2 → M tC2 to the (m + n)-connective cover map
τ≥m+n(�

n M tC2) → �n M tC2 .

The following periodicity result for L-groups immediately follows (see also
Remark 4.2.25 for the relation with classical L-group periodicity):
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Corollary 3.5.18 (Ranicki periodicity) Let A be an E1-algebra over k and let M be a
nσ -oriented invertible k-module with involution over A, and c ⊆ K0(A) a subgroup
closed under the induced involution. Then for d ∈ Z we have canonical isomorphisms

Ld−2n
(
Modc

A, Ϙ
s
M

)∼=Ld
(
Modc

A, Ϙ
s
M

)
and Ld−2n

(
Modc

A, Ϙ
q
M

)∼=Ld
(
Modc

A, Ϙ
q
M

)
,

and when A is connective, for d,m ∈ Z we have canonical isomorphisms

Ld−2n
(
Modc

A, Ϙ
≥m
M

) ∼= Ld
(
Modc

A, Ϙ
≥m+2
M

)
.

If n = 2 (e.g, k is discrete or complex oriented, or if 2 acts invertibly on M) then we
also have canonical isomorphisms

Ld−2
(
Modc

A, Ϙ
s
M

) ∼= Ld
(
Modc

A, Ϙ
s−M

)
and Ld−2

(
Modc

A, Ϙ
q
M

) ∼= Ld
(
Modc

A, Ϙ
q
−M

)
,

and when A is connective, for d,m ∈ Z we have canonical isomorphisms

Ld−2
(
Modc

A, Ϙ
≥m
M

) ∼= Ld
(
Modc

A, Ϙ
≥m+1
−M

)
.

In summary, the quadratic and symmetricL-groupsof discrete (or complexoriented)
rings are 4-periodic, and those of HF2-algebras are 2-periodic. In other cases, such
as MSp- or MSpin-algebras, one has 8-periodic L-groups, while MString-algebras
have 16-periodic L-groups. For example, Ls∗(ku),Ls∗(ko) and Ls∗(tmf) are 4, 8 and 16
periodic, respectively, and similarly for the non-connective variants. We will upgrade
these periodicity results to the spectrum level in the second instalment, and show that
it neatly combines with a spectrum-level Karoubi periodicity yielding what we call
Karoubi–Ranicki periodicity, see [2], §4.5.

Regarding the quadratic L-groups let us also mention that for a connective ring
spectrum R, the algebraic π -π -theorem of Weiss and Williams from [71] implies
that generally Lq∗(R) ∼= Lq∗(π0(R)), so that the quadratic L-groups in fact end up
4-periodic; we give an account of this result in [3], Corollary 1.2.33.

4 Examples

In this section we discuss several examples of interest of Poincaré∞-categories in fur-
ther detail. We begin in Sect. 4.1 with the important example of the universal Poincaré
∞-category (Spf , Ϙu), which is characterized by the property that Poincaré functors
out of it pick out Poincaré objects in the codomain. In Sect. 4.2 we consider perfect
derived ∞-categories of ordinary rings and show how to translate the classical lan-
guage of forms on projective modules into that of the present paper via the process of
deriving quadratic functors. These examples form the main link between the present
work and classical hermitian K-theory, and will be the main focus of applications in
Paper [3]. In Sect. 4.3 we turn to a specific family of ring spectra with anti-involution,
the group ring spectra, which carries a special interest due to its relation with surgery
theory. In particular, we explain how to construct modules with genuine involution
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over such ring spectra whose associated L-groups capture various flavours of visible
L-groups, for example, the visible symmetric L-groups defined by [70] (see Exam-
ple 4.3.6). Finally, in Sect. 4.4 we discuss the closely related case of parametrised
spectra, which serves as a base-point-free version of group rings, and show how to
construct Poincaré structures producing the parametrised spectra variant of visible
L-theory as studied in [73] (see Corollary 4.4.14).

4.1 The universal Poincaré category

In this sectionwe discuss the Poincaré∞-category (Spf , Ϙu) of Example 1.2.15,which
we call the universal Poincaré ∞-category. This term is motivated by the following
mapping property which we will prove below: the Poincaré ∞-category (Spf , Ϙu)
corepresents the functor Pn : Catp∞ → S which assigns to a Poincaré∞-category its
space of Poincaré forms. To exhibit this, consider the map

S → Ϙu(S) (84)

given by the identity S → DS = S on the linear part and by the unit map S →
(DS ⊗ DS)hC2 = S

hC2 on the bilinear part. These two maps canonically lead to the
‘same’ map to (DS ⊗ DS)tC2 = S

tC2 since the Tate diagonal of S agrees with the
composite S → S

hC2 → S
tC2 by construction. In particular, the composite S →

Ϙu(S) → BϘu(S,S) = D(S ⊗ S) 
 S is the identity. We then note that the map (84)
corresponds to a hermitian form qu ∈ �∞Ϙu(S) such that qu

� : S → DS = S is the
identity, and in particular qu is Poincaré. We will refer to it as the universal Poincaré
form.

Lemma 4.1.1 For every quadratic functor Ϙ : (Spf)op → Sp, the map

hom(Ϙu, Ϙ) → Ϙ(S), (85)

induced by the universal form (84), is an equivalence of spectra.

Proof Since the collection of Ϙ ∈ Funq(Spf) for which (85) is an equivalence is closed
under limits it will suffice by Proposition 1.3.11 to prove the claimwhenever Ϙ is either
exact or of the form Ϙ(x) = B(x, x) for some symmetric bilinear functor B. In the
former case, the claim follows since the linear part of Ϙu is D by construction and the
composite S → Ϙu(S) → DS exhibits D as (stably) represented by S. On the other
hand, if Ϙ is of the form B(x, x) for some symmetric bilinear functor B then the result
follows from Lemma 1.1.7 since the image of the universal form (84) in

BϘu(S,S) = D(S ⊗ S) = hom(S ⊗ S,S) = hom(S,S)

corresponds to the identity S → S by construction, and thus exhibits the underlying
bilinear part

BϘu ∈ Funb(Spf) 
 Funex((Spf ⊗ Spf)op,Spf) 
 Funex((Spf)op,Sp)
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as stably represented by S as well.

Lemma 4.1.2 The sphere spectrum S ∈ Spf exhibits Spf as corepresenting the core
groupoid functor

Cr : Catex∞ → S C �→ ιC.

Proof Let Sfin∗ be the∞-category of finite pointed spaces. Then the inclusion Sfin∗ →
Spf exhibits Spf as the Spanier–Whitehead stabilisation of Sfin∗ , and in particular, for
every stable∞-category D the restriction functor

Funex(Spf ,D) → Funrex(Sfin∗ ,D)

is an equivalence, where Funrex(−,−) ⊆ Fun(−,−) denotes the full subcategory
spanned by the right exact (i.e., finite colimits preserving) functors, see, e.g., [46,
Proposition C.1.1.7]. On the other hand, for D stable we may identify right exact
functorsSfin∗ → Dwith thosewhich are reduced and excisive, andhencewith spectrum
objects in D. We thus obtain that for D stable the evaluation functor

Funex(Spf ,D) 
 Funrex(Sfin∗ ,D) 
 Sp(D) → D

is an equivalence, and hence induces an equivalence

Map(Spf ,D) 
 CrD

on the level of core groupoids.

We now come to the main result of this section:

Proposition 4.1.3 (Universality of the universal Poincaré ∞-category) The universal
Poincaré object (S, qu) exhibits (Spf , Ϙu) as corepresenting the functor Pn. Similarly,
when considered as a hermitian∞-category, the underlying universal hermitian object
exhibits (Spf , Ϙu) as corepresenting the functor Fm.

Proof We begin with the second claim. We need to show that for every (C, Ϙ) ∈ Cath∞
the map

MapCath∞((Spf , Ϙu), (C, Ϙ)) → Fm(C, Ϙ)

sending ( f , η) : (Spf , Ϙu) → (C, Ϙ) to ( f (S), ηS(qu)) is an equivalence. Consider the
commutative square

MapCath∞((Spf , Ϙu), (C, Ϙ)) Fm(C, Ϙ)

MapCatex∞(Spf , C) Cr(C)

(86)
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furnished by Lemma 2.1.2, where the bottom horizontal map is the one induced by
the object S ∈ ιSpf , which is an equivalence by Lemma 4.1.2. It will hence suffice to
show that for every exact functor f : Spf → C the top horizontal map in (86) induces
an equivalence on vertical fibres. Now by the construction of Cath∞ as a cartesian
fibration we have that the fibre of the left vertical map over f : Spf → C is given by
the space of natural transformations Nat(Ϙu, f ∗Ϙ). On the other hand, the fibres of the
right vertical map over f (S) is the space�∞Ϙ( f (S)) of hermitian forms on f (S) ∈ C
by construction. Lemma 4.1.1 then implies that the induced map

Nat(Ϙu, f ∗Ϙ) → f ∗Ϙ(S) = Ϙ( f (S))

on vertical fibres is an equivalence. This shows that (S, qu) exhibits (Spf , Ϙu) as
corepresenting the functor Fm in Cath∞. To obtain the analogous claim for Poincaré
forms we observe that the corresponding map

Nat(BϘu , ( f × f )∗BϘ) → ( f × f )∗BϘ(S,S) = BϘ( f (S), f (S)),

induced by the image of the universal Poincaré form in BϘ(S,S), identifies under
Lemma 1.2.4 with the map

Nat( f D,DϘ f op) → Map( f (S),DϘ f (S)) (87)

which sends a natural transformation τ : f D ⇒ DϘ f op to the composite

f (S)
f∗qu

�−−→ f (DS)
τS−→ DϘ f (S).

Since qu
� is an equivalence this map sends natural equivalences f D


−→ DϘ f op to

equivalences f (S)

−→ DϘ f (S). To finish the proof it will hence suffice to show

that (87) also detects equivalences. Indeed, since qu
� is an equivalence, this follows

from the fact that S generates Spf under finite colimits and so a natural transformation
between two exact functors on Spf is an equivalence if and only if it evaluates to an
equivalence on S.

4.2 Ordinary rings and derived structures

In this section we consider the case of ordinary rings and explain how classical inputs
for Grothendieck-Witt- and L-theory can be encoded as Poincaré structures on the∞-
category of perfect chain complexes. Our main result (see Proposition 4.2.18 below)
is that such Poincaré structures are essentially uniquely determined by their values on
projective modules. This leads to the formation of derived versions of classical notions
of hermitian forms, constituting the main link through which the point of view taken
in this paper series interacts with its classical counterpart.

Let R be an ordinary associative ring. Recall the Eilenberg–MacLane inclusion

H : Ab = Sp♥ ↪→ Sp
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of abelian groups as the heart of the canonical t-structure on spectra. Since this t-
structure is compatible with tensor products the functor H is naturally lax symmetric
monoidal, and consequently HR is naturally an E1-ring spectrum, or more precisely,
an E1-algebra over the E∞-ring spectrum HZ. We then have natural equivalences [47,
Theorem 7.1.2.1]

ModHZ 
 D(Z) and ModωHR 
 Dp(R) (88)

between the ∞-categories of HZ-module spectra and compact HR-modules in
HZ-module spectra, as considered in Sect. 3, and the derived and perfect derived
∞-categories of Z and R, respectively, see Example 1.2.12 and Example 3.1.12. Sim-
ilarly, we have an equivalence ModfHR 
 Df(R) between the ∞-category of finitely
presented R-modules in ModHZ and the finitely presented derived category Df(R),
obtained from the category of bounded complexes of finitely generated free R-modules
by inverting quasi-isomorphisms.

Notation 4.2.1 In what followswewill need to consider both the ordinary tensor prod-
uct over Z and the tensor product of HZ-module spectra over HZ, which corresponds,
under the equivalence (88), to the derived tensor product ⊗L

Z
of complexes over Z.

We will consequently write⊗Z for the former and⊗HZ for the latter. In particular, for
two ordinary R-modules M and N one has a canonical map

HM ⊗HZ HN → H(M ⊗Z N )

which is generally not an isomorphism, though it does exhibit its target as the 0th
truncation of its domain, and in particular determines an isomorphism

π0(HM ⊗HZ HN ) ∼= M ⊗Z N .

As described in Sect. 3, we may construct bilinear functors on ModωHR from HZ-
modules with involution over HR (Definition 3.1.1), and hermitian structures on
ModωHR from HZ-modules with genuine involution over HR (Definition 3.2.3). In
this context, it is natural to focus attention on HZ-modules with involution which
arise by taking Eilenberg–MacLane spectra of ordinary Z-modules with involutions,
by which we mean:

Definition 4.2.2 By a Z-module with involution over R we will mean an (R ⊗Z R)-

module M in the ordinary sense togetherwith an involution of abelian groupsσ : M

−→

M which is linear over the flip isomorphism R⊗Z R

−→ R⊗Z R, that is, which satisfies

σ((a ⊗ b)x) = (b ⊗ a)σ (x).

We will generally write such Z-modules with involution as pairs (M, σ ). We will
then denote by BM the bilinear functor onDp(R) corresponding to the bilinear functor
BHM onModHR via the equivalence (88). The following lemma ensures that the value
of this bilinear form on projective modules is of a classical nature:
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Lemma 4.2.3 For P, Q ∈ Proj(R) the canonical map

HHomR⊗ZR(P ⊗Z Q, M) → homHR⊗HZHR(HP ⊗HZ HQ,HM) = BM (P, Q)

(89)

is an equivalence. In particular, BM sends pairs of projective modules to (Eilenberg–
MacLane spectra of) abelian groups.

Proof. For P ∈ Proj(R) the condition that (89) is an equivalence is closed under direct
sums and retracts, and so it suffices to check it for R = P , where it can be identified
with the identity map

HM 
 HHomR⊗ZR(R ⊗Z R, M) → homHR⊗HZHR(HR ⊗HZ HR,HM) 
 HM .

The bilinear functor BM is perfect if and only if HM is invertible, that is, HM is
perfect as an HR-module and the map HR → EndHR(HM) is an equivalence (see
Definition 3.1.4).

Definition 4.2.4 We will say that a Z-module with involution M over R (in the sense
of Definition 4.2.2) is invertible if HM is invertible as an HZ-module with involution
over HR and in addition M is projective as an R-module.

Remark 4.2.5 For a Z-module with involution M over R which is projective as an
R-module we have homHR(HM,HM) = HHomR(M, M), and so for such modules
invertibility is equivalent to the map R → HomR(M, M) being an isomorphism.

The projectivity assumption in Definition 4.2.2 is meant to insure that the duality

DM : Dp(R)op

−→ Dp(R) associated to the perfect bilinear functor BM preserves

the (ordinary) full subcategory Proj(R) ⊆ Dp(R) of finitely generated projective
R-modules, and determines in particular a duality of ordinary categories

DM : Proj(R)op

−→ Proj(R) DM (X) = HomR(X , M),

where HomR(X , M) is given an R-module structure using the second R-action. This
is also consistent with the classical terminology concerning invertible modules, see,
e.g., Example 4.2.6 just below.

Example 4.2.6 If R is commutative then any R-module M can be considered as an
(R ⊗Z R)-module via the multiplication homomorphism R ⊗Z R → R. In particular,
the two R-actions coincide, and we may endow M with the trivial involution. For
a projective M this results in an invertible Z-module with involution if and only
if M is invertible as an object in the symmetric monoidal category Proj(R). From
the perspective of algebraic geometry, such modules correspond to line bundles over
spec(R).

Examples 4.2.7 Suppose that R is equipped with an anti-involution, that is, an abelian

group involution •: R

−→ R which satisfies ab = ba. In this case R can be considered

as a Z-module with involution over itself via the (R ⊗Z R)-action (a ⊗ b)x = axb
and the involution σ = •. Some examples of interest of such rings include:
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i) Any commutative ring with an automorphism of order 2 gives rise to a ring with
anti-involution. For example, the field C of complex numbers can be considered
as a ring with anti-involution via complex conjugation.

ii) The group ring Z[G] associated to a discrete group G carries a natural anti-
involution given on additive generators by g �→ g−1. This example is a recurring
one in geometric applications of L-theory (see also Sect. 4.3). More generally
one can consider an orientation character χ : G → C2 = {±1} and define the
χ -twisted anti-involution by setting g �→ χ(g)g−1.

iii) For a commutative ring k the k-algebra of n × n-matrices Matn(k) admits an
anti-involution A �→ At given by sending a matrix to its transpose. This more
generally works for k a ring with anti-involution.

iv) For a commutative ring k and a, b ∈ k, the quaternion k-algebra Qk(a, b) is the
algebra generated over k by elements i, j under the relation i2 = a, j2 = b, i j =
− j i . It admits an anti-involution sending i to −i and j to − j .

Another common source of invertible Z-modules with involution is the following.
Recall that an anti-structure in the sense of Wall [68] on a ring R consists of a ring
isomorphism

•: Rop → R,

together with a unit ε ∈ R∗, such that ε = ε−1 and r = ε−1rε. In particular, if ε
belongs to the center of R then • is an anti-involution, and this is arguably the most
common case studied in the literature. Specifically, one often considers the case where
ε = ±1, which, for example, in the case of the integers Z, are also the only .

Given aWall anti-structure (•, ε), we may consider R as an (R⊗Z R)-module with
action given by (a ⊗ b) · r = arb. The map a �→ εa is then an involution on R which
is linear over the flip action on R ⊗Z R, and so we obtain the structure of a Z-module
with involution. This Z-module with involution is always invertible: the induced map
R → HomR(R, R) ∼= Rop identifies with r �→ r (see Remark 4.2.5).

Remark 4.2.8 A Wall anti-structure captures the most general form of an invertible
Z-module with involution over R whose underlying R-module is R. Indeed, giving
the R-module R a second commuting R-action is equivalent to providing a ring homo-
morphism •: R → HomR(R, R) = Rop, which is furthermore an isomorphism if the
desired (R⊗Z R)-module is to be invertible (see Remark 4.2.5). The (R⊗Z R)-action
can then be written in terms of • by (a ⊗ b)(c) = acb. If σ : R → R is now an
abelian group isomorphism which switches the two R-actions then σ is completely
determined by the value ε := σ(1) ∈ R, in terms of which σ can be written as

σ(r) = σ(r · 1) = σ(1)r = εr .

Since σ and • are both isomorphisms of abelian groups so is the map r �→ ε · r , and
hence ε must be a unit. In addition, since σ switches the two R-actions we also have

rε = rσ(1) = σ(1 · r) = εr
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and hence r = ε−1rε. Finally, the condition that σ is an involution implies that

1 = σσ(1) = εε

and hence ε = ε−1. In particular, the pair (•, ε) is a Wall anti-structure on R and the
Z-module with involution we obtain is the one associated to that structure.

Remark 4.2.9 If (•, ε) is a Wall anti-structure on a ring R and u ∈ R∗ is a unit
then we can obtain a new Wall anti-structure by replacing • with u−1•u and ε with
ε
(
u
)−1

u. One then says that the twoWall anti-structures (•, ε) and (u−1•u, ε
(
u
)−1

u)
are conjugated. In this case the associated Z-modules with involution over R are
isomorphic via the map R → R sending x to xu. In fact, any isomorphism between
the Z-modules with involution associated to two Wall anti-structures is of this form,
and so twoWall anti-structures are conjugated if and only if their associatedZ-modules
with involution are isomorphic as such.

The construction below, which was shared with the authors by Uriya First, gives
an example of a Wall anti-structure which is not conjugated to any central Wall anti-
structure:

Example 4.2.10 Let K be a field which admits an automorphism σ : K → K of order
4. Define R = K [x, x−1; σ 2] to be the twisted Laurent polynomial ring generated
over K by an invertible generator x which satisfies the relation x−1αx = σ 2(α) for
α ∈ K . We may then extend σ to an anti-automorphism on R defined on monomials
by

αxi = x−iσ(α) = σ 1−2i (α)x−i .

Then αxi = σ 2(α)xi = x−1(αxi )x and xx = 1, so that we obtain a Wall anti-
structure (•, ε) with ε = x . This Wall anti-structure is not conjugated to any central
Wall anti-structure: indeed, the units of R are exactly the monomials αxi , and if we
conjugate the above Wall anti-structure by αxi then the new ε will be of the form
βx2i+1 for a suitable β ∈ K , and as such cannot be in the center, since it does not
commute with K ⊆ R.

Let us now also give a non-commutative example of an invertible Z-module with
involution whose underlying module is not the ring itself:

Example 4.2.11 Let B = QQ(−5,−13) be the quaternion algebra over Q and let

A ⊆ B be the subring generated over Z by 1, i, j and β = 1+i+ j+i j
2 . Then A is

a maximal order in the quaternion algebra B, that is, it is finitely generated as a
Z-module and is not contained in any other subring with this property. Invertible
bimodules over maximal orders are relatively well understood, and can all be realized
as invertible two-sided ideals in A. In particular, the two-sided ideal I ⊆ A which
is generated by 2, i − 1, j − 1 is an invertible ideal of index 4 in A (the quotient
A/I ∼= F2[β]/(β2 − β + 1) is a finite field of order 4). One can then verify that this
ideal is not principal by checking that A contains no elements of norm 2, and so this
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A-bimodule is not isomorphic to A as a left A-module. At the same time, the involution
on B sending i to −i and j to − j restricts to an involution on A, through which we
can consider I as an A⊗ A-module, and since this involution preserves I it endows it
with the structure of an involution which is linear over the flip map A ⊗ A → A ⊗ A.
Then I gives an invertible Z-module with involution over A which is not isomorphic
to A as a left A-module.

We now fix a ring R and an invertible Z-module with involution M over R. Let us
say that a Poincaré structure Ϙ onDp(R) is compatible with M if its associated duality
is given by DM (equivalently, if its symmetric bilinear part is BM ).

Example 4.2.12 As in Definition 3.1.2 we have the quadratic and symmetric Poincaré
structures ϘqM and ϘsM associated to the bilinear functor BM , which are compatible
with M by construction.

Example 4.2.13 As in Example 3.2.8, for an integer m ∈ Z one can consider the
associated HZ-module with genuine involution

(HM, τ≥mHM tC2 , tm : τ≥mHM tC2 → HM tC2)

over HR, where tm : τ≥mHM tC2 → HM tC2 is the m-connective cover of HM tC2 . The
associated Poincaré structure

Ϙ≥m
M : Dp(R)

op → Sp.

defined as in Construction 3.2.6, is then compatible with M .

Remark 4.2.14 By Theorem 3.3.1 the data of a Poincaré structure on Dp(R) compat-
ible with M is equivalent to that of an HR-module spectrum N equipped with a map
of HR-module spectra N → HM tC2 . The above examples then correspond to the case
where this map is the identity (the symmetric structure), the map from the zero module
(the quadratic structure), or the various connective covers.

Warning 4.2.15 In the construction above, the HR-module HM tC2 is such that the
induced R-module structure on π0(HM)tC2 = Ĥ0(C2, M) = coker[TC2 : MC2 →
MC2 ] is given by

r [m] = [(r ⊗ r)m]

where [m] is the class mod norms of a C2-fixed element m ∈ M . This can lead to some
confusion when R is commutative and the involution on M is R-linear. In this case,
another natural action of R on M is available by realizing the Tate construction in HR-
modules. The associated action on homotopy groups is then given by r [m] = [rm],
which is generally different from the action above (see also Warning 3.2.2).

Remark 4.2.16 By construction the linear part of the Poincaré structure Ϙ≥m
M is given

by the formula X �→ homHR(X , τ≥mHM tC2), where in the last termwe have identified
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X with the correspondingHR-module spectrum via the equivalence (88). In particular,
Ϙ≥m

M (X) sits in an exact sequence of spectra

ϘqM (X) → Ϙ≥m
M (X) → homHR(X , τ≥mHM tC2),

which can be used to obtained connectivity estimates on the gap between Ϙ≥m
M and ϘqM .

On the other hand, from the fibre sequence τ≥mHM tC2 → HM tC2 → τ≤m−1HM tC2

we see that Ϙ≥m
M (X) also sits in an exact sequence of spectra

Ϙ≥m
M (X) → ϘsM (X) → homHR(X , τ≤m−1HM tC2),

and this can be used to obtain coconnectivity estimates on the gap between Ϙ≥m
M and

ϘsM .

Our principal goal in this section to construct a link between Poincaré structures
onDp(R) compatible with a given M and the classical framework of M-valued forms
on projective R-modules. For this, let Chb(Proj(R)) be the category of bounded chain
complexes of finitely generated projective R-modules, so that the∞-categoryDp(R)
can be identifiedwith the∞-categorical localisation of Chb(Proj(R)) by the collection
of quasi-isomorphisms. The inclusion Proj(R) ⊆ Chb(Proj(R)) as chain-complexes
concentrated in degree 0 determines a fully-faithful functor

Proj(R) → Dp(R), P �→ P[0]. (90)

We also point out that the category Proj(R) is additive, and the inclusion (90) is additive
in the sense that it preserves direct sums. One can then show that (90) exhibitsDp(R)
as the initial stable∞-category equipped with additive functor from Proj(R). It is also
sometimes called the stable envelope of Proj(R).

The following definition is originally due to Eilenberg and MacLane [21, Theo-
rem 9.11].

Definition 4.2.17 Let C,D be additive∞-categories. We will say that a reduced (that
is, zero object preserving) functor Ϙ : C → D is polynomial of degree 2 if its cross-
effects BϘ(X ,Y ) (defined as in Definition 1.1.4 as the kernel of the split surjection
Ϙ(X ⊕Y ) → Ϙ(X)⊕ Ϙ(Y )) preserves direct sums in each variable separately. We will
denote by

Fun2−poly∗ (C,D) ⊆ Fun(C,D)

the full subcategory spanned by reduced functors which are polynomial of degree 2.

We now arrive to the main result of this section:

Proposition 4.2.18 Let R be an associative ring. Then restriction along the inclusion
Proj(R) ⊆ Dp(R) yields an equivalence of ∞-categories

Funq(Dp(R))

−→ Fun2−poly∗ (Proj(R)op,Sp).
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Since the Eilenberg–MacLane embedding H : Ab ↪→ Sp is fully-faithful and addi-
tive, Proposition 4.2.18 implies in particular that if Ϙproj : Proj(R)op → Ab is a reduced
polynomial functor of degree 2 then the composed functor Proj(R)op → Ab → Sp
extends to a quadratic functor Ϙ : Dp(R)op → Sp in an essentially unique manner. We
will refer to such an extension

Ϙ : Dp(R)op → Sp

as the derived quadratic functor of Ϙproj.

Remark 4.2.19 For perfect complexes X ∈ Dp(R) concentrated in non-negative
degrees one can express the value of the derived functorϘ as follows.Onefirst translates
X to a simplicial R-module using theDold–Kan correspondence. Applying the functor
Ϙproj levelwise yields a cosimplicial abelian group which one can then re-translate into
a non-positively graded chain complex overZ, and consequently into a spectrum. This
is the classical description of non-abelian derived functors on non-negatively graded
complexes due to Dold and Puppe [19].

The proof of Proposition 4.2.18 will be given below. Before, let us explore some
of its consequences. As their higher categorical counterparts, reduced degree 2 poly-
nomial functors Proj(R)op → Ab can be used to encode various types of hermitian
forms. To make this more explicit, consider for a projective module P ∈ Proj(R) the
abelian groupHomR⊗R(P⊗Z P, M) of M-valued R-bilinear formsβ : P⊗Z P → M .
This abelian group carries an involution which sends a form β to the form

(v, u) �→ σ(β(u, v)),

where σ : M → M is the involution of M . The C2-orbits and C2-fixed points of σ are
then related via the trace map

TC2 : HomR⊗ZR(P ⊗Z P, M)C2→HomR⊗ZR(P ⊗Z P, M)C2 [β] �→ β(v, u)+σβ(u, v),

which sends an orbit to the sum of its representatives.

Definition 4.2.20 Let R be a ring and (M, σ ) an invertible Z-module with involution
over R. We define functors Proj(R)op → Ab by the formulas

Ϙqproj(P) = HomR⊗ZR(P ⊗Z P, M)C2 , Ϙsproj(P) = HomR⊗ZR(P ⊗Z P, M)C2 ,

and

Ϙevproj(P) = im
[
Ϙqproj(P)

TC2−−→ Ϙsproj(P)
]
.

For P ∈ Proj(R) we will refer to these as the abelian groups of σ -quadratic, σ -
symmetric, and σ -even forms on P , respectively. These functors are visibly reduced
and the cross-effect of each of them is (P, Q) �→ HomR⊗ZR(P ⊗Z Q, M), which is
additive in each variable separately. In particular, they are polynomial of degree 2.
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Remark 4.2.21 It follows from Lemma 4.2.3 that

Ϙqproj(P) = HomR⊗ZR(P ⊗Z P, M)C2
∼= [π0BM (P, P)]C2

∼= π0[BM (P, P)hC2 ] = π0Ϙ
q
M (P[0]),

and similarly

Ϙsproj(P) = HomR⊗ZR(P ⊗Z P, M)C2 ∼= [π0BM (P, P)]C2

∼= π0[BM (P, P)hC2 ] = π0Ϙ
s
M (P[0]),

By definition, a σ -symmetric form is an R-bilinear form φ : P ⊗Z P → M such
that φ(b, a) = σ(φ(a, b)). On the other hand, the data of a σ -quadratic form, or
a C2-orbit [β] ∈ HomR⊗R(P ⊗Z P, M)C2 , is equivalent to that of a pair (φ, q),
where φ ∈ HomR⊗R(P ⊗Z P, M)C2 is a σ -symmetric form and q : P → MC2 is a
set-theoretic function which satisfies

i) q(v + u)− q(v)− q(u) = [φ(v, u)] ∈ MC2 for v, u ∈ P;
ii) q(rv) = (r ⊗ r)q(v) for v ∈ P and r ∈ R;
iii) the image of q(v) under the trace map MC2 → MC2 is the C2-fixed element

φ(v, v) for v ∈ P .

To obtain this description, note that the abelian group of such pairs (φ, q) forms
a reduced degree 2 polynomial functor Ϙ′ : Proj(R) → Ab, which receives a natural
transformation Ϙqproj ⇒ Ϙ′ sending [β] ∈ Ϙqproj(P) to the pair (φ, q), whereφ = TC2 [β]
is the trace of β and q(x) = [β(x, x)] ∈ MC2 . One can then verify in a straightforward
manner that this natural transformation induces an isomorphism on cross-effects and
an isomorphism on the value on P = R, and is hence an isomorphism on every
P ∈ Proj(R) (see also [68, Theorem 1], where this argument is elaborated in the case
where M comes from a Wall anti-structure).

When R is commutative and M = R with trivial involution the above notion of a
quadratic form identifies with the usual one. In this case even forms are symmetric
forms which admit a quadratic refinement in the classical sense (which is not kept
as part of the structure). For example, when M = R = Z with trivial involution
then a symmetric bilinear form b on P admits a quadratic refinement if and only if
b(x, x) ∈ 2Z for all x ∈ P , hence the terminology “even forms”. In this case the
quadratic refinement is even unique, though this is by no means the case in general. If
R is commutative and M = R with involution σ(x) = −x then σ -symmetric forms
are skew-symmetric forms, while the σ -even forms are the alternating ones. For non-
commutative R this way of viewing quadratic forms was first devised by Tits [66]
for central simple algebras, and later generalized by Wall [68] to arbitrary rings with
anti-structure as above.

By Proposition 4.2.18 each of the functors Ϙqproj, Ϙ
ev
proj and Ϙ

s
proj extends in an essen-

tially unique manner to its corresponding derived quadratic functor Dp → Sp. The
following proposition identifies these in terms of Poincaré structures we have already
encountered:
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Proposition 4.2.22 The derived quadratic functors of Ϙqproj, Ϙ
ev
proj and Ϙsproj are canon-

ically equivalent to the Poincaré structures Ϙ≥2M , Ϙ≥1M and Ϙ≥0M , respectively.

Proof By Lemma 4.2.3 we have that for P ∈ Proj(P) the spectrum BM (P[0], P[0])
belongs to Sp♥ and so ϘqM (P[0]) is connective and ϘsM (P[0]) is coconnective. By
Remark 4.2.16 we then get that for m = 0, 1, 2 the spectrum Ϙ≥m

M (P[0]) is both
connective and coconnective, and hence lies in the heart as well. Now consider the
pair of maps

π0Ϙ
q
M (P[0]) → π0Ϙ

≥m
M (P[0]) → π0Ϙ

s
M (P[0]).

By Remark 4.2.16 the first map above is an isomorphism when m = 2 and the second
map is an isomorphism when m = 0. Finally, when m = 1 the same remark gives that
the first map is surjective and the second is injective. In light of Remark 4.2.21 we
now get an identification of π0Ϙ

≥m
M (P[0]) for m = 0, 1, 2 with Ϙsproj(P), Ϙevproj(P) and

Ϙqproj(P) respectively. By the uniqueness of Proposition 4.2.18 we may identify Ϙ≥m
M

for m = 0, 1, 2 with the desired derived quadratic functors.

Notation 4.2.23 In light of Proposition 4.2.22 we will denote the Poincaré structures
Ϙ≥2M , Ϙ≥1M and Ϙ≥0M also by ϘgqM , ϘgeM and ϘgsM , and refer to them as the genuine quadratic,
genuine even and genuine symmetric Poincaré structures on R associated to M .

Combining Proposition 4.2.22 with Corollary 3.5.17 we conclude:

Corollary 4.2.24 The loop functor � : Dp(R) → Dp(R) refines to equivalences of
Poincaré ∞-categories

(
Dp(R), (ϘgsM )[2]

) 
−→ (
Dp(R), Ϙge−M

)

and

(
Dp(R), (ϘgeM )[2]

) 
−→ (
Dp(R), Ϙgq−M

)
.

Remark 4.2.25 The L-groups of Dp(R) with respect to the Poincaré structures ϘqM
and ϘsM identify with Ranicki’s 4-periodic quadratic and symmetric L-groups, see
Example 2.3.17. The L-groups of the genuine Poincaré structures ϘgqM , ϘgeM , ϘgsM are
generally not 4-periodic, though one has the relation

Ln−2(Dp(R), ϘgsM ) 
 Ln(Dp(R), Ϙge−M ) 
 Ln+2(Dp(R), ϘgqM )

by Corollary 4.2.24. We will show in Paper [3] that the L-groups of the genuine
symmetric Poincaré structure actually rediscover an older non-periodic variant of
the symmetric L-groups, originally introduced by Ranicki [57] using n-dimensional
Poincaré complexes to define the n’th L-group.
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The notions of σ -symmetric, σ -even and σ -quadratic M-valued forms were gen-
eralized by Bak [8] to the setting where one is given, in addition to M , a subgroup
Q ⊆ MC2 containing the image of the trace map MC2 → MC2 , and closed under the
quadratic action of R on MC2 given by (a,m) �→ (a ⊗ a)m. Here we use the term
quadratic action to designate the fact that it is encoded by a quadratic monoid map
(R, ·, 1, 0) �→ EndZ(MC2), rather than a ring homomorphism. In particular, the cross
effect

(a ⊥ b)m := (
(a + b)⊗ (a + b)

)
m − (a ⊗ a)m − (b ⊗ b)m = (a ⊗ b + b ⊗ a)m

of this action is not trivial, but instead given by a bilinear map R ⊗ R → EndZ(MC2),
which in this case is induced by the symmetrization of the (R⊗R)-action on M .Wewill
refer to abelian groups equipped with this kind of action as quadratic modules. This
notion was subsequently generalized by Schlichting [60] by removing the condition
that Q injects in M :

Definition 4.2.26 (Schlichting) Let R be a ring equipped with an invertible Z-module
with involution M . A form parameter λ on (R, M) is a quadratic R-module Q lying
in a sequence of quadratic modules

MC2

τ−→ Q
ρ−→ MC2

whose composition is the trace map, and such that the cross-effect of the R-action on
Q satisfies (a ⊥ b)x = τ((a ⊗ b)ρ(x)).

We note that any reduced degree 2 polynomial functor Ϙ : Proj(R)op → Ab with
cross-effect BϘ determines a form parameter on (R,BϘ(R, R)) by taking Q = Ϙ(R),
with the maps

BϘ(R, R)C2 → Ϙ(R) → BϘ(R, R)C2

induced by the C2-equivariant diagonal and collapse maps relating R and R ⊕
R. Schlichting then proves (see [60, Lemma A.16]) that the association Ϙ �→
(BϘ(R, R), Ϙ(R)) determines an equivalence between the category
Fun2−poly∗ (Proj(R)op,Ab) and the category of form parameters as above (more pre-
cisely, Schlichting proves this for Proj(R) replaced with the category of finitely
generated free R-modules, but Fun2−poly∗ (−,Ab) is invariant under idempotent com-
pletion). Explicitly, an inverse to this map is given by sending a form parameter

λ = [MC2

τ−→ Q
ρ−→ MC2 ] to the functor

Ϙλproj : Proj(R)op → Ab

which associates to a projective R-module P its group of λ-hermitian forms, which by
definition consists of pairs (φ, q)where φ : P⊗Z P → M is a σ -symmetric M-valued
form and q : P → Q is a map of sets such that
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i) q(rv) = rq(v) for v ∈ P and r ∈ R, where rq(v) stands for the (quadratic)
action of r on q(v) ∈ Q.

ii) q(v + u)− q(v)− q(u) = τ(φ(v, u)) ∈ Q for v, u ∈ P;
iii) ρq(v) = φ(v, v).

The cross effect of Ϙλproj is then given by (P, P ′) �→ HomR(P⊗Z P ′, M). In particular,

for Q = MC2 we get the notion of a σ -symmetric M-valued form, for Q = MC2 we
get the notion of a σ -quadratic M-valued form, and for Q = im[MC2 → MC2 ] we
get the notion of a σ -even M-valued form. Using Proposition 4.2.18 we may extend
the composite functor Proj(R)op → Ab ↪→ Sp to a quadratic functor

ϘgλM : Dp(R)op → Sp

in an essentially unique manner. By Lemma 4.2.3 the bilinear part of ϘgλM is BM and it

is hence Poincaré and compatible with M . Writing�gλ
M := �

ϘgλM
for the linear part of

ϘgλM and evaluating at R ∈ Dp(R) we obtain a fibre sequence

BM (R, R)hC2 → ϘgλM (R) → �
gλ
M (R),

which we may rewrite as

MhC2 → Q → �
gλ
M (R).

This determines the linear part of ϘgλM to be�gλ
M 
 homR(−, N ), where the underlying

spectrum of N is given by the cofibre of the composed map MhC2 → MC2 → Q. In

particular, in the classification of Theorem3.3.1 the Poincaré structure ϘgλM corresponds
to the module with genuine involution

gλ := (M, cof[MhC2 → Q], cof[MhC2 → Q] → M tC2).

Remark 4.2.27 To clarify the relation between form parameters and modules with
genuine involution one may use the framework of genuine C2-spectra. Recall from
Remark 3.2.4 that modules with genuine involution over the E1-ring spectrum HR
can be identified with module objects in genuine C2-spectra over the Hill–Hopkins–
Ravenel norm NHR, the latter being the genuine C2-spectrum whose underlying
C2-spectrum is HR ⊗SHR with the flip C2-action, whose geometric fixed point spec-
trum is HR, andwhose referencemapHR → (HR⊗SHR)tC2 is the Tate-diagonal.We
then note that the stable∞-category of genuine C2-spectra admits a t-structure whose
connective objects are those whose underlying spectrum and geometric fixed points
are both connective. In particular, NHR is a connective algebra object in C2-spectra,
and so its∞-category of modules inherits a t-structure created by the forget-the-action
functor. Let us now switch to viewing genuine C2-spectra as Sp-valued Mackey func-
tors, that is, product preserving functors from the span∞-category of finite C2-sets to
Sp, see [10] and [11]. In this framework the above t-structure is the objectwise one:
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indeed, the condition that the underlying spectrum and the geometric fixed points spec-
trum are both connective is equivalent to the condition that the underlying spectrum
and genuine fixed points being both connective. As a result, the heart of this t-structure
can be identified with the category of Ab-valued Mackey functors, and similarly the
heart of the induced t-structure on NHR-modules can be identified with Ab-valued
Mackey functors which are modules over π0NHR. The latter can be computed by
translating NHR into an Sp-valued Mackey functor and then taking π0 objectwise.
This computation was carried out in [20, Proposition 5.5] yielding the Ab-valued
Mackey functor encoded by the arrows

(R ⊗Z R)C2

τ−→ W
ρ−→ (R ⊗Z R)C2 , (91)

where W is the abelian group whose underlying set of elements is R × (R ⊗Z R)C2 ,
and whose addition law is given by

(a, v)+ (b, u) = (a + b, v + u − [a ⊗ b]).

Here, the map τ is the inclusion v �→ (0, v) and the map ρ sends (a, v) to (a ⊗ a)+
TC2(v), where TC2 is the trace map from (R⊗Z R)C2 to (R⊗Z R)C2 . Now on the level
of spectral Mackey functors the tensor product of genuine C2-spectra is determined
by Day convolution along the symmetric monoidal structure induced on the level of
spans by the cartesian product of finite C2-sets. The Mackey object (91) inherits from
NHR an associative algebra structure with respect to this monoidal structure, and this
means in particular that W → (R ⊗Z R)C2 is a map of associative algebras and that
(R ⊗Z R)C2 → W is a map of W -bimodules (where W acts on (R ⊗Z R)C2 via the
action of (R ⊗Z R)C2 on the latter inherited from its equivariant action on R ⊗Z R).
The ring structure on W was also calculated in [20, Proposition 5.5] and is given by

(a, v)(b, u) = (ab, (a ⊗ a)u + v(b ⊗ b)+ uTC2 (v)) = (ab, (a ⊗ a)u + v(b ⊗ b)+ TC2 (u)v).

Unwinding the definitions, we then see that the notion of amodule over W corresponds
exactly to that of an abelian group equipped with a quadratic R-action, and that the
data of a module over (91) in Ab-valued Mackey functors corresponds exactly to the
notion of a form parameter as in Definition 4.2.26. In summary, we may reproduce the
category of form parameters as the heart under the above t-structure of the∞-category
ModNHR of NHR-modules in genuine C2-spectra, or, equivalently, of modules with
genuine involution over HR. The latter identifies with Funq(ModωHR) under the equiv-
alence of Theorem 3.3.1, and in that setting we may identify the heart with the full
subcategory spanned by the derived quadratic functors, that is, those quadratic functors
ModωHR → Sp which send Proj(R) to Ab = Sp♥ (and to which Proposition 4.2.18
pertains). In particular, the derived quadratic functor corresponding to a given form
parameterλ = [MC2 → Q → MC2 ] is exactlyϘgλM , and the correspondingHZ-module
with genuine involution (HM, cof[HMhC2 → HQ], cof[HMhC2 → HQ] → HM tC2)

is then obtained by extracting the underlying spectrum and geometric fixed points of
the Mackey functor Hλ associated to λ, where the HR-action on the geometric fixed



10 Page 114 of 269 B. Calmès et al.

points cof[HMhC2 → HQ] is induced by the action of NHR (whose geometric fixed
points is HR) on Hλ.

Remark 4.2.28 In [28] the fourth and ninth authors show that the Grothendieck-Witt
groups (the one defined in Sect. 2.5 as well as the higher ones we will define in
Paper [2]) of derived Poincaré structures as above can be described in terms of the
group completion of the corresponding monoid of Poincaré forms on projective mod-
ules. It then follows that for an invertible Z-module with involution (M, σ ) over R
the Grothendieck-Witt groups of (Dp(R), ϘgλM ) coincide with the Grothendieck-Witt
groups of λ-hermitian forms as defined and studied by Bak [8], see also [38] and [60].
In particular, the Grothendieck-Witt groups of Dp(R) with respect to the genuine
quadratic, genuine even and genuine symmetric Poincaré structures are the classical
σ -quadratic, σ -even and σ -symmetric Grothendieck-Witt groups of R with coeffi-
cients in M .

We now show how to extend the equivalences of Corollary 4.2.24 to more general
form parameters. For this, as explained in [60], note that to a form parameter MC2 →
Q → MC2 may associate another form parameter

λ̌ = [
(−M)C2 −→ M/im(ρ) −→ (−M)C2

]
.

Indeed, this construction is well-defined since im(ρ) is contained in the kernel of the
map 1− σ : M → M and contains the image of the map 1+ σ : M → M . Hermitian
forms with respect to the form parameter λ̌ on −M then correspond to what Bak [8]
called λ-quadratic forms.

Proposition 4.2.29 Let (Q, ρ, τ ) be a form parameter on M in which ρ : Q → MC2

is injective. Then the loop functor � : Dp(R) → Dp(R) refines to an equivalence of
Poincaré ∞-categories

(
Dp(R), (ϘgλM )[2]

) 
−→ (
Dp(R), Ϙgλ̌−M

)

Proof. Applying Corollary 1.1.21 in the case where y = 0 we get for P ∈ Proj(R) an
equivalence

�2Ϙ
gλ
M (P[1]) 
 � fib

[
Ϙ
gλ
M (P[0]) → BM (P[0], P[0])] = cof

[
Ϙ
gλ
M (P[0]) → BM (P[0], P[0])].

Now since ρ : Q → MC2 is injective the notion of a λ-hermitian form (φ, q) on P
simply reduces to a symmetric M-valued formφ such thatφ(v, v) ∈ Q forv ∈ P (from
which the data of q is uniquely determined). It then follows that the map ϘgλM (P[0]) →
BM (P[0], P[0]) is injective, and so its cofiber in Sp is just the Eilenberg–MacLane
spectrum of its cokernel in Ab. By the equivalence of Proposition 4.2.18 we now
conclude that the Poincaré structure (ϘgλM ◦ �)[2] is the derived Poincaré structure of
the degree 2 polynomial functor Proj(R)op → Ab given by



Hermitian K-theory for stable ∞-categories I: Foundations Page 115 of 269 10

Ϙ′(P) = coker
[
Ϙgλproj(P) → HomR⊗ZR(P ⊗Z P, M)

]
.

We now claim that Ϙ′ is naturally equivalent to Ϙgλ̌proj. Indeed, unwinding the definitions
we see that the transfer map

HomR⊗ZR(P ⊗Z P, M) → Ϙgλ̌proj(P)

vanishes on Ϙgλproj(P) and hence determines a natural transformation

Ϙ′ ⇒ Ϙgλ̌proj.

One then readily verifies that this natural transformation is an equivalence on cross
effects (which on both sides identify with bilinear forms to−M). It will hence suffice
to check that this natural transformation evaluates to an isomorphism on the projective
R-module R. Indeed, its component at R is the tautological identification

Ϙ′(R) = M/Q = Ϙgλ̌proj(R).

Remark 4.2.30 In Paper [2] we prove a version of Karoubi’s fundamental theo-
rem in the setting of Poincaré ∞-categories. When applied to the various derived
Poincaré structures on Dp(R) mentioned above (and using the comparison state-
ment of Remark 4.2.28), this yields a complete solution to both conjectures made
by Karoubi in [38] concerning potential generalizations of his fundamental theorem
to the case where 2 is not assumed invertible. More precisely, when combined with
Corollary 4.2.24 one obtains the statement of [38, Conjecture 1], and when combined
with Proposition 4.2.29 the statement of [38, Conjecture 2]. We point out that while
these conjectures pertain to the classical theory of forms as encoded by the vari-
ous polynomial functors above, the equivalences of Poincaré∞-categories appearing
in Corollary 4.2.24 and Proposition 4.2.29 are only visible after deriving these into
Poincaré structures on Dp(R).

Wenow turn to the proof of Proposition 4.2.18. Let�≤n ⊆ �be the full subcategory
spanned by those totally ordered sets with at most n + 1 elements.

Definition 4.2.31 Let C and D be small∞-categories.

i) A diagram p : �op → C is called finite if it is left Kan extended from its restriction
to �

op
≤n for some n. A colimit over such a diagram is called a finite geometric

realisation. Dually, a diagram � → C is called finite if it is right Kan extended
from its restriction to �≤n for some n. A limit over such a diagram is called a
finite totalization.

ii) An∞-category C is said to admit finite geometric realizations if every finite dia-
gram�op → C in C admits a colimit. Dually, C is said to admit finite totalizations
if every finite diagram � → C admits a limit.
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iii) A functor f : C → D is said to preserve finite geometric realizations if its sends
colimit cones p : (�op)� → C over finite diagrams p : �op → C to colimit cones
in D. Here, it is not required that f ◦ p : �op → D remains finite in the above
sense. Dually, a functor f is said to preserve finite totalizations if its sends limit
cones p : (�op) → C over finite diagrams p : � → C to limit cones inD. Again,
it is not required that f ◦ p : �op → D remains finite.

We will denote by Fun�
op
fin(C,D) ⊆ Fun(C,D) the full subcategory spanned by the

functors which preserve finite geometric realizations.

Remark 4.2.32 If an∞-categoryC admits finite colimits then it admits finite geometric
realizations, since the ∞-category �

op
≤n is finite (see e.g. Example 6.5.3 below) and

colimits of left Kan extended diagrams X : �op → C can be calculated on their
restriction to �

op
≤n . In addition, if C and D are ∞-categories with finite colimits and

f : C → D preserves finite colimits then f sends finite diagrams X : �op → C to
finite diagrams; indeed, this follows from the pointwise formula for left Kan extensions
since for each [m] ∈ �op the comma category (�

op
≤n)/[m] is finite. It then follows that

such an f also preserves finite geometric realizations. A similar statement holds for
finite totalizations under the analogous assumptions concerning finite limits.

Lemma 4.2.33 Let C be an ∞-category which admits finite colimits and D an ∞-
category which admits sifted colimits. Then restriction along the Yoneda embedding
C → Ind(C) induces an equivalence

Funsif(Ind(C),D) → Fun�
op
fin(C,D)

between the full subcategory of functors Ind(C) → D which preserve sifted colimits
on the left hand side and functors C → D which preserve finite geometric realizations
on the right.

Proof We first note that by the universal property of ind-categories [43, Proposi-
tion 5.3.5.10] we have that Ind(C) admits filtered colimits and restriction along
ι : C ↪→ Ind(C) determines an equivalence

Funfilt(Ind(C),D)

−→ Fun(C,D),

where the left hand side stands for the full subcategory of Fun(Ind(C),D) spanned
by the functors which preserves filtered colimits. It will hence suffice to show that if
f : Ind(C) → D is a functor which preserves filtered colimits then f preserves sifted
colimits if and only if f ◦ ι preserves finite geometric realizations. To begin, note
that if f : Ind(C) → D preserves sifted colimits then it preserves in particular finite
geometric realizations. Since the inclusion ι : C → Ind(C) preserves finite colimits it
preserves finite diagrams and finite geometric realizations by Remark 4.2.32. It then
follows that in this case f ◦ ι preserves finite geometric realizations. To prove the
other direction, let us now suppose that f : Ind(C) → D is a functor which preserves
filtered colimits such that f ◦ ι preserves finite geometric realizations. We wish to
show that f preserves all sifted colimits. By [43, Corollary 5.5.8.17] it will suffice to
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show that f preserves geometric realizations. Let tn : �op
≤n → �op be the inclusion.

Then every �op-diagram ρ : �op → Ind(C) can be written as a sequential (and in
particular filtered) colimit of finite diagrams of the form

ρ 
 colim
n

(tn)!(tn)∗ρ.

Since f preserves filtered colimits it will suffice to prove that f preserves finite
geometric realizations. Now let ρn : �op

≤n → Ind(C) be a diagram indexed on�op
≤n .We

claim that ρn can bewritten as a filtered colimit of�op
≤n-diagrams taking values in C. To

see this, consider the smallest full subcategory E ⊆ Fun(�op
≤n, Ind(C))which contains

the leftKan extended functors (ik)!ι(x), where x ∈ C is an object and ik : {[k]} ↪→ �
op
≤n

is the inclusion of the object [k], and closed under finite colimits. Then E forms
a collection of compact generators for Fun(�op

≤n, Ind(C)) and hence every diagram
ρn : �op

≤n → Ind(C) is a filtered colimit of diagrams in E . Since the mapping sets
in �

op
≤n are finite the functors (ik)!ι(x) takes values in the image of C, and hence

factor through�op
≤n-diagrams in C. It will hence suffice to show that f preserves finite

geometric realizations of simplicial diagrams which factor through ι : C ↪→ Ind(C).
Indeed, since C admits finite geometric realizations which are preserved by ι this
follows from the assumption that f ◦ ι preserves finite geometric realizations.

Lemma 4.2.34 Any quadratic functor Ϙ : Cop → Sp preserves finite geometric real-
izations and finite totalizations.

Proof It suffices to show the claim for the special cases where Ϙ is either exact or of the
form x �→ B(x, x) for a bilinear functor B : Cop× Cop → Sp, since these generate all
quadratic functors under both limits and colimits: indeed, a general quadratic functor
Ϙ is both the fibre of a map from BϘ(−,−)hC2 to an exact functor and the cofibre of
a map from an exact functor to BϘ(−,−)hC2 . The case where Ϙ is exact follows from
Remark 4.2.32. We hence suppose that Ϙ(x) = B(x, x) for some bilinear B, and let
X : �op → C be a finite diagram. Since � is sifted we then have

colim[n]∈� Ϙ(Xn) 
 colim[n]∈� B(Xn, Xn) 
 colim[n]∈� colim[m]∈� B(Xn, Xm).

Now for each fixed x ∈ C the functor B(x,−) is exact and hence preserves finite
geometric realizations by Remark 4.2.32. Similarly, for each fixed y ∈ C the functor
B(−, y) preserves finite geometric realizations. We hence get that

colim[n]∈� colim[m]∈� B(Xn, Xm) 
 colim[n]∈� B(Xn, colim[m]∈� Xm) 
 B(colim[n]∈� Xn, colim[m]∈� Xm).

Using again that � is sifted we consequently get B(colimn Xn, colimm Xm) 

Ϙ(colimn Xn), as desired.

Our strategy for the proof of Proposition 4.2.18 is to break the inclusion Proj(R) ↪→
Dp(R) into the composite of two inclusions

Proj(R) ↪→ Dp(R)≥0 ↪→ Dp(R),
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whereDp(R)≥0 ⊆ Dp(R) is the image under the localisation functorChb(Proj(R)) →
Dp(R) of the full subcategory Chb≥0(Proj(R)) ⊆ Chb(Proj(R)) spanned by the com-
plexes concentrated in non-negative degrees. To make this strategy work we would
like to have a notion of a (contravariant) quadratic functor from Dp(R)≥0 to spectra.

Recall from Definition 1.1.1 that a functor Ϙ : Dp(R)≥0 → Spop is said to be 2-
excisive if it sends strongly cocartesian cubes inDp(R)≥0 to exact cubes in Spop. We
will denote by

Fun2−exc∗ (Dp(R)≥0) ⊆ Fun(Dp(R)≥0,Spop)op

the full subcategory spanned by the reduced 2-excisive functors Dp(R)≥0 → Spop.

Remark 4.2.35 It follows from [47, Proposition 6.1.3.22] that the cross effect of any
reduced 2-excisive functor Ϙ : Dp(R)≥0 → Spop is reduced and 1-excisive in each
variable separately.

Lemma 4.2.36 Restriction along the inclusion Dp(R)≥0 ⊆ Dp(R) yields an equiva-
lence

Funq(Dp(R))

−→ Fun2−exc∗ (Dp(R)≥0). (92)

Proof Consider the composite

Fun∗
(
Dp(R)op≥0,Sp

) → Fun∗
(
Dp(R)op,Sp

) P2−→ Funq(Dp(R)) (93)

where the first functor is given by right Kan extension along the inclusion
ι : Dp(R)op≥0 ↪→ Dp(R)op (a procedure which preserves reduced functors by the point-
wise formula forKan extensions) and the second by the right adjoint P2 to the inclusion
Funq(Dp(R)) ⊆ Fun∗(Dp(R)op,Sp) described in Construction (1.1.26). Since (93)
is a composite of right adjoints it is itself right adjoint to the composite

Funq(Dp(R)) ↪→ Fun∗(Dp(R)op,Sp) → Fun∗
(
Dp(R)op≥0,Sp

)
. (94)

Since (94) factors through the full subcategory of quadratic functors the unit and counit
of the adjunction between (93) and (94) also yield an adjunction

Fun2−exc∗ (Dp(R)≥0) ⊥ Funq(Dp(R)) (95)

where the right adjoint is obtained by restricting the domain of (93) and the left adjoint
is the restriction functor (92) under consideration. We claim that the adjunction (95)
is an equivalence. To begin, we first show that for Ϙ ∈ Fun2−exc∗ (Dp(R)≥0) the counit
ι∗P2(ι∗Ϙ) → Ϙ is an equivalence.We note that this counit is given itself by a composite

ι∗P2(ι∗Ϙ) → ι∗ι∗Ϙ→ Ϙ (96)
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where the second map is the counit of ι∗ � ι∗, which is an equivalence since ι is
fully-faithful. The first map in turn is the one obtained by applying ι∗ to the counit
P2(ι∗Ϙ) → ι∗Ϙ. We hence need to show that the component

P2(ι∗Ϙ)(X) → ι∗Ϙ(X) (97)

is an equivalence for X in the image of the inclusion Dp(R)≥0 ⊆ Dp(R). For this we
recall that P2 is defined via a sequential limit

P2(R) := lim[· · · → T 2T 2(R) → T 2(R) → R]

where T 2(R)(X) = � cof[BR(�X , �X) → R(�X)], see Construction 1.1.26. It
will then suffice to show that for X ∈ Dp(R)≥0 the sequence

�BϘ(�X , �X) → �Ϙ(�X) → Ϙ(X)

is exact. Indeed, this follows by the exact same argument as the dual version of
Lemma 1.1.19 (see Remark 1.1.20) in the case where z and w are zero objects, using
that Ϙ is assumed to be reduced and 2-excisive on Dp(R)≥0.

As the counit is an equivalence, to finish the proof it will suffice to show that ι∗
is conservative, or equivalently (since its domain is stable), detects zero objects. In
particular, we need to show that if Ϙ : Dp(R)op → Sp is a quadratic functor which
vanishes onDp(R)≥0 then Ϙ is the zero functor. Indeed, for such a Ϙ we will have that
(T 2)◦n(Ϙ) vanishes on (Dp(R))≥−n := �−nDp(R)≥0 and hence that

Ϙ 
 P2(Ϙ) = lim[· · · → T 2T 2(Ϙ) → T 2(Ϙ) → Ϙ] = 0,

since any X ∈ Dp(R) lies in Dp(R)≥−n for some n.

Lemma 4.2.37 Restriction along the inclusion Proj(R) ⊆ Dp(R)≥0 yields an equiva-
lence

Fun2−exc∗ (Dp(R)≥0)

−→ Fun2−poly∗ (Proj(R)op,Sp)

Proof LetD(R)≥0 ⊆ D(R) denote the full subcategory spanned by the objects repre-
sented by non-negatively graded complexes. By [47, Proposition 1.3.3.14] restriction
along the inclusion Proj(R) → D(R)≥0 yields an equivalence

Funsif(D(R)op≥0,Sp)

−→ Fun(Proj(R)op,Sp),

where the left hand side denotes the full subcategory of Fun(D(R)op≥0,Sp) spanned
by the functors which preserve sifted limits. It then follows from Lemma 4.2.33 that
restriction along the inclusion Proj(R) → Dp(R)≥0 induces an equivalence

Fun�fin(Dp(R)op≥0,Sp)

−→ Fun(Proj(R)op,Sp) (98)
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where on the left hand side we have the ∞-category of functors Dp(R)op≥0 → Sp
which preserve finite geometric realizations. By Lemma 4.2.34 the latter contains
Fun2−exc∗ (Dp(R)≥0) as a full subcategory. We now claim that under the equiva-
lence (98) the reduced 2-excisive functors on the left hand side correspond to the
functors that are reduced and polynomial of degree 2 on the right hand side. First,
since the inclusion Proj(R) → Dp(R)≥0 is additive and reduced 2-excisive func-
tors have cross effects which are reduced and 1-excisive in each variable separately
(see [47, Proposition 6.1.3.22]) it follows that reduced 2-excisive functors restrict
to reduced functors which are polynomial of degree 2. Conversely, suppose that
R : Dp(R)op≥0 → Sp is a functor which preserves finite geometric realizations whose
restriction to Proj(R)op is reduced and polynomial of degree 2. Since Proj(R) con-
tains the zero object of Dp(R)≥0 we have that R is reduced. To show that R is
2-excisive we need to show that it sends strongly cocartesian cubes in Dp(R)≥0 to
exact cubes of spectra. For this, let ρ : (�1)3 → Dp(R)≥0 be a strongly cocarte-
sian cube. We want to reduce to the case where ρ takes values in the subcategory
of finite projective modules and injections. Let us identify (�1)3 with the nerve of
the poset P([2]) of subsets of [2] = {0, 1, 2}. Let P≤1([2]) ⊆ P([2]) be the full
subposet spanned by {}, {0}, {1}, {2}. Since Dp(R)≥0 is the localisation of the cofi-
bration category Chb≥0(Proj(R)) it follows from [17, Theorem 7.6.17] that we can
represent ρ|P≤1([2]) by a diagram τ : P≤1([2]) → Chb≥0(Proj(R)) in which each map
ci : τ({}) → τ({i}) is levelwise injective with projective kernel. The Dold–Kan cor-
respondence then associates to τ a diagram τ ′ : P≤1([2]) → Proj(R)�

op
of simplicial

R-modules such that each of the maps ci : τ({}) → τ({i}) is levelwise injective with
projective cokernel (see [56, §II.4.12]). In addition, since τ takes values in bounded
complexes we can find an n ≥ 0 such that it takes values in complexes concentrated in
degrees 0 to n. Under theDold–Kan correspondence such complexesmap to simplicial
R-modules which are left Kan extended from their restriction to �

op
≤n . Switching the

simplicial dimension with the P≤1([2])-dimension we may conclude that τ |P≤1([2])
can be written as a finite geometric realisation of a simplicial family of diagrams
τ ′n : P≤1([2]) → Proj(R) such that each τ ′n has the property that τ ′n({}) → τ ′n({i}) is a
split injectivemap of projectivemodules. Left Kan extending fromP≤1([2])we obtain
a representation of ρ as a finite geometric realisation of a simplicial family of strongly
cocartesian cubes ρn : P([2]) → Proj(R) such that each ρn({}) → ρn({i}) is a split
injective map of projective modules. Since R preserves finite geometric realizations
it will suffice to show that R sends each ρn to an exact cube of spectra. Now since
Proj(R) is closed in Dp(R)≥0 under pushouts with one leg split injective it follows
that each ρn is a strongly cocartesian cube in Proj(R). More explicitly, we may pick
projective modules Xn,Y 0

n ,Y 1
n ,Y 2

n such that τ ′n({}) = Xn and τ ′n({i}) = Xn ⊕ Y i
n for

i = 0, 1, 2, in which case ρn : P([2]) → Dp(R) is given by

[2] ⊇ S �→ Xn ⊕
[
⊕

i∈S
Y i

n

]
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To finish the proof we need to show that the resulting cube of spectra

S �→ R(Xn ⊕
[ ⊕

i∈S
Y i

n

]
) (99)

is exact. Let B(−,−) be the cross-effect ofR. The assumption thatR|Proj(R) is poly-
nomial of degree 2 means that the restriction of B to Proj(R)×Proj(R) preserve direct
sums in each variable separately. The cube of spectra R ◦ ρn thus decomposes as a
direct sum of four components

S �→ R(Xn)⊕
[
⊕i∈SR(Y i

n)
]
⊕

[
⊕i∈SB(Xn,Y i

n)
]
⊕

[
⊕i< j∈SB(Y

i
n,Y j

n )
]
.

The first component is constant and is hence an exact cube, and the second and third
components are visibly exact. Finally, the fourth component S �→ ⊕i< j∈SB(Y i

n,Y j
n )

is also an exact cube since it vanishes on S of size smaller than 2 and exhibits its value
at S = {0, 1, 2} as the product of its values on {0, 1}, {1, 2} and {0, 2}. We have thus
showed that the cube of spectra (99) is exact, and so the proof is complete.

Proof of Proposition 4.2.18 Combine Lemma 4.2.36 and Lemma 4.2.37.

4.3 Group-rings and visible structures

In this section we will consider group rings, and more generally, group ring spectra,
which provide important examples of rings with anti-involutions, and whose various
types of L-groups play a role in surgery theory and manifold classification, see Exam-
ple 4.3.6. As in the work of Weiss–Williams [73], these geometric applications are
sometimes better serviced by replacing modules over group rings by parametrised
spectra, a point of view we will take up in Sect. 4.4.

Recall that for an ordinary group G equipped with a homomorphism χ : G →
{−1, 1}, one may endow the group ring ZG with the associated χ -twisted involution

τχ : ZG
∼=−→ (ZG)op, defined by sending g ∈ ZG to χ(g)g−1. In what follows we will

consider a generalization of this setup where G is replaced by an E1-group, that is,
a group-like E1-monoid in spaces, and instead of Z the coefficients are taken in the
sphere spectrum.More precisely, for such aG the suspension spectrumS[G] := �∞+ G
inherits the structure of anE1-ring spectrum,which is called the group ring spectrum of
G. ThisE1-ring spectrum is characterized by the fact that itsmodule spectra correspond
to spectra with a G-action, a notion which we will call here (naive) G-spectra, and
consequently also use the notations ModG := ModS[G] and ModωG := Modω

S[G], as
well as the shorthand ⊗G for ⊗S[G]. In this section we consider data giving rise to
Poincaré structures on Modω

S[G]. We also consider variants for the group algebras
A[G] := A ⊗S S[G] with coefficients in some E1-ring spectrum A. A closely related
construction involving parametrised spectra over a space will be explored in Sect. 4.4.

Recall that a spectrum E ∈ Sp is called invertible if there exists a spectrum E ′ such
that E ⊗S E ′ 
 S. In this case E is necessarily of the form �n

S for a unique n ∈ Z,
to which we refer as the rank of E . By a character of an E1-group G we will mean
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a pair (E, χ) where E is an invertible spectrum and χ : G → Aut(E) 
 gl1(S) is a
homomorphism of E1-groups, encoding an action of G on E .

Construction 4.3.1 Let G be an E1-group equipped with a character (E, χ). We define
a module with genuine involution on the group ring S[G] as follows. First, since the
diagonal map G → G × G is naturally equivariant with respect to the flip C2-action
on G × G and the trivial action on G, it follows that the induction functor

ModG → ModG×G

refines to a functor

ModG → [ModG×G]hC2 ,

where C2 acts on ModG×G via its flip action on G × G. In particular, the G × G-
spectrum

E[G−] := S[G × G] ⊗G E = S[G × G] ⊗S[G] E

induced from the G-spectrum E is naturally a C2-equivariant object of ModG×G .
Identifying S[G] ⊗S S[G] with S[G × G] we then see that the Tate diagonal

�G : S[G] → S[G × G]tC2

is given by the composite S[G] → S[G×G]hC2 → S[G×G]tC2 in which the first map
is induced by the C2-equivariant diagonal G → G × G. In particular, the G-action
on E[G−]tC2 is induced by the G-action on E[G−] restricted from G × G along the
diagonal, and we may then consider the composite map of G-spectra

η : E 
 S[G] ⊗G E
�G⊗G E−−−−−−→ (S[G × G])tC2 ⊗G E → (S[G × G] ⊗G E)tC2 = E[G−]tC2 ,

and we call the resulting module with genuine involution (E[G−], E, η) the χ -twisted
visible module. We will denote the corresponding hermitian structure on ModωG by
Ϙvχ and refer to it as the χ -twisted visible structure on ModωG . Similarly, for a given
subgroup c ⊆ K0(ModωG) we may restrict Ϙvχ to obtain the corresponding visible
hermitian structure on Modc

G .

Lemma 4.3.2 Let n be such that E 
 �n
S as spectra. Then the (S[G]⊗SS[G])-module

E[G−] is invertible and equivalent to�n
S[G]as an S[G]-module. Furthermore, under

this equivalence the involution on E[G−] corresponds to the n-fold suspension of a
ring spectrum anti-involution

τχ : S[G] → S[G]op,

so that (�−n E[G−], �−n E, �−nη) promotes S[G] to a genuine ring with involution.
In particular, the visible structure Ϙvχ on both ModωG and ModfG is Poincaré (see
Example 3.2.9).



Hermitian K-theory for stable ∞-categories I: Foundations Page 123 of 269 10

We will use the notation Sχ [G] to denote the group ring of G considered with the
anti-involution τχ : S[G] → S[G]op of Lemma 4.3.2. Explicitly, τχ is the ring map
induced by the composed map

G → gl1(S)× Gop → gl1(S[G]op),

in which the first map is given by g �→ (χ(g), g−1). In particular, on π0S[G] ∼=
Z[π0G] this involution can be written as

∑
i ai gi �→ ∑

i aiχ0(gi )g
−1
i , where

χ0 : π0G → π0gl1(S) = {1,−1}

is the induced homomorphism on π0.

Proof of Lemma 4.3.2 By Proposition 3.1.14 it will suffice to exhibit a C2-equivariant
map u : S → �−n E[G−] which freely generates �−n E[G−] as an S[G]-module.
Indeed, this is given by the C2-equivariant map

S 
 �−n E ⊗G S[G] → �−n E ⊗G S[G × G] = �−n E[G−],

induced by the diagonal map G → G × G. This map exhibits �−n E[G−] as a free
S[G]-module on a single generator since the shear map G × G → G × G (given
informally by (g, h) �→ (g, gh)) is an equivalence by the group-like property.

The following variant is also of interest:

Variant 4.3.3 (Visible structures with coefficients) Let G be an E1-group equipped
with a character (E, χ) and let (A, N , α) be an E1-ring spectrum with genuine invo-
lution. The E1-ring

A[G] := A ⊗S S[G]

can be endowedwith amodulewith genuine involution by tensoring the visiblemodule
(E[G−], E, η) of Construction 4.3.1 with (A, N , α), using the monoidal structure on
genuine C2-spectra (see Remark 3.2.4). Explicitly, this yields themodule with genuine
involution

(Aχ [G−], N ⊗S E, α ⊗S η) = (A ⊗S E[G−], N ⊗S E, α ⊗S η)

where

α ⊗S η : N ⊗S E → AtC2 ⊗S E[G−]tC2 → (A ⊗S E[G−])tC2

is obtained via the lax monoidal structure map of the Tate construction.Wewill denote
the corresponding hermitian structure on ModωA[G] by ϘαA,χ , and refer to it as the χ -
twisted visible structure on ModωA[G]. It then follows from Lemma 4.3.2 that this
hermitian structure is Poincaré and identifies up to a shift with the Poincaré structure

associated to a genuine refinement of the anti-involution τA,χ : A[G] 
−→ (A[G])op
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induced by the anti-involution of A and χ -twisted anti-involution of S[G]. We will
refer to τA,χ as the χ -twisted anti-involution on A[G].
Example 4.3.4 When G is discrete a common choice of a twisting is via a sign homo-
morphism χ : G → {−1, 1}. This can be made into a G-character (E, χ) once we fix
what is meant by the sign action on S. Here (at least) two equally natural options are
possible: one can either take E = S

σ−1 to be the desuspension of the sign represen-
tation sphere, or take E = S

1−σ to be its inverse. These are generally not equivalent
as spectra with C2-action, see Example 3.5.14 iii).

Example 4.3.5 Let G be an E1-group equipped with a character (E, χ). If (A, 0, 0 →
AtC2) is an E1-ring spectrum with genuine involution associated to the quadratic
genuine refinement of an anti-involution on A, then the associated χ -twisted visible
Poincaré structure onModωA coincides with the quadratic Poincaré structure associated
to the χ -twisted duality on ModωA[G].

Example 4.3.6 (The visible symmetric structure) Let G be an E1-group equipped with
a character (E, χ) and let A be an E1-ring spectrum with anti-involution. We refer
to the χ -twisted Poincaré structure on ModωA[G] associated to the E1-ring spectrum

with genuine involution (A, AtC2 , id : AtC2 → AtC2) as the visible symmetric Poincaré
structure, and denote it by Ϙv−s

A,χ ∈ Funq(ModωA[G]). Its reference map AtC2 ⊗S E →
Aχ [G−]tC2 can then be factored as a composite

AtC2 ⊗S E = AtC2 ⊗S S[G] ⊗G E
α−→ A[G × G]tC2 ⊗G E
β−→ (

A[G × G] ⊗G E
)tC2 = Aχ [G−]tC2 , (100)

where α is induced by the Tate diagonal of S[G] and the lax symmetric monoidal
structure of (−)tC2 , and β is the canonical interchange map between (−) ⊗G E and
(−)tC2 . When G and A are discrete the L-groups of this Poincaré structure recover
the visible symmetric L-groups A[G], first defined by Weiss [70]. Indeed, translating
the definition of [70] to the present setting gives a Poincaré structure with linear part
classified by the A[G]-module A[G × G]tC2 ⊗G E with reference map β as above.
To compare the two it will hence suffice to show that α is an equivalence when G and
A are discrete. Indeed, we can factor α as a composite

AtC2 ⊗S S[G] ⊗G E → A[G]tC2 ⊗G E → A[G × G]tC2 ⊗G E

where the first map is an equivalence in this case since the Tate construction preserves
filtered colimits of discrete spectra and the second map is an equivalence since the
cofibre of the map S[G] → S[G × G] is an induced C2-module when G is discrete.

Example 4.3.7 (The visible genuine structure) Let G be an E1-group equipped with a
character (E, χ) and let A be a connective E1-ring spectrum with anti-involution. We
will refer to the χ -twisted Poincaré structure on ModωA[G] associated to the E1-ring

spectrum with genuine involution (A, τ≥m AtC2 , tm) as the visible genuine Poincaré
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structure, and denote it by Ϙv−≥m
A,χ ∈ Funq(ModωA[G]). Its linear part is then classified

by the A[G]-module τ≥m AtC2 ⊗S E 
 τ≥n+m(AtC2 ⊗S E), where n is the rank of E .

In some circumstances, the visible symmetric Poincaré structure on A[G] identifies
with the symmetric one:

Lemma 4.3.8 Let A be an E1-ring spectrum with anti-involution, G an E1-group and
(E, χ) a G-character of rank n. If either BG is a finitely dominated space or G is a
discrete group with no non-trivial 2-torsion then the comparison map Ϙv−s

A,χ ⇒ ϘsAχ [G−]
is an equivalence.

Remarks 4.3.9 i) The two different conditions considered in Lemma 4.3.8 are not
completely unrelated: if G is a discrete group then the condition that BG is finitely
dominated implies that G has no non-trivial torsion (indeed, for such a G the
constant module Z admits a finite projective resolution, and so all subgroups of G
have finite cohomological dimension, see, e.g., [15, Corollary VIII.2.5]).

ii) The proof of Lemma 4.3.8 in the case of G discrete with no non-trivial 2-torsion
extends to more general groups: the same argument works for example for Lie
groups with no non-trivial 2-torsion which are sufficiently nice in the sense G
is a finite dimensional C2-CW-complex considered with respect to the C2-action
g �→ g−1.

In the circumstances of Lemma 4.3.2, the visible genuine Poincaré structure on
A[G] also identifies with the truncated structure of Example 3.2.8, up to a shift in the
truncation point by the rank of E :

Corollary 4.3.10 Let A be a connective E1-ring spectrum with anti-involution, G an
E1-group and (E, χ) a G-character of rank n. If either BG is a finitely dominated
space or G is a discrete group with no 2-torsion then

Ϙv−≥m
A,χ 
 Ϙ≥m+n

Aχ [G−].

Proof of Lemma 4.3.8 The comparison claim is equivalent to the statement that under
the given assumptions the reference map AtC2 ⊗S E → Aχ [G−]tC2 of the visible
symmetric structure is an equivalence.

Assume first that G is a discrete group with no 2-torsion. Then we may identify
Aχ [G−] 
 ⊕g∈G[A ⊗S E] with the involution acting by applying the involution of
A on each factor and then switching the component associated to g ∈ G with the
component associated to g−1. Under the identification AtC2 ⊗S E 
 (A ⊗S E)tC2 the
reference map is then induced on Tate objects by the inclusion of the component of
1 ∈ G. When G has no 2-torsion the cofibre of this inclusion is an induced C2-module,
and so the induced map on Tate objects is an equivalence.

Now assume that BG is a compact space. We then factor the reference map of the
visible symmetric structure as in (100). Since BG is compact it follows that E , which
can be written as a BG-indexed colimit of free S[G]-modules, is itself a compact
S[G]-module, and so the arrow β in (100) is an equivalence. Now consider the exact
functor T : ModA → Sp given by T (X) �→ (X ⊗A X)tC2 , where X denotes X ,
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but considered as a right A-module via the involution on A. In particular, we have
a canonical equivalence T (A) 
 AtC2 . Then the interchange map T (A) ⊗S E →
T (A ⊗S E) is an equivalence since E is finite as a spectrum, but can also be factored
as a composite of interchange maps

T (A)⊗S E = T (A)⊗S S[G] ⊗G E → T (A[G])⊗G E → T (A[G] ⊗G E) = T (A ⊗S E)

in which the second interchange map is an equivalence since E is perfect as an S[G]-
module. It then follows that the first interchange map

AtC2 ⊗S S[G] ⊗G E = T (A)⊗S S[G] ⊗G E → T (A[G])⊗G E = A[G × G]tC2 ⊗G E

is an equivalence as well. Unwinding the definitions, this map can be identified with
α, and so the desired result is obtained.

Remark 4.3.11 Let G be an E1-group equipped with a character (E, χ). Consider
the universal Poincaré structure Ϙu on Spf associated to the module with genuine
involution (S,S,S → S

tC2). Since any stable ∞-category is tensored over Sp the
character χ induces an action of G on E ⊗ Ϙu ∈ Funq(Spf), and hence on (Spf , E ⊗
Ϙu) ∈ Catp∞. Using the point of view of parametrised spectra, we will show in Sect. 6.1
that the visible Poincaré structure (ModfG, Ϙ

v
χ ) on finitely presented S[G]-modules

can be universally characterized as the quotient of (Spf , E ⊗ Ϙu) by G in Catp∞ (see
Proposition 6.1.9 and Example 4.4.5). The Poincaré∞-category (ModωG, Ϙ

v
χ ) can then

be identified with the corresponding quotient only computed in idempotent complete
Poincaré∞-categories.

More generally, if (A, N , α) is an E1-ring spectrum with genuine anti-involution
then (ModfA[G], ϘαA,χ ) represents the quotient of the associated G-action

on (ModfA, E ⊗ ϘαA); this can be deduced from the above claim by identifying
(ModfA[G], ϘαA,χ ) with a suitable tensor product of (ModfA, Ϙ

α
A) and (ModfG, Ϙ

v
χ ), see

Sect. 5.2 and Example 5.1.6.

Variant 4.3.12 Construction 4.3.1 can be generalized by introducing the following
additional pieces of data: a C2-action τ : C2 → Aut(G) on G, an additional E1-
group H , and a C2-equivariant map H → G, where C2 acts trivially on H . We
may consider such a structure as a genuine C2-action on G. The data of a character
(E, χ) for G then needs to be promoted to that of C2-equivariant character χ : G →
Aut(E) (where C2-acts trivially on the target), and the induced C2-action on the
restricted character χ |H should be equipped with a trivialization. To all this data
one can associate a module with genuine involution (E[G−τ ], E[G/H ], η) where
E[G−τ ] := E[G × G] ⊗G E is the (G × G)-spectrum induced from E , this time
along the τ -diagonal (τ, id) : G → G × G, and E[G/H ] is the G-module induced
from the H -character (E, χ |H ) along the map H → G. Since the map (τ, id) is
C2-equivariant with respect to flip action on G × G, and χ is C2-equivariant, the
(G × G)-module E[G−τ ] inherits an involution compatible with the flip involution
of G × G, and hence the structure of a module with involution over S[G]. At the
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same time, since the usual diagonal G → G ×G is C2-equivariant with respect to the
trivial action on the domain, and coincides with the τ -diagonal when restricted to H ,
it induces a C2-equivariant map S[G] ⊗H E → S[G × G] ⊗G E with respect to the
trivial action on the domain. The composed map

η : E[G/H ] = S[G] ⊗H E → (S[G × G] ⊗G E)hC2 → (S[G × G] ⊗G E)tC2 = E[G−τ ]tC2

then constitutes a structuremap exhibiting (E[Gτ ], E[G/H ], η) as amodulewith gen-
uine involution over S[G], yielding a hermitian structure Ϙvχ,τ on ModωG , or on Modc

G
for some subgroup c ⊆ K0(ModωG). The case of Construction 4.3.1 can be recovered
as corresponding to the trivial involution on G with H = G and H → G the identity
map. Arguing as in the proof of Lemma 4.3.2 we can check that this module with
genuine involution is invertible and corresponds, up to a shift, to a genuine refinement
of a suitable anti-involution on S[G], whose underlying equivalence S[G] → S[G]op
is induced by the map G → gl1(S) × G given by g �→ (χ(g), τ (g)−1). As in
Remark 4.3.11 the Poincaré∞-category (ModfG, Ϙ

v
χ,τ ) can be characterized as a cer-

tain colimit in Catp∞. This can be interpreted as reflecting the structure of Catp∞ as a
C2-category, see Sect. 7.4, which admits quotients by actions of genuine C2-groups.

4.4 Parametrised spectra

In this section we will discuss Poincaré structures on the ∞-category of compact
parametrised spectra over a space X , whose L-groups reproduces the visibleL-groups
of [73] (see Corollary 4.4.14 below). We will then show how to construct visible
signatures for Poincaré duality spaces in this setting.

Let us begin by establishing some terminology. We write SpX := Fun(X ,Sp)
for the ∞-category of functors X → Sp, to which we will refer to as local systems
of spectra, or as parametrised spectra over X . We then denote by Spω

X ⊆ SpX the
full subcategory spanned by the compact objects, and by SpfX ⊆ Spω

X the smallest
full stable subcategory containing the local systems x!E left Kan extended from finite
spectra E ∈ Spf along point inclusions {x} ⊆ X . We then note that Spω

X is idempotent
complete and the inclusion SpfX ⊆ Spω

X is dense, and so exhibits Spω
X is the idem-

potent completion of SpfX . When X is connected and pointed we may identify these
subcategories with those of compact and finitely presented S[�X ]-modules, respec-
tively. The situation then renders in the context of Sect. 4.3, and we may consider the
visible Poincaré structures associated to various �X -characters. The point of view of
parametrised spectra has however the advantage of working without a preferred base
point, and not being restricted to connected spaces. The unpointed setting is more nat-
ural, for example, when the input is a Poincaré duality space, as arising in the surgery
classification of manifolds. The unpointed analogue of a �X -character is then given
by a spherical fibration, that is, a local system ξ : X → Sp which takes values in the
full subgroupoid Pic(S) ⊆ ιSp spanned by the invertible spectra.
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Construction 4.4.1 Let X be a space and ξ : X → Pic(S) a spherical fibration on X .
We associate to ξ a symmetric bilinear functor on Spω

X = Fun(X ,Sp)ω by setting

Bξ (L, L ′) := homX×X (L � L,�!(ξ)), (101)

where the mapping spectra takes place in the ∞-category Fun(X × X ,Sp), � is the
exterior tensor product, and �! is left Kan extension along the diagonal � : X →
X × X . The associated symmetric and quadratic hermitian structure on Spω

X are then
given by

Ϙsξ (L) = homX×X (L � L,�!(ξ))hC2

and

Ϙqξ (L) = homX×X (L � L,�!(ξ))hC2 ,

respectively. By abuse of notation, we will also denote by Bξ , Ϙsξ and Ϙ
q
ξ the respective

restrictions of these functors to the dense subcategory SpfX ⊆ Spω
X .

The above construction is functorial in X in the following sense. Let us call a map
of spaces with spherical fibrations a pair ( f , τ ) where f : X → Y is a map between
spaces equipped with spherical fibrations ξX and ξY respectively, and τ : ξX → f ∗ξY

is a natural transformation. We may then associate to f the corresponding left Kan
extension functors

f! : SpfX → SpfY and f! : Spω
X → Spω

Y .

The natural transformation τ then induces a map

BξX (L, L ′) = homX×X (L � L ′,�!ξX )
τ∗−→ homX×X (L � L ′,�! f ∗ξY )

→ homX×X (L � L ′, ( f × f )∗�!ξY )


 homY×Y (( f × f )!(L � L ′),�!ξY ) 
 BξY ( f!L, f!L ′)

which is natural in L and L ′, so that we obtained an induced symmetric functor

(SpfX ,BξX ) → (SpfY ,BξY ) and (Spω
X ,BξX ) → (Spω

Y ,BξY ) (102)

covering the left Kan extension functor f!.

Our first goal is to show that the above construction gives a perfect bilinear functor
and identify the associated duality. For this, note that for a fixed local system L ∈ SpX
the association L ′ �→ L � L ′ ∈ SpX×X is colimit preserving and hence admits a right
adjoint

hom�(L,−) : SpX×X → SpX ,
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which we can compute explicitly to be

hom�(L, T )x 
 homX (x!S, hom�(L, T )) 

homX×X (L � x!S, T ) 
 homX×X (( jx )!L, T ) 
 homX (L, T |X×{x})

(103)

where x : ∗ → X is the insertion of the point x and jx : X × {x} → X × X is the
corresponding insertion of the horizontal slice at height x .

Lemma 4.4.2 For a spherical fibration ξ , the bilinear functor (101) is non-degenerate
with duality

Dξ L := hom�(L,�!ξ).

Furthermore, if ( f , τ ) : (X , ξX ) → (Y , ξY ) is a map of spaces with spherical fibrations
such that τ : ξX → f ∗ξY is an equivalence then the induced symmetric functor (102)
is duality preserving.

Proof Indeed, by adjunction we have

Bξ (L, L ′) = homX×X (L � L ′,�!ξ) = homX (L
′, hom�(L,�!ξ)),

and so BξX is non-degenerate. To see the second claim, fix a map f : X → Y and
an equivalence τ : ξX → ξY . Since Spω

X is compactly generated by the collection
of objects x!S, for x : ∗ → X a point, it suffices to check that the induced map
f!DL → D f!L is an equivalence for L = x!S. For this, it will suffice to prove the
claim for the maps x : ∗ → X and f (x) : ∗ → Y . In other words, we may as well
assume that X = ∗ and f is the inclusion of a point y ∈ Y . Let ξy ∈ Sp be the value
of ξY at y, so that the goal becomes showing that the canonical symmetric functor

(Spω,Bξy ) → (Spω
Y ,BξY )

is duality preserving. We now observe that if E ∈ Spω is a compact spectrum then we
can factor the map y!Dξy (E) → DξY (y!E) as the composite

y!(DξY (E)) = y!(DS(E)⊗S ξy) 
 DS(E)⊗S y!ξy→DS(E)⊗S (�!ξY )|{y}×Y


 hom�(y!E,�!ξY )=DξY (y!E)

where the fourth equivalence is by the formula in (103) and the third arrow is the
Beck–Chevalley transformation for the square

{y} {y} × Y

Y Y × Y�
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where the top horizontal map picks the point (y, y) ∈ {y} × Y . This transformation is
an equivalence since the square is cartesian.

Corollary 4.4.3 For a spherical fibration ξ , the ξ -twisted duality

Dξ L = hom�(L,�!ξ)

is perfect. In particular, the associated symmetric and quadratic hermitian structures
Ϙsξ and Ϙqξ are Poincaré, and their restrictions to SpfX are Poincaré as well.

Proof We need to show that the evaluation map L → DopDL is an equivalence for
any L ∈ Spω

X . Since Spω
X is compactly generated by the collection of objects x!S, for

x : ∗ → X a point, it suffices to check this for L = x!S. Invoking Lemma 4.4.2 it will
suffice to show that the duality Dξx on Spω{x} = Spω is non-degenerate, that is, we may
assume that X is a point. But then for any invertible spectrum E ∈ Pic(S) we have
that DE (−) 
 E ⊗S DS and is hence a perfect duality, the case of DS being the usual
Spanier–Whitehead duality. Finally, Ϙsξ and Ϙqξ also restrict to Poincaré structures on

SpfX by Observation 1.2.19; indeed, the equivalence Dξ x!E 
 x!Dξx E , implies that
SpfX is closed under the duality in Spω

X .

Out next goal is to construct a Poincaré structure on Spω
X , which in some sense

interpolates between the quadratic and symmetric structures. This structure is called
the visible Poincaré structure. To construct it, we first need to identify the linear part
of the symmetric Poincaré structure Ϙsξ . By definition, it is given by the formula

L �→ homX×X (L � L,�!(ξ))tC2 , (104)

which consequently constitutes an exact (contravariant) functor onSpω
X . Such functors

are always represented by an object in Ind(Spω
X ) 
 SpX , and so there exists a (possibly

non-compact) parametrised spectrum N : X → Sp such that

homX×X (L � L,�!(ξ))tC2 
 homX (L, N )

for L ∈ Spω
X . To identify it, it suffices to check the values of (104) at the generators

x!S of Spω
X . In particular, N is canonically identified with the parametrised spectrum

x �→ homX×X (x!S � x!S,�!ξ)tC2 = (�!(ξ)(x,x))tC2 ,

or simply, N = (�∗�!ξ)tC2 . We thus obtain a natural transformation

homX×X (L � L,�!ξ)tC2 → homX (L, (�
∗�!ξ)tC2) (105)

which is an equivalence for L ∈ Spω
X .
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Definition 4.4.4 Let X be space and ξ : X → Pic(S) a spherical fibration on X . We
define the ξ -twisted visible Poincaré structure Ϙvξ : Spω

X → Sp by the top pullback
square

where the right vertical map is induced by the canonical map ξ → (�∗�!ξ)hC2 →
(�∗�!(ξ))tC2 , which we can also identify with the composite ξ → ξ tC2 →
(�∗�!(ξ))tC2 (the first Tate construction being taken with respect to the trivial action).
By abuse of notation, we will also denote by Ϙvξ its restriction to the duality invariant

dense subcategory SpfX ⊆ Spω
X . By construction, the linear part of Ϙ

v
ξ is given by

�v
ξ (−) := homX (−, ξ).

Example 4.4.5 If X is connected with base point x ∈ X then SpfX and Spω
X are

naturally equivalent to Modf�x X and Modω�x X , respectively, and ξ can be encoded via
a suitable�x X -character χ . Under this equivalence, the visible Poincaré structure Ϙvξ
corresponds to the visible Poincaré structure Ϙvχ of Construction 4.3.1.

Remark 4.4.6 Given a map ( f , τ ) : (X , ξX ) → (Y , ξY ) of spaces with spherical fibra-
tions, the functoriality of Construction 4.4.1 together with the naturality of the maps
ξ → (�∗�!ξ)hC2 → (�∗�!(ξ))tC2 in ξ combine to yield induced hermitian functors

(SpfX , Ϙ
v
ξX
) → (SpfY , Ϙ

v
ξY
) and (Spω

X , Ϙ
v
ξX
) → (Spω

Y , Ϙ
v
ξY
).

These are furthermore Poincaré when τ : ξX → f ∗ξY is an equivalence by
Lemma 4.4.2.

Proposition 4.4.7 Let X be a space equipped with a spherical fibration ξ : X →
Pic(S), and for x ∈ X consider the associated maps (x, id) : ({x}, ξx ) → (X , ξ) of
spaces with spherical fibrations obtained by embedding the various x inside X. Then
the natural transformation

colim
x∈X

(λx )!Ϙvξx
⇒ Ϙvξ (106)

induced by the associated Poincaré functors (λx , ηx ) : (Spf{x}, Ϙvξx
) → (Spω

X , Ϙ
v
ξ ) of

Remark 4.4.6, is an equivalence of quadratic functors on Spω
X .

Remark 4.4.8 SinceSpfX ⊆ Spω
X is a full inclusion throughwhich all the exact functors

λx : Spf → Spω
X factor, the pointwise formula for left Kan extensions shows that
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the statement made in Proposition 4.4.7 about the Poincaré structure Ϙvξ on Spω
X is

also inherited by its restriction to SpfX . In other words, that restriction is in turn
given by the corresponding colimit of left Kan extensions of Ϙvξx

along the various

λx : Spf{x} → SpfX .

Remark 4.4.9 The universal property of the visible Poincaré structure Ϙvξ described in

Proposition 4.4.7 also determines universal properties of a similar nature for (SpfX , Ϙ
v
ξ )

and (Spω
X , Ϙ

v
ξ ) as Poincaré ∞-categories. More precisely, we will prove in Sect. 6.1

that the collection of Poincaré functors (λx , ηx ) : (Spf , Ϙvξx
) → (SpfX , Ϙ

v
ξ ) exhibits

(SpfX , Ϙ
v
ξ ) as the colimit inCatp∞ of the diagram x �→ (Spf , Ϙvξx

), see Proposition 6.1.9.
Similarly, (Spω

X , Ϙ
v
ξ ) is the colimit of the same diagram, but calculated inside idem-

potent complete Poincaré ∞-categories. We will discuss idempotent completion of
Poincaré∞-categories in further details in Paper [2].

Remark 4.4.10 Denoting by SX the constant spherical fibration on X with value S, the
proof of Proposition 4.4.7 given below also establishes an identification

Bξ (DSX (L),DSX (L
′)) 
 colim

x∈X
[Lx ⊗S L ′

x ⊗S ξx ]

as symmetric bilinear functors Spω
X × Spω

X → Sp (in L, L ′), and an equivalence

�v
ξ (DSX (L)) 
 colim

x∈X
[Lx ⊗S ξ ]

as functors Spω
X → Sp. Under these equivalences the defining pullback square of

Ϙvξ (DSX (L)) becomes

Ϙvξ (DSX L) colimx∈X [Lx ⊗S ξx ]

(
colimx∈X [Lx ⊗S Lx ⊗S ξx ]

)hC2
(
colimx∈X [Lx ⊗S Lx ⊗S ξx ]

)tC2

where the right vertical map is given by the composite

colim
x∈X

Lx ⊗S ξx → colim
x∈X

[(Lx ⊗S Lx )
tC2 ⊗S ξx ] →

(
colim

x∈X
[Lx ⊗S Lx ⊗S ξx ]

)tC2

using the Tate diagonal of Lx .

Proof of Proposition 4.4.7 Being a map of quadratic functors, it suffices by Corol-
lary 1.3.12 to show that (106) induces an equivalence on bilinear and linear parts. Since
taking linear and bilinear parts commutes with colimits, and by Proposition 1.4.3 also
with left Kan extensions, the two maps that we need to consider are

colim
x∈X

(λx × λx )!Bξx ⇒ Bξ and colim
x∈X

(λx )!�v
ξx
⇒ �v

ξ . (107)
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Let B̃ξx and �̃
v
ξx
be the left Kan extensions of Bξx and�

v
ξx
to Pro(Spf)op×Pro(Spf)op

and Pro(Spf)op, respectively. As in the proof of Lemma 1.4.1, we may compute the
left Kan extensions of Bξx and �v

ξx
along λx × λx and λx respectively by restricting

B̃ξx and �̃v
ξx

along a given pro-left adjoint

Spω
X → Pro(Spf),

that is, a restriction to Spω
X of a left adjoint to the induced functor

Pro(λx ) : Pro(Spf) → Pro(Spω
X ). To produce such a pro-left adjoint, we note that

for every x ∈ X , the duality Dξx : (Spf)op

−→ Spf induces an equivalence

D̃ξx : Spop = Ind(Spf)op = Pro((Spf)op)
Pro(Dξx )−−−−−→ Pro(Spf).

Now since evaluation at x is right adjoint to left Kan extension Sp → SpX along
{x} ⊆ X it now follows that a pro-left adjoint for λx is given by the composite

Spω
X

Dop
ξ−−→ (Spω

X )
op ⊆ SpopX

evopx−−→ Spop
D̃ξx−−→ Pro(Spf).

Using this pro-left adjoint to express the left Kan extension of Bξx along (λx × λx )

we now obtain

[(λx × λx )!Bξx ](L, L ′) 
 B̃ξx (D̃ξx ((Dξ L)x ), D̃ξx ((Dξ L)x ))

and

[(λx )!�v
ξx
](L) 
 �̃v

ξx
(D̃ξx ((Dξ L)x )).

To compute these terms further, let us first unwind the pre-compositions of Bξx and
�v

ξx
with the duality Dξx . For finite spectra E, E ′, E ′′ we have

Bξx (Dξx E,Dξx E ′) = hom(Dξx E ⊗S Dξx E, ξx ) = (E ⊗S ξ
−1
x )⊗S (E ′ ⊗S ξ

−1
x )⊗S ξx

and

�v
ξx
(Dξx E ′′) = hom(Dξx E ′′, ξx ) = E ′′.

Now the two expressions on the right hand sides are well-defined for E, E ′, E ′′ which
are not necessarily finite, and are colimit preserving in each of these inputs separately.
These formulas hence also describe the left Kan extensions of Bξx (Dξx (−),Dξx (−))

and �v
ξx
(Dξx (−)) to Sp × Sp and Sp, respectively. We may consequently conclude

that

B̃ξx (D̃ξx ((Dξ L)x ), D̃ξx ((Dξ L)x )) 
 ((Dξ L)x ⊗S ξ
−1
x )⊗S ((Dξ L ′)x ⊗S ξ

−1
x )⊗S ξx
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and

�̃v
ξx
(D̃ξx ((Dξ L ′′)x )) 
 (Dξ L ′′)x .

Combining all the above with the equivalences

(Dξ L)x 
 homX (L, (�!ξ)|X×{x}) 
 homX (L, x!ξx )

supplied by (103) and the Beck–Chevalley property, we now conclude that for local
systems L, L ′ ∈ Spω

X we have

[(λx × λx )!Bξx ](L, L ′) 
 (homX (L, x!ξx )⊗S ξ
−1
x )⊗S (homX (L

′, x!ξx )⊗S ξ
−1
x )⊗S ξx


 homX (L, x!S)⊗S homX (L
′, x!S)⊗S ξx ,

and

[(λx )!�v
ξx
](L ′′) 
 homX (L

′′, x!ξx ).

Wemay now finally identify the maps (107) in explicit terms as follows. The first map
in (107) identifies with the composite

colim
x∈X

[
homX (L, x!S)⊗S homX (L

′, x!S)⊗S ξx
] αL,L′−−−→ colim

x∈X
homX×X

(
L � L ′, [(x, x)!S] ⊗ ξx

)

βL,L′−−−→ homX×X (L � L ′,�!ξ),

where αL,L ′ is induced on colimits by the functoriality of � and the identification
x!S�x!S 
 (x, x)!S, and βL,L ′ is given by post-compositionwith themap [(x, x)!S]⊗
ξx 
 (x, x)!ξx 
 �!(x!ξx ) → �!ξ induced by the counit maps x!ξx → ξ . In a similar
manner, the second map in (107) now becomes the map

colim
x∈X

homX (L
′′, x!ξx )

γL′′−−→ homX (L
′′, ξ).

induced by the counit maps x!ξx → ξ . We now note that the collection of counit
maps x!ξx → ξ exhibit ξ as the colimit in Spω

X of the diagram x �→ x!ξx . Indeed,
identifying x!ξx back with �!ξ |X×{x}, this is just the statement that the map �!ξ →
π∗
1 ξ exhibits ξ as the left Kan extension of�!ξ along the projection π1 : X × X → X

on the first argument, which is clear since π1� 
 id. We then conclude that βL,L ′
and γL ′′ are equivalences when L, L ′, L ′′ are perfect since in this case the functors
homX×X (L � L ′,−) and homX (L ′′,−) are colimit preserving. To see that αL,L ′ is
an equivalence, we note that since it is a natural transformation of bilinear functors in
L, L ′, to check that it is an equivalence on perfect L, L ′ it suffices to verify the case
where L = y!E and L ′ = y′! E

′ for points y, y′ ∈ X , since local systems of this form
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generate all perfect local systems under finite colimits and retracts. Then αy!E,y′! E ′ can
be identified with the map

colim
x∈X

[
(x!S)y ⊗ (x!S)y′ ⊗S ξx

] → colim
x∈X

[
((x, x)!S)(y,y′) ⊗S ξx

]

which is an equivalence since the maps

(x!S)y ⊗ (x!S)y′ = �∞+ Map(x, y)⊗S �
∞+ Map(x, y′)

→ �∞+ (Map(x, y)×Map(x, y′)) 
 ((x, x)!S)(y,y′)

are equivalences for every x ∈ X .

Let us nowpause to explain the relationbetween thePoincaré∞-category (Spω
X , Ϙ

v
ξ )

with the construction used in Weiss–Williams [73] to define visible L-theory. To sim-
plify the discussion, let us consider the case where ξ = SX , though the argument in the
general case proceeds in a similar manner. To begin, recall first that the straightening-
unstraightening equivalence Fun(X ,S) 
 S/X induces an equivalence

SpX = Fun(X ,Sp) 
 Sp(Fun(X ,S)∗/) 
 Sp(SX//X ),

whereSX//X := (S/X )idX / is the∞-category of retractive spaces over X . This restricts
to an equivalence between the full subcategory Spω

X ⊆ SpX of perfect parametrised
spectra and the full subcategory of Sp(SX//X ) spanned by the suspension spectra
of finitely dominated retractive spaces [X → Y → X ] ∈ Sfd

X//X . Here the full

subcategory Sfd
X//X ⊆ SX//X of finitely dominated retractive spaces is the closure

under retracts of the full subcategory of SpX//X spanned by the retractive spaces
X → Y → X such that X → Y can be represented by an inclusion of simplicial sets
with Y having only finitely many non-degenerated simplices not in X . In particular,
we may identify Spω

X with the Spanier–Whitehead stabilisation of Sfd
X//X .

If we now represent X by a CW-complex then the∞-category Sfd
X//X can be mod-

elled by the Waldhausen category R(X) of finitely dominated retractive topological
spaces X → Y → X such that X → Y is a Serre cofibration, with weak equivalences
W the weak homotopy equivalences, that is, Sfd

X//X 
 R(X)[W−1]. Indeed, this is a
standard consequence of the fact that SX//X is presented by the Serre model struc-
ture on TopX//X , and R(X) ⊆ TopX//X is a full subcategory consisting of cofibrant
objects and closed under weak equivalences between cofibrant objects. From this one
may obtain a Waldhausen model sR(X) for the Spanier–Whitehead stabilisation by
considering the category whose objects are pairs (Y , k) where X → Y → X is a
finitely dominated retractive topological space over X and k ∈ Z is an integer, with
the set of maps from (Y , k) to (Y ′, k′) being

HomsR(X)((Y , k), (Y ′, k′)) := colim
n≥k,k′

HomR(X)(�
n−kY , �n−k′Y ′).

The object (Y , k) should be considered as the formal k’th desuspension of X
i−→

Y
f−→ X . Endowing sR(X) with the collection sW of stable weak homotopy equiv-
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alences, that is, the maps (Y , k) → (Y ′, k′) which can be represented by a weak
homotopy equivalence �n−kY → �n−k′Y ′ for some n, one obtains a model for per-
fect parametrised spectra, in the sense that sR(X)[sW−1] 
 Spω

X . Indeed, this is a
formal consequence of the above and the commutation of localisation with colimits:

(
colim[R(X)

�−→ R(X)
�−→ . . .])[sW−1]


 colim[R(X)[W−1] �−→ R(X)[W−1] �−→ . . .] 
 Spω
X ,

where we note that the sequential colimit on the left hand side (before localisation) is
given by sR(X) both as ordinary categories and as∞-categories. In this presentation,
the object (Y , k) corresponds to the local system x �→ �∞−kYx , where Yx denotes
the homotopy fibre of f : Y → X over x , considered as a pointed space using the
map X → Y . The Waldhausen category sR(X) is equipped with a stable Spanier–
Whitehead product (see discussion at the end of Sect. 2.3):

#• : sR(X)× sR(X) → Sp�

given by

(Y , k)#• (Y ′, k′) := �∞−k−k′(Y ∧h
X Y ′),

that is, by (the implicit �-spectrum replacement of) the shifted suspension spectrum
of the pointed space

Y ∧h
X Y ′ := [Y ×h

X Y ′]/[Y
∐

X

Y ′] = [Y ×X X I ×X Y ′]/[Y
∐

X

Y ′],

the symbol / standing for collapsing a subspace to a point. Here X I is the space of
paths in X , used here to form an explicit functorial model for the homotopy fibre
product. This Spanier–Whitehead product preserves weak equivalences in each entry
and thus descends to a bilinear functor

BWW
v : Spω

X × Spω
X → Sp,

which we can now compare with the bilinear functor on parametrised spectra consid-
ered here:

Lemma 4.4.11 The bilinear functor BWW
v is naturally equivalent to the bilinear func-

tor

(L, L ′) �→ BSX (DSX L,DSX L ′).
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Proof Since �∞ is colimit preserving and symmetric monoidal for ∧ we have

�∞−k−k′(Y ∧h
X Y ′) 
 �∞−k−k′(colim

x∈X
Yx ∧ Y ′

x )


 colim
x∈X

�∞−k−k′(Yx ∧ Y ′
x )


 colim
x∈X

[�∞−kYx ⊗S �
∞−k′Y ′

x ]

 BSX (DSX [x �→ �∞−kYx ],DSX [x �→ �∞−kY ′

x ′ ]),

where the last equivalence is by Remark 4.4.10. Since sR(X) → Spω
X is a localisation

functor this natural equivalence descends to a natural equivalence BWW
v (L, L ′) 


BSX (DSX L,DSX L ′), as desired.

Combining Lemma 4.4.11 with Proposition 2.3.15 and Remark 2.3.16 we now
deduce

Corollary 4.4.12 The symmetric and quadratic L-groups associated to the Spanier–
Whitehead product #• are naturally equivalent to the L-groups of the Poincaré
structures Ϙs

SX
and Ϙq

SX
of Construction 4.4.1.

We would like to extend this comparison to visible L-groups. These are defined in
[73] by replacing the notion of symmetric co-forms on (Y , k), given by the homotopy
fixed points spectrum ((Y , k) #• (Y , k))hC2 , with the corresponding genuine fixed
points ((Y , k) #• (Y , k))C2 , where (Y , k) #• (Y , k) is considered as a genuine C2-
spectrum by identifying it with the shifted suspension C2-spectrum�∞−kρ(Y ∧h

X Y ).
Hereρ is the regular C2-representation andY∧h

X Y is considered as a genuineC2-space
whose C2-fixed points are its point-set level fixed points

(Y ∧h
X Y )C2 ∼= [

Y ×X X [0,1/2]]/X 
 Y/X .

The natural map ((Y , k) #• (Y , k))C2 → ((Y , k) #• (Y , k))hC2 then enables one
to define unimodular visible co-forms and hence visible L-groups by applying the
machinery of [72]. We note that the functor (Y , k) �→ ((Y , k)#• (Y , k))C2 preserves
weak equivalences and hence descends to a functor

ϘWW : Spω
X → Sp,

which we would like to compare with the visible Poincaré structure on parametrised
spectra considered here:

Proposition 4.4.13 The functor ϘWW is naturally equivalent to the quadratic functor
L �→ Ϙv

SX
(DSX L).

Before we come to the proof of Proposition 4.4.13, let first recall that the notion of
genuine C2-spectra admits a variety of point-set models, among which are orthogonal
C2-spectra [50,61], symmetric C2-spectra [49], prespectra indexed over the poset of
finite dimensional sub-representations of a complete C2-universe [50], or alternatively
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over a submonoid of the representation ring of C2 [49], this last model being the one
employed in [71] using the submonoid spanned by the regular representation. All these
models are known to be Quillen equivalent to each other, see [50, Theorem 4.16], [49,
Theorem6.2] and [49,Theorem10.2].On the other, the notion ofC2-spectra can also be
defined∞-categorically using eitherMackey functors or the stabilisation of C2-spaces
along the regular representation sphere [10,11,51,62], and this approach is equivalent
to the model categorical one by [51, Theorem A.4]. The last equivalence between the
∞-categorical and model categorical approaches is furthermore compatible with the
formation of genuine fixed points on the one hand, and the formation of suspension
C2-spectra on the other. In particular, the construction of Weiss and Williams can be
performed using any of thesemodels by simply implementing the formation of genuine
fixed points and suspension C2-spectra in the relevant context. We consequently may
and will freely apply ideas and results from the theory of genuine C2-spectra in the
setting of [73].

Proof of Proposition 4.4.13 Since sR(X)[sW−1] → Spω
X is a localisation functor it

will suffice to construct, naturally in a given retractive space X
i−→ Y

f−→ X ∈ sR(X),
an equivalence

ϘvSX
(DSX [x �→ �∞Yx ]) 
 [(Y , k)#• (Y , k)]C2 .

Now since (Y , k) #• (Y , k) is a shifted suspension C2-spectrum its geometric fixed
points are given by

[(Y , k)#• (Y , k)]�C2 = �∞−k[Y ∧h
X Y ]C2 
 �∞−k(Y/X),

and its isotropy separation square is

[(Y , k)#• (Y , k)]C2 �∞−k[Y ∧h
X Y ]C2 �−k�∞(Y/X)

[�∞−kρ(Y ∧h
X Y )]hC2 [�∞−kρ(Y ∧h

X Y )]tC2
�−k[�∞(Y ∧h

X Y )]tC2
,







where the right vertical map is the k-fold desuspension of the composite

�∞(Y/X) → [�∞(Y ∧h
X Y )]hC2 → [�∞(Y ∧h

X Y )]tC2

induced by the C2-equivariant diagonal Y/X → Y ∧h
X Y = [Y ×h

X Y ]/[Y ∐
X Y ]. To

construct the desired equivalence we would like to compare this isotropy separation
square with the square

Ϙvξ (DSX [x �→ �∞Yx ]) colim
x∈X

�∞−k Yx �−k colim
x∈X

�∞Yx

(
colim

x∈X
[�∞−k Yx ⊗S �∞−k Yx ]

)hC2
(
colim

x∈X
[�∞−k Yx ⊗S �∞−k Yx ]

)tC2 �−k
(
colim

x∈X
[�∞Yx ⊗S �∞Yx ]

)tC2
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produced byRemark 4.4.10. Indeed, since in the∞-category of pointed spaceswehave
colimx Yx 
 Y/X and colimx Yx ∧Yx 
 Y ∧h

X Y , and since�∞ is colimit preserving
and symmetric monoidal for ∧, we may proceed as in the proof of Lemma 4.4.11 to
identify the three bottom right corners in the two squares, as well as the map from
the homotopy fixed points to the corresponding Tate object, which in both cases is
the component of the natural transformation (−)hC2 ⇒ (−)tC2 . To obtain an induced
equivalence on the top left corner it is will now suffice to identify the right vertical
map in the two squares. Peeling away the k-fold desuspension and using the fact that
the Tate diagonal of �∞Yx is induced by the diagonal Yx → Yx ∧ Yx on the level of
pointed spaces, the desired identification is now encoded by the following canonical
commutative diagram

Corollary 4.4.14 The visible L-groups of [73] are naturally equivalent to the L-groups
of the visible Poincaré structure Ϙv

SX
.

Proof The visible L-groups are (litterally) defined in [73] by invoking the construction
of [73] and replacing everywhere symmetric Poincaré objects by visible ones. The
proof of the present corollary is then identical to that of Proposition 2.3.15, replacing
everywhere symmetric Poincaré objects by visible ones, using Proposition 4.4.13.

Variant 4.4.15 Let X be a space with a spherical fibration ξ : X → Pic(S) and let
(A, N , α) be a ring spectrum with genuine involution. We may then form a Poincaré
structure Ϙv,αξ on the ∞-category Fun(X ,ModA)

ω of compact local systems of A-
modules by the top pullback square

Ϙv,αξ (L) homX (L, ξ ⊗S N )

homX (L, (�
∗�!ξ)tC2 ⊗S AtC2 )

homX×X (L � L,�!ξ ⊗S A)hC2 homX (L, (�
∗�!ξ ⊗S A)tC2 )

homX×X (L � L,�!ξ ⊗S A)tC2
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Here we note that the C2-equivariant structure of �!ξ ⊗S A with respect to the flip
action on X×X is induced by the equivariant structure of�!ξ and the involution on A.
Arguing as in Lemma 4.4.2 and Corollary 4.4.3 one sees again that the hermitian∞-
category (Fun(X ,ModA)

ω, Ϙv,αξ ) is functorial in maps ( f , τ ) : (X , ξX ) → (Y , ξY ) of
spaces with spherical fibrations and that Ϙv,αξ is again Poincaré with underlying perfect

duality L �→ hom�
A (L,�!(ξ)⊗S A), where hom�

A (L,−) denotes the right adjoint of
the functor

L � (−) : Fun(X ,ModA) → Fun(X × X ,ModA⊗S A).

Remark 4.4.16 In addition to its functoriality in maps of spaces with spherical fibra-
tions, the construction of Variant 4.4.15 is also functorial in maps in (A, N , α) →
(B, K , β) of rings with genuine involution. In fact, the Poincaré ∞-category
(Fun(X ,ModA)

ω, Ϙv,αξ ) depends functorially on the pair of Poincaré ∞-categories
(Spω

X , Ϙ
v
ξ ) and (ModA, ϘαA): we may identify it with their tensor product (Spω

X , Ϙ
v
ξ )⊗S

(ModA, ϘαA) ∈ Catp∞, a construction we will study in Sect. 5. As in Remark 4.4.9,
one can then identify (Fun(X ,ModA)

ω, Ϙv,αξ )with the colimit in Catp∞ of the diagram
x �→ (ModA, Ϙ

v,α
ξx

). The Poincaré structures Ϙv,αξx
are then the ones associated to the

module with genuine involution (A, N , α) ⊗S ξx = (A ⊗S ξx , N ⊗S ξx , αx ), where
αx is the composed map N ⊗S ξx → AtC2 ⊗S ξ

tC2
x → (A ⊗S ξx )

tC2 .

For the remainder of this sectionwewill showhow to construct visible signatures for
Poincaré duality spaces in the present context. We take a purely homotopy theoretical
approach to Poincaré duality spaces and their Spivak normal fibration following [40].
Let X be a finite space (that is, a space which can be realized by a simplicial set
with only finitely many non-degenerate simplices). The right Kan extension functor
r∗ : SpX → Sp along r : X → ∗ is given by taking the limit along X , which is
in particular a finite limit and hence preserves colimits by the stability of SpX . It is
thus equivalent to a functor of the form r!(FX ⊗ (−)) for an essentially unique FX ,
which is then called the dualizing complex of X . Here ⊗ stands for the pointwise
tensor product of X -parametrised spectra. We say that X is a Poincaré duality space
if the parametrised spectrum FX : X → Sp factors through the full subgroupoid
Pic(S) ⊆ ιSp of invertible objects. In this case we denote the resulting spherical
fibration by ν := FX , and call it the Spivak normal fibration of X . We note that the
identification of r!(ν ⊗ (−)) with r∗ can equivalently be encoded via a unit map

cE : E → r!(ν ⊗ r∗E) 
 r!(ν)⊗S E

exhibiting r!(ν ⊗ (−)) as right adjoint to r∗. Since Funex(Spf ,Spf) 
 Spf via evalu-
ation at S the natural transformation c(−) is canonically of the form c ⊗S (−), where

c = cS : S → r!(ν) (108)

is its component at S. One may then say that a map c : S → r!(ν) exhibits ν as the
Spivak normal fibration of X if the associated natural transformation



Hermitian K-theory for stable ∞-categories I: Foundations Page 141 of 269 10

c ⊗S (−) : (−) ⇒ r!(ν)⊗S (−) 
 r!(ν ⊗ r∗(−))

exhibits r!(ν⊗(−)) as right adjoint to r∗. Themap c is then called theThom–Pontryagin
map of ν.

Example 4.4.17 If M is a closed smooth manifold then the underlying space of M
is a Poincaré duality space. Furthermore, if ι : M ↪→ R

N is a smooth embedding
with normal bundle E = T M⊥ ⊆ ι∗T R

N and associated spherical fibration ξE , and
M ⊆ U ⊆ R

N is a chosen tubular neighborhood, then the Thom–Pontryagin collapse
map

SN → R
N/(RN \ U ) 
 M E

induces a map of spectra

S → �∞−N+ M E 
 r!�−N ξE ,

that exhibits �−N ξE as the Spivak normal fibration of M . Since E ⊕ T M = ι∗T R
N

is a trivial N -dimensional vector bundle we can identify �−N ξE 
 ξ−1
T M , where ξT M

is the spherical fibration underlying the tangent bundle.

Remark 4.4.18 Let X be a finite space with Spivak normal fibration ν and Thom–
Pontryagin map c. Suppose that E is a stable ∞-category, so that E is canonically
tensored over Spf . We may then consider the restriction functor r∗ : E → Fun(X , E),
together with the associated left and right Kan extensions r!, r∗ : Fun(X , E) → E
(which exist because X is finite and every stable∞-category admits finite limits and
colimits). The Thom–Pontryagin map then determines a natural transformation of
functors from E to itself whose component at A ∈ E is

c ⊗S A : A ⇒ r!(ν)⊗S A 
 r!(ν ⊗ r∗A).

This natural transformation then exhibits r!(ν ⊗ (−)) as right adjoint to r∗. Indeed,
for A ∈ E and B : X → E the composed map

homX (r
∗A, B) → homE (r!(ν ⊗ r∗A), r!(ν ⊗ B)) → homE (A, r!(ν ⊗ B))

is an equivalence, as can be seen by comparing it with the composed map

homX (r
∗
S, B A) → hom(r!ν, r!(ν ⊗ B A)) → hom(S, r!(ν ⊗ B A)),

where B A is the local system x �→ homE (A, Bx ), and we are using that

colim
x∈X

(
νx ⊗ homE (A, Bx )

) 
 homE
(

A, colim
x∈X

νx ⊗ Bx
)

since X is finite and each νx is a finite spectrum.
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We now proceed to construct the visible signature of a Poincaré duality spaces X .
Let p1, p2 : X × X → X denote the two projections. Applying Remark 4.4.18 to
E = SpX we obtain that the natural map

c ⊗S L : L → r!(ν)⊗S L 
 (p2)!((p1)
∗ν ⊗ (p2)

∗L) (109)

for L ∈ SpX acts as a unit exhibiting (p2)!((p1)∗ν ⊗ (−)) as right adjoint to (p2)∗.
Since (p1)∗ν is invertible tensoring with it is left and right inverse to tensoring with
(p1)∗ν−1, and hence the above map also acts as a unit exhibiting (p2)! : SpX×X →
SpX as right adjoint to (p1)∗ν ⊗ (p2)∗(−) = ν � (−). We consequently obtain a
canonical equivalence

hom�(ν,−) 
 (p2)!(−)

of functors SpX×X → SpX . Evaluating at �!ξ for some spherical fibration ξ we
obtain a canonical equivalence

Dξ (ν) 
 hom�(ν,�!ξ) 
 (p2)!�!ξ 
 ξ, (110)

In other words, for every spherical fibration ξ on X , the ξ -twisted duality switches
between ξ and ν. Taking ξ = ν we then get

Dν(ν) 
 ν,

that is, ν is equivalent to its own ν-twisted dual. We now claim that this equivalence
is induced by a canonical Poincaré form q ∈ �∞Ϙvν(ν). To see this, note that by
Remark 4.4.10 and the equivalence (110) we have a C2-equivariant equivalence

Bξ (ν, ν) 
 Bξ (DSX (SX ),DSX (SX )) 
 colim
x∈X

S ⊗S S ⊗S ξx 
 colim
x∈X

ξx 
 r!ξ,

where the C2-action on the third term is by switching the two S factors, and the
C2-action on the last two terms is trivial. In particular, the C2-action on Bξ (ν, ν) is
equivalent to a constant action. Taking ξ = ν we then obtain:

Corollary 4.4.19 The equivalence ν → Dνν constructed above canonically refines
to a self-dual equivalence, yielding in particular a symmetric Poincaré form qs ∈
Ϙsν(ν) = Bν(ν, ν)

hC2 .

We would like to lift the symmetric form qs from Ϙsν(ν) to a visible form qv ∈ Ϙvν .
For this, we note that by using the second formula in Remark 4.4.10 we obtain an
equivalence

homX (ν, ξ) 
 �v
ξ (DSX (SX )) 
 r!ξ,

and so we can write the pullback square defining the visible Poincaré structure evalu-
ated at ν as
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Ϙvξ (ν) r!ξ

(r!ξ)hC2 (r!ξ)tC2

where the C2-fixed points and Tate construction are performed with respect to the
trivial action on r!ξ , and the right vertical map is given by the composite r!ξ →
(r!ξ)hC2 → (r!ξ)tC2 . Taking again ξ = ν we then obtain:

Corollary 4.4.20 Then the symmetric Poincaré form of Corollary 4.4.19 canonically
lifts to a visible Poincaré form qv ∈ Ϙvν(ν).

The Poincaré object (ν, qv) ∈ Pn(Spω
X , Ϙ

v
ν) is called the visible signature of the

Poincaré duality space X .

Remark 4.4.21 Since X is finite any spherical fibration ξ is a finite colimit ξ 

colimx∈X x!ξx , and hence belongs to SpfX . It then follows that the visible signature
(ν, qv) is naturally a Poincaré object in (Spf , Ϙvξ ).

5 Monoidal structures andmultiplicativity

In this section we will show that the tensor product of stable ∞-categories refines to
give symmetric monoidal structures on the∞-categories Cath∞ and Catp∞. We give a
careful analysis of algebra objects in Catp∞, and use it to show that many examples
of interest, such as the symmetric and genuine symmetric Poincaré structures on
perfect derived categories of commutative rings, admit such an algebra structure. The
significance of this fact is that for an algebra object in Catp∞, the L-groups and the
Grothendieck-Witt group inherit the structure of rings. We will show in Paper [4] that
this phenomenon extends to an E∞-structure on the level of Grothendieck-Witt- and
L-theory spectra, a structure which plays a key role in the study of these invariants in
the commutative setting.

This section is organized as follows. In Sect. 5.1 we define the tensor product of
hermitian and Poincaré ∞-categories and give a formula for the linear and bilinear
parts of the hermitian structure on the tensor product in term of the linear and bilinear
parts of the individual terms. In Sect. 5.2 we show that this operation organizes into
a symmetric monoidal structure on the ∞-categories Cath∞ and Catp∞, such that the
forgetful functors Catp∞ → Cath∞ → Catex∞ are symmetric monoidal. In Sect. 5.3
we analyse what it means for a hermitian or Poincaré ∞-category to be an algebra
with respect to this structure, and use this analysis in Sect. 5.4 in order to identify
various examples of interest of symmetricmonoidal Poincaré∞-categories. Finally, in
Sect. 7.5we show that theGrothendieck-Witt group and zero’thL-group are symmetric
monoidal functors on Catp∞, and hence their values on a given symmetric monoidal
Poincaré ∞-category are rings. Similarly, we show that in this case the collection of
all L-groups acquires the structure of a graded-commutative ring.
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5.1 Tensor products of hermitian∞-categories

In this first part we define the tensor product of hermitian∞-categories on the level of
objects and show that the tensor product of Poincaré∞-categories is again Poincaré.

We begin by recalling the tensor product of stable∞-categories due to Lurie.

Construction 5.1.1 Applying the construction of [47, §4.8.1]with respect to the collec-
tionK offinite simplicial sets yields a symmetricmonoidal structure on the∞-category
Catrex∞ , whose objects are small ∞-categories with finite colimits and whose mor-
phisms are functors which preserve finite colimits. For a pair of ∞-categories with
finite colimits C and C′, their tensor product C ⊗ C′ ∈ Catrex∞ is equipped with a func-
tor C × C′ → C ⊗ C′ which preserves finite colimits in each variable, and is initial
with this property. Now the ∞-category Catex∞ embeds fully-faithful in Catrex∞ , and is
furthermore a reflective subcategory: a left adjoint to the inclusion Catex∞ ⊆ Catrex∞ is
given by tensoring with Spf . To see this, observe that for an∞-category C with finite
colimits, the tensor product of C and Spf yields an ∞-category with finite colimits
C ⊗ Spf ∈ Catrex∞ which is a module over Spf . Since 0 ∈ Spf is a self-dual object
it acts via a self-adjoint functor and hence C ⊗ Spf is pointed. In addition, since the
object �S ∈ Spf is invertible we get that suspension is invertible on C ⊗ Spf and so
the latter is furthermore stable. To see that this operation gives a left adjoint to the
inclusion Catex∞ ⊆ Catrex∞ we note that for every stable ∞-category D the restriction
functor

Funrex(C ⊗ Spf ,D) = Funrex(C, Funrex(Spf ,D)) = Funrex(C, Funex(Spf ,D)) → Funrex(C,D)

is an equivalence by Lemma 4.1.2. It then follows from [47, Proposition 4.1.7.4] that
the symmetricmonoidal structure⊗descends toCatex∞. In particular, the unit ofCatex∞ is
given bySpf , and if C, C′ are stable then C⊗C′ is universal among stable∞-categories
receiving a bilinear functor β : C×C′ → C⊗C′: given a stable∞-categoryD, restric-
tion along β induces an equivalence between the ∞-category of exact functors from
C ⊗ C′ → D and the ∞-category of bilinear functors C × C′ → D. We will refer
to E∞-algebra objects in (Catex∞)⊗ as stably symmetric monoidal ∞-categories. Con-
cretely, this means a symmetric monoidal∞-category whose underlying∞-category
is stable and the tensor product is exact in each variable.

We now refine this construction to the level of hermitian∞-categories.

Construction 5.1.2 For a pair of hermitian∞-categories (C, Ϙ) and (C′, Ϙ′), we define
their tensor product

(C, Ϙ)⊗ (C′, Ϙ′) := (C ⊗ C′, Ϙ⊗ Ϙ′)

to be the hermitian ∞-category whose underlying stable ∞-category is the tensor
product of the underlying stable∞-categories, and whose hermitian structure

Ϙ⊗ Ϙ′ := P2β!(Ϙ� Ϙ′) : Cop ⊗ C′op → Sp
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is obtained by applying the 2-excisive approximation functor of Construction 1.1.26
to the left Kan extension along β : C × C′ → C ⊗ C′ of the ‘external’ tensor product

Ϙ� Ϙ′ : Cop × C′op Ϙ×Ϙ
′−−−→ Sp × Sp

⊗−→ Sp.

Here we note that β!(Ϙ� Ϙ′) is already reduced since Ϙ� Ϙ′ is reduced and β preserve
zero objects, and so Construction 1.1.26 is applicable to it.

Note that the tensor product (C, Ϙ)⊗ (C′, Ϙ′) = (C ⊗ C′, Ϙ⊗ Ϙ′) carries by design
a similar universal property to the tensor product C ⊗ C′ of stable ∞-categories: for
any hermitian ∞-category (C′′, Ϙ′′), maps from the tensor product (C, Ϙ) ⊗ (C′, Ϙ′)
to (C′′, Ϙ′′) correspond to bilinear maps b : C × C′ → C′′ together with a natural
transformation Ϙ� Ϙ′ → b∗Ϙ′′, i.e. a natural transformation in the square

Cop × C′op Sp × Sp

C′′op Sp.

b

Ϙ×Ϙ′

⊗
Ϙ′′

Our next goal is to identify the linear and bilinear parts of the hermitian structure
on (C, Ϙ)⊗ (C′, Ϙ′) in more explicit terms. To this end, let �Ϙ,�Ϙ′ denote the linear
parts and BϘ,BϘ′ the bilinear parts of the hermitian structures Ϙ and Ϙ′, respectively.
The functor

�Ϙ � �Ϙ′ : Cop × C′op
�Ϙ×�Ϙ′−−−−−→ Sp × Sp

⊗−→ Sp

is then bilinear, and therefore extends along β to a linear functor �Ϙ ⊗ �Ϙ′ : Cop ⊗
C′op → Sp in an essentially unique manner. Similarly, the multilinear functor

BϘ � BϘ′ : Cop × Cop × C′op × C′op
BϘ×BϘ′−−−−→ Sp × Sp

⊗−→ Sp

extends to a bilinear functor

BϘ ⊗ BϘ′ : (Cop ⊗ C′op)× (Cop ⊗ C′op) → Sp.

The symmetric structures ofBϘ andBϘ′ then determine aC2-fixed structure onBϘ�BϘ′
with respect to theC2-actionwhich permutes the twoCop-coordinates and the two C′op-
coordinates. This structure then descends to a symmetric structure on BϘ⊗BϘ′ by its
universal characterization.

Proposition 5.1.3 For hermitian ∞-categories (C, Ϙ), (C′, Ϙ′) there is a canonical
pullback square

Ϙ⊗ Ϙ′ �Ϙ ⊗�Ϙ′

[
(BϘ ⊗ BϘ′)�

]hC2
[
(BϘ ⊗ BϘ′)�

]tC2

(111)
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of functors Cop ⊗ C′op → Sp. In particular the linear part of Ϙ ⊗ Ϙ′ is given by
�Ϙ ⊗�Ϙ′ and its symmetric bilinear part by BϘ ⊗ BϘ′ .

Proof By definition the functor Ϙ⊗ Ϙ′ = P2β!(Ϙ� Ϙ′) is characterized by the fact that
for every quadratic functor Ϙ′′ : Cop ⊗ C′op → Sp the natural map

Nat(Ϙ⊗ Ϙ′, Ϙ′′) → Nat(Ϙ� Ϙ′, β∗Ϙ′′)

is an equivalence.Using this universalmapping property the commutative square (111)
is then obtained from the external square in the diagram

Ϙ� Ϙ′ �Ϙ � �Ϙ′

[
(BϘ)�

]hC2 �
[
(BϘ′)�

]hC2
[
(BϘ)�

]tC2 �
[
(BϘ′)�

]tC2

[
(BϘ � BϘ′)�

]hC2
[
(BϘ � BϘ′)�

]tC2
,

where the top square is obtained by taking the external product of the classifying
squares of Ϙ and Ϙ′, and the bottom square witnesses the lax symmetric monoidal
structure of the homotopy fixed points functor and the projection to the Tate construc-
tion. To show that the resulting square (111) is a pullback square we need to show that
the induced map

Nat
(
(�Ϙ ⊗�Ϙ′)×[(BϘ⊗BϘ′ )�]tC2 [(BϘ ⊗ BϘ′)

�]hC2 , Ϙ′′
) → Nat(Ϙ� Ϙ′, β∗Ϙ′′)

(112)

is an equivalence for any quadratic functor Ϙ′′. Let us analyse both sides of the map
(112). We start with the following claim (see Sect. 1.3 for the terminology of homo-
geneous and cohomogeneous and their basic properties):

Claim 1: Nat(Ϙ � Ϙ′, β∗Ϙ′′) = 0 if either Ϙ is exact and Ϙ′′ is cohomogeneous
or Ϙ is homogeneous and Ϙ′′ is exact.

To see this claim we note that for a fixed object c′ ∈ C′ we have that the space of
natural transformations

Nat(Ϙ(−)⊗ Ϙ′(c′), Ϙ′′(β(−, c′)))

(natural in (−)) vanishes under these assumptions since the left hand functor is exact
(resp. homogeneous) and the right hand functor is cohomogeneous (resp. exact). But
the space Nat(Ϙ� Ϙ′, β∗Ϙ′′) can be written as a limit of these spaces over the twisted
arrow category of C′ so that the claim follows. We also have the following claim

Claim 2: Nat
(
(�Ϙ ⊗�Ϙ′)×[(BϘ⊗BϘ′ )�]tC2 [(BϘ ⊗ BϘ′)�]hC2 , Ϙ′′

) = 0 if either
Ϙ is exact and Ϙ′′ is cohomogeneous or Ϙ is homogeneous and Ϙ′′ is exact.
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which follows by the same argument as above since under the assumptions the pullback
is either �Ϙ ⊗�Ϙ′ or [(BϘ ⊗ BϘ′)�]hC2 .

Together the last two claims show that the map (111) is an equivalence under the
assumption that either Ϙ is exact and Ϙ′′ is cohomogeneous or Ϙ is homogeneous and
Ϙ′′ is exact. Now Ϙ can be fit in an exact sequence between a homogeneous functor
and an exact functor, and Ϙ′′ can be fit in an exact sequence between an exact and a
cohomogeneous functors. Since both sides of (111) are natural and exact in Ϙ, Ϙ′ and
Ϙ′′ we can thus assume without loss of generality that Ϙ and Ϙ′′ are both exact or Ϙ is
homogeneous and Ϙ′′ is cohomogeneous. Since everything is symmetric in Ϙ and Ϙ′
we can also make the same reduction in this variable so that we only need to show the
fact that (111) is a pullback under the following assumptions:

Claim 3: Either all three functors Ϙ, Ϙ′, Ϙ′′ are exact or Ϙ and Ϙ′ are homogeneous
and Ϙ′′ is cohomogeneous.

In the first case the statement unwinds to the universal property of C ⊗ C′ and in the
second case it unwinds (also using the universal property) to the statement that maps
from a homogeneous functor to a cohomogeneous functor are equivalent to maps
between the associated symmetric bilinear functors.

Corollary 5.1.4 If (C, Ϙ) and (C′, Ϙ′) are Poincaré with duality functors DϘ,DϘ′ then
(C, Ϙ)⊗(C′, Ϙ′) is Poincaré with duality functorDϘ⊗DϘ′ : (C⊗C′)op = Cop⊗C′op →
C ⊗ C′.
Proof We get from Proposition 5.1.3 that the cross effect of the quadratic functor on
C⊗ C′ is given by BϘ⊗BϘ′ , which coincides with the left Kan extension of BϘ�BϘ′
along the map

β × β : (Cop × C′op)× (Cop × C′op) → (Cop ⊗ C′op)× (Cop ⊗ C′op),

where

[BϘ � BϘ′ ](x, x ′, y, y′) = BϘ(x, y)⊗ BϘ′ (x ′, y′) = homC(x,DϘy)⊗ homC′ (x ′,DϘ′ y′).

We want to show that this is represented by the functor DϘ ⊗ DϘ′ . Now the left Kan
extension along β×β can be computed by composing left Kan extensions along β×id
and id × β. Then for y ∈ C, y′ ∈ C′ we then have

[(β × id)!BϘ � BϘ′ ]|C⊗C′×{y}×{y′} = β![BϘ(−, y)⊗ BϘ′(−, y′)] =
β![homC(−,DϘy)⊗ homC′(−,DϘ′ y

′)] = homC⊗C′(−,DϘy ⊗ DϘ′ y
′),

and the left Kan extension along β of the functor (y, y′) �→ DϘy ⊗DϘ′ y′ is DϘ⊗DϘ′ .

Proposition 5.1.5 Recall the universal Poincaré ∞-category (Spf , Ϙu) of Sect. 4.1.
Then we have a natural equivalence

(C, Ϙ)⊗ (Spf , Ϙu) 
 (C, Ϙ)

for (C, Ϙ) ∈ Cath∞.
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Proof We first note that Spf is the unit with respect to the tensor product of stable
∞-categories (see Construction 5.1.1), and that (Spf)op 
 Spf through Spanier–
Whitehead duality. By definition, the linear part of Ϙu : (Spf)op → Sp is Spanier–
Whitehead duality D and the bilinear part is the composite

(Spf)op × (Spf)op
⊗S−→ (Spf)op

D−→ Spf ,

which also corresponds to SpanierWhitehead duality (Spf)op → Spf under the equiv-
alence (Spf)op⊗(Spf)op 
 (Spf)op. Now using Proposition 5.1.3 the claim is reduced
to the statement that for any exact functor � : Cop → Sp the functor

Cop = (C ⊗ Spf)op → Cop ⊗ (Spf)op
�⊗D−−−→ Sp ⊗ Sp

⊗−→ Sp

is equivalent to�. Indeed, the composite Cop = (C ⊗ Spf)op → Cop ⊗ (Spf)op sends
c ∈ Cop to c ⊗ S.

Example 5.1.6 Let A, B be E1-ring spectra equipped with modules with genuine invo-
lutions (MA, NA, α) and (MB, NB, β) respectively (see Sect. 3.2). As discussed in the
proof of Theorem 3.3.1, it follows from [47, Theorem 4.8.5.16 and Remark 4.8.5.19]
that the exact functor

ModfA ⊗ModfB → ModfA⊗SB, (113)

induced by the bilinear functor (X ,Y ) �→ X ⊗ Y , yields an equivalence ModA ⊗Sp

ModB

−→ ModA⊗SB upon passing to Ind-categories, where ⊗Sp denotes the tensor

product of stable presentable ∞-categories. In particular, the functor (113) is neces-
sarily a dense full inclusion, which is therefore an equivalence since its image contains
A ⊗ B and its target contains no proper stable subcategories with that property. More
generally, given subgroups c ⊆ K0(ModωA) and d ⊆ K0(ModωB) we obtain an equiv-
alence

Modc
A ⊗Modd

B

−→ Mode

A⊗SB

where e ⊆ K0(ModωA⊗SB) is the image of c⊗ d under the induced map K0(ModωA)⊗
K0(ModωB) → K0(ModωA⊗SB). We note that in general e might fail to be all of
K0(ModωA⊗SB), even if c and d are all of K0(ModωA) and K0(ModωB), respectively.
It then follows from Proposition 5.1.3 that

(Modc
A, Ϙ

α
MA

)⊗ (Modd
B, Ϙ

β
MB

) 
 (Mode
A⊗SB, Ϙ

α⊗Sβ
MA⊗SMB

)

where the reference map on the right hand side is the composite

α ⊗S β : NA ⊗S NB → M tC2
A ⊗S M tC2

B → (MA ⊗S MB)
tC2 ,

obtained using the lax monoidal structure of the Tate construction.
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5.2 Construction of the symmetric monoidal structure

In this section we will show that the notion of tensor product constructed in Sect. 5.1
above can be enhanced to symmetric monoidal structures on Cath∞ and on Catp∞. The
construction is somewhat technical and can be skipped on a first read.

Construction 5.2.1 For an∞-category D we will denote by

(Cat∞)//D → Cat∞

the cartesian fibration classified by the functor

Catop∞ → Cat∞ C �→ Fun(C,D).

We will refer to (Cat∞)//D as the lax slice over D. The objects of (Cat∞)//D are
given by functors C → D and the morphisms by diagrams

C

D

C′

f

p

q

filled by a non-invertible 2-cell p ⇒ q f . The actual slice (Cat∞)/D is a non-full
subcategory of (Cat∞)//D which contains all objects but only those 1-morphisms for
which the natural transformation p ⇒ q f is an equivalence.

Remark 5.2.2 The∞-category (Cat∞)//D can be characterized by the following uni-
versal mapping property: the data of a functor from E to (Cat∞)//D is equivalent to
the data of a diagram in Cat∞ of the form

C D

E
p (114)

with p a cocartesian fibration. In this description functors from E to the actual
slice (Cat∞)/D correspond to diagrams as above where the functor C → D send
p-cocartesian lifts to equivalences in D. This description also uniquely determines
(Cat∞)//D since it describes the represented functor Ho(Cat∞)op → Set.

Lemma 5.2.3 Let D be a symmetric monoidal ∞-category. Then (Cat∞)//D admits a
symmetric monoidal refinement (Cat∞)⊗

//D with the following properties:

i) The tensor product of f : C → D and g : C′ → D in (Cat∞)//D is given by the
composite

C × C′ f ×g−−→ D ×D ⊗−→ D,



10 Page 150 of 269 B. Calmès et al.

and the tensor unit by the functor pt → D corresponding to the tensor unit of D.
ii) The forgetful functor (Cat∞)//D → Cat∞ admits a symmetric monoidal refine-

ment (Cat∞)⊗
//D → Cat×∞ with respect to the cartesian symmetric monoidal

structure on Cat∞.
iii) For any ∞-operad O⊗, the space of O-algebras in (Cat∞)⊗

//D is naturally equiv-
alent to the space of diagrams of ∞-operads

C⊗ D⊗

O⊗
p

where p is a cocartesian fibration of ∞-operads (see [47, Definition 2.1.2.13]). In
other words, a pair consisting of an O-monoidal∞-category C together with a lax
O-monoidal functor from C to D, where the latter is consider as an O-monoidal
∞-category by pullback along the terminal map of ∞-operads O → E∞.

Remark 5.2.4 Property iii) of Lemma 5.2.3 determines the symmetric monoidal ∞-
category (Cat∞)⊗

//D uniquely. Indeed, a symmetric monoidal∞-category is uniquely
determined by its underlying∞-operad, and Property iii) determines the functor

Ho(Op∞)op → Set

represented by the underlying∞-operad (Cat∞)⊗
//D. One can in fact show that the first

two properties of the lemma are direct consequences of the third (see the arguments
in the proof of Lemma 5.2.3 below).

Proof of Lemma 5.2.3 For a fixed symmetric monoidal∞-categoryD with underlying
∞-operad D⊗, we consider the ∞-category X whose objects are given by diagrams
of∞-operads of the form

C⊗ D⊗

O⊗
p (115)

where p is a cocartesian fibration of∞-operads. Themorphisms inX are thosemaps of
such diagrams which are the identity onD⊗ and preserve p-cocartesian arrows in the
C⊗ component. Projecting to theO⊗-component defines a functor X → Op∞ which
is a cartesian fibration classified by some functor Opop∞ → Cat∞. Postcomposing the
latter with the groupoid core functor we obtain a functor

q : Opop∞ → S

sending an ∞-operad O to the space consisting of pairs of a cocartesian fibration
p : C⊗ → O⊗ of∞-operads together with a map C⊗ → D⊗ of∞-operads. We now
claim that the functor q is representable by an∞-operad. To see this we use that Op∞
is a presentable ∞-category by [47, Section 2.1.4] so that we have to check that the
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functor q preserves limits by [43, Proposition 5.5.2.2]. This can be seen as follows: a
cocartesianfibrationC⊗ → O⊗ = colimi O⊗

i over a colimit of∞-operads is classified
by a map of ∞-operads χ : colimi O⊗

i → Cat×∞ where Cat×∞ is equipped with the
structure of an ∞-operad induced by the cartesian symmetric monoidal structure on
Cat∞ (see [47, Remark 2.4.2.6]). The space of such functors is thus a limit of the
spaces of maps of∞-operads χi : O⊗

i → Cat×∞. In particular the space of cocartesian
fibrations over colimi O⊗

i is the limit of the spaces of cocartesian fibrations overO⊗
i .

In addition, for every cocartesian fibration C⊗ → O⊗ of∞-operads the natural map

colim
i

C⊗i → C⊗ (116)

is an equivalence of∞-operads, where C⊗i := C⊗×O⊗ O⊗
i is the corresponding fibre

product (computed in Op∞). This follows from the fact that the functor

C⊗ ×O⊗ −: (Op∞)/O⊗ → (Op∞)/O⊗

commutes with colimits of∞-operads since it has a right adjoint given by the relative
Day convolution FunO(C,−)⊗, see [47, Construction 2.2.6.7 and Remark 2.2.6.8].
The colimit description of (116) then implies that the space of maps C⊗ → D⊗
of ∞-operads is given by the limit of the space of maps C⊗i → D⊗. Together this
shows that the functor q preserves limits and is thus representable. We denote the
representing object by (Cat⊗∞)//D. We note that by Remark 5.2.2 the underlying ∞-
category

(
(Cat⊗∞)//D

)
〈1〉 identifies with (Cat∞)//D; indeed, when O⊗ is the image

of an ∞-category E under the full inclusion Cat∞ ⊆ Op∞, the data of a diagram as
in (115) with p a cocartesian fibration of∞-operads reduces to that of a diagram of the
form (114), with p a cocartesian fibration of ∞-categories. To show (Cat⊗∞)//D is a
symmetric monoidal structure on (Cat∞)//D we will need a more explicit description
of the multi-mapping spaces in (Cat⊗∞)//D.

Let Cn (sometimes called the n-corolla) be the ∞-operad freely generated by a
single n-ary operation x1, . . . , xn → x with colours x1, . . . , xn and x .1 The space of
maps C⊗

n → (Cat⊗∞)//D is then by the defining property of (Cat⊗∞)//D the classifying
space of pairs of aCn-monoidal∞-category C and a laxCn-monoidal functor C → D.
As the∞-operad Cn is free a Cn-monoidal∞-category is simply given by a sequence
{C1, . . . , Cn; C} of ∞-categories together with a functor α : C1 × . . . × Cn → C, and
a lax Cn-monoidal functor from this to D corresponds to a collection of functors
{ f1 : C1 → D, . . . , fn : Cn → D; f : C → D} together with a transformation in the
square

C1 × . . .× Cn D × . . .×D

C D.

α

f1×...× fn

⊗
f

1 This is in fact the nerve of an ordinary operadwhich can for example be seen using the theory of dendroidal
sets, but we shall not need this fact here.
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As a resultwefind that the correspondingmulti-mapping space,which can be identified
with the pullback

Mul(Cat⊗∞)//D
( f1, . . . , fn; f ) MapOp∞

(
Cn, (Cat⊗∞)//D

)∏
i evxi ×evx

pt
∏

n+1 MapOp∞
(
T riv⊗, (Cat⊗∞)//D

)
,

( f1,..., fn , f )

is given by the spaces of maps in (Cat∞)//D from the object

C1 × . . .× Cn
f1×...× fn−−−−−−→ D × . . .×D ⊗−→ D (117)

to the object f : C → D. In particular, this multi-mapping space is corepresented by
the object (117) and so the ∞-operad (Cat∞)⊗

//D is corepresentable in the sense of

[47, Definition 6.2.4.3], that is, the functor (Cat∞)⊗
//D → Fin∗ is a locally cocartesian

fibration. To see that it is actually cocartesian, i.e. (Cat∞)⊗//D is symmetric monoidal,
we have to additionally verify that the induced maps from [47, Example 6.2.4.9] are
equivalences. This is however clear in the case at hand.

Finally, let us verify that (Cat∞)⊗
//D satisfies the required Properties i)-iii). Indeed,

Property iii) is satisfied by construction and Property i) follows from the explicit
description of multi-mapping spaces above. To prove Property ii) we note that the∞-
operad Cat×∞ represents the functor Opop∞ → S which sends an ∞-operad O⊗ to the
space of cocartesian fibrations E⊗ → O⊗ (this follows from [47, Remark 2.4.2.6]).
The functor (Cat∞)//D → Cat∞ which forgets the map refines to a transformation of
represented functors Opop∞ → S (again given by forgetting the map to D⊗). Thus we
get a lax symmetric monoidal structure on the functor (Cat∞)//D → Cat∞ and by
the description of the tensor product given above it follows that this functor is actually
symmetric monoidal as opposed to merely lax symmetric monoidal.

Remark 5.2.5 It is also possible to give a direct construction of the symmetricmonoidal
∞-category (Cat∞)⊗

//D as follows. Let LaxAr ⊆ (Cat∞)/�1 be the full subcategory

spanned by the cartesian fibrationsM → �1. We note that such a cartesian fibration
encodes the data of an functor (�1)op → Cat∞, corresponding to an arrow M1 →
M0 in Cat∞, where Mi := M ×�1 �{i} is the fibre of M over i ∈ {0, 1}. By
definition the morphisms in LaxAr(Cat∞) simply correspond to functors M → M′
over�1, and these are not required to preserve cartesian edges. As a result, morphisms
in LaxAr correspond to lax natural transformations of arrows, that is, to squares which
commute up to a specified transformation. We then endow LaxAr with the cartesian
monoidal structure LaxAr×, which is simply given by fibre product over �1 (since
cartesian fibrations are closed under fibre products) and we define (Cat∞)//D to be
the fibre of the functor

f0 : LaxAr(Cat∞) → Cat∞ [M → �1] �→ M0
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overD. Since f0 is product preserving andD is an E∞-monoid object in Cat∞ the fibre
(Cat∞)//D inherits a symmetric monoidal structure, which we denote by (Cat∞)⊗

//D.

We now claim that the underlying∞-operad of (Cat∞)⊗
//D represents the same functor

described in Property iii), and hence identifies with the construction given above. To
see this, let us first identify the functor represented by LaxAr×. For O an∞-operad,
O-algebra objects in LaxAr× correspond to O-monoids, which are simply functors
O⊗ → LaxAr inwhich certain diagrams are cartesian. But the∞-category of functors
O⊗ → LaxAr embeds in the∞-category of functorsO⊗ → (Cat∞)/�1 , and the latter
correspond via unstraightening to cocartesian fibrations p : E → O⊗ equipped with a
map E → �1 which sends p-cocartesian edges to equivalences. The condition that the
associated functorO⊗ → (Cat∞)/�1 lands in LaxAr corresponds in these terms to the
condition that for every x in O⊗ the restricted map Ex → �1 is a cartesian fibration.
By the dual of [43, Corollary 4.3.1.15], this is equivalent to saying that E → �1 is a
cartesian fibration whose cartesian edges all map to equivalences inO⊗. Straightening
over �1, this data is equivalent to that of a map E1 → E0 of ∞-categories over O⊗
such that the maps E0 → O⊗ and E1 → O⊗ are cocartesian fibrations. The monoid
condition is then equivalent to the condition that for i = 0, 1 the cocartesian fibration
Ei → O⊗ exhibits Ei as an O-monoidal ∞-category and that the functor E1 → E0
preserves inert maps. We hence get that the data of an O-algebra object in LaxAr× is
equivalent to that of a pair of O-monoidal ∞-categories E0, E1 equipped with a lax
O-monoidal functor E1 → E0. We may then conclude that the data of an O-algebra
object in (Cat∞)//D is equivalent to that of an O-monoidal∞-category E1 equipped
with a lax O-monoidal functor E1 → D.

We will now apply the construction of Lemma 5.2.3 to the category D = Sp of
spectra, equipped with its symmetric monoidal structure given by the tensor product
of spectra, and form the pullback along the autoequivalence (−)op : Cat∞ → Cat∞.
More precisely we define a symmetric monoidal∞-category

(
(Cat∞)op//Sp

)⊗ as the
pullback

(
(Cat∞)op//Sp

)⊗ (
(Cat∞)//Sp

)⊗

Cat×∞ Cat×∞




(−)op




Objects of this symmetric monoidal ∞-category are given by pairs (C, Ϙ) consisting
of an∞-category C and a functor Ϙ : Cop → Sp. Morphisms

(C1, Ϙ1)⊗ . . .⊗ (Cn, Ϙn) → (C′, Ϙ′)

in
(
(Cat∞)op//Sp

)⊗ are given by pairs ( f , η) of a functor f : C1× . . .× Cn → C′ and
a natural transformation η : Ϙ1 � . . .� Ϙn ⇒ Ϙ′ ◦ f op. This description also holds for
n = 0.
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Construction 5.2.6 We define the∞-operad (Cath∞)⊗ as the suboperad of(
(Cat∞)op//Sp

)⊗ spanned by those objects ((C1, Ϙ1), . . . , (Cn, Ϙn))

∈ (
(Cat∞)op//Sp

)⊗ such that each Ci is stable and each Ϙi is quadratic, and those maps
( f , η) as above such that f : C1 × . . .× Cn → C′ is exact in each variable.

We note that the underlying ∞-category of (Cath∞)⊗ is indeed given by Cath∞
since it is, essentially by definition, the Grothendieck construction of the functor
C �→ Funq(C) which is a subcategory of the lax slice (Cat∞)op//Sp.

By definition we have that the composed lax symmetric monoidal functor

(Cath∞)⊗ → (
(Cat∞)op//Sp

)⊗ → Cat×∞

factors through the suboperad

(Cath∞)⊗ → (Catex∞)⊗ ⊆ Cat×∞

spanned by the tuples of stable ∞-categories and tuples of functors which are exact
in each variable.

Theorem 5.2.7 i) The ∞-operad (Cath∞)⊗ is symmetric monoidal with tensor prod-
uct given by the tensor product of Construction 5.1.2 and tensor unit given by
(Spf , Ϙu).

ii) The resulting map p⊗ : (Cath∞)⊗ → (Catex∞)⊗ is a cocartesian fibration of ∞-
operads and in particular a symmetric monoidal functor.

iii) This symmetric monoidal structure on Cath∞ restricts to a symmetric monoidal
structure on the subcategory Catp∞.

Proof By design, the hermitian∞-category (C1, Ϙ1)⊗ (C2, Ϙ2) of Construction 5.1.2
corepresents the binary multi-mapping space functor

MulCath∞ ((C1, Ϙ1), (C2, Ϙ2);−) : Cath∞ → S.

Similarly, the object (Spf , Ϙu) corepresents the nullary operations

MulCath∞ (∅;−) : Cath∞ → S

since themorphisms (pt,S) → (Spf , Ϙu) exhibits the target as the initial hermitian∞-
category under (pt,S) by Proposition 4.1.3. These constructions thus produce locally
cocartesian lifts for the active arrows 〈0〉 → 〈1〉 and 〈2〉 → 〈1〉, and more generally
for every active arrow α : 〈n〉 → 〈m〉 whose fibres are of size ≤ 2. Since the latter
generate all maps in Com, to prove i) it will now suffice to show that these locally
cocartesian lifts are cocartesian. Taking into account the decomposition of mapping
spaces in∞-operads it will be enough to verify that the induced maps

MulCath∞ ((C1, Ϙ1)⊗ (C2, Ϙ2), (C3, Ϙ3), . . . , (Cn , Ϙn);−) → MulCath∞ ((C1, Ϙ1), . . . , (Cn , Ϙn);−)
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and

MulCath∞

(
(Spf , Ϙu), (C1, Ϙ1), . . . , (Cn , Ϙn);−

)
→ MulCath∞ ((C1, Ϙ1), . . . , (Cn , Ϙn);−)

are equivalences of functors Cath∞ → S. We will give the argument for the first
assertion, the second works similar. The first assertion unwinds to the statement that
natural transformations from the functor

(P2β!(Ϙ1 � Ϙ2)) � Ϙ3 � . . . � Ϙn : (C1 ⊗ C2)× C3 × . . .× Cn → Sp

to any functor (C1 ⊗ C2)× C3 × . . .× Cn → Sp pulled back from a quadratic functor
C1 ⊗ . . .⊗ Cn → Sp are equivalent to natural transformations from

Ϙ1 � Ϙ2 � Ϙ3 � . . . � Ϙn : C1 × C2 × C3 × . . .× Cn → Sp

to the restriction of the same functor. After fixing objects x3 ∈ C3, x4 ∈ C4, . . . it is
certainly true that the space of natural transformations between the restricted functors
along

(C1 ⊗ C2) → (C1 ⊗ C2)× C3 × . . .× Cn (x1 ⊗ x2) �→ ((x1 ⊗ x2), x3, . . . , xn)

C1 × C2 → C1 × C2 × C3 × . . .× Cn (x1, x2) �→ (x1, x2, x3, . . . , xn)

agree by the universal properties of left Kan extension β! and 2-excisive approximation
P2. The claim then follows since the space of transformations is a limit over these
restricted spaces.

To see ii) first observe that the operad map p⊗ : (Cath∞)⊗ → (Catex∞)⊗ preserves
cocartesian edges, as is visible by the explicit formula for the tensor product above.
In particular, it is a symmetric monoidal functor. Since the functor on underlying
∞-categories p : Cath∞ → Catex∞ is a cocartesian fibration by Corollary 1.4.2 it
now follows from [43, Proposition 2.4.2.11] that p⊗ is a locally cocartesian fibra-
tion. To show that p⊗ is a cocartesian fibration one needs to additionally verify
that for every arrow in α : 〈n〉 → 〈m〉 in Com⊗, the associated transition func-
tor α! : (Cath∞)⊗〈n〉 → (Cath∞)⊗〈m〉 sends locally p⊗〈n〉-cocartesian edges to locally

p⊗〈m〉-cocartesian edges (indeed, by the explicit description of locally p⊗-cocartesian
edges provided in [43, Proposition 2.4.2.11], this would imply that these are closed
under composition, and are hence all p⊗-cocartesian by [43, Proposition 2.4.2.8]).
Unwinding the definitions and using Corollary 1.4.2 we observe that this statement is
straightforward when α is inert, and for α active amounts to verifying that for every
commutative square of the form

C C

C C

D D

DD
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and every collection of quadratic functors Ϙi ∈ Funq(Ci ), the natural map

( f1 ⊗ · · · ⊗ fn)!P2β![Ϙ1 � · · · � Ϙn] → P2β![ f1!Ϙ1 � · · · � fn !Ϙn]

is an equivalence. Since f1⊗· · ·⊗ fn is exact, restriction along it preserves quadratic
functors and hence left Kan extension along it commutes with P2. We may conse-
quently identify the above map with the image under P2β! of the map

( f1 � · · · � fn)![Ϙ1 � · · · � Ϙn] → f1!Ϙ1 � · · · � fn !Ϙn .

The latter is then easily seen to be an equivalence by the pointwise formula for left
Kan extension and the fact that tensor products of spectra commute with colimits in
each variable.

For Assertion iii) about Catp∞, since every equivalence between Poincaré ∞-
categories belongs to Catp∞ it suffice to check that the tensor product of (Cath∞)⊗
preserves Poincaré ∞-categories, which is Corollary 5.1.4, and that the tensor unit
(Spf , Ϙu) is Poincaré, which was already observed in Example 1.2.15.

Corollary 5.2.8 The functors Pn : Catp∞ → S and He : Cath∞ → S admit canonical
lax symmetric monoidal structures.

Proof By Theorem 5.2.7 and Proposition 4.1.3 both of these functors are corepre-
sented by the respective tensor units, so that the result immediately follows from [52,
Corollary 3.10].

We now point out that both

(Catp∞)⊗ ↪→ (Cath∞)⊗ ↪→ (
(Cat∞)op//Sp

)⊗

are subcategory inclusions, and hence induce subcategory inclusions

AlgO(Catp∞) ↪→ AlgO(Cath∞) ↪→ AlgO((Cat∞)op//Sp) (118)

on the level of algebras for every ∞-operad O. By Lemma 5.2.3 an O-algebra in(
(Cat∞)op//Sp

)⊗ consists of an O-monoidal ∞-category C equipped with a lax O-
monoidal functor Ϙ : Cop → Sp. By construction, such an O-algebra belongs to the
essential image of AlgO(Cath∞) if and only if the following conditions hold:

i) for every colour t ∈ O the corresponding∞-category Ct is stable and the functor
Ϙt : Copt → Sp is quadratic;

ii) for every multi-map α : {t1, . . . , tn} → t ′ in O the induced functor

α∗ : Ct1 × . . .× Ctn → Ct ′

is exact in each variable.
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In addition, such anO-algebra is further in the essential image of AlgO(Catp∞) if and
only if for every colour t ∈ O, the corresponding hermitian ∞-category (Ct , Ϙt ) is
Poincaré, and for every multi-map α : {t1, . . . , tn} → t ′ in O and each tuple x1 ∈
Ct1, . . . , xn ∈ Ctn of objects the corresponding hermitian functor

α∗ : (Ct1 , Ϙt1)⊗ . . .⊗ (Ctn , Ϙtn ) → (Ct ′ , Ϙt ′)

is Poincaré.

Notation 5.2.9 For an∞-operadO, we will refer toO-algebra objects (C, Ϙ) in Cath∞
with respect to the symmetric monoidal structure of Theorem 5.2.7 as O-monoidal
hermitian ∞-categories, and similarly to O-algebra objects in Catp∞ as O- monoidal
Poincaré ∞-categories. We will then refer to the hermitian (resp. Poincaré) structure
Ϙ as an O-monoidal hermitian (resp. Poincaré) structure. When O = Com we will
replace as customary the term O-monoidal by symmetric monoidal.

5.3 Day convolution of hermitian structures

In this section we will analyse in more explicit terms symmetric monoidal hermi-
tian and Poincaré structures over a fixed stably symmetric monoidal ∞-category C,
and show that they can be encoded in terms of their linear and bilinear parts. To this
end, recall that for two symmetric monoidal ∞-categories E,D, there is an associ-
ated ∞-operad Fun(E,D)⊗ with underlying ∞-category Fun(E,D), called the Day
convolution ∞-operad, see [24], [47, §2.2.6], and [18] for the classical counterpart.
It is characterized by the following universal property: there is an evaluation map of
∞-operads

ev : E⊗ ×Com⊗ Fun(E,D)⊗ → D⊗,

refining the usual evaluation map, such that for every ∞-operad O⊗, the composed
map

AlgO(Fun(E,D)) → AlgE×ComO(E ×Com Fun(E,D))
ev∗−→ AlgE×ComO(D)

is an equivalence of ∞-categories. Here, we may identify AlgE×ComO(D) 

AlgE×ComO/O(D×ComO)with the∞-category of laxO-monoidal functors from E to
D, both considered as O-monoidal ∞-categories by pulling back along O → Com.
In particular, for O⊗ = Com⊗ we get an equivalence between commutative alge-
bra objects in Fun(E,D) and lax symmetric monoidal functors E → D. On the other
hand, takingO⊗ to be the underlying∞-operad of a symmetric monoidal∞-category
C, we get that lax symmetric monoidal functors C → Fun(E,D) correspond to lax
symmetric monoidal functors C × E → D.

By [47, Corollary 2.2.6.12] the multi-mapping space in Fun(E,D)⊗ from a col-
lection {ϕi : E → D}i=1,...,n to ψ : E → D is given by the space of natural
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transformations in the square

E × . . .× E D × . . .×D

E D.

⊗

ϕ1×...×ϕn

⊗

ψ

If E is small, D admits small colimits, and the tensor product in D preserves small
colimits in each variable, then Fun(E,D)⊗ is a symmetric monoidal∞-category, with
tensor product ϕ1⊗ϕ2 : E → D given by the left Kan extension of ϕ1 �ϕ2 : E×E →
D × D → D along E × E → E (see [47, Proposition 2.2.6.16]). Furthermore, in
this case Fun(E,D) admits small colimits and the Day convolution product preserves
small colimits in each variable [24, Lemma 2.13].

Remark 5.3.1 Comparing universal properties we see that if C, E are small symmetric
monoidal∞-categories andD is an∞-category with small colimits which is endowed
with a symmetric monoidal structure which preserves colimits in each variable, then
there is a natural equivalence of symmetric monoidal∞-categories

Fun(C × E,D) 
 Fun(C,Fun(E,D)),

where the left hand side is equipped with the Day convolution structure, and the right
hand side with the twice nested Day convolution structure.

We now relate this concept to the constructions we made in the previous sections.
Given a small symmetric monoidal ∞-category C, consider the pullback square of
∞-operads

Fun(Cop,Sp)⊗ E∞

((Cat∞)op//Sp)
⊗ Cat×∞

C

refining the pullback square of∞-categories which identifies Fun(Cop,Sp) as the fibre
of the cartesian fibration (Cat∞)op//Sp → Cat∞ over C ∈ Cat∞. We then have the
following:

Lemma 5.3.2 Let C be a small stably symmetric monoidal ∞-category. Then the
∞-operad Fun(Cop,Sp) is a symmetric monoidal ∞-category. Furthermore, we
may identify the symmetric monoidal structure on Fun(Cop,Sp) with Day convo-
lution. In particular, for an ∞-operad O, the data of an O-algebra structure on
Ϙ ∈ Fun(Cop,Sp) corresponds, naturally in O, to that of a lax O-monoidal refinement
of Ϙ, where C and Sp are considered as O-monoidal ∞-categories by pulling back
along O → Com.
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Remark 5.3.3 It follows from Lemma 5.3.2 that the tensor product of Ϙ, Ϙ′ ∈
Fun(Cop,Sp) is given by the left Kan extension of the functor Ϙ�Ϙ′ : Cop×Cop → Sp
along Cop × Cop → Cop.

Proof Since
(
(Cat∞)op//D

)⊗ → Cat×∞ is a cocartesian fibration it follows that
Fun(Cop,Sp)⊗ → E∞ is also a cocartesian fibration, so that Fun(Cop,Sp)⊗ is a sym-
metricmonoidal∞-category. By the description of algebra objects in

(
(Cat∞)op//D

)⊗
given in Lemma 5.2.3iii) and the fact that taking algebra objects is compatible with
limits of ∞-operads we get that O-algebras in Fun(Cop,Sp)⊗ are given by lax O-
monoidal functors Cop → Sp, and this description is natural inO, which allows us to
identify the monoidal structure on Fun(Cop,Sp) with Day convolution.

We now wish to understand in similar terms the hermitian context, in which one
considers quadratic functors Cop → Sp. For this, let us consider the setting of Day
convolution when the target D is a presentably symmetric monoidal ∞-category,
that is, it is presentable and the tensor product preserves small colimits in each
variable. In this case, for a small ∞-category E , the functor category Fun(E,D)

is again presentably symmetric monoidal with respect to Day convolution. Sup-
pose now that I = {pα : K �

α → E} is a small collection of diagrams in E . Let
FunI(E,D) ⊆ Fun(E,D) be the full subcategory spanned by those functors E → D
which send every diagram in I to a limit diagram. We claim that FunI(E,D) is an
accessible localisation of Fun(E,D). Indeed, choose a small set of generators T for
D, and for α ∈ I let us denote by pα := (pα)|Kα the corresponding restriction. Then
for every a ∈ T and α ∈ I the diagram pα induces a map

sα,a : colim
Kα

j popα ⊗ a → j pα(∗)⊗ a,

where j : Eop → Fun(E,S) is the Yoneda embedding and ⊗ denotes the canonical
bifunctor Fun(E,S) × D → Fun(E,D) induced levelwise by the tensoring of the
presentable∞-categoryD over spaces. Let S = {sα,a}α∈I,a∈T . We may then identify
FunI(E,D) ⊆ Fun(E,D) with the full subcategory spanned by the S-local objects.
Since S is a set it follows from [43, Proposition 5.5.4.15] that FunI(E,D) is also
presentable and its inclusion admits a left adjoint

L : Fun(E,D) → FunI(E,D).

We then have that L exhibits FunI(E,D) as the localisation of Fun(E,D) by the
set of maps S. Since L is a left adjoint functor we also refer to it as a left Bousfield
localisation.

We now consider the above setup in the context of Day convolution. Recall that
in general, a left Bousfield localisation functor L : A → B, with fully-faithful right
adjoint R : B ↪→ A, is said to be compatible with respect to a given symmetric
monoidal structureA⊗ onA, if for every f : x → y inA such that L( f ) is an equiva-
lence, and every z ∈ A, the map L(z⊗ f ) is again an equivalence. By [47, Proposition
2.2.1.9] the∞-category B then inherits a symmetric monoidal structure B⊗ such that
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L refines to a symmetric monoidal functor L⊗ : A⊗ → B⊗ and R refines to a fully-
faithful inclusion of∞-operads R⊗ : B⊗ → A⊗. In addition, the symmetricmonoidal
functor L⊗ exhibitsB⊗ as universal among symmetric monoidal∞-categories receiv-
ing a symmetric monoidal functor from A which inverts the maps inverted by L .
Indeed, the symmetric monoidal functor L⊗ must factor through such a symmet-
ric monoidal localisation by [47, Proposition 4.1.7.4], and the resulting comparison
between the two symmetric monoidal∞-categories underA⊗ is an equivalence since
it is an equivalence on the level of underlying ∞-categories. We will consequently
refer to L⊗ as a symmetric monoidal Bousfield localisation.

Lemma 5.3.4 Given E,D and I be as above, let us denote by FunI(E,D)⊗ ⊆
Fun(E,D)⊗ the full suboperad spanned by FunI(E,D). Suppose that I is closed
under post-composition with x ⊗ (−) : E → E for every x ∈ E , that is, if pα ∈ I then
(x ⊗ (−)) ◦ pα is also in I. Then the left Bousfield localisation functor L is compat-
ible with Day convolution, and hence extends to a symmetric monoidal localisation
Bousfield localisation functor

L⊗ : Fun(E,D)⊗ → FunI(E,D)⊗.

In particular, FunI(E,D)⊗ inherits a symmetric monoidal ∞-category, universally
obtained from Fun(E,D) by inverting the set of maps S.

Remark 5.3.5 In the situation of Lemma 5.3.4, the tensor product⊗I in FunI(E,D)⊗
canbe expressed in termsof the tensor product⊗Day inFun(E,D)⊗ and the localisation
functor. Explicitly, the tensor product of ϕ,ψ ∈ FunI(E,D) is given by L(ϕ⊗Dayψ).

Remark 5.3.6 In the situation of Lemma 5.3.4, since Day convolution preserves small
colimits in each variable and L preserves colimits it follows fromRemark 5.3.5 that the
localised tensor product on FunI(E,D) also preserves small colimits in each variable.

Proof of Lemma 5.3.4 Let W be the collection of all maps in Fun(E,D) whose image
under L is an equivalence. We need to show that W is closed under Day convolution
against objects, that is, to show that for τ ∈ W and ϕ ∈ Fun(E,D), we have that
τ ⊗Day ϕ is again in W . By [43, Proposition 5.5.4.15] we have that W is generated as
a strongly saturated class by the set S = {sα,a} above, and so it will suffice to show
that S is closed under Day convolution against ϕ ∈ Fun(E,D). Since Day convolution
preserves colimits in each variable we may as well check this for a generating set of
Fun(E,D). Such a generating set is given, for example, by the functors of the form
j(x)⊗ a, for x ∈ E and a ∈ T , where j is the Yoneda embedding as above. Since j is
symmetric monoidal ([24, §3] or [47, Corollary 4.8.1.12 and Remark 4.8.1.13]) and
using again that Day convolution preserves colimits in each variable, the closure of S
under Day convolution with these generators now follows from our condition that I
is closed under post-composition with x ⊗ (−) for every x ∈ E .
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We now apply the above ideas in the context of quadratic functors. For a given
stable∞-category C, the∞-category Funq(C) sits in a diagram

Funq(C) Fun(Cop,Sp) �0

Cath∞
(
(Cat∞)op//Sp

)⊗ Cat∞

C (119)

in which all squares are pullbacks. We then refine this diagram to a diagram of ∞-
operads

Funq(C)⊗ Fun(Cop,Sp)⊗ E∞

(Cath∞)⊗
(
(Cat∞)op//Sp

)⊗ Cat⊗∞

C (120)

by extending the lower and right part and defining the ∞-operads Fun(Cop,Sp)⊗,
Funq(C)⊗ as the respective pullbacks. Since taking algebra objects is compatible with
limits in the target it follows that for an∞-operad O we have a pullback square

AlgO(Funq(C)) {C}

AlgO(Cath∞) AlgO(Cat∞),

and so O-algebras in Funq(C) correspond to O-monoidal hermitian ∞-categories
refining the underlying O-monoidal ∞-category of C. On the other hand, since
Funq(C) ⊆ Fun(Cop,Sp) is a full inclusion and the monoidal structure on the lat-
ter identifies with Day convolution by Lemma 5.3.2, we may identify the data of an
O-algebra structure on a given quadratic functor Ϙ : Cop → Sp with that of a lax
O-monoidal structure. We will refer to such Ϙ as O-monoidal hermitian refinements
of C.

Corollary 5.3.7 Let C be a small stably symmetric monoidal ∞-category. Then the full
inclusion of ∞-operads

Funq(C)⊗ ⊆ Fun(Cop,Sp)⊗

admits a symmetric monoidal left adjoint exhibiting Funq(C)⊗ as a symmetric
monoidal localisation of Fun(Cop,Sp)⊗. In particular, the ∞-operad Funq(C)⊗ is
a symmetric monoidal ∞-category.

Remark 5.3.8 It follows fromCorollary 5.3.7 that the tensor product ofϘ, Ϙ′ ∈ Funq(C)
is given by their Day convolution followed by an application of the left adjoint to the
inclusion Funq(C) ⊆ Fun(Cop,Sp). Since Ϙ, Ϙ′ are in particular reduced the result
of this left Kan extension is reduced and hence the left adjoint in question can be
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implemented via the 2-excisive approximation of Construction 1.1.26. Comparing this
descriptionwithConstruction 5.1.2wemay equivalently describe the tensor product of
Ϙ, Ϙ′ ∈ Funq(C) as the left Kan extension of the quadratic functor Ϙ⊗Ϙ′ ∈ Funq(C⊗C)
along Cop ⊗ Cop → Cop.

Proof of Corollary 5.3.7 This is a particular case of Lemma 5.3.4 since the condition
of being a quadratic functor is equivalent to that of being reduced and 2-excisive
(Proposition 1.1.13) which in turn can be formulated as sending a suitable set of
diagrams in Cop (consisting of the constant diagram on 0 and all strongly exact 3-
cubes) to limit diagrams.

Our next goal is to understand the monoidal structure on Funq(C)⊗ in terms
of decomposition into linear and bilinear components, as described in Corol-
lary 5.3.14 below. Towards this end, we begin with the following direct application of
Lemma 5.3.4:

Corollary 5.3.9 Let C be a small stably symmetric monoidal ∞-category C. Then the
following holds:

i) The full suboperad Funex(Cop,Sp)⊗ ⊆ Fun(Cop,Sp)⊗ is a symmetric monoidal
localisation of the Day convolution product on Fun(Cop,Sp).

ii) The full suboperad Funb(C)⊗ ⊆ Fun(Cop × Cop,Sp)⊗ is a symmetric monoidal
localisation of the Day convolution product on Fun(Cop × Cop,Sp).

Proof In case i) we apply Lemma 5.3.4 with respect to the collection of diagrams in
Cop consisting of the constant diagram on 0 and all exact squares. For ii) we apply
Lemma 5.3.4 with respect to the collection of diagrams in Cop × Cop consisting of
the constant diagrams on (x, 0) and (0, x) for all x ∈ Cop and all squares of the form
{x} × σ and σ × {x} where σ : �1 ×�1 → Cop is an exact square.

Remark 5.3.10 As in Remark 5.3.5, the tensor product of �,�′ ∈ Funex(Cop,Sp)
is obtained by taking their Day convolution � ⊗Day �′ and applying to it the left
adjoint to the inclusion Funex(Cop,Sp) ⊆ Fun(Cop,Sp). Similarly, in ii) the tensor
product of B,B′ ∈ Funb(C) is obtained by taking their Day convolution B ⊗Day B′
as functors Cop × Cop → Sp, and then applying to it the left adjoint to the inclusion
Funb(C) ⊆ Fun(Cop × Cop,Sp).

Remark 5.3.11 It follows from Remark 5.3.6 that the tensor products on Funq(C),
Funex(Cop,Sp) and Funb(C) of Corollaries 5.3.7 and 5.3.9 all preserve small colimits
in each variable.

Combining Corollaries 5.3.7 and 5.3.9 we obtain

Corollary 5.3.12 The linear part functor �(−) refines to a symmetric monoidal local-
isation functor

�⊗
(−) : Funq(C)⊗ → Funex(Cop,Sp)⊗.
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We would like to establish a similar property for the bilinear part functor. To this
end, consider the commutative diagram

Funb(C) BiFun(C) Fun∗(Cop × Cop,Sp) Fun(Cop × Cop,Sp)

Funq(C) Fun∗(C) Fun∗(C) Fun(C)
(121)

in which the horizontal arrows are the relevant inclusions and the vertical arrows are
all induced by restriction along the diagonal Cop → Cop × Cop. An application of
Lemma 5.3.4 shows that all∞-categories in this diagram inherit symmetric monoidal
structures from the Day convolution product on the functor∞-categories in the right
most column, and such that all horizontal inclusions admit symmetric monoidal left
adjoints, which are also localisation functors. In addition, the right most vertical func-
tor, given by restriction along the diagonal Cop → Cop× Cop, admits a left adjoint via
the corresponding left Kan extension. Since the diagonal is symmetric monoidal, so is
the corresponding left Kan extension. In addition, since the diagonal admits itself a two
sided adjoint via the direct sum functor⊕: Cop×Cop → Cop this left Kan extension is
just given by restriction along⊕. By the universal property of all the appearing locali-
sations it then follows that the vertical arrows in (121) admit symmetric monoidal left
adjoints and we consequently obtain a diagram of symmetric monoidal∞-categories
and symmetric monoidal functors

Funb(C)⊗ BiFun(C)⊗ Fun∗(Cop × Cop,Sp)⊗ Fun(Cop × Cop,Sp)⊗

Funq(C)⊗ Fun∗(C)⊗ Fun∗(C)⊗ Fun(C)⊗
B(−)

(122)

in which all horizontal functors are symmetric monoidal localisations and all vertical
functors are given by restriction along⊕: Cop×Cop → Cop followed by the projection
to the relevant full subcategory of Fun∗(Cop × Cop,Sp). In particular, the top middle
horizontal arrow in (122) is the bi-reduction functor of Lemma 1.1.3 and the second
from the left vertical functor in (122) is the cross-effect functor of Definition 1.1.4.
Since the cross-effect of any quadratic functor is bilinear this formula also holds for
the left most vertical arrow, that is, we may identify it with the bilinear part functor
B(−). Arguing as in the proof of Lemma 1.1.9 we see that this symmetric monoidal
refinement of B(−) is C2-equivariant with respect to the flip action on Funb(C)⊗ and
the trivial action on Funq(C)⊗, and consequently refines to a symmetric monoidal
functor

B⊗
(−) : Funq(C)⊗ → Funs(C)⊗, (123)

where the target is endowed with the symmetric monoidal structure obtained by
taking the C2-fixed points of Funb(C)⊗ in the ∞-category of symmetric monoidal
∞-categories.
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Now recall that the symmetric bilinear part functor

B(−) : Funq(C) → Funs(C)

is also a left Bousfield localisation functor, since it admits a fully-faithful right adjoint
(in fact, it admits fully-faithful adjoints from both sides). We now verify that the same
holds for its symmetric monoidal refinement just constructed:

Lemma 5.3.13 The symmetric monoidal functor (123) is a symmetric monoidal local-
isation functor.

Proof It will suffice to show that the localisation functor B(−) is compatible with the
symmetric monoidal structure (the resulting comparison between the corresponding
localisation and B⊗

(−) is then necessarily an equivalence since it is an equivalence on
the level of underlying ∞-categories). Now the maps that are sent to equivalences
by B(−) are exactly the maps whose cofibre is exact. Since left Kan extensions along
exact functors preserve exact functors (Lemma 1.4.1) it will suffice to show that if
Ϙ, Ϙ′ ∈ Funq(C) are such that Ϙ′ is exact then Ϙ⊗Ϙ′ ∈ Funq(C⊗C) (defined as in Con-
struction 5.1.2) is exact. Indeed, its bilinear part is BϘ⊗BϘ′ = 0 by Proposition 5.1.3.

We now combine the symmetric monoidal structures of Corollaries 5.3.7 and 5.3.9
to enhance the classification of hermitian structures of Corollary 1.3.12 to a symmetric
monoidal one:

Corollary 5.3.14 (Monoidal classificationof hermitian structures) The pullback square
of Corollary 1.3.12 refines to a pullback square in Op∞

Funq(C)⊗ Ar(Funex(Cop,Sp))⊗

Funs(C)⊗ Funex(Cop,Sp)⊗,

τ⊗

B⊗
(−)

(124)

in which all corners are symmetric monoidal ∞-categories and the vertical functors
are symmetric monoidal. Here the left vertical arrow is (123), the bottom right corner
is endowed with the symmetric monoidal structure of Corollary 5.3.9, and the arrow
category carries the corresponding pointwise symmetric monoidal structure.

Concretely, this means that for a given ∞-operad O, the data of an O-monoidal
hermitian refinement of a stably symmetric monoidal C can be identified with that of
a triple (B,�, α : � ⇒ [B�]tC2) where B : Cop × Cop → Sp is a lax O-monoidal
symmetric bilinear functor, � : Cop → Sp is a lax O-monoidal exact functor, and
� ⇒ [B�]tC2 is a lax O-monoidal transformation.

Proof of Corollary 5.3.14 Recall from Remark 1.3.7 that the pair of fully-faithful exact
functors

Funs(C)
Ϙs
(−)−−→ Funq(C) ← Funex(Cop,Sp)



Hermitian K-theory for stable ∞-categories I: Foundations Page 165 of 269 10

form a stable recollement. Wemay then invoke the theory of monoidal recollements as
developed in [55] to promote our classification of hermitian structures to a monoidal
one. More precisely, combining Corollary 5.3.12 and Lemma 5.3.13 it follows that the
above stable recollement is symmetric monoidal in the sense of [55, Definition 1.19].
The symmetric monoidal refinement of the classification square is then a consequence
of [55, Proposition 1.26].

Recall from Definition 1.2.8 that for a given stable∞-category C, the∞-category
Funp(C) is the non-full subcategory of Funq(C) consisting of the Poincaré structures on
C and the duality preserving natural transformations between them. We can refine this
inclusion to a (non-full) inclusion of∞-operads by extending (120) to a commutative
diagram of∞-operads

Funp(C)⊗ Funq(C)⊗ Fun(Cop,Sp)⊗ E∞

(Catp∞)⊗ (Cath∞)⊗
(
(Cat∞)op//Sp

)⊗ Cat×∞.

C (125)

in which all squares are pullbacks. For an ∞-operad O, the data of an O-algebra
structure on a given Poincaré structure Ϙ ∈ Funp(C) then corresponds to that of an
O-monoidal structure on (C, Ϙ) ∈ Catp∞ which refines the underlying O-monoidal
structure of C.
Construction 5.3.15 Applying Remark 5.3.1 and the uniqueness of localised symmet-
ric monoidal structures we deduce that the equivalence

Funb(C) 
 Funex(Cop,Funex(Cop,Sp)) = Funex(Cop, Ind(C)),

refines to a symmetric monoidal equivalence

Funb(C)⊗ 
 Funex(Cop, Ind(C))⊗,

where the domain is endowedwith the localisedDay convolution product and the target
with the corresponding nested localised Day convolution. Passing to non-degenerate
bilinear functors we obtain an equivalence

Funnb(C)⊗ 
 Funex(Cop, C)⊗ (126)

between the full suboperad of Funb(C)⊗ spanned by the non-degenerate bilinear func-
tors and the full suboperad of the Day convolution ∞-operad Fun(Cop, C)⊗ spanned
by the exact functors. We note that the latter may fail to be a symmetric monoidal
∞-category since C generally does not admit small colimits. To avoid confusion, let
us try to make the equivalence (126) more explicit. Given non-degenerate bilinear
functors B1, . . . ,Bn and B′, a multi-map {B1, . . . ,Bn} → B′ in Funnb(C)⊗ is given
by a natural transformation

(mop × mop)![B1 � . . . � Bn] = (m̃op × m̃op)![B1 ⊗ . . .⊗ Bn] → B′, (127)
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where m : C× . . .×C → C is the symmetric monoidal product of C, and m̃ : C⊗ . . .⊗
C → C is the exact functor induced by it. Here we point out that the domain in (127)
is generally not non-degenerate, which is why Funnb(C)⊗ is usually not a symmetric
monoidal∞-category. By adjunction we may equivalently describe the data of (127)
via a natural transformation in the square

[Cop ⊗ . . .⊗ Cop] × [Cop ⊗ . . .⊗ Cop] Sp ⊗ . . .⊗ Sp

Cop × Cop Sp.

m̃op×m̃op

B1⊗...⊗Bn

⊗β

B′
(128)

By Corollary 5.1.4 (and its proof), the bilinear functor B1⊗ . . .⊗Bn is non-degenerate
and represented byDB1⊗. . .DBn : Cop⊗. . .⊗Cop → C⊗. . .⊗C, whereDBi : Cop → C
is the exact functor representing the non-degenerate bilinear functor Bi . The corre-
sponding multi-map on the right hand side of (126) is then given by the map

m![DB1 � . . . � DBn ] = m̃![DB1 ⊗ . . .⊗ DBn ] → DB′

induced by the natural transformation in the square

Cop ⊗ . . .⊗ Cop C ⊗ . . .⊗ C

Cop C.
m̃op

DB1⊗...⊗DBn

m̃
τ

D′

(129)

associated to (128) by Lemma (1.2.4).
We now define Funpb(C)⊗ ↪→ Funnb(C)⊗ to be the non-full suboperad spanned

by the perfect bilinear functors and those multi-maps whose corresponding natural
transformation (129) is an equivalence. Similarly, we define Funps(C)⊗ to be the
suboperad of the symmetric monoidal∞-category Funs(C)⊗ = [Funb(C)⊗]hC2 sitting
in the pullback square

Funps(C)⊗ Funs(C)⊗

Funpb(C)⊗ Funb(C)⊗.

We note that by construction, the underlying ∞-categories of Funpb(C)⊗ and
Funps(C)⊗ are the subcategories Funpb(C) and Funps(C) of Funb(C) and Funs(C)
respectively, spanned by the perfect (symmetric) bilinear functors respectively and
duality preserving (symmetric) transformations between them.
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Lemma 5.3.16 The pullback square

Funp(C) Funq(C)

Funpb(C) Funb(C),

refines to a pullback square of ∞-operads

Funp(C)⊗ Funq(C)⊗

Funpb(C)⊗ Funb(C)⊗,

Proof Since Funpb(C)⊗ ↪→ Funb(C)⊗ is a suboperad this follows from the fact that a
hermitian functor

(m̃, η) : (C, Ϙ1)⊗ . . .⊗ (C, Ϙn) → (C, Ϙ′)

lying over the monoidal product m̃ : C ⊗ . . .⊗ C → C of C is Poincaré exactly when
the corresponding natural transformation

m̃(DϘ1 ⊗ . . .⊗ DϘn ) → DϘ′m̃
op

is an equivalence, where we have used the identification of the duality on a Poincaré
tensor product of Corollary 5.1.4.

Corollary 5.3.17 (Monoidal classification of Poincaré structures) The pullback square
of Corollary 1.3.13 refines to a pullback square in Op∞

Funp(C)⊗ Ar(Funex(Cop,Sp))⊗

Funps(C)⊗ Funex(Cop,Sp)⊗,

τ⊗

B⊗
(−)

(130)

in which all corners are symmetric monoidal ∞-categories and the vertical functors
are symmetric monoidal.

Corollary 5.3.18 Let C be a stably symmetric monoidal ∞-category, O an ∞-operad
and Ϙ : Cop → Sp a lax O-monoidal quadratic functor, so that BϘ and �Ϙ inherit
lax O-monoidal structures by Corollary 5.3.14. Then the corresponding O-monoidal
hermitian∞-category (C, Ϙ) isO-monoidal Poincaré if and only if the following holds:

i) The underlying hermitian ∞-category (C, Ϙ) is Poincaré.
ii) The lax O-monoidal structure on DϘ : Cop → C induced from that of BϘ via

Construction 5.3.15 is (strongly) O-monoidal. In particular, DϘ is an equivalence
of O-monoidal ∞-categories.
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Concretely, Corollary 5.3.18 implies that for a stably symmetric monoidal ∞-
category C, providing a compatibleO-monoidal Poincaré structure on C is equivalent

to providing a self-dual equivalence of O-monoidal ∞-categories D : Cop 
−→ C, a
lax O-monoidal exact functor � : Cop → Sp, and a lax O-monoidal transformation
�(−) ⇒ [hom(−,D(−))]tC2 .

Proof of Corollary 5.3.18 In light of Corollary 5.3.17 it will suffice to show that for a
lax O-monoidal bilinear functor B, the corresponding O-algebra object in Funb(C)⊗
lies in the non-full subcategory AlgO(Funpb(C)) ⊆ AlgO(Funb(C)) if and only if B
is perfect and the associated laxO-monoidal structure on DB is stronglyO-monoidal.
To see this, note that under the equivalence (126) of Construction 5.3.15, the sub-
operad Funpb(C)⊗ corresponds to the suboperad Fun◦(Cop, C)⊗ ⊆ Funex(Cop, C)⊗
spanned by the colours corresponding to equivalences D : Cop 
−→ C and the multi-
maps {D1, . . .Dn} → D′ corresponding to natural transformations

m̃(D1 ⊗ . . .⊗ Dn) ⇒ D′m̃op

which are equivalences. We now observe that by the universal property of the tensor
product of stable ∞-categories, such a natural transformation of exact functors is
an equivalence if and only if it is sent to an equivalence of multi-linear maps after
pre-composing both sides with the functor

C × . . .× C → C ⊗ . . .⊗ C.

We may hence equivalently define this suboperad of Funex(Cop, C)⊗ to be spanned
by the colours corresponding to equivalences and the multi-maps {D1, . . .Dn} → D′
corresponding to natural equivalences

m(D1 � . . . � Dn) ⇒ D′mop,

wherem is the composite C×. . .×C → C⊗. . .⊗C 
−→ C. It then follows directly from
the definitions that O-algebra objects in this suboperad correspond to equivalences
D : Cop → C equipped with strong O-monoidal structures, as desired.

5.4 Examples

In this section we want to give some examples of algebras and modules in Catp∞.

Example 5.4.1 Consider the Poincaré ∞-category (Spf , Ϙu). It is the tensor unit of
Catp∞ and thus admits a structure of commutative algebra. This algebra structure is
given by the usual smash product on Spf and the canonical commutative algebra
structure on the universal quadratic functor Ϙu induced by it being the image under the
symmetric monoidal left adjoint Fun((Spf)op,S) → Funq((Spf)op,S) of the Yoneda
image of S ∈ Spf .
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Example 5.4.2 Since the forgetful functor U : Catp∞ → Catex∞ is symmetric monoidal
by Theorem 5.2.7 every symmetric monoidal Poincaré ∞-category (C, Ϙ) yields a
stably symmetric monoidal ∞-category C upon forgetting Ϙ. In the other direction,
we will show in Sect. 7.2 that the formation of hyperbolic categories C �→ Hyp(C)
(see Sect. 2.2) gives both a left and a right adjoint to U , and hence Hyp is both
lax and oplax monoidal, see Remark 7.2.23 below. It then follows in particular that
if C is a stably symmetric monoidal ∞-category then Hyp(C) inherits a symmetric
monoidal structure. Unwinding the definitions, this structure is given explicitly by the
operation (x, y)⊗(x ′, y′) = (x⊗x ′, y⊗ y′)with the canonical laxmonoidal structure
on Ϙhyp(x, y) = homC(x, y). Similarly, if (C, Ϙ) is a symmetric monoidal Poincaré
∞-category then the Poincaré functor

fgt : (C, Ϙ) → Hyp(C)

sending x to (x,Dx) (see Sect. 2.2) is canonically a symmetric monoidal Poincaré
functor, since fgt acts as the unit of the symmetric monoidal adjunction U � Hyp,
see Remark 7.2.22. On the other hand, the Poincaré functor hyp : Hyp(C) → (C, Ϙ)
sending (x, y) to x ⊕Dy (see Sect. 2.2) is not symmetric monoidal in general, though
we will show below that it is a morphism of (C, Ϙ)-module objects in Catp∞.

Example 5.4.3 Wewill show below (see Remark 7.3.18) that the association (C, Ϙ) �→
Ar(C, Ϙ) fromCatp∞ to Catp∞ (seeDefinition 2.4.1) refines to a lax symmetricmonoidal
functor. It then follows that if (C, Ϙ) is a Poincaré∞-category then Ar(C, Ϙ) inherits a
symmetric monoidal structure. On the level of underlying objects this is given simply
by the levelwise product of arrows: [x → y] ⊗ [x ′ → y′] = [x ⊗ x ′ → y ⊗ y′]. The
Poincaré functor

id : (C, Ϙ) → Ar(C, Ϙ) x �→ [x = x]

then inherits the structure of a symmetric monoidal Poincaré functor by its role as a
unit of a symmetric monoidal adjunction, see Remark 7.3.17.

We now consider the case of modules over ring spectra studied in Sect. 3. We will
specialize to the case where A is an E∞-ring spectrum, that is, an algebra object in Sp
over the commutative ∞-operad, and the base E∞-ring k is just the sphere spectrum
(though see Example 5.4.13 for a perspective incorporating a general k). The ∞-
category ModωA then carries a symmetric monoidal structure given by tensoring over
A. We then consider the data needed in order to promote (ModωA)

⊗ to a symmetric
monoidal hermitian or Poincaré∞-category.

To begin, by Corollary 5.3.7 and Remark 5.3.8, the ∞-category Funq(ModωA)
inherits a symmetric monoidal structure, given by Day convolution followed by 2-
excisive approximation, such that symmetricmonoidal hermitian refinements ofModωA
correspond to algebra objects Ϙ ∈ AlgE∞(Funq(ModωA)). By Theorem 3.3.1 we have
a natural equivalence Funq(ModωA) 
 ModNA between the ∞-category of hermitian
structures on ModωA and that of modules with genuine involution over A, and so by
transport of structure the symmetric monoidal structure on Funq(ModωA) induces one
on ModNA.



10 Page 170 of 269 B. Calmès et al.

Definition 5.4.4 For an E∞-ring spectrum A and an ∞-operad O, we refer to an O-
algebra object in ModNA with respect to the above symmetric monoidal structure as
an O-algebra with genuine involution over A.

Warning 5.4.5 Notation 5.4.4 for O = E1 should not be confused with that of an
E1-algebra with genuine anti-involution as in Example 3.2.9.

As described in the proof of Corollary 5.3.14, the recollement
(
Funs(ModωA),Fun

ex

((ModωA)
op,Sp)

)
on Funq(ModωA) is compatible with the symmetric monoidal struc-

ture and hence the same holds for the recollement (ModhC2
A⊗S A,ModA) on ModNA. It

then follows that the square

ModNA Ar(ModA)

ModhC2
A⊗S A ModA

t
(−)tC2

refines to a square of symmetric monoidal∞-categories and lax symmetric monoidal
functors, such that the equivalence (71) becomes a symmetric monoidal one. To
identify the resulting symmetric monoidal structure on the individual components
ModhC2

A⊗S A,ModA we have the following:

Lemma 5.4.6 Let A be an E∞-ring spectrum.

i) Under the equivalence Funex((ModωA)
op,Sp) 
 ModA the symmetric monoidal

structure on the left hand side induced by Day convolution corresponds to the
symmetric monoidal structure ⊗A on ModA.

ii) Under the equivalence Funb(ModωA) 
 Funex((ModωA⊗S A)
op,Sp) 
 ModA⊗S A

the symmetric monoidal structure on the left hand side induced by Day convolution
corresponds to the symmetric monoidal structure ⊗A⊗S A on ModA⊗S A.

Proof We begin with i). By Corollary [47, Corollary 4.8.1.14] there is a unique
symmetric monoidal structure on Ind(ModωA) which preserves filtered colimits in
each variable and such that the inclusion ModωA ↪→ Ind(ModωA) is symmetric
monoidal. These two properties are satisfied by the tensor product on ModA, and
by Remark 5.3.11 the first property holds for the localised Day convolution prod-
uct. To finish the proof it is hence left to verify that for a stable ∞-category E the
stable Yoneda embedding E → Funex(Eop,Sp) admits a symmetric monoidal struc-
ture. Indeed, it follows from [52, Proposition 6.3] that the stable Yoneda embedding
coincides with the composite

E → Fun(Eop,S)
�∞+ ◦(−)−−−−−→ Fun(Eop,Sp) → Funex(Eop,Sp),

where the first arrow is the ordinary Yoneda embedding, which is naturally symmet-
ric monoidal [24, §3], the second is post-composition with the symmetric monoidal
suspension infinity functor �∞+ , and the last one is the left adjoint of the inclusion
Funex(Eop,Sp) ⊆ Fun(Eop,S), which is symmetric monoidal by Corollary 5.3.9.
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We now prove ii). In light of i), it will suffice to show the localised Day convolution
structures on Funb(ModωA) and Funex(ModωA⊗S A) coincide. For this we consider the
commutative square

Funex(ModωA⊗S A) Funb(ModωA)

Fun(ModωA⊗S A) Fun((ModωA)
op × (ModωA)

op,Sp)




where the horizontal maps are induced by restriction along the bifunctor (X ,Y ) �→
X ⊗S Y from ModωA ×ModωA to ModωA, and the vertical maps are the relevant full
inclusions. Passing to left adjoints and using the universal property of localisation we
obtain a commutative square

Funex(ModωA⊗S A) Funb(ModωA)

Fun(ModωA⊗S A) Fun((ModωA)
op × (ModωA)

op,Sp)




in which the horizontal maps are induced by left Kan extension along (X ,Y ) �→
X ⊗S Y , followed by projection to Funex(ModωA⊗S A) in case of the top arrow. In
particular, all arrows carry a natural symmetric monoidal structure, and so the top
horizontal equivalence identifies the localised Day convolution structures on both
sides.

Corollary 5.4.7 Let A be anE∞-ring spectrum andO an∞-operad. Then the data of an
O-monoidal hermitian refinement of (ModωA)

⊗ corresponds to a triple (B,C, α : C →
BtC2) where B ∈ AlghC2

A⊗S A is an O-(A⊗S A)-algebra equipped with a symmetry with
respect to the flip action on A ⊗S A, C is an O-A-algebra, and α is a map of O-A-
algebras.

Corollary 5.4.8 Let A be an E∞-ring spectrum and O an ∞-operad. Suppose that O
is unital. Then B, an O-algebra with genuine involution over A, determines an O-
monoidal Poincaré structure on (ModωA)

⊗ if and only if the underlying O-A-algebra
of B (with respect to either of the two component inclusions A → A⊗S A, this makes
no difference due to the symmetry of B) is initial.

Remark 5.4.9 In the situation of Corollary 5.4.8, the initiality condition on B can be
more explicitly formulated by saying that for every colour t ∈ O the composed map
A → A ⊗S A → Bt associated to the essentially unique null-operation {} → t and
either of the two component inclusions A → A ⊗S A, is an equivalence.

Proof of Corollary 5.4.8 Let ϘαB be the O-monoidal hermitian structure on ModωA
associated to theO-algebra with genuine involution (B,C, α : C → BtC2). By Corol-
lary 5.3.18 this hermitian structure isO-monoidal Poincaré if and only if ϘαB is Poincaré
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and the associated lax O-monoidal functor DB = homA(−, B) is O-monoidal. This
condition requires in particular that the map

1ModωA
= A → homA(A, B) = B

in question is an equivalence. On the other hand, when this condition holds we get
from Proposition 3.1.14 that (B,C, α) is induced by an anti-involution on A, and
hence in particular ϘαB is Poincaré by Example 3.1.9. In addition, in this case we may
write the duality as a composition of the standard duality DA and the C2-action on
ModωA induced by the involution on B = A, both of which are O-monoidal.

Taking O = E∞ in Corollary 5.4.8, we note that the data of a symmetric E∞-
(A ⊗S A)-algebra whose underlying A-algebra is initial is the same as the data of
a C2-action on A as an E∞-ring spectrum. We hence get that symmetric monoidal
Poincaré refinements of (ModωA)

⊗ correspond to the data of a C2-action on A as an
E∞-ring spectrum, together with a map of E∞-A-algebras C → AtC2 . Here AtC2 is
considered as a E∞-A-ring spectrum via the Tate Frobenius A → AtC2 . We will refer
to such a triple (A,C,C → AtC2) as an E∞-ring spectrum with genuine involution.

Examples 5.4.10 Let A ∈ AlghC2
E∞ be an E∞-ring spectrum equipped with an involu-

tion. We then have the following examples of genuine refinements of interest:

i) The map id : AtC2 → AtC2 determines an E∞-ring spectrum with genuine involu-
tion (A, AtC2 , id), and hence a symmetric monoidal refinement of the associated
symmetric Poincaré structure ϘsA on ModωA.

ii) If A is connective then the commutative A-algebra map t0 : τ≥0AtC2 → AtC2

determines an E∞-ring spectrum with genuine involution (A, τ≥0AtC2 , t0), and
hence a symmetric monoidal refinement of the Poincaré∞-category (ModωA, Ϙ

≥0
A )

of Example 3.2.8. When A is discrete, this is the genuine symmetric Poincaré
structure, see 4.2.

iii) The twisted Tate Frobenius map t : A → (A ⊗S A)tC2 → AtC2 , which in this
context is also the unit map of the E∞-A-algebra AtC2 , determines an E∞-ring
spectrum with genuine involution (A, A, t), and hence a symmetric monoidal
refinement of the Poincaré structure ϘtA of Example 3.2.12.

We now consider some examples where O is not the commutative ∞-operad, but
instead the operad MCom whose algebras are pairs (A, M) of a commutative algebra
and a module over it [47, Definition 3.3.3.8]. In particular, the data of anO-monoidal
hermitian (resp. Poincaré)∞-category consists of a pair ((C, Ϙ), (E, �))where (C, Ϙ)
is a symmetricmonoidal hermitian (resp. Poincaré)∞-category and (E, �) is amodule
over (C, Ϙ) in Cath∞ (resp. Catp∞). Consider the case where E is C considered as a
module over itself, so that � is a module over Ϙ in Funq(C)⊗. By Corollary 5.3.14
the data of such a Ϙ-module corresponds to a choice of BϘ-module B ∈ Funs(C),
a �Ϙ-module � ∈ Funex(Cop,Sp), and a �Ϙ-module map α : � → [B�]tC2 . For
example, we may always take B = BϘ considered as a module over itself. In this case,
if (C, Ϙ) is a symmetric monoidal Poincaré∞-category then all the structure maps in
theMCom-algebra structure on ((C, Ϙ), (C, ϘαB)) are Poincaré, since on the level of the



Hermitian K-theory for stable ∞-categories I: Foundations Page 173 of 269 10

underlying bilinear forms these maps come from the structure of (C, Ϙ) as a module
over itself. Similarly, any commutative triangle

� �′

[B�
Ϙ ]tC2

α β

of �Ϙ-modules in Funex(Cop,Sp) induces a morphism (C, ϘαB) → (C, ϘβB) of (C, Ϙ)-
module objects in Catp∞.

Example 5.4.11 Let (C, Ϙ) be a symmetric monoidal hermitian ∞-category with
underlying bilinear part B = BϘ. Then the associated quadratic hermitian∞-category
(C, ϘqB) is canonically a module over (C, Ϙ), and the natural hermitian functor

(C, ϘqB) → (C, Ϙ) (131)

is a map of (C, Ϙ)-module objects in Cath∞. In addition, if (C, Ϙ) is Poincaré then
(C, ϘqB) is a module over (C, Ϙ) in Catp∞ and the corresponding Poincaré functor (131)
is a morphism of (C, Ϙ)-module objects in Catp∞.

When C = ModωA for some E∞-algebra A and Ϙ = ϘαA for some C2-action on
A and some map of E∞-A-algebras α : C → AtC2 then Corollary 5.4.8 tells us that
the notion of a �Ϙ-module in Funex(Cop,Sp) is equivalent to that of a C-module D
equipped with a C-module map to AtC2 .

Example 5.4.12 Let A be a connective E∞-ring spectrum equippedwith an involution.
Then for every m ∈ Z the truncated Poincaré structure (ModωA, Ϙ

≥m
A ) ∈ Catp∞ of

Example 3.2.8 is canonically a module over the symmetric monoidal Poincaré ∞-
category (ModωA, Ϙ

≥0
A ) of Example 5.4.10ii). Indeed, this follows from the above since

τ≥m AtC2 is canonically a module over the algebra τ≥0AtC2 for every m. Similarly, the
canonical Poincaré functor

(ModωA, Ϙ
≥m
A ) → (ModωA, Ϙ

≥m−1
A )

refines to a map of (ModωA, Ϙ
≥0
A )-modules.

Example 5.4.13 Let k be an E∞-ring spectrum and A an E1-algebra over k. Then
Modωk is a symmetric monoidal∞-category which acts onModωA, giving anMCom⊗-
algebra object in Catex∞. The fibre product (Cath∞)⊗ ×(Catex∞)⊗ MCom⊗ then encodes
the Day convolution symmetric monoidal structure on Funq(Modωk ) and an action
of this structure on Funq(ModωA). On the level of modules with genuine involution
this is an action of ModNk on ModNA, which can also be encoded via the action
of Nk on NA in C2-spectra. By Example 5.4.10iii) the Tate Poincaré structure Ϙtk is
a commutative algebra object in Funq(Modωk ) 
 ModNk corresponding to the Tate
Frobenius triple kFr := (k, k, k → ktC2) encoding a commutative algebra object in
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modules with genuine involution over k, or, equivalently, a commutative Nk-algebra
object in genuine C2-spectra. We may then identify the k-linear norm Nk A of A (see
Remark 3.2.4 and Remark 3.3.2) with the tensor product NA ⊗Nk kFr, and deduce
that Nk A-modules in genuine C2-spectra correspond to kFr-modules in NA-modules,
and hence to Ϙtk-module objects in Funq(ModωA). In summary, the hermitian structures
on ModωA associated to k-modules with genuine involution as in Sect. 3.2 (with base
E∞-ring k) are exactly hermitian structures on ModωA which are Ϙtk-modules, and so
such k-modules with genuine involution classify refinements of ModωA to (Modωk , Ϙ

t
k)-

module objects in Cath∞.

6 The category of Poincaré categories

In the present section we study the global structural properties of the ∞-categories
Catp∞ and Cath∞. We begin in Sect. 6.1 by showing that Catp∞ and Cath∞ have all limits
and colimits, and that those are preserved by the inclusion Catp∞ ↪→ Cath∞ and by the
forgetful functor Cath∞ → Catex∞. In Sect. 6.2 we prove that the symmetric monoidal
structures on Catp∞ and Cath∞ constructed in Sect. 5.2 are closed, that is, they are
equipped with a compatible notion of internal mapping objects, which we refer to as
internal functor categories. This implies, in particular, that these monoidal structures
preserve colimits in each variable separately. We then show in Sects. 6.3 and 6.4 that
Cath∞ is tensored and cotensored over Cat∞ in a manner compatible with its closed
symmetric monoidal structure. Taken together, these properties imply that Cath∞ (just
like Cat∞) can be viewed as an (∞, 2)-category, that is furthermore enriched over
itself. Though this point of view does not directly extend to Catp∞, in some special
cases, such as poset of faces of finite simplicial complexes, the tensor and cotensor
constructions do preserve Poincaré∞-categories. We prove this in the final Sect. 6.6,
after dedicating Sect. 6.5 to the role played by imposing certain finiteness conditions
on the (co)tensoring∞-category.

In addition to its conceptual aspect, we will also make concrete use of the material
of this section in a variety of contexts, including Sect. 7.3 in the present paper, and
later in Paper [2], notably via the Q-construction which is used in the definition of the
Grothendieck-Witt spectrum, and the dualQ-constructionwhich is used in establishing
its universal property.

6.1 Limits and colimits

In this section we prove that Cath∞ and Catp∞ have all small limits and colimits and that
the functors Catp∞ → Cath∞ and Cath∞ → Catex∞ preserve these limits and colimits.
Since the former is conservative it follows automatically that it also detects limits and
colimits. We then verify a few (co)limit-related results which will be useful later on,
including the semi-additivity of Cath∞ and Catp∞, and the fact that the functors Pn and
Fm preserve filtered colimits.

We begin by recording the following statement, to which we could not find a
reference in this form:
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Proposition 6.1.1 The ∞-category Catex∞ admits all small limits and colimits. Limits
and filtered colimits are preserved by the inclusion Catex∞ → Cat∞.

Proof The statement for limits is [47, Theorem 1.1.4.4] and for filtered colimits is
given by [47, Proposition 1.1.4.6]. For general colimits we consider the fully-faithful
embedding of Catex∞ inside the∞-category Catrex∞ of∞-categories with finite colimits
and right exact functors between them. The latter admits small colimits by [43, Lemma
6.3.4.4]. On the other hand, the embedding Catex∞ ⊆ Catrex∞ admits a left adjoint given
by tensoring with Spf , see Construction 5.1.1. It then follows that Catex∞ has small
colimits obtained by forming colimits in Catrex∞ and then tensoring with Spf .

Proposition 6.1.2 The ∞-category Cath∞ admits all small limits and colimits, and
these are preserved by the forgetful functor π : Cath∞ → Catex∞.

Proof By construction the forgetful functor π : Cath∞ → Catex∞ is a cartesian fibration
classified by the functor C �→ Funq(C). By Corollary 1.4.2 we have that π is also a
cocartesian fibration and by Remark 1.1.15 the fibres Funq(C) of π admits small limits
and colimits. Given an exact functor f : C → D the associated cartesian transition
functor f ∗ : Funq(D) → Funq(C) preserves limits and the cocartesian transition
functor f! : Funq(C) → Funq(D) preserves colimits (indeed f! is left adjoint to f ∗).
Now the base Catex∞ of this bicartesian fibration admits small limits and colimits by
Proposition 6.1.1. It then follows from [43, 4.3.1.11] and [43, 4.3.1.5.(2)] that Cath∞
admits all small limits and colimits and that these are preserved by π .

Remark 6.1.3 To make the content (and proof) of Proposition 6.1.2 more explicit, let
K be a simplicial set and p : K → Cath∞ a diagram. Then the limit of p is computed as
follows: one first extends the diagram q := π p : K → Catex∞ of stable ∞-categories
to a limit diagram q : K  → Catex∞. Let C∞ = q(∞) be the image of the cone point
(which we denote by the symbol∞), so that q exhibits C∞ as the limit of q in Catex∞.
Interpreting q as a natural transformation with target q : K → Catex∞ and domain the
constant diagram K → Catex∞ with value C∞, we may lift it to a pointwise π -cartesian
natural transformation with target p and domain some diagram p∞ : K → Cath∞
which is concentrated in the fibre of C∞. In other words, p∞ encodes a diagram
p∞ : K → Funq(C∞). The hermitian ∞-category (C∞, limK p∞) is then the limit
of the original diagram p. Somewhat informally, though more explicitly, we may
describe the diagram p∞ via the formula k �→ r∗k Ϙk , where (Ck, Ϙk) is the hermitian
∞-category associated to k by the diagram p and rk : C∞ → Ck is the exact functor
associated to the map∞ → k in K  by the limit diagram p. Since Funq(C∞) is closed
in Fun(Cop∞,Sp) under limits the limit of p∞ can also be computed in Fun(Cop∞,Sp),
that is, object-wise. Similarly, in order to compute the colimit of p we first extend
q = π p to a colimit diagram q : K � → Catex∞. Let C∞ = q(∞) be the image of the
cone point, and ik : Ck → C∞ the exact functor associated to the arrow k → ∞ in K �.
Then as above we can “push” the diagram p to the fibre over C∞, yielding a diagram
p∞ : K → Funq(C∞) given by the formula k �→ (ik)!Ϙk . The colimit of p in Cath∞ is
then given by

(C∞, colim
K

p∞) = (C∞, colim
k∈K

(ik)!Ϙk),
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where the colimit of p∞ is computed in Funq(C∞). This last colimit can also be
computed in Fun(Cop∞,Sp) since Funq(C∞) is closed in Fun(Cop∞,Sp) under colimits
(see Remark 1.1.15).

Proposition 6.1.4 The ∞-category Catp∞ has small limits and colimits and the inclu-
sion Catp∞ → Cath∞ preserves small limits and colimits.

The proof of Proposition 6.1.4 will require the following lemma.

Lemma 6.1.5 Let p : K � → Catex∞ be a colimit diagram of stable ∞-categories and
let f : C∞ := p(∞) → D be an exact functor to a cocomplete stable ∞-category.
Then the canonical map

colim
k∈K

(ik)!i∗k f → f

is an equivalence, where ik : Ck := p(k) → C∞ is the map associated to k → ∞ by
p.

Proof For any diagram p : K � → Catex∞, the functor

i∗ : Funex(C∞,D) → lim
k∈K

Funex(Ck,D)

sending f to { f ◦ ik}k∈K has a left adjoint given by

i! : { fk}k∈K �→ colim
k∈K

(ik)! fk .

Indeed, this follows for example by the general formula of [33, TheoremB]. Our claim
is then equivalent to the statement that the counit

i!i∗ f → f

is an equivalence if p is a colimit diagram. But Funex(−,D) : (Catex∞)op → Catex∞ is
a right adjoint (in fact, its own right adjoint) and so it preserves all limits. Hence i∗ is
an equivalence of∞-categories and in particular the counit is an equivalence of exact
functors.

Proof of 6.1.4 Webeginwith the case of colimits. Let p : K → Catp∞ be a diagram. By
Proposition 6.1.2 we may find a colimit diagram p : K � → Cath∞ in Cath∞ extending
(the image of) p. We will show that the image of p is contained in Catp∞ and forms
a colimit diagram there. Let (C∞, Ϙ∞) = p(∞) be the image of the cone point and
for k ∈ K let (ik, ηk) : (Ck, Ϙk) → (C∞, Ϙ∞) be the hermitian functor associated to
the map k → ∞ in K � by p. In particular, the collection of natural transformations
ηadk : (ik)!Ϙk → Ϙ∞ exhibits Ϙ∞ as the colimit of the diagram k �→ (ik)!Ϙk . Our
argument proceeds in two steps:
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Step 1. The hermitian ∞-category (C∞, Ϙ∞) is Poincaré, and all the hermitian
functors (ik, ηk) : (Ck, Ϙk) → (C∞, Ϙ∞) are Poincaré.
Let Dk : Copk → Ck be the duality associated to Ϙk . Let q := π p : K → Catex∞ be
the underlying diagram of stable∞-categories and let us denote by qop : K → Catex∞
the composite of q and the equivalence (−)op : Catex∞ 
−→ Catex∞. Since the diagram
p takes values in Poincaré∞-categories and duality preserving functors the functors
Dk form the components of a natural transformation qop ⇒ q, which consequently
induce a functor

D∞ : Cop∞ → C∞,

wherewenote that (−)op : Catex∞ → Catex∞ preserves colimits since it is an equivalence.
We claim that D∞ represents the bilinear part of Ϙ∞. Indeed, since bilinear parts
commute with left Kan extensions (Lemma 1.4.3) and colimits (by Lemma 1.1.7) the
bilinear part of Ϙ∞ is given by

colim
k∈K

(iopk × iopk )!BϘk (−,−) 
 colim
k∈K

(iopk × iopk )! homCk (−,Dk(−))


 colim
k∈K

(id × iopk )! homC∞(−, ikDk(−)) 


 colim

k∈K
(id × iopk )! homC∞(−,D∞iopk (−))


 colim
k∈K

(id × iopk )!(id × iopk )∗ homC∞(−,D∞−) 
 homC∞(−,D∞(−)),

where the last equivalence is by Lemma 6.1.5. We have thus established that the
hermitian ∞-category (C∞, Ϙ∞) is non-degenerate and all the hermitian functors
(ik, ηk) : (Ck, Ϙk) → (C∞, Ϙ∞) are duality preserving. To finish the proof it will hence
suffice to show that Ϙ∞ is perfect. But this follows from Remark 1.2.9 since D∞ is an
equivalence, being the functor induced on limits by a natural equivalence of diagrams
qop ⇒ q.

Step 2. If (D,�) is a Poincaré ∞-category then a hermitian functor ( f , η) : (C∞,

Ϙ∞) → (D,�) is Poincaré if and only if ( f ◦ ik, i∗k η) is Poincaré for every k ∈ K .
The hermitian functor ( f , η) is a Poincaré functor if and only if the associated natural
transformation

f D∞ → D∞ f op (132)

is an equivalence. Since C∞ is the colimit of p in Catex∞ the natural transformation (132)
is an equivalence if and only if the natural transformation

f D∞iopk → D∞ f opiopk
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is an equivalence for all k ∈ K . But, since the ik are all Poincaré functors, there is a
commutative diagram

f ◦ D∞ ◦ iopk D∞ ◦ f op ◦ iopk

f ◦ ik ◦ Dk




Thus, (132) is an equivalence if and only if ( f ◦ ik, i∗k η) is a Poincaré functor for all
k ∈ K .

The case of limits is similar and slightly easier. Indeed, as above, the natural equiv-
alence of diagrams qop ⇒ q induced by the collection of dualities Dk induces an
equivalence

D∞ : Cop∞ = lim
K

qop → lim
K

q = C∞

This time, showing that D∞ represents the bilinear form of Ϙ∞ = limk∈K r∗k Ϙk (where
rk : C∞ → Ck are the canonical maps) is even simpler. Indeed, since taking bilinear
forms commutes with restriction (Remark 1.1.6), and limits (by Lemma 1.1.7), the
bilinear part of Ϙ∞ is given by

lim
k∈K

(rk × rk)
∗BϘk 
 lim

k∈K
homCk (rk(−),Dk(rk(−)))

= lim
k∈K

homCk (rk(−), rk ◦ D∞) 
 homC(−,D∞(−)),

and this concludes the proof of Step 1 in the case of limits. The proof of Step 2 is
completely dual to that of colimits.

Remark 6.1.6 ByProposition6.1.4 the∞-categoryCatp∞ has small limits and colimits,
and those are preserved by the inclusion in Cath∞, which itself also has small limits
and colimits. Since the forgetful functor Catp∞ → Cath∞ is conservative, it also detects
limits and colimits. One then says that limits and colimits in Catp∞ are computed in
Cath∞.

Proposition 6.1.7 The ∞-categories Catex∞, Cath∞ and Catp∞ are all semi-additive, i.e.
finite products and coproducts agree.

Proof For Catex∞, as in the proof of Proposition 6.1.1we can embedCatex∞ as a reflective
full subcategory of Catrex∞ . It will then suffice to verify that Catrex∞ is semi-additive,
which in turn follows from [43, Lemma 7.3.3.4]. In particular, the coproduct of C and
C′ in Catex∞ is given by the product C × C′, and exhibited by the two inclusions

i : C × {0} → C × C′ ← {0} × C′ : i ′.

Turning to the other two cases, we first observe that since limits and colimits in Catp∞
are computed in Cath∞ (Remark 6.1.6) it is in fact sufficient to show that Cath∞ is semi-
additive. We first observe that Cath∞ is pointed. Indeed, the hermitian ∞-category
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({0}, 0), whose underlying stable ∞-category consists of a single object 0, equipped
with the hermitian structure which sends 0 to the zero spectrum, is both initial and
final in Cath∞.

Now let (C, Ϙ) and (C′, Ϙ′) be two hermitian∞-categories. By the explicit descrip-
tion of Remark 6.1.3 we have that the coproduct of (C, Ϙ) and (C′, Ϙ′) in Cath∞ is given
by (C × C′, i!Ϙ⊕ i ′!Ϙ

′), while the product is given by (C × C′, p∗Ϙ⊕ (p′)∗Ϙ′), where
p, p′ are the projections on C and C′, respectively. It will hence suffice to show that
the canonical natural transformation

i!Ϙ⊕ i ′!Ϙ
′ ⇒ p∗Ϙ⊕ (p′)∗Ϙ′ (133)

is an equivalence. But, since i is also right adjoint to p and i ′ is right adjoint to p′ we
have natural equivalences

i!Ϙ 
 p∗Ϙ and i ′!Ϙ
′ 
 (p′)∗Ϙ′,

under which the canonical map (133) becomes the identity, since p ◦ i and p′ ◦ i ′ are
the respective identities while p ◦ i ′ and p′ ◦ i are the zero functors.

The following result will be useful for us in Paper [4] for proving that Catp∞ and
Cath∞ are compactly generated presentable∞-categories:

Proposition 6.1.8 The functors Fm : Cath∞ → S and Pn : Catp∞ → S commute with
filtered colimits. In particular, the object (Spf , Ϙu) which corepresents these functors
(Proposition 4.1.3) is compact in both Cath∞ and Catp∞.

Proof Let us first prove the statement for Fm. Let E → Cat∞ be the presentable
fibration classified by the functor Cat∞ → CAT∞ sending C to Psh(C), so the objects
ofE are givenby apair (C, S)where S : Cop → S is a presheaf, andmorphisms are pairs
( f , η) where f : C → C′ is a functor and η : S → f ∗S′ is a natural transformation.
There is a functor � : Cath∞ → E lying above the inclusion Catex∞ → Cat∞ sending
(C, Ϙ) to (C,�∞Ϙ). Then we can factor Fm(−) as

Cath∞
�−→ E → S

where the second functor is the functor corepresented by the final object ∗ :=
(�0, ∗: �0 → S) in E . Note that � is a morphism of cocartesian fibrations by
Proposition 1.4.3 and that it preserves filtered colimits fibrewise. Moreover it lies
above the inclusion Catex∞ → Cat∞, which preserves filtered colimits by [47, Propo-
sition 1.1.4.6]. Hence the functor� preserves filtered colimits. It will hence suffice to
show that ∗ is compact in E . Now by the naturality of the straightening-unstraightening
equivalence as recorded in [23, Corollary A.31], the unstraightening procedure deter-
mines an equivalence E 
 RFib, where RFib ⊆ Ar(Cat∞) is the full subcategory
spanned by the right fibrations. It will hence suffice to show that the final object in
RFib is compact. This object corresponds to the identity right fibration �0 → �0,
which is compact when considered as an object of Ar(Cat∞) since �0 is compact
in Cat∞. It will hence suffice to show that the inclusion RFib ⊆ Ar(Cat∞) is closed
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under filtered colimits. Indeed, the condition of being a right fibration can be phrased
as being local with respect to the maps in Ar(Cat∞) encoded by the squares of the
form

�n
i �n

�n �n

with 0 < i ≤ n. This is an arrow between two compact objects of Ar(Cat∞) and
hence the locality condition it defines is closed under filtered colimits.

Now we want to prove the statement for Pn. We know that the functors Catex∞ → S
sending C to ιC and C �→ ιTwAr(C) 
 ιFun(�1, C) commute with filtered colimits
since �0 and �1 are compact in Cat∞ and the inclusion Catex∞ ⊆ Cat∞ preserves
filtered colimits by [47, Proposition 1.1.4.6]. We then consider the cartesian square
(see (44))

Pn(C, Ϙ) Fm(C, Ϙ)

TwAr(ιC) ιTwAr(C)

where we identify TwAr(ιC)with the subspace of ιTwAr(C) spanned by those arrows
that are equivalences in C. Since all the corners of the square except Pn preserve filtered
colimits in Cath∞ (and so in Catp∞), so does Pn.

We finish this subsection by describing an example of a colimit in Catp∞ arising
from visible Poincaré structures on parametrised spectra. Recall from Sect. 4.4 that
given a space X and a spherical fibration ξ : X → Pic(S), one may endow the ∞-
category SpfX of finitely presented parametrised spectra over X with the ξ -twisted
visible Poincaré structure Ϙvξ , whose L-groups are the associated visible L-groups
studied in [73] (see Corollary 4.4.14). We now show that this construction actually
produces the colimit of a suitable diagram of Poincaré ∞-categories. Note first that,
as inspecting the definitions reveals, for every x ∈ X the Poincaré structure Ϙvξx

on

Spf{x} = Spf identifies with the tensor ξx ⊗ Ϙu, defined using the action of Spf on

Funq(Spf) canonically determined by the stability of the latter. We may then consider
the composite diagram

X Pic(S) Spf Funq(Spf) Cath∞

x ξx Ϙvξx
(Spf , Ϙvξx

)

ξ (−)⊗Ϙu

(134)

where the last arrow places the fibre of the cartesian fibration Cath∞ → Catex∞ over
Spf ∈ Catex∞. This diagram can then be viewed as a diagram in Catp∞: indeed, each
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(Spf , Ϙvξx
) is Poincaré by Corollary 4.4.3 and all the hermitian functors involved are

equivalences in Cath∞ and hence in particular duality preserving.

Proposition 6.1.9 Let X be a space equipped with a spherical fibration ξ : X →
Pic(S). Then the collection of Poincaré functors

(λx , ηx ) : (Spf , Ϙvξx
) → (SpfX , Ϙ

v
ξ ),

associated by Remark 4.4.6 to the various point inclusions {x} ↪→ X, exhibits
(SpfX , Ϙ

v
ξ ) as the colimit in Catp∞ of the diagram

X → Catp∞ x �→ (Spf , Ϙvξx
)

constructed in (134).

Remark 6.1.10 In the situation of Proposition 6.1.9, if ξ = SX is the constant spher-
ical fibration with value S then the composed diagram (134) is constant with value
(Spf , Ϙu), and wemay view the statement of the proposition as identifying (SpfX , Ϙ

v
SX

)

with the tensor of the Poincaré∞-category (Spf , Ϙu) and the space X . Wewill discuss
such tensors from a more general perspective in Sect. 6.4 below.

Proof of Proposition 6.1.9 By Proposition 6.1.4 it will suffice to check that the under-
lying hermitian functors exhibit (SpfX , Ϙ

v
ξ ) as the colimit in Cath∞ of the diagram in

question. By the explicit description of colimits in Cath∞ given in Remark 6.1.3 and
the fact that we have already established this colimit property on the level of quadratic
functors in Proposition 4.4.7 (see Remark 4.4.8), all that is left is to check that the
collection of exact functors λx : Spf → SpfX exhibit SpfX as the colimit in Catex∞ of
the constant X -indexed diagram with value Spf . We now note that the equivalence

(−)op : Cat∞ 
−→ Cat∞ preserves stable ∞-categories and exact functors, and hence

restricts to an equivalence (−)op : Catex∞ 
−→ Catex∞. We may hence show instead that
the diagram in question becomes a colimit diagram after applying (−)op. We now
observe that

Sp 
 Ind(Spf) 
 Pro((Spf)op)op,

and consequently

Fun(X ,Sp)op 
 Fun(Xop,Pro((Spf)op)).

Under the last equivalence, the full subcategory (SpfX )
op of finitely presented

parametrised spectra corresponds to the full subcategory ((Spf)op)X ⊆ Fun(Xop,

Pro((Spf)op)) generated under finite limits by the functors Xop → Pro((Spf)op) right
Kan extended along point inclusions {x} ⊆ Xop from functors {x} → Pro((Spf)op)
with value in (Spf)op. The desired result now follows from the fact that the functor

(Spf)op × X → ((Spf)op)X (E, x) �→ x∗E
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exhibits ((Spf)op)X as the tensor of (Spf)op over X in Catex∞, see Remark 6.4.2 below.

6.2 Internal functor categories

In the present section we will show that the symmetric monoidal structures on Cath∞
and Catp∞ constructed in Sect. 5.2 are closed. In particular, for two hermitian ∞-
categories (C, Ϙ) and (C′, Ϙ′), we will promote the stable∞-category Funex(C, C′) of
exact functors from C to C′ to a hermitian∞-category Funex((C, Ϙ), (C′, Ϙ′)), charac-
terized by a natural equivalence

MapCath∞((C′′, Ϙ′′),Funex((C, Ϙ), (C′, Ϙ′))) 
 MapCath∞((C′′, Ϙ′′)⊗ (C, Ϙ), (C′, Ϙ′))

for (C′′, Ϙ′′) ∈ Cath∞. Furthermore, if (C, Ϙ) and (C′, Ϙ′) are Poincaré ∞-categories,
then the hermitian∞-category Funex((C, Ϙ), (C′, Ϙ′)) is Poincaré as well and satisfies

MapCatp∞((C′′, Ϙ′′),Funex((C, Ϙ), (C′, Ϙ′))) 
 MapCatp∞((C′′, Ϙ′′)⊗ (C, Ϙ), (C′, Ϙ′)).

The internal functor category Funex((C, Ϙ), (C′, Ϙ′)) enjoys the following use-
ful property: its hermitian objects correspond exactly to the hermitian functors
(C, Ϙ) → (C′, Ϙ′), and when (C, Ϙ) and (C′, Ϙ′) are Poincaré the Poincaré objects
in Funex((C, Ϙ), (C′, Ϙ′)) correspond to Poincaré functors (C, Ϙ) → (C′, Ϙ′). In partic-
ular, this allows one to view the notions of hermitian functors and hermitian objects
in a unified setting, and describe the relation between hermitian and Poincaré functors
in terms of that which holds between hermitian and Poincaré objects.

Definition 6.2.1 Let (C, Ϙ) and (C′, Ϙ′) be two hermitian∞-categories. We set

natϘ
′
Ϙ : Funex(C, C′)op → Sp, f �→ nat(Ϙ, f ∗Ϙ′),

where nat denotes the spectrum of natural transformations between two spectrum
valued functors.

Proposition 6.2.2 The functor natϘ
′
Ϙ : Funex(C, C′)op → Sp is quadratic. Its bilinear

part is given by

BnatϘ
′
Ϙ
( f , g) := nat(BϘ, ( f × g)∗BϘ′)

and its linear part makes the diagram

�natϘ
′
Ϙ
( f ) nat(�Ϙ, f ∗�Ϙ′)

BnatϘ
′
Ϙ
( f , f )tC2 nat(Ϙ, f ∗B�

Ϙ′)
tC2 nat

(
Ϙ, f ∗(B�

Ϙ′)
tC2

)
,
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cartesian, where the left bottom equivalence is by the adjunction of Lemma 1.1.7. Here,
as in Sect. 1.1, for a bilinear form B we denote by B� = �∗B its pre-composition
with the diagonal. If both Ϙ and Ϙ′ are non-degenerate, so is natϘ

′
Ϙ with duality given

by

DnatϘ
′
Ϙ
( f ) = DϘ′ f opDop

Ϙ .

Finally, if both Ϙ and Ϙ′ are perfect, then so is natϘ
′
Ϙ .

Proof We begin by computing the cross effect of natϘ
′
Ϙ . It is given by

BnatϘ
′
Ϙ
( f , g) =fib

[
nat(Ϙ, ( f ⊕ g)∗Ϙ′) −→ nat(Ϙ, f ∗Ϙ′)⊕ nat(Ϙ, g∗Ϙ′)

]


 nat
(
Ϙ,fib

[
( f ⊕ g)∗Ϙ′ −→ f ∗Ϙ′ ⊕ g∗Ϙ′

])


 nat
(
Ϙ, (( f × g)∗BϘ′)�

) 
 nat
(
BϘ, ( f × g)∗BϘ′

)

where the last equivalence is by the adjunction of Lemma 1.1.7. In particular, the cross
effect of natϘ

′
Ϙ is bilinear. Taking f = g we similarly get that

B�

natϘ
′
Ϙ
( f ) 
 nat

(
BϘ, ( f × f )∗BϘ′

) 
 nat(Ϙ, f ∗B�
Ϙ′), (135)

and hence

fib
[
natϘ

′
Ϙ ( f ) → (B�

natϘ
′
Ϙ
( f ))hC2

] 
 nat(Ϙ, f ∗ fib[Ϙ′ → (B�
Ϙ′)

hC2 ]). (136)

Since fib[Ϙ′ → B�
Ϙ ] is exact by Proposition 1.1.13 it then follows that (136) is exact

in f , and hence by the same proposition we have that natϘ
′
Ϙ is quadratic.

We now compute the linear part of natϘ
′
Ϙ . Applying nat(Ϙ, f ∗(−)) to the classifying

square of Ϙ′ and using the equivalence (135) and the equivalence nat(�Ϙ, f ∗�Ϙ′)

−→

nat(Ϙ, f ∗�Ϙ′) given by Lemma 1.1.24 we obtain an exact square

natϘ
′
Ϙ ( f ) nat(�Ϙ, f ∗�Ϙ′)

BnatϘ
′
Ϙ
( f , f )hC2 nat(Ϙ, f ∗(B�

Ϙ′)
tC2)

in which the terms on the left hand side are quadratic in f and the terms on the right
hand side are exact in f . The desired formula for �natϘ

′
Ϙ
is now obtained by taking

linear parts.
Now suppose that Ϙ and Ϙ′ are non-degenerate. Applying Lemma 1.2.4 and the

adjunction between DϘ and Dop
Ϙ we obtain natural equivalences

BnatϘ
′
Ϙ
( f , g) 
 nat(BϘ, ( f × g)∗BϘ′) 
 nat( f DϘ,DϘ′g

op) 
 nat( f ,DϘ′g
opDop

Ϙ ),
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which shows that natϘ
′
Ϙ is non-degenerate with duality DnatϘ

′
Ϙ
( f ) 
 DϘ′ f opDop

Ϙ . If Ϙ

and Ϙ′ are in addition perfect then the dualities DϘ and DϘ′ are equivalences and hence
so is DnatϘ

′
Ϙ
by the above formula. The hermitian structure natϘ

′
Ϙ is then also perfect,

as desired.

Definition 6.2.3 For hermitian∞-categories (C, Ϙ), (C′, Ϙ′) we will denote by

Funex((C, Ϙ), (C′, Ϙ′)) := (Funex(C, C′), natϘ′Ϙ )

the hermitian ∞-category given by Proposition 6.2.2. We will refer to Funex((C, Ϙ),
(C′, Ϙ′)) as the internal functor category from (C, Ϙ) to (C′, Ϙ′).

Remark 6.2.4 If (C, Ϙ) and (C′, Ϙ′) are Poincaré then Funex((C, Ϙ), (C′, Ϙ′)) is
Poincaré. This follows from the last part of Proposition 6.2.2.

Example 6.2.5 Let (C, Ϙ) be a hermitian ∞-category. Then under the natural equiv-
alence Funex(Spf , C) 
 C given by evaluation at the sphere spectrum, the functor
natϘϘu corresponds to Ϙ by virtue of Lemma 4.1.1. We consequently obtain a natural
equivalence

Funex((Spf , Ϙu), (C, Ϙ)) 
 (C, Ϙ)

of hermitian∞-categories.

Construction 6.2.6 For two hermitian∞-categories (C, Ϙ), (C′, Ϙ′)we construct a her-
mitian functor

ev : (C, Ϙ)⊗ Funex((C, Ϙ), (C′, Ϙ′)) → (C′, Ϙ′)

as follows. We first observe that by definition of the monoidal structure on Cath∞,
specifying such a hermitian functor is equivalent to specifying a functor f : C ×
Funex(C, C′) → C′ which is exact in each variable separately, together with a natural
transformation

η : Ϙ⊗ natϘ
′
Ϙ ⇒ f ∗Ϙ′

of functors Cop × Funex(C, C′)op → Sp. In the case at hand we then take as f the
usual evaluation functor ev : C× Funex(C, C′) → C′. To construct η we use the curry-
equivalence

Fun(Cop × Funex(C, C′)op,Sp) 
 Fun(Funex(C, C′)op,Fun(Cop,Sp)),

and pull the evaluation transformation

Ϙ⊗ nat(Ϙ,−) ⇒ idFun(Cop,Sp)
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back along the postcomposition functor

Ϙ′ ◦ (−) : Funex(C, C′)op → Fun(Cop,Sp),

which is the curry of ev∗Ϙ′.

Proposition 6.2.7 Let (C, Ϙ) and (C′, Ϙ′) be two hermitian ∞-categories. Then the
evaluation functor (ev, η) of Construction 6.2.6 exhibits Funex((C, Ϙ), (C′, Ϙ′)) as the
internal mapping object in the symmetric monoidal ∞-category Cath∞. That is, for
any (C′′, Ϙ′′) hermitian ∞-category the composite

MapCath∞((C′′, Ϙ′′),Funex((C, Ϙ), (C′, Ϙ′)))
−→ MapCath∞((C, Ϙ)⊗ (C′′, Ϙ′′), (C, Ϙ)⊗ Funex((C, Ϙ), (C′, Ϙ′)))
(ev,η)∗−−−−→ MapCath∞((C, Ϙ)⊗ (C′′, Ϙ′′), (C′, Ϙ′))

is an equivalence of spaces.

By the Yoneda lemma we immediately find:

Corollary 6.2.8 The association (C, Ϙ), (C′, Ϙ′) �→ Funex((C, Ϙ), (C′, Ϙ′)) canonically
extends to a functor (Cath∞)op × Cath∞ → Cath∞ in a way that renders the evaluation
map of Construction 6.2.6 a natural transformation.

Corollary 6.2.9 The symmetric monoidal structures on Cath∞ constructed in Sect. 5.2
is closed.

Corollary 6.2.10 The symmetric monoidal product on Cath∞ preserves small colimits
in each variable.

Remark 6.2.11 Since the hermitian evaluation functor of Construction 6.2.6 refines
by definition the usual evaluation functor of Catex∞, it follows that the forgetful functor
U : Cath∞ → Catex∞ is not only symmetric monoidal (Theorem 5.2.7ii), but also closed
symmetric monoidal, that is, for (C, Ϙ), (C′, Ϙ′) ∈ Cath∞ the composed map

U(C, Ϙ)⊗ UFunex((C, Ϙ), (C′, Ϙ′)) 
−→ U((C, Ϙ)⊗ Funex((C, Ϙ), (C′, Ϙ′))) U(ev)−−−→ U(C′, Ϙ′)

exhibits U Funex((C, Ϙ), (C′, Ϙ′)) as the internal mapping object in Catex∞ from
U(C, Ϙ) = C to U(C′, Ϙ′) = C′. In other words, the transposed map

U Funex((C, Ϙ), (C′, Ϙ′)) → Funex(U(C, Ϙ),U(C′, Ϙ′))

is an equivalence.
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Proof of Proposition 6.2.7 The forgetful functor Cath∞ → Catex∞ induces a commuta-
tive diagram

MapCath∞ ((C′′, Ϙ′′),Funex((C, Ϙ), (C′, Ϙ′))) MapCath∞ ((C, Ϙ)⊗ (C′′, Ϙ′′), (C′, Ϙ′))

MapCatex∞ (C′′,Funex(C,C′)) MapCatex∞ (C ⊗ C′′,C′)


(137)
in which the bottom horizontal arrow is an equivalence since on the level of sta-
ble ∞-categories, the bilinear functor ev : C × Funex(C, C′) → C′ already exhibits
Funex(C, C′) ∈ Catex∞ as the internal mapping object from C to C′ in Catex∞. It will
hence suffice to show that the map induced by (137) on vertical homotopy fibres
is an equivalence. Let us thus fix a linear functor g : C′′ → Funex(C, C′), and write
g : C⊗C′′ → C′ for its image in the bottom right corner of (137). Since Cath∞ → Catex∞
is a cartesian fibration the induced map on vertical fibres in (137) can be identified
with the composed map of spaces of natural transformations

Nat(Ϙ′′, g∗ natϘ′Ϙ ) → Nat(Ϙ⊗ Ϙ′′, Ϙ⊗ g∗ natϘ′Ϙ ) → Nat(Ϙ⊗ Ϙ′′, g∗Ϙ′), (138)

where the second map is induced by the natural transformation η : Ϙ⊗ natϘ
′
Ϙ ⇒ ev∗Ϙ′

of Construction 6.2.6, restricted along (id, g) : C × C′′ → C × Funex(C, C′). Let
us now identify functors (C × C′′)op → Sp with functors C′′op → Fun(Cop,Sp),
and write Ϙ′ : Funex(C, C′)op → Fun(Cop,Sp) for the curried functor determined by
ev∗Ϙ′ : (C × Funex(C, C′))op → Sp. Unwinding the definitions we may rewrite (138)
as

MapFun(C′′op,Sp)(Ϙ
′′, nat(Ϙ, g∗Ϙ′))

→ MapFun(C′′op,Fun(Cop,Sp))(Ϙ⊗ Ϙ′′, Ϙ⊗ nat(Ϙ, g∗Ϙ′))
→ MapFun(C′′op,Fun(Cop,Sp))(Ϙ⊗ Ϙ′′, g∗Ϙ′),

where we understand nat(Ϙ,−) : Fun(C′′op,Fun(Cop,Sp)) → Fun(C′′op,Sp) as the
functor obtained by applying nat(Ϙ,−) : Fun(Cop,Sp) → Sp levelwise. To finish the
proof it will hence suffice to show that the evaluation natural transformation

Ϙ⊗ nat(Ϙ,−) ⇒ idFun(Cop,Sp)

exhibits

Ϙ⊗−: Fun(C′′op,Sp) → Fun(C′′op,Fun(Cop,Sp))

as left adjoint to

nat(Ϙ,−) : Fun(C′′,Fun(Cop,Sp)) → Fun(C′′op,Sp).
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Indeed, this is simply the adjunction induced by the canonical adjunction

Ϙ⊗ (−) : Sp ⊥ Fun(Cop,Sp) : nat(Ϙ,−)

encoding the structure of Fun(Cop,Sp) as tensored over Sp.

Specializing Proposition 6.2.7 to the unit Poincaré ∞-category (C′′, Ϙ′′) =
(Spf , Ϙu) and using Proposition 4.1.3 we recover a natural equivalence

Fm(Funex((C, Ϙ), (C′, Ϙ′))) 
−→ MapCath∞((C, Ϙ), (C′, Ϙ′)), (139)

which by comparingwith the analogous claim for Catex∞ we can place in a commutative
square

Fm(Funex((C, Ϙ), (C′, Ϙ′))) MapCath∞((C, Ϙ), (C′, Ϙ′))

ιFunex(C, C′) MapCatex∞(C, C′)







In particular, the equivalence (139) is of a somewhat tautological nature: a hermitian
object in Funex((C, Ϙ), (C′, Ϙ′)) consists of a pair ( f , η), where f : C → C′ is an exact
functor and η ∈ �∞natϘ

′
Ϙ ( f ) is a form for natϘ

′
Ϙ , that which by definition means a

natural transformation η : Ϙ ⇒ f ∗Ϙ′. The equivalence (139) then associates to this
hermitian object the same pair ( f , η), now considered as a hermitian functor from
(C, Ϙ) to (C′, Ϙ′). Consulting the proof of Proposition 6.2.2 we observe that when
(C, Ϙ) and (C′, Ϙ′) are non-degenerate the map

η� : f → DnatϘ
′
Ϙ

f = DϘ′ f opDop
Ϙ

associated to a hermitian object ( f , η), corresponds to the map

τη : f DϘ → DϘ′ f op

(see Definition 1.2.5) via the adjunction between pre-composition with DϘ and pre-
composition with Dop

Ϙ . When DϘ is an equivalence we thus have that η� is an
equivalence if and only if τη is an equivalence. In particular, for Poincaré∞-categories
(C, Ϙ), (C′, Ϙ′) we have that a hermitian object ( f , η) in Funex((C, Ϙ), (C′, Ϙ′)) is
Poincaré if and only if the corresponding hermitian functor ( f , η) : (C, Ϙ) → (C′, Ϙ′)
is Poincaré. In particular, in this case the equivalence (139) restricts to an equivalence

Pn(Funex((C, Ϙ), (C′, Ϙ′))) 
−→ MapCath∞((C, Ϙ), (C′, Ϙ′)). (140)

We may summarize the situation as follows:
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Corollary 6.2.12 For a hermitian ∞-category (C, Ϙ), the hermitian object id(C,Ϙ)
in Funex((C, Ϙ), (C, Ϙ)) corresponding to the identity under the equivalence (139),
exhibits (C, Ϙ) as corepresenting the functor

(C′, Ϙ′) �→ Fm(Funex((C, Ϙ), (C′, Ϙ′)))

in Cath∞. In addition, if (C, Ϙ) is Poincaré then id(C,Ϙ) is Poincaré and exhibits (C, Ϙ)
as corepresenting the functor

(C′, Ϙ′) �→ Pn(Funex((C, Ϙ), (C′, Ϙ′)))

in Catp∞.

Corollary 6.2.13 Let (C, Ϙ), (C′, Ϙ′) and (C′′, Ϙ′′) be hermitian ∞-categories. Then
there is an equivalence of hermitian ∞-categories

Funex((C′′, Ϙ′′),Funex((C, Ϙ), (C′, Ϙ′))) 
 Funex((C, Ϙ)⊗ (C′′, Ϙ′′), (C′, Ϙ′)).
(141)

which is natural in (C, Ϙ), (C′, Ϙ′), (C′′, Ϙ′′). In addition, for (C′′, Ϙ′′) = Funex((C, Ϙ),
(C′, Ϙ′)) this equivalence sends the hermitian object on the left hand side corresponding
to the identity to the hermitian object on the right side corresponding to the evaluation
functor of Construction 6.2.6.

Proof This is a formal consequence of the Yoneda lemma that holds true in any
closed symmetric monoidal∞-category. Indeed, embedding both sides in presheaves
to spaces we may use Proposition 6.2.7 and Corollary 6.2.8 to construct natural equiv-
alences between the resulting presheaves

MapCath∞((−),Funex((C′′, Ϙ′′),Funex((C, Ϙ), (C′, Ϙ′)))

 MapCath∞((C′′, Ϙ′′)⊗ (−),Funex((C, Ϙ), (C′, Ϙ′))))

 MapCath∞((C, Ϙ)⊗ (C′′, Ϙ′′)⊗ (−), (C′, Ϙ′))

 MapCath∞(−,Funex((C, Ϙ)⊗ (C′′, Ϙ′′), (C′, Ϙ′))).

The additional claim in the case (C′′, Ϙ′′) = Funex((C, Ϙ), (C′, Ϙ′)) can be obtained by
taking (D,�) = (Spf , Ϙu) and tracing through the equivalences on both sides.

Taking Poincaré objects in (141) and using the equivalence (140) we thus conclude:

Corollary 6.2.14 Let (C, Ϙ) and (C′, Ϙ′) be two Poincaré∞-categories. Then the evalu-
ation functor (ev, η)of Construction6.2.6 is Poincaré and exhibits (Funex(C, C′), natϘ′Ϙ )
as the internal mapping objects in the symmetric monoidal category Catp∞. In partic-
ular, it determines an equivalence of spaces

MapCatp∞((C′′, Ϙ′′),Funex((C, Ϙ), (C′, Ϙ′))) 
 MapCatp∞((C, Ϙ)⊗ (C′′, Ϙ′′), (C′, Ϙ′))

for (C′′, Ϙ′′) ∈ Catp∞.
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Corollary 6.2.15 The symmetric monoidal structure on Catp∞ constructed in Sect. 5.2
is closed.

Corollary 6.2.16 The association (C, Ϙ), (C′, Ϙ′) �→ Funex((C, Ϙ), (C′, Ϙ′)) canoni-
cally extends to a functor (Catp∞)op × Catp∞ → Catp∞ in a way that renders the
evaluation map of Construction 6.2.6 a natural transformation.

Corollary 6.2.17 The symmetric monoidal product on Catp∞ preserves small colimits
in each variable.

Remark 6.2.18 Since the evaluation functor used inCorollary 6.2.14 to exhibit internal
functor categories in Catp∞ is the same as the one that was used to exhibit internal
functor categories in Cath∞ it follows formally that the inclusion Catp∞ ↪→ Cath∞ is not
only symmetric monoidal (Theorem 5.2.7iii)), but also closed symmetric monoidal,
that is, preserves internal functor categories. It then follows from Remark 6.2.11 that
the composed functor

Catp∞ → Cath∞ → Catex∞

is closed symmetric monoidal as well.

Definition 6.2.19 For hermitian ∞-categories (C, Ϙ) and (C′, Ϙ′) we define the cate-
gory of hermitian functors from (C, Ϙ) to (C′, Ϙ′) to be

Funh((C, Ϙ), (C′, Ϙ′)) := He(Funex((C, Ϙ), (C′, Ϙ′))).

Remark 6.2.20 Combining Corollary 6.2.13 and Corollary 6.2.12 we deduce that for
hermitian ∞-categories (C, Ϙ), (C′, Ϙ′) and (C′′, Ϙ′′), the evaluation functor of Con-
struction 6.2.6 determines a natural equivalence

Funh((C′′, Ϙ′′),Funex((C, Ϙ), (C′, Ϙ′))) 
 Funh((C, Ϙ)⊗ (C′′, Ϙ′′), (C′, Ϙ′)).

Remark 6.2.21 Proposition 6.2.7 tells us that Cath∞ is a closed monoidal category, so
we can turn it into an ∞-category enriched over itself via [22, Cor. 7.4.10]. In par-
ticular, for three hermitian∞-categories (C, Ϙ), (C′, Ϙ′) and (C′′, Ϙ′′) we have natural
composition hermitian functors

Funex((C, Ϙ), (C′, Ϙ′))⊗ Funex((C′, Ϙ′), (C′′, Ϙ′′)) → Funex((C, Ϙ), (C′′, Ϙ′′)).

which one can of course also easily write down without using enriched technology.
Applying [22, Cor. 5.7.6] to the lax monoidal functor He : Cath∞ → Cat∞ we see
that Cath∞ is canonically endowed with an enrichment over Cat∞, with composition
functors

Funh((C, Ϙ), (C′, Ϙ′))× Funh((C′, Ϙ′), (C′′, Ϙ′′)) → Funh((C, Ϙ), (C′′, Ϙ′′)),

and identities given by the tautological hermitian objects id(C,Ϙ) of Corollary 6.2.12. In
particular, one should consider Cath∞ as an (∞, 2)-category, with mapping categories
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given by Funh(−,−). Though we will not make explicit use of this point of view,
these hermitian functor categories will play a role in Sects. 6.3–6.4 when we study
the tensor-cotensor constructions, a structure most naturally viewed with the (∞, 2)-
categorical perspective in mind.

6.3 Cotensoring of hermitian categories

Given a hermitian ∞-category (C, Ϙ) and an ∞-category I, our goal in this section
is to promote the diagram category CI := Fun(I, C) to a hermitian ∞-category
(C, Ϙ)I , which we call the cotensor of (C, Ϙ) by I. We will characterize the resulting
hermitian ∞-category by a universal property, see Proposition 6.3.10 below, which
can be considered as witnessing it being the cotensor structure of Cath∞ over Cat∞
with respect to the enrichment of the former in the latter described in Sect. 6.2. This
construction will feature prominently in Paper [2] via the hermitian Q-construction.

Construction 6.3.1 Let I be a small ∞-category and (C, Ϙ) a hermitian ∞-category.
We will denote by CI := Fun(I, C) the stable ∞-category of functors I → C. Let
ev : I×CI → C be the evaluation functor, which, under the exponential equivalence

Fun(I × CI , C) 
 Fun(I,Fun(CI , C))

corresponds to the functor which associates to i ∈ I the evaluation-at-i functor
evi : CI → C. Define a functor ϘI : (CI)op → Sp by

ϘI := lim
i∈Iop

ev∗i Ϙ.

On a given diagram ϕ ∈ CI the functor ϘI is given by the formula

ϘI(ϕ) = lim
i∈Iop

Ϙ(ϕ(i)).

Proposition 6.3.2 The functor ϘI : CI → Sp is quadratic. Its bilinear part is given
by

BI(ϕ, ψ) := lim
i∈Iop

BϘ(ϕ(i), ψ(i)),

and the linear part �I makes the square

�I(ϕ) lim
i∈Iop

�Ϙ(ϕ(i))

BI(ϕ, ϕ)tC2 [limi∈Iop BϘ(ϕ(i), ϕ(i))]tC2 lim
i∈Iop

BϘ(ϕ(i), ϕ(i))
tC2

(142)
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cartesian. If Ϙ is non-degenerate and C admits (Ii/)
op-shaped limits for all i ∈ I, then

ϘI is also non-degenerate with duality given by

[
DI(ϕ)

]
(i) = lim

[i→ j]∈(Ii/)
op
DϘ(ϕ( j)).

Remark 6.3.3 If I is a finite ∞-category then �I(ϕ) = limIop �Ϙϕ
op, since the

bottom horizontal map in (142) is then an equivalence.

Proof of Proposition 6.3.2 The functor ϘI is defined as a limit of the functors ev∗i Ϙ,
each of which is quadratic since Ϙ itself is quadratic and each evi is exact. Since the
collection of quadratic functors is closed under limits (Remark 1.1.15) it follows that
ϘI is quadratic. Since the formation of bilinear parts is compatible with restriction
(Remark 1.1.6) and commutes with limits (e.g, by Lemma 1.1.7), it follows that

BI 
 lim
i∈Iop

(ev∗i × ev∗i )BϘ,

and in particular

BI(ϕ, ϕ) 
 lim
i∈Iop

BϘ(ϕ(i), ϕ(i)).

The formation of linear parts however does not commute with limits. To compute it,
we apply limIop to the square classifying Ϙ via Corollary 1.3.12, yielding the square

ϘI(ϕ) lim
i∈Iop

�Ϙ(ϕ(i))

BI(ϕ, ϕ)hC2 lim
i∈Iop

BϘ(ϕ(i), ϕ(i))
tC2

of quadratic functors in ϕ whose left hand side consists of exact functors. Taking linear
parts we then get the desired description of �I .

We now prove the desired formula for the duality. For this, we henceforth assume
that (C, Ϙ) is non-degenerate and that C admits (I/i )

op-indexed limits for every i ∈ I.
Let s : TwAr(I) → I and t : TwAr(I) → Iop be the source and target functors,
respectively. Define DI : (CI)op → CI by the composite formula

(CI)op DϘ◦(−)−−−−→ CIop t∗−→ CTwAr(I) s∗−→ CI

where s∗ stands for right Kan extension. This right Kan extension indeed exists: since
s : TwAr(I) → I is a cartesian fibration classified by the functor i �→ (Ii/)

op this
right Kan extension is given by the explicit formula

[DI(ϕ)](i) = lim
[i→ j]∈(Ii/)

op
DϘ(ϕ( j))
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where the required limits exist in C by assumption. We now claim that DI represents
the bilinear functor BI . To prove this, note first that since the right Kan extension
functor s∗ is right adjoint to the corresponding restriction functor s∗ we get that

nat(ϕ,DI(ψ)) = nat(ϕ, s∗t∗DϘψ) 
 nat(s∗ϕ, t∗DϘψ)


 lim
[σ : α ⇒ β] ∈

TwAr(TwAr(I))op

homC(ϕ(sα),DϘψ(tβ)) 
 lim
[σ : α ⇒ β] ∈

TwAr(TwAr(I))op

BϘ(ϕ(sα), ψ(tβ)),

where we have used the standard formula for the spectrum of natural transformations
as a limit over the twisted arrow category. We wish to show that the last limit above is
equivalent to limi∈Iop BϘ(ϕ(i), ψ(i)). For this we will make use of several cofinality
arguments. To facilitate readability in what follows, we invite the reader to visualize
an object [σ : α ⇒ β] ∈ TwAr(TwAr(I))op as a diagram of the form

i l

j k

α

β

To begin, consider the commutative diagram

[i → j → k → l] TwAr(TwAr(I)) TwAr(I × Iop) TwAr(I)× TwAr(Iop) ([i → j], [l ← k])

[ j → k] TwAr(I)op (I × Iop)op Iop × I ( j, k)

∈ TwAr(s×t)

t t×t

�

∈ (s×t)op �

Since (s × t) : TwAr(C) → C × Cop is a right fibration it induces an equivalence on
over categories. It then follows that the commutative square on the left is cartesian,
and hence the induced map

TwAr(TwAr(I)) 
−→ TwAr(I)op ×[Iop×I] [TwAr(I)× TwAr(Iop)]

 TwAr(I)×Iop TwAr(I)op ×I TwAr(Iop)

is an equivalence. In particular, the projection

TwAr(TwAr(I)) → TwAr(I)×Iop TwAr(I)op (143)

is a cartesian fibration whose fibres have terminal objects, being pulled back from the
(target) cartesian fibration TwAr(Iop) → I given by [l ← k] �→ k which has this
property. By [43, Lemma 4.1.3.2] it then follows that the functor (143) is cofinal. To
avoid confusion, we note that in the fibre product in (143), the map TwAr(I) → Iop

is the target projection [i → j] �→ j and the map TwAr(I)op → Iop is the opposite
of the source projection [ j → k] �→ j . Now the composed functor

TwAr(I)×Iop TwAr(I)op → TwAr(I)×Iop [Iop × I] = TwAr(I)× I → I
(144)
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is cocartesian fibration, being a composition of a left fibration and a constant cocarte-
sian fibration. By compatibility with base change we see that this cocartesian fibration
is classified by the functor k �→ TwAr(I) ×Iop (I/k)

op. Since the projection
I/k → I is a right fibration it follows by the same argument as above that the
map TwAr(I/k) → TwAr(I) ×Iop (I/k)

op (induced by the target projection) is an
equivalence. The cocartesian (144) is hence also classified by the equivalent functor
k �→ TwAr(I/k). Now consider the map of cocartesian fibrations (over I)

TwAr(I)×Iop TwAr(I)op 

∫
I
TwAr(I/k) →

∫
I
I/k 
 Ar(I) (145)

induced by the source projections TwAr(I/k) → I/k . Then (145) is a map of cocarte-
sian fibrations which is fibrewise cofinal by Lemma [43, Lemma 4.1.3.2] and is hence
itself cofinal. Since cofinal maps are closed under composition we may now conclude
that the composed projection

TwAr(TwAr(I)) → Ar(I)

is cofinal. On the other hand the canonical inclusion I → Ar(I) sending x to idx is
also cofinal since it has a left adjoint (the target functor). We may therefore conclude
that

lim
[σ : α ⇒ β] ∈

TwAr(TwAr(I))op

BϘ(ϕ(sα), ψ(tβ)) 
 lim
[i→k]∈Ar(I)op

BϘ(ϕ(i), ψ(k)) 
 lim
i∈Iop

BϘ(ϕ(i), ψ(i)),

and so DI represents BϘ, as desired.

Definition 6.3.4 For a hermitian ∞-category (C, Ϙ) and an ∞-category I we will
denote by (C, Ϙ)I := (CI , ϘI) the ∞-category given by Proposition 6.3.2. We will
refer to it as the cotensor of (C, Ϙ) by I.

Remark 6.3.5 If I is a finite poset then the comma∞-categories I/i are finite for every
i ∈ I, and hence every stable∞-category admits (I/i )

op indexed limits. In particular,
in this case (C, Ϙ)I is non-degenerate as soon as (C, Ϙ) is non-degenerate.

Example 6.3.6 For I = TwAr(�1)we may identify CI with the∞-category of spans
x ← w → y in C, with ϘI given by

ϘI([x ← w → y]) = Ϙ(x)×Ϙ(w) Ϙ(y),

and the duality (when (C, Ϙ) is non-degenerate) given by

DI([x ← w → y]) = [DϘx ← DϘx ×DϘw DϘy → DϘy].

It is then straightforward to verify that this duality is perfect whenever DϘ is perfect, in
which case (C, Ϙ)I is Poincaré. This example will feature prominently in subsequent
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parts of the present paper in the context of the cobordism category of a Poincaré ∞-
category, wherewewill view the above duality as an algebraic incarnation of Lefschetz
duality for manifolds.

Warning 6.3.7 For a Poincaré (C, Ϙ) and I arbitrary, the hermitian∞-category (C, Ϙ)I
might fail to be Poincaré, even if I is a finite poset. This happens for example if I
has a final object but is not itself equivalent to a point; indeed, in this case the image
of DI is the full subcategory of CI spanned by the constant diagrams. On the other
hand, we will see in Sect. 6.4 that cotensor by I does preserve Poincaré∞-categories
when I is the poset of faces of a finite simplicial complex.

We go on to establish the universal property of these hermitian diagram categories,
from which we will also deduce their functoriality. We will require the following
lemma:

Lemma 6.3.8 Let I be a small ∞-category and C, C′ be two hermitian ∞-categories.
Then the fibre of the map

Fun(I,Funh((C, Ϙ), (C′, Ϙ′))) → Fun(I,Funex(C, C′))

over a functor f : I × C → C′ is naturally equivalent to the space Nat(p∗CϘ, f ∗Ϙ′) of
natural transformations p∗CϘ⇒ f ∗Ϙ′, where pC : I × C → C denotes the projection
to C.

Proof We want to describe the space of dotted lifts

Funh(C, C′)

I Funex(C, C′)f

Recall that the vertical map above is the right fibration classified by functor
�∞natϘ

′
Ϙ : Funex(C, C′)op → S, and so by [43, Corollary 3.3.3.2], the space of sec-

tions of this right fibration coincides with the limit

lim
i∈Iop

�∞natϘ
′
Ϙ ( fi ) = lim

i∈Iop
Nat(Ϙ, f ∗i Ϙ′) 
 Nat

(
Ϙ, lim

i∈Iop
f ∗i Ϙ′

)
.

On the other hand, we have

Nat(p∗CϘ, f ∗Ϙ′) 
 Nat(Ϙ, p∗ f ∗Ϙ′) 
 Nat(Ϙ, lim
i∈Iop

f ∗i Ϙ′),

since right Kan extensions along pC are computed by taking the limit fibrewise, as
can be seen from the pointwise formula for right Kan extensions. Hence the two
constructions are naturally equivalent.
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Construction 6.3.9 For a hermitian∞-category (C, Ϙ) and an∞-category I we define
a functor

ev : I → Funh((C, Ϙ)I , (C, Ϙ))

as follows. Let p : Iop× (CI)op → (CI)op be the projection on the second factor and

ev : Iop × (CI)op → Cop

the evaluation. By Lemma 6.3.8 the additional data needed in order to define ev is a
natural transformation

τ : p∗ϘI ⇒ ev∗Ϙ. (146)

We then define τ by taking the counit transformation

const
Iop

lim
Iop

⇒ idFun(Iop,Sp),

currying it into morphism in Fun(Iop×Fun(Iop,Sp),Sp) and finally pre-composing
with the functor

Iop × (CI)op → Iop × Fun(Iop,Sp)

induced by Ϙ.

Proposition 6.3.10 Let (C, Ϙ) and (C′, Ϙ′) be two hermitian ∞-categories and I a
small ∞-category. Then the composite map

Funh((C′, Ϙ′), (C, Ϙ)I) ×I id×ev−−−→ Funh((C′, Ϙ′), (C, Ϙ)I)
×Funh((C, Ϙ)I , (C, Ϙ)) −→ Funh((C′, Ϙ′), (C, Ϙ))

defined using the functor ev of Construction 6.3.9 and the composition functor of
Remark 6.2.21, determines an equivalence of ∞-categories

Funh((C′, Ϙ′), (C, Ϙ)I) 
−→ Fun(I,Funh((C′, Ϙ′), (C, Ϙ))), (147)

and in particular an equivalence

MapCath∞((C′, Ϙ′), (C, Ϙ)I) 
 ιFun(I,Funh((C′, Ϙ′), (C, Ϙ))). (148)

We will give the proof of Proposition 6.3.10 at the end of this subsection. Before let
us explore some of its consequences. First, as in the case of internal functor categories,
the Yoneda lemma immediately implies:
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Corollary 6.3.11 The association (I, (C, Ϙ)) �→ (C, Ϙ)I extends canonically to a func-
tor Catop∞ × Cath∞ → Cath∞ that renders the equivalence from Proposition 6.3.10
natural.

Remark 6.3.12 Unwinding the definitions, if α : I → J is a functor of small ∞-
categories and (C, Ϙ) is a hermitian∞-category then the hermitian functor

(α∗, ηα) : (C, Ϙ)J → (C, Ϙ)I

issued via the functoriality of Corollary 6.3.11 is given by the usual restriction functor
α∗ : CJ → CI on the underlying stable ∞-categories accompanied by the usual
restriction-induced map

ηαϕ : ϘJ (ϕ) = lim
j∈J op

Ϙ(ϕ( j)) → lim
i∈Iop

Ϙ(ϕ(α(i))) = ϘI(α∗ϕ)

on limits.

Remark 6.3.13 As pointed out in Warning 6.3.7, the cotensor construction does not
restrict to a functor Catop∞ × Catp∞ → Catp∞. In particular, while this construction is
best understood by considering Cath∞ as an (∞, 2)-category, the (∞, 2)-categorical
perspective does not seem to extend to Catp∞ in a meaningful manner.

Remark 6.3.14 It follows from Proposition 6.3.10 that when I is an ∞-groupoid the
cotensor (C, Ϙ)I coincides with the limit in Cath∞ of the constant I-diagramwith value
(C, Ϙ). In particular, it follows form Proposition 6.1.4 that for such an I the functor
(C, Ϙ) �→ (C, Ϙ)I does preserve Poincaré∞-categories.

Taking (C′, Ϙ′) = (Spω, Ϙu) in Proposition 6.3.10 yields:

Corollary 6.3.15 There is a natural equivalence He((C, Ϙ)I) 
 Fun(I,He(C, Ϙ)).

Remark 6.3.16 We know of no analogous formula for the Poincaré objects of (C, Ϙ)I
when the latter happens to be Poincaré. It is certainly not true, for example, that the
individual objects of a Poincaré diagram are Poincaré objects themselves, as demon-
strated by the case I = TwAr(�1), see Example 6.3.6.

The following is again a formal consequence:

Corollary 6.3.17 For any hermitian ∞-categories (C, Ϙ), (C′, Ϙ′) and any ∞-category
I there is a canonical equivalence

Funex((C, Ϙ), (C′, Ϙ′)I) 
 Funex((C, Ϙ), (C′, Ϙ′))I

of hermitian ∞-categories.

Proposition 6.3.18 Let (C, Ϙ) be non-degenerate and α : I → J a functor between
small categories, such that (C, Ϙ) admits both (Ii/)

op- and (J j/)
op-shaped limits for
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all i ∈ I and j ∈ J . If the induced maps Ii/ → Jα(i)/ are cofinal for every i ∈ I
then the hermitian functor

(α∗, ηα) : (C, Ϙ)J → (C, Ϙ)I

is duality preserving. In particular, if (C, Ϙ)J and (C, Ϙ)I are Poincaré then (α∗, ηα)
is a Poincaré functor.

Proof This follows directly from the explicit description of the duality in Proposi-
tion 6.3.2.

Remark 6.3.19 In the situation of Proposition 6.3.18, if α is a map of posets, then
the given criterion for preservation of duality can be rephrased more explicitly by
saying that for every i ∈ I and j ∈ J with j ≥ α(i), the realisation of the poset
{k ∈ I | i ≤ k, j ≤ α(k)} is contractible.
Proof of Proposition 6.3.10 We argue similarly to the proof of Proposition 6.2.7. The
forgetful functor determines a commutative diagram of∞-categories

Funh((C′, Ϙ′), (C, Ϙ)I) Fun(I,Funh((C′, Ϙ′), (C, Ϙ)))

Funex(C′, CI) Fun(I,Funex(C′, C))

(149)

in which the vertical maps are right fibrations and where the bottom arrow is an
equivalence since the functor ev′ : I → Funex(CI , C′) underlying ev already exhibits
CI as the cotensor of C over I in Catex∞. It will hence suffice to show the map induced
by (149) on vertical fibres is an equivalence. Let us hence fix an exact functor g : C′ →
CI and let gI := {gi } : I → Funex(C′, C) be its image in the bottom right corner
of (149). Now the fibre of the right vertical map in (149) over gI is the space of sections
of the base change

Funh((C′, Ϙ′), (C, Ϙ))×Funex(C′,C) I → I, (150)

where the fibre product is taken with respect to the map gI . By the compatibility of
base change and straightening we see that (150) is the right fibration classified by the
functor i �→ Nat(Ϙ′, g∗i Ϙ). By [43, Corollary 3.3.3.2] evaluation at the various i ∈ I
exhibits the space of sections of (150) as the limit limi Nat(Ϙ′, g∗i Ϙ). We may then
identify the map induced by (149) from the fibre over g to the fibre of gI with the
map

Nat(Ϙ′, g∗ϘI) → lim
i∈I

Nat(Ϙ′, g∗i Ϙ)

whose components Nat(Ϙ′, g∗ϘI) → Nat(Ϙ′, g∗i Ϙ) are induced by the components
τi : ϘI → ev∗i Ϙ of (146). Since pulling back functors preserves limits the desired
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result now follows from the fact that the collection of maps ϘI → ev∗i Ϙ exhibit ϘI as
the limit of the diagram {ev∗i Ϙ}, by definition.

6.4 Tensoring of hermitian categories

In this sectionwewill consider the dual of the cotensor construction studied inSect. 6.3,
which we will refer to as tensoring a Poincaré∞-category (C, Ϙ) by an∞-category I.
In general this construction is somewhat less accessible then the cotensor construction,
but we will be able to say more about it when I satisfies certain finiteness conditions,
see Sect. 6.5 below. We will exploit the tensor construction in Paper [2] in order to
form the dual Q-construction, which is needed in the proof of the universal property
of the Grothendieck-Witt spectrum.

Construction 6.4.1 Let (C, Ϙ) be a hermitian ∞-category and I a small ∞-category.
For i ∈ I and x ∈ C, let us denote by Ri,x : Iop → Pro(C) the functor Ri,x = (ιi )∗(x)
right Kan extended along the inclusion ιi : {i} ↪→ Iop of i from the functor {i} →
Pro(C) with value x ∈ C ⊆ Pro(C). We then let CI ⊆ Pro(C)Iop

be the smallest full
subcategory containing Ri,x for i ∈ I and x ∈ C and closed under finite limits. Then
CI is also closed under suspensions (since the collection Ri,x is, as suspension in C
commutes with finite limits) and is hence stable. It is also equipped by construction
with a functor

ι : C × I → CI (x, i) �→ Ri,x . (151)

We then promote CI to a hermitian ∞-category by endowing it with the quadratic
functor

ϘI : CopI → Sp

obtained by taking the left Kan extension of p∗CϘ : Cop × Iop → Sp along
ιop : Cop × Iop → CopI , which results in a reduced functor, and then applying to
it the 2-excisive approximation of Construction 1.1.26, left adjoint to the inclusion
Funq(CI) ⊆ Fun∗(CopI ,Sp) (in fact, we will see in the proof of Proposition 6.4.3 that
this 2-excisive approximation is not needed, that is, the result of the left Kan extension
is already 2-excisive). Here we denote by pC : C × I → C projection to C. We then
set

(C, Ϙ)I := (CI , ϘI),

and refer to it as the tensor of (C, Ϙ) by I. By construction the functor ϘI supports a
natural transformation

p∗CϘ⇒ ι∗ϘI ,



Hermitian K-theory for stable ∞-categories I: Foundations Page 199 of 269 10

where pC : C×I → C is the projection to C, and by Lemma 6.3.8 this transformation
determines a functor

coev : I → Funh((C, Ϙ), (CI , ϘI)), (152)

which to i ∈ I associates the exact functor x �→ Ri,x , equipped with the natural
transformation Ϙ(x) ⇒ ϘI(Ri,x ) given by the construction of ϘI .

Remark 6.4.2 The functor coev : C × I → CI exhibits CI as universal among stable
∞-categories equipped with a functor from C × I which is exact in the first entry.
To see this, we may replace the term “exact” by “finite limit preserving”. In other
words, it will suffice to show that (151) is universal among maps from C × I to a
finitely complete ∞-category which preserve finite limits in the first variable. Such
universal constructions are explicitly described in [43, §5.3.6]. In particular, it will
suffice to show that CI coincides with the construction appearing in the proof of
[43, Proposition 5.3.6.2]. To see this, note that Fun(Iop,Pro(C)) identifies with the
full subcategory of Fun(C × I,S)op spanned by those functors which preserve finite
limits in the C-variable. This full inclusion then admits a right adjoint

R : Fun(C × I,S)op → Fun(Iop,Pro(C)),

and what we need to check is that CI ⊆ Fun(Iop,Pro(C)) identifies with the full
subcategory generated under finite limits by the images under R of the corepresentable
functors MapC×I((x, i),−) : C×I → S. In light of the definition of CI this amounts
to showing that Ri,x 
 R(MapC×I((x, i),−)). Indeed, both these objects represent
the functor

Fun(Iop,Pro(C)) → S ϕ �→ MapPro(C)(ϕ(i), x).

To describe ϘI more explicitly, let Ϙ̃ : Pro(C)op → Sp be the left Kan extension of Ϙ
along theYoneda embedding Cop ↪→ Pro(C)op. Then Ϙ̃ is quadratic by [47, Proposition
6.1.5.4]. Its bilinear part then coincides with the essentially unique bilinear functor
B̃Ϙ : Pro(C)op × Pro(C)op → Sp which extends B and preserve colimits in each
variable separately, and its linear part is the essentially unique colimit preserving
functor �̃Ϙ : Pro(C)op → Sp extending �Ϙ.

Proposition 6.4.3 Let (C, Ϙ) be a hermitian ∞-category and I a small ∞-category.
Then the quadratic functor ϘI of Construction 6.4.1 is given explicitly by the formula

ϘI(ϕ) = colim
i∈I
Ϙ̃(ϕ(i)).

Its bilinear and linear parts are given by

BI(ϕ, ψ) := colim
i∈I

B̃Ϙ(ϕ(i), ψ(i)) and �I(ϕ) := colim
i∈I

�̃Ϙ(φ(i)),

respectively.
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Proof To establish the formula for ϘI we first note that colimi∈I Ϙ̃(ϕ(i)) is quadratic,
being a colimit of the quadratic functors ev∗i Ϙ̃ for i ∈ Iop, see Remark 1.1.15. Its
linear and bilinear parts are then given by the indicated formulas since taking linear and
bilinear parts commuteswith colimits. It will hence suffice to identify colimi∈I Ϙ̃(ϕ(i))
with the leftKan extension of p∗CϘ along ι

op. For this, consider the commutative square

(C × I)op CopI

Fun(C × I,S) Fun(Iop,Pro(C))op

ιop

j

where the left vertical map j is the Yoneda embedding and the bottom horizontal map
is the left adjoint to the inclusion Fun(Iop,Pro(C))op ↪→ Fun(C × I,S) induced by
the inclusion Pro(C) ↪→ Fun(C,S)op as the full subcategory spanned by left exact
functors. Since the right vertical map is fully-faithful we may compute ι! p∗CϘ by
further Kan extending to Fun(Iop,Pro(C))op and then restricting back to CopI . By
the commutativity of the above square the left Kan extension to Fun(Iop,Pro(C))op
can be performed by first left Kan extending to Fun(C × I,S) and then left Kan
extending to Fun(Iop,Pro(C))op, the latter given by restriction along the right adjoint
Fun(Iop,Pro(C))op ↪→ Fun(C × I,S). Now the left Kan extension of p∗CϘ along the
Yoneda embedding results in the coend construction

Fun(C × I,S) � ρ �→
∫
C×I

ρ ⊗ p∗CϘ 

∫
C
(pC)!ρ ⊗ Ϙ,

where⊗ denotes the tensor of spectra over spaces. Now, in the case where our functor
C×I → S is of the form ρϕ(x, i) = MapC(ϕ(i), x) for some Pro(C)-valued presheaf
ϕ : Iop → Pro(C), then its left Kan extension along pC : C × I → C is given by

(pC)!ρϕ(x) = colim
i∈I

MapPro(C)(ϕ(i), x).

We may then conclude that

[ι! p∗CϘ](ϕ) =
∫
C
(pC)!ρϕ ⊗ Ϙ 
 colim

i∈I

∫
C
MapPro(C)(ϕ(i), x)⊗ Ϙ 
 colim

i∈I
Ϙ̃(ϕ(i)).

As this expression is already 2-excisive in ϕ we deduce that

ϘI(ϕ) = colim
i∈I
Ϙ̃(ϕ(i)),

as desired.

We shall now address the universal property of the tensor construction.
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Proposition 6.4.4 Let (C, Ϙ) and (C′, Ϙ′) be hermitian ∞-categories and I a small
∞-category. Then the composed map

I × Funh((C, Ϙ)I , (C′, Ϙ′))
coev×id−−−−→ Funh((C, Ϙ), (C, Ϙ)I)

×Funh((C, Ϙ)I , (C′, Ϙ′)) → Funh((C, Ϙ), (C′, Ϙ′))

induces an equivalence

Funh((C, Ϙ)I , (C′, Ϙ′)) 
 Fun(I,Funh((C, Ϙ), (C′, Ϙ′))) (153)

and in particular an equivalence

MapCath∞((C, Ϙ)I , (C′, Ϙ′)) 
 ιFun(I,Funh((C, Ϙ), (C′, Ϙ′))). (154)

As in the case of the cotensor construction the universal characterization implies
functoriality:

Corollary 6.4.5 The association (I, (C, Ϙ)) �→ (C, Ϙ)I extends canonically to a func-
tor Cat∞ × Cath∞ → Cath∞ that renders the equivalence from Proposition 6.4.4
natural.

Remark 6.4.6 Comparing universal properties, we see that there are canonical equiv-
alences of hermitian∞-categories

Funex((C, Ϙ)I , (C′, Ϙ′)) 
 Funex((C, Ϙ), (C′, Ϙ′))I 
 Funex((C, Ϙ), (C′, Ϙ′)I).

Remark 6.4.7 Comparing universal properties we see that there are canonical equiv-
alences of hermitian∞-categories

(C, Ϙ)I ⊗ (C′, Ϙ′) 
 (C, Ϙ)⊗ (C′, Ϙ′)I 
 ((C, Ϙ)⊗ (C′, Ϙ′))I .

Remark 6.4.8 It follows from Remarks 6.4.6, 6.4.7 and 6.2.4 that for a given small
∞-category I the conditions

i) the functor (C, Ϙ) �→ (C, Ϙ)I preserves Poincaré∞-categories;
ii) the hermitian∞-category (Spf , Ϙu)I is Poincaré;

are equivalent, and that when these equivalent conditions hold the functor (C, Ϙ) �→
(C, Ϙ)I preserves Poincaré∞-categories as well.

Remark 6.4.9 If α : I → J is a map between small∞-categories then the hermitian
functor

CI → CJ

resulting from the functoriality ofCorollary 6.4.5must induce the associated restriction
functor

α∗ : Fun(J ,Funh((C, Ϙ), (C′, Ϙ′))) → Fun(I,Funh((C, Ϙ), (C′, Ϙ′)))
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under the equivalence of Proposition 6.4.4, uponmapping into any (C′, Ϙ′). The under-
lying exact functor is consequently the essentially unique one (see Remark 6.4.2)
making the diagram

C × I C × J

CI CJ
coev

id×α

coev

commute, and must therefore coincide with the restriction to CI of the right Kan
extension functor

α∗ : Fun(Iop,Pro(C)) → Fun(J op,Pro(C)).

By a slight abuse of notation we will denote this restriction by α∗ : CI → CJ as well.
Using the formula of Proposition 6.4.3 the hermitian structure on α∗ is then given by
the natural map

ϘI(ϕ) = colim
i∈I
Ϙ̃(ϕ(i)) → colim

i∈I
Ϙ̃(α∗α∗ϕ(i)) → colim

j∈J
Ϙ̃(α∗ϕ( j)) = ϘJ (α∗ϕ)

for ϕ ∈ CI .

Remark 6.4.10 The natural equivalences (148) and (154) exhibit (−)I as left adjoint
to (−)I . Furthermore, if α : I → J is a map of finite posets then this adjunction
intertwines the restriction functor α∗ : (C, Ϙ)J → (C, Ϙ)I with the (restricted) right
Kan extension functor α∗ : (C, Ϙ)I → (C, Ϙ)J .

Proof of Proposition 6.4.4 The forgetful functor Cath∞ → Catex∞ determines a commu-
tative square of∞-categories

Funh((C, Ϙ)I , (C′, Ϙ′)) Fun(I,Funh((C, Ϙ), (C′, Ϙ′)))

Funex(CI , C′) Fun(I,Funex(C, C′))

(155)

in which the vertical maps are right fibrations. By Remark 6.4.2 the bottom horizontal
map is an equivalence. It will hence suffice to show that (155) induces an equivalence
on vertical fibres. Let g : CI → C′ be an exact functor and let gI = {gi } : I →
Funex(C, C′) be its image in the bottom right corner of (155). To identify the fibre

on the left side, let g0 : C × I → CI
g→ C′ be the composed functor, so that g0

corresponds to gI under the identification of functors I → Fun(C, C′) and functors
C × I → C′. In light of the definition of ϘI via left Kan extensions and 2-excisive
approximations we may identify the fibre of the left vertical arrow in (155) over g
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with NatC×I(p∗CϘ, g∗0Ϙ′), where pC : C × I → C is the projection. The map between
the vertical fibres in (155) can then be identified with the map of spaces

NatC×I(p∗CϘ, g∗0Ϙ′) → lim
i∈Iop

NatC(Ϙ, g∗i Ϙ′), (156)

whose i’th component NatC×I(p∗CϘ, g∗0Ϙ′) → NatC(Ϙ, g∗i Ϙ′) is given by restricting to
C × {i} ⊆ C × I. This map is an equivalence by Lemma 6.3.8, and so the proof is
complete.

6.5 Finite tensors and cotensors

In this section we will consider the tensor and cotensor constructions in the case where
the∞-category I satisfies strong finiteness conditions, e.g., when I is a finite poset.
In this case the tensor construction admits a more accessible description, and sends
non-degenerate Poincaré∞-categories to non-degenerate ones, with explicit induced
duality, see Proposition 6.5.8. In addition, we will show that under these conditions
the functor (C, Ϙ) �→ (C, Ϙ)I is not only right adjoint to (C, Ϙ) �→ (C, Ϙ)I , but also
left adjoint to it, and extract some useful consequences. Finally, in this case both the
tensor and cotensor constructions are functorial not only in maps α : I → J , but also
in cofinal maps β : J → I going in the other direction, a phenomenon we refer to as
exceptional functoriality, see Construction 6.5.14.

To begin, recall that an∞-category I is said to be finite if it is categorically equiv-
alent to a simplicial set with only finitely many non-degenerate simplices. If I is a
space then the condition that I is finite as an∞-category is equivalent to the condition
that I is finite as a space, that is, that it is weakly equivalent to a simplicial set with
finitelymany non-degenerate simplices.Wewill use the term finite (co)limits to refer to
(co)limits indexed by finite∞-categories.We recall that any stable∞-category admits
finite limits and colimits, and that these are preserved by any exact functor. In partic-
ular, in any stable∞-category which admits small (co)limits, the latter automatically
commute with finite (co)limits.

Definition 6.5.1 We will say that an ∞-category I is strongly finite if it is finite, and
in addition for every i, j ∈ I the mapping space MapI(i, j) is finite.

Example 6.5.2 Any finite poset is strongly finite.

Example 6.5.3 Any Reedy category with finitely many objects and finitely many mor-
phisms is strongly finite. This follows by induction from [43, Proposition A.2.9.14].
For example, the full subcategory �≤n ⊆ � spanned by the ordinals [k] for k ≤ n is
strongly finite.

Remark 6.5.4 If I → J is a cartesian or cocartesian fibration such thatJ is finite and
the fibres I j are finite for every j ∈ J then I is finite. This follows from the explicit
description of cartesian fibrations over the n-simplex via generalized mapping cones,
see [43, §3.2.3]. It then follows that for a strongly finite∞-categoryI the twisted arrow
category TwAr(I) is finite. Similarly, if α : I → J is a functor between strongly finite
∞-categories then all the comma∞-categories of α are finite.
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Remark 6.5.5 Any localisation of a finite∞-category by a finite set of arrows is finite,
since it can be written as a pushout of finite ∞-categories. In particular, if I is an
∞-category such that TwAr(I) is finite then I is finite, since I can be written as
a localisation of TwAr(I) by a collection of arrows of the form [ f : x → y] →
[id : x → x] where f runs over a set of representatives of equivalence types in
TwAr(I). Combining this with Remark 6.5.4 it follows that the condition that I is
strongly finite is equivalent to the condition that TwAr(I) is finite and all mapping
space in I are finite.

Lemma 6.5.6 Let I be a small ∞-category and C a stable ∞-category. Then the
following holds:

i) If the mapping spaces of I are finite then CI is contained in Fun(Iop, C) ⊆
Fun(Iop,Pro(C)).

ii) If the twisted arrow category TwAr(Iop) is finite then Fun(Iop, C) is contained in
CI .

In particular, if I is a strongly finite ∞-category then CI = Fun(Iop, C) as full
subcategories of Fun(Iop,Pro(C)).
Remark 6.5.7 The objects Rx,i are cocompact in Fun(Iop,Pro(C)) and generate it
under limits. Since CI is by definition the closure of Rx,i under finite limits it fol-
lows that the inclusion CI ⊆ Fun(Iop,Pro(C)) induces an equivalence Pro(CI) 

Fun(Iop,Pro(C)). When I is strongly finite Lemma 6.5.6 then gives an equivalence

Pro(Fun(Iop, C)) 
 Fun(Iop,Pro(C)).

This generalizes [43, Proposition 5.3.5.15] (in the case of κ = ω) from finite posets
to all strongly finite∞-categories.

Proof of Lemma 6.5.6 To prove i) it will suffice to show that CIop
, which is closed

under finite limits in Pro(C)Iop
, contains the objects Ri,x for every (i, x) ∈ I × C.

Indeed Ri,x ( j) = xMapI (i, j) is contained in C ⊆ Pro(C) since x is in C, MapI(i, j) is
a finite space, and C is closed inside Pro(C) under finite limits.

Let us now prove ii). We need to show that if TwAr(I)op is finite then any C-
valued presheaf ϕ : Iop → C is a finite limit of cofree presheaves of the form Ri,x .
But it is a standard fact that any presheaf ϕ is canonically the limit of the composed
TwAr(I)op-indexed diagram

TwAr(I)op Iop × I C × I Pro(C)Iop

[α : i → j] (i, j) (ϕ(i), j) R j,ϕ(i)

ϕ×id

which takes values in cofree presheaves. To see this note that the TwAr(I)op-indexed
family of maps c[i→ j] : ϕ( j) → ϕ(i) determines a TwAr(I)op-indexed family of
maps ϕ ⇒ R j,ϕ(i), and hence a map

ϕ ⇒ lim
[i→ j]∈TwAr(I)op

R j,ϕ(i).
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Evaluating at k ∈ Iop, the resulting map

ϕ(k) ⇒ lim
[i→ j]∈TwAr(I)op

ϕ(i)MapI ( j,k) 
 lim
[i→ j→k]∈TwAr(I/k )

op
ϕ(i)

is then seen to be an equivalence by the cofinality of the functors TwAr(I/k)
dom−−→

I/k ← {idk}.
Proposition 6.5.8 Let I be a strongly finite ∞-category (e.g., any finite poset). Then
under the identification

CI = Fun(Iop, C) ⊆ Fun(Iop,Pro(C))

of Lemma 6.5.6, the quadratic functor ϘI corresponds to the functor

ϘI(ϕ) = colim
i∈I
Ϙ(ϕ(i)).

Its bilinear and linear parts are then given by

BI(ϕ, ψ) = colim
i∈I

BϘ(ϕ(i), ψ(i)) and �I(ϕ) = colim
i∈I

�Ϙ(ϕ(i)),

respectively. In addition, if (C, Ϙ) is non-degenerate then (C, Ϙ)I is non-degenerate
with duality

[DIϕ]( j) = colim
i∈I

DϘ(ϕ(i))
MapI (i, j) . (157)

Proof of Proposition 6.5.8 The identification of ϘI together with its linear and bilinear
parts follows directly from Proposition 6.4.3 and Lemma 6.5.6. Now assume that
(C, Ϙ) is non-degenerate. To prove the formula for the duality, we need to show that
for diagrams ϕ,ψ : Iop → C there is an equivalence

BI(ϕ, ψ) 
 nat(ϕ,DIψ)

natural in ϕ,ψ , where DI is given by (157). Expanding the right hand side and using
the standard formula for natural transformations we obtain

nat(ϕ,DIψ) 
 lim
[i→ j]∈TwAr(I)op

homC(ϕ( j), (DIψ)(i))


 lim
[i→ j]∈TwAr(I)op

homC
(
ϕ( j), colim

k∈I
(DϘψ(k))MapI (k,i)

)


 colim
k∈I

lim
[i→ j]∈TwAr(I)op

homC(ϕ( j),DϘψ(k))MapI (k,i)


 colim
k∈I

lim
[i→ j]∈TwAr(Ik/)

op
homC(ϕ( j),DϘψ(k))


 colim
k∈I

homC(ϕ(k),DϘψ(k)) 
 BI(ϕ, ψ),
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where we have used the finiteness of TwAr(I) and MapI(−,−) to commute limits

and colimits and the cofinality of the maps TwAr(Ik/)
cod−−→ Iop

k/ ← {idk}.
We now turn our attention to some structural properties of the tensor and cotensor

constructions which are special to the strongly finite case. Recall from Remark 6.4.10
that for a fixed ∞-category I, the functor (C, Ϙ) �→ (C, Ϙ)I is right adjoint to the
functor (C, Ϙ) �→ (C, Ϙ)I . Our next goal is to show that when I is strongly finite
the functor (C, Ϙ) �→ (C, Ϙ)I is also left adjoint to the functor (C, Ϙ) �→ (C, Ϙ)I .
To exhibit this, consider for hermitian ∞-categories (C, Ϙ), (C′, Ϙ′) the evaluation
hermitian functor

(C, Ϙ)⊗ Funex((C, Ϙ), (C′, Ϙ′)) → (C′, Ϙ′) (158)

from Construction 6.2.6. By the universal property of internal functor categories this
transposes to a hermitian functor

(C, Ϙ) → Funex(Funex((C, Ϙ), (C′, Ϙ′)), (C′, Ϙ′)),

and consequently induces for I ∈ Cat∞ a hermitian functor

(C, Ϙ)I → Funex(Funex((C, Ϙ), (C′, Ϙ′)), (C′, Ϙ′))I


 Funex(Funex((C, Ϙ), (C, Ϙ′))I , (C′, Ϙ′)),

where we have used the equivalence of Remark 6.4.6. The resulting functor then
transposes twice to give a hermitian functor

Funex((C, Ϙ), (C, Ϙ′))I → Funex((C, Ϙ)I , (C′, Ϙ′)).

On the other hand, using the equivalence of Remark 6.4.7 the evaluation functor (158)
induces a hermitian functor

(C, Ϙ)⊗ Funex((C, Ϙ), (C′, Ϙ′))I

 (C, Ϙ)⊗ Funex((C, Ϙ), (C′, Ϙ′))⊗ (Spf , Ϙu)I
→ (C′, Ϙ′)⊗ (Spf , Ϙu)I 
 (C′, Ϙ′)I

which transposes to give a hermitian functor

Funex((C, Ϙ), (C′, Ϙ′))I → Funex((C, Ϙ), (C′, Ϙ′)I).

Combining the above constructions we hence obtain a pair of hermitian functors

Funex((C, Ϙ), (C′, Ϙ′)I) ←− Funex((C, Ϙ), (C′, Ϙ′))I −→ Funex((C, Ϙ)I , (C′, Ϙ′))
(159)
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natural in (C, Ϙ), (C′, Ϙ′) and I (indeed, all the operations used above have already
been proven natural in Sects. 6.2, 6.3 and 6.4 through the various universal properties
they encode).

Proposition 6.5.9 If I is strongly finite then the hermitian functors in (159) are equiv-
alences of hermitian ∞-categories. Passing to hermitian objects (see (139)) they then
determine a natural equivalence

MapCath∞((C, Ϙ), (C′, Ϙ′)I) 
 MapCath∞((C, Ϙ)I , (C′, Ϙ′))

exhibiting (−)I as left adjoint to (−)I .

Proof To begin, we note that on the level of underlying stable ∞-categories both
functors in (159) are equivalences by Lemma 6.5.6. Indeed, replacing I with Iop

these identify with the equivalences of stable∞-categories

Funex(C, C′I
op
)


←− Funex(C, C′)Iop 
−→ Funex(CIop , C′) (160)

underlying those of Remark 6.4.6. Explicitly, the equivalence on the left hand side
of (160) associates to a diagram ϕ : Iop → Funex(C, C′) the exact functor gϕ : C →
C′I

op = C′I given by [gϕ(x)](i) = ϕi (x). Unwinding the definitions, the hermitian
structure of the left hand side functor in (159) is given by the map

colim
i∈I

nat(Ϙ, ϕ∗i Ϙ′) → nat
(
Ϙ, colim

i∈I
ϕ∗i Ϙ′

) = nat
(
Ϙ, g∗ϕϘI

)
,

which is indeed an equivalence since I is finite and nat(Ϙ,−) is an exact functor.
Similarly, the equivalence on the right hand side of (160) associates to a diagram

ϕ : Iop → Funex(C, C′) an exact functor hϕ : CIop = CI → C′ such that ϕ can be
recovered from hϕ as ϕi (x) = hϕ(Ri,x ). Let us denote by evi : CI → C the evaluation
at i ∈ I functor and by rani : C → CI its right adjoint, given by right Kan extension.
In particular, we have rani (x) = Ri,x by definition. Unwinding the definitions, the
hermitian structure of the right hand side functor in (159) is then given by the map

colim
i∈I

nat(Ϙ, ϕ∗i Ϙ′) = colim
i∈I

nat(Ϙ, ran∗i h∗ϕϘ′) = colim
i∈I

nat(ev∗i Ϙ, h∗ϕϘ′)

→ nat(lim
i
ev∗i Ϙ, h∗ϕϘ′) = nat(ϘI , h∗ϕϘ′),

which is indeed an equivalence since I is finite and nat(−, h∗ϕϘ′) is an exact functor.

Corollary 6.5.10 Let I be a strongly finite ∞-category. Then the functor (C, Ϙ) �→
(C, Ϙ)I from Cath∞ to itself preserves all limits and the functor (C, Ϙ) �→ (C, Ϙ)I
preserves all colimits.
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Corollary 6.5.11 For a fixed strongly finite∞-categoryI, the functor (C, Ϙ) �→ (C, Ϙ)I
is internally corepresented by (Spf , Ϙu)I . More precisely, there is an equivalence of
hermitian ∞-categories

(C, Ϙ)I 
 Funex((Spf , Ϙu)I , (C, Ϙ))

natural in (C, Ϙ) and I.

Corollary 6.5.12 For a strongly finite∞-categoryI the following conditions are equiv-
alent:

i) the operation (C, Ϙ) �→ (C, Ϙ)I preserves Poincaré ∞-categories and Poincaré
functors.

ii) the hermitian ∞-category (Spf , Ϙu)I is Poincaré;
iii) the operation (C, Ϙ) �→ (C, Ϙ)I preserves Poincaré ∞-categories and Poincaré

functors.
iv) the hermitian ∞-category (Spf , Ϙu)I is Poincaré;

In a similar spirit, we may deduce that the criterion for duality preservation of
Proposition 6.3.18 holds for tensors as well in the strongly finite case:

Corollary 6.5.13 Let α : I → J be a map of strongly finite ∞-categories and (C, Ϙ)
a non-degenerate hermitian ∞-category. If the induced map Ii/ → Jα(i)/ is cofinal
for every i ∈ I then the induced hermitian functor (α∗, ηα) : (C, Ϙ)I → (C, Ϙ)J is
duality preserving. In particular, if (C, Ϙ)I and (C, Ϙ)J are Poincaré then (α∗, ηα) is
a Poincaré functor.

Proof Identify (C, Ϙ)I with Funex((Spf , Ϙu)I , (C, Ϙ)) as a functor of I using Corol-
lary 6.5.11 and apply Proposition 6.3.18.

We now describe some additional functoriality exhibited by the tensor and cotensor
constructions in the strongly finite case.

Construction 6.5.14 (Exceptional functoriality) Let β : J → I be a functor between
strongly finite ∞-categories. Then by Lemma 6.5.6 the full subcategory CI ⊆
Fun(Iop,Pro(C)) is sent into CJ ⊆ Fun(J op,Pro(C)) by restriction along any func-
tor β : J → I. On the cotensor side, the comma categories of β are all finite by
Remark 6.5.4 and hence the operation of right Kan extension β∗ : CJ → CI exists
for any stable C. Now suppose that β is cofinal. Then we can refine β∗ : CI → CJ
and β∗ : CJ → CI to hermitian functors as follows. In the tensor case we simply note
that the cofinality of β yields a natural equivalence

ϘJ (β∗ϕ) = colim
j∈J

Ϙ(ϕ(β( j)) 
 colim
i∈I
Ϙ(ϕ(i)) = ϘI(ϕ)

and so we obtain a hermitian functor (β∗, ϑβ) : (C, Ϙ)I → (C, Ϙ)J in which
ϑβ : ϘI ⇒ ϘJ ◦ β∗ is an equivalence. For cotensors we consider the counit
β∗β∗ψ ⇒ ψ and use the coinitiality of βop to obtain a map

ϘJ (ψ) ⇒ ϘJ (β∗β∗ψ) = lim
j∈J op

Ϙ(β∗ψ(β( j)) 
 lim
i∈Iop

Ϙ(β∗ψ(i)) = ϘI(β∗ψ)



Hermitian K-theory for stable ∞-categories I: Foundations Page 209 of 269 10

giving a hermitian refinement (β∗, ϑβ) : (C, Ϙ)J → (C, Ϙ)I .

Example 6.5.15 Acommon source of cofinalmaps aremapsβ : J → I which admit a
left adjointα : I → J . Unwinding the definitions and usingRemarks 6.3.12 and 6.4.9,
we see that in this case the exceptional hermitian functors (β∗, ϑβ) and (β∗, ϑβ) of
Construction 6.5.14 coincide with the direct hermitian functors (α∗, ηα) and (α∗, ηα),
respectively.

Remark 6.5.16 Let I,J be two strongly finite ∞-categories and (C, Ϙ) a Poincaré
∞-category. The identification

(C, Ϙ)I 
 Funex((Spf , Ϙu)I , (C, Ϙ)) (161)

of Remark 6.4.6, being natural in I, identifies, for every map α : I → J , the asso-
ciated hermitian functor (α∗, ηα) : (C, Ϙ)J → (C, Ϙ)I with the one induced from
(α∗, ηα) : (Spf , Ϙu)I → (Spf , Ϙu)J upon taking internal functor categories to (C, Ϙ).
Similarly, the identification

(C, Ϙ)I 
 Funex((Spf , Ϙu)I , (C, Ϙ)) (162)

of Corollary 6.5.11 identifies the hermitian functor (α∗, ηα) : (C, Ϙ)I → (C, Ϙ)J with
the one induced from (α∗, ηα) : (Spf , Ϙu)I → (Spf , Ϙu)J . Unravelling all defini-
tions, and observing the similarity between the formulas for the direct and exceptional
functorialities, we see that the equivalence (161) also identifies for every β : J → I
the exceptional hermitian functor (β∗, ϑβ) : (C, Ϙ)J → (C, Ϙ)I with the one induced
from the exceptional functor (β∗, ϑβ) : (Spf , Ϙu)I → (Spf , Ϙu)J upon taking inter-
nal functor categories to (C, Ϙ), and similarly the equivalence (162) also identifies
the exceptional hermitian functor (β∗, ϑβ) : (C, Ϙ)I → (C, Ϙ)J with the one induced
from (β∗, ϑβ) : (Spf , Ϙu)J → (Spf , Ϙu)I .

Remark 6.5.17 Like the ordinary functoriality of the tensor and cotensor constructions,
the exceptional functorialities are compatible with composition. More precisely, if

K β ′−→ J β−→ I are a pair of composable cofinal maps then the hermitian functor
((β ◦ β ′)∗, ϑβ◦β ′) : (C, Ϙ)I → (C, Ϙ)K is naturally equivalent to the composite of
(β∗, ϑβ) and ((β ′)∗, ϑβ ′) and the hermitian functor ((β ◦ β ′)∗, ϑβ◦β ′) : (C, Ϙ)K →
(C, Ϙ)I is naturally equivalent to the composite of (β∗, ϑβ) and (β ′∗, ϑβ ′). Indeed,
by Remark 6.5.16 it will suffice to check this for the tensor construction, where it
amounts to the fact theBeck–Chevalley transformation relating restriction and colimits
is compatible with composition of restriction maps.

Remark 6.5.18 Comparing the explicit formulas of the direct and exceptional functo-
rialities we see that if β : J → I is a cofinal map then the resulting hermitian structure
on the exceptional-direct composite (β∗, ηβ) ◦ (β∗, ϑβ) : (C, Ϙ)J → (C, Ϙ)J is given
by the map

ϘJ (ψ) ⇒ ϘJ (β∗β∗ψ)
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induced by the counit β∗β∗ψ ⇒ ψ . Similarly, the resulting hermitian structure on the
direct-exceptional composite (β∗, ϑβ) ◦ (β∗, ηβ) : (C, Ϙ)J → (C, Ϙ)J is induced by
the counit of CI ⊥ CJ in a similarmanner. In particular, ifβ is fully-faithful then these
counits are equivalences, in which case we get that the exceptional functoriality of β
gives a one sided inverse to its direct functoriality. More generally, it can be checked
that for any cofinal β the exceptional functoriality (β∗, ϑβ) is right adjoint to the
direct functoriality (β∗, ηβ), and the exceptional functoriality (β∗, ϑβ) is left adjoint
to the direct functoriality (β∗, ηβ), when these terms are understood with respect to
the (∞, 2)-categorical structure of Cath∞ determined by the internal functor categories
of Sect. 6.2.

6.6 Finite complexes andVerdier duality

In this final section we explore the particular case when I is the poset of simplices
of a finite simplicial complex. In this context the tensor construction plays a central
role in [45], where its duality functor is identified as a form of Verdier duality. Filling
in the details in some of the arguments of loc. cit., we will show that tensoring and
cotensoring by the poset of faces of a finite simplicial complex preserves Poincaré∞-
categories, and that the hermitian functors associated to maps of simplicial complexes
(direct functoriality) and refinements of triangulations (exceptional functoriality) are
Poincaré.

Recall that a finite simplicial complex K consists of a finite set of vertices K0 and a
collection IK of non-empty subsets S ⊆ K0, called faces, which contain all singletons
and are downwards closed in the sense that if S is a face of K and S′ ⊆ S then S′ is
a face of K as well. The dimension of a face S is by definition dim(S) := |S| − 1.
We may realise a simplicial complex K geometrically as the subspace |K | of the full
simplex on K0 obtained as the union of the given faces. For a finite simplicial complex
K we will consider IK as a poset, and consequently a category, by inverse inclusion,
that is, there is a unique morphism S → S′ if S′ ⊆ S. A map of simplicial complexes
K → L is by definition a map of sets K0 → L0 which sends every face of K to a face
of L . In particular, such a map determines a map of posets α : IK → IL . If K is a
simplicial complex then a refinement of K consists of a simplicial complex L together

with a homeomorphism |L| ∼=−→ |K | which carries the realisation of every face of L
into the realisation of a face of K , and such that the realisation of every face of K
in |K | is a union of faces of L . We note that such a homeomorphism determines in
particular a map of posets β : IL → IK which sends every face of L to the face of K
containing it under the homeomorphism |L| ∼= |K |.
Proposition 6.6.1 ([45, Lecture 19, Proposition 3]) Let (C, Ϙ) be a Poincaré ∞-
category and K a finite simplicial complex with poset of faces IK . Then the hermitian
∞-categories (C, Ϙ)IK and (C, Ϙ)IK are Poincaré.

Proof By Corollary 6.5.12 it will suffice to prove the claim for (C, Ϙ)IK . We need to
show that for every ϕ ∈ CIK the map

ϕ → DIK DIK ϕ (163)
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is an equivalence. To do so it suffices to show it for a system of objects that generate
under colimits. We choose the set ϕ = Rx,S for S ∈ IK and x ∈ C. Now the face
S corresponds to an injective map of simplicial complexes �n → K which in turn
determines an inclusion of posets α : I�n ⊆ IK such that α([n]) = S and Rx,S is
the right Kan extension along αop of the constant diagram ϕx : Iop

�n → C with value
x . Now the map α satisfies the hypothesis of Corollary 6.5.13 (in fact, the map that
needs to be cofinal is an isomorphism of posets, see also Proposition 6.6.2 below), and
so the hermitian functor (α∗, ηα) : CI�n → CIK is duality preserving. We can hence
reduce to the case of K = �n and ϕ = ϕx . Using Proposition 6.5.8 we now have

DI�n ϕx (S) = colim∅$=T⊆[n]

{
Dx S ⊆ T
0 otherwise.

(164)

To calculate this colimit let us denote by ι : IS
�n ⊆ I�n the subposet spanned by those

T ⊆ [n] such that S � T . Then the functor whose colimit is calculated in (164) can
be identified with the cofibre of the map ι∗ι!ϕx → ϕx , and so we get that

[DI�n ϕx ](S) = cof
[
colim
IS
�n

Dx → colim
I�n

Dx
]
.

Now since IS
�n is closed under subfaces in I�n it corresponds to some subcomplex�n ,

which we readily identify as the join ∂�S ∗�S′ , where S′ = [n]−S is the complement
of S, and we have used the notation �S and �S′ to denote the corresponding faces,
considered as subcomplexes. The poset IS

�n is hence weakly contractible if S′ $= ∅,
that is, if S $= [n], and is weakly equivalent to ∂�n if S = [n]. We thus conclude that

[DI�n ϕx ](S) =
{
�nDx S = [n]

0 otherwise.

By the same argument we then have

[DI�n DI�n ϕx ](S) = colim
∅$=T⊆[n]

{
D�nDx T = [n]

0 otherwise,

so that DI�n DI�n ϕx is constant with value �nD�nDx 
 x , and is in particular
equivalent to ϕx . We need however to make sure that specifically the evaluation map
is an equivalence. Since both DI�n DI�n ϕx and ϕx are constant it will suffice to show
that the component of the evaluation map at S = [n] is an equivalence. Unwinding
the definitions, this is the composed map

x

−→ DDx → colim

T∈I�n
lim

T ′∈Iop
�n

{
DDx if T = T ′ = [n]
0 otherwise

= lim
T ′∈Iop

�n

colim
T∈I�n

{
DDx if T = T ′ = [n]
0 otherwise
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whose component at level T ′ is 0 for T ′ $= [n] and is the inclusion of the T = [n]
component in the colimit otherwise. The invertibility of this map then reduces to the
fact that in a stable ∞-category an n-cube is cartesian if and only if it is cocartesian.

The perfectness of hermitian structures asserted in Proposition 6.6.1 is accompanied
by the following duality preservation statement:

Proposition 6.6.2 [45, Lecture 19] Let (C, Ϙ) be a Poincaré ∞-category.

i) If K → L is a map of finite simplicial complexes with α : IK → IL the induced
map of posets of faces then the induced hermitian functors (α∗, ηα) : (C, Ϙ)IK →
(C, Ϙ)IL and (α∗, ηα) : (C, Ϙ)IL → (C, Ϙ)IK are Poincaré.

ii) If L is a refinement of a simplicial complex K and β : IL → IK is the asso-
ciated map of posets of faces then β is cofinal and the exceptional hermitian
functors (β∗, ϑβ) : (C, Ϙ)IK → (C, Ϙ)IL and (β∗, ϑβ) : (C, Ϙ)IL → (C, Ϙ)IK are
Poincaré.

Proof By Remark 6.5.16 it will suffice to prove the tensor case. For the first statement
we observe that the functor α : IK → IL satisfies the criterion of Corollary 6.5.13,
since for every face S ∈ IK the functor (IK )S/ → (IL)α(S)/ admits a left adjoint
sending T ⊆ α(S) to its inverse image in S.

To prove the second statement, we begin by showing that β is cofinal. Indeed for any
simplex S ∈ IK the poset IL ×IK (IK )S/ has geometric realisation homeomorphic to
a simplex and so it is weakly contractible. To prove that (β∗, ϑβ) is Poincaré, it will
suffice to show that for every generator Rx,S ∈ CIK the associated map

β∗DIK Rx,S → DILβ
∗Rx,S

is an equivalence. Now the face S corresponds to an injective map of simplicial com-
plexes �S → K (where �S denotes the full simplex with vertex set S), which in
turn determines an inclusion of posets α : I�S ⊆ IK such that Rx,S is the right Kan
extension along α of the constant diagram ϕx : I�S → C with value x . The inverse
image of I�S in IL then determines a subcomplex L S ⊆ L which is a refinement of
�S .

Let us denote byβS : IL S → I�S the induced refinementmap andby α̃ : IL S ↪→ IL

the inclusion. Since I�S and IL S are downward closed the pointwise formula for right
Kan extensions implies that the square

(C, Ϙ)I
�S (C, Ϙ)IL S

(C, Ϙ)IK (C, Ϙ)IL

(β∗S ,ϑ
β
S )

(α∗,ηα) (̃α∗ ,̃ηα)
(β∗,ϑβ)

commutes. Since the vertical hermitian functors are Poincaré by the first part we may
reduce to the case where K is the n-simplex �n , L is some refinement of �n , and
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ϕ = ϕx . Now for T ∈ IL let us denote by IT
L ⊆ IL the subposet spanned by those

faces which do not contain T , and by J T
L ⊆ IT

L the subposet spanned by those faces
whose image in IK does not contain β(T ). We note that both of these subposets are
downward closed and correspond to subcomplexes of L . In particular, IT

L corresponds
to the subcomplex LT ⊆ L obtained by removing all faces which contain T , and J T

L
corresponds to the subcomplex LT

0 ⊆ LT obtained by removing all faces whose
image in K contains T . We also note that LT

0 is a refinement of the subcomplex
∂�β(T ) ∗�[n]−β(T ) ⊆ �n obtained from�n by removing all the faces which contain
β(T ). Calculating as in the proof of Proposition 6.6.1 and using that refinement maps
are cofinal as established above we may identify the cofibre of the map

[β∗DI�n ϕx ](T ) → [DILβ
∗ϕx ](T )

for T ∈ IL with the total cofibre of the square

colimJ T
L
Dx colimIL Dx

colimIT
L
Dx colimIL Dx .

To finish the proof it will hence suffice to show that |L0
T | → |LT | is a weak homotopy

equivalence. Let p ∈ |�n| be a point in the interior of the face T (and hence also in the
interior of the face β(T )). Then we have a sequence of inclusions |L0

T | ⊆ |LT | ⊆ U
where U ⊆ |�n| is the complement of p. The desired result now follows from the fact
that both |L0

T | ⊆ U and |LT | ⊆ U are deformation retracts; this is a general property
of simplicial complexes: if one removes a point from the realisation of a simplicial
complex then the result deformation retracts to the subcomplex spanned by all the
simplices which do not contain that point.

7 Hyperbolic andmetabolic Poincaré categories

From a conceptual view point, it is arguably tempting to regard hermitian structures on
stable∞-categories as categorified versions of hermitian forms onmodules. Similarly,
Poincaré∞-categories correspond to modules equipped with a unimodular hermitian
form. Inspired by this informal perspective, in this section we identify a surprisingly
comprehensive variety of such categorified counterparts, including the categorified
analogues of bilinear forms, perfect bilinear forms, hyperbolic objects, metabolic
objects and the algebraic Thom construction. Beyond its conceptually pleasing effect,
it turns out thatmany of the constructions encountered via this perspective give explicit
left and right adjoints to various natural functors, a feature which we will repeatedly
exploit in subsequent instalments of this project. In particular, the main practical
outcomes of our categorified stroll will include the following:

i) After exploring the categorified counterparts of bilinear forms in Sect. 7.2, we
deduce that the association C �→ Hyp(C) described in Sect. 2.2 is both left
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and right adjoint to the forgetful functor Catp∞ → Catex∞, with unit and counit
given on the side of Catp∞ by the Poincaré functors hyp : Hyp(C) → (C, Ϙ) and
fgt : (C, Ϙ) → Hyp(C) described in Sect. 2.2. In addition, we show that Hyp is C2-
equivariant with respect to the op action on Catex∞ and the trivial action on Catp∞,
and that hyp and fgt are equivariant natural transformations. All this information
is best organised in the setting of C2-categories and Mackey functors, which we
explore in Sect. 7.4. This will also be the basis for our organization in Paper [2] of
algebraic K-theory, Grothendieck-Witt theory and L-theory into a single functor
taking values in genuine C2-spectra, which we call the real K-theory spectrum.

ii) While forming the categorified analogue of metabolic objects, Lagrangians, and
the algebraic Thom construction in Sect. 7.3, we deduce an explicit formula for
the left and right adjoints to the inclusion Catp∞ → Cath∞. This will be exploited
in Paper [2] when setting up the framework of algebraic surgery in the context
of Poincaré ∞-categories, and in analysing the effect of additive and bordism
invariant functors applied to the Q-construction. We will also use it in Paper [4]
for constructing the localised analogue of the Grothendieck-Witt spectrum and
for proving that Catp∞ is compactly generated.

The present section is organised as follows. We begin in Sect. 7.1 with some pre-
liminary material on bifibrations, a notion used for encoding space valued bifunctors
which are covariant in one entry and contravariant in the other. By translating results
from [47, §5.2.1] to the context of bifibrations we deduce in particular that the ∞-
category of perfect symmetric bifibrations is equivalent to CathC2∞ . In Sect. 7.2 we
specialise to the setting of stable∞-categories and replace space valued bifunctors by
spectrum valued ones. This leads to the notion of bilinear∞-categories as analogous
of pairs of modules equipped with a bilinear form. We also consider the variants of
requiring the form to be perfect and/or symmetric, and identify, using Sect. 7.1, the
notion of a perfect symmetric∞-category with that of a stable∞-category equipped
with a perfect duality. All these notions accept natural forgetful functors from either
Catp∞ (in the perfect case) or Cath∞. Studying all of them on equal footing allows one
to efficiently identify left and right adjoints to these forgetful functors, which con-
stitutes the main content of Sect. 7.2. In particular, we will see that the association
C �→ Hyp(C) described in Sect. 2.2 gives a two-sided adjoint to the forgetful functor
Catp∞ → Catex∞. In Sect. 7.3we discuss the categorified analogous ofmetabolic objects
and Lagrangians, and show that the categorified analogue of the Thom construction
enables one to produce both a left and a right adjoint to the inclusion Catp∞ → Cath∞.
We also prove a generalization of the non-categorified Thom construction, thus pro-
viding in particular a proof for Proposition 2.4.3 which was stated in Sect. 2.4. Finally,
in Sect. 7.4 we discuss C2-categories and Mackey functors, and show how to view
various players in the present paper in that context. In particular, we show that the
relations between quadratic and bilinear functors, between hermitian and bilinear∞-
categories, and between Poincaré and stable ∞-categories, can all be understood on
the same footing, giving another take on the categorified perspective. The results of
Sect. 7.4 will be primarily used in Paper [2] in order to define the real K-theory spec-
trum, but the C2-equivariant properties of the hyperbolic construction resulting from
it are useful for a variety of other purposes as well.
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7.1 Preliminaries: pairings and bifibrations

LetA,B be two∞-categories. By a correspondence on the pair (A,B)wewill simply
mean a functor b : Aop×B → S. In particular, we think of a correspondence as a space
valued functor on pairs (x, y) with x ∈ A and y ∈ B, which is contravariant in x and
covariant in y. The prototypical example to have inmind is takingA = B = C for some
∞-category C, with b(x, y) = MapC(x, y). Given a correspondence b : Aop×B → S
and y ∈ B, evaluation at y yields a presheaf of spaces b(−, y) on A, which we can
unstraighten to obtain a right fibration

∫ x∈A
b(x, y) → A. (165)

Since the presheaf b(−, y) ∈ Fun(Aop,S) depends functorially on y, so does the
domain of (165). In fact, we can identify the arrow (165)with themap

∫ x∈A b(x, y) →∫ x∈A ∗ associated to the terminal map of correspondences b → ∗, and so the entire
arrow (165) depends functorially on y. Equivalently, we may view it as a natural trans-
formation between two Cat∞-valued functors on B, the second of which is constant
with value A. We then define

Pair(A,B, b) :=
∫

y∈B

∫ x∈A
b(x, y) → A× B, (166)

to be the∞-category over A× B obtained by unstraightening (165) over B. The∞-
category Pair(A,B, b) can informally be described as having objects triples (x, y, β)
where x ∈ A and y ∈ B are objects and β ∈ b(x, y) is a b-valued pairing on x and y.
A map from (x, y, β) to (x ′, y′, β ′) is then given by maps f : x → x ′, g : y → y′ and
a homotopy η : g∗β ∼ f ∗β ′ ∈ b(x, y′), where f ∗ and g∗ encode the contravariant
and covariant dependence of b on x and y, respectively.

Wepoint out that since the above construction involves both the cartesian unstraight-
ening

∫ x∈A and the cocartesian straightening
∫

y∈B, the resulting arrow in (166) is
neither a cartesian nor a cocartesian fibration. We can nonetheless describe it as fol-
lows: recall that a bifibration (see [43, Definition 2.4.7.2]) is a pair of maps

A q←− X p−→ B

consisting of a cartesian fibration q : X → A and a cocartesian fibration p : X → B,
such that the q-cartesian edges are exactly those projecting to equivalences inB and the
p-cocartesian edges are exactly those projecting to equivalences in A. Equivalently,
the pair of maps p, q forms a bifibration if and only if (q, p) : X → A × B is
a map of cocartesian fibrations over B whose fibres are right fibrations, and if and
only if (q, p) : X → A×B is map of cartesian fibrations overAwhose fibres are left
fibrations. In particular, one readily verifies that for a correspondenceb : Aop×B → S,
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the pair of projections

A ← Pair(A,B, b) → B

constitutes a bifibration. In fact, this association determines an equivalence between
correspondences b : Aop × B → S and bifibrations A ← X → B (see [64] and
[7, §4]), and can be considered as a bivariant form of the space-valued straightening-
unstraightening equivalence. In particular, using the coherent compatibility of the
straightening-unstraightening equivalence with base change as established in [23,
Corollary A.31], this equivalence integrates to an equivalence

(−) ← Pair(−,−,−) → (−) :
∫ (A,B)∈Cat∞×Cat∞

Fun(Aop × B,S) 
−→ BiFib,

(167)

where BiFib ⊆ Fun(�2
0,Cat∞) is the full subcategory spanned by the bifibrations.

Example 7.1.1 In the case of B = A = C and the canonical correspondence mC :=
MapC(−,−) : Cop × C → S, the ∞-category Pair(C, C,mC) canonically identifies
with the arrow category Ar(C) := Fun(�1, C).

Remark 7.1.2 The notion of a correspondence Aop × B → S can equivalently be
encoded by a right fibration M → A× Bop. Right fibrations of this form were stud-
ied in [47, §5.2.1] under the name pairings. In particular, the ∞-category CPair of
[47, Construction 5.2.1.14] of pairings is naturally equivalent to BiFib, since both
are equivalent to

∫ A,B∈Cat∞ Fun(Aop × B,S). Under this equivalence, the canonical
bifibration C ← Ar(C) → C of Example 7.1.1 encoding the mapping space corre-
spondence corresponds to the right fibration TwAr(C) → C × Cop.

Remark 7.1.3 The notion of a bifibration was generalised in [26,27] to that of an
orthofibration, which the authors show encodes the data of a functorAop×B → Cat∞.
In particular, an explicit dualisation procedure transforming an orthofibration over
A,B to that of a cartesian fibration overA×Bop is constructed in loc. cit.; when applied
in the case of bifibrations, this enables one to identify them directly with pairings
as in Remark 7.1.2 without passing through straightening and unstraightening. For
example, this dualisation procedure shows directly that the bifibration C ← Ar(C) →
C corresponds to the right fibration TwAr(C) → C × Cop. The machinery of [27] also
shows that the identification of functors Aop × B → Cat∞ with orthofibrations (and
hence of functorsAop×B → S with bifibrations), is independent of whether we first
unstraighten the contravariant part, and then covariant one (as we did above), or the
other way around.

Definition 7.1.4 We say that a correspondence b : Aop×B → S is right-representable
if the associatedmapB → Psh(A) factors through the image of theYoneda embedding
ι : A ↪→ Psh(A). In this case the resulting functor d : B → A is characterised by a
natural equivalence MapA(x, d(y)) 
 b(x, y).
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Remark 7.1.5 If a correspondence b : Aop × B → S is right-representable then
Pair(A,B, b) naturally identifies with the fibre product Ar(A)×A B along the target
projection Ar(A) → A and d : B → A. More generally, if we Yoneda embed A
in Psh(A) = Fun(Aop,S), then b becomes tautologically right representable by the
functor d̃ : B → Psh(A) sending y ∈ B to b(−, y) ∈ Psh(A). We may then write

Pair(A,B, b) 
 A×Psh(A) Ar(Psh(A))×Psh(A) B

where the fibre product is taken along the Yoneda embedding A → Psh(A) and
d̃ : B → Psh(B), and Ar(Psh(A)) projects to the domain on the left hand side and to
the target on the right hand side.

Definition 7.1.6 We say that a correspondence b : Aop×B → S is perfect if b is right-
representable and the associated representing functor d : B → A is an equivalence.
In this case, we say that a pairing (x, y, β) ∈ Pair(A,B, b) is perfect if the map
x → d(y) determined by β is an equivalence. Similarly, we say that a bifibration
A ← X → B is perfect if its classifying correspondence Aop × B → S is. In this
case we say that an object in X is perfect if it corresponds to a perfect pairing under
the identification of X with Pair(A,B, b). We then say that a map of bifibration

[A ← X → B] → [A′ ← X ′ → B′]

is perfect if it sends perfect objects of X to perfect objects of X ′. We denote by
BiFibp ⊆ BiFib the (non-full) subcategory spanned by the perfect bifibrations and the
perfect maps between them.

While BiFibp ⊆ BiFib is not a full subcategory, it does satisfy the following weaker
property [46, Definition 20.1.1.2]:

Definition 7.1.7 Let C be an∞-category and C′ ⊆ C a subcategory. We say that C′ is
replete if for every x ∈ C′ and y ∈ C such that there is an equivalence α : x


−→ y in

C, then y ∈ C′ and there exists an equivalence β : x

−→ y in C′ whose image in C is

homotopic to α.

Remark 7.1.8 The condition of being a replete subcategory C′ ⊆ C is detected on the
level of the homotopy categories: it is equivalent to saying that Ho C′ is closed under
isomorphisms and for every x, y ∈ C′ the subset HomHoC′(x, y) ⊆ HomHoC(x, y)
contains all isomorphisms from x to y in C.

Example 7.1.9 The subcategory BiFibp ⊆ BiFib is replete. This follows from the
observation that any equivalence between perfect bifibrations is necessarily a perfect
map.

Example 7.1.10 The subcategory Catex∞ ⊆ Cat∞ is replete.

Remark 7.1.11 For any subcategory C′ ⊆ C the induced map MapC′(x, y) →
MapC(x, y) is a (−1)-truncated map of spaces for every x, y ∈ C′, that is, its fibres
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are either empty or contractible. If the subcategory C′ is replete then the induced map
ιC′ → ιC on core groupoids is also (−1)-truncated. This implies that every replete
subcategory inclusion C′ ↪→ C is (−1)-truncated as a map in Cat∞, that is, for every
test∞-category D the induced map

MapCat∞(D, C′) → MapCat∞(D, C)

is (−1)-truncated. In many contexts, this property is what makes replete subcategories
behave more like “subobjects” than general subcategories.

The following proposition records the content of [47, Remark 5.2.1.20] in the
context of bifibrations:

Proposition 7.1.12 The composite

BiFibp BiFib Cat∞ × Cat∞ Cat∞

(A,B, b) (A,B) A
(168)

is an equivalence of ∞-categories. An inverse is given by C �→ [C ← Ar(C) → C].
Proof Since the association C �→ [C ← Ar(C) → C] is visibly a one-sided inverse
to (168) we see that the latter is in particular essentially surjective, and it will hence
suffice to show that it is also fully-faithful, On the other hand, if A ← X → B
is a perfect bifibration then it is equivalent in BiFib to A ← ArA → A via the
associated functor d : B → A and the natural equivalence b(x, y) 
 homA(x, d(y)).
It will hence suffice to show that for every C ∈ Cat∞ and every perfect bifibration
A ← X → B the induced map

MapBiFibp([A ← X → B], [C ← Ar(C) → C]) → MapCat∞(A, C)

is an equivalence. But this now follows from [47, Proposition 5.2.1.18] under the
equivalence between bifibrations as above and pairings in the sense of [47, Definition
5.2.1.5], see Remark 7.1.2.

The ∞-category BiFib ⊆ Fun(�2
0,Cat∞) of bifibrations carries a natural action

of C2 induced by the action of C2 on �2
0 switching the vertices �{1} and �{2} and

post-composing with the op action on Cat∞. Explicitly, this action sends a bifibration
A ← X → B to the bifibration Bop ← X op → Aop (indeed, the latter is again
a bifibration since taking opposites switches cartesian and cocartesian fibrations). A
C2-fixed structure on a given bifibration A ← X → B can then be described as

a duality D : X 
−→ X op on X , an equivalence A 
 Bop, and a duality-preserving
refinement of X → A× B 
 A×Aop. We refer to such a structure as a �2

0-duality
on A ← X → B, and call a bifibration equipped with a �2

0-duality a symmetric
bifibration.
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Proposition 7.1.13 The C2-fixed ∞-category BiFibhC2 participates in a cartesian
fibration

BiFibhC2 → Cat∞

classified by the functor C �→ Fun(Cop × Cop,S)hC2 .

Proof Equipping �{1} ∐�{2} with the swap action and restricting along the C2-
equivariant inclusion �{1} ∐�{2} ⊆ �2

0 we get that the cocartesian fibration

BiFib → Cat∞ × Cat∞, (169)

naturally refines to a C2-equivariant functor, where C2 acts on the target by flipping
the factors and taking opposites. Since cartesian fibration are preserved under limits,
taking C2-fixed points results in a cartesian fibration

BiFibhC2 → (Cat∞ × Cat∞)hC2 . (170)

We now observe that the equivalence

(id, (−)op) : Cat∞ × Cat∞

−→ Cat∞ × Cat∞

intertwines the flip-op action on the left hand side with the flip action on the right
hand side, and so the target of (169) is a coinduced C2-object. We may consequently
identify the target of (170) with Cat∞ and write it as a cocartesian fibration

BiFibhC2 → Cat∞. (171)

Since taking fibres commutes with fixed points wemay identify the fibres of (171) with
the C2-fixed points of the corresponding fibres of (169). Now C ∈ Cat∞ corresponds
to the fixed object (C, Cop) ∈ Cat∞ × Cat∞, and so the fibre of (171) over C is the
C2-fixed points of Fun(Cop × Cop,S), as claimed.

Construction 7.1.14 By Proposition 7.1.13 we may identify the notion of a symmetric
bifibration with that of a pair (C, b) where C is an ∞-category and b ∈ Fun(Cop ×
Cop,S)hC2 is a symmetric functor. Given (C, b), the associated symmetric bifibration
is

Cop ← Pair(C, Cop, b) → C

equipped with its �2
0-duality which we denote by Dpair. It is given explicitly by the

duality

Dpair(x, y, β) = (
y, x, σx,y(β)

)
,
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on Pair(C, Cop, b), where σx,y : b(x, y)

−→ b(y, x) is given by the symmetric structure

of b, equipped with the tautological duality-preserving structure of the projection
Pair(C, Cop, b) → C × Cop.

Proposition 7.1.15 The C2-action on BiFib restricts to a C2-action on BiFibp. Under
the equivalence BiFibp 
 Cat∞ of Proposition 7.1.12, this action corresponds to the
op-action on Cat∞. In particular, we may identify the notion of a perfect symmetric
bifibration with that of an ∞-category equipped with a perfect duality.

Proof We claim that the functor

Cat∞ → BiFib C �→ [C ← Ar(C) → C]

admits a natural C2-equivariant structure, where C2 acts on Cat∞ via the op-action.
To see this, it will suffice to construct a C2-equivariant structure for the composite
map Cat∞ → BiFib ↪→ Fun(�2

0,Cat∞). This composite is by definition given by
mapping out of the diagram e := [�{0} → �1 ← �{1}], and so it will suffice to put a
C2-equivariant structure on e : (�2

0)
op → Cat∞. Such an equivariant structure is then

given by the canonical duality on D�1 : �1 → (�1)op which switches {0} and {1}
(since�1 is the nerve of an ordinary category not much coherence is needed in order
to verify this fact).

By Proposition 7.1.12 it now follows in particular that the C2-action on BiFib
preserves the subcategory BiFibp. This subcategory is replete by Example 7.1.9, and
so byRemark 7.1.11 the C2-action onBiFib restricts to an essentially unique C2-action
on BiFibp making the inclusion BiFibp ↪→ BiFib equivariant. By the above this action
must then coincide with the op-action via the equivalence BiFibp 
 Cat∞, as desired.

Example 7.1.16 In the situation of Construction 7.1.14, if the symmetric correspon-

dence b : Cop × Cop → S is perfect with duality D : Cop 
−→ C then the associated
symmetric bifibration identifies by Proposition 7.1.12 with

C ← Ar(C) → C

and by Proposition 7.1.15 (and its proof) the associated�2
0-duality Dpair corresponds

to the arrow duality [x → y] �→ [Dy → Dx] induced on the functor category
Ar(C) = Fun(�1, C) from the dualities of �1 and C.

The remainder of this section is devoted to producing an explicit formula expressing
the mapping spaces in Pair(A,B, b) in terms of b and the mapping spaces in A× B.
This will be useful for us in Sect. 7.3 when we will need to upgrade the pairings
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construction to the hermitian setting. To begin, consider the following diagram in
Fun(�2

0,Cat∞):

[
∂�{0,1} ← ∂�{0,1} % ∂�{1,2} → ∂�{1,2}] [

∂�{0,1} ← �{0} %�{1} %�{2} → ∂�{1,2}]

[
�{0,1} ← �{0,1} ∐

�{1,2} → �{1,2}] [
�{0,1} ← �2 → �{1,2}]

[
�{0,1} ← �{0} ∐

�{2} → �{1,2}] [
�{0,1} ← �{0,2} → �{1,2}] .

Here, left going internal arrows are all given on vertices by [0 �→ 0], [1 �→ 1], [2 �→
1] and all the right going internal arrows are given by [0 �→ 1], [1 �→ 1], [2 �→
2], while the external arrows always preserve the vertex labels. The upper square
is cocartesian, as can be tested levelwise using the standard categorical equivalence

�{0,1} ∐
�{1} �{1,2} 
−→ �2. In addition, all entries in this square carry compatible�2

0-

dualities, induced by the canonical duality �2 
−→ (�2)op which switches between
0 and 2 and between �{0,1} and (�{1,2})op. Mapping out of the above diagram now
yields a C2-equivariant functor Fun(�2

0,Cat∞) → Fun(�2
0 × �1,Cat∞) sending

[A q←− X p−→ B] to the diagram

X�{0} ×B�{1} X�{1} ×A�{1} X�{2} X�{0} ×B�{1} X�{1} ×
(A×B)�

{1} X�{1} ×A�{1} X�{2}

X�2 ×
(A×B)�

2

[A�{0,1} × B�{1,2} ] X�{0,1}%�{1,2} ×
(A×B)�

{0,1}%�{1,2}

[A�{0,1} × B�{1,2} ]

X�{0,2} ×
(A×B)�

{0,2}

[A�{0,1} × B�{1,2} ] X�{0}%�{2} ×
(A×B)�

{0}%�{2}

[A�{0,1} × B�{1,2} ]

(172)

in which the top square is cartesian. In addition, using that all entries in this diagram
compatibly project toX�{0}

andX�{2}
wewill view this as a diagram in (Cat∞)/X×X .

Proposition 7.1.17 When [A ← X → B] is a bifibration the bottom vertical arrows
in (172) are equivalences. In particular, inverting these and taking the external rectan-
gle yields a C2-equivariant functor BiFib → Fun(�1 ×�1,Fun(�2

0,Cat∞)) which
sends [A ← X → B] to a cartesian square (173) of the form
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Ar(X ) X ×A X ×B X

X ×A×B [Ar(A× B)] ×A×B X X ×A X ×A×B X ×B X .

(173)

in (Cat∞)/X×X . Here, the two projections toX are given by the domain and codomain
projections in the case of Ar(X ) and by the projection to the two extremal factors in
the three other cases. In addition, this functor takes values in Fun(�1 × �1,BiFib)
after post-composing with the inclusion (Cat∞)/X×X → Fun(�2

0,Cat∞).

WritingX = Pair(A,B, b) for somecorrespondenceb : Aop×B → S the square of
bifibrations (173) corresponds to a cartesian square of correspondencesX op×X → S
of the form

MapX ((x, y, β), (x ′, y′, β ′)) b(x, y′)

MapA(x, x ′)×MapB(y, y′) b(x, y′)× b(x, y′),

(174)

giving, in particular, an explicit pullback formula for the mapping spaces in
Pair(A,B, b).

Remark 7.1.18 In the situation of Proposition 7.1.17, the C2-equivariance of the func-
tor in question means in particular that if a bifibration A ← X → B carries a
�2

0-duality then all the entries in the square (173) inherit such a duality and all arrows
in the square are duality preserving.

Proof of Proposition 7.1.17 By definition the arrows in X which map to equivalences
in A are exactly the p-cocartesian arrows, and the arrows which map to equivalences
in B are exactly the q-cartesian arrows. It then follows that the projections

X�{0,1} ×B�{0,1} B → X�{0} ×A�{0} A�{0,1}

and

X�{1,2} ×A�{1,2} A → X�{2} ×B�{2} B�{1,2}

are equivalences, and so the right bottom vertical arrow in (172) (which is the fibre
product of these two maps over the identity on A × B) is an equivalence. Similarly,
the projections

X�2 ×B�{0,1} B → A�2 ×A�2
0
X�2

0 ×B�{0,1} B → A�2 ×A�{0,2} X�{0,2}

are both equivalences, fromwhich it follows that the left bottomvertical arrow in (172),
which is a base change of the above composite, is an equivalence.
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7.2 Bilinear and symmetric∞-categories

In the present sectionwedefine and study the notion of bilinear andperfect bilinear ∞-
categories. We then show that the notion of an∞-category equipped with a symmetric
bilinear form, whichwe call a symmetric∞-category, can be identifiedwith a C2-fixed
bilinear ∞-category, and similarly in the perfect case. Using the results of Sect. 7.1
we then identify the ∞-category of perfect bilinear ∞-categories with Catex∞ itself,
through which we also deduce an equivalence between ∞-categories with perfect
dualities and C2-fixed objects of Catex∞ with respect to the op-action.We then construct
left and right adjoints to the forgetful functors from hermitian to symmetric to bilinear
∞-categories, and similarly in the Poincaré/perfect case, where we finally recover
the hyperbolic construction C �→ Hyp(C) acting as both left and right adjoint to the
forgetful functor Catp∞ → Catex∞.

Let A,B be stable∞-categories. We say that a correspondence b : Aop × B → S
is left biexact if it preserves finite limits in each variable separately. Such a correspon-
dence lifts in an essentially unique manner to a bilinear functorAop×B → Sp. More
precisely, post-composition with the infinite loop space functor induces an equiva-
lence between bilinear functors Aop × B → Sp and left biexact correspondences
Aop × B → S.

Definition 7.2.1 We denote by Funb(A,B) ⊆ Fun(Aop×B,Sp) the full subcategory
spanned by the bilinear functors and write

Catb∞ :=
∫ (A,B)∈Catex∞×Catex∞

Funb(A,B)

for the ∞-category of triples (A,B,B) where A,B are stable ∞-categories and
B : Aop × B → Sp is a bilinear functor. We will refer to the object (A,B,B) of
Catb∞ as bilinear categories.

Example 7.2.2 For a stable ∞-category C the mapping correspondence mC : Cop ×
C → S of Example 7.1.1 is left biexact. We may hence consider the triple (C, C,mC)
as a bilinear∞-category.

Example 7.2.3 LetA,B be stable∞-categories. If a correspondence b : Aop×B → S
is right representable by an exact functor d : A → B then b is left biexact.

Example 7.2.4 Let C be a stable∞-category. Consider the∞-category Seq(C) of exact
sequences in C (see Notation 2.4.4). The pair of projections

C Seq(C) C

x [y → z → x] y
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then constitute a bifibration. Indeed, a map of exact sequences

y z x

y′ z′ x ′

is a cocartesian lift of y → y′ if and only if the left square is exact, or, equivalently,
if the map x → x ′ is an equivalence, and similarly forms a cartesian lift of x → x ′ if
and only if its component y → y′ is an equivalence. To identify the correspondence
seqC : Cop × C → S associated to this bifibration we use the fact that every exact
square as in (52) extends in an essentially unique manner to a diagram

x ′ 0 0

y z 0

0 x y′

in which all squares except the top right one are exact. We note that such a diagram
determines in particular equivalences x ′ 
 �x and y′ 
 �y. At the same time, the
forgetful functor sending a diagram as a above to its external square

x ′ 0

0 y′
(175)

is an equivalence as well. In particular, if we denote by Ar�(C) ⊆ Fun(�1 ×�1, C)
the full subcategory spanned by the squares of the form (175) then we obtain an
equivalence of bifibrations

C Seq(C) C

C Ar�(C) C
� 
 �

The correspondence associated to Ar�(C) can then be identified with (x ′, y′) �→
�MapC(x ′, y′), and so the correspondence associated to Seq can be written as
seqC(x, y) = �Map(�x, �y). In particular, it is left biexact.

Remark 7.2.5 It follows from Lemma 1.4.1 that the defining cartesian fibration
Catb∞ → Catex∞ × Catex∞ is also a cocartesian fibration. Applying the precise same
argument as in the proof of Proposition 6.1.2 we may consequently conclude that
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Catb∞ has all small limits and colimits, and that those are preserved by the projection
to Catex∞ × Catex∞.

Given a bilinear category (A,B,B) we may consider the pairings ∞-category
associated to the underlying left biexact correspondence �∞B. To simplify notation
we set

Pair(A,B,B) := Pair(A,B,�∞B).

We note that since �∞B is left biexact the functor y �→ d̃(y) = �∞B(−, y) from B
to Psh(A) takes values in the full subcategory Ind(A) ⊆ Psh(A) spanned by the left
exact presheaves. In addition, in this case Ind(A) is also stable, the Yoneda embedding
A → Ind(A) is exact, and the functor d̃ : B → Ind(A) given by �∞B is exact as
well. As in Remark 7.1.5 we may then identify

Pair(A,B,B) 
 A×Ind(A) Ar(Ind(A))×Ind(A) B, (176)

a description from which we see that Pair(A,B,B) is stable and that exact squares
in Pair(A,B,B) are detected in A × B. This means in particular that any map of
bifibrations

[A ← Pair(A,B,B) → B] → [A′ ← Pair(A′,B′,B′) → B′]

whose componentA → A′,B → B′ are exact, is also exact on Pair(−,−,−). Invok-
ing again the coherent compatibility of the straightening-unstraightening equivalence
with base change as established in [23, Corollary A.31], we may consequently assem-
ble the association (A,B,B) �→ Pair(A,B,B) to a functor

Pair(−,−,−) : Catb∞ → Catex∞,

taking values in stable∞-categories and exact functors between them. It then follows
that the bivariant straightening equivalence (167) restricts to a (non-full) subcategory
inclusion

Catb∞ → BiFib (A,B,B) �→ [A ← Pair(A,B,B) → B] (177)

whose image is spanned by those bifibrationsA ← X → B for whichA,B are stable
and the associated correspondence is left biexact and by those maps of bifibrations
whose components are exact functors.

Remark 7.2.6 The subcategory inclusion (177) is replete (see Definition 7.1.7).

Remark 7.2.7 The association in (177) can also be viewed as a functor from Catb∞ to
Fun(�2

0,Cat
ex∞). As such, it is fully-faithful and its image is spanned by those diagrams

A ← X → B in Catex∞ which are bifibrations with associated correspondence left
biexact. From this description we see that Catb∞ is closed under finite products in
Fun(�2

0,Cat
ex∞), and hence inherits from its the property of being semiadditive, see

Proposition 6.1.7.
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Definition 7.2.8 We say that a bilinear category (A,B,B) is perfect if its correspond-
ing bifibration is perfect in the sense of Definition 7.1.6, and say that a map of perfect
bilinear categories is perfect if the corresponding map of bifibrations is so. We denote
by Catpb∞ ⊆ Catb∞ the (non-full) subcategory spanned by the perfect bilinear categories
and perfect maps between them.

Remark 7.2.9 As inExample 7.1.9, the subcategory inclusionCatpb∞ ⊆ Catb∞ is replete.

By construction we have a commutative diagram

Catpb∞ Catb∞ Catex∞ × Catex∞

BiFibp BiFib Cat∞ × Cat∞

in which both squares are cartesian (the right one because (bi)exact functors to spectra
are determined by their underlying space-valued functors) and all vertical arrows, as
well as the horizontal arrows in the left square, are replete subcategory inclusions.

Proposition 7.2.10 The composite functor

Catpb∞ Catb∞ Catex∞ × Catex∞ Catex∞

(A,B, b) (A,B) A
(178)

is an equivalence of ∞-categories. An inverse is given by A �→ (A,A,mA).

Proof This follows directly from Proposition 7.1.12 since a perfect bifibration A ←
X → B belongs to the image of Catpb∞ if and only if A 
 B is stable (in which case
the associated correspondence is automatically left biexact by Example 7.2.3).

Recall from Sect. 7.1 that the∞-category BiFib ⊆ Fun(�2
0,Cat∞) of bifibrations

carries a natural action of C2 induced by the action of C2 on�2
0 switching the vertices

�{1} and�{2} and post-composing with the op action on Cat∞. Explicitly, this action
sends a bifibration A ← X → B to the bifibration Bop ← X op → Aop. Since
taking opposites also preserves stable ∞-categories and exact functors, the above
action induces a C2-action on the replete subcategory Catb∞ ↪→ BiFib. Explicitly,
the resulting C2-action sends a triple (A,B,B) to the triple (Bop,A,Bswap), where
Bswap : B × Aop → S is B pre-composed with the swap equivalence B × Aop 

Aop × B.
Definition 7.2.11 We denote by Catsb∞ := (Catb∞)hC2 the ∞-category of homotopy
fixed points in Catb∞ with respect to the above C2-action.

Proposition 7.2.12 The ∞-category Catsb∞ participates in a cartesian fibration

Catsb∞ → Catex∞

classified by the functor C �→ Funs(C).
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Proof The claim follows from its unstable counterpart Proposition 7.1.13 since the
restriction along exact functors preserves left biexact correspondences.

By Proposition 7.2.12 we may identify the objects of Catsb∞ with pairs (C,B)where
C is a small stable∞-category andB : Cop×Cop → Sp is a symmetric bilinear functor,
that is an object of the ∞-category Funs(C) = Funb(C)hC2 . We refer to such a pair
as a symmetric ∞-category. We refer to morphisms (C,B) → (C′,B′) in Catsb∞ as
symmetric functors. Using again Proposition 7.2.12 we may identify these with pairs
( f , β) where f : C → C′ is an exact functor and β : B → ( f × f )∗B′ is a natural
transformation.

Definition 7.2.13 We say that a symmetric bilinear ∞-category (C,B) is non-
degenerate if B is non-degenerate in the sense of Definition 1.2.2. In this case B is
induced by a (possibly imperfect) duality DB : C → Cop, and every symmetric functor
( f , β) : (C,B) → (C′,B′) induces a natural transformation τβ : f DB ⇒ DB′ f op via
Lemma 1.2.4. We say that such a symmetric functor ( f , β) is duality preserving if
τβ is an equivalence. We say that (C,B) is perfect if D is an equivalence. We then
denote by Catps∞ ⊆ Catsb∞ the (non-full) subcategory spanned by the perfect symmetric
∞-categories and duality preserving functors between them.

Lemma 7.2.14 The C2-action on Catb∞ preserves the replete subcategory Catpb∞ of
perfect bilinear ∞-categories. In addition, on the level of homotopy fixed points the
resulting replete subcategory

(Catpb∞)hC2 ↪→ (Catb∞)hC2 = Catsb∞
coincides with the replete subcategory Catps∞ of perfect symmetric bilinear ∞-
categories.

Proof We need to verify two things:

i) If (C,B) is a symmetric ∞-category then B is perfect in the sense of Defini-
tion 7.2.13 if and only if the left biexact correspondence �∞B is perfect in the
sense of Definition 7.1.6.

ii) A symmetric functor ( f , β) : (C,B) → (C′,B′) between perfect symmetric ∞-
categories is duality preserving if andonly if the induced functorPair(C, Cop,B) →
Pair(C′, C′op,B′) preserves perfect pairings.

To prove i) we need to show that B : Cop × Cop → Sp can be written as B(x, y) 

homC(x,Dy) for some equivalence D : Cop → C if and only if �∞B can be written
as MapC(x,Dy) for some equivalence D : Cop → C. Clearly the former implies the
latter, but the latter also implies the former since post-composition with �∞ induces
an equivalence between bilinear functors Cop×Cop → Sp and left biexact correspon-
dences Cop × Cop → S. To verify ii), consider the commutative diagram

�∞B(x, y) �∞B′( f (x), f (y))

MapC(x,DB(y)) MapC′( f (x), f DB(y)) MapC′( f (x),DB′ f (y))

�∞β



(τβ )∗
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furnished by Remark 1.2.6. We then see that the map f DB(y) → DB′ f (y) is an
equivalence if and only if f sends the tautological perfect pairing (DB(y), y, ι) ∈
Pair(C, Cop,B) to a perfect pairing in C′. Since every perfect pairing is equivalent
to a tautological perfect pairing (DB(y), y, ι) for some y we may thus conclude
that τβ : f DB ⇒ DB′ f op is an equivalence if and only if the induced functor
Pair(C, Cop,B) → Pair(C′, C′op,B′) preserves perfect pairings, as desired.

Remark 7.2.15 Under the equivalence Catpb∞ 
 Catex∞ of Proposition 7.2.10, the

restricted C2-action on Catpb∞ recovers the op-action on Catex∞. Indeed, this follows
from the corresponding unstable statement on the level of BiFibp and Cat∞ (see
Proposition 7.1.15) since in both cases the C2-action is the restricted one (uniquely
determined since the inclusions Catpb∞ ⊆ BiFibp and Catex∞ ⊆ Cat∞ are both replete).

Combining Proposition 7.2.10, Lemma 7.2.14 and Remark 7.2.15 and we now
obtain the following statement, versions of which were previously established in [29]
and [30]:

Corollary 7.2.16 The forgetful functor Catps∞ → Catex∞ lifts to an equivalence

Catps∞ 
 (Catex∞)hC2

where C2 acts on Catex∞ by the op-action.

The constructions we have made so far can now be summarised by the following
commutative diagram

Catp∞ Catps∞ (Catex∞)hC2 Catex∞

Cath∞ Catsb∞ (Catb∞)hC2 Catb∞

Catex∞ Catex∞ (Catex∞ × Catex∞)hC2 Catex∞ × Catex∞




=




(179)

in which the vertical arrows in the top row are replete subcategory inclusions, the top
squares are cartesian, the vertical arrows in the bottom row are cartesian fibrations, and
the horizontal arrows in themiddle row preserve cartesian edges. In fact, all the vertical
maps in the bottom row are also cocartesian fibrations and the horizontal arrows in the
middle row also preserve cocartesian edges, see Corollary 1.4.2 and Proposition 1.4.3.
We also recall that the C2-action on Catex∞ × Catex∞ is given by (A,B) �→ (Bop,Aop)

and the composite Catex∞ → Catex∞ × Catex∞ along the bottom and right sides both
equivalent to the diagonal map.

A useful feature of the diagram (179) is that all arrows in it admit both left and right
adjoints, and in particular all arrows preserve all limits and colimits. For the vertical
functors on the bottom row, these are all cartesian and cocartesian fibrations and their
fibres admit zero objects, thus the zero section gives a two sided adjoint in all three
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cases. The left and right adjoints of the horizontal functors in (179) will be studied in
this section, with special interest given to the resulting adjoints of the composite arrow
Catp∞ → Catex∞ on the top row, which are both given by the construction C �→ Hyp(C)
of Sect. 2.2. The left and right adjoint to the top left vertical inclusion Catp∞ ↪→ Cath∞
will be produced in Sect. 7.3 below using the pairings construction. Left and right
adjoints to the top middle vertical inclusion then follow by formal considerations,
while left and right adjoints to the top right inclusion can be constructed in a similar
manner, see Remarks 7.3.19 and 7.3.24.

The remainder of this section is dedicated to the construction of left and right
adjoints to the horizontal functors in (179). We begin with the top left square:

Proposition 7.2.17 The functor

Cath∞ → Catsb∞

admits fully-faithful left and right adjoints, given by sending (C,B) to (C, ϘqB) and
(C, ϘsB), respectively. Furthermore, the units and counits of these adjunctions project
to equivalences in Catex∞.

Proof We have a diagram

Cath∞ Catsb∞

Catex∞

f

p q

where p and q are cartesian fibrations and the forgetful functor f preserves cartesian
edges. The functor f has fibrewise left and right adjoints by Corollary 1.3.6, and so by
[47, Proposition 7.3.2.6] f admits a left adjoint whose unit transformation is sent to
an equivalence in Catex∞. The counit of the adjunction is given by the fibrewise counit
and thus is an equivalence by Corollary 1.3.6, according to which the fibrewise left
adjoint is fully faithful. On the other hand, by Corollary 1.4.2 and Remark 7.2.5 the
maps p, q are also cocartesian fibrations, and by Proposition 1.4.3 themap f preserves
cocartesian edges. Applying the dual of [47, Proposition 7.3.2.6] we now conclude
that f admits a right adjoint whose associated unit is mapped to an equivalence in
Catex∞ and whose counit is an equivalence in Catsb∞.

Proposition 7.2.18 The fully-faithful adjoints of Proposition 7.2.17 map Catps∞ to
Catp∞, and yield fully-faithful left and right adjoints to the forgetful functor Catp∞ →
Catps∞.

Proof Since the left and right adjoints constructed in Proposition 7.2.17 are fully-
faithful and since the condition for a hermitian ∞-category of being non-degenerate
is defined via the non-degeneracy of the underlying symmetric bilinear form we see
that these adjoints send non-degenerate symmetric ∞-categories to non-degenerate
hermitian∞-categories and similarly perfect symmetric∞-categories to Poincaré∞-
categories. For the same reason these adjoints also send duality-preserving symmetric
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functors to duality preserving functors. To see that these now yield left and right
adjoints to Catp∞ → Catps∞ it is enough to check that all the units and counits are
contained in the respective subcategories. Now on the side of Catps∞ these units and
counits are equivalences, and so by triangle identities these units and counits in Catp∞
map to equivalences in Catps∞. This implies that they are duality preserving, as desired.

Definition 7.2.19 Given a perfect bilinear functor B ∈ Funs(C), the images of (C,B)
under the fully-faithful left adjoint and right adjoint of Proposition 7.2.18 are, as
in the case of Proposition 7.2.17, given by (C, ϘqB) and (C, ϘsB), respectively. We
refer to Poincaré ∞-categories of this form as quadratic and symmetric Poincaré
∞-categories, respectively.

Taking now the top external rectangle in (179) we obtain a square

Catp∞ Catex∞

Cath∞ Catb∞

(180)

in which the right vertical arrow is given by

Catex∞ Catpb∞ Catb∞

A (A,A,mA).




∈ ∈ (181)

Proposition 7.2.20 In the square (180) both horizontal arrows admit left and right
adjoints, both compatible with the vertical subcategory inclusions. In addition, both
adjoints of the bottom horizontal arrow are equivalent and given by the formula
(A,B,B) �→ (A× Bop,B).

Pre-composing the formula of Proposition 7.2.20 with the functor (181) we con-
clude

Corollary 7.2.21 The forgetful functorU : Catp∞ → Catex∞ admits both a left and a right
adjoint. The two are equivalent and given by the association A �→ (A×Aop,mA) =
Hyp(A).

Remark 7.2.22 The unit exhibiting Hyp as right adjoint to U and the counit exhibiting
Hyp as left adjoint to U are given respectively by the Poincaré functors

Hyp(C) hyp−−→ (C, Ϙ) fgt−→ Hyp(C)
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of (42). The counit UHyp(C) = C ⊕ Cop → C exhibiting Hyp as right adjoint to U is
then given by the projection on the first fact and the unit C → UHyp(C) = C ⊕ Cop
exhibiting Hyp as left adjoint to U is given by the inclusion into the first summand.
Here we are using the direct sum notation keeping in mind that Catex∞ is semi-additive,
see Proposition 6.1.7.

Remark 7.2.23 By [47, Corollary 7.3.2.7] the functor Hyp inherits a lax symmetric
monoidal structure by virtue of being right adjoint to the symmetric monoidal functor
U : Catp∞ → Catex∞ (see Theorem 5.2.7). In particular, U � Hyp is a symmetric
monoidal adjunction. Applying the same argument to the symmetric monoidal functor
Uop : (Catp∞)op → (Catex∞)op we get that the adjunction Uop � Hypop (opposite to
Hyp � U) is symmetric monoidal and Hyp also carries an oplax symmetric monoidal
structure.

Remark 7.2.24 The symmetricmonoidal structure on the forgetful functorU : Catp∞ →
Catex∞ yields for every (C, Ϙ) ∈ Catp∞ a commutative square

Catp∞ Catex∞

Catp∞ Catex∞.

U

(C,Ϙ)⊗(−) C⊗(−)

U

Passing to right adjoints using Corollaries 7.2.21 and 6.2.15 we obtain a commutative
square Y

Catp∞ Catex∞

Catp∞ Catex∞.

Funex((C,Ϙ),−) Funex(C,−)

Hyp

Hyp

In particular, we have a natural equivalence of Poincaré∞-categories

Funex((C, Ϙ),Hyp(C′)) 
 HypFunex(C, C′).

Proof of Proposition 7.2.20 We first observe that the square (180) is also the external
top rectangle in (179). Propositions 7.2.17 and 7.2.18 provide left and right adjoints to
the horizontal arrows in the top left square of (179), which are furthermore compatible
with the vertical subcategory inclusions. In the same diagram, the horizontal arrows in
the topmiddle square are equivalences, and the horizontal arrows in the top right square
have left and right adjoints aswell. Indeed, in both cases these are the naturalmaps from
C2-fixed points to underlying objects, which admit left and right adjoints since Catex∞
andCatb∞ admits products and coproducts (see Proposition 6.1.1 andRemark 7.2.5). In
addition, since Catex∞ is semiadditive (Proposition 6.1.7) these products and coproducts
coincide, and we get that the left and right adjoints of (Catex∞)hC2 → Catex∞ are both
give by the formula C �→ C × Cop. This implies that the left and right adjoints for
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the horizontal maps in the top right square in (179) are compatible with the vertical
replete subcategory inclusions, and hence we may conclude that the horizontal arrows
in (180) admit left and right adjoints, both compatible with the vertical subcategory
inclusions.

It is left to obtain the desired explicit formula. First by semi-additivity, the left and
right adjoints of Catsb∞ → Catb∞ are both given by the formula

(A,B,B) �→ (A× Bop,Bsym)

where Bsym ∈ Funs(A× Bop) is the symmetrisation of B, given by

Bsym((a, b), (a′, b′)) = B(a, b′)⊕ B(a′, b).

We note that this symmetric bilinear form is both induced and coinduced from B. In
particular, ϘsBsym

and ϘqBsym
both canonically identify with B itself, when the latter is

viewed as a single entry functor onAop×B. By Propositions 7.2.17 the left and right
adjoints of the bottom horizontal map in (180) are consequently both given by the
formula (A,B,B) �→ (A× Bop,B).

7.3 The categorical Thom isomorphism

In Sect. 2.4 we described the algebraic Thom construction, an operation introduced
by Ranicki which allows one to identify the notion of a metabolic Poincaré object
(x, q) in (C, Ϙ) equipped with a prescribed Lagrangian (w → x, η), with the data of a
hermitian object (z, r) in C with respect to the shifted Poincaré structure Ϙ[−1]. In this
section we will see that this procedure naturally fits in a more general perspective. We
begin by refining the construction of pairing∞-categories described in Sect. 7.2 above
to the context of hermitian∞-categories. This results in a construction which takes a
hermitian ∞-category (C, Ϙ) and produces a Poincaré ∞-category Pair(C, Ϙ). When
(C, Ϙ) is Poincaré this construction reproduces that of the arrow category Ar(C, Ϙ)
described in Sect. 2.4. We then prove that Poincaré objects in Pair(C, Ϙ) correspond
to hermitian objects in (C, Ϙ), yielding in particular a proof of Proposition 2.4.3 upon
taking (C, Ϙ) to be Poincaré.

The Poincaré ∞-categories of the form Pair(C, Ϙ) can be considered as a cate-
gorified form of the notion of a metabolic Poincaré object: they contain a stable full
subcategory on which the Poincaré structure vanishes and which is equivalent to its
own orthogonal complement, a property which can be considered as a categorical
analogue of the notion of a Lagrangian. From this point of view, we may consider
the association (C, Ϙ) �→ Pair(C, Ϙ) as a categorified form of the Thom construction,
taking a hermitian ∞-category and producing a Poincaré ∞-category with a canon-
ical choice of Lagrangian. We show that this process is reversible: given a Poincaré
∞-category (D,�) with a Lagrangian, one can reconstruct a hermitian ∞-category
(C, Ϙ) such that Pair(C, Ϙ) 
 (D,�). We consider this as a categorical form of the
Thom isomorphism. Relying on these results we then use the pairing construction in
order to produce both a left and a right adjoint to the forgetful functor Catp∞ → Cath∞.
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This adjunction ties together all the above results in a conceptual manner, and at the
same time is quite useful in practice. In particular, the results of this section will be
used in subsequent instalments of this project, for example in setting up the theory of
algebraic surgery in Paper [2], and in proving that Catp∞ is compactly generated in
Paper [4].

We now proceed to introduce the main construction of the current section:

Construction 7.3.1 Given a stable∞-category C, any bilinear functor B : Cop×Cop →
Sp determines a left biexact correspondence on the pair (C, Cop), given by (x, y) �→
�∞B(x, y). We then denote by

Pair(C,B) := Pair(C, Cop,B) ∈ Catex∞

the associated ∞-category of pairings. Given a hermitian structure Ϙ : Cop → Sp on
C, we define an associated hermitian structure Ϙpair on Pair(C,BϘ) via the pullback
square

Ϙpair(x, y, β) Ϙ(x)

homC(x, y) B(x, x)

(182)

where the bottom horizontal map is given by the association [ f : x → y] �→ f ∗β ∈
B(x, x), canonically extended from mapping spaces to mapping spectra. We denote
the resulting hermitian∞-category by Pair(C, Ϙ) := (Pair(C,BϘ), Ϙpair).

Lemma 7.3.2 The hermitian structure Ϙpair is Poincaré. Its bilinear part sits in the
pullback square of symmetric bilinear forms

Bpair((x, y, β), (x ′, y′, β ′)) B(x, x ′)

homC(x, y′)⊕ homC(x ′, y) B(x ′, x)⊕ B(x, x ′).
(τx,x ′ ,id) (183)

and its associated duality coincides with the duality

Dpair(x, y, β) = (
y, x, σx,y(β)

)
,

of Construction 7.1.14, which encodes the symmetric structure of B.

Proof Substituting in (182) the direct sum of (x, y, β), (x ′, y′, β ′) ∈ Pair(C,BϘ) we
obtain the square

Ϙpair(x ⊕ x ′, y ⊕ y′, β ⊕ β ′) Ϙ(x ⊕ x ′)

homC(x ⊕ x ′, y ⊕ y′) B(x ⊕ x ′, x ⊕ x ′)

,
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which yields the square (183) upon passing to bireduced replacements. On the other
hand, working backwards from the required duality, we note that Dpair is part of a
�2

0-duality of the associated bifibration

C ← Pair(C,BϘ) → Cop.

ApplyingProposition 7.1.17 andRemark 7.1.18 to this bifibrationweobtain a cartesian
square of symmetric bilinear forms

homPair(C,BϘ)((x, y, β),Dpair(x ′, y′, β ′)) B(x, x ′)

homC(x, y′)⊕ homC(x ′, y) B(x ′, x)⊕ B(x, x ′),

(τx,x ′ ,id)

where we are again silently identifying exact functors valued in spectra with left exact
functors valued in spaces. Comparing this square with (183) we thus get that Bpair is
perfect with duality Dpair.

Examples 7.3.3 i) For a stable∞-category C equipped with the zero hermitian struc-
ture, the Poincaré∞-category Pair(C, 0) is naturally equivalent to Hyp(C).

ii) If the hermitian∞-category (C, Ϙ) is Poincaré with associated duality D, then the
correspondence �∞BϘ on the pair (C, Cop) is equivalent to the correspondence
MapC(−,−) on the pair (C, C) via

(id,D) : Cop × Cop 
−→ Cop × C,

and so Pair(C,BϘ) is naturally equivalent to the arrow category Ar(C) of Defini-
tion 2.4.1. Under this equivalence, the Poincaré structure Ϙpair directly translates
to the Poincaré structure

Ϙar(x → y) = Ϙ(x)×BϘ(x,x) BϘ(x, y),

and so we obtain a natural equivalence Pair(C, Ϙ) 
 Ar(C, Ϙ).
iii) Combining the previous example with Lemma 2.4.5 we obtain a natural iden-

tification of Poincaré ∞-categories Pair(C, Ϙ[−1]) 
 Ar(C, Ϙ[−1]) 
 Met(C, Ϙ)
whenever (C, Ϙ) is Poincaré.

Remark 7.3.4 Combining Example 7.3.3(ii), Example 7.1.16 and Lemma 7.3.2, we
obtain that for (C, Ϙ) Poincaré, the underlying duality Dar of Ar(C, Ϙ) is equivalent to
the one induced on Ar(C) 
 Fun(�1, C) by the duality DϘ on C and the canonical
duality of �1.

By construction, the underlying stable∞-category of Pair(C, Ϙ) sits in a bifibration

x (x, y, β) y

C Pair(C,BϘ) Cop

∈ ∈ ∈

q p
(184)
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so that q is a cartesian fibration and p is a cocartesian fibration. The fact that C is
pointed and BϘ is bireduced implies that these fibrations have fully-faithful adjoints

x (x, 0, 0)

C Pair(C,BϘ) Cop

(0, y, 0) y

∈ ∈

j i

∈ ∈

More precisely, q has a fully-faithful right adjoint j : C → Pair(C, Ϙ) sending x to
(x, 0, 0). Indeed, the canonical arrows (x, y, β) → (x, 0, 0) in Pair(C, Ϙ) induce
an equivalence on mapping spaces into any triple of the form (x ′, 0, 0), and thus
assemble to form a unit exhibiting j as right adjoint to q. Similarly, the collection
of arrows (0, y, 0) → (x, y, β) assemble to form a counit exhibiting the functor
i : Cop → Pair(C, Ϙ) sending y to (0, y, 0) as left adjoint to p, and we observe that the
image of i coincides with the kernel of q and the image of j with the kernel of p.

We now observe that q : Pair(C, Ϙ) → C naturally extends to a hermitian functor

(q, η) : Pair(C, Ϙ) → (C, Ϙ) q(x, y, β) = x , η : Ϙpair(x, y, β) → Ϙ(x)
(185)

with η : Ϙpair ⇒ q∗Ϙ given by the natural projection furnished directly from the
definition of Ϙpair. In generalisation of the algebraic Thom isomorphism we then have:

Proposition 7.3.5 For every hermitian ∞-category (C, Ϙ) the composite map

Pn(Pair(C, Ϙ)) → Fm(Pair(C, Ϙ)) (q,η)∗−−−→ Fm(C, Ϙ)

is an equivalence. In particular, Poincaré objects in Pair(C, Ϙ) classify hermitian
objects in (C, Ϙ).

Remark 7.3.6 Applied in the case where (C, Ϙ) is Poincaré, Proposition 7.3.5 reduces
to the statement of Proposition 2.4.3 via the identification Pair(C, Ϙ) 
 Ar(C, Ϙ) of
Examples 7.3.3.

Proposition 7.3.5 is a direct consequence of the following lemma:

Lemma 7.3.7 Let (C, Ϙ) be a hermitian ∞-category. Then the functor

(q, η)∗ : He(Pair(C, Ϙ)) → He(C, Ϙ)

induced by (185) is a cartesian fibration whose fibres admit final objects. In addition,
a hermitian object ((x, y, β), q) in Pair(C, Ϙ) is final in its fibre over He(C, Ϙ) if and
only if it is Poincaré.
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Given Lemma 7.3.7, the proof of Proposition 7.3.5 is immediate:

Proof of Proposition 7.3.5 By Lemma 7.3.7 the homotopy fibres of

Pn(Pair(C, Ϙ)) → Fm(C, Ϙ)

are contractible, and so the desired result follows.

Proof of Lemma 7.3.7 Consider the commutative square

He(Pair(C, Ϙ)) He(C, Ϙ)

Pair(C, Ϙ) C

where the vertical arrows are the defining right fibrations of He(−). Since the bottom
horizontalmap is a cartesian fibration (by the construction of Pair(C, Ϙ) as a bifibration)
we obtain that the composite dotted map is a cartesian fibration, and hence we can
view the top horizontal map is a map of cartesian fibrations over C whose target is a
right fibration. Such a map is automatically a cartesian fibration (up to equivalence),
which gives us the first claim of the lemma. We now verify that its fibres contain final
objects. Let

X :=
∫ (x,y,α)∈Pair(C,BϘ)

MapC(x, y) → Pair(C,BϘ)

be the right fibration classifying the contravariant functor (x, y, α) �→ MapC(x, y).
The defining fibre square (182) then determines a commutative square

He(Pair(C, Ϙ)) He(C, Ϙ)

X
∫ x∈C

�∞BϘ(x, x)

Pair(C,BϘ) C

(186)

of ∞-categories in which (using the same argument as above) the vertical maps are
right fibrations and the horizontal maps are cartesian fibrations. In addition, the top
square in (186) is cartesian; indeed, base changing the right fibrations on the right from
C to Pair(C,BϘ) yields a fibre square of right fibrations which is the straightening of
the defining square (182) (after taking �∞). It will hence suffice to show that the
fibres of the middle horizontal cartesian fibration have final objects. Fix an object
(x, β) ∈ ∫ x∈C

�∞BϘ(x, x). Then the fibre X(x,β) of the middle horizontal map sits
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in a right fibration

X(x,β) → Pair(C,BϘ)x =
∫

y∈Cop
�∞BϘ(x, y), (187)

where the middle term stands for the fibre of the bottom horizontal map over x ∈ C.
Using the pullback formula (174) for the mapping spaces in Pair(C,BϘ) we now
calculate

X(x,β) =
∫
(y,α)∈Pair(C,BϘ)x

MapC(x, y)×BϘ(x,x) {β}



∫
(y,α)∈Pair(C,BϘ)x

MapCop(y, x)×BϘ(x,x) {β}



∫
(y,α)∈Pair(C,BϘ)x

MapPair(C,BϘ)x
((x, y, α), (x, x, β))


 (Pair(C,BϘ)x )/(x,x,β),

from which we see that the right fibration (187) is visibly represented by (x, x, β), so
that X(x,β) has a final object.

To finish the proof we now need to verify that a hermitian object ((x, y, β), q) in
Pair(C, Ϙ) is Poincaré if and only if it is final in the fibre. The top square in (186)
being cartesian it will suffice to show that ((x, y, β), q) is Poincaré if and only if its
image in X is final in its fibre over

∫ x∈C
�∞BϘ(x, x). Indeed, a hermitian form q

on (x, y, β) determines a self dual map q� : (x, y, β) → Dpair(x, y, β) = (y, x, β)
with components f : x → y and y ← x : g (the latter considered as a map from y
to x in Cop). The form q is then Poincaré if and only if f and g are equivalences.
But since q� is self-dual the components f and g are homotopic to each other. We
then get that q is Poincaré if and only if the map g is an equivalence. But g (or f ) is
exactly the image of q in MapC(x, y) via the vertical map in the defining square (182),
and so the image of ((x, y, β), q) in X is ((x, y, β), g). The latter object lies over
(x, g∗β) ∈ ∫ x∈C

�∞BϘ(x, x) and corresponds to the object

[(x, y, β)
(id,g)−−−→ (x, x, g∗β)] ∈ X(x,g∗β) 
 (Pair(C,BϘ)x )/(x,x,g∗β) (188)

Wemay then conclude that ((x, y, β), q) is Poincaré if and only if g is an equivalence,
and so if and only if (188) is final, as desired.

The following almost immediate corollary of Lemma 7.3.7 will also be useful for
us later:

Corollary 7.3.8 The natural transformation

η : Ϙpair ⇒ q∗Ϙ

exhibits Ϙ : Cop → Sp as the left Kan extension of Ϙpair along qop : Pair(C,BϘ)op →
Cop.
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Proof ByProposition 1.4.3 andLemma1.1.25 it will suffice to show that�∞η exhibits
�∞Ϙ as the left Kan extension of �∞Ϙpair. Since qop is a cocartesian fibration left
Kan extensions along qop are calculated by colimits along the fibres. In particular, we
need to show that for every x ∈ C the map

colim
(x,y,α)∈Pair(C,BϘ)opx

�∞Ϙpair(x, y, α) → �∞Ϙ(x),

induced by η, is an equivalence of spaces. Since colimits in spaces are universal it will
suffice to show that for every point β ∈ �∞Ϙ(x) the space

colim
(x,y,α)∈Pair(C,BϘ)opx

�∞Ϙpair(x, y, α)×Ϙ(x) {β}

is contractible. Indeed, this space can in turn be identifiedwith the geometric realisation
of the fibre of He(Pair(C, Ϙ))op → He(C, Ϙ)op over (x, β), and the latter has an initial
object by Lemma 7.3.7, so its realisation is contractible.

We now take a closer look at the Poincaré∞-categories of the form Pair(C, Ϙ). We
wish to make the argument that they constitute a categorical analogue of the notion of
a metabolic Poincaré object, making the passage from (C, Ϙ) to Pair(C, Ϙ) an analogue
of the algebraic Thom construction. To identify further key properties we introduce
the following piece of notation:

Definition 7.3.9 Let (D,�) be a Poincaré∞-category and L ⊆ D a full subcategory.
We will denote by L⊥ ⊆ D the full subcategory spanned by the objects y ∈ D such
that B�(x, y) = 0 for every x ∈ L. We will refer toL⊥ as the orthogonal complement
of L.

Using the notion of orthogonal complements, we may identify the following addi-
tional properties held by the full subcategory inclusion i : Cop ↪→ Pair(C,BϘ):
i) The restriction of the quadratic functor Ϙpair to Cop vanishes.
ii) The inclusion iCop ⊆ (iCop)⊥, furnished by i) above, is an equivalence.
iii) i admits a right adjoint p : Pair(C,BϘ) → Cop given by (x, y, β) �→ y (see (184)

and the discussion below it).

The validity of i) above is evident from the fibre square (182) defining Ϙpair. To see
that ii) holds, note that

Bpair(i(z), (x, y, β)) = hom((0, z, 0), (y, x, σx,y(β))) = homCop(z, x) = homC(x, z),

and hence (x, y, β) ∈ (iCop)⊥ if and only if x = 0, i.e., if and only if (x, y, β) ∈ iCop.
This motivates the following definition:

Definition 7.3.10 Let (D,�) be a Poincaré∞-category andL ⊆ D a full subcategory.
We will say thatL is a Lagrangian inD if it satisfies Properties i), ii) and iii) above. In
other words, if Ϙ vanishes when restricted to L, the orthogonal complement L⊥ ⊆ D
coincides with L itself and the inclusion L ⊆ D admits a right adjoint. We will say
that a Poincaré∞-category is metabolic if it admits a Lagrangian.
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In particular, the Poincaré∞-category Pair(C, Ϙ) contains Cop as a Lagrangian. We
now claim that this property completely characterises Poincaré ∞-categories of the
form Pair(C, Ϙ). To see this, let (D,�) be a Poincaré ∞-category with underlying
duality D, and let i : L ↪→ D be a Lagrangian with right adjoint p : D → L. Let
j : Lop ⊆ D be the inclusion sending z to D(i(z)). Then

im( j) = D(iL) = D((iL)⊥) = ker(p),

and j admits a left adjoint q : D → Lop given by the formula q(x) = p(Dx).
We then have the following:

Proposition 7.3.11 (Recognition principle for pairing Poincaré categories) Let
(D,�) be a Poincaré ∞-category admitting a Lagrangian i : L ↪→ D with right
adjoint p : D → L, and let the adjunction q : D ⊥ Lop : j be as above. Let
" = q!� ∈ Funq(Lop) be the left Kan extension of � along qop : Dop → L and
η : � ⇒ q∗" the unit natural transformation. Then there exists a canonical diagram
of hermitian ∞-categories

(Lop,") Pair(Lop,") (L, 0)

(Lop,") (D,�) (L, 0)



(q,η) (p,0)

in which the middle vertical arrow is an equivalence of Poincaré ∞-categories. Here
the top row consists of the underlying bifibration (184) of Pair(Lop,B") promoted to
the level of hermitian ∞-categories trivially on the right and as in (185) on the left.

Remark 7.3.12 The recognition principle of Proposition 7.3.11 could also be formu-
lated in the bilinear setting of Sect. 7.2. In particular, given a stable ∞-category D,
equivalences of the form D 
 Pair(A,B, b) for (A,B, b) ∈ Catb∞ correspond to
fully-faithful embeddings i : B ↪→ D which admit a right adjoint p : D → B, in
which case A is recovered as the kernel of p, and b is recovered as the restriction of
the correspondence seqD : Dop × D → S of Example 7.2.4 to Aop × B. The proof
of this claim essentially amounts to the first half of the proof of Proposition 7.3.11
below.

Proof of Proposition 7.3.11 Let Seq(D,L) ⊆ Seq(D) denote the full subcategory
spanned by those exact sequences [y → z → x] such that y ∈ i(L) and x ∈ j(Lop).
We claim that the projection

Seq(D,L) → D [y → z → x] �→ z

is an equivalence. To see this, consider first the map Seq(D,L) → Ar(D)×D j(Lop)

sending [y → z → x] to [z → x]. By [43, Proposition 4.3.2.15] this map is fully-
faithful, with essential image the full subcategory of Ar(D) ×D j(Lop) spanned by
those arrows z → x with x ∈ j(Lop)whosefibre lies in i(L).Nowsince i(L) = ker(q)
the condition that the fibre of z → x lies in i(L) is equivalent to the condition that
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q(z) → q(x) 
 x is an equivalence. Now the projection Ar(D) ×D j(Lop) → D
sending z → x to z is a cartesian fibration whose fibre over z ∈ D is equivalent to the
comma categoryDz/×D j(Lop). This comma category is equivalent by adjunction to
Lop

q(z)/, and the above condition shows that under this equivalence the full subcategory
Seq(D,L) ⊆ Ar(D)×D j(Lop) consists of exactly those objects which are initial in
their fibres. The projection Seq(D,L) → D is consequently an equivalence.

We note that under the equivalence between bifibrations and correspondences, base
changes on the cartesian side correspond the restriction along the first entry, while base
changes on the cocartesian side correspond to restriction in the second entry. In partic-
ular, we may identify Seq(D,L)with Pair(Lop,L, (seqD)|L×L) as full subcategories
of Pair(D,D, seqD), and so the projections

Lop Seq(D,L) L

x [y → z → x] y

form a bifibration classified by the restricted correspondence (seqD)|L×L : L×L →
S. Under this equivalence Seq(D,L) 
 D these projections correspond to adjoints
p : D → L and q : D → Lop to the inclusions i : L ↪→ D and j : Lop ↪→ D. We now
observe that for x ∈ Lop and y ∈ L we have

seqD(x, y) 
 �MapD(� j(x),�i(y)) 
 �MapD(� j(x),�D j(y))


 �∞+1B�(� j(x),� j(y))

and so if we let " : L → Sp be the quadratic functor given by the formula "(z) =
��(� j(z)) then we obtain an equivalence

D 
 Pair(Lop,B")

on the level of stable∞-categories, which is compatible with the inclusions from and
projections to L and Lop on both sides.

We now address the comparison of Poincaré structures. For every x ∈ D the counit
of i � p and unit of q � j yield a sequence

i p(x) → x → jq(x) (189)

whose composite admits an essentially unique null-homotopy, since jq(x) ∈ ker(p)
and hence homC(i p(x), jq(x)) = homL(p(x), pjq(x)) = 0. This null-homotopy
exhibits (189) as exact. Indeed, this sequence maps to an exact sequence by both p
and q and these two functors are jointly conservative since ker(p)∩ker(q) 
 im( j)∩
ker(q) = 0. Since �(i p(x)) = 0 the shifted exact sequence � jq(x) → i p(x) → x



Hermitian K-theory for stable ∞-categories I: Foundations Page 241 of 269 10

determines an exact square

�(x) ��(�( jq(x))

�B�(i p(x),� jq(x)) �B�(� jq(x),� jq(x))

which, having set "(z) = ��(� j(z)), we can write as

�(x) "(q(x))

B�(i p(x), jq(x)) B"(q(x), q(x)).

(190)

Comparing the exact square (190)with the exact square (182)we then conclude that the
equivalence D 
 Pair(Lop,B") refines to an equivalence of Poincaré ∞-categories
(D,�) 
 Pair(Lop,"). By Corollary 7.3.8 we then get that the natural transformation
� ⇒ q∗" furnished by the top row of the square (190) exhibits " as the left Kan
extension of � along qop : Dop → L. We hence an equivalence

(D,�) 
 Pair(L, q!�) = Pair(Lop,")

compatible with the projections to (and hence also the embedding of) the∞-categories
L and Lop on both sides.

Given a Poincaré∞-category (D,�) admitting a Lagrangian L D

⊥p

with associated projection q = pD : D → Lop, Proposition 7.3.11 yields an equiva-
lence of Poincaré∞-categories

(D,�) 
 Pair(Lop, q!�). (191)

In particular, the association (C, Ϙ) �→ Pair(C, Ϙ) takes values in metabolic Poincaré
∞-categories, and every metabolic Poincaré∞-category is obtained in this manner.

In what follows, it will be useful to observe that the hermitian structure " := q!�
on Lop can also be recovered using the inclusion j : Lop → D right adjoint to q. To
avoid a potential confusion we emphasise that" does not coincide with the restriction
of � along j . Instead, let "pair(x, y, β) = "(x)×B(x,x) hom(x, y) be the quadratic
functor on Pair(Lop,") as in Construction 7.3.1. Under the equivalence (191) the
functor j : Lop ↪→ D sends x to (x, 0, 0) ∈ Pair(Lop,B") and we have

�( j(x)) = "pair(x, 0, 0) = "(x)×B"(x,x) hom(x, 0)

= fib["(x) → B"(x, x)] 
 �"(�x). (192)

where the last equivalence is issued from Lemma 1.1.19 and Example 1.1.21. It will
consequently be convenient to introduce the following terminology:
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Definition 7.3.13 Let C be a stable ∞-category and Ϙ a quadratic functor on C. We
denote by Ϙ[σ ](x) := �Ϙ(�x) and Ϙ[−σ ](x) := �Ϙ(�x) the quadratic functors
obtained by pre- and post-composing with � and �, respectively. We note that the
operations Ϙ �→ Ϙ[σ ] and Ϙ �→ Ϙ[−σ ] are inverse to each other, and in particular adjoint
(in both directions). By Lemma 1.1.19 we have natural equivalences

Ϙ[−σ ](x) 
 fib[Ϙ(x) → BϘ(x, x)] and Ϙ(x) 
 fib[Ϙ[σ ](x) → BϘ[σ ](x, x)],

yielding in particular a natural transformation Ϙ⇒ Ϙ[σ ] and an adjoint transformation
Ϙ[−σ ] ⇒ Ϙ.
Remark 7.3.14 For a hermitian∞-category (C, Ϙ), the underlying symmetric bilinear
form of Ϙ[σ ] is given by (x, y) �→ �B(�x,�y) 
 �σB(x, y), where �σ is the
operation of tensoring by the sign representation sphere, see discussion in Sect. 3.5. In
other words, BϘ[σ ] has as underlying bilinear form �BϘ, but the symmetric structure
is twisted by a sign, see Remark 3.5.4. Similarly, BϘ[−σ ] = �−σBϘ = �σBϘ has
underlying bilinear form �B, but the symmetric structure is twisted by a sign.

The identification (192) can be succinctly stated as j∗� 
 "[−σ ] = q!�[−σ ], or
equivalently, q!� 
 j∗�[σ ]. We may summarise this discussion by extending (191)
to

(D,�) 
 Pair(Lop, q!�) 
 Pair(Lop, j∗�[σ ]). (193)

We now use the pairing construction in order to form left and right adjoints to the
forgetful functor Catp∞ → Cath∞.

Proposition 7.3.15 For every hermitian ∞-category (C, Ϙ) and Poincaré ∞-category
(E, �), the map

MapCatp∞((E, �),Pair(C, Ϙ)) → MapCath∞((E, �), (C, Ϙ)) (194)

induced by post-composition with the hermitian functor (q, η) : Pair(C, Ϙ) → (C, Ϙ)
of (185), is an equivalence of spaces. In particular, the association (C, Ϙ) �→ Pair(C, Ϙ)
assembles to form a functor Cath∞ → Catp∞ which is right adjoint to Catp∞ → Cath∞.

Remark 7.3.16 Though one can show directly that the association (C, Ϙ) �→ Pair(C, Ϙ)
organises into a functor Cath∞ → Catp∞, Proposition 7.3.15 is formulated in a way
that does not require knowing this in advance, and on the other hand implies this
functoriality via general principles of adjunctions; indeed, knowing that the comma
category Catp∞×Cath∞ (Cath∞)/(C,Ϙ) has a final object is enough to imply the existence
of the desired adjoints, which then must coincide with the given formula on objects.

Remark 7.3.17 In the situation of Proposition 7.3.15, if (C, Ϙ) is also Poincaré then we
have a natural equivalence Pair(C, Ϙ) 
 Ar(C, Ϙ) (see Example 7.3.3 iii)) under which
the hermitian functor of (185) becomes the domain projection Ar(C, Ϙ) → (C, Ϙ).
The unit of the adjunction furnished by Proposition 7.3.15 then corresponds to the
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essentially unique Poincaré functor (C, Ϙ) → Ar(C, Ϙ) for which the composite with
the domain projection is the identity on (C, Ϙ). In particular, the unit must coincide
with the fully-faithful inclusion

(C, Ϙ) → Ar(C, Ϙ) x �→ [id : x → x]

endowed with the natural equivalence Ϙ(x) 
 Ϙar([id : x → x]).
Remark 7.3.18 By [47, Corollary 7.3.2.7] the functor Pair(−) inherits a lax symmetric
monoidal structure by virtue of being right adjoint to the symmetric monoidal functor
ι : Catp∞ → Cath∞ (see Theorem 5.2.7). In particular, the adjunction ι � Pair(−) of
Proposition 7.3.15 is a symmetric monoidal adjunction. It then follows from the equiv-
alence of Example 7.3.3(ii) that the functor Ar(−) : Catp∞ → Catp∞ is lax symmetric
monoidal as well.

Remark 7.3.19 In the situation of Proposition 7.3.15, if (E, �) = (E, ϘqB) is the
quadratic Poincaré∞-category associated to a symmetric bilinear form B ∈ Funs(E),
then by Propositions 7.2.17 and 7.2.18 the arrow (194) identifies with the arrow

MapCatps∞((E,B), (Pair(C,BϘ),Bpair)) → MapCatsb∞((E,B), (C,BϘ)),

and sowemay conclude that the association (C,B) �→ (Pair(C,B),Bpair) assembles to
form a right adjoint to the inclusion Catps∞ → Catsb∞. Identifying Catps∞ with (Catex∞)hC2

via Corollary 7.2.16 and using Lemma 7.3.2 we may also reformulate this as saying
that the association (C,B) �→ (Pair(C,B),Dpair) gives a right adjoint to the functor
(Catex∞)hC2 → Catsb∞ sending (C,D) to (C,BD). This last conclusion could also be
obtained from the opposite direction by showing that the association (A,B,B) �→
Pair(A,B,B) gives a C2-equivariant right adjoint to the functor Catex∞ → Catb∞
sending C to (C, C,mC), and hence induces a right adjoint on the level of C2-fixed
objects on both sides. In fact, Pair(−,−,−) being right adjoint to C �→ (C, C,mC)
is a statement that holds also in the non-stable setting and can be proven using the
setting of bifibrations as described in Sect. 7.1. Alternatively, an argument in the stable
setting can be mounted along the lines of the proof of Proposition 7.3.15 below, using
Remark 7.3.12 in place of Proposition 7.3.11.

Proof of Proposition 7.3.15 Fix a hermitian ∞-category (C, Ϙ) and a Poincaré ∞-
category (E, �), and let

(D,�) := Funex((E, �),Pair(C, Ϙ)) = (Funex(E,Pair(C,BϘ)), nat
Ϙpair
� )

be the corresponding internal hom Poincaré∞-category constructed in Sect. 6.2. We
will use Proposition 7.3.11 in order to identify (D,�) with the pairing Poincaré ∞-
category associated to the internal homhermitian∞-categoryFunex((E, �), (C, Ϙ)) :=
(Funex(E, C), natϘ�), thus reducing Proposition 7.3.15 to the algebraic Thom isomor-
phism of Proposition 7.3.5. Indeed, define

L := Funex(E, Cop)
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and let i∗ : L → D stand for post-composition with i : Cop ↪→ Pair(C,BϘ). Since
i is fully-faithful and admits a right adjoint p : Pair(C,BϘ) → Cop we have that i∗
is fully-faithful and admits a right adjoint p∗ : D → L obtained by post-composing

with p. In addition, the restriction of � = nat
Ϙpair
� to L vanishes because if f : E →

Pair(C,BϘ) is an exact functor which factors through Cop then f ∗Ϙpair = 0 (since Ϙpair

vanishes on Cop) and so nat
Ϙpair
� ( f ) = nat(�, f ∗Ϙpair) 
 0. Finally, the orthogonal

complement L⊥ ⊆ D consists of those exact functors f : E → Pair(C,BϘ) such that
p∗DD( f ) = 0, that is, such that pDpair f DE (x) = 0 for every x ∈ E . This is just
equivalent to saying that f takes values in the orthogonal complement (iCop)⊥, which
coincides with iCop itself since iCop is a Lagrangian. We may then conclude that L is
a Lagrangian in D.

Now, if we identify Lop = Funex(E, Cop)op = Funex(Eop, C) with Funex(E, C)
via pre-composition with the duality of E , then the inclusion Lop → D sending
f to DD(i∗ f ) identifies with f �→ j∗ f , where j∗ denotes post-composition with
j : C ↪→ Pair(C,BϘ). The left adjoint of j∗ is then given by post-composition with
q : Pair(C,BϘ) → C, which we denote by q∗. Let " = (q∗)!� ∈ Funq(Lop) be the
quadratic functor obtained by left Kan extending � along q∗ : D → Lop. As in (193)
we may also identify " with the quadratic functor "(g) = �[σ ]( jg). We may then
compute

"(g) = �[σ ]( jg) 
 nat(�, g∗ j∗Ϙ[σ ]pair) 
 nat(�, g∗Ϙ),

and identify the natural map

�( f ) → "(q f )

for f ∈ D with the map

η∗ : nat(�, f ∗Ϙpair) → nat(�, f ∗q∗Ϙ)

obtained post-composition with f ∗η : f ∗Ϙpair ⇒ f ∗q∗Ϙ. Invoking Proposition 7.3.11
we now get an identification

Funex((E, �), (C, Ϙ)) Pair(Funex((E, �), (C, Ϙ))) (Fun(E, Cop), 0)

Funex((E, �), (C, Ϙ)) Funex((E, �),Pair(C, Ϙ)) (Funex(E, Cop), 0)



(q∗,η∗) (p∗,0)

of (D,�) := Funex((E, �),Pair(C, Ϙ)) as the pairings Poincaré category of the hermi-
tian∞-category Funex((E, �), (C, Ϙ)), under which the associated cartesian fibration

Pair(Funex((E, �), (C, Ϙ))) → Funex((E, �), (C, Ϙ))

identifies with post-composition with (q, η) : Pair(C, Ϙ) → (C, Ϙ). Proposition 7.3.20
consequently follows from Proposition 7.3.5.
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To obtain a left adjoint to the forgetful functor Catp∞ → Cath∞ we first promote j
to a hermitian functor

( j, ϑ) : (C, Ϙ[−σ ]) → Pair(C, Ϙ) j(x) = (x, 0, 0), ϑ : Ϙ[−σ ](x) 
 Ϙpair( j(x))

(195)

using the equivalence ϑ appearing in Definition 7.3.13.

Proposition 7.3.20 For every Poincaré ∞-category (E, �), the map

MapCatp∞(Pair(C, Ϙ), (E, �)) → MapCath∞((C, Ϙ[−σ ]), (E, �)) (196)

induced by pre-composition with (195), is an equivalence of spaces. In particular,
substituting Ϙ[σ ] instead of Ϙ we deduce that the association (C, Ϙ) �→ Pair(C, Ϙ[σ ])
assembles to form a functorCath∞ → Catp∞ which is left adjoint to the forgetful functor
Catp∞ → Cath∞.

Remark 7.3.21 In the situation of Proposition 7.3.20, if (C, Ϙ) is also Poincaré then by
Example 7.3.3 iii) we have a natural equivalence

Pair(C, Ϙ[σ ]) 
 Ar(C, Ϙ[σ ]) 
 Met(C, Ϙ ◦�) 
 Met(C, Ϙ),

where the last equivalence covers the exact functor [w → x] �→ [�w → �x]. Under
this equivalence the hermitian functor (195) becomes the inclusion

triv : (C, Ϙ) → Met(C, Ϙ) x �→ [0 → x].

The counit of the adjunction furnished by Proposition 7.3.20 then corresponds to the
essentially unique Poincaré functor Met(C, Ϙ) → (C, Ϙ) for which the pre-composing
with this unit gives the identity on (C, Ϙ). In particular, the counit must coincide with
the projection

met : Met(C, Ϙ) → (C, Ϙ) [w → x] �→ x,

of Lemma 2.3.7.

Remark 7.3.22 For aPoincaré∞-category (C, Ϙ), applying the functorPair(−, (−)[σ ])
to the canonical hermitian functors (C, Ϙ) → (C, 0) and (C, 0) → (C, Ϙ) yields, using
Remark 7.3.21, the Poincaré functors

dlag : Met(C, Ϙ) → Hyp(C)

and

dcan : Hyp(C, Ϙ) → Met(C)

of Construction 2.3.8, respectively. This gives, in particular, a certain abstract justifi-
cation for the appearance of these Poincaré functors.
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Remark 7.3.23 It follows from Proposition 7.3.20 and Remark 7.3.21 that the associa-
tion (C, Ϙ) �→ Met(C, Ϙ) carries the structure of a comonad onCatp∞, with the Poincaré
functors met : Met(C, Ϙ) → (C, Ϙ) assembling to form the counit of this monad. A
formal consequence of this which we record here for later use is that the resulting
comultiplication Poincaré functor Met(C, Ϙ) → Met(Met(C, Ϙ)) gives a section for
either of the two projections

Met(Met(C, Ϙ)) → Met(C, Ϙ),

the first being the counit evaluated at Met(C, Ϙ) and the second obtained by applying
Met to the counit evaluated at (C, Ϙ).

Remark 7.3.24 In the situation of Proposition 7.3.20, if (E, �) = (E, ϘsB) is the sym-
metric Poincaré ∞-category associated to a symmetric bilinear form B ∈ Funs(E),
then by Propositions 7.2.17 and 7.2.18 and Remark 7.3.14, the arrow (196) identifies
with the arrow

MapCatps∞((Pair(C, �σBϘ),Bpair), (E,B)) → MapCatsb∞((C,BϘ), (E,B)).

As in Remark 7.3.19 we may then conclude that the association (C,B) �→
(Pair(C, �σB),Dpair) assembles to form a left adjoint to the functor (Catex∞)hC2 →
Catsb∞ sending (C,D) to (C, C,mC). This conclusion could also be obtained dif-
ferently by showing first that the association (A,B,B) �→ Pair(A,B, �B) gives
C2-equivariant left adjoint to the functor Catex∞ → Catb∞ sending C to (C, C,mC)
(though the C2-equivariant structure here involves a somewhat subtle sign). The last
claim can be proven using an argument similar to that of the proof of Proposition 7.3.20
below, by replacing the recognition principle of Proposition 7.3.11 by its bilinear ver-
sion (see Remark 7.3.12). We leave the details to the motivated reader.

Proof of Proposition 7.3.20 Fix a hermitian ∞-category (C, Ϙ) and a Poincaré ∞-
category (E, �), and let

(D,�) := Funex(Pair(C, Ϙ), (E, �)) = (Funex(Pair(C,BϘ), E), nat�Ϙpair )

be the corresponding internal hom Poincaré ∞-category. As in the proof of
Proposition 7.3.15 we will use Proposition 7.3.11 in order to identify D with a
pairing Poincaré ∞-category associated to the internal hom hermitian ∞-category
Funex((C, Ϙ), (E, �)) := (Funex(C, E), nat�Ϙ ), thus reducing Proposition 7.3.20 to
the algebraic Thom isomorphism of Proposition 7.3.5. For this, define

L := Funex(Cop, E)

and let p∗ : L → D stand for pre-composition with p : Pair(C,BϘ) → Cop. Since p
has a fully-faithful left adjoint i : Cop → Pair(C,BϘ) we get that p∗ is fully-faithful
and admits a right adjoint i∗ : D → L given by pre-composition with i . In addition,
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the restriction of � = nat�Ϙpair to L vanishes because if f = g ◦ p : Pair(C,BϘ) → E
for some g : Cop → E then

nat(Ϙpair, f ∗�) = nat(Ϙpair, p∗g∗�) = nat(p!Ϙpair, g∗�) = nat(i∗Ϙpair, g∗�) = 0

where the identification p!Ϙpair 
 i∗Ϙpair is since iop is right adjoint to pop. Finally, the
orthogonal complementL⊥ ⊆ D consists of those exact functors f : Pair(C,BϘ) → E
such that i∗DD( f ) = 0, that is, such that DE f Dpair(i(x)) = 0 for every x ∈ Cop. This
is just equivalent to saying that f vanishes on im( j) = ker(p), which is equivalent to
saying that f factors through p. We may then conclude that L is a Lagrangian in D.

Let us now identify Lop = Funex(Cop, E)op = Funex(C, Eop) with Funex(C, E)
via post-composition with the duality of E . Then the inclusion Lop → D sending
f to DD(p∗ f ) identifies with f �→ q∗ f , where q∗ denotes pre-composition with
the cartesian projection q : Pair(C,BϘ) → C, and the left adjoint of q∗ is given by
pre-composition with j : C → Pair(C,BϘ). Let " := ( j∗)!� ∈ Funq(Lop) be the
quadratic functor obtained by left Kan extension � along j∗ : D → Lop, so that
by (193) we can also write as"(g) = �[σ ](q∗(g)) for g ∈ Lop = Funex(C, E). Using
Corollary 7.3.8 we then compute

"(g) = �[σ ](gq) 
 nat(Ϙpair, q∗g∗�[σ ]) 


 nat(q!Ϙpair, g∗�[σ ]) 
 nat(Ϙ, g∗�[σ ]) 
 nat(Ϙ[−σ ], g∗�).

The canonical map

�( f ) → "( f j)

for f ∈ D then identifies with the map

ϑ∗ : nat(Ϙpair, f ∗�) → nat(Ϙ[−σ ], j∗ f ∗�)

obtained by restricting along j using the equivalence ϑ : Ϙ[−σ ] 
 j∗Ϙpair. Invoking
Proposition 7.3.11 we now get an identification

Funex((C, Ϙ[−σ ]), (E, �)) Pair(Funex((C, Ϙ[−σ ]), (E, �))) (Fun(Cop, E), 0)

Funex((C, Ϙ[−σ ]), (E, �)) Funex(Pair(C, Ϙ), (E, �)) (Funex(Cop, E), 0)



( j∗,ϑ∗) (i∗,0)

of (D,�) := Funex(Pair(C, Ϙ), (E, �)) as the pairings Poincaré category of the her-
mitian ∞-category Funex((C, Ϙ[−σ ]), (E, �)), under which the associated cartesian
fibration

Pair(Funex((C, Ϙ[−σ ]), (E, �))) → Funex((C, Ϙ[−σ ]), (E, �))

identifies with pre-composition with ( j, ϑ) : (C, Ϙ) → Pair(C, Ϙ). Proposition 7.3.15
consequently follows from Proposition 7.3.5.
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We take the point of view that the functor (C, Ϙ) �→ Pair(C, Ϙ[σ ]) is a categorical
analogue of the algebraic Thom construction studied in Sect. 2.4. Recall that the
latter takes a hermitian object and returns a metabolic Poincaré object with respect
to a shifted Poincaré structure. In the algebraic setting we saw that this association
determines an equivalence

Fm(C, Ϙ) 
 Pn∂ (C, Ϙ[1])

between hermitian object in (C, Ϙ) and Poincaré objects in (C, Ϙ[1]) equipped with a
prescribed Lagrangian. To make the categorical analogue complete we would like to
argue that Pair(−)determines an equivalence betweenCath∞ and a suitable∞-category
whose objects are Poincaré∞-categories (D,�) equipped with a LagrangianL ⊆ D,
and whose maps are Poincaré functors which preserve the given Lagrangians. While
wewill notmake this completely precise, the gist of this claim amounts to the following
two facts:

i) The essential image of the functor (C, Ϙ) �→ Pair(C, Ϙ[σ ]) consists of the
metabolic Poincaré∞-categories. This follows from Proposition 7.3.11.

ii) Given two hermitian∞-categories (C, Ϙ), (C′, Ϙ′), Poincaré functors

Pair(C, Ϙ[σ ]) → Pair(C′, Ϙ′[σ ])

sending the Lagrangian Cop ⊆ Pair(C, Ϙ[σ ]) to the Lagrangian C′op ⊆
Pair(C′, Ϙ′[σ ]) are in bijection with hermitian functors (C, Ϙ) → (C′, Ϙ′). Indeed,
by Proposition 7.3.20 Poincaré functors Pair(C, Ϙ[σ ]) → Pair(C′, Ϙ′[σ ]) corre-
spond to hermitian functors (C, Ϙ) → Pair(C′, Ϙ′[σ ]), and such a hermitian functor
takes values in the full subcategory C′ ⊆ Pair(C′, Ϙ′[σ ]) if and only if the corre-
sponding Poincaré functor Pair(C, Ϙ[σ ]) → Pair(C′, Ϙ′[σ ]) sends C to C′, which
is equivalent to sending the Lagrangian Cop ⊆ Pair(C, Ϙ[σ ]) to the Lagrangian
C′op ⊆ Pair(C′, Ϙ′[σ ]) since C and Cop are two full subcategories of Pair(C,BϘ)
which are switched by the duality, and the same holds for C′ and C′op.

7.4 Genuine semi-additivity and spectral Mackey functors

In this section we explain how various categorical structures appearing in the theory
of Poincaré ∞-categories can neatly be encoded in the framework of C2-categories
and Mackey functors, as developed by Barwick and collaborators in the setting of
parametrised higher category theory, see [10], [11], [51], [62]. Thematerial of this sec-
tion, and in particular the hyperbolic Mackey functor constructed in Corollary 7.4.18
below, will form the basis to the formation of the real K-theory spectrum in Paper [2].

To begin, let OC2 be the orbit category of C2, that is, the category of transitive
C2-sets and C2-equivariant maps. We note that OC2 has two objects, C2/C2 = ∗ and
C2/e = C2, such that ∗ is terminal, HomOC2

(C2,C2) = C2 and there are no maps
from ∗ to C2. A C2-category is by definition a cocartesian fibration

π : E → Oop
C2
,
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which by the straightening-unstraightening equivalence is the same data as a functor
Oop

C2
→ Cat∞. A C2-functor between C2-categories is then a functor over OC2 which

preserves cocartesian edges. We note that by the above explicit description of OC2

we see that it is isomorphic to the categorical cone on the category BC2. As a result,
the data of a functor Oop

C2
→ C2 is equivalent to that of an∞-category E∗ (the image

of the “cone point” ∗), an ∞-category EC2 with C2-action (the image of C2 with the
C2-action induced by its automorphisms) and a C2-equivariant map E∗ → EC2 where
the domain is considered with the trivial C2-action. Since Cat∞ admits limits the data
of a C2-equivariant map E∗ → EC2 can equivalently be encoded via a map E∗ → EhC2

C2
.

Example 7.4.1 If C is an ∞-category with a C2-action then we can right Kan extend
the functor BC2 → Cat∞ encoding this action to a functor Oop

C2
→ Cat∞, which

we can then straighten to obtain a C2-category E → Oop
C2

with fibres EC2 
 C and

E∗ 
 ChC2 , and structure map E∗ → EhC2
C2

the identity. This construction embeds
Fun(BC2,Cat∞) as a full subcategory of C2-categories.

Example 7.4.2 In the situation of Example 7.4.1, if C is of the form D × D with the
flip action then ChC2 
 D and the C2-equivariant functor E∗ → EC2 is the diagonal
D → D ×D.

The examples we are interested in are the following:

Examples 7.4.3 i) For a stable∞-category C the functor of taking symmetric bilinear
parts B(−) : Funq(C) → Funs(C) = Funb(C)hC2 determines a C2-category

Funq(C) → Oop
C2

whose fibre over ∗ is Funq(C) and whose fibre over C2 is Funb(C).
ii) The functor Cath∞ → Catsb∞ = (Catb∞)hC2 sending a hermitian∞-category (C, Ϙ)

to its underlying symmetric category (C,B) determines a C2-category

Cath∞ → Oop
C2

whose fibre over ∗ is Cath∞ and whose fibre over C2 is Catb∞.
iii) The functor Catp∞ → Catps∞ = (Catex∞)hC2 sending a Poincaré ∞-category (C, Ϙ)

to its underlying∞-category with perfect duality determines a C2-category

Catp∞ → Oop
C2

whose fibre over ∗ is Catp∞ and whose fibre over C2 is Catex∞.

For a C2-category E → Oop
C2

one may consider the C2-variants of the usual notions

of limits and colimits, defined for a given C2-functor p : I → E . If I → Oop
C2

is

equivalent to a projection K×Oop
C2

→ Oop
C2

for some K then aC2-colimit of p : I → E
is given by a cocartesian section s : Oop

C2
→ E together with a natural transformation

η : p ⇒ s|K which exhibits s as a colimit fibrewise, and dually for limits. For example,
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a C2-initial object is given by a section s : Oop
C2

→ C which is fibrewise initial. We
shall refer to these as fibrewise C2-colimits. By [51, Proposition 2.11] a C2-category E
has all fibrewise C2-colimits indexed by K ×Oop

C2
→ Oop

C2
if and only if the fibres EC2

and E∗ both have K -indexed colimits and the functor E∗ → EC2 preserves K -indexed
colimits. In particular, all the examples in 7.4.3 have all fibrewise C2-limits and C2-
colimits, since in all three cases the individual fibres have all limits and colimits and
the cocartesian transition functor preserves all limits and colimits.

For an indexing C2-category I → Oop
C2

which is not of the form K ×Oop
C2

the notion
of a C2-colimit is a bit more involved. The underlying data is still given by that of s and
η, but the condition these are required to satisfy is more complicated, and is neither
weaker nor stronger than being a fibrewise colimit. To avoid a technical digression
let us avoid giving the general definition, referring the reader to [62, Definition 5.2].
The simplest type of non-fibrewise C2-(co)limits are finite C2-(co)products, and these
will be the only type of non-fibrewise C2-(co)limits that we will consider here. These
are C2-(co)limits indexed by finite C2-sets, that is, C2-categories I → Oop

C2
which

are finite direct sums of corepresentable left fibrations. We may decompose them as
a disjoint union of the finite C2-set [∗ → ∗] (standing for the left fibration over Oop

C2
corepresented by ∗) and the finite C2-set [∅ → C2] (standing for the left fibration
corepresented by C2).

We wish to verify that our examples of interest 7.4.3 all have finite C2-products
and coproducts. For this we will use a convenient criterion from [51]. Before we can
state it, we point out the following observation: if E → Oop

C2
is a C2-category with

associated C2-equivariant functor f : E∗ → EC2 , and g : EC2 → E∗ is a left or right
adjoint to f , then g inherits a canonical C2-equivariant structure. In fact, the entire
adjunction carries a C2-action, so that the unit and counit are C2-equivariant natural
transformations. This essentially follows from the uniqueness of adjoints given their
existence. Otherwise put, the functor that forgets an adjunction to its left adjoint is
fully-faithful and hence any C2-action can be lifted along it. One can also see this as
follows. If f admits a right adjoint then the cocartesian fibration E → Oop

C2
is also

locally cartesian (since C2 → ∗ is the only arrow that is not an isomorphism in OC2),
and hence a cartesian fibration. This cartesian fibration then encodes the data of a
C2-equivariant functor EC2 → E∗, which is right adjoint to f . If a left adjoint to f
is considered then the same argument can be made using the dual cartesian fibration
Ê → OC2 , that is, the cartesian fibration classified by the same functor as E → Oop

C2
.

The following lemma is just an adaptation of [51, Proposition 2.11] to the case at
hand:

Lemma 7.4.4 Let E → O
op

C2
be a C2-category such that the fibres EC2 , E∗ admit finite

coproducts and the functor E∗ → EC2 preserves finite coproducts. Write σ : EC2 →
EC2 for the action of the generator of C2. Then the following are equivalent:

i) E admits all finite C2-coproducts.
ii) E admitsC2-colimits forC2-diagrams indexed by the corepresentableC2-set [∅ →

C2].
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iii) The functor f : E∗ → EC2 admits a left adjoint g : EC2 → E∗ such that for x ∈ EC2

the map

x
∐

σ(x) → f g(x)

adjoint to the fold map g(x
∐

σ(x)) 
 g(x)
∐

g(σ (x)) 
 g(x)
∐

g(x) → g(x)
is an equivalence.

Proof The equivalence of i) and ii) follows from the fact that under the assumptions
of the lemma E → Oop

C2
has fibrewise coproducts (that is, coproducts for diagrams

indexed by finite direct sums of [∗ → ∗]) by [51, Proposition 2.11] and so the existence
of all C2-coproducts reduces to the case of the corepresentable ones, of which [∗ → ∗]
is trivial. The equivalence of i) and iii) follows from [51, Proposition 2.11] since iii)
is simply a reformulation of the Beck–Chevalley criterion given there in the case of
the unique non-invertible edge C2 → ∗ of OC2 .

Remark 7.4.5 Lemma 7.4.4 has a dual version which is proven exactly the same way.
It says that E has a all finite C2-products if and only if it has C2-limits for diagrams
indexed by [∅ → C2], and that the latter is equivalent to f having a right adjoint
g : EC2 → E∗ such that for x ∈ EC2 the map

f g(x) → x × σ(x)

adjoint to the diagonal g(x) → g(x)× g(x) 
 g(x)× g(σ (x)) 
 g(x × σ(x)) is an
equivalence.

Remark 7.4.6 Diagrams in E indexed by [∅ → C2] are determined by the data of
an object x ∈ EC2 . When the equivalent conditions of Lemma 7.4.4 hold then the
C2-coproduct of such a diagram is given by the cocartesian section s : Oop

C2
→ E

whose value at ∗ is g(x) and whose value at C2 is x
∐

σ(x). The existence of such
a cocartesian section is insured by iii) above. Similarly, the C2-product of such a
diagram, when exists, is given by a cocartesian section s : Oop

C2
→ E whose value at ∗

is g(x) and whose value at C2 is x × σ(x).

Example 7.4.7 In the situation of Example 7.4.2, the resulting C2-category E → Oop
C2

has finite C2-products (resp. C2-coproducts) if and only ifD has finite products (resp.
coproducts).

Proposition 7.4.8 The C2-categories of Examples 7.4.3 all have finite C2-products
and coproducts.

Proof We will use the criterion of Lemma 7.4.4. For this we first verify that the fibres
over C2 and ∗ have finite (co)products and that the transition functors preserve finite
(co)products. In Example i) the fibres are stable and the transition functors are exact.
For Example ii) the existence of limits and colimits is established in Proposition 6.1.2
and Remark 7.2.5, and the preservation of limits and colimits by the transition functors
is a consequence of Proposition 7.2.20. For Example iii) the same is established in
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Proposition 6.1.1, Proposition 6.1.4 and Corollary 7.2.21. We now verify that all three
examples satisfy Criterion iii) of Lemma 7.4.4. In the case of Example i) it follows
from Lemma 1.1.7 and Remark 1.1.18 that the functor B �→ B� gives both a left and
a right adjoint to the bilinear part functor Ϙ �→ BϘ. We now need to verify that for
B ∈ Funb(C) the maps

B(x, y)⊕ B(y, x) → fib[B(x ⊕ y) → B(x, x)⊕ B(y, y)]

and

cof[B(x, x)⊕ B(y, y) → B(x ⊕ y)] → B(x, y)⊕ B(y, x)

are equivalences. Indeed, this follows directly from the bilinearity ofB. ForExample ii)
we have by Proposition 7.2.20 that the association (A,B,B) �→ (A× Bop,B) gives
both a left and a right adjoint to the functor Cath∞ → Catb∞. Criterion iii) can then
be deduced from its validity for Example i) and for Example 7.4.7 with D = Catex∞.
Finally, the case of Example iii) follows from that of ii) since the former maps to the
latter via a C2-functor which is a fibrewise replete subcategory inclusion, so the two-
sided adjoint of Cath∞ → Catb∞ restricts to give two sided adjoints for Catp∞ → Catex∞
by Proposition 7.2.20.

It will be important for us in subsequent instalments of this project to know that the
C2-categories of Examples 7.4.3 don’t just admit finite C2-products and coproducts but
that they are furthermoreC2-semiadditive, see [51,Definition 5.3]. To explainwhat this
means let E → OC2 be a C2-category which admits finite C2-products and coproducts,
so that by Lemma 7.4.4 f admits both a left adjoint g : EC2 → E∗ and a right adjoint
h : EC2 → E∗, and these satisfy f g(x) 
 x

∐
σ(x) and f h(x) 
 x × σ(x). Suppose

that the fibres EC2 and E∗ are both semiadditive, so that we may identify products and
coproducts and write them as direct sums

f g(x) 
 x ⊕ σ(x) 
 f h(x).

Then we have natural candidate for a comparison map

g(x) → h(x) (197)

which is adjoint to the map

x → f h(x) 
 x ⊕ σ(x),

corresponding to the inclusion of the component x .
The following definition is an adaptation of [51, Definition 5.3] to the particular

case where the base isOC2 , making use of the fact thatOC2 has a unique non-invertible
arrow, given by C2 → ∗.
Definition 7.4.9 Let E → Oop

C2
be a C2-category which admits finite C2-products and

finite C2-coproducts. Then E is called C2-semiadditive if the following holds:
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i) The fibres EC2 and E∗ are semiadditive.
ii) The comparison map (197) between the left and right adjoints of f is an equiva-

lence.

Example 7.4.10 In the situation of Example 7.4.2, the resulting C2-category E → Oop
C2

is semiadditive if and only if D is semiadditive.

Proposition 7.4.11 The C2-categories of Example 7.4.3 are all C2-semiadditive.

Proof We first verify that in all the examples in 7.4.3 the fibres are semi-additive. For
Example i) the fibres are stable and in particular semiadditive. For Examples ii) and iii)
this was established in Proposition 6.1.7 and Remark 7.2.7.

We now establish the second condition of Definition 7.4.9. Arguing as in the proof
of Proposition 7.4.8 using Example 7.4.10 in place of Example 7.4.7 we see that it will
suffice to establish the second condition for Example i). Now by Remark 1.1.18 the
diagonal restriction functor�∗ : Funb(C) → Funq(C) is both left and right adjoint to
the cross effect functor B(−) : Funq(C) → Funb(C) and we already saw in the proof
of Proposition 7.4.8 that the composite Funb(C) → Funq(C) → Funb(C) is naturally
equivalent to the functor B �→ B⊕ Bswap. Unwinding the definitions, to establish the
second condition it will suffice to show that unit of the adjunction�∗ � B(−) is given
by the component inclusion

B(x, y) → B(x, y)⊕ B(y, x),

and the counit of the adjunction B(−) � �∗ is given by the component projection

B(x, y)⊕ B(y, x) → B(x, y).

Indeed, this is established in Remark 1.1.18.

Remark 7.4.12 If E → Oop
C2

is a C2-semiadditive C2-category then the C2-product
and C2-coproduct of a [∅ → C2]-indexed C2-diagram in E corresponding to an object
x ∈ EC2 are both given by the cocartesian section s : Oop

C2
→ E whose value at ∗ is

g(x) and whose value at C2 is x ⊕ σ(x), cf. Remark 7.4.6.

Remark 7.4.13 If E → Oop
C2

is a C2-semiadditive C2-category then the functor
f : E∗ → EC2 admits a two sided adjoint g. The C2-equivariant structure induces
a C2-equivariant structure on g in a priori two different ways: one by the unique-
ness of g as a left adjoint of f and once by its uniqueness as a right adjoint. The
comparison map (197) is however a natural transformation of C2-equivariant func-
tors (since the component inclusion x → x ⊕ σ(x) is such), and so it identifies the
left and right adjoints of f also as C2-equivariant functors. Similarly, the induced
functor g : EhC2

C2
→ Fun(BC2, E∗) is a two sided adjoint to the induced functor

f : Fun(BC2, E∗) → EhC2
C2

.

Remark 7.4.14 Specializing to the case of the C2-category Catp∞ → Oop
C2

we now
get that the functor Hyp inherits a C2-equivariant structure making it a two-sided
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C2-equivariant adjoint to U : Catp∞ → Catex∞, and similarly the induced functor
HyphC2 : (Catex∞)hC2 → Fun(BC2,Cat

p∞) is a two-sided adjoint to UhC2 : Fun(BC2,

Catp∞) → (Catex∞)hC2 . The composite

Hyp : Catp∞ → (Catex∞)hC2
HyphC2−−−−→ Fun(BC2,Cat

p∞)

then determines a C2-action on Hyp(U(C, Ϙ)) = Hyp(C) for a Poincaré ∞-category.
For a fixed (C, Ϙ), this is the C2-action of Construction 2.2.7, but now promoted to be
natural in C. Similarly, the C2-equivariance of the maps

Hyp(C) hyp−−→ (C, Ϙ) fgt−→ Hyp(C)

constructed in Lemma 2.2.9 is now exhibited as the components of two natural trans-
formations of C2-equivariant functors in (C, Ϙ).

Remark 7.4.15 In the situation of Remark 7.4.14, the functors U and UhC2 participate
in a commutative square of forgetful functors

Fun(BC2,Cat
p∞) Catp∞

(Catex∞)hC2 Catex∞.

UhC2 U

Passing to left adjoints, we obtain a commutative square

Catex∞ (Catex∞)hC2

Catp∞ Fun(BC2,Cat
p∞).

Hyp HyphC2 (198)

At the same time, since Catex∞ is semi-additive the top horizontal functor in (198) is
given by the symmetrisation C �→ C × Cop associated to the op-action on Catex∞. But
Catp∞ having finite C2-coproducts (Proposition 7.4.8) means that this symmetrisation
is identified with U ◦ Hyp as a functor Catex∞ → (Catex∞)C2 . Since Catp∞ is also semi-
additive (Proposition 6.1.7) it then follows from the commutativity of the above square
that the functor

Catp∞ → Fun(BC2,Cat
p∞) (C, Ϙ) �→ Hyp(Hyp(C))

is naturally equivalent to the functor sending (C, Ϙ) to Hyp(C) × Hyp(C), equipped
with the flip C2-action.

We nowwish to use theC2-semiadditivity of the examples in 7.4.3 in order to extract
extra structures in terms of Mackey functors. For this, let Span(C2) be the span ∞-
category of finite C2-sets, as defined in [10, Df. 3.6]. A Mackey object in an additive
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∞-category A is by definition a product preserving functor from Span(C2) → A.
If A is taken to be Sp, then [51, Theorem A.4] shows that the arising ∞-category
underlines the various (Quillen equivalent) model categories classically used for the
definition of genuine C2-spectra. Taking spectral Mackey functors as the definition of
the latter we set

SpgC2 := Fun×(Span(C2),Sp).

Evaluation at the finite C2-sets C2 then defines the functor u : SpgC2 → SphC2 , by

retaining the action of the span C2
id←− C2

+1−→ C2. Evaluation at the one-point C2-
set defines the genuine fixed points (−)gC2 : SpgC2 → Sp. The datum of a genuine
C2-spectrum thus is equivalent to the datum of the pair of spectra (EgC2 , E), together
with a C2-action on E and restriction and transfer maps

res : EgC2 → E tr : E → EgC2

coming from the spans

∗ ← C2
id−→ C2 and C2

id←− C2 → ∗ (199)

with a host of compatibility data, and similarly for other target categories.

Proposition 7.4.16 Let E → Oop
C2

be a C2-semiadditive ∞-category with transition
functor f : E∗ → EC2 and two-sided adjoint g : EC2 → E∗. Then the identity functor
E∗ → E∗ canonically lifts to a functor

Fun×(Span(C2), E∗)

E∗ E∗

where the vertical arrow is given by evaluation at ∗. In addition the composite

E∗ → Fun×(Span(C2), E∗)
evC2−−→ E∗,

where evC2 denotes evaluation atC2 ∈ Span(C2), is naturally equivalent to the functor
x �→ g f (x).

Proof Let Aeff(C2) → Oop
C2

be the C2-Burnside ∞-category of [51, Df. 4.12]. The

objects ofAeff(C2) are given by arrowsU → V whereU is a finiteC2-set andV ∈ OC2

is a C2-orbit, and morphisms in Aeff(C2) from [U → V ] to [U ′ → V ′] are given by
diagrams of the form

U U ′′ U ′

V V ′ V ′.
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The functor Aeff(C2) → Oop
C2

is then given by [U → V ] �→ V , and is a cocartesian
fibration whose fibre over V ∈ OC2 is the span ∞-category of finite C2-sets over V .
Combining [51, Pr. 5.11] and [51, Th. 6.5] we have that the evaluation at the object
[∗ → ∗] ∈ Aeff(C2) yields an equivalence

Fun×C2
(Aeff(C2), E)


−→ E∗.

Now the action of every C2-product preserving C2-functor Aeff(C2) → E on fibres
over ∗ is again a product-preserving functor from Span(C2) to E∗. Base change along
{∗} ⊆ Oop

C2
then determines a functor

R : E∗ 
 Fun×C2
(Aeff(C2), E) → Fun×(Span(C2), E∗).

equipped with a natural equivalence

R(x)(∗) 
 x ,

by construction. Furthermore, for x ∈ E∗ the Mackey functorR(x) : Span(C2) → E∗
is obtained in particular by restricting a C2-functor R(x) : Aeff(C2) → E , i.e., a
functor over Oop

C2
which preserves cocartesian edges. Since R(x) sends [∗ → ∗] to

x ∈ E∗ ⊆ E by construction it must send the object [C2 → C2] ∈ Aeff(C2) to
f (x) ∈ EC2 ⊆ E . Since R(x) furthermore preserves C2-biproducts it must therefore
send [C2 → ∗] ∈ Aeff(C2) to g f (x), see Remark 7.4.12.

Applying Proposition 7.4.16 in the case of the C2-category Funq(C) → OC2 of
Example 7.4.3 i) we obtain:

Corollary 7.4.17 The inclusion Funq(C) ⊆ Fun(Cop,Sp) admits a canonical lift to a
functor

Funq(C) → Fun(Cop,SpgC2),

In particular, every quadratic functor Ϙ : C → Sp lifts canonically to a functor
Ϙ̃ : Cop → SpgC2 valued in genuine C2-spectra, such that Ϙ̃(x) has underlying C2-
spectrum BϘ(x, x), geometric fixed points �Ϙ(x) and genuine fixed points Ϙ(x).

Proof Only the claim about the geometric fixed point is not immediate from the appli-
cation of Proposition 7.4.16 to Example 7.4.3 i), but it follows from the defining cofibre
sequence

BϘ(x, x)hC2 −→ Ϙ(x) −→ �Ϙ(x),
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which by construction matches the cofibre sequence

Ϙ̃(x)hC2 −→ Ϙ̃(x)gC2 −→ Ϙ̃(x)ϕC2 .

Corollary 7.4.18 (The hyperbolic Mackey functor) The construction of hyperbolic
categories canonically refines to a functor

gHyp : Catp∞ −→ Fun×(Span(C2),Cat
p∞)

together with natural equivalences of Poincaré ∞-categories

[gHyp(C, Ϙ)](∗) 
 (C, Ϙ) ,

and a natural C2-equivariant equivalence of Poincaré ∞-categories

[gHyp(C, Ϙ)](C2) 
 Hyp C .

In addition, the resulting C2-equivariant functors

Hyp(C) (C, Ϙ) Hyp(C)
[
gHyp(C, Ϙ)

]
(C2)

[
gHyp(C, Ϙ)

]
(∗) [

gHyp(C, Ϙ)
]
(C2)


 
 


associated to the spans of (199) are given by the functors hyp and fgt of (42) which
are the unit and counit of the two-sided adjunctions between Catp∞ and Catex∞ of
Corollary 7.2.21.

Using 7.4.17 we can now also extend the periodicity considerations for Poincaré
structures on module categories of Sect. 3.5 to the general case. Specifically, we have:

Proposition 7.4.19 For a hermitian structure Ϙ on a stable category C, there is a
natural equivalence

Ϙ̃[n+m] ◦ (�n)op 
 S
m−nσ ⊗ Ϙ̃

of functors Cop → SpgC2 , and so in particular �n : C → C refines to an equivalence

(C, Ϙ[2n]) 
 (C, (Sn−nσ ⊗ Ϙ̃)gC2).

Proof The proof is essentially identical to that of 3.5.3. It clearly suffices to treat the
case m = −n, as both sides display the same behaviour under shifting, and since
pre-composition with � can be inverted and iterated, one may reduce to proving the
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case n = 1 = −m. Let α : �Ϙ ⇒ (BϘ ◦�)tC2 be the reference map of Ϙ. Arguing as
in the proof of Proposition 3.5.3 one obtains a natural commutative diagram

Ϙ ◦�op �Ϙ ◦�op �Ϙ ◦�op � ◦�Ϙ

(BϘ ◦� ◦�op)hC2 (BϘ ◦� ◦�op)tC2 (� ◦ BϘ ◦�)tC2 � ◦ (BϘ ◦�)tC2

(�ρ ◦ BϘ ◦�)hC2 (�ρ ◦ BϘ ◦�)tC2 (� ◦ BϘ ◦�)tC2 � ◦ (BϘ ◦�)tC2

∼

�α

∼ ∼

∼ ∼

∼ ∼

which may be viewed as an equivalence between the top left square and the external
rectangle. As such, it identifies the classifying square of Ϙ ◦ �op with one having
bilinear term �ρ ◦ BϘ, linear term � ◦ �Ϙ, and reference map �α. But these are
precisely the underlying spectrum, geometric fixed point, and glueing map of �−ρ Ϙ̃.
We immediately obtain that Ϙ ◦ �op agrees with the genuine fixed points of �−ρ Ϙ̃,
and thus the second part (which suffices for all our applications) follows. But it is a
folklore result that a genuine C2-spectrum is in fact naturally determined by the data
we have computed above, namely, the diagram

S

SS

S

where u takes the underlying C2-spectrum and t extracts the target of an arrow is
cartesian; a proof of this fact can also be found in [2], Remark 3.7.5. This implies the
full statement of the proposition.

7.5 Multiplicativity of Grothendieck-Witt and L-groups

In this section we prove that the invariants L0(−) andGW0(−) defined in Sect. 2.3 and
2.5 are lax symmetric monoidal functors. In addition, the higher L-groups organise
into a symmetric monoidal functor to the category of graded abelian groups (with its
Koszul symmetric monoidal structure). As a result, they carry a graded-commutative
algebra structure when applied to symmetric monoidal Poincaré ∞-categories, such
as those described in Sect. 5.4.

To begin, we first note that by Corollary 5.2.8 the functor π0Pn : Catp∞ → Set
admits a canonical lax symmetric monoidal structure. This lax symmetric monoidal
structure can be made quite explicit. Indeed, consider the assignment

π0Pn(C, Ϙ)× π0Pn(C′, Ϙ′) → π0Pn(C ⊗ C′, Ϙ⊗ Ϙ′).

For a pair of Poincaré objects (x, q) and (x ′, q ′) we get the Poincaré object (x ⊗
x ′, q ⊗ q ′) in (C⊗ C′, Ϙ⊗ Ϙ′), where x ⊗ x ′ ∈ C⊗ C′ is the image of (x, x ′) ∈ C × C′
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under the universal bilinear functor β : C × C′ → C ⊗ C′, and q ⊗ q ′ denotes the map
S → [Ϙ⊗ Ϙ′](x ⊗ x ′) obtained as the composite

S = S ⊗ S
q⊗q ′−−−→ Ϙ(x)⊗ Ϙ′(x ′) = [Ϙ� Ϙ′](x, x ′) → P2β![Ϙ� Ϙ′](x ⊗ x ′)

= [Ϙ⊗ Ϙ′](x ⊗ x ′).

This object is Poincaré because its underlying bilinear form is given in light of Propo-
sition 5.1.3 by the combination of the underlying bilinear forms of q and q ′.

We now wish to upgrade the above lax symmetric monoidal structure to the level
of E∞-spaces. For this, first note that since Catp∞ and Cath∞ are semi-additive (Propo-
sition 6.1.7) the corepresentable functors Pn and Fm canonically refine to functors
with values in E∞-spaces. Recall (see, e.g., [52, Proposition 5.6]) that the∞-category
MonE∞ of E∞-monoids carries a canonical symmetric monoidal structure such that
the free-forgetful adjunction

F : S ⊥ MonE∞ :U

becomes symmetric monoidal (that is, its left adjoint is symmetric monoidal from
which the right adjoint inherits a lax symmetric monoidal structure). We now claim
that the E∞-refinement P̃n : Catp∞ → MonE∞ and F̃m : Cath∞ → MonE∞ also carry
lax symmetric monoidal structures. This is in fact a completely formal consequence
of the fact that the monoidal structure on Catp∞ and Cath∞ preserves direct sums:

Lemma 7.5.1 Let E be a small semi-additive ∞-category equipped with a symmetric
monoidal structure ⊗ which preserves direct sums in each variable. Then the lax
symmetric monoidal structure of MapE (1E ,−) canonically lifts to its E∞-refinement

M̃apE (1E ,−) : E → MonE∞ .

Corollary 7.5.2 The lax symmetric monoidal structure of Pn and Fm canonically lifts
to their E∞-refinements P̃n : Catp∞ → MonE∞ and F̃m : Cath∞ → MonE∞ .

Proof By possibly enlarging the universe we may assume that Catp∞ and Cath∞ are
small. The claim then follows from Lemma 7.5.1.

Proof of Lemma 7.5.1 The full subcategory Fun×(E,MonE∞) ⊆ Fun(E,MonE∞)

spanned by the product-preserving functors is an accessible localisation of Fun(E,
MonE∞)with a left adjointwhichwedenote by L : Fun(E,MonE∞) → Fun×(E,MonE∞).
By Lemma 5.3.4 this localisation is compatible with Day convolution and extends to
a symmetric monoidal localisation

L⊗ : Fun(E,MonE∞)⊗ → Fun×(E,MonE∞)⊗,

where the codomain is endowedwith the structure inherited frombeing a full suboperad
of Fun(E,MonE∞)⊗. Now the identification MapE (1E ,−) 
 UM̃apE (1E ,−) trans-
poses to give a natural transformation of the form F ◦MapE (1E ,−) ⇒ M̃apE (1E ,−).
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Since M̃apE (1E ,−) is product preserving this natural transformation induces a natural
transformation

L(F ◦MapE (1E ,−)) ⇒ M̃apE (1E ,−).

We claim that this last transformation is an equivalence. Note that this implies the
desired claim via the symmetric monoidal structures of L and F. Now, to prove the
claim, itwill suffice to show that for every product-preserving functorG : E → MonE∞
the induced map

Nat(M̃apE (1E ,−),G) → Nat(F ◦MapE (1E ,−),G)

is an equivalence of spaces. Indeed, by adjunction we may also identify this map with
the map

Nat(M̃apE (1E ,−),G) → Nat(U ◦ M̃apE (1E ,−),U ◦ G)

induced by U ◦ (−). This last map is an equivalence since the forgetful functor
U ◦ (−) : Fun×(E,MonE∞) → Fun×(E,S) is an equivalence on product-preserving
functors.

We now come to the main result of this subsection:

Proposition 7.5.3 The functors L0,GW0 : Catp∞ → CMon admit unique lax symmet-
ric monoidal structures such that the transformations

π0Pn ⇒ GW0 ⇒ L0

are symmetric monoidal, where CMon stands for the (ordinary) symmetric monoidal
category of commutative monoids.

Remark 7.5.4 The full subcategory Ab ⊆ CMon spanned by abelian groups is a full
suboperad and a symmetric monoidal localisation of CMon. Since GW0 and L0 take
values inAb the laxmonoidal structures on GW0,L0 and themapGW0 ⇒ L0 equally
applies if we consider GW0 and L0 as functors toAb. The reason for working with the
larger category of commutative monoids is to be able to make arguments pertaining
to the natural transformation from π0Pn.

Theproof of Proposition 7.5.3will require knowing certainmultiplicative properties
of the adjunctions Cath∞ ⊥ Catp∞ and Catex∞ ⊥ Catp∞, which we now verify.

Lemma 7.5.5 The adjunction Cath∞ ⊥ Catp∞ of Proposition 7.3.20, in which the right
adjoint Catp∞ → Cath∞ is symmetric monoidal, satisfies the projection formula: for
(C, Ϙ) ∈ Catp∞ and (C′, Ϙ′) ∈ Cath∞ the Poincaré functor

Pair(C ⊗ C′, (Ϙ⊗ Ϙ′)[σ ]) → (C, Ϙ)⊗ Pair(C′, Ϙ′[σ ]) (200)
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associated under this adjunction to the hermitian functor

(C ⊗ C′, Ϙ⊗ Ϙ′) = (C, Ϙ)⊗ (C′, Ϙ′) → (C, Ϙ)⊗ Pair(C′, Ϙ′[σ ])

induced by the unit hermitian functor (C′, Ϙ′) → Pair(C′, Ϙ′[σ ]), is an equivalence of
Poincaré ∞-categories.

Proof This is a formal consequence of (and actually equivalent to) the fact that the
right adjoint Catp∞ → Cath∞ is closed symmetric monoidal, that is, preserves internal
mapping objects, see Remark 6.2.18. Explicitly, it will suffice to show that for every
Poincaré∞-category (E, �) the restriction map

MapCatp∞((C, Ϙ)⊗ Pair(C′, Ϙ′[σ ]), (E, �)) → MapCath∞((C, Ϙ)⊗ (C′, Ϙ′), (E, �))

is an equivalence of spaces. Indeed, since the Poincaré ∞-category Funex((C, Ϙ),
(E, �)) serves as an internal mapping object in both Cath∞ and Catp∞ we may identify
this map with the map

MapCatp∞(Pair(C′, Ϙ′[σ ]),Funex((C, Ϙ), (E, �)))

→ MapCath∞((C′, Ϙ′),Funex((C, Ϙ), (E, �))),

which is an equivalence by adjunction.

Taking Ϙ′ = 0 in Lemma 7.5.5 and using Remark 7.2.22 we immediately find:

Corollary 7.5.6 The adjunction Hyp � U satisfies the projection formula: for (C, Ϙ) ∈
Catp∞ and C′ ∈ Cath∞ the Poincaré functor

Hyp(C ⊗ C′) → (C, Ϙ)⊗ Hyp(C′)

induced by the component inclusion

C ⊗ C′ → C ⊗ UHyp(C′) = C ⊗ [C′ ⊕ C′op] = [C ⊗ C′] ⊕ [C ⊗ C′op]

is an equivalence of Poincaré ∞-categories.

Remark 7.5.7 One can also deduce Corollary 7.5.6 from the fact that the forgetful
functor U : Catp∞ → Catex∞ is closed symmetric monoidal, being the composition
of the inclusion Catp∞ → Cath∞ and the closed symmetric monoidal projection
Cath∞ → Catex∞, see Remark 6.2.11 and the final part of Remark 6.2.18. In partic-
ular, the adjunction Catex∞ ⊥ Cath∞ also satisfies the projection formula, as is visible
from the equivalence (C, Ϙ)⊗ (C′, 0) 
 (C ⊗ C′, 0).

Remark 7.5.8 In the situation of Lemma 7.5.5, when (C, Ϙ) is also Poincaré then by
the triangle identities the projection formula equivalence (200) fits into a commutative
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triangle

Pair(C ⊗ C′, (Ϙ⊗ Ϙ′)[σ ]) (C, Ϙ)⊗ Pair(C′, Ϙ′[σ ])

(C, Ϙ)⊗ (C′, Ϙ′)




where the diagonal arrows are obtained from the counit of the adjunction Cath∞ ⊥
Catp∞ at (C, Ϙ) ⊗ (C′, Ϙ′) and (C′, Ϙ′), respectively. Using Example 7.3.3 iii) and
Remark 7.3.21 we may also write this commutative triangle as

Met((C, Ϙ)⊗ (C′, Ϙ′)) (C, Ϙ)⊗Met(C′, Ϙ′)

(C, Ϙ)⊗ (C′, Ϙ′).
met




(C,Ϙ)⊗met
(201)

Applying the same argument for the projection formula of Corollary 7.5.6we similarly
have the commutative triangle

Hyp(C ⊗ C′) (C, Ϙ)⊗ Hyp(C′)

(C, Ϙ)⊗ (C′, Ϙ′).
hyp




(C,Ϙ)⊗hyp

(202)

Remark 7.5.9 The commutative triangle (201) taken with (C′, Ϙ′) = (Spf , Ϙu) yields
an equivalence Met(C, Ϙ) 
 (C, Ϙ) ⊗ Met(Spf , Ϙu) of Poincaré ∞-categories over
(C, Ϙ). It then follows that when (C, Ϙ) is a symmetric monoidal Poincaré∞-category
the Poincaré ∞-category Met(C, Ϙ) acquires the structure of a module object over
(C, Ϙ) (specifically, the free (C, Ϙ)-module generated fromMet(Spf , Ϙu)) such that the
functor

met : Met(C, Ϙ) → (C, Ϙ)

is a map of (free) (C, Ϙ)-modules. Similarly, the commutative triangle (202) taken with
(C′, Ϙ′) = (Spf , Ϙu) yields an equivalence Hyp(C) 
 (C, Ϙ)⊗ Hyp(Spf) over (C, Ϙ),
and so when (C, Ϙ) is symmetric monoidal Poincaré we get that Hyp(C) acquires the
structure of a module object over (C, Ϙ) (freely generated by Hyp(Spf)) and

hyp : Hyp(C) → (C, Ϙ)

is a map of free (C, Ϙ)-modules.

Proof of Proposition 7.5.3 The uniqueness is clear since the maps π0Pn(C, Ϙ) →
GW0(C, Ϙ) → L0(C, Ϙ) are surjective (and surjectivity is stable under tensor products
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in CMon). It will hence suffice to show that for every pair of Poincaré ∞-categories
(C, Ϙ), (C′, Ϙ′) the dotted arrows

π0Pn(C, Ϙ)⊗ π0Pn(C′, Ϙ′) GW0(C, Ϙ)⊗ GW0(C′, Ϙ′) L0(C, Ϙ)⊗ L0(C′, Ϙ′)

π0Pn((C, Ϙ)⊗ (C′, Ϙ′)) GW0((C, Ϙ)⊗ (C′, Ϙ′)) L0((C, Ϙ)⊗ (C′, Ϙ′))
(203)

exists to make the diagram commute, where the tensor products in the top row is that
of commutative monoids.

Let us first treat the case of the functor L0. For this it will suffice to show that for a
pair of Poincaré objects (x, q) and (x ′, q ′) such that (x ′, q ′) is metabolic the associated
Poincaré object (x, q)⊗ (x ′, q ′) is metabolic in (C, Ϙ)⊗ (C′, Ϙ′) (the rest follows by
symmetry). But this follows directly from the commutativity of the diagram

π0PnMet((C, Ϙ)⊗ (C′, Ϙ′)) π0Pn((C, Ϙ)⊗Met(C′, Ϙ′)) π0Pn(C, Ϙ)⊗ π0PnMet(C′, Ϙ′)

π0Pn((C, Ϙ)⊗ (C′, Ϙ′)) π0Pn(C, Ϙ)⊗ π0Pn(C′, Ϙ′)
[met]




id⊗[met]

(204)
given by the commutative triangle (201).

We now turn to GW0. For the well-definedness of the middle dotted arrow in (203)
we have to show that the relation [hyp(w)] ∼ [x, q] for a Lagrangian w → x is
preserved under tensoringwith somePoincaré object (x ′, q ′). Given the commutativity
of the diagram (204) above, it will suffice to show that the diagram

π0PnMet((C, Ϙ)⊗ (C′, Ϙ′)) π0Pn((C, Ϙ)⊗Met(C′, Ϙ′)) π0Pn(C, Ϙ)⊗ π0PnMet(C′, Ϙ′)

π0PnHyp(C ⊗ C′) π0Pn((C, Ϙ)⊗ Hyp(C′)) π0Pn(C, Ϙ)⊗ π0PnHyp(C′, Ϙ′)

π0Pn((C, Ϙ)⊗ (C′, Ϙ′)) π0Pn(C, Ϙ)⊗ π0Pn(C′, Ϙ′)

dlag∗




(id⊗dlag)∗ id⊗[dlag]

[hyp]




id⊗[hyp]

is commutative as well, where the vertical arrows in the top rows are induced by the
Poincaré functor dlag : Met(−) → Hyp(−) of Construction 2.3.8. Here, the squares
on the right hand side are commutative as they are given by the lax monoidal structure
on π0Pn, and the bottom left triangle is induced by the commutative triangle (202). It
will suffice to show that the top left square commutes. Indeed, this square is obtained
by applying π0Pn to the square of Poincaré∞-categories

Met((C, Ϙ)⊗ (C′, Ϙ′)) (C, Ϙ)⊗Met(C′, Ϙ′)

Hyp(C ⊗ C′) (C, Ϙ)⊗ Hyp(C′),
dlag




(C,Ϙ)⊗dlag




which commutes since it is obtained by evaluating the natural transformation (200) of
the projection formula at the arrow (C, Ϙ) → (C, 0) in Cath∞, see Remark 7.3.22.
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Corollary 7.5.10 The functor L• : Catp∞ → grAb admits a lax symmetric monoidal
structure, where grAb denotes the category of Z-graded abelian groups with the
symmetric monoidal structure using the Koszul sign rules.

Proof By definition we have that Ln(C, Ϙ) = L0(C, Ϙ[−n]) = L0(C, Ϙ ⊗ S
−n). Thus

the claim follows by combining Proposition 7.5.3, Remark 2.3.13, and the fact that
S
−• is a graded commutative algebra in the homotopy category of spectra. Concretely,

the structure maps are simply given by

Ln(C, Ϙ)⊗ Lm(C′, Ϙ′) = L0

(
C, Ϙ[−n]) ⊗ L0

(
C′, Ϙ′[−m])

→ L0

(
C ⊗ C′, Ϙ[−n] ⊗ Ϙ′[−m]) = L0

(
C ⊗ C, (Ϙ⊗ Ϙ′)[−n−m])

= Ln+m(C ⊗ C, Ϙ⊗ Ϙ′)

and the fact that it is symmetric follows as explained above.

Corollary 7.5.11 If (C, Ϙ) is a monoidal ∞-category then GW0(C, Ϙ) acquires a ring
structure and L•(C, Ϙ) a graded ring structure such that the natural map

GW0(C, Ϙ) → L0(C, Ϙ)

is a ring homomorphism. If the monoidal structure is symmetric then GW0(C, Ϙ) is
commutative and L•(C, Ϙ) is graded commutative.

Example 7.5.12 Let A ∈ AlghC2
E∞ be a commutative ring spectrum equipped with a

C2-action. Then the Grothendieck-Witt groups GW0(ModωA, Ϙ
s
A), GW0(ModωA, Ϙ

≥0
A )

and GW0(ModωA, Ϙ
t
A) of the symmetric monoidal Poincaré ∞-categories of Exam-

ples 5.4.10 carry natural commutative ring structures, and similarly the corresponding
graded L-groups L•(ModωA, Ϙ

s
A), L•(ModωA, Ϙ

≥0
A ) and L•(ModωA, Ϙ

t
A) carry canonical

graded-commutative ring structures.

Combining Proposition 7.5.3 with Example 2.5.5, Example 5.4.2 and Remark 7.5.9
we also get:

Corollary 7.5.13 If (C, Ϙ) is a symmetric monoidal ∞-category then

[fgt] : GW0(C, Ϙ) → K0(C)

is a map of rings and

[hyp] : K0(C) → GW0(C, Ϙ)

is a map of GW0(C)-modules.

Remark 7.5.14 In the situation of Corollary 7.5.13, the GW0(C, Ϙ)-module structure
on K0(C) could be considered ambiguous: on the one hand we have the module struc-
ture determined by the ring structure of K0(C) via the ring map fgt : GW0(C, Ϙ) →
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K0(C), and on the other we have the module structure induced by the (C, Ϙ)-module
structure on Hyp(C) of Remark 7.5.9 via the identification K0(C) ∼= GW0(Hyp(C)).
These two modules structures however coincide. Indeed, unwinding the definitions
we see that the former structure is induced via the lax monoidal structure of GW0 and
the symmetric monoidal structure of (C, Ϙ) by the Poincaré functor

(C, Ϙ)⊗ Hyp(C) → Hyp(C ⊗ C),

corresponding via the adjunction U � Hyp to the exact functor C⊗[C⊕Cop] → C⊗C
induced by the projection C ⊕ Cop → C, while the latter module structure is induced
in the same manner by the inverse of the Poincaré equivalence

Hyp(C ⊗ C) 
−→ (C, Ϙ)⊗ Hyp(C)

of Corollary 7.5.6, corresponding via the adjunction Hyp � U to the exact functor
C ⊗ C → C ⊗ [C ⊕ Cop] induced by the inclusion C → C ⊕ Cop. It will hence
suffice to verify that these Poincaré functors determine inverse equivalences between
Hyp(C ⊗ C) and (C, Ϙ) ⊗ Hyp(C). However, since Poincaré functors from (or to)
Hyp are determined by their underlying exact functors, it suffices to check that these
underlying exact functors determine inverse equivalences between C ⊗ [C ⊕ Cop] and
[C⊗ C] ⊕ [Cop⊗ Cop]. The latter is however a formal consequence of the fact that the
monoidal structure on Catex∞ preserves direct sums in each variable.

Invoking Examples 5.4.11 and Example 5.4.12 we also have the following two
corollaries:

Corollary 7.5.15 Let (C, Ϙ) be a symmetric monoidal hermitian ∞-category with
underlying bilinear part B = BϘ. Then the quadratic Grothendieck-Witt group
GW0(C, ϘqB) is canonically a module over the ring GW0(C, Ϙ) and the map

GW0(C, Ϙq) → GW0(C, Ϙ)

is a map of GW0(C, Ϙ)-modules. Similarly, the quadratic L-groups L•(C, ϘqB) form a
graded module over the graded ring L•(C, Ϙ) and the map

L•(C, Ϙq) → L•(C, Ϙ)

is a map of graded L•(C, Ϙ)-modules.

Corollary 7.5.16 Let A be a connective commutative ring spectrum equipped with an
involution. Then for every m ∈ Z the Grothendieck-Witt group GW0(ModωA, Ϙ

≥m
A ) of

the truncated Poincaré structure of Example 3.2.8 is canonically a module over the
GW0-ring GW0(ModωA, Ϙ

≥0
A ) of the Poincaré structure of Example 5.4.10 ii).
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