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Preface

During the last decade the methods of algebraic topology have invaded
extensively the domain of pure algebra, and initiated a number of internal
revolutions. The purpose of this book is to present a unified account of
these developments and to lay the foundations of a full-fledged theory.

The invasion of algebra has occurred on three fronts through the
construction of cohomology theories for groups, Lie algebras, and
associative algebras. The three subjects have been given independent
but parallel developments. We present herein a single cohomology (and
also a homology) theory which embodies all three; each is obtained
from it by a suitable specialization.

This unification possesses all the usual advantages. One proof
replaces three. In addition an interplay takes place among the three
specializations; each enriches the other two.

The unified theory also enjoys a broader sweep. It applies to situa-
tions not covered by the specializations. An important example is
Hilbert’s theorem concerning chains of syzygies in a polynomial ring of
n variables. We obtain his result (and various analogous new theorems)
as a theorem of homology theory.

The initial impetus which, in part, led us to these investigations was
provided by a problem of topology. Nearly thirty years ago, Kiinneth
studied the relations of the homology groups of a product space to those
of the two factors. He obtained results in the form of numerical relations
among the Betti numbers and torsion coefficients. The problem was to
strengthen these results by stating them in a group-invariant form. The
first step is to convert this problem into a purely algebraic one concerning
the homology groups of the tensor product of two (algebraic) complexes.
The solution we shall give involves not only the tensor product of the
homology groups of the two complexes, but also a second product called
their torsion product. The torsion product is a new operation derived
from the tensor product. The point of departure was the discovery that
the process of deriving the torsion product from the tensor product
could be generalized so as to apply to a wide class of functors. In par-
ticular, the process could be iterated and thus a sequence of functors
could be obtained from a single functor. It was then observed that the
resulting sequence possessed the formal properties usually encountered
in homology theory.
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In greater detail, let A be a ring, 4 a A-module with operators on the
right (i.e. a right A-module) and C a left A-module. A basic operation
is the formation of the tensor product 4 ®, C. This is the group
generated by pairs a ® ¢ with the relations consisting of the two dis-
tributive laws and the condition al ® c=a ® Ac. It is important to
consider the behavior of this construction in relation to the usual concepts
of algebra: homomorphisms, submodules, quotient modules, etc.

To facilitate the discussion of this behavior we adopt diagrammatic
methods. A sequence of A-modules and A-homomorphisms

Ap—>Apa—>---—>A4, m+1<n

is said to be exact if, for each consecutive two homomorphisms, the
image of the first is the kernel of the following one. In particular we
shall consider exact sequences

) 0—>A4A"—-+A—-A"—0.

In such an exact sequence 4’ may be regarded as a submodule of 4 with
A" as the quotient module.

If an exact sequence of right A-modules is tensored with a fixed left
A-module C, the resulting sequence of groups and homomorphisms is,
in general, no longer exact. However, some measure of exactness is
preserved. In particular, if the sequence (1) is tensored with C, the
following portion is always exact:

V) A ®y,C>AQ,C—>A"®,C->0.

We describe this property by saying that the tensor product is a right
exact functor.

The kernel K of the homomorphism on the left in the sequence (2)
is in general not zero. In case A4 is a free module, it can be shown that
(up to natural isomorphisms) K depends only on 4” and C. We define
the torsion product Torf (4",C) to be the kernel in this case. In the
general case there is a natural homomorphism

Tor (4",C) > A’ ®, C

with image K. Continuing in this way we obtain an infinite exact
sequence

(3 ---—>Tor} ,(4",C)— Tork (4',C)
—Tor2 (4,C) — Tor2 (4",C) — - -~
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which terminates on the right with the sequence (2) above, provided that
we set

4) Tord (4,C) = A ®, C.

The homomorphisms in (3) which pass from index #n 4 1 to n are
called connecting homomorphisms.

The condition that A be free in the definition of Tor (4”,C) is un-
necessarily restrictive. It suffices that A4 be projective, i.e. that every
homomorphism of 4 into a quotient B/B’ admit a factorization
A— B— B/B’.

The inductive definition of the sequence (3) as described above is
cumbersome, and does not exhibit clearly the connection with homology
theory. This is remedied by a direct construction as follows. If 4 is a
module, then an exact sequence

i >A,—>A, ;> >A;—>A;—>A—>0

is called a projective resolution of A if each 4;,i = 0,1,2, ... is projective.
~ Tensoring with C gives a sequence

%) > A, Q@ C—- - >4, 3, C

which may not be exact but which is a complex (the composition of two
consecutive homomorphisms is zero). The n-th homology group of the
complex (5) is precisely Tor2 (4,C). Using the second definition of Tor,
the sequence (3) is constructed in the usual manner as the homology
sequence of an exact sequence of complexes

0> X" R C>XRC—X"®,C—0

where X', X, X" are appropriate projective resolutions of 4, 4, 4”.
A basic property of Tor is

(6) Tor? (4,C) = 0if n > 0 and 4 is projective.

In fact, this property, the exactness of (3), property (4) and the usual formal
properties of functors suffice as an axiomatic description of the functors
TorA.

The- description of Tor2 (4,C) given above favored the variable A
and treated C as a constant. If the reversed procedure is adopted, the
same functors Tor’ (4,C) are obtained. This “symmetry” of the two
variables in 4 ®, C is emphasized by adopting a definition of Tor
which uses simultaneously projective resolutions of both 4 and C. This
symmetry should not be confused with the symmetry resulting from the
natural isomorphism 4 ®, C~ C ®, A which is valid only when A
is commutative.
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Another functor of at least as great importance as the tensor product
is given by the group Hom, (4,C) of all A-homomorphisms of the left
A-module 4 into the left A-module C. This functor is contravariant in
the variable A4, covariant in the variable C and is left exact in that when
applied to an exact sequence (1), it yields an exact sequence

2" 0 — Hom, (4”,C) - Hom, (4,C) — Hom, (4',C).
A similar discussion to that above leads to an exact sequence

(3) ---—Ext% (4",C) — Ext% (4,C)
— Ext} (4',C) — Ext*1 (4",C) — - - -

which is a continuation of (2"), provided that we set
4" Extd (4,C) = Hom, (4,C).
These properties together with the property
6") Ext" (4,C)= 0 if n > 0 and 4 is projective

and the usual formal properties of functors suffice as an axiomatic descrip-
tion of the functors Ext}} (A4,C).

The description above favored A as a variable while keeping C constant.
Again symmetry prevails, and identical results are obtained by treating
A as a constant and varying C. In this case however, instead of projective
modules and projective resolutions, we employ the dual notions of
injective modules and injective resolutions. A module C is injective if
every homomorphism B’ — C admits an extension B — C for each module
B containing B’ as a submodule. An injective resolution of C is an
exact sequence

0>C>C'—-Cl—» - - =>C">CHl ...
with C? injective for i = 0,1,2, ....

With the functors Tor and Ext introduced we can now show how
the cohomology theories of groups, Lie algebras and associative algebras
fit into a uniform pattern.

Let IT be a multiplicative group and C an (additive) abelian group
with IT as a group of left operators. The integral group ring Z(II)
is defined and C may be regarded as a left Z(II)-module. The group
Z of rational integers also may be regarded as a Z(II)-module with
each element of II acting as the identity on Z. The cohomology groups of
I1 with coefficients in C are then
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These cohomology groups were first introduced by Eilenberg-MacLane
(Proc. Nat. Acad. Sci. U.S.A. 29 (1943), 155-158) in connection with a
topological application. Subsequently they found a number of topo-
logical and algebraic applications; some of these will be considered in
Ch. x1v and xvi. Quite recently, the theory for finite groups has been
greatly enriched by the efforts of Artin and Tate; Ch. xu1 deals with
these new developments. This theory has had its most striking appli-
cation in the subject of Galois theory and class field theory. As this is
a large and quite separate topic we shall not attempt an exposition here,
although we do prove nearly all the results of the cohomology theory of
groups needed for this application.

Let g be a Lie algebra over a commutative ring K and let C be a (left)
representation space for g. The enveloping (associative) algebra g° is
then defined and C is regarded as a left g*-module. The ground ring K
with the trivial representation of g also is a left g>-module. The cohomo-
logy groups of g with coefficients in C are then

H'(3,C) = Ext’, (K,C).

This theory, implicit in the work of Elie Cartan, was first explicitly
formulated by Chevalley-Eilenberg (Trans. Am. Math. Soc. 63 (1948),
85-124). We shall give an account of this theory in Ch. xur; however
we do not enter into its main applications to semi-simple Lie algebras
and compact Lie groups.

Let A be an associative algebra (with a unit element) over a com-
mutative ring K, and let 4 be a two-sided A-module. We define the
enveloping algebra A°= A @ A* where A* is the “opposite” algebra
of A. A4 may now be regarded as a left A®module. The algebra A
itself also is a two-sided A-module and thus a left A®-module. The
cohomology groups are

HY(A,4) = Extq, (A, A).

This theory, closely patterned after the cohomology theory of groups, was
initiated by Hochschild (4nn. of Math. 46 (1945), 58-67). A fairly
complete account of existing results is given in Ch. IX.

In all three cases above, homology groups also are defined using the
functors Tor.

So far we have mentioned only the functors 4 ® , C and Hom, (4,C)
and their derived functors Tor and Ext. It has been found useful to
consider other functors besides these two; Ch. 11-v develop such a theory
for arbitrary additive functors. Both procedures that led to the definition
of Tor are considered. The slow but elementary iterative procedure
leads to the notion of satellite functors (Ch. n1). The faster, homological
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method using resolutions leads to the derived functors (Ch. v). In most
important cases (including the functors ® and Hom) both procedures
yield identical results.

Beginning with Ch. vi we abandon general functors and confine our
attention to the special functors Tor and Ext and their composites.
The main developments concerning homology theory are grouped in
Ch. vii-xir.

The last three chapters (xv—xvIn) are devoted to the method of spectral
sequences, which has been a major tool in recent developments in algebraic
topology. In Ch. xv we give the general theory of spectral sequences,
while the subsequent two chapters give applications to questions studied
earlier in the book.

There is an appendix by David A. Buchsbaum outlining a more
abstract method of treating the subject of satellites and derived functors.

Each chapter is preceded by a short introduction and is followed by a
list of exercises of varied difficulty. There is no general bibliography;
references are made in the text, whenever needed. Crossreferences
are made as follows: Theorem 2.1 (or Proposition 2.1 or Lemma 2.1) of
Chapter X is referred to as 2.1 if the reference is in Chapter X, and as
x,2.1 if the reference is outside of that chapter. Similarly vi,3,(8)
refers to formula (8) of § 3 of Chapter v

We owe expressions of gratitude to the John Simon Guggenheim
Memorial Foundation who made this work possible by a fellowship
grant to one of the authors. We received help from several colleagues:
D. A. Buchsbaum and R. L. Taylor read the manuscript carefully and
contributed many useful suggestions; G. P. Hochschild and J. Tate
helped with Chapter x11; J. P. Serre and N. E. Steenrod offered valuable
criticism and suggestions. Special thanks are due to Miss Alice Krikorian
for her patience shown in typing the manuscript.

H. CaArTAN
University of Paris S. EILENBERG
Columbia University
September, 1953
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CHAPTER I
Rings and Modules

Introduction. After some preliminaries concerning rings, modules,
homomorphisms, direct sums, direct products, and exact sequences, the
notions of projective and injective modules are introduced. These
notions are fundamental for this book. The basic results here are that
each module may be represented as a quotient of a projective module and
also as a submodule of an injective one.

In §4-7 we consider special classes of rings, namely: semi-simple
rings, hereditary rings, semi-hereditary rings, and Noetherian rings. It
will be seen later (Ch. vir) that for integral domains the hereditary (semi-
hereditary) rings are precisely the Dedekind (Priifer) rings.

1. PRELIMINARIES

Let A be a ring with a unit element 1 7= 0. We shall consider (left)
modules over A, i.e. abelian groups A with an operation Ag e A4, for
A€ A, ae A such that

May + ay) = Aay + 2ay, (4 + Aa= Aha + Aa,
(A445) (@) = A(40), la=a.
We shall denote by 0 the module containing the zero element alone.

In the special case A = Z is the ring of rational integers, the modules
over Z are simply abelian groups. If A is a (commutative) field, they
are the vector spaces over A.

Given two modules 4 and B (over the same ring A), a homomorphism
(or linear transformation, or mapping) of 4 into B is a function f defined
on A with values in B, such that f(x 4 y) = fx + fy; f(Ax) = A(fx);
x,yed, Ae A. We then write f: 4 — B, or A — B if there is no ambi-
guity as to the definition of f. The kernel of f is the submodule of 4
consisting of all x € 4 such that fx = 0; it will be denoted by Ker (f) or
Ker (4 — B). The image of f is the submodule of B consisting of all
elements of the form fx, x € 4; it will be denoted by Im (f) or Im (4 — B).

We also define the coimage and cokernel of f as follows:

Coim (f) = A/Ker (f),
Coker (f) = B/Im (f).

3
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Of course, f induces an isomorphism Coim (f) ~ Im (f) and because of
this isomorphism the coimage is very seldom employed.

A homomorphism f: A— B as is called a monomorphism if Ker f= 0;
fis called an epimorphism if Coker f= 0 or equivalently if Im f= B.
If f is both an epimorphism and a monomorphism then f is an isomorphism
(notation: f: 4 ~ B).

Let 4 be a module and {4,} a (finite or infinite) family of modules

(all over the same ring A) with homomorphisms
e Py
A—A— A4,

such that p,i, = identity, psi, = 0 if § %= «. We shall say that {i,,p,}
is a direct family of homomorphisms.

If we assume that each x € 4 can be written as a finite sum x = i x,,
x, € A, it follows readily that A is isomorphic with the direct sum > A4,.
We therefore say that the family {i ,p,} yields a representation of A as
a direct sum of the modules 4,. In this case the mappings {p,} can be
defined using the {i,} alone.

If we assume that for each family {x,}, x, € 4,, there is a unique
x € A with p x = x,, it follows readily that 4 is isomorphic with the
direct product T| 4,. We therefore say that the family {i,,p,} yields a
representation of A as a direct product of the modules 4,. In this case
the homomorphisms {i,} can be defined using the {p,} alone.

If the family {4,} is finite, the notions of direct sum and direct product
coincide. A finite direct family yields a direct sum (or direct product)
representation if and only if i, p, = identity.

A sequence of homomorphisms
Ap—>Apyg—- - —> A, m-+1<n

is said to be exact if for each m <<g <n we have Im (4, ; —4,)
= Ker (4, A4,4;)- Thus 4 — B is a monomorphism if and only if
0-—> A — B is exact and an epimorphism if and only if 4 - B—0 is
exact. We shall also allow sequences which extend to infinity to the left
or to the right or in both directions.

In particular, we shall consider exact sequences

™ 0>A4A"—>A-—>A"->0.

Since A" — A is a monomorphism we may regard A’ as a submodule of 4.
Since 4 — A" is an epimorphism with A" as kernel, we may regard A’
as the quotient module 4/4’. Thus (*) may be replaced by

0—>A">A—AJ/A"—0.
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We shall say that the exact sequence (*) splits if Im (4’ — A) is a direct
summand of 4. In this case, there exist homomorphisms A” — 4 — 4’
which together with the homomorphisms A4’ — 4 — A" yield a direct
sum representation of A4.

Let F be a module and X a subset of F. We shall say that F is free
with X as base if every x e F can be written uniquely as a finite sum
SAxs, Az e A, x; e X, If X is any set we may define Fy as the set of all
formal finite sums >A,x;. If we identify x € X with 1x € Fy, then Fx is
free with base X.

In particular, if 4 is a module we may consider F,. The identity
mapping of the base of F, onto A extends then to a homomorphism
F,— A. If R, denotes the kernel of this homomorphism, we obtain
an exact sequence

0O>R,—>F;—>A—0.
A diagram
A— B

R

C——D

of modules and homomorphisms, is said to be commutative if the com-
positions 4 — B— D and 4 — C — D coincide. Similarly the diagram

A—— B
\//
C

is commutative, if 4 — B — C coincides with 4 — C.

We shall have occasion to consider larger diagrams involving several
squares and triangles. We shall say that such a diagram is commutative,
if each component square and triangle is commutative.

PROPOSITION 1.1.  (The ‘5 lemma’’). Consider a commutative diagram

1 1 b/ I
Az_z’Al_l"Ao'l*A—l—l’ A—z

1h3 11;, lh,, lh_l lh_z
B, I Bl—gl_’ Bo—‘,o'> B—lg—_l’B—z
with exact rows. If
(1) Coker hy =0, Ker h; = 0, Ker h_; = 0,
then Ker hy= 0. If
(2) Coker h; = 0, Coker h_; = 0, Ker h_, = 0,
then Coker hy = 0.
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Proor. Assume (1) and let aeKerh,. Then gohya= 0 so that
h_ foa=0. It follows that fya= 0 and therefore a = fia’ for some
a’ €A, Then gha' = hyfia’ = ha= 0 so that hja' = g,b for some
be B, Then b= hya" for some a”" € A,. We have

h f,0" = gahya” = gob = hya’

which implies a’ = f,a". It follows that a = fia’ = f, foa" = 0.
The other half is proved similarly.

2. PROJECTIVE MODULES

A module P will be called projective if given any homomorphism
f: P— A" and any epimorphism g: 4 — 4" there is a homomorphism
h: P— A with gh= f. In the language of diagrams this means that every
diagram

P

l

A—s>A4"—>0

in which the row is exact, can be imbedded in a commutative diagram

P
/|

A——>A"—>50.

PROPOSITION 2.1. A direct sum of modules is projective if and only if
each summand is projective.

Proor. Let {i,,p,} be a representation of P as a direct sum of modules
{P}. Let g: A— A" be an epimorphism. Assume P projective and
let /i P,— A". Then fp,: P— A", so that there is an h: P— A with
gh=fp,. It follows that ghi, = fp,i, = f, so that P, is projective.
Suppose now that all the P, are projective, and let f: P— A". Then
fi,: P,— A", so that there is an h,: P,— A with gh,= fi,. The
homomorphisms 4, yield a single homomorphism h: P — A4 with hi, = h,
for each index «. Then ghi, = fi,, which implies gh=f. Thus P is
projective.

THEOREM 2.2. In order that P be projective it is necessary and sufficient
that P be a direct summand of a free module.

Proor. Let 0 — Rp—> Fp—P—0 be the exact sequence of § 1.
If P is projective then there is a map P — Fp such that the composed
map P — Fp — P is the identity. Thus the sequence splits and P is a
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direct summand of the free module Fp. It remains to be proved that
each direct summand of a free module is projective. By 2.1 it suffices
to prove that every free module is projective. Let then F be free
with base {x,}, let /1 F— A" and let g: A4 — A" be an epimorphism.
For each x, select y, e A4 with gy, = fx,. Then the homomorphism
h: F-—> A such that hx, = y, satisfies gh = f. Thus F is projective.

THEOREM 2.3. Each module A can be imbedded in an exact sequence
0—>M-—>P—>A—0 with P projective (i.e. each module is a quotient
of a projective module).

Indeed 0 — R, — F , — A — 0 is such an exact sequence.

PROPOSITION 2.4. In order that P be projective it is necessary and
sufficient that all exact sequences 0 — A’ — A — P — 0 split.

Proor. If Pis projective, then, since 4 — P is an epimorphism, there
is a homomorphism P — 4 such that P — A4 — P is the identity. Thus
the sequence splits. Conversely if each sequence splits, then in particular
the sequence 0 — R;, — Fp,— P — 0 splits. Thus P is a direct sum-
mand of F;, and therefore, by 2.2, P is projective.

PROPOSITION 2.5. Every exact sequence 0 —~A"— A — A" —0 can
be imbedded in a commutative diagram

0 0 0
0 M’ M M’ 0
0 P’ P P’ 0
0 A’ A A" 0
0 0 0

in which all rows and columns are exact, the middle row splits and consists
of projective modules. In fact, the exact sequences

0>M P A -0, 0>M'—>P —A"—0,

with P’ and P" projective, may be given in advance.
Proor. We define P as the direct sum P’ 4 P” and the maps P’ — P
and P— P" as

4 ”

p (0, @.pH—>p'.
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Since P” is projective and 4 — 4" is an epimorphism there is a map
h": P"—> A which when composed with 4 — A" yields P" — A". Let &’
be the composition P’ — 4" — 4. We define h: P — A by setting

h(P’,P") — h/pl + h”p”.

Then A maps P onto 4 and the lower two squares are commutative.
We define M as the kernel of A. Then the definition of the map in the
upper row is forced by the commutativity conditions and the proof of
exactness of the upper row is straightforward.

3. INJECTIVE MODULES

A module Q will be called injective if given any module A4, a sub-
module 4" and a homomorphism 4’ — Q, there is an extension 4 — Q.
In the language of diagrams this means that every diagram

0— A'—> 4

|
v

Q

in which the row is exact, can be imbedded in a commutative diagram

0— A" —> A4

e

Q

PRrOPOSITION 3.1. A direct product of modules is injective if and only
if each factor is injective.

Proor. Let {i,,p,} be a representation of Q as a direct product of
modules {Q,}. Let 4 be a module and 4" a submodule of 4. Assume
Q injective and let f: A" — Q,. Then i, f: A" — Q and therefore there
is an extension g: 4 — Q of i, f. Then p,g: A— Q, is an extension of
fi A"— Q,. Thus each Q, is injective. Assume now that all the Q,
are injective and let f: 4"— Q. Then each p,f: A" — O, admits an
extension g,: 4 — Q,. The homomorphisms g, yield g: 4 — Q with
P& = &, Thus for each x e A" we have p,gx = g,.x = p,fx for all «,
and therefore fx = gx. Consequently Q is injective.

THEOREM 3.2. In order that a module Q be injective it is necessary
and sufficient that for each left ideal I of A and each homomorphism

f: 1— Q (with I regarded as a left A-module) there exists an element g € Q
such that fA = Ag for all A € I.
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PrOOF. Suppose Q is injective, then the homomorphism f has an
extension g: A — Q and fA= gd= Ag(l) for each Ael. Thus the
condition is necessary. To prove sufficiency, consider a module 4, a
submodule 4’, and a homomorphism f: 4" — Q. Consider the family
& of all pairs (4,, f;) where 4, is a submodule of A containing 4" and
fi: A;— Q is an extension of . We introduce a partial order in & by
setting (Ay,f1) < (4o, f5) if A;C A, and f, is an extension of f;. The
family % is obviously inductive and therefore by Zorn’s lemma there is
an element (4,,fy) of & which is maximal. We shall prove that 4, = A.
Assume to the contrary that x e 4 and x not e 4,. Theset of all Ae A
such that Ax € 4, forms a left ideal / of A and the map f;: I — Q defined
by foA = fy(Ax) is a homomorphism. There is therefore an element
g € Q such that fy(Ax) = Ag forall A e 1. Setting

f(a+ Ax) = foa + Ag, aedy AeA,
yields then a map f” of the submodule 4, + Ax of 4 which is an extension
of f’. Thus (4,.f,) is not maximal.

THEOREM 3.3. Each module A can be imbedded in an exact sequence
0-—>A— Q->N—0 where Q is injective (i.e. each module is a submodule
of an injective module).

Proor. For each module 4 we shall define a module D(A4) containing
A with the following property:

(*) If I is a left ideal of A and f: I— A, then there is an element
g € D(A) such that f(1) = Ag forall 1 ¢ I.

Let @ be the set of all pairs (I, f) formed by a left ideal I of A and a
homomorphism f: I— A. Let Fg be the free module generated by the
elements of ®. Let D(A) be the quotient of the direct sum 4 + Fg by
the submodule generated by the elements

(f2, — AL.f) () e®, Ael
The mapping a— (a,0) yields a homomorphism ¢: A — D(A4). If
@a = 0 then

pa = (a0) = 2ul fiks — AL, 1)
= 2(filpid), — pd1 1))

Therefore > uA(l;,f;) = 0 in Fg, which implies > fi(u;4;) = 0. This
implies a = 0. Thus ¢ is a monomorphism and, by identifying a and ga
we may regard A as a submodule of D(A).

We now prove that D(A) has the property (*). Let f: I— A where
I'is a left ideal in A. Then (I,f) e ®. Let g be the image in D(4) of
the element (0,(/,f)) of A + Fg. Then foreach A e/

JA=(f2,0) = OAL[) = Ag

as required.
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Let now Q be the least infinite ordinal number whose cardinal is
larger than that of the ring A. We define Q,(4) for « < Q by transfinite
induction as follows: Q,(4)= D(4); if «=pf+ 1 then Q(4)=
D(Q4(A4)); if o is a limiting ordinal then Q,(4) is the union of Q, with
B <« We now prove that 0,(A4) is injective. Indeed let f: I — Q(4)
where [ is a left ideal of A. Then because of the choice of £ we have
fHCQ(A4) for some o <. Then by (*) there is an element
g€ D(Q(A) = Q,11(4) C Qy(4) with f(4)= Ag for all Ael. Thus
by 3.2, 0,(4) is injective.

PROPOSITION 3.4. In order that Q be injective it is necessary and
sufficient that every exact sequence 0 — Q — A — A’ — 0 split.

Proor. If Q is injective, then, since Q — 4 is a monomorphism,
there is a homomorphism 4 — Q such that Q —~ 4 — Q is the identity.
Thus the sequence splits. Conversely, if each sequence splits, we choose
A to be an injective module containing Q, and A" = 4/Q. Thus Qisa
direct factor of 4 and therefore, by 3.1, Q is injective.

PropoOSITION 3.5. Every exact sequence 0 — A" —~ A —> A" —0 can
be imbedded in a commutative diagram

0 0 0

0 0 0

in which all rows and columns are exact, the middle row splits and consists
of injective modules. In fact, the exact sequences 0 —~ A" — Q' — N’ —0,
0+A4"— Q"> N"—0, with Q' and Q" injective, may be given in
advance.

The proof is similar to that of 2.5.

Injective modules (under a different tetminology) were considered
by R. Baer (Bull. Am. Math. Soc. 46 (1940), 800-806) who with minor
variants has proved 3.2 and 3.3.
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4. SEMI-SIMPLE RINGS

A module 4 is called simple if it is #0 and it contains no submodules
except A and 0. A module 4 is called semi-simple if it is a direct sum
of simple modules.

PRrOPOSITION 4.1.  In order that a module A be semi-simple it is neces-
sary and sufficient that each submodule of A be a direct summand.

ProoF. Let A = >S;, i €I be a direct sum of simple submodules S;.
Foreach JCIlet S; = >SS, ieJ. Let B be a submodule of 4 and let
J be a maximal subset of I such that S; N B=0. For inoteJ we
then have (S; + S)NB#0 so that (S; + B)NS;#0. Since S;
is simple it follows that S;CS; + B. This implies 4 = S; 4 B and
since S; N B =0, it follows that B is a direct summand of 4.

Suppose now that every submodule of 4 is a direct summand. It
follows readily that every submodule of A4 also has the same property.

We first show that every non-zero submodule C of A4 contains a simple
module. Indeed let ¢ € C, ¢ # 0 and let D be a maximal submodule of
C not containing ¢. Then C is the direct sum of D and a submodule £
which we will prove is simple. Indeed let F be a proper submodule
of E, F#£0. Then E is the direct sum of F and a submodule G # 0.
Thus C = D + F + G is a direct sum and either D + F or D + G does
not contain ¢, contrary to the maximal character of D.

Now, let {S,} be a maximal family of simple submodules of 4 such
that B= S, is a direct sum of the modules S,. Clearly such a family
exists. Then A is the direct sum of B and a submodule C. If C#40
then C contains a simple module, thus contradicting the maximal
character of {S,}. Thus A = Band 4 is semi-simple.

THEOREM 4.2. For each ring A (with unit element 1 # 0), the following
properties are equivalent:

() A is semi-simple as a left A-module.

(b) Every left ideal of A is a direct summand of A.

(c) Every left ideal of A is injective.

(d) All left modules over A are semi-simple.

(e) All exact sequences 0 — A’ — A — A" — 0 of left A-modules split.

(f) All left A-modules are projective.

(g) All left A-modules are injective.

Proor. The equivalence of (a) and (b) was proved in 4.1.

The equivalence of (d) and (e) follows from 4.1. The equivalence
of (¢) and (f) follows from 2.4, while the equivalence of (e) and (g) follows
from 3.4. Thus (d) — (g) are equivalent.

The implication (g) = (c) is obvious. If the ideal I of A is injective
then by 3.4 the exact sequence 0 —J/— A — A/I— 0 splits, so that I
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is a direct summand of A. Thus (c) =-(b). Finally if each ideal 7 of A
is a direct summand then each homomorphism f: I 4 into any module
A admits an extension f: A — 4 so that fA= Af(1) for all 2 e I. Thus
by 3.2 the module 4 is injective. This proves (b) =>(g) and concludes
the proof.

It is a classical result that a ring A is semi-simple (as a left A-module)
if and only if A is the direct product of a finite number of rings each of
which is a full matrix algebra over a (not necessarily commutative) field
(see for instance B. L. van der Waerden, Moderne Algebra, vol. 2, 2nd
edn., Berlin, 1940, p. 160). This implies that A is semi-simple as a
left A-module if and only if it is semi-simple as a right A-module. Con-
sequently conditions (a) — (g) could equally well be stated for right ideals
and right modules.

5. HEREDITARY RINGS

PROPOSITION 5.1.  In order that a module P be projective, it is necessary
and sufficient that every diagram
P

|

0—Q0"—0

in which the row is exact and Q is injective, can be imbedded in a com-
mutative diagram P

/|

0—— Q0" —0

ProoF. The necessity of the condition is obvious. To prove suffi-
ciency, consider a module 4, a submodule 4" with A" = 4/A4’ and a
homomorphism f: P->A". We may regard 4 as a submodule of an
injective module Q. Then A” is a submodule of Q"= Q/A4’. By the
condition above there is then a homomorphism g: P — Q which when
combined with Q — Q" yields P — A" — Q". It follows that the values
of gliein 4. This yields g': P — A which when combined with 4 — 4"
yields f: P— A". Thus P is projective.

PROPOSITION 5.2. In order that a module Q be injective, it is necessary
and sufficient that every diagram

0—sP —>P

l

Q
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in which the row is exact and P is projective, can be imbedded in a com-
mutative diagram
0—s P —>P

e

Q

Proor. The necessity of the condition is obvious. To prove suffi-
ciency, consider a module 4, a submodule 4" and a homomorphism
f: A'— Q. Represent 4 as a quotient of a projective module P by a
submodule M. If P’is the counter-image of 4’ in P then 4" = P’'/M.
The composite homomorphism P’ — 4" — Q can then be extended to a
homomorphism g: P— Q. But g maps M into zero and therefore
yields a homomorphism h: A4 — Q which is an extension of f: 4" — Q.
Thus Q is injective. The above proof is dual to that of 5.1.

A ring A will be called left hereditary if every (left) ideal of A is a
projective module.

THEOREM 5.3. If A is left hereditary then every submodule of a
free module is the direct sum of modules each of which is isomorphic
with a left ideal of A. (I. Kaplansky, Trans. Am. Math. Soc. 72
(1952), 327-340).

PROOF. Let F be a free module with a well ordered base {x,}. We
denote by F, (or F,) the submodule of F consisting of elements which
can be expressed by means of generators x, with § <<a (or f < «). Let
Abeasubmoduleof F. Eachelementae 4N F, is of the forma = b + Ax,
with b e F,, A e A. The mapping a — A maps 4 N F, onto a left ideal
I, of A and has 4 N F, as kernel. Since I, is projective, it follows that
A N F, is the direct sum of 4 N F, and a submodule C, isomorphic
with I,. 'We shall show that A is a direct sum of the modules C,.

Firstly, the relation ¢; 4 - - - + ¢, = 0 with ¢; € Cai, oy < - v <y,
implies that ¢; = 0; indeed, the sum of 4 N F, and C, being direct,
we have ¢, + ---+¢,_;, =0, ¢, = 0; the assertion then follows by
recursion on n. Secondly, A4 is the sum of the modules C,; assume to
the contrary 4 ¢ >,C,. Then there is a least index 8 such that there is
an element a e A N F; which is not in >,C,. Since a= b + ¢ with
be A N F,, c e Cyit follows that b is notin 3,C,. Howeverbed N F,
for some y < B, thus contradicting the minimality of 5.

If A is a principal ideal ring, then each ideal 7 of A is isomorphic with
A, thus [ is free and A is hereditary. Since a direct sum of free modules
is free, 5.3 implies the well known result that a submodule of a free
module over a principal ideal ring is free.
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THEOREM 5.4.  For each ring A, the following properties are equivalent:

(a) A is left hereditary.

(b) Each submodule of a projective left A-module is projective.

(c) Each quotiént of an injective left A-module is injective.

PrOOF. (a) = (b). Let 4 be a submodule of a projective module P.
By 2.2, P is a submodule of a free module. Thus, by 5.3, 4 is the direct
sum of projective modules. Consequently, by 2.1, 4 is projective.

(b) = (a). Since A is free, and therefore projective, each submodule
of A, i.e. each left ideal of A, is projective.

In order to prove the equivalence of (b) and (c) consider a diagram

P+—P+—— 0
f
Q__)Q”—-’O

where the rows are exact, P is projective and Q is injective. Suppose
now that (b) holds. Then P’ is projective. There is then a map P’ — Q
such that f'is the composition P’ — Q — Q”. Since Q is injective there
is a map P— Q such that P’ — P — Q yields P'— Q. Thus P'—P
— Q — Q" yields f. This implies by 5.2 that Q" is injective. Thus
(b) = (o).

Now, assume (c). Then Q" is injective, so that there is a map P — Q"
such that P’ — P — Q" yields f. Since P is projective the map P — Q"
may be factored into P— Q— Q". Then the composition P’ — P
— Q — Q" yields f. This implies, by 5.1, that P’ is projective. Thus
(c) = (b).

6. SEMI-HEREDITARY RINGS

A A-module 4 is said to be finitely generated if there exists a sequence
ay,...,a, €A such that each element of 4 has the form Aa + - - -
A+ Al Ay ooy Ay € A

The ring A will be called left semi-hereditary if each finitely generated
(left) ideal of A is a projective module.

ProrosiTION 6.1. If A is left semi-hereditary then every finitely
generated submodule of a free left A-module is the direct sum of a finite
number of modules each of which is isomorphic with a finitely generated
ideal of A.

Proor. Let {x,} be a base for the free module F and let 4 be a finitely
generated submodule of F. Then A must be contained in a submodule
of F generated by a finite number of the elements x,. Thus we may
assume that F has a finite base (x,, . . ., x,,).

We proceed by induction with respect to n. Let B be the submodule
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of those elements of 4 which can be expressed using x;, ..., x,,_;. Then
each a € A can be written uniquely as a = Ax, + b, A€ A, b € B (note
that B= 0 if n=1). The mapping a — 1 maps 4 onto an ideal 7 of A,
the kernel of the mapping being B. There results an exact sequence

0—>B—>A—->1->0.

It follows that the ideal [/ is finitely generated and therefore is a pro-
jective module. Thus, by 2.4, the exact sequence splits, and A is iso-
morphic with the direct sum of 7 and B. This implies that B is finitely
generated, and therefore by the inductive assumption, satisfies the con-
clusion of 6.1. It follows that A4 also satisfies the conclusion.

PrOPOSITION 6.2, For eachring A the following conditions are equivalent :

(a) A is left semi-hereditary.

(b) Each finitely generated submodule of a projective left A-module
is projective.

Proor. The implication (a) =-(b) follows from 6.1 and the facts
that each projective module is a submodule of a free module and that the
direct sum of projective modules is projective. The implication (b) = (a)
is obvious since A itself is free and thus projective.

The definition of right hereditary and right semi-hereditary rings is
entirely similar. It is an open question whether a left hereditary (or
semi-hereditary) ring also is right hereditary (or semi-hereditary).

7. NOETHERIAN RINGS

A module 4 is called Noetherian if each submodule of A is finitely
generated. A ring A is called left (right) Noetherian if it is Noetherian
as a left (right) A-module.

ProposITION 7.1.  If A is left Noetherian then each finitely generated
left A-module A is Noetherian.

PrOOF. We must show that each submodule B of A is finitely
generated.

Let x;,...,x, be a system of generators for 4. If n=1, then
A ~ A/I for some left ideal /. Therefore B ~ J/I for some left ideal J
containing /. Since J is finitely generated, so is B. We now proceed
by induction and assume that the proposition is proved for modules 4
generated by fewer than n elements. Assume n > 1 and let 4" denote
the submodule of A4 generated by x;. There results an exact sequence
0—+A"—>A4-—>A"—0 with both 4" and 4" generated by fewer than n
elements. This exact sequence induces an exact sequence 0 — B’ — B
— B” - 0with B'"C A, B"C A”. Thus B’ and B” are finitely generated,
and therefore B is also finitely generated.
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We shall now construct an example (due to J. Dieudonné) of a ring A
which is left Noetherian without being right Noetherian. Let A be
the ring generated by the elements 1, x, y with relations yx = 0, yy = 0.
Let I" be the subring of A generated by 1 and x. Every element of A
may then be written uniquely as y; + y,y where y,, y, € I'.

The ring T is the ring of polynomials in the indeterminate x with
integer coefficients, and is well known to be Noetherian. Since A re-
garded as a left I-module is finitely generated it follows from 7.1 that
A is Noetherian as a left I'-module and thus also as a left A-module.

Let 7 denote the subgroup of A generated by the elements x"y (n = 0).
Since Ix = Iy = 0, it follows that 7/ is a right ideal and that any system of
right A-generators for I is also a system of right Z-generators for I.
Thus I is not finitely A-generated (as a right A-module). Therefore A is
not right Noetherian.

EXERCISES

1. Let A,,4, be submodules of a module 4 and let 4;,, = 4; N 4,.
Show that the diagram

0 0 0
0 Ay A, Ay/4y —>0
0 A, A AlA, —0

0 Az Asp Al Ay Af(A; + Ay) —0

0 0 0

with the maps induced by inclusion, is commutative and has exact rows
and columns.

2. Let0— A" — 4 — A" — 0 be an exact sequence of left A-modules.
Show that if 4" and A" are finitely generated then so is 4. If A is left
Noetherian, then the converse also holds.

3. Let A be the direct sum of modules 4,. Show that A is finitely
generated if and only if each A, is finitely generated and 4, = 0 for all
but a finite number of indices a.

4. Let A, and A4, be submodules of a module 4. Show that if
A, + A, and A4; N A, are finitely generated, then so are 4; and 4,.
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5. Consider the ring Z, = Z/nZ, where Z denotes the ring of integers
and n is an integer (1 < n << o). For each divisor r of n consider the
ideal rZ,, and define an exact sequence

0—>rz,~2Z,—>rzZ,—0,

where r’' = nfr. Show that this sequence splits if and only if (r,r") = 1.
The Z,-module rZ,, is projective if and only if (r,n/r) = 1. Give examples
of projective modules which are not free.

6. For any integer n, prove the equivalence of the following con-
ditions:

(a) the ring Z, is semi-simple.

(b) the ring Z,, is hereditary.

(c) nis a product of distinct primes.

7. Show that for every ring A the following properties are equivalent:

(a) Every left ideal of A is a free A-module.

(b) Every submodule of a free left A-module is A-free.

8. Let A be a left Noetherian ring. Show that the direct limit of
injective left A-modules is injective. [Hint: use 3.2.]



CHAPTER II
Additive Functors

Introduction. We consider functors (in the sense of Eilenberg-
MacLane (Trans. Am. Math. Soc. 58 (1945), 231-294)) defined for
A-modules and whose values are in the category of I'-modules, where A
and T are two given rings. We only consider functors which satisfy an
additivity property reflecting the fact that homomorphisms of modules
can be added. Functors of several variables, some covariant, some
contravariant are also treated. The two basic examples of such functors
are A ® C (the tensor product) and Hom (4,C).

In § 4 we discuss the extent to which functors may preserve exactness.
It turns out that Hom (4,C) is a left exact functor; this will give rise
(in Ch. 11, v, vI) to right satellites and right derived functors of Hom (4,C).
Similarly the functor 4 ® C is right exact; we shall later study its left
satellites and its left derived functors.

The associativity relations of §5 are quite elementary but of great
importance in the sequel.

Given a A-module 4 it is frequently necessary to “restrict’ the opera-
tors to a smaller ring or to “‘extend’’ the operators to a larger ring (by a
suitable enlargement of 4). In §6 we set up the basic notions involved
in such a change of rings. We shall return to these questions later (v1, 4;
xvi, 5). There will be numerous applications to homology theory of
groups and Lie algebras.

1. DEFINITIONS

Let A;, A be any two rings. Suppose that for each A;-module 4 a
A-module T(4) is given and that to each A;-homomorphism ¢: 4 — 4’
a A-homomorphism T(¢): T(A) — T(A’) is given such that
(1) if : A — A is the identity, then T(p) is the identity,

Q) T(@p) =T(@)(p)forp: A—sA,¢': A —A4".

We then say that the pair of functions T(4), T(g) forms a covariant
functor T on the category of A,-modules with values in the category
of A-modules. In the case of a contravariant functor we have
I(g): T(4") — T(4) and T(¢'p) = T(P)T(9").

In the sequel we shall have to consider functors in many variables,
some covariant some contravariant. To simplify the notation we define

18
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explicitly a functor in only two variables, covariant in the first and
contravariant in the second.

Let A;, A,, A be rings. We assume that for each A;-module 4 and
each Ay,-module C a A-module T(4,C) is given. Further, for each pair
of homomorphisms ¢: 4 — A’,y: C’— C, homomorphisms

T(p,C): T(A,C) —T(A',C), T(Ap): T(4,C) —T(A4,C")

are given subject to the following conditions:

() T(¢,C) and T(A4,yp) are identity maps if ¢: 4 >4, y: C— C are
identity maps,

@) T(¢'9.C) = T(¢ OT(p,C) and T(Ayy) = T(Ay)T(4y) for
s A= A" v C"—=C,

(5) The following diagram is commutative

T(9,C) ,
T(4,C) ——— T(4’,C)
T(4,y) T(4’,v)

T(4,C") oy T(4,C7)
The composite mapping 7(4,C) — T(A’,C’) is denoted by T(e,y).
Clearly, by fixing C, T becomes a covariant functor of 4 and by
fixing 4, T becomes a contravariant functor of C.
We shall only be concerned with functors which are additive, i.c.
satisfy
T(g; + ¢2,C) = T(91,C) + T(,,C)

T(Aswl +%) = T(A3wl) + Ti (A”‘/)2)

where @;,¢5: A — A’, p,p,: C’— C and addition denotes addition of
homomorphisms. In particular if ¢ and y are zero homomorphisms then
T(p,C) and T(A4,p) also are zero homomorphisms. It follows that if
one of the modules 4 or C is zero, then the identity map 7(4,C) — T(4,C)
is zero and therefore that 7(4,C) is the zero module.

ProrosITION 1.1.  If the homomorphisms

iy Dy ig ag
A~ A— 4, Cy— C— C,

(@=1,...,m; p=1,...,n) yield direct sum decompositions of A and
C, then the homomorphisms

T(ig:2p) T(pg,ig)
T(4,0)

T(4,,C;)

T(4,,Cp)

yield a direct sum decomposition of T(A,C).
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Proor. We have T(p,, js )T(i,,q5) = T(py ix95js)- This yields the
identity if («',8’) = («,f) and zero otherwise. Further
2, 8T T(Pujp) = 2o, pT(uPar] s95)
= T(2iyPu 2.5Js9s) = identity.

Thus the conditions for a direct sum are satisfied.
CoROLLARY 1.2. If

0>4">A4A-5A4"->0, 0C'=-C—>C"—=0
are split exact sequences, then
0—-T(4',C) > T(4,C) > T(4",C) >0
0—T(A4,C")—>T(4,C) > T(4,C") -0
also are split exact sequences.

Let T} and T, be two functors, both covariant in 4 and contravariant
in C. A natural transformation f. T, — T, is a family of homomorphisms
f(A4,C): Ty(A,C) — T,(4,C) such that the diagram

T(4,0) 22 104,0)

Ty(éw) Tolew)
T(4',C') — gy To4',C")

is commutative for all p: 4 — A", y: C'—C. If each f(4,C) maps
T1(A,C) isomorphically onto T,(4,C) then fis called a natural equivalence
or a natural isomorphism.

2. EXAMPLES

Our first example is the functor Hom (4,C). Let 4 and C be two
(left) A-modules. We shall denote as usual by Hom (4,C) the group of
all A-homomorphisms 4 — C. Hom (4,C) is regarded as an abelian
group (i.e. a Z-module where Z is the ring of integers). We usually
write Hom, (4,C) to indicate that we are considering A-homomorphisms.

Given A-homomorphisms

p: A" — A4, p: C—>C'
we define
Hom (¢,y): Hom (4,C) — Hom (4',C")
by setting for « € Hom (4,C)

Hom (p,p)x = pog.
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With this definition it is clear that Hom (4,C) is an (additive) functor
contravariant in 4 and covariant in C.

Each element ¢ € C deterrnines a A-homomorphism ¢,: A — C (with
A regarded as a left A-module) by setting ¢, (4) = Ac. This establishes
an isomorphism of C (regarded as an abelian group) with Hom, (A,C).
Since A is also a right A-module it follows that Hom, (A,C) may be
regarded as a left A-module (see next §); then Hom, (A,C)~ C is a
A-isomorphism. We shall frequently identify Hom, (A,C) with C under
this isomorphism.

The functor Hom, (4,C) may also be defined when 4 and C are
right A-modules.

Our next example is the tensor product 4 ®, C where A4 is a right
A-module and C is a left A-module. We recall the definition. Let F
be the free abelian group generated by the pairs (a,c) with ae 4, c € C,
and let R be the subgroup of F generated by elements of the form

(a + a',¢) — (a,c) — (d,0), (a,c + ¢') — (a,c) — (a,c’),
(ak,c) — (a,c), (Ae ).

Then 4 ®, C is defined as the quotient group F/R, regarded as an
abelian group (i.e. as a module over the ring Z of integers). The image
in A ®, C of the element (a,c) of F is denoted by a ® , c or by a ® c.
We then have the formal rules

@+d)®@c=a®c+ad Qc, aQ@(c+c)=aQc+a®c,
adQec=aQ ic.

If we regard 4 and C as abelian groups, we may form also the tensor
product 4 ® ; C, and it is clear that 4 ®, C is the quotient of 4 ® , C
by the subgroup generated by the elements al @z ¢ — a @ Ac.

The function ¢: A X C—>A4 ®, C defined by ¢ac)=a @c is
bilinear and satisfies @(al,c) = @(a,Ac). Furthermore, any function
f: A X C— D (where D is an abelian group) which is bilinear and
satisfies f(al,c) = f(a,Ac) admits a unique factorization f= gg where
g: A ® C— D is a homomorphism. This last property could be used
as an axiomatic definition of 4 ®, C.

Given A-homomorphisms

p: A—> A, p: C—>C’
there exists a unique homomorphism (of abelian groups)

satisfying
(p @y) (@ @ b) = (pa) ® (yb).
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With this definition it is clear that A ® 4 Cis an additive functor covariant
in both variables.

The mappings A ® ¢ — Acand a ® A — a yield natural isomorphisms
A®,C~Cand 4 ®, A~ A. We shall frequently regard these as
identifications.

3. OPERATORS

Very frequently the modules 4 and C, in addition to being A;- and
Ay-modules respectively, will have some other operators compatible with
the module structure. It is usually possible to transfer these operators
to T(4,C).

For example, suppose that 4 in addition to being a (left) A;-module,
also is a (left) I'-module where I' is a ring, and that the operators of A,
and I' commute (i.e. that A(ya) = y(4a) for ae A, Ae A;, yeI'). We
then say that 4 is a A;-TI-bimodule. Each y ¢ I' induces a A;-endo-
morphism y 4: 4 — A4 and thereby induces a A-endomorphism T(y ,,C)
of T(A4,C). Thus T(A4,C) becomes a A-I'-bimodule. If Cis a A,-T-
bimodule with I" operating on C on the left, then T'(4,C), because of the
contravariance of C, becomes a A-I'-bimodule with I' operating on the
right. Similarly a A;-I-homomorphism ¢: A4 — A’ yields a A-I-
homomorphism T(g,C), etc.

The group (i.e. Z-module) Hom, (4,C) is defined when 4 and C
both are left A-modules. We indicate this situation by the symbol
(,4,,C). Ifinaddition either 4 or Cis a A-I'-bimodule then Hom, (4,C)
becomes a I'module. The following four cases are possible:

(A.745A0), Hom, (4,C) is a right I'-module,
(AA4r:A0), Hom, (4,C) is a left I-module,
(A4,4.10), Hom, (4,C) is a left I'-module,
(A4,4Cr), Hom, (4,C) is a right I’~module.

If T' is commutative, the difference between left and right I'-modules
disappears and the four cases reduce to two. If I' is a subring of A
contained in the center of A then 4 and C are automatically A-I'-bi-
modules and, in this case, all four cases coincide since for « €« Hom, (4,C)
aeAandyel we have

(y2) (@) = «(ay) = alya) = y(xa).

Thus Hom, (4,C) may always be regarded as a module over the center of
A. If A is commutative, then Hom, (4,C) is a A-module. A similar
discussion applies starting with the situation described by the symbol

(AA’CA)'
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The tensor product 4 ®, C is an abelian group (i.e. a Z-module)
and is defined when A4 is a right A-module and C is a left A-module,
a situation that we shall describe by the symbol (4,, ,C). If in addition
either 4 or C is a A-I-bimodule then 4 ®, C becomes a I'-module.
The following four cases are possible:

(140 0)s A ®, Cis a left I'-module,
(A1 0)s A ®, Cis a right I'-module,
(44,140, A ®, Cis a left I'-module,
(Ar.0Cr)s A ®, Cis a right I''module.

If T’ is commutative the difference between left and right I*-modules
disappears and the four cases reduce to two. If I is in the center of A
then 4 and C are automatically A-I'-bimodules and in this case, all four
cases coincide since

(ya)  c=(ay) @ c=a Q (yc) = a ® (cy).

Thus 4 ®, C may always be regarded as a module over the center of A.
If A is commutative, then 4 ® , C is a A-module.

ProrosiTioN 3.1. If A is a commutative ring, then there exists a
unique homomorphism f: A @, C— C @, Asuch that f(a ® ¢) = ¢ ® a.
This homomorphism is an isomorphism and establishes a natural equivalence
of the functors T(4,C) = A ®4 C and T{(4,C) = C @, A.

The proof is straightforward.

4. PRESERVATION OF EXACTNESS

A functor T(4,C), covariant in 4 and contravariant in C, is called
exact if whenever
A —- A A", C'—>C—>C"
are exact,
T(4',C) - T(4,C) - T(A",C), T(4,C") = T(4,C) — T(4,C")

also are exact.
PROPOSITION 4.1.  In order that T be exact it is necessary and sufficient
that for all exact sequences

04 ->4—-4"—0, 0-C'-C—C"—=0,

the sequences
0—->T(4',C) - T(4,C) - T(4",C) -0

0 —~T(4,C")—T(A,C) - T(4,C") -0
be exact.
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Proor. The necessity of the condition is obvious. Assume, then,
that the condition holds, and suppose A4’— A -— A" exact. Let
B'=Ker(4’— A4), B=Ker(4—>A4"), B”=1Im(4— A"). Then the
sequences 0 > B —->A4"—>B-—->0,0 »B—>A4—>B"—0,0—>B" 4"
— A"[B” — 0 are exact. Therefore the sequences

T(4',C) - T(B,C) 0, 0 —T(B",C) - T(4",C)
T(B,C) - T(4,C) — T(B",C)
are exact. This implies that T(A4’,C) — T(4,C) — T(A4",C) is exact, as
required. The proof with respect to the second variable is similar.
PROPOSITION 4.2. If the rings Ay and A, are semi-simple then any

(additive) functor T(A,C), defined for A -modules A and Ay-modules C, is
exact.

Proor. Let 0—>A"—>A-—>A"—>0 be an exact sequence. By
1,4.2, this sequence splits. Therefore by 1.2 the sequence 0 — 7(4’,C)
—T(A,C) > T(4",C) -0 is exact. A similar reasoning applies to the
second variable. It now follows from 4.1 that T is exact.

Functors that are exact are encountered very rarely. Most of the
interesting functors that we shall consider preserve exactness only par-
tially. To classify these various kinds of functors we consider arbitrary
exact sequences0 >4’ >4 > A4"—>0and0 > C' - C—->C"—0. We
say that T'is half exact if

T(A',C) - T(A,C) - T(4",C),
T(A,C") —T(A4,C) —T(4,C"),
are exact. We say that T is right exact if
T(4’,C) —~T(4,C) - T(4",C)—0
T(A,C")—T(A,C) - T(4,C") -0,
are exact. We say that T is left exact if
0—T(A4',C) - T(4,C) - T(4",C)
0—T(4,C")—>T(A4,C) > T(4,C")
are exact.

PRrROPOSITION 4.3. For each functor T the following conditions are
equivalent:

(a) T is right exact,

(b) for any exact sequences A'—>A—>A"—-0, 0>C —-C—C"
the sequences

T(A',C) - T(A4,C) - T(4",C)—0
T(A4,C") - T(A,C) - T(4,C") -0
are exact,
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(c) for any exact sequences A" —>A-—>A"—->0, 0>C' —C—C"
the sequence

T(4,C) + T(4,C") —> T(4,C) — T(4",C") — 0

is exact, where the first term is a direct sum, and the homomorphism ¢ has
as its coordinates the maps T(A',C) — T(4,C), T(4,C") — T(4,C).

PrOOF. (a)=(b). Let B= Ker (4’ — 4), B'=Im (4’ — A). Then
0+>B—>A">B"—0 and 0-B"—-4—->A"—-0 are exact. Conse-
quently 7(4',C) > T(B’,C) -0 and T(B’,C)—>T(4,C) - T(A4A",C)—0
are exact. This implies the exactness of 7(4’,C) — T(4,C) — T(A4",C)
—0. The proof for the second variable is similar.

(b) = (c). This proof is obtained by familiar “diagram chasing” in
the commutative diagram

T(A',C") —> T(4,C") —> T(4",C") —> 0
T(4',C) — T(4,C) — T(A",C) —>0

T(4',C") —> T(4,C") —> T(4",C") —> 0

0 0 0

in which the rows and columns are exact.

(c) = (b) is proved by applying (c) in the following two cases:
C"=0,C’'=Cand 4'=0,4=4".

The implication (b) =- (a) is obvious.

PROPOSITION 4.3a. For any functor T the following conditions are
equivalent :

(a) T is left exact,

(b) for any exact sequences 0 - A'—~ A —> A", C' > C— C"— 0 the
sequences

0—T(4’,C) - T(4,C) - T(4",C)

0 — T(4,C")— T(A4,C) — T(4,C")
are exact,
(©) for any exact sequences 0> A'—~A—~>A4", C'>C—C"—0
the sequence

0— T(4',C") — T(4,C) = T(A",C) + T(4,C")

is exact, where the last term is a direct sum and the homomorphism y has as
coordinates the maps T(A4,C) — T(A",C), T(4,C) — T(4,C").
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The proof is analogous to that of 4.3. We also leave to the reader
the statements and proofs of analogous propositions for other variances
and for functors of a larger number of variables.

PROPOSITION 4.4.  The functor Hom, is left exact.
Proor. Consider an exact sequence

(1) 0— A 4 "o 4" —0.
We must show that the induced sequence

0 — Hom (4”,C) - Hom (4,C) — Hom (4',C)

is exact. We already know that i’p’ =0, and therefore p’ defines a
homomorphism
u: Hom (4",C) — Keri'.

It suffices to prove that u is an isomorphism. To this end we define a
homomorphism
v: Ker i’ — Hom (4”,C)

as follows: given f'e Hom (4,C) such that i’f = 0 we have fi= 0; define
(vf)a" for a” € A” to be fa where a € A is any element with pa=a". It
follows readily that uv and vu are identity maps, so that u is an isomorphism.
The left exactness with respect to the variable C is proved similarly.
PROPOSITION 4.5.  The functor ® , is right exact.
Proor. Consider an exact sequence (1) as above. We shall show
that the induced sequence

A ®C—AR®C—A"Q®C—0
is exact. Since p'i’ = 0 we have a homomorphism
u: Cokeri’—> A" ® C,

and it suffices to show that  is an isomorphism. We define a homo-
morphism
v: A" ® C— Coker i’

as follows. Given q" € 4, c € C, choose a € A with pa = a” and denote
by @(a”,c) the image of the element a ® c in Cokeri’. Clearly g(a”,c) is
independent of the choice of a, is bilinear and satisfies ¢(a”A,c) = @(a”,Ac).
Thus there is a unique homomorphism v such that v(@” ® ¢) = @(a’,c).
Since uv and vu are obviously identity maps, u is an isomorphism.

PROPOSITION 4.6. A A-module A is projective if and only if the functor
T(C)= Hom, (4,C) is exact. A A-module C is injective if and only if
the functor U(A) = Hom, (A4,C) is exact.
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Proor. Since T is left exact it follows that T is exact if and only if
for every epimorphism C — C” the mapping Hom (4,C) — Hom (4,C")
is an epimorphism. This however is immediately equivalent with A
being projective. The second half of 4.6 is proved similarly.

5. COMPOSITE FUNCTORS

Functors may be composed exactly as functions. For instance, let
T(A4,C) be a functor defined for A;-modules 4 and A,-modules C and
with A-modules as values, let U(D,E) be a functor defined for A;-modules
D and Ajmodules E and with A;-modules as values. We define the
composite functor V as follows

V(D,E,C) = T(U(D,E),C).
V((S,E,‘}/) = T(U((S’E)’y)

With respect to the variable C, V' and T have the same variance; with
respect to the variables D and E, V has the same (the opposite) variance
as U if A is a covariant (contravariant) variable in 7.

If both U and T are exact, then so is V. If one of the functors U or
T is exact and the other is half exact, then V is half exact.

If A is a covariant variable of T and both T'and U are right (left) exact,
then ¥V also is right (left) exact. If A is a contravariant variable of T,
T is right (left) exact and U is left (right) exact, then V is right (left) exact.
The proof of these facts uses the characterizations 4.3(b) and 4.3a(b) of
right and left exact functors.

Using the functors @ and Hom various functors of three variables
may be obtained by composition. It turns out that various relations
hold between these.

We begin with the situation described by the symbol (44,5 Br,rC),
i.e. 4 is a right A-module, Cis a left I'-module, and B is a A-I'-bimodule
with A operating on the left and I" on the right. Then 4 ®, B is a right
I'module and B ®. C is a left A-module, so that the groups

(4 ®,B) @ C, 4 ®, (B ®rC)
are defined.
PROPOSITION 5.1.  There exists a unique homomorphism

r: (AQy,B)®rC—+A4A ®,(BQrC)

such that r(@a®b) @c)=a ® (b ® ¢). The homomorphism r is an
isomorphism and establishes a natural equivalence of functors. It expresses
the associativity of the tensor product.

Next consider the situation described by the symbol (4A4,r-By,rC).
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Then B ®, A and C are left I'-modules, while 4 and Homp (B,C) are
left A-modules. Hence the groups

Hom, (4, Hom[. (B,C)), Homp (B ®4 4,C)
are defined.
PROPOSITION 5.2. There exists a unique homomorphism

s: Hom, (4, Homy (B,C)) — Homy (B ®, 4,C)

such that for each p: A — Homp (B,C) we have (s¢) (b & a) = (pa)b.
This homomorphism is an isomorphism and establishes a natural equivalence
of functors.
The next case (44,,Bp,Cr) differs from the above only in that all
right operators have been changed to left ones and vice-versa.
PROPOSITION 5.2".  There exists a unique homomorphism

s’: Hom, (4, Homy (B,C)) — Homr (4 ®, B,C)

such that for each ¢: A — Homr (B,C) we have (s'p) (@ @ b) = (pa)b.
This homomorphism is an isomorphism and establishes a natural equivalence
of functors.

The proofs of 5.1-5.2" are straightforward and are left to the reader.
We shall frequently regard the isomorphisms r, s, and s’ as identifications.

According to the rules given earlier the functor appearing in 5.1 is
covariant in all three variables and is right exact. The functors appearing
in 5.2 and 5.2’ are contravariant in 4 and B, covariant in C and are
left exact.

PROPOSITION 5.3. In the situation (Ax,pByp) if A is A-projective and
B is T-projective then A @, B is I'-projective.

Proor. Let C be any right I'-module. Then by 4.6, Hom. (B,C)
is an exact functor of C. Therefore, again by 4.6, Hom, (4, Homy. (B,C))
is an exact functor of C. Thus applying 52° we deduce that
Homp(4 ®4 B,C) is an exact functor of C. It thus follows from 4.6 that
A ®, Bis I'-projective.

A similar proposition holds also in the situation (pBy,54).

A similar proposition in the case (pA,,pC) Will be established later
(see vi1, 1.4).

6. CHANGE OF RINGS

In all of this section we shall consider two rings A and I' and a ring
homomorphism
p: A>T (pl =1).

Every left I'-module 4 may be treated as a left A-module, by setting
Aa = (¢pA)a, AelA aeA.
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Similarly for right modules. In particular I itself may be regarded as a

left or a right A-module.
Conversely suppose 4 is a right A-module. We place ourselves in

the situation described by the symbol (4, I'r) (i.e. we regard I' as a
left. A-module and right I'-module). We then form the right I'-module

Ap =A@, T

which we call the covariant p-extension of A. If A is a left A-module
we are in the case (;I'y,44) and we define the left I-module 4 as
I' ®y A. Thus 4, (resp. (,4) is a covariant right exact functor of 4.

Again assuming 4 is a right A-module, we can place ourselves in the
situation (pI'y,4,). Then

A® = Hom, (T',4)

is a right Imodule called the contravariant p-extension of A. If A is a
left A-module, we are in the case (,I'r,s4) and ¥4 defined as above also

is a left I'-module. Thus A® (resp. ®A4) is a covariant left exact
functor of A.

Let A4 be a right A-module. We define the A-homomorphism
A— Ay

as AR p: ARy A—>A4®,T. Similarly when A4 is a left A-module.
We define also the A-homomorphism

A9 4

as Hom (¢,4): Hom, (T',4) — Hom, (A,A4).

We are now going to apply the identities of section 5 in the following
four cases:

Case 1. (Ap, 2, C). Setting B= I"in 5.1, yields the identity

) A ®,C= A, O C.
Case 2. (Ap,;I'y,,C). Again 5.1 yields the identity
2 A ®p C= 4 Qr(»0)-
Case 3. (,A4,pI'y,rC). Setting B=TI' in 5.2 yields the identity
3) Hom, (4,C) = Homy. (,)4,C).

Case 4. (pA4,,',2C). Again 5.2 yields the identity
O] Hom, (4,C) = Homp. (4,C).
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We also could consider two other cases 3" and 4’ given by the symbols
(ApoAT1,Cr) and (Ap,I'y,C,) and apply 5.2°. We obtain

3) Hom, (4,C) = Homy. (4,,0),
4) Hom,, (4,C) = Homp. (4,C).

PROPOSITION 6.1. If a right A-module A is A-projective then A,
is I'-projective.  Similarly for a left A-module.

PrROOF. Assume A4 is a A-projective right A-module. Then by
4.6, Hom, (4,C) is an exact functor of the variable C. Thus, by (3),
Homyp. (4,),C) is an exact functor of C and therefore 4, is I'-projective,
again by 4.6.

Similarly, using (4) or (4’) we prove:

PROPOSITION 6.1a. If a right A-module C is A-injective then C® is
T-injective.  Similarly for a left A-module.

Assume from now on that 4 is a right Imodule. We then define
the I'-homomorphism
g Ay —4

by g(a ® y) = ay. The composition 4 ——»A(,p)—g»A is the identity,
which proves that g is an epimorphism and Ker g is a direct summand of
A, asa A-module. If 4 is I'-projective then Ker g is a direct summand
of 4, as a I-module.

DErFINITION. A T'-module A is said to be g-projective if Ker g is a
direct summand as a I'-module; i.e. if the exact sequence 0 — Ker g

— Ay 2> 450 of M'modules splits.

PROPOSITION 6.2. If a I-module A is A-projective and g-projective,
then A is T-projective. If T' is A-projective and A is I'-projective, then
A is A-projective.

Proor. If A4 is A-projective, then 4, is I'-projective by 6.1. If
further A is g-projective, then 4 is isomorphic with a direct summand of
A, (as a T-module) and therefore 4 is I'-projective.

Assume T is A-projective; then C® is an exact functor of the (right)
A-module C; if further 4 is I'-projective, then Homp, (4,C9) is an exact
functor of C; by (4’) this means that Hom, (4,C) is an exact functor of C,
thus A is A-projective.

Assume that C is a right I'-module. We define the I'-homomorphism
h: C—C®

which to each ce C assigns the homomorphism hc: y—cy. The
composition C— C® — C is the identity, which proves that 4 is a
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monomorphism and Im 4 is a direct summand of C® as a A-module.
If Cis I'-injective then Im 4 is a direct summand as a I'-module.
DEerINITION. A I'-module C is said to be g-injective if Im A is a direct

summand as a I'-module, i.e. if the exact sequence 0— c-tcw
— Coker & — 0 of I'-modules splits.

PropPOSITION 6.2a. If a T-module C is A-injective and e-injective,
then C is T-injective. If T' is A-projective and C is I'-injective, then C
is A-injective.

The proof is dual to that of 6.2.

PROPOSITION 6.3. For any right A-module A, the module A, is
@-projective and the module A® is g-injective. Similar results hold for
left A-modules.

Proor. We shall only consider the module 4,,) where 4 is a right
A-module. We define the homomorphisms

r-5re,-5T.

by ay=1Qyp, By, ® y3) = y1ys. These are left A- and right I'-
homomorphisms. Since fa = identity we obtain right I'-homomorphisms

AT AR, T )4, .
with f’a’ = identity. However if we rewrite 4 ®, (T ®,T) as
(A R,T) R, I'= 4, ®, I' we find that 8’ coincides with g: (4,
— A,y Thus 4, is g-projective.

As an application of 6.1a we give a new method for imbedding any
left I'-module 4 into an injective I'-module (see Theorem 1,3.3). We
assume that the problem is already solved for the ring Z of rational
integers (see remark at the end of vi,5) and we consider the natural
homomorphism ¢: Z —T'. Assume that we have a Z-monomorphism
A — Q where Q is Z-injective. We then have the I'-monomorphism
A — @4 and the I-homomorphism ¥4 — ®Q which also is a mono-
morphism since Hom is left exact. There results a I'-monomorphism
A—®Q. However by 6.la, “Q is I-injective. This proof was
communicated to us by B. Eckmann. A similar proof was also found by
H. A. Forrester.

EXERCISES

1. Show that 4 + B and 4 ® A are not additive functors; however
AQ® B+ B® Aand A + A are additive functors.
2. For a fixed family {4,} of right A-modules define the functors

U(C)= (IT 4,) ®, C, NC)=1I(4, ®, O)
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of the left A-module C. Show that V is right exact, and that ¥ is exact
if and only if for each « the functor 4, ® , C is an exact functor of C.

Define a natural transformation f: U—V such that {a,} ®c
— {a, ® c}, and show that if C is finitely generated then f: U(C) — V(C)
is an epimorphism.

Assume that A is left Noetherian and C is finitely generated. Prove
that U(C)— V(C) is an isomorphism. [Hint: use an exact sequence
0 — N — F — C — 0 where F is free on a finite base.]

3. Let g: T— U be a natural transformation of functors, and let
T = Ker g U= Coker g. Show that

(T half exact) and (U left exact) = T half exact
(T left exact) and (U left exact) =T left exact
(T right exact) and (U half exact) = U half exact
(T right exact) and (U right exact) = U right exact.

4. Consider the situation described by the symbol (,A4,Bp,2Cp).
Define a natural transformation

t: Hom, (4, Hom (B,C)) — Homp. (B, Hom, (4,C))

and show that it is an isomorphism.

5. In the situation (,4,,Cr) show that if 4 is A-projective and C is
I-injective, then Hom, (4,C) is I'-injective.

6. Let A be a commutative ring, and 4 and C finitely generated
A-modules. Show that 4 ®, C is a finitely generated A-module.
Assume that A is Noetherian and show that Hom, (4,C) is a finitely
generated A-module.

7. Let A be a ring such that there exists a ring homomorphism
¢: A — K into a (not necessarily commutative) field K. Show that for
a free left A-module F, any two bases have the same cardinal number.
[Hint: consider the left K-module (,,F.] Show that for a commutative
ring A a homomorphism ¢, as above, always exists.



CHAPTER III
Satellites

Introduction. With each functor T of one variable (covariant or
contravariant) we associate a right satellite functor ST and a left satellite
functor S-1T= S;7. By iteration, we then obtain satellites ST for
any integer n (— o0 < n << c0) with S°T'= T. If the functor T is half
exact, then each exact sequence

0>A4A">4->A4"-0

gives rise to an unlimited exact sequence involving all the satellites of T.
It is in this way that we are led to the important notion of a “‘connected
sequence of functors” (§4) which yields an axiomatic description of
satellites (§ 5).

It is in the nature of the definition of satellites, that it applies only to
one variable at a time and that higher order satellites have to be obtained
by iteration. This is in sharp contrast with the theory of derived functors
(Ch. v) which uses homology methods and yields the derived functors of
arbitrary degree all at once. The later developments in this book will
be dominated by the theory of derived functors, and because of this a
thorough knowledge of this chapter is not indispensable. However, the
reader will find it well worth his trouble to familiarize himself with the
technique of proofs based on diagrams, as well as with the notion of a
“connected sequence of functors” that is useful throughout.

1. DEFINITION OF SATELLITES

Consider a diagram

(1) 0o—M-2pPl 4—0
'7

%y By ¥
O_‘_’MI_QPI_"AI_—_)O

where both rows are exact and P is projective. There is then a homo-
morphism f: P —P; with f,f= gB. The homomorphism f defines
uniquely a homomorphism f': M — M; with o, f ' = fa.

33
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Let now T be a covariant (additive) functor of one variable. We
have then a commutative diagram

T(x)
T(M) —— T(P)
@) (s l J (5)

T(M,) W T(Py)

It follows that 7(f ') induces a homomorphism
P(g): Ker T(x) — Ker T(xy).
If T is contravariant then all the arrows in (2) should be reversed. Then

T(f') induces
#(g): Coker T(x;) — Coker T(a).

ProposITION 1.1. The homomorphisms 9:(g) and 94g) are inde-
pendent of the choice of f, satisfy the additivity conditions (g + g)
= 9,(g) + 9(g), (g + g) = 9 (g) + 9(g), and the transitivity con-

ditions 9,(g18) = 91(g0)91(8), 9 (g:18) = 9(g)9'(g)-
The transitivity conditions refer to a diagram

0 M P A 0
lo
0—— My —>P,—— A, —0

o

0 M, P, A, 0

with exact rows and P and P, both projective.

Proor. In view of the exactness of the bottom row of (1) the homo-
morphism f can only be replaced by a homomorphism f= f + o, where
h: P—M,. Then f' gets replaced by f' = f’ -+ ha. Thus in the
covariant case T(f') = T(f') + T(h)T(x). Hence T(f’) and T( f’) have
the same effect when applied to the kernel of T(x), thus showing the
uniqueness of #;(g). In the contravariant case we have T(f') = T(f’)
+ T(0)T(h). Hence T(f') and T(f’) coincide modulo the image of T(«),
thus showing the uniqueness of #1(g). In order to prove the additivity
and transitivity it suffices to selectany f, f, f, for g, g, g, respectively and
then use f + f and f,f for g + g and g,g.

Next we consider a diagram

OﬁAlﬁ_l)ngNl_)o
la
( ) lyﬁ a
0—A4—Q—N—0
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where both rows are exact and Q is injective. Then there is a homo-
morphism f: @, — Q with ff; = fg. The homomorphism-f defines
uniquely a homomorphism f’: N; — N with f'a; = af.

If T is covariant, there results a commutative diagram

T(0) —2- T(N,)

(2a) 7(f) 1 [ T(f")
T(Q) 7@  TWN)
which yields a homomorphism
#(g): Coker T(«;) — Coker T(«).

In the contravariant case the arrows in (2a) should be reversed.” There
results a homomorphism

#(g): Ker T(x) — Ker T(x,).

PROPOSITION 1.1a.  The homomorphisms 9(g) and ,(g) are independent
of the choice of f, satisfy the additivity conditions 9(g + g) = 9*(g) + 9(g),
(g + g)=9(g) + 9,(g), and the transitivity conditions 9(g,g) =

(g P(e) 91(818) = D1(&)P(g)-
The proof is entirely analogous to that of 1.1 and will not be repeated.

We are now ready to proceed with the definition of the main object

of this chapter.

Let A be a module and let
3) 0>M-—>P—>A4—-0
Y} 0+>4—->Q0—->N->0

be exact sequences with P projective and Q injective. Such exact
sequences exist by 1,2.3 and 1,3.3.
Let T be a covariant functor. We define

) $;T(4) = Ker (T(M) — T(P))
(6) S1T(A4) = Coker (T(Q) — T(N))
thereby obtaining exact sequences

" 0 — §,T(4) - T(M) — T(P)

(6" T(Q) — T(N) — S'T(4) — 0.

A priori, these definitions depend upon the choice of the sequences (3)
and (4). Let S,7(4) and S'7(4) denote the modules obtained using
another pair of sequences0 — M —~P —+ A4 —0and0 -4 -~ Q0 - N -0
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with P projective and Q injective. Then the maps ¢,(g) and 9%(g) taken
for A= A, and g = identity, yield maps

S, T(A) — S, T(A4), 8, T(4) — S,T(A),
S'T(4) - S'T(A), ST(4) — ST(A),

which in view of the transitivity conditions of 1.1 and 1.1a are inverses
of each other. Thus the modules (5) and (6) are unique up to natural
isomorphisms. In order to remove all logical difficulties from the
definitions (5) and (6) it suffices to assign to each A4 particular sequences
(3) and (4), for instance, those constructed in the proofs of 1,2.3 and
1,3.3.

If g: A — A, then the maps 9,(g) and 9(g) yield maps

() $iT(®): $iT(4) — $;T(4,)
(8) S'T(g): S'T(A) — S'T(A4y).
The conclusions of 1.1 and 1.1a then show that (5)-(8) yield covariant
(additive) functors S,T and ST called the left satellite of T and the right
satellite of T respectively. These new functors act on the same categories

of modules as 7.
If T is contravariant then the above formulae are replaced by

(5a) $,T(4) = Ker (T(N) — T(Q))
(6a) S1T(A) = Coker (T(P) — T(M))
(5'a) 0> 8.7(4) > T(N) - T(Q)
(6'a) T(P) - T(M) — S'T(A) -0
(7a) S$17(g): S,T(4,) — S,T(A)

(8a) S'T(g): S'T(dy) —> S'T(A).

The left satellite S;7 and the right satellite ST are then contravariant.
The definition of the satellites may be iterated by setting

ST = (S, T), ST =T,
S™HT = SY(S"T), ST =T.
It will be convenient to arrange all the left and all the right satellites into a
single sequence {S"T}, — o0 < n < 0 as follows:
S, T= §T.

Several properties of the satellites are clear from the definitions.

ProrosITION 1.2. If T isright exact then S"T =0 for alln > 0. If
T is left exact then S*"T = 0 for alln < 0. If T is exact then S"T = O for
all n #£ 0.
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ProposITION 1.3. If T is covariant (contrav.) and A is projective
(injective) then S"T(A)=0 for all n << 0. If A is injective (projective)
then S"T(A) = 0 for n > 0.

Indeed for 4 projective we can take P = A4, M = 0 while for A4 injective
we can take Q = A, N=0.

ProposiTiON 1.4, Let 0 >M P —>A—->0,0>4—->Q0—->N—->0
be exact sequences with P projective and Q injective. If T is covariant then

S 1T(4) = S,T(M), S"HT(4) = S"T(N), n >0.
If T is contravariant then
Sp1T(4) = S,T(N), S™T(A) = S"T(M), n>0.
This is an immediate consequence of 1.3 and the exact sequences
(5'), (6'), (5a) and (6'a).
PROPOSITION 1.5. If the functor T is defined for modules over a heredi-
tary ring A, then S"T =-0 for |n| > 1.
Indeed in this case M is projective and N is injective. Thus 1.4 and
1.3 yield the conclusion.

2. CONNECTING HOMOMORPHISMS
Throughout this section we shall consider exact sequences
1) 0—+A4">A4-—-A4"->0
and commutative diagrams
0 A’ A A" 0

N
0 B’ B B" 0

with exact rows.
Let 0> M —P— A" —0 be an exact sequence with P projective.
Taking g = identity we then obtain a diagram

0 M P A"—0
ja

0 A A A" 0

as considered in § 1. If T'is a covariant functor we obtain a map
3(g): Ker (T(M)— T(P)) — Ker (T(4") — T(A4)).

This defines a map

3) 0,: $;T(4")—>T(4")
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whose composition with 7(4') — T(4) is zero. Similarly using an exact
sequence 0 — A" — Q@ — N — 0 with Q injective yields a homomorphism

(3a) Ol: T(4") — S'T(A")

whose composition with 7(4) — T(A4") is zero.
For T contravariant we obtain similar homomorphisms

3" 0,: $;7(4") - T(4")
(3'a) Ql: T(4") - ST(4").
It follows readily from 1.1 and 1.1a that these homomorphisms are

independent of the choice of the auxiliary sequences 0 - M — P — A"
—0etc. We thus obtain an infinite sequence

C))
¢ s STAT(A") > STT(A")— S"T(4)—> S™T(A")—> S™IT(A)— - - -
defined for all integers n. For T contravariant 4” and A4’ should be

interchanged.
PROPOSITION 2.1.  The diagram (2) induces a commutative diagram

c o+ > S™IT(L") = S™T(A") = S"T(A) — S"T(A") — S™T(4) — - - -

¥ y Y
<+ - S™IT(B") — S"T(B') — S*T(B) — S*T(B") — S™HT(B’) —> - - *

For T contravariant all arrows should be reversed and the indices
lowered.

Proor. Only the commutativity relations in the squares involving
the maps ® need to be established. We shall only carry out the proof in
the case

S$17(A4") — T(A")
|

v
S,T(B") —> T(B)

for T covariant. Let 0 > M P -+ A4"—+0,0—~>M—>P—>B"—0 be
exact sequences with P and P projective. We thus obtain a diagram

0—>M—>P—>A"—0
|

v
0—>B —>B—>B"—>0

which as above yields a map S,7(4") — T(B’). In view of 1.1 this map
coincides with the compositions S,7(4") —T(4") — T(B’) and S,T(4")
— $,T(B") — T(B') as desired.
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PROPOSITION 2.2. The composition of any two consecutive homo-
morphisms in the sequence (4) is zero.

Proor. Since the composition 4" — A4 — 4" is zero it follows that
the composition S"T(4") — S"T(4) — S"T(A") is zero. Next we consider
the compositions
5) S"T(A) — S"T(A") — S™HT(A').

For n = 0 this has been observed at the time ®! was defined. Thus, by
iteration, the composition (5) is zero for » > 0. Thus it suffices to
consider n << 0, which reduces to the case
(6) S, T(A) — S;T(A") — T(A').
This composite map is obtained from a diagram

0 M P A 0

0 M P A" 0
0 A’ A A" 0.
It therefore suffices to show that the map ¢ induced by the diagram
0 M P A 0

l

0 A A A" 0
is zero. To see this, choose the vertical map P — 4 to coincide with

the horizontal one. Then the induced map M — A4’ is zero.
The proof that the compositions

S"T(A") — S™1T(4") — S™1T(A)
are zero is similar.

3. HALF EXACT FUNCTORS

The main objective of this section is to prove the following
THEOREM 3.1. Let

! ?
) 0— A A 4"—0
be an exact sequence. If T is a covariant half exact functor then the sequence

2
oo = S™IT(A") - S"T(A’) — S"T(A) — S*T(A") — S™IT(A') —> - -

is exact. For T contravariant A’ and A" should be interchanged.
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The proof will be preceded by two lemmas concerning homomor-
phisms derived from certain diagrams. These will also be useful in
later sections.

LeMMA 3.2. Let

A — A 4"
ol
¢'—C—-C
v
be a commutative diagram with exact rows. There result homomorphisms
3) Ker f' —Ker f—Ker f”
) Coker f’ — Coker f— Coker f".

If Kery' = 0 then (3) is exact. If Coker ¢ = 0 then (4) is exact.
The proof is left to the reader.
Next we consider the commutative diagram

A — A 4"—0

) VA VO Vs
0— CIT cC—C"

with exact rows. Given any element x € Ker f” we can find elements
aeA and ¢’ € C’ with pa= x and y'c’ = fa. The element y e Coker [’
determined by ¢’ can easily be seen to be a function of x only. We thus
obtain a homomorphism

Ker f” — Coker f'.

LeEmMMA 3.3. The sequence
(6) Ker f'—Ker f— Ker f” — Coker f' — Coker f— Coker f”
is exact.

The verification is left to the reader.

It should be noted that the homomorphisms considered above are
natural in the following sense. If (5) is another diagram like (5) and
we have a map of the diagram (5) into (3) then there results a map of the
exact sequence (6) into the exact sequence ().

Proor of 3.1. We apply 1,2.5 to the exact sequence (1). We obtain
a commutative diagram
T(M')— T(M) — T(M").
s |7 |
0— T(P')— T(P) — T(P")
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with exact rows. By 3.2 there results an exact sequence

Ker f’ —~Ker f—Ker f”
which implies that
S$,7(A") — S, T(4) — S;T(A4")
is exact.

Next we consider an exact sequence 0 - M — P —> 4 — 0 with P
projective. Let R be the kernel of the composed map P— A4 — A",
There result exact sequences 0 >R —>P-—>A4"—>0 and 0 —~M — R
— A" —0. We obtain a commutative diagram

T(M)— T(R) — T(4’)
5 |#
0— T(P) — T(P) 0

with exact rows. Thus, by 3.2, the sequence
Ker f' —Ker f—T(4")

is exact. Since Ker f— T(4') is easily seen to coincide with S,7(4")
— T(A4’) it follows that

S$;T(4) - $;T(A") -~ T(4")
is exact.
Finally we consider an exact sequence

0 0— M P2 4" —0

with P projective. We denote by R the submodule of the direct sum
A + P consisting of all pairs (a,p) with @(a) = y(p). We define the
homomorphisms R —-A4 and R—P by (a,p) —>a, (a, p) —>p and the
homomorphisms A’ — R and M — R by a’ —(¢’a’,0), m — (0,9'm).
There results a commutative diagram

0 0
l

0 M M 0
l

0 A R P 0
|

0 A’ A A" 0
i
0 0 0
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with exact rows and columns. Further, since P is projective, the middle
row splits. 'We thus obtain a commutative diagram
0 —TM)—T(M)—-0
|
¥
0 T(A') T(R) T(P)
with exact rows. An application of 3.3 yields an exact sequence
Ker (T(M) — T(P)) — T(A4") — Coker (T(M) —> T(R)).
Since the sequence T(M)— T(R) — T(A4) is exact, it follows that
Ker v = Ker (T(4") — T(4)), so that
Ker (T(M) — T(P)) — T(4") — T(4)

is exact. We must verify that u coincides with the connecting homo-
morphism ©,: S;7(4") —T(A’). We first consider the case when the
sequence (1) coincides with (7). In this case, it can be easily seen that
the homomorphism

u: Ker (T(M) — T(P)) — T(M)

is defined by inclusion. In the general case we consider maps

0— M——P——4"—0
7
0—— A ——A4——4"—0

where y” is the identity map. The naturality property of u then yields
a commutative diagram

Ker (T(M) — T(P)) — T(M)
| 7on
Ker (T(M) —» T(P)) —» T(A")
u
where the first vertical map is the identity. It follows thatu= T(y")u = 0.
We have thus proved the exactness of
S$;T(A") - T(A") — T(A).
Summarizing, we have established the exactness of the sequence
S§;T(A") — $;T(4) — $;T(A") — T(A") — T(A4) — T(A4").
By a dual argument we show the exactness of
T(A") - T(A) - T(A") — S'T(4") — ST(4) - S'T(4A").

In particular, S,7 and S'T are also shown to be half exact. The exactness
of the sequence (2) now follows by iteration.



§4] CONNECTED SEQUENCES OF FUNCTORS 43

4. CONNECTED SEQUENCES OF FUNCTORS

A connected sequence of covariant functors is a family 7= {T"} of
covariant functors, » running through all integers, together with con-
necting homomorphisms 7T™(4") —T"t}(4’) defined for each exact
sequence 0 >4’ —> A4 — A" —0. The following two conditions are
imposed:

(c.1) The composition of any two consecutive homomorphisms in the
sequence - --—>T"YA")—T"A)—TYA)—T"(A")—TYA4")--- is
zero.

©2) If

A’ A A" 0
RN
v

0 B’ B B’ 0

is a commutative diagram with exact rows then the following diagram is

commutative (4" > T™(4")

T(B") —> T™(B')

Actually, condition (c.2) follows from (c.1). A similar definition for
contravariant functors is obtained by postulating connecting homo-
morphisms T"(A4") — T"**(A"). Thus in the sequence of (c.1) the roles
of A’ and A" get interchanged.

The satellites S”T of any (additive covariant or contravariant) functor
together with the connecting homomorphisms defined in §2 form a
connected sequence of functors that will be denoted by ST.

Let T = {T™"} be a connected sequence of covariant functors, let
(S) 0—+>A—>... 54750

be an exact sequence of modules and let Z* denote the kernel of 4° — A1,
This yields exact sequences

0>Zi>A'—>ZH1 50
which lead to homomorphisms
TYZH) - T 4(ZY) 0<i<p.
Since Z' ~ A° and Z? = A?, we obtain by composition a homomorphism

T™P(4?) > T™}(4°)
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called the iterated connecting homomorphism. This homomorphism
obviously commutes with the homomorphisms induced by a mapping of
the exact sequence (S) into another such exact sequence. For contra-
variant functors the iterated homomorphism is 7" ?(4%) — T""1(4?).
Using the iterated connecting homomorphism we shall establish a
curious anticommutativity relation resulting from a commutative diagram

0 0 0
0 A A A"
0 B’ B B’
0 c’ C c’
0 0 0

with exact rows and columns.
PROPOSITION 4.1. If T= {T"} is a connected sequence of covariant
additive functors, then the diagram

T"YC") —> TC’)

THA") —>T"Y(A4")
is anticommutative, i.e. the two composite homomorphisms T"(C")
— T™Y(A’") differ in sign.
For contravariant functors interchange A" and C".
Proor. We shall denote by ® and ¥ the composite homomorphisms

T YC")—TYC)—T"Y4")
T YC") - T"(A") - T"(4").
These are obviously the homomorphisms induced by the exact sequences
0+>4"—-B - C—->C"—-0
0—+A4"—-A—-B" —C"—0.
Now using the commutative diagram
A > A

ﬁl ly

B B
[
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we define maps
A A4+B -8
by setting
ma’ = (xa’,fa’), 7(a,b’) = ya — db’.
Then it is easy to verify that the sequence

0>A">A+B -B—->C"—0

is exact. Further, using the projections (a,b") — a, (a,b") — —b’ and the
map &: A" — A’, &(@’) = —a’, we obtain a commutative diagram

0—4"—> 4 B’ c’ 0

LT

1.

|
0—s>A'"—> A+ B B
oL
L
00— A4A"— B’ C c’ 0.

This implies T"*(e)¥" = ®. Since Tt is additive and &(@’) = —a’ it
follows that —¥ = @,

COROLLARY 4.2.  For any additive covariant functor T and any integer n,
the diagram
S™IT(C") —> S"T(C’)
I

|
¥ \
S*T(A") —> S™MT(4")

is anticommutative. For contravariant functors interchange C" and A'.

5. AXIOMATIC DESCRIPTION OF SATELLITES

We shall give here an axiomatic description of the connected sequence
ST of the satellites of a functor T.

Let T= {T"}, U= {U™} be connected sequences of covariant functors.
A map ®: T — U is a sequence of natural transformations ¢": T"— U"
which commute with the connecting homomorphisms; i.e. the diagram

TYA") —> T™YA')

UMA") — U™(A')
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is commutative for each exact sequence 0 -~ A4’ —> 4 - 4" —0. For
T and U contravariant 4" and 4" should be interchanged. If, for each n,
@™ is an equivalence, then @ is called an isomorphism. We shall also
consider maps ®@: T — U defined only for » > 0 or for n < 0.

THEOREM 5.1.  Any connected sequence T = {T™} of covariant functors,
satisfying the following two conditions:

€3 yf 0O>M-—>P—->A—->0 is exact with P projective, then
0 — T™(A4) — T™*Y M) — T™Y(P) is exact for n < 0.

(cd)if 0-4—-Q—>N—>0 is exact with Q injective, then
T YQ) —T"YN)—T"(4) —0 is exact for n >0,

is isomorphic with the connected sequence ST° of the satellites of the
Sfunctor T°.

The theorem is a consequence of the following more detailed
proposition.

PROPOSITION 5.2. Let T = {T"}, U= {U"} be connected sequences of
covariant functors and let ¢°: T° — U° be a natural transformation. If
U satisfies axiom (c.3) then @° admits a unique extension to a map
®: T — U defined for all n < 0. If T satisfies axiom (c.4) then ¢° admits
a unique extension to a map ®: T — U defined for all n > 0.

PrROOF. Assume that Usatisfies axiom (c.3). Supposethate?: 79— U?
are already defined for n < ¢ < 0 and properly commute with
the connecting homomorphisms. For a given module 4 select arbi-
trarily an exact sequence 0 - M — P — A — 0 with P projective. This
yields a commutative diagram

T™(4) —— T™ (M) — T*Y(P)
q,n+1( M) l ,p'n+1( P)
0 —— Un(4) —— U™I(M) —> U™(P).

The bottom row is exact (axiom (c.3) for U) while in the top row the
composition is zero (axiom (c.1) for T). There results a unique homo-
morphism ¢"(4): T"(A) - U™(4A) which, inserted into the diagram,
leaves it commutative.

Consider now f: A4;—>A and let 0 > M, - P, -~ A4; -0 be the
sequence used to define ¢"(4,). Then since P, is projective we may find
homomorphisms g: P; — P and h: M; — M such that the diagram:

R

0 M P A
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is commutative. It follows that
UM f)y"(4y) = U (h)d19"(Ay) = Um(h)p™(My)0;
= g M)T™()D] = g™HI(M)Y T"(f)
= 0p"(A)T"(f).
Since d: U™(A) - U™(M) has zero kernel, we obtain
Un(fN)g"(4) = @"(ADT"(f)
This proves that ¢" is natural, and incidentally implies that it is inde-
pendent of the choice of the auxiliary sequence 0 - M — P — A — 0.
To verify that @™ commutes with the connecting homomorphisms,
consider an exact sequence 0—>A"—A4 > A"—>0 and let 0 > M"
—P" > A4" -0 be exact with P” projective. Then there exist maps
St P"—Aand g: M” — A’ such that the diagram

0 M” P" A” 0
Pk
0—— A' — A —— A" —>0

is commutative. This yields a commutative diagram:

A" — T (M") — T"*(4)

UnA") — U(M") — U™ (4")

which implies the requisite commutativity relation. This proves the
first part of 5.2. The proof of the second part is dual and will be omitted.

Passing to contravariant functors, axioms (c.3) and (c.4) should be
replaced by:

©3)if 0>-4A—-Q—->N-—>0 is exact with Q injective, then
0 —T™(A) — T"*Y(N) — T™(Q) is exact for n < 0;

(c4)if 0>M-—>P-—>A-—>0 is exact with P projective, then
T Y(P) - T M) — T"(A) — 0 is exact for n > 0.
Otherwise 5.1 and 5.2. remain unchanged.

COROLLARY 5.3. Given a natural transformation of functors
¢: T U,

there exists aunique map ®: ST — SU extending o. Thus the corresponding
natural transformations
p": S"T — S"U (—oo<n<+

commute with the connecting homomorphisms.
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As a rule the functors considered are defined on the category .# ,
of all A-modules. However there may arise situations where it is con-
venient to consider functors defined only on suitable subcategories .4
of #,. Forinstance, let T be a half-exact covariant functor, and let .#
denote the subcategory of .#, consisting of all modules 4 such that
S,T(A) = 0 for n > 0 and of all maps of one such module into another.
Clearly all projective modules are in .# and if 0 >4’ -4 —>A4"—>0
is exact and 4, A” € .#, then A" € .#. On this category .#, the functor
T is left exact. It can be easily seen that all that was said about left
satellites of covariant functors and right satellites of contravariant
functors remains valid for functors considered only on the category
M above.

6. COMPOSITE FUNCTORS

Let V= TU be a functor obtained by composition of two functors
each of one variable. We shall consider the sequence of functors 7SU
defined by (TSU)" = T'S*"U, where e= -1 or —1 depending upon whether
T is covariant or contravariant. It is easily seen that TSU is a connected
sequence of functors which for n =0 coincides with SV. Thus 5.2
implies maps

A TSU — SV defined forn < 0

p: SV —TSU defined for n > 0.

Specifically, we obtain natural transformations for n > 0
Ap: T(S,U)— S, V, p": S™V —T(S"U), T covariant
A,: T(S"U)— S, V, p™: S"V —T(S,U), T contravariant.

These homomorphisms commute with the connecting homomorphisms
and yield the identity for n = 0.

PROPOSITION 6.1. If T is left exact then A, are isomorphisms. If T
is right exact then p" are isomorphisms.

PrROOF. Assume T covariant and left exact. Let 0 - M —>P— 4
—0 be exact with P projective. Then 0— S,U(4)— S, ,UM)
— S, U(P) is exact for n > 0. Since T is left exact it follows that

0 —> TS, U(4) — TS, ,U(M) — TS, _U(P)

is exact. Thus TSU satisfies axiom (c.3). It therefore follows from 5.2
that 4, are isomorphisms. The other cases are proved similarly.
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If the functor U is exact then T'SU collapses to the single term T7U = V
and 4, p™ are zero for n = 0. In this case we obtain another connected
sequence (ST)U composed of the composite functors {(S"T)U}. Asabove
we obtain maps

1 (5, DHU—S,V, ™ SV > (S"T)U
defined for n > 0. The maps o, (resp 7") becomes isomorphisms when-
ever (ST)U satisfies axiom (c.3) (resp. axiom (c.4)).

As an application consider a ring homomorphism: ¢: A —T.
Any I'module 4 may be regarded as a A-module by setting 1a = (pA)a.
This yields a covariant and exact functor U defined for I'-modules whose
values are A-modules. If T is an additive functor on the category of
A-modules then 7"= TU is a functor on the category of I'-modules.
We thus have the natural homomorphisms

a,: (S, T) —S(T), ™ SY(T")—(S"T), n>0.

ProrosITION 6.2. If I' regarded as a A-module is projective then
o, are isomorphisms for T covariant and ™ are isomorphisms for T contra-
variant.

PrOOF. Assume T covariant (resp. contravariant). It suffices then
to show that (S, T)’ satisfies axiom (c.3) (resp. (c.4)). This is an immediate
consequence of 11,6.2.

7. SEVERAL VARIABLES

So far we considered only satellites of functors of one variable. Let
T(A4,C) be a functor of two variables. Then for a fixed value of C we
obtain a functor T(4) = T(4,C) of the variable 4 alone. The resulting
satellites S"To(A4) will be denoted by
1) S5, T(4,0),
the subscript 1 indicating that we consider the satellites with respect to
the first variable. A map y: C— C’ induces a natural transformation
To(A) — T¢. (A) (if the variable C is contravariant the arrow is reversed)
which induces a natural transformation of satellites. It follows that (1)
may be regarded as a functor of the two variables 4 and C. Similarly
we introduce the satellites S 7(4,C) with respect to the variable C.

We shall consider exact sequences

2) 0O->M-—>P->A4-0
3) 0—-A4—-Q0—-N-=>0
6] 0O->M P -C—0
5) 0-C—>Q —-N -0

with P, P’ projective and Q, Q’ injective.
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Assume now that T is covariant in both 4 and C. We obtain then a
commutative diagram
0

Sg'SaiT(4,C)

0 —> SGIT(4,M") —> T(M,M") —> T(P,M")

0— S3T(4,P') —> T(M,P")

with exact rows. This yields the exact sequence
) 0 — S5 S3)T(4,C) -~ T(M,M") — T(P,M')+ T(M,P’).
Interchanging the roles of the variables we obtain a similar sequence
©) 0 — 83,8z T(4,C) > T(M,M’') - T(P,M") 4 T(M,P’).
The sequences (6) and (7) yield a natural equivalence
®) SerSwy ~ SayS@-

For the right satellites we obtain similar exact sequences
(6a) T(Q,N") + T(Q',N) - T(N,N') — 8§5,S4,T(4,C) — 0
(7a) T(Q,N’) + T(Q',N) - T(N,N") = S5,S&T(4,C) -0
which imply
(82) SeSt ~ SwySey

The above was for T covariant in both variables, If for instance C
is a contravariant variable of T then in the above exact sequences P’ and
M’ should be interchanged with Q" and N’. The isomorphisms (8) and
(8a) remain valid.

Formulae (8) and (8a) yield by iteration:

THEOREM 7.1. If T is any (additive) functor of two variables then the
Sfollowing natural equivalences hold :

) S&SH ~ S6)Se
for m, n both > 0 or both < 0.

The conclusion is false for m,n of opposite signs.
We leave to the reader the discussion of the behavior of (9) with
respect to the connecting homomorphisms (on either variable).
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EXERCISES

1. Show that for any functor T of one variable, the connected sequence
of functors ST is characterized (up to an isomorphism) by the following
properties:

@) ST=T. :

(ii) For every connected sequence of functors U, every map ¢°:
U° — T admits a unique extension ¢: U — ST defined for n < 0.

(iii) For every connected sequence of functors U, every map y°:
T — U° admits a unique extension y: ST — U defined for n > 0.

2. Consider a natural transformation of covariant functors

g T—U,
where T is right exact and U is left exact. Consider the new functors
T=Kerg, U = Coker g.
For each sequence of modules
0>4"-A—>A4A"-0,

consider the commutative diagram (cf. 5.3)
v S,TiA’) - §,T(A) > $;T(4") > T(A) > T(4) > T(A) > 0 > (i >
> 0 - ‘(L) - 0 = UA)~> UA) - U4") > Sll}l(A’)» S1U(A) > - -+

Applying 3.2 and 3.3 to suitable portions of this diagram, define a
sequence :

coe > S§T(A") — S,T(A) — S;T(A") — T(4") - T(4) — T(4") -
— U(A") - U(A) - U(A") — STU(A") - STU(A) — STU(A") — - - -

and prove that this sequence is exact.

Examine the case when 7 and U are contravariant functors.

3. Consider an exact sequence of covariant (resp. contravariant)
functors and natural transformations

T—->U—-V->0
(i.e. for each module 4 the sequence
T(4) — UA) - V(4) -0

is exact). We assume that T(4) — U(A) is a monomorphism whenever
A is projective (resp. injective). Then define a natural transformation
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@: S,V — Tin the following way: assuming for example that all functors
are covariant, consider an exact sequence of modules 0 M — P — A4
— 0 with P projective. Using the diagram

(M) u(M) V(M) 0
|7 |7 |+
0 T(P) U(P) V(P)

define an exact sequence
(1)  S;T(4) — S,U(4) — S;V(4) — Coker f’'— Coker f— Coker f".

Using the natural mapping Coker [’ — T(A4), define S,V(4) — T(A),
which yields the desired transformation ¢.

Now define ¢,: S,,,V — S,T for any n > 0, and prove that, in the
sequence

& Sy T>S, S, yV>8ST—>-..>8SV->T->U
— V=0,

the composition of any two consecutive homomorphisms is zero.

4. In the situation of Exer. 3, assume now that T is right exact and U
is half exact. Then prove that () is an exact sequence.

[Hint: first, using the sequence (1) of Exer. 3, prove that

ST —-SU—-8V->T->U—-V->0
is an exact sequence. Then, by induction on » > 1, prove that
S,T—->S,U—->SV->S, TS V>T>U->V->0

is an exact sequence].
5. Translate Exer. 3 and 4 for the dual case of an exact sequence

0O>T>U—-V

such that U(4) — V(A) is an epimorphism whenever A4 is injective (in
the case of covariant functors), resp. projective (in the case of contra-
variant functors). The sequence (X’), dual of (), will be exact if V is
left exact and U is half exact.



CHAPTER IV
Homology

Introduction. In this chapter we present all the algebraic tools of
homology theory that will be needed later, with the exception of spectral
sequences that will be treated in Ch. xv. The treatment here differs
from the standard one in that great care is taken to maintain all sym-
metries and thus keep the system self-dual at all times. For example,
the homology module H(A) is usually defined as a quotient module of
the module of “cycles” Z(4), which is the kernel of the differentiation
operator d: A — A. We introduce the “dual” Z’(4) which is the co-
kernel of d and show that H(A) is equally well defined as a submodule of
Z'(A). The reader will have ample opportunities to convince himself
that the preservation of this kind of a duality is indispensable.

§ 3-5 are concerned with graded and multiply graded modules and
complexes. In § 6 we introduce a sign convention which causes a large
number of signs usually present in algebraic topology to disappear from
the symbolism.

The known homomorphisms «: H(A) ® H(C)— H(A ® C) and
o': H(Hom (4,C)) — Hom (H(A),H(C)) are studied in §6 and §7 and
are generalized to other functors. As an application we give in § 8 an
elementary version (not involving spectral sequences) of the Kiinneth
exact sequences. For the functors ® and Hom, these results will be made
more explicit in v1,3. A more advanced treatment must wait until
Ch. xviL.

1. MODULES WITH DIFFERENTIATION

A A-module 4 with differentiation is a A-module A4 together with a
A-endomorphism d: A4 — A such that dd=0. We introduce the
following notations

Z(A) = Ker d, Z'(A) = Coker d,

B(4) =Imd, B’(4) = Coim d.
Note that the differentiation d induces an isomorphism 4: B'(4) ~ B(A)
but nevertheless there will be situations in which it is not convenient to
identify B with B’. The operator 4 admits the following factorization

A — Z'(4) — B'(A) — B(A) —> Z(A) — A
53
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The map B(A) —Z(A) is a monomorphism, valid because dd= 0.
For the same reason the map A — B’(4) induces an epimorphism
Z'(4) — B'(A).
This factorization yields a map
d: Z'(4) — Z(A)
and a sequence
0 — B(4) > Z(A) - Z'(4) - B'(4) -0
which can easily be seen to be exact. Further we have the following
equalities
Coker d = Z(A)/B(A) = Ker (Z'(A) - B'(4)) = Ker d.

This module is denoted by H(4) and is called the homology module of 4.
We thus obtain an exact sequence
6)) 00— H(4) > Z'(A) - Z(4) — H(4A) =0
and a commutative diagram

0

z

<>

@ 0

®
0
\

a
Cv—W<+—N<+— 7« o
[«]

0
with exact rows and columns.

A mapping or map f: A —> A’ of modules with differentiation is a
A-homomorphism f: A4 —> A’ such that df = fd, where d is used to denote
the differentiations in 4 and 4’. It induces mappings f: Z(4) — Z(4'),
..oy f1 H(A)—> H(A"). If f,g: (4,d)—(A',d) are two such maps, a
homotopy s: f~~g is a A-homomorphism s: A4 -—>A’ such that
ds 4+ sd = g — f. Homotopic maps f and g induce the same homo-
morphism H(4) — H(A").

Given an exact sequence
3) 0>A4">4->4"-0
of modules with differentiation, we obtain a commutative diagram

Z'(A") —> Z'(A) —> Z'(A") —> 0
l

v
00— Z(A") — Z(A) — Z(4")
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with exact rows, where the vertical maps are d. Applying 1m1,3.3 we
obtain an exact sequence

@) HA')— H(A)— H(4") > H(4')— H(4)— H(")

with the connecting homomorphism defined in m,3. Explicitly A may
be described as follows: given & € H(A") choose x € Z’'(A4) which is mapped

onto h; then dx € Z(A) is the image of an element z € Z(4") and Ah is
determined by the element z.  Composing A with the maps H(A")—~Z'(4’)
and Z(A") — H(A") we obtain homomorphisms

H(A") ~Z'(4"), Z(A") — H(4');

it is then easy to verify:
THEOREM 1.1.  For each exact sequence (3) the sequences

-— H(A") — H(A") - H(4) - H(A") > Z'(A") - Z'(A) -~ Z'(4") -0
0—Z(A"Y > Z(A) - Z(A") - H(A') - H(A) - H(A") - HA4A") - - - -
are exact.

If
0 A’ A A" 0

R

0 Cc’ C c’ 0

is a commutative diagram (of modules with differentiation), with exact
rows, then the vertical maps induce homomorphisms of the exact
sequences associated with the top row into the corresponding exact
sequences associated with the bottom row.

REMARK. The two exact sequences displayed in the theorem, coincide
in their main part (4). One frequently employs the “‘exact’ triangle

H(A')— H(A)
N
N\ ¥
H(A")
to indicate this main part.

It should be noted that any A-module 4 may be regarded as a module
with differentiation, by taking d=0. In this case Z(4)= Z'(4)
= H(A) = A, B'(A)= B(4) = 0. For any module 4 with differentiation
the modules Z(4), Z'(4), H(A), B'(4), B(A) will be regarded as modules
with zero differentiation.
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2. THE RING OF DUAL NUMBERS

The ring of dual numbers I' = (A,d) over a ring A is defined as the
free A-module with generators 1 and d (1 being the unit element of A)
and with multiplication defined by

A+ VD (p+ pd)y=2Ap+ Au' +Vwd, LV,up' € A.

In particular dd = 0, Ad = dA.

It is immediately clear that a A-module 4 with differentiation as
defined in the preceding section is precisely a I'-module. A map of
(A,d)-modules is a I'-homomorphism. It further follows that Z(A),
Z'(A), B(A), B'(4) and H(A) yield covariant functors defined on the
category of left I'-modules with values in the category of left A-modules.
Each A-module may be regarded as a I-module (by setting da = 0 for
all a € A). In particular, A may be regarded as a left or right I"-module.
We observe the following identities

Z'(A)= A ®p 4, Z(4) = Homy (A,4)

which are consequences of the identifications 4 = A ®, 4 and 4 =
Hom, (A,4). This again justifies the fact (contained in 1.1) that Z’ is
right exact and Z is left exact.

ProposiTiON 2.1.  If

0—sC—5C—sC"—30

0 0 0

is a commutative diagram of modules with differentiation with exact rows
and columns, then the diagram

H(C")—s H(C")

H(A") —> H(A')

is anticommutative. The same holds with H(C") replaced by Z(A") or
H(A') replaced by Z'(A"), or both.
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Proor. Setting 7" = H we obtain a connected sequence of functors
defined on the category of I'-modules. The anticommutativity in
question is then a direct consequence of the general proposition 11,4.1.
The other cases are proved similarly using other connected sequences as
indicated in the preceding section.

THEOREM 2.2. The satellites of the functors Z', Z, H are as follows
S"Z'= Hforn <0, S"Z'= 0forn>0,
S"Z =0 forn <0, S*Z = Hforn> 0,
S"H = H for all n.

ProoF. We use the axiomatic description of satellites. Theorem 1.1,
and the commutativity relation following 1.1 imply that it suffices to
prove that H(A4) = 0 if A is I'-projective or I'-injective. This is a conse-
quence of 2.4 below.

We denote by # the inclusion mapping A —TI'.

PROPOSITION 2.3. For any left I'-module A, the following conditions
are equivalent:

(a) A is n-projective.

(@) A is n-injective.

(b) There is a A-endomorphism s: A — A such that ds -+ sd = identity.

(c) There is a A-module B with A ~,B.

(c’) There is a A-module B with A ~™B.

Proor. Given any A-module B we denote by B® the I'-module
B + B with d(b;,b;) = (0,b,). It is easy to see that

Assume that an endomorphism s as required in (b) is given. Let
B= B(A) and define ¢: A —B® by setting ¢@a = (da,dsa). Then
pda = (dda,dsda) = (0,da) = dpa. If @a= 0 then a = dsa 4 sda= 0.
If b € Bthen dsb = b and dssb = 0, therefore pb = (0,b) and @(sb) = (,0).
Thus ¢ is a I'-isomorphism. This proves the relations (b)=-(c),
(b) ==(c’). The implications (c) =-(a) and (c") =- (a’) follow from 11,6.3.
There remains to be shown that (a) = (b) and (a") = (b).

If we identify ,,,4 with 4° we find that the natural mapping ,,4 — 4
becomes the mapping f: A4*— A4 given by f(a),a,) = a; + da,. If 4
is n-projective then there exists a I-mapping g: 4 — 4*with fg = identity.
Let ga = (ta,sa). The condition dg = gd yields ta = sda while fga = a
yields ta 4 dsa = a. Thus dsa + sda = a as required. The proof that
(') = (b) is similar.
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COROLLARY 2.4. If the T'-module A is n-projective (n-injective),
then H(A) = 0.
Indeed, by (b) above we have a = dsa if da = 0.

The proof of the following proposition is left to the reader.

PROPOSITION 2.5. A I'-module A is T-projective if and only if A ~ ,,B
where B is a A-projective module. Similarly A is T-injective if and only if
A ~ B where B is A-injective.

3. GRADED MODULES, COMPLEXES

A grading in a module A4 is defined by a family of submodules 4™
(n running through all integers) such that 4 is the direct sum >, A"
Each a e A has then a unique representation a = >a", a" € A™ where
only a finite number of a*’s is different from zero; we call a” the homo-
geneous component of degree n of a. Each element of A" is called
homogeneous of degree n. The element 0 is homogeneous of degree n
for all n.

A graded module 4 is called positive if A" = 0 for n < 0, it is called
negative if A" =0 for n>0. We systematically use the notation
A, = A™"; this is particularly convenient if 4 is negative.

A submodule B of a graded module A4 is called homogeneous if
B = 3 B" where B"= B N A". The quotient 4/B may then be regarded
as a graded module by setting

(A/B)"* = (A" + B)/B ~ A"/B".

It will be convenient to identify A4/B with > A"/B".

Let A and C be two graded A-modules. A A-homomorphism
f: A— C will be said to have degree p if f(4") C C"*? for all n. The
induced map f": A" — C"*? is called the n-th component of f. The
modules Ker (f) and Im (f) are homogeneous submodules of 4 and C
respectively; Coim (f) and Coker (f) are graded using the convention
for quotient modules. The mapping Coim (f) —Im (f) induced by f has
degree p; thus, despite the fact that this mapping is a A-isomorphism,
Coim (f) and Im (f) should not be identified.

A A-complex is a graded A-module A together with an endomorphism
d: A — A of degree 1 such that dd = 0. Thus a complex is completely
determined by a sequence

qar—1 n

An—l A" 4 An+1

such that d"d"1= 0. Note that we are using the word “complex” to
denote what is usually called a “cochain complex.” A “‘chain complex”
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may be obtained by lowering indices. Since a complex is a special
instance of a module with a differentiation operator, the various definitions
of §1 apply. The various modules, Z(A4), ..., H(4) are all graded.
The main diagrams (1) and (2) of § 1 take then the following form

1) 0—>H"+Z'">Z" » H"l 50
0 0
0 B" A H™ 0
2" 0 B A zn 0

"B <— B™ —0

L

0 0

Let 4 and C be complexes. A map f: A — C is a homomorphism of
degree 0 of the graded modules such that fd = df, i.e. f**1d" = d"f"
where the same letter 4 has been used for the differentiation operators in
A and C. ‘A map f induces homomorphisms of the diagrams (1’) and
(2) of the complex 4 into the corresponding diagrams of the complex C.

Let f,g: 4 — C be maps of complexes. A homotopy s: f~gisa
homomorphism s: 4 - C of degree —1 such that ds + sd=g —f,
ie d*ls" 4 s"tld" =g — f". If f and g are homotopic, they induce
the same homomorphisms H"(4) — H"(C).

An exact sequence 0 —> A4’ — A4 — A" — 0 of complexes and maps,
yields as before homomorphisms

H"(A”) > Hn+1(A')
which induce the connecting homomorphisms
H™(A") —Z'"(4")
Z"A") - HY(A').
The sequences
oo HA") > H' (A" — H'NA) > HHA) > Z'(4)
—Z'""(A) -Z""(4") -0

0—> Z"(A’) > Z"(A) —> Z"(A") - H™(A") — H™Y(A) — H™(A")
- H"2(4')—. ..
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are exact. In particular, we obtain the exact sequence
coo > H"Y(A") - HY(A') -~ HY(A) - HY(A") - H""{(4') — - . -

unlimited in both directions. This last sequence is usually referred to as
the homology (or rather cohomology) sequence.

4. DOUBLE GRADINGS AND COMPLEXES

A double grading (or bi-grading) in a module 4 consists of a family of
submodules A™™ ((n,m) running through all pairs of integers) such that 4
is the direct sum > A™™. The elements of 4A™™ are called bihomo-

n,m
geneous of bidegree (n,m). We define the associated graded module
(also denoted by A) by setting

Ar= 3 g

nt+m=p

An element of bidegree (n,m) has thus degree n + m.

The bigraded module is said to be positive if A™™ = 0 for n << 0 or
m < 0. It is said to be negative if 4"" = 0forn>0 or m > 0. We
write 4, ,, = A™™™; this notation is particularly useful if 4 is negative.

A submodule B of A is bihomogeneous if B= >B™™, where
B™™ = B M A™™. As before we identify A/B with >A™™/B™™.

Let A, C be bigraded modules. A homomorphism f: 4 — C has
bidegree (p.q) if for all n,m

f( An,m) C Ccrtpmta,

The induced map f™™: A™™ — C™*?»™+¢ s called the (n,m)-component
of f. The remarks made in § 3 about Ker (f), Im (f) etc. apply equally
in this case. A map f: 4 — C of bidegree (p,q) induces a map of degree
P + g of the associated graded modules.

A double complex A is a doubly graded module together with two
differentiation operators d; and d, of degree (1,0) and (0,1) respectively,
which anticommute. Thus we have

[ d{”"": A™™ __)An+1,m’ déz.,m: Arm s grm+l
(1)1 dpmdytim = 0, dymdpm-1 = 0

d;“" l’md{”m + d?,m+ ldg,m = 0.
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These conditions can be expressed by means of the anticommutative
diagram

n, m+1

dy

m+l ..

The (singly) graded module associated with 4 is now converted into a
(single) complex by defining a fozal differentiation operator d: A? — A7+
which on 4™™ js equal to

€) dpm 4 dpm.
Thus
(4) d(An,m)CAn+1,m __I_ An,m+1.

Conditions (1) then imply dd = 0. Conversely any differentiation d in
the associated graded module satisfying (4) defines uniquely the operators
d, and d, which yield a double complex for which d is the total differentiation.

The modules Z*(A4), ..., H"(A) where 4 is a double complex are
always understood as those defined for the associated (single) complex
using the total differentiation operator.

Let A and C be double complexes. A mapf: A— C is a map of
bidegree (0,0) of the doubly graded modules, which commutes with the
first and second differentiation operators in 4 and C. Clearly finduces a
map of the associated (single) complexes.

Let f,g: A— C be two maps of double complexes. A homotopy
(s1,89): f= g consists of a pair of homorphisms s,,s,: 4 — C of bidegree
(—1,0) and (0,—1) respectively such that

dysy + 510y + doSy + sydy =g — f
S1d2 + d2S1 = 0, SZdl + d1S2 == 0

where d, and d, are the first and second differentiationsin 4 and C. Passing
to the associated single complexes we define s?: A? — C*! as

s’;‘,m + Sg’m
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on A™™. We thus obtain a homotopy s: f~ g satisfying
S(An,m) C crLm _|_ cmm-1,

Conversely every such homotopy uniquely determines a pair (s;,5,) as
above.

All the concepts introduced above admit an immediate extension to
n-graded modules and n-tuple complexes. For instance a quadruple
complex consists of a 4-graded module 4 = > A™™?¢ and four differentia-

tion operators
dln,mm,qz ArmPe s gn+lmpg

dpmpa; grmpa s grmileg
dpmpa; grmpa s grmetla

n,m,p,q . n,m,p,q n,m,p,q+1
A | — A

each having square zero and anticommuting with one another. The
total differentiation operator d on the associated (singly) graded module is
d=d,+ dy + d3 + d,.

Instead of passing directly from the a-tuple complex to the associated
single complex, we can pass to m-complexes for m <C n by a suitable group-
ing of the indices. For instance in the case of the quadruple complex
described above, we can obtain a double complex by grouping the first
index with the third and the second with the fourth:

AT — ZAn,m,p,q n_|_p= r’m+q= S,
s AT — ATHLS Ops: A™ — 4nstl
with 6, and J, defined as d;, + d; and d, + d,. The original quadruple

complex and the double complex just constructed have the same associated
single complex.

5. FUNCTORS OF COMPLEXES

Let T(4;, .. ., 4,) be a functor of r variables, some covariant, some
contravariant, where 4, is a A,-module and T(4,, . . ., 4,) is a A-module.
Suppose now that each 4, is a graded A;-module. We define an r-graded
module T(4,, .. ., 4,) by setting

T™:- "’n'(Als e Ar) = T(Ailnl, eeey A:rn')

where ¢; = +1 or —1 depending whether the variable 4, is covariant or
contravariant. From this r-graded module we may pass to a singly graded
module by defining T™(A4,, ..., 4,) as the direct sum of the modules
T™ ™ (Ay,...,A,) for all (ny,...,n) such that n; + -+ +n,=n.
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One should be cautious not to confuse the r-graded module
T(4y, ..., A,) with the module T(|4,],...,|4,|) where |4,] is the
non-graded module underlying 4,. Itis clear, for instance, that Hom (4,C)
and Hom (|A[,lC |) differ not only in the fact that the first one is
2-graded; they actually differ as modules. The situation is somewhat
similar to that encountered with topological groups. Let 4 and C be
topological abelian groups, |4 |, | C | the underlying discrete groups and
let Hom (4,C) be the group of all continuous homomorphisms 4 — C.
Then Hom (4,C) and Hom (| 4 |,| C |) are distinct.

Let A}, ..., 4, be another sequence of graded modules and consider
maps f;: A;— A; (tesp. f;: A;— A,) if the i-th variable of T is covariant
(resp. contravariant). Let f; have degree p,. We define the map

T(_fb .. ’fr) T(Als e aA'r)éT(A’la . . 5A;)

of r-degree (py,...,p,), by defining the map T"-"(f},...,f,) on
Tr--» Ny (Al’ e e Ar) as

(=D TR, ..., fl): T(AG™, ..., A5™) — T(A™mte, | fledntp0)

where ¢ = Yn,p,fori < j, I, = n;if Tiscovariantin 4; and /;, = —(n,+p,)
if T is contravariant in A4,.

If g2 A;— A (resp. g;: A; — A;) are maps of degrees ¢, and
hy=g.f;: A;— A] (resp. h; = fig;: A] — A,), then it is easy to verify the
rule

Thy, ..., h) = (—1)"T(gy, ..., g ) T(f1,- .. 1)
where 5 = > p,q, for i <j.

Suppose now that each 4, is a complex with differentiation d;.  Then
setting
0, =T(Ay,...,dy..., A)

we find that §,, ..., d, anticommute and define 7T(4,,..., 4,) as an
r-tuple complex. If f; are maps of complexes (each f; has then degree
zero) then T(f,, ..., f,) (this time not involving any signs) is a map of
r-tuple complexes. If s;: f; =~ f; are homotopies for i=1,...,r, then

setting ¢, = T(4,,...,S;...,A4,) we obtain a homotopy

(tyy oo st T(fy - o S [ =TS - L L)

To illustrate the above definitions we consider the tensor product
A ® C of graded modules. This is by definition the doubly graded
module X, A" @ C™. If f: A— A’,g: C— C’ are maps of degrees p
and g then

(fRg: AQC—>4"QC’
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is the map of degree p + g defined for a € A", c € C™ as

(f®ga®c)=(—D)"faQ ge.

The sign is due to the interchange of the symbols gand a. If 4 and C are
complexes with differentiations 4; and d,, then 4 ® Cis a double complex
with differentiations d, ® C and 4 ® d,. The total differentiation in
AR Cisd=d; ® C+ A ® d, and we have

dla ® ¢) = (d1a) @ ¢ + (—1)"a ® (dye).

6. THE HOMOMORPHISM «

In the remaining sections of this chapter we study certain relations
between H(T(A,C)) and T(H(A),H(C)) that play a fundamental role in
later chapters.

We consider as a typical case, a functor T of two variables, covariant
in the first variable and contravariant in the second. If 4 and C are
complexes, then T(4,C) is a double complex, and thus 7(4,C) may be
regarded also as a complex.

We consider the commutative diagrams

Z(A) — H(A) Z(C) —> H(C)
/ll —Z'(A4) C —Z'(C)

They induce a commutative diagram

T(Z(A),Z'(C)) -7 (H(4),H(C))
) ,,l l
H(T(4,C)) —?T(Z'(A),Z(C))

Actually all four modules in the diagram should have the operator H in
front; however in three of the modules the differentiation is zero so that
H may be omitted.
PROPOSITION 6.1.  If T is right exact, there exists a unique homomorphism
of degree zero
a: T(H(A),H(C))— H(T(4,0))

which when inserted in (1), leaves the diagram commutative. The homo-
morphism « is natural relative to maps A — A" and C' — C, and if A and C
have zero differentiations then o is the identity. The last two properties
characterize o uniquely.
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ProoF. Since T is right exact, £ is an epimorphism. Thus there
exists at most one « with & = #. For such an « we have (& = {5 = 7&
so that {a= 7. To show that such an « exists, it suffices to prove that
Ker £C Ker#. Since T is right exact it follows from 11,4.3 that Ker & is
the sum of the images

T(B(A),Z'(C)) > T(Z(4),Z'(C)) <~ T(Z(4),B'(C)).
Thus to prove Ker & C Ker 7amounts to showing that the homomorphisms
T(B(4),Z'(C)) — H(T(4,C)) < T(Z(4),B'(C)}
are zero. These homomorphisms admit factorizations
T(B(4),Z'(C)) —— H(T(4,Z'(C)) — H(T(4,C)
T(Z(4),B'(C)) —— H(T(Z(4),C)) — H(T(4,C))

and it suffices to show that # and y are zero. To show this we factor the
differentiation operators in T(4,Z'(C)) and T(Z(A4),C) as follows

@ 4, 2'(C))

T(4,Z'(C)) ~ T(B'(4), Z'(C)) — T(B(4),Z'(C)) —— T(4,Z(C))

T(Z(4),80)

T(Z(A4),C) — T(Z(4),B(C)) T(Z(4),B'(C) —— T(Z(4).C)

where 0 is the map B’ — B induced by d. Since T is right exact, the left
hand homomorphisms are epimorphisms. Since the middle homo-
morphisms are isomorphisms it follows that the image of f° is in
B(T(A,Z'(C))) and the image of »’ is in B(T(Z(A),C)). Thus f and y are
zero.

The naturality of « and the fact that « is the identity if 4 and C have
derivation zero are obvious. To prove the last assertion assume that
another family & of homomorphisms is given satisfying these two condi-
tions. The maps Z(4) - 4 and C— Z'(C) then induce a commutative
diagram

T(Z(4),Z'(C)) —— T(H(4),H(C))

o

T(Z(4),Z'(C) —— H(T(4,0))

Therefore @& = n=aé. Since & is an epimorphism, it follows that
x= .
PROPOSITION 6.1a. If T is left exact, there exists a unique homomorphism

of degree zero
o't H(T(4,C))— T(H(A),H(C))
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which when inserted in (1), leaves the diagram commutative. The homo-
morphism o' is natural relative to maps A— A’,C’ — C of degree zero, and
if A and C have zero differentiation then o' is the identity. These last two
properties characterize o’ uniquely.

The proof is dual to the preceding one.

PRrOPOSITION 6.2. If T is right exact and the sequences
0— H(A)— Z'(4)—~ B'(4)—0
0— B(C)— Z(C)— H(C)—0

split, then o has kernel zero and its image is a direct summand of H(T(4,C)).
Proor. Composing the splitting homomorphisms Z’(4) - H(A) and

H(C)— Z(C) with the natural maps 4 - Z’(4) and Z(C) — C yields maps
p: A— H(A) and y: H(C)— C such that the induced maps 3, : H(4)
— H(A), y,: H(C)— H(C) are identities. There results a commutative
diagram

T(H(4),H(C)) — H(T(4,C))

é
T(H(A4),H(C)) — T(H(A),H(C))

where the vertical maps are induced by T(f,y). Thus Jx = identity,
which implies the conclusion of 6.2.
PROPOSITION 6.2a. If T is left exact and the sequences

0— B(A) - Z(4A) - HA)—0
0— H(C)—Z'(C)— B'(C)—0

split, then &' is an epimorphism and its kernel is a direct summand of
H(T(4,0)).
The proof is dual to that of 6.2.

7. THE HOMOMORPHISM o (CONTINUATION)

We shall establish here some less elementary properties of the homo-
morphisms o and «’, that will be needed later. We begin by establishing
a commutativity relation with the connecting homomorphisms for
homology.

We consider a functor 7(4,C) where C is a covariant variable and A4
denotes all the remaining variables, some of which may precede the variable
C and some of which may follow it. We shall assume that each of the
variables is a complex.
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We now assume that we have an exact sequence of complexes

) 0—C' > C—>C"—0
(¢ and v having degree zero) such that the sequence
#)) 0— T(4,C")— T(4,C) - T(4,C")— 0
is exact.
We then have connecting homomorphisms
3 6: H(C")— H(C')
€)) A: H(T(A,C")— H(T(4,C")).

ProrosiTioN 7.1. If T is right exact, the following diagram is
commutative

T(H(A),H(C")) — 22, T(H(4),H(C"))

®) ” l%
H(T(4,C") H(T(4,C"))

If T is left exact, the same holds with the vertical arrows reversed and
replaced by o'y, o',.

For T contravariant in C, we must interchange C’ and C” in (2), in (4)
and in (5). : :

REMARK. The homomorphism T(H(A),6) in diagram (5) involves a
sign (see § 5).

Proor. For the sake of brevity we shall use a notation as if all the
variables of 4 were covariant. Thus for instance, if we write T(Z(4),Z(C))
we actually replace each covariant variable 4; by Z(4,) and each contra-
variant variable by Z’'(4,).

The proof is based on an alternative description of the homomorphism
0. We denote by X the kernel of the composed homomorphism

cectcn.
We then obtain the homomorphisms
H(C") = Z(C") = X" Z(C) = H(C)

where u’ and p” are natural factorization homomorphisms, 7’ is defined by
d since dp(X) C Im y, and 7" is defined by ¢ since ¢(X) = Z(C"). Thus
7" and u” are epimorphisms and it is easy to see that

n_n

©) u'r = ou"r".
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Quite similarly we define Y as the kernel of the composed homomorphism

%) T(4,C) = T(4,C) — T(4,C")

and obtain

HT(A,C") <= ZT(A,C") < Y > ZT(4,C") 2> HT(4,C")
with
(8) P,G/ —_ AP”O’”.

If we compose the map T(Z(4),X) — T(A4,C) with (7) we obtain zero, thus
we have a map

O: T(Z(A),X)— Y.
We consider the diagram

T(H(A), H(C"))—T(Z(4),Z(C")y—T(Z(A), X)—T(Z(A),Z(C"))—T(H(A4),H(C"))
ay (6} oy

HIA,C) — ZTAC) — Y  — ZT(4,C) — HTA4,C)

where the maps in the upper row are
T(uu"), T(Z(4),7"), T(Z(4),7), T(p, ).

The commutativity of the extreme two squares follows from the definition
of «; and «,. The commutativity in the remaining two squares is an easy
consequence of the definition of ®. We now compute using (6) and (8)

Aw, T(p,u"7") = Ap"c"® = p'c’® = a,T(u,u't")
= o, T(u,0u"7") = oy T(H(A),0)T (1, " 7").

Since u,u”,7” are epimorphisms and T is right exact, it follows that

T(u,u",7") is an epimorphism. This proves that (5) is commutative.
For T left exact we consider instead of X the cokernel X’ of

ctclc
THEOREM 7.2. If the functor T is exact, o and &' are isomorphisms and
are inverses of each other.
PrOOF. We observe that (using the notation of diagram (1) of the
preceding section)
7€ = {n = To'aé

and since Ker 7= 0 = Coker &, it follows that a'a = identity. There
remains to be shown that « is an isomorphism. This is clear if all the
variables have zero differentiation. The proof is carried out by induction
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with respect to the number of variables that have a non-zero differentiation.
We denote one of these variables by C and write 7(4,C) where all the
remaining variables have been lumped into a single symbol 4. We
assume T covariant in C and consider the exact sequence

0—->Z(C)— C—B(C)—0
which yields the homology sequence
é
-« +—> B(C) _6,2(6') — H(C)— B(C) — Z(C) — -

Since T is exact we obtain an exact sequence

T(H(4), B(C)) —T(H(A).Z(C))—T(H(A), H(C))—T(H(4),B(C))

pe
—T(H(4),Z(C))
where 6’ = T(H(A),0).
Now, applying 7.1 and the naturality of « we obtain a commutative
diagram

T(H(A)l,B(C))LT(H(A),Z(C V- T(H(A), H(C)Y —T(H(A).B(C)y —T(H(A).Z(C))

H(T(4,B(C)))-— H(T(4,Z(C)))— H(T(4,C)))— H(T(4,B(C)))— H(T(4,Z(C)))
The lower row is the homology sequence of
0 — T(4,Z(C)) - T(4,C) - T(4,B(C)) — 0.

Since the rows of the diagram are exact, and since, by the inductive
assumption, &, and «, are isomorphisms, it follows from 1,1.1 (the 5
lemma’’) that « also is an isomorphism.

ProrosiTioN 7.3. Let T(A,C) be right exact and covariant in C. If

T(4,Z(C)) — T(4,C)

is a monomorphism, and

a: T(H(A),B(C))— HT(A4,B(C))
is an epimorphism, ther the sequence

k* i* j*
9): - +— H(T(4,C))— H(T(4,B(C)))—H(T(4,Z(C)))— H(T(4,C))—-
induced by the natural maps
(10) ct Bo)->zic)-

is exact. For T contravariant in C, replace B(C) and Z(C) by B'(C) and
Z'(C) and reverse the arrows in (10).
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Proor. Since the sequence
0— T(A4,Z(C)) - T(4,C) — T(A,B(C)) > 0

is exact, we obtain a homology sequence like (9) but with i* replaced by
the connecting homomorphism A. It therefore suffices to show that
A= i*

By 7.1, we have the commutative diagram

T(H(A),B(C)) IHDY | T(H(A),Z(C))

HT(4,B(C)) HT(4,Z(C))

a
where §: B(C)— Z(C) is the connecting homomorphism induced by the
exact sequence 0— Z(C)— C— B(C)—0. It is clear that 6=1.
Since by the naturality of « we have i*a = a,T(H(A),0) it follows that
Aa = i*a. Thus A = i* since « is an epimorphism.

PROPOSITION 7.3a. Let T be left exact and covariant in C. If
T(4,C)— T(4,Z'(C))
is an epimorphism, and
o: HT(A,B'(C))— T(H(A),B'(C))
is a monomorphism, then the sequence
(92) - - - > H(T(4,C))>H(T(4,Z'(C)))—>H(T(4,B"(C)))~>H(T(4,C))—> -
induced by the natural maps
(10a) C—~>Z'(C)—B(C)—C

is exact. For T contravariant in C, replace B'(C) and Z'(C) by B(C) and
Z(C) and reverse the arrows in (10a).

The preceding results may be sharpened in the following way. For
each complex 4, let.#(A) denote the category consisting of the complexes
A, B(A), B'(A4), Z(A4), Z'(A), H(A4), the identity maps, the maps occurring
in diagram (1) of § 1, the maps B’(4) — B(A) and of their compositions.
The conditions “T is right exact,”” “T is left exact’” and “T is exact’ that
occurred before may be replaced by “T is right exact on the categories
M(A), #(C)”, etc.

We shall say that a complex splits if the sequences in diagram (1) of § 1
split.

PROPOSITION 7.4. If the complexes A and C split, then o and &’ are
defined, are isomorphisms and are inverses of each other.

This follows directly from 7.2 since the functor T(4,C) is exact on the
categories .#(A4) and .#(C).
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8. KUNNETH RELATIONS

We shall consider a functor T of any number of variables. We shall
denote one of the variables by C and use the symbol A4 for all the remaining
variables. We shall use the symbols 5,7 and ST to denote the satellites
of T with respect to the variable C. We shall assume that all the variables
in T are complexes.

THEOREM 8.1. Let T be right exact and covariant in C. If the homo-

morphisms
ay: T(H(A),B(C)) - HT(A,B(C))

ay: T(H(A),Z(C))— HT(A,Z(C))
are isomorphisms, and if
¢)) $;7(A4,B(C)) = 0 = S,T(H(A),Z(C)),
then we have an exact sequence
() 0— T(H(A),H(C)) — H(T(4,C)) 2L S, T(H(A),H(C)—0

with 8 of degree 1. If T is contravariant in C, we replace B(C) and Z(C) by
B'(C) and Z'(C).
ProOOF. We consider the commutative diagram

T(H(A),B(C))—>T(H(A),Z(C))~T(H(A4),H(C))~>0

v
H(T(A,B(C)))—H(T(A4,Z(C)))—H(T(A,C))—H(T(A4,B(C)))—~H(T(A4,Z(C))

-1 -1
oy o2

|
0—S5,T(H(4),H(C))—~>T(H(4),B(C))—T(H(4),Z(C))

Since S,7(4,B(C)) = 0, T(4,Z(C))— T(4,C) is a monomorphism.
Thus 7.3 implies that the middle row in the diagram above is exact. Since
S$,T(H(A),Z(C)) = 0, the other two rows also are exact. It follows
easily that there is a unique homomorphism

B: H(T(4,C))— S,T(H(A),H(C))

which when inserted into the diagram, leads to a commutative diagram.
The exactness of (2) then follows readily from the diagram above.

The exact sequence (2) is natural in the following sense. Let 4’, C’ be
another pair satisfying the conditions of 8.1,and f: 4 — A", g: C— C'be
maps of complexes (actually f is a family consisting of one mapping
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fit A;— A; for each covariant variable in 4 and f;: A, — A, for each
contravariant variable in 4). Then the diagram

0 — T(H(A4),H(C)) — H(T(A,C)) —> S,T(H(A),H(C))—>0

0 ——T(H(A"),H(C")) —> H(T(A',C")) — S, T(H(A"),H(C')) —> 0

is commutative.

It should further be remarked that if T is a functor of one variable C,
then the conditions concerning «, and «, are automatically satisfied and
conditions (1) become

(1) S, T(B(C)) = 0 = $,T(Z(C)).

Since « has degree 0 and 8 has degree 1 the exact sequence (2) may be
rewritten as

0 — 3 T(HYA),H(C)—> H(T(4,C)) —> 5 S,T(H(A4),H(C))—0
ptg=n p+g=n+1

RemArRk. The only property of S;T that was used above is that for
each exact sequence 0 — C’'— C — C" — 0 the sequence

$T(C)— §,T(C") > T(C")—T(C)
is exact (assuming 7 covariant in C).

THEOREM 8.1a. Let T be left exact and covariant in C. If the homo-
morphisms
o: H(T(4,B'(C)) — T(H(A4),B'(C))

%: H(T(4,Z'(C))) > T(H(4),Z'(C))
are isomorphisms, and if
(1a) S1T(A4,B’(C)) = 0 = ST(H(A),Z'(C)),
then we have an exact sequence
(2a) 0-— ST(H(A),H(C)) LN H(T(A,0C)) =, T(H(4),H(C)—0

with B’ of degree 1. If T is contravariant in C, we replace B'(C) and Z'(C)
by B(C) and Z(C).

EXERCISES
1. Let 4 and 4" be A-complexes. A map f: A— A’ of degree u is
defined as a homomorphism of degree u such that df = (—1)*fd. If

g: A— A’ is another map of degree u, then a homotopy s: f~gis a
homomorphism s: A—4’ of degree u — 1 such thatds + (—1)“sd =g — f.
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Show that if f: 4 — A’ and f A’ — A" are maps of degree u and v
respectively, then f f A— A" is a map of degree u + v. If further
s: f~g, s f' =g’ then

S+ (—Dg's: f'f=g'g.
2. Extend the above definitions to double and n-tuple complexes. In

particular show that if f: 4— A’, g: C— C’ are maps of degrees u and v,
then

fRg: ARC—>A"®C’, Hom(f,g): Hom(4',C) > Hom (4,C’)
are maps of bidegrees (#,v). Draw appropriate conclusions if s: f~ f’,
tg~g.

3. Let A" and A” be complexes and let f: 4" — A4’ be a map of degree 0.
In the direct sum A = A’ 4 A" introduce the grading A" = A'" 4 A""+1
and the differentiation operator d; given by

d(a'a") = (da' + fa', —da").

Show that with this differentiation the homomorphisms
) 0—A' > A A4"—0

given by ya’ = (a’,0), ¢(a’,a”) = a” are maps (y is of degree 0, and ¢ of
degree 1). Prove that any differentiation operator in A with this property
has the form d, (for some map f of degree zero).

The exact sequence (1) gives rise to an exact homology sequence

e H”(A')—ZJ:’ H”(A)LH"+1(A”)—6> H™(4')—> - - -

Show that d coincides with the map induced by f.

4. Denote the complex 4 of Exer. 3 by (4',4",f). Let (C’,C",g) be
another such complex and let 2': 4’— C’, h": A" — C” be maps (of
degree zero). Show that a map h: (4',4",f)— (C',C”",g) of degree 0
compatible with 4’ and A", exists if and only if gh” ~ h’f. Show that each
homotopy s: gh” =~ h’f uniquely determines such a map 4 and vice-versa.

In particular, a map (4',4",f) — C is given by a map h: 4’ — C and
ahomotopys: 0~ Af. Amapd4 — (C',C",g)isgivenbyamaph: 4— C”
and a homotopy s: gh~ 0.

5. Let 4 and C be graded A-modules. Denote by M%(4,C) the group
of all A-homomorphisms 4 — C of degree u. Assume that 4 and C are
complexes and consider the subgroup Map*(4,C) of all maps of degree u.
Further let Map§(4,C) denote the subgroup of maps homotopic to zero.

Convert the graded group M(4,C) = > ,M*(4,C) into a complex by
setting

(dg)a = g(da) + (—1)**d(ga), aeAd, ge M*(4,C).
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Prove the equalities
Z*(M(A4,C)) = Map*(4,C), B*(M(A4,C)) = Mapj(4,C).

6. Consider an exact sequence of A-complexes
0— 4 > A—4"—0

with v e Map®(4',4), ¢ e Map'(4,4"), and assume that each of the exact
sequences 0— A" — A" — A"l -0 splits. Establish the exact
sequence of complexes

0> M(A",C) — M(A,C) > M(4',C)— 0,

and using 1.1 obtain an exact sequence

Map*(4,C) — Map*“(4',C) 2 Map*(4",C)/Mapg(4”,C).

Assuming that A4 is given in the form (4’,4", ) of Exer. 3, show that the
map ¢ is the one induced by f. Compare with the last part of Exer. 4.
Carry out a similar discussion with an exact sequence

0—-C'—-C—C"—0.

7. Let 4 and C be double complexes such that A?:?= 0= C?? if
p <0, and let A" and C’ denote the double complex obtained from A4 and
C by setting the second differentiation equal to zero. Show that if a
map f: A— C induces an isomorphism H(4’) ~ H(C’), then f also
induces an isomorphism H(A4) ~ H(C).

[Hint: observe that A" = 3 F"(A)/F™'(4), where F'(4) = > > A»;

r D g=r
similarly for the complex C. Then, for a given n, prove, by a descending

induction on r, that H*(F"(A4)) — H™(F"(C)) is an isomorphism; this being
true for r > n, use the 5-lemma (1,1.1) for each step of the induction.
Prove finally that H"(A4) — H™(C) is an isomorphism.]

8. Show that a right exact functor T is exact, if and only if the map
o: T(H(A),H(C))—~ H(T(A,C)) is an isomorphism for any complexes
A and C. Establish a similar proposition for left exact functors.



CHAPTER V

Derived Functors

Introduction. This chapter is central and should be studied care-
fully. First we define for each module 4 certain complexes which are called
projective (or injective) resolutions of 4. Then given a functor T(4,C) we
replace 4 and C by projective or injective resolutions X and Y (depending
upon the variances of the variables). We then obtain a double complex
T(X,Y). The homology groups of this double complex are independent of
the choice of X and Y and are the left derived functors L,T(4,C) (or the
right derived functors R"T(4,C) depending upon the case) of the functor
T. There are connecting homomorphisms which link these functors for
different values of n, and which lead to various exact sequences. This is
done in § 1-4.

The fundamental properties of these derived functors are studied in
§5-9. The last §10 is a digression intended primarily to prepare the
ground for Ch. x11 on finite groups.

1. COMPLEXES OVER MODULES; RESOLUTIONS

In what follows it will be convenient to regard a A-module 4 as a
complex with 4°= A, A" = 0 for n # 0 and differentiation zero. Thus
A coincides with Z(A4), Z'(A) and H(A), while B(4) and B’(A4) are zero.

A left complex X over A is a negative complex X (i.e. X" =0 for
n>0) and a map &: X — A called the augmentation. Since A™ = 0 for
n # 0, the map ¢ actually reduces to a single map X°— A subject to the
condition that the composition X~ — X°— A4 be zero. The left complex
X is called projective if all X are projective, it is called acyclic if ¢ induces
an isomorphism H(X) ~ 4. This last condition is equivalent to the
requirement that the sequence

d d. 3 .
"_’Xn—"’Xn—l_—’"'—l’Xo‘_’A__’o

be exact. Note that we have lowered the indices to avoid writing negative
numbers. This will be done systematically with left complexes.
A left complex X over 4 which is both projective and acyclic will be
called a projective resolution of A.
75
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Let f: 4— A’ be a homomorphism of modules, and let X, X" be left
complexes over 4, A’ with augmentations ¢,¢’. A map F: X — X’ such
that the diagram

P
X— X’

g

A—f—>A

is commutative, is called a map over f.

PROPOSITION 1.1. Let X be a projective left complex over A, X' an
acyclic left complex over A’ and let f: A— A’. There is then a map
F: X— X' over f, and any two such maps are homotopic (see 1v,3).

Proor. In this proof as well as in various proofs in the following
section it will be convenient to use the following property of projective
modules which is immediately derivable from the definition. Consider a
diagram

p
l‘r

A”_’A"”"A'
¥ @

in which the row is exact and P is projective. If g7 = 0 then = admits
a factorization wo where 0: P— A",
We now begin with the construction of the map F: X — X'. Consider
the diagram
Xo
Jr
Xg—>A"—0

Since X, is projective there is an F,: X,— X with &' Fy= fe. Next
consider the diagram

X1

lFodl
Since &' Fyd;, = fed; = 0 there is a map Fy: X; — X; with d,F, = Fyd,.
Assume by induction that F,: X, — X, are already defined for n < p
(p > 1) and satisfy d,F,, = F,_,d, forn > 0. Consider the diagram

X,

P

F,_d
»-1¥p
!

’ ’ 14
Y — XY . — X
» -1 »—2
dw -1
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’

Since d),_,F, yd, = F, od, ;d,= 0 there is a map F,: X,— X, with
d,F,=F, d,

Now suppose that F, F’ are two maps of X into X' over f. Consider
the diagram

Xo
X, ? Xy 4

where 7= F, — F,. Since &'t = ¢'Fy — ¢'Fy= fe — fe =0 there is a
map s,: X, — X7 with disy= Fy— F,. Assumethats,: X,— X, ,,are
already defined for n << p (p > 0) and satisfy d,, . ;s, + §,_1d, = F, — F,
for n > 0. Consider the diagram

Id

j,
Xpn =X, —— X

4 p
Ap41 ayp

with 7 = F,, — F, — 5, ,d,. Since d ,r, upon calculation gives 0, there is

amaps,: X,— X, withr=d s, ie.withd, s, + s, 1d,= F,— F,.
PROPOSITION 1.2.  For each module there exists a projective resolution.
If X and X' are projective resolutions of A and A', and f: A— A’ isa
homomorphism, then there exists a map F: X — X' over f. Any two maps
F, F': X— X' over the same homomorphism A—> A’ are homotopic.
Proor. The existence proof consists in a successive application of
1,2.3; given A, choose exact sequences

0—2Zy— Xg—A —0
0—_>Zl——>Xl '——')Zo '_')0

with X, projective. Then define d, as the composition X,, -~ Z,_; — X,,_;.
This yields a projective resolution of 4. The second and third part of 1.2
are consequences of 1.1.

Note that actually the above proof yields a projective resolution X
of A with the modules X, not only projective but free.

It follows from 1.2 that any two projective resolutions X and X’ of the
same module 4 have the same homotopy type, i.e. there exist maps
F: X— X'and F': X' X over the identity map of A4, such that the
compositions F'F and FF’ are homotopic to identity maps.
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We now briefly and without proofs carry out a similar discussion for
right compleaes.

A right complex X over A is a positive complex X and an augmentation
mape : A— X. Theright complexis called injective if all X" are injective;
it is called acyclic if ¢ induces an isomorphism 4 ~ H(X), or equivalently
if the sequence

a° ar
0— A XxO - xy1— iy Ly

isexact. If X is both injective and acyclic it is called an injective resolution
of 4.

Let f: A— A’ be a map of modules, and let X, X’ be right complexes
over 4,A". A map F: X— X’ such that the diagram

AL a4

1k

X—I,—’X

is commutative, is called a map over f.

PROPOSITION 1.1a. Let X be an acyclic right complex over A, X' an
injective right complex over A’, and let f: A— A’. There is then a map
F: X— X' over f, and any two such maps are homotopic.

PROPOSITION 1.2a. For each module there exists an injective resolution.
If X and X' are injective resolutions of A and A’, and f: A — A’ is a homo-
morphism, then there existsamap F: X — X'overf. AnytwoF,F’': X—X'
over the same map A — A’ are homotopic.

ProrosiTiON 1.3.  If A is left Noetherian and A is a finitely generated
left A-module, then A has a A-projective resolution X such that each X, is
free on a finite base.

Proor. We use the notation of the proof of 1.2. Since 4 is finitely
generated we may choose X, to be free on a finite base. Then since A
is left Noetherian, Z, is finitely generated. Thus X; may be chosen free
on a finite base, etc.

2. RESOLUTIONS OF SEQUENCES

Let
(1) 0— A A" 4"—0

be an exact sequence, and let

) 0— X' — X X" —0
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be an exact sequence, where X, X, X" are left complexes over 4’, 4, A"
respectively, ¥ is a map over y and @ is a map over . If X', X, X" are
projective resolutions of 4’, 4, A” respectively, then we say that (2) is a
projective resolution of (1).

PRrOPOSITION 2.1.  If X' and X" are projective, then so is X. If X'and
X" are acyclic, then so is X. If X' and X" are projective resolutions of A’
and A", then (2) is a projective resolution of (1).

ProoF. For each index n, the sequence 0 — X, — X,,— X, =0 is
exact. If X, is projective, then the sequence splits and X, is isomorphic
to the direct sum X, + X,. If X, also is projective then X, is projective.

Suppose now that X’ and X”areacyclic. This means that the sequences

e X, > Xy > Xy > A >0
s> Xy > Xy > > X > A" >0
areexact. Let X’ and X" denote the complexes defined by these sequences
and let X denote the similar complex defined using X. Since
H(X')— H(X)— H(X") is exact, it follows that H(X)= 0, i.e. X is an
acyclic left complex over 4.
We shall say that the exact sequence (2) is normal if, for each index n,
the exact sequence 0 — X, — X, — X, — O splits. This for instance is

always the case if X" is projective. If the sequence (2) is normal, we may
replace X, by the direct sum X, -+ X,  and assume that

Y, = (x,,0), D(xyXp) = X
With this representation we have
du(Xpo) = (X + Oy, dyx,)

’ ” ’ ”
&(xgp,X5) = we'xy + oxg

where
o: X, >4
0, X,—>X,_,, n>0
The homomorphisms ¢ and @, satisfy the conditions
&' = o
3) ye'®, + od) =0
d,_10,+0,.d =0 n>1

which are the translations of the conditions &"®,= g¢, ed, = 0 anc
d,_yd, = 0 respectively. This description of a normal sequence (2) will
be called the normal form of (2).
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PROPOSITION 2.2. Given an exact sequence (1), an acyclic left complex
X' over A’ and a projective left complex X" over A", there exists a left
complex X over A and maps¥', @ over the maps vy, @, such that the sequence
(2) is exact. If X' and X" are projective resolutions of A’ and A", then X is
a projective resolution of A.

Proor. The second part follows from 2.1. To prove the first part,
it suffices to find homomorphisms o: X, -4 and 0,: X, - X,_,
satisfying (3). Consider the diagram

Xy

”

€

A—A4A"—0

Since X, is projective thereisa ¢: X; — A with o = &". Next consider
the diagram
X/

|

X,—— A—— A"
0 e -4

Since the row is exact, X7 is projective, and go dy = &” d; = 0, there is a
0,: Xy —> X, withp &’ ®, = —od]. Next we consider the diagram

4
X2
—0yd;
XI'T’ XO'T’A'
1

Since —y &' ©.,d, = odd, =0 and since Kery=0 it follows that
— &' ©yd, = 0 so that there exists a homomorphism ©,: X, — X; with
d;0, = —@,d,. For p > 2 we define O, inductively using the diagram
X

_Gﬂ—ld;

Xl XI XI

-1 -2 »—3

ProrosiTION 2.3. Let
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be a commutative diagram with exact rows and let
¥ ° T o
0O—X—X—X"—0, 0—Y —Y—Y —0

be normal exact sequences of left complexes over the rows such that X" is
projective and Y’ is acyclic.

Given maps F': X'— Y' and F": X" — Y" over f’ and f", there is a
map F: X— Y over f such that the diagram

0 X’ X X 0

0 Y’ Y Y’ 0

is commutative.

If G', G, G" is another triple of maps over [, f, f” with the same property
and if s': F'~ G and s": F" =~ G" are homotopies, then there exists a
homotopy s: F =~ G such that the diagram

0 X, X, b ¢4 0
[« = |
0 Y;z+1 Yoia Y;:+1 0

is commutative for all n > 0.

ProOF. We assume that X and Y are given in normal form with the
maps o, ©%, ¢¥, ®Y. The required map F: X — Y must then have the
form

Fo(xp,xn) = (X, + ynXy, Frx,
where y,: X, — Y, satisfies the conditions

p* &' yo + oV Fy= fo¥
@ |
dyyn — Vardy = F, 10F — O F,, n>0

which are translations of the conditions e¥Fy = f¢X anddX F, = F,_,d%
for n > 0. Equations (4) allow us to define y, inductively by the same
method as before.

We now turn to the part concerning the homotopy. The required
homotopy s: F~ G must have the form

"o n_n

$u(ouXn) = (8% + 1aX55%)
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where ¢,: X, — Y,,,. The condition d,,s, + s,_,d, = G, — F, then
becomes
dyty + Ofsy = v§ — 75

Ay patn + taady + OF 118, + 5, 108 =y — vy, n>0.
Again these equations are solved inductively for f,, #, .

The analogs of the results of this section for right complexes are
straightforward and will not be restated.

3. DEFINITION OF DERIVED FUNCTORS

As in Chs. 111 and 1v we shall be concerned with additive functors T in
any number of covariant and contravariant variables. We shall treat
explicitly the case of a functor 7T(4,C) covariant in the variable 4 and
contravariant in the variable C. However it is understood that 4 may be
replaced by any number of covariant variables, and C by any number of
contravariant variables. In most definitions and results the number of
variables is of no importance. In all other cases specific statements will be
made.

Consider the (additive) functor 7(4,C) covariant in 4, contravariant in
C, where A4 is a A;-module, C is a A;-module and 7(4,C) is a A-module.
Let X be a right complex over 4 and Y a left complex over C. Then
T(X,Y) is a double complex. With this double complex there is
associated a single complex, also written 7(X,Y) which is a right complex
over T(4,C). If F: X— X'and G: Y'— Yare mapsoverf: 4— A, g:
C’— C then

T(F,G): T(X,Y)—~T(X',Y")
is a map over
T(f.g): T(4,C)—T(4",C").

Homotopies F~ F’ and G~ G’ imply (see 1v,5) a homotopy
T(F,G) = T(F',G").

Suppose now that in the above discussion X, X’ are A;-injective
resolutions of 4, A”and Y, Y’ are A,-projective resolutions of C, C’. Given
the maps f: 4— A, g: C’— C, the existence of maps F: X — X’ and
G: Y'— Y over fand g is assured by 1.2 and 1.2a. If F’: X— X and
G': Y'— Y is another pair of such maps, then by 1.2 and 1.2a there exist
homotopies F~ F’ and G~ G’. Thus T(F,G) and T(F',G’) are homo-
topic and therefore yield the same homomorphism of the respective
homology modules. Thus the homomorphism

M H(T(X,Y))— HT(X',Y"))
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depends only on the maps fand g and not on Fand G. We denote the
homomorphism (1) by (RT)(f,g). It follows now readily that if 4 = 4’,
C = C’ and fand g are identity maps, then (1) is an isomorphism. Thus
up to natural isomorphisms HT(X,Y) is independent of the resolutions X
and Y and may be written as (RT)(4,C). These modules together with
the maps (RT)(f,g) yield a new (additive) functor R7, covariant in 4 and
contravariant in C. The values of RT are graded A-modules. The
components of degree » yield a functor R*T called the right n-th derived
functor of T. Since the complex T(X,Y) was positive, we have R*T = 0
for n < 0.

Let X be an acyclic right complex over 4 and Y an acyclic left complex
over C. We shall define a natural homomorphism

) H(T(X,Y))— RT(A4,C).

Indeed, let X’ be an injective resolution of 4 and Y a projective resolution
of C as used in defining RT(4,C). By 1.1 and 1.1a, there exist maps
F: X— X' and G: Y'— Y over the identity maps of 4 and C. Then
T(F,G) induces a homomorphism (2). Since, by 1.1 and 1.1a, Fand G are
unique up to a homotopy, it follows that (2) is independent of the choice
of Fand G.

Quite similarly if X is an injective right complex over 4, and Yis a
projective left complex over C, then we obtain a homomorphism

Q3) RT(4,C) — H(T(X,Y)).

PROPOSITION 3.1. If A is injective and C is projective, then RT(A4,C)
coincides with T(A4,C), i.e. R"T(4,C) = 0 for n > 0and R°T(4,C) = T(4,C).
If the functor T is exact, then the same holds for all modules A and C.

Proor. If A is injective then A (regarded as a complex) is its own
injective resolution. Similarly C, if projective, is its own projective
resolution. Thus RT(A4,C) = H(T(4,C)) = T(4,C).

Assume now that T is exact and let X be an injective resolution of 4
and Y a projective resolution of C. We consider the augmentations
€. A— X and u: Y— C as maps of complexes. Applying the homo-
morphisms «” of 1v,6 we obtain the commutative diagram

T(4,C)—> H(T(X,Y))
|
T(A%C) —> T(H(X),H(Y))

The vertical maps «’ are isomorphisms by 1v,7.2. Since 4 — H(X) and
H(Y)—C are also isomorphisms it follows that T(4,C)—H(T(X,Y))
= RT(A4,C) is an isomorphism.
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ProrosITION 3.2. If T is defined for modules over hereditary rings,
then R"T = 0 if n exceeds the number of variables in T.

Proor. Consider the case of 2 variables as above. Since 4 is a
module over a hereditary ring the injective resolution X of 4 may be
chosen with X™ = 0 for n > 1. Similarly the projective resolution Y of
C may be chosen with Y, = 0 for » > 1. Thus in the complex T(X,Y)
we have T7*(X,Y)= 0 for n > 2. Thus R*"T = 0 for n > 2.

In defining RT we took injective resolutions for all covariant variables
and projective resolutions for all contravariant variables. If instead we
take projective resolutions for all the covariant variables and injective
resolutions for all contravariant variables we obtain a functor LT = > L, T,
where L, T is the n-th left derived functor of T. We have L,T= 0 for
n < 0; the indices have been lowered to avoid negative numbers.

As before if X is an acyclic left complex over 4 and Y is an acyclic right
complex over C, we have the homomorphism

(22) LT(4,C) — H(T(X,Y)).

If X is a projective left complex over 4 and Y is an injective right complex
over C, then

(3a) H(T(X,Y))— LT(4,C).

PROPOSITION 3.1a. If A is projective and C is injective then LT(A,C)
coincides withT(A,C), i.e. L,T(4,C) = 0 forn > 0and LyT(A4,C) = T(4,C).
If the functor T is exact then the same holds for all modules A and C.

PRrROPOSITION 3.2a. If T is defined for modules over hereditary rings
then L,T = 0 if n exceeds the number of variables in T.

4. CONNECTING HOMOMORPHISMS
Consider a functor 7(4,C) as in 3, and let
¢)) 0+>4">A4—-4"-0
be an exact sequence. By 2.2 there exists a sequence
) 0-X'=>X—>X"—-0

which is an injective resolution of (1). Let further Y be a projective
resolution of C. Since for each degree the sequence (2) splits, it follows
that the sequence of complexes

0—>T(X",Y)—-T(X,Y)>T(X",Y)—>0
is exact. There result connecting homomorphisms
HYT(X",Y)) > H"(T(X",Y))
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which yield homomorphisms
3 R"T(A",C)— R™1T(4’,C).

The independence of (3) from the choice of (2) follows readily from 2.3.
We similarly define the connecting homomorphisms

©) R'T(A,C")— R"1T(4,C")
for each exact sequence
(5) 0-C'—-C—-C"—0.

PRrROPOSITION 4.1. Let

04 -4 —>A4"-0 0—->C;—C,—~C{—>0
A Py
0—>A;—> A, —~ A] —>0 0>C'-C —>C"—0

be commutative diagrams with exact rows. Then the following diagrams
are commutative.

R*T(A",C) — R™T(4’,C) R'T(4,C’) — R™T(4,C")
¥ v ¥ ¥
R*T(A",C) — R™T(4},C) R"T(4,C}) — R™T(4,C")
R'T(A",C) — R™T(4',C) R*T(4,C") — R™1T(4,C")
¥ ¥ ¥ v
R™'T(A",C,) — R™IT(4',Cy) R"T(4,,C")— R™T(4,,C")

The diagram
R"T(4",C’) — R™T(4',C")
R™1T (il",C”)—) R"+2%‘ 4',c")
is anticommutative. The sequences
6) ---— R'T(4',C)— R'T(A4,C)— R"T(A",C)— R"1T(4',C)— - - -
™ ---—R'T(4,C")—> R*T(A4,C) - R"T(A,C’")— R™T(4,C") — - -

are exact.

Proor. The first four commutativity relations are trivial consequences
of the definitions and of 2.3. The exactness of the sequences follows from
the fact that these are homology sequences of suitable exact sequences of
complexes. It remains to verify the anticommutativity relation.
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Let then 0 - X' — X — X" — 0 be an injective resolution of (1) and
0— Y — Y— Y"—0 a projective resolution of (5). There results a
commutative diagram

0 0 0
v v v
0->TX",Y)—>T(X,Y")—>T(X",Y")—>0
0— T(X",Y) > T(X,Y) > T(X",Y) =0
v v v
0>TX,Y)>T(X,Y)—>T(X",Y)—>0
¥ ¥ v
0 0 0
Thus 1v,2.1 yields the anti-commutative diagram
H"T(X",Y') — H"P'T(X",Y’)

H "+1T(,¢Y "Y)—~H "+2T(¢3(’, Y")
as desired.
An immediate consequence of 4.1 is
COROLLARY 4.2. RT is left exact. If R"'T = 0 then R"T is right
exact.

If we consider left derived functors, then (3) and (4) above are replaced
by
(3a) L,T(A",C)—~L,_,T(4",C)
(4a) L,T(4,C")— L, _,T(4,C")

Propositions 4.1 and 4.2 remain valid with the obvious formal changes.

PROPOSITION 4.3. Let X be an injective right complex over A and let
0— Y'— Y— Y"— 0 be an exact sequence of projective left complexes
over an exact sequence 0 — C'— C— C"— 0. Then the sequence
0—T(X,Y")—T(X,Y)— T(X,Y')— 0 is exact and the diagram

R"T(4,C") — R™T(4,C")

H "(T(AJ; Y)—H "+1(£"(X ,Y")
is commutative.
ProoF. Since 0— Y, — Y, — Y, — 0 splits for each n, it follows
that 0—>T(X,Y")—T(X,Y)—>T(X,Y')—0 is exact. Let 0—~Z'—>Z—Z"—>0
be a projective resolution of 0 -~ C’— C— C”"— 0. Then by 2.3 there
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exist maps F’, F, F” over the respective identity maps, which yield a
commutative diagram

0 Y’ Y Y’ 0

-l
0 z’' z z’ 0
This implies the commutativity relation above.
Proposition 4.3 is only an example of similar propositions with other

variances and with left derived functors. We leave it as an exercise to the
reader to state and prove some of these.

The functors RT = {R"T} and LT = {L,T} are examples of what we
shall call multiply connected sequences of functors. We consider a sequence
of functors {T™}, all of the same variables and the same variance. We
suppose that with respect to each variable we have given connecting
homomorphisms such that, (1°) with respect to each variable separately
{T"} is a connected sequence of functors, (2°) with the notation of 4.1 the
diagrams

T"(4",C) — T™(4’,C) TYA,C’) — T™1(4,C")

v v v
T™(A",Cy) — T™(4’,Cy) T"(4,,C") — T"(4,,C")

are commutative. We then say that {T"} with the given connecting homo-
morphisms constitute a multiply connected sequence of functors. We do
not postulate any anticommutativity relation between the connecting
homomorphisms for the different variables. If, with respect to each
variable, the connecting homomorphisms yield exact sequences like (6)
and (7), then we say that the multiply connected sequence {7} is exact.

Let {T"}, {U"} be two multiply connected sequences of functors. A
homomorphism ®: {T"}— {U"} is a sequence of natural transformations
®": T" — U™ which properly commute with the connecting homo-
morphisms.

An example of such a homomorphism can be obtained by considering
a natural transformation ¢: T— U of functors. If X and Y are
appropriate resolutions of the variables 4 and C of T and U, then ¢
induces homomorphisms 7(X,Y)— U(X,Y) which in turn induce homo-
morphisms of the homology modules R"T(A4,C)— R"U(A,C). These
clearly commute with the connecting homomorphisms. The same applies
to the left derived functors.

PROPOSITION 4.4. (Isomorphism criterion.) Let ®: {T"}— {U"} be
a homomorphism of multiply connected exact sequences of functors. We
assume that ®°: T°-— U° is a natural equivalence.
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If the homomorphism
®) T"Ay, ..., A)=>U" (4, ..., A)

is an isomorphism whenever n >0 and all the covariant variables are
injective and all the contravariant variables are projective, then (8) is an
isomorphism for n > 0 and for any variables.

Similarly if (8) is an isomorphism for n < O whenever all the covariant
variables are projective and all the contravariant variables are injective,
then (8) is an isomorphism for n < 0 and for any variables.

Proor. We shall only consider the case n > 0. Let p be the number
of variables in T" and U”. We first consider the case p = 1. Assume
that the functors are contravariant and that we already have shown that
®*: T°— U* yields isomorphisms for 0 < i <<n. Consider an exact
sequence 0 -~ M — P — 4 — 0 where P is projective. We obtain a
commutative diagram

T"Y(P) — T™Y(M) — T"(4) — T"(P) — T"(M)
P Py (2% [} l‘Ps

UmI(P) — U™ (M) — U™(4) — U"(P) — U™(M)

with exact rows. We know that ¢,, ¢,, @, are isomorphisms. This
implies by 1,1.1 (the ““5 lemma”’) that ¢, has kernel zero. Since this holds
for all A4 it follows that ¢ also has kernel zero. Thus by another applica-
tion of the “5 lemma” ¢; is an isomorphism.

The case when the variable A4 is covariant is treated similarly using an
exact sequence 0 - 4 — Q — N — 0 with Q injective.

Suppose now that the proposition is already established if the number
of variables is p — 1. Suppose now that 7" and U™ are functors of p
variables and that the last variable is contravariant. We replace the last
variable 4, by a fixed projective module and treat 7" and U™ as functors of
the p — 1 remaining variables. It follows from the inductive hypothesis
that (8) is an isomorphism in this case. We now fix the variables
Ay, ..., A,y and regard T" and U™ as functors of A, alone. Since (8)
is an isomorphism whenever A4, is projective, the result follows from the
case p = 1 already treated.

PROPOSITION 4.5. Let {T"} be an exact multiply connected sequence of
Sfunctors. If the exact sequence 0— A’ — A — A" — 0 splits, then the
connecting homomorphisms relative to this sequence are zero.

PrROOF. Assume that A is a covariant variable of 7, then (omitting all
other variables) we know that T"(4) — T™(4") is an epimorphism and
T™+(A’) — T™1(A) is a monomorphism. Consequently 77(4")—~T"+{(4")
is zero. v
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5. THE FUNCTORS R°T AND L,T

Let X be an injective resolution of 4, and Y a projective resolution
of C. The augmentation maps 4 — X, ¥ — C induce a map

T(4,C) — T(X,Y)

where 4, C and T(4,C) are regarded as complexes consisting of elements
of degree O only. There results a natural transformation

79: T— ROT.

PROPOSITION 5.1.  The map +° is a natural equivalence if and only if T is
left exact.

Proor. By 4.2, RT is left exact, thus if 7°is an equivalence, then T
alsoisleftexact. Supposenow that T'isleft exact. By 11,4.3a the sequence

0— T(A’C)°’> T(X09 YO)_> T(Xla YO) + T(X(): Yl)

is exact. However the kernel of the last homomorphism is precisely
H'T(X,Y)= R°T(A,C). Thus 7° is an isomorphism.

PROPOSITION 5.2. Let T be a léft exact functor. Then T is exact if
and only if R'T = 0.

Proor. If T is exact, then RIT= 0 by 3.1. If R!T = 0 then, by
4.2, RT is exact so that T is exact by 5.1.

THEOREM 5.3. The mapping R"1°: R"T — R"R°T induced by
7. T— R°T is an equivalence for all n > 0.

Proor. We first consider the case n=0. We observe that R0
coincides with the mapping 7°: R°T — R%(R°T). Since R°T is left exact,
it follows from 5.1 that this map is an equivalence.

Next we observe (using 3.1) that both R*R°T and R"T yield zero if
n > 0 and all covariant variables are replaced by injective modules and all
contravariant variables by projective modules. Since R"7° is a map of
multiply connected sequences of functors, the conclusion follows from the
isomorphism criterion 4.4.

If X is a projective resolution of 4 and Y is an injective resolution of C
then the augmentations X — 4 and C — Y yield a map T(X,Y) — T(4,C)
thus defining a natural map

oy: Ly;T—T.

PROPOSITION 5.1a. The map o, is an equivalence if and only if T is right
exact.

PROPOSITION 5.2a. Let T be a right exact functor. Then T is exact if
and only if L,T = 0.

THEOREM 5.3a. The mapping L,oy: L,L,T — L,T induced by
6y: LyT— T is an equivalence.
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Theorem 5.3 shows that the right derived functors are of real interest
only if T is left exact. Indeed R"T may always be replaced by R"T’ with
T’ = R°T which is left exact. Similarly the left derived functors are
mainly interesting for functors which are right exact.

RemARK. If we regard T as a connected sequence of functors with the
functor T in degree zero and the zero functor in all other degrees, then
7% and ¢, may be regarded as homomorphisms of connected sequences of
functors

0Oy To
LT— T— RT.

6. COMPARISON WITH SATELLITES

In this section we limit ourselves to functors of one variable.
THEOREM 6.1.  The natural maps

6yt Ly T—T, 7% T— RT
admit unique extensions to maps
o,: L,T—S,T, 7 S"T— R"T

of connected sequences of functors. If T is right exact, then o, is an iso-
morphism; if T is left exact, then T is an isomorphism.

Proor. The existence and uniqueness of ¢, and 7" follow from
m,5.2. If T is right exact, then g, is an isomorphism by 5.1a, and 4.4
implies the same for ¢,. Similarly if T is left exact.

PROPOSITION 6.2. If the ring A is hereditary, then o, and " are iso-
morphisms for n > 1.

Proor. We first prove that L,7= 0= S, T for n > 2, and similarly
ST = 0= R"T for n>2. Assume for example that T is covariant;
then each module 4 has a projective resolution of the form

0= X;—> X,—>A4—0;
it follows that L,T(4) = 0 for n > 2. Moreover, we have
S.T(A4) = Ker (S, T(X)) = S, T(Xy)),

and S,_,T(X;) = 0 for n > 2, since X, is projective. The proof is similar
for the other cases. It remains now to be proved that

o, LiT— S,T and 7': SIT— R'T

are isomorphisms. We shall give the proof for ¢y, assuming T covariant
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Consider the commutative diagram

LL,T— S,L,T
LT — ST

where # and y are induced by o,: L,T— T, and « is the homomorphism
o, applied to the functor L,T. Since, by 4.2, L,T is right exact, it follows
from 6.1 that « is an isomorphism. By 5.3a, § is an isomorphism. In
order to prove that o, is an isomorphism, it suffices to show that y is an
isomorphism. Consider the commutative diagram

0— SlLolT(A) — LyT(X;) — LT (X,)
4 u v

0— ST — T(X) — T(Xy)

Since X; and X, are projective, # and v are isomorphisms by 3.1. The
conclusion follows.
PROPOSITION 6.3.  For any functor T and any n,

R"S'T = 0, L,S,T=0.

ProOF. Assume T covariant, and let X be an injective resolution of 4.
Then R*S'T(4) = H™(S'T(X)). Since X" is injective, we have ST(X™)
= 0 for any n; thus R*S'T = 0. The other cases are proved similarly.

7. COMPUTATIONAL DEVICES

We shall give here a number of propositions which will be useful in
computing the derived functors or the connecting” homomorphisms.
All the propositions here being auxiliary in nature, we shall limit ourselves
to stating only the cases needed in the sequel. Restatements for other
cases are left to the reader.

Let X be a projective resolution of 4. Given i >0 we denote
AY =Im (X; — X,_;). We then obtain exact sequences

) 0>AD > X, ;—>--+—=>X;—>A4—>0,
2) e X, > X, > AD 0.

We may regard the sequence (2) as a projective resolution X¥ of 4 with
augmentation ¢: X; — A4 induced by the map X; - X, ;. Of course,
the sequence (2) needs to be renumbered, before it may be regarded as a
projective resolution of 4. There is a natural mapping

3) X—>X®
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which maps the module X,, of X identically into the module X, of X for
n 2> i, and maps X, into zero for n <<i. The map (3) thus lowers the
degree by i and commutes with the differentiation.

ProposITION 7.1. Let T be a contravariant functor in one variable.
With the notations above the sequence (1) induces an iterated connecting
homomorphism

6: R"T(AY) — R"HT(A)
While the map (3) induces a homomorphism

y: R'T(AY) — R™T(A).
These maps are related by the rule

8= (—1)ty, =i GED

2

Proor. We first consider the case i = 1. We construct a projective
resolution
0> XV>Y—>X—>0
of the exact sequence
0> AV > X,;—> A0

given by the following diagram:
0— Xn+2_—> Xn+2 + Xn+1 - X’IH‘].—_’ 0

J2 l |2

0O—X,u—XntX, —X, —0

l l l
0—X, — X,+X, —X, —0

o

0— A — X, — A4 —0
The horizontal maps are
Xpp1 = (X541,0), X1 X) > X, 120, X, € X, X,€X,.
The vertical maps in the middle column (i.e. in the complex Y) are
(Xni2sXpi1) = (@i + (— 1D, 0,d%,41) nz=0

7(x1,%0) = dx; + Xo.
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If we apply the functor T to this diagram (reversing all arrows) and com-
pute the connecting homomorphism H"(T(XV))— H™Y(T(X)) we find
that the result differs from the homomorphism induced by X — X' by the
sign (—1)"*1. This is the desired result for i = 1.

The general case now follows easily by induction. The connecting
homomorphism ¢ and the map y both admit factorizations

RMT(A®) —> R™T(AW) —» R*T(4), i>1,
and we already know that
8 = (—1)y’, 8" = (—1)yr+iy”, t'=n(i—1)+ @ _2 i,
This implies the final result.
PROPOSITION 7.2. Let
O] 0> X,—>- +—>Xy—>A4—>0 n>0
be an exact sequence with X, _,, ..., Xy projective. If T is a covariant

Jfunctor of one variable, then the iterated connecting homomorphism yields
isomorphisms

L, ,T(4) ~ L, T(X,) forp>0
and the exact sequence

0—L,T(4) — LyT(X,) = L,T(X,_y) for p=0.
For T contravariant, we have the isomorphisms
R*T(X,) ~ R**"T(A) forp>0
and the exact sequence
R°T(X,_,) — RT(X,) = R"T(4)— 0 for p=0.

Proor. For n= 1, the conclusions follow directly from the exact
sequences for the derived functors. For n > 1 webreak the sequence (4) into
exact sequences 0~ X,—X,,_;—~>X, _;—>0and 0—=>X, ,—- - - —>X;—>4—>0.

Applying 7.2 to each of these sequences separately yields the desired result.
PROPOSITION 7.3. Let

0=>X,—»> > X,—>A4—>0, 0-C—>Y'—...—>Y"=0

be exact sequences with X, ,,..., X, projective and Y™',...,Y°
injective. We denote by X and Y the acyclic complexes over A and C given
by these exact sequences. 1f T(A,C) is a left exact functor contravariant in
A and covariant in C, then the natural homomorphism (v,3,(2))

HYT(X,Y)) - R*T(4,C)

is an isomorphism for k < n.
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PrOOF. Let X be a projective resolution of 4 such that X, = X, for
k < n. . Similarly let ¥ be an injective resolution of C such that Y* = Y*
for k < n. There result exact sequences

0> X'—->X—>X—0, 0—>Y>Y—=Y -0

where X' and Y’ are acyclic complexes and X; = 0= Y'*for k < n.
Since T is left exact, 11,4.3a yields an exact sequence

0—T(X,Y)— T(X,Y) > T(X".¥) + T(X,Y").

If we denote by N the cokernel of T(X,Y)— T(X,Y) we obtain exact
sequences

) 0->T(X,Y)—>T(X,Y)—>N—>0
(6) 0> N—>T(XY)+ T(X,Y").

The desired isomorphisms H*T(X,Y) ~ H*T(X,Y) for k < n will follow
from the homology sequence of (5), if we prove that H*(N) = 0 for k < n.
For k << n this follows from the fact that O is the only homogeneous
element of N of degree << n. To show that H"(N) = 0 it suffices to show
that the differentiation N* — N™*1is a monomorphism. In view of (6) it
suffices to prove the same fact about the complex Z = T(X "Y)+ T(X,Y).
The component of degree n in Z is T(X,,Y°) + T (X°,Y'™). Since
X,.1—> X,—>0and 0— Y'"— Y'™?! are exact and T is left exact it
follows that

0 T(X,, 70 > T(X, 1,79,  0—T(Xo,Y'")>T(X,,Y'™)

are exact. This proves that Z" — Z"*1 is a monomorphism.

8. PARTIAL DERIVED FUNCTORS

Let T be a functor of p variables, some of which covariant, some
contravariant. Let s be a subset of {l,...,p}; the variables whose
indices are in s will be called active, the others will be called passive. If
we fix al] the passive variables, we obtain a functor T for which we may
consider the derived functors R"T,; more explicitly these derived functors
are the homology modules of the complex obtained from T by taking
injective resolutions of the covariant active variables, projective resolu-
tions of the contravariant active variables, and leaving the passive variables
unresolved. We shall denote these partial derived functors by R;T, and
will regard them as functors of all the variables, both active and passive.

The homomorphism (2) of § 3 yields natural transformations

) R'T— R°T.
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These homomorphisms commute with the connecting homomorphisms
with respect to each of the active variables.

THEOREM 8.1. Given any functor T, the following conditions are
equivalent:

(a) The mapping (1) is an isomorphism for any n > 0.

(b) If all the covariant active variables are replaced by injective modules
and all the contravariant active variables are replaced by projective modules,
then T becomes an exact functor of the passive variables.

Proor. (a) =-(b). If we replace the active variables as stated in (b),
then, by 3.1, R®T =0 for n>0 and T ~ RT; thus (a) implies that
R*"T = 0forn > 0and T ~ R°T, hence T becomes an exact functor of the
passive variables.

(b) = (a). We shall prove first that R9T— R°T is an isomorphism.
Denote simply by one letter 4 all active variables, by one letter C all
passive variables, by one letter X a set of resolutions of all active variables,
by one letter Y a set of resolutions of all passive variables (injective
resolutions for covariant variables, projective resolutions for contravariant
variables). Then T(X,Y) may be regarded as a double complex over
T(4,C), with two differentiation operators d,, d, corresponding respectively
to the set X and to the set Y. Consider the commutative diagram

&0 4990
0—— T%X,C) —— To%X,Y) —— T%YX,Y)

0 0,0
dl dl,
1

0 — TY(X,C) — T X,Y)
By (b), the rows are exact. This implies that &) induces an isomorphism
RYT(4,C) = Ker d° ~ Ker d2° M Ker d%° = RT(4,C).

It remains now to be proved that R?T— R"T is an isomorphism for
n>0. We regard {R"T} and {R?T} as multiply connected sequences of
functors in the active variables. Ifn > 0 and all covariant (contravariant)
active variables are injective (projective), then both R™T and R}T yield
zero. It therefore follows from the isomorphism criterion 4.4 that (1) is
an isomorphism.

For another proof of the part (b) =~ (a), see Exer. 6.

Now let 7 be another subset of {1, . . ., p}, containing s. The homo-
morphism (1) admits a factorization

@ R'T — R'T - R"T

If (1) is an isomorphism, then it follows from 8.1 that the same is true for
RYT — RIT and R}T — R"T.
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The connecting homomorphisms of R?T with respect to a passive
variable are in general not defined. However, if the conditions of 8.1 are
satisfied, then (1) is an isomorphism, and we can define these connecting
homomorphisms using those of R*T. We shall now show how under these
conditions these connecting homomorphisms can be expressed directly.
In view of the factorization (2), it suffices to consider the case when there
is only one passive variable. Suppose this variable 4 is covariant, and let
A’ denote all the remaining (active) covariant variables, and C denote all
the (active) contravariant variables. Let 0— 4, - 4 — 4,— 0 be an
exact sequence; let further X’ be an injective resolution of 4’, and Y a
projective resolution of C. It follows from the condition of 8.1 that the
sequence

0—>T(4,X,Y)—> T(4,X',Y)—> T(4, X', Y)—> 0
is exact, and therefore yields a connecting homomorphism
R}T(A,,A',C)— RI1IT(A4,,4,C).

It remains to show that this connecting homomorphism is the one obtained
from the connecting homomorphism of R"T using the isomorphism (1).
To this end we choose an injective resolution 0 — X; — X — X, — 0 of the
sequence 0 — A; — A — A, — 0 (see 2.2). There results a commutative
diagram with exact rows

0—>T(4,X,Y)—> T(4,X",Y)— T(A4,,X",Y)—~ 0
0— T(XiX', Y)—> T(X,J:Y’, Y)— T(X, X', Y)—0
Passing to homology, we obtain the commutative diagram
R}T(A,,A",C)— RT(A1,4°,C)
R"T(Aj,A’,C) — R™IT ELAI,A',C)
which proves our assertion.

In view of 8.1 we introduce the following definition. A functor T will
be called right balanced if (1°) when any one of the covariant variables of
T'is replaced by an injective module, T becomes an exact functor in the
remaining variables; (2°) when any one of the contravariant variables in T
is replaced by a projective module, T becomes an exact functor of the
remaining variables.

It follows from 8.1 that for a right balanced functor, the derived functors
R"T may be identified with the partial derived functors R{T taken with
respect to any non empty set s of active variables.
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A similar discussion applies to left derived functors. The mapping (1)
is replaced by

(1a) L,T(4,C)— L:T(4,C)

in 8.1 and in the definition of a left balanced functor, we interchange the
words “projective’ and “injective’” throughout.

It will be shown in the next chapter that 4 ® C is left balanced and
Hom (4,C) is right balanced. We know no balanced functors that are
not obtained in a trivial way from these two. In particular, we have no
example of a balanced functor of three variables.

9. SUMS, PRODUCTS, LIMITS

Let
iy 2
(4)) A,—A— A4,
J q
Q) ¢, 22,

be direct families as defined in 1,1. Then as we have already seen in the
proof of 11,1.1, we obtain a direct family

T(iu’qﬁ) T(pa’ jﬂ)
T(4,C) —— T(4,,C;).

©)] T(4,,Cy)

We recall that as usual T is assumed covariant in 4 and contravariant in C.
We introduce the following four types of functors:
Type LX—if (1) is a direct sum and (2) is a direct product, then (3) is a
direct sum.
Type RII—if (1) is a direct product and (2) is a direct sum, then (3) is a
direct product.
Similar definitions can be made for functors with any number of
variables.

PrOPOSITION 9.1.  The functor Hom, (4,C) is of type RII.
ProoF. We assume that (1) is a direct sum and (2) is a direct product.
We must show that the direct family

Hom (p4,ip) Hom (iy,2p)
Hom (4,C)

(4)  Hom (4,Cy) Hom (4,,C)

isadirect product. Letg,; ¢ Hom (4,,C;) be a family of homomorphisms.
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Letae A. Since(1)is a direct sum we havea = Ji.a,, a, € A, and onlya
finite number of a,’s is = 0. Since (2) is a direct product, there is for
each a, a single ¢, e C with g4c, = @ 4a,. Setting pa= >c, yields a
homomorphism ¢: 4 - C with gspi, = @,5. The uniqueness of ¢
is clear from the construction. This proves that (4) is a direct product
representation.

PROPOSITION 9.2. The functor A ® 5 Cis of type LX.

Proor. Let (1) and (2) be direct sum representations. Since each
element of 4 ® Cis a sum of a finite number of elements of the forma @ ¢
and since a and c are finite sums a = >i.a,, ¢ = > jsc;, it follows that each
element of 4 ® Cis a finite sum of elements of the form (i, ® js)(a, ® cp).
This proves that

4,0C;>4QC—>A4,QC

is a direct sum representation of 4 ® C.

Next we consider the functors Z(4), Z'(4) and H(A), where 4 is a
module with differentiation or a complex. Let

) A,— A— 4,

be a direct family. Then
Z(iy) Z(pa)

) Z(4,) Z(4) Z(4,)
Z'Gy) Z'(py)

©) Z'(4,) ZW)——2Z'(4,)
H(i) H(py)

® H(4,) H(A) H(4,)

also are direct families. It is trivial to verify that if (5) is a direct sum or
direct product representation, then the same is true for (6)-(8). We thus
obtain

PROPOSITION 9.3.  The functors Z,Z’ and H are of type LY. and RII, in
other words the functors Z,Z' and H commute with dircct sums and direct
products.

THEOREM 9.4. If the functor T is of type LZ or LIl then the same is
true for the left derived functors L,T. If T is of type RZ or RII then the
same is true for the right derived functors R"T.

ProOOF. Assume that (1) is a direct sum representation. Let X, be a
projective resolution of 4, and let X be the direct sum of the complexes X,.
Clearly we may regard X as a left complex over 4. By1,2.1, Xis projective,
and, by 9.3, Xisacyclic. Thus Xisa projective resolutionof 4. Similarly
if (2) is a direct product representation and Y, are injective resolutions of
Cj, then the direct product Y of the complexes Y, is an injective resolution
of C.
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Suppose now that T is of type LZ (or type LII). Then
T(Xw Yﬁ) - T(X3 Y) g T(Xw Yﬁ)

is a direct sum (or direct product) representation. By 9.3, the same applies
to
H(T(X,,Yy) > H(T(X,Y)) > H(T(X,, Yp))
i.e: to
LT(A,,Cp) — LT(A,C) — LT(A4,,Cp).

The second half of 9.4 is proved similarly.

REMARK. The analogue of 9.4 holds also for satellites of functors of
onevariable. If T'is of type LY or LII then the same holds for S, T, n > 0.
If T'is of type RZ or RII then the same holds for ST, n > 0.

Part of the results established above carries over with direct sums
replaced by direct limits and direct products replaced by inverse limits.
Let 4 = Lim 4, be a direct limit of modules 4, and let C = Lim C; be an

inverse limit of modules C;. Then 7(4,,C;) forms a direct system of
modules and we have a natural homomorphism

Lim T(4,,C;) — T(4,C).

If this homomorphism always is an isomorphism we say that the functor
T is of type LX*. Similarly if 4 = Lim 4,, C = Lim C, then T(4,,Cp)

forms an inverse system of modules and we have

T(4,C) — Lim T(4,,Cp).

If this map always is an isomorphism, we say that T is of type RIT*.

PROPOSITION 9.1*.  The functor Hom, (4,C) is of type RII*.

Since this proposition is not used in the sequel, the proof is left as an
exercise to the reader.

PROPOSITION 9.2%.  The functor A @, C is of type LX*.

Proor. Let A4 be the direct limit of the modules A4, with the maps
Quo: Ag—> A, fora < a'. Similarlylet C= Lim Cp with yg.5: Co—~>Cp
for § < p’. The modules 4, ® C; with the maps ¢,, ® yp, form a
direct system of modules indexed by pairs («,8) with direct limit D. The
maps ¢, Q@ ys: 4, @ C4~>A Q Cinduceamap u: D4R C. We
must show that u is an isomorphism (onto). To this end we shall define a
map &: 4 ® C— D and show that u& and &u are identity maps. Let
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xeA,yeC. Thereexistthenindices « and § such that x = @.(x,), y = y;(cp)
for some x, € 4,, yg € Cp. Let y,5: A, ® C5— D be the natural pro-
jection. Then the element u(x,y) = ¥, 4(x, ® ys) € D is independent of
choice of ,f3,x,,y 5. Further u(x,y)is bilinear and satisfies u(x4,y) = u(x,Ay)
for 2¢ A. Thus there exists a unique homomorphism §: 4 @ C— D
with &(x ® y) = u(x,y). The verification that uf and &u are identity
maps is trivial.

PROPOSITION 9.3*.  The functors Z,Z' and H are of type LE*, i.e. they
commute with direct limits.

PROOF. Let A be the direct limit of modules with differentiation A4,
with maps ¢,,: A4, — A4,. Then the modules H(A4,) with maps H(g,,)
form a direct system of modules with limit D. The homomorphisms

H(g,): H(4,)— H(A4)

yield a map u: D — H(A) which we shall show is an isomorphism.

Let a € H(A) and let x € Z(A) be an element of the coset a. There is
then an index « such that x=g¢,_x, for some x, € 4,. Since O=da=dgp,x,
= @,dx, thereis anindexa’ > « such that ¢, dx, = 0. Setting x =@, .,
we have dx, = 0 so that x, determines an element of H(A4,) which in
turn determines an element &£(a) of D. It is easy to see that &(a) is inde-
pendent of the choice of x,x,a etc. and yields a map &: H(4) — D which
is the inverse of u. The proofs for the functors Z and Z’ are similar but
simpler.

ReMARK. The functor Z is also of type RII*, however the functors
Z’ and H are not of type RII*, i.e. do not commute with inverse limits.

THEOREM 9.4*. If T is a covariant functor (in any number of variables)
of type LE*, then the same is true of the left derived functors L,T.

The proof is an immediate consequence of

LEMMA 9.5*%. IfA= Lim A, then there exist projective resolutions X,

of A, forming a direct system such that X = Lim X is a projective resolution
—_—

of A.

Proor. Let X, , be the free module F, generated by the elements of
A,,andlet X, = F,. The maps ¢,,: A4,— A, induce maps X, , —> Xj
and X, may be identified with the limit Lim X;,. Let R, be the kernel of

the natural map X,,— 4,. Then R, forms a direct system of modules
with R = Ker (X, - A) as limit. We now repeat the argument with 4,
replaced by R,. The complexes X, are thus constructed by iteration.

ReMARK. The reason why we restricted ourselves to covariant
functors in 9.4* is that we have no analogue of 9.5* for injective resolutions
and inverse limits.
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10. THE SEQUENCE OF A MAP

Let f: T— U be a natural transformation of functors. As usual, we
shall treat the case when T and U are functors of two variables covariant
in the first and contravariant in the second. We denote by £ the map

fi LiT—RU

obtained from the commutative diagram

L,T—> T — R°T

Lo

L,U—— U—— RU

and introduce the functors
Lyf= Ker f, R = Coker f.

The sequence of functors
¢)) ..., L,T,...,LiT,L,f, R%, R'U, ..., R"U,..

will be called the derived sequence of the map f.
Before we define the connecting homomorphisms in the sequence (1) we

establish the following
Lemma 10.1. Consider a commutative diagram

S :

0 —By—By— By—> B;— B, —> B] — - ..
-with exact rows. Denote

;10 = Ker ¢, 1730 = Coker ¢.
and similarly with ' and ". Then with the connecting homomorphism
Ay — By defined in m,3 the sequence
cor> Ay > Ay —> Ay~ Ag—> Ag— Ag — By~ By— By — B~ B,
—~ B —>---

is exact.
Indeed, the exactness of Ag— 4, — A, — By — B,— B, is asserted
by 1m1,3.3. The remaining parts of the proof are trivial.

Now consider an exact sequence 0 —~ 4" — 4 — 4" — 0. We obtain a
commutative diagram
o> L, T(A",C) — LyT(A’,C) - LyT(A,C) — L,T(A4",C) — 0

v ¥ ¥ ¥ ¥
0 - ROU(4’,C) — ROU(A4,C) — RU(A",C) — R*U(A",C) —> - - -
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withexactrows. Applying 10.1 to the above diagram we obtain connecting
homomorphisms for the sequence (1) (with respect to the first variable).
Moreover these connecting homomorphisms yield an exact sequence for
each exact sequence 0— A’ — 4 — 4" — 0. The same applies to the
second variable. We thus obtain

PRrOPOSITION 10.2. The derived sequence (1) of a map f: T— Uis a
multiply connected exact sequence of functors. '

Naming (1) a connected sequence of functors is not quite precise since
the functors are not properly indexed. However, it is clear that they can
be so re-indexed. Any such re-indexing would destroy the notational
symmetry between left and right derived functors, and because of this we
prefer to leave (1) with its indices as they are.

Let '

r-1.u

0| v
T —— U’
g

be a commutative diagram of natural transformations of functors. Then
the pair (,p) defines a map of the derived sequence of f into that of g.

ProrosiTioN 10.3.  Suppose that ¢: T(4,C)— T'(4,C) is an iso-
morphism whenever A is projective and C is injective, and that
y: U(4,C)— U'(4,C) is an isomorphism whenever A is injective and C is
projective. Then the pair (p,y) induces an isomorphism of the derived
sequence of f onto that of g.

ProOF. By 4.4, the hypotheses imply that ¢ and y induce isomorphisms

LT~ L,T, R"U ~ R"U".
This implies the result.

In the special case of the identity map f: T— T we introduce the
notation

L,T = Ker (L,T— R°T), R°T = Coker (L,T— R°T).
The derived sequence is then
o) ...,L,T,...,L,T,L,T, RT, R'T, ..., R"T, . .

and is called the derived sequence of the functor T.

We now turn to the problem of computing the derived sequence of a
map f: T— U using resolutions of the variables.

Let X be a left complex over a module 4, Y a right complex over a
module C and let ¢: 4— C be a map. We denote by (X,p,Y) the
complex
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where X, —> 4 %> € — Y is obtained by composing ¢ with the augmen-
tation maps. Strictly speaking, (X,p,Y) is a complex only after the
modules are renumbered.

PROPOSITION 10.4. Let 0— X' — X — X" — 0 be an exact sequence
of left complexes over the exact sequence 0— A'—> A— A"—0, let
0— Y — Y— Y"— 0 be an exact sequence of right complexes over the
exact sequence 0 — C'— C— C" — 0 and let

0— A" —A—A4"—0
lr o o
0—C'—C—C"—0
be a commutative diagram. Then the homology sequence of the exact
sequence

0—- X9, Y)> (X,,Y)—> (X",¢",Y") =0
coincides with the exact sequence obtained from the diagram

s Hi(X)— Hy(X")— Hy(X') — Hy(X)— Hyf(X")— 0

v ¥ v v v
0 —HYY')—>HY(Y)~> HYY")— HY(Y’)
— HY(Y)—>. ..

using 10.1.
Proor. Clearly H,(X)= H,(X,p,Y) and HY(Y)= H"(X,p,Y) for
n> 0. Furthermore

Hy(X,p,Y)= Ker (X, — Y%/ Im (X; > X,)
= Ker (X,/ Im (X; = X,) = Y°)
= Ker (Coker (X; = X,) — Ker (Y°— Y1)
— Ker (Hy(X)—> HY(Y)),

and similarly H%(X,,Y) coincides with Coker (Hy(X)— HYY)). It
remains to be verified that the connecting homomorphisms agree. The
only one for which this fact is not evident is the connecting homomorphism

(3) HO(X”’¢”, YII) — HO(X’,wl’ Yl)l
By definition (see 1v,1) this homomorphism is defined from the diagram

Zo(X' ¢ Y) > Zy( X9, Y) > Zo( X" 9", Y") = 0

\ ¥ )
0—>Z%X",¢",Y)—>Z%X,p,Y)— Z%X",¢",Y")
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This diagram is identical with
Hy(X") > Hy(X)— Hy(X") >0
v v v
0— HYY')—~ HY)— HY(Y")
which proves that (3) coincides with the connecting homomorphism
obtained by 10.1.

We now return to the map f: T—> U. Let X, X be respectively
projective and injective resolutions of a module 4, and Y, Y similar resolu-
tions of a module C. It follows from 10.4 that the complex
@ (T(X.Y),LUX, Y))
has as homology groups the values of the derived sequence of f for the pair
(4,C). It further follows from 10.4 that the connecting homomorphisms
also may be computed by this method. If the functor T is left balanced
then in T(X,Y) in (4) we may replace X by 4 or ¥ by C. Similarly if U
is right balanced, then in U(X, Y) in (4) we may replace X by 4 or Y by C.

EXERCISES
1. Let
= X, > X, == X > Xy > A4—0

be a projective resolution of a module 4, and let Z,, denote the image of
X,.1— X,, as in the proof of 1.2. If T is a covariant functor of one
variable, prove that

S,T(4) = Ker (T(Z,_y) — T(X,_y), n=1

L,T(4) = Ker (T(X,) = T(X,_))/Im (T(X,.1,) = T(X,))-
Then T(X,) - T(Z,_,) induces a map
L,T(4)— S,T(A), n>1.

Prove that this map is ¢,, as defined in 6.1. Prove again that o, is an
isomorphism, whenever T is right exact, or whenever A is hereditary.

Examine the other similar cases.

2. Let T be a covariant, half exact functor of one variable (11,4).
Given an exact sequence 0 —~ 4 — Q — N — 0 with Q injective, establish
an isomorphism

S18,T(A) ~ Ker (T(4) — T(Q)).
Then prove that
Ker (T(A4) - T(Q)) = Ker (T(4) — R°T(4)),
and deduce an exact sequence of natural transformations of functors
0— S18,7— T— R°T.
If T is contravariant and half exact, the same sequence is obtained.
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3. Apply Exer. 111,5 to the exact sequence of Exer. 2. There results an
exact sequence
0— S'§,T— T — R°T — S2§,T— - - -

coo—> SIS T— S"T— R*T — S™25,T— - - -

valid for any half exact functor T of one variable.
Establish the dual exact sequence.
4. If T is a right exact functor of one variable, then

R'T ~ S™2L, T forn > 0,
and there is an exact sequence
0— SUL,T—T— RT— S?L,T—0

[Hint: observe that L,T ~ S;T, and S"T = 0 for n > 0.]
Give the dual statements.
5. If T is a half exact functor of one variable, then for n > 0

S"S,S'T ~ S"T.

[Hint: replace T by ST in the exact sequence of Exer. 3.]

6. Give an alternative proof of the part (b) => (a) of theorem 8.1, by
applying Exer. 1v,7 to the map T(X,C) — T(X, Y).

7. Let T(A4,C) be a right balanced functor of two variables, contra-
variant in A4, covariant in C. Replacing 4 by a projective resolution X,
and C by any acyclic right complex Y over C, prove that

R*T(A4,C) ~ HYT(X,Y)).

(Use Exer. 1v,7 as in Exer. 6.) Examine the case when X is any acyclic
left complex over A4, and Y as an injective resolution of C. Examine the
case of a left balanced functor; example: 4 ® C.

8. Consider an exact sequence

1) 0= X,—> - > X,—>A4—>0

which may be regarded as an acyclic complex X over 4. For each
contravariant functor T of one variable, there results a homomorphism

T(X,) — H"T(X)

R'T(X,) > R'T(4)

where 4 is the iterated connecting homomorphism corresponding to the
sequence (1). Show that this diagram is commutative or anticommutative
depending on whether n(n 4+ 1)/2 is even or odd. [Hint: use 7.1.]

9. Let T be a half exact covariant functor of type LX* (i.e. commuting
with direct limits). If T(A/I) = O for every (left) ideal 7 of A, then T = 0.



CHAPTER VI

Derived Functors of @ and Hom

Introduction. The methods of Ch. v are applied to the functors
A ® C and Hom (4,C). The left derived functors of 4 ® C are denoted
by Tor, (4,C); the right derived functors of Hom (4,C) are written as
Ext" (4,C). These are also the satellite functors with respect to each of
the variables 4 or C. The particular notation chosen will be justified in
vi,4 and x1v,1.

The notion of the projective dimension of a A-module 4 is introduced
in §2 and will be of considerable use later. It is analogous with the
topological dimension of a space defined by homological methods. There
is also the notion of injective dimension for a module and the notion of a
global dimension for a ring. The semi-simple rings are precisely those of
global dimension zero; the hereditary rings are precisely those of global
dimension <1.

In § 3 we return to a more detailed study of the Kiinneth relations of
1v,8. In §4 we return to the questions concerning the “change of rings”
initiated in 1,6. These results will be applied to homology theory of
groups (x,7) and of Lie algebras (x11,4).

1. THE FUNCTORS Tor AND Ext

In this chapter we shall be concerned exclusively with the functors
A ®, C, Hom, (A4,C) and their derived functors. The symbol A will be
omitted whenever there is no danger of confusion.

We have already seen (11,4.4) that Hom (4,C) is left exact.

PROPOSITION 1.1  The functor Hom (A,C) is right balanced.

This is an immediate consequence of 11,4.6.

We have already seen (11,4.5) that 4 ® C is right exact.

PRrOPOSITION 1.1a. The functor A @ C is left balanced.

PrOOF. Let Fbe a free module. Then Fis the direct sum of modules
F, each of which is isomorphic with the ring A. Consequently the functor
T(C)= F ® C is the direct sum of the functors 7,(C) = F, ® C. Since
each of the functors T, is exact it follows that T is exact. Suppose now
that A is a direct summand of F. Then the functor 7(C) = F ® C'is the
direct sum of the functor T'(C)= A ® C and some other functor 7.
Since T is exact, it follows that T’ is exact. A similar argument applies to
the other variable.

106
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We now apply the results of Ch. v to the balanced functors
Hom, (4,C) and 4 ®, C. The right derived functors of Hom, (4,C)
are denoted by Ext*, (4,C) (or Ext" (4,C) with A omitted); in particular
Ext° (4,C) = Hom, (4,C). If Xis a projective resolution of 4 and Y is
an 1n_|ect1ve resolution of C then Ext, (4, C)— Z Ext*, (4,C) can be

computed as the homology module of any one of the complexes
Hom, (X,Y), Hom, (X,C)or Hom, (4,Y). InviewofVv,6.1, we can also
compute Ext, as the n-th satellite S" Hom, with respect to either of the
two variables.

The left derived functors of 4 ®, C are denoted by Tor} (4,C)
(or Tor, (4,C) with A omitted); in particular, Tor{ (4,C)= A4 ®, C
If X and Y are projective resolutions of 4 and C then TorA (4,C)
= Z Tor4 (4,C) can be computed as the homology module of either of the

complexes X®,Y,X®,CordQ®, Y. Wecanalsocompute Tor} as
the n-th satellite S, of the functor ®, with respect to any variable.

We shall not study the left derived functors of Hom or the right derived
functors of & (cf. Exer. vii, 2-6).

PROPOSITION 1.2.  The functors Ext} are of type RII.

This is an immediate consequence of v,9.1 and v,9.4.

PROPOSITION 1.2a. The functors Tor are of type L.

This follows from v,9.2 and v,9.4.

PROPOSITION 1.3.  The functors Tor4 are of type LE* (i.e. they commute
with direct limits).

This follows from v,9.2* and v,9.4%*.

As an application of the fact that ®, is left balanced we prove:

PROPOSITION 1.4.  In the situation (rA,,-C) if A is A-projective and C
is I'-injective then Homy (4,C) is A-injective.

PrOOF. Let B be a left A-module. Then 4 ®, B is an exact functor
of B and therefore Hom (4 ®, B,C) is an exact functor of B. It
follows from 11,5.2 that Hom, (B, Homp. (4,C)) is an exact functor of B.
Thus by 11,4.6, Homy. (4,C) is A-injective.

A similar proposition holds for (, 4r,Cr).

The next two theorems often allow us to compute Tor, and Ext" in
concretely given situations.

THEOREM 1.5. Let 0— M—P—A—0 and 0—>C—>Q—>N—>O be
exact sequences with P projective and Q injective. We then have the
following natural isomorphisms:

6)) Ext?% (4,C) ~ Ext%~2 (M,N) forn>2
@) Ext} (4,C) ~ Coker (Hom, («,5))
(3) Ext} (4,C)~Ker (Hom,, (,8))/[Ker (Hom, («,Q))-+Ker (Hom, (P,5))].
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Proor. First consider the case n > 2. We then have the anti-
commutative diagram

Ext™2% (M,N) — Ext™1 (4,N)

¥ ¥
Ext*1(M,C) — Ext" (4,C)

in which all four maps are isomorphisms. This yields two isomorphisms
(1) differing in sign.
For n = 2 we consider the diagram

Hom (P,Q) - Hom (M, Q) — 0

¥
Hom (P,N) — Hom (M,N)— Ext! (AJ:N) )
¥ N ¥
0  — Ext!(M,C) — Ext?(4,C)— 0
¥

¥
0 0

with exact rows and columns and which is commutative except for the
lower right square which is anticommutative. This yields:
Ext? (4,C) ~ Ext! (4,N) ~ Coker (Hom («,N)) = Coker (Hom (a,f)).
Replacing Ext! (4,N) by Ext! (M,C) will yield the opposite isomorphism.
Finally we consider the case n= 1. We use the exact sequence
0—M-—P—A—0 to define a left complex X over 4 with
Xy=P, X;=M and X,=0fori>1. Similarly we use 0—>C—>Q—ﬁ—>N——>0
to define a right complex Y over C with Y°= @, Y'= N and
Y= 0 for i > 1. An application of v,7.3 yields then the isomorphism
Ext} (4,C) ~ H'(Hom, (X,Y)). The complex Hom, (X,Y) may be
written explicitly as

Hom (P,Q) LN Hom (M,Q) + Hom (P,N) “, Hom (M,N)

where

%= (f, Bf), d'(g.h) = —Bg + ha

forf: P>~ Q,g: M— Q,h: P— N.

Since Q is injective and P is projective it follows that Hom («,Q) and
Hom (P,f) are epimorphisms. Therefore the element (g,h) of degree 1
may be written as (fia,ff;) for some f,f,: P— Q. The element f; is
determined uniquely modulo Ker (Hom (x,0Q)) while f, is determined
uniquely modulo Ker (Hom (P,f)). Thus the congruence class

P(g.h) = [ — Al
modulo Ker (Hom («,Q)) + Ker (Hom (P,f)) is uniquely determined.
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Since

d'(g,h) = —Pg + ha = B(f, — f)
we have digh)=0 if and only if f, — f; e Ker (Hom (,5)). If
(gh) = d% = (fuBf) then @(g,h) = [f — f1= 0. If fe« Ker (Hom («,5))
then (f&,0) = (f&,00) = [ f]. This shows that ¢ induces theisomorphism
(3). Taking [ f; — f;] instead of [ f; — f;] replaces ¢ by —¢.

Quite analogously we prove

THEOREM 1.5a. Let O—M~—P—A—0 and 0—M'~"~P'—C—0
be exact sequences with P and P’ projective. We then have the following
natural isomorphisms:

(1a) Tor? (4,C) ~ Tor2_, (M,M") for n>2
(22) Tory (4,C) ~ Ker (x @, f)
(3a) Tor} (4,0)~[Im(x ®,P') NIm (P ®, «))/ Im (x ®, B).

We now take up the question of the commutativity of the functors
Tor,. For each ring A, the opposite ring A* has elements A* in 1-1
correspondence with the elements 4 ¢ A and the multiplication is given by
M43 = (A,4)*. The ring (A*)* clearly may be identified with A. If A
is commutative then A* and A may be identified. Any left (right)
A-module 4 may be regarded as a right (left) A*-module by setting al*=Aa.
Thus the sitnation (4,5 C) leads to the situation (Cy+,5«4) and the mapping
a @y c—c Qpea yields an isomorphism 4 @, C~ C Q@ped. If X
and Y are A-projective resolutions of 4 and C then we may regard X and
Y also as projective A*-resolutions of 4 and C. We define the map
@: X @,Y— Y @, X by setting

P(x ®y)=(—D"y ® x, xeX,,ye?,

Then ¢ is an isomorphism of complexes. Passing to homology we obtain
the isomorphism

@) TorA (4,C) ~ TorA* (C,A).

2. DIMENSION OF MODULES AND RINGS

We shall say that the left A-module 4 has projective dimension <n if A
has a projective resolution X satisfying X; = 0 for k > n. The least such
integer n is called the projective dimension of 4 and denoted by 1.dim, 4.
If no such integer exists the dimension is defined to be co. We shall also
write dimy 4 or dim A whenever no confusion can arise. The zero
module has dimension —1. Projective modules are precisely those of
projective dimension < 0. The integer (or o) r.dim, 4 for a right
A-module is defined similarly.
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PROPOSITION 2.1. For each A-module A and each n > 0, the following
conditions are equivalent:

(@) A has projective dimension <n.

(b) Ext*!(4,C)= 0 for all (left or right) A-modules C.

(c) Ext} (4,C) is a right exact functor of the variable C.

(d) Given an exact sequence 0— X, —~ X, ;—-++—> Xo—A—>0

with X, (0 < k < n) projective, the module X, is projective.

ProoF. (a)=-(b). Let X be a projective resolution of A4 with
X,=0 for k> n. Then Ext%!(4,C)= H"!(Hom (X,C))= 0.

(b) = (c) is immediate.

(¢) = (d) is trivial if n=10. Assume n>0 and let C— C” be an
epimorphism. Applying the iterated connecting homomorphism we
obtain the commutative diagram

Hom, (X,_;,C) - Hom, (X,,C) - Ext} (4,C)—0
¥
Hom, (X, 1,C") — Hom, (X,,C") - Ext} (4,C") =0

in which, by v,7.2, the rows are exact. Since X,_, is projective, the vertical
map on the left is an epimorphism. The vertical map on the right is an
epimorphism since Ext% (4, ) is supposed right exact. It follows easily
that the middle vertical map also is an epimorphism. Thus Hom, (X,,,C)
is an exact functor of C, and therefore X, is A-projective (11,4.6).

(d)=-(a). By an iterated use of 1,2.3 we construct a sequence as
described in (d). Since, by (d), X, is projective this sequence yields a
projective resolution and thus dim 4 < n.

COROLLARY 2.2. In order that Ext} (4,Y) = 0 for all Y it is necessary
and sufficient that A be A-projective.

PropPOSITION 2.3. If 0— A" — A — A" — 0 is exact with A projective
and A" not projective then dim A" = 1 + dim 4’. '

This is an immediate consequence of the relation Ext}™! (4',C)
~ Ext%72(4",C) for n > 0.

PROPOSITION 2.4. If 0— A"— A —> A" — 0 is exact, dim A’ < n and
dim 4" < n, then dim 4 < n.

This follows from the exactness of Ext%*!(4”,C)— Ext3*!(4,C)
- Ext}*1 (4',0).

PROPOSITION 2.5.  Assume that A is left Noetherian and A is a finitely
generated left A-module. Thendim A < n if and only if Ext}*1 (4,C)=0
for all finitely generated léft A-modules C.

Proor. The necessity of the condition follows from 2.1(b). To
prove sufficiency, consider an exact sequence 0 -~ M — P — 4 — 0 with P
projective and finitely generated. Since A is left Noetherian, M is finitely
generated. Assume first that n=0. Then Ext} (4,M)=0 so that
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Hom, (4,P)~ Hom, (4,4) is an epimorphism. It follows that the
exact sequence 0 —~ M — P — 4 — 0 splits and A is projective. Thus
dim 4 = 0. Assume now that n > 0 and the proposition is valid for
n—1. Since Ext} (M,C) ~Ext% ! (4,C)=0 it follows that dim M < n—1,
which, by 2.3, implies dim 4 < n.

The injective dimension of a module C is defined as the least integer n
for which there is an injective resolution Y with Y*= 0 for k > n. We
do not introduce a symbol for the injective dimension.

PROPOSITION 2.1a.  For each A-module C and each n 2> 0, the following
conditions are equivalent:

(@) C has injective dimension <n.

(b) Extx*! (4,C) = 0 for all A-modules A.

(c) Ext} (4,C) is a right exact functor of the variable A.

(d) Given an exact sequence 0—C— Y°— ... — Y"1 ¥"—>0

with Y* (0 < k < n) injective, the module Y™ is injective.

COROLLARY 2.2a. In order that Ext}, (X,C)= 0 for all X it is necessary
and sufficient that C be A-injective.

Analogues of 2.3 and 2.4 also hold; however there is no analogue of
2.5.

THEOREM 2.6.  For each ring A and each n > 0, the following conditions
are equivalent:

(a) Each left A-module has projective dimension <n.

(b) Each left A-module has injective dimension <n.

(c) Extk =0 for k > n.

(d) Extxtl=0.

(e) Ext} is right exact.

Here Ext¥ is understood as a functor of left A-modules.

Proor. The implications (a) => (c) => (d) <==>(e) are obvious. More-
over, it follows from 2.1 that (a) and (d) are equivalent, and from 2.1a that
(b) and (d) are equivalent.

The least integer n 2> 0 for which (a)—(e) hold will be called the left
global dimension of A (notation: l.gl.dim A). The right global dimension
of A may be defined similarly. We know no connection between the left
and right global dimensions, except for the following:

COROLLARY 2.7. For each ring A the following conditions are equivalent:

(a) A is semi-simple.

(b) lL.gl.dim A = 0.

(c) r.gl.dim A = 0.

This follows from the fact that left and right semi-simplicity coincide
and are equivalent to all A-modules being projective.



112 DERIVED FUNCTORS OF ® AND Hom [CHaP. VI

It may be noted that l.gl. dim A = r.gl. dim A* and therefore for
rings for which A = A* the left and right global dimensions coincide.

PROPOSITION 2.8. A ring A is left hereditary if and only if 1.gl. dim AL 1.

The proof follows immediately from 2.1.

PROPOSITION 2.9.  If A is (left or right) semi-hereditary then Tork = 0
forn>1.

PrOOF. Assume A left semi-hereditary, and let 0—>M—P—>C—0 be
an exact sequence of left A-modules with P projective. Then Tor2 (4,C)
~ Tor®_; (4,M). Since Tor2_; commutes with direct limits it suffices to
prove that Tor2_, (4,M’) = 0 for any finitely generated submodule M’
of M. However, by 1,6.2 each such M’ is projective which implies
Tor?_, (4,M")=0forn> 1.

3. KUNNETH RELATIONS

Let 4 be a right A-complex and C a left A-complex. We wish to
establish connections between the graded groups H(4 @ C), H(4) ® H(C)
and Tor, (H(A),H(C)) where ® = ®,. We make the following assump-
tions:

Tor, (B(4),B(C)) = 0 = Tor, (H(4),B(C))
(¢))
Tor, (B(4),Z(C)) = 0 = Tor, (H(4),Z(C)).

We first consider the functor T(D) = D ® B(C). Since S,T(B(A4))
= S,T(H(4)) = 0 it follows from the exact sequence 0 — B(A4) — Z(4)
— H(A)— 0 that S,T(Z(A4)) = 0. Thus applying 1v,8.1 to the functor T
we obtain that o, : T(H(A)) — H(T(A)) is an isomorphism. Thus we have
proved that

o H(A) ® B(C)— H(A ® B(C))
is an isomorphism. Similarly
ay: H(A) ® Z(C)— H(A ® Z(C))

is an isomorphism.

Now we consider the functor of two variables 4 ® C. Since
Tor, (B(4),B(C)) = Tor, (H(A),B(C))= 0 it follows from the exact
sequence 0 — B(A4) - Z(A4) — H(A)— 0 that Tor, (Z(4),B(C)) = 0. Then
from the exact sequence 0— Z(4) — A — B(4)— 0 we deduce that
Tor, (4,B(C)) = 0. Thus all the conditions 1v,8.1 are satisfied and we
obtain
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THEOREM 3.1. Under the conditions (1) we have an exact sequence
2) 0— H(4) ® H(C)—— H(4 ® C)— Tor, (H(4),H(C))— 0
where o is of degree zero and f is of degree 1. Explicitly
2"

0— > H(A)QHC)—>HAQC)—~ > Tor,(H(A),H(C)—0
pte=n ptg=n—1

If the ring A is (right or left) semi-hereditary conditions (1) are
equivalent with

1) Tor, (B(4),C) = 0 = Tor, (H(A),C).

Indeed, the implication (1)— (1") follows from the exact sequence
0— Z(C)— C— B(C)— 0. The implication (1") — (1) follows from the
fact that Tor, is left exact if A is semi-hereditary. In particular, (1') is
satisfied if C is projective.

THEOREM 3.2. If A is left and right hereditary and the A-complexes A
and C are projective, then the exact sequence (2) is valid and splits. ‘

Proor. Since condition (1°) is satisfied the exact sequence (2) is
valid. Since 4 and C are projective and A is hereditary it follows that
B’(A4) and B’(C) are projective. Therefore, the exact sequences

0—> H(A)—Z'(A) — B'(4)—0
0— H(C)—Z'(C)— B'(C)—0

split. It then follows from 1v,6.2 that the image of « is a direct summand
of H(A ® C) and thus (2) splits.

ReMARK. Under the conditions of 3.2 the hypotheses (1) are satisfied
also with the roles of 4 and C interchanged. This yields another exact
sequence (2). The maps « of these two exact sequences are the same;
however we do not know whether the maps f of these two exact sequences
coincide.

If A, instead of being a A-complex is a A-module, then 4 & C may be
regarded as a functor of the variable C alone. Since B(4)= 0 and
H(A) = A we obtain the following result.

THEOREM 3.3 (Universal coefficient theorem for homology). If A is a
right A-module and C is a left A-complex such that

A3) Tor, (4,B(C)) = 0 = Tor, (4,Z(C))

then we have the exact sequence

@) 0—AQ® H(C)~— H(A ® C)—= Tor, (4,H,_(C))— 0.



114 DERIVED FUNCTORS OF ® AND Hom [CHAP. VI
If A is left or right semi-hereditary, condition (3) is equivalent to
3" Tor, (4,C)= 0.

If A is left hereditary and C is A-projective, the exact sequence (4) is valid
and splits.

We now rapidly state the analogous results for the functor Hom
(= Hom ) where 4 and C are assumed to be left A-complexes. We assume

Ext! (B(4),B'(C)) = 0 = Ext! (B(4),H(C))
(12)
Ext! (Z(4),B'(C)) = 0 = Ext! (Z(4),H(C)).

THEOREM 3.1a. Under the conditions (1a) we have an exact sequence

(2a) 0— Ext! (H(4), H(C))—— H( Hom (4,C))~— Hom (H(4), H(C))—0

with B’ of degree 1 and o’ of degree 0.
There is an analogous theorem under hypotheses dual to (1a).
If A is left hereditary, conditions (la) are equivalent to

('a) Ext! (4,B'(C)) = 0 = Ext! (4,H(C)) = 0.

In particular, (1'a) always holds if A4 is projective.
THEOREM 3.2a. If A is left hereditary, the complex A is projective and
the complex C is injective, then the exact sequence (2a) is valid and splits.
THEOREM 3.3a (Universal coefficient theorem for cohomology). If A
is a left A-complex and C is a left A-module such that

(3a) Ext! (B(A4),C) = 0 = Ext! (Z(4),C)

then we have the exact sequence

(4a) 0— Ext! (H,_4(A4),C) 2, H"(Hom (4,C)) <, Hom (H,(A4),C)—>0.
If A is left hereditary, condition (3a) is equivalent to
(3'a) Ext! (4,C) = 0.

If A is left hereditary and A is projective, then the exact sequence (4a) is
valid and splits.

We shall use the above result to derive certain associativity relations
for Tor and Ext.
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PrOPOSITION 3.4. In the situation (A,,,Br,rC) assume that B is a
module, A is a A-projective complex, C is a I'-projective complex and A and
I are left or right semi-hereditary. Then we have the exact sequences

() 0— H(A) ®, H(B ® C)— H(4 @, (B & C))
L. Torp (H(4),H(B & C)— 0

(6) 0— H(A ®, B) ® H(C)— H((A ® , B) ®; C)

%+ Tor (H(4 ® , B),H(C)) — 0,
where o is of degree 0 and 8 of degree +-1.  If further A = T' is commutative
and B is a A-module (instead of a A-I'-bimodule) then the sequences (5) and
(6) split.

Proor. The exact sequence (6) follows directly from 3.1 since condi-
tions (1") (with 4 replaced by 4 ® B) are satisfied. The sequence (5) is
established similarly. To prove the second half we denote by Y a pro-
jective resolution of B, and consider the augmentation map ¥ — B. We
then obtain a commutative diagram

0—~ H(Y) ® H(C)— H(Y ® C)— Tor, (H(Y),H(C))—~ 0

0> B®H(C) — HB®C)-> Tor, (B,HC)) —0
with exact rows. Since H(Y)— H(B) = B is an isomorphism it follows
from1,1.1 (the “Slemma’) that H(Y ® C) — H(B ® C)is an isomorphism.
Next we consider the commutative diagram

0 HA) Q HY ®C)— H(A ®(Y ® C))— Tor, (H(4),H(Y ® C))—~0

0—H(A) @ HB ® C)— H(4 ® (B ® C))— Tor, (H(A),HB ® C))—0
with exact rows. Since the two extreme vertical maps are isomorphisms
it follows again from 1,1.1 that the middle vertical map is an isomorphism.
Since Y ® C is projective by 11,5.3, it follows from 3.2 that the top row in
the diagram splits. Therefore the lower row, i.e. the sequence (5), also
splits. The proof that (6) splits is similar.

PROPOSITION 3.5. In the situation (Ay,,Br,nC) assume that A and T'
are left or right semi-hereditary. Then we have the natural isomorphism
) Tor (4, Torf (B,C)) ~ Tor! (Torf (4,B),C).

ProOF. Let X be a A-projective resolution of 4 and Y a I'-projective
resolution of C. Applying 3.4 to the triple (X,B,Y) we obtain

Hy(X ®, (B ®p Y)) ~ Torj (4, Tor] (B,C))
Hy(X ®, B) ®r Y) ~ Tory (Tory (4,B),C)
which yields the desired result.
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PROPOSITION 3.6. If A is a commutative and hereditary ring, then for

any A-modules A, B, C we have the (non-natural) isomorphism

(8) A ® Tor,(B,C)+ Tor; (4,BQ C) ~ Tor; (4,B) ® C+ Tor; (4 ® B,C).

ProOOF. With X and Y as above, we again apply 3.4 to the triple
(X,B,Y). We obtain exact sequences

0—> A ® Tor; (B,C)—~ Hy(X ® (B ® Y))— Tor, (4,B® C)—0
0 — Tor, (4,B) ® C— H,(X ® B) ® Y)—> Tor, (4 ® B,C)— 0.
Since, by 3.4, these exact sequences split, the result follows.

We now state (without proof) similar results involving Hom and Ext.

PROPOSITION 3.4a. In the situation (Ap,pBr,Cy) assume that A is a
A-projective complex, C is a I'-injective complex, and A and I" are right
hereditary. Then we have the exact sequences

(52) 0— Ext}, (H(A),H(D))— H(Hom, (4,D))— Hom, (H(A),H(D))—0
(6a) 0 — Ext} (H(E),H(C)) - H(Homy. (E,C))— Homy. (H(E),H(C))—0
where D = Homp (B,C), E= A ®, B.

If further A = T is commutative and B is a A-module then the sequences
(5a) and (6a) split.

PROPOSITION 3.5a. In the situation (A ,,Br,Cr) assume that A and T'
are right hereditary. Then we have the natural isomorphism

(7a) Extl (4, Ext}. (B,C)) ~ Extk (Tor? (4,B),C).

PROPOSITION 3.6a. If A is a commutative and hereditary ring then for
any A-modules A, B, C we have the (non-natural) isomorphism

(8a) Ext! (4, Hom (B,C)) + Hom (4, Ext! (B,C))
=~ Ext! (4 ® B,C) + Hom (Tor, (4,B),C).

In Ch. xv1 we shall return to these questions and, using the method of
spectral sequences, we shall obtain much more complete results.

4. CHANGE OF RINGS

We return to the discussion of the change of rings given by a ring
homomorphism ¢: A — T, as initiated in 11,6. The discussion breaks up
into four cases, the situation in each case being indicated by an appropriate
symbol.

Case 1. (4,,,I'r,pC). We have the relation
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Let X be a A-projective resolution of 4. Then by 1,6.1, X, is a I'-projec-
tive left complex over A4(,. Thus the homomorphism (3a) of v,3 yields
a homomorphism

(6] H(X,, ®p C)— Tor;, (A0
However, by (1)
H,(Xy ®r C) = H,(X ®, C) = Tor (4,C).
Thus we obtain a homomorphism
Sint Tork (4,C)— Tor} (4,,C),

which for n = 0 yields the identity (1). An alternative way of obtaining
the same homomorphism consists in considering the functor

T(A4,C)= A ®, C= Ay ®r C.
Then
L,T(4,C)= LPT(4,C) = Tor,’} 4,0)

LPT(4,C) = Tor,, (4, ®r C)

where L{UT and LPT denote the partial left derived functors with respect
to the first and second variable respectively. Then f; , coincides with the
homomorphism L, T — LT of v,8.

PRrOPOSITION 4.1.1. If Torh (4,1) =0 for all p >0 then f, , is an
isomorphism.

PRroor. Since

Tor} (4,1) = H(X ®, T) = H(X,,)

the hypothesis implies that X, is acyclic and thus is a projective resolution
of Ay. Thus (i) is an isomorphism and so is f; ,.

COROLLARY 4.2.1. In the situation (Ar,-C) assume that T and C are
A-projective and A is g-projective. Then Tory (4,C) = 0 for n > 0.

Indeed, since 4 is isomorphic to a direct summand of 4, it suffices to
prove Tor, (A4,,C)= 0 for n>0. However by 4.1.1, Tor; (4,,C)
~ Tor’ (4,C) which is zero for n > 0 because C is A-projective.

Case 2. (Ap,pI'y,2C). We have

2) ARy C= A4 ®r (»O)-
Taking a A-projective resolution of C we obtain the homomorphism
Sont Torh (4,C) — Tory (4,,yC)

which for n = 0 reduces to (2).
PROPOSITION 4.1.2. If Torh (I',C) =0 for all p >0 then f,, is an
isomorphism.

KO
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COROLLARY 4.2.2. In the situation (Ar,C) assume that T' and A are
A-projective and C is g-projective. Then Tor} (4,C) = 0 for n > 0.
Case 3. (,A4,pI'5,C). We have the identity
3) Homr. ((,)4,C) = Hom, (4,0).
Taking a A-projective resolution of 4 we obtain the homomorphism
f3,'n: EXt?‘ ((q:)AaC) g EXtr./L\ (A,C)
which for # = 0 reduces to (3).
ProposITION 4.1.3.  If Tor) (I',A) =0 for all p > 0 then f;, is an
isomorphism.
COROLLARY 4.2.3.  In the situation (1A,C) assume that 1" is A-projec-
tive, C is A-injective and A is g-projective. Then Ext} (4,C)=0 forn>0.
Case 4. (pA4,,I'r,,C). We have the identity

@) Homy. (4,°C) = Hom,, (4,C).
Taking a A-injective resolution of C we obtain the homomorphism
Jin: Exth (4,9C) — Ext} (4,C)

which for n = 0 reduces to (4).

ProposiTiON 4.1.4.  If Ext} (I'\C) =0 for all p >0 then f,, is an
isomorphism.

COROLLARY 4.2.4. In the situation (pA,C) assume that I' and A are
A-projective and C is @-injective. Then Ext} (4,C) = 0 for n > 0.

We also could consider two other cases 3’ and 4’ given by the symbols
(ApaT'rCr) and (Ap,pI'y,C,) and apply the identification of 1,5.2".
However these cases differ from cases 3 and 4 only by a complete inter-
change of right and left operators and give the same results except that in
case 3’ we must replace Tor, (I',4) by Torp (4,T).

We now place ourselves in the situation (4y,-C), and define a homo-
morphism
@,: Tor2 (4,C)— Tor} (4,C)

as follows. We first define ¢y: A @, C—>A4A @ Cbya®,c—a Qpec.
Then we consider I'-projective resolutions X and Y of 4and C. Regarded
as A-modules X and Y are acyclic left complexes over 4 and C. Thus by
v,3 we have the homomorphisms

(5) Tor2 (4,C) - H (X Qa 1)
Further ¢y: X ®,, Y— X ®p Y yields
(6) H (X ®, Y)—> H (X ® Y)= Tor} (4,C).

We define ¢,, as the composition of (5) and (6).
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PRrOPOSITION 4.4. If A is a right T-module and C is a left I'-module
then the diagram

Tor? (4,6) 22 TorT (4,),C)

.
fan Z In

¢
Tor} (4,(,,C) — Tor} (4,C)

(g

is commutative, where g, and g, are induced by the maps g: A, — A4,
g (@C—C.

The proof is left as an exercise to the reader.

Similarly in the situation (r4,7C) we define

o™ Ext} (4,C) — Ext} (4,0)
using a I'-projective resolution of 4 and I'-injective resolution of C.

PROPOSITION 4.4a. If A and C are left I'-modules then the diagram

Ext? (4,C) —— Ext% (,)4,C)
hn ‘Pn f 3n
Ext}h (4,'9C) — Ext% (4,C)
4,n
is commutative, where g,, h, are induced by the maps g. (,A— A,
h: C—(C.
REMARK. It is clear from the definition of the homomorphisms ¢,

and ¢" that they commute with the connecting homomorphisms relative
to either variable.

5. DUALITY HOMOMORPHISMS

We consider the situation described by the symbol (4,,,Br,Cr). In
11,5.2" we have established a natural isomorphism

1) Hom, (4, Hom (B,C)) ~ Homp (4 ®, B,C).
Now, let X be a projective resolution of 4; we have
Ext, (4, Homp(B,C))= H(Hom,(X, Hom(B,C)) ~ H(Hom (X ®, B,C)).

An application of the homomorphism «’ of 1v,6.1a yields

H(Homy (X ®, B,C))~— Homy (H(X ®, B),C)= Homy (Tor™ (4,B),C).
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Thus we obtain a homomorphism
@) p: Ext, (4, Homp. (B,C)) - Homp. (Tor® (4,B),C)

which reduces to (1) in degree zero.
PROPOSITION 5.1.  If C is I-injective then p is an isomorphism.
Indeed, the functor (D) = Homp (D,C) is exact. Thus by 1v,7.2 the
homomorphism «’: H(T(X ® B))— T(H(X ® B)) is an isomorphism.
The preceding result will be obtained, together with many others of a
similar nature, in Ch. XvI by an application of spectral sequences. The
homomorphism p and proposition 5.1 can also be found using the results
of 11,6 about satellites of composite functors.

Next we consider the situation described by the symbol (,4,,Br,Cr)
and define the homomorphism

3 o: Homy (B,C) ®, A — Hom (Hom, (4,B),C)

by setting
[o(f ® @)]lg = f(ga) feHomp(B,C),geHom, (4,B).

PROPOSITION 5.2.  If A is A-projective and finitely generated then o is an
isomorphism.

Proor. First consider the case A = A. Then o is easily seen to be an
isomorphism. Therefore, since the functors involved are additive, it
follows that o is an isomorphism if A4 is a free A-module F on a finite base.
Consequently, again by a direct sum argument, ¢ is an isomorphism if 4
is a direct summand of F.

Now let X be a projective resolution of 4. The homomorphism (3)
combined with the homomorphism «’ of 1v,6 yield

H(Homy (B,C) ®, X)— HMHomy (Hom, (X,B),C))
s Homy (H (Hom, (X,B)),C).
We thus obtain a homomorphism
() o: Tor® (Homp. (B,C),4) — Homp. (Ext, (4,B),C)

which reduces to (3) in degree zero.

PROPOSITION 5.3.  If A is left Noetherian, A is finitely A-generated and
C is I-injective then o is an isomorphism.

Proor. Since C is I'-injective, the functor Homy (D,C) is exact and
therefore, by 1v,7.2, the map «’ above is an isomorphism. If A is left
Noetherian and 4 is finitely A-generated, then, by v,1.3, the resolution X
may be chosen to be composed of finitely generated projective modules.
The result now follows from 5.2.
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ReEMARK. Instead of assuming that A is left Noetherian and A is
finitely generated it suffices to assume that A has a projective resolution
composed of finitely generated modules.

PROPOSITION 5.4. If A is left hereditary and left Noetherian and A is
finitely generated then

0;: Tord (Homy. (B,C),4) — Homp. (Ext} (4,B),C)

is an isomorphism.
Proor. Consider an exact sequence

0—X;—> Xo—>4—-0

with X, projective and finitely generated. Since A is Noetherian and
hereditary it follows that X; is projective and finitely generated so that we
obtain a projective resolution X of 4. By 5.2, the homomorphism

H,(Homy. (B,C) ®, X)— Hy( Hom (Hom, (X,B),C))
is an isomorphism. It therefore suffices to show that
o': Hy(Hom (Y,C)) - Homy (HY(Y),C)
is an isomorphism, where ¥ = Hom, (X,B). We have the exact sequence
Y'— Y- HY(Y)—>0
and since Homy is left exact there results an exact sequence
0 —» Homy (HY(Y),C) — Homy. (¥,C) — Homy. (Y°,C).

There results an isomorphism of Homp (HX(Y),C) with Kery
= H,(Hom (Y,C)) which can easily be verified to coincide with «’.

Next we consider the case when A = I'= B. In this case Hom (B,C)
is identified with C so that (4) becomes

@) o: Tor® (C,4) — Hom, (Ext, (4,A),C) (LA,Cp).
PROPOSITION 5.5.  If A is left hereditary and left Noetherian then
0,: Torf (C,4) — Hom, (Ext} (4,A),C)

is a monomorphism.
ProoF. Let A, be a finitely generated submodule of 4. We obtain
the commutative diagram

Tor, (C,4,) —— Hom (Ext! (4,,A),C)
g Ja

Tor, (C,A) —— Hom (Ext! (4,A),C).

1
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Since A is hereditary, Ext} is right exact by 2.8 and 2.6. Thus
Homy. (Ext} (4,A),C) is left exact and thus j, is a monomorphism.
Since, by 5.4, 0, is a monomorphism it follows that o,i, is a mono-
morphism. Since Tor; commutes with direct limits, Tor, (C,4) is the
union of the images of i, for 4, running through all finitely generated
submodules of 4. Thus oy is a monomorphism.

EXERCISES

1. Consider the ring Z, = Z/nZ. For each divisor r of n, use Exer. 1,5
to define an infinite exact sequence

oo Z 2, ~>7Z,—rZ,—0.

Show that the projective dimension of rZ,, as a Z,-module, is 0 or oo
according as (r,n/r) = 1 or #1. Conclude that the ring Z,, is either semi-
simple or gl.dim Z,, = oo.

2. Let A be a commutative Noetherian ring. If 4 and C are finitely
generated A-modules, then Tor’ (4,B)and Ext% (4,B)are finitely generated
A-modules [cf. Exer. 11,6.]

3. We define the weak dimension of a left A-module 4 (notation:
w.dim, A) as the highest integer n such that Tor’ (C,4) 5 0 for some
right A-module C.

If w.dim, 4 = 0 (i.e. if Tor2 (C,4) = 0 for all C and all n > 0), we
say that 4 is A-flat. Similar definitions are made for right A-modules.

(2) Show that w.dim, 4 < dim, 4.

(b) Show that if A is left Noetherian and A is finitely generated, then

w.dim, 4 = dim, 4

[apply 5.3]. Similarly for right A-modules.

4. Show that if A is left Noetherian and {4,} is a family of right
A-modules, then I14, is A-flat if and only if each A, is [use 1, Exer. 2].

5. For each right A-module 4 and left ideal I of A establish the
equivalence of the following conditions:

(a) For each relation >,a,u, = 0 (a; € A, p, € I) there exist elements
b; e A, A;; € A, finite in number, such that

a;= 2,b;A; 2idip; = 0.
(b) The map 4 ®, I— A ®, A= A is a monomorphism.
(c) TorMA4,A/I)= 0.
(d) For each exact sequence 0 > N — P— 4 — 0 with P a A-projec-
tive module, we have NN (PI) = NI

(e) There exists an exact sequence 0 >N—>P—>A—0 with P
projective such that NN (PI) = NI.
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6. For eachright A-module A4 establish the equivalence of the following
conditions:

(a) A is A-flat.

(b) Tor(A4,A/I) = 0 for each left ideal I of A.

(c) For each relation J,a,u; = 0 (a, € A, p; € A), there exist elements
b; e A, A;; € A, finite in number, such that

a; = z:ibilif’ Zi)*ﬁ/‘i = 0.

Condition (c) expresses the fact that each linear relation in 4 is a
consequence of linear relations in A.
7. If a A-module 4 is a direct sum of A-modules 4, then

dim 4 = supdim 4,,  w.dim 4 = sup w.dim 4,.

State a similar result for the injective dimension of a direct product.
8. Let A= A, +---+ A, be a direct product of rings. Show that
l.gl.dim A = sup lL.gl.dim A,.
i

9. Let 1dimy A=n, 0< n<<oo. Show that Ext%(4,F)+# 0 for
some free A-module F. If further A is left Noetherian and A is finitely
generated, then Ext}(4,A) 5= 0. [Hint: choose C with Ext%(4,C) 0,
then consider an exact sequence 0 — B— F — C — 0 with F free.]

10. Let ¢: A—T' be a ring homomorphism. Show that for each
left I'-module 4

w.dim, 4 < w.dimy 4 if T is left A-flat,
dimy 4 < dimp 4 if I is left A-projective,
inj.dimy 4 < inj.dimp 4 if T" is right A-flat.
Show that for each left A-module A4
w.dimp(,)4) < w.dim, 4 if T is right A-flat,
dimp((py4) < dim, 4 if T'is right A-flat,
inj.dim(‘”4) < inj.dim, 4 if T is left A-projective.

[Hint: use 4,1.1-4,1.4.]
11. Let ¢: A—I' be a homomorphism of commutative rings such
that I'is A-flat. For A-modules 4 and C, establish a natural isomorphism

(4 @A C)p) ~ 4()®r Cy
of I'modules. Derive a natural isomorphism

(TOI‘,I.\(A,C))(,,,) ~ TOI’;‘(A,(W),CW)).
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Establish a natural homomorphism
(Hom,(4,C)),) — Homp(4,),Cip)

of I'-modules, which becomes an isomorphism if 4 is A-projective and
finitely generated. Derive a homomorphism

(ExtA(4,0)) () —> Ext1(4(4),Cp)

which becomes an isomorphism if A is Noetherian and 4 finitely generated.
12. Consider a commutative diagram

0—A4—-B—C—>0

| l
lf ot
0-A"->B —-C'—0

with exact rows. Show that if fand 4 are monomorphisms then so is g.
Assume that the exact sequences split and show that if fand 4 are mono-
morphisms onto a direct summand (of 4" or C’), then the same holds for g.

13. Let A be a (right and left) hereditary ring. Let 4 and A’ be
projective right A-complexes, and C and C’ projective left A-complexes.
Consider maps ¢: 4 — A" and y: C— C’ such that ¢,: H(4)— H(A")
is a monomorphism of H(A4) onto a direct summand of H(A'), and
¥4 H(C)— H(C’) is a monomorphism of H(C) onto a direct summand of
H(C’). Show that (p @ 9)y: H(A ®4 C)— H(A" ®, C’) is a mono-
morphism of H(A ®, C) onto a direct summand of H(4' ®, C’).
[Hint: use Exer. 12.]

14. In the situation (,4,Bp,,Cr), assume that C is a module, 4 is a
A-projective complex, B is a I'-projective complex, A is left hereditary and
I' is right hereditary. Then state and prove propositions analogous to
3.4, 3.5, 3.4a and 3.5a [use 11, Exer. 4].

15. Let A be a commutative, hereditary ring; 4, B, C, D being any
A-modules, show that the following modules M and N are (not naturally)
isomorphic:

M = Tor (4,B) ® Tor (C,D) + Tor (Tor (4,B), C ® D)
+ Tor (4 ® B, Tor (C,D))

N = Tor (Tor (4,B),C) ® D + Tor (Tor (4,B) ® C, D)
+ Tor (Tor (4 ® B, C), D).
Moreover, any permutation of 4,B,C,D transforms M (resp. N) into a

module isomorphic to M (resp. N).
[Hint: use resolutions of 4, B, C, D.]
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16. Let X and Y be two complexes over the ring Z of integers. Assume
that X and Y have finite Z-bases for each degree. Show that

HXQ®Z)QHYQRZ)~HXQYQZ,),
Z, denoting Z/nZ; but, if nis not a prime, there is no natural isomorphism.

[Hint: apply the Kiinneth formula to H(X ® Z,), H(Y ® Z,) and
H(X ®Z,) ® Y). Then prove that

A ® Tor, (Z,,C) ~ Tor; (4 ® Z,,C)
Tor, (4,Z,) ® Tor, (Z,,C) ~ Tor, (Tor, (4,Z,),C)
whenever 4 and C are finitely generated abelian groups. Reduce the

problem to the case of cyclic groups.]
17. Let A = Lim A, be a direct limit of rings. Let 4 be a right A-

module, such that 4 = Lim 4, 4, being a right A_-module. In the same
way, let C be a left A-n—l—;iule, C = Lim C,, C, being a left A -module.
Prove that -
AQyC= ]:’i_I)nAa Oy Co-
Then, using v,9.5*, prove that
Tork (4,C) = Lim Torl* (4,,C,).
18. Consider a commutative diagram of A-modules and A-homo-
morphisms
0—M—P—A—0
O A C
0—C—Q0—N—0
with exact rows, P projective and Q injective. Let
®M: Hom (M,C) — Ext! (4,C)
O®: Hom (4,N) — Ext! (4,C)
be the connecting homomorphisms induced by the two rows. Prove that
ON(y) + O@)(x) = 0.

[Hint: regard the top row as an acyclic left complex over 4, and the
bottom row as an acyclic right complex over C; then use the commutative
diagram

H(Hom (4,Y))— H'(Hom (X, Y)) - H(Hom (X,C))

Ext! (4,C)
and apply Exer. v,8.]
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19. For a right ideal 7 and left ideal J of the ring A, prove (using 1.5a)
that
TorA/L, AJJ) ~ (I NJ)IJ

Tor (AL, AJJ) ~ Ker(I @, J — 1)
TorMA/I, AlJ) ~ Tord_(I.J), n>2

where IJ denotes the image of I @, J— A @, A ~ A.



CHAPTER VII

Integral Domains

Introduction. Our main objective is to show how the notions intro-
duced earlier apply to the case of modules over an integral domain A.
The special case of abelian groups, i.e. of modules over the ring Z of
rational integers, is treated in the last two sections.

The functor Tor has remarkable properties if the ring A is a Priifer
ring (i.e. an integral domain in which all finitely generated ideals are
inversible in the field of fractions). For such a ring A we have Tor, = 0
for n > 2; Tor, (4,C) depends only on the torsion sub-modules of 4 and
C; in order that Tor, (4,Y) = 0 for all Y it is necessary and sufficient that
A be torsion-free. These properties (studied in § 4) are the origin of the
notation Tor and explain some of the peculiarities of the elementary
Kiinneth relations (for the tensor product of two Z-complexes).

In the last two sections (§ 6-7) we study the relations of the functors
TorZ and Ext}, with the Pontrjagin duality theory for compact abelian
groups.

1. GENERALITIES

We shall assume throughout this chapter that A is an integral domain,
i.e. a commutative ring with a unit element 7 0 such that «, f e A, « £ 0
and 8 # 0 imply a8 £ 0.

An element a of a module A4 is called a torsion element if Aa = 0 for
some e A, A £ 0. Thetorsion elements form a submodule 14 of 4. We
say that 4 is a torsion module if £4 = A. Clearly ¢4 is a torsion module.
We say that 4 is a torsion-free module if 4 = 0. For instance 4/tA4 is
torsion-free. Any submodule of a torsion-free module is itself torsion-
free.

If A is a direct sum X,4,, then t4 = Z (t4,).

PROPOSITION 1.1. A projective module is torsion-free.

PrOOF. A being an integral domain, is torsion free. Since each free
module is a direct sum of modules isomorphic with A, it follows that free
modules are torsion-free. Since each projective module is a submodule of
a free module, the conclusion follows.

An element a of a module 4 is called divisible if foreach A € A, 2 £ 0,
there is an element b € A with a = Ab. The divisible elements of 4 form
127
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a submodule 64 of 4. A module 4 is called divisible if 4= A4. A
quotient module of a divisible module by a submodule always is divisible.
It can be easily proved that §(4/64) = 0.

If A is a direct product I, 4,, then 64 = I (64,).

PROPOSITION 1.2.  An injective module is divisible.

PrOOF. Let A be an injective module and let ae 4, Ae A, 1 # 0.
Consider the ideal /= AA. Since A = f4 implies « = B, the formula
f(@A) = aa defines a homomorphism f: 7— A. Since A4 is injective there
exists, by 1,3.2, a be 4 with ff =fbforall el Thusa=F A= Abso
that a is divisible.

PROPOSITION 1.3. A torsion-free module is injective if and only if it is
divisible.

Proor. The necessity of the condition follows from 1.2. To prove
sufficiency assume A torsion-free and divisible. Consider a homo-
morphism f: I— A where I is a non zero ideal of A. Then for each
Ael, A5 Othereis a unique a; € 4 such that fA=Aa,. Ifpel, u#0,
then

phay = pfr = f(p) = M fp) = Apa,

so that a; = a,=a. Thus fA= Ja for all ¢l and A4 is injective by
L3.2.

Since A is commutative, it follows from 11,3 that for any functor T
defined for A-modules 4 whose values T(4) are groups, we may regard
T(A4) as a A-module. It also follows from 1,3 that 4 ®, C may be
regarded as a A-module with A(@ @ ¢) = (4a) @ ¢ = a ® Ac and similarly
for Hom, (4,C). Thus Tor’ (4,C) and Ext} (4,C) are A-modules. We
shall write ®, Hom, Tor,,, Ext" omitting the symbol A.

PROPOSITION 1.4.  If the functor T is covariant and right exact and A is
divisible then T(A) is divisible. If T is contravariant and left exact and A
is divisible then T(A) is torsion-free. If T is covariant and left exact and A
is torsion-free then T(A) is torsion-free. If T is contravariant and right
exact and A is torsion-free then T(A) is divisible. If A is divisible and
torsion-free then T(A) also is divisible and torsion-free for any functor T.

Proor. For each A€ A consider the A-endomorphism A: 4— 4

given by a— Aa. Then A is divisible if and only if 4 La—0is

exact for all A £ 0, and 4 is torsion-free if and only if 0 — 4 2 A is
exact. This implies the conclusions above, since the map T(4): T(4)—
T(A) by definition coincides with A: T(4) — T(A).
COROLLARY 1.5. If either A or C is divisible then A @ C is divisible.
If A is divisible or C is torsion-free then Hom (4,C) is torsion-free.
PROPOSITION 1.6. If A is a finitely generated torsion module then for
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any functor T the module T(A) is a torsion module. If T is covariant and
of type LE* (i.e. T commutes with direct limits) then for any torsion module
A, T(A) is a torsion module.

Proor. If A4 is a finitely generated torsion module then there is a
AeA, 20 such that the homomorphism A: 4 — A4 is zero. Then
A: T(A) — T(A) also is zero and T(A) is a torsion module. The second
part of the proposition is immediate.

CoROLLARY 1.7. If A or C is a torsion module, then Tor, (4,C) is a
torsion module.

This follows from v1,1.3 and from 1.6.

ProposITION 1.8. If A is a torsion module and C is divisible then
AQ®C=0. If Ais a torsion module and the module C is torsion-free,
then Hom (4,C) = 0.

ProOOF. Considera @ ce A ® C. If A is a torsion module there is
an element A e A, A % 0 with Ae= 0. If C is divisible then there is a
ceCwithic'=c. Thusa®c=a ® Ac’ =al ® ¢’=0. The other
half of the proposition is obvious.

Let A be a A-module. For each A€ A the mapping a— Aa is a
A-homomorphism A: 4 — 4. We denote
14 =Ker(A: 4— A),
A =1Im(A: A— A),
A; = AJ]AA = Coker A.
Since A is an integral domain it follows that 2: A — A has zero
kernel for A % 0. Thus the sequence
0—> A= A—> A, —0
is exact. Since A is projective this sequence yields a projective resolution
of A,. Thus we find
Tor, (A,;,C) = ,C; Tor, (A;,C)=0 forn>1
Ext! (A,,C) = C,, Ext" (A;,C)=0 forn > 1.

In some cases these formulae and direct sum properties facilitate the
computation of Tor, and Ext™.

2. THE FIELD OF QUOTIENTS

We shall denote by Q the field of quotients of A and will write
K= Q/A. Thus
0>A—>Q—>K—>0

is an exact sequence. Since Q is torsion-free and divisible, it follows
from 1.3 that Q is injective. K is divisible but in general is not injective.
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Since Q is torsion free and divisible it follows from the last part of

1.4 that all the modules Q ® A, Hom (4,Q), Ext" (Q,A) are torsion free
and divisible and therefore injective.

1
Since Q is the union of its submodules . Afora e A, a % 0, it follows
1
that Q is the direct limit of the projective modules — A. Since Tor, and

¢4
direct limits commute, we obtain

€)) Tor,(Q,4)=0 n>0.

It follows that for any module 4 we have the exact sequence

0— Tor, (K,A)— A— Q0 ® A

where A has been identified with A ® 4.
PROPOSITION 2.1.  The kernel of the homomorphism

p: A0 ®A4

given by a— 1 @ a is the torsion submodule tA.

In view of the exact sequence above, we obtain the equivalent formu-
lation

PROPOSITION 2.2.  The homomorphism
w: Tor, (K,4A)—~ A4
maps Tor, (K,A) isomorphically onto tA.
ProOF. Since Q is the union of its submodules -:—c Aforae A, o # 0,

it follows from the fact that ® and direct limits commute, that the kernel
of ¢ is the union of the kernels of

@ A— (5 A ) ® A
where p,a =1 ® a. Consider the mapping
St (—I-A) RA—->ARA
o

given by f, (1 1) ® a= Aa. Since f, is an isomorphism, the kernel of
o

@, coincides with the kernel of f,¢,: 4 — 4. This latter map is a— aa.
Thus the union of the kernels of ¢, is 4.
ProposITION 2.3.  If C is torsion-free then the sequence

) 0>C>0QC>KQC—>0
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is exact. If A is a torsion module, then this exact sequence yields an
isomorphism

3) Hom (4,K ® C) ~ Ext! (4,C).
In particular, taking C = A, we obtain the isomorphism
Hom (4,K) ~ Ext! (4,A),

for any torsion module A.

PrOOF. The exactness of (2) follows from 2.1 since C is torsion-free.
If A is a torsion module then Hom (4,0 ® C) =0, since Q@ ® C is
torsion-free. Since further Q ® C is injective we have Ext}(4,0 ® C)
= 0. This implies (3).

PROPOSITION 2.4.  Every finitely generated torsion-free module admits
a monomorphism into a free module with a finite base.

Proor. Since the module A is torsion-free we may regard 4 as a
submodule of Q ® 4. Let (ay,...,a,) be generators for A. Then
Q ® A regarded as a vector space over Q is finite dimensional and has
a base (e,...,e,). Then a,= Z,,e; where ¢;;€ 0. Let ieA,
4 # 0 be such that all g, ¢ A. Then

a;= Z4q,) (A7e)

so that A4 is contained in the A-submodule F of @ ® A4 generated by the
elements A~%¢;, j=1,...,m. Since F is free with (A71e,..., A te,)
as base, the proposition follows.

PROPOSITION 2.5. If P is a projective module, P’ a projective sub-
module of P and A is torsion-free, then the homomorphism

PRA->PRA
induced by P’ — P is a monomorphism. Equivalently
Tor, (P/P’,A) = 0.

PRrRoOF. Since tensor products and direct limits commute we may
limit our attention to the case when A is finitely generated. By 2.4 we
may then regard 4 as a submodule of a free module F. There results a
commutative diagram

PQA—PRA
|

v
PRF—PQF

Since P’, P and F are projective, both vertical and the lower horizontal
homomorphisms are monomorphisms. Thus P ® 4 —>P ® A also is a
monomorphism.
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PROPOSITION 2.6. Any module A admits a monomorphism into a
divisible module.

ProoF. Choose an exact sequence 0 M —P— A4 —0 with P
torsion-free (e.g. projective or free). Then, by 2.1, P>P ® Q is a
monomorphism. Consequently Coker (M — P) — Coker (M — P @ Q)
isamonomorphism. Since 4 ~ Coker(M — P)and Coker(M — P @ Q)
is divisible, the conclusion follows.

3. INVERSIBLE IDEALS

PROPOSITION 3.1.  In order that a module A be projective it is necessary
and sufficient that there exist a family {a,} of elements of A and a family
{p,} of homomorphisms ¢,: A — A such that for all a € A
(1) a= Z,(9,a)a,
where @ a is zero for all but a finite number of indices .

PrOOF. Let y: F— A be a homomorphism of a free module with
base {e,} onto A4, and let a, = y(e,). In order that 4 be projective it
is necessary and sufficient that there exists a homomorphism ¢: 4 — F
such that pp = identity. If we write pa = X (¢p,a)e, we obtain homo-
morphisms ¢,: A — A such that for each a € 4 we have ¢,a = 0 for all
but a finite number of indices «. The condition g = identity is then
equivalent with

a= 2¢(¢aa)ad
for all a € A.

The above proof did not utilize the fact that A is an integral domain
and is therefore valid for modules over any ring.

PROPOSITION 3.2. In order that a non-zero ideal I of A be projective
it is necessary and sufficient that I be an inversible ideal, i.e. that there exist
Gv---sqneQanday,...,a,e IwithqlCA X, qa,=1,i=1...,n.

Proor. Assume [ inversible and define ¢;x = ¢,x for x e I. Then
@;: I— A and

2fpx)a; = Lg;xa; = xX,q,0;, = X.

Thus, by 3.1, I is projective. Assume now that I is projective and let
{a,}, {p,} beasin3.1. Then foreacha we have x(¢,y) = @ (xy) = Y(@,X).
Thus q, = (p,x)/x for x € I, x # 0 is an element of Q such that ¢,y = q,y
for all y e 1. It follows that ¢, C A. If x % O then @,x = g,x is zero
for all except a finite number of indices «. It follows that all ¢, except
for a finite number are zero. Condition (1) of 3.1 yields

x = X (p.x)a, = 2(q,X)a, = (2q,a,)%
which is equivalent with 2 g.a, = 1. Thus I is inversible.
PROPOSITION 3.3.  Every inversible ideal is finitely generated.
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Proor. Let I be an inversible ideal, b € I. With ¢, and a; as above
we have Xg,ba;, = b and gbe A. Thusa,,...,a, generate I.

PROPOSITION 3.4. Let I be an inversible ideal in A and A a divisible
module. Then the mapping Hom (A,A) — Hom (I,A) induced by I— A
is an epimorphism. In other words for each homomorphism f: I— A
there is an element a € A with fA = la for all A € I.

ProOF. Since I is inversible there exist-¢q;,...,q,¢Q and
Ay ...y A, €1such that

g C A, S = 1.

Since A is divisible, there exist elements a; € A with fA;, = A,a,,i=1,.. ., n.
Then

Sh=f(Zq.42) = Z(q:4) (fA)
= Ei(qi}'li)ai = AZ(g.A)a;.

Thus setting a = X,(g,4,)a; yields fA = Aa.
From the exact sequence

Hom (A,4) - Hom (I,4) — Ext! (A/I,4) - 0

it follows that the conclusion of 3.4 may also be stated as Ext! (A/,4) = 0.

4. PRUFER RINGS

It follows from 3.2 that an integral domain A is semi-hereditary if
and only if every finitely generated ideal is inversible. Such rings are called
Priifer rings. By v1,2.9, we have Tor2 = 0 for n > 1 and Tor? is left
exact for such rings A.

PROPOSITION 4.1. A is a Priifer ring if and only if every finitely
generated torsion-free A-module is projective.

Proor. If every finitely generated torsion-free A-module is pro-
jective, then every finitely generated ideal in A is projective and A is a
Priifer ring. If A is a Priifer ring then it is semi-hereditary and by
1,6.2 every finitely generated submodule of a free module is projective.
Thus the result follows from 2.4.

PROPOSITION 4.2. If A is a Priifer ring, then A is torsion-free if and
only if Tor, (X,A) = 0 for all modules X.

Proor. If Tor, (K,4) = 0 then, by 2.2, t4 = 0 and 4 is torsion-free.
Conversely assume A torsion-free. Then by 4.1 each finitely generated
submodule A, of A is projective. Thus Tor, (X,4,)= 0. Since
A= Lim 4,, and Tor, commutes with direct limits, it follows that

Tor, (X,4) = 0.
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COROLLARY 4.3. If A is a Priifer ring and C is torsion-free then the
Sunctors A @ C and C @ A are exact functors of A.
PROPOSITION 4.4. If A is a Priifer ring then the homomorphisms

Tor, (t4,C)
Tor, (t4,tC) Tor, (4,C)
Tor,; (4,tC)

are isomorphisms.

PROOF. Since the module 4/t4 is torsion-free, it follows from 4.2 that
Tor, (4/t4,C) = 0. Since also Tor, = 0, it follows from exactness that
Tor, (t4,C) — Tor, (4,C) is an isomorphism. The other isomorphisms
are established similarly.

PROPOSITION 4.5. If A is a Priifer ring and A and C are torsion-free
thensois A @ C.

ProOOF. Since A4 is torsion-free it follows from 2.1 that the sequence
0—> A4—> Q ® Aisexact. Since C also is torsion-free, 4.3 may be applied
to give the exact sequence 0 >4 ® C—> Q ® A ® C. Thus by 2.1,
A ® C is torsion-free.

PROPOSITION 4.6. If A is a Priifer ring, then Tor, (4,C) always is a
torsion module.

This follows directly from 4.4 and 1.7.

5. DEDEKIND RINGS

It follows from 3.2 that an integral domain A is hereditary if and only
if every ideal is inversible. Such rings are called Dedekind rings. It
follows from 3.3 that a Dedekind ring is just a Priifer ring which is
Noetherian.

For any functor T defined for A-modules over a Dedekind ring, the
derived functors R"T, L, T and the satellites ST, S, T are zero for n > 1.
The functor R'T is right exact and L,T is left exact.

PROPOSITION 5.1.  For each integral domain A the following properties
are equivalent :

(a) A is a Dedekind ring.

(b) Each divisible A-module is A-injective.

PROOF. (a) — (b). If A is a Dedekind ring then each ideal I of A is
inversible. Thus 3.4 and 1,3.2 imply that each divisible module is injective.

(b) - (a). Since each quotient of a divisible module is divisible it
follows that each quotient of an injective module is injective. Thus, by
1,5.4, A is hereditary, and therefore a Dedekind ring.
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PROPOSITION 5.2.  If A is a Dedekind ring then the homomorphism

Ext! (4,C) — Ext! (4,C/6C)
is an isomorphism.
This follows from the fact that Ext! (4,6C) and Ext2 (4,6C) are zero
since dC is divisible and thus injective.
ProPOSITION 5.3.  If A is a Dedekind ring, then the module A is torsion-
free if and only if Ext! (A,C) is divisible for all modules C.
Proor. If A is torsion free, then since Ext! is right exact, it follows

from 1.4 that Ext! (4,C) is divisible. To prove the converse we use the
isomorphism (v1,3.5a)

Ext! (B, Ext! (4,C)) ~ Ext! (Tor, (B,4),C).

If Ext! (4,C) is divisible, then by 5.1, it is injective. Therefore the expres-
sions above are zero. Since Ext! (Tor, (B,4),C) = 0 for all C it follows
from 'v1,2.2 that Tor, (B,4) is projective, and therefore, by 1.1, is torsion-
free. - However, by 4.6, Tor, (B,4) is a torsion module, so that
Tor, (B,4) = 0. Since this holds for all B it follows from 4.2 that A4 is
torsion-free.

REMARK. 5.1 combined with 2.6 yield a new proof that every A-
module 4 (where A is a Dedekind ring) admits a monomorphism into an
injective A-module. In particular, this is valid if A= Z is the ring of
integers (see remark at end of 11,6).

6. ABELIAN GROUPS

We shall assume in this section that A = Z is the ring of rational
integers. All modules considered are then simply abelian groups. The
results established for Dedekind and Priifer rings, all apply in this case.
In particular “injective’” means “divisible.”” Since a subgroup of a free
abelian group is again a free abelian group it follows that “projective”
means “‘free.”

Let R denote the additive group of real numbers and let T = R/Z be
the group of reals reduced mod 1.

For each abelian group 4, the group Hom (4,T) will be called the dual
of A and will be denoted by D(A4). Since T is divisible it is injective.
Thus Hom (4,7T) is an exact functor of 4. Consequently D is a contra-
variant exact functor. For the moment no topology is imposed on R,T
and D(4).

Since T is injective, v1,5.1 gives an isomorphism

1) rl: Ext! (4, Hom (B,T)) ~ Hom (Tor, (4,B),T).
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This implies
PROPOSITION 6.1.  For any two abelian groups A and B we have
Ext! (4,D(B)) ~ D(Tor, (4,B)).

As an application we prove

COROLLARY 6.2. If A is a torsion-free abelian group and C is a finite
abelian group, then Ext}(4,C) = 0.

Proor. Since C is finite, there is a (finite) group B with C ~ D(B).
Then, by 6.1,

ExtY(4,C) ~ ExtY(4,D(B)) ~ D(Tor, (4,B)).
Since A is torsion-free it follows from 4.2 that the latter term is O.

Proposition 6.1 acquires more force if we introduce a topology in some
of the groups that appear.

So far we have dealt only with categories of A-modules and A-
homomorphisms, where A was a ring. Let € denote the category of
compact abelian groups (satisfying the Haussdorf separation axiom) and
continuous homomorphisms. In particular, all the results of 1v,1 remain
valid for compact abelian groups. The continuity of the connecting
homomorphisms for homology groups is an easy consequence of compact-
ness. When we pass to graded groups 4 = >A" (see 1v,3) we only
require that each 4™ be a compact group. We do not impose any topology
on the direct sum 4. With this convention, the definition and basic
properties of derived functors remain valid for additive functors whose
values are in the category % of compact abelian groups. The same applies
to satellites. Also the homomorphisms « and «’ of 1v,6 are continuous.

An example of such a functor is 7(4) = Hom (4,C), where 4 is a
discrete group and C is a compact abelian group, with the topology in
Hom (A4,C)defined as follows. Given a finite subset F of 4 and a neighbor-
hood of zero V in C, we consider the set W(F,V) of all f ¢ Hom (4,C) with
f(F)CV. We consider in Hom (4,C) the topology in which the sets
W(F,V) form a fundamental system of neighborhoods of zero. In this
topology Hom (4,C) is compact (and satisfies Haussdorf’s separation
axiom) and for each ¢: 4 — A4’, Hom (¢,C): Hom (4’,C)— Hom (4,C)
is continuous.

Let 4 and B be discrete abelian groups and let C be a compact abelian
group. It is immediate that the isomorphism

Hom (4, Hom (B,C)) ~ Hom (4 ® B,C)
is a topological isomorphism. In particular, taking C= T with its

natural topology derived from the representation 7= R/Z, we obtain
the topological isomorphism

Hom (4,D(B)) ~ D(4A ® B).
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If we consider the right derived functors of the functor T(4)=Hom(4,C)
with C'compact, we find Ext! (4,C) has a natural topology and is a compact
group. Further all the homeomorphisms used to define p! in v1,5 being
continuous, p! is continuous and therefore is a homeomorphism (since
the groups are compact). It follows that the isomorphism of 6.1 is
topological.

7. A DESCRIPTION OF Tor, (A,C)

We consider an exact sequence
(S) 0>A—>R—>T—->0

where A is an integral domain and R is a divisible and torsion-free
A-module; the exact sequence

(S) 0>A—>Q—>K—>0

is an example of such a sequence. It is clear that Q may be regarded as a
submodule of R. Since, by 1.3, Q is injective we have a direct sum
decomposition R = Q + R’ where R’ again is divisible and torsion-free.
Consequently 7= K 4 R’ and (S) is obtained as the direct sum of (S’) and
a trivial exact sequence 0 -0 — R’ — R’ — 0.

Since, by 1.3, R is injective we have the exact sequence

Hom (4,T) — Ext! (4,A) — 0
and since Hom is left exact we obtain an exact sequence
0 — Hom (Ext! (4,A),C) — Hom (Hom (4,7),C).
Combining ¢ with the homomorphism
o,: Tor; (4,C) — Hom (Ext! (4,A),C)
of v1,5 we obtain the homomorphism
goy: Tor, (4,C) - Hom (Hom (4,7),C)

which is the object of study of this section.

ProposITION 7.1.  If A is a Dedekind ring then @o, is a monomorphism.
If further A is a finitely generated torsion module then o, is an isomorphism.

Proor. It follows from v1,5.5 that ¢; is a monomorphism. Since ¢
also is a monomorphism, it follows that o, is a monomorphism.

Assume now that A4 is a finitely generated torsion module. Then o,
is an isomorphism by v1,5.4. To show that ¢ is an isomorphism it suffices
to show that 7: Hom (4,T) — Ext!(4,A) is an isomorphism. However
T=K+ R’ and we have already shown in 2.3 that Hom (4,K)— Ext! (4,A)
is an isomorphism (if 4 is a torsion module). Since 4 is a torsion module
and R’ is torsion-free we have Hom (4,R")= 0. Thus risanisomorphism.
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We now assume that A = Z is the group of integers, that R is the group
of real numbers and that 7= R/Z. Then 7.1 can be applied and we
obtain a monomorphism

@o,: Tor, (4,C) — Hom (D(A4),C).

In D(4) = Hom (4,T) we have the (compact) topology defined in the
preceding section.
PROPOSITION 7.2. Let A and C be discrete abelian groups. Then the
homomorphism
@o,: Tor, (4,C) — Hom (D(A),C)

maps Tor, (A,C) isomorphically onto the subgroup Hom,(D(A4),C) of
Hom (D(A),C) consisting of all continuous homomorphisms D(A)— C.
PrOOF. Let 4, be a finite subgroup of 4. We then have a commuta-
tive diagram
P01
Tor, (4,,C) — Hom (D(4,),C)
g Ja
Tor; (4,C) P Hom (D(4),C)
1

Let x € Tory (4,,C). Then g@o, (i,x) admits a factorization
D(A)—~ D(4,)— C

Since D(4,) is finite it follows that @o, (i,x) is continuous. Since each
element of Tor, (4,C) is in the image of i, for some finite subgroup 4,,, it
follows that Im ¢, C Hom, (D(A4),C).

Conversely, let f: D(4)— C be a continuous homomorphism.
Since C is discrete there is a neighborhood W(F,V) of zero in D(A4) such
that f maps W(F,V) into zero. In particular, if ¢ € D(A) is such that
@(a) = 0 for all a € F, then ¢ € W(F,V) and fp = 0. Let A’ be the sub-
group of A generated by the finite set F. It follows that f admits a
factorization

D(4) — D(4") > C

where D(A4) — D(A’) is induced by the inclusion 4" — A4 and g is
continuous. The group A’ being finitely generated, its torsion subgroup
#(A’) is finite and A4’ is a direct sum of #(4") and a subgroup E isomorphic
with Z" (= direct sum of n factors isomorphic with Z). Since D(Z) ~ R
we have D(Z™) ~ T™ whichis connected. Since D(4") = D(t(4"))+ D(Z™)
and g is zero on the connected part D(Z"), it follows that g admits a
factorization D(A") — D(#(A")) - C. Consequently f admits a factoriza-
tion
D(A4) — D(¢(4")) — C.
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Taking A, = #(4’) in the diagram above, we find that f is in the image
of j,. Since by 7.1, goy, is an isomorphism, it follows that f is in the
image of j @0, = @o,i, and thus in the image of @o;. This concludes the
proof.

If we combine 7.2 with 6.1 we obtain a natural isomorphism

Ext (4,D(C)) ~ D[Hom, (D(4),C)]

of compact groups. This result was established by Eilenberg-MacLane
(Ann. of Math. 43 (1942), 757-831) using the notion of a “modular trace.”

EXERCISES
1. If 4 and C are finite abelian groups, then
Hom (4,C) ~ A ® C ~ Tor, (4,C) ~ Ext! (4,C).

Show that these isomorphisms are not natural. Give an example of two
infinite torsion groups A4, C such that 4 ® C = 0, Tor, (4,C) #* 0.

2. If A is a Dedekind ring, any torsion module has an injective resolu-
tion consisting of torsion modules. Using this, prove that the right
derived functors R*U(A4,C) of U(4,C) = A ® C are zero for any n > 0,
whenever 4 or C is a torsion module [Hint: use 1.8].

3. For any integral domain A, let U(4,C) denote the functor 4 ® C,
and let Q denote the field of quotients of A. Prove that

RUA4,0)=00®4QC

when 4 and C are torsion-free.
[Hint: consider exact consequences

0>4->08®4—>(QA)®4—0
0>-C—>0RC—>(Q/ANRC—0
0->(QANRA—>X;—> Xy— -
0>(Q/IN)Q®C—> Y~ Y,—-
where X, and Y; are injective. Then
Xx) O0RA4A= Xy~ X;—> X~ -
(Y) 20QC=Yy—> Y= Y,— -

are injective resolutions of 4 and C. In the complex X ® Y, d° is zero,
because (Q/A) ® 4 ® Y, and X, ® (Q/A) ® C are zero by 1.8.]
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4. Let A be a Dedekind ring; then, denoting by U(4,C) the functor
A ® C, prove that

RUMA,C)=0®4RC, R"U4,0)=0 (n=>1)

for all modules 4 and C.
[Hint: using Exer. 2, prove first that

R*U(A,C) ~ R"U(A[tA,C[tC).
Then, using Exer. 3, prove that
RUAC)=0Q@A4QC.

Finally, observe that 0 ® 4 ® C = V(4,C) is an exact functor, whenever
A is a Priifer ring.]
5. Consider the functor

T(A)=A4QC,

where C is a given torsion module, the ring A being an integral domain.
Prove that
R*T(A)=0 for any n > 0.

Then using Exer. v,4, prove that the right satellite of the functor
T, (A) = Tor, (4,C)

is A @ C, whenever Cis a torsion module. It follows that, assuming that
A is a Priifer ring, the right satellite of T(4) = Tor; (4,C) is 4 ® (tC)
for any module C.

6. Consider the functor

T(C) = Hom, (4,C)

where 4 is a torsion module, the ring A being an integral domain. Prove
that
L,T(C)=0 for any n > 0.

Then prove that the left satellite of the functor
TY(C) = Ext} (4,C)

is Hom, (4,C), whenever 4 is a torsion module. If A is a Dedekind
ring and A4 is finitely generated, the left satellite of TY(C) = Ext} (4,C) is
Hom, (¢4,C).
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7. With the notations of § 7, define a natural map
u: Tor, (4,C) > Hom (Hom (4,T),C)
by setting, for x € Tor, (4,C) and f e« Hom (4,7),
x)f= v(wy),

where w;: Tor, (4,C)— Tor, (T,C) is induced by f, and v: Tor, (T,C)
— A ® C= C is the connecting homomorphism induced by the exact
sequence (S’) of § 7. Show that, with the notations of § 7,

u+ oy =0.
[Hint: use Exer. v1,18.]
8. For each Z-complex X, Z-module G and prime p, establish the
natural isomorphism

H"(Hom (X,,G)) ~ Hom (H,(X,),G),

where ,G denotes Ker (p: G— G) and X, denotes X/pX. Derive the
isomorphism
Ext! (4,,G) ~ Hom (,4,G)

for each Z-module 4. [Hint: note that Hom, (X,,G) ~ Homzw (Xp:0G)
and apply the isomorphism «’ over the field Z,,; cf. 1v, 7,2.]

Assume that X is torsion-free. The exact sequence 0—>X- XX, 0
yields a homomorphism
H, . (X,)— H,(X).

Combine this with the above to obtain a homomorphism
H" (Hom (X,G)) - H™! (Hom (X,,G).

9. Let A be a commutative ring and .S a subset of A with the following
properties: (1°) Oisnotin S; (2°) 1 € S; (3°) Sis closed under multiplica-
tion. For each A-module 4 consider the set of all pairs (a,s), a € 4,
s € S, and consider the relation

(a,8) ~ (d',s")

which means: there exists ¢ € S such that as’t = a’sz. Show that this is
an equivalence relation, and that the set of equivalence classes Ag is a
A-module under the operations

(a,5) + (a',s') = (as’ + a's, s5'), (a,5)A = (al,s).
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Show that @ — (a,1) yields a A-homomorphism 4 — Ag whose kernel
consists of all those a € 4 with as = 0 for some s € S.

Convert Ag into a ring by setting (4,5)(4',s") = (44',ss"), and show that
the mapping A — (4,1) yields a ring homomorphism ¢: A - Ag. Convert
Ag into a Ag-module by setting

(a,5)(4,1) = (ads1)
and show that the mapping (a,5) > a ® (1,s) yields a Ag-isomorphism
AS ~ A ®A AS= A(,p).

Show that if 4 is a Ag-module, then, if we regard 4 as a A-module we
have Ag= A.

10. Show that the functor T(A) = Ag as described in Exer. 9 is
exact, i.e. that Ag is A-flat. Apply the results of vi, Exer. 10, and in
particular show that

w.dimyAg = w.dim, As.

Apply v1, Exer. 11 to obtain the isomorphism
(Tor(4,C))s ~ Torys(As,Cs)

and similar homomorphisms for Ext.

11. Let A be a commutative ring and let M denote the set of all subsets
M of A such that A—M is a maximal ideal. Show that for each A-
module A4 the relation Ay, = 0 for all M ¢ M implies 4 = 0. Use this
and Exer. 10 to show that

w.dimy 4 = sup w.dim, A4,,.
MeM o

If A is Noetherian and A is finitely generated, then show that
dim, A = supdim,_ A,
MeM ”

[Hint: use vi, Exer. 3.]

12. Let A4 be a finitely generated abelian group, 4 # 0. Show that
there exists a prime p such that 4 ® Z, # 0. As an application, let 4
and B be two abelian groups, with A finitely generated and B free; let
f: A— B be a homomorphism such that the induced homomorphism
A®Z,—~> B ® Z, is a monomorphism for each prime p; show that f
is a monomorphism and A4 is free. [Hint: consider N= Ker f, and
observe that N is a direct summand of A4.]



CHAPTER VIII

Augmented Rings

Introduction. The homology (and cohomology) theory of augmented
rings is the unifying concept of which various more specialized instances
will be studied later: homology of associative algebras (Ch. Ix),
homology of supplemented algebras (Ch. x), homology of groups (X,4)
and homology of Lie algebras (Ch. xu).

Sections 1-3 are devoted to a general exposition, with some examples.
The subject matter of § 4-6 is more special; we show how the theorem of
“chains of syzygies”” of Hilbert ties up with the general notion of the
“projective dimension” of a module. This theory is valid either for
graded rings or for local rings which are Noetherian.

1. HOMOLOGY AND COHOMOLOGY OF AN AUGMENTED RING

A left augmented ring is a triple formed by a ring A (always with a unit
element), a left A-module Q, and a A-epimorphism &: A— Q. The
module Q is called the augmentation module, ¢ is called the augmentation
epimorphism, the kernel I of ¢ (a left ideal of A) is called the augmentation
ideal.

We consider the functors

T(A) = 4 34 O U(C) = Hom, (Q,0),
where A4 is a right A-module and C is a left A-module. The groups
Tory (4,0) = S, T(4), Ext} (@,C) = S"U(C)

are called the n-th homology (resp. cohomology) group of the augmented
ring A, with coefficients in 4 (resp. in C).

Strictly speaking S,T(A4) and S"U(C) are abelian groups. However if
A or C have any additional operators which commute with the operators of
A, then, following the principles of 11,3, these additional operators carry
over to S,T(A4) or S*U(C). In particular, we may always regard these
groups as modules over the center of A.

To compute S,7(4) and S*U(C), we can use a A-projective resolution
X of 4 and a A-injective resolution Y of C. Then

Torrjl\ (Aa Q) = Hn(X ®A Q)’ EXtK (Q3C) == H"( HomA (Qa Y))'
143
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In the case of Tor’ (4,Q), this method of computation is due to H. Hopf
(Comment. Math. Helv. 17 (1945), 39-79) who used this process to define
homology groups of (discrete) groups.

It is often more convenient to compute using a A-projective resolution
X of Q. Then

Tory (4,0) = H,(4 ® X), Ext3 (@,C) = H"( Hom, (X,C)).
The resolution X consists of a complex
=X, X, == X X

and an augmentation map X,— Q such that the modules X, are
A-projective (n = 0) and the sequence

=X, > X, > 2> X > X, > 00

is exact. Since the sequence

(1) 0—I—A—Q—0

is exact, we can always begin the construction of X by choosing X; = A
and letting X, — Q coincide with &. The remainder of the construction
reduces to choosing a projective resolution for the left A-module 7.

The exact sequence (1) gives rise to connecting homomorphisms for
Tor and Ext. Since A is A-projective we have Tor? (4,A)=0
= Ext2 (A,C) for n > 0. This implies the isomorphisms

) T(A)= A @, Q ~ Coker (4 @, I— A)

(2a) U(C) = Hom, (Q,C) ~ Ker (C — Hom, (Z,C))

3) S,T(A) = Tor (4,0) ~ Ker (4 @, I A)

(3a) S1U(C) = Ext} (Q,C) ~ Coker (C— Hom, (I,C))

@ S, T(4) = Tory (4,0) ~ Tory_; (4,1) (n>1)
(4a) S"U(C) = Ext% (Q,C) ~ Ext}~1 (1,C) (n>1).

The functors T,(4) = S,T(A4) and U"(C) = S"U(C) (n = 0) are co-
variant functors in the variables 4 and C. Further they form connected
sequences of functors: more precisely, given exact sequences

Q) 0>A"-A—-A"—0
(5a) 0—-~C'—-C—C"—0,
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we have the exact sequences

© co o> T (4) > T (4) > T (4") > T, 4(4)—> - - -

(6a) cee= UMY C)— UHC)—-> UNC)—-UMC)—> - - -

In view of v,8 these sequences may be computed as the homology sequences
of the following exact sequences of complexes

@) 0> A" QX —=>ARQpX—>A4"R,X—>0
(7a) 0 — Hom, (X,C’)— Hom, (X,C) - Hom, (X,C")—0

where X is a projective resolution of Q.

THEOREM 1.1. The connected sequence of covariant functors
T,(A) = Tor2 (4,0) of the variable A has the following properties:

(i) for each exact sequence (5), the sequence (6) is exact;

(ii) T,(4) =0 if n > 0 and A is A-projective;

(ifl) To(4) = 4 @, Q.
These three properties characterize the connected sequence of functors
T,(A) = Tor2 (4,0) up to an isomorphism.

THEOREM l.la. The connected sequence of covariant functors
U™(C) = Ext (Q,C) of the variable C has the following properties:

(i) for each exact sequence (5a), the sequence (6a) is exact;

(i) U(C)=0if n> 0 and C is A-injective;

(iii) UYC) = Hom, (Q,0).
These three properties characterize the connected sequence of functors
U™(C) = Extk (Q,C) up to an isomorphism.

The properties listed in 1.1 and 1.1a are special instances of the pro-
perties of the functors Tor and Ext. The fact that these properties
constitute axiomatic descriptions; follows from 1r,5.1.

So far we have considered left augmented rings. The definition of
right augmented rings and the ensuing discussion are quite similar with
T(4) = Q ®, A4 and U(C) = Hom, (Q,C).

If the augmentation ideal I is a two-sided ideal in A, then Q = A/lis a
ring, which may be regarded as a left and as a right A-module; thus in
this case A is simultaneously a left and a right augmented ring. Since A
operates on the right on Q it follows that for each right A-module 4, the
group T,(A) = Tor2 (4,Q) is again a right A-module. Similarly for
each left A-module C, U"(C) = Ext} (Q,C) again is a left A-module.

Assuming again that 7 is a two-sided ideal of A, we may replace 4 by
Q in the formulas (2), (3), (4) (Q being considered as a right A-module).
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If we observe that Q ®, I ~ I/I? (I? being the image of the homo-
morphism I ®, I - A ®, I = I)and that the homomorphism Q ® , [ —
Q is zero, we obtain

® T(Q)=0Q,2~ 0
©) $,7(Q) = Tor{ (Q,0) ~ Q @ I ~ I|I?
(10) S,T(Q) = Tory (Q,0) ~ Tor} (Q.]) ~ Ker (I @, I > ).

2. EXAMPLES
In the following examples, I will be a two-sided ideal in A.

Graded rings. A graded ring is a ring A which is graded as an additive
group, the grading satisfying the conditions

A?=0 forp <0, APAI C AP+,

It follows that A° is a subring which we denote by Q. We define the
epimorphism e: A — Q by assigning to each element 2 its homogeneous
component of degree zero. The augmentation ideal is the two-sided ideal
which consists of all elements with a vanishing zero-component.

We list some examples of graded rings. Let K bearing,and x,,...,x,
a set of letters. We denote by A= Fg(x;,...,x,) the free left K-
module having as a base the elements

l,xi,x,-lxis,...,x R N

il .. m

where each index i; assumes any value 1,...,sn. The module A is
graded by regarding x; - --x; asa homogeneous element of degree m.
We define a multiplication in A by setting

(kyxs, = o % JhoXy, » + 0 X)) = kakoXy v v Xy X, - T Xy
The resulting graded ring Fr(xy, . . . , x,,) is called the free K-ring on the
letters x;, . . ., X,.

If we divide Fg(x;, ..., x,) by the two-sided ideal generated by the
elements x,x; — x,x;, we obtain the graded K-ring K[x,, ..., x,], called
the polynomial K-ring on the letters x;, . . ., x,.

If we divide Fx(x,, ..., x,) by the two-sided ideal generated by the
elements x,x; and x,x; + x,x;, we obtain the graded K-ring Ex(x;, ..., x,)
called the exterior (or Grassmann) K-ring on the letters x;, . . ., x,,.

For n= 1 the exterior ring Ex(d) is easily seen to be the ring of dual
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numbers A = (K,d) over K, as defined in 1v,2. The elements of A are of
the form k; -+ k,d, the multiplication being given by

(ky + kad)(ky + kod) = kiky + (kiky + koky)d.
The augmentation epimorphism ¢ is defined by
E(kl + kzd) == kl'

We find a A-projective resolution X of K by taking X, = A foralln > 0,
and defining d,: X, — X, ; by

dy(ky + ked) = kyd (n>0).

For each right A-module 4, i.e. for each right K-module A with differentia-
tion operator d, the complex 4 ®, X is simply

dy, d
e f S > —> 4 —4

where d, = d. Thus Tor2 (4,K) as a right K-module, coincides with the
homology module H(A4) for n > 0, and 4 ®, K = Coker d = Z'(A4).
Similarly, for each left A-module C, the complex Hom, (X,C) simply is

a° ar
C—»C—)---—>C—>C—>o

where d"=d. Thus Ext} (K,C)= H(C) for n >0, and Hom, (KX,C)
= Ker d = Z(C).

The exact sequences (6) and (6a) of § 1 can be seen to coincide with
those of 1v,1.1.

Another class of augmented rings is the class of local rings. A ring A
is called a local ring if it satisfies the following condition:

(LC) The elements of A which do not have a left inverse form a left
ideal I.

PROPOSITION 2.1. I is a two-sided ideal and contains all proper left and
right ideals of A. The elements of I have neither left nor right inverse,
while the elements not in I have a two-sided inverse. The factor ring A/l is
a (not necessarily commutative) field.

Proor. IfJis a proper left ideal then no element of J has a left inverse.
Thus JC I

Next we show that no element of I has a right inverse. Indeed,
suppose that xA= 1 for some x e I. Then (1 — Ax)A= 0 and since
Ax € I it follows that 1 — Ax is not in 7 so that 1 — Ax has a left inverse .
Then 4 = (1 — Ax)A = 0, a contradiction.

For each 1 € A, I is a left ideal and since xA £ 1 for x eI, I is a
proper left ideal. Thus JA C I so that [ is a right ideal.

Now consider 4 not in  and let y be a left inverse of A. Then yA =1
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and since I is a right ideal it follows that y is notin 7. Thus y has a left
inverse {. Then { = {yA= 4. Thus Ay = {y = 1, which shows that
A has a two sided inverse. Since / consists of all the elements which have
no right inverses, it follows as above that 7 contains all proper right ideals.

The conclusion that A/I is a field follows from the facts established
above.

Because of 2.1, there is no distinction between left and right local
rings. The maximal (two sided) ideal I of a local ring A defines A as an
augmented ring with Q = A/I being a field. Important examples of
local rings are the following two:

K[[x, . .., x,]], the ring of formal power series in the letters x,, . . ., x,,
with coefficients in the field K.

K{x;, ..., x,}, the ring of convergent power series in the letters
Xy, ..., X, With coefficients in a commutative field K with a complete
non-discrete valuation.

In both cases the ideal I is generated by the elements x;, ..., X,.

Another important class of augmented rings is furnished by the ring of
a monoid. A monoid II is a multiplicative associative system with a unit
element 1. Given a ring K we define the ring K(II) as the free K-module
generated by the elements x e I, with multiplication defined by

(kx)(k'x") = (kk')(xx"), kk' €K, x,x" eIl

We observe that if Il is the free monoid generated by the elements
Xp, ..., X, then K(I) may be identified with the free K-ring
Fr(xy,...,x,). IfIl is the free abelian monoid generated by x,,. . ., x,,
then K(II) may be identified with the polynomial ring K[x;, ..., x,].

Given a ring K(II), there are many possibilities for defining an
augmentation &: K(II)—~ K. We shall only consider multiplicative
augmentations which satisfy the following condition

ekl) = k.

Such an augmentation is determined by a function u: II — K. This
function must satisfy the conditions

0)) wxx") = p(x)pu(x’), w)=1,

and u must take values in the center of K, because of the relation kx = xk
in the ring K(IT). Conversely, given a function u satisfying (1) and taking
its values in the center of K, we define e: K(II) - K by

e(kx) = k(ux);

¢ is then a multiplicative augmentation, satisfying e(k1) = k.
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The introduction of the ring K(II)is motivated by the following remark.
Let A be a right K(IT)-module. Then 4 is a right K-module and further
each element x e II determines a K-endomorphism of 4 given by a — ax.
These endomorphisms satisfy al = a, (ax)x’ = a(xx"). Conversely each
right K-module with K-endomorphisms a—ax for x eIl satisfying
the conditions above may be regarded as a right K(II)-module.
Thus K(II) plays the role of an “‘enveloping ring” for the ring K and the
elements x € [I. The same applies to left K(II)-modules. An analogous
example of an “enveloping” ring was the ring of dual numbers A = (K,d)
mentioned earlier. There will be other examples later.

Since a good deal of space will be devoted later to monoids and groups,
we shall not pursue the discussion here any further.

3. CHANGE OF RINGS

Given a fixed ring A with a left augmentation ¢: A — Q we have
considered the homology groups Torp (4,0) and cohomology groups
Ext} (Q,C) as covariant functors in the variables 4 and C. We shall
now show that in some sense these are also functors of A.

Consider two augmented rings A and I" with augmentations

EA: A— QA’ 8]‘: F% QF

and augmentation ideals 7, and Ir. A map ¢: A— I' of augmented
rings is a ring homomorphism such that ¢(7,) CI.. By passage to
quotients we obtain a mapping y: Q, — Qp such that the diagram

éa
A— 0,
b
I'— Or
ér
is commutative. It follows that y(Ax) = () (px) for A e A, x € Q4.
This shows that v is a A-homomorphism if we regard Q. as a A-module
by means of ¢ (see 11,6 and vi, 4).
Let A4 be a right I'-module and C a left I'-module. Using ¢ we may
regard 4 and C also as A-modules. We shall define homomorphisms

§)) F?: Tor® (4,0,) — TorT (4,0r)
(1a) F,: Extr(Qr.C)— Ext, (Qp.C).

To this end let X, be a A-projective resolution of Q, and X a I'-pro-
jective resolution of Q. Further let

g (tp)QA: I' Q) Op—~ Or
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be defined by g(y ® x) = y(yx). By 1,6.1, I' ®) X = (n X, is a
I'-projective complex over I' ®, Q. Following v,1.1 there is a map
over g and this map G is unique up to a homotopy. This yields homo-
morphisms

2 H(A @5 Xp) = H(4 ®r (' ®, Xy)) > H(4 Qr Xr)
(2a) H(Homy (X1,C)) - H(Homy (I' ®, X,,C)) = H(Hom, (X,,C)
which are the desired homomorphisms F? and F,.

THEOREM 3.1 (Mapping theorem). In order that F? be an isomorphism
for all right T-modules A it is necessary and sufficient that

)] g: I'®, 0)~ Or
(ii) Tor2 (I,0,) =0 for n> 0.

If these conditions are satisfied then F, also is an isomorphism for all

left T'-modules C; and, for any A-projective resolution X, of Q,, the
complex I' @, X, with the augmentation I' @, X, —T' @, O, 2 QOr is
a I'-projective resolution of Qr.

PrOOF. Assume F? is an isomorphism. In particular, taking
A=T, we obtain that F?: Tor* (I',Q,) ~ Tor (I,Qr). This yields
precisely (i) and (ii).

Assume that (i) and (ii) hold and let X, be a A-projective resolution
of Q,. Then H,(I' ®, X,)= Tor2 (I',0,) =0 for n>0. Thus (i)
and (ii), precisely express the fact that I' ®, X, (with the augmentation
as above) is a I-projective resolution of Q. Taking Xt = 1" ®, X,
the map G may be taken to be the identity map. Then (2) and (2a)
become isomorphisms.

The “Mapping theorem” will have many applications.

4. DIMENSION

Let A be a left augmented ring with 2 A— Q and /= Kere. We
shall be interested in the projective dimension of Q as a left A-module
(see v1, 2). Clearly 1.dim, Q < l.gl.dim A.

PROPOSITION 4.1.  If Q is not projective, then 1 4 1.dim, I = 1.dim, Q.

This is an immediate consequence of vi, 2.3.

THEOREM 4.2. Suppose that I is generated (as a left ideal) by elements

X1s « - - » X, Which commute with each other. Let I(0 < k < n) denote the
left ideal generated by x,(i < k). If
@) (AeAand ix,el_)=>(Ael,_y), k=1,...,n,

then 1.dim., Q = n, provided Q # 0.
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Before we proceed with the proof, we list the three most important
examples to which 4.2 applies. These are:

A= K[x,,...,x,], the graded ring of polynomials in the letters
Xy, . . . » X, with coeflicients in the (not necessarily commutative) ring K.

A= K][[x;,...,x,]], the ring of formal power series in the letters
Xy, ..., X%, with coefficients in the ring K. If K is a (not necessarily
commutative) field, then A is a local ring.

A= K{x,, ..., x,}, the ring of convergent power series in the letters
X1 . . . » X, With coefficients in the commutative field K with a complete
non-discrete valuation. This is also a local ring.

In all three cases the augmentation ideal I is the two-sided ideal 1
generated by x;,...,x, and A/I= K. Condition (i) of 4.2 is verified.
Therefore, by 4.2, 1.dim, K=n. (For the case of A= K][[x;, ..., x,]],
the fact that the dimension of K is finite has been proved by F. Recillas
(unpublished).)

Proor of 4.2. Since x,,...,x, commute, we may regard A as
a (right) module over the ring I' = Z[x;, ..., x,]. Let JLO0< k< n) be
the ideal of I' generated by x,(i < k). Then I, = AJ,.

More generally, for each I'-module M we shall define a left complex
over the module M/MJ, (in the sense of v,1). Consider the exterior
algebra E(yy, ..., y;) on n letters y,, ..., y, with integral coefficients, as
defined in §2. The tensor product (over Z)

X=MQE(, ...,y
is graded by the modules

Xi =M ® Ei(yl’ e ’yn),

where E/(y,,...,y,) denotes the group of elements of degree i in
E(yy ..., y,). We define an augmentation &: X,— M/MJ, as the
natural map of X,= M onto M/MJ,. We define a differentiation
d: X;—~ X,_,(i>0) by
d(m ®ya>1 T Ye) = z _(_l)Hl(mxp,) ®ypl e .i;pi T Y,
1<j<i

where j », indicates that y, is to be omitted. Using the fact that
Xy, - . . » X, commute with each other, it is easy to verify that d; ;d; =0
fori > land ed; = 0.

Before proving 4.2 we establish

PRrOPOSITION 4.3.  If the I'-module M satisfies

i) (m e M, mx,, e MJ,_;) = (m e MJ,_;), k=1,...,n

then the complex X is acyclic.
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ProoF of 4.3. Condition (i) expresses the fact that the mapping
M|MJ,_, — MJ,/MJ,_, induced by m — mx;, is an isomorphism.

We introduce the left complexes X = M @ E(yy,...,y;) over
MJ, with differentiation and augmentation defined as above. We want
to show by induction that X* is acyclic. For k = 0 this is clear because
Jo=10and X = M. Suppose now that we already know that X *-1
is acyclic over MJ,_; (k > 0). Consider the complex

Yyw. .. '——>0—>X§c")—> . ._,X(lk)_>MJk__>0_

Since the augmentation X{¥ = M — M/MJ, is an epimorphism with MJ,
as kernel, the acyclicity of the complex X®) is equivalent to H(Y®) = 0.
Since Y*-1) may be regarded as a subcomplex of Y*) and since H(Y *-1))
= 0, it follows from the exactness of

H(Y'*1D) — H(Y'®) - H(Y®|Y*-D)

that it suffices to show that H(Y®/Y®*-1) = 0. To this end we consider
the diagram

0—>X{ P X{» —-o> XV >MML, -0

\ \ ¥
0> XP — X IXED > > XEIXED > MU MI,_, >0

where X%V — X®/x*-1 js defined by right multiplication by y;,.
The mapping M/MJ,_, — MJ,/MJ,_; is the isomorphism induced by
m—mx,. This diagram is commutative; the vertical maps are all
isomorphisms, and the upper row is exact by the inductive assumption;
it follows that the lower row is exact, i.e. that H(Y ®/Y *-1) =0,

We now return to the proof of 4.2. If we replace M by the ring A
of 4.2, we find that X is a A-complex. Since the products y, - y,,
(py < --- < p,;) form a base for the free abelian group E(y;. ..., y,), it
follows that X is A-free and has dimension n. Thus X is a projective
resolution of Q of dimension n, so that 1.dim, Q < n.

The preceding resolution X of Q = A/I can be used to express the
homology and cohomology modules of the augmented ring A with any
coefficient module. For a right A-module 4, we have

(1) Tor? (4,0) = H{(A ® E(yy, - - -, ya)-

Indeed Torf (4,Q) are the homology modules of the complex
AQyX=AQ (AQE(,...,y))=AQE(, ...,y

with the differentiation

Q) d@®y,y)= 3 (—1Hax,) ®yp Yy

1<j<i



§4] DIMENSION 153
Similarly for cohomology, we have for any left A-module C:

EXti\ (Q,C) = H* (Hom (E(yla cees yn)ac))'
Indeed

Hom, (X,C)= Hom, (A ® E(yy,. .., y.),C)= Hom (E(y,, ..., y.),C)-

An element of degree i in Hom (E(yy, . . ., y,),C) may be identified with
a function f(p,, . . . , p;) defined for integers satisfying 1 < p; < - -+ <p;
< n; the differentiation is then given by the formula

@) O py..p)= 2 xm,.f(Pl’ ceesPir s Pir))-
l1sj=si+1l
We observe now that in the above method of computation the ring A
has almost completely disappeared; the only thing that needs to be
known is how the elements X, ..., x, operate on 4 (resp. C) and that
these endomorphisms commute with each other.
In particular, we find

Ext3(Q,0)=H"(Hom(E(y;, . . ., y,),0) = Hom(E, (31, . .~ , ¥0), Q)
= Hom (Z,0) = Q.

Thus if Q # 0 then lLdim, Q = n. This completes the proof of 4.2.

The complex 4 ® E(yy,...,y,) was first found by J. L. Koszul
(Colloque de topologie, Bruxelles, 1950), in connection with cohomology
théory of Lie groups.

REMARK 1. If we apply (1) to calculate Tor; (M,Z) with M as in 4.3,
the acyclicity of the complex M ® E(y;, . .., y,) is equivalent to

) Tor’(M,Z)=0, i>0.

The fact that hypothesis (i") for M implies (3) can be established directly:
indeed we can show by induction on & that

Tory (M, T'|J;) = 0,

using exact sequences 0 — I'/J,_, BN r'\ey— T, —0.

ReMARK 2. Consider the algebra A = K[x,] of polynomials in an
arbitrary set {x,} of variables. We may regard A as the direct limit of
algebras A; = K(J) where J runs through the finite subsets of the col-
lection {x,}. The complexes X, constructed above form then a direct
system with a complex X as limit. It is immediately clear that X is a
A-projective resolution of K and that X is the tensor product A @ E(y,),
where E(y,) is the exterior algebra on the letters {y,}. The differentiation
in X is given by the same formulae as above.
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5. FAITHFUL SYSTEMS

We shall assume here that A is an augmented ring with a proper two
sided augmentation ideal I. Then Q = A/l may be regarded as a ring
and e: A — Q is a ring homomorphism.

Let A be a right A-module. Then 4 ®, Q is a right Q-module.
From the exact sequence 0 — I — A — Q — 0 we deduce

1 A®, Q~ AJAL

A right A-module 4 will be called proper if either A =0o0r 4 ®, Q # 0
(i.e. 4 5% AI). A free module clearly is proper.

Given a subset N of a module 4 we consider the free module F
generated by the elements of N. We have a natural homomorphism
F, — A which leads to the exact sequence

2 0—Ry—Fy—>A—Ly—0.

with Ry = Ker (Fy — A), Ly = Coker (Fy — A).

DEFINITION. A subset M of a right A-module A is called faithful if
for each N C M the modules Ry and Ly are proper. A family 2 of
right A-modules is called allowable if for each A € & there is a faithful
set M generating 4 and such that in the exact sequence 0—R 3,—F ,—>A4—0
we have Ry, € 9.

If 4 has a faithful subset M, then taking N = 0 we have Ly = A4 and
therefore A is proper. Thus all the modules in an allowable family are
proper.

To illustrate the notions just introduced we consider two important
special cases.

First we take up the case when A is a graded ring (see § 2), 0 = A,,
and I is the ideal of elements with a vanishing component of degree zero.
A right A-module A is graded if a grading

A=A+ A1+ - F A"+ - -

of A4 as an abelian group is given, with 4?A? C 47+%. Right A-modules
for which such a grading exists will be called gradable. Clearly a free
A-module is gradable.

PROPOSITION 5.1. Let A be a graded ring. Every graded A-module
A is proper and every set of homogeneous elements is faithful. The family
of all gradable A-modules is allowable.

ProOF. Let 4 be a graded A-module with 4 20 and leta e A™ be a
non-zero, homogeneous element of lowest possible degree. If 4 = AJ
then a € A1, i.e. a = Ya;A; with homogeneous elements a; e 4 and 4, € .



§5] FAITHFUL SYSTEMS 155

Since each a; has degree at least m and each 4; has degree at least 1, it
follows that a has degree at least m + 1. This contradiction shows that
A is proper.

If N is any set of homogeneous elements of 4 then the module F may
be graded by the requirement that the map Fy — A4 be homogeneous of
degree zero. Then Ry and L are graded modules and therefore proper.
It follows that any subset of 4 composed of homogeneous elements is
faithful. In particular, since each graded module is generated by its
homogeneous elements it follows that the family of gradable modules is
allowable.

As a second illustration, we take up the case when A is a local ring and
I its maximal ideal.

PrOPOSITION 5.1°. Let A be a local ring. Every finitely generated
right A-module is proper. If A is right Noetherian then every finite subset
of a finitely generated right A-module is faithful and the class of all finitely
generated right A-modules is allowable.

Proor. Let 4 # 0 be a finitely generated right A-module and let
(ay, . .., a,) be a minimal system of generators of 4. Let B be the sub-
module generated by a,, . . ., a,. Ifa, e AIthena; = a14, + - -+ + a,4,
for some 4;,...,4, €l. Thusay(l1 — 1) eB. Since 1 — A, is notin /
we may choose 4 ¢ A with (1 — A)A= 1. Then a, = a;(1 — 4))A ¢ B.
This contradiction shows that a, is not in 4. Thus A7/ 4 and A4 is
proper.

If A4 is finitely generated and N is a finite subset of 4, then Fy and Ly
are finitely generated. If further A is right Noetherian then Ry also is
finitely generated. Thus every finite subset of A is faithful. This proves
the second half of the proposition.

With the notions of *“proper,” “faithful,” and “allowable” thus
illustrated, we return to the abstract treatment.

PROPOSITION 5.2.  Let A be a right A-module and M a faithful subset of
A. Iftheimageof Min A @, Q = A[AI generates A Q, Q as a right Q-
module, then M generates A. If further Tor) (4,Q) = 0 and the images of
the elements of M in A @, Q form a Q-base for A @, Q then M is a
A-base for A.

Proor. We consider the exact sequence

0'—>RM—>FM—>A—>LJ”—>O

By assumption the map F; ®,, Q — 4 @, Q isanepimorphism. There-
fore, by the right exactness of the tensor product, L), ® , @ = 0. Since
Ly, is proper, it follows that Ly, = 0, i.e. Fj; — A4 is an epimorphism.
Thus M generates 4.
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Since Ly, = 0, we obtain an exact sequence

Tor® (4,0) — Ry ®4 Q— Fpy @) Q— A ®, Q.

The condition that the images of the elements of M form a Q-base of
A ®, Q means precisely that ¢ is an isomorphism. Since Tor* (4,0)=0,
it follows that R;; ®,, Q = 0. However R, is proper so that Ry, = 0.
This implies that F,; — A is an isomorphism, i.e. M is a A-base for 4.

THEOREM 5.3. Assume that Q is a (not necessarily commutative)
field, and that Tor (4,0) = 0. Then every faithful subset A-generating
A contains a A-base for A. In particular, if A is generated by a faithful set,
then A is A-free.

PROOF. Let M be a faithful subset generating 4. Then the image of
Min A ®, Q generates A ®, Q as a right O-module. Since Q is a field
M contains a subset N such that the images of the elements of Nin 4 ® , Q
are a Q-base for 4 ®, Q. Since N also is faithful, it follows from 5.2
that N is a A-base for 4.

THEOREM 5.4. Assume that Q = A/l is a field, and let 9 be an allowable
Sfamily of right A-modules. Then for every module A of 2

r.dim, 4 < 1dim, Q.

Proor. Let M be a faithful subset generating A. Then
0— Ry, — Fj,— A— 0 is exact. Since Ry, is again in &, this process
may be repeated with 4 replaced by R;,. Thus by iteration we obtain an
exact sequence

0>X,>X, 1~ " "—>Xy—>A4—>0

of right A-modules, with Xy, ..., X,_; A-free and with X, ¢ 2. It
then follows from v,7.2 that the iterated connecting homomorphism
yields an isomorphism

Tor} (X,,0) ~ Torl, (4,0).

Assume now that dim Q= n. Then Torl,,(4,0)=0 so that
Tor® (X,,0) = 0. Since X, €9, X, is generated by a faithful subset
and therefore, by 5.3, X, is A-free. Thus dim 4 < n.

6. APPLICATIONS TO GRADED AND LOCAL RINGS

THEOREM 6.1. Let A be a graded ring with Ay= Q afield. If Aisa
graded right A-module with Tor{ (4,0) = O then A is free; every homo-
geneous system of generators of such a module A contains a base for A.

This follows from 5.1 and 5.3.
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THEOREM 6.2. Let A be a graded ring with Ay = Q a field. For each
graded right A-module A,
r.dim, 4 < 1.dim, Q.
This follows from 5.1 and 5.4.
COROLLARY 6.3.  Under the assumptions of 6.2, let J be a homogeneous
right ideal in A. Then v
1 + r.dim, J < 1dim, Q
unless 1.dim, Q = 0, in which case r.dim, J < 0.
Indeed, consider the graded module A/J. Then by v1,2.3 we have
1 + dim J = dim A/J, unless dim A/J< 0 in which case dimJ < 0.
Since dim A/J < dim Q, the conclusion follows.
Note that Q itself is a graded right A-module. Therefore
COROLLARY 6.4. ldim, Q = r.dim, Q. The conclusions of 6.2 and
6.3 apply equally well to left A-modules and left ideals.

Now consider the particular case when A = K[x, ..., x,] is the ring
of polynomials in the letters x;, . . . , x,, with coefficients in the (not neces-
sarily commutative) field K. Then Q = K and by 4.2, dim,Q = n.
We thus obtain

THEOREM 6.5. Let K be a field and let A= K[xy,...,x,], n > 1.
For each graded (right or left) A-module A we have

dim, 4 < n.
For each homogeneous (right or left) ideal J in A we have

This theorem contains Hilbert’s theorem on ‘““chains of syzygies” (see
W. Grobner, Monatshefte fiir Mathematik 53 (1949), 1-16). The method
used here is an extension of the one indicated by J. L. Koszul (Colloque

de topologie, Bruxelles, 1950). We shall see later (1x,7.11) that if K'is a
commutative semi-simple ring, then gl.dim A = n.

We now pass to the case of a local ring A with a maximal ideal I and
with 0 = A/I. We know then by 2.1 that Q is a field.

THEOREM 6.1°. Let A be a right Noetherian local ring with maximal
ideal I and with Q = AJI. Every finitely generated right A-module A
such that Tor? (4,Q) = 0 is then free; every finite set of generators of such
a module A contains a base.

This follows from 5.1" and 5.3.

THEOREM 6.2'. Let A be a right Noetherian local ring with maximal
ideal I and with Q = A/I. For each finitely generated right A-module A

r.dim, 4 < 1dim, Q.
This follows from 5.1’ and 5.4.
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COROLLARY 6.3'.  Under the assumptions of 6.2 let J be any right ideal
in A. Then
1 4 r.dim, J < Ldim, Q,

unless 1.dim, Q = 0 in which case r.dim, J < 0.

The proof is the same as for 6.3.

COROLLARY 6.4'. Under the conditions of 6.2" assume that A is also
left Noetherian. Then l.dim, Q = r.dim, Q. The conclusions of 6.2
and 6.3’ apply equally well to left as tolright A-modules and left ideals.

We now consider two particular rings; the ring A = K[[x,, ..., x,]]
of formal power series in X;, . . ., x, with coefficients in the field K, and
the ring A = K{x,, ..., x,} of convergent power series in x;, ..., x,

with coefficients in a commutative field K with a complete non-discrete
valuation. Then A is a local ring with Q = K and, by 4.2, dim, Q = n.
Further A is (both left and right) Noetherian; for K[[x,, ..., x,]] see
W. Krull (Crelle 179 (1938), p. 204-226); for K{x,, ..., x,} see Bochner
and Martin (Several Complex Variables, Princeton, 1948; Ch. x, th. 1).
We thus obtain
THEOREM 6.5’. Let K be a field and let A = K[[x,,...,x,],n=>1,
or let K be a commutative field with a complete non-discrete valuation and
let A= K{x,,...,x,},n=>1. For each finitely generated (right or left)
A-module A we have
dim, 4 < n.
For each (right or left) ideal J in A we have
dim, J< n— 1.
EXERCISES

1. In the situation treated in § 3 establish the commutativity of the
following diagrams

Tord (4,04) —— Tor? (4,0r)
fan F3 ?n
Torl (4,T® A, Q4) T Tor,, (4,0r)
Ext} (Q,,C) —— Ext} (Qr,C)

n

fa,n F,p "

Extt (I ®, @4,C) A Extt (Qr,C)

where g, and g" are induced by g, v, and y” are induced by y, and the
maps f », f3,. ¥, and g™ are defined in vi,4.
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2. Show that under the conditions of 5.4 and using the notion of weak
dimension of vi, Exer. 3, the conclusion of 5.4 may be strengthened -as
follows

w.dim 4 = dim 4 < w.dim Q

for each 4 € 2. Apply this result to the considerations of § 6.
3. Let A be an augmented ring with a two sided augmentation ideal /
such that () I? = 0 where /” is defined by recursion as I = I*~'[, I' = .

Show that each submodule of a free A-module is proper.
4. Let A be a local ring with maximal ideal 7 such that (;) I* =0, and

let Q= A/I. Show that if 4 is a finitely generated right (resp. left)
A-module such that Tor{ (4,0) = 0 (resp. Tor{ (Q,4) = 0), then A
is free; each system of generators of such a module 4 contains a base.

5. Consider the example of the ring A given at the end of 1,7, and show
that it can be put in the form

A = Z[x] + Z[x]
with multiplication given for a,a’,b,b" € Z[x],
(a,b)a',b') = (ad’, ab’ + (ea’)b).

Replace Z[x] by a commutative ring I' with a ring endomorphism
e: I'=T. Prove that the result is a ring A with (1,0) as unit element.
Show that in A an element (a,b) has a right (or left) inverse if and only if a
has an inverse in I'. If I' is a (commutative) local ring then A also is a
local ring with the same field of augmentation as I'.

Taking I' = K[[x]] where Kis a commutative field and ¢ is the augmenta-
tion of I', prove that the local ring A is left Noetherian without being
right Noetherian.

6. Let A = K[[x]] be the ring of formal power series in one variable x
with coefficients in a commutative ring K. Let &2 A — K assign to each
series its “constant term.”” Then an element of A has an inverse if and
only if its image under ¢ has an inverse in K. Hence, by recursion on n:
the ring K[[x;, . . ., x,]] is a local ring if and only if K is a local ring.

7. Let A= K[x,, . .., x,] be the ring of polynomials with coefficients
in a commutative ring K. For any A-module A, establish natural iso-
morphisms

Tor)} (K,4) ~ Ext}~?(K,A) 0<g<n

[Hint: let X be the complex A ® E(y;, - - - , ,) as defined in § 4. Define
isomorphisms
X, - Hom, (X,_, ,A)
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in order to induce an isomorphism of complexes
X — Hom, (X,A)
raising the degrees by n. Observe that
Hom, (X,A) ®, 4 ~ Hom, (X,A4).]

8. Let A be a left A-module with A-endomorphisms x, (1 < k< n)
which we shall write as a— ax;. Let I, (0 < k < n) denote the sub-
module of all elements of the type a;x; + - - - + apx;, (in particular,
I, = 0). Assume that

(ii) (aedandax, e, )<= (ael,_,), k=1,...,n
Show that
ldim, A/l < k + Ldim, 4, k=0,...,n

9. Let A be an augmented ring. Assume that the augmentation
ideal I is such that 1 + x has a right inverse for any x € I. Show that the
conclusions of 5.1" remain valid.

10. In the ring K[[x]], where K is a (not necessarily commutative)
field, consider the subring A consisting of all power series without terms
of degree 1. Show that A is a local ring.

Let A be the right A-module consisting of all series without a constant
term. Show that 4 is not A-free and thus is not A-projective. Establish
the exact sequence

0—A—A+A-4—0

with @(4;,4,) = A4,x% — 4,x3, pA = (Ax,4). As an application derive that
r.dim, 4 = co.

11. In the ring K[[x,y]], where K is a (not necessarily commutative)
field, consider the subring A consisting of all power series in which all

" terms are of even total degree. Show that A is a local ring.

Let A be the right A-module consisting of all series in K[[x,y]] in
which all the terms have odd degree. Show that 4 is not A-free and thus
is not A-projective. Establish the exact sequence

0—Ad—->A+A->4—0

with @(4,,4,) = 4y — Ayx, wA = (ix,Ay). As an application derive that
r.dim, 4 = oo.

12. In the ring K[[x]] + K[[y]], where K is a (not necessarily commuta-
tive) field, consider the subring consisting of all pairs (f(x),g(y)) with
f(0)=g(0). Show that A is a local ring.
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Let 4 and B be the right modules consisting respectively of all pairs
(f(x)x,0) and (0,g(y)y). Show that 4 and B are not A-free and thus are
not A-projective. [Establish the exact sequences

0—A4-5A5B—0, 0—B5AL4—0,
where v and 9’ are inclusions while @(f(x),g(y))= (0,g(»)y) and

o' (f(x),8(0)) = (f(x)x,0). As an application derive that r.dim, 4
= r.dim, B = co.



CHAPTER IX

Associative Algebras

Introduction. The homology (and cohomology) theory of an associa-
tive K-algebra A is that of an augmented ring, namely the ring
A= A ®g A* (where A* is the “opposite’ algebra of A) with the aug-
mentation p: A*— A, p(A ® u*) = Ap. The homology groups H,(A,A4)
and the cohomology groups H"(A,A) are then defined for any two sided
A-module 4 (§4). If the algebra A is K-projective, the homology and
cohomology groups may be calculated using a “standard complex” (§ 6);
we thus retrieve the initial definition of Hochschild (Ann. of Math. 46 (1945),
58-67).

The last section (§ 7) is devoted to the study of ““dimension”’ of algebras
from the homological point of view. The method utilized leads to new
connections with the theory of algebras, and deserves further study.

1. ALGEBRAS AND THEIR TENSOR PRODUCTS

Let K be a commutative ring (with a unit element denoted by 1). A
K-algebra is a ring A (with a unit element also denoted by 1) which is also
a K-module such that

(k111)(k2)*2) = (klkz)(lllz)

for ky.ks € K, Aj,Ay € A, Setting nk = k1 yields a ring homomorphism
n: K— A whose image is in the center of A. Clearly K itself is a K-
algebra.

Clearly every ring A may be regarded as a Z-algebra, where Z is the
ring of integers, with nd, n € Z, A € A defined in the obvious way.

Let A and I be K-algebras. A K-algebra homomorphism A —I'is a
ring homomorphism which also is a X-homomorphism.

Given two K-algebras A and TI', the tensor product A @ I' is a
K-module, and the multiplication

(4 ® y4s ® 7o) = (414) ® (y172)

converts A ®x I into a K-algebra. As long as the ring X is fixed we
162



§1] ALGEBRAS AND TENSOR PRODUCTS 163

shall frequently write A @ I' for A @x I We have the natural K-
algebra homomorphisms

A—>AQRT, I'-AQT

givenby A>1Q®1,y—>1Qy.

The tensor product of K-algebras has the usual associative property
of the tensor product over a commutative ring.

If A is a K-algebra, every (left or right) A-module 4 may then also be
regarded as a K-module. We shall frequently have to consider the
situation where 4 is also a I'-module for another K-algebra I'. In this
case we shall always assume that (1°) the operators of A and I" on 4
commute; (2°) the structure of 4 as a K-module induced by A is the same as
that induced by I'.  In particular, suppose 4 is a left A-module and a left
I-module (situation ,_p4). Then setting

(2 ® y)a= Mya) = y(la)

converts 4 into a left A ®x Imodule. The converse is also clear:
every left A ® ¢ I-module is obtained in this way from a unique A-T'-
module. The same applies with “left” replaced by ‘“‘right.”

Suppose now that A is a left A-module and a right I'-module (situation
AAr). We first use the opposite algebra I'* (see vI,1) to convert 4 into
a left I'*-module: yp*a = ay, and then, using the definition above, 4
becomes a left A ® I'*-module with

(A2 ® y*)a = (Aa)y = May).

Similarly 4 may be regarded as a right A* ® I'-module.

These considerations generalize in an obvious way to a module 4 over
any finite number of K-algebras.

The concept of the tensor product discussed above, can be applied to
define ‘““the extension of the ring of operators’” in an augmented ring.
Let A be an augmented ring with augmentation e: A — Q. Assume that
A is a K-algebra and ¢ is a K-homomorphism and let L be another
K-algebra. Then clearly

L®e: LIgA—>LRgQ

is an epimorphism which defines an augmentation for the ring L Q@ ¢ A.
We obtain a commutative diagram

A—— @

Pk

L®AmL®Q
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where pA=1® A, yg=1 ®gq. Thus, by vi3, we obtain homo-
morphisms
F?: Tor? (4,0) — Tor"®A (4, L ® Q), Ar
F,: Extzoa (L ® Q, C)— Ext, (Q,0), a-rC.
PROPOSITION 1.1.  If the algebra A is K-projective and if TorE(L,Q)=0
for n>0, then F? and F, are isomorphisms. If, furthermore, X is a
A-projective resolution of Q, then L Qg X is a L Qg A-projective
resolution of L Qg Q.
Proor. The result will follow from the “mapping theorem’” vi,3.1
provided we verify its hypotheses which in this case become:
() L ®x A) @, Q— L Q@ Q is an isomorphism;
(i) Tor2 (L ®x A, Q)= 0forn>0.
Condition (i) follows directly from associativity. To verify (i) we
consider a A-projective resolution X of Q. Then
Tor, (L ®x A, Q) = H,(L ®x A @4 X) = H,(L @ X).
Since A is K-projective, it follows from 11,6.2 that X is also a K-projective
resolution of Q. Thus H,(L Qg X)= Tork (L,Q) which was assumed
to be zero for n > 0.
We shall see useful applications of 1.1.

The definition of the tensor product A @ I' of K-algebras has an
important variant when A and I' are graded K-algebras. A graded
K-algebra A is a graded ring (vi,2) which is also a K-algebra such that
KA*C A% If T is another graded K-algebra then A @ I' is a doubly
graded K-module which is converted into a (singly) graded module in the
usual fashion. To define the product (4; ® »,)(A; ® ¥2), A, € AP, Ay € A™,
y, € 'Y y, e '™ we denote by /2 A— A, g: I' > T' the endomorphisms
given by left multiplication by 4, and y, respectively. Clearly f and g
have degrees p and ¢q. Then f ® g should be left multiplication by
A1 @ y;. However, by 1v,5

(f® &) ® v2) = (=", ® gr2
and therefore we obtain the multiplication rule
(3 @ 1Ay ® y9) = (—1)™ Ay @ Y172
where m is the degree of A, and g is the degree of ;. With this multiplica-
tion A @x I' becomes a graded K-algebra, called the skew tensor product
of the graded K-algebras A and I'.

ProposiTION 1.2. Let A and T' be graded K-algebras. The map

9: A Q@x I'>T Qg A defined by setting
AR =(—D"" 1 AeA?, yel?
is a K-algebra isomorphism.

The proof is left to the reader.
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ReMARK. The definition of the tensor product A @ I' of non-graded
algebras may be considered as a special case of the tensor product of
graded algebras, by defining on A and I' the “trivial” grading which
assigns to each element the degree zero. With this convention, we may
apply 1.2 to the case when no grading is given on A and I

2. ASSOCIATIVITY FORMULAE

We shall consider three K-algebras A, I' and X. In the situation
(Ap_1spBs) we convert 4 ®, B into a right I' ® X-module by setting

(a @by ® 0)=ay Q bo.

Similarly in the situation (,By,Cr_yz) we convert Homg, (B,C) into a right
A ® I'-module by setting

(f(2 @ Y)b= (S(Ab))y
for f e Homgy (B,C).
We leave it to the reader to give similar definitions for other situations.
We can now state associativity formulae which generalize those of 11,5.
ProrosITION 2.1. Let A, T, X be K-algebras. In the situation
(Ap_roaBzr_sC), there is a unique homomorphism

r: (A ®, B) QrgeC—> A4 Qprer (B ®5 C)

such that (@@ b ®c)=a (b ® c). This homomorphism is an
isomorphism and establishes a natural equivalence of functors.

ProrosiTION 2.2, Let A, I', ¥ be K-algebras. In the situation
(Apr_r>aBs,Cr_3), there is a unique homomorphism

s: Homy g (4, Homg (B,C)) - Homp gy (4 ®, B,C)

such that for each A ® I'-homomorphism f: A — Homg (B,C) we have
(sf)a @ b) = (fa)b. This homomorphism is an isomorphism and estab-
lishes a natural equivalence of functors.

We leave the proofs to the reader. Proposition 2.2 has an analogue
with left and right operators interchanged and with 4 ®, B replaced by
B ®, A.

PROPOSITION 2.3.  In the situation (A,_r,pBs) assume that Ais A ® T'-
projective and B is Z-projective. Then A ®, B is projective as a right
T’ ® Z-module.

Proor. It suffices to prove that Hompgs (4 ®,B, C) is an exact
functor of the right I' ® Z-module C. In view of 2.2 this last functor is
equivalent with the composition of Hom, g (4, D) with D = Homg (B,C).
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Since B is X-projective, Homy, (B,C) is an exact functor of C. Since 4 is
A ® I'-projective, Hom, o (4,D) is an exact functor of D. Thus the
composite functor is an exact functor of C.

Replacing A, T', Z, 4, Bby A*, X, K, B, A we obtain

COROLLARY 2.4. If B is a projective right A* @ Z-module and if A is
K-projective then B is Z-projective.

COROLLARY 2.5. In the situation (Ay,By), if A is I-projective and B is
Z-projective, then A @ B is I' ® Z-projective.

Quite analogously we prove

PROPOSITION 2.3a. In the situation (,Bs,Cr_s) assume that B is A-
projective and C is I' @ Z-injective. Then Homg (B,C) is injective as a
right A ® I'-module.

CoROLLARY 2.4a. If C is an injective right I' @ Z-module and if T
is K-projective, then C is Z-injective.

COROLLARY 2.5a. In the situation (,B,Cy) if B is A-projective and C is
T-injective then Homg (B,C) is A @ I'-injective.

ProposITION 2.6. Let A, ', & be K-projective K-algebras. In the
situation (A,_p,pBy) let X be a A @ I'-projective resolution of A, and Y a
A* ® Z-projective resolution of B. If Tors (4,B)= 0 for n>0 then
X ®, Yis a I' ® Z-projective resolution of A @, B.

Proor. First we note that following 1v,5, X ®, Y is to be regarded
first as a double complex and then converted into a complex. Since A
is K-projective it follows from 2.4 that Y is Z-projective. Consequently
by-2.3, X ®, Y is I' ® Z-projective. There remains to be shown that
X ®, Y is an acyclic complex over 4 ®, B. Since the tensor product
is right exact it follows from 11,4.3 that the sequence '

Xi@pa Yo+ Xo®n YT — Xy @, Yy — ARQ,B — 0

is exact. Thus it suffices to show that H (X ®, Y)=0 for n> 0.
Since 2 is K-projective, it follows from 2.4 that Y'is A-projective; similarly,
X is A-projective since I is K-projective. Thus X and Y are A-projective
resolutions of 4 and B. Consequently H,(X ®, Y) = Tor2 (4,B)= 0
for n > 0 by hypothesis.

CoROLLARY 2.7. Let I' and X be K-projective K-algebras. In the
situation (Ay,Bs) let X be a I'-projective resolution of A and Y a Z-projective
resolution of B. If TorX (4,B)=0forn>0then X Qg Yisal @ -
projective resolution of A @ B.

We similarly prove

ProPosITION 2.6a. Let A, ', £ be K-projective K-algebras. In the
situation (4 By,Cr_x) let X be a A* Q@ Z-projective resolution of B, and Y a
I’ ® Z-injective resolution of C. If Exty(B,C)=0 for n>0 then
Homg (X,Y) is a A ® T-injective resolution of Homg (B,C).
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CoROLLARY 2.7a. Let A,I" be K-projective K-algebras. In the situa-
tion (,B,Cy) let X be a A-projective resolution of B and Y a T'-injective
resolution of C. If Exty (B,C)=0 for n> 0 then Homg (X,Y) is a
A ® T-injective resolution of Homg (B,C).

THEOREM 2.8. Let A, T, X be K-projective K-algebras. In the situation
(A p_psaBs,r_xC) assume
0)) Tor2 (4,B) = 0 = TorZ (B,C) for n > 0.
Then there is an isomorphism

Tor'®% (4 ®, B,C) ~ Tor*®T (4, B ®5 C)
which, in degree zero, reduces to the isomorphism of 2.1.

Proor. Let X be a A ® I'-projective resolution of 4,Ya A* @ X -
projective resolution of B and Z a I' ® Z-projective resolution of C. In
view of (1), it follows from 2.6 that X ®, Yisa I' ® Z-projective resolu-
tionof 4 ®, Band Y ®y Zisa A @ I'-projective resolution of B @5 C.
Therefore

TorT®E (A ®yBC)=H(X ®,Y) QregsZ) ~ HX Qpor (Y @5 2))

= Tor*®T (4,B ®5 C).

Quite analogously we prove
THEOREM 2.8a. Let A, T, X be K-projective K-algebras. In the situation

(Ap_prsaBx,Cr_x) assume
Tor2 (4,B) = 0 = Ext% (B,C) forn>0.
Then there is an isomorphism
Extrgs (4 ®4 B,C) ~ Ext, o1 (4, Homg (B,0))

which, in degree zero, reduces to the isomorphism of 2.2.

3. THE ENVELOPING ALGEBRA A¢

Let A be a K-algebra. A two-sided A-module is an abelian group 4
on which A operates on the left and on the right in such a way that
(Aa)u = Map) and ka = ak for a e A, A,u € A,k € K. With the notations
of the preceding section we are thus in the situation (,4,).

A two-sided A-module may be regarded as a left module over the
algebra A ®x A*, by setting

A ® u*a = lap.

The algebra A ®; A* will be called the enveloping algebra of A and
will be denoted by A°. We may also regard A as a right A*-module by
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setting a(A ® u*) = pad. In particular, A is a two-sided A-module;
we shall therefore always regard A as a left A°-module with operators
(v @ y*)A= pdy Apsy € A
In particular, taking 4 = 1, we obtain a mapping
p: A°— A

given by p(u @ y*)= uy. This mapping p is an epimorphism of left
A*-modules, and thus defines on A° the structure of an augmented ring
(vi,1). We shall denote by J the augmentation ideal i.e. the kernel of p.

PROPOSITION 3.1. As a left A-module, J is generated by the elements
AR1—1Q A%

Proor. Let Jpu; @ y¥ €J. Then Suy; = 0and

1 SuQyYE=2w,NU ¥ —y; ®1).

We define a K-homomorphism
Jjr A—>J
by setting jA=A1® 1 —1 ® A*. We verify the identity

JAw) = 2(ju) + (jHp.

In general, given any left A°~module 4 (i.e. a two-sided A-module A)
we define a crossed homomorphism (also called derivation) f: A — A as a
K-homomorphism such that

SGp) = A fw) + ().

Each crossed homomorphism satisfies f 1 = 0; therefore we may regard
as defined on A’ = Coker (K— A).

ProposITION 3.2. If with each h e Hom,.(J,A) we associate the
mapping hj, we obtain an isomorphism of the K-module Hom,. (J,4) with
the K-module of all crossed homomorphisms of A into A.

Proor. The essential part of the proof consists in showing that

each crossed homomorphism f: A—> 4admitsafactorization AT LA
where h is a A®-homomorphism. Let x = Jpu; ® y € J. Guided by (1)

we define
‘ hx = 2 pu.f(7).

Clearly 4 is a K-homomorphism. To show that 4 is a A*-homomorphism
we compute

WA @ ™)x) = h(ZAp; @ (y:7)¥)
= 2Apf(yim) = ZApfrdm + ZAuy(fr).
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The last term is zero because > u;y; = 0. The term before last yields
(A ® 7*)hx as desired.

A A’-homomorphism h: J— A is extendable to a A°*-homomorphism
A®— A if and only if there is an element a € 4 such that A(Ju; Q@ y¥)
= Suay;,. It follows that the associated crossed homomorphism
f=hj: A— AisgivenbyfA = Aa — al. Sucha crossed homomorphism
is called principal (or inner derivation). The K-module of all principal
crossed homomorphisms corresponds to the image of 4 ~ Hom,. (A% A)
— Homy. (J,A4).

4. HOMOLOGY AND COHOMOLOGY OF ALGEBRAS

Let A be a K-algebra and 4 a two-sided A-module. Using the
augmented algebra A? (with augmentation p: A°— A) we shall now
define the homology and cohomology groups of A with coefficients in 4.

First we regard 4 as a right A®module and define the n-th homology
group as

H,(A,A) = Tors" (4,A).

Then we regard A4 as a left A-module and define the n-th cohomology
group as
H"(A,A) = Ext}. (A A4).

Both the homology and cohomology groups are K-modules. We shall
see in § 6 that the cohomology groups H"(A,4) coincide with those defined
by Hochschild (4nn. of Math. 46 (1945), 58-67) in the case when K is a
field. For this reason we shall frequently refer to the groups above as the
Hochschild homology and cohomology groups of the algebra A.

REMARK. The notation H,(A,4) and H"(A,A) is contrary to our
general conventions concerning graded modules; indeed with the
notation as is we cannot use the symbol H(A,4) to denote either the
graded homology or the graded cohomology module.

To compute the homology and cohomology groups of A, a projective
resolution X of A as a left A°-module may be used:

Hn(AwA) = Hn(A ®A° X)
H"(A,A) = H"(Hom,. (X,A)).

The functors H,(A,4) and H"(A,A) are connected sequences of covariant
functors of 4. If 0—A"—> A4 - A" — 0 is an exact sequence of two-
sided A-modules, we obtain the usual exact sequences

ceo—> H(AA)—> H(MNA)— H(ANA")— H, (AA)—> - -
coo> H"Y(A,A") - HY(A,A')—> H"(A,A)— HY(A,A")— - - -
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These exact sequences are the homology sequences of the exact sequences
of complexes
0_>AI ®A° X— A ®A‘ X'—*A” ®A6,X—>0

0— Hom,. (X,4") > Hom,. (X,4) = Hom,. (X,4") — 0.

The formulae (2)-(4a) of vii,1 are applicable. In particular we have

2 Hy(A,4A) = Coker (4 ®@p.J — A) = A|AJ
(2a) HO(A,A) = Ker (4 — Homy. (J,4))
(3a) HY(A,A) = Coker (4 — Hom,. (J,4)).

The submodule 4J of 4 is, by 3.1, generated by the elements of the form
al —Aa(aeA, Ae A). Let ae A and let fe Hom,. (J,4) be the corre-
sponding homomorphism. In order that f= 0 it is necessary and
sufficient that f be zero on elements 1 ® 1 — 1 ® 1*, i.e. that Aa = al
for all e A. We call such elements of A, invariant elements. As for
the terms in (4a) an interpretation is given in 3.2 and the subsequent
remark. Summarizing we obtain

PROPOSITION 4.1.  The homology group Hy(A,A) may be identified with
the quotient of A by the submodule generated by the elements al — Aa,
aeA, Ae A. The cohomology group HY(A,A) may be identified with the
subgroup of the invariant elements of A. The cohomology group HY(A,A)
may be identified with the group of all crossed homomorphisms A — A
Sactored by the subgroup of principal crossed homomorphisms.

Let us now apply the associativity theorems 2.8 and 2.8a. In 2.8 we
replace (I',C) by (£*,X), then Torr: (B,X)=0 for n >0, and if we
assume that A is semi-simple then also Tor2 (4,B) = 0 for n > 0. Thus
2.8 yields

PROPOSITION 4.2. Let A and X be K-projective K-algebras with A
semi-simple. In the situation (gA,,,Bs) we have isomorphisms

H,(Z,A ®, B) ~ Tor2®Z*(4,B).

Similarly, in 2.8a, we replace (I',4) by (A*,A). We obtain
ProPOSITION 4.3. Let A and X be K-projective K-algebras with X
semi-simple. In the situation (,Byx,,Cs) we have isomorphisms

H"(A,Homz (B, C)) 2 Ext’}\. ® z(B,C).

Replacing (A,Z) by (K,A) in 4.2, and X by K in 4.3 we obtain
CoROLLARY 4.4. If A is a K-algebra with K semi-simple, we have the
isomorphisms
H,(A, A @k B) ~ Tor, (B,4) (a4,B4)

H" (A,Homg (B,C) ~ Ext% (B,C) (AB:70).
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REMARK 1. Throughout this discussion we have treated A as a left
A*-module and thus regarded A° as a left augmented ring. We could
regard A® as a right augmented ring with augmentation p’(u ® y*) = yu,
and accordingly regard A as a right A°-module. One then obtains the
same homology and cohomology groups H,(A,4) and H"(A,A), because
these are the satellites of Hy(A,4) and H%A,4) whose description is
independent of the choice of p or p’ as augmentation. If A is com-
mutative then p = p’.

REMARK 2. The assumption that K is semi-simple may be replaced
without any loss of generality by the assumption that K'is a field. Indeed,
a commutative semi-simple ring K is a direct sum K; + -+ 4 K, of
fields. This induces a decomposition A= A;+---+4+ A, of any
K-algebra A into a direct sum of K;-algebras A, = KA. For the
algebra A° we then have a decomposition A®* = A{ + - - - + A, where
Ai= A, ®g, Aj = K;A°. These direct sum decompositions induce
similar direct sum decompositions for Ext,, Ext,., etc.

5. THE HOCHSCHILD GROUPS AS FUNCTORS OF A

Let A and I" be K-algebras and ¢: A —I' a K-algebra homomor-
phism. Then @ induces a homomorphism ¢*: A®*— I'. More generally
let A be a K-algebra and I' an L-algebra. Consider a pair of ring
homomorphisms

¢p: A>T, p: K—L

such that (k1) = w(k)p(A), ke K, Ae A. Then ¢ induces a homo-
morphism ¢° of A°= A ®x A* into =T @, I'* such that the
diagram

Ae_P_A_, A
[ e
I'e—— T
Pr
is commutative. We are thus in the situation described in vim,3 for
augmented rings. Therefore for each two-sided I'-module 4 (which

using @ may also be regarded as a two-sided A-module) we have the
homomorphisms

M F3: Hy(A,A)—> H,(T,4)
) F: H'(T,4)— H"(AA).

In this sense, H,(A,A4) is a covariant functor of A while H*(A,A4) is
contravariant in A.
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The mapping theorem vmy3.1 gives necessary and sufficient con-
ditions in order that Fy, and F7, be isomorphisms. We shall apply this
theorem to the case when I' is obtained from A by an extension of the
ground ring from Kto L. Thus we suppose that A and L are K-algebras,
L is commutative, '=L Q@ A, ¢())=1® 4; and k)= kleL.
We have

LR A'=LQxA L(L Rk MN*~(LBxA QL Qg A¥)

We may therefore apply 1.1 with A,Q replaced by A°,A. If A is K-
projective then TorX (L,A) = 0 for n > 0, so that we obtain
PRrOPOSITION 5.1.  If the K-algebra A is K-projective and L is a commu-
tative K-algebra, then for each two-sided L @ i A-module A we have the
isomorphisms
Fn: Hn(A’ A) ~ Hn(L ®K A’ A),

F*: H'(L Qg A, A) ~ HY(A, A).

Further, if X is a A*-projective resolution of A thenL @ g Xisan(L @ g A)*-
projective resolution of L @ i A.

We should remark here that since L ® x A is regarded as an L-algebra,
the left operators of L on 4 must coincide with the right operators of L
on 4.

Proposition 5.1 may be applied when K is a field because then A is
always K-projective. If L is a field extension of K, we can then say that
the homology and cohomology groups remain unchanged under an
extension of the ground field.

Let Aand I be two K-algebras. Thedirect sum A -+ I with multiplica-
tion and operators defined by

(A,7)(Ae,72) = (A12,7179) k(A,y) = (kA.ky)

is then again a K-algebra X, called the direct product of A and I'. If e,
and er are the unit elements of A and T, then (e,,ep) is the unit element
of Z.

We consider the homomorphisms ¢: X — A, p: £—T' given by
@A) = 4, p(Ay)= . These are K-algebra homomorphisms which
induce homomorphisms

@ Zf— A°, ye: Xe— T,
Therefore every two-sided A-module 4 may be regarded also as a two-

sided Z-module. Similarly every two-sided I'-module A" may be regarded
as a two-sided X-module. Consequently 4 + A’ is a two-sided Z-module.
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Let A be a two-sided X-module. We introduce the module
epAdey = AAA which is a two-sided A-module. It is easy to see that
AAA may be identified with Homy. (A%,4) and with 4 ®@z. A°. We
further note the following identities

C ®ze (A+A,)=(ACA+PCF) ®2s (A-I“A,)-_— A.CA ®A‘ A+FCP ®ra A'

Homyg,. (4+4’,C)= Homg,. (A+A4',ACA+4TCT)
== HomAe (A,ACA) + Homra (A,,PCF)

in the situation (, 45,04 1,5Cx)-

PROPOSITION 5.2. A two-sided A-module A is A°-projective if and only
if it is Z°-projective.

Proor. For any Z°-module C we have Homy,. (4,C)=Homy. (4,ACA).
Assume 4 is A®-projective. Since ACA is an exact functor of C it follows
that Homgy. (4,C) is an exact functor of C, so that 4 is Z°-projective.
Assume now that A4 is XZ°-projective. If C is any A°module then
Homy. (4,C) = Homy. (4,C). Thus Hom,. (4,C) is an exact functor
of C, so that 4 is A’-projective.

THEOREM 5.3. (Additivity theorem). If X is a A°-projective resolution
of A and Y is a T'>-projective resolution of ', then X -+ Y is a Z°-projective
resolution of £ = A + T'.  Further for any two-sided X-module A

3 H,(2,4) ~ H,(Z,AAA +TAD) ~ H (A, AAN) + H,(I','4AT),
4) H™Z,A)~ H"(Z,AAAN+ TAT) ~ H"(A,AAA) + HYI',I'4T).
Proor. By 5.2, X and Y are Z¢-projective, thus X 4 Y also is

Ze-projective. Since H(X + Y)= H(X) + H(Y) it follows that X 4+ Y
is a X°-projective resolution of . We have

A QX+ Y) = (AAA+TAT) @5(X+7Y)
= A.AA. ®A‘ X+ FAP ®F‘ Y,

Homze (X+ Y,A) =H0mzs (X+ Y,AAA + I‘A P)
= Homy. (X,AAA) + Homp. (Y,I'4AT)

Thus passing to homology we obtain the desired isomorphisms (3) and (4).
COROLLARY 5.4. If A is a two-sided A-module then ¢: X — A induces

isomorphisms
H,(2,4) ~ H,(A.4)

H™(AA) ~ H'(Z,A).
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6. STANDARD COMPLEXES

As was said in §4 the homology and cohomology groups of a
K-algebra A are usually computed using a A°-projective resolution of A.
The existence of such resolutions and their uniqueness up to a homotopy
equivalence are guaranteed by the results of v,1. We shall describe here a
construction which to each K-algebra A assigns an acyclic left complex
S(A) over A as a left A>module. If A is K-projective then S(A) will be
a A‘-projective resolution of A. In addition, the complex S(A) will be a
functor of A.

For each integer n > —1, let S,(A) denote the (n + 2)-fold tensor
product (over K) of Awithitself. Thus S_j(A)=A, S, (A=A Q%S (A).
We convert S,(A) into a two-sided A-module by setting

(.”' ® 7*)(10 ® }'1 ® o ® z’n ® An+1)=(/"’}‘0) ® ll ® e ® z"n ® (ln+17)'
We define a K-homomorphism
St Sp(A) = S, 1(A)

by the formulas,a=1 ® a, a € S,(A). Clearlys, isa A-homomorphism
for the right operators. Further, setting 7,(4 ® a) = Aa we obtain a map
t,: Sp(A)— S, (A) such that t,s, = identity. Thus s, is a mono-
morphism.

We shall now define for each » = 0 a left A-homomorphism

dn: Sn(A) g Sn—l(A)

such that
) dh ® ) = e A
) dy1S.x + S, d,x = x for xeS,(A), n=0.

It is immediate that these conditions determine d,, by induction; given
d,, the homomorphism d,,, is determined by (2) on the image of s,;
since the image of s, generates S, ,(A) as a left A-module, d,,,, is unique.
The following closed formula for d, can easily be seen to verify (1) and (2)
Q) (A " Qhy) '—_OSZSn(—l)%o Q@ @Aty @+ ® Apya-
We further see from this formula that d,, also is a right A-homomorphism.
Thus d,, is a A*-homomorphism.

We now prove thatd,_,d, = Oforn > 0. Forn = 1 this follows from
the associativity relation (g4)A, = 4g(4,4;) in A.  For n > 1 we argue by
induction on n using (2). Using (2) we compute

dndn+lsn = dn - dnsu—ldn = sn—zdn—ldn'
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Consequently d,d,,;5, = 0. Since the image of s, generates S, ,;(A) as a
left A-module, it follows that d,d,,; = 0.

We observe that Sy(A) = A ® A coincides with A @ A* = A® as a
two-sided A-module; further the map dy: So(A) — S_y(A) is precisely
the augmentation p: A°— A. It follows that S(A) = > S,(A) with the

n=0

differentiation d, and the augmentation dy, = p is a left complex over the
Af-module A. Relations (2) prove that this complex is acyclic.
It is frequently convenient to write S,(A) in the form

S A=A ®g S,(A) ®x A= A° @ 5, (A)

where Sy (A)= K, and S,(A) for n > 0 is the K-module obtained by
taking the n-fold tensor product of A over K. This form shows more
explicitly the operators of A° on S,(A).

If A is K-projective, then by 2.5, S, (A) is K-projective and, again by
2.5, S,(A) is A¢-projective. Thus in this case S(A) is a A’-projective
resolution of A. This is the standard complex of A. It is clear how a
map ¢: A — I'induces a map S(¢): S(A)— SI).

In computing the homology groups we use the identification

A Qpe S (A)= A Qpe A* @ S5, (A)= 4 @ S, (A).
Thus H,(A,A) are the homology groups of the complex 4 ® ¢ S(A) with
differentiation
@@L @ Ql)=al QW " Q4,
+ 2 Da®@h® @41 ® - Q4,

0<i<n
+(D"2,a04hQ Ay
In computing the cohomology groups we use
Hom,. (S,(A),4) = Hom,. (A* ® S, (A), 4) = Homg (8, (A),A).

The elements of the latter group are called n-dimensional cochains, and are
K-linear functions of n variables in A with valuesin 4. The *“coboundary”
df of an n-cochain f is

(éf)(lla L) ln+1) = llf(ﬂ?’ ] ln+l)
+ z (_l)tf()'la LI lili-f-l, ceey ln-}-l)

O<i<n+1
+ DAy e A

This formula shows that the cohomology groups coincide with those
defined by Hochschild.
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There is a very useful variant of the standard complex S(A) called the
normalized standard complex N(A). We define N, (A)= A° Q@ N.(A)
where No(A) = K and N ,(A) for n > 0 is the n-fold tensor product over K
of the K-module A’ = Coker (K — A) with itself. The natural K-
epimorphisms A —> A’ induces K-epimorphisms S,(A)— N,(A) and
A*-epimorphisms S,(A) — N,(A). The operators s, and d, pass to the
quotients and yield similar operators in N(A) = > N,(A) with (1) and (2)
still satisfied. Thus N(A) also is an acyclic left complex over A. If A’
is K-projective, then N(A) is a A®-projective resolution of A.

If Q- ®A4,,,€S,(A) we denote by Aj[A;,..., 4,]4,,, the
corresponding element of N,(A). For 4= 1 (resp. 4,,;, = 1) we write
simply [4y, . . ., 204,44 (resp. Agl4y, . . ., 4,]). We thus have the boundary
formula

Al .. 52,0 =4 ..., 4,1+ D (DA . o5 Adirs o o o5 A4)

0<i<n
+ (—D" Ay .. .5 A, 1)A,.
The above convention applies also in the case n = 0. The symbol []
stands then for the unit element of Ny(A)= K. Thus the element

Ao ® A1 € Sy(A) = Ny(A) will be written as Ay[ ]4,. With this convention
the boundary formula above yields

di[A] = A[]1—[]A

The notation just introduced will also be used for the non-normalized
complex S(A). Thus the symbol [4;,...,4,] will be ambiguously
regarded as representing elements of either S(A) or N(A). However it
must be remembered that [4,, ..., 4,] regarded as an element of N(A) is
zero whenever one of its coordinates 4, is in the image of K— A.

7. DIMENSION

Let A be a K-algebra, A° its enveloping algebra. We shall be con-
cerned with the projective dimension of A as a left A®-module. According
to the conventions introduced in V1,2 this integer (or +00) is denoted by
dim,. A or simply by dim A. This coincides also with the projective
dimension of A as a right A®-module. The relation dim A < n means,
by definition, that there is a A°-projective resolution X of A such that
X, = 0 for k > n(i.e. Xis a complex of dimension < n). It follows from
v1,2.1 that this is equivalent to

H™Y(A,A) = Ext21 (A,4) =0

for all two-sided A-modules 4.
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PROPOSITION 7.1.  Let A be a K-projective K-algebra and L a commuta-
tive K-algebra. Then

dim (L Q% A) < dim A.

If further the natural mapping K— L is a monomorphism of K onto a
direct factor of L (as a K-module) then

dim (L ® A) = dim A.

Proor. The first inequality follows directly from 5.1. To prove the
second part, consider a K-homomorphism o: L-— K such that the
composition K— L — K is the identity. Let 4 be any two-sided A-
module. Then L ®x A may be regarded as a two-sided L ® x A-module,
and by 5.1

H"(L @k AL @ A) ~ HY(A,L Qx A).
Since the composition of the homomorphisms
H"(A,A) - HY(A,L @ A)— H"(A,A)

is the identity it follows that the relation HYL ®x AL Qx A)=0
implies H"(A,4) = 0. Thusdim A < dim (L @k A).

CoROLLARY 7.2. If A is an algebra over a commutative field K, and L
is @ commutative field containing K, then

dim (L ® g A) = dim A.

PRrOPOSITION 7.3. Let A and I' be K-algebras and A + T their direct
product. Then

dim (A + I') = max (dim A, dim I).
This follows directly from 5.3 and 5.4.
PROPOSITION 7.4. Let A and T be K-projective K-algebras. Then
dim (A % I) < dim A + dim I,
If further K is a field and A and T are finitely K-generated then
dim (A ®@x I') = dim A 4 dim I

PrOOF. Let X be a A’-projective resolution of A, of dimension < p
and let Y be a I"-projective resolution of I, of dimension < ¢. Since
TorE (A,T") = 0 for n > 0 we may apply 2.7, to deduce that X ®x Yisa
A* @k T-projective resolutionof A @ I'. Since A* @ x I"~(A @ I')*
and since X ®x Y has dimension <p + ¢, the first inequality follows.
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Now assume that K is a field and that A and I" are finitely K-generated.
Then Af and I'® are also finitely K-generated and therefore are Noetherian.
The projective resolutions X and Y may then be chosen so that each X,
(resp. Y,) is A*-free (resp. I'*-free) on a finite base. Then for any two-
sided A-module 4 and any two-sided I'-module A4’ we have the natural
isomorphisms

Hom,. (X,4) ® g Homp. (¥,4") ~ Hom gy (X Qg ¥V, 4 @ 4').
Passing to homology this yields an isomorphism
H"(Hom,, (X,4) ® g Homp. (Y,4")) ~ H"(A Q I', A Qg A).
Since K is a field, it follows from 1v,7.2 that the mapping « yields an iso-
morphism of the left hand side with
> H*(Hom,. (X,4)) @ x HY(Homrp. (¥,4")).

ptg=n
Thus, finally, we obtain an isomorphism
S HY(AA) @x H(T,A') ~ H'(A @x T, 4 @ A').
pta=n

Therefore, if H?(A,A) # 0 and HYI",A') # 0 then since K is a field
H?(A,A) @ g H(T',A")70 and consequently H**(A @z I'\ 4 @ x A")#0.
Thus dim (A Q@ I = p + 4.

Proposition 7.4 includes a theorem by Rose (Amer. Jour. of Math. 74
(1952), 531-546).

‘We now propose to compare dim A with the various other dimensions,
namely: lgldim A, r.gldim A, lgldim A°, r.gldim A°. Since A is
isomorphic with its opposite ring (A°)*, the last two numbers are equal and
will be denoted simply by gl.dim A®.

PROPOSITION 7.5.  For any K-algebra A

dim A < gl.dim A’
If further A is semi-simple and K-projective then
dim A = gl. dim A°.

Proor. The first part follows directly from the definition of the
global dimension. To prove the second part we use 4.3 with X = A.
We obtain an isomorphism

H™"(A, Hom, (B,C)) ~ Ext}. (B,C)

for any two-sided A-modules B and C, where Hom, (B,C) is the group of
right A-homomorphisms B— C. This implies gl. dim A* < dim A.
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PROPOSITION 7.6.  If A is a K-algebra with K semi-simple then
Lgldim A < dim A, r.gl.dim A < dim A.
Proor. We apply 4.3 with X = K. This yields
H"(A, Homg (B,C)) ~ Ext} (B,C)

for any left A-modules B and C. This implies 1.gl.dim A < dim A.
We shall see in x,6.2 numerous examples where the inequalities of 7.6
are replaced by equalities.

We now proceed to discuss in greater detail algebras for which
dim A = 0, i.e. algebras A which are A°-projective.

PROPOSITION 7.7.  In order that dim A = 0 it is necessary and sufficient
that there exist an element e of the two-sided A-module A ® A (iso-
morphic with A* = A @ A*) such that Je = e (i.e. e is invariant) and that
under the mapping x ® y — xy the image of e in A is 1.

Proor. If Ais A*-projective, thereis a A>-homomorphism f: A — A°

such that the composition A Lo Aes A is the identity. Then e = f1
has the desired properties. Conversely, given an element e with the
properties listed above, the map fA = Ze is a A°*-homomorphism A — A°
such that pf is the identity. Thus A is A°-projective.

ProposITION 7.8.  Let M ,(K) be the algebra of square matrices of order
n with coefficients in K. Then dim M ,(K) = 0.

Proor. We shall apply the criterion of 7.7.  Let e;; be the matrix with
1 at the intersection of the i-th row and j-th column, and with zero
everywhere else. Then Je,; is the unit matrix. Clearly the elements

1
e; constitute a K-base of A= M,(K). Consider the element
e= >e; Qe; e A Qg A. Then
)

€8 = €, & ey, = eey,

Zeileli = Ze,‘i = unit matrix.
v t

Thus the conditions of 7.7 are fulfilled and dim A = 0.

THEOREM 7.9. Let A be a K-algebra with K semi-simple. Then
dim A = 0 if and only if A® is semi-simple.

Proor. If dim A = 0 then, by 7.6, A is semi-simple. Therefore by
7.5, gl.dim A® = 0,i.e. A®is semi-simple. Conversely, if A?is semi-simple
then, by 7.5, dim A = 0.

THEOREM 7.10. Let K be a commutative field and A a K-algebra,
finitely K-generated. In order that dim A = 0 it is necessary and sufficient
that A be separable (i.e. that L @ x A be semi-simple for every commutative
field L containing K).
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ProoF. Assume dim A = 0. Then, by 7.1, dim (L ® ¢ A) = 0 and
therefore, by 7.6, L ® , A is semi-simple. Thus A is separable.

Conversely assume that A is separable. Then it is well known (see
Albert, Structure of Algebras, New York, 1939, p. 45) that there exists a
commutative field L containing K which is a splitting field for A, i.e. such
that L ®x A is isomorphic to a direct product A, + - - -+ A, of full
matrix algebras over L. By 7.8 we have dim A; = 0 so that 7.3 implies
dim(A; 4+ -+ A)=0. Thus dim(L ®x A)=0 which, by 7.2,
implies dim A = 0.

To prove the existence of algebras of dimension n for an arbitrary
integer n we consider the algebra A = K[x,, ..., x,] of polynomials in
the letters x;,...,x,. We have shown in vii, 4.2 that dimy, K=n
provided K is converted into a A-module by means of : A — K, gox, = 0.
If &: A— K is any K-algebra homomorphism, then the substitution
x; — x; — €x, yields an automorphism ¢ of A such that ep = &,. There-
fore dim, K = n also with respect to &.

Now we have

AN=AQr A~K[Xy,....X0 V.5 V= Ay, ...,y ]. The
map 7: A®— A yields a A-algebra homomorphism n: A[y,, ..., y,] = A
(actually 7y, = x,). Thus dimy.A = n, i.e. dim A = n.

Since dim, K = n, we have gl.dim A > n; if further X is semi-simple,
then, by 7.6, gl.dim A < dim A = n. Thus we have

THEOREM 7.11. Let K be a commutative ring and A = K[x,, . . ., x,).
Then

dim A = dim, K= n.
If K is semi-simple then
gldim A = n.

This supplements theorem vii1,6.5 in which K was assumed to be a (not
necessarily commutative) field and only graded modules were considered.

EXERCISES

1. In the situation (,_pA4,B,_5,+Cx) Where A, T', X are K-algebras,
establish the isomorphism

HomA®r (A, Homz (B,C)) ) HomA®2 (B, Homr\ (A,C)).
Prove that if A, T', X are K-projective and

Ext% (4,C) = 0 = Ext} (B,C) forn>0
then
Extygr (4, Homs (B,C)) & Exty 5 (B, Homy. (4,C)).
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2. Let A= Fg(x;,...,x,) be the free K-algebra generated by
X3, ..+, X,. Show that any crossed homomorphism f: A — 4 is deter-
mined by its values on xy, . . . , x,, and that these may be chosen arbitrarily.
Deduce from this that J is A°-free with the elements x;, ® 1 — 1 ® xJ,
i=1,...,n,as base. Show that dim A = 1forn > 0.

3. Show that in the normalized standard complex N(A) the ‘“‘contract-
ing” homotopy s has the form

SA[Ag, ..., AA) = [AAy, ..., 400

and that the sequence

S_q 8 $n
0— N_y(A) = No(A) =+ - - = N, (A) = Ny (A) — -

is exact. As a consequence show that d,(n > 0) maps Kers,
isomorphically onto Im d,,.

4. Given a K-algebra A consider the K-algebra A+ = K+ A with
multiplication and operators given by

(klall)(k%lz) = (k1k2’ k112 + k2ll + 112-2), k'(kﬂl) = (klk,k,l)-

Show that each two-sided A-module may be regarded as a two-sided
At-module. Compare the complexes S(A) and N(At). Prove that if
A is K-projective and 4 is a two-sided A-module, then

H,(AV,A) ~ H,(AA), H™(A+,4) ~ H"(A,A).

5. Let A and I' be K-algebras. Show thatif A is K-free and dim A =0
then dim (A ®x I') = dim I'.  [Hint: assuming H*(T", C) # 0 show that
H™(A @ I', Homg (A¢, C)) 0.]

6. Let A be a K-algebra. Show that dim A =0 if and only if
HY(A,J)= 0.

7. Consider the K-algebra with the basis 1, a, r with multiplication
aa=a,rr=0,ar=r,ra= 0. Show that dim A = 1.

8. Using the results of vi,5 establish the homomorphisms

V) H,(A, Homg (4,K)) — Homy (H*(A,4),K).

Show that if K is a field then (1) is an isomorphism. If Kis a field and A
is finitely K-generated then (2) also is an isomorphism.



CHAPTER X

Supplemented Algebras

Introduction. The notion of a supplemented algebra is a very special
but very important case of an augmented ring. The homology theory of
supplemented algebras includes both the homology theory of groups (or
more generally, of monoids) and of Lie algebras (the .latter will be treated
in Ch. xi).

The homology groups H,(A,A4) of a supplemented algebra A are
defined for each right A-module 4; the cohomology groups H"(A,C) are
defined for each left A-module C. In the most interesting case when the
algebra A is K-projective, these homology and cohomology groups may
be included in the Hochschild theory of Ch. 1x. Theorem 2.1 shows
precisely how a complex which is constructed to be used for the computa-
tion of the Hochschild groups of A, may be used to compute the homology
and cohomology groups of A, as a supplemented algebra. This procedure
is applied to the standard complex; in the case A is the algebra K(II) of a
group II, we find the ‘“non-homogeneous” complex introduced by
Eilenberg-MacLane (Proc. Nat. Acad. Sci. U.S.A. 29 (1943), 155-158).

For some particular monoids and groups, it is more convenient to
use complexes especially constructed rather than the standard complex.
Some such examples are given in § 5; the cyclic groups will be discussed
in xi,7.

In § 7 we study some relations between algebras and subalgebras, as
well as between groups and subgroups.

1. HOMOLOGY OF SUPPLEMENTED ALGEBRAS

A K-algebra A together with a K-algebra homomorphism e: A — K'is
called a supplemented algebra. Clearly the kernel I of ¢ is a two-sided
ideal, and A is a left and right augmented ring (with £ as augmentation).
If n: K— A is the map defining the K-algebra structure in A then
en = identity. It follows that K may be regarded as a subalgebra of A
with # as inclusion map. Then A (as a right or left K-module) is the
direct sum K + 1.

A supplemented algebra being a special case of an augmented ring the
definitions introduced in viiL,1 apply. In particular, the homology groups

182
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Tor? (4,K) and cohomology groups Ext} (K,C) are defined for any right
A-module 4 and any left A-module C. These may be computed as
H, (A ®, X) and H*(Hom, (X,C)) using any A-projective resolution X
of K as a left A-module. All the facts listed in vuil apply with Q
replaced by K.

Using the augmentation map &: A — K we may convert any K-
module A into a left (or right) A-module .4 (or A4,) by setting la = (eA)a
(or al = (¢A)a). We then say that the operators of A on .4 are trivial.
If A4 is already a right (or left) A-module then .4 (or 4,) is a two-sided
A-module, i.e. a left A>-module. In particular K has trivial A-operators.

Using this process, several definitions made for two-sided modules may
be translated for A-modules. For instance, let C be a left A-module. An
element ¢ € C will be called invariant if c as an element of C, is invariant in
the sense of 1x,4, i.e. if Ac = cA. Since cA = c(ed) = (el)c, it follows that
C is invariant if and only if (A — eA)c = 0 for all A € A or equivalently if
Ic= 0. The invariant elements of ¢ form a A-submodule C?; this is
the largest submodule of C with trivial A-operators. Formula (2a) of
viiL, 1 now can be interpreted as Hom,, (K,C) = C». On the other hand it
follows from 1x,4 that the 0-th Hochschild cohomology group H%(A,C)
also coincides with C*.  We thus obtain isomorphisms

68} Hom, (K,C) ~ HY(A,C,) ~ CA.

Similarly if 4 is a right A-module, then we observe that A= (,4)J
where J is the kernel of the augmentation u: A°— A. We therefore
obtain isomorphisms -

2 A Q) K~ HyA, A)~ Ay

where A, = A/AI. Clearly AI is the largest A-submodule in 4 such that
the operators of A on the quotient module are trivial.

We return to the consideration of a left A-module C. Following the
definition made in 1x,3 a crossed homomorphism f: A — C (or rather
f: A— C,)is a K-homomorphism satisfying

f (M2g) = A1 (A) + (fA)(ep).

It is easy to see that each such crossed homomorphism admits a unique
factorization

AST15cC
where g is a A-homomorphism and p is the projection operator pA=21—=eA.

The crossed homomorphism f is principal if and only if the homo-
morphism g admits an extension to a A-homomorphism A — C.
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Combining this with 1x,3.2 we obtain an isomorphism
Hom, (1,C) ~ Hom,. (J,C,).
Further, vi,1 (3a) and 1x,4.1 combine to give
3) Ext} (K,C) ~ HY(A,C).

Both groups are isomorphic with the group of all crossed homomorphisms
A — C reduced modulo principal crossed homomorphisms.

The 0-th homology group 4 ®, K and the 0-th cohomology group
Hom, (K,4) both reduce to the module 4, if 4 has trivial A-operators.
The earlier discussion of the group Extj, (K,4) shows that this is the group
of all crossed homomorphisms f: A — 4 (i.e. K-homomorphisms satisfy-
ing f(A44) = (eA)(fAy) + (fA)(e4y)), all the principal crossed homo-
morphisms being zero. For the 1-dimensional homology group we have
by (3) of vi,1

Tord (4,K) ~ Ker (4 @, I+ A)~Ker(4d Qg (KR, 1)+ A Qg K).

Since the homomorphism K ®, I— K is zero we have Torf (4,K)
~ A Qg (K®,I). By (9) of vii,1 we have K ®, I ~ I/I®. Thus we
obtain

@) Tord (A4,K) ~ A @ I/I?
if A4 has trivial A-operators.

Consider supplemented algebras
A K, r-%rL.

A map of the first algebra into the second is a pair of ring homomorphisms
¢: A—T, y: K— L such that ¢'¢ = ye and @(kd) = (pk)(p4). This
places us in the situation discussed in vii1,3, and we obtain homomorphisms

F?: Torl (4,K)— Tor} (4,L)

F,: Extt (L,C) — Ext} (K,C)
defined for any right I-module A4 and any left I'-module C. The case
that most commonly applies is that of K = L, y = identity.

A somewhat different case is the following one. Let A—Kbea
supplemented K-algebra and let L be a (not necessarily commutative)
K-algebra. By extending the ground ring we obtain an augmented ring

LQ®ge: LR A—>L.
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This places us in the situation discussed in 1x,1.1 and we obtain homo-
morphisms

©) Tor2 (4,K) — Tork®A (4,L)
(52) Ext g (L,C) — Ext} (K,C)

for any right L ® x A-module 4 and any left L @ A-module C.
Applying 1x,1.1 we obtain

ProposiTION 1.1. If the supplemented K-algebra A is K-projective
then (5) and (5a) are isomorphisms.  Further if X is a A-projective resolution
of Kthen L @ X is an L ® i A-projective resolution of L.

If the ring L is commutative, then L ® x A is a supplemented L-algebra
(obtained from A by covariant extension of the ground ring). Proposition
1.1 then asserts the invariance of the homology and cohomology groups
under such extensions.

2. COMPARISON WITH HOCHSCHILD GROUPS

Formulae (1)—(3) of the preceding section show that in low dimensions
the homology and cohomology of a supplemented algebra A coincide with
the Hochschild homology and cohomology groups of A. To carry out
this comparison more systematically we consider the diagram

Ae;,A

P

AT)K

where ¢(A ® p*) = Mey). Since ep(d ® y*) = &(Ay) = £p(A ® y*), the
diagram is commutative, and thus the pair (p,¢) is a map of the augmented
ring A’ into the augmented ring A. We are thus in the situation treated in
vir,3, and we find homomorphisms

F?: H,(A, A)= Tork* (,4,A) — Tor2 (4,K)
F,: Ext} (K,C)—> Exty. (A,C) = HY(A,C,)

for a right A-module 4 and a left A-module C.

THEOREM 2.1. If the supplemented K-algebra A is K-projective, then
F? and F,, are isomorphisms, and for each A*-projective resolution X of A,
the complex X ®, K is a A-projective resolution of K= A ®, K as a left
A-module.
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We begin with
LEMMA 2.2. Let B be a two-sided A-module. Then the homomorphism

T sA' ®AGB—>B®AK

given by (A ® b) = Ab ® 1 is an isomorphism.
Indeed, define a homomorphism e: B ®, K— A ®,. B by
ob @k)=k ®b. Then

O"I'(A ®A‘ b)= O'(Ab ®A 1)= 1 ®A‘ lbz 1 ®Acb
70(b @p k) = 7(k @ peb) = kb @, 1 = b @, k.

Thus 7 is an isomorphism.

We now return to the proof of 2.1. It suffices to verify conditions
(i) and (ii) of the mapping theorem v, 3.1. Applying thelemma withB=A
we find that condition (i) holds. Next we take B= X where X is a A°-
projective resolution of A. Then

Tor2 (A,A) = H,(A ®, X) ~ Hy(X Q, K).

Since A is K-projective, it follows from 1x,2.4 that X is A*-projective,
i.e. X is A-projective as a right A-module. Therefore H,(X ®, K)
= Tor’ (A,K) which is zero for n > 0. This proves condition (ii) of the
mapping theorem and thus completes the proof of theorem 2.1.

Theorem 2.1 reduces completely the homology and cohomology theory
of a K-projective supplemented K-algebra to the Hochschild theory. This
will allow us to replace the notation Tor (4,K) by the homological nota-
tion H,(A,. A4) for a right A-module 4. To further simplify the notation
we shall write H,(A,A4) omitting e. Similarly for cohomology.

We may apply 2.1 to the standard complex S(A) or the normalized
standard complex N(A) of 1x,6 (note that the normalized standard complex
may be used because A’ = A/K a I is K-projective as a K-direct summand
of A). We denote the complexes S(A) ®, K and N(A) ®, K by S(A,e)
and N(A,e) respectively. To give an explicit description of N(A,&) note
that N, (A)= A ®x Na(A) @ A so that N,(A,e)= N (A) Q, K
=AQg N #(A). The differentiation operator in

N(A,e) = goA Rk Na(A)

diA] = A — el,
dn[)'p ey }'n] = 11[12, IR )'n] +0 Z (—I)i[}'b ey }'z’)‘i+1$ ceey ln]

<i<n

+ (_1)”[}'1’ ey }-n—ll(sj'n)'
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We recall that the symbol [4;, . .., 4,)(n = 0) is K-multilinear and is zero
whenever 4, = 1forsome i =1, ..., n. If thislast condition is dropped,
we obtain the (unnormalized) complex S(A,g).

The whole discussion of this section could be repeated by regarding K
as a right A-module and thus treating the supplemented algebra A as a
right augmented ring. If A is K-projective then S(e,A) = K ®, S(A)and
N(e,A) = K @, N(A) are A-projective resolutions of K as a right
A-module.

We conclude this section by discussing the case when the coefficient
module 4 (for homology and cohomology) has trivial A-operators, i.e. is
simply a K-module.

PrOPOSITION 2.3. Let A be a supplemented K-algebra and A a K-
module. Given a projective resolution X of K as a left A-module, define
X=KQ®, X. We then have natural isomorphisms

Tory (4,K) ~ H, (4 ® X)
Ext% (K;4) ~ H"(Homy (X,4)).
Proor. We have
Tory (4,K)= H (A Qp X)= H, (4 Qx K) @5 X) ~ H,(A Q (K ®, X))
= H,(4 ®x X).

A similar proof applies to cohomology. ‘

Applying the above result to the normalized standard complex N(A,&)
(under the assumption that A is K-projective) we find the complex
N(e,Ae)=K ®, N(A,¢) composed of modules N, (¢,A,e)=K @, N,(A,e)
=K®,A Qg Na(A)= N.(A). The differentiation operator in the

1 -
complex NeAe) = 3 N, (A)
. n=0
" | 421 =0, |
Al A= (Do s Ad+ S (=1l s Ahiass oy 4]

0<i<n

+ (_l)”[lb e ey ln—l](szn)'

3. AUGMENTED MONOIDS

We return to the discussion of monoids initiated in vi,2. Let II
be a monoid, L a ring (not necessarily commutative) and ¢: L(II) > L an
augmentation of the ring L(II). As we have seen in vii1,2, the augmenta-
tion is uniquely determined by a function Il — L also denoted by e,

satisfying e(xx’) = (ex)(ex’), el=1
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and whose values are in the center of L. The monoid II together with
the augmentation function &: II — L is called an augmented monoid.

We shall show that for the purposes of homology theory, one may always
assume that L is commutative. Indeed, consider a factorization

0-—K-—L

of the augmentation &, where K is a commutative ring, u is a ring homo-
morphism with values in the center of L, and &' is an augmentation
function. Sucha factorization always exists; it suffices to take K = center
of L. The map u defines on L the structure of a K-algebra. It isthen
clear that L(II) may be identified with the tensor product of K-algebras
L @k K(II). The augmentation &: L(I)— L then becomes
L®e: L ®g KAI)— L. Since the elements x € Il form a K-base for
K1), it follows that K(II) is K-projective. We are thus in a position
to apply 1.1, obtaining isomorphisms

(1) TorXT (4,K) ~ TorXM (4,L),
(1a) Ext} ., (K,C) ~ Extl gy (L,C),

for any right L(IT)-module A4 and any left Z(II)-module C.

Relations (1), (1a) place us squarely in the theory of supplemented
algebras. Since K(II) is K-projective, we may (in view of 2.1) regard the
left sides of (1) and (la) also as Hochschild homology and cohomology
groups. We shall use the notation H,(I1,4) and H"(II,C) to denote the
left sides of (1) and (la). This notation does not exhibit the ring K and
the augmentation £: Il — K and will be used only if it is clear what these
are. The group A is assumed to be a right K(II)-module, while C is a
left K(IT)-module. The augmentation ideal, i.e. the kernel of e: K(II)—>K
will usually be denoted by I(II).

We further minimize the role of K by using the expression “II-module”
instead of “K(II)-module”. Similarly we use the notation ®p, Homp,
Torl, Ext}; instead of ® gy, Homry, TorX™, Exty r,.

The most important examples of augmentations in a monoid II are
the following two: (1°) the wunit augmentation ex = 1 for all x eIl;
(2°) the zero augmentation ex =0 for x eIl, x % 1 and el = 1; this
augmentation may be used only if the relation xx’ = 1 in Il implies
x=1=x" (i.e. if no inverses exist in I). In the case of either of
these two augmentations the ring K may be taken to be the ring Z of
integers.

The standard complexes S(A,e) and N(A,e) for A = K(II) will be
denoted simply by S(Il,e) and N(Il,e). The description given in §2
need not be repeated. We only observe that the elements [x;, . . . , x,],
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x; eIl, form a K(II)-basis for S,(Il,¢). The same applies to N,(ILe),
except that in N,(IL,e) we set [x,. .., x,] = 0 whenever one of the
coordinates x; is 1.

The functorial properties relative to the variable II may be easily
derived. Let II, II'” be monoids with augmentations &: II — K,
g: II'>K. A map ¢: II'1II is a multiplicative map such that
@l =1 and ep=¢'. This clearly induces a map ¢: K(II")— K(II)
of supplemented algebras, and thus yields homomorphisms

F?: H(IT',4)— HIL,4)
F,: H¥(IL,C)—> H"(IT',C)

where A is a right II-module and C is a left II-module.

As an application of the mapping theorem we obtain

PROPOSITION 3.1. In order that F? be an isomorphism for all right
[I-modules A it is necessary and sufficient that
() K(II) @ K ~ K under the mapping x ® k — &(x)k,
(i) H,(Il",K(IT)) = 0 for n > 0.
If these conditions are satisfied then F, also is an isomorphism for all left
II-modules C. Further, for any Il'-projective resolution X of K, the
complex K(I1) ®p X is a I1-projective resolution of K.

It should be noted that condition (i) is always satisfied when ¢: I1'—1II
is an epimorphism.

4. GROUPS

We assume here that IT is a group. We first show that no generality
is lost by assuming that the augmentation is the unit augmentation.
Indeed, let &: II — K be any augmentation function. We denote by
K(IL,¢) the K-algebra K(II) with the supplementation given by & and by
K(I1,i) the same algebra with the supplementation given by the unit
augmentation i. The mapping ¢: K(Il,e) - K(IL,i) given by x — (ex)x
for x € II is then an isomorphism of supplemented algebras.

As a consequence we shall always assume that the augmentation is the
unit augmentation. As a further consequence we shall always assume that
K = Z is the ring of integers. We shall therefore deal with the algebra
Z(IT) supplemented by &(3 z,x;) = > z;,z, € Z, x; e II. The augmenta-
tion ideal I(IT) is then a free abelian group with the elements x — 1
as basis (x € IT).

The standard complexes S(II) and N(IT) may be put in a somewhat
different form by a change of basis. We introduce the symbols

1 Koy + + 5 %) = Xolxg "Xy, o o, X7 54X, ]5
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then

2) x(Xgy « « « 5 X)) = (XXg, . . . , XX,)

3) [ o oo s Xp] = (LX), X0 X0 e ooy Xq 0 ° X,)

@ Aoy s %) = 3 (= D'Cxps - s Xis s Xy

It follows that S,(II) is the free group generated by the elements
(xgs - - - » X,), x; € I1 with IT-operators defined by (2) and with differentia-
tion given by (4). This form of the standard complex is known as the
homogeneous form. The same applies to the normalized standard complex
N(IT) provided we set (x,,...,x,) =0 whenever x, ; = x; for some
i=1,...,n. We observe that the differentiation operator does not
involve the operators of II and has the standard form encountered in the
homology theory of simplicial complexes.

For low dimensions the homology and cohomology groups may be
described as follows:

H(I1,4) = A/AI = Ay is the factor group of A by the subgroup
generated by the elements a(x — 1), a € 4, x € II.

HYI1,C) = C™ is the subgroup of invariant elements of C, i.e.
elements ¢ with xc = c for all x € II.

HYIL,C) is the group of all crossed homomorphisms f: II - C
(i.e. all functions satisfying f(xy) = x(fy) 4 fx, for x,y e II) reduced
modulo principal crossed homomorphisms (i.e. functions of the form
Jx = xc — c for a fixed c € C).

If IT operates trivially on 4 (i.e. A™ = A) these results simplify as
follows

©) HyI1,4) = 4 = H(I1,4)
(6) HY(I1,4) ~ Hom (I1,A4).
Clearly Hom (II,4) may be replaced by Hom (II/[II,II},4) where
[ILII] is the commutator subgroup of II. In the case of trivial
operators we can also calculate the group Hy(I[,4). We have from

formula (4) of §1 that H,(Il,4) ~ A ® I/I* where I= III). We
establish maps

@: I/12— TI/[ILI1], w: IIJ[ILII] — I/I?

by setting p(x — 1) = x, yx = x — 1. Simple calculations show that we
obtain an isomorphism

Q) I/I2 ~ T1[ILII].
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Thus we have

® H(I1,4) ~ 4 @ II/[ILII].

We shall now prove a proposition which shows that in some cases the
homology and cohomology groups of a group are the same as those of a
monoid contained in the group. '

ProrosITION 4.1.  Let I1 be a group and I’ a monoid contained in 11
such that each element of I has the form x'y, x e Il', ye II'. Then
the homomorphisms

H,(U',4) — H,(I1,4), H"(I1,C) - H"(Il',C)

induced by the inclusion map 11" — Il are isomorphisms. Further, if
X is a Il'-projective resolution of Z, then Z(Il) @y X is a Il-projective
resolution of Z.

Proor. We apply 3.1. To verify that condition (i) of 3.1 is satisfied
we must show that the relation z @y 1=1Q®y 1 is valid
in Z(Il) ®- Z for each zell. Let then z=x"1y, xell’, yell'
Then, writing ® for ®p., we have

zR1=xYRX1l=x1Ryl=x101=x1Qx1=1Q1.

To verify condition (ii) of 3.1 we must show that Torl' (Z(I1),Z) = 0
forn> 0. Since Torll commutes with direct limits (v1,1.3) it suffices to
prove that Z(II) is a direct limit of II'-projective right modules. Indeed,
we shall show that Z(II) is the union of a directed family of submodules
M, each of which is isomorphic with Z(I1").

For each s eIl consider the map f;: II'—1II given by fix = sx.
Since II is a group, f induces a II’-isomorphism of Z(I1") with a right
II"-submodule M, of Z(II). Since s e M,, Z(Il) is the union of the
submodules M,. There remains to be shown that the family {M,} is
directed. Given s,t eIl we have s 1t= vlw with v,w eIl’. Thus
svt = tw-1, Setting u = sv~! = rw~! we have

sx = u(vx) e M,, tx = u(wx) e M, xell'.

Consequently M, C M, and M, C M, so that the family {M,} is directed,
as required.

CoROLLARY 4.2. Let Il be an abelian group and 11" a submonoid
of 11 generating I1. Then the conclusions of 4.1 hold.

One fundamental difference between groups and monoids is the
existence of the transformation wx = x~! which yields an isomorphism

w: Z(IT) ~ (Z()*.
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This “antipodism’ allows us to convert any right II-module 4 into a
left I[I-module by setting
xa = axL

It is because of this antipodism, that it is possible to build the whole
homology and cohomology theory of groups using left II-modules
exclusively.

5. EXAMPLES OF RESOLUTIONS

The standard complex S(IT) has the advantage of being defined for all
augmented monoids II and being a covariant functor of the variable II.
However, for each individual monoid II there are usually simpler II-
projective resolutions of K which lead more quickly to the computation of
the homology and cohomology groups of II. We shall discuss here a
number of such examples.

As our first example we shall treat simultaneously the following cases:

IT is the free monoid generated by a (finite or infinite) set of letters
{x,} with any augmentation ¢: Il - K.

IT is the free group generated by a set of letters {x,} with the unit
augmentation II — Z.

Let C be any left K(IT)-module. It is easy to verify that each crossed
homomorphism f: II — C is uniquely determined by its values on the
elements x, and that these may be arbitrarily prescribed in advance. In
view of the 1-1-correspondence between crossed homomorphisms and
K({T)-homomorphisms g: I(II)— C it follows that each such homo-
morphism g is uniquely determined by its values on x, — &x, and that
these values may be arbitrarily prescribed. It follows that the elements
{x, — ex,} form a K(II)-base of I(II) as a left K(II)-module. Thus
I(I1) is K(IT)-free. Therefore the exact sequence

0— I(I1) — K(II) — K— 0

yields a projective K(II)-resolution of K. This implies the well known
result:
H,(II,4) = 0= H"(II,C) forn> 1.

Following formula (9) of vii,1 we have H,(IT,K) = Torl! (K,K) ~ I/I2.
The identity xy — 1= (x — 1) 4+ (y — 1) + (x — 1)(y — 1) implies that
in the module 7/I2 the images of the elements x, — 1 form a K-base. Thus
if {x, } is not empty this module is non-zero. This shows that

if II is the free monoid (or group) on a non-empty base {x,}. Similarly
r.dimK(n) K= 1.
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Incidentally we have shown that if II is a free group generated by the
letters {x,} then for each x € Il we have

x—1=32a(x)(x,—1)

with a,(x) € Z(II) uniquely determined. The functions a, are crossed
homomorphisms II — Z(II) uniquely determined by the conditions
a,(x,) = 1 and a,(xz) = O for « # B. The elements a,(x) are called the

. o . ox
partial derivatives of x and are written as e
xa

Our next example is that of the free abelian monoid 11 generated by a
finite set of letters x;, . . . , x,, with an arbitrary augmentation &: II — K.
We introduce the elements x; = x; — ex; of K(I). It is then clear that the
ring K(IT) may be identified with the ring K[xy, ..., x,] of polynomials
in x, ..., x,, with the augmentation given by &(x;) = 0. We thus fall
into the case treated in viiL,4 and obtain the complex

where E(yy, ..., y,) is the exterior K-algebra on the letters y;, ..., y,,
with differentiation
dx @ yy yp) = 3 (FI/x(x,, — x,) ® yy* " Foy "t Yy

Yo 1sjsi
In particular, the discussion carried out at the end of vii,4 applies.

The last case treated here will be that of the free abelian group I1
generated by a finite set of letters x;, . . . , x,, (with the unit augmentation
II —2Z). In this group we have the free monoid II’ generated by
X3, ..., X%, and 4.1 may be applied. Using the complex constructed
above for the free monoid, we find the complex

ZAD @ E(yys - - - » Yu)
with
dy(x Q Yy, " -y,,,.) :1gzg-(—1)j+1x(x”f —1) Qyp """ j’\p, T Y
=)=t

Further examples will be given in Ch. x11 for finite groups.

6. THE INVERSE PROCESS

We have seen in 2.1 that the homology and cohomology theory of a
K-projective supplemented K-algebra is expressible in terms of the
Hochschild theory. We shall see here that in some very important cases,
the converse also holds: the Hochschild homology theory may be derived
from the homology theory of supplemented algebras.
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Let A be a supplemented K-algebra and assume that a K-algebra
homomorphism

E: A— A°
is given, such that the diagram

A—K

El ln

A— A
[

is commutative. In this diagram & is the augmentation of A, % is deter-
mined by the K-algebra structure of A and p is the augmentation of A°.
This commutativity relation is equivalent with the inclusion

) EICJ.

We are now in the situation covered by vii,3 and we obtain homo-
morphisms

FE: Torl (Ag,K)— H,(A,4)
FE: H"(A,A) —> Ext'}\ (K,EA)

where 4 is a two-sided A-module, z4 (or Ag) is the left (or right) A-
module obtained by regarding A as a left (or right) A°-module and then
defining the A-module structure using E. In particular, we shall denote
by A% the algebra A° regarded (1°) as a left A°-module, (2°) as a right
A-module by means of the map E.

THEOREM 6.1. Assume that the following conditions hold

(E.1 J= A4l
(E.2) % 1S a projective right A-module.
Then the maps FE and Fy are isomorphisms, and for each projective resolu-
tion X of K as a left A-module, Ay @, X is a projective resolution of A as a
left A®-module.

ProOF. We only need to verify conditions (i) and (ii) of the mapping
theorem v, 3.1.

From the exact sequence 0 - I— A — K— 0 we deduce the exact
sequence

§ ®p I Ay~ Ay @y K0

which implies

A% @4 K~ Coker (A @4 I Ay) = AG/AGI= Ayl = A.
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The isomorphism A% ®, K~ A is given by y ®, 1 — py and this
proves condition (i) of the mapping theorem.

Condition (ii) of the mapping theorem is Tor’ (A%,K) = 0 for n> 0.
This is a direct consequence of (E.2).

We return for a moment to the condition (E.1) above. The inclusion
%I C J is equivalent with the inclusion (1). The other inclusion J C A%
expresses the fact that J is contained in the left ideal of A° generated by EI.
Since J as a left ideal is generated by elements of the form 1 ® 1—1 ® 4%,
A € A (see 1x,3.1), we find that in the presence of (1), condition (E.1) is
equivalent with
(E.1"). Foreach ¢ A, the element A @ 1 — 1 @ A* is in the left ideal
of A° generated by EI.

THEOREM 6.2. Assume the conditions of 6.1 and that A is K-projective.
Then
dim A = Ldim, K = r.dim, K.

If further K is semi-simple, then
dim A = l.gl.dim A = r.gl.dim A.

Proor. The equality dim A = 1.dim, K follows directly from 2.1
and 6.1. To prove dim A= r.dim, Kit sufficesto provedim A= l.dim,. K.
The map E: A — A? induces a map E*: A* — (A%)* = (A*)° and it is
easy to see that conditions (E.1) and (E.2) still hold. Thus by the part of
the theorem already established, dim A* = 1dim,. K. Since dim A
= dim A¥*, the conclusion follows.

If K is semi-simple then, by 1x,7.6, we have lgl.dim A < dim A.
Since dim A = l.dim, K< l.gl.dim A we obtain dim A = l.gl.dim A.
Similarly for r.gl.dim A.

As an illustration of the inverse process consider the ring A = Z(II)
(or more generally A = K(II)) where II is a group with unit augmenta-
tion. Define E: A — A by setting Ex = x ® (x1)* for x eIl. Then
pEx = 1 so that (1) holds. Since

xR®1—-1Q@x*=xRNI X1 —x1Rx*)=(x Q1NE1—x1)

it follows that (E:1’) holds. To verify (E.2) observe that the elements
1 ® x* (x €II) form a base of A® as a right A-module. Thus theorems
6.1 and 6.2 may be applied. Note that if 4 is a two-sided A-module then
gA is the left II-module with operators @ — xax~! and Ay is the right
II-module with operators a — x~lax.

In xm,5 we shall show that the inverse process can also be applied to
the homology theory of Lie algebras.
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7. SUBALGEBRAS AND SUBGROUPS

Let A and T" be K-algebras and let ¢: A — I" be a K-algebra homo-
morphism. Given an augmentation ¢: I' = K which converts I into a
supplemented algebra, we define A as a supplemented algebra using the
augmentation ep: A — K. In most cases A will be a subalgebra of I'
and @ will be the inclusion map. We shall use here the notations of 11.6.

ProposITION 7.1.  If T', as a left (right) A-module, is projective, then for
any left (right) I'-module A, any T'-projective or TI'-injective resolution X of
A is also a A-projective or A-injective resolution of A.

This follows directly from 11,6.2 and 11,6.2a.

ProrosiTION 7.2, If T' is projective as a left A-module, then we have
isomorphisms

Tor’ (4,K) ~ Torl (4,,K), Ext’ (K, C)) ~ Ext% (K,C)

for each right A-module A and each left A-module C.

This follows directly from vi4.1.1 and vi,4.1.4. Similarly applying
v,4.1.2 and v1,4.1.3 we find

ProPOSITION 7.3.  If T is projective as a right A-module, then we have
isomorphisms

Tor’(4,K) ~ Tor) (4, ®, K), Exth (I' ®, K,C) ~ Ext} (K,C)
for each right I'-module A and each left I'-module C.

We apply these results to groups. Let 7 be a subgroup of II and let
@: Z(m)— Z(II) be induced by the inclusion =—1II. If {x,} is a
system of representatives of right cosets of = in II, then it is clear that
{x,} is a base of Z(IT) regarded as a left Z(m)-module. Similarly Z(II) is
free as a right Z(7)-module. We may thus apply 7.2, replacing 4, and
(®)C by their definitions.

PROPOSITION 7.4. Let w be a subgroup of I1. Then
M H,(m,4) ~ H,(I1,4 ®, Z(11))

(1a) H"(m,C) ~ H*(II, Hom,, (Z(I1),C))
for each right m-module A and each left m-module C.

Before we apply 7.3 we reinterpret the module Z(II) ®,_ Z as follows.
Let Z(I1/7) be the free abelian group generated by the left cosets xm of «
in II.  Then IT operates on Z(II/7) on the left and we may identify
Z(I1/=) with Z(1) ®, Z.

PROPOSITION 7.5. Let  be a subgroup of II. Then
@ H,(m,A) ~ Tory (4,Z(1/m)),

(22) H"(w,C) ~ Extyy (Z(11/7),C),
for each right I1-module A and each left 11-module C.
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Let 7 be a subgroup of IT and let x e II.
In the situation (Ap,;C) we define
¢ AR, C>AQR, . 1C
by setting c (@ ®, ¢) = ax~! @, xc. Replacing C by a Il-projective
resolution of Z, and passing to homology we obtain isomorphisms
¢,: H(mA) ~ H,(x7x1,A4)
for any right II-module 4.
Similarly, in the situation (;;4,5,C) we define
¢,: Hom_ (4,C)— Hom,_,1(4,C)
by setting (c,f)a = x(f(x~1a)). Replacing 4 by a Il-projective resolu-
tion of Z and passing to homology we obtain isomorphisms
¢,: HY(7,C) ~ H"(x7x1,C)
for any left II-module C.
The following properties of c, are directly verified
3 CoCy = Cay»
©) If x e 7 then c, is the identity.

Assume now that = is an invariant subgroup of Il. Then 7 = xmx~1
and it is clear from (3) and (4) that c, defines left operators of II/7 on
H (wm,4) and H"(w,C) for each right II-module 4 and each left II-module
C.

There is another way in which these operators may be arrived at. The
II-module Z(Il/7) appearing in (2) and (2a) is the group algebra of the
group Il/7 regarded as a left II-module. The structure of Z(Il/x) as a
right II/7-module can then be used to define right II/7-operators of the
groups appearing in (2) and left I/ w-operators of the groups appearing in
(2a). The verification that these operators agree with the operators defined
using c,, is left to the reader.

In Ch. xm1 we shall carry out a similar discussion for Lie algebras. In
Ch. xv1 we shall obtain further results using spectral sequences.

8. WEAKLY INJECTIVE AND PROJECTIVE MODULES

Let A be a K-algebra and : K— A the natural map. A right A-
module 4 is said to be weakly projective if it is n-projective in the sense of
I,6. This means that the kernel of the map g: 4 @ x A — A4 given by
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a ® A—>ak is a direct summand of 4 @x A regarded as a right A-
module using the right operators of A on A (not on A!). A similar
definition applies to left A-modules using A @ x 4 — A4.

Similarly a left A module C is said to be weakly injective if it is #-
injective in the sense of m,6. This means that the image of the homo-
morphism h: C— Homyg (A,C) which to each ¢ assigns the homo-
morphism A — Ac is a direct summand of Homy (A,C) regarded as a left
A-module using the right operators of A on A. Similarly for right A-
modules.

ProrosITION 8.1. Let M be a K-module, and A a weakly projective
right A-module. Then M Qg A is weakly projective and Homy (4,M) is
weakly injective.

Proor. We shall only prove the second part. Consider the commuta-
tive diagram

Homg (4 Q@ A, M) < Homyg (A, Homg (4,M))

Hom z(g, M )\ /

Homy (4,M)

where s is the A-isomorphism of 1,5.2. Since A is weakly projective,
Ker g is a direct A-summand of 4 ® x A. It follows that the image of
Homyg (g,M)is a A-direct summand. Thus the same holds for 4, so that
Homy (A4,M) is weakly injective.

PROPOSITION 8.2. Let A be a K-projective K-algebra. In the situation
(Ap,7C), if C is K-projective and A is weakly projective, then

Tor (4,C) =0 for n > 0.

PROPOSITION 8.2a. Let A be a K-projective K-algebra. In the situation
(a4,A0), if A is K-projective and C is weakly injective then

Ext} (4,C)=0 for n > 0.

These are immediate consequences of v1,4.2.1 and vi,4.24. As a
consequence we obtain

CorOLLARY 8.3. Let A be a K-projective supplemented K-algebra.
Then

H,(A,4)= 0= HY(A,C) forn>0

JSor any weakly projective right A-module A and any weakly injective left
A-module C.

We now turn to the discussion of weakly projective and injective
modules in the case A = Z(II) where II is a group.
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Let 4 be a right II-module. On the group 4 ® Z(II) we consider
two right II-module structures given for a € 4, x,y €Il by

¢)) @@ x)y=a®xy
1) (@®x)y=ay @xy

respectively. The mapping ¢: a ® x—ax ® x maps structure (1)
isomorphically onto structure (1’). In defining weakly projective modules
we used the map g: 4 ® Z(II) - A given by g(@ ® x) = ax which was a
II-homomorphism on the structure (1). The map g’ = gg~! is given by
g'(a ® x) = a, and is a [I-homomorphism on the structure (1'). We
thus obtain

PROPOSITION 8.4. A right I1-module A is weakly projective if and only if
there exists a I1-homomorphism v: A— A @ Z(I1) (rel. to structure (1'))
such that g'v = identity.

Let C be a left II-module. On the group Hom (Z(I1I),C) we con-
sider two left II-module structures given for f ¢ Hom (Z(II),C), x,y € II

by
) f)x = f(xy)
) Nx=yf(y'x)

respectively. The mapping f— yf given by (yf)x = x(fx~!) maps
structure (2) isomorphically onto structure (2'). In defining weakly
injective modules we used the map h: C— Hom (Z(II),C) given by
(hc)x = xc. The map A" = yh: C— Hom (Z(II),C) is given by
(We)x = ¢, and is a II-homomorphism on structure (2). Thus we
obtain

PRrOPOSITION 8.4a. A left Il-module C is weakly injective if and only
if there exists a Il-homomorphism p: Hom (Z(I1),C)— C (rel. to
structure (2')) such that uh' = identity, i.e. such that if fx is constant and
has value c then uf = c. Such a function u will be called a mean.

As an application of the above criteria we prove the following two
propositions that will be used in Ch. xvI.

PROPOSITION 8.5. In the situation (yA,;C) assume that A is weakly
projective. Then A @ C with left operators

x(a ® ¢) = xa Q xc
is weakly projective. Similarly Hom (A4,C) with left operators
(xf)a= x(f(x"'a))

is weakly injective.
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The proof is similar to that of 8.1 and uses the diagrams

ARA)QC—A®(MURC)
e C\ g
AQC
Hom (A ® 4,C) < Hom (A, Hom (4,C))
Hom (¢,C) 4
Hom (4,C)

where A = Z(II) is treated as a left II-module. The horizontal maps
r and s" are given by 11,5.1 and 11,5.2” and are II-isomorphisms.

PROPOSITION 8.6. A left Il-module A is weakly projective if and only
if there exists a Z-endomorphism p: A — A such that

(i) for each a € A, p(x~ta) = 0 for all but a finite number of elements x €Il
(i) a= > xp(x~1a) for all a € A.
zell

ProoF. Let g': Z(II) ® A— A be given by g'(x ®a@)=a. If 4
is weakly projective then, by 8.4, there exists a II-homomorphism
v: A— Z(Il) ® A4 such that

gva=a for all a € A.

Here Z(IT) ® A has operators y(x ® a) = yx ® ya. Since the elements
x e II form a Z-base for Z(IT) each element va can be written as a finite
linear combination

3) va= x Q g(x,a), x eIl.
Since for y eIl

wya) = 2x @ g(x.ya)

yva)= 2yx @ yg(x,a) = 2x @ yg(y'x,a)

z z

it follows that the condition »(ya) = y(va) is equivalent to
(€)) g(x,yad) = yg(y~1x,a) for all x,y eII.
This in turn is equivalent to
(5) g(x,a) = xg(1,x1a) for all x €II.
Therefore setting pa = g(1,a) we have

(6) g(x,a) = xp(x1a).
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Since for 'a fixed a, g(x,a) = 0 for all but a finite number of elements
x eII, condition (i) follows. Finally

a=g'va= g'(gx ® g(x,a)) = %g(x,a) = gxp(x‘la).

Conversely, given p: A — A satisfying (i) and (ii), we may define g(x,a)
using (6) and »using(3). Then v is a [I-homomorphism and g'v=identity.

In the discussion concerning groups the ground ring Z may be replaced
by any commutative ring K.

EXERCISES

1. Let A be a supplemented K-algebra, and 4 a K-module. Show that
A ®g A is A-projective if and only if 4 is K-projective. Assume further
that K is such that K-projective modules are K-free. Then show that if
A ®x A is A-projective then it is A-free.

2. Show that the inverse process of § 6 can be applied to the algebras
A= Fg(xy,...,x,) and A= K[x,,...,x,] supplemented by ex;=10
using the map E: A— A°givenby Ex;=x, ® 1 — 1 ® x}*.

3. Let A be a K-projective supplemented K-algebra with K a hereditary
(commutative) ring. Establish the exact splitting sequences

0—> Hy(AK) g A— H,(A,4)— TorX (H,_; (A,K),4) — 0,
0 — Exty (H* ! (A,K),4) - H"(A,A) — Homy (HY(A,K),4) — 0,

for any module 4 with trivial A-operators.
4. Let I be a group (or a monoid with an augmentation II — Z).
Establish the splitting exact sequences

0— H,(1,Z) ® A— H,(I1,4) — Tor, (H,_; (I1,Z),4) - 0
0 — Ext! (H™(I1,Z),4) - H"(I,4) — Hom (H"(I,Z),4) — 0

for any abelian group 4 with trivial II-operators.

5.Let A be a K-projective supplemented K-algebra. Then
A’ = Coker (K— A) may be identified with the augmentation ideal I.
Using this remark give a description of the complex T(A,¢) using symbols
[Ay, ..., 4] with 4; € I.

6. Let A be a supplemented K-algebra and let z be an element in the
center of A. For any left A-module C, multiplication by z defines an
endomorphism C— C which induces an endomorphism H"(A,C)
— H"(A,C). Show that the latter is given by multiplication by the
element ez of K. State a similar result for homology.



CHAPTER XI

Products

Introduction. The functors Tor and Ext may be combined with each
other using four product operations T, 1, V, A. Each of these products
involves three algebras, more precisely two algebras A and I' and their
tensor product A ® I'. They satisfy a number of associative, anti-
commutative and other rules.

There are also internal products involving only one algebra. To
obtain internal products m, w correspondingto T, |, we need an algebra
homomorphism A ® A — A; such a homomorphism always exists if A
is commutative. For the internal products U, corresponding to
V,A, we need an algebra homomorphism A — A ® A; such a homo-
morphism (usually called a ““diagonal map’’) will be exhibited in a number
of interesting cases.

The external and internal products may be computed using suitable
multiplication formulae in complexes (§ 5).

The situation outlined above closely resembles that encountered in
algebraic topology.

The general products for Tor and Ext are applied (§§ 6, 7) to the homo-
logy theories of Chs. 1x and X. The internal products U, N will be modi-
fied in §8, using an “antipodism’ A — A*; this leads to reduction
theorems (§ 9) which generalize the “cup product reduction theorem” of
Eilenberg-MacLane (Ann. of Math. 48 (1947), 51-78, Ch. mi).

1. EXTERNAL PRODUCTS

In this and the following sections we shall consider K-algebras over the
same commutative ring K. We shall therefore simplify the notation by
writing ® and Hom instead of ® z and Homg.

Given complexes X and Y composed of K-modules we obtain new
complexes X @ Y and Hom (X, Y) and homomorphisms

(1) «: H(X)® HY)— HX ® Y)

1) a’: H(Hom (X,Y)) - Hom (H(X),H(Y))
202



§1] EXTERNAL PRODUCTS 203

defined in 1v,6. The properties of these homomorphisms relative to the
degrees imply homomorphisms

«: HY(X) ®@ H(Y)— H*™(X ® Y)
o«': H*(Hom (X, Y)) — Hom (H(X),HY(Y)).

Since these homomorphisms are fundamental for the theory of products
that we are about to develop, we give a brief survey of their definitions.

Let i, € H(X), hy € H(Y) and let z, € Z?(X), z, € Z%(Y) be representa-
tives of 4, and h,. Regard z; and z, as elements of X? and Y% Then
Z; 02, X? ® Y%and d(z; @ z,) = 0, thusz; ® z, e Z?*Y(X ® Y). The
element a(h; ® hy) € ZPT(X Q@ Y) is the class of z; ® z,.

Let hy e H**Y(Hom (X, Y)), hy, € H,(X) and let f e Z?** (Hom (X, Y)),
z, € Z,(X) be representatives of 4, and h,. Then fz, € Y?and d(fz,) = 0.
Thus fz, determines an element of H%Y) which is precisely (a'h;)h,.

Let A and I' be two K-algebras and consider the K-algebra
Q=AQT

where as usual ® stands for Q@ x.

If A is a left A module and A’ is a left '-module then 4 ® A4’ is a left
Q-module.

Let X be a A-projective resolution of 4 and X’ a I'-projective resolu-
tion of A”. Then, by 1x,2.5, X ® X’ is an Q-projective left complex over
A ® A’. Thus we have the homomorphisms (of degree zero)

Q) H(B ®4(X ® X))—> Tor® (B, A ® A’) B,
") Ext, (4 ® 4',C)— H(Hom, (X ® X’,C)). oC

ProrosiTioN 1.1. (cf. 1x,2.7). If A and T' are K-projective and
TorX (4,4")= 0 for n> 0 then X ® X' is an Q-projective resolution of
A ® A'. In particular, (2) and (2') are then isomorphisms.

Proor. Since A and I' are K-projective, it follows from 11,6.2 that X
and X’ are K-projective resolutions of 4 and 4’. Thus H,(X ® X')
= TorZ (4,4")= 0 for n > 0.

We now place ourselves in the situation described by the symbol
(,4,Cy,rA4’,Cr) and define the homomorphism

P1: (CRLA)RC'RrA)>(CRC)Ry(ARA)

givenby p((c @) @ (¢’ ®ad'))=(c ®¢') ® (a ® a’). Replacing 4 and
A’ by X and X’ we obtain

Dy: (C R, X) ®(C' O X)—>(C®C) Ry (X ® X').
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Passing to homology and applying « we obtain the homomorphism

Tor” (C,4) ® Tor™ (C',4")— H(C ® C’) ®, (X ® X7)).
Composing this with (2) we obtain the T -product

T: Tor® (C,4) ® Tor’ (C',A")— Tor®(C Q C'.A ® A').

Since T has degree zero, it yields maps

T: Torp (C,4) ® Tory (C',A")— Tord, ,(CQ C',4 ® A').

PROPOSITION 1.2.1.  For p = q= 0 the T -product reduces to the map

P1-
This follows readily from the definition of T by applying the augmenta-

tion maps X - 4 and X' — 4’.

Next we consider the situation described by the symbol (,4,C,4",rC”).
We define Hom (C,C’) as a left Q-module by setting

(2 @ NSf)e=p(f(cd) ceC,feHom(C,C)
and define the homomorphism
@,: Hom, (4 @ A’, Hom (C,C")) - Hom (C ®, 4, Homy (4°,C"))
by setting
(ge/)c ® @))a’ = (fla @ a))c.
Replacing 4 and 4’ by X and X’ we obtain
®,: Hom, (X ® X', Hom (C,C’)) - Hom (C ®, X, Homp (X’,C")).
Passing to homology and applying «’ we obtain the homomorphisms
H(Hom,, (X ® X', Hom (C,C")) = Hom (Tor” (C,4), Extr (4',C")).
Composing this with (2") we obtain the | -product
1: Ext, (4 ® A’, Hom (C,C’)) = Hom (Tor? (C,4), Ext (4/,C")).

Since | has degree zero, it yields maps

1: Ext3*? (4 ® 4’, Hom (C,C’)) - Hom (Tor;} (C,A), Ext}- (47,C")).

PrOPOSITION 1.2.2. For p = q =0, the | -product reduces to the map
Pa-

For the remaining two products V and A we make the following two
assumptions:
(i) A and T are K-projective
(ii) TorX (4,4’)= 0 for n > 0.
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It follows from 1.1 that the homomorphisms (2) and (2') are
isomorphisms.

We now place ourselves in the situation described by the symbol
(AA4,AC,pA4',+C’). We define the homomorphism

@3: Hom, (4,C) ® Homp (4',C")— Hom, (4 ® 4,C ® C’)

by setting
(ps(fRf Na@ad)=faRf'a.

Replacing 4 and 4’ by X and X’, we obtain
®,: Hom, (X,C) ® Homp (X',C")— Hom, (X ® X',C ® C').
Passing to homology and applying « we obtain the homomorphism
Ext, (4,C) ® Extrp (4',C") - HHom, (X ® X',C ® C))
Combining this with the inverse of (2) we obtain the V -product
V: Exty (4,C) @ Extp (4',C") - Ext, (A ® A,C ® C').

Since V is of degree zero, it yields maps

V: Ext? (4,C) ® Exté (4,C")— Ext8*1 (4 @ 4',C ® C").

PrOPOSITION 1.2.3. For p=q =0 the \ :product reduces to the
homomorphism @s.

Finally we place ourselves in the situation described by the symbol
(,4,AC,rA’,Cr). We define Hom (C,C’) as a right Q-module by setting

(A @)= Sy ceC, feHom(CC)
and define the homomorphism
@4: Hom (C,C") @, (4 ® A")— Hom (Hom, (4,C),C’ @ 4")

by setting
(p(f@a@a)g=[f(ga) ®d

for f e Hom (C,C’), g €« Hom, (4,C). Replacing 4 and 4’ by X'and X" we
obtain

®,: Hom (C,C’) ®, (X ® X')— Hom (Hom, (X,C), C’ ®p X').
Passing to homology and applying «’ we obtain the homomorphism

H(Hom (C,C") ®, (X ® X)) — Hom (Ext, (4,C), Tor™ (C’,4)).
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Combining this with the inverse of (2) we obtain the A product
A: Tor® (Hom (C,C'),A ® A')— Hom (Ext, (4,C), Tor™ (C’,4")).

Since A has degree zero, it yields maps

A: Torg, ,(Hom (C,C'),A ® A")— Hom (Ext} (4,C), Tor; (C’,4")).

PROPOSITION 1.2.4. Ifp=q = 0, the )\ product reduces to the map ¢,.

The notation used above for the four products is convenient as long as
we do not exhibit individual elements of the groups Tor and Ext involved.
For formulas involving elements, it is more convenient to adopt the
following notation

T@®b)=aT b, (La)p=a 1l b,
Vi@a®b)y=aV b, (Aa)b=a A\ b.
We recall that V and A are defined only if conditions (i) and-(ii) are
satisfied.
2. FORMAL PROPERTIES OF THE PRODUCTS

The formal properties of the four products are too numerous to be
listed in detail. We shall therefore be satisfied with an informal discussion
omitting most proofs. It should be remembered that whenever the
products V and A occur, suitable assumptions should be made in order
that these products be defined.

First, for fixed K-algebras A and I' we may consider maps 4 — 4,,
C— C,, A" — A; and C’'— C|. For the product T we then obtain a
commutative diagram

Tor (C,4) ® Tor (C',A") —— Tor? (C ® C', 4 ® A')
|

’ ’ T ’ ’
Tor® (Cp,4;) ® Tor! (C,,4;) — Tor® (C; ® C{,4; ® Ay).

Next we can consider homomorphisms ¢: A’— A, p: IV —I' of
K-algebras. Every A-module (resp. I'-module) may then be regarded as a
A’-module (resp. I'" moduie). In the situation (,4,Cy,pA4’,Cp) we then
obtain a commutative diagram

Tor"(C,d) ® Tor™(C’,4") —— Tor*(C ® C',4 ® A')
Pu® ¥, I (¢ ® v),
T
Tor® (C,4) ® Tor! (C',A)——Tor* (C R C', A ® A')

where @, : Tor® — Tor* and y,: Tor! — Tor" are induced by ¢
and .
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Keeping the K-algebras A and I' fixed we may consider a ring homo-
morphism {: L— K where L is a commutative ring. A and I' may then
be regarded as L algebras. This leads to a commutative diagram

Tor? (C,4) ® , Tor™ (C',4") — TorA®:T (C ®, C',4 @, A')

Tor® (C,4) @ & Tor™ (C',4")—— TorA®sT (C @ C', A @ A').

Similar diagrams to the above hold for the remaining three products.
One can also consider more complicated situations in which the
modules 4,C, ..., the algebras A, I' and the ground ring K are all
mapped simultaneously.

Next we turn to commutativity rules. To formulate these rules we
must identify Q = A @ I' with I' ® A (cf. 1%, 1.2).
PROPOSITION 2.1.  The following diagram is commutative

T
Tor) (4,C) @ Tor, (4',C")—— Tor, [ (A ® A',C ® C’)
(=1)Pef g
T
Torf (4',C") ® Tor, (4,C) — Tory, (4" ® 4,C' ® C)

r+tq

where f is the map establishing the commutativity of the tensor products,
while g is induced by similar mapsf;: AQ A'—~A' @ A, f: CR C'—~C’' ®C.

Proor. The proof is an easy consequence of the fact that a map
Fi: X® X'— X' ® X over f, is obtained by setting Fi(x @ x") = (—1)*
(x' @ x)forx € X, x" € X.

A similar commutativity rule for the \/ product is obtained by simply
replacing Tor by Ext in the diagram above.

We now come to the associativity rules, of which there are six. These
will be stated without proofs. We consider three K-algebras A, I', ¥ and
define Q= (AR 2= A Q' ® ). In general, we shall regard
the tensor product as an associative operation.

PROPOSITION 2.2. In the situation (,A,C,,rA’,Ct,xA",Cy) consider
a e Tor) (C,4), b eTor] (C',4"), ceTorF(C",A"). Then (@ T b)Tc
=aTOBT o).

PROPOSITION 2.2a. [In the situation (\A,,C,pA’,pC’,5A",5C") consider
a € Ext} (4,C), b e Ext:(4',C’), ¢ e Ext, (4",C"). Then (a\/ b)\ ¢
=aV bV o).

To state the next two associative laws we use the identification
Hom (C, Hom (C’,C")) = Hom (C ® C’,C"). It should be observed that
in the situations (C,,Cr,5C") or (,C,rC’,Cs) this identification is
compatible with the operators of 2 on both groups.
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PROPOSITION 2.3. In the situation (,A,Cy,pA’,Ct,5A",5C"), consider
aeExt), ., (4Q® A4 @ A", Hom (C ® C',C"), b € Tory (C,A) and
ceTor; (C',A"). Thena | (b T c)=(a 1 b) | c

PROPOSITION 2.3a. In the situation (,A,,C,rA’,rC’,5A",Cy) consider
a € Tor?,,,, (Hom (C ® C',C"), A ® A' @ A"), b ¢ Ext} (4,C) and
¢ € Ext}(4',C’). Thena N\ (b\/ c)=1(a A b) ANc.

To formulate the last pair of associative laws we consider the natural
homomorphism

&: Hom (C,C') ® C"— Hom (C,C' ® C")
given by
E(f® )]e= (fo) ® .

We observe that in the situation (,C,Cp,Cs) and (C,,pC’,5C"), £ is an
Q-homomorphism.

PROPOSITION 2.4. In the situation (,A,,C,pA’,Cr,5A",Cy) consider
a e Tor}&F (Hom (C,C"),4 ® A'), b € Ext} (4,C), ¢ « Tory (C",A"). Then
@A BT c=[EaT O] A\ bhere

&,: Tor? (Hom (C,C") ® C”,D) — Tor (Hom (C,C’ ® C"),D)
is induced by &.

ProPOSITION 2.4a. In the situation (,A,Cp,pA’,rC’ 54", C") consider
a e Ext}®r (4 ® A, Hom (C,C")), b eTorh (C,A), c eExty(4",C").
Then (a | b) V c¢= [*(a V ¢)] L b where

&*: Ext} (D, Hom (C,C') ® C") — Ext}, (D, Hom (C,C’' ® C"))
is induced by &.

We now pass to the discussion of connecting homomorphisms. Since
there are four products and each of them involves four variables, there is a
total of sixteen commutativity rules with connecting homomorphisms.
We shall only state two of these (concerning the variables C, C’ in the

T -product), the others being quite similar.
PRrOPOSITION 2.5. Let

@) 0+>A4,—-A—>A4,—-0
be an exact sequence such that the sequence
2 0>4;, A4 >AQA >4, A —0
is exact. Then the diagram
T
Tor? (C,4,) ® Tor! (C',A") —— Tor* (C ® C’,4, @ A’)
6®i A
T {
Tor? (C,4;) ® Tor" (C',4") —— Tor* (C ® C',4, ® 4’)
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is commutative. Here 0 is the connecting homomorphism relative to (1),
A is the connecting homomorphism relative to (2) and i is the appropriate
identity map.

Proor. Let 0— X; — X — X, — 0 be a projective resolution of
0— A4;,—~>A—> A,— 0 and let X’ be a projective resolution of 4. In
view of the definition of T, the required relation follows from the following
commutativity relations

H,(C®) Xy) @ H(C' ®p X')—— H, 1(C ®, X;) @ H(C' ®p X')

H, ((C @5 X)) Q(C" Qr X)) — H, 0 1((C Qp X)) @ (C7 ®r X))
@, @y

Hy ((COC)®q (X, @ X)) — H,y\y i(CRC) Rp (X1 ® X))

Tor2, (COC 4, ®4)  ——Tord,, 1 (CQC)d; ®4)

The first of these relations follows from 1v,7.1 (restated for left exact
functors), the second one follows from the naturality of the map @,, the
third one follows from v,4.3.

ProrosiTION 2.5, Let

1) 0—>A;—> A — A,—0
be an exact sequence such that the sequence
2" 0>4AQA;>AQA —>AR A;—0
is exact. Then the diagram
Tor? (C,4) ® TorT (C’,45) —— Tor* (C ® C', A ® Ag)
i A
Tor? (C,4) @ Tor™ (C’,4]) — Tor (C ® C’, 4 ® A7)

is commutative.

It should be noted that the definition of the map i ® 6 includes a sign,
since 6 has degree +1. Therefore, for a € Tor, (C,4), b € Tor} (C’,4"),
we have A(a T b) = (—1)%a T 0b.

3. ISOMORPHISMS

THeoreM 3.1, If K is semi-simple then the maps T and 1 are iso-
morphisms. If further A and I are left Noetherian, A is finitely A-generated
and A’ is finitely I'-generated then \/ and A\ also are isomorphisms.
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Proor. First we observe that since K is semi-simple, condition (i)
and (ii) of § 1 are satisfied and therefore the maps (2) and (2) of § 1 are
isomorphisms. Further the functors ® x and Homy are exact and there-
fore, by 1v,7.2, the maps « and &’ employed in § 1 are isomorphisms.

Next we consider the maps

P10 (CRLA) ®(C'QrA) > (CRC)R(4®4)

@y Homg, (4 ® A’, Hom (C,C")) - Hom (C ®, 4, Homp (4',C"))
@3: Hom, (4,C) ® Homp (4',C’)—» Hompa (4 ® A, C ® C’)

@y Hom (C,C') ®q (4 ® A') — Hom (Hom, (4,C), C’' Qr 4')

as defined in § 1. It is easy to see that ¢, and ¢, are isomorphisms. This
implies that the maps ®@; and @, obtained by replacing the modules 4 and
A’ by their projective resolutions X and X’ also are isomorphisms. This
proves that T and | are isomorphisms.

As for the maps @; and ¢,, they are isomorphisms if 4 = A and
A’ =T. Therefore, by direct sum properties, it follows that ¢; and ¢,
are isomorphisms if 4 is projective and finitely A-generated and A’ is
projective and finitely I'-generated. Now, if A and I' are left Noetherian
and A4 and A’ are finitely generated then, by v,1.3, the resolutions X and X~
may be chosen so that each module X, is projective and finitely A-generated
while each module X, is projective and finitely I-generated. Thus in this
case the maps ®; and ®, also are isomorphisms. This concludes the
proof.

THEOREM 3.2. If the algebras A and I' are K-projective, A is a left
A-module and A’ is a left T-module such that TorE (4,4") = 0 for n > 0,
then

dimy gr (4 ® 4") < dimy 4 + dimp 4.

If, further, K is a field, A and I are left Noetherian, A is finitely A-generated
and A’ is finitely I'-generated, then the above inequality is an equality.

Proor. Let dim, 4 < m, dimp A" < n. There exist then projective
resolutions X of 4 and X’ of A" such that X, = 0 for p > m and X, = 0
for g >n. Then, by 1.1, X ® X’ is a projective A ® I'-resolution of
A®A'. Since X ® X’ is zero in degrees > n + m, it follows that
dimygr (4 @ A)YX m+ n.

Assume now that the second set of hypotheses is satisfied. Suppose
dim, A > m, dimp A’ > n. Then there exist modules C and C’ such
that Ext?% (4,C) # 0 and Ext} (4',C’) # 0. Since K is a field, we have
Ext} (4,C) @ Ext} (4',C") £ 0. Now, by 3.1, V is an isomorphism so
that Ext} 4% (4 ® A',C @ C')0. This implies dimy (4 @ 4")=m+n.
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We next consider the products | and A in the case I'= K= 4".
Then Q= A, Extp(4’,C’)= Hom (4',C’)= C’, Tor" (C’',4")= C’.
The products thus become

6)) 1.1 Ext, (4, Hom (C,C’)) - Hom (Tor” (C,4),C")
2) A: Tor® (Hom (C,C’),4) - Hom (Ext, (4,0),C")

defined in the situations (,4,Cy,xC’), (44,,C,xC’) respectively. If we
inspect the definition of (1) and (2) using a A-projective resolution of 4
(and using K as a K-projective resolution of K) we find that (2) is defined
without the condition that A be K-projective. Further from this direct
definition it becomes clear that (1) is a special case of the homomorphism
p of v1,5 while (2) is a special case of ¢ of vi,5. Consequently vi,5.1 and
vL,5.3 imply

ProrosiTioN 3.3, If C’ is K-injective then (1) is an isomorphism. If
further A is left Noetherian and A is finitely A-generated then (2) is also an
isomorphism.

4. INTERNAL PRODUCTS

Let A be a commutative ring. If we regard A as a A-algebra and
observe that A ®, A = A, the products T and | yield the following
internal products

m: Tor? (C,4) ®, Tor® (C’,4")— Tor® (C ®, C', A ®, A")
w: Ext, (4 ® A’,Hom, (C,C"))— Hom, (Tor? (C,4), Ext, (4',C"))
defined for any A-modules 4, C, 4’, C’. Both products are A-homo-

morphisms.
We recall that A operates on C ®, C’ and Hom, (C,C’) as follows
Mc®R)=ARc"'=c R A, (Af)e = A(fe) = f(Zo).

These internal products being special instances of the products of § 1,
all the formal properties stated in § 2 remain valid.

There is another kind of internal products that can be obtained for a
K-algebra A (A no longer assumed commutative) provided we are given a
ring homomorphism D: A— A ® A (tensor product over K) which we
shall call a diagonal map. The map D induces homomorphisms
Tor2 —Tor2®A and Ext} o , — Ext%. Composing these homomorphisms
with the \/- and A-products we obtain the following two products
(called the cup-product and the cap-product):

w: Ext, (4,0) ® Ext, (4',C") > Ext, (A ® 4,CQ C'),
A : Tor® (Hom (C,C’), A ® A’)— Hom (Ext, (4,C), Tor® (C’,4")).
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Both products are defined only under the condition that A is K-projective
and TorX (4,4") = 0 for n > 0. The U -product is defined in the situa-
tion (44,5 C,5A4’,4C’) while the N -product is defined for (4,5, C,54",Cy).
The operators of Aon 4 ® A, C ® C’ and Hom (C,C’) are obtained
by composing the operators of A ® A with the diagonal map D.

The rules for connecting homomorphisms are the same as for the V-
and A-products. For the remaining formal rules, conditions must be
imposed on the diagonal map D: A— A ® A. Specifically, we shall
say that D is commutative, if the diagram

A®A
/
X

A®A

where 7(A ® ') = A’ ® A, is commutative. If D is commutative then we
have the commutation rule

0 aUb=(—1)"bUa

for a € Ext% (4,C), b € Ext} (4',C").
The diagonal map D will be called associative if the diagram

A

AA—2 . A@A)®A
yd
A .
PN
N QA —2 A @A ®A)

where u(A @A) R 1")=1Q (A’ ® 1"), is commutative. Under this
condition we obtain the associative rules (@ U b)) Uc=a U (b U c¢)asin
22a,andaN (b U c)=(aNb) N casin 2.3a.

The precise statements and proofs of these formal rules is left to the
reader.

A U -pairing is a A-homomorphism
C®C —B (aB,AC:aC")
Using this homomorphism, the U -product yields
U : Ext, (4,C)  Ext, (4',C")— Ext, (4 @ 4',B).
A O -pairing is a A-homomorphism
B — Hom (C,C") (BasaC,Ch)
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Using this homomorphism, the M -product yields
N : Tor? (B, A ® A’) — Hom (Ext, (4,C), Tor* (C’,4")).

5. COMPUTATION OF PRODUCTS

We shall discuss here the question of computation of the products
using specific projective resolutions of 4, 4"and 4 ® 4’. The procedures
derived in this section will be used later to obtain *“product formulae” in
various specific situations.

Let X be a A-projective resolution of 4, X’ a I'-projective resolution
of A" and Y an Q-projective resolution of 4 ® 4’.

We begin with the products T and 1. The definitions of T and |
show that these maps admit factorizations

H(C®, X)® H(C'®p X' 2~H(C ® C)®q (X ®X"))
—H(CRC'®,Y)
H(Hom,, (Y,D)) — H(Hom, (X ® X’,D))
=22, Hom (H(C ®, X), H(Homy (X',C))

where D = Hom (C,C’). The maps ®,a and o'®, are “explicit.”” The
remaining two maps were obtained using the fact that X ® X’ is an
Q-projective left complex over 4 @ A’. Thus to render the remaining
two maps explicit we need an (2-map

) [fXQX —>Y

over the identity map of 4 ® 4’.

The situation concerning the products V and A is similar. Again
looking at the definitions of these products we find that they admit
factorizations

H(Hom,(X,C)) ® H(Homp(X’,C")—2~H(Hom (X ® X',C ® C*))

— H(Hom,, (¥,C ® C"))
H(D®qy Y)—H(D ®,(X ® X))

= Hom(H(Hom, (X,C)), H(C' ®p X'))

where D = Hom (C,C’). Therefore the products above obtain explicit
definition if we have an Q-map

) g Y-XX
over the identity map of 4 ® 4.
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In order to give general procedures for finding the maps f and g we
must enter into a more detailed discussion of the resolutions X, X’ and Y.

In practice, the resolution X of A4 will be not only A-projective but
A-free. This implies that each X, may be written in the form A ® X,
where X, is a K-module. Actually all the resolutions encountered so far
and all those encountered later, are directly given in the form X = A ® X
where X is a graded K-module. Clearly X may be regarded as a K-
submodule of X, but not as a subcomplex. Under these circumstances
we say that X is given in split form. Similar remarks apply to X’ and Y.
It should further be noted that if X= A Q® X and X'=T ® X’ are
given in split form then X @ X' = Q ® X ® X’ also has the split form.

Another notion that we need is that of a contracting homotopy. A
contracting homotopy {s,,0} for a left complex X over 4 is a family of
K-homomorphisms

o: A— X,, Spt X, = Xois
such that
dpy18,X + Sp_1d,x = x — oex for x € X,
EOX = X for x e A,

where ¢: X, — A is the augmentation map. Of course the existence of
a contracting homotopy implies that X is an acyclic left complex over A4.
Conversely assume that X is an acyclic left complex over 4 and that 4 and
X are K-projective. Then the sequence

3) > X, > > Xy>A—>0

is exact and may be regarded as a K-projective resolution of the zero
module. It follows from v,1.2 that the identity map of (3) is homotopic
with the zero map. This yields a contracting homotopy for X.

ProPOSITION 5.1.  If A and A are K-projective then every A-projective
resolution of A has a contracting homotopy.

Indeed, let X be a A-projective resolution of 4. Since A is K-projec-
tive, it follows from 11,6.2 that X is K-projective. Thus the existence of a
contracting homotopy for X follows from what was said above.

We further note that if {s,,0} is a contracting homotopy for X while
{sn,0'} is a contracting homotopy for X’ then a contracting homotopy
{t,»7} for X ® X’ may be obtained by setting

T=0Q0d,
t=s5sQi +(ce) s’

where i’ is the identity map of X”.
The usefulness of the above notions is shown by the following
proposition.
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PROPOSITION 5.2. Let C be a left Q-module. Let Z= Q ® Z be a
left complex over C given in split form and let Z' be a left complex over C
with a contracting homotopy {t,,v}. Then the inductive formulae

f(a) ®Z)= WTEZ ZGZO
flo ® 2) = wt,_fdz z€Zy qg>0
yield a map
fiZ->27Z

over the identity map of C. This map is uniquely characterized by the
condition

~

dtfz =10 zeZ.
Proor. Clearly f is an Q-homomorphism. For z € Z, we have
gf(w ® z) = we'rez = wez = g(w  z)
so that ¢/f= e. For z € Z;, we have
df (v ® z) = wdtfdz = wfdz — wre'fdz
= fd(o ® z) — wredz = fd(w Q z).

For z € Z,, ¢ > 1 we have inductively
df (0 ® z) = wdifdz = wfdz — wtdfdz = fd(w Q z) — wifddz = fd(o @ z).
This shows that fis a map as required.

For any map f: Z— Z’ over the identity map we have

fz=r1ez 4 difz zeZ,
fz = tdfz + difz = tfdz + difz z€Z,9>0.

Therefore f satisfies the inductive definition if and only if dtfz= 0 for
zeZ.

We now return to the question of finding maps (1) and (2) above. To
find f: X ® X'— Y we assume that X and X’ are given in split form
while in ¥ we are given a contracting homotopy. Then X ® X"also is
given in split form and 5.2 may be used to define f.

Tofind g: ¥Y— X ® X’ we assume that Y is given in split form while
in X and X’ we are given contracting homotopies. Then as shown above
we may construct a contracting homotopy in X ® X’ and then use 5.2 to
define g.

Next we assume that A is commutative and consider the internal
products m and w. The computation requires a A-map

) h: XQu X' =Y
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over the identity map of 4 ®, A’, where X, X’ and Y are A-projective
resolutions of 4, 4" and 4 ®, A’. We shall assume that X and X’ are
given in split form X = A ® X, X’= A ® X, while in Y a contracting
homotopy is given. Then X @, X' = A ® X ® X' also is given in split
form so that 5.2 may be applied to find 4.

Finally we consider the U- and N -products corresponding to a
diagonal map D: A— A ® A. The computation requires a map

@ i Y=>X®X

where X, X’ and Y are A-projective resolutions of 4, 4"and 4 ® 4’, and
where A operates on 4 ® A’ and X ® X’ using the diagonal map D.
Again if Yis given in split form, while in X'and X’ we are given contracting
homotopies, then a contracting homotopy in X ® X" also is given and j
may be found using 5.2.

6. PRODUCTS IN THE HOCHSCHILD THEORY

Let A and T be K-algebras and A ®y I' their tensor product. We
have

ARTY=AQDN AR~ AQTQA*@T* ~ A @ I

where all tensor products are over K. Henceforth we shall identify
(A ® T')* with A* @ T'. Having made this identification we apply the
products of § 1 replacing the symbol (A,I',4,4",C,C") by (A?,I'*,A,I',4,4")
and replacing Q by (A ® I')®. We obtain products

T: H(AA)  H(TLA) > H, (AQT,4QA4),
1: H**(A ® T, Hom (4,4")) - Hom (H,(A,A), HY(T,4"),
Vi HY(A4) @ H(T,A4')—> H™(A @ T,4 ® A'),
At H,, (A ® T, Hom (4,4")) — Hom (H?(A,A4), H(T,4")),

where ® and Hom stand for ® ;- and Homy, 4 is a two-sided A-module,
A’ is a two-sided I'-module and 4 ® A’ and Hom (4,4") are converted
into two-sided A ® I' modules as follows

(h @ y)@ ® a4 ® yy) = haky ® y1a'ys,
(4 ® yDf(Ae @ y)la = y1[f(2:a2)]ys.

The products themselves are K-homomorphisms. The products T and
| are defined without any restrictions. For the products \V and A to
be defined we must assume that conditions (i) and (ii) of § 1 are satisfied.
These read: (i) A® and I' are K-projective; (i) TorZ (A,I) = 0 for n > 0.
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Clearly the assumption that A and I' are K-projective, suffices for both
(i) and (ii). Henceforth we shall always assume that A and I' are
K-projective, whenever the products V or A are involved.

The formal properties established in § 2 all apply here and will not be
restated. The same holds for the results of § 3. We shall only observe
that proposition 1x,7.4 is an easy corollary of 3.2 and actually the proof
of 1x,7.4 used implicitly the \/-product and repeated the arguments of
3.1 and 3.2

We now pass to internal products. Assume that A is a commutative
K-algebra. Then the same holds for A° and we have A ®,s A= A.
The products m and w of § 4 are defined

m: Hy(AA) Qpe H(AA)—~> H, (A A @p0 A')
w: H"(A, Homy. (4,4")) - Homy. (H,(A,4),HY(A,A)).

Here both 4 and A’ are two-sided A-modules and A operates two-sidedly
on A @x. A" and Hom,. (4,4") as follows

Ma®a)A =raQal,
MA)a = A f(al)].

Both products m and w are A®-homomorphisms.

To discuss the cup- and cap-products we consider a K-projective
K-algebra A together with a K-algebra homomorphism D: A — A @x A
called the diagonal map. Clearly D induces a K-algebra homomorphism
D?: A*— (A ®x A)*. We thus obtain the products

U: HP(AA) @ H(A,A')—> HP(AA @ A')
N : H,, (A, Hom (4,4')) > Hom (H?(A,d),H(A,A4"))

where 4 and 4’ are two-sided A-modules. 4 ® 4’ and Hom (4,4") are
first regarded as two-sided A ® A-modules and then converted into two-
sided A-modules using D. As in the case of V and A, the symbols ®
and Hom stand for ® x and Homyg, the products U and N themselves
are K-homomorphisms.

We now come to the question of the computation of the products
using complexes. We begin by the consideration of the normalized
standard complexes N(A), N(I') and N(A ® I'). We assume that A, T,
Coker (K—A), Coker (K—T') are K-projective. Then Coker (K—A ® I')
also is K-projective, and therefore the normalized standard complexes
above are appropriate projective resolutions.
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To compute the T and _| products we need a map
i NAO)QNI)—>NARD)

over the identity map of A @ I Since the standard complexes are
always given in split form, and since their definition is always accompanied
by a contracting homotopy, the procedure given in § 5 may be applied.
We shall give a closed formula for a map f and then verify that it satisfies
the inductive definition given in 5.2. Consider elements

a—_—[ll""’z'p]’ bZ[yl""’yq]

of N (A) and N(T'). If p=0thena=[4,,...,4,]is the unit element
of Ny(A) = A° and similarly if g = 0. We define

) fl@®b)= 2 +[G, ..., Ll

where ;, ..., {,,, ranges over all permutations of the sequence
A®1L...,4, L1 ®yy,...,1 @y, forwhich 4, ®1,...,4, ® l remain
inorderand1 ® y;,...,1 ® y,remain in order. The sign is + for even
permutations and — for odd ones. The mapping f is extended to
N, (A) @ N(T') by (A ® I')*-linearity (see Eilenberg-MacLane, Ann. of
Math., 58, (1953)). To convert this into an inductive definition, we recall
that [{y, ..., g = S(GilGs, ..., {py]) where s is the contracting
homotopy of the complex N(A @ I'). Now {;iseither}; @ lorl @
and considering these two cases separately we obtain for p > 0,4 > 0

@  fl@a®b)=s{ Q@ Dfla ®b)+ (—1)*(1 ® ypfla ® by}
where @; = [4,,...,4,] and b; = [y,,...,y,]. For p=0 we have
fARD=[1Qy,...,1 Q7]

while for ¢ = 0 we have
f@eD=4®1,...,1,®1]

To prove that the above definition of f checks with the inductive definition
of 5.2, we must show that f(a ® b) = sfd(a ® b). We recall that in the
complex N(A ® I') the operator s is zero on all elements of form
[w;, . . ., w,]ew, which do not have an operator in front. Since f intro-
duces no operators, d(@ ® b) may be replaced by 4,a; ® b +(—1)%a @ y1b;
assuming that p > 0,4 > 0. Thus sfd(a ® b) gives precisely formula (2)
above. The cases p= 0 or ¢ = 0 are similarly verified by an easier
argument.
We now pass to the products V and A. Here we need a map

g: N(A ® I')—> N(A) @ N(T)
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over the identity map of A @ I Such a map is given by the formula
(3) g[ll®71""3ln®7n]

= 2 [ 0000 4, @ 17 ¥ulVprrs - - -5Vl
0<p=n
The verification that this formula is precisely the one given by the inductive
procedure of 5.2 using the standard splitting and contracting homotopies,
is analogous to the one just discussed and is left to the reader.
If A is commutative, then to compute the products m and w we need a
map
h: N(A) ®@ps N(A)— N(A).

Such a map is given for

a=[}'1a""j'p]’ b=[}';,"‘al;]
by the formula
ha®@xb)= 2+ (-5 Lpid)

where {, ..., {,,, ranges over all permutations of the sequence
Asoosdp A, ..., A forwhich 4y, ..., A, remain in orderand A;,. .., 4,
remainin order. The sign is -- for even permutations and — for odd ones.

For the U and N products depending on a diagonal map, we have no
explicit formulae except when the diagonal map D is explicitly given.

So far we have used the normalized standard complexes. For the
unnormalized standard complexes, the inductive procedures of §5 can
equally well be applied to obtain maps f, g, o. These will be considerably
more complicated. It turns out, however, that the same formulae used to
define f, g, h for the normalized complexes preserve their meaning and
commute with the differentiation even if the complexes are taken un-
normalized. They no longer are the maps given by the inductive pro-
cedure of 5.2. We have no rational explanation of this phenomenon.

7. PRODUCTS FOR SUPPLEMENTED ALGEBRAS

Let A and I be supplemented K-algebras with augmentations &, : A=K,
ep: '>K. The tensor product A @g I' is supplemented by setting

&4 ® y) = (ead)(ery)-
In the products of § 1 we replace 4 and A’ by K, thus obtaining products
T: Tor) (4,K) ® Tory (4',K)— Tor2®F (4 ® A’,K)
L : Ext¥t4 (K, Hom (4,C")) - Hom (Tor) (4,K), Ext] (K,C"))
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for (A5,AT,rC’). If A and T are K-projective then so is A ® I' and we
may pass to homology notation

T: H(AA) @ H(T,A)—> H,, (A @ T,4 ® 4')
1: H**(A ® T, Hom (4,C’)) — Hom (H,(A,4),HYT,C")).

For the products V and /A we must assume that A and I" are K-projective.
We obtain

V: H?(A,C) ® H(T',C)— H*(A @ I,C ® C’)
A: Hy (A ® T, Hom (C,4")) - Hom (H*(A,C),H/T,4’))
for (,C,d}r,-C").

If A is commutative we have the internal products m and w which, if
A is K-projective, are A-homomorphisms

m: Hy(AA) @) H(AA)—~ H, (AA ®, A)
w: H™(A, Hom, (4,4")) = Hom, (H,(A,4),HY(A,A")).

Finally we come to the products U and N given by a diagonal map
D: A— A ® A. Here we postulate that D is compatible with the
augmentation . This is expressed by requiring that the diagrams

ARA A®A

> 2
A\ E®A A\ A®s
"Ske A "M ek

be commutative, where iA =1 ® 1 and i,A= 1 ® 1. If we identify A
with K® A and A ® K and regard 7, and i, as identity maps, the
conditions become

(¢ ® A)D = identity = (A ® &)D.
The conditions imposed on D imply for each (left or right) A-module 4,
that the usual identifications of 4 with K ® 4 and with 4 ® K are
compatible with the A-operators on the modules K® 4 and 4 ® K

induced by D. In particular we may identify K with K @ K. This leads
to products

U: HA,C) ® HY(A,C')— H(A,C ® C')
U: H,,(A, Hom (C,4")) — Hom (H*(A,C),H/(A,A4’)).
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The formulae for these products in terms of the standard complexes
differ only in that the complexes N(A) must be replaced by N(A,e). The
formulae for the maps

S+ N(Asep) @ N(Ter) > N(A ® T',e)
h: N(A,e) @4 N(A,e) > N(A¢) A commutative
are unchanged. The formula for

g: N(A ®T',e) > N(Aep) ® N(T,er)
reads
gL ®y1e s 4, V) 0:;2<[}‘1v s Aplea(Rprr  A) @ V1 VolVprrs - - -5Vl
sp=n
The same formulae apply to the unnormalized standard complexes.

We now pass to monoids. Given monoids IT and II’ with augmenta-
tions e: Il - K, &': II' > K we define the direct product II X I’ as
the monoid with elements (x,x"), x eIl, x" eIl’, multiplication
(x,x")(»,y") = (xy,x’y") and augmentation &(x,x") = &(x)e’(x"). It is then
easy to see that K(II X II') may be identified with K(II) ®x K(II')
under the identification (x,x")= x ® x’. Thus all the considerations
concerning the T, |, m and w products apply with A, I', AT
replaced by II, II’, IT x II’.  'We shall not duplicate the various formulae.

To introduce the U and M products we consider the diagonal map
D: K{I)— K(II x II) induced by x — (x,x). In order that this map
be compatible with the augmentation we must assume that e(x) = &(x)e(x)
i.e. that the augmentation e: II — K is idempotent. The unit augmenta-
tion and the zero augmentation clearly are idempotent. Thus assuming
an idempotent augmentation, we obtain the products

v: H!(II,C) ® H'II,C") - H**(II,C ® C’)

N: H, (I, Hom (C,4)) - Hom (H?(I1,C),H(I1,A4)),
in the situation (4, ;C,;C’). The diagonal map D is commutative and
associative in the sense of § 4, thus the commutative and associative rules
stated in § 4 apply to the products U and M defined above.

To obtain formulae for the computation of the products, we define a
map

J: N(II)— N(I) ® N(T)
over the identity map of K, as the composition of the map
N(ITI) > NI x IT) induced by D with the map g: N(II X II)
— N(IT) ® N(II) defined above. We obtain
Jxn X = 2 X160 X)) @ Xyt X (X0, s X)
0=p=n
This formula also is valid for the unnormalized standard complexes.



222 PRODUCTS [CHaP. XI

8. ASSOCIATIVITY FORMULAE

Let A be a supplemented K-algebra with augmentatione: A — K. We
shall assume that a diagonal map

D: A-AQA
and an “‘antipodism”
w: A—> A*

are given subject to the following conditions:
(i) D and w are homomorphisms of K-algebras.
(ii) D and w are compatible with ¢, i.e.

e = ¢*w, (¢ ® A)D = identity = (A ® ¢€)D.

(iii) w*w = identity, where w*: A* — A is induced by w.

(iv) D is associative, i.e. (A ® D)D = (D ® A)D.

(v) D and w commute, i.e. D¥*w = (0w ® w)D.

(vi) Themap E: A — A°®defined by E = (A ® w)D satisfies condition
(E.1) of x,6.

It follows from (iii) that ww* also is the identity and therefore w is an
isomorphism with 0™ = w*.

Consider the situation (4,,,C). We may regard 4 @ C as a right
A ® A*-module, and, using the map FE, also as a right A-module. It
follows from condition (vi) that (4 ® C)I = (A ® C)J where I is the
kernel of e: A — K while J is the kernel of p: A®— A. Since J is gene-
rated (as a left A°-module) by the elements 1 ® 1 — 1 ® A* and since
@R A®1—1QA*)=al ® c — a ® Ac it follows that (4 ® C)I is
the kernel of the natural map 4 ® C— 4 ®, C. We thus obtain

() A®,Cr(URCHAR®COI=(4® )y~ (4®C)®, K.

Next consider the situation (,4,,C). We consider Hom (4,C) as a
left A®-module with operators [(A ® y*)fla = Af(ya). Using the map E
we may regard Hom (4,C) also as a left A-module. It then follows from
(vi) that the elements of Hom (4,C) invariant under the operators of A°
(i.e. the annihilators of J) coincide with the elements of Hom (4,C)
invariant under the operators of A (i.e. the annihilators of I). Since
[A®1—1Q® A*)fla= A(fa) — f(%a), it follows that the invariant
elements of Hom (4,C) are precisely those of the subgroup Hom, (4,C).
We thus obtain

) Hom, (4,C) = [Hom (4,C)}* ~ Hom, (K, Hom (4,C)).
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PROPOSITION 8.1.  In the situation (,A,5B,,C) the isomorphism

3) Hom (4, Hom (B,C)) ~ Hom (4 ® B,C)
of 1,5.2 induces an-isomorphism
“@ Hom, (4, Hom (B,C)) ~ Hom, (4 ® B,C)

where Hom (B,C) and A ® B are regarded as left A-modules using the
maps E and D respectively.

We first regard both sides of (3) as left (A ® A* ® A*)-modules by
setting

{2 ® y* ® p*)fla}b = A{[f(ua)lyb}
for the left side of (3) and

(A ®y* ® p*)gla ® b) = Alg(ua @ yb)]
for the right side of (3). Then (3) becomes an operator isomorphism.
Then we convert both sides of (3) into left A-modules using the map
@ A> A QR A* R A*
given by ‘
p=(AQw Qw)A QDD
=AQ®ww(D® A)D.
Consequently the invariant elements of both sides of (3) correspond to
each other under the isomorphism (3). Since
p=(EQ® A*E

the operators of A on Hom (4, Hom (B,C)) may be arrived at as follows.
First regard Hom (B,C) as a left A-module using the map E, then regard
Hom (4, Hom (B,C)) as a left A-module again using the map E. Thus
by (2) the invariant elements are Hom, (4, Hom (B,C)). Now examine
the right hand side of (3). Since

9= (A ® D¥E

we may regard first 4 @ B as a left A-module using the map D and then
regard Hom (4 ® B,C) as a left A-module using the map E. Thus by (2),
the invariant elements are Hom, (4 ® B,C).

Quite analogously we prove

PROPOSITION 8.1a. In the situation (Ap,zB,,\C) the isomorphism
(32) A®B)®C~AQB®O
of 15.1 induces an isomorphism

(42) (AQ®B)R,Cr~A4Q,(BQC).
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where A @ B is regarded as a right A-module using the map E, and B ® C is
regarded as a left A-module using the map D.

As an application of 8.1 we prove

PROPOSITION 8.2.  In the situation (yA,,B,,C), if A is A-projective and
B is K-projective then A @ B is A-projective. If B is K-projective and C is
A-injective then Hom (B,C) is A-injective.

PrROOF. Assume A4 is A-projective and B is K-projective. Then
Hom, (4,D) and Hom (B,C) are exact functors of D and C. Thus
Hom, (4, Hom (B,C)) is an exact functor of C. Consequently
Hom, (4 ® B,C) is an exact functor of C, which implies that 4 @ B is
A-projective. The second half is proved similarly.

Now consider the situation
(AA’AA,’AB’AC’CII\)'

Applying 8.1 to the triples (Hom (B,C),B,C) and (C’,B,C’ ® B) (with C’
regarded as a left A-module using w) we obtain isomorphisms

Hom, (Hom (B,C), Hom (B,C)) ~ Hom, (Hom (B,C) ® B,C)
Hom, (C’ ® B,C’' ® B) ~ Hom, (C’, Hom (B,C’ ® B)).

Substituting on the left the identity maps Hom (B,C) — Hom (B,C) and
C’ ® B— C’ @ B we obtain the A-homomorphisms

&) ¢: Hom (B,C) ® B— C
(52) yp: C'— Hom (B,C’ ® B)
given by
o(f ® b) = fb, (yc)b=c" Q@b.
Now assume that A is K-projective and that
(*) TorX (4’,4)=0 for n > 0.

We then have the products
U: Ext, (4, Hom (B,C)) @ Ext, (4,B)— Ext, (4’ ® A, Hom (B,C) ® B)
N: Tor* (Hom (B,C’® B),A® A')—>Hom (Ext, (4,B), Tor* (C’'® B,4")).
Combining these with the pairings ¢ and y we obtain the modified products
(6) U: Ext, (4, Hom (B,C)) ® Ext, (4,B) - Ext, (4" ® 4,C)
(6a) : Tor*(C’,A ® A’)— Hom (Ext, (4,B), Tor* (C’ ® B,4")).
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Taking 4’= K we find 4 @ A"= 4 and (*) is automatically satisfied.
We thus obtain

@) U: HY(A, Hom (B,C)) ® Ext} (4,B) — Ext}*(4,C)

(7a) N: Tor},, (C’',A) - Hom (Ext} (4,B), H(A,C' ® B)).
Further, taking 4 = K we have

® U: H?(A, Hom (B,C)) ® H(A,B)— H?*(A,C) (1B.A0),

(8a) n: Hp+q (A»C,) — Hom (Hp(A>B)’ Hq(AaC, ® B)) (ABaCI’\)'

We recall that Hom (B,C) is regarded as a left A-module and C'® Basa
right A-module using the map E.
PRroPOSITION 8.3. For p = g = 0 the maps

U: Hom, (4', Hom (B,C)) ® Hom, (4,B) - Hom, (4’ ® 4,C)
N: C' ®,(A4 ® A")— Hom (Hom, (4,B), (C' ® B) Q4 4"))
are given by
(fU g)a’ @ a)= (fa')(ga)
[(®@®d)nf=( ®fa)Qd.

This is a direct consequence of 1.2.3, 1.2.4 and the definition of the
modified products.

In the case A = Z(II), where Il is a group with unit augmentation,
we define
Dx= (x,x)=x Q x, wx = (x~1)*.

Axioms (i)-(vi) are then satisfied. Thus all the above considerations
apply in this case. We note that the operators of II on Hom (B,C) and
C’ ® B are given by

(x )b = x[f(x1b)], (¢’ ® b)x = c'x ® x1b.
We shall see in Ch. xm that the discussion of this section applies
also to Lie algebras.

9. REDUCTION THEOREMS

We continue with the assumption that A is a K-projective supple-
mented K-algebra. We assume that D: A— A ® A and w: A— A*
satisfying the conditions (i)-(vi) of § 8 are given.

Taking A = B in the products (7), (7a) of § 8 we obtain

U: H?(A, Hom (4,C)) ® Ext4 (4,4) - Ext§*?(4,C)

A Tork,, (C',4) — Hom (Ext} (4,4),H(A.C’' ® 4))
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in the situation (,4,,C,C,). We concentrate our attention on the
element

J e Hom, (4,4) = Ext} (4,4)
which is the identity mapping of 4. We thus obtain maps
(¢)) U j: H?(A, Hom (4,C)) — Ext} (4,C)
(1a) N j: Torh (C',4)—~ H,(A,C' ® A)

which we propose to investigate.
PROPOSITION 9.1. For p =0, the maps (1) and (la) reduce to the
isomorphisms
Hom, (K, Hom (4,C)) ~ Hom, (4,C)

C'QrA~(C'R4) @K

given by 8.1 and 8.1a.

This is an immediate consequence of 1.2.3, 1.2.4 and the definition of
the modified products.

PROPOSITIONO.2.  If A is K-projective then U j and N j are isomorphisms.

PROOF. Assuming that U j and (M j are isomorphisms in degree
p (p = 0) we shall prove the same for p + 1.

Consider an exact sequence 0 -~ C— Q — N — 0 with Q A-injective.
Since A4 is K-projective, the sequence

0 — Hom (4,C)— Hom (4,Q) - Hom (4,N)— 0

is exact, and by 8.2, Hom (4,Q0) is A-injective. Using the rules for
commutation of M with connecting homomorphisms, we obtain a
commutative diagram

H?(A, Hom (4,0)) — H?(A, Hom (4,N)) — H?+1 (A, Hom (4,C) — 0
9 o Jos
ExtZ (4,0) —>Ext® (4,N) — Ext2*+1(4,C) —0

with exact rows. Since the first two vertical maps are isomorphisms the
same follows for the third vertical map.

The proof for N j is similar using an exact sequence 0—-M—>P—C'—0
with P A-projective.

Consider an exact sequence
) 0>A—~F, ;- —>F,—-F—>0
of left A-modules (g > 0). The iterated connecting homomorphism
dg: Homy (4,4) — Ext (F,A4)
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is then defined. The image dgj € Ext} (F,4) of the element j is called the
characteristic element of (S).
The products (7) and (7a) with 4 and B replaced by Fand 4 yield maps

i H?(A, Hom (4,C)) - EXt2*¢ (F,C) AC
®: Torh,, (C',F)— H,(A,C' ® A) Ca
given by
yh= (—1)"h U ), h ¢ HY(A, Hom (4,C)),
O =k N dgj, K € Tord,, (C',F).

PROPOSITION 9.3. The homomorphisms vy and & admit factorizations
H?(A, Hom (4,C)) —2 ExtZ (4,C) — ExtZ*? (F,C)
Tor, , (C',F) > TorA (C',4) > H(A,C’ ® A)

where A and A’ are the iterated connecting homomorphisms relative to the
sequence (S).
Proor. This clearly follows from the commutativity of the diagrams

Ext, (K, Hom (4,C)) ® Ext, (4,4) — Ext, (4,C)
ll@&s lA
Ext, (K, Hom (4,C)) ® Ext, (F,A) — Ext, (F,C)
Tor? (C’,F)— Hom (Ext, (F,4), Tor® (C' ® 4,K))
A Hom (g,1")
Tor® (C’,4) — Hom (Ext, (4,4), Tor* (C’ ® 4,K))
where I and I’ stand for appropriate identity maps.

THEOREM 9.4. (Reduction theorem.) If F,,...,F, ; are A-projective
and A is K-projective, then the maps y and ¢ are isomorphisms for p > 0.
For p = 0 we have the exact sequences

Hom, (F,_;,C) — Hom, (4,C) — Ext4 (F,C) - 0
0— Tor} (C",F)—> C’' @y A— C’' @, F ;.

Proor. We apply the factorizations given in 9.3 and observe that
since 4 is K-projective, the maps U j and M j are isomorphisms by 9.2.
This reduces 9.4 to a statement about the iterated connecting homo-
morphisms A and A’, which is a consequence of v,7.2.

COROLLARY 9.5. Let
&) 0>A—>F,_,—~>—>F,—>K—>0 qg>0
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be an exact sequence of left A-modules with F,_,, ..., Fy A-projective.
Then for p > 0 we have isomorphisms

H?(A, Hom (4,C)) ~ H?** (A,C) AC

H, ,(AC)Y~ H(AC' ® A) Ca

given by h—h U 6gj and h' — h' O 6gj. For p =0 we have the exact
sequences

Hom, (F,_,,C)— Hom, (4,C) - HY(A,C)—0
0+ H(AC)—>C' @ A—C' @4 F,_;.

This follows directly from 9.4 provided we show that 4 is K-projective.
This is immediately seen by decomposing (S) into short exact sequences.

In particular, if we consider the exact sequence
0->I->A—-K—0
we obtain isomorphisms (p > 0)
H?(A, Hom (I,C)) ~ H**! (A,C), AC
Hypy (AC) ~ H(AC' QD), Ca
given by appropriate products.

EXERCISES

1. Let A, T', ¥ be K-algebras with X assumed to be K-projective.
Define the products

T: Tor*®%* (C,4) ® TorE®T* (C’,4") — Tor*®T* (C’ ®5 C,4 @5 4’)
in the situation (,45,5Cy,5A47,rCy), and the product
L 1Extygre(4d @5 A’, Homg (C,C"))
— Hom (Tor*®%* (C,4), Extg g s (4,C"))

in the situation (,45,5Cp,s47:5Cr)-
Assume further that A, I, X are K-projective and that Tor. (4,4") =0
for n > 0. Define the product

Vi Exty gge (4,C) ® Extggre (4,C") — Exty gra (4 @5 4',C @5 C’)
in the situation (,45,,Cx,541,5Cr), and the product
A: Tor2®T* (Homg (C,C’),A ®5 A")
— Hom (Ext, g 5« (4,C), Tor=®T* (C’,4")

in the situation (345, Cx 5 A1, Cx).
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Show that replacing the triple (A,I',X) by (A,I'*,K) gives the products
definedin § 1. Establish the formal properties of the generalized products.

2. Let A be a K-projective K-algebra. Taking A = I' = X in Exer. 1
derive the “products of the second kind”’ for the Hochschild groups:

T: H(AA) @ H(AA) — H, (MA@, A)
L H™ %A, Hom, (4,4")) — Hom (H,(A,4),H(A,4’))
V: H(AA) @ H(AA') — H™ (A, A @, A)
A: H, (A, Hom, (4,4")) — Hom (H?(A,A4),H(A,A4"))

defined for any two-sided A-modules 4 and 4.
Find maps
[t N(A) ®4 N(A)— N(A)

g's N(A)— N(A) @4 N(A)

analogous to the maps f and g of § 6, and show that the products of the
second kind may be computed using f and g’.
3. Show that the composition

N(A) ® NT) L NA © T) -5 N(A) © NI

is the identity. Similarly for the maps f’, g’ of Exer. 2.
4. Show that in the normalized standard complex N(A) the contracting
homotopy s has the form

Sy, -+ oy M) = [Ady, - .oy AJY

and that the sequence
S_y 8§ “n
0—> N_3(A) = No(A) = - - - — N(A) = Ny (M) — - -

is exact. As aconsequence show that d,, (n = 0) maps Ker s,, isomorphic-
ally onto Im d,,.

5. Show that the map f: N(A) ® N(I') > N(A ® T') constructed in
§ 6 satisfies sf(N(A) ® N(I)) = 0. Show that this property characterizes
the map fin a unique fashion. Using this method establish commutativity
and associativity properties of the map f. Apply a similar discussion to
[+ N(Aep) ® N(T,er) - N(A ® T',¢) for supplemented algebras.

6. Show that the map g: N(A ® I') > N(A) ® N(I') constructed in
§ 6 satisfies ng(N(A ® I')) = 0 where 7 is the contracting homotopy for
N(A) ® N(T') constructed, as in § 5, using the contracting homotopies s in
N(A)and N(T'). Show that the above property of g characterizes that map
in a unique fashion. Derive an associativity property of g by this method.
Apply a similar discussion to the map N(A ® I',e) - N(A,e,) @ N(I,er)
for supplemented algebras.
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7. Let ¢: A—T be an epimorphism of commutative K-algebras.
Let X be a projective resolution of I' as a A-module, given in split form
X = A ® X with X,= K. Let further (s,,0) be a contracting homotopy
for X. Then ', I'=T @ I' =T and the complex X ®, X
= A ® X ® X is aleft complex over I also given in split form. Construct
a map

h: X Qpu X—> X

over the identity map of I' using the inductive procedure of 5.2.  Establish
the following properties of 4:
@) h(x @ y) = (—D*h(y ® x) forxeX, yeX,.
(ii) If s(X) = O then the element 1 @ A = X, is a unit element for A,
e Ml @x)=x=h(x ® 1).
(i) If (X ® X) C X then h is associative, i.e. h(x ® h(y ® z))
= h(h(x ® y) ® 2).
If all these conditions hold then A converts X into a graded algebra with
differentiation.

Apply the above to the case p: A*— A and X = N(A), where Aisa
commutative K-algebra. Conclude that N(A) is a graded algebra with
differentiation under the map 4 given in § 6.

Apply the above to the case ¢: A — K where A is a supplemented
commutative K-algebra. Conclude that N(A,e) is a graded algebra with
differentiation, under the map 4 of § 7. In particular, for a commutative
augmented monoid II — K, N(II) is a graded algebra with differentiation.

8. Let A be a K-algebra, 4 a two-sided A-module and M a K-module.
Using the homomorphisms at the end of § 3 (also those of v1,5) establish
homomorphisms

p": H™(A, Hom (4,M)) — Hom (H,(A,4),M),
o,: H,(A, Hom (4,M)) — Hom (H"(A,4),M).

Show that p™ is an isomorphism if M is K-injective, and that ¢, is an
isomorphism if M is K-injective and A° is Noetherian. In particular
p" and o, are isomorphisms if K is a field, M = K and A is finitely
K-generated.

9. Let Il be a monoid with an augmentation II —Z. Let 4 be a
right II-module and T = R/Z the group of reals reduced mod 1. Then
with the topology defined in viL6, the group D(4) = Hom (4,T) is a
compact abelian group with continuous left II-operators. Then p" of
Exer. 8 becomes

p": H™(I1,D(A)) ~ D(H,(I1,A)).
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Assign a natural topology to the group H"(1I,D(4)) using a II-projective
resolution of Z and show that the isomorphism p” is topological. Carry
out a similar discussion for

o,: H,(I1,D(C)) ~ D(H"(L,C))

where C is a left II-module and the monoid II is finite.

10. Let A = (K,d) be the algebra of dual numbers over a commutative
ring K, as defined in 1v,2. Show that there is no diagonal map
D: A— A ® A satisfying conditions (i)~(vi) of § 8 (with w = identity).



CHAPTER XII

Finite Groups

Introduction. If II is a finite group it is convenient to consider the
homology groups H,(Il,4) and the cohomology groups H"(Il,4) using
a left II-module 4 in both cases. The norm homomorphism N: 4 — 4
induces a homomorphism N*: HyIl,4)— H%II,4). Using the
method introduced in v,10, this allows us to combine the homology and
cohomology groups into a single sequence A*(Il,4) (—co < ¢ < )
called the complete derived sequence of II. The interesting fact is that
for this complete derived sequence a product theory may be established
(§ 4-6) which generalizes the U and N products. In § 8-10 we study the
relations between H(II,4) and H(m,A) where = is a subgroup of II.
The last section (§ 11) is devoted to the study of groups II for which
H%(I1,4) has a periodicity with respect to g.

The theory presented here has been developed by Tate (unpublished)
with a view to applications in class-field theory. The results of § 11 are
due to Artin and Tate (unpublished). The writing of this chapter was

made possible only through the generous help of G. P. Hochschild and
J. Tate.

1. NORMS

We shall be concerned with finite groups II. The ground ring for
the construction of the group algebra A = Z(II) will always be the ring
Z of integers; the augmentation Z(II)— Z will always be the unit
augmentation. Unless otherwise stated all [I-modules will be assumed
to be left II-modules.

In the group ring Z(II) we distinguish a particular element
N=Zx, x ell.

Rather than deal with the element N directly we shall consider the norm
homomorphism
N: A— 4

defined for each II-module 4 by

Na = Zxa, x ell.
232
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Since N(x — 1) = 0 and xN = N it follows that
I4 CKer N, Im N C 41,
Consequently N induces a homomorphism
N*: Ag—> A"
where as usual Ay = A/IA, and A™ is the set of invariant elements of A.
The image of the norm homomorphism N: 4 — A will be denoted by

N(A) and will be regarded as a covariant functor of the II-module 4.
Clearly we have a commutative diagram

N(4)
0 /N
Ag A"

where g is defined by NV and is an epimorphism, while 4 is an inclusion map.

The kernel of the homomorphism N: A4 — A4 will be denoted by 4.

If A and C are II-modules, we convert Hom (4,C) into a II-module
by setting

(xf)a = x(f(x"'a)).

We thus obtain a norm homomorphism
(¢ N: Hom (4,C) - Hom (4,C)

defined as (Nf)a = 2 xf(x"a), x e II. The image of (2) is in the sub-
group Hompy (4,C). If fi A—>C is a Il-homomorphism then
Nf=(II : 1)f, where (II : 1) is the order of the group II.

Consider homomorphisms

A
A—LB—’L’C““’D

where f and 4 are II-homomorphisms and g is only a Z-homomorphism.
Then

N(hgf) = h(Ng)/.

PROPOSITION 1.1.  For each II-module A the following properties are
equivalent:

(a) The identity map A—> A is the norm of some Z-endomorphism

p: A— A.

(b) A4 is weakly projective.

(c) A is weakly injective.

Proor. The equivalence of (a) and (b) is stated in x,8.6.

(@)= (c). Let p: A— A be such that Np= identity. For any
f € Hom (Z(II),4) define

#f = 2xp(x~(f%)), x eIl
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Then for s € IT we have

W) = Sxp(xsf () = s(uf).

If f is a constant with value a then
uf = Sxp(xla) = (Np)a = a.

Thus u is a “mean” in the sense of x,8.4a and 4 is weakly injective.

(c)=>(a). Suppose 4 is weakly injective and let x: Hom (Z(II),4)— A4
be a mean in the sense of x,8.4a. For each a € 4 define f, e Hom (Z(II),4)
by setting f,1 =a, f,x=0 forx 1. Then >xf,, is a function constant
on IT with value a. Define pa = uf,. Then

(Np)a= pr(x_la) = Zx/‘(f;lc‘la) = ;u(zxf.:n‘la) =a.
Thus Np is the identity.

ProposITION 1.2. In order that f « Homy (4,C) be the norm of an
element h ¢ Hom (A,C) it is necessary and sufficient that f admit a factoriza-
tion

v n
A—zZIH) @ C—C

where g and h are I1-homomorphisms and 11 operates on Z(I1) @ C as
Hx®c)=yxQc.

ProoF. Assume f= hg. Since Z(II) ® C is weakly projective
(x,8.1) there is a Z-endomorphism p of Z(II) ® C such that Np = identity.
Then f= hg = h(Np)g = N(hpg).

Conversely assume f= Nk for some k e¢Hom (4,C). Define
ga=>x Q k(x'a) and h(x ® ¢) = xc. Then hga = Y xk(x~'a) = (Nk)a
= fa.

PROPOSITION 1.3.  If A is weakly projective, then in the diagram (1), the
maps N*, g, h are isomorphisms, i.e.

Ker N=I.4, Im N = A7,

Proor. By 1.1 there exists a Z-endomorphism p: 4 — A such that
a= 3 xp(x~ta) for alla € 4. Suppose Na= 0. Then

= Saplrta) = Sxp(rta) — Sp(ra)
= >(x — Dp(x'a) e I.A

so that Kerg= 0 and g is an isomorphism. Suppose a € A™. Then
xla=aforall x eIl and

a= >xp(x~la) = >xp(a) = Npa.

Thus Im N = 4™ and 4 is an isomorphism.
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2. THE COMPLETE DERIVED SEQUENCE

We shall consider the homology and cohomology groups of II with
coefficients in the same left II-module 4. Thus for n > 0

H,(I1,4) = Tor' (Z,4), H*(I1,4) = Ext(Z,A4)

where on the left Z is regarded as a right II-module while on the right Z
is regarded as a left II-module.

In addition to these functors we also consider the covariant functor N
which to each module A4 assigns the image N(4) of the norm homomorphism
N: A— A.

Diagram (1) of the preceding section may thus be rewritten

W N

H,—— H°
N*

where N*, g, h are natural transformations of functors.

The three functors and the three maps in diagram (1), each give rise to
a derived sequence in the sense of v,10. We shall denote these by DH,,
DH®, DN, DN*, Dh, Dg. Between these six derived sequences we have
the following maps

)

Dg — DN — Dh

1 i
DHy,— DN* — DH°
which form a commutative diagram.

For instance the map DN — Dh is defined by the diagram
N—N

I

N H
PROPOSITION 2.1.  All the maps in diagram (2) are isomorphisms.

Proor. We consider for example the map DN — Dh, induced by the
diagram above. Since by 1.3, h: N(4) — H°(II1,A) is an isomorphism
whenever A4 is projective, it follows from v,10.3 that DN — Dh is an
isomorphism.

In view of 2.1 we shall identify the six derived sequences above into one
sequence called the complete derived sequence of II. We shall use either
the notation

s Hy, ..., H,Hp,H,H, ..., H", ...
or

A A A A A
LH™ .., HLHHY, ..., H",...
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Thus we have

A(I1,4) = H"(I1,4) = Ext}y (Z,A) n>0
A%(11,4) = H(I1,4) = Coker (H, — H®) = Coker (N — H®)

= ATNA.
A-Y(I1,4) = Hy(I1,4)=Ker (H,— H®) = Ker (H,— N) = yA/LA.
Ar(1,4)= H_,_(I1,4d) = Tor™,_, (Z,A). n<—l1

The reason for renumbering the groups and introducing the symbol
A" is to enable us to consider the graded module A(I1,4) including all the
terms of the complete derived sequence. The graded functor H is an
exact connected sequence of functors, i.e. for each exact sequence
0— A"— A— A" — 0 of II-modules we have an exact sequence

ceo > AYI1,4") — A™(11,4") — A*(1,4) > H*(11,4")

- ﬁ"+1(H,A')—> .

PROPOSITION 2.2. If A is weakly projective (= weakly injective) then
H({11,4)= 0.

Proor. Since A is weakly projective, it follows from x,8.2 that
H,(II,4)=0 for n > 0. Since A also is weakly injective, it follows
from x,8.2a that H"(I,4) = 0 for n > 0. Finally it follows from 1.3
that HY(I1,4) = 0 = Hy(II,4).

PROPOSITION 2.3. In the complete derived sequence of I, each functor
is the satellite S, of the following one and the satellite S* of the preceding one:

Am1= s,A", A= S,

This follows directly from the axiomatic description of satellites
given by m,5.1.

Given a II-homomorphism f: 4— C of II-modules we shall
denote by f the induced homomorphism ﬁ(H,A) — ﬁ(H,C).

PROPOSITION 2.4.  If f: A— C is the norm of an element of Hom (4,C)
then §=0.

Proor. It follows from 1.2 that f admits a factorization
A—->Z(II) @ C— C. Since Z(II) ® C is weakly projective (x,3.1),
we have A(I,Z(IT) ® €)= 0. Thus 7 = 0.

ProposiTioN 2.5. If Il is of order r= (I1 : 1), then rA(I1,4) = 0.

ProorF. Themap f: 4 — A given by a — rais the norm of the identity
map 4 — A. Thus f = 0 and rH(I1,4) = 0.

COROLLARY 2.6. If Tl =1 is the trivial group, then H(I1,4) = 0.
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CoroLLARY 2.7. If Il is of order r= (Il : 1) and nA = 0 for some
n relatively prime to r, then ﬁ(H,A) = 0.

It should be noted that in contrast with H*(II,4) and H,(II,4) the
functors HA(Il,4) are not functors in the variable II. We shall see
substitute concepts in § 8 when we discuss the relations between a group
IT and a subgroup .

Using the group Z with trivial II-operators as coefficient group, we
have

AI1,Z)= 0,
@ A(1,2)= Z,= Z1Z, r=(I:1),
AI1,Z)=0,

A-*(11,Z) = TI/[ILII].

The first result follows from the fact that each crossed homomorphism
II — Z is zero. The second and third follow from the fact that N: Z—Z
consists in multiplication by r. The last formula follows from x,4, (8).

It will also be useful to determine the connecting homomorphism

5) 6: H-YI1,4")— H(I1,4")

L4

corresponding to an exact sequence 0-— A’ —> A —> A" — 0.

Replacing A~ and H° by their definitions, we have
) 6: yA"[LA"— AMINA'.

This homomorphism may be explicitly described as follows. Given
a" € yA" choose a € A with ga= a”". Then ¢Na = Npa= Na" = 0 so
thatthereisanelementa’e A’ withya’= Na. Sinceyxa’= xNa= Na= ya’
it follows that a’e A'"! and determines an element of A’''/NA’. This is
da”. This description is in agreement with the description obtained from
the diagrams of v,10.

3. COMPLETE RESOLUTIONS

We shall introduce a new type of resolutions which will allow us to
compute the complete derived sequence of a finite group using a single
complex.

We need some preliminary considerations. For each Z-module C, we
denote by C° the Z-module Hom (C,Z). Clearly, if C has a finite Z-base,
then C? also has one. For any Z-module 4, the homomorphism

g: C® A— Hom (C%4)
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given by (cf. v1,5)
[o(c @ @] f= (fC)a, ceC, aed, feC°

is an isomorphism whenever C has a finite Z-base. In particular, taking
A = Z, we have an isomorphism C ~ C% if C has a finite Z-base.
PRrOPOSITION 3.1.  Given an exact sequence of Z-free modules

dy dy
0¢) X1 X, X\

there exists a ‘““contracting homotopy,” i.e. a sequence of Z-homomorphisms
Sp: X, — X, such that

) dp 18, + 8,_1d, = identity.

Proor. Let U,= Kerd,=1Imd, ;. Then U, is Z-free (cf. 1,5.3),
and we have an exact sequence

in 2,
0— U, X, U, ,—0

where i, is the inclusion map and @, is induced by d,. Since U,_, is
projective, this sequence splits: there exist homomorphisms

Pn Yn
Un X, n Un—l

which together with i, and 0, yield a representation of X, as a direct sum.
Set s, = 9,,19,; then (1) follows immediately.
COROLLARY 3.2. Given an exact sequence (X) of Z-free modules, the

corresponding sequence
0 (1]
du—l dn

(X9 ot X?L—l X7? Xr(z)+1

where X? = Hom (X,,Z) and d5 = Hom (d,,,,,Z), is exact.
Proof. Lets? = Hom (s,_;,Z). Then

showing that the complex (X?) is acyclic.

We observe that if the Z-free modules X, have a finite base, then the
modules X9 also are Z-free with a finite base, and the sequence (X°°) is
simply (X).

We now consider Z(IT)-modules, II being a finite group. If Cis a
left II-module, then C°= Hom (C, Z) is a left II-module by setting

M e =fx"o);

this definition agrees with that given in § 1, if we consider Z as a II-
module on which II operates trivially. If 4 is another left II-module,
then the homomorphism ¢ becomes a II-homomorphism. Moreover,
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if C is Z(IT)-free with a finite base, then o is an isomorphism, because
C has a finite Z-base. We shall always identify C ® 4 and Hom (C°4)
as (left) II-modules, when C is Z(II)-free with a finite base. In particular
taking 4 = Z with trivial operators, we shall identify C and C% as
IT-modules.

If C is Z(IT)-free with a finite base, then C° also has one: it suffices to
give the proof for the case C= Z(II). In fact, we have a natural
isomorphism

o) Hom (Z(I1),Z) ~ Z(II)

defined in the following way: let (e;) be the finite Z-base of C = Z(II)
consisting of all elements of I, and let (e}*) be the “‘dual base’ of C°,
defined by
0 ifis£j
gey={ 7
1 ifi=j.
There is a Z-isomorphism ¢: C—> C° such that g(e;)) = e, and it is
immediately seen that ¢ is a Z(II)-isomorphism, which proves (2).
This result together with 3.1 and 3.2 implies
PROPOSITION 3.3.  Given an exact sequence of (left) Z(I1)-modules and
Z(11)-homomorphisms

Ay dy
X ST X T Xy Xy
such that each X, is Z(I1)-free with a finite base, then the sequence
dna 2,
(X°) o Xo X, Xon

is exact and each X is Z(I1)-free with a finite base.

Consider now two (left) [I-modules C and 4. In the tensor product

C ®q 4 it is understood that C is considered as a right II-module by
setting

cx = x"1c, ceC,x ell.

It follows that, considering C ® A as a left II-module by setting
x(c ® a) = (x¢) ® (xa), ceC,aed,xell,
we have

3 (CQ®A)y=C ®q 4.
Moreover

(3a) (Hom (C,A4))" = Homy; (C,A4).
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Assuming now that C has a finite Z(IT)-base, we use the isomorphism ¢

, C @ A ~ Hom (C%A4),
or, replacing C by C°,
4 C® ® A ~ Hom (C,A).

Since, by x,8.5, C° ® 4 is weakly projective (= weakly injective), it
follows from 1.3 that

N*: (C'® A)p— (C° ® AT
is an isomorphism. By using (3), (3a), and (4) we have finally an isomor-
phism

7! C® Qq A ~ Homy (C,A)
when C and A4 are (left) II-modules, and C has a finite Z(II)-base. This
isomorphism can be made explicit by the formula

) [(fR®alc= 2 f(xc)xa, [feC’%ceC, acA.
zell
In particular, taking 4 = Z(II), we have, for each Z(II)-free module
C with a finite base, an isomorphism

i C° ~ Homy (C,Z(IT)),
defined by
(THe= 3 f(x o), feC%ceC.
zell

After these preliminaries we return to the main objective of this section.
A complete resolution X for a finite group Il is an exact sequence

dn do
(X) .. -——)Xn——>Xn_1———>. . .——)X0—4X_1—>. . -——>X_n—). ..

of finitely generated free (left) II-modules, together with an element
e € (X_p™ such that the image of d, is generated by e.

Since xe = e for each x €Il it follows that Im d|, is the sub-Z-module
generated by e. Further, since X_, is Z-free, we have ne # 0 for n € Z,
n # 0. Therefore the mapping d, admits a factorization

(6) X, Z-> X,

where ¢ is a II-epimorphism while x is a II-monomorphism given by
ul = e. We consider the exact sequences

(X1) S X Xy Xy 20

Xp) 0 Z Xy KX,
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The sequence (Xz) provides a projective resolution of Z by means of
finitely generated II-free modules; by 3.3, the “dual” of (Xg):

x% i X0 X% > X0 750

provides also a projective resolution of Z by means of finitely generated
II-free modules.

Conversely, given two resolutions (X) and (X;) of Z by finitely
generated II-free modules, we can construct a complete resolution X by
“splicing” (X1) with the sequence (X ) suitably renumbered.

Given a complete resolution X and a (left) II-module A4, consider
the complex

Homy (X,A4).

For n > 0 we leave the group Homy (X,,4) as it is. For n << 0 we
replace Homy; (X,,4) by the isomorphic group X9 ® 4, using the iso-
morphism 7. We must examine in detail the map

induced by dy: Xy— X_;. In view of the factorization (6) of d,, we
obtain a commutative diagram

X°, ®g A—— Homp (X_;,4) — Homy (X,,4)

|

Z @ A—;~ Homy (Z,4)
Thus (7) admits the factorization
X, @y A— Hy(I1,d) — HO(I1,4) — Homy (Xy,4).
Using the notation of v,10, we obtain
Homy (X,4) = (X ®p 4,N*, Homy (X ,A4)).
This applying v,10.4 we obtain
THEOREM 3.2. For any left I-module A, the group H"(I1,A) may be

computed as H"(Homy (X,A)) where X is any complete resolution of II.
If f: A— A’ is a homomorphism then f may be computed from
Homp (X,4) -~ Homy (X,4"). If 0> A"—-A—> A"—0 is an exact
sequence of left Il-modules, then the connecting homomorphisms
A(1,4") - A(I1,4") may be computed from the exact sequence

0 — Homy (X,4") - Homy (X,4) - Homp (X,4") — 0.

REMARK. In the definition of a complete resolution it would be
possible to use finitely generated projective II-modules, instead of finitely
generated free II-modules. Actually, the first category of modules is
strictly greater than the second (cf. Dock Sang Rim, Ann. of Math., 69,
1959, pp. 700-712).
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4. PRODUCTS FOR FINITE GROUPS

Given two (left) II-modules 4 and A’ we consider the tensor product
(over Z) A ® A’ with the diagonal operators x(@ ® a’) = xa @ xa’. If
aeA" and a' €A™ then x(a®a)=a®a and therefore
a®ad e(AQRA). If aeA” and a' = Nb',b’ ¢ A’ then a ® a’
=a® >xb'=Dx(aR@b)=Na®>b') so that a ®a’ e N(4 R 4').
Similarly if a € NA, a’ € A'™. There results a homomorphism

¢)) E: A"/NA @ ATINA'— (4 @ AN @ A’)
or
& HYI1,4) ® H(ILA") - HY(I1,A ® A').

THEOREM 4.1. There is a unique family of homomorphisms
gra: (7(I1,4) @ H(11,4") ~ A*H(I1,4 @ A')

defined for each pair of I1-modules A and A’ and all integers p,q such that
£09 coincides with & and £™? commutes with the connecting homomorphisms
with respect to the variables A and A’ as stated in X1,2.5 and x1,2.5’.

We shall only be concerned in this section with the existence of the
products £7¢  Uniqueness is postponed to the next section.

Let X be a complete resolution for IT with selected element e € X_;.
We consider the double complex X ® X with differentiationsd’ =d ® X
and d” = X @ d (the definition of 4" involves the usual sign). A mapping

P X>XQRX
is a family of II-homomorphisms
(Di’,q: Xﬂ+d—_> Xp ® XG
satisfying the following conditions:
@ Dpod=d' Do+ d"Qppin
Gi) if x € X, and dx = e then (d @ )Py x =e @ e.

The last condition may be rephrased as follows: if &: X,— Z is the
augmentation map obtained from the factorization of d: X, — X_;, then
(e ® )Py = .

Now given two cochains f e Homp (X,,4), g ¢ Homy (X,,4") we
define the product cochain f.g e Homp (X, ,,4 ® 4")as f.g=(f ® g)D,,,.
Then d(f.g) = (df).g + (—1)?f. (dg), so that passing to cohomology we
obtain a bilinear map A(1,4) ® A(1,4’)—~ HII,A ® A’). The
verification that this map verifies the condition of the theorem is immediate.
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We now proceed to show that there exist mappings ®: X — X ® X.
In this construction we shall utilize

1° a contracting homotopy s for X. This is given by 3.1.

2° a Z-endomorphism p: X — X (of degree zero) such that Np = I,
where I is the identity map of X. The existence of such a p is proved by
1.1 since each X, is projective.

Next we introduce

sS=s5sQI, S"=1Q® s,

P=p®I P =1I®p.

To define @y, we consider the diagram
Xo

Xy @ Xo——r Z——0

in which the row is exact. Since X, is projective, there is a map
D) =Xy~ Xy ® X, such that (¢ ® &)®y,= ¢. This implies d"d’®, yd=0.
We first define @, , with p 4 g = 0 as follows

(Dp,—an = _N(P”s,d”q)p-l,l—p) P> 0

(D——m,p = *N(Pls”d'q)l—p,p—l) P> 0
and verify by induction that

@, ,+d®, 1 ,)d=0 all p.

We now suppose that @, , is already defined for | p + ¢ | < ¢ where ¢ is
a positive integer, that it satisfies (i) for —# <p 4-¢ <<t — 1 and that

(iii) dPpiyy+dDppy)d=0 forp+q=—t.
Now for p + g = —1 define
IFD,q = d,q)p-i»l,q + d”q)p,q+1

(Dp,q = N(P,‘Fp,qs)
Then
O, d= N(p'¥, sd) = N(p'¥, (I — ds) = N(p"¥, )

= le,q = d,q)pﬂ,q + d”q)w,wl'
Further
(d,(Dz),q + d”q)p—l,aﬂ)d = d,le,a + d”lF:n—l,q+1
=d'd'®,,, + d”dlcpp,qﬂ =0,
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which verifies condition (iii) at the next stage.
Next define
(Dm,q = N(s’q)p—l,qdp) ptqg=t
Then
d/q)m,q = N — s,d,)q)p—l,qdp)

=@, ,,d— Ns'dd,, dp)
=@, 1,d+ N(s'd"D, _5,,1dp)
=@, ,,d—d'Ns®, 5,.,dp)
=0, d—d D, ...

Thus (i) holds as desired.
This concludes the existence proof.

1,4

5. THE UNIQUENESS THEOREM

The argument that will be used in proving the uniqueness of the
products reappears many times in subsequent considerations. Therefore
we shall give it an abstract formulation applicable in various situations.

Let II be a fixed finite group; letters 4,4, ..., 4,,B,C etc. will all
be used to denote left II-modules. Let U, ..., U,V each represent an
exact connected sequence of covariant functors of 4. A map

F: U Q@ -QU,~>V
is a family of homomorphisms
F: Updy) @ - Q UA) = Vit " (4, @ -+ @ 4y)

which is natural relative to II-homomorphisms of the variables 4, ..., 4,
and which commutes with connecting homomorphisms in the following
sense: If 0— A;— A4;,— A7 — 0 is an exact sequence of IT-modules
which splits over Z, then the diagram

U4) @ QUA) @  QUyA) = V(A4 @ QA @+ ® Ay)
U4) @ QUA) @ QUyA) > V(4 Q- @ A4; @+ ® 4y

is commutative.
THEOREM S5.1. (Uniqueness theorem.) Assume that the functors
Uy, ..., U,V satisfy
U,(Hom (Z(IT),4)) = 0

V(Z(I) ® 4) =0
for any I1-module A. If

FG: U, @ @ Uy—>V
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are two maps such that F and G coincide on U} ® - -+ @ U, then F= G.
Z(II) ® A and Hom (Z(I1),4) are treated as II-modules with
operators
Yx®a)=yxQa, 0H)x = f(xp).

ProOF. Since F— G also is a map U; @ -+ ® U,—~ V we may
assume that G = 0 and prove that F= 0. To simplify the notation
we shall limit our attention to the case k = 2.

Suppose that we already know that the map F??: U%(4,) ® U§4,)
— VP4, ® A,) is zero. Consider the exact sequence

(1) 0— B—Z(l) ® A; —> 4, — 0

where ¢(x ® a)=a and B= Ker¢o. The Z-homomorphism
¢t A;— Z(II) ® A, given by ¢'a=1 ® a shows that the exact
sequence splits over the ring Z. It follows that the sequence

0>BQRA,—~>ZI) ® 4,  Ay—~ A4, @ A;—>0
is exact, and we obtain the commutative diagram

U{_I(Al) ® Ui(4y) —11—”—> Vra-l(4, @ A,)
' l

ia@i lﬂ
UiB) ® U4y —F7a> V(B @ 45)

Since F?:?= 0 we have AF?~1.2= 0. However V(Z(II) ® 4; @ 45)=0
by assumption, so that A is an isomorphism. Thus F?~1?=0. In
exactly the same way arguing on the second variable, we prove that
Fre1 =0,

Next we consider the exact sequence
V) 0—> A, — Hom (Z(I1),4,) — B’ — 0

where (ya)x = xa and B’ = Cokery. Again we obtain a splitting
Z-homomorphism o’: Hom (Z(I),4,) > 4; by setting v'f=f1.
Consequently the sequence

0— 4, ® Ay~ Hom (Z(I),4,) ® 43—~ B’ @ A;—0
is exact, and we obtain a commutative diagram
UIB) © Ulldy) —— VPH(B’ @ A)
o®i A

Ut (A)) @ UYAy) g™ V7T U4, ® 42)

Frila
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Since F?:¢ = 0 we have FP*1.43 ® i)= 0. Since U;(Hom (Z(I1),4,)=0
by assumption, it follows that ¢ is an isomorphism. Thus F?*1:¢= 0.
Similarly we prove F?:%t1 = 0. This completes the proof of the uniqueness
theorem.

The uniqueness of the products asserted in 4.1 follows readily by
taking Uy = U, = V= H.

For ael ?(I1,4), be I?"(H,A') we shall denote the product
E7%a @ b) e AP(I1,A @ A’) by the symbol ab. We shall regard the
tensor product as a commutative and associative operation and thus
identify A ® 4, A @ (4" @ A") with 4’ @ 4, (4 R A) ® A".

PROPOSITION 5.2.  For a e H*(I1,A), beHYII,4") we have
ab = (—1)"ba; more precisely, the elements ab e ﬁ”"(l’[,A ® A') and
(—1)™ba € A*+(I1,4’ @ A) correspond to each other under the iso-
morphism induced by the natural isomorphism A @ A’ ~ A’ @ A.

PROPOSITION 5.3. For a e H?(I1,4), b e H(I1,4"), ¢ € H"(I1,A") we
have a(bc) = (ab)c.

To prove 5.2 it suffices to verify that £?:%a ® b) = (—1)*ba verifies
the axioms for a product. The proof of 5.3 follows from the uniqueness
theorem by taking U; = Uy = Ug= V= Hand Fla ® b ® ¢) = a(be),
Gla ® b ® c¢) = (ab)c.

In the group

AM,2)=Z,=Z/rZ r=(I:1)

we denote by 1 the element given by the coset 1 -+ rZ (i.e. the unit element
of the ring Z,).

ProposiTION 5.4. If a e HY(I1,4) then la= a= al provided we
identify the modules Z @ A, A and A Q Z.

The proof again follows from the uniqueness theorem by taking
U=V= ﬁ, Fa=a, Ga= la.

As usual, a II-homomorphism 4 ® A" — B yields products
A(1,4) ® H(1,4")— A(I1,B)

by composition with the map AI,4 ® 4)— AI1,B). In particular
if A is a ring and II operates on A4 in such a way that x(a,a,) = (xa,)(xa,),
then ﬁ(H,A) becomes a ring. The unit element 1 of 4 is invariant, and
its image in HO(IT,A) = A"/NA is a unit element for A(I1,4). If the
multiplication in A4 is commutative then the multiplication in ﬁ(H,A) is
skew-commutative.
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6. DUALITY
As in x1,8 we can use the II-homomorphism
¢: Hom (4,C) ® 4 — C (a4,00)
given by f ® a — fa, to obtain the modified product
(1) A(I1, Hom (4,C)) ® A(I1,4) > A(I1,C)

where as usual IT operates on Hom (4,C) as (xf)a = x(f(x"1a)). We
shall still use the symbol ab to denote the image of a ® b under (1).

i 3 p
ProrosiTION 6.1. Let 0—A'—A—A"—0 be an exact
Sequence such that the sequence

0 — Hom (4”,C) - Hom (4,C) — Hom (4',C) — 0
is exact. Let a e H(Il, Hom (4',C)), b € A*(I1,A"). Then
(6a) . b+ (—1)%a.6b—0

where 0 indicates the appropriate connecting homomorphisms.

PrROOF. Let X be a complete projective resolution for II. Let
g": X,— A" be a cocycle in the class b. Then there is a cochain
g: X,—~ A with jg=g" and a cocycle g’: X,.,—~ 4’ with ig' = dg.
The cocycle g’ is then in the class db. Similarly for @ we have a cocycle
f’+ X,— Hom (4',C) in the class a, and a cochain f: X, — Hom (4,C)
withi’f= f"and a cocycle f": X ., > Hom (4",C) withj'’f " = df. The
cocycle f” is in the class da. Consequently (using the notation of § 4) we
have

d(f.g)=(df).g+ (=1)f.dg
=Jjf" g+ =0T
=/"-jg+0nit.g
=f".g"+=DY.g
which implies the conclusion.
We introduce the mappings
V) Vet H?(I1, Hom (4,C)) — Hom (AYI1,4), A7+ (I1,C))

by setting
(Yp@)b=a.b.
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ProprosITION 6.2. If for a fixed Il-module C and a pair of integers
P»q, the mapping vy, , is an isomorphism for all I1-modules A, then the sam.

holds for all y, , withp’ +q' = p +¢q.
Proor. Consider the exact sequence

0>B—>ZI) @ A—->A—0
of § 5. Since this sequence Z-splits, the sequence
0 — Hom (4,C) — Hom (Z(I1) ® 4,C) - Hom (B,C) — 0

is exact. Thus by 6.1 we have the commutative diagram (with IT omitted)

H?(Hom (B,C)) —*— Hom (H*(B),H"*/(C))
1(_1)”15 lHom @ 8r+(C))

A (Hom (4,C)) Hom (H*Y(4),A7+4(C))

VYpi1,0-1

Since Z(II) ® A is weakly projective, it follows from x,8.5 that
Hom (Z(IT) ® 4,C) is weakly injective. Consequently both connecting
homomorphisms involved are isomorphisms. Sincey,, ,is anisomorphism
by assumption, it follows that y,.,, ; is an isomorphism. The proof
that v, ; 4., is an isomorphism is similar and uses the exact sequence 5,(2).

PROPOSITION 6.3. The mapping
Yoq: H (I, Hom (4,C)) — Hom (H«(IT,4), HY(I1,C))
composed with the natural epimorphism
Homy; (4,C) — HYII, Hom (4,C))
yields a homomorphism
Homy; (4,C) — Hom (H%(I1,4), HY(I1,C))
which to each f ¢ Homy (A,C) assigns the induced homomorphisms
71 Hu(1,4) - H(I1,C).

Proor. Consider the map g: Z— Hom (4,C) given by gl = f, and
let h: A=Z ® A— Hom (4,C) ® 4 be induced by g. We obtain a
commutative diagram

HY(1,Z) ® H(l,d) — H({I,Z @ A) — HYILA)
lf@i l'ﬁ . 1?

A1, Hom (4,C)) ® HY(I1,A)— H(I1, Hom (4,C) ® A)— H(ILC).
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If a e HY(IT, Hom (4,C)) is the element determined by f and 1 € H(I1,Z)
is the unit element, then g1 = a. Thus for each b ¢ H(II,4) we have

(o @b = @la.b) = P(g1.b) = Fh(1.b)= F(1.b)= fb
since, by 5.3, 16 = b.

THEOREM 6.4. (Duality theorem). Let C be a group with trivial
I-operators and which is Z-injective (i.e. C is a divisible abelian group).
Then for any 11-module A the homomorphism

@ y,._,: H*(II, Hom (4,C)) - Hom (H~*(IL4), H-(I1,C))

given by (ya)b = a . b, is an isomorphism.

We note that H-Y(II,C) = yC/IC=,C is the subgroup of those
elements ¢ € C such that rc = 0 where r = (IT : 1). Since rA(I1,4) = 0,
it follows that every homomorphism H(I1,4) - C automatically is a
homomorphism ﬁ(H,A)—>,C. Thus (4) may be rewritten as follows

@)y, H*(II, Hom (4,C)) - Hom (1-7(I1,4),C).

In view of 6.2, it suffices to show that y,_, is an isomorphism. Since
[Hom (4,C)]" = Homy; (4,C), we have

Yo,—1: Homp (4,C)/N Hom (4,C) — Hom (yA/1.4,C).

It follows from 6.3 that y,_, is obtained by restricting II-homo-
morphisms 4 — C to the subgroup y4. Consider any homomorphism
[+ yA4— C with f(I4) = 0. Since C is injective, f admits an extension
g: A— C. Since g(I4) = 0 we have g e Homp; (4,C). Thus y,_, is an
epimorphism. Next consider g e Homy (4,C) with g(y4) = 0. Since
the sequence 0 — y4 — 4 2 4 is exact and since C is Z-injective, it
follows that

Hom (4,C) — Hom (4,C) — Hom (y4,C) — 0
is exact. Thus there exists & ¢ Hom (4,C) such that the composition
A5 42 Cisg. Then
(Ng)a = Sxg(xta) = Dg(xa) = g(Na) = ha

and g ¢ N Hom (4,C). Thus y, _, is a monomorphism. This concludes
the proof of 6.4.

Taking C = T = R/Z where R is the group of reals, and using the
notation D(4) = Hom (4,T) introduced in vi1,6, we obtain
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COROLLARY 6.5. The homomorphism
®) Votmpt H?HILD(4)) — D(H*(IL.4))

is an isomorphism for all I1-modules A.
In particular, taking 4 = Z we have D(4) = T, so that we obtain the
isomorphism

(6) Voor—p: HYILT) ~ D(H-*(I1,Z)).

Actual]y the _ group D(ﬁ—”(H Z)) should be replaced by
Hom (H"”(H Z), A1, T)) and (11, T)=,T is a cyclic group of
order r = (II : 1).

THEOREM 6.6. (Integral duality theorem). The mapping

Vo—p: H?(I1,Z) - Hom (H~*(11,Z),Z,)

is an isomorphism. More exactly for every isomorphism ¢: H~*(11,Z) — Z.
= H'I1,Z) there is a unique a € H*(IL,Z) with

@b = ab, b e A-7(11,2).
Proor. Consider the exact sequence
0-Z—->R—->T—0

where R is the group of reals with trivial II-operators. Let 6 denote the
connecting homomorphism A?(I,T) — A**(I1,Z). Define the endo-
morphism p: R— R by setting pt = r~'t for t e R, r= (I : 1). Then
Np=rp=identity. Thus, by 1.1, R is weakly projective and H(H R)=0.
It follows that J is an isomorphism. Since (da)b = d(ab) fora € H*(IL,T),
b € H(I1,Z), the conclusion follows directly from 6.5.

Using 6.6 we can supplement the list of values of A4I1,Z) given in (4)
of § 2 by the following one

0] £2(11,Z) ~ Hom (I/[IL11},Z,), r=(I:1).

7. EXAMPLES

Our first example is that of a cyclic group IT of order 4 with generator
x. The ring Z(II) is then the quotient of the ring of polynomials Z[x] by
the ideal generated by the polynomial x* — 1. In addition to the element

N = >x*we also consider the element T= x — 1. For every II-module
0<i<h

we thus obtain homomorphisms
N: A— A, T: A— A.

The kernel of T is A™ while the image of T is .4. These are independent
of the choice of the generator x.
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A complete resolution X for II is obtained by setting
X, = Z{1D, dy, = N, dypin =T,

the distinguished element of X _, is the element N = 4;1. The fact that
the sequence

...QZ(H)LZ(H)LZ(H)LZ(H)_,...

is exact can be verified trivially. Also the following contracting homotopy
s may be used for the proof:

0 ifk=0
sx¥ =

l—|—x—|—'°--|-x’°—1(k_21)

in even degrees,

k

SX" =

0if0ok<h—1
in odd degrees.

1l ifk=h—1
For any II-module 4 the complex Homy; (X,4) is
vee— Jo—Ad— A — J— 4 <— <+~

with N appearing in odd and T in even dimensions. As a consequence we
have

An(I1,A) = A"/NA, A2 (I0,4) = yA/IA.
If A4 has trivial II-operators then
A(LA) = 4, AL A) = 4.

In particular
A(11,2) = Z, A*+\(11,Z) = 0.
To compute the products we must define a map ®: X — X ® X, or
rather a family of maps ®,,: X,,,— X, ® X,. These are obtained by

»

setting
¢,,1l=1®1, p even
0, 1=1Qx, p odd, g even,
o,,1= > X" X p odd, g odd.

0=m<n=h-1

In verifying that these formulae satisfy the required identities we use the
identity
xRx—1®1) > X" RQx"=N®1—1QN
osm<nsh-1

in the ring A ® A.
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To exhibit the multiplication of cohomology classes, we consider an
element of A?(IT,4) represented by a € A with a € A for p even and
a € yAforpodd. Similarly let a’ € 4’ represent an element of H(IT,4").
Then the product is an element of A*+(II,4 ® A’) represented by

a®a’, pevenorgq even,
> x™a®x"a’, pandgq odd.

0sm<nsh
This last product may be simplified if 4 and 4’ have trivial IT-operators.
Then for p and g odd we have a € ,4, @’ € ,4 and the product is represented

h(h — 1)

by the element ( a ® a’. Since the result lies in I;I”*"(H,A ®A4)

h(h — 1)

= (4 ® A’),, it follows that the integer may be reduced mod h.

We thus obtain the product (for p and ¢ odd):
a.a’=§a®a’ if A is even,

a.a=0 if A is odd.

If we wish to treat the cyclic group II within the framework of the
homology and cohomology theory of Ch. X, we must replace the complete
resolution X by its positive part X;. The homology and cohomology
groups are as follows

Hy(I1,A) = A/I.A, H,, (I1,A) = A"/NA, H,, ,I1,4)= yAJIA,
HY(ILA) = AT,  H?V(ILA) = yA/I4, H?*I,A)= AT/NA.

The products U and N may be computed using the map
®,: X; - X; ® Xy induced by the map ® above. In addition we have
the products ™ and w ; to compute these we need amap Xy Qp Xz — X7
To define such a map we denote by y, the unit element of X, = Z(II).
Now we convert X7, into a commutative graded Z(Il)-algebra with
differentiation by setting

YepVoq = (p ;— q) Yeptoq

Yept1)eq = Vo) or1 = (p :: q) Yep+oa+1

Yapt1Voarn = 0.

The description of this algebra may be simplified if we observe that
V1Y2p = Vape1- We may now represent the algebra as a tensor product

ZIH) ® E(y) ® P(yz’yb cees Yaps oo )
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where E(y,) is the exterior Z-algebra on the element y; of degree 1 and P
is generated by the elements y,,y,, . . . with degrees indicated by the sub-
scripts and with multiplication given by

YepYoq = (p —; q) Yeptog

The differentiation in the algebra is given by dx = 0 for x € I, dy; = T,
dys = Ny1, dyapie = N)1Yay
Our next example is the group II defined by two generators x and y
with relations
xt =y xXyx=y
where ¢ is a non-negative integer. Iterating the second relation we find

x'yx* = y which implies that x> = 1. Any element w e II has a unique
canonical form

w= xmy", 0 m<2t, 6=0,1.

The group II has order 4¢z. The group II may be regarded as a subgroup
of the group of quaternions of absolute value 1 by setting

ift
x— emht

y=>J
These groups are usually considered only when ¢ is a power of 2 and are
called the generalized quaternion groups.
A complete resolution X for the group II described above is defined as
follows, using abstract generators a,, b, by, ¢,, Cp, €,:
Xy, = Aa, where A= Z(II),
X4p+1 == Abp + Ab"]
Xyipra = Ac, + Ac,

X. 4p+3 = Aew
dap = Nep_]_
db,= (x — 1a,

db, = (y — 1)a,
dc,= Lb, — (y + 1)b,, L=1+x+4---+x+1
dc, = (xy + )b, + (x — 1)b,
de, = (x — e, — (xy — 1)c,.
The selected element of X_, is the element Ne_;. The verification that

dd = 0 is straightforward. The verification that the homology groups are
trivial involves some computations which will be omitted.
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The groups H(I1,4) with trivial operators of IT on 4 are as follows
H(I1,4) = Ay,

9A + 54 teven,

4 t odd,

Ay + A, teven,

A, t odd,

AL, A) = 4, A.

A1 4) = {

I?4”+2(II, A) = {

A common feature of the cyclic groups and the generalized quaternion
groups is the periodicity encountered in the complex X and the groups
HA(I1,4). A detailed study of the phenomenon of periodicity will be
carried out in § 11.

8. RELATIONS WITH SUBGROUPS

Let 7 be a subgroup of a (finite) group II.  We shall use the letters A,
A’ etc. to denote II-modules, which of course may also be regarded as
m-modules.

Since Z(II) regarded as a left Z(7)-module is free on a finite base, it
follows that every complete resolution X for II also may be regarded as a
complete resolution for .

The inclusion
Homp; (X,4) C Hom,_ (X,4)

induces a homomorphism (called restriction)
) i(m,JI): H(ILA) — H(m,A)

Next, consider two (left) [I-modules C and A. Define the homo-
morphism (called the transfer)

t: Hom_(C,4) — Hom (C,4)
by setting for '« Hom_ (C,4)
(t)e= 2 x;f(x"c)

where x;7, ..., x,m, r= (Il : m), are the left cosets of = in II. If x; is

replaced by x,y,for y € 7, thenx,yf((x,y)~*¢c) = x,3f (y"x; 1c) = x,f(x; ),
so that the definition of #fis independent of the choice of the representatives
Xy -+« 5 X,. Further, for x e Il, we have

(tf)(xe) = 2x(x1x) f((x~"x) ") = x[(¢f)e]
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since x1x;, . .., x7Ix, also is a system of representatives of left cosets of
min II. Consequently #fis indeed a II-homomorphism.

Replacing C by a complete resolution X of Il and passing to homology
we obtain the transfer homomorphisms

) 1(L,7): H(m,A)— H(LA4).

In addition to the homomorphisms (1) and (2) we also have the
isomorphisms

(3) ¢,: H(m,A)— H(xemx1,4)
defined using the homomorphism (studied in X,7)
¢,:- Hom _(C,4) - Hom,, 1 (C,4)

given by (¢, f)c = xf(x1c).
In degree zero the homomorphisms (1)-(3) yield

@, i(m,II): A"/Nyd — A"|N_A,
2, {(Il,m): A"/N,4 — A"/NyA,
3 Cy: A"IN, A —> A*™'IN,_,1A.

The map (1), is induced by the inclusion 4™ C A7; the map (2), is
induced by the map A™ — A given by a— >x,a; the map (3), is induced
by the map A" — 4% given by a —> xa.

To verify these rules, we consider a complete resolution X for II and
consider the mapping &: X —> Z given by X, — Z of the factorization

XO—LZ—> X_, of dy. This induces a homomorphism Homp (Z,4)
—>ﬁ°(H,A) which is easily seen to be the natural homomorphism
A" > A%I1,4) = A"/NA. Thus the above formal rules follow
trivially by replacing the complex X by Z.

The formal properties of the homomorphisms (1)~(3) will now be
discussed. Clearly the homomorphisms are natural relative to maps
A— A’ and commute with connecting homomorphisms relative to exact
sequences 0 > A" — 4 — 4" — 0. Further we have

C)) CuCy == Coy
®) ¢, = identity if x e 7

6) ((IL7)i(m,IDa = (II : m)a, for a € H(I1,A).
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If 7’ is a subgroup of = then we have the following rules

0 i(a )i, IT) = i(ar’,IT)
®) t(IL,m)t(m,m") = ¢(I1,7")
) ci(n' ,m) = i(xn'x 1, xmx Ve,
(10) cH(ma') = t(xmxLxm'x Ve,

All the above rules are straightforward consequences of the definitions.

To consider the rules connecting the homomorphisms (1)-(3) with the
products, we consider elements a € ﬁ(H,A), a eﬁ(H,A'), be ﬁ(ﬂ,A),
b’ € H(m,A'). Then

(11) i(mI)(a . a") = [i(#,1])a] . [i(=,ID)a’],
(12) L7 . i(m,Da’) = t(1,mb . a’
(13) t(IL7)(i(m,Da . b') = a . t(Il,7)b’,
(14) c(b.b)=ch.ch'.

We first use the rules given earlier for computing i(#,II), #(Il,7) and
¢, in degree zero, to verify that (11)-(14) hold if a, a’, b, b’ all have degree
zero. Then we use the uniqueness theorem 5.1 to complete the proof.
Taking rule (12) as an example, we introduce the functors

Uy(A) = H(m,4), Uy(4) = H(IL4), V(4) = H(L4)
and the maps

FG: Uf(4) @ Uy(Ad")—> V(AR A')
Fb ® a')= tIL,7)b . i(=,11)a’)
Gb a)=1tIl,m)b.a.
We must verify that the maps F and G properly commute with the connect-
ing homomorphisms; this is immediate, since F and G are compositions
of maps which commute with connecting homomorphisms. Next we
must show that U, U,, V satisfy the conditions of 5.1. Thus we must
show that H(m, Hom (Z(II),4)) = 0. To prove this we observe that
Z(IT) is m-projective and therefore, by x,8.1, Hom (Z(II),4) is weakly
m-injective; consequently H(r, Hom (Z(I1),4)) = 0 by 2.2. We now
can apply 5.1 to deduce that F = G.

9. DOUBLE COSETS
Let 7 and 7" be subgroups of II. 'We shall investigate the map

(1) i(m, (1L 7"): H(x',A)— H(m,A)
for a IT-module 4.
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To this end we consider double cosets 7x=” with x € II. It can easily
be seen that two such cosets are either equal or disjoint, so that we may
represent II as a disjoint union

@ M= v, nxa

of such double cosets.
PROPOSITION 9.1.  Given a decomposition (2) of I1 as a disjoint union
of double cosets we have

3 (IL: 7'y = 2(m 1w O x>
@ iEID(L7) = 3 t(mm O xgw' x7 il O xm' x7 L xm"x7 e,

PROOF. Lety, = 7 N x,7'x;! and let

= UY;¥i
be a representation of = as a disjoint union of left y; cosets. Then
mx; = U; py;mx; O x;7').
Multiplying by =’ on the right we find
mxg’ = U; ymxm’ O xp'’) = O, yxa’

and this union is still disjoint. Combining this with (2) we obtain a
representation
= Hyiixi” ’

of IT as a disjoint union of left cosets of #’. This implies (3).
Let f € Hom_.(X,,4) where X is a complete resolution of II. Then

i(Tr,H)t(H,ﬂ")f= Z cyj,-xif: Z (Z cy,-icw‘f) = z t(779yi)i(')’iaxi7r’xi)cz,-f:
I T 7 2

Passing to homology, we obtain (4).
COROLLARY 9.2. If m is an invariant subgroup of I, then for any
II-module A and any a € A (m,A),

i(m,IDt(Il,m)a = > xa, x eIl/m.

An element a € H (m,A4) will be called stable if for each x € II we have
5) i(m N xmx~Lma= i(x N xaxLxmx)c,a
or equivalently if

i(m O xnx~YLma = c,i(x"nx N m,ma.
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If 7 is an invariant subgroup, (5) reduces to a = c,a. Thus in this case
the stable elements are precisely those invariant under the operators of II/z.

PROPOSITION 9.3.  If a is in the image of i(w,II) then a is stable.

PrROOF. Let a= i(m,II)b for some b e H(II,4). Then cb = b.
Therefore

c,a = c i(mIDb = i(xmx 1, )c,b = i(xmx1,I1)b
and thus
i(m N xmxLxmx Y0 = i(m O xmx1,I)b

= i(m O xnx~L7)i(w,ID)b

= i(w N xmx~L,ma.
PRrOPOSITION9.4. If a eH (m,A) is stable then
i(m IDt(A1,m)a = (I : ma.
Proor. Applying formula (4) with =’ = = we have

i(m IDIL,m)a = t(mr,m O xx; il O xmx xmx; e, @
B

= St(m,m O xzrx; Vi(w O xmx; L m)a
B

= (7 : 7O xmx; Ha.
Thus formula (3) yields the desired result.

10. p-GROUPS AND SYLOW GROUPS

For each prime p we shall denote by ﬁ(H,A,p) the p-primary com-
ponent of H(IT,4). Clearly H(IL A) is the direct sum of ﬁ(H,A,p) for
various primes p. Since the order of each element of ﬁ(H,A) is a
divisor of (IT : 1) it follows that ﬁ(H,A,p) = 0 unless p is a divisor of
(T1 : 1), and each element of H(II,4,p) has an order which is a divisor
of p’, where p” is the p-primary component of (Il : 1). In particular,
if IT is a p-group (i.e. (Il : 1) = p”), then I-?(H,A, p)= fI(H,A).

The product of two elements a e ﬁ(H,A, p)and b e I?(H,A’,q) is zero
if p#gandisin AILA ® 4'p)if p=gq.

Taking 4 = Z we find that the ring A(I1,Z) is a direct product of the
rings ﬁ(H,Z,p) for p running through all the prime divisors of (II : 1).
The unit element of ﬁ(H,Z,p) will be denoted by 1,,.
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THEOREM 10.1. Let m be a p-Sylow subgroup of II and let A be a
II-module. Then

t(TL,m): H(m,d)— H(IL,4,p)
is an epimorphism and
i(m,IT): H(I1,4,p) — H(m,A)

is a monomorphism whose image consists of the stable elements of H(m,A).
Further we have a direct sum decomposition

H(m,4) = Im i(m,IT) + Ker #(m,I1).
If further = is an invariant subgroup of I1 then Il |m operates on H(m,4)

and
NA(m,4) = [H(m A" = Im i(m,IT) ~ A(1,4,p)

~H(m,A) = I({1/7)H(r,A) = Ker t(m,IT)
[A(m,4)]y, = Coim #(m,I) ~ H(IL,4,p).

ProoF. Let (7 :1)=p" and (Il :7)=gq. Then p* and q are
relatively prime so that there exists an integer / such that g/ = 1 mod p*.

It follows from 9.3 that the elements of Im i(s,II) are stable. Con-
versely assume that a € H(x,A) is stable. Then, by 9.2.

li(m IDt(IL,m)a = [(I1 : w)a = lga = a.
Thus a € Im i(7,IT). In view of (6) of § 8 we also have
W(IL,m)i(m, )b = I : m)b = lgb = b

for each b € A(I1,4,p), and this yields all the conclusions of the first
half of the theorem.

If 7 is an invariant subgroup of II then II/7 operates on HA(m,4) and
the stable elements of A(w,A) are those invariant under the operators of
/7. Thus Im i(w,IT) = [A(m,A)]™". Further, from 9.2, we have

i(mJD)¢(Il,m)a = Na

so that Ker (Il,m) = yH(m,A).

Since p”H(m,A) = 0 and since II/= has order relatively prime to p*
it follows from 2.7 that H(Il/m H(wmA))= 0. In particular,
yH(m,A) = I(I1/x) A(m,A) and [H(m,A)]"" = NH(r,4). This con-
cludes the proof.
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11. PERIODICITY

We shall discuss here the finite groups II for which the cohomology
groups A™(I1,4) show a periodicity with respect to n. This question is of
interest for the problem of groups operating without fixed points on spheres
(see xv1,9). The results of this section are due to Artin and Tate
(unpublished).

An element g € H(I1,Z) will be called a maximal generator if it is a
generator and has order (II : 1).

ProrosiTION 11.1.  For each g « Ae(11,Z) the following properties are
equivalent:

(a) g is a maximal generator;

(b) g has order (I1 : 1);

(c) there is an element g=* ¢ A-(11,Z) with g~'g = 1;

(d) the map a— ag is an isomorphism

Ar(I1,4) ~ A™(I1,4) for all n and A.

PrOOF. (a)=-(b) is obvious.

(b)=>(c). Assume g has order (II :1). Since the order of any
element of ﬁ'I(H,Z) is a divisor of (Il : 1), it easily follows that there
exists a map @: IA{"(H,Z)—->Z,, r=(I:1), with gg=1. By 6.6 there
is then an element g~ € A-(11,Z) with g~'g = gg = 1.

(¢c)=-(d). Consider the maps
An(I1,4) > Bra(I1, 4) > A(I1, 4)
given by aa = ag, fa= ag~!. Then afa = ag~'g = a and faa = agg™?
= (—1)%ag~g = (—1)%. Thus « and f are isomorphisms.

(d)=>(a). Consider the isomorphism A I1,2) ~ A Y(I1,Z) given
by a—ag. Since A°(11,2) is cyclic of order (IT : 1) and generated by
the element 1 it follows that A%IL,Z) also is cyclic of order (II : 1) and
generated by the element g.

The uniqueness of the element g=! with g—lg = 1 follows from the
following argument. For any a ¢ H=411,Z)

a=ag7lg = (—1)g lag.
Thus ag = 1 implies a = (—1)%~1. By the same reason g~1 = (—1)%g!
so that @ = g~1. This justifies the notation g1,
PropoSITION 11.2.  If g € HYI1,Z) is a maximal generator then so is

g e H(ILZ). If heH'(ILZ) is another maximal generator, then
gh « H*'(ILZ) also is a maximal generator.
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Proor. The first part follows from (c) above. The second one
follows from (d) since the map a— agh is a composition of two iso-
morphisms.

An integer ¢ will be called a period for the group II if A%(II,Z)
contains a maximal generator, i.e. if Av11,Z) is cyclic of order (II : 1).
It follows from 11.2 that the periods form a subgroup of Z. It can easily
be seen that the periods are even if II 5= {1}. Indeed assume that
g € AY(I1,Z) is a maximal generator withg odd. Theng= gg—lg— —glgg
= —g. Thus 2g = 0 so that (Il : 1)= 2. However we know from § 7
that the group Il = Z, has only even periods.

ProposiTION 11.3.  If I has period q then so does every subgroup m.
Further, if g € A Y(I1,Z) is a maximal generator then so is i(w,I1)g € A Y(m,Z).

Proor. We have t(II,m)i(m,II)g = (Il : m)g. Since (I : 7)g has order
precisely (7 :1)= (Il : 1)/(Il : =), it follows that i(wII)g has order
at least (= : 1). However no element of f?"(rr,Z) has order exceeding
(m :1). Thus i(mII)g has order (= : 1) and thus, by 11.1(b), it is a
maximal generator.

ProposITION 11.4. Let = be a p-Sylow subgroup of Il and let
g € A%m,Z) be a maximal generator. Let r be an integer such that

"= 1mod (=7 :1)

for all integers k prime to p. Then the element g" e H(x,Z) is stable and
t(I1,m)g" has order ( : 1).

PrOOF. Let xmx~! be a subgroup of II conjugate to =. Since the
mapping a — c,a is an isomorphism it follows that c,g € A (xnx1,Z)
is a maximal generator. Consequently, by 11.3, the elements
gy = i(m O xmx~Y,m)g and g, = i(m N xmx~,xmx 1)c,g both are maximal
generators of )24 Y7 N xmx~1,Z). There exists therefore an integer k
prime to p such that gy = kg,. This implies

gi= kg = gi.
However,
gl =i(m O xmx~L,m)g"

g5 = i(m N xmx~LxnxYc,g"

which shows that g”'is stable.
Since g” is stable it follows from 9.4 that

i(m,IDt(ILm)g" = (II : m)g".

Since g” has order (= : 1), and (II : 7) is relatively prime to (= : 1), it
follows that (IT : w)g” also has order (7 :1). Consequently #(II,7)g"
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must have as order a multiple of (7 : 1). But #(Il,7)g" € I?(H,A,p) and
every element of this last group has order at most (= : 1).  Thus #(Il,7)g"
has order (7 : 1).

THEOREM 11.6. For each finite group II the following statements are
equivalent:

(a) II has a period > 0;

(b) every abelian subgroup of 11 is cyclic;

(c) every p-subgroup of 11 is either cyclic or is a generalized quaternion
group;

(d) every Sylow subgroup of Il is either cyclic or is a generalized
quaternion group.

ProOOF. (a)=>(b). A non-cyclic abelian group contains a subgroup
of the form Z, 4+ Z, where p is a prime. In view of 11.3, it therefore
suffices to show that Z, 4 Z_ has no period. Consider homomorphisms
Z,—~Z,+ Z,—~Z, whose composition is the identity. This induces
homomorphisms

HYZ,,Z)—> HYZ, + Z,,Z) -~ HYZ,,Z)

whose composition is the identity. For each positive even integer ¢ the
group HY(Z ,,Z) is cyclic of order p. Consequently H(Z, 4 Z,,Z) has a
direct summand which is cyclic of order p. Thus HYZ, 4 Z,,Z), for
positive even integers g, is not cyclic of order p2.  Consequently Z, 4 Z,,
does not have a period.

(b)=-(c). Letw bea p-subgroup of Il. Since the center of a p-group
is non-trivial (see Zassenhaus, The Theory of Groups, New York, 1949,
p- 110), 7 contains a central cyclic subgroup =’ of order p. We claim that
=’ is the only subgroup of = of order p. Indeed if #” is another such sub-
group, then since ' N =" = {1} and since =’ is in the center of =, it
follows that = contains the direct sum =’ + =" which is a non-cyclic
abelian group, contradicting (b). Thus 7 contains only one subgroup of
order p. It is then known (Zassenhaus, ibid., p. 118) that = is either
cyclic or a generalized quaternion group.

(c) = (d) is obvious.

(d)=(a). We have seen in § 7 that a cyclic group has period 2 while
the generalized quaternion groups have period 4.

Let my,...,m, be Sylow subgroups corresponding to the primes
P1 .- Ps that occur in (IT : 1). Assume that =; has period ¢, and
maximal generator g; ¢ H%m;,Z). By 11.4 there exists an integer u which
is a common multiple of ¢, . . . , ¢, and such that the elements

t(H,""'i)g::‘/q‘ € H“(H,Z,Pz)
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have order (w; : 1). It follows that the sum of these elements is an element
of H*IL,Z) of order (Il : 1), i.e. a maximal generator. Thus II has
period wu.

EXERCISES

1. LetII be a group of order r. Show that a II-module 4, such that
the multiplication by r is an isomorphism r : 4 ~ 4, is weakly projective.

2. Show that if there exists an exact sequence 0 — 4, — -+ +—>A4,—~ 4
—00r0—A4—4y—>--— A,—0with 4,,...,4, weakly projective, then
ﬁ(l'I,A) = 0. In particular, FI(H,A) = 0 whenever 4 has a finite
projective or injective dimension. As an application show that if IT £ 1
then the projective and injective dimensions of Z as a II-module are
infinite. Thus gl.dim Z(IT) = oo.

3. Show that if 4 is finitely generated then AI1,4) is finitely generated
and hence finite.

4. Let II be the cyclic group of order » with generator x and 4 a
cyclic group of order k (written additively) with generator y. Assume that
an integer /is given such that/* — 1 = O mod k. Thendefine the operators
of Il on 4 as xy = Ily. Show that 4 is weakly projective if and only if
(h,k) = 1. Show that if /* — 1 = k then AL, 4)=0. In particular
for h= 2, k=8, = 3, we have ﬁ(H,A) = 0 without 4 being weakly
projective.

5. Given a complete resolution X for II, show that X?°, suitably
relabelled, again is a complete resolution for II. Using this result
establish the isomorphism

AY(I1,4A) ~ H_, (A Qq X)

where A is regarded as a right II-module by setting ax = x~a, x € II.
6. Show that the products

U: HY(I1,4) ® H(I1,4") > H*(ILA ® A')
NO: H,, (1,4 ® 4"~ Hom (H*(I1,4),H(I1,4’))

of Ch. x1, may be modified (for II finite) so that H® and H, be replaced by
H%and A, Show that after this modification we have

aUb=a.b
for a € A7(I1,4), b e HY(I1,4"), p > 0,¢ > 0, and
2(p+1)

aNb=(—1) 2 b.a
forae I-AI_,,(I'I,A), b e A*(11,4"), g>p=0.
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7. Given a subgroup = of II establish the isomorphism
H(m,4) ~ H(IL, Hom, (Z(I1),4))

for any II-module 4. Show that Hom, (Z(II),4) and Z(Il) @, A are
isomorphic. Show that the following diagram is commutative

A(I1,4)

i(,IT) H(11,3)

A(m,4) ~ A(IT, Hom_ (Z(I1),4))

H(IL) ALy

HA(I1, 4)
where
i: A= Homp (Z(I1),4) — Hom_ (Z(I1),A4)

is the inclusion, while
t: Hom, (Z(I1),4) - Homy (Z(I),d) = 4

is the transfer.
8. Let 7 be a subgroup of II. In the situation (Ap,;C) define

t: AQpC—AQ®_C

by setting
Ha @p )= Yax; ®, xtc

where xm, ..., x,m are distinct cosets of # in II with r= (II,m).
Examine the formal properties of ¢ and compare it with the natural
epimorphism

ji A®,C— A4 ®yC.
Replace C by a complete resolution X for IT and use Exer. 5 to show that
t leads to the homomorphism i(m,II): IAI(H,A)——>FI(77,A) while j leads
to t(Il,7): H(m,A)— H(LA).

9. Define the transfer homomorphisms

H™(w,A) — H"(I1,A), H,(I1,A) - H,(7,A)

where II is any group and = is a subgroup of II of finite index. Compare
these homomorphisms with #(Il,7) and i(=II) for finite groups.
Establish the analogue of Exer. 7.

10. Show that the map

i(mI): H*(I1L,Z)—> H¥n,Z)
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which coincides with the transfer map
t(m,Il): Hy(IL,Z) — Hy(m,Z)
(see Exer. 9) coincides with the classical transfer map
t: I/[ILI] — =/[m,n]

as defined for instance in Zassenhaus (Theory of Groups, New York, 1949,
p. 137).

11. Let P=(py, ..., p,) be a set of primes. We define ﬁ(H,A,P) as
the direct sum of ﬁ(H,A,pi), and define (I : 1), as the product of the
prprimary components of (II,1) for i=1,...,/. An element
g « HY(I1,Z,P) will be called a maximal P-generator if it generates
I;V‘I(H,Z,P) and has order (Il : 1)p. The integer g is then called a
P-period for II. Restate all the results of §11 in this more general
setting. In particular show that theorem 11.6 may be reformulated to
assert the equivalence of the following four conditions:

(a) IT has a P-period > 0;

(b) every abelian subgroup of Il whose order is a divisor of (Il : 1)p is
cyclic;

(c) every p-subgroup of I with p € P is either cyclic or a generalized
quaternion group;

(d) every p-Sylow subgroup of Il with p € P is either cyclic or is a
generalized quaternion group.

11. Let p” be the order of the p-Sylow subgroup of II. Show that
the least integer r satisfying 11.4 is (using the Euler ¢-function)

r=@p)=pp—1 if p£2
r=g(p)=2"1 if p=2, v=1 or 2
r=12¢(p") = 22 if p=2, »>2.

As a consequence, show thatif Il has a p-period, then 2¢(p") is a p-period.
If p = 2 and = is cyclic of order > 8 then II has ¢(p”) as a p-period.

If IT has a period, then 2¢(II : 1) is a period for II.

13. Show that if for some integers i and p the functors H%(II,4) and
H#*4(I1,4) are naturally equivalent (as functors of the IT-module 4),
then II has period q.

14. Let IT have order r. Show that for each ¢ there exists II-modules
C with H(I1,C) cyclic of order r. [Hint: for ¢ = 0 take C = Z, then use
sequences of the type (1) and (2) of §5.] ‘



CHAPTER XIII

Lie Algebras

Introduction. In this chapter, Lie algebras are considered from a
purely algebraical point of view, without reference to Lie groups and
differential geometry. The “Jacobi identity”” may be justified by the
properties of the “bracket’” operation [x,y] = xy — yx in an associative
algebra.

To each Lie algebra g (over a commutative ring K) there corresponds
a K-algebra g° (called the “‘enveloping algebra” of g), in such a way that
the “representations’” of g in a K-module C are in a 1-1-correspondence
with the g®-module structures of C. Since g° has a natural augmentation
€: ¢°— K, it is a supplemented K-algebra. This at once leads to the
homology and cohomology groups of g. To prove that these coincide
with the ones hitherto considered(Chevalley-Eilenberg, Trans. Am. Math.
Soc. 63 (1948), 85-124) we must assume that g is K-free and apply the
theorem of Poincaré-Witt (§ 3) which is an essential tool in the theory.

While the first two sections contain only definitions and results which
are essentially trivial, because they do not use Jacobi’s identity, this
identity is essential for the theorem of Poincaré-Witt (§ 3). Once this
theorem is established, the theory develops in a manner analogous to that
for groups.

We do not touch upon the more advanced aspects of the homology
theory of Lie algebras (Whitehead lemmas, Levi’s theorem, semi-simple
Lie algebras, etc.).

1. LIE ALGEBRAS AND THEIR ENVELOPING ALGEBRAS
We recall that a Lie algebra over a commutative ring K is a X-module g
together with a K-homomorphism x ® y — [x,y] of ¢ ® ¢ g into g such
that for x, y, z € g:

0)) [x,x]=0

2) Pely.2ll + [.[z.x]] + [z,[x,y]]= 0 (Jacobi’s identity).
Condition (1) implies the condition

1) xy1+ [yx]=0

and is equivalent with (1") if in the ring K there is an element k with 2k = 1.
266
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A (left) g-representation of g is a K-module A4 together with a K-
homomorphism x @ a — xa of ¢ ® A4 into 4 such that

x(ya) — y(xa) = [x,yla.

We now construct an associative K-algebra g° with the property that each
(left) g-representation may be regarded as a (left) g®-module and vice-versa.
We shall call g° the enveloping algebra of g.

Let T(g) be the tensor algebra of the K-module g: this is the graded
(associative) K-algebra such that Ty(g) = K and T,(g) is the n-fold tensor
product (over K) of g with itself. The product of elementsx; @ * * * ® x,
and y; @Ry is % Q@ @x, ®y; ® ***y,. It is clear that a
K-linear map ¢ ® x A — 4 admits a unique extension T(g) @ x 4 — 4
satisfying (x; ® - - - ® x,) ® a— (%, - - - (x,a) - - ). This converts 4
into a left T(g)-module. Conversely any T(g)-module 4 is obtained this
way from a unique map g ® 4 — 4. In order that this mapg ® 4 - 4
be a g-representation it is necessary and sufficient that the elements of
T(g) of the form

€) Xx®y—y®x—[xy] X,y €g

annihilate 4. Consequently, we are led to introduce the two-sided ideal
U(g) of T(g) generated by the elements (3) and define the enveloping
algebra of g as g° = T(g)/U(g). Clearly left g-representations and left
g*-modules may be identified ; we shall use the term left g-module to indicate
either of the above.

We arrived at the enveloping algebra g° by the consideration of left
representations ¢ ® 4 — A. A right representation 4 ® g — A4 with

(ax)y — (ay)x = a[x,y]

could equally well be used. Indeed, any K-homomorphism 4 ® g — A4
extends uniquely to a K-homomorphism A ® T(g) = A satisfying
a®(x ®- - ®x,)=(--(axy) --x,). This converts 4 into a right
T(g)-module. In order that 4 ® g — A be a right representation of 4 it
is necessary and sufficient that the elements of the form (3) in 7(g)
annihilate 4. We are thus led to the same enveloping algebra
g° = T(g)/U(g). Thus right g-representations and right g®-modules may
be identified; we shall use the term right g-module to indicate either of
the two.

The relation between g-representations and g®-modules can be made
more explicit by the use of the K-homomorphism

it g—>4¢g°

defined by the fact that g = T(g). We then have
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PRrOPOSITION 1.1. Let f: g @ A— A be the map which defines A as
a left g-representation. Then [ admits a unique factorization f= h(i ® A)
where h: g° ® A— A is a map defining A as a left g®-module. Similarly
for right representations and right modules.

Since T(g) is a graded ring we have a natural augmentation
e: T(g) > Ty(g) = K. Since ¢ is zero on T,(g) for n > 0 it follows that
the ideal U(g) is in the kernel of &.  Thus by passing to quotients we obtain
the augmentation
e g*—>K
which converts g° into a supplemented K-algebra. The augmentation
ideal I(g) is generated by the image of i: g — g°.

As an example, consider the case of an abelian Lie algebra g (i.e.
[x,y] = 0 for x,y e g). The enveloping algebra g° is then the quotient of
T(g) by the two-sided ideal U(g) generated by theelements x @ y — y ® x;
thus g° is the “‘symmetric algebra’ of the K-module g. If g is K-free with
K-basis {x,}, then g° may be identified with the algebra K[x,] of polynomials
in the letters x,.

A homomorphism f: g— g’ of a Lie algebra g into a Lie algebra g’
over the same ring K is a K-homomorphism satisfying f([x,y]) = [fx,fy].
Clearly finduces a map f°: g*— g'* of supplemented algebras such that

the diagram
LY
g§—4g
[ s
g9
is commutative.
Let g and g’ be two Lie algebras over the same ring K. The direct sum
g + g’ (also called “direct product”) is defined as a Lie algebra by setting

[(6,x"),(r,y)] = ([x.p),[x",y'D).

If we identify x with (x,0) and x’ with (0,x") then g and g’ become sub-
algebras of g 4 ¢', and [x,x"] = O for x € g, x" € g’. The inclusion maps
g—g-+4g,4 — g+ ¢ induce homomorphisms

g >+, g°—>(@+9g)
which in turn define a homomorphism
9 Qg > (@+4g)

ProposITION 1.2. The homomorphism ¢ is an isomorphism of
supplemented algebras.
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ProoF. The map (x,x")—>x ® 1 + 1 ® x’ of g + ¢’ into the tensor
product of algebras T(g) ® 7(g") induces a homomorphism of K-algebras

P: T(g + ¢") = T(9) ® T(g").

After composing ¢ with the natural map 7(g) ® 7(g') > ¢° ® g'° we
find that U(g + g¢')is mappedintozero. Thuswe obtaina homomorphism

v: @+g)—>9Qg"

and it is trivial to verify that yp and gy are identity maps. Thus ¢ is an
isomorphism.

The definition of a Lie subalgebra § of a Lie algebra is obvious. We
say that b is an ideal if [x,y] €} for x eg,y €h. In view of the anti-
commutativity of the bracket operation, there is no need to distinguish
between left and right ideals. If § is an ideal, then g/b is again a Lie
algebra with the bracket operation induced by that of g. Consider the
composite map

4) b—f*g-iﬁg’

where fis the inclusion, and let L denote the right ideal in g° generated by
the image of if. Then L coincides with the left ideal generated by the
image if, since in g® we have

if (x")i(x) = ix)if (x') + if (Ix",x]) x"eh,xeg

ProposITION 1.3. Let Y) be an ideal in g and ¢: g— g/by the natural
homomorphism. Then ¢°: o°— (g/b)° is an epimorphism and its kernel
is the ideal L generated by the image of the composed map (4).

Proor. The fact that ¢° is an epimorphism is obvious. Clearly the
image of if is in the kernel of ¢°. Thus ¢° induces a homomorphism
@: g°/L — (g/h)*. We choose a function u: g/h— g (not a homo-
morphism) which followed by g is the identity. It is easily seen that the
composite map

U 1
g/h—g—g¢ —g/L
is independent of the choice of u and is a K-homomorphism. There
results a K-algebra homomorphism T'(g/h) — ¢°/L which maps U(g/b) into

zero. We thus obtain a map y: (g/h)° — g°/L for which both composi-
tions gy and y@ are identity maps. Thus @ is an isomorphism.

As in the case of groups we have an antipodism

w: g~ (¢)*
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defined by the map x; ® -+ ® x, > (—1)?x¥ ® - - - @ x{* of T(g) into
T(g)*. As in the case of groups this allows us to convert a right g-module
A into a left one, by setting

xXa = —ax.

2. HOMOLOGY AND COHOMOLOGY OF LIE ALGEBRAS

For each Lie algebra g over K, the (associative) K-algebra ¢° is a
supplemented K-algebra, and therefore, following x,1, we have homology
and cohomology groups of g°. We shall write

H,(g,4) = Tor¥’ (4,K), H"(g,C) = Ext} (K,C)

for any right g-module 4 and any left g-module C. Thus the homology
and cohomology groups of g are defined as those of the supplemented
algebra g°.

If f: g— b is a homomorphism of Lie algebras, we have the induced
homomorphism f*: g°— §* which in turn induces homomorphisms

F': H,(g,4)— H,®1,4), Ay,
F,: H"(h,C)— H'(3,C), ,C.

The homology group Hy(g,4) is the K-module A Q4 K~ A/AIl
where I = I(g) is the augmentation ideal in g*. Clearly A] = Ag and
therefore

m Hy(g,4) = A/Ag.

This K-module will also be denoted by 4.

The cohomology group H%(g,C) is the group Hom. (K,C) which may
be identified with the K-module of all invariant elements of C, i.e. all
elements ¢ such that xc = O for any x e g. Denoting this module by C9,
we have

(1a) H%g,C) = C°.

The group H(g,C) has been described in x,1 as the group of all crossed
homomorphisms f: g°— C modulo the subgroup of principal crossed
homomorphisms. Composing f with the map i: g— g° we obtain a
K-homomorphism g: g — C such that

x(gy) — y(gx) = g([x.y]) X,y €g

which we call a crossed homomorphism of g into C. Clearly the crossed
homomorphisms of g and those of g° are in a 1-1-correspondence given
by the relation g = fi. The principal crossed homomorphisms g — 4
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are those of the form gx = xc for some fixed c e C. We thus obtain again
that H'(g,C) may be identified with the group of crossed homomorphisms
g — C reduced modulo principal homomorphisms.

If A has trivial g-operators (i.e. xa = O for alla € 4,x € g), then we find

A3) H(g,4) = Hom (g/[g,9],4)

where [g,g] is the image of ¢ ® g — g under the map x ® y — [x,y].

We shall also interpret the group H(g,A4) for A with trivial g-operators.
We know from x,1,(4) that Hy(g,4) ~ A Qg I/I* where I = I(g) is the
augmentation ideal. Since i maps g into / and [g,g] into /2 it defines a map
@: g/[g,g]1— I/I%. On the other hand the map 7(g) - g which is the
identity on Ty(g) = g and is zero on T,(g) for n % 1, maps U(g) into
[g9.6] thus defining a map /— g/[g,g]. Since this map is zero on I we
obtain a map y: I/I*>— g/[g,g]. Both compositions ¢y and ¢ are
identities and we obtain an isomorphism

@ I/ ~ g/[g.g]-
We thus have

if g operates trivially on A.

3. THE POINCARE-WITT THEOREM

Throughout this section it will be assumed that the Lie algebra g over
Kis K-free. A fixed K-base {x,} will be chosen and it will be assumed that
this K-base (or rather the set of indices) has been simply ordered.

We shall use the following notation: y, will stand for the image of
x, under the map i: g— g°; if /is a finite sequence of indices «,, . .., a,
we shall writey; = y, - - -y, ; wesaythat /is increasingifo; < - - - < a3
we define y; = 1 if I is empty, and we regard the empty set as increasing;
the integer p will be called the length of I.

THEOREM 3.1. The elements y;, corresponding to finite increasing
sequences I, form a K-base of the enveloping algebra g°.

COROLLARY 3.2. g° is K-free.

Since by 3.1, the elements y, are linearly independent in g° we obtain

COROLLARY 3.3. The map i: g— g° is a K-monomorphism.

ProorF of 3.1. We first show that the elements y; corresponding to
finite increasing sequences generate g°.  'We denote by F,(g°) the image of
the submodule > T«(g) of T(g) under the natural mapping T(g) — ¢°. It

t<p
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suffices to show that the elements y; corresponding to increasing sequences
I of length < p generate F,(g°). Clearly the elements y; corresponding to
all sequences / of length < p generate F,(g°). Theconclusion thus follows
by recursion from the following lemma (in which the fact that g is K-free is
not needed):

LemMA 3.4. For each sequence a, . . .,a, g and each permutation
mof (1,...,p) we have

i(a) - - - ia,) — i(an(l)) T i(aﬂ(p)) € F, 4(g°).

As usual i: g—> g° is the natural map. It clearly suffices to consider
the case when = interchanges two consecutive indices j, j + 1. In this
case the conclusion is evident from the relation

i(a,)i(a;41) — i(a;11)i(a;) = i([a;,a,44])

We now come to the more difficult part of the proof which consists in
showing that the elements y; of 3.1 are K-linearly independent. We shall
denote by P the polynomial algebra K[z,] on letters {z,} in a 1-1-cor-
respondence with the base {x,}. For each finite sequence I of indices
oy, . . . , &, We shall denote by z; the element z, - - - Z,, of P.

LemMA 3.5. There exists a left representation of g in P such that
(1) XaZ] = ZoZ1
whenever o < I (i.e. whenever o < B for all f € I).

Postponing the proof of the lemma, we can complete the proof of the
theorem. The representation of g in P induces a left g*-module structure
on P. If I'is an increasing sequence of indices of length # it follows from

(1) by recursion on n that y;.1=z;. Since the elements z; are K-
linearly independent in P, the same follows for the elements y; of g°.

PRrOOF of 3.5. In the graded algebra P, we denote as usual by P, the

K-module of homogeneous polynomials of degree p and set @, = > P,.

=P
Lemma 3.5 is an immediate consequence of the following inductive
proposition:

(4,). For each integer p there is a unique homomorphism

fra®0Q0,—~P
such that
) f(x, ® z;) = z,2; «<ILz;¢Q,
(2) f(xo: ® ZI) € Qq+1 Zy € Qq’ q <P

(3) f(xa ®f(xﬁ ® ZJ)) :f(x,s ®f(xrx ® ZJ)) +f([xwxﬁ] ® ZJ)’ ZJ € Qp-—l
C)) Sx, ®zp) — 2,21 € O 21 € Q0,9 p-
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It is immediate that (2) is a consequence of (4); however we wrote (2)
out explicitly in order to make it clear that the terms in (3) are well defined.

For p = 0, the definition f(x, ® 1) = z, is forced by (1’) and trivially
satisfies also (2)-(4).

Assume now that (4,_,) is established for some p > 0. We shall show
that the map f satisfying (4,_;) admits a unique extension (also denoted
by f) satisfying (4,). We must define f(x, ® z;) for I of length p. If
o < 1, the definition is forced by (1'). If « < I is false then 7 may be
uniquely written as 7= (8,J) where a>p<J. Then z;=zpz; = f(x; R 2)
so that the left side of (3) is f(x, ® z;). In order to be able to use (3)
as a definition we must verify that the right hand side of (3) is already
defined. To this end we use (4) to write

f(xa: ® ZJ) = ZeZg + w, we Qp—l‘
Then the right hand side of (3) becomes

ZpZaZy +f(x/3 ® w) +f([xwxﬂ] ® ZJ)-

This defines f'in all cases, and (1"), (2) and (4) are clearly satisfied. As for
(3) we only know that it holdsif« > f# < J. Because of the anti-symmetry
of [x,,x4] it follows that (3) also holds if # >« < J. Since (3) trivially
holds if « = p, it follows that (3) is verified if eithera < Jor g < J. We
shall show that this together with (1") and (4) and together with the induc-
tive assumption (4,,_,) implies (3) in all cases.

Indeed suppose that neither « < J nor # < J. Then J has positive
length and J = (y,L) where y < L, y <a, y < f. Using the abridged
notation f(x, ® z;) = x,z; we then have by the inductive assumption

xp(zy) = Xp(x,21) = x,(xpzL) + [xp,X, ]2,
= x,(zpz1) + x,w + [x5,%,]zL
where w = xpz; — z5z; € Q,, . Applying x, to both sides we have
xa(xﬁZJ) = xa(xy(ZﬂZL)) + xa(xyw) + xa([xﬂ3x-y]zL)'
Since y < (B,L), (3) may be applied to the term x,(x,(z5zz)); to the
remaining two terms on the right we may apply (3) by the inductive
assumption. Upon computation we obtain
(5) x,(xp2.0) = X (%eXzL)) + [¥0oX, )(xp2L) + [X5,%, )(XeZL)
+ [xa’[xﬂ,xy]]zL'
Our assumptions on « and § were symmetric, so that (5) holds with « and
interchanged. Subtracting from (5) this yields

(6) xa(xﬂzJ) - xﬂ(vaJ) = xy{xa(xﬂZL) - xﬁ(vaL)} + [xw[xﬂ’xy]]zL
- [xﬂ$[xa,xy]]zL'
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Applying (3) we have
x©{x,u(%g71) — X(%21)} = %, (X521
= [%Xp](x,21) + [%,[Xxg])2
= [XXplzs + [ [Xuxpllzz

Substituting this in (6), we find that the three terms involving double
brackets cancel by virtue of Jacobi’s identity, and the final result is

X (xp27) — xﬂ(xazJ) = [xa’xﬂ]zJ
as desired.

Theorem 3.1 was first proved by Poincaré (Cambridge Philosophical
Transactions 18 (1899), 220-225, §u1); a complete proof, based on the
same principles, was given later by E. Witt (Journ. fiir r.u.a. Math. (Crelle)

177 (1937), 152-166; Hilfsatz, p. 153). The proof given here is modeled
after Iwasawa.

4. SUBALGEBRAS AND IDEALS

If b is a Lie subalgebra of a Lie algebra g over X, then the inclusion map
b — g induces a K-algebra homomorphism

) ¢ g

so that g° may be regarded either as a left or as a right f*-module.
PRrOPOSITION 4.1.  If the K-modules Yy and g[ly are both K-free, then ¢
is @ monomorphism and §° regarded as a left or right be-module is h-free.
Proor. In the exact sequence 0 —f — g — g/h — 0 of K-modules,
the modules [ and g/f are K-free. Therefore the sequence splits and g also
is K-free. Furthermore, we can find a K-base of g composed of two
disjoint sets {X,}, ¢ 4» {Vs}se 5 such that {x,} is a K-base forh). We simply
order the union 4 U B of the disjoint sets 4 and B so that each « € 4
precedes each § € B. If we identify each element of g with its image in g°

under the monomorphism i: g—> g°, then it follows from 3.1 that the
elements of the form

xal"‘xa”ym"'yﬂq “1<...§.:a17€A’ ﬂlé..'éﬂqe‘B

of g° form a K-base for g°, while the elements x,, - - - x, forma K-base for
h®. This implies that (1) is a monomorphism and that the elements

Vg, " ¥, form a left i-base for g°. The proof that these elements also
form a right h°-base is similar.

We may now apply X,7.2 and x,7.3.  We obtain
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PROPOSITION 4.2.  Under the hypotheses of 4.1 we have

@ H,(h,4) ~ H,(g,4 Qye §°)

(22) H"(,C) ~ H"(g, Homy, (g°,C)),

for each right h-module A and each left h-module C.
PROPOSITION 4.3.  Under the hypotheses of 4.1 we have

(3) H,(h,4) ~ Torg (4,3° Q. K),
(3a) H"(H,C) ~ Extg (¢° ®y K,C),

for each right g-module A and each left g-module C.

The module g° ®y. K appearing in (3) and (3a) may also be written as
Hy(h,9°) which has been computed in § 2 to be g°/g°h. If b is an ideal in
g then g°f) coincides with the ideal L of 1.3. Thus if §) is an ideal in g we
have the isomorphism

¢ ®y K ~ (/D).

CoroOLLARY 4.4. If V) is an ideal in g and the hypotheses of 4.1 are
satisfied then

@ H,(5,4) ~ Tory’ (4,(g/h)°),
(42) H"(H,C) ~ Extg. ((9/h)",C),

for each right g-module A and each left g-module C. These isomorphisms
may be used to define a right g/Yy-module structure on H,(9,A) and a left
g/b-module structure on H"(H,C).

In xvi,6 we shall establish closer relations between the homology
(and cohomology) groups of g, h and g/h.

5. THE DIAGONAL MAP AND ITS APPLICATIONS
For each Lie algebra g over K, the diagonal map
D: g>g Q¢
is defined by the requirement
Dx=xQ®1+4+1Qx, X €g.

If we identify ¢° ® ¢° with (g + g)° as in 1.2, and consider the map
I: g—g-+g given by Ix = (x,x) = (x,0) + (0,x), then D= [*. This
diagonal map D is compatible with the augmentation (in the sense
explained in x1,8) and is commutative and associative (in the sense defined
in x1,4).
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The diagonal map D may be combined with the antipodism w: g°~~g**
defined in § 1, to obtain a map

E:g¢—g¢ @¢*=(@)
as the composition

LRIV £ L
It follows that the map FE satisfies

Ex=x®1—1Q x*, xeg,
and that this condition determines E uniquely.

We first verify that the map E satisfies condition (E.1) of X,6. To this
end we denote by I and J the kernels of the respective augmentation maps

g: ge_>K’ P: ge®ge*_>ge'

By 1x,3.1, J is the left ideal generated by the elements ¥ ® 1 — 1 ® u* for
u € g°. In view of the relation

WRIN—-1Rw)*=uRDNrR1—1 @v*)+(1 K v*)(u R 1—1 Q u*)

valid for u,v € g%, we find that J is the left ideal in g* ® g°* generated by
the elements

x®1—1Qx*=Ex x €g.

Since the elements x € g generate the ideal I of g° it follows that J is the
left ideal generated by the image of EI in g* ® g**. This is precisely
condition (£.1) of x,6.

We now introduce the assumption that the Lie algebra g is K-free.
Then, by 3.2, g° also is K-free. Consequently, the diagonal map D may be
used to define U - and M -products as in x1,7. Further we find that the
conditions (i}—(vi) of x1,8 are satisfied by the maps D and w. Consequently
the considerations of X1,8 and x1,9 (reduction theorems) are applicable to
the homology and cohomology groups of a K-free Lie algebra g.

Next (still under the assumption that g is K-free) we shall show that
condition (E.2) of x,6 is satisfied, i.e. that g° ® g°* regarded as a right
g®-module by means of the map E is g°-projective. Since the map ¢° @ w is
an isomorphism, it clearly suffices to show that ¢° @ g¢° regarded as a right
g®-module using the map D, is g°-free. To this end we identify g° ® ¢°
with (g + g)° and notice that D = /¢, where I: g— g + g is the map of
Lie algebras given by /x = (x,x). Since / is a monomorphism and since
Coker / is a K-module isomorphic with g which is K-free, it follows from
4.1 that (g + g)° is g°-free.



§ 6] RELATION IN STANDARD COMPLEX 277

Now that condition (E.1) and (E.2) of the “inverse process’ have been
verified, we may apply x,6.1. We obtain
THEOREM 5.1.  Let g be a Lie algebra over K which is K-free, and let A
be a two-sided g°-module. Let Ay, be the right g-module obtained from A by
setting
(a,x) - ax — xa acA,xeqg

and let yA be the left g-module obtained by

(x,a) > xa — ax aedxeqg.

We then have isomorphisms
FE: Hn(ge9A) ~ Hn(g’AE)
Fg: HYg,54) ~ H"(g°,A4).

Furthermore if A = g° and if X is a A-projective resolution of K (as a left
A-module) then A® @, X is a A°-projective resolution of A as a left
As-module.

In particular, let g be the abelian Lie algebra with the letters x;, . . . , x,,
as a K-base. Then ¢°= K[x;,...,x,]= A, and we know from vii,4
that A ® E(xy,...,x,) with a suitable differentiation operator is a
g°>-projective resolution of K. It follows that A* ® E(x,, ..., x,) witha
suitable differentiation operator is a A°-projective resolution of A.

An application of x,6.2 gives

THEOREM 5.2. If g is a Lie algebra over K which is K-free then

dim g° = dimg. K.
If further the commutative ring K is semi-simple, then
dim g° = gl.dim g°.

In view of the antipodism w, there is no need to distinguish between
l.dimg. K and r.dim,. K and between l.gl.dim g* and r.gl.dim g°.

6. A RELATION IN THE STANDARD COMPLEX

For the purpose of the next section we shall establish here a relation
valid in the normalized standard complex N(A) of an arbitrary (associative)
K-algebra A.

The notation [x;, . . ., x,] in the complex N(A) introduced in 1x,6 will
be replaced here by {x;,..., x,} in order to avoid confusion with the
brackets in the Lie algebras.
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For each y € A we consider the A®-endomorphisms o(y) and 9(y) of
N(A) defined by

(6] o(xss - s Xa} = Z (DHXp o v s X Yo Xigts - o o5 X}
0=sisn
) HPxp oo s Xt =%, - o X0} — {Xpp oL X )Y
- z {xl’ MR xi—l’[y’xi]’xi-}—l, ceey xn}
1<i=n

where [y,x] = yx — xy.
PROPOSITION 6.1.  For each y € A we have the identity
€) do(y) + o(y)d — Hy) = 0,

where d is the differentiation operator of N(A).
Proor. Let A(y) denote the left hand side of (3). We must show that
for alln > 0,

4) A(Y){xys ..oy X3 = 0.

This is immediate if » = 0. 'We now assume, by induction, that (4) holds
forn — 1 (n > 0). In the complex N(A) we have the contracting homo-
topy s defined in 1x,6 and satisfying the identity

ds + sd = identity

when applied to any element of degree > 0. Thus for n > 0, relation (4)
is equivalent to the pair of relations

(5) SA(y){xl’ LRI ] xn} = 0,
6) sdA(Y){xy, ..., x,p = 0.

We recall that in the normalized complex we have s(y{xj,...,x,}y")
= {y,x, ..., x,}y" and that the right hand side is zero if y = 1. This
rule easily implies

sdo(){xy, . .o x,} = s(¥{xy, . o oy X} — X0(0){Xgs - - .5 X))
so(P)d{xy, . . ., x,} = s(x16(P){xg, . . . X))

-5'?9(}’){"1, ce xn}: ‘S()’{xp e xn})

Adding these relations yields (5).
To prove (6) we first compute the element

z=dA(Y){xy, ..., x,} = do(p)d{xy, . .., x,} — dI(Pxy, . . ., x,}

An application of the inductive assumption yields

z=9(d{xy, . . ., X,} — BN Xy, - . 5 X}
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We must show that z = 0 mod the kernel of s. Calculating modulo this
kernel we find that d(y){xy, . . . , x,,} gives

Yd{x1s o ooy Xt — X1{Xey o oo X ly — [ {Xss - -, X0}

- Z xl{x2’ cees xi—l’[.y’xi]’xi+1’ ceey xn}
2si=n

while d(p)d{x,, . . ., x,} gives
X P{Xgs o ooy X} Y(A{xy, . ooy X} — Xy {Xgs . .y X))

—xy{Xgs . .5 Xy — 22‘3 X1 {Xas v s X [P X ] Xii1s + o o s X}
=N

The two results coincide and this concludes the proof.

Suppose now that A is a supplemented K-algebra with augmentation
&: A— K. In the normalized standard complex N(A,e) = N(A) @, K
we have endomorphisms induced by o(y) and 9#(y). These will still be
denoted by o(y) and #(y). These operators are left A-endomorphisms of
N(A,¢) and we still have the relation (3). The explicit definition of o(y) is
still given by formula (1), while the definition of 9(y) gets replaced by

(2,) 0()’){-’51’ s xn} = y{xls st xn} - {xla crt xn}(b‘)’)

- Z {xls ey xi—l’[y’xi]’xi+1’ I xn}'
1=sisn

7. THE COMPLEX V(9)

Throughout this section g will denote a Lie algebra over K which is
K-free.
We denote by E(g) the exterior algebra of the K-module g. The
tensor product (over K)
V(@) = ¢* ® E(9)

is a left g®-module and is g°-free since E(g) is K-free. Using the grading
of E(g) we define a grading in ¥{(g) as

V.(8) = ¢° ® E,(g).

Since Ey(g) = Kt follows that V(g) = g¢° and the augmentation &: g° - K
defines an augmentation &: ¥(g) — K which is zero on V,(g), n > 0.

For ueg’, x5,...,x, €g, the element u ® (x, - - - x,,) € g° ® E(g)
= V(g) will be written as u(x,, ..., x,). If u=1 we shall simply write
(X1, ..., X,). Consequently the symbol () will denote the element
1 ®1 of g° ® E(g).
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We now consider the normalized standard complex N(g%e) of the
supplemented algebra g°. Let

S V(@) > N(g’.e)

be the g*-homomorphism defined by the requirement
S x) = 2=, s X

where the summation extends over all permutations = of (1,...,n) and
7(w) is the signature of #. To verify that f'is well defined we only need to
observe that f(xy,...,x,)=0if x,;=x; forsome 0 i<;j<n In
particular, the definition yields f( ) = { }.

If we choose a simply ordered K-base for g, we obtain in the usual
fashion a K-base for E(g) which in turn induces a g°-base for ¥(g). It
follows then by inspection that f maps this g®-base of V{(g) into elements of
N(g°,¢) which are g°-linearly independent. Consequently f is a mono-
morphism. In the sequel we shall identify ¥(g) with a g°-submodule of
N(g°,¢) and regard f as an inclusion map.

THEOREM 7.1. The submodule V(g) of N(g%¢) is a subcomplex. The
differentiation in V(g) is given by the formula

Q) dxgy .. x)= S (=D, ey Xiy e e e Xy

1sisn

D I G ) L Z{ 70 S S S 8
1<i<j=n
With the augmentation e: V(g) — K, the complex V(g) is a g°>-free resolution
of K as a left g°-module.

PrOOF. Once formula (1) is proved, it will follow that ¥(g) is a sub-
complex of N(g%¢). For n= 0 formula (1) needs d( )= 0 which is
obviously correct. We now proceed by induction and assume that (1)
holds for n.

We shall use the endomorphisms o(x) and ¥(x) of the complex N(g°,¢)
as defined by formulas (1) and (2’) of §6. For y,x;,...,x,€g, we
obtain

(2) 0(}’)<x1, ey xn> = <y$x1, ceey n)
B) HP)(xp oo X)) =YXy ooy Xy — D (Xpy e [x] e X

lsisn

The formula do(y) + o(y)d = &(y) (established in 6.1) together with (2)
yields

d()’,xp R ] xn>=d0()’)<x1, LR ] xn>=ﬁ(y)<xla LS ] xn>_0'(}’)d<x1, ey xn)-
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Using (2) and (3) and the inductive assumption, this implies

d<y9x19 sy xn) = y<x19 L] xn) + Z (_l)i<[y;x«i]ax1’ LIRS ,.;Cb ey xn>
1<isn
3 (=D P Xgs e ey Xy e e s X))

1<i=n

D Gt ) LA L7 B S SN A )
1<i<j=s=n
This is precisely the desired formula for d(y,x;,..., x,). Thus (1) is
proved.

We have already exhibited a g°®-base for ¥(g), which is thus g°-free.

The kernel of the augmentation V(g) — K is the K-module generated
by the elements of the form x; - --x,(), with x;eg, p>0. Since
Xy 0 x,( ) =d(xy * + * x,_1(x,)),it follows that ¥V;(g) = V(g) > K—>0is
exact. Thus to conclude the proof of the theorem it suffices to show that
H V(g)) = 0forq > 0. The following proof is due to J. L. Koszul.

We choose a simply ordered K-base {x,} for g. The elements
(Kapp -« v s %) With oy < - - < a,, n >0 form a K-base for E(g). The
elements x - - - x5 withf; < -+ - < B,,,m 2> 0, form by 3.1,a K-base for
g°. Consequently we obtain a K-base of V(g) = ¢° ® E(g):

@ xp - X (X e o5 Xg)s oy <<y, n=>0
ﬂlg'.'gﬂm’ mgo

We introduce the submodule F,¥(g) generated by the elements (4) with
m+n< p. In the quotient module W, = F, V(g)/F,_,V(g) we then
have the K-base represented by the elements (4) withm + n= p. Further-
more, it follows from 3.4 that the class represented in W, by an element (4)
is independent of the order in which the elements x, . . ., x; are written.
The formula (1) for the differentiation 4 in ¥(g) implies

(5 dlxg, xp Xy o5 Xy )

=1$.an(—1)"+1xﬁ1 S X X Ky e e Xy o5 Xy )
sS1s

modulo F,, ., .¥(g). This implies that the modules F, V(g) are sub-
complexes and that the differentiation induced in W is given by the formula

5).

It is now clear that the complex W= > W, is the complex
r

K[x,] ® E(x,)
with the differentiation given by (5). This complex is isomorphic to the
projective resolution of K as a left K[x,]-module constructed in vii,4.
It follows that H (W)= 0 for ¢ >0, and therefore that H (W) =0
for g > 0.
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Now consider the exact sequence
Ha(Fp—lV(g)) g Hq(FpV(g)) g Hq( Wj))9 q > 0'

This implies that H(F, ;V(g)) = H(F,V(g)) is an epimorphism. Since
F_;V(g) = 0 we obtain H(F,V(g)) =0 for ¢ >0 and all p. Since
V(g) = U, F,V(g) it follows that H(¥(g)) = 0 forg > 0. This concludes
the proof of the theorem.

8. APPLICATIONS OF THE COMPLEX V(%)

We first show how the homology and cohomology groups of g may be
computed using the complex ¥(g).

If 4 is a right g-module, then the homology groups H,(g,4) are the
homology groups of the complex

A ®ge V() = 4 By ¢° ® E(g) = 4 ® E(g).
The differentiation operator in this complex is
d(a ‘8 <x13 MR ] xn)) = ZS (_1)i+1(axi) ® <x1’ ceey §Ci> ceey xn>

1=isn

+ 3 (D@ (XX Xgs e ey Xis e e s Xy e e ey Xy
1si<izn

If C is a left g-module, the cohomology groups H%g,C) are the
homology groups of the complex
Homy, (V(g),C) = Homy. (¢° ® E(g),C) = Hom (£(g),C).

In this last complex, ag-cochain f: E(g) — Cis simplya K-linear alternating
function f(x,, ..., x,) of g variables in g, with values in C. The co-
boundary df of such a cochain is the g + 1-cochain given by the formula

(5f)(x1, cees Xgy1) = Z D, f(xy, ey 351" s Xg1)

lsisg+1
+ Z (—1)i+’f([x,,x,],x1, CECECEEY %i’ CEC R ij, oo ey xl]+l)'
l=si<j=sg+1

This description of the cohomology groups H%g,C) shows directly that
these coincide with the cohomology groups of g considered hitherto
(C. Chevalley and S. Eilenberg, Trans. Am. Math. Soc. 63 (1948), 85-124).

We recall that the complex V(g) is a subcomplex of the normalized
standard complex N(g%¢). In this connection the following proposition
will be useful.

PrOPOSITION 8.1. Every cochain f € Homy. (V(g),C) admits an extension
S’ e Homgy. (N(¢%¢),C). If f is a cocycle then f' may be chosen to be a
cocycle.
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Proor. The first fact follows from the observation that ¥(g) as a
g®-module is a direct summand of N(g%¢). This is clear from the bases
exhibited in §7. Now assume that 6f= 0. Since the cohomology
groups obtained using ¥(g) and N(g°,¢) are isomorphic under the inclusion
map, there exists a cocycle g’ ¢ Hom,. (N(g%¢),C) whose restriction g to
V(g) is cohomologous to f; then f — g = 6h. Let A’ be an extension of
the cochain . It follows that f* = g’+- 6A’ is an extension of fand Jf'=0
as desired.

The next application of the complex ¥(g) has to do with dimension.

THEOREM 8.2. If g has a K-base composed of n elements, then

dim g° = dim,. K = n.
‘ If further the commutative ring K is semi-simple then
gldim ¢° = n.

Proor. In view of 5.2, we only need to prove dimg K= n. Since
E(g) = 0 for g > n, it follows that the complex V(g) is n-dimensional and
thus dimg K < n. Now consider the group E,(g), with g operating on
the left by

PolXgy oo s X)) = 2 (Xpp s [X] ooy X
1<i=n
Let f be a (n — 1)-cochain with values in E,(g); an easy computation
(cf. Exer. 12) shows that 6f = 0; thus H"(g,E,(g)) is isomorphic to the
K-module of n-cochains E,(g) — E,(g), which is obviously isomorphic
to K. Hence dimg. K > n.

- Next we pass to the question of computing the products using the
complexes ¥(g). We begin with the external products for two Lie algebras
g and b over K, both of which are K-free. As agreed upon in § 1, we shall
systematically identify (g + b)° with g®* @ §°. As we have seen in XI1,5, to
compute the products | and T we need a map

f: V(@ ® V(9)—~> V(g +b)
while for the products VV and A we need a map
g V(g +h— ¥ @ VD).

The answer to both of these problems is quite trivial here since the
identification (g + b)* = ¢° ® h®* and the natural isomorphism E(g + b)
~ E(g) ® E(b) imply a natural isomorphism

(M V(g +b) ~ V(g) ® V(b)
compatible with the (g -+ b)*-operators and the differentiations.
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For the internal products w and m we assume that g is an abelian Lie
algebra. Then g° is a commutative algebra. As we have seen in x1,5, to
compute the products w and m we need a map

@) ®4 V(@) — M(9).

To obtain such a map it suffices to regard ¥(g) = ¢° ® E(g) as a g°-algebra,

and verify that this map is compatible with the differentiation (cf. Exer. 15).
We finally consider the products U and M defined using the diagonal

map D: ¢°— g° ® g° = (g + g)°. According to XI,5, we need a map

M(g) = V(@) ® V(9.

This is given by the maps g°— g° ® ¢° and E(g) - E(g) ® E(g) both
definedby x -~ x ® 14+ 1 ® x, x eg. If wecarryout theexplicit computa-
tion and apply this map to find the cup product of cochains we obtain the
classical formula for the multiplication of alternating multilinear forms.
Explicitly, consider cochains fe Hom (E,(g),C), f' ¢ Hom (E/(g),C’),
where C and C’ are left g-modules. If C ® C’ is regarded as
a left g-module by means of the map D, we find that the cochain
fU f’ e Hom (E,,(9),C ® C’)is given by

(U SNxr ooy Xp ) =2 f %) @f (x5 0005 %5),

the sum being extended over all partitions of the sequence (1,..., p 4 ¢q)
into two increasing sequences (iy, ..., i,) and (j;, ..., j). Thesignis
the signature of the permutation (i, . . ., iy, j1, - - - 5 Jo)-

EXERCISES

1. Given an associative K-algebra A, define

[x,y] = xy — yx xyel
and prove that this assigns to A the structure of a Lie algebra, denoted by
I(A). Show that for any Lie algebra g (over K), the map i is a Lie algebra
homomorphism

ir g—1(g9).
2. Given a Lie algebra g and an associative algebra A (both over the

same ring K), show that any Lie algebra homomorphism f: g— I(A)
admits a unique factorization

i h
5= g A

where A is a K-algebra homomorphism. Show further that this property
of the pair (g°,i) characterizes this pair uniquely up to an isomorphism.
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Show that in order that there exists an associative K-algebra A and a
Lie algebra monomorphism f: g — I(A), it is necessary and sufficient that
it g— g° be a monomorphism.

3. For a given Lie algebra g, let § denote the image of the homo-
morphism i: g — g°; we regard g as a Lie algebra. Show that the inclu-
sion map g — g° satisfies the criterion of Exer. 2 and thus we may identify
g° with (g)°.

4. Given a Lie algebra g over K, consider the associative K-algebra
A = Homg(g,g) and the map

p:g—>1UA)
given by
(px)y = [x.y].

Show that p is a homomorphism of Lie algebras and that p = 0if and only
if g is a commutative (i.e. [g,g] = 0). As an application show that if
g # 0 then the natural map i: g — g° is not zero.

5.Let M be a K-module. Consider the graded K-module
AM) = 3~ AX(M), where

A M) = M, AM)= 5 AM) Qg A (M) fork> 1.
0<i<k
Define the mapping A(M) @ A(M)— A(M) by the inclusion maps
A M) Q x A M) — A M). We call A(M) the free non-associative
K-algebra (without unit element) over M. In A(M) consider the two-
sided ideal J(M) generated by the elements

xx and x(yz) 4 y(zx) + z(xy), x,y,z € A(M).

Show that the quotient L(M)= A(M)/J(M) is a (graded) Lie algebra;
we call L(M) the free Lie algebra over M. Show that the map j: M—L(M),
defined by composition M = AYM)— A(M)— L(M), is a mono-
morphism. Show that every K-homomorphism f: M — g into a Lie
algebra g admits a unique factorization M —J—*L(M)—> g, where @ is
a homomorphism of Lie algebras over K.

6. Let M be a K-module, and k£ a K-homomorphism of M into a Lie
K-algebra I.  Suppose that each K-homomorphism f: M — g into a Lie
K-algebra g admits a unique factorization

k
M——+Il>g,

where y is a homomorphism of Lie K-algebras. Prove that there exists a
unique isomorphism «:1a L(M) such that ak=j. This gives an
axiomatic description of the pair (L(M),j).
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7. Consider the tensor algebra T(M) of the K-module M. Show that
the ‘natural injection M — T(M) admits a unique factorization

M- L(M) = T(M), where i is a homomorphism of the Lie algebra
L(M) into the Lie algebra I(T(M)). This mapping i is compatible with
with the gradings in L(M) and T(M). Show that T(M) may be identified
with the enveloping algebra L(M)® of L(M). If L(M) denotes the image of
i, show that L(M) is the Lie subalgebra of [(T(M)) generated by the elements
of degree 1 in T(M), i.e. by M.

8. Prove the following theorem: if M is a K-free module, then L(M)
is K-free and i: L(M)— T(M) is a monomorphism; thus the Lie sub-
algebra L(M) of (T(M)), generated by M, is K-free and isomorphic to
L(M).

[Hint: if L(M)is K-free, then, by 3.3 and Exer. 7, i is a monomorphism.
Hence the theorem is proved when K is a field. For any commutative
ring K, and any K-free module M, there exists a free abelian group A4 such
that M = A ® K; show that L(M) = L(4) ® K. This reduces the proof
to showing that L(4) is Z-free when A is Z-free; it will be sufficient to
prove that i: L(4) — T(4) is a monomorphism. Let A; be the subgroup
of A generated by any finite subset 7 of the base of 4; then T(4,) — T(4)
is a monomorphism, which reduces the proof to the case of a finitely
generated free abelian group. Let now A4 be an abelian group
with a finite base; for proving that i: L(4)— T(4) is a mono-
morphism, observe that, for each prime p, L(A) ® Z, > T(A) @ Z, is a
monomorphism of degree zero, since the theorem is proved for
a field; then apply vi, Exer. 12 to each graded component
L) ® Z, — Ty(A) ® Z,]

9. Show that any representation satisfying 3.5 automatically satisfies
condition (4) and therefore is unique.

10. Show that if g is K-free and ¢° is commutative then g is an abelian
Lie algebra.

11. Given a map K— L (of commutative rings) examine the effects of
this change of ground ring upon the homology and cohomology groups of
a Lie algebra.

12. Let g be a Lie algebra with a K-base x,,...,x, Define the
constants of structure c,; by the relations

[Xi,xj] = % Cijkxk.

Express the axioms of the Lie algebra in terms of c;;. Prove that in the
complex K ®,. ¥(g) we have

d(xl, “ e ey xn> == Z ('—])ici,‘](xl, “eey xi, e e ey x,n>.
17
1=j

IAIA

=n
=n
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13. Under the conditions of Exer. 12, g is said to be unimodular if for
any y e g, the relation

2 Xy Xy, X, =0
1sj=n

holds in E(g). Show that this is equivalent with
d(xl,...,xn>=0

in the complex K ®,. ¥(g).

14. (Alternative description of the complex F(g)). Let A = (K,d) be
the ring of dual numbers over K and consider the K-module A ® % g with
endomorphism d. Let T(A ® g) be the tensor algebra over K of the
K-module A ® g. Themapi: x— 1 ® x will be used to identify g with
a submodule of A ® g and thus also of T(A ® g). In T(A ® g) intro-
duce a grading written with lower indices in which the elements x € g have
degree 1 and the elements dx (x € g) have degree 0. The endomorphism d
of A ® gmay now be extended uniquely to an antiderivation d of T(A ® g),
i.e. a K-endomorphism satisfying

d(uv) = (duyv + (—1)"u(dv)

for u of degree p in T(A ® g). This operator d satisfies dd = 0 and is of
degree —1 (with respect to the lower indices).
Let L be the two-sided ideal in T(A ® g) generated by the elements

1) xx

@ (dx)y — y(dx) — [x.y]

3) (dx)(dy) — (dy)dx) — d[x,y]
for x,y e g.

Prove that L is a homogeneous ideal and is stable under d. Consider
the K-algebra
W(g) = T(A ® g)/L

which is a left g°>~complex over K.
Use the maps

it g>AQ®ag, j=di: g>A®g
to obtain maps
i': T(g)—~> T(A ® g), J': T - T(A®g)
i*: E(g)—> W(g), j*: ¢ > W)
p=j*®i*: ¢ ® E(g) > W(g).
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Prove that ¢ is an isomorphism of graded K-modules and is an isomorphism
of the complexes ¥(g) and W(g).

[Hint to the last part: denote by M the ideal of T(A ® g) generated by
the elements (2). Prove thatj’ ® i": T(g) ® T(g) > T(A ® g) induces an
isomorphism T(g) ® T(g) ~ T(A ® g)/M.]

15. Let g be a Lie algebra with a K-base; then W(g) (Exer. 14) is a
graded differential algebra and g° a subalgebra of degree 0, thus W(g) is a
two-sided g®-module. The multiplication of W(g) defines a map

M W(g) ®q W(g) = W(g)

which is compatible with the structures of two-sided g®-modules. Let 4
be a left g®-module; (1) defines

@ W(g) ®qe A — Homg. (W(g), W(9) ®qe 4),

where Hom,, is related to the left g°*-module structures. Let n be the
number of the elements of the K-base of g; (2) induces

(3) Wn—k(g) ®g‘ A— Homg" (Wk(g)a Wn(g) ®g¢ A)

for any integer k; this is a map ¢, of the module of (n — k)-chains (with
coefficients in A) into the module of k-cochains (with coefficients in
W.(9) Qg A~ E,(3) Qx 4). Show that the collection of maps g,
commute (up to the sign) with the boundary and coboundary operators,
and that each ¢, is an isomorphism. Compute explicitly the left opera-
tions of g on E,(g) ®x A, and establish the natural isomorphisms

H, (g.4) ~ H*g,E () ®x 4).

For k = n and 4 = K (with trivial operators) we find again H"(g,E,(g))
= K (cf. 8.2).



CHAPTER XIV

Extensions

Introduction. In general an extension over 4 is given by an epi-
morphism f: X — A. This concept may be considered for various kinds
of algebraic structures:

(1) X and A4 are A-modules, and f'is an epimorphism of A-modules.

(2) I'"and A are K-algebras, and f: I' — A is a K-algebra epimorphism.

(3) Wand II are groups, and f: W — Il is an epimorphism of groups.

(4) b and g are Lie algebras, and f: § — g is an epimorphism of Lie
algebras.

In the case (1), the kernel C of fis a A-module. The knowledge of 4
and C does not yet determine the extension even up to “equivalence.”
Indeed, the set of equivalence classes of extensions is in a 1-I-cor-
respondence with the group Ext}(4,C); this was the origin of the notation
“Ext”.

Cases (2), (3), (4) are more complicated, and will be studied here only
under restrictive conditions which permit the introduction of a suitable
structure into the kernel C of f. In the case (2), C is assumed to be a
two-sided A-module; in the case (3), C is assumed to be a II-module (C
is then an abelian subgroup of W); in the case (4), C is assumed to be a
g-module (C is then an abelian ideal in ). In each of these cases, the set
of all equivalence classes is in a-1-1-correspondence with a 2-dimensional
cohomology group with coefficients in C. These are: the Hochschild
cohomology group H%A,C) in the case (2), the group H*I1,C) in the
case (3), and the group H?%(g,C) in the case (4).

The four problems of extensions listed above are inter-related and some
of these relations are studied in detail.

1. EXTENSIONS OF MODULES

Let 4 and C be (left) A-modules. An extension over A with kernel C
is an exact sequence
(E) 0—C——>X—>4—0
where X is a A-module and ¢ and y are A-homomorphisms. The
extension (E) is said to be equivalent with an extension
(E) 0>-C—>X"—->A4—>0
289
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if there is a A-homomorphism k: X — X’ such that the diagram

is commutative. It is clear that such a & is an isomorphism. We denote
by E(A,C) the set of all equivalence classes of extensions of 4 and C. All
split exact sequences are in the same class, called the “split class’ of E(4,C).

Following Baer (Math. Zeit. 38 (1934), 375-416) we define a multiplica-
tion in the set E(4,C): given extensions (E) and (E’), we define their
product as an extension 0 -~ C— Y — 4 — 0 as follows. In the direct
sum X 4 X’ consider the submodule B consisting of pairs (x,x") with
@x = ¢'x’, and the submodule D of pairs of the form (—yc,y’c) for ¢ € C.
Then D C B; we define Y= B/D. The maps ¥ and ® are defined by

We = class of (yc,0) = class of (0,p"¢),
D (class of (x,x")) = @px = ¢'x,
where by “class’” we mean congruence class of B mod D.

The verification that the sequence 0 — C 2 ¥ 4— 0 is exact
is immediate. It is also clear that this multiplication defines a multiplica-
tion in the set E(4,C).

An extension

(E) 0—C5 X 4—0

defines a connecting homomorphism ®z: Hom (C,C)— Ext! (4,C)
which maps the identity element j e Hom (C,C) into the “characteristic
class” of the extension (E) (cf. x1,9). Equivalent extensions have the same
characteristic class.

THEOREM 1.1.  Given two A-modules A and C the mapping (E) — Ogj
establishes a 1-1-correspondence © between E(A,C) and Ext} (4,C).
Baer multiplication in E(A,C) is carried into the addition in Ext} (4,C);
the split class of E(A,C) is carried into the zero element of Ext} (4,C).

COROLLARY 1.2. The set E(A,C) with the Baer multiplication is an
abelian group with the split class as zero element.

(This assertion could be proved directly although the proof is somewhat
laborious.)
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Proor of 1.1. 'We choose once and for all an exact sequence
B a
0O—M—P—A—0

with P projective. For each extension (E) we can find homomorphisms
y and 7 such that the diagram

0 M P4 0

L

0 C X A 0

is commutative (i denotes the identity map of 4).
Diagram (1) gives rise to a commutative diagram

Hom, (C,C)
(2) Hom(y,C) 0p
Hom, (P,C) — Hom, (M,C) -~ Ext} (4,C) —0
in which the row is exact and where @ is the connecting homomorphism
induced by the top row of (1). Since Hom (y,C) maps j into y, it follows

that 9y is the characteristic class ® 3 of the extension (E).
Now consider the direct sum C - P and define an exact sequence

by setting
4 pm = (—ym,fm), m(c,p) = ye + 7p.

Using the exact sequence (3) to identify X with Coker u we obtain
ye = class of (c,0),

®)] 7p = class of (0,p),
@ (class of (c,p)) = ap,

where “class’ means ‘“‘congruence class mod the image of u.”

Now assume that a homomorphism y e Hom (M,C) is given. We may
then define u by formula (4), take X = Coker u, and define y, 7, by (5).
The resulting sequence

(E,) 0—C-—X-"—~>A4—0
is then exact, and diagram (1) is valid with the prescribed map y. The
characteristic class of (E,) is therefore #y. Since ¢#: Hom, (M,C)

— Ext}, (4,C) is an epimorphism, it follows that the correspondence
© maps E(4,C) onto Ext} (4,C).
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In order to prove that the correspondence © is 1-1 we must show that
dy, = dy, implies that (E,, ) and (E,,) are equivalent. From the exactness
of the row in (2) it follows that ¥(y, — y,) = 0 is equivalent with
y1 — Yo = of for some w ¢ Hom, (P,C). Using w we define an auto-
morphism Q: C 4 P— C + P by setting

Q(e,p) = (¢ + wp.p).
It follows readily that u,= Qu,; thus Q induces an isomorphism
Q" X;— X, (where X,= Coker y;, i=1,2), such that Q'yp, = p,,
@22’ = @;. Therefore (E,) and (E, ) are equivalent.

If the extension (E) splits, then by v,4.5 the connecting homomorphism
Oy is zero, and therefore ®j= 0. An alternative proof is obtained by
taking y = 0 in the construction of (E,). Then um = (0,8m) so that
Coker u = C + A.

It remains to be proved that © carries the Baer multiplication in
E(A,C) into the addition in Ext} (4,C). To this end we consider the
Baer product (E) of two extensions (E, ) and (E,); define y: M — Cand
7: P—> X by

Y= y1+ Yo 7p = class of (7,p,7,p).
Then g7 = a and

yym = yym + yyym = class of (y,y,m,0) + class of (0,p,y,m)
= class of (7,,m,75f,m) = Tfm.

Thus we have a commutative diagram like (1), which proves that the
extension (E) is defined by y = y; + y,.
This concludes the proof of theorem 1.1.

REMARK. Instead of wusing the connecting homomorphism
®x: Hom, (C,C) — Extj (4,C) we could use the connecting homo-
morphism

O%: Hom, (4,4) — Ext} (4,C)

induced by (E). If i e Hom, (4,4) denotes the identity element, it can
be shown (see Exer. 1) that ©zi 4+ ®@5j= 0. There exists a proof of 1.1,
dual to the one given above, and adjusted to the connecting homo-
morphism @F. We choose once and for all an exact sequence

[
0—C—Q—>N—0
with Q injective. Diagram (1) is then replaced by

v ?

0 C X A 0

b

0——C 0 N—0
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As before, the map e&: 4 — N determines essentially the rest of the
diagram. Indeed if we define v: 44 Q@ — N by »(a,q) = —ea + 7q
and identify X with Ker », then

ye = (0,dc),
) l(a,q) =71,
(a,9) = a.

2. EXTENSIONS OF ASSOCIATIVE ALGEBRAS

Let K be a commutative ring. An epimorphism of K-algebras
fi T—=A,

will be called an extension over A. The extension is called inessential if
there exists a K-algebra homomorphism u: A — I' with fu = identity.

The kernel C of fis a two-sided ideal in I' and therefore is also a
two-sided I'-module. In particular, the multiplication in I' induces a
multiplication in C. If this multiplication is zero, i.e. ¢;c, = 0 for all
¢1,¢5 € C, then the structure of C as a two-sided I'-module induces on C
the structure of a two-sided A-module:

1) e = yc, cA=cy ceCyel,A=fyeA.

Conversely if C carries the structure of a two-sided A-module satisfying
(1) then the multiplication in C induced by that of I is zero.

DEeFINITION. Let A be a K-algebra and C a two-sided A-module.
An extension over A with kernel C is an exact sequence

(F) cLr-La

where I' is a K-algebra, f is a K-algebra epimorphism, g isa monomorphism
of K-modules and

@) g(hc) = y(ge), glc)=(go)y, ceCyel,A=fyeA.

These last conditions are simply a translation of (1).
Two extensions (F) and (F’) over A with kernel C are equivalent if
there exists a K-algebra homomorphism k: I" — I'" such that the diagram

3) C

FI
is commutative. The map k is then necessarily an isomorphism.
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The set of all equivalence classes of extensions over A with kernel C
will be denoted by F(A,C).

From now on we shall assume that A is K-projective. Under this
assumption the exact sequence 0 -~ C—1'— A — 0 regarded as a
sequence of K-modules, splits. Therefore without loss of generality we
may assume that I' as a K-module coincides with the direct sum

'=Cc+ A

and that

ge = (c,0), fle,))=A.
The multiplication in I' has then necessarily the form

(0190)((:2’0) =0

(Cl,O)(O,Ag) = (011270)

(0,2;)(c2,0) = (41¢5,0)

(0,2)(0,4) = (a(A1,45), 4,25) a(y,45) € C.
The first of these relations expresses the fact that (gc;)(gc,) = 0, the second
and third conditions are translations of (2), while the last condition
expresses the fact that f is multiplicative. The function a is a K-homo-
morphism a: A ® A— C and will be regarded as a 2-cochain in the

standard complex S(A) with coefficients in the two-sided A-module C.
The multiplication table above may be summarized in the single formula

@ (c1A)(Cahs) = (€123 + A1es + a(Ag,A0), A12y).

Conversely, consider an arbitrary 2-cochain a, define a multiplication in
I'= C + A by (4) and examine the associativity of this multiplication.
Upon calculation we obtain
(3 (enA)(cata)(csds)) — ((c1,41)(ca,A2))(CsiA5)

= (ha(A,45) + a(Ay,2245) — a(A125,45) — a(A4,25)23, 0)

= (60(11,12,13),0).
This shows that the multiplication (4) is associative if and only if a is a
2-cocycle. If this is the case then

Aa(1,1) = a(,1), a(1,1)A = a(1,2)
which implies
('—'a(hl)’l)(csl) = (CJ') = (Cal)(_a(lsl)al)

It follows that the element (—a(1,1),1) is the unit element of I". Then,
defining g: C— 1T and f: ' > C by gc=(c,0), f(c,}) =4, it is
immediately verified that (2) holds.
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Summarizing, we find that (4) defines a mapping of the group Z%(S(A),C)
onto the set F(A,C). There remains to find when two cocycles a and a’
yield equivalent extensions (F)and (F’). Thecommutativity of the diagram
(3) is equivalent with

k(c,A) = (c + b(A),4), b(A) € C.
Since

[k(c1,ADNlk(carA2)] = (€1 + ArCy + A1B(A2) + B(A1) Ay + a'(A1,49), A125)

kl(cp,A)(cah)] = (c14s + Aycs + a(Ay,A9) + B(A445), Ahs)

we find that £ is multiplicative if and only if
Mb(Ay) + b(2)A5 + a'(A1,A9) = a(24,45) + b(244,)
ie. if
a—a = 6b.

This condition implies a(1,1) — a’(1,1) = b(1), so that k maps the unit
element of I into-that of I".

Finally let us examine the conditions under which the extension given

by a cocycle a is inessential. A K-homomorphism #: A — I' such that
fu = identity, must have the form

ud = (b(A),4) b(2) € C.
Then
(uh)(udy) — u(2445) = (B(A)A5 + 416(45) + a(A1. 25 — B(A125), 11hy),
so that » is multiplicative if and only if a = —0b. If this is the case then

a(1,1) = —b(1) so that ul = 1.

We thus obtain

THEOREM 2.1. The set F(A,C) of all equivalence classes of extensions
over A with kernel C is in a 1-1-correspondence with the group H*(A,C).
This correspondence w: H¥A,C)— F(A,C) is obtained by assigning to each
cocycle a € Z¥(S(A),C), the extension given by the multiplication (4). The
inessential extensions form a single class of F(A,C) and correspond to the
zero element of HYA,C).

This exposition follows Hochschild (Ann. of Math. 46 (1945), 58-67).

3. EXTENSIONS OF SUPPLEMENTED ALGEBRAS

Let A be a supplemented K-algebra with e: A — K as augmentation.
We shall always assume that A is K-projective. If f: I' > A is an exten-
sion over A, then I' may be regarded as a supplemented K-algebra with
¢f: I' > K as augmentation.
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Let C be a left A-module; we denote by C, the two-sided A-module
obtained from C by defining the right operators by the formula

) cA = c(ed) = (el)c ceC,AeA.

We may then consider the set F(A,C,) as defined in § 2. We are thus led
to consider exact sequences

(F) ctrl.a

where I'is a K-algebra, fis a K-algebra epimorphism, g is a monomorphism
of K-modules, and

@ gAe)=y(go),  (gJy =g(c(eh)) ceCoyel,d=fyeA.

Such a sequence will be called an extension over A with kernel C. The set
of all equivalence classes F(A,C,) of such extensions will be denoted simply
by F(A,C). The discussion carried out in § 2 now applies without change.
In particular, the basic formula (4) may be written as

3) (c1,A)(cahg) = (c1(ehg) 4 Aycy + alAy,hy), 14y).

In the calculation (5) of § 2 the term a(4,,4,)4; is therefore to be replaced
by a(,,4,)(eA5). It follows that a is to be regarded as a cocycle in the
complex S(A,e) = S(A) ®, K.

There is one further improvement that can be introduced. Since as a
K-module, A is the direct sum K + I(A), it follows that I(A) is K-projective.

Therefore for each extension C——T 2> A the K-homomorphism
u: A —T' which shows that the sequence 0 -~ C— I' - A — 0 splits
(over K) may be chosen so that 1 = 1. Thus the identification of I' with
C + A may be chosen so that the unit element of I' corresponds to the
element (0,1). This implies that the cocycle a satisfies a(4,1) = 0 = a(1,4).
We thus find that @ is a cocycle in the normalized standard complex
N(A,e).

We shall now relate the extensions over supplemented algebras with the
extension theory for A-modules of § 1. Consider an extension
(F) cLrLa
over A with kernel C. Let X denote the set of all x € I" with fx € I(A).
Then g(C) C X and there results a commutative diagram

\4 14

0 C X 2= IA) 0

Ll

0 C r A 0
g I
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where &k and i are inclusion maps, j is the identity, and  and ¢ are induced
bygandf. The top row clearlyis exact. Since Xis.anidealin I' we may
regard X as a left I'-module. For each ¢ € C we have

(g0)x = g(c(fx)) = g(c(gfx)) = 0.

This implies that X may be regarded as a left A-module, and that  and
@ are A-homomorphisms. It follows that the top row of the diagram is
an extension over J(A) with kernel C.  'We have thus obtained a mapping

G n: F(A,C)— E(I(A),C).
THEOREM 3.1.  If A is a K-projective supplemented K-algebra and C is a

left A-module, then the following diagram is anticommutative
-1
F(A,C)—— H¥A,C) = Ext} (K,C)
nl é
E(I(A),.C) =5~ Exty (I(A),C)

where O and w are the correspondences of 1.1 and 2.1, and§ is the connecting
homomorphism corresponding to the exact sequence

0— I(A)—> A—> K—0.

Since ¢ is an isomorphism, and @ and w are 1-1-correspondences, we
obtain

COROLLARY 3.2. The correspondence (5) is a 1-1-correspondence.

ProorF of 3.1. To simplify the notation, let N denote the complex
N(A,e). The extension (F) will be assumed givenin the formI' = C + A,
with the multiplication described by a cocycle @ ¢ Hom, (N,,C). Then X
consists of all elements (c,A — e1). Let M denote the image of dy: Ny—>Nj.
The maps d,: N, — N;and d;: N; — N, = A then admit factorizations

d iy

d; i
N,— M — N, N, — I(A) — A.
Consider the commutative diagram

g

0 M N, Ay ——0
©) 110 Jv
0— C—— X — I(A)—0

with
v[A] = (0,4 — &d)
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and with w defined by ». The lower row is the exact sequence (E) = n(F).
The element O(E) € Exth (I(A),C) defined in §1, is the image of the
identity element j € Hom, (C,C) under the connecting homomorphism
corresponding to the lower row of (6). It then follows from the com-
mutativity in (6) that ®(E) is the image of w ¢ Homt, (M,C) under the
connecting homomorphism corresponding to the upper row of (6). It
follows that the composition #®(E) is the image of w under the iterated
connecting homomorphism

d: Hom, (M,C)— Ext3 (K,C)
corresponaing to the exact sequence
0->M—N,—-A—>K—-0.

We are now in the situation described in v,7.1. The element dw = 9O(E)
is thus the negative of the cohomology class given by the 2-cocycle

,
dy w

Nz—)M—')C.

To complete the proof it suffices to show that wd, = a. Since p is a
monomorphism it suffices to show that ywd, = ya. Since ywd, = viyd,
= vd, it suffices to show that vd = pa. We have

vd{dy, Ao} = v[A{As} — {A1As} + {A1}ed,]
= (0,A)(0,A; — €dy) — (0,414, — eAyed,) + (0,4, — €2,)(0,e5)
= (a(A1,49), 4125 — A18ls) — (0,414, — ededy)
+ (0,4,4, — ehiedy)
= (a(21,49),0) = pa(4;,4,).

This concludes the proof.
PROPOSITION 3.3.  The composite map

E(I(A),C) — ExthI(A),C) — Ex(K,C) = H¥A,C)
may be described as follows. For each extension
(E) 0>C—>X—>IA)—0

the element 9O(E) is the characteristic element dgj (see X1,9) of the exact
sequence

(S) 0>C—>X—->A—->K—>0
obtained by joining (E) with the exact sequence

(L) - 0—>IA)—A—>K—0.
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Proor. We recall that j e Hom, (C,C) is the identity map C— C and
that dg is the iterated connecting homomorphism. Thus

dsj= 00gj = 0, O(E) = FO(E),
by the definition of the map O (§ 1).

4. EXTENSIONS OF GROUPS

Consider two groups W and II (not necessarily commutative, and
written multiplicatively). An epimorphism

fr w1l

will be called an extension over II. The extension is called inessential if
there exists a group homomorphism u: II — W with fu = identity.

The kernel of f (i.e. the set of all w ¢ W with fw = 1) is an invariant
subgroup C of W. The mapping (w,c) - wew1 of W X Cinto C defines
operators of Won C. If Cis abelian, then C (written additively) is a left
W-module, and since the elements of C C W operate trivially, we find that
C is a left II-module satisfying

) xc = wew™! ceCoweW,x=fwell.

Conversely, if IT operates on C so that (1) holds, C is necessarily abelian.
DerINITION. Let II be a (multiplicative) group and C a left II-

module. An extension over I1 with kernel C is a sequence

=) cLw-lon

where W is a (multiplicative) group, f is a group epimorphism, g is a
monomorphism of the additive structure of C into the multiplicative
structure of W, the image of g is the kernel of f, and

) g(xc) = w(geyw? ceCweW,x=fwell.

Two extensions (X) and (Z’) over IT with kernel C are equivalent if
there exists a group homomorphism k: W— W’ such that the diagram

is commutative; k is then necessarily an isomorphism.
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The set of all equivalence classes of extensions over IT with kernel C will
be denoted by %(II,C).

With the group Il and the left II-module C given, consider the
supplemented algebra Z(II) (with the unit augmentation). We shall
consider the set F(Z(II),C) of equivalence classes of extensions over Z(II)
with kernel C. Such an extension is an exact sequence

(F) c-LrL zam

where I is a Z-algebra, £ is an epimorphism of algebras, g is a mono-
morphism of abelian groups, and

3) ygo= g, (go)y= glc(ed)), ceC,yel,2 :fy e Z(11).

PROPOSITION 4.1. Let (F) be an extension as above. The set W of
elements w ¢ I" with fw eIl is a group under the multiplication defined
by that of the ring T'. If f denotes the map W — 11 induced by f and
g: C— Wis given by gc = gc + 1, then the sequence

=) cLwln

is an extension over 11 with kernel C.

Proor. Clearly W is closed under multiplication, is associative and
has a unit element, namely the element 1 € I'.  To show that w € W has
an inverse, choose v € W such that f(w)f(v) = 1 = f(v)f(w). Since the
elements 1 — wv and 1 — vw yield zero in Z(II), there exist elements
¢y, Co € C With ge; =1 —wyv, ge,= 1 —vw. The second of the rela-
tions (3) then yields (1 —wo)w=1—wo, (1 —ow)w =1 — ow. This
implies

wl—ovw—1)=A—ww+w=1—wo+wr=1
A—vw—Dw=(10—ww+ow=1—w+ow=1

which shows that w has an inverse. Thus W is a group.

It is clear that f: W — Il is a group epimorphism whose kernel is the
image of g. Since

(gep(ge) = (ger+1(geat+ 1) = gey + gea+ 1
=gleit )+ 1=glc,+¢y)

it follows that g is a homomorphism of the additive structure of C into
the multiplicative structure of W. Finally for ce C, w e W, x = fw we
have, using (3)

w(gwl=w(gw 1+ 1= gxcw + 1= g(xc) + 1 = g(xc).

This proves (2) and concludes the proof.
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Proposition 4.1 assigns to each extension (F) an extension (). Clearly
if (F) and (F") are equivalent, then so are the corresponding extensions ()
and (X’). There results a mapping

@: F(Z(),C) — X(I1L,C).

THEOREM 4.2.  The mapping ¢ establishes a 1-1-correspondence between
the set F(Z(I1),C) and the set X(I1,C). The inessential extensions (Z)
form one equivalence class, corresponding to the inessential class in
F(z{I),C).

Proor. We first show that if two extensions (F) and (F’) yield two
equivalent extensions ¢(F) and ¢(F"), then (F) and (F’) are equivalent. To
do this, we shall give a complete description (up to an equivalence) of any
extension (F) using the extension (X) = ¢(F).

We have the commutative diagram

c—w- u
Lo by
c—2 1 —L. zay
with jw =w — 1, igx = x — 1. The map j may be factored as follows
WiZ(W)L T

where iy (w) = w — 1 and k is a homomorphism of Z-algebras defined by
k(w) =w. We obtain a commutative diagram

c2- w L. 1

iy i
c-r, Z W)__f_, A1)

N

Cc -1 L ZaI)

<)

Let C = iygC and let C.ZW) (resp. C . I(W)) denote the set of all
linear combinations of elements cw (resp. c¢(w — 1)) for c € C, w € W.
Then ¢ . Z(W)is precisely the kernel of f *, while C . (W) is, by virtue of
the second relation (3), in the kernel of k. There results a commutative
diagram

0—— C—— Z(W)/E . (W) —— z(T) — 0
@ ] |

9

0—> C— I L zay—o
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We can now show that / is additive. Indeed we have
ipg(cy+ co)=(gc)(gey) — 1= (ge; — 1) + (gea — 1) + (ge; — 1)(ge, — 1)
= ipgcy + ipgcs + (pged(ge, — 1.

Since the last term is in C . I(W), we obtain that I(c;+c,)=Ic;+Ic,. The
kernel of f’ is C .Z(W)/C . (W) and this is precisely the image of I
Finally /is a monomorphism since g = k'l is one. Thus the top row is an
exact sequence of Z-modules. Since the lower row is exact by hypothesis,
k' is an isomorphism.

This shows that C . I(W) s the kernel of k which was a homomorphism
of Z-algebras. Thus C . (W) is a two-sided ideal of Z(W) (this could be
seen directly). Consequently k£’ is an isomorphism of Z-algebras.

We now see that the top row of (4) is an extension (F;) described
entirely in terms of the extension (X) and equivalent with (F). This
proves our assertion.

We now show that (F) is inessential if and only if (X)= ¢@(F) is
inessential. Suppose (F) is inessential and let u : Z(II) - I" be a homo-
morphism of Z-algebras such that fu = identity. The induced group
homomorphism u: II - W then satisfies fu = identity. Conversely
given a group homomorphism u: II— W with fu= identity, the
homomorphism ku*: Z(II) - I' shows that (F) is inessential.

There remains the proof that ¢ maps F(Z(I1),C) onto Z(IL,C).
Given an extension (2) over II with kernel C, choose a function u: I[I—-W
such that fu = identity and #(1) = 1. Then each element of W may be
written uniquely as a product (gc)(ux) with ¢ € C, x € II; we shall denote
this element by (c,x). Then the unit element of W is (0,1) and

ge=(c1), flex) = x.

Let us find the product of two elements (c,x;) and (cg,%,). Using (2)
we have

(c1x1)(Carx5) = (gey)(ux,)(gea)(ux,)
= (gep)(uxy)(geg)(uxy) ™ (ux,)(ux,)
= (gcg(x1¢o)(ux,)(uxy).

To calculate (ux,)(ux,) we observe that this element has the same image in
IT as u(xyx,). Thus there is a unique element a(x,,x,) € C such that

(ux;)(uxy) = ga(x,,Xxg)u(x;X,).

Since g maps the additive structure of C into the multiplicative structure of
W, we have the final result

®) (cpx)(cg,x5) = (€1 + X165 + a(x1,X5), X1X,)
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Because of the choice (1) = 1, we have a(x,,1) = 0 = a(l,x,). We
shall treat @ as a 2-cochain on the normalized complex N(II) with
coefficients in C.

Let us express the fact that the multiplication given by formula (5) is
associative. We have

(e1x)((c2:%9)(€3,%5)) = (€1 F-x1Ca + X1 X2 + X1a(%,%5) + A(%1,%5X5), X1 X5X3)

((e1,x1)(ca,x5))(C3,%5) = (€1 + %1€ + X1 X5€5 + A(1,%5) + A1 X5,%3), X1 XX3).

In order that the two results coincide it is necessary and sufficient that
x10(x3,%5) — a(x1Xp,X3) + A(X1,X3%3) — aA(x1,X5) = 0

i.e. that da(x,,x5,%3) = 0. We thus find that a is a 2-cocycle of the
complex N(II) = N(Z(I1),e).
We now use this cocycle a to construct an extension

(F) ¢l Lz

with I'= C + Z(I), gc=(c,0), f(c,})= 4, and with multiplication
given by formula (3) of § 3 as

(A )(Ca,hg) = (c1(eA3) 4 Ajcy 4 a(Ay,y), A1h).

It is clear that if we apply @ to this extension (F) we find exactly the
extension (X) with which we started, with multiplication given by (5).
This concludes the proof of 4.2.

REMARK. Our results so far may be summarized in the following
diagram
H¥IL,C)

< >EXtZ(1H)(I (ID,C)
n o

E(I(ID),C)

in which all the maps are 1-1 correspondences and the square is commuta-
tive (in the sense that the composition of any four consecutive maps is the
identity). The preceding proof shows that the map pw: H¥(II,C)—X(1,C)
is obtained by assigning to each cocycle a € Z*(N(II),C) the extension ()
given by formula (5§). This is the familiar method of describing group
extensions by means of “factor sets.” The composition 9® was described
in 3.3. For a discussion of the composition

en~t: E(I(I1),C) — £(I1,C),

Y(I1,C) ~— F(Z(I1),C)

see Exer. 3.
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5. EXTENSIONS OF LIE ALGEBRAS

Let h and g be Lie algebras over a commutative ring XK. An epi-
morphism of Lie algebras
Sih—>g
will be called an extension over g. The extension is called inessential if
there exists a Lie algebra homomorphism u: g— § with fu = identity.
The kernel C of fis an ideal in §. The mapping y ® ¢ — [y,c] of
b ® C into C defines C as a left h-module, because of Jacobi’s identity

[}’1, [)"2,0]] - [)’2, [}’1,0]] == [[yp}’z],C]-
If the Lie algebra C is abelian, then the structure of C as a left h-module
induces on C the structure of a left g-module:
1) xc = [y,cl, ceC yeh,x=fyeq.

Conversely, if C carries the structure of a left g-module satisfying (1), then
Cis an abelian Lie algebra.

DerINITION: Let g be a K-Lie algebra and C a left g-module. An
extension over g with kernel C is an exact sequence

4 f
(0% C—b—g
where ) is a K-Lie algebra, fis a Lie algebra epimorphism, g is a mono-
morphism of K-modules, and
2) g(xc) = [y.gcl forceC,yeh, x=fyeg.

Two extensions (2), (Z’) over g with kernel C are equivalent if there
exists a K-Lie algebra homomorphism k: §— §’ such that the diagram

)
/ | \
g
I),
is commutative; k is then necessarily an isomorphism.

The set of all equivalence classes of extensions over g with kernel C will
be denoted by 2(g,C).

C

We shall always suppose that the Lie algebra g is K-free. As we have
seen in x11,3.3 this permits us to identify g with a K-submodule of the
enveloping algebra g°.  With g° and a left g°-module C given, consider the
set F(g°,C) of equivalence classes of extensions over g° with kernel C.
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Such an extension is an exact sequence

g 7
(F) C LN I— q°
where I'is a K-algebra, £ is an epimorphism of K-algebras, g is a mono-
morphism of K-modules, and

(€) rgo)=ge), (goy=g((ed) ceCyel,di=fyeg"

PRrOPOSITION 5.1. Let (F) be an extension as above. The set by of
elements y € I' with f 'y € g is a Lie algebra over K with the bracket operation

[Y1yal = y1y2 — yoy1- If f denotes the map f: Y — g induced by f, and
g: C— Y is defined by g, then the sequence

) cbp-Lg

is an extension over g with kernel C.

PROOF. If fy;= X, fys= X, for x;,x, € g, then f(y1y, — y2y1)
= XyX, — XX;; this last term is equal to [x,x,] because of the relations
in the enveloping algebra g¢°. Thus y,y, — y,y; €, so that b is closed
under the bracket operation. Thus § is a K-Lie algebra. Since fg = 0,
it follows that g maps C into [ and its image is the kernel of /. Relations
(3) with y = y, 2= x give y(gc) = g(xc) and (gc)y = 0, which implies
[y.gc] = y(gc) — (gc)y = g(xc). This proves (2) and concludes the
proof.

Proposition 5.1 assigns to each extension (F) an extension (X). Clearly
if (F) and (F’) are equivalent, then so are the corresponding extensions
() and (¥'). There results a mapping

@: F(g*,C)— Z(g,C)

defined whenever g is K-free.

THEOREM 5.2. The mapping ¢ establishes a 1-1-correspondence
between the set F(g°,C) and the set 2(g,C). The inessential extensions (X)
form one equivalence class, corresponding to the inessential class in F(g°,C).

ProoF. We first show that if two extensions (F) and (F’) yield two
equivalent extensions @(F) and @(F"), then (F) and (F’) are equivalent. To
do this, we shall give a complete description (up to an equivalence) of any
extension (F) using the extension () = ¢(F).

We have the commutative diagram

g I

C— 1 —qg
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where j is given by inclusion and i is the natural injection of g into g*. The
map j may be factored as follows

b T(h) — T

where a is the natural injection of §) into its tensor algebra and b is a
K-algebra homomorphism. Since b is zero on all elements of the form
Y1 ® ya — Y2 @ y1 — [y1,y2], we find a factorization

ip k
p—p—T

of j, where iy is the natural injection and k is a K-algebra homomorphism.
There results a commutative diagram

Let C = igC. The kernel of f° is then, by xu1,1.3, the ideal C . .
We shall also consider the K-module C . I(h) where I(h) is the augmentation
ideal of h*. 1In virtue of the second relation (3), C . I(h) is in the kernel of
k. There results a commutative diagram

0—— C——H/C. I(p) ——g" —0
@ |
0o—c—2— 1 Log—so
The kernel of f' is C.}°/C .I(h) which is precisely the image of I.
Finally /is a monomorphism since g = k" /is one. Thus the top row is an
exact sequence of K-modules. Since the lower row also is exact, this
implies that £’ is an isomorphism.

This shows that C . I(B) is the kernel of k which was a homomorphism
of K-algebras. Thus C . I() is a two-sided ideal of b (this could be seen
directly). Consequently £’ is an isomorphism of K-algebras.

We now see that the top row of (4) is an extension (F;) described
entirely in terms of the extension (X) and equivalent with (F). This
proves our assertion.

‘We now show that (F) is inessential if and only if (X) = @(F) is inessen-
tial. Suppose (F) is inessential and let u : ¢° — I" be a homomorphism of
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K-algebras such that fu = identity. The induced Lie algebra homo-
morphism u: g — b then satisfies fu = identity. Conversely given a Lie
algebra homomorphism u: g—b with fu= identity, the K-algebra
homomorphism ku®: g°— I' shows that (F) is inessential.

There remains the proof that ¢ maps F(g°,C) onto 2(g,C). Consider
an extension (2) over g with kernel C. Since g is K-free we may assume
that, as a K-module, } is the direct sum C + g with

ge == (c,0), fle,x) = x.
The bracket in [ then necessarily has the form
[(€1,0),(c2,0)] = 0
[(¢1,0),(0,x2)] = (—x4¢,,0)
[(0,x1)(c2,0)] = (x1¢2,0)
[(0,x1),(0,x5)] = (a(x1,%5),[x1,%.)), a(xy,x,) € C.

The first relation expresses the fact that C is an abelian Lie algebra, the
second and the third conditions follow from (2), while the last one
expresses the fact that fis a Lie algebra homomorphism. Combining
these relations we obtain

) [(c1,xD)(Cax2)] = (—X91 + X1€5 + a(X1,X5),[X1,X,)).

Let us now express the conditions that the bracket operation in C 4 g
given by (5) satisfies the axioms of a Lie algebra. The K-bilinearity of the
bracket implies the K-bilinearity of a(x;,x,). The condition [(c,x),(c,x)]=10
is equivalent with a(x,x) = 0. Thus a(xy,x,) is an alternating bilinear
function, and we may regard a(x;,x,) as a 2-cochain of the complex
V(g) of x11,7. Let us now express the Jacobi identity. We have

[(c1%1):[(c2x5),(c3,x3)]]
=(—[xg,X3]c; — X1X3€5 + X1XaC3 + X1a(X,X5) + A(x1,[x5%3]), [, [, X5]])-
Permuting cyclically and adding we find that the sum is zero if and only if
X10(X2,X3) + X9a(X3,%1) + X3a(X1,X5) + a(xy,[x2,%3])
+ a(xza[xssxl]) + a(x3,[x1,x2]) = 0'

Since a is alternating, this is equivalent with da(x,,xs,x3) = 0. Thus a is
a 2-cocycle.
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By xm1,8.1, there exists a cocycle a of the normalized standard complex
N(g%¢) which induces a on the subcomplex V(g). With this cocycle a let
us construct the extension

) ctrlog
with I'= C + ¢%, gc= (c,0), f (¢,x) = x, and with multiplication given
by the formula (3) of § 3 as
(c1A)(Cds) = (c1(edy) + Aicp + A(A1,45), A145).
In particular, for x,,x, € g we obtain
(c1,x1)(C9,X5) = (X105 + A(31,X5), X1 X5).

If we compute the bracket of (cy,x;) and (c,,x,) and recall that a(x;,x,) =
a(xy,x5) — d(xg,x,), we find precisely formula (5). This shows that if we
apply ¢ to the extension (F) we find exactly the extension (Z) with which
we started. This concludes the proof of 5.2.

REMARK. The remark at the end of § 4 may be repeated here with II
and N(II) replaced by g and ¥(g).

EXERCISES

1. Consider an extension of A-modules
(E) 0>C—>X—->4->0
and the connecting homomorphisms

®f: Hom (C,C)— Ext! (4,C)

©3: Hom (4,4) — Ext! (4,C)
Show that @i + @z j= 0 where i e Hom (4,4) and j e Hom (C,C) are
identity maps. [Hint: use Exer. v1,18.]

2. Given a K-algebra A and a two-sided A-module C, introduce a
Baer multiplication in the set F(A,C)of § 2. Show that the correspondence
established in 2.1 carries the Baer multiplication in F(A,C) into the addition
in H%(A,C). Carry a similar discussion for the sets Z(II,C) and X(g,C) of
§§4 and 5.

3. Let II be a group and C a left II-module. Consider a group
extension

© cLwln
and an extension of left Z(II)-modules

(E) 0— C- x5 () — 0.
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We shall say that (X) and (E) are related if there is a map k: W— X
satisfying
k(wyws) = kwy + (fwy)(kws)

and such that the following diagram is commutative
'
c——w—— I
L
B o
C— X —[1I)

where i(x) = x — 1 (x e II). Show that (X) and (E) are related if and
only if () and (E) correspond to the same class of F(Z(II),C) under the
correspondences

n: F(Z(dI),C) — E(II),C)
p: F(Z(1I),C) — X(I1,C)

established in §§ 3 and 4, i.e. if and only if (X) = ey 1(E).
4. Let g be a K-Lie algebra which is K-free, and C a left g-module.
Consider a Lie algebra extension

g f
&) C—bh—g
and an extension of left g°>-modules
(E) 0—C-L x5 gy —o.

We shall say that (X) and (E) are related if there is a map k: h— X
satisfying
k([ypysD) = (fydkye) — (fy)ky,)

and such that the following diagram is commutative:
g r
C———-—> b —_— g
L, L s
B o
C—X > I(g)
where i; denotes the natural map. Show that (X) and (E) are related if

and only if (X) and (E) correspond to the same class of F(g°,C) under the
correspondences

n: Fg*,C)— E(I(g),C)
@: F(g*,C)— 2(g,C)

established in §§ 3 and 5, i.e. if and only if (Z) = ¢ 1(E).
5. Let

(E) 0—C-HX—>4—0
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be an exact sequence of (left) A-modules, where A is a K-algebra. Assume
that 4 is K-projective. Then A ®@x 4 is a projective A-module; let N
be the kernel of p: A ® 4 — A defined by setting

P(A ® a)= Aa.
Choose a K-homomorphism u: 4 — X such that gu = identity, and

consider the commutative diagram

0—N—AQA——>A—0

A

0—C—— X —A4—0
with exact rows, f being defined by setting
J ® a) = Mua);

v is induced by f; and i denotes the identity map of 4.

Show that the image of v ¢ Hom, (,C) under the connecting homo-
morphism Hom, (N,C)— Ext} (4,C) is the characteristic class of the
extension (F).

[Hint: identify X with 4 4- C by using the map

x = (px, p~H(x — upx)).]
6. Consider an extension over A with kernel C:
(F) cLrl.a
in the sense of § 2. Let iy and i, be the maps
ir: I'—=J(D), irn: A—=JA)

defined by ir(») =7y ® 1 — 1 @ p*, ix(H =211 —1 @ A*. LetIbe
the sub-K-module of J(I') generated by the elements (gcju and u(gc)
(c € C, u eJ(I"); show that I is a two-sided I'-module, using (2) of §2.
Let X = J(I')/I be the quotient which is now a two-sided A-module; and
let £ be the natural epimorphism J(I')— X. Then the map f : JI)
—J(A)inducesa: X—J(A). Define j=kip: I'>X and f= jg: C—X.
Show that « and § are homomorphisms of two-sided A-modules, and that
the bottom row of the commutative diagram

(F) ctl.r. A

R

(E) 0 C X ——J(A) 0
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is exact. Thus we obtain a mapping
n: F(A,C) — E(J(A),C)
which to each extension (F) over A with kernel C associates an extension
(E) of A®-modules.
Assume now that A is K-projective, and prove that the following
diagram is anticommutative
FAC) —— HA,C) = Ex&(A,C)
n L'
)
E(J(A),C) — Exth(J(A),0),
where ® and o are the correspondences of 1.1 and 2.1, and ¢ is the
connecting homomorphism corresponding to the exact sequence
0— J(A) — A* > A—0.
[Hint: use the standard complex and proceed as in the proof of 3.1.]
7. Let A be a K-projective K-algebra, and let C be a two-sided
A-module. Consider an extension over A with kernel C
(F) ctrLlia
and an extension of two-sided A-modules
(E) 0— C- x -2 J(A)— 0.

We shall say that (F) and (E) are related if there is a map k: I' > X
satisfying
k(y1ys) = (frokys) + (ky)(fr2)

and such that the following diagram is commutative:
c-2>r-Ls A
R
B o
C— X—J(A)

where i\())=2A® 1 —1Q A*. Show that (F) and (E) are related if
and only if their classes in F(A,C) and E(J(A),C) correspond to each other
under the correspondence # of Exer. 6.

8. Let g be a Lie K-algebra and C a (left) g-module. In the direct sum
C + g we introduce a Lie algebra structure by setting

[(crx1)s(€25x2)] = (3165 — X565, [x1,%5]).
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There results an extension
® CCtg-g
with the maps g and 4 defined in the obvious way. Show that this exten-
sion is the inessential extension in X(g,C). Show that each Lie algebra
homomorphism u: g— C + g satisfying su = identity, is of the form
ux = (px,x) where ¢: g— Cis a crossed homomorphism. Note that the
above is valid without the assumption that g is K-free.

9. Apply the above exercise to the case when g = L(M) is the free Lie
algebra of a K-module M (xi1, Exer. 5). Show that for any (left) L(M)-
module C, every K-homomorphism M — C admits a unique factorization

M- L(M) N C, where @ is a crossed homomorphism. [Hint: Consider
the Lie algebra homomorphism L — C + L(M) which when composed
with C -+ L(M)— L(M) gives the identity.]

10. Formulate exercises analogous to Exer. 8 and 9 for groups. Here
M will be an arbitrary set, and L(M) will be replaced by the free group
generated by the elements of M.

11. Let f: I'— A be an epimorphism of K-algebras, A being a supple-
mented algebra with e: A — K. For a left A-module 4, we shall say that
a K-homomorphism

a: I'> 4

is a crossed homomorphism with respect to f (or simply an f-crossed homo-
morphism) if
«(y1ye) = (ay)(efya) + (fy)ys)-
We shall say that I' is projective with respect to f if, for any epimorphism of
left A-modules
g: A—> A",
any f-crossed homomorphism «”: I' - 4” may be factored a” = ga,

where a: I' - A is an f-crossed homomorphism.
Letnow Cbe a left A-module. Assuming that an extension of algebras

(F) C—>T—A
corresponds to an extension of left A-modules
(E) 0>C—>X—>IA)—0

under the correspondence 7 of 3.1, show that I is projective with respect
to £, if and only if X is a projective A-module.

12. Let f: W—1II be a homomorphism of groups. We shall say that
W is f-projective if, given any Il-epimorphism g: A — A" of left IlI-
modules, and any crossed homomorphism (rel. to f) a”: W— 4", there
exists a crossed homomorphism (rel. to ) a: W — A4 with ga = «”.
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Letnow C be a left [I-module. Assuming that a group extension
) c—w-n
and an extension of left Il-modules
(E) 0—>C—X—III)—0

are “related”” (cf. Exer. 3), show that W is f-projective if and only if X'is a
projective Z(II)-module.

13. Let f: F—1II be an epimorphism of groups, F being a free
group,and R = Ker f. Let[R,R] denote the commutator subgroup of R;
then [R,R] is an invariant subgroup of F. Show that, in the induced exact
sequence

RI[R,R]— FJ[R,R] =T,

the group F/[R,R] is f’-projective (in the sense of Exer. 12).

14. Formulate the analogue of Exer. 12 for Lie algebras. Consider
a Lie algebra epimorphism f: L(M)— g with kernel §. Show that [f,h]
is an ideal in § and in L(M), and that in the extension

) b/[5.5] — L(M)/1.6] = g

with f’ induced by f, the Lie algebra L(M)/[h,h] is f’-projective.
[Hint: use Exer. 9.]
15. Consider a group extension

1) c—w-LT

and let / = 0 l¢p7Y(Z) e H¥II,C) be the cohomology class determined by
(2). Consider the homomorphisms

1) H?*(Il, Hom (C, D)) - H***11,D), oD
(la) H, ,11,DYy—~ H(I1,D" ® D), D

given by the products h—h U/ and A" — k"N [. The Il-operators on
Hom (C,D) and D’ ® C are given by

(f)e= xf(xo), feHom (C,D),
x(d ® ¢)=d'xt ® xc.

The cup- and cap-products are those of x1,8, (8) and (8a).
Prove that if W is f~projective, then (1) and (la) are isomorphisms for
p > 0, while for p = 0 we have exact sequences

Homy (W, D) - Homy; (C,D) — H¥I1,D)— 0
0—-H,(LD)>D Q@ C— D' QW
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where Homy (W, D) denotes the module of crossed homomorphisms
W — D with respect to f, and D’ @ W is the group generated by pairs
d’ @ w with relations (d; + dy) @ w = d; @ w + dy ® w. [Hint: pass to
the sequence (E): 0— C— X — I(II) — O related to (X), consider the
sequence 0 -~ C— X — Z(II) - Z— 0 in which X is II-projective, and
apply x1,9.5.]

Apply the above result to the sequences given in Exer. 13.

16. Formulate exercises analogous to Exer. 13 and 15 for Lie algebras.

17. Let (Z): C— w11 be a group extension with W being f-
projective and with II finite of order r. Let/ ¢ H*(II,C) be the correspond-
ing cohomology class. Using Exer. 15 and xi1, Exer. 14, prove that / has
order r.

18. Consider a diagram of A-modules and A-homomorphisms

0 A’ A A" 0

| |

0 o C c’ 0

with exact rows. It is asked whether a homomorphism f: 4 — C can be
found so as to give commutativity in this diagram. A necessary condition
is the commutativity of

0
Ext"(C’, Dy—— Ext™*(C", D)
1‘”* 5 l”’*
4
Ext™(4’,D) — Ext"*Y(4",D)
for any A-module D and any integer n. In particular, taking D= C’,
n = 0, we have a necessary condition

049 = v*dc s
with j e Hom (C’,C’) denoting the identity map.
Is this last condition sufficient ?
Give the dual procedure.

19. Let A be an abelian group with a finite torsion group t4. Show
that ¢4 is a direct summand of 4. [Hint: use vii, 6.2.]



CHAPTER XV

Spectral Sequences

Introduction. This chapter is devoted to a purely algebraical study of
spectral sequences, which arise whenever a complex is given with a filtration
(i.e. a sequence of subcomplexes ordered by inclusion). In particular,
every double complex gives rise to two spectral sequences (§ 6). The
applications will be presented in Chapters xvi and xvi. In all these
considerations the multiplicative structure is left aside (see exercises).

Spectral sequences arose in connection with topological investigations
concerned with fiber bundles (Leray, C.R. Acad. Sci. Paris, 222 (1945),
1419-1422). The main applications are still in the domain of algebraic
topology.

The notion of a spectral sequence was first algebraicized by Koszul
(C.R. Acad. Sci. Paris, 225 (1947), 217-219); our exposition involves some
modifications. The theory could equally well be presented using the
““exact couples’ of Massey (Ann. of Math. 56 (1952), 363-396).

1. FILTRATIONS AND SPECTRAL SEQUENCES
A filtration F of a module 4 is a family of submodules {F?A4}, p running
through all integers, subject to the conditions
1 S D FPAD FRHILD ...
#))] U F?4 = A.
It is convenient to set F*4 =0 and F~°4 = A. We also sometimes
lower the index by setting F,4 = F~?4.

With each module 4 with a filtration F we associate a graded module

Ey(A) defined by
EJ(A) = FPA[F?+14.

Suppose that 4 is a module with differentiation d and a filtration F
compatible with d, i.e. such that
d(F?A4) C F7A.
The inclusion F?4 C A4 induces a homomorphism
H(F?A) — H(A)
315
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whose image we denote by F?H(A). In this way we obtain a filtration, also
denoted by F, of H(A).

We are particularly interested in the associated graded module
Ey(H(A)). Itis the direct sum of the modules

EJ(H(A)) = FPH(A)/F**1H(A).
In what follows, we shall frequently encounter commutative diagrams
c
I
A ——A—— 4"

in which the row is exact.
LeMMA 1.1. The map 7 defines an isomorphism

Im ¢/ Im ¢’ =~ Im .

Indeed we have Im ¢/ Im ¢" = Im ¢/ Ker # which is mapped by %
isomorphically onto Im (@) = Im .

If we apply this lemma to the diagram
H(F?A)
H(F"“A)éH(lA) —> H(A[F?+14)
we obtain an isomorphism
3 EJ(H(A)) ~ Im (H(F*A) — H(A/F*+14)).
We define
Z%,(A) = Im (H(F?A) — H(F?A|F*+14)),

B?(A) = Im (H(A/F?A) — H(F?4/F**14)),
E%(4) = Z%(A)/BE(A).

Applying 1.1 to the diagram
H(F?4)

i

H(A[F?A) — H(F?A[F"*'4) — H(A|F?+14)
we obtain an isomorphism

“ E%(A) ~ Im (H(FPA) — H(A|F*+14))
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Combining this with the isomorphism (3) we obtain
®) E§(H(A)) ~ E5(4).

We denote by E,(4) the graded module > ,E%(A4); it is isomorphic with
the graded module E(H(A)) associated with H(A).

We shall now introduce modules Z?(A4), B?(4) and E?(A4) which, in a
sense that will be specified later, approximate the modules Z%(A4), B%(4)
and E%(A). We define for each r; 1

ZP(A) = Im (H(FPA/F?+"A) — H(F?A|F*+14))
BI(A) = Tm (H(F*~"+14/F?4) - H(F"A|F*4))
EP(A) = Z2(4)/BY(A).

Setting r = o0 and using the conventions F*4 = 0, F~"A4 = A we find the
previous definitions. We have the inclusions

...CB*CHB?,,C---CB,L,CZz2C---CZP,,C2ZP C---

Further since 4/F?A is a direct limit of F*~"+14/F?4 and since the functor
H commutes with direct limits, we have

B? = U, BP.

In general, it is not true that Z%, is the intersection N Z7.
Applying 1.1 to the diagrams (in which we write F? for F?4)

H(F?|Fr+r)

l

H(F?|FP+1+1) — 5 H(FP[FP+l) — > H(FP+/Frr+l)
H(F?|F?+r)

H(F?+1 Frtry s H(FPH7|Frir+l) s H(FP+Y Frir+l)
we obtain isomorphisms

ZP|Zyy ~ Tm (H(F?[F?+7) — H(F**|F*+7+Y) ~ B I/BY
which yield an isomorphism
© oF: ZP|ZY.\ ~ BYII/BPT.
We define the homomorphism

dy: E}(A)— EF*'(4)
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as the composition
D

E” — Zp/Bp __,ZP/ 2 fi-{'/Bp+r_, Zp+r/Bp+r E’H".
It follows that
%) Kerd? = Z2,,/B?,  Imd? = B?I]/BP+".

Thus in the diagram
p—1 a°
EP~'(4) —— EP(4) —— E}¥"(4)
we have
Imd?~"= B, ,/B? CZ?,,/BY = Ker df

which yields the natural isomorphism
Kerdf[Im dP™" ~ Z7,1/B} = Efy1(A).
Therefore if we introduce the graded modules

Er(A) = ZpEf(A)

and the endomorphisms d, of E,(4) defined by d? we obtain:

THEOREM 1.2. For each r > 1, the endomorphism d, of E(A) is a
differentiation of degree r. The graded homology module H(E,(A)) relative
to the differentiation d,, is naturally isomorphic with E, _,(A).

For r=1 we have BY=0 and Ef= Zy= H(F?/F**!). Since
E¥ = F?/F?+! we find that if we denote by d, the differentiation induced
in Ey= YE¥ by the differentiation d of 4, then H(E;) = E,. Thus the
theorem remains valid also for r = 0.

An alternative description of df may be obtained as follows. Applying
1.1 to the diagram
H(F?|F+7)

N\

H(FP—T-I"I/FP) > H(FP/FP‘{-I) N H(FP—'-I—I/FZH—I)
we obtain an isomorphism (for 1 < r < o0)
(8) EP(A) ~ Im (H(F?[FP+7) — H(F?="+1/Fr+1)),

From the commutative diagram
vy

H(F?/Fr+) LA H(F?—r+1/Fr+l)

l

H( Fp+r/ Fp+2r) — H( Fr+l / Fﬂ+’+1)
Py
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we obtain a homomorphism
Im ¢? — Im P+

which when combined with the isomorphisms (8) yields d?. If r = 1 then
g7 is the identity and so is the isomorphism (8). Thus we see that df is
simply the connecting homomorphism H(F?/F?+1) — H(F?+1/F?+2) from
the exact sequence 0 — FP+1/FP+2  FP[Fr+2 5 FP[FP+l 5 0,

The sequence of graded modules Ey(A4), E5(A), . . . , with the differentia-
tions dy, d;, ... and the isomorphisms H(E.(A)) ~ E, ,(4) (r = 2) is
called the spectral sequence of the module with differentiation 4 corre-
sponding to the filtration F. The reason for not including E,(A4) into the
spectral sequence will appear later.

2. CONVERGENCE

We shall now investigate the problem of the sense in which the spectral
sequence E,, Ej, . . . approximates the module E(4) ~ E,(H(A)).
The filtration F is said to be weakly convergent if

) Z5,(4) = 0 ZX(4).

We shall now show how in the case of a convergent filtration, the
spectral sequence ‘“‘determines” the module E,, which is its “limit.”
Consider any term E;, of the spectral sequence. In Ef we have the following

relations:
% ~ (Z%|BD)/(B%/BY)

zz,/BE— 0, (Z2/BP)

Bz [BY = U, (BYIBD).
Thus in order to show that the sequence E,, E,,,, ... determines E, it
suffices to show how the modules

z?iBp,  BYBY r>k

can be reconstructed from the spectral sequence. If r = k, these terms
reduce to Ef and 0. For r > k we first observe that Z?/Bf, is in the kernel
of the operator d,. Further, the natural homomorphism v, mapping
Z(E}) onto Ef,,; and which has B, ;/B} as kernel, satisfies

Z7|Bf = ¢y Z7/ B} 1]
BY|BY = y~'[B}/Bf 4]

This yields a recursive description of the desired modules.
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We shall now derive two characterizations of weakly convergent
filtrations. Applying 1.1 to the diagram

H(F?|F?+)

\

H(F?) — H(F?[FP+1) — H(Fr+Y)
we obtain an isomorphism
() ZA(A)|Z%(A) ~ Im (H(F?[FP+7) — H(F™+Y))

where the latter homomorphism is obtained by composition
H(F?|FP+7)>H(F™")—H(F?**'). Since (1) is equivalent with QZﬁ‘/Z’;’ozo
we obtain:

PROPOSITION 2.1.  In order that the filtration F be weakly convergent it
is necessary and sufficient that for each p the intersection of the images of the
homomorphisms

H(F?A|FP"A) — H(F?t14) r>1
be zero.

We define

R? = 3 Im (H(F ?+74) — H(F?A)) r>1

R = () FPH(4) = () Im (H(F?4) > H(A)).

The homomorphisms H(F?+14) — H(F?A) and H(F?A)— H(A) induce
homomorphisms
R?+1 — R?, R? -~ R,

PROPOSITION 2.2. The filtration F is weakly convergent if and only if
each R**! — R? is a monomorphism.
Proor. Consider the diagram

H(Fr+Y)

\

H(F?|F?+) s H(F*") - H(F?)

and let x € R?*1. Then x is in the image of H(F?*"), and it follows that
x is in the image of H(F?/F?*") if and only if the image of x in R is zero.
We thus obtain the relation

0, Im (H(F?/F?+7) > H(F) = Ker (R**! - R?).
r

Thus 2.2 follows from 2.1.
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We shall say that the filtration F of A is convergent if it is weakly
convergent and
N, FPH(A)=0

(i.e. R-® = 0). If we consider the homomorphism
u: H(A) — Lim H(A)/F?H(A)

defined by u,: H(A) — H(A)/F?H(A), we find that R~* = Ker u. Thus
for a convergent filtration, u is a monomorphism. We shall say that the
filtration F of A is strongly convergent, if it is weakly convergent and if u
is an isomorphism. Clearly a strongly convergent filtration is convergent.
In addition we can also consider the homomorphism
v: Lim H(A)/F?H(A) — Lim H(A/F?A)
induced by
v,: H(A)/FPH(A) — H(A/F*A).

Since each v, is a monomorphism, it follows that v is a monomorphism.
It can be proved that if R? = 0 for all p, then v is an isomorphism.

3. MAPS AND HOMOTOPIES

Let f: 4— A’ be a map of modules with differentiation, and let
filtrations of 4, 4" compatible with the differentiations be given. We say
that f'is compatible with the filtrations if

f(Fr4) CFr4’.
Such a map clearly induces homomorphisms
[*: H4) > H(A)
[¥: E(4) > E(A)
[E: Eg(4) > E(4)

and d.f ¥ = f*d, where d, denotes the differentiation both in E,(4) and
E(4').

If fand g are two such maps, we define a homotopy s: f =~ g of order
< k as a homomorphism s: 4 — A’ satisfying

ds +sd=g—f, S(Fr4) CFr*4’'.
PROPOSITION 3.1. If's: f = g is a homotopy of order < k, then f* = g*,
[ =gXandf} =gk forr >k
Proor. The fact that f* = g* is trivial and well known. To show
that f * = g for k < r < oo we utilize the natural isomorphism (8) of § 1.
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We consider the commutative diagram
H(F?A|F*" 4) N H(FP—r+14/Fr+14)
8
H(F?A'[FPYTA") — H(F*~"H14'[F?+14")
where the vertical maps are induced by the map g — f: 4 — A4’. Inview

of (8) of §1 it suffices to show that fau =0 if &k <<r < oo. Let then
x € F?A be such that dx € F?*"4. Since

gx — fx = sdx + dsx
and sdx € F**"*4’ and sx € F*~*4’ we have
sdx e FP*14’, sx € FP~™+14’,
This expresses the fact that gx — fx yields the zero element of
H(FP-+14'[Fr+14"),

THEOREM 3.2. Let f: A — A’ be a map of modules with differentiations
and with filtrations compatible with f. If for a certain index k, f;*: E,(A)
— E(A’) is an isomorphism then the same holds for every finite index r > k.
If the filtrations are weakly convergent, then f: E(A) — E(A") also is an
isomorphism. Finally, if the filtrations are strongly convergent then

*: H(A) — H(A’) also is an isomorphism.

PROOF. Since f; is an isomorphism and commutes with the differentia-
tion operators d, in E,(4) and E,(4’) it follows that f;, , also is an iso-
morphism. Thus £, is an isomorphism for all finite » > k. The weak
convergence conditions of F and F’ imply then that fy also is an
isomorphism.

Since the homomorphisms

FP~YH(A)/F?H(A) — F*71H(A")/F?H(A")
are isomorphisms for all p, it follows by recursion that the homomorphisms
F*"H(A)/F?H(A) — F*~"H(A")|F*H(A')
are isomorphisms for all p and all r > 1. It follows that
H(A)/FPH(A) — H(A")/FPH(A")
is an isomorphism. Therefore in the commutative diagram
H(A) —— Lim H(A)/F*H(A)
I* g

H(A') —~ Lim H(A')/FPH(4")
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gisanisomorphism. If the filtrations are strongly convergent, then » and
' are isomorphisms and thus f* also is an isomorphism.

For the last argument it suffices to assume that the filtration of 4 is
strongly convergent while the filtration of 4 is convergent. Indeed u is
then an isomorphism while %’ is a monomorphism. Since g is an iso-
morphism, it follows that guis an epimorphism so that %’ is an epimorphism.
Thus ’is anisomorphism and the filtration of 4" also is strongly convergent.

4. THE GRADED CASE

Suppose that 4 is a complex (i.e., 4 is graded and the differentiation
d of A has degree 1). We then require that each module F?4 of the
filtration of 4 be homogeneous, i.e., that F?4 be the direct sum of the
submodules 47+ M F?4. We introduce the notations

FPi4 = AP+1 M FPA = FPA?
EBU(A) = FPIA4[Fr+be-14,
The module Ef(A4) may be identified with the direct sum > E§%(A4), so that
the module Ey(4) is doubly graded !
E(4) = quE(’)’ “(A).

Similarly the module Ey(H(A)) is bigraded by the modules
ERU(H(A)) = FPH*(A)[FPH?(4).
Asin § 1 we define for 1 < r < o
ZPYA) = Im (H*Y(FPA[F?**"A) — HP(F?A|FP+14)),
B?Y(A) = Im (HP+* Y (FP~"+14/F?A) — HP(F?A|FPt14)),
EPA(A) = ZDU(A)BPY(A).

Each of the modules E?(4) may be identified with the direct sum
SEPY, so that E(A) is doubly graded. The isomorphism EZZ(A)

q
~ E§(H(A)) still holds. The differentiation operator d,: E,— E, is
composed of homomorphisms

dPa: EPe s EPireril

i.e. d, has bidegree (r,1 —r). In all these bigraded modules the first
degree, p, is called the degree of the filtration, the second degree, g, is called
the complementary degree; p + q is the total degree.
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Sometimes to avoid negative numbers we find it convenient to lower
the indices using the rule

E,,= E"74
The differentiation then becomes
d;,q: E;,q - E;—r,q+r—1
and has bidegree (—r,r — 1).
The filtration F of the complex 4 will be called regular if for each n
there exists an integer u(n) such that

) H"(FP(4))= 0 for p > u(n).
We shall show that (1) implies
@ Z(A) = Z88(4)  forr>ulp+q+ 1) —p.

Indeed, from (2) of § 2 (in graded form) we have
ZPUAYZEI(A) ~ Tm (HPH(FP|FrHr) — HPHori(Fre)),
This last homomorphism admits a factorization
HPH(F?/FPTy Hp+0+1( Fri7) Hz»+<1+1( Fp+1)

and the term in the middle is zero if p 4+ r > u(p 4+ ¢ + 1). This proves
(2).

In § 2 we introduced the notion of a strongly convergent filtration by
requiring that the homomorphism

u: H(4) > Lim H(4)|F"H(A)

be an isomorphism. In the graded case we may consider the homo-

morphisms
u*: H*(A) — Lim H"(A)[F?H"(A).

If u is an isomorphism so is each of #"; the converse is false. But for
our purpose it suffices that each 4" be an isomorphism; therefore, in
the graded case, we shift to this weaker definition of strong convergence.
The last part of Theorem 3.2 remains then valid in the graded case,
provided the map has degree zero.
ProposITION 4.1. A regular filtration of a complex A is strongly

convergent.

Proor. (2) implies that the filtration is weakly convergent. We must
now verify that for each n

u": H"(A) - Lim H"(A)/F"H"(A)
is an isomorphism. Since F?H"(A) is the image of H"(F?A4) — H"(A),
it follows from (1) that F?H"(4) = 0 for p > u(n). Thus u” is an iso-
morphism.
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For a regular filtration we can give a better interpretation of the way in
which the spectral sequence {E,(4)} “tends’ to E(4) as “limit.”” Indeed,
for r > u(p 4 q + 1) — p we have the relations

Bf’qCB,:f’q‘_IIC- -CBYICZ == f’f1=Z,’.”q
and B%I! = v BP?, There results a direct sequence of groups and
epimorphisms
© EP1—> EPfy >

with E%? as direct limit. Each homomorphism in (3) is given by the
spectral sequence, since

P.q — EP4 P—1,q+7r—1
Er+1_Er /Imdr L,

5. INDUCED HOMOMORPHISMS AND EXACT SEQUENCES

Let A be a complex with a filtration F. We shall derive certain
homomorphisms and exact sequences involving the terms of the spectral
sequence of F, the modules E%%A) and H"(4). We shall abbreviate the
notation and write EP?, H", etc. instead of EP'%(4), H"(A), etc.

PROPOSITION 5.1.  EP? = 0 implies EP*= 0 for all s >r (s < o).
Indeed since BP*? = Z? it follows that the modules

BrtC Bt CZ21CZP
are all equal.

PROPOSITION 5.2. Letr < s< oo; ifE¥*=0foru+v=p-+4q—1,
p—s<uXp—r, then B = BY?. There results a monomorphism
EP?— EP1,

Proor. Take an integer ¢ such that r < t <<s. By (7) of § 1 we have

By Bt = Im e,

Since EP-%e+t-1 = 0, thus by 5.1, EP~%%*-1 =0, so that d7-%%**1=0
and BPY%, = BP?. If s= oo, the same conclusion follows from B%¢
= By

PROPOSITION 5.2a. Letr <s< co. IfEY*=0foru4v=p-+q-+1,
p+r< u<p-s, and if moreover s is finite or the filtration is weakly
convergent, then ZP? = ZP?. There results an epimorphism E!'? — EP?.

The proof is dual to the preceding one, when s is finite. If s is infinite
and the filtration is weakly convergent, we have Z%! = 1) ZP? and this

concludes the proof.
By combining 5.2 and 5.2a, one obtains conditions for E"? ~ EJ?

r<s< o).
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ProposITION 5.3. If E%"~* = 0 for u < p, then FPH" = H". There
results an epimorphism H" — E%" 7P,

Proor. The conditions imply F*H"= F**'H" for u <p. Since
H"= U F'H", we have H"= F’H". Since EG""? ~ F’H"[F*T'H",
the conclusion follows.

PROPOSITION 5.3a. If the filtration is convergent and E%"~* = 0 for
w> p, then FP*'H" = 0. There results a monomorphism E%"~? — H".

Proor. The conditions imply F*H" = F*t'H" for u > p. Since the
filtration is convergent we have OV F*H" = 0, so that F*1H" = 0. Since
EZ" P ~ FPH"/FP*1H" the conclusion follows.

CoROLLARY 5.4. If the filtration is convergent and E%'~*= 0 for
u # p, then H* ~ E%" 7P,

More generally we have

PROPOSITION 5.5. If the filtration is convergent and, for some integers
n, p and k (k > 0), we have E%"~* = 0 for u # p,p + k, then there is an
exact sequence

0 — EZthn—p-k _ gn _ EPR=P 5 (),

PrOOF. The homomorphism EZ%n-7—%  H™ is defined by 5.3a and
and has F?**H"asimage. The homomorphism H" — E%"~? is defined by
5.3 and has FPt1H" as kernel. Since 0=E%" ¥~F*H"/F*t1H" for
p <u<p+k, it follows that FP+*1H" = FP+*H™,

PROPOSITION 5.6. (a) If E¥*=0foru+v=n—1,u< p—r,and
for u + v=n,u < p, there is a homomorphism

1) H" — EP"™P,

(b) If the filtration is convergent and E}’ =0 for u + v =n + 1,
u>p—+r,and for u + v = n, u> p, there is a homomorphism

@) EPm=? 5 H",

(c) If (a) and (b) both hold, then (1) and (2) are reciprocal isomorphisms.

Proor. (a) follows from 5.1, 5.3 and 5.2.  Similarly (b) follows from
5.2a,5.1 and 5.3a. Finally, (c) follows from 5.1, 5.2 and 5.2a, and 5.4.

PROPOSITION 5.7. If the filtration is convergent, and if E}® = 0 for

u+t+v=n, u # pand #p — k (k > 0, given)
utv=n+1, uzp+r
ut+v=n—1, ulp—k—r,

then the following sequence is exact

) EP™=P _» H" > EP—hn-ptk,
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Proor. By 5.5, we have an exact sequence
00— EZ"? » H" — EE-Rn—ptk 5 (,
Moreover, 5.2a yields an epimorphism EP"~? — EZ"~? and 5.2 yields a
monomorphism EZ~#n~r+k . pp-lon—p+k  This concludes the proof.
We shall now give a new series of propositions. First we define a
generalization of the homomorphism

g . s ,q—7+1
d’?Q_ ETP(I_>E7?+rq r+1,
DerFiNITION:  Given a finite integer s > r, suppose that E%” = 0 for

utv=p+q+1, prHru<pts,
and for
ut+ov=p+q , p<ulp+s—r.
We define a homomorphism d?2: EP’? — EP+$¢—5+1 a5 the composition
EPa - Epa L Eptsa-st1 L, pp+sa—s+1 where Bis d24, and y and a are
defined because of 5.2 and 5.2a.
LEMMA 5.8. If EP~®9+1 = 0 (r < s << 0), we have the exact sequence
dﬂ;a

8

3 0—— Epf, — Ep"
PrOOF. By 5.1, EP—%#s-1 = (), thus d?~%%*~! = 0, and consequently
B = BP. Thus EPY = ZP1,/BY?, and this last module is the kernel of
dp?, by (7) of § 1.
PROPOSITION 5.9.  If the filtration is weakly convergent, and if, for some
integer s > r, E*® = 0 for

ut+v=p+4+q—1, ulp—r,

D+8,0—s+1
E )

and for

utv=p+yq, pFusp+s—r,
and for

utv=p+qg+1, ptrutp+s,

then we have the exact sequence
are

an H?+?—— EP LI E,”+s’“—s+1.
PrOOF. Since EF~5%1=0, we can apply lemma 5.8. Thus we
have the exact sequence (3). But E)", ~ EL? and EP? ~ EPYby 5.2 and

5.2a. Moreover, by 5.2, we have a monomorphism EP+s?-5+1 EP+sa-st1,
Thus (3) yields an exact sequence

dp:q
. paq T D+5,9—s+1
0 E% E; E! .

Finally, by 5.3 we have an epimorphism H?*?— E%?  This yields the
exact sequence (II).
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PROPOSITION 5.9a. If the filtration is convergent, and if, for some
integer s > r, E** = 0 for

ut+v=p+q-+1, uz>p+r
and for

ut+v=p+aq, pHr—sJu#p,
and for

utv=p+qg—1, p—s#Fulp—r,

then we have the exact sequence
qr—sa+s-1

(41 E:z—s,q+s—1 s Epa Hr+e,

r

The proof is dual to the preceding one.

It is now possible to combine the cases in which exact sequence such as
(1), (II) or (III) hold. For example:

THEOREM 5.10.  Assuming that r 2 1, let p and p’ be two integers such
thatp — p’ > r. If the filtration is convergent and E}* = 0 for u  p,p’,
then we have an exact sequence

A . .
e > E,?’";‘” — H" — EP'"™"7 — Erzmt+1—p > H™1_5 E? Mtl=D o L

THEOREM 5.11.  Assuming that r 2 2, let q and q' be two integers such
that ¢ —q=>r — 1. If the filtration is convergent and E!’ =0 for
v 7 q.9’, then we have an exact sequence

-er > EPT00 s gn s ENT0A —>ET"+1—’~"‘I—>H"+1-—>E,."+1—Q’4 NG

THEOREM 5.12. Assume that the filtration is convergent and that
EPt*=0ifp <0orq<0. Assume further that E* = 0 for 0 <q <n
(n>0). We then have isomorphisms

EX~ H? i<n
and an exact sequence

0— E3® - H" — EQ™ — ERT10 5 fgrtl,

Proor. The isomorphisms follow from 5.6(c). The exact sequence
follows from 5.7, 5.9 and 5.9a.

The dual result is

THEOREM 5.12a. Assume that the filtration is convergent and that
EL,=01fp<0o0rq<0. Assume further that E},= 0 for 0 <gq <n
(n>0). We then have isomorphisms

EZ 0~ H i i<n
and an exact sequence

H

2 2 2
wi1—> Eyy10—> Egp—> H, — E; o —0.
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To conclude, we list a number of special cases needed in the sequel.
Case A. H(FPA[FP*14) =0 for p << 0. Then EP?*=0 for p <0
(r £ ), and 5.6(a) yields the homomorphisms

H" — E3"™.

Case B. H?""(F?4)=0 for ¢ < 0. The filtration is regular (and
thus convergent), E»?= 0 for ¢ <0, (r< o0), and 5.6(b) yields the
homomorphisms

E} — H™

Case C. H(F?A[F"14)= 0 for p << 0and H**Y(F?4) = 0 forqg < 0.
The filtration is regular, E»? = 0 for p < 0 and for ¢ < 0 (r < 00), we
have the homomorphisms

EX - H" > E}"
and the exact sequence

0 E}°— H'—> E}' — E2° — H>.

There are three dual cases.
Case A'. H(FPA)=0 for p>0. The filtration is regular,
E,,= 0for p < 0 (r< ) and we have homomorphisms

E02,n —-H,.
Case B'. H""(F?A[F**'4)=0 for ¢>0. Then E;, =0 for
g < 0 (r < o) and we have homomorphisms
H,—EZ,

Case C'. H(F?A)= Ofor p > 0and H**Y(F?A[F?*14) = 0forq > 0.
The filtration is regular, E] , = 0 for p < 0 and for ¢ < 0 (r < 0), we
have the homomorphisms

Eg,n —H, — E,zho
and the exact sequence
H,—Ej,—~E}, —~ H, —~ E};—0.
We shall consider two more cases:
Case D*. HP(F?A4) =0 for ¢ <k and H"*Y(F?A[F**14)=0 for
q >k -+ 1. Thefiltration is then regular and 5.11 yields the exact sequence

N Eg—k,k — Hn > E;L—k—l,k—;—l - E;L—k+1,k - Hn+1 — E;t—k,k+1 e

Case E¥&. H(F?A|F"A)=0for p<<k and H(F’A)=0forp>k-+1.
The filtration is then regular. By 5.2 and 5.2a, we have E, = F, and
5.5 yields an exact sequence

0 — Ektin—t-1_, gn_, Eknt_, 0,
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The homomorphisms obtained in cases 4, B, A’, B,” will be called edge
homomorphisms. The exact sequences obtained in cases C and C’ will be
called the exact sequences of terms of low degree.

So far we have dealt with spectral sequences connected with a specific
complex with a filtration. In the applications that will be given in the
next two chapters, the situation will be somewhat different. We shall
encounter situations in which the complexes and the filtrations will be
constructed with a large degree of arbitrariness. It will however turn out
that the homology modules of these complexes, the filtrations of these
homology modules, and the spectral sequences involved will be “inde-
pendent” of the choices involved in the construction of the complexes.

Because of this it will be necessary to develop a notation and termin-
ology which will allow us to handle spectral sequences without explicit
reference to the complex and its filtration from which the spectral sequence
results.

Let > B”? be a doubly graded module and > D™ a graded module. We
shall use the notation

BIM] = Dn
»

to say that there exists a complex 4 with a regular filtration F such that
H"(A) is isomorphic with D" for all n, and such that the terms E$%(A4) of
the spectral sequence of the filtration F are isomorphic to B¢ We
indicate the degree of the filtration under the arrow, because when the
terms B™? have an explicit (and sometimes complicated) form it may be
impossible to tell which of the two integers involved is the degree of the
filtration and which is the complementary degree.

6. APPLICATION TO DOUBLE COMPLEXES

Let A = > A™" be a double complex with differentiations d; and d,, as
defined in 1v,4. With this double complex, there is associated a (single)
complex with total differentiation d and homology modules H"(4).

We introduce the bigraded module Hy(4) which is the homology
module with respect to the differentiation d;. We regard Hy(A4) as a
double complex with differentiation d; = 0 and with d, induced by the
differentiation d, in 4. Similarly we define the double complex Hy(4)
which is the homology of A with respect to d,. We may thus also con-
sider the modules Hi;Hi(A4) and H;Hy(A), bigraded by Hf{?H;(A) and
HP?Hy(A) respectively.

We introduce two filtrations F; (the first filtration) and Fy; (the second
Sfiltration) as follows

Fld= 3 34", Fjd= 3 SA».

rZp ¢ $2¢ p
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These filtrations regarded as filtrations of the (single) complex associated
with 4 are compatible with the total differentiation operator d. There
result two filtrations of H(A4) and two spectral sequences which we call
the first and the second spectral sequence of the double complex 4. The
term EP? of the first spectral sequence will be denoted by I7*?. The term
EP? of the second spectral sequence will be denoted by I1Z?; the switch of
indices is justified by what follows. The module H(A) with its graduation
and two filtrations, and the two spectral sequences will be called the
invariants of the double complex A4.

The module FPA/FP™'A may be identified with >A4”?% Thus the

module I, associated with 4 by the filtration F; may beqidentiﬁed with 4
itself. The differentiation operator in I, is then easily seen to be given by
the homomorphism d?. Consequently, the homology module of I, i.e.
the module I, may be identified with Hy(4).

The differentiation operator dr, of I, (i.e. of the term E\(A4) for the
first filtration) is the connecting homomorphism for the homology modules
of the exact sequence

0 — FPFYFp+? — FP/FP+® — FP/FP+1 0.

Let x € H}%(A4) be an element of bidegree (p,q) of Hy(A4), and let a € A??
be an element representing x. Then dyx = 0 so that dx=dx. It
follows that the connecting homomorphism H(FP/FP*™1) — H(FP*+/FF*2)
is induced by d,. Thus if I, and H;(A4) are identified it follows that the
differentiation d;; of I, coincides with the differentiation d; of Hy(A).
There results the identification

(1) Iz(A) = HIHII(A)'

This identification is compatible with the double gradings of the modules
involved.

To compute the initial term E, of the spectral sequence for the second
filtration we resort to the following trick. We introduce the transposed
double complex ‘4 defined by

tADa a, 12 q — a0 t i — a,p
AP = Ao, dre = dg, Bt = 4o,

The double complexes 4 and ‘4 have the same associated single
complex 4. Further, the second filtration of A is the first filtration of ‘4.
Thus the required term E, is H{H(!4). This latter term coincides with
the transposed of the bigraded module Hy; Hy(A4). Thus if we denote by
I1, the transposed of the term E, for the filtration Fy; of 4 we obtain

@ Iy(A) = HyHy(4).
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This is the reason why earlier in defining II? we transposed the degree of
the filtration and supplementary degree.

A map f: A— A’ of double complexes is always compatible with the
filtrations F; and Fy;. It therefore induces maps of the respective spectral
sequences.

PROPOSITION 6.1.  Two homotopic maps of double complexes induce the
same maps of the invariants.

Proor. Letf,g: A — A’ be the mapsin question and let (s,,5,): f ~ g
be a homotopy as defined in 1v,4. There results a total homotopy s in the
associated (single) complexes. This homotopy is of order <1 with
respect to the filtrations F; and Fy;.  Thus 3.1 implies that f and g induce
the same homomorphisms 12%(4) —I2%(4") and 1I2%(A4) — 112%(4") for
r=2.

Incidentally, the above fact is the main reason for defining the spectral
sequence as beginning with the term E,, rather than with the term E; (or
even with the term E, composed of F?A/FP+14).

We shall derive various relations between the modules 127, 112? and
H™(A) of a double complex 4 under the assumption that some terms 4?¢
are zero. All the results follow from those of § 5.

Case 1. A?*=0if ¢ < 0. The filtration Fj is regular. We are in
Case B for the filtration F; and in Case A for the filtration Fy;. There
result edge homomorphisms

20 » H* 1130

Case 2. A™*=0if p <0 or ¢ <0 (i.e. the double complex 4 is
positive). Both filtrations are regular and we are in Case C. 'We obtain
edge homomorphisms

20— H" — 1130

g™ — H" — 13"
and exact sequences for terms of low degree
0—->1°—H -1 120 — H?
0119t - A - 1110 — 119% — H?

Case 3. A”?= 0 for g # 0,1. Both filtrations are regular, F; is in
Case D and F; is in Case E°. We thus obtain exact sequences

N 13,0 > H" > Ig—l,l — 172L+1,0 > HrHl ]g,l RGN

011271 H* - 1120 — 0.
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Case 4. A??=0 for p~ 0,1 or ¢ #0,1. The sequences above
collapse to the exact sequences

0—-13% > H' 131 -0,
0 — 113! — H! - 11}° -0,

and the isomorphisms
'~ H? ~ 11}

The above cases were geared towards applications to cohomology and
right derived functors. For applications to homology and left derived
functors, we need four dual cases. These can be most conveniently
stated using the principle of lowered indices:

Apg=A7 I =179 1, =129 H,=H™"
We then consider
Casel: 4,,=0 ifg<0
Case2’: 4,,=0 if p<<Oorg<0.
Case3': 4,,=0 ifg #0,1.
Cased’: 4,,=0 if p#0,1 orq+#0,1.

The conclusions in these cases are obtained from the cases 1-4 by
lowering indices and reversing all arrows. The only difference is that
in Case 1 it is the filtration Fy; that is regular.

ReMARK. If the first differentiation operator d; in A4 is zero then we
have Hi(A) = A and

H(A) = Hy(A) = HiHy(A) = HyHi(A).

The module H(A) is then bigraded and coincides with I, and II,. All the
differentiation operators in the spectral sequences are zero. Further, in
Case 1, the composite map I3° — 13 is the identity map.

7. A GENERALIZATION

We shall indicate here a more general setting in which the theory of
spectral sequences may be developed. This generalization is particularly
interesting for geometrical applications (see below).

We shall assume that for each pair of integers (p,q) such that
—0 < p<g< 0 a module H(p,g) is given. We shall write H(p)
instead of H(p,00) and we shall write H instead of H(—c0,0).
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Given two pairs (p.g), (p’,¢") such that p< p’, ¢ < ¢’ (notation:
(p,9) < (p',q")) we shall assume that a homomorphism

e)) H(p',q")— H(p,q)
is defined.

Given any triple (p,¢,r) such that —o0 < p < g < r< 0o we shall
assume a connecting homomorphism

2 0: H(p.q) — H(g,r)
is defined.
The above three primitive concepts are subjected to the following
axioms
(SP.1) H(p.,q)— H(p,q) is the identity.
(SP.2) If (p.g) < (p',9) < (p",q") then the diagram

H(P”,q") — H(P,t])

H(p'.q)
is commutative.
(SP.3) If (p.q.r) < (p',¢’,r") then the diagram

H(P',q’) —_— H(ql:r,)

H(p,q) — H(g,r)
is commutative.

(SP.4) For each triple (p,q,r) the sequence

8
-~ H(q,r) — H(p,r) — H(p,q) — H(q.;r) — " - -
is exact.
(SP.5) For a fixed g the direct system of modules

H(g.q)—~ H(g—1,9)— = H(p,g)— H(p — 1,9~ - - -

has H(—o0,q) as direct limit (under the mappings H(p,q)—H(—0,9).
From (SP.1) and (SP.4) we deduce that H(p,p)=0. From (SP.3) we
deduce that (2) admits a factorization

@) H(p.g) ~— H(q)— H(g.»).

This indicates that we could postulate (2) only with r = co and define (2)
in general using (2'). Axioms (SP.3) and (SP.4) may then be weakened by
replacing r by co. It can be shown that the weaker system of axioms
implies the stronger one.
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Usually the modules H(p,q) will be graded. It is then assumed that
(1) is a map of degree zero while (2) has degree 1.

Example 1. Let 4 be a module with differentiation d and filtration F.
Define H(p,q) = H(F?/F*)where F~° = A, F* = 0. For (p,q)<(p’,q")we
have a natural map F?/FY—F?/F? which induces (1). For each triple
(p.q,r) we have an exact sequence

0— FIYF"— F?/F"— F?/F'—0

which induces (2). Axioms (SP.1)—(SP.5) are readily verified. This is
the case studied earlier in the chapter.

Example 2. Let X be a topological space and {X”} a family of sub-
spaces defined for all integers p such that X? C X?+1. We set X~* =0,
X = X and define

H(p.q) = 2. H"(X*,X")

where H*(X?,X?) is the n-th cohomology of the pair (X X?) with respect to
some fixed cohomology theory. The maps (1) and (2) are then the induced
homomorphisms and the coboundary operations of the cohomology theory.
Axioms (SP.1)—(SP.4) are consequences of usual properties of cohomology
groups. Axiom (SP.5) is not valid in general, but depends on the spaces
involved and the cohomology theory that is being used.

Example 3. In the situation of example 2 set

H(p,q9) = 2, H(X",X™)
using the relative homology groups of the pair (X—?,X~9).

We now return to the abstract situation governed by the axioms
(SP.1)~(SP.5) and define

F*H = Im (H(p) > H)
Z7 = Im (H(p,p+r) — H(p,p+1))
B? =1Im(H(p —r+ 1,p)— H(p,p + 1))
E?=Z7/BY

where 1< r< 0, —00 < p < 0. It follows readily that FPH is a
filtration of H. All the results of § 1, 2, 4, 5 now carry over without any
change. The questions studied in § 3 require some care.

We consider two systems {H(p,q)} and {H'(p,q)} with homomorphisms
(I)and (2). A map f of the first system into the second is a family of maps
(p.9: H(p,q) - H'(p,q) which properly commute with (1) and (2).
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Clearly finduces maps f ¥: E,— E, for 1 < r < oo0. If gis another map
of {H(p,q)} into {H'(p,q)} then we say that f and g are k-equivalent,
k = 0, (notation f ~ g) if the composition

H(p.q)— H'(p.q)— H'(p — kg — K)

is zero for all (p,q), where y = g(p,q) — f(p,q). As an analogue of 3.1 we
prove that f ~> & implies f¥ =gk forr>k. Asin the proof of 3.1 we

must show that the composition

H(pp+1—H(pp+n—H(@p—r+1Lp+1)

iszero. This, however, is immediate, since the second map can be factored
as follows

H(pp+nrn—-H(p—kp+r—k)—H(@p—r+1p+ 1.

This argument, incidentally, gives a new proof for 3.1. The remaining
results of § 3 carry over without change.
To conclude we observe that the exact sequences

= Hp+1)—Hp)—>Hpp+1)—Hp+1)—---
taken for all finite integers p may be recorded in a single diagram

C——C
@) N
E,

where C= > H(p), E,= >, H(p,p+ 1). Diagram (3) is an exact
couple in the sense of Massey (Ann. of Math. 56 (1952), 363-396, 1952).
This again provides an alternative exposition of spectral sequences.

EXERCISES

1. Let A and A’ be two K-algebras, and I'= A @z A’. Let 4
(resp. A, A”) be a A-complex (resp. A’-complex, resp. I'-complex).
Suppose we are given a map of I'-complexes

p: AQr A — A"

such that ¢ maps F?(4) ® F¥(A4’) into F*7(4").
Show that the homomorphism «: H(4) @ H(4A")— H(A") induces
maps
@77 EJ(H(A)) ® EY(H(A')) - E§+P(H(4"))

compatible with the gradings.



EXERCISES 337

2. Using isomorphism (4) of § 1, give another definition of the map
@»? of Exer. 1, by defining maps
ZE(4) ® ZE(A") > Z57(4")
which induce maps of
BL(4) @ Z4(A4)  and  Z%(A) ® BE(4)
into B2?'(4").
Show that the maps
§™?": EL(A) ® E4(4')— ELM7(4")
may be obtained by “passing to the limit”” from maps
QP ENA) @ EY(4')—~ EPF7(4")
obtained by defining maps
ZN(A) @ ZV(A)) > ZP(A").
Define now on E(4) ® E,(A") a differentiation d, by setting, for a € E?(A),
a’ e EF'(4),
dfa ® a’) = (da) ® ' + (—1)’a @ (d,a);
show that the maps ¢?? are compatible with the differentiations of
E(A4) ® E(A’) and E(A"). Passing to homology, the maps
HY(E(4)) ® H”(E(A") —~ H™"(E(A")
are precisely the maps @2%; (by using the natural isomorphisms H?(E,(4))
~ EPy(A), HP(E(A)) ~ Ey(A)), HP7(E(4") ~ EXF(4"),
3. Let 4 be a graded K-algebra with a differentiation satisfying
d(aa’) = (da)a’ 4 (—1)?a(da’) p = deg. a.

Then, taking A= A"= K, 4"= A" = A, apply Exer. 1 and 2 to the
present situation.

4. Let {479}, {4'7¢}, {4"%} be three double complexes. Consider
the double complex

Ct'=3T4™ Q A", p+p=s, q+q=t
with differentiation operators ¢, and d, defined as in1v,4. Assume we are
given a map of double complexes

Cs,t - A”s,t

Consider the first filtration on {477}, {4'*"} and {4"*!}; show that
Exer. 1 and 2 may be applied to corresponding spectral sequences. The
same result applies for the second filtration.
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5. Let A be a double complex with differentiation operators d; and d,.
Denote B; = Imd,, Z; = Ker d,, and show that these are double com-
plexes in which the first differentiation operator is zero. Similarly
introduce By(4) and Z;(A4). Consider the doubly graded module

C(A4) = Z(A) O Zi(A) = Z(Zy(A)) = Z(Z((4)).
Clearly C?%(A4) = A»?* N Z(A). Define the maps in the diagram
C(4) = Z(Z(4))
. f ly
H(B{(4)) — H(4)  Hy(Hy(4))

where k and f are defined by inclusions By(4) C 4, C(4) C A, while g is
defined by the natural homomorphisms Zy; — Hy; and Z; — Hy.  Show
that g is a map of doubly graded groups, while k and f'are compatible with
both and the first and the second filtration. We denote by

fri C(4)— I(4) = 3 FYH(A)[FP* H(A)

the induced map of the associated graded groups. Similarly we may
introduce fi;, k; and kyp.

6. With the notations as above, establish the equivalence of the follow-
ing two propositions:

(a) If a,b € A and dia = dyb, dya= 0, then there is ¢ € 4 such that
dydyc = dya.

(@') g is an epimorphism.

Assuming that the above conditions hold, show that:

() f(FFC)= FH(4),  f(FHC) = FiH(A).

(ii) f, f; and f;; are epimorphisms.

(i) the first filtration of A is weakly convergent and satisfies Z,(A4)
= Zy(A).

All the differentiation operators in the first spectral sequence of A4 are
then zero and one obtains an isomorphism ¢: I,(4) ~ Hy(Hy(A)).
This isomorphism satisfies ¢f; = gy = g. [Hint to (i): if ae > A?F>%*

0sisr

is a d-cycle, then a is d-homologous to some element of > C?+¢%;
O=sisr
proof by induction on r.]

7. With the notations of Exer. 5 show that an element u € C(4) is in
the kernel of g if and only if there exist elements b,c € 4 such that
u=db + dyc, dyb = 0. Establish the equivalence of the following
conditions:
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(b) If a € A is such that d,dja = 0, then there exist elements b,c € 4
satisfying dya = d,b -+ dc, dyb = 0.
(0") g(Z(By(A))) = O.
Assuming that the above conditions hold, prove:
(iv) Ker g = Z(By(A4)) + Ker f [Hint: prove Ker f CKerg and
Ker g C Z(B((A4)) + Ker f1.
(V) k(HP(B(A))) C k(H™**7H(B((A))).
(vi) k; = 0.
(vii) Im k C rp FPH(A).
(viii) If the filtration F; of A4 is convergent, then k = 0.

8. Assume that in the double complex 4 conditions (@) and (b) of
Exer. 6 and 7 are both satisfied. Establish the exact sequence

H(B{(A)) — H(A) ~— Hy(Hy(A) — 0

where / = gf~, and show that the maps are compatible with both filtra-
tions. In particular, ky = 0 and = ¢: 1,(4) ~ H(Hy(A)).

Show that if £k = 0 then both filtrations of H(A) are those obtained
from the double grading of H H(A) using the map /=%

Establish the equivalence of the following conditions:

(0 k=0;

(d) The filtration F; of 4 is convergent.

9. Suppose that the double complex A is the direct limit of double
complexes A4, such that for each index «:

(1) A, satisfies condition (b) of Exer. 7;

(2) the filtration F; of A4, is convergent.
Then condition () holds in the complex 4 and the map k: H(By(A))—H(A)
is zero. If moreover A satisfies condition (a) of Exer. 6, then / is an iso-
morphism H(A) ~ Hy(Hy(A4)), which is compatible with both filtrations.



CHAPTER XVI

Applications of Spectral Sequences

Introduction. Inv,8, we have considered functors of several variables
and have studied the relations between the derived functors and the partial
derived functors. Our results there were rather incomplete, because a
complete treatment of the problem requires the use of spectral sequences
(see § 1).

These spectral sequences arise each time we have an associativity rela-
tion of the type

Hom (4, Hom (B,C)) ~ Hom (4 ® B,C).

There result two spectral sequences with essentially the same “limit,”
and with terms E, given by

Ext? (4, Ext? (B,C)), Ext? (Tor, (4,B),C).

This method provides a large number of spectral sequences. Among
others, spectral sequences are obtained for the homology of a group, an
invariant subgroup and the quotient group, as well as for the homology
of a Lie algebra, an ideal and the quotient algebra.

§9 is a modest attempt to show how these spectral sequences can be
applied to various problems in topology involving groups of operators.

1. PARTIAL DERIVED FUNCTORS

Let T(4,C) be a functor covariant in 4 and contravariant in C. In
addition to the right derived functors R"T we shall consider the partial
right derived functors R(3,T and R, T obtained by regarding one of the
variables as active and the other one as passive. According to v,8 we then
obtain natural maps

) R%,T— R'T, R T— R"T.

Let X be an injective resolution of 4 and Y a projective resolution of C.
As described in 1v,5, T(X,Y) is then a double complex. An argument
similar to the one given in v,3 shows that the invariants of this double
complex are independent of the choice of the resolutions and are functors
of 4 and C. The homology module of T(X, Y) clearly is RT(4,C).

340
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Using the method of xv,6 for computing the initial terms of the spectral
sequences we find
Hi(T(X,Y)) = R T(X,C)
so that
I, = HiH(T(X,Y)) =H(R(» T(X,C)) = Ry R(3 T(4,C).

With the double grading indicated we have

) I3 = RG)RE T
and similarly

Since the double complex T(X,Y) is positive, both filtrations are regular
and we thus have

? R4 n
4) RER&T = R'T,
7 RP n
®) RY,RET = R°T.
The above spectral sequences give rise to edge homomorphisms and exact
sequences for terms of low degree. It will be convenient to assume that

T is left exact so that R°T = R T= R%,T— T. Then the edge homo-
morphisms are

©) RT— R'T, R T— R'T

©) R"T — R), R T, R"T — R, R4, T
while the exact sequences take the form

8) 0— R, T— R'T— R},RT— R4 T— R°T
©) 0 —> Ry T—> R — R Ry, T —> R%T— RT.

We shall now show that the homomorphisms (1) and (6) coincide.
To this end we consider the (single) complex B = T(X,C) and define the
filtration F of B by FPB= YB" for n> p. The augmentation maps
define a map T(X,C)— T(X,Y) which maps the filtration F into the
filtration Fj of the complex T(X,Y). There results a commutative diagram

E}(B) — H"(B)

R, T(4,C) — R*T(4,C).

For the filtration F of B we find Ei(B) = B and E**(B) = E}(B) = H"(B)
= R{},T(A4,C). The upper horizontal map is thus the identity and so is the
left vertical map. It follows that the lower horizontal map and the right
vertical map coincide. These are precisely the two maps R, 7T — R"T
given in (6) and (1).
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We can now give a short alternative proof of the fact established in
v,8 that for a right balanced functor 7, (1) are isomorphisms. Indeed, T’
being right balanced we have R}, 7(4,C) = 0 for ¢ > 0 and 4 injective.
Therefore R{ RET=0 for ¢ > 0. Thus the first spectral sequence
collapses and yields R{;,T ~ R"T.

The discussion generalizes easily to the case when 4 and Ceach represent
a set of variables, some of which may be covariant and some contravariant.

Similar results may be obtained for left derived functors. The
sequences (4) and (5) become

(4a) LPLPT = LT,
(52) LPLOT= L,T.

2. FUNCTORS OF COMPLEXES

Let 7(4,C) be a right balanced functor covariant in 4 and contra-
variant in C. 'We shall consider here the case when 4 is a complex and C
is a module. Given a projective resolution Y of C, we obtain a double
complex 7(4,Y). The invariants of this double complex are independent
of the choice of Y and are functors of 4 and C.

We introduce the notation #"T(4,C) for the homology module
H™(T(A,Y)). Next, we have Hy(T(4,Y)) = RT(A4,C) so that

1) 127 = H*(R'T(4,C)).

Since HPYUT(A,Y)) = H?(T(A,Y,)), and since the functor T(4,Y,) is
exact for Y, projective, it follows from 1v,7.2 that we may identify
H*(T(A,Y,)) with T(H?(A),Y,). Thus HPYT(A,Y)) = T(H?(A),Y,).
Consequently applying Hy; we obtain '

o) 1127 = RUT(H?(4),C)

The double complex T(4, Y) falls into the case 1 of Xv,6 so that we have
the edge homomorphisms 13 — H" — I1%° which in this case become

3) H™Y(T(A4,C)) — #"T(A4,C)— T(H"(A),C).

PROPOSITION 2.1.  The composition of the homomorphisms (3) coincides
with the homomorphism

o': HY(T(A4,C))— T(H™(4),C)
of 1v,6.1a.

Proor. Let & denote the composition of the homomorphisms (3).
Clearly @ is natural relative to maps 4 — A’ of complexes. In view of
1v,6.1a it therefore suffices to show that & is the identity if 4 has zero
differentiation. In this case the double complex 7(4,Y) has the first
differentiation zero. Thus, by the final remark of Xv,6, & is the identity.
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In all the applications that we shall encounter in this chapter, the
complex A will be positive. In this case the double complex T(4,Y) also
will be positive and both filtrations will be regular. Thus we obtain

C)) H?(R'T(4,C)) = A"T(4,C)
) RT(H?(4),C) = R"T(A4,C).

A similar discussion can be carried out when A4 is a module and Cis a
(positive) complex. Using an injective resolution X of 4 we obtain a
double complex T(X,C) in which we regard the degree of C as the first
degree and the degree of X as the second. This yields modules 2"T(4,C)
= H™(T(X,C)) and spectral sequences

#) RPT(4,HY(C)) 2> #"T(4,C)
5" HY(R"T(4,C)) > #"T(4,C).

Both these cases are special cases of the more general situation considered
in chapter xviI in which both 4 and C will be allowed to be complexes.

Quite analogous results are obtained for left balanced functors. The
details are omitted.

3. COMPOSITE FUNCTORS
As a preparation for the later sections we shall consider here a functor
M T(4,C) = U(4,1(C)) = U'(V'(4),C)

represented in two different ways as a composite functor.

We first consider the case when U and U’ are both right balanced,
contravariant in the first variable, covariant in the second variable,
V is covariant and left exact while ¥’ is covariant and right exact. Then T
is left exact, contravariant in the first variable, and covariant in the second.
We wish to compute Rf,R%,T(4,C) and RE,)RE,\T(A4,C).

If in (1) we replace 4 by a projective resolution X and C by an injective
resolution Y, (1) yields a double complex. We have

HE(T(X,Y)) = HE(UX,V(Y)) = HI(U(X,, '(Y)) ~ UX,,H'V(Y))
= U(X,,RV(C)),

where the isomorphism is given by the map a’ of 1v,6.1a, applied to the
functor U(X,,C) which is exact since X, is projective and U is right
balanced. Consequently we find

HPH(T(X,Y)) ~ R*U(A,RV(C)).
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Thus we have a spectral sequence

#)) R?U(4,RV(C)) = R"T(4,C).
In the same way we have a spectral sequence
3 RWU'(L,V'(4),C) = R"T(4,C).
The spectral sequences (2) and (3) yield edge homomorphisms
“ R"U(A4,V(C))— R"T(4,0),
&) R*U'(V'(A4),C)— R"T(A,C),
(6) R"T(A4,C)— U(A,R"V(C)),
@) R*T(4,C)— U'(L,V'(4),C).

We shall show how these homomorphisms can be computed. We have
R*U(4,¥(C)) = HY(U(X,V(C)) = HY(T(X,C)) = R;,T(4,C),

and it follows from § 1 that (4) coincides with the natural homomorphism
R(,)T— R"T. Similarly (5) may be identified with the natural homo-
morphism R 7 — R"T.
Next we consider the composition of (4) and (7)
®) R "U(A,V(C))— U'(L,V'(A),C).
We have
R*"U(4,(C)) = HU(X,V(C)) = H"(U'(V'(X),C))
U'(L,V'(4),C) = U'(H(V'(X)),C)
and it follows from 2.1 that (8) coincides with the homomorphism o’ of
1v,6.1a. The composition of (5) and (6) can be computed similarly.
We also note here the exact sequences for terms of low degree that
result from (2) and (3)
©) 0— RYU(A4,V(C)) — RT(A4,C)— U(A,RV(C))
— R2U(A,V(C)) — R*T(A4,C)
(10) 0— RWU'(V'(A),C)— RT(4,C)— U'(L,V'(4),C)
— R2U(V'(A),C) — R*T(4,C)

We shall also have occasion to consider the case when in (1) all the
functors are covariant, U and U’ are left balanced and ¥ and V"’ are right



§4] ASSOCIATIVITY FORMULAE 345

exact. We then take projective resolutions X and Y of the variables 4
and C. The invariants of T(X,Y) yield spectral sequences

(2a) L,U(4,L,V(C) = L,T(X,Y),
(3a) LU'(L,V'(4),0) 7 L,T(X,Y).
These yield edge homomorphisms

(4a) L,T(4,C)— L, U(A4,V(C)),
(5a) L, T(4,C)— L, U'(V'(4),C),
(6a) U(4,L V(C))— L, T(4,0),

(7a) U'(L,V'(4),C)— L, T(4,C).

The rules for computing these homomorphisms are similar to the previous
case. The exact sequences for terms of low degree are

9a)  L,T(4,C)— LyU(A,V(C)) > U(4,LV(C)) — L, T(4,C)
— L,U(4,¥(C)) — 0
(10a)  L,T(4,C)— L,U'(V'(4),C)— U'(L,V'(4),C) — L,T(4,C)
— L, U'(V'(4),C)— 0.

4. ASSOCIATIVITY FORMULAE

We shall use the term ‘‘associativity formulae” for the type of iso-
morphisms established in 11,5 and 1x,2.

We begin with the situation described by the symbol (4.1, Bx,Cr.5)
where A, I and X are K-algebras. The identification of 1x,2.2 yields two
expressions for the functor

) T(A,C) = Homy g1 (4, Homg (B,C)) = Hompgyx (4 ®, B,C).
We are thus exactly in the situation described in § 3 with
V(C) = Homygy (B,C), V'(A)= A ®, B.
RV(C) = Ext% (B,0), L,V'(4) = Tor) (4,B).

Now assume that I' is K-projective, and let X be a A ® I'-projective
resolution of 4, and Ya I' ® Z-injective resolution of C. It then follows
from 1x,2.4 and 1x,2.4a that X is also a A-projective resolution of 4 and Y
is a Z-injective resolution of C. Consequently the spectral sequences (2)
and (3) of § 3 become (if I is K-projective):

)] Ext} g1 (4, Ext (B,C)) 2 R"T(4,C)
3) Extf. » (Tor} (4,B),C) = R"T(4,C).
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Assuming that
Tor2 (4,B) = 0 = Ext% (B,C) for n > 0,

both spectral sequences (2) and (3) collapse, and we obtain
()] Extpgr (4, Homg (B,C)) ~ Extrgyx (4 ®4 B,C).

This is a generalization of 1x,2.8a.
If we replace 4 by A and T' by A*, then the spectral sequence (3)
collapses and (2) becomes

® H?(A, Ext}; (B,C)) 2> Ext}.o 3 (B,0)

in the situation (, By 5 Cx) and under the assumption that A is K-projective.
This generalizes 1x,4.3.

We now replace (A,I',Z) by (K,I'%,X¢) and (4,B,C) by (I',Z,C) with
C a two-sided I' ® Z-module. Assuming that I' is K-projective, it
follows that I'® also is K-projective so that the spectral sequences (2) and
(3) apply. They become

H(T',H{(Z,C)) e RT(I,C)
Extlr g gye(TorZ (T',Z),C) = R"T(T',C).
Since I' is K-projective, the second sequence collapses to the isomorphism
R*T(I',C) ~ Extirgy) (I' ® £,0) = HY(I' ® Z,0).
Thus we obtain the spectral sequence
© HT,HY(Z,C)) = H*(I' @ Z,C)

under the assumption that I' is K-projective.

In view of x,2.1, the spectral sequence (6) applies also to the case when
I' and X are supplemented K-algebras provided both I' and X are K-
projective. However a stronger result may be obtained by directly
substituting A = 4 = B= K in (2) and (3). Then (3) collapses and (2)
becomes

™ Extt (K, Ext (K,C)) 2> Extp oz (K,C), r-zC
under the assumption that I' is K-projective.

There is an analogous discussion for homology. We consider the
situation (4 ,_r,5By,r_zC) and, using the identification of 1x,2.1, define

(1a) T(4,C) = A Qprer (B Q3 C)= (4 ®, B) Qrgx C.
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Then, under the assumption that I' is K-projective, we obtain the spectral
sequences

(2a) Tor)®T (4, Tor} (B,C)) = L,T(4,C)
(3a) Tor} ® (Tor}! (4,B),C) => L,T(4,C).
If Tor2 (4,B) = 0 = TorZ (B,C) for n> 0, then both (2a) and (3a)
collapse and we obtain
(4a) Tor*®T (4,B ®5 C) ~ Tor'®% (4 ®, B,C)

which is a generalization of 1x,2.8.
If we replace C by Z and I by Z*, then (2a) collapses and (3a) becomes

(5a) HZ, Tory (4,B)) = Tor; ®*" (4,B)

in the situation (54,5 By) and under the assumption that X is K-projective.

We now replace (A,I',X) by (A°,I",K) and (4,B,C) by (4,A,I") with 4
atwo-sided A ® I'-module. Assuming that I' is K-projective, the sequence
(2a) collapses and (3a) becomes

(62) H(T.H,(AA)) = H,(A @ I'.4).
For supplemented algebras we obtain similarly
(7a) Tor, (Tor) (4,K),K) = Tor2®T (4,K) Ap

under the assumption that I' is K-projective.

5. APPLICATIONS TO THE CHANGE OF RINGS

We apply the results of §4 to obtain more detailed results for the
“change of rings” as discussed in 1,6 and vi4. We assume a ring
homomorphism

¢: A>T

and adopt the various notations introduced in 11,6. We shall treat A and
I' as Z-algebras and apply the results of § 4.

Case 1. (4p,zI'y,rC). Then (la) of §4 with (A,I,X) replaced by
(A,Z,1) reduces to

(1), T(4,C)= AR, C= 4, ®rC.

The spectral sequence (2a) of § 4 collapses to the isomorphisms Tor? (4,C)
~ L,T(A,C). Thus the spectral sequence (3a) of § 4 yields

@), Torg (Tor} (4,1),C) = Tor? (4,C).
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The edge homomorphisms are
(€ Tory' (4,C) = Tor, (4,C)
), Tor2 (4,T) ®p C— Tor2 (4,C).

The homomorphism (3), coincides with the homomorphism f; ,, of v1,4.
If Tor} (4,T) = Ofor p > 0, then (2), collapses and (3), is an isomorphism.
We thus obtain a new proof of vi,4.1.1.

Case 2. (Ap,pI'),oC). Then (1a) of §4, with (A,I',Z) replaced by
(T',Z,A) reduces to

(1)2 T(A’C) = A ®I‘ (((p)c) =4 ®A C.

The spectral sequence (3a) of § 4 collapses to the isomorphism Tor2 (4,C)
~ L,T(A,C). Thus (2a) of §4 yields

). Tor} (4, Tor2 (T',C)) = Tor (4,0).
The edge homomorphisms are

). Tor2 (4,C) — Tor, (A4, C)

4), A ®p Tor2 (I',C) — Tork (4,C).

The homomorphism (3), coincides with the homomorphism f, , of vi4.
If Tor} (I',C) = 0 for ¢ > 0, then (2), collapses and (3), becomes an
isomorphism. We thus obtain a new proof of vi,4.1.2.

Case 3. (,A4,pI'A,rC). Then (1) of §4 with (A,I',X) replaced by
(A*,Z,T'*) reduces to

(1) T(4,C) = Homy, (4,C) = Homy (4,),C).

The spectral sequence (2) of § 4 collapses to the isomorphisms Ext} (4,C)
~ R"T(4,C), so that the spectral sequence (3) yields

), Ext{. (Torp (T',4),C) = Ext} (4,C).
The edge homomorphisms are

3)s Ext} ((,y4,C) — Ext} (4,0)

4); Ext} (4,C) = Homy. (Tor’ (T',4),0).

The homomorphism (3); coincides with the homomorphism f; ,, of vi,4.
If Tor;} (I',d) = 0 for p > 0 then (2); collapses and (3); becomes an
isomorphism. We thus obtain a new proof of v1,4.1.3.

Case 4. (pA,A'r,oC). Then (1) of §4 with (A,I,X) replaced by
(I'*,Z, A*) reduces to

), T(4,C) = Homy (4,C) = Hom, (4,C).
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The spectral sequence (2) of § 4 collapses to the isomorphisms Ext} (4,C)
~ R"T(A4,C), so that the spectral sequence (2) yields

(2), Ext}: (4, Ext}, (T',C)) = Ext} (4,C).
The edge homomorphisms are

), Ext} (4,9C) — Ext} (4,C)

(ON Ext} (4,C) > Homp (4, Ext} (I',C)).

The homomorphism (3), coincides with the homomorphism f; , of vi4.
If Ext} (I',C) = 0 for ¢ > 0, then (2), collapses and (3), is an isomorphism.
We thus obtain a new proof of vi,4.1.4.

6. NORMAL SUBALGEBRAS

Let A and T' be supplemented K-algebras and consider a K-algebra
homomorphism
¢: A>T

compatible with the augmentations. In I' we may consider the left ideal
I'. I(A) generated by the image of I(A) under . We shall say that the
map ¢ is (right) normal if the left ideal I'. I(A) is also a right ideal. If ¢
is normal then I'. I(A) is a two-sided ideal contained in /(I'). Therefore
T'/T. I(A) is again a supplemented K-algebra which will be denoted by
I'//p. From the exact sequence 0 — I(A) - A — K— 0 we deduce the
exact sequence
IF'RQpIA)—->T—->T K—>0

where I is regarded as a right A-module. Since I'. I(A) = Im(I" ®, I(A)
— I') it follows that I'//p may alternatively be defined by

T/lp=T @4 K.

THEOREM 6.1. If the map ¢: A —T is (right) normal and if T,
regarded as a right A-module, is A-projective, then setting Q= T'[/p we
have the spectral sequences

o) Ext} (4, Ext} (K.C)) = Exth (4,0), (44,:C),
(1a) Tord (Tory (4,K),C) = Tor! (4,C), (Ar,Co).

The operators of T//p on Ext} (K,C) and Tor2 (A,K) will be defined below.
Proor. With Q = I'//p we consider the situations

(QA,I‘QO’I‘C)’ (Al"sI‘Qn,QC)-
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These are cases 4 and 1 of the change of rings corresponding to the natural
map y: I' > Q. Thus the spectral sequences (2), and (2), yield

@ Extf) (4, Ext}: (Q,C)) > Extt (4,0),
(2a) Tor (Tor) (4,Q),C) = Tor! (4,0).

Since I' is right A-projective, v1,4.1.3 and v1,4.1.2 imply isomorphisms:
Ext} (Q,C) = Ext}: (I' ®,4 K,C) ~ Ext§ (K,C),
Tor[ (4,Q) = Tory (4,T ®, K) ~ Tor? (4,K).

This introduces left Q-operators in Ext} (K,C) and right Q-operators in
Tor} (4,K). Carrying out the appropriate replacements in (2) and (2a)
we obtain (1) and (la).

In most interesting applications A will be a subalgebra of I and ¢ will
be the inclusion map. In this case we say that “A is normal’’ instead of
“@ is normal’” and write I'// A instead of I'//¢.

Consider an invariant subgroup = of a group II. Then Z(w) is a
subring of Z(II). For x €II, y e # we have

x(y — 1) = (xyx1— 1)x, (y — Dx = x(x"yx — 1).

This shows that Z(I1) . I(w) = I(w) . Z(I1), and thus Z(=) is a normal sub-
algebraof Z(Il). Itis further clear that Z(I1)//Z(m) = Z(I) ® , Z = Z(I1/m).
Since Z(Il) is =-projective it follows that 6.1 applies and we obtain
spectral sequences

3) Extfy,(4,H(m,C)) = Ext} (4,C), (1o AoiC),
(3a) Torg/"(H(m,4),C) = Torl! (4,C), (A11/.0)-
Taking 4 = Z in (3) and C = Z in (3a) we obtain

G H*(I1/7,HY=,C)) = H™IL,0), G,
(43.) Hp(H/779Hq(7T,A)) :p-> Hn(H’A)’ AH‘

The sequence (4) is that of Hochschild-Serre (Trans. Am. Math. Soc. 14
(1953), 110-134).

As a second example consider an ideal b of a Lie algebra g over K, and
assume that ) and g/f) are K-free. Take

A=p, T=g, Q=(gb)
Then we have the natural maps
p: A—T, y: I'—> Q.
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It follows from x11,4.1 that I' regarded as a right A-module is free. In
particular ¢ is a monomorphism which may be regarded as an inclusion.
In xmi,1.3 we have studied the kernel of the epimorphism y and have
proved that its kernel is the left ideal I'. J(A) (which coincides with
I(A).T'). This proves that the subalgebra A of I is (both left and right)
normal and that Q = I'//A. It follows that 6.1 applies; we obtain
spectral sequences

) Extf, (4,H°(H,C)) = Extt. (4,C) (4/45,C)
(5a) TorS (H(H,4),C) = Tor} (4,C) (Ag>g/5C)-
Taking 4 = K in (5) and C = K in (5a) we obtain

() H*(g/h,H(H,C)) = H"(g,C), oC
(62) H ,(a/h,H(H,4)) =~ H.(g,4), A,

The sequence (6) is that of Hochschild-Serre (4nn. of Math. 57 (1953),
591-603).

7. ASSOCIATIVITY FORMULAE USING DIAGONAL MAPS

We shall consider a supplemented K-algebra A together with a diagonal
map D: A— A ® A and an antipodism w: A — A* satisfying condi-
tions (i)—(vi) of Xx1,8. Inthe situation (,4,, B, C) we may use the identifica-
tion of x1,8.1 to obtain two representations for the functor

1) T(A,C) = Hom, (4, Hom (B,C)) = Hom, (4 ® B,C).
Thus applying the procedure of § 3 we obtain spectral sequences
) Ext} (4, Ext? (B,C)) = R"T(4,0),

(€)) Ext} (Tor, (4,B),C) 2> R"T(4,C).

Here Ext? (B,C) and Tor, (4,B) are regarded first as left A ® A*- and
A ® A-modules and then converted into left A-modules using the maps
E: A>A®A*and D: A— A ® A. We recall that Ext? and Tor,,
stand for Extg, Tork.

Assuming that Tor, (4,B) = 0 for p > 0 the spectral sequence (3)
collapses and (2) becomes

) Ext} (4, Ext? (B,C)) 2> Ext} (4 ® B,C).
In particular, for 4 = K we obtain

&) Ext} (K, Ext? (B,C)) = Ext} (B,C). .
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If further Ext?(B,C) = 0 for ¢ > 0 then (5) collapses to the isomorphism
6) Ext% (K, Hom (B,C)) ~ Ext} (B,C).

A similar discussion applies to homology. In the situation (45,5 B,,C)
we use XI,8.1a to define

(1a) T(A,C)=AQr(BRC)=(4 Q@ B)®,C.
This yields spectral sequences

(2a) Tor? (A, Tor, (B,C)) = L,T(4,C),

(3a) Tor (Tor, (4,B),C) = L,T(4,C).

If Tor, (B,C)= 0 for ¢ > 0, then (2a) collapses and (3a) becomes
(4a) Tor2 (Tor, (4,B),C) = Tor2 (4,B-® C).
In particular, for C = K we obtain
(5a) Tor2 (Tor, (4,B),K) = Tor2 (4,B).
If further Tor, (4,B) = 0 for p > 0, then
(6a) Tor2 (4 ® B,K) ~ Tor’ (4,B).

The considerations of this section are applicable to groups and to Lie
algebras; we only need to replace A by Z(II) or by g°.

8. COMPLEXES OVER ALGEBRAS

Let A be a K-projective supplemented K-algebra. We shall consider
a positive complex C composed of left A-modules and in which the
differentiation is a A-homomorphism. To the functor

T(A,C) = Hom, (4,C)

where A is a left A-module, we apply the considerations of §2. The
spectral sequences (4') and (5’) of § 2 then give

Ext} (4,H%(C)) 2> #"T(4,C)

H(Ext} (4,C)) 7> #"T(4,C).
If we take 4 = K and denote Z"T(K,C) by #"(A,C) we obtain
(1) HY(AH(C)) 3> #7(A,C)
) HY(H?(A,C)) 2 HA(A,C).
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We recall that in virtue of the definition of #"T we have
‘#n(AaC) = H"(HomA (XaC))

where X is a A-projective resolution of K and Hom, (X,C) is regarded as
a double complex.

ProrposiTioN 8.1. If HY(C) = 0 for q 5 0, then we have the spectral
Sequence

3) HYH?*(A,C), = H™(A,HY(C))).

Indeed, in this case the spectral sequence (1) collapses to the iso-
morphisms S "(A,C) ~ H"(A,HYC)).

PrOPOSITION 8.2. If C is weakly injective, then we have the spectral
Sequence

“) H?(A,HY(C)) e H"(Hom, (K,C)).

Indeed, in this case H?(A,C)= 0 for p >0 so that the spectral
sequence (2) collapses to isomorphisms S#*(A,C) ~ H"(H%(A,Q))
= H"(Hom, (K,C)).

PROPOSITION 8.3. If the conditions of 8.1 and 8.2 are simultaneously
verified then

Q) H™(A,HY(C)) ~ H"(Hom, (K,C)).

This result may be interpreted as follows. The complex C may be
called a weakly injective resolution of H%C). The isomorphism (5)
then generalizes the usual rule for computing H*(A,H%C)) using an injec-
tive resolution of HY(C).

Similar considerations apply to homology. We denote by 4 a
negative right A-complex and consider the functor

T(4,C) =4 R, C

where C is a left A-module. In particular, taking C = K, we obtain
spectral sequences

(1a) H(H(A,A)) 2 H (A, 4)
(a) H{AH,(4)) = H (A, A)
where

for any A-projective resolution X of K.
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PROPOSITION 8.1a. If H (A) = O for p > 0, then we have the spectral
sequence

(3&) Hp(Hq(A’A)) ? Hn(AaHO(A))'

PROPOSITION 8.2a. If A is weakly projective, then we have the spectral
Sequence
(42) H(AH,(A)) = H (4 ®4 Z).

PROPOSITION 8.3a.  If the conditions of 8.1a and 8.2a are simultaneously
verified then

(5a) H (A HyA)) ~ H,(4 @, Z).

We shall apply the above results to the case A = Z(IT) where Il is a
group with unit augmentation. We consider a negative II-complex X.
Thus (using lower indices) X, = 0 for n < 0.

THEOREM 8.4. If X is weakly projective then for any left I1-module C
we have the spectral sequence

© H*(I1,H*(Hom (X,C))) = H"(Homy; (X,C))
while for any right Tl-module A we have
(6a) H,(TLH(A ® X)) = H,(4 @ X).

We recall that s e I operates on Hom (X,C) and 4 ® X as follows
(s )x = s[f(s7'x)], (@ ®x)s=as @ s x.

For the proof, we first observe that, by x,8.5, Hom (X,C) is weakly

injective and 4 ® X is weakly projective. Thus 8.2 and 8.2a yield
H*(II,HY(Hom (X,C)) = H"(Homp (Z, Hom (X,C))
H(ILH(A ® X)) 2> H(4 @ X) @y Z).
Since by associativity relations
Homy (K, Hom (X,C)) ~ Homp (X,C)
ARX)R/pK~ ARy X,

the spectral sequences (6) and (6a) follow.

The spectral sequence (6) was first indicated by H. Cartan and
J. Leray (Colloque Top. Alg., Paris, 1947, pp. 83-85) for the case when

IT is a finite group, and by H. Cartan (C.R. Acad. Sci. Paris 226 (1948),
303--305) for the general case.

In the next section we shall give a number of topological applications of
theorem 8.4.
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9. TOPOLOGICAL APPLICATIONS

Let Z be a topological space on which a group II operates on the left.
We shall assume that the operators of Il are proper, i.e. that for each
point x € Z there is a neighborhood U such that

UNsU=g forsell,s # 1.

In particular, for s 7 1, the transformation s: Z — Z admits no fixed
points.

We shall denote by 2y, the space obtained from Z by identifying
each point x with its images sx, s e [I. If we assume that 2" is arcwise
connected, then %" is a regular covering of Z'; and the fundamental group
of & may be identified with an invariant subgroup of the fundamental
group of Z';.  The factor group is then the group II.

Let X denote the total singular complex of the space Z. Clearly X
has left II-operators and, since the transformations of II on 2 have no
fixed points, X is Il-free.

Given a right II-module 4 and a left II-module C we may consider
the homology and cohomology groups

H(Z:4) = H,(4 ® X), H"(Z;C) = H"(Hom (X,C)).

The operators of I on 4 and C are not used in this definition. However,
they are used (together with the operators of Il on X) to convert H,(%Z ;4)
into a right II-module and H"(Z';C) into a left II-module.

The modules 4 and C may also be regarded as local coefficient systems
on the space Z';; and can be used in defining the homology and cohomology
groups

H'n(g‘n ;A), H”(g’n;C)

with local coefficients. It is well known that we have natural isomorphisms
H"(Zy;C) ~ H*(Homy (X,C))
Hn(grnyA) ~ Hn(A ®H X)'

Since X is II-free, we may apply theorem 8.4. We thus obtain spectral
sequences

¢)) HY(ILHYZ';C)) 2> H(Z 1;0),

We shall now examine various applications of these spectral sequences.
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Application 1. Assume that Z is pathwise connected and that for
some integer n

) HY(Z;C)=0 for 0 <g <n.

Then HYZ;C)= C. By xv,5.12, the spectral sequence (1) gives
isomorphisms

(3) Hq(%‘n’C) ~ Hq(H,C), q < n,
and an exact sequence
4) 0—>H"(IL,C)~>H"(Z 1;C)~[H"Z ;)" H** (11, C)—>H"* (X 11;C).

For analogous homology results we assume that 2" is pathwise con-
nected and that

(2a) H(Z;4)=0 for0 <g <n.
Then Hy(%Z ;4) = A and using Xv,5.12a we obtain isomorphisms
(3a) H(Tm:A) ~ H(IL4) g<n
and the exact sequence
@d2)  Hop(Zmsd) > Hooy(LA) — [H(T34)]n

— H (Z;4)— H,(11,4) - 0.

These results include various results of Eckmann (Comment. Math.
Helv. 18 (1945), 232-282), Eilenberg-MacLane (Proc. Nat. Acad. Sci.
U.S.A. 29 (1943), 155-158; Trans. Am. Math. Soc. 65 (1949), 49-99;
Ann. of Math. 51 (1950), 514-533) and Hopf (Comment. Math. Helv. 17
(1944), 39-79). Not included are the results of Eilenberg-MacLane
dealing with the invariant k™! (see Exer. 9). The knowledge of this
invariant yields a complete determination of H"(%Z';;C) and H,, (£'1;4)
rather than the partial information contained in the exact sequences (4) and
(4a).

Application 2. Assume that II is cyclic infinite with generator s.
Then a II-projective resolution of Z is given by

0 — Z(I) = Z(Il) — Z — 0
where d is multiplication by s — 1. It follows that
HYIL,C)= C", HILC)= Cy, H*(ILC)=0 forp>1
H(ILA)y= Ay, H(ILA)= A", H,(I1,4)=0 forp > 1.
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Therefore in the spectral sequences (1) and (1a) non-zero terms occur only
for p =0, 1 and case E of xv,5 applies. We thus obtain exact sequences

0— [H" Y% ;) lq > H"(Z'r;4) > [H(Z ;)" — 0
0 — [H (% ;A)ln > H (X A) > [H, (2 ;:4)]" >0

For a direct proof see Serre (4nn. of Math. 54 (1951), 503).
Application 3. Assume that & is an n-dimensional manifold which is
acyclic, i.e.
H(Z:Z)=Z, H(Z;Z)=0 for g > 0.

The Euclidean n-space is an example of such a manifold. It follows from
the Kiinneth relations (v1,3.1 and v1,3.1a) that

HY(Z;C)= C, HY(Z;C)=0 forg >0
H(Z;4)= A, H(Z;A)=0 forg >0

for any coefficient group. This can also be deduced from the fact that
the singular complex X of &' is a Z-projective resolution of Z.
The spectral sequences (1) and (la) collapse, therefore, to the iso-
morphisms
H"(%11;C) ~ HY(I1;0),

H(Z1;A) ~ H,(IL;A).

Since £ is an n-dimensional manifold, we have H*(% ;;C) = O for p > n.

Therefore
H(II,C)=0 forp>n

for all coefficient modules C. This means that (cf. x,6.2)
dimypy Z = dim Z(II) < n.

If further 2’ is compact, then H,(I1,Z,) ~ H,(Z',Z,) # 0, and thus
dimyyyy Z = dim Z(II) = n.

This imposes severe limitations upon the groups II that can operate
properly on Z. In particular, all finite groups (except for IT = {1}) are
excluded (see xi1, Exer. 2).

Application 4. Assume that & = S” is the n-sphere. Since Z is
compact and II operates properly, it follows that IT must be finite. If n
is even, then because of well known fixed point theorems every element
sell, s~ 1 must reverse the orientation of S". Therefore either
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II = {1} or Il = Z,. Eliminating this not too interesting case, we may
assume that n is odd. Then each element s € I preserves the orientation
of S*. Further
HY(S™;C)=C forg =0,n
H(S™;4)= A forg=0,n
and the remaining groups are zero. In the spectral sequence (1) and (la)

non-zero terms are obtained only for ¢ = 0,n. Thus xv,5.11 implies the
exact sequences

++ > H(IL,C) > HY(S§:C) — H*="(IL,C) - HMYILC) > - - -
v H,(ILA4)— H,_,I1,4) - H,(S{;4) — H,(ILA)— - - -

Since ST is an n-dimensional manifold, we have

H?(ST1;C) = 0 = H(S1;;4) for p > n.
The exact sequences above thus yield the isomorphisms
H?*(SE;C) ~ H*(I1;C), 0<p<n
H,(St;A4) ~ H(IT1;4), 0<p<n
H{II,C) ~ H#*"Y(11,C), i>0
H(IL,4) ~ H,,,.,(I1,4) i>0.

We now consider the complete derived sequence HY(I1,C) of x11,2. We
have the natural isomorphism AI1,0) ~ H™2(I1,C). Since H° and
A7 are left satellites of A and H"*2 there results an isomorphism
A™YIL,C) ~ A%I1,C). Therefore the finite group II has period
n 4+ 1, in the sense of x1,11. We have seen in xi1,11 that this imposes
severe limitations on II. It is an open question whether every finite
group II with period # + 1 (# odd) can operate properly on S™.

10. THE ALMOST ZERO THEORY

Let IT be a group and X a negative (left) II-complex (i.e. X,= 0 for
n < 0) and 4 an abelian group. An n-dimensional cochain f: X, — A4 is
called Il-finite if for every x € X, we have f(sx) = 0 for all but a finite
number of elements s e I[I. The II-finite cochains form a subcomplex
Hom (X,A4) of Hom (X, A).

With each Il-finite cochain f: X,— A we associate the cochain
f' e Homp (X,,,Z(II) ® A) given by

fix= Zns ® f(s71x).
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Here Z(II) ® A is regarded as a left II-module using the left II-
operators of Z(IT). Conversely any f” has the form f'x = > s ® g(s,x)
sell

and we may define f by setting fx = g(1,x). Itis now clear that we obtain
an isomorphism

m Hom (X,4) ~ Homp (X,Z(IT) ® A).
If X is a projective II-resolution of Z, then we define
) H"(I1,4) = H"(Hom (X,A)).

These are the cohomology groups of I in the “almost zero theory’’; they
were considered by Eckmann (Proc. Nat. Aca. Sci. U.S.A. 33 (1947),
275-281, 372-376; 39 (1953), 35-42). Combining this with (1) we obtain

H(11,4) ~ H*(ILZ(II) ® A).

This reduces the “almost zero theory” to the usual cohomology theory of
groups.

We now drop the assumption that X was a II-projective resolution of
Z and assume only that X is weakly projective. Then 8.4 may be applied
to yield the spectral sequence

Q) H(IT, H(Hom (X,Z(IT) ® A))) = H"(Hom (X,4)).

Assume now that, for each n, the II-module X, is II-free on a finite base
{0} The elements sa,, ,, for s € I, form a Z-base for X,. A cochain f:
X, — A is Il-finite if and only if f(so,, ,) = 0 except for a finite number of
pairs (s,2). Thus the II-finite cochains coincide with the finite cochains
on X relative to the system of cells so,,. Thus the spectral sequence
(4) becomes

“) HY(ILH(Hom (X,Z(I) ® 4))) = $"(X,4)

where §"(X,A) is the cohomology group of X based on finite cochains.

These considerations may be applied in the following topological
situation. Let 2 be a topological space with II as a group of left
operators. Assume further that a cellular decomposition of Z is given
which is invariant under the operations of II and such that no cell is
transformed onto itself except by the element 1 of II. We finally assume
that 'y is compact. If we denote by X the II-complex of the chains
of the cellular decomposition of &', we find that.each X, is II-free on a
finite base. Therefore $"(X,A) is the cohomology group based on the
finite cochains of the cell complex. This group, denoted by $™(Z,4), is
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known to be independent of the choice of the cell decomposition, and is
known as the “cohomology group of £ with compact supports.”” The
spectral sequence (4') may now be rewritten as

4") H(ILHYZ,Z(I1) ® A)) = H™(Z ,A4).

EXERCISES

1. In the situation (,_yA4,Bp_5,oCr) where A, I" and X are K-algebras,

define the isomorphism
HOmA®z (A, Homr\ (B,C)) a4 Homr®z (B, HOmA (A,C))
and derive appropriate spectral sequences.

2. Show that the homomorphism p of v1,5 is an edge homomorphism in
one of the spectral sequences of §4. Use this to generalize v1,5.1.

3. Show that the maps U j and N of x1,9 are edge homomorphisms in
two of the spectral sequences of § 7. Use this to generalize x1,9.2.

4. Prove v1,3.5, v1,3.5a and vi, Exer. 14 using the spectral sequences
of § 4 and Exer. 1.

5. Letg: A — I' bearinghomomorphismandlet 4 be aleft I'-module.
Show that

Lw.dimy 4 < Lw.dimy I" 4 Lw.dimp. 4,
Linj.dimy 4 < r.w.dim, I' + Linj.dimy 4,
l.dimy 4 < Ldim, I" + Ldimp 4.

6. Let A be a K-projective supplemented algebra. Let C be a positive
complex, composed of left A-modules and in which the differentiation is a
A-homomorphism. Assuming that

HY(C)=0 for0 <g <n,
define an exact sequence
0 — H™(AHY(C)) — H#(A,C) — HAAH"(C) — H™Y(A,HYC))
— H"Y(A,C).
[Hint: use the spectral sequence (1) of § 8.]

Give a dual statement.

7. Let & and Z” be two n-dimensional spheres (z odd), with the cyclic
group IT of order p operating on Z and on Z”’ (p odd prime). Let f be a
continuous mapping & — %' compatible with the operations of II.
Then, using Exer. 6, define a commutative diagram

HX';Z,) ~— H*\(ILH(Z" Z,))
(4) j.fn p
HZ;Z,) —— H™Y(ILHYZ ;Z,))
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Assume now that II operates properly on %; then, using
H"" Y (Z'y;Z,) = 0 and Exer. 6 (or the exact sequence (4) of §9), prove
that @ is an isomorphism. Using the diagram (A), show that the homo-
morphism /" does not depend on the choice of the mapping /. In other
words, the “degrees’ of any two mappings Z — £’ (compatible with IT)
are congruent mod. p.

8. Let & be a connected topological space, with a group II operating
on &; assume that

HZ) =0 for0<g<n.

X denoting the singular complex of &, show that
HHomy, (X,H(Z))) = 0 0<g<n
H"(Homg (X,H,(Z))) = Homy (H(Z),H(Z)).
Applying Exer. 6, define a homomorphism
¢: Homy (HAZ),H (%)) - H"/(ILH(Z)).

Let i denote the identity map: H,(Z)— H (%Z). Then o¢(i) is the
Eilenberg-MacLane invariant

kvl ¢ H(IL H (%))

Let Z' be another space satisfying the same conditions, with the same
group II operating on Z’. Let f be a continuous mapping & — %’
compatible with the operations of II. Show that the corresponding

homomorphism
H"(ILH (%) = H*(ILH(Z"))

maps the invariant k*+! of Z into the invariant k'*+1 of Z"'.
Using the invariant k"+1 give a new proof of the final result of Exer. 7.



CHAPTER XVII

Hyperhomology

Introduction. InChapterv a resolution of a module 4 was defined to
be a complex with suitable properties. If A itself is a complex the resolu-
tion must be defined as a double complex satisfying rather strong condi-
tions (§ 1). Given a functor T of one variable, a complex 4 and a resolu-
tion X of 4, it turns out that the invariants of the double complex T(X') are
independent of the choice of X and yield the “hyperhomology invariants”
of T(A4). There result two spectral sequences with essentially the same
“limit”” and with terms E, given by

HYRT(4)) and  (RT)(H?(A)).

Similar results hold for functors of any number of variables.

The spectral sequences obtained may be regarded as a general solution
of the problem partially solved earlier by the Kiinneth relations (1v,8 and
VvL3).

1. RESOLUTIONS OF COMPLEXES

In the sequel we shall have to consider modules, complexes and double
complexes all in the same context. The following conventions will
simplify matters. Given a double complex 4 and an integer p, we denote
by 4”* the complex B defined by B? = 4™? and the second differentiation
operator d, of A. Similarly 4*? is the complex C defined by C? = 4®¢
and the first differentiation operator d; of 4. We shall refer to A»* and
A*as the p-th row and g-th column of A4, respectively. The differentiation
operators of A4 yield maps

AP* — APL*, A¥ T g0+,

For each double complex 4 we defined in xv,6 the double complexes
Hy(A) and Hy(A4). The double complex Hj(A4) is obtained by taking
homology modules with respect to the first differentiation operator in 4.
Thus in Hy(A4) the first differentiation operator is zero and the second one is
induced by d,. In Hp(A) it is the other way around. Clearly

HE*(A) = HA™),  HF(4) = HA*?)
362
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In quite the same way we define the double complexes
Bi(4),  Bid), Zy(4), Zy4)

and similar double complexes with I replaced by II.

As in v,1, a module 4 will be regarded as a complex with 4°= 4,
A" =0 for n #0. A complex 4 will as a rule be regarded as a double
complex such that A0 = 4?, 4»*= 0 for ¢ # 0. Thus 4*°= 4 and
the given complex appears as a 0-th column in the double complex.

Let 4 be a complex. A left double complex X over A consists of a
double complex X such that X*? = 0 for g > 0, and of an augmentation
map : X — A. The augmentation actually is given by the map &: X *:°
— A such that the composition X *—1 — X *0— 4 is zero.

Let f: A— A’ be a map of complexes and let X, X’ be left double
complexes over 4,4" with augmentations ¢, ¢. A map F: X — X' such
that &'F = fe is called a map over f.

Let X be a left double complex over the complex A. There result the
following left complexes:

), X?* over A?
2), ZP*(X) over Z*(A)
3), ZP*(X) over Z'?(A)
4, BP*(X) over B?(A)
%), B{»*(X) over B'?(A)
6), HP*(X) over H?(A)

We shall say that X is a projective resolution of the complex A if for all p,
(1)—(6) are projective resolutions.

ProrosiTION 1.1.  If for all p, (4) and (6) are projective resolutions,
then X is a projective resolution of A.

Proor. Since (4),,, and (5),, are naturally isomorphic, it follows that
(5), is a projective resolution. The sequences 0 — (4), — (2), — (6),— O,
0— (6), = (3), — (5), — 0 being exact, it follows from v,2.1 that (2),
and (3),, are projective resolutions. For the same reason the exactness of
the sequence 0 — (4), — (1), — (3), = 0 implies that (1), is a projective
resolution.

PROPOSITION 1.2.  Each complex has a projective resolution. If X and
Y are projective resolutions of complexes A and C, and f: A— C is a map,
then there is a map F: X— Y over f. If F,G: X— Y are maps over

homotopic maps f,g: A—> C then F and G are homotopic (in the sense of
1v,4).
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PrOOF. Let A be a complex. For each p select projective resolutions
X7B and X?E of B?(4) and H?(4). By v,2.2 we may find for each p an
exact sequence

0— X»B o x»Z . xrH

where X*Z is a projective resolution of Z?(4). Applying v,2.2 again we
obtain exact sequences

0— X?Z 5 xp4d 5 yrtL.B _,

where X®4 is a projective resolution of 4?. We define X to be the
doubly graded module with X?4 as the p-th row. The first differentiation
operator d, is defined by composition

X744 s xr+LB _y yrt1.Z _, yri+14,

The second differentiation d, is defined for each row X?4 as the differentia-
tion in X4 with the sign (—1)?. Then d,d, + d,d; = 0 and X is indeed
a double complex. The augmentation X — A4 is defined by the augmenta-
tions X?4 — 4?. For this double complex X, the complexes BF'*(A)
and HP*(A) are isomorphic with X»® and X?H#. Thus it follows from
1.1 that X is a projective resolution of A4.

Let X and Y be projective resolutions of the complexes 4 and C and let
f: A— Cbe amap. Consider the maps

f?B: BY(A)—B*(C), fr%:. Z»(A)—~Z*(C), f*H: H*(A)—~H"(C)
induced by f. By v,1.2 there exist maps
F#B: Bp*(X)>Bp*(Y),  FP7: HP*(X)>HP*(Y)
over f»2 and f»2. By v,2.3, there exist maps
Fr2: Zp*(X) = ZP*(Y)

over f'?Z such that the diagrams

0— BP*(X) = Zp*(X) — H{*(X) >0

0— Bi’t“(Y) - Z%”*¢( Y)— Hf”*%Y) -0
are commutative. Applying v,2.3 again we find maps

Fox. YXP¥ 5 Yok

over f? such that the diagrams

0— ZP*(X)— XP* — BP+L¥*(X) > 0

0—Zp*(Y)— Y?* — BP+L¥(Y)—0
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are commutative. It follows that the diagrams

4
Xo* Ly Yp+Lxk
jpn,# Fot+l,*

Y?* _dl_> YP-I-L*
are commutative. Thus the maps F™* yield a map F: X — Y over
f as desired.

Finallylet F,G: X — Ybemapsoverf,g: 4— Candlets: f~gbea
homotopy. By v,1.2 “there exist maps S”*: XP* > YP+L* over
s?: A*— C?*1, The maps S™? yield a homomorphism S: X — Y of
bidegree (1,0), which commutes with the augmentation and anticommutes
with the second differentiation. Setting

we find that J: X — Y is a map over g and that (S,0) is a homotopy
F~J. It thus remains to be shown that the maps G and J over the same
map g are homotopic.

In each of the rows X?*, Y?* BP*(X)etc., we consider the differentia-
tion operator given by (—1)?d,. By v,1.2 we may choose homotopies,

TrB. jp.B ~ G”’B, TH. jo.H ~ GrH,

Then v,2.3 yields a homotopy

T7Z. Jp.Z ~ GPZ

which properly commutes with the above two. Applying v,2.3 we obtain
homotopies
TP* . Joo¥ ~ (GP%*

which commute with the above. The maps (—1)?7?* yield a homo-
morphism 7: X — Y of bidegree (0,1) and such that

d,T + Td, = 0, d,T + Tdy= G — J.

Thus (0,7) is the desired homotopy J~ G. This concludes the proof
of 1.2.

A right double complex over a complex A is a double complex X such
that X*?= 0 for ¢ <0 and an augmentation map &: A4— X. The
definition of an injective resolution of A and the formulation and proof of
the analogue of 1.2 are left to the reader.
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PROPOSITION 1.3. Let A be a complex such that A" = 0 for some set N
of integers. Then the projective resolution X of A and the injective resolution
Y of A may be chosen so that X™? = 0 and Y™ = 0 for all indices q and all
integers n € N.

This is a direct corollary of the construction of X given in the proof
of 1.2.

PROPOSITION 1.4. Let A be a ring such that for some integer n the

Sfunctor Ext"+1 is zero. Then for any A-complex A the projective resolution
X and the injective resolution Y may be chosen so that X™ = 0 and
Y» =0 for |q | > n.

Proor. The condition Ext™+1=0 implies, byv1,2.1and v1,2.1a, that all
A-modules have projective (injective) dimension <n. Thus all projective
and injective resolutions of A-modules may be chosen of dimension <n.
Thus the conclusion of 1.4 again follows from the construction given in
the proof of 1.2.

2. THE INVARIANTS

Consider the (additive) functor 7(A4,C) covariant in 4, contravariant in
C, where 4 is a A;-module, Cis a Ay,-module and 7(4,C) is a A-module.

Let 4 be a A;-complex and X an injective resolution of 4, and let Cbe a
A,-complex with a projective resolution Y. Then T(X,Y) is a quadruple
complex. We pass from this quadruple complex to a double complex by
grouping (see 1v,4) the first and the third index and the second and the
fourth index. Thus

"X, Y)= 2T(X"™"Y, .)» P1+Pp:2=p q1+9:=4.

The differentiation operators 4, and d, on 7(X,Y) are defined on
T(XPr0, sz,qz) as
0y = T(d,Y,,,, ) + T(XP%,dy)

8y = T(dy, Y,,,) + T(XP0,dy).

We shall show in a moment, that the invariants of the double complex
T(X,Y), consisting of the graded module ZH"(T(X, Y)), its two filtrations,
and the two spectral sequences belonging to these two filtrations, are
independent of the choice of the resolutions of 4 and C. We shall refer to
these as the “‘cohomology invariants of the functor T and the complexes
A and C” or, by abuse of notations, as the cohomology invariants of
T(A,C). The module H*(T(X,Y)) will be written as Z"T(A,C) and will be
called the n-th hypercohomology module of T(4,C).

Consider another pair A’, C’ of complexes and their resolutions X”,Y".
Given maps f,f;: A— A’ and g,g,: C'— C, we can find maps F,F;:
X— X', G,G,: Y'— Y over ff;, g.g; respectively. These induce maps

2,02
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J = T(F,G), J, = T(F,,G,) of the double complex T(X,Y) into T(X',Y’).
Thus J and J; induce maps of the invariants of these double complexes.
Suppose now that we have homotopies f~ f;, g~ g;. Then by 1.2 we
also have homotopies F ~ F;, G ~ G,. As was shown in 1v,4, this yields
a homotopy J~ J; and therefore by xv,6.1, J and J; yield the same
homomorphisms of the invariants of 7(X, Y) into those of T(X",Y”).

The above reasoning yields the following conclusions. The invariants
of T(4,C) as defined above are independent of the choice of the resolutions
of 4and C; mapsf: 4— A’,g: C'— C induce a map of the invariants
of T(A,C) into those of T(4',C’); homotopic maps f~ f;, g ~ g, induce
the same maps of the invariants. Thus the invariants of 7(4,C) may be
regarded as a functor covariant in 4, contravariant in C and invariant with
respect to homotopies.

We now proceed with the computation of the initial terms 1%, II£*¢ of
the two spectral sequences associated with 7(4,C). By xv,6 this amounts
to computing the doubly graded modules

HHi(T(X,Y)), HyH(T(X,Y))

where X is an injective resolution of 4 and Y'is a projective resolution of C.

We begin by computing Hy(T(X,Y)). Since in Hy; only the second
differentiation operators are used, we may concentrate our attention on a
fixed row X?v* of X and a fixed row Y, 4 of Y. Then

HET(X,Y) = 5 H(T(X"*,Y,,).
Dy +P=D
Since X"* is an injective resolution of 4" and Y , is a projective resolution
of C, we find
HYT(X™*,Y,, &) = RT(4",C,).

We thus find

M HE(TX,Y)= > RT(A™C,)
Dy +Dy=D

or equivalently

1" H%* = RT(4,C).

The differentiation operators on both sides of (1’) coincide. Since
H?(H9) is precisely the module of degree (p,q) of HyHy; we obtain

) 137 = H?(R'T(A,C)).

We now proceed with Hy(T(4,C)). Since only the first differentiation
operators are employed in computing H; we may limit our attention to
fixed columns X *%, Yy, 0f Xand Y. Then

HPAT(X,Y) = 2 HAT(X*%,Yy,,)).

a,+2,=1
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Since X*%, Z(X*%), B(X*%),. .., H(X*%) are all composed of injective
modules, the complex X* splits. Similarly Yy ,, splits. Therefore by
1v,7.4 the maps « and «’ are defined and are isomorphisms. This leads to
the identification

HY(T(X*%,Y, »ﬂz)) = Z T(le(X*’ql)’Hﬂz( Yy ,q,))'

Dy +Dy=D

Combining the last two formulae we obtain
3 H{(T(X,Y)) = T(H{(X),H(Y)).

The differentiation operators on both sides coincide and are both given
by the second differentiation operators. Since Hy(X) is an injective
resolution of H(A) and Hy(Y) is a projective resolution of H(C), we may
apply (1) to (3). We find in this way the terms Hf;?Hy, i.e. the terms 113" as

@ 7= 5 RT(H"A)H,(C)).

Dy +Dpe=p
We recall here that in the notation for the second spectral sequence, the
second index g indicates the degree of the filtration. In (2) the degree of
the filtration is p.

The case of two variables considered above was only an example. The
discussion applies to any number of variables provided all covariant
variables are resolved injectively and contravariant variables are resolved
projectively.

There is a dual discussion for homology invariants based on projective
resolutions of covariant variables and injective resolutions of contra-
variant variables. The homology invariants of 7(4,C) consists of hyper-
homology modules #,T(A,C) possessing two filtrations, and of two '
spectral sequences beginning with the terms

(2a) 15, = H,(LT(4,0))
(4a) p,= X LJI(H,(A),H"(C))
PtD=D

where the filtration degree in (2a) is p while in (4a) it is g.

3. REGULARITY CONDITIONS

As above let 4 and C be complexes, X an injective resolution of 4 and

Y a projective resolution of C. Since X”?=0and Y,,= 0 forg <O,
it follows that

T"Y(X,Y)=0 forg <0
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where T is a functor covariant in the first variable and contravariant in the
second. Therefore the first filtration is regular. Thus, by xv,6 (Case 1),
we have the edge homomorphism

3~ HY(T(X,Y))
which becomes the homomorphism
¢)) H™(RT(A4,C)) — #"T(4,C).

As for the second filtration, it need not be regular, but nevertheless by
XV,6, we have the edge homomorphism,

HYT(X,Y))— 113°
which yields
#)) Z"T(A,C)— R°T(H(A),H(C)).

PROPOSITION 3.1. The composition of the homomorphisms (1) and (2)
coincides with the homomorphism

o’ H(RT(A4,C)) - R°T(H(A),H(C))
of 1v, 6.1a, applied to the left exact functor R°T.

Proor. Let & be the composition of (1) and (2). Clearly & is natural.
In view of 1v,6.1a it therefore suffices to show that & is the identity if 4 and
C have differentiation zero. In this case the resolutions X and Y may be
constructed simply by choosing resolutions for the modules A? and C,
and letting the first differentiation operators be zero. Thus T(X,Y) will
have the first differentiation operator zero. The fact that & is the identity
follows from the final remark of xv,6.

In practice, we shall not be able to say much about the cohomology
invariants of 7(A4,C) unless we know that the second filtration also is
regular. We have no general criteria for this, but the following two cases
include all the situations actually encountered.

Case 1. The complex 4 is bounded from below (i.e. 4= 0 for p
sufficiently small) and the complex C is bounded from above (i.e. C? = 0
for p sufficiently large). Then by 1.3, the resolution X of 4 may be
chosen with X?? = 0 for p small and Y may be chosen with Y??= 0 for p
large. Therefore since T*%(X,Y) = ZT(X™", Y, ), p1+Pe=P,q1 1+ 42
= g, it follows that T7%(X,Y) = 0 for p sufficiently small. In this case the
second filtration of T(X,Y) is regular.

Case 2. Suppose that the rings A; and A, over which the nodules 4
and C are given are such that Ext} = 0, Ext}, = 0 for g sufficiently large.
Then, by 1.4, the resolutions X and Y may be chosen so that X»?=0
= Y7 for | ¢ | sufficiently large. It follows that T*%(X,Y) = 0 for |q |
sufficiently large. In this case the second filtration is regular.
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In the sequel, when considering the cohomology invariants we shall
automatically assume that we are in one of these two cases. We thus
have the sequences

3) H(RT(4,C)) 2> #"T(4,C)

@ 2 RT(H™(4),H,(C)) = £"T(4,C)
Dy +De=D

called, respectively, the first and the second cohomology spectral sequences
of T(4,C).

If we assume that RT(4,C)= 0 for ¢ > 0, then the sequence (3)
collapses and (4) becomes

&) 2 RT(H™A),H,(C) 7 H"(R'T(4,C)).
Py +De=Dp ¢
If we assume that A is an acyclic right complex over a module M and C

is an acyclic left complex over a module N, then (4) collapses and (3)
becomes

6) H?(RT(A4,C)) = R"T(M,N).
If further R'T(4,C) = 0 for ¢ > 0 then (6) yields
@) H"(RT(4,C)) ~ R*T(M,N).

This generalizes the rule for expressing the derived functors R"T using
resolutions of the variables.

We now briefly state the corresponding facts for homology invariants.
If X is a projective resolution of 4 and Y an injective resolution of C, then
T, (X,Y)= 0for g < 0 and the second filtration T(X, Y) is regular. We
have the edge homomorphisms

Hﬁ,o — H (T(X,Y)) - Ir%,O
which give
LyT(H(A),H(C))— Z,T(A,C)— H(L,T(A,0)).

ProPOSITION 3.1a. The composition of the above two homomorphisms
coincides with the homomorphism

a: L ,T(H(A),H(C))— H(L,T(4,C))
of 1v,6.1.

In the sequel, in order to assume the regularity of the first filtration we
shall automatically assume that we are in one of the following two cases:

Case 1a. The complex 4 is bounded from below, while the complex
Cis bounded from above.
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Case 2a. The same as case 2.
In either of these two cases we have the sequences

(3a) H(L,T(4,C)) 2> Z,T(4,C)
(4a) 2 LTI(H,(A),H™C) = £L,T(4,C)
Dy+D=D ?
called, respectively, the first and the second homology spectral sequences
of T(4,C).
4. MAPPING THEOREMS

PROPOSITION 4.1. The natural transformation t: R°T — T induces an
isomorphism of all the cohomology invariants of R°T(A,C) onto those of
T(4,0).

Proor. In view of xv,3.2 it suffices to verify the conclusion for the
initial terms of the spectral sequences (the regularity conditions of §3
being tacitly assumed). This, however, is clear, since by v,5.3 ¢ induces
isomorphisms R’R°T ~ RT.

The above proposition shows that Tand R%T have the same cohomology
invariants. Thus without any loss of generality, we may assume that T is
left exact.

PROPOSITION 4.2. Let f: A— A’, g: C’'— C be maps of complexes
such that the induced mappings

H(RT(A,C))— H(RT(A',C"))
RT(H(A),H(C)) — RT(H(A'),H(C"))
are isomorphisms. Then f and g induce isomorphisms of all the cohomology
invariants of T(A,C) onto those of T(A4',C’).

This is an immediate consequence of xv,3.2.

THEOREM 4.3. Letf: A— A’, g: C’'— C be maps of complexes which
induce isomorphisms H(A)— H(A'), H(C')— H(C). Let T be a left
exact functor such that RT(A,C) = 0 = RT(4',C’) for ¢ > 0. Then, if
the regularity conditions of § 3 are satisfied, f and g induce an isomorphism
H(T(4,C)) - H(T(4',C")).

Proor. Since R‘T(A4,C) = 0 for ¢ > 0, the first spectral sequence of
T(A,C) collapses and reduces to an isomorphism H*(T(4,C)) ~ R"T(4,C).
Thus the second spectral sequence yields

2 RIT(H™(A4),H,(C)) 7 H"(T(4,C)).
p+pe=D
The same holds with 4,C replaced by 4’,C’. Since f and g induce iso-
morphisms of the terms on the left, the conclusion follows from xv,3.2.

We leave to the reader the statement of analogous propositions for
homology invariants.
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5. KUNNETH RELATIONS

We shall suppose here that the functor T is left exact and satisfies
€)) R'T=0 forn>1.

We are in Case 3 of xv,6. Thus the first spectral cohomology sequence
yields the exact sequence

. ,_>I;L,0 — BT — Irzc—l,l s I;L+1,0 —> G@HIT Irzz,l NG
which can be conveniently recorded as the exact triangle of graded modules
RT(4,0)

4 P
H(R'T(4,C)) —~ H(T(4,C))

with the degrees of y, p, d being 2, 0, —1 respectively.
The second spectral cohomology sequence yields exact sequences

0— "Ll - Z"T— 11" — 0
which can be recorded as the exact sequence

0 — RIT(H(A),H(C)) > RT 4,0) T (H(A),H(C))—0

with o, 7 having degrees 1, 0.

We already know from 3.1 that the composition 7p is the homo-
morphism «’: H(T(4,C))— T(H(A),H(C)). It can be shown by a similar
argument that the composition do coincides with the homomorphism
o: RYT(H(A),H(C))— H(RT(A4,C)) which is defined since, by (1), the
functor RIT is right exact.

In sum all the information available can be recorded in a single diagram

0 —— RUT(H(A),H(C)) — RT(4,C) —— T(H(A),H(C)) — 0
(2) 3 l é \ [ 4
H(RT(4,C)) " H(T(4,0))

in which the top row and center triangle are exact, and the remaining two
triangles are commutative.

Suppose now that for some integer n we have

3) HYRTA,C)=0  fork=n—1,n—2
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Then p yields an isomorphism
p: HY(T(A,C)) ~ #"T(A,C)
so that the top row of the diagram yields the exact sequence
@) 0— 3 RT(HNA),H{C) —~H"TA,C)— 3 T(HA)H{C)—0
p+q=n-1 p+qg=n
where ' = p!

THEOREM 5.1. Let n > 1 be given. If T is a left exact functor (cov.
in A, contrav. in C) such that R*"T = 0, and if A and C are complexes
such that (3) holds, then we have the exact sequence (4).

In particular the theorem may be applied to the functor Hom, (4,C)
where A is a hereditary ring. We obtain
COROLLARY 5.2. If A is a hereditary ring and A and C are complexes

such that
H*[Exth (4,0)]=0 fork=n—1,n—2,

then we have the exact sequence
0— 3 Extj (Hy(4),H "(C)) - H"(Hom, (4,C)
p+g=n—1
> 3 Hom, (H,(4),H(C))—0
pta=n

To obtain analogous results for homology invariants we assume that T’
is right exact and satisfies L, 7= 0 for n > 1. In diagram (2) we then
replace Z by £, R! by L,, we interchange « and «’ and reverse all arrows.
We obtain:

THEOREM 5.1a. Let n > 1 be given. If T is right exact (cov. in A,
contrav. in C), and satisfies L, T = 0, and if A and C are complexes such

that H(L,T(A,C) =0  fork—n—1n—2
then we have the exact sequence
(4a) 0— 3 T(H,(A),HY(C)— H,(T(4,C))

pt+g=n 8
.. 2 L T(H (4),HY(C)) — 0.
g=n-1

COROLLARY 5.2a. If A is a hereditary ring and A and C are complexes
such that
H,(Tord (4,C))=0 fork=n—1,n—2

then we have the exact sequence
(5) 0~ 3 Hy4) 8, H(C)~> H(4 ®,C)
pte=n
— 2 Tor, (Hy(A4),H(C))— 0.

p+g=n-1
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In stating 5.1 and 5.1a we tacitly assumed that the regularity conditions
of § 4 are satisfied. This is no longer necessary in 5.2 and 5.2a since the
ring A is supposed hereditary, so that we are in Case 2 of § 3.

The reader should compare these results with those of 1v,8 and v1,3.

6. BALANCED FUNCTORS

THEOREM 6.1. Let T be a right balanced functor (cov. in A, contrav. in
C), X an injective resolution of a complex A, and Y a projective resolution
of a complex C. Then the maps

T(X,C) — T(X,Y) < T(4,Y)

induced by the augmentations, yield isomorphisms between the cohomology
invariants of T(A,C) and the invariants of the double complexes T(X,C) and
T(4,Y).

ProoF. Since the regularity conditions of § 3 are tacitly assumed, it
suffices, in view of Xv,3.2, to establish the isomorphisms of the initial terms
of the spectral sequences. We shall limit our attention to u, the proof for
& being quite analogous.

We begin by considering the operator Hy. Since only the second
differentiation operator is involved, we may concentrate on a single row
X?r* of X and a single row Y, , of Y. Then

HE(T(X,Y) = 2 H(T(X™*.Y,,4)
Py1+pe=p
HE(T(A,Y) = > HYT(A™Y,, 4)).
P1+D2=p
Since X?v* is an injective resolution of 4™, while Y, , is a projective
resolution of C,, and the functor T is right balanced, the two terms of the
right hand side comc1de with R'T(4%,C,,). We thus obtain

M) Hy(T(X,Y)) = Hy(T(4,Y)).

Applying H; to both sides we obtain the equality of the initial terms in
the first spectral sequences.
Before we proceed with the second spectral sequences we establish:
LemMa 6.2. If T is right balanced and C is a complex such that both
B™(C) and H"(C) are projective for all n then for any complex A the map

o«': HT(A4,C)— T(H(A),H(C))
is an isomorphism.
To prove the lemma we first observe that all the modules C*, Z"(C),
Z'"(C), B(C), B'"(C) and H"(C) are projective. If we therefore denote
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by .# the category consisting of these modules and all their homo-
morphisms into one another, we find that all exact sequences
0— D'~ D— D"— 0 in 4 split. Thus if we regard T as a functor
defined only if the second variable is in .#, we find that T is exact with
respect to the second variable. Since all modules in .# are projective
and T is right balanced, it follows that T is also exact with respect to the
first variable, provided the second variable is in .#,. Thus it follows
from 1v,7.2 that o’ is an isomorphism.

We now return to the proof of 6.1 and apply the operator H;. We find
a commutative diagram

H(T(X, Y)) ~X— H(T(4,7))

’ ’

o o

¢
T(Hy(X),H(Y)) —— T(H(4),H{(Y))

We assert that the vertical maps are isomorphisms. Indeed, since only
the first differentiation operator is involved we may replace Y by one of
its columns Y*9? Since B?(Y*% and H?(Y*? are both projective
modules, the conditions of 6.2 are satisfied and therefore the vertical maps
in the diagram are isomorphisms. Applying Hy; to the diagram we obtain
the commutative diagram

HyH(T(X,Y)) < HypH(T(4,Y))
Hy(T(H(X),H\(Y))) < Hy(T(H(A),H(Y)))

in which the vertical maps are isomorphisms. Since Hy(X) is an injective
resolution of H(A4) and H(Y) is a projective resolution of H(C) it follows
from (1) that the lower horizontal map also is an isomorphism. This
concludes the proof.

THEOREM 6.1a. Let T be a left balanced functor (cov. in A, contrav. in
C), X a projective resolution of a complex A, and Y an injective resolution of
a complex C. Then the maps

T(X,C) < T(X,Y)— T(4,Y)

induced by the augmentations, yield isomorphisms between the cohomology
invariants of T(A,C) and the invariants of the double complexes T(X,C) and
T(4,7).

It should be noted that 6.1 justifies the notation #£"T(4,C) used in
XVv1,2; these modules are indeed the hypercohomology modules of 7(4,C).
Similarly the module #"(A,M) of xvi8 is the hypercohomology of
Hom, (K,M).
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7. COMPOSITE FUNCTORS

We apply the concepts developed in this chapter to study a composite
functor V' = TU where for simplicity we assume that U is a covariant
functor of one variable defined for A-modules whose values are I'-modules,
and T is a covariant functor of one variable defined for I'-modules.

Given a A-module 4, choose an injective resolution X of 4 and let
Y= U(X). We consider the cohomology invariants of T(Y) and intro-
duce the notation W?= (RT)U. Then

I3 = HY(R'T(Y)) = HY(W*(X)) = R*W*(4),
1139 = RIT(H?(Y)) = R*T(R*U(A)).
We thus obtain
(M REWA(A) = Z"T(U(X)),
) R*T(R?U(A)) e RZT(U(X)).

Further it is clear that since the functor R"T is invariant under homotopies,

the module Z"T(U(X))is independent of the choice of the injective resolu-
tion X of A.

Both spectral sequences are in the case 2 of xv,6 and therefore we have
the edge homomorphisms

R*WYA)—R"T(U(X)) — ROW™(A),
R*T(ROU(A))—RT(U(X)) — ROT(R"U(A)).

If T is left exact, then R°T = T and W°= (R°T)U = V. We thus obtain
a homomorphism ypg

3) R*V — T(R*U).

If T is exact, both spectral sequences collapse, and ¢ and ® become
isomorphisms. Thus (3) is then an isomorphism.

Assume now that U is exact. Then the second spectral sequence
collapses to an isomorphism R"T(U(A)) ~ Z"T(U(X)) and the first
spectral sequence then becomes

RY((R'T)U) = (R'T)U
This yields edge homomorphisms

RY(R°T)U)— (R"T)U — RY(R"T)V)
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and the exact sequence of terms of low degree:
0— RY{((R°T)U) — (R'T)U — RY(R'T)U)—> R¥(R°T)U) - (R*T)U
which for T left exact becomes
0—> RV — (R'T)U — RY(R'T)U) — RV — (R*T)U.

Similar considerations apply to left derived functors and to functors
with a larger number of variables of various variances.






Appendix: Exact Categories

by David A. Buchsbaum

Introduction. Throughout this book, the authors dealt with functors
defined on categories of modules over certain rings and whose values
again were modules over a ring. It will be shown here that the theory may
be generalized to functors defined on abstract categories that will be
described below, and whose values are again in such abstract categories.
The advantages of such an abstract treatment are manifold. Welist a few:
(1°) The dualities of the type

kernel ~ — cokernel
projective — injective
zZ4)  —Z'4

that were observed throughout the book may now be formulated as
explicit mathematical theorems.
(2°) In treating derived functors, it suffices to consider left derived
functors of a covariant functor of several variables; all other types
needed may then be obtained by a dualization process.
(3°) Further applications of the theory of derived functors are bound to
show that the consideration of modules over a ring A will be insufficient.
Rings with additional structure such as grading, differentiation, topology,
etc. will have to be considered. With the theory developed abstractly,
these generalizations are readily available.

The following treatment has some points in common with that of
MacLane (Bull. Amer. Math. Soc. (1950), pp. 485-516). No proofs will
be given here; they will be found in a separate publication.

1. Definition of exact categories. An exact category &/ is given
by the following four data:
(i) a collection of objects 4;

(ii) a distinguished object @, called the zero object;
379
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(iii) an abelian group H(4,B) given for any two objects 4, B € &Z. The
elements ¢ € H(A,B) will be called maps. We shall frequently write
¢: A— B instead of ¢ € H(A,B). The zero element of any of the
groups H(A4,B) will be denoted by 0;

(iv) a homomorphism H(B,C) ® H(A,B) — H(A,C) given for each triple
of objects 4, B, C € &/. Theimage of y ® @ in H(4,C) will be denoted
by e and will be called the composition of yp and ¢. The primitive
terms (i)-(iv) are subjected to four axioms:

AxioMI. Ifa: A— B, §: B— C, y: C— D then y(fo) = (yf)e.
AxioMm II. H(D,®) = 0.

Axiom ITII.  For each A4 e .o/ there is a map e4: A — A such that
e 8= p foreach f: B— A4, and ye , = y for each y: 4— C.

It is easy to verify that H(4,®) = 0 = H(®,4) for all 4 e/ and that the
identity map e 4 of Axiom III is unique.

A map ¢: A — B will be called an equivalence if there exists a map
@'t B— A such that ¢'p = e, pp’' = ep. It is easy to see that ¢’ is
unique; we write ¢’ = ¢~1. Clearly ¢! is also an equivalence and
(p7y 1= ¢. If y: B— C is another equivalence, then yg also is an
equivalence and ()1 = ¢~ 1yp1,

DEFINITION.  We shall say that the pair of maps

4158t
has property (E) if the following three conditions hold:
(1) Ppa=0.
(2) Ifa': A'— Bandpa’ = 0, then there exists a unique y: A" — A with
o = ay.

(3) Ifp’: B— C’andp'a = 0, then there exists a unique 6: C— C’ with
B = 4p.
AxioM IV. For any map «: 4 — B there exist objects K, I, I, F and
maps

0 T 6 K T
*) K—A—I—1'->B-—F
such that

4) a= kb7
(5) 0 is an equivalence
[ T
(6) K—> A — I has property (E)
(7) I' = B—> F has property (E).
THEOREM 1: If

5 1 6, . K 1
K,—A—I,—1,—B—F,
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also satisfy (4)~(7) then there exist unique maps y, p, {, w such that the
diagram

T ] x T

K —g—"1ug I'—~B-".F

R

K- .4-7.7, I, ,.B_™,F,

is commutative. The maps y, pu, {, o are equivalences.

2. Exact sequences. In view of Theorem 1, we shall call the pairs
(K,0), (I,7), (I',x) and (F,m) the kernel, coimage, image and cokernel of «.
The sense in which these notions are uniquely associated with « is clear
from Theorem 1.

A sequence

o,

m %p—1

A, A A, m+1<n

is now called exact if it satisfies the usual condition:
Kera, = Ima, m<q<n.

The following two theorems are crucial.

THEOREM 2. The maps A = B C have the property (E) if and only
if the sequence
®—d4Blc—0
is exact.
THEOREM 3. A map 0: A — B is an equivalence if and only if

O— A B
is exact.
Monomorphisms and epimorphisms are now defined in the usual way.
With this done it is possible to establish the usual lemmas encountered
when dealing with exact sequences. In particular, the S lemma”, 1,1.1
may now be proved.

3. Duality. For each exact category &/ we define the dual category
&/* as follows. The objects of o/* are symbols A* with 4 € ; the zero
object of &7* is ®*; the group H(A4*,B*) is defined as H(B,4); for each
map ¢: B— A4 in &/ we denote by p*: 4* — B* the corresponding ““dual”
map in &/*. The composition in &7* is given by p** = (ey)*.

It is now a trivial matter to verify that &/* is an exact category.
Clearly (&*)* ~ .

Given any diagram of objects and maps in.2/, we obtain a dualdiagram
in .o7*, with the maps reversed. It is clear that the dual of a commutative



382 APPENDIX

diagram is commutative, and that the dual of an exact sequence is exact.
The dual of a monomorphism is an epimorphism and vice versa.

As anillustration as to how one can utilize the dual category, we discuss
the ““5 lemma” 1,1.1. In the hypothesis, a certain commutative diagram
with exact rows is given. Then there are two conclusions (1) and (2). It
is easy to see that conclusion (2) is precisely conclusion (1) applied to the
dual diagram. Thus (2) is actually a consequence of (1) and vice versa.

Suppose now that A is a ring. The totality of all left A-modules and
A-homomorphisms (with the usual composition) forms an exact category
M. In this category, H(A,B) = Hom, (4,B). However, the dual
category .#% admits no such concrete interpretation. This explains the
fact that the duality principle could not be efficiently used, as long as we
were restricted to categories concretely defined, in which the objects were
sets and the maps were maps of those sets.

Another use of the dual categories is the following. Let 7(4,C) be an
additive functor defined on the exact categories ./ and € and with values
in an exact category &. Suppose that T is covariant in 4 and contra-
variant in C. Then replacing € by €*, the functor T is converted into a
covariant functor in both variables. Another procedure consists in
replacing &7 and & by &/* and 2*.

A few remarks are needed concerning exact categories intended to
represent graded groups, graded modules over a graded ring, etc. If only
maps of degree zero are considered, then no change in the description of
abstract categories is needed. If we wish to consider maps of all degrees,
then it is necessary to assume that H(4,B) is graded and that the composi-
tion of homogeneous maps adds the degrees. Axiom IV is assumed only
for homogeneous maps, and they are the only ones for which the notions of
kernel, image, exactness, etc. are defined. In defining the dual &7* of such
a graded exact category, we set H™(A*,B*)= H"(B,A) = H,(B,A4).
This is in keeping with the general principles of 1v,5.

4. Homology. An object with differentiation in an exact category &7
is a pair (4,d) consisting of an object 4 ¢ &/ and a map d: 4— A with
dd = 0. The definition of Z(A4), Z'(A4), B(A), B'(4) and H(A) then takes
place essentially as in 1v,1. The same holds for the definition of the
connecting homomorphisms and the exact sequences of 1v,1.1.

The self-duality of the definition of H(4) may now be stated in terms of
the dual object (4*,d*) in the category &/*. We have

Z(4*) = [Z'(4)]*, B(A4*) = [B'(A)]*
Z'(4*) = [Z(H]*, B'(4*) = [B(A)]*
H(4*) = [H(AT*
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In discussing complexes, we avoid direct sum considerations and there-

fore define a complex in A as a sequence

danr—1 ig dantl

AMl s gr s gl s gt

with d"+1d" = 0.

We may mention that for each exact category &7, the objects (4,d) with
differentiation may themselves be converted into an exact category 7.
This is the analogue of the construction of the ring of dual numbers
I' = (A,d) of 1v,2. Similarly the complexes in 4 may be treated as objects
in an exact category 27,

5. Direct sums. So far we have carefully avoided any use of direct
sums and products. We see no way of discussing infinite direct sums and
products in an exact category &/. A finite direct sum (= direct product)
may be defined as follows. A family of maps

where « belongs to a finite set of indices, is a direct sum representation of A
if

paia = eAa
Psia=10 for f £ a
Zaiapa =€y

This of course does not guarantee the existence of a direct sum of given
factors. For this purpose we introduce

Axiom V (Existence of direct sums.) For any two objects 4,, 4, € &7
there is an object 4 € & and maps

e P

A, — A4, =12

which yield a direct sum representation of 4.

It can then be proved that the direct sum of any finite number of
factors exists and is essentially unique (up to equivalences).

Using this axiom it is possible to discuss double (and multiple) com-
plexes 4 = {A4%,d,,d,} provided that for each » only a finite number of the
objects A¢ with p + g = n is different from ®. It is then possible to
assign to each such double complex an essentially unique complex, and
thus define H"(A).

It is now also possible to duplicate the discussion of 1v,6 and 1v,7
concerning the homomorphisms « and & for functors of any number of
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variables. Note that for functors of one variable, the discussion does not
utilize Axiom V.

6. Projective and injective objects. An object P € &/ is called
projective if any diagram
P

A—>A"—->®

in which the row is exact, may be imbedded in a commutative diagram

P
/|
"
A—>A"—®
Similarly, Q e & is called injective if any diagram

O->A4"—> A4

l

Q
in which the row is exact, may be imbedded in a commutative diagram

O—>A -4
|/
o

The two notions are dual in the sense that P € %7 is projective if and only if
P* ¢ &/* is injective.

For further work we need the following axioms:

Axiom VI (Existence of projectives). Given 4 e o7 there is an exact
sequence ® —~ M — P — A — @ with P projective.

Axiom VI* (Existence of injectives). Given 4 e & there is an exact
sequence ® -~ 4 -~ Q0 — N — ® with Q injective.

The axioms are clearly dual to one another.

With Axiom VI assumed, propositions 2.1 (restricted to finite sums),
2.4 and 2.5 of Chapter I may be established. Similarly, if Axiom VI* is
assumed, the dual propositions 3.1, 3.4 and 3.5 of Chapter 1 automatically
follow. The same applies to the discussion of v,1, v,2, and xvir,1.

We are now ready to discuss satellite functors and derived functors.
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Let T be a covariant functor defined on an exact category &/ satisfying
Axioms V and VI with values in an exact category # (with no axioms
beyond I-1V). We can then define the left satellite functor S;T of T. To
define the right satellite functor, we assume that ./ satisfies Axiom VI*
instead of VI. We then define tne covariant functor T7*: o/* — #* and

set
ST = (S,T*)*.

All the main results of Chapter 11, can be duplicated.

The derived functors L, 7 and R*T are handled similarly, except that
now T may be a covariant functor of any number of variables.

The requirement that all variables be covariant is made entirely to
simplify the notation; the contravariant variables may always be replaced
by their duals.

7. The functors Ext". For each exact category 7, the functor
H(A,C) may be regarded as a functor contravariant in 4, covariant in C and
with values in the exact category.# of abelian groups. This functor is left
exact; for a fixed 4y € &7, H(A4,,C) is exact if and only if A4, is projective;
for a fixed C, € &, H(A,C,) is exact if and only if C,is injective. Thus
H(A,C) is right balanced.

If .,ei satisfies Axioms V and VI, then Ext" (4,C) may be defined as the
right derived functor with respect to the variable A4 (i.e. using a projective
resolution of 4). If A satisfies Axioms V and VI* then injective resolu-
tions of C may be used to define Ext" (4,C). If A4 satisfies Axioms V, VI
and VI*, either or both may be used.

The discussion of dimension in V1,2 can be carried over mutatis
mutandis. The global dimension of an exact category %/ is the highest
integer n for which Ext" (4,C) # C. A category has global dimension
zero if and only if H(4,C) is exact,.i.e. if all elements of 27 are projective
(or injective). This takes the place of semi-simple rings.

8. Other applications. We should like to mention here some
applications of exact categories which step outside the framework of this
book.

The axiomatic homology and cohomology theories of Eilenberg-
Steenrod (Foundations of Algebraic Topology, Princeton, 1952) may be
defined using an arbitrary exact category &/ as the range of values of the
theory. Thus, replacing o/ by =/* replaces a homology theory by a
cohomology theory, and vice versa. This duality principle simplifies the
exposition of the theory. Furthermore, the uniqueness proof (loc. cit.,
Ch. 1v) remains valid for such generalized homology and cohomology
theories.
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The Pontrjagin duality for discrete and compact abelian groups
readily shows that the category € of compact abelian groups is the dual
of the category .# of discrete abelian groups. Thus we conclude that €
satisfies Axioms V, VI and VI*. In fact, in €, the injectives are the
toroids (since the only discrete abelian projectives are the free groups);
and the projectives in € are those compact groups whose character groups
are divisible.
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