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Preface
During the last decade the methods of algebraic topology have invaded 

extensively the domain of pure algebra, and initiated a number of internal 
revolutions. The purpose of this book is to present a unified account of 
these developments and to lay the foundations of a full-fledged theory.

The invasion of algebra has occurred on three fronts through the 
construction of cohomology theories for groups, Lie algebras, and 
associative algebras. The three subjects have been given independent 
but parallel developments. We present herein a single cohomology (and 
also a homology) theory which embodies all three; each is obtained 
from it by a suitable specialization.

This unification possesses all the usual advantages. One proof 
replaces three. In addition an interplay takes place among the three 
specializations; each enriches the other two.

The unified theory also enjoys a broader sweep. It applies to situa­
tions not covered by the specializations. An important example is 
Hilbert’s theorem concerning chains of syzygies in a polynomial ring of 
n variables. We obtain his result (and various analogous new theorems) 
as a theorem of homology theory.

The initial impetus which, in part, led us to these investigations was 
provided by a problem of topology. Nearly thirty years ago, Kiinneth 
studied the relations of the homology groups of a product space to those 
of the two factors. He obtained results in the form of numerical relations 
among the Betti numbers and torsion coefficients. The problem was to 
strengthen these results by stating them in a group-invariant form. The 
first step is to convert this problem into a purely algebraic one concerning 
the homology groups of the tensor product of two (algebraic) complexes. 
The solution we shall give involves not only the tensor product of the 
homology groups of the two complexes, but also a second product called 
their torsion product. The torsion product is a new operation derived 
from the tensor product. The point of departure was the discovery that 
the process of deriving the torsion product from the tensor product 
could be generalized so as to apply to a wide class of functors. In par­
ticular, the process could be iterated and thus a sequence of functors 
could be obtained from a single functor. It was then observed that the 
resulting sequence possessed the formal properties usually encountered 
in homology theory.
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In greater detail, let A be a ring, A a A-module with operators on the 
right (i.e. a right A-module) and C a left A-module. A basic operation 
is the formation of the tensor product A ®A C. This is the group 
generated by pairs a ® c with the relations consisting of the two dis­
tributive laws and the condition aX (g) c — a ® Ac. It is important to 
consider the behavior of this construction in relation to the usual concepts 
of algebra: homomorphisms, submodules, quotient modules, etc.

To facilitate the discussion of this behavior we adopt diagrammatic 
methods. A sequence of A-modules and A-homomorphisms

-> A m+1 - > ------ >An m +  l < n

is said to be exact if, for each consecutive two homomorphisms, the 
image of the first is the kernel of the following one. In particular we 
shall consider exact sequences

(1) 0 -> A '-+ A -> A " -> 0 .

In such an exact sequence A ' may be regarded as a submodule of A  with 
A" as the quotient module.

If an exact sequence of right A-modules is tensored with a fixed left 
A-module C, the resulting sequence of groups and homomorphisms is, 
in general, no longer exact. However, some measure of exactness is 
preserved. In particular, if the sequence (1) is tensored with C, the 
following portion is always exact:

(2) A (S)A C ^ ^  ^   ̂^  ^

We describe this property by saying that the tensor product is a right 
exact functor.

The kernel K  of the homomorphism on the left in the sequence (2) 
is in general not zero. In case A is a free module, it can be shown that 
(up to natural isomorphisms) K  depends only on A" and C. We define 
the torsion product T o rf {A \C ) to be the kernel in this case. In the 
general case there is a natural homomorphism

Torf (A " ,C )-> A '  ®A C

with image K. Continuing in this way we obtain an infinite exact 
sequence

(3) • • • Tor£+1 04",C) Tor£ (A \C )

->Tor£ (A,C) -*  Tor£ (A",C)
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which terminates on the right with the sequence (2) above, provided that 
we set

(4) Tor^ (A,C) =  A ®A C.

The homomorphisms in (3) which pass from index n +  1 to n are 
called connecting homomorphisms.

The condition that A be free in the definition of Tor (A",C) is un­
necessarily restrictive. It suffices that A be projective, i.e. that every 
homomorphism of A into a quotient B/B f admit a factorization 
A ->  B -> B/B'.

The inductive definition of the sequence (3) as described above is 
cumbersome, and does not exhibit clearly the connection with homology 
theory. This is remedied by a direct construction as follows. If A is a 
module, then an exact sequence

• • • —>* A n -> A n_1 - > • • • —> A1 -> A0 —> A -> 0

is called & projective resolution of A if each A i9 i — 0 ,1 ,2 ,.. . is projective. 
Tensoring with C gives a sequence

(5) • • • — A n ®A C - > • • • - >  A0 (g)A C

which may not be exact but which is a complex (the composition of two 
consecutive homomorphisms is zero). The n-th homology group of the 
complex (5) is precisely Tor£ (A,C). Using the second definition of Tor, 
the sequence (3) is constructed in the usual manner as the homology 
sequence of an exact sequence of complexes

0 -+ X ' ®A C -+ X  ®A C -> X ” ®A C ->  0

where X ', X, X" are appropriate projective resolutions of A \  A, A".
A basic property of Tor is

(6) Tor^ (v4,C) =  0 if n >  0 and A is projective.

In fact, this property, the exactness of (3), property (4) and the usual formal 
properties of functors suffice as an axiomatic description of the functors 
Tor*.

The* description of Tor £ (A,C) given above favored the variable A 
and treated C as a constant. If the reversed procedure is adopted, the 
same functors Tor^ (A,C) are obtained. This “ symmetry” of the two 
variables in A ®A C is emphasized by adopting a definition of Tor 
which uses simultaneously projective resolutions of both A and C. This 
symmetry should not be confused with the symmetry resulting from the 
natural isomorphism A ® A C ^  C (g)A A which is valid only when A 
is commutative.
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Another functor of at least as great importance as the tensor product 
is given by the group HomA (A,C) of all A-homomorphisms of the left 
A-module A into the left A-module C. This functor is contravariant in 
the variable A, covariant in the variable C and is left exact in that when 
applied to an exact sequence ( 1), it yields an exact sequence

(2') 0 -> HomA (A",C) -> HomA (A,C) -> HomA (A',C).

A similar discussion to that above leads to an exact sequence

(3')  ► ExtA (A",C) -> ExtA (A,C)
-> ExtA (A',C) -*  ExtA+1 (A",C) -> • • •

which is a continuation of (2 '), provided that we set

(4') ExtA (A ,C )=  HomA (A,C).

These properties together with the property

(6 ') Ext71 (A,C) =  0 if n >  0 and A is projective

and the usual formal properties of functors suffice as an axiomatic descrip­
tion of the functors ExtA (A,C).

The description above favored A as a variable while keeping C constant. 
Again symmetry prevails, and identical results are obtained by treating 
A as a constant and varying C. In this case however, instead of projective 
modules and projective resolutions, we employ the dual notions of 
injective modules and injective resolutions. A module C is injective if 
every homomorphism B' —> C admits an extension B -> C for each module 
B  containing B' as a submodule. An injective resolution of C is an 
exact sequence

0 _> C ->  C °-> Cx- >  > Cn Cn+1 -> • • •

with Cl injective for / =  0,1,2, . . .  .

With the functors Tor and Ext introduced we can now show how 
the cohomology theories of groups, Lie algebras and associative algebras 
fit into a uniform pattern.

Let II be a multiplicative group and C an (additive) abelian group 
with II as a group of left operators. The integral group ring Z(II) 
is defined and C may be regarded as a left Z(II)-module. The group 
Z  of rational integers also may be regarded as a Z(II)-module with 
each element of II acting as the identity on Z. The cohomology groups o f 
II with coefficients in C are then

jy‘( n ,c )  =  E x ti(n) (z ,c ) .
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These cohomology groups were first introduced by Eilenberg-MacLane 
(Proc. Nat. Acad. Sci. U.S.A. 29 (1943), 155-158) in connection with a 
topological application. Subsequently they found a number of topo­
logical and algebraic applications; some of these will be considered in 
Ch. xiv and xvi. Quite recently, the theory for finite groups has been 
greatly enriched by the efforts of Artin and Tate; Ch. xii deals with 
these new developments. This theory has had its most striking appli­
cation in the subject of Galois theory and class field theory. As this is 
a large and quite separate topic we shall not attempt an exposition here, 
although we do prove nearly all the results of the cohomology theory of 
groups needed for this application.

Let g be a Lie algebra over a commutative ring K  and let C be a (left) 
representation space for g. The enveloping (associative) algebra ge is 
then defined and C is regarded as a left ge-module. The ground ring K  
with the trivial representation of g also is a left ge-module. The cohomo- 
logy groups o f g with coefficients in C are then

LF(g,C) =  Ext*, (K,C).

This theory, implicit in the work of Elie Cartan, was first explicitly 
formulated by Chevalley-Eilenberg {Trans. Am. Math. Soc. 63 (1948), 
85-124). We shall give an account of this theory in Ch. xm; however 
we do not enter into its main applications to semi-simple Lie algebras 
and compact Lie groups.

Let A be an associative algebra (with a unit element) over a com­
mutative ring K , and let A be a two-sided A-module. We define the 
enveloping algebra A e =  A (g)JC A* where A* is the “ opposite” algebra 
of A. A may now be regarded as a left Ae-module. The algebra A 
itself also is a two-sided A-module and thus a left Ae-module. The 
cohomology groups are

H Q(A,A) =  E xt\e (A ,A).

This theory, closely patterned after the cohomology theory of groups, was 
initiated by Hochschild (Ann. o f Math. 46 (1945), 58-67). A fairly 
complete account of existing results is given in Ch. ix.

In all three cases above, homology groups also are defined using the 
functors Tor.

So far we have mentioned only the functors A 0 A C and HomA (A,C) 
and their derived functors Tor and Ext. It has been found useful to 
consider other functors besides these two; Ch. n -v  develop such a theory 
for arbitrary additive functors. Both procedures that led to the definition 
of Tor are considered. The slow but elementary iterative procedure 
leads to the notion of satellite functors (Ch. hi). The faster, homological
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method using resolutions leads to the derived functors (Ch. v). In most 
important cases (including the functors 0 and Horn) both procedures 
yield identical results.

Beginning with Ch. vi we abandon general functors and confine our 
attention to the special functors Tor and Ext and their composites. 
The main developments concerning homology theory are grouped in 
Ch. viii- xiii.

The last three chapters (xv-xvn) are devoted to the method of spectral 
sequences, which has been a major tool in recent developments in algebraic 
topology. In Ch. xv we give the general theory of spectral sequences, 
while the subsequent two chapters give applications to questions studied 
earlier in the book.

There is an appendix by David A. Buchsbaum outlining a more 
abstract method of treating the subject of satellites and derived functors.

Each chapter is preceded by a short introduction and is followed by a 
list of exercises of varied difficulty. There is no general bibliography; 
references are made in the text, whenever needed. Crossreferences 
are made as follows: Theorem 2.1 (or Proposition 2.1 or Lemma 2.1) of 
Chapter x is referred to as 2.1 if the reference is in Chapter x, and as 
x,2.1 if the reference is outside of that chapter. Similarly vm,3,(8) 
refers to formula (8) of § 3 of Chapter vm.

We owe expressions of gratitude to the John Simon Guggenheim 
Memorial Foundation who made this work possible by a fellowship 
grant to one of the authors. We received help from several colleagues: 
D. A. Buchsbaum and R. L. Taylor read the manuscript carefully and 
contributed many useful suggestions; G. P. Hochschild and J. Tate 
helped with Chapter x n ; J. P. Serre and N. E. Steenrod offered valuable 
criticism and suggestions. Special thanks are due to Miss Alice Krikorian 
for her patience shown in typing the manuscript.

H. Cartan
University o f Paris S. E ilenberg
Columbia University 
September, 1953
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CHAPTER I

Rings and Modules

In troduc tion . After some preliminaries concerning rings, modules, 
homomorphisms, direct sums, direct products, and exact sequences, the 
notions of projective and injective modules are introduced. These 
notions are fundamental for this book. The basic results here are that 
each module may be represented as a quotient of a projective module and 
also as a submodule of an injective one.

In § 4-7 we consider special classes of rings, namely: semi-simple 
rings, hereditary rings, semi-hereditary rings, and Noetherian rings. It 
will be seen later (Ch. vn) that for integral domains the hereditary (semi- 
hereditary) rings are precisely the Dedekind (Priifer) rings.

1. PRELIM INARIES

Let A be a ring with a unit element 1 ^ 0 .  We shall consider (left) 
modules over A, i.e. abelian groups A with an operation Xa e A , for 
X € A, a € A such that

X(ai -f" # 2)  “  ^al ^ 2 ’ (^ 1  ~t“ ^2)a ~  ^la ^2a>

(AxA2) (a) =  AX(V)> 1 a =  a.
We shall denote by 0 the module containing the zero element alone.

In the special case A =  Z  is the ring of rational integers, the modules 
over Z  are simply abelian groups. If A is a (commutative) field, they 
are the vector spaces over A.

Given two modules A and B  (over the same ring A), a homomorphism 
(or linear transformation, or mapping) of A into B  is a function /  defined 
on A with values in B , such that f ( x  +  y) =  f x  + f y \  f(%x) — K fx)\ 
x,y  e A, X e A . We then write/ :  A -> By or A -> B if there is no ambi­
guity as to the definition of / .  The kernel of /  is the submodule of A 
consisting of all x  e A such that f x  =  0; it will be denoted by Ker ( / )  or 
Ker (A -> B). The image of /  is the submodule of B  consisting of all 
elements of the form f x , x  e A; it will be denoted by Im ( / )  or Im (A -> B).

We also define the coimage and cokernel of/  as follows:
Coim ( / )  =  ^4/Ker ( / ) ,
Coker ( / )  =  Bjlm  ( / ) .

3
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Of course, /  induces an isomorphism Coim ( / )  ^  Im ( / )  and because of 
this isomorphism the coimage is very seldom employed.

A homomorphism / :  A -> B  as is called a monomorphism if Ker/  =  0; 
f  is called an epimorphism if Coker / =  0 or equivalently if Im / =  B. 
If f  is both an epimorphism and a monomorphism then /  is an isomorphism 
(notation: / :  A & B).

Let A be a module and {.Aa} a (finite or infinite) family of modules 
(all over the same ring A) with homomorphisms

such that p j a =  identity, ppia — 0 if ft ^  a. We shall say that {/a,/?a} 
is a direct fam ily o f homomorphisms.

If we assume that each x  e A can be written as a finite sum x  =  27axa, 
xa e A a, it follows readily that A is isomorphic with the direct sum ^ A x. 
We therefore say that the family {i^pa} yields a representation o f A as 
a direct sum of the modules A a. In this case the mappings {pa} can be 
defined using the {(J alone.

If we assume that for each family {jta}, xa € A a, there is a unique 
x  e A with p^x  =  xa, it follows readily that A is isomorphic with the 
direct product J J  A a. We therefore say that the family {ia,pa} yields a 
representation o f A as a direct product of the modules Aa. In this case 
the homomorphisms {/a} can be defined using the {pa} alone.

If the family {Aa} is finite, the notions of direct sum and direct product 
coincide. A finite direct family yields a direct sum (or direct product) 
representation if and only if =  identity.

A sequence of homomorphisms

-> A m+1  >Any m + l < n

is said to be exact if for each m < q  < n  we have Im (Aq_ x -> A Q) 
=  Ker (Aq A q+1). Thus A B is a monomorphism if and only if 
0 -> A -> B  is exact and an epimorphism if and only if A -> B  -> 0 is 
exact. We shall also allow sequences which extend to infinity to the left 
or to the right or in both directions.

In particular, we shall consider exact sequences

(*) 0 - > A '- > A - ^ A " - > 0 .

Since A ' -> A is a monomorphism we may regard A ' as a submodule of A. 
Since A -+ A ” is an epimorphism with A ' as kernel, we may regard A ' 
as the quotient module A /A '. Thus (*) may be replaced by

0 -* A '-> A -> A /A '-> 0 .
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We shall say that the exact sequence (*) splits if Im (A ' -> A) is a direct 
summand of A. In this case, there exist homomorphisms A" -> A -> A ' 
which together with the homomorphisms A '- ^ A - > A "  yield a direct 
sum representation of A.

Let F  be a module and X  a subset of F . We shall say that F  is free  
with X  as base if every x  € F  can be written uniquely as a finite sum 
^ i X i9 Xi e A, x { e l .  I f  X  is any set we may define F x  as the set of all 
formal finite sums 2 2 ^ .  ^  we identify x  e X  with lx  e F x , then Fx  is 
free with base X.

In particular, if A is a module we may consider FA. The identity 
mapping of the base of FA onto A extends then to a homomorphism 
FA -> A. If R a  denotes the kernel of this homomorphism, we obtain 
ail exact sequence

0 -> R a  Fa A 0.
A diagram

A  >B

of modules and homomorphisms, is said to be commutative if the com­
positions A ->  B  -> D and A -> C -> D coincide. Similarly the diagram

A  > B
/

/
C

is commutative, if A -> B -> C coincides with A -> C.
We shall have occasion to consider larger diagrams involving several 

squares and triangles. We shall say that such a diagram is commutative, 
if each component square and triangle is commutative.

Proposition 1.1. (The “ 5 lemma’9). Consider a commutative diagram

A A  A h  A A AA 2 * A x * A0 > A _ i ► A _2
| a2 j/&i |*o j -̂1 {̂ “2
Bn ---► B-t  * Bq ---► B i  --- ► B n

2  02  1  9 l  °  SO 1  ff- 1  2

with exact rows. I f

(1) Coker h2 =  0, Ker hx =  0, Ker h_x =  0, 
then Ker hQ — 0. I f

(2) Coker hx — 0, Coker h_x =  0, Ker h_2 = 0 ,  
then Coker h0 =  0
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P roof. Assume (1) and let a € Ker h0. Then g0h0a =  0  so that 
/*_i f Qa =  0. It follows that f 0a =  0 and therefore a =  f a !  for some 
a' e Av  Then g ^ a '  =  h ^ fa ' =  hQa = 0  so that hxa =  g2b for some 
b e B2. Then b =  h2a" for some a" e A 2. We have

K f t f f  =  S2h2a" =

which implies a! =  It follows that a — f a !  =  =  0.
The other half is proved similarly.

2. PRO JEC TIV E MODULES

A module P  will be called projective if given any homomorphism 
/ :  P ->  A" and any epimorphism g: A -+ A "  there is a homomorphism 
h: P->  A with gh =  / .  In the language of diagrams this means that every 
diagram

P

\ f

A  ► A "  ► 0

in which the row is exact, can be imbedded in a commutative diagram

P

AA  >A"----- > 0.

P roposition 2 .1 . A direct sum o f modules is projective i f  and only i f  
each summand is projective.

P roof. Let {ia,/?a} be a representation of P as a direct sum of modules 
{Pa}. Let g: A -> A "  be an epimorphism. Assume P  projective and 
le t / :  P a ->v4". Then fp a: P -^ A " ,  so that there is an h: P ^  A with 
gh =  fp ^  It follows that ghia =  f p j a =  f  so that Pa is projective. 
Suppose now that all the Pa are projective, and let / :  P -> A ". Then 

A c: P a —̂ A") so that there is an Aa: P ^ -^ A  with gha ~ f i a. The 
homomorphisms ha yield a single homomorphism h: P -> A with hia =  /za 
for each index a. Then ghia =  / / a, which implies gh =  / .  Thus P is 
projective.

T heorem 2 .2. In order that P be projective it is necessary and sufficient 
that P be a direct summand o f a free module.

P roof. Let 0 -+ R P -> F P -> P -> 0  be the exact sequence of § 1. 
If P  is projective then there is a map P -> FP such that the composed 
map P FP -+ P is the identity. Thus the sequence splits and P is a
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direct summand of the free module FP. It remains to be proved that 
each direct summand of a free module is projective. By 2.1 it  suffices 
to prove that every free module is projective. Let then F  be free 
with base {xa}, let f :  F  -> A" and let g: A -> A" be an epimorphism. 
For each xa select y a e A with gya =  f x a. Then the homomorphism 
h: F -> A such that hxa =  y a satisfies gh =  / .  Thus F  is projective.

T heorem 2 .3 . Each module A can be imbedded in an exact sequence 
0 -> M -> P ->  A -> 0 with P projective {i.e. each module is a quotient 
o f a projective module).

Indeed 0 -> R A -> FA -> A -> 0 is such an exact sequence.
P roposition 2.4. In order that P be projective it is necessary and 

sufficient that all exact sequences 0 - > A '- > A —> P —>0 split.
P roof. If P is projective, then, since A -> P is an epimorphism, there 

is a homomorphism P  -> A such that P -> A -> P  is the identity. Thus 
the sequence splits. Conversely if each sequence splits, then in particular 
the sequence 0 -> R P -> FP P -> 0 splits. Thus P is a direct sum­
mand of FP and therefore, by 2.2, P is projective.

P roposition 2 .5 . Every exact sequence can
be imbedded in a commutative diagram

0 0 0

0 ---->M '----- > M ---> M " ------>0

*  P "  ^ 0

*  A "  >0

N f 
0

in which all rows and columns are exact, the middle row splits and consists 
o f projective modules. In fa c t, the exact sequences

0 ->  M" - > P " -> A" -> 0 ,

with P' and P" projective, may be given in advance.
P roof. We define P as the direct sum P ' +  P H and the maps P' -> P 

and P -> P" as
p '-+ (p ',0 ), (p',p”) p"-

0  ► P '  ► P
I

0  > A '  > A

I
0 0
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Since P" is projective and A -> A" is an epimorphism there is a map 
h" : P" -> A which when composed with A -> A" yields P" -> A". Let t i  
be the composition P f -> A ' -> A. We define h: P -> A by setting

h (p \p )  =  tip ' +  h"p".

Then h maps P onto A and the lower two squares are commutative. 
We define M  as the kernel of h. Then the definition of the map in the 
upper row is forced by the commutativity conditions and the proof of 
exactness of the upper row is straightforward.

3. INJECTIVE MODULES

A module Q will be called injective if given any module A, a sub- 
module A ' and a homomorphism A' -> Q, there is an extension A -> Q. 
In the language of diagrams this means that every diagram

0 ----- > A '  > A

Q
in which the row is exact, can be imbedded in a commutative diagram

0 ---- >A’ ----- >A

Q
P roposition 3.1. A direct product o f modules is injective i f  and only 

i f  each factor is injective.
P roof. Let {/a,pa} be a representation of Q as a direct product of 

modules {0a}. Let A be a module and A ' a submodule of A. Assume 
Q injective and le t / :  A ' -> Qa. Then iaf :  A ' -> Q and therefore there 
is an extension jg: A -> Q of iaf  Then pag\ A -> Qa is an extension of 
/ :  A ' -> Qa. Thus each Qa is injective. Assume now that all the Qa 
are injective and let / :  A ' -> Q. Then each paf :  A ' -> Qa admits an 
extension ga: A -> Qa. The homomorphisms ga yield g\ A -> Q with 
P*g =  ga• Thus for each x  e A ' we have p agx =  gax  =  p af x  for all a, 
and therefore f x  =  gx. Consequently Q is injective.

T heorem 3.2. In order that a module Q be injective it is necessary 
and sufficient that fo r each left ideal I  o f A  and each homomorphism 
f :  / - >  Q (with I  regarded as a left A-module) there exists an element g e Q 
such that fX  =  Xg fo r  all X e /.
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Proof. Suppose Q is injective, then the homomorphism /  has an 
extension g : A -> <2 and fX  =  g X = X g(  1) for each X e I. Thus the 
condition is necessary. To prove sufficiency, consider a module A, a 
submodule A', and a homomorphism f :  A[->- Q. Consider the family 
3F of all pairs {A ^fj)  where Al is a submodule of A containing A' and 
f i : Ax-> Q is an extension of / .  We introduce a partial order in by 
setting <  (A2, f 2) if C and A  an extension of f v  The
family 3F is obviously inductive and therefore by Zorn’s lemma there is 
an element (A0,f0) of which is maximal. We shall prove that A0 =  A. 
Assume to the contrary that x  e A and x not e A0. The set of all X e A 
such that Xx e A0 forms a left ideal I  of A and the map f 0': I  -> Q defined 
by /o A =  / 0(Ax) is a homomorphism. There is therefore an element 
g e Q such that f 0(Xx) =  Xg for all l e i .  Setting

f ( a  +  Xx) =  f 0a +  Xg, a e  A0, X e A,

yields then a map f "  of the submodule A0 +  Ax of A which is an extension 
o f / ' .  Thus (A0,f0) is not maximal.

T heorem 3.3. Each module A can be imbedded in an exact sequence 
where Q is injective {i.e. each module is a submodule 

o f an injective module).
P roof. For each module A we shall define a module D{A) containing 

A with the following property:
(*) If /  is a left ideal of A and / :  I -> A, then there is an element

g e D(A) such that f { l )  =  Xg for all X e I.
Let O be the set of all pairs ( / , / )  formed by a left ideal /  of A and a 

homomorphism/ :  / - >  A. Let F$ be the free module generated by the 
elements of O. Let D{A) be the quotient of the direct sum A +  F<& by 
the submodule generated by the elements

( f l ,  -  u i , f ) )  ( / , / ) €  O, A e /.
The mapping a -> (<z,0) yields a homomorphism (p\ A -> D(A). If
<pa= 0 then

cpa =  (a,0) =  — X^I, J ,))

=  K f i i v A ) ,  — PiXi(ii,fi)).
Therefore 2 ^ ( 1 t, f t)  =  0 in F(J>, which implies =  0- This
implies a =  0. Thus y  is a monomorphism and, by identifying a and cpa 
we may regard A as a submodule of D(A).

We now prove that D{A) has the property (*). L et/ :  / - >  A where 
I  is a left ideal in A. Then ( / ,/)  e O. Let g  be the image in D{A) of 
the element (0,(/,/)) of A +  F$>. Then for each X e I

fX = ( fX ,0 )= (0 ,X ( I ,f ) )= X g
as required.
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Let now £1 be the least infinite ordinal number whose cardinal is 
larger than that of the ring A. We define Qa(A) for a Q by transfinite 
induction as follows: Qi(A) =  D(A); if oc =  +  1 then Q fA )  =
D{Qp(A))\ if a is a limiting ordinal then Qa(A) is the union of with 
/? <  a. We now prove that Qa(A) is injective. Indeed le t/:  / - »  Qq(A) 
where I  is a left ideal of A. Then because of the choice of Q we have 
f ( I ) C Q a(A) for some a <  O. Then by (*) there is an element 
g e D (Q a(A ))=  Qa+1(A )C Q Q(A) with f(X ) =  Xg for all X e /. Thus 
by 3.2, Qq(A) is injective.

P roposition 3.4. In order that Q be injective it is necessary and 
sufficient that every exact sequence 0 Q -> A -> A' -> 0  split.

P roof. If Q is injective, then, since Q -> A is a monomorphism, 
there is a homomorphism A -> Q such that Q -> A Q is the identity. 
Thus the sequence splits. Conversely, if each sequence splits, we choose 
A to be an injective module containing g , and A' — A/Q. Thus Q is a 
direct factor of A and therefore, by 3.1, Q is injective.

P roposition 3.5. Every exact sequence can
be imbedded in a commutative diagram

0 0 0
i i

> ̂ \ĵ \Ĵ
Q > A '  > A ------> A "  > 0

0 ---- > Q '----- > Q ---- > Q "---- > 0

Y Y Y
0  > N '  > N  > N "  >0

0 0 0

in which all rows and columns are exact, the middle row splits and consists 
o f injective modules. In fact, the exact sequences 0 -> A ' -> Q' N ' ->  0, 
0 —> A" —> Q" -> N" -> 0, with Q' and Q" injective, may be given in 
advance.

The proof is similar to that of 2.5.

Injective modules (under a different teiminology) were considered 
by R. Baer (Bull. Am. Math. Soc. 46 (1940), 800-806) who with minor 
variants has proved 3.2 and 3.3.
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4. SEM I-SIM PLE RING S

A module A is called simple if it is and it contains no submodules 
except A and 0. A module A is called semi-simple if it is a direct sum 
of simple modules.

P roposition  4 .1 . In order that a module A be semi-simple it is neces­
sary and sufficient that each submodule o f A be a direct summand.

Proof. Let A =  ^ S i9 i e I  be a direct sum of simple submodules S{. 
For each J C I  let S j  =  ^ S i9 i e J. Let B be a submodule of A and let 
J  be a maximal subset of /  such that S j  D B =  0. For i not e /  we 
then have ( ^  +  5 ^ 0 5 ^ 0  so that (S  j  +  B) O S{ ^  0. Since S t 
is simple it follows that C S j  +  B. This implies A =  S j  +  B  and 
since S j  D B =  0, it follows that B  is a direct summand of A.

Suppose now that every submodule of A is a direct summand. It 
follows readily that every submodule of A also has the same property.

We first show that every non-zero submodule C of A contains a simple 
module. Indeed let c e C, c ^  0 and let D be a maximal submodule of 
C not containing c. Then C is the direct sum of D and a submodule E  
which we will prove is simple. Indeed let F  be a proper submodule 
of E, F ^  0. Then E  is the direct sum of F  and a submodule G ^ 0 .  
Thus C =  Z> +  F  +  G is a direct sum and either D +  F  or D +  G does 
not contain c, contrary to the maximal character of D.

Now, let {Sa} be a maximal family of simple submodules of A such 
that B =  2 S a is a direct sum of the modules Sa. Clearly such a family 
exists. Then A is the direct sum of B  and a submodule C. If C ^  0 
then C contains a simple module, thus contradicting the maximal 
character of {Sa}. Thus A =  B  and A is semi-simple.

T heorem  4.2. For each ring A (with unit element 1 7  ̂ 0), the following 
properties are equivalent:

(a) A is semi-simple as a left A-module.
(b) Every left ideal o f  A is a direct summand o f  A.
(c) Every left ideal o f  A is injective.
(d) All left modules over A are semi-simple.
(e) All exact sequences 0 -> A ' -> A -> A" 0 o f left A-modules split.
(f) All left A-modules are projective.
(g) All left A-modules are injective.
P roof. The equivalence of (a) and (b) was proved in 4.1.
The equivalence of (d) and (e) follows from 4.1. The equivalence 

of (e) and (f) follows from 2.4 , while the equivalence of (e) and (g) follows 
from 3.4. Thus (d) — (g) are equivalent.

The implication (g) => (c) is obvious. If the ideal I  of A is injective 
then by 3.4 the exact sequence 0 - > / - >  A - >  A/ / -^ 0  splits, so that I
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is a direct summand of A. Thus (c) => (b). Finally if each ideal I  of A 
is a direct summand then each homomorphism / :  I  -> A into any module 
A  admits an extension / :  A -> A so that fX  — Xf{ 1) for all X e I. Thus 
by 3.2 the module A is injective. This proves (b) =>(g) and concludes 
the proof.

It is a classical result that a ring A is semi-simple (as a left A-module) 
if and only if A is the direct product of a finite number of rings each of 
which is a full matrix algebra over a (not necessarily commutative) field 
(see for instance B. L. van der Waerden, Moderne Algebra, vol. 2, 2nd 
edn., Berlin, 1940, p. 160). This implies that A is semi-simple as a 
left A-module if and only if it is semi-simple as a right A-module. Con­
sequently conditions (a) — (g) could equally well be stated for right ideals 
and right modules.

5. HEREDITARY RINGS

P roposition 5.1. In order that a module P be projective, it is necessary 
and sufficient that every diagram

P

Q — >Q" — >0
in which the row is exact and Q is injective, can be imbedded in a com­
mutative diagram p

P roof. The necessity of the condition is obvious. To prove suffi­
ciency, consider a module A , a submodule A ' with A" =  A /A ' and a 
homomorphism / :  P -> A ". We may regard A  as a submodule of an 
injective module Q. Then A" is a submodule of Q" =  Q/A'. By the 
condition above there is then a homomorphism g : P Q which when 
combined with Q -> Q" yields P A" Q". It follows that the values 
of g  lie in A. This yields g ' : P A which when combined with A A" 
yields/ :  P -> A". Thus P is projective.

P roposition 5.2. In order that a module Q be injective, it is necessary 
and sufficient that every diagram

0 ---- > P ' >P



in which the row is exact and P is projective, can be imbedded in a com­
mutative diagram

0 ----> P '----- >P
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Q
P roof. The necessity of the condition is obvious. To prove suffi­

ciency, consider a module A, a submodule A ' and a homomorphism 
/ :  A ' -> Q. Represent A as a quotient of a projective module P by a 
submodule M. If P ' is the counter-image of A ' in P then A ' =  P'/M . 
The composite homomorphism P' -> A ' -> Q can then be extended to a 
homomorphism g: P  -> Q. But g maps M  into zero and therefore 
yields a homomorphism h : A ^  Q which is an extension o f / :  A ' Q. 
Thus Q is injective. The above proof is dual to that of 5.1.

A ring A will be called left hereditary if every (left) ideal of A is a 
projective module.

T heorem 5.3. I f  A is left hereditary then every submodule o f a 
free module is the direct sum o f modules each o f which is isomorphic 
with a left ideal o f  A. (I. Kaplansky, Trans. Am. Math. Soc. 72 
(1952), 327-340).

P roof. Let F  be a free module with a well ordered base {xa}. We 
denote by Fa (or F j  the submodule of F  consisting of elements which 
can be expressed by means of generators x p with /? <  a (or fi <1 a). Let 
A be a submodule of F. Each element a e A fS F a is of the form a — b -f  Xxa 
with b e Fa, X € A. The mapping a -> X maps A ( ^ F a onto a left ideal 
7a of A and has A n  Fa as kernel. Since 7a is projective, it follows that 
A n  Fa is the direct sum of A r)F a and a submodule Ca isomorphic 
with 7a. We shall show that A is a direct sum of the modules Ca.

Firstly, the relation c1 +  • • • +  cn =  0 with ct e Ca., ax <  • • • <  an, 
implies that ct =  0; indeed, the sum of A C\Fa and Ca being direct, 
we have cx +  • • • +  cn_x = 0, cn — 0 ; the assertion then follows by 
recursion on n. Secondly, A is the sum of the modules Ca; assume to 
the contrary A ^  2aQ* Then there is a least index fi such that there is 
an element a e A n  Fp which is not in 2 aQ* Since a =  b +  c with 
b e A o  Fp, c e Cp it follows that b is not in 2aQ - However b e A O F y 
for some y  <  /?, thus contradicting the minimality of /?.

If A is a principal ideal ring, then each ideal 7 of A is isomorphic with 
A, thus 7 is free and A is hereditary. Since a direct sum of free modules 
is free, 5.3 implies the well known result that a submodule of a free 
module over a principal ideal ring is free.
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T heorem 5.4. For each ring A, the following properties are equivalent:
(a) A is left hereditary.
(b) Each submodule o f a projective left A-module is projective.
(c) Each quotient o f an injective left A-module is injective.
P roof, (a) => (b). Let A be a submodule of a projective module P. 

By 2.2, P is a submodule of a free module. Thus, by 5.3, A is the direct 
sum of projective modules. Consequently, by 2.1, A is projective.

(b) => (a). Since A is free, and therefore projective, each submodule 
of A, i.e. each left ideal of A, is projective.

In order to prove the equivalence of (b) and (c) consider a diagram

P<------- P'<----- 0

/

Q ----- >Q”----- >0

where the rows are exact, P is projective and Q is injective. Suppose 
now that (b) holds. Then P' is projective. There is then a map P' Q 
such that /  is the composition P f -> Q-> Q". Since Q is injective there 
is a map P -> Q such that P ' -> P -> Q yields P' -> Q. Thus P' -> P  
-> Q -> Q" yields / .  This implies by 5.2 that Q" is injective. Thus
(b) => (c).

Now, assume (c). Then Q" is injective, so that there is a map P Q" 
such that P' -> P  -> Q" yields / .  Since P is projective the map P Q" 
may be factored into P - ^ Q - ^ Q " .  Then the composition P '-> P

Q-+ Q" yields f .  This implies, by 5.1, that P' is projective. Thus
(c) => (b).

6. SEM I-HEREDITARY RINGS

A A-module A is said to be finitely generated if there exists a sequence 
al9 . . . ,  an e A such that each element of A has the form X1a1 +  • • * 
+  ^nan’> ^1? • • • 5 An € A.

The ring A will be called left semi-hereditary if each finitely generated 
(left) ideal of A is a projective module.

P roposition 6.1. I f  A  is left semi-hereditary then every finitely 
generated submodule o f  a free left A-module is the direct sum o f a finite 
number o f  modules each o f which is isomorphic with a finitely generated 
ideal o f A.

P roof. Let {xa} be a base for the free module F  and let A be a finitely 
generated submodule of F. Then A must be contained in a submodule 
of F  generated by a finite number of the elements xa. Thus we may 
assume that F  has a finite base (xv  . . . ,  x n).

We proceed by induction with respect to n. Let B  be the submodule
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of those elements of A which can be expressed using x l9 . . . ,  x n_x. Then 
each a € A can be written uniquely as a =  Xxn +  b, X e A, b e B (note 
that B  =  0 if n — 1). The mapping a -> X maps A onto an ideal /  of A, 
the kernel of the mapping being B. There results an exact sequence

0 - > B - > A - > I ^ 0 .

It follows that the ideal /  is finitely generated and therefore is a pro­
jective module. Thus, by 2.4, the exact sequence splits, and A is iso­
morphic with the direct sum of /  and B. This implies that B is finitely 
generated, and therefore by the inductive assumption, satisfies the con­
clusion of 6.1. It follows that A also satisfies the conclusion.

P roposition 6.2. For each ring A  the following conditions are equivalent:
(a) A is left semi-hereditary.
(b) Each finitely generated submodule o f a projective left A-module 

is projective.
Proof. The implication (a)=>(b) follows from 6.1 and the facts 

that each projective module is a submodule of a free module and that the 
direct sum of projective modules is projective. The implication (b) => (a) 
is obvious since A itself is free and thus projective.

The definition of right hereditary and right semi-hereditary rings is 
entirely similar. It is an open question whether a left hereditary (or 
semi-hereditary) ring also is right hereditary (or semi-hereditary).

7. NOETHERIAN RINGS

A module A is called Noetherian if each submodule of A is finitely 
generated. A ring A is called left (right) Noetherian if it is Noetherian 
as a left (right) A-module.

P r o p o s it io n  7.1. I f  A  is left Noetherian then each finitely generated 
left A-module A is Noetherian.

P roof. We must show that each submodule B of A is finitely 
generated.

Let Jtj, . . . , x n be a system of generators for A. If n — 1, then 
A & A /I  for some left ideal I. Therefore B & J /I  for some left ideal J  
containing /. Since J  is finitely generated, so is B. We now proceed 
by induction and assume that the proposition is proved for modules A 
generated by fewer than n elements. Assume n >  1 and let A f denote 
the submodule of A generated by x v  There results an exact sequence 
0 -> A f A -> A" -> 0 with both A ' and A" generated by fewer than n 
elements. This exact sequence induces an exact sequence 0 -> B '-> B  
-> B" -> 0 with B' C A \ B " C A". Thus B' and B" are finitely generated, 
and therefore B is also finitely generated.
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We shall now construct an example (due to J. Dieudonne) of a ring A 
which is left Noetherian without being right Noetherian. Let A be 
the ring generated by the elements 1 , x, y  with relations y x  =  0, yy  — 0. 
Let T be the subring of A generated by 1 and x. Every element of A 
may then be written uniquely as y1 +  y^y where y l9 y2 e I \

The ring T is the ring of polynomials in the indeterminate x with 
integer coefficients, and is well known to be Noetherian. Since A re­
garded as a left T-module is finitely generated it follows from 7.1 that 
A is Noetherian as a left T-module and thus also as a left A-module.

Let /  denote the subgroup of A generated by the elements x ny  (n 0).
Since I x — I y — 0, it follows that /  is a right ideal and that any system of 
right A-generators for I  is also a system of right Z-generators for /. 
Thus /  is not finitely A-generated (as a right A-module). Therefore A is 
not right Noetherian.

EXERCISES

1. Let A v A2 be submodules of a module A and let A 12 =  A x n  A 2. 
Show that the diagram

0 0 0

> t St  V

0 ---- ^ ^ 1 2 ---- ^  ^ A i/A12  ^ 0

0 ----> A 2 ----> A ------ > A /A 2 --- >0

\ f  \ r  \ f

0 ------> A J A 12------̂ A /A ! ---------> A /(A i + A 2) -----> 0

N f s r

0 0 0

with the maps induced by inclusion, is commutative and has exact rows 
and columns.

2. Let 0 -> A' —̂ A A ” -> 0 be an exact sequence of left A-modules.
Show that if A' and A" are finitely generated then so is A. If A is left
Noetherian, then the converse also holds.

3. Let A be the direct sum of modules A a. Show that A is finitely 
generated if and only if each A a is finitely generated and A a =  0 for all 
but a finite number of indices a.

4. Let Ax and A2 be submodules of a module A. Show that if 
A x +  A 2 and A x n  A2 are finitely generated, then so are A x and A 2.
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5. Consider the ring Z n =  ZjnZ, where Z  denotes the ring of integers 
and n is an integer (1 <  n <  oo). For each divisor r of n consider the 
ideal rZn and define an exact sequence

0 -> r 'Z n -> Z n rZn -> 0,

where r ' =  /i/r. Show that this sequence splits if and only if (r,r') =  1. 
The Z n-module rZn is projective if and only if (r,n/r) =  1. Give examples 
of projective modules which are not free.

6. For any integer n, prove the equivalence of the following con­
ditions:

(a) the ring Z n is semi-simple.
(b) the ring Z n is hereditary.
(c) n is a product of distinct primes.
7. Show that for every ring A the following properties are equivalent:
(a) Every left ideal of A is a free A-module.
(b) Every submodule of a free left A-module is A-free.
8. Let A be a left Noetherian ring. Show that the direct limit of 

injective left A-modules is injective. [Hint: use 3.2.]



CHAPTER II

A dditive Functors

In troduc tion . We consider functors (in the sense of Eilenberg- 
MacLane {Trans. Am. Math. Soc. 58 (1945), 231-294)) defined for 
A-modules and whose values are in the category of T-modules, where A 
and r  are two given rings. We only consider functors which satisfy an 
additivity property reflecting the fact that homomorphisms of modules 
can be added. Functors of several variables, some covariant, some 
contravariant are also treated. The two basic examples of such functors 
are A ® C (the tensor product) and Horn (A,C ).

In § 4 we discuss the extent to which functors may preserve exactness. 
It turns out that Horn (A,C) is a left exact functor; this will give rise 
(in Ch. hi, v, vi) to right satellites and right derived functors of Horn (A,C). 
Similarly the functor A 0  C is right exact; we shall later study its left 
satellites and its left derived functors.

The associativity relations of § 5 are quite elementary but of great 
importance in the sequel.

Given a A-module A it is frequently necessary to “ restrict” the opera­
tors to a smaller ring or to “ extend” the operators to a larger ring (by a 
suitable enlargement of A). In § 6 we set up the basic notions involved 
in such a change o f  rings. We shall return to these questions later (vi, 4; 
xvi, 5). There will be numerous applications to homology theory of 
groups and Lie algebras.

1. D EFINITIO NS

Let A1? A be any two rings. Suppose that for each A1-module A a 
A-module T(A) is given and that to each Aj-homomorphism cp: A A '  
a A-homomorphism T(cp): T(A) -> T(A') is given such that
(1) if <p: A -> A is the identity, then T(cp) is the identity,
(2) T{(p'(p) -  T{cp')T{(p) for cp: A A \  <p': A ' -> A".

We then say that the pair of functions T(A), T(cp) forms a covariant 
functor T  on the category of A-modules with values in the category 
of A-modules. In the case of a contravariant functor we have 
T(<p): T(A ') -> T(A) and T(cp‘»  =  T(cp)T(<pf).

In the sequel we shall have to consider functors in many variables, 
some covariant some contravariant. To simplify the notation we define

18
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explicitly a functor in only two variables, covariant in the first and 
contravariant in the second.

Let A1? A2, A be rings. We assume that for each A-m odule A and 
each A2-module C a A-module T(A,C) is given. Further, for each pair 
of homomorphisms (p: A A', ip: C' -> C, homomorphisms

T(<p,C): T(A,C) -> T(A',C), T(A,ip): T(A,C) -*  T(A,C')

are given subject to the following conditions:
(3) T(<p,C) and T(A,ip) are identity maps if cp: A -> A , ip: C ->  C are 

identity maps,
(4) T((p'(p,C) =  T(cp\C)T((p,C) and T(A.}ipip’) =  T(A,ip')T(A,ip) for 

<p': A '-> A \ip ':
(5) The following diagram is commutative

The composite mapping T{A,C) -> T (A \C ')  is denoted by T{<p,ip).
Clearly, by fixing C, T  becomes a covariant functor of A and by 

fixing A, T  becomes a contravariant functor of C.
We shall only be concerned with functors which are additive, i.e. 

satisfy

where q>l9<p2' A -> A \  ipl9ip2- C' -> C  and addition denotes addition of 
homomorphisms. In particular if (p and ip are zero homomorphisms then 
T(cp,C) and T(A,ip) also are zero homomorphisms. It follows that if 
one of the modules A or C is zero, then the identity map T(A,C) -> T(A,C ) 
is zero and therefore that T(A,C) is the zero module.

P r o po sit io n  1.1. I f  the homomorphisms

l <x P(X ip  Qp
Aa —  A ^ A a, C »-> C —  C,

(a =  1 , . . . ,  m\ j3 =  1 , . . . ,  n) yield direct sum decompositions o f A and 
C, then the homomorphisms

T(A,C)
T(<p,  C)

T (A \C )
T ( A , y > ) T ( A ' ,  y>)

W W W

Tin + n>c) = T(nQ + Tin>Q
T(A ,y>i +  V 2) =  T(A,ipi) +  T(A,y>2)

T(Aa,C p )  ► T (A ,C )  T(Aa,C fi)
T{î Qp) T(Px Jp)

yield a direct sum decomposition ofT(A ,C ).
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P roof. We have T(pa, , j lV )T(ia,qfi) =  T{prj, ia,qfij y ). This yields the  
identity if (a',/?') =  (a,/5) and zero otherwise. Further

2 a. =  2 a> nlXiaPvjfiqp)
=  T(2J*P*’ 2 M  =  identity.

Thus the conditions for a direct sum are satisfied.
Corollary 1.2. I f

0 A ' A -> A" -> 0, 0 -> C ' -> C -> C" -> 0

are split exact sequences,

o -> 7 /4 ',c )  -> t (a ,q  -> 7 /4 ",c )  -> o

0 - >  7 / 4 , C ") ->  7 / 4 , C ) ->  7 / 4 , C ')  - *  0

also are split exact sequences.

Let Tx and T2 be two functors, both covariant in A and contravariant 
in C. A natural transformationf: T± T2 is a family of homomorphisms 
f(A ,C ): T^A.C ) -> T2(A,C) such that the diagram

/U,C)
7 \M ,C )----------> / /4 ,C )

2W.v) T2(<p,y>)

U A ' ,C ) - k ~ u a \ c ')

is commutative for all cp: A ^ A \  ip: C '-> C . If each f(A ,C )  maps 
7\(y4,C) isomorphically onto T2(A9C) th e n /is  called a natural equivalence 
or a natural isomorphism.

2. EXAM PLES

Our first example is the functor Horn (A,C). Let A and C be two 
(left) A-modules. We shall denote as usual by Horn (A,C ) the group of 
all A-homomorphisms A -> C. Horn (A,C ) is regarded as an abelian 
group (i.e. a Z-module where Z  is the ring of integers). We usually 
write HomA (A,C) to indicate that we are considering A-homomorphisms. 

Given A-homomorphisms

cp: A ' -> A , ip: C -> C "
we define

Horn (p,ip) : Horn (A,C) -»  Horn 04',C ') 

by setting for a € Horn (A,C)

Horn (<p,yf)aL =  ipcccp.
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With this definition it is clear that Horn (A,C ) is an (additive) functor 
contravariant in A and covariant in C.

Each element c e C determines a A-homomorphism <pc\ A C (with 
A regarded as a left A-module) by setting (pc(X) =  Xc. This establishes 
an isomorphism of C (regarded as an abelian group) with HomA (A,C). 
Since A is also a right A-module it follows that HomA (A,C) may be 
regarded as a left A-module (see next §); then HomA (A,C) ^  C is a 
A-isomorphism. We shall frequently identify HomA (A,C) with C under 
this isomorphism.

The functor HomA (>4,C) may also be defined when A and C are 
right A-modules.

Our next example is the tensor product A ®A C where A is a right 
A-module and C is a left A-module. We recall the definition. Let F  
be the free abelian group generated by the pairs (a,c) with a e A, c e C, 
and let R  be the subgroup of F  generated by elements of the form

(a +  a'9c) — 0a,c) — (a\c)9 (a,c +  c') — (a,c) — (a,c')9
(iaX,c) — (a,Xc)9 (X c A).

Then A ® A C is defined as the quotient group F/R , regarded as an 
abelian group (i.e. as a module over the ring Z  of integers). The image 
in A ®A C of the element (a,c) of F  is denoted by a ®A c or by a ® c. 
We then have the formal rules

(a +  a') ® c — a <g> c +  a ' ® c, a ® (c +  c') =  a ® c +  a ® c',
(g) c =  a ® Ac.

If we regard 4̂ and C as abelian groups, we may form also the tensor 
product A ® z  C, and it is clear that A ® A C is the quotient of A ® z  C 
by the subgroup generated by the elements aX ® z c — a ® z Xc.

The function cp: A X C -> A (g)A C defined by q)(a,c)— a ®  c is 
bilinear and satisfies (p(aX,c) =  9o(a,Xc). Furthermore, any function 

/ :  A X C -> D (where D is an abelian group) which is bilinear and 
satisfies f(aX 9c) =  f(a,Xc) admits a unique factorization /  =  gcp where 
g: A ® C D is a homomorphism. This last property could be used 
as an axiomatic definition of A ® A C.

Given A-homomorphisms

(p: A - > A \  y)i C - > C '  

there exists a unique homomorphism (of abelian groups)

99 ®y): A ®A C -»^4' ®A C
satisfying

(99 ® ^) (a ® ft) =  (99a) ® (^6).
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With this definition it is clear that A ® A C is an additive functor covariant 
in both variables.

The mappings X ® c->Xc  and a ® X - >  aX yield natural isomorphisms 
A ® A C & C  and A ®A A  && A.  We shall frequently regard these as 
identifications.

3. OPERATORS

Very frequently the modules A  and C, in addition to being Ax- and 
A2-modules respectively, will have some other operators compatible with 
the module structure. It is usually possible to transfer these operators 
to T(A,C).

For example, suppose that A  in addition to being a (left) A-m odule, 
also is a (left) T-module where T is a ring, and that the operators of Ax 
and T commute (i.e. that X(ya) =  y(Xa) for a € A, X € A1? y  € T). We 
then say that A  is a Aj-T-bimodule. Each y  e T induces a A^endo- 
morphism y A : A  -> A  and thereby induces a A-endomorphism T(yA,C) 
of T(A,C).  Thus T(A,C)  becomes a A-T-bimodule. If C is a A2-T- 
bimodule with T operating on C on the left, then T(A,C ), because of the 
contravariance of C, becomes a A-T-bimodule with T operating on the 
right. Similarly a A^T-homomorphism cp\ A  -> A'  yields a A-T- 
homomorphism T(cp,C), etc.

The group (i.e. Z-module) HomA (A,C)  is defined when A  and C 
both are left A-modules. We indicate this situation by the symbol 
(Â ,AC). If in addition either A  or C is a A-T-bimodule then HomA (A,C) 
becomes a T-module. The following four cases are possible:

( a - i ^ a Q ’ HomA (A,C ) is a right T-module,

(a^F ’aQ* HomA 04,C) is a left T-module,

(A^’A -rO ’ HomA (A,C ) is a left T-module,

(AA,ACr), HomA (A,C)  is a right T-module.

If T is commutative, the difference between left and right T-modules 
disappears and the four cases reduce to two. If T is a subring of A 
contained in the center of A then A  and C are automatically A-T-bi- 
modules and, in this case, all four cases coincide since for a e HomA (A,C) 
a € A  and y  e T we have

(yea) (a) =  ca(ay) =  ca(ya) =  y(caa).

Thus HomA (A,C ) may always be regarded as a module over the center of 
A. If  A is commutative, then HomA (A,C ) is a A-module. A similar 
discussion applies starting with the situation described by the symbol 
(Aa ,Ca).
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The tensor product A  ®A C is an abelian group (i.e. a Z-module) 
and is defined when A  is a right A-module and C is a left A-module, 
a situation that we shall describe by the symbol (Aa, a C). If in addition 
either A  or C is a A-T-bimodule then A  ®A C becomes a T-module. 
The following four cases are possible:

(i^a>aQ> A ® a C 1S a T-module,

^  ® a C is a, right T-module,

(^A>r.AO> ^  C' is a left T-module,

(Aa ,a Ct ), A  (g)A C is a right T-module.

If T is commutative the difference between left and right T-modules 
disappears and the four cases reduce to two. If T is in the center of A 
then A  and C are automatically A-T-bimodules and in this case, all four 
cases coincide since

(ya) ® c =  (ay) ® c =  a ® (yc) =  a (g) (cy).

Thus 4̂ ® A C may always be regarded as a module over the center of A. 
If A is commutative, then A  ®  A C is a A-module.

P roposition 3.1. I f  A. is a commutative ring, f/zerc ex /ito  a 
unique homomorphism f : A ® A C -> C ® A v4 swc/i that f ( a  ® c) =  c ® a. 
77//a homomorphism is an isomorphism and establishes a natural equivalence 
o f the functors T(A,C) =  A ®A C am/ T-fA.C) =  C ®A A.

The proof is straightforward.

4. PRESERVATION OF EXACTNESS

A functor T(A,C), covariant in A  and contravariant in C, is called 
exact if whenever

A '- + A - + A ”9 C" -> C ->  C"
are exact,

7X4\C) -> T(A,C)  -> T(A",C), T(A,C") -> T(A,C)  -> T(^,C ')

also are exact.
P r o p o s it io n  4 .1 . In order that T  be exact it is necessary and sufficient 

that fo r  all exact sequences

0 A' -> A -> A" -> 0, 0 -> C" -> C -> C" -> 0,

///e sequences
0 - >  r ( ^ ' , C )  - >  T(A,C) -> T(A",C) - >  0 

0 - *  T(A,C")  - *  T(A,C) -> T(A,C')  - >  0
be exact.
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P roof. The necessity of the condition is obvious. Assume, then, 
that the condition holds, and suppose A '-> A -> A "  exact. Let 
B ' =  Ker (A' A), B*= Ker (A -> A"), B" =  Im (A ->  A"). Then the
sequences 0 B ' -> A ' -> B  -> 0, 0 B  -> A -> B" -> 0, 0 B" -> A" 
-> A ”IB” -> 0 are exact. Therefore the sequences

T{A\C) -*  T(B,C) -> 0, 0 -*  T (B \C ) -> 7 K ',C )
T(5,C) -> T{A,C) -> T (B \C )

are exact. This implies that T(A \C ) -> T(A,C) T (A \C )  is exact, as 
required. The proof with respect to the second variable is similar.

P roposition 4 .2 . I f  the rings and A2 are semi-simple then any 
(iadditive) functor T(A,C), defined fo r  A-modules A and A-modules C, is 
exact.

P roof. Let 0 -> A ' -> A -> A ” -> 0 be an exact sequence. By
1,4.2, this sequence splits. Therefore by 1.2 the sequence 0 -> T (A \C )  
-> T(A,C) -> T(A'\C) -> 0 is exact. A similar reasoning applies to the 
second variable. It now follows from 4.1 that T  is exact.

Functors that are exact are encountered very rarely. Most of the 
interesting functors that we shall consider preserve exactness only par­
tially. To classify these various kinds of functors we consider arbitrary 
exact sequences 0 -> A' A -> A ” -> 0 and 0 C" C -> C” -> 0. We 
say that T  is half exact if

T (A ',C )-+ T (A 9C )-* T (A \C ),
T(A,C") -> T(A ,C )-> T(A ,C '),

are exact. We say that T  is right exact if
T(A',C) -> T(A,C) -> T(A'\C)->  0

T(A,C”) -*  T(A,C) -> T(A,C') -> 0,

are exact. We say that T  is left exact if
0 -> T (A \C ) -> T(A,C) -> T(A",C)

0 -> T(A,C") -> T(A,C) -> T(A,C')
are exact.

P roposition 4 .3 . For each functor T  the following conditions are 
equivalent:

(a) T  is right exact,
(b) fo r  any exact sequences A ' -> A -> A ” 0, 0 - > C ' - > C - > C "  

the sequences
T(A',C) -> T(A,C) -> T(A",C)->0  

T(A,C") -> T(A,C) -> T(A,C') -* 0
are exact,
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(c) fo r any exact sequences A ' A -> A" -> 0, 0 - > C ' - > C - > C "  
the sequence

T(A',C) +  T(A,C")~-> T(A,C) —* T(A",C') — »0

is exact, where the first term is a direct sum, and the homomorphism (p has 
as its coordinates the maps T (A \C )  -> T(A,C), T(A,C") -> T(A,C).

Proof, (a) => (b). Let B  =  Ker (A' -> ^4), i?' — Im (A/ -> v4). Then 
and 0 B ' -> A A " - > 0  are exact. Conse­

quently T (A \C )-> T (B \C )->  0 and T (B ',C )-> T (A ,C )-+ T (A \C )->  0 
are exact. This implies the exactness of T(A',C ) -> T(A,C) -> T(A",C) 
-> 0. The proof for the second variable is similar.

(b) => (c). This proof is obtained by familiar “ diagram chasing” in 
the commutative diagram

T(A ',C ")-----* T(A,C")----- ► T (A \C ")----► 0

N f  \ f  >f

T(A’,C)  > T (A ,C )----► T (A ",C )---->0

N f V  \ f

T (A ',C ')  > T (A ,C ')----- > T ( A \ C ) ----► 0

0 0 0

in which the rows and columns are exact.
(c)=>(b) is proved by applying (c) in the following two cases: 

C" = 0, C ' = C  and A ' =  0, A =  A".
The implication (b) => (a) is obvious.
P r o p o s it io n  4.3a. For any functor T  the following conditions are 

equivalent:
(a) T  is left exact,
(b) fo r  any exact sequences 0 A'  -> A -> A ”, C'  -> C -> C  -> 0 the 

sequences
0 -> T(A\C) -> T(A,C) -> T (A \C )

0 -> T(A,C")->T(A,C)  -> T(A ,C)
are exact,

(c) fo r  any exact sequences 0 -> A'  -> A  -> A", C  -> C  -> C" 0  
the sequence

0 —  T(A',C")  —  T(A,C)  r(/l",C ) +  T{A,C')

is exact, where the last term is a direct sum and the homomorphism \p has as 
coordinates the maps T(A,C) -> T(A,r,C), T(A,C) -> r(^4,C').
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The proof is analogous to that of 4.3. We also leave to the reader 
the statements and proofs of analogous propositions for other variances 
and for functors of a larger number of variables.

P roposition 4.4. The functor HomA is left exact.
P roof. Consider an exact sequence

(1) 0 — * A ' — * A -—*■ A" — *■ 0.

We must show that the induced sequence

0 — >• Horn 04",C) Horn (A,C) Horn (A ',C )

is exact. We already know that \ p  =  0, and therefore p' defines a 
homomorphism

u: Horn (A",C) -> Ker

It suffices to prove that u is an isomorphism. To this end we define a 
homomorphism

v: Ker / ' - >  Horn (A \C )

as follows: given /  e Horn (A,C ) such that i f  — 0 we have f i  ~  0; define 
(vf)a" for a" e A" to be fa  where a e A is any element with pa =  a". It 
follows readily that uv and vu are identity maps, so that u is an isomorphism. 

The left exactness with respect to the variable C is proved similarly. 
P roposition 4.5. The functor ® A is right exact.
P roof. Consider an exact sequence (1) as above. We shall show 

that the induced sequence

A ' ® C — *• A ® C — *• A" ® C — *• 0

is exact. Since p 'i ' — 0 we have a homomorphism

u: Coker i' -> A" ® C,

and it suffices to show that u is an isomorphism. We define a homo­
morphism

v: A" 0  C -> Coker i

as follows. Given a" € A, c e C, choose a e A with pa =  a  and denote 
by <p(a",c) the image of the element a ® c in Coker T . Clearly (p(a'\c) is 
independent of the choice of a, is bilinear and satisfies cp(a"h,c) =  (p(a'\Xc). 
Thus there is a unique homomorphism v such that v(a" ® c) — cp(a",c). 
Since uv and vu are obviously identity maps, u is an isomorphism.

P roposition 4 .6 . A A-module A is projective i f  and only i f  the functor 
T{C) =  HomA (A,C) is exact. A A-module C is injective i f  and only i f  
the functor U(A) — HomA (A,C) is exact.
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Proof. Since T  is left exact it follows that T  is exact if and only if 
for every epimorphism C -> C" the mapping Horn (A,C)->  Horn (A,C") 
is an epimorphism. This however is immediately equivalent with A 
being projective. The second half of 4.6 is proved similarly.

5. COMPOSITE FUNCTORS

Functors may be composed exactly as functions. For instance, let 
T{A,C) be a functor defined for A^modules A and A2-modules C and 
with A-modules as values, let U(D,E) be a functor defined for A3-modules 
D and A4-modules E  and with A1-modules as values. We define the 
composite functor V as follows

V(D ,E,C)= T(U(D,E),C).

V(d,e,y) =  T(U(d,e),y).

With respect to the variable C, V and T  have the same variance; with 
respect to the variables D and E , V has the same (the opposite) variance 
as U if A is a covariant (contravariant) variable in T .

If both U and T  are exact, then so is V. If one of the functors U or 
T  is exact and the other is half exact, then V  is half exact.

If A is a covariant variable of T  and both T  and U are right (left) exact, 
then V  also is right (left) exact. If A  is a contravariant variable of T , 
T is  right (left) exact and U is left (right) exact, then V is right (left) exact. 
The proof of these facts uses the characterizations 4.3(b) and 4.3a(b) of 
right and left exact functors.

Using the functors 0  and Horn various functors of three variables 
may be obtained by composition. It turns out that various relations 
hold between these.

We begin with the situation described by the symbol (Aa ,aBt ,t C),
i.e. A is a right A-module, C is a left T-module, and B is a A-T-bimodule 
with A operating on the left and T  on the right. Then A 0 A B  is a right 
T-module and B  0 r  C is a left A-module, so that the groups

(A ® A B) ® r  C, A  ®A (B  ® r  C)
are defined.

P roposition 5 .1. There exists a unique homomorphism

r: (A ®A B) ® r  C A  0 A (B ® r  C)

such that r{{a 0  b) 0  c) =  a 0  (b 0  c). The homomorphism r is an 
isomorphism and establishes a natural equivalence o f functors. It expresses 
the associativity o f the tensor product.

Next consider the situation described by the symbol {\A ,TBK,TC).



28 ADDITIVE FUNCTORS [Ch a p . II

Then B ® A A and C are left T-modules, while A and Homr  (B,C) are 
left A-modules. Hence the groups

HomA (A, Homr  (B,C)), Homr  (B ®A A,C )
are defined.

Proposition 5 .2. There exists a unique homomorphism

s: HomA (A, Homr  (B,C )) Homr  (B ®A A,C)

such that fo r  each <p: A -> Homr  (B,C) we have (scp) (b ® a )=  (cpa)b.
This homomorphism is an isomorphism and establishes a natural equivalence 
offunctors.

The next case (Aa ,aBt ,Ct ) differs from the above only in that all 
right operators have been changed to left ones and vice-versa. 

P roposition 5 .2 '. There exists a unique homomorphism

s ' : HomA (A, Homr  (B,C )) -> Homr  (A ®A B,C)

such that fo r each cp: A  Homr  (B,C ) we have (s'<p) (a ® b )=  ((pa)b.
This homomorphism is an isomorphism and establishes a natural equivalence 
offunctors.

The proofs of 5.1-5.2' are straightforward and are left to the reader. 
We shall frequently regard the isomorphisms r, s, and s' as identifications.

According to the rules given earlier the functor appearing in 5.1 is 
covariant in all three variables and is right exact. The functors appearing 
in 5.2 and 5.2' are contra variant in A and B , co variant in C and are 
left exact.

P roposition 5 .3. In the situation {AA,ABf) i f  A is A-projective and 
B is T-projective then A ®A B is T-projective.

P roof. Let C be any right T-module. Then by 4.6, Homr  (B,C) 
is an exact functor of C. Therefore, again by 4.6, HomA (A , Homr  (B,C)) 
is an exact functor of C. Thus applying 5.2' we deduce that
Homr (.4 ®A B,C) is an exact functor of C. It thus follows from 4.6 that
A  ® A B  is T-projective.

A similar proposition holds also in the situation (r ^ A,Â ).
A similar proposition in the case ( r4 A,r C) will be established later 

(see vi, 1.4).

6. CHANGE OF R ING S

In all of this section we shall consider two rings A and T and a ring 
homomorphism

<p: A - > T  (cpl=  1).
Every left T-module A may be treated as a left A-module, by setting

Xa =  (<pX)a, A e A , a € A.



Similarly for right modules. In particular T itself may be regarded as a 
left or a right A-module.

Conversely suppose A is a right A-module. We place ourselves in 
the situation described by the symbol 04A,ATr ) (he. we regard T as a 
left A-module and right T-module). We then form the right T-module

=  a  <g)A r

which we call the covariant <p-extension of A. If A is a left A-module 
we are in the case ( r r A,Â ) and we define the left T-module (<p)A as 
T (g)A A. Thus ^^ (resp . (<p)A) is a covariant right exact functor of A.

Again assuming A is a right A-module, we can place ourselves in the 
situation (r TA,v4A). Then

A <*> =  HomA (T,A)

is a right T-module called the contravariant cp-extension of A. If A is a 
left A-module, we are in the case (ATr ,Ay4) and ((p)A defined as above also 
is a left T-module. Thus A (<p) (resp. (<p)A) is a covariant left exact 
functor of A.

Let A be a right A-module. We define the A-homomorphism

a ~ ^ A (<p)

as A 0  (p: A  ®A A -> A ®A T. Similarly when A is a left A-module. 
We define also the A-homomorphism

A (<p) -> A

as Horn (<p,A): HomA (T,A) -> HomA (A,v4).

We are now going to apply the identities of section 5 in the following 
four cases:

Case 1 . 04A,ATr ,r C). Setting B  =  T in 5.1, yields the identity

(1) A ®A C =  A ^  ® r  C.

Case 2. (v4r ,r TA,AC). Again 5.1 yields the identity

(2) A ® A C =  A ® r  ((<p)C).

Case 3. (Â , r TA,r C). Setting B  =  T in 5.2 yields the identity

(3) HomA 04,C) -  Homr  (MA9C).

Case 4. (r ^4,ATr ,AC). Again 5.2 yields the identity

(4) HomA (A,C) =  Homr  (A,<*>C).

§ 6] CHANGE OF RINGS 29
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We also could consider two other cases 3' and 4' given by the symbols 
(^A’A ^ r ^ r )  anc* (^rjr^A ^A ) anc* aPPty 5-2'. We obtain

(3') HomA 04,C) -  Homr  (A(gt),C),

(4') HomA 04,C) =  Homr  (A,C ((p)).

P roposition 6.1. I f  a right A-module A is A-projective then A (<p) 
■is T-projective. Similarly fo r a left A-module.

P roof. Assume A is a A-projective right A-module. Then by
4.6, HomA 04,C) is an exact functor of the variable C. Thus, by (3'), 
Homr  (A(tp),C) is an exact functor of C and therefore A ((p) is T-projective, 
again by 4.6.

Similarly, using (4) or (4') we prove:
P roposition  6.1a. I f  a right A-module C is A-injective then C(r) is 

T-injective. Similarly fo r  a left A-module.

Assume from now on that A is a right T-module. We then define 
the T-homomorphism

g: A m -* A
g

by g(a ® y) — ay. The composition A — ► A (<p) -—► A is the identity, 
which proves that g  is an epimorphism and Ker g is a direct summand of 
A ((p) as a A-module. If A is T-projective then Ker g  is a direct summand 
of A m  as a T-module.

D efinition . A T-module A is said to be cp-projective if Ker g is a 
direct summand as a T-module; i.e. if the exact sequence 0 -> K er g

-> A ((p) — > A 0 of T-modules splits.
P roposition 6 .2. I f  a T-module A is A-projective and cp-projective, 

then A is T-projective. I f  T is A-projective and A is T-projective, then 
A is A-projective.

P roof. If A is A-projective, then A (<p) is T-projective by 6.1. If 
further A is 99-projective, then A is isomorphic with a direct summand of 
A (<p) (as a T-module) and therefore A is T-projective.

Assume T is A-projective; then C(<p) is an exact functor of the (right) 
A-module C; if further A is T-projective, then Homr  (A,C ((p)) is an exact 
functor of C; by (4') this means that HomA (A,C) is an exact functor of C, 
thus A is A-projective.

Assume that C is a right T-module. We define the T-homomorphism

h; C -> C (9,)

which to each c e C  assigns the homomorphism he: y - ^ c y .  The 
composition C -> C((p) -> C is the identity, which proves that h is a
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monomorphism and Im h is a direct summand of C((p) as a A-module. 
If C is T-injective then Im h is a direct summand as a T-module.

D efinition . A T-module C is said to be cp-injective if Im h is a direct

summand as a T-module, i.e. if the exact sequence 0 -> C — ► C(v) 
-> Coker h -> 0 of T-modules splits.

P r o po sitio n  6 .2a . I f  a T-module C is A-injective and cp-injective,
then C is T-injective. I f  T is A-projective and C is Y-injective, then C
is A-injective.

The proof is dual to that of 6.2.

P r o po sitio n  6 .3. For any right A-module A, the module A ((p) is
f-projective and the module A (<p) is cp-injective. Similar results hold fo r
left A-modules.

Proof. We shall only consider the module A (<p) where A  is a right 
A-module. We define the homomorphisms

r ^ r ® A r - ^ r .
by ay =  1 ® y, P(y1 ® y2) =  yxy2- These are left A- and right T- 
homomorphisms. Since =  identity we obtain right T-homomorphisms

^  ®A <r ®A r ) - ^  ®A r .
with /? V  =  identity. However if we rewrite A ®A (T ®A T) as 
(A ®A T) ®A T =  A (<p) ®A T we find that /?' coincides with g: (A(<p))(<p) 
-> A (<p). Thus A ((p) is 99-projective.

As an application of 6.1a we give a new method for imbedding any 
left T-module A into an injective T-module (see Theorem 1,3.3). We 
assume that the problem is already solved for the ring Z  of rational 
integers (see remark at the end of vn,5) and we consider the natural 
homomorphism <p: Z -> T .  Assume that we have a Z-monomorphism 
A ->  Q where Q is Z-injective. We then have the T-monomorphism 
A -> (<p)A and the T-homomorphism (<p)A -> ((p) Q which also is a mono­
morphism since Horn is left exact. There results a T-monomorphism 
A - > (4p)Q. However by 6.1a, {(p)Q is T-injective. This proof was 
communicated to us by B. Eckmann. A similar proof was also found by
H. A. Forrester.

EXERCISES

1. Show that A +  B  and A ® A are not additive functors; however 
A ® B  +  B ® A and A +  A are additive functors.

2. For a fixed family {Aa} of right A-modules define the functors
U(C) =  (H A a) ®A C, V(C) =  n  (Aa ®A C)
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of the left A-module C. Show that V is right exact, and that V  is exact 
if and only if for each a the functor Ax ® A C is an exact functor of C.

Define a natural transformation f :  U -> V  such that {aa} ® c
-»  {aa ® c}, and show that if C is finitely generated then/ :  U(C) -»  F(C) 
is an epimorphism.

Assume that A is left Noetherian and C is finitely generated. Prove 
that U(C)->V(C) is an isomorphism. [Hint: use an exact sequence 
O - ^ A ^ F - ^ C - ^ O  where F  is free on a finite base.]

3. Let g: T ->  U be a natural transformation of functors, and let 
T  =  Ker g, J J ~  Coker g. Show that

(T  half exact) and (U left exact) T  half exact
(T  left exact) and (U left exact) f  left exact

(T  right exact) and (U half exact) U half exact

(T  right exact) and ( U right exact) U right exact.

4. Consider the situation described by the symbol (a^ ^ aO 1)- 
Define a natural transformation

t: HomA (A, Homr  (B,C)) -> Homr  (B , HomA (A,C ))

and show that it is an isomorphism.
5. In the situation (Â 4,ACr ) show that if A is A-projective and C is 

T-injective, then HomA (A,C) is T-injective.
6. Let A be a commutative ring, and A and C finitely generated 

A-modules. Show that A ® A C is a finitely generated A-module. 
Assume that A is Noetherian and show that HomA (A,C) is a finitely 
generated A-module.

7. Let A be a ring such that there exists a ring homomorphism 
cp: A -> K into a (not necessarily commutative) field K. Show that for 
a free left A-module F, any two bases have the same cardinal number. 
[Hint: consider the left K-module (gj)F ] Show that for a commutative 
ring A a homomorphism <p, as above, always exists.



CHAPTER III

Satellites
In troduction . With each functor T  of one variable (covariant or 

contravariant) we associate a right satellite functor S XT  and a left satellite 
functor S - 'T  =  By iteration, we then obtain satellites S nT  for
any integer n (— oo <  n <  oo) with S°T — T. If the functor T  is half 
exact, then each exact sequence

0 -> A ' -> A -> A" 0

gives rise to an unlimited exact sequence involving all the satellites of T. 
It is in this way that we are led to the important notion of a “ connected 
sequence of functors” (§4) which yields an axiomatic description of 
satellites (§ 5).

It is in the nature of the definition of satellites, that it applies only to 
one variable at a time and that higher order satellites have to be obtained 
by iteration. This is in sharp contrast with the theory of derived functors 
(Ch. v) which uses homology methods and yields the derived functors of 
arbitrary degree all at once. The later developments in this book will 
be dominated by the theory of derived functors, and because of this a 
thorough knowledge of this chapter is not indispensable. However, the 
reader will find it well worth his trouble to familiarize himself with the 
technique of proofs based on diagrams, as well as with the notion of a 
“ connected sequence of functors” that is useful throughout.

1. DEFIN ITIO N  OF SATELLITES

Consider a diagram

(1) 0 — P - ^ A —* 0

where both rows are exact and P  is projective. There is then a homo­
morphism / :  P  -> P1 with fl-J =  g/i. The homomorphism /  defines 
uniquely a homomorphism / ' :  M  -> M X with o q /' =  /a .

3 3
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Let now T  be a covariant (additive) functor of one variable, 
have then a commutative diagram

T (  a)

We

(2)
T(M )

T(n

W ) TixJ

T(P)

T i f )

T{Pi)

It follows that T ( f ')  induces a homomorphism

U gY- Ker 7(a) ^  Ker 7 K ).

If T  is contravariant then all the arrows in (2) should be reversed. Then 
T ( f ')  induces

$ \ g ) : Coker T {^)  -> Coker T(a).

P r o p o s i t io n  1.1. The homomorphisms # i ( g )  and ^ ( g )  are inde­
pendent o f the choice o f  f  satisfy the additivity conditions f t fg  +  g )  
— $i(g) +  (<?)> $ \g  +  g ) — ft\g )  +  tix(g)i and the transitivity con-
ditions ft^grg) =  dKgig) =  VKgWigi)-

The transitivity conditions refer to a diagram

0- M 0

0 -----------  *PX------ >A1----- >0

\ g'
o — * m 9 — ► P9 — ► a 9 — ► 0

with exact rows and P and Px both projective.
P r o o f . In view of the exactness of the bottom row of (1) the homo­

morphism /  can only be replaced by a homomorphism oq/i where
h: P -> M x. Then / '  gets replaced by / '  =  / '  +  hex.. Thus in the 
covariant case T ( f ' ) =  T (f')  +  Tih)T(oL). Hence T (f ')  and T ( f )  have 
the same effect when applied to the kernel of T(a), thus showing the 
uniqueness of #i(g). In the contravariant case we have T (f')  =  T (f')  
+  T(<x)T(h). Hence T (f')  and T (f')  coincide modulo the image of T(a), 
thus showing the uniqueness of ^ (g ) .  In order to prove the additivity 
and transitivity it suffices to select any / ,  / ,  f x for g , g , g± respectively and 
then use /  +  /  and f j  for g  +  g  and gxg.

Next we consider a diagram

ft ^  ai
( l a )

0 — - Ax Qx Nx — ► 0

0 - ^  A Q jV — >0



where both rows are exact and Q is injective. Then there is a homo­
morphism / :  Qx~>Q  with ffix — fig- The homomorphism*/ defines 
uniquely a homomorphism / ' :  NX-> N  with / ' ax =  a /.

If T  is covariant, there results a commutative diagram

T(Q1) J ^ T ( N 1)

(2a) n n  n n

n Q ) W

which yields a homomorphism

Coker r ( a x) -> Coker T(a).

In the contravariant case the arrows in (2a) should be reversed. ’ There 
results a homomorphism

ftfg ):  Ker T(a) -> Ker T(xj).

P r o po sitio n  1.1a. The. homomorphisms iP-(g) and # i ( g ) are independent 
o f the choice o f  /  satisfy the additivity conditions {P(g +  g )  =  ^ (g )  +
&x(g +  g )  =  #i(g) +  # i(g ), and the transitivity conditions fizgig) =

% ) = w  w -
The proof is entirely analogous to that of 1.1 and will not be repeated.

We are now ready to proceed with the definition of the main object 
of this chapter.

Let A be a module and let

(3)

(4) 0 -> A ->  Q -+ N -+ 0

be exact sequences with P  projective and Q injective. Such exact 
sequences exist by 1,2.3 and 1,3.3.

Let T  be a covariant functor. We define

(5) SXT{A) =  Ker (T(M) -> T(P))

(6) &T(A) =  Coker (T(Q) -> T(A))

thereby obtaining exact sequences

(5') 0 -> SXT(A) -> T(M) T(P)

(6') T ( 0  -> T(N ) S1̂ )  -> 0.

A priori, these definitions depend upon the choice of the sequences (3) 
and (4). Let SxT(A) and S XT(A) denote the modules obtained using 
another pair of sequences 0 M  -+P -> A - > 0 a n d 0  -> A  -> Q -> N  -+ 0
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with P  projective and Q injective. Then the maps f i fg )  and #*(g) taken 
for A =  Ax and g =  identity, yield maps

SXT(A) -> SxT (A l SXT(A) -> SXT (A \
S^T(A) -> S'TXA), P IX A )  -> S XT(A),

which in view of the transitivity conditions of 1.1 and 1 .1a are inverses 
of each other. Thus the modules (5) and (6) are unique up to natural 
isomorphisms. In order to remove all logical difficulties from the 
definitions (5) and (6) it suffices to assign to each A particular sequences
(3) and (4), for instance, those constructed in the proofs of 1,2.3 and
1,3.3.

If g: A -> Av  then the maps (g) and $*(g) yield maps

(7) SJXg): S J I A ) - * ^ ^
(8) S'T ig ) : S ^ A )  S1̂ ) .

The conclusions of 1.1 and 1.1a then show that (5)-(8) yield covariant 
(additive) functors SXT  and S'1r  called the left satellite of T  and the right 
satellite of T  respectively. These new functors act on the same categories 
of modules as T.

If T  is contravariant then the above formulae are replaced by

(5a) S J (A )  =  Ker (T(N) -> T(Q))
(6a) S ^ iA )  =  Coker (T(P) -> T(M))
(5'a) 0 -> SJX A ) -> T(N) T(Q)
(6 'a) T(P) -> T(M) -> S ^ A )  -> 0
(7a) SJX gY  S J IA J -+ S J X A )
(8a) S 'T ig ) : S1! ^ )  ->  S ^ A ) .

The left satellite St T  and the right satellite S XT  are then contravariant. 
The definition of the satellites may be iterated by setting

S ^ i T ^ S ^ n  S0T — T,

S n+1T  =  5 i(5«r), S°T  =  T.

It will be convenient to arrange all the left and all the right satellites into a 
single sequence {SnT}, — oo <  n <  oo as follows:

S nT =  S~nT.

Several properties of the satellites are clear from the definitions. 
Proposition 1.2. I f  T  isright exact then S nT  =  0 fo r  all n >  0. I f  

T  is left exact then S nT  — 0 for all n <  0. I f T  is exact then S nT  =  0 fo r  
all n yLO.
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P roposition 1.3. I f  T  is covariant (<contrav.) and A is projective 
(iinjective) then S nT(A) =  0 fo r  all n <  0. I f  A is injective (projective) 
then S nT(A) — 0 fo r  n >  0.

Indeed for A projective we can take P =  A, M  =  0 while for A injective 
we can take Q =  A, N  =  0.

P r o p o s it io n  1.4. Let 0 M - + P A - > Q ,  0 A ->  Q ->  N - > 0  
be exact sequences with P projective and Q injective. I f T  is covariant then

S n+iT(A) =  SnT(M), S n+1T(A) =  S nT(N), n > 0 .

I f T  is contravariant then

S n+1T(A) =  S nT(N), S n+1T(A) =  * >  0.

This is an immediate consequence of 1.3 and the exact sequences 
(5'), (6'), (5'a) and (6'a).

P roposition 1.5. I f  the functor T  is defined fo r  modules over a heredi­
tary ring A, then S nT  = -0  fo r  | n | >  1.

Indeed in this case M  is projective and N  is injective. Thus 1.4 and
1.3 yield the conclusion.

2. CONNECTING HOMOMORPHISMS 

Throughout this section we shall consider exact sequences

( 1) 0 -+ A '-> A -+ A " -> 0  

and commutative diagrams

0 ---- > A '-----> A ----- > A "--- ►0

(2)
0 ---- > B ' -----► B -----► B " --- ► 0

with exact rows.
Let 0 -+ M -> P -> A " -> 0  be an exact sequence with P projective. 

Taking g  =  identity we then obtain a diagram

0 -----► M -> P  >A"----------- ^0

l f
0 ---- - A ' -----* A ----- ►A ’ ------0

as considered in § 1. If  T  is a covariant functor we obtain a map 

H g )  ■ Ker (T(M ) _  T(P)) -> Ker (T(A’) -> T{A)).

This defines a map

(3) ©i: S J U ^ - ^ T X A ')



whose composition with T{A') -> T(A) is zero. Similarly using an exact 
sequence 0 -> A ' Q -> N  -> 0  with Q injective yields a homomorphism

(3a) 0 1: T(A") -> SPTXA')

whose composition with T(A) -> T(A") is zero.
For T  contravariant we obtain similar homomorphisms

(3') ©!*. S1T(A') ->  T(A")

(3'a) 0 1: T(A') -> S 1T(A,r).

It follows readily from 1.1 and 1.1a that these homomorphisms are 
independent of the choice of the auxiliary sequences 0 -> M  -> P  -> 4̂" 
-> 0 etc. We thus obtain an infinite sequence

(4)
 >Sn- 1T (A " ) ^ S nT ( A ') ^ S nT (A )-^ S nT (A ")-^S n+1T(A')—+- • •

defined for all integers n. For T  contravariant A" and A ' should be 
interchanged.

P roposition 2.1. The diagram (2) induces a commutative diagram

• • • -> -> S nT(A') -> S nT(A) -> S nT(A") -> S ’+'TXA') -> • • •
 ̂  ̂ ^ ^

. . .  s ^ T i B ”) -> s nr ( ^ ')  -> 5 wr(5 )  -> 5 wr(^ ") -> s ^ r o s ' )  -> • • •

For T  contravariant all arrows should be reversed and the indices 
lowered.

P roof. Only the commutativity relations in the squares involving 
the maps 0  need to be established. We shall only carry out the proof in 
the case
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A ")---- >T(A')

S ^ iB " )  ► T(B')

for T  covariant. Let 0 -> M  P -> A" 0, 0 -> M -> P -> B " -+ Q  be 
exact sequences with P and F  projective. We thus obtain a diagram

0  > M  > P  ► A ” >0

0  > B f  > B — ^ B " ---- >0

which as above yields a map S1T{A") -> T(B'). In view of 1.1 this map 
coincides with the compositions S ^ A " )  -> T(A') T(B') and S ^ A " )
-> S ^ B " )  -> T(Bf) as desired.
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P r o po s it io n  2 .2 . The composition o f  any two consecutive homo­
morphisms in the sequence (4) is zero.

P r o o f . Since the composition A ' -> A -> A" is zero it follows that 
the composition S nT(A ') -> S nT(A) -> S nT(A") is zero. Next we consider 
the compositions
(5) SnT(A) -»  S nT(A") -> S n+1T(A').

For n =  0 this has been observed at the time 0 1 was defined. Thus, by 
iteration, the composition (5) is zero for n 0. Thus it suffices to 
consider n <  0, which reduces to the case

(6) S ^ ^ S ^ i A ' ' ) - * ^ ' ) .

This composite map is obtained from a diagram

0 - — > M P -> ji - ^ 0

0 - —> M "
f
I" —> 0

0 —> A 9 -> A -
>

-> A
f
n - * 0 .

It therefore suffices to show that the map ft induced by the diagram

0 — > M -> P -> Al - > 0

0 ---- >A' -> A
>
// - ^ 0

is zero. To see this, choose the vertical map P -> A  to coincide with 
the horizontal one. Then the induced map M  -> A ' is zero.

The proof that the compositions

S nT(A") -> S n̂ T {A ')  -> S n̂ T (A )
are zero is similar.

3. HALF EXACT FUNCTORS

The main objective of this section is to prove the following 
T heorem  3.1. Let

(1) o - > A ' ± A ± * A ' - + 0

be an exact sequence. I f T  is a covariant half exact functor then the sequence

(2)
 > S n- lT(A”) S nT(A') S nT(A) -+ S nT(A") 5 n+1r(v4') • • .

is exact. For T  contravariant A ' and A" should be interchanged.
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The proof will be preceded by two lemmas concerning homomor- 
phisms derived from certain diagrams. These will also be useful in 
later sections.

L em m a  3.2. Let

A ’ —  A - ^ A "
[ r  |  /  \ r
C — + C — + C '

v>'

be a commutative diagram with exact rows. There result homomorphisms

(3) Ker / '  -*  Ker / - *  Ker / "

(4) Coker / '  -> Coker / - >  Coker / " .

I f  Ker ip' =  0 then (3) is exact. I f  Coker cp — 0 then (4) is exact.
The proof is left to the reader.
Next we consider the commutative diagram

A ' —  A - ^ A "  —  0
(5) | f  \t 1 r

0 —  c — > c —+ cv>

with exact rows. Given any element x  e Ker f "  we can find elements 
a € A and c' e C' with (pa — x  and ip'c' =  fa . The element y  e Coker/ '  
determined by c' can easily be seen to be a function of x  only. We thus 
obtain a homomorphism

Ker f "  -> Coker / ' .

L em m a  3.3. The sequence
(6) Ker / '  -*  Ker / - >  Ker / "  -> Coker / '  -> Coker / - >  Coker / "  
is exact.

The verification is left to the reader.
It should be noted that the homomorphisms considered above are 

natural in the following sense. If (5) is another diagram like (5) and 
we have a map of the diagram (5) into (5) then there results a map of the 
exact sequence (6) into the exact sequence (6).

Proof of 3.1. We apply 1,2.5 to the exact sequence (1). We obtain 
a commutative diagram

T (M ')----- ► T (M )------ ► T (M "\

\r \f \r
0 ----- ► T(P ')-----► T (P )    T(P")
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with exact rows. By 3.2 there results an exact sequence 

K e r / ' - > K e r / - ^ K e r  / "
which implies that

SXT(A') -> SXT(A) -> S1T{A,r)
is exact.

Next we consider an exact sequence 0 - > M - > P - > A —>0 with P  
projective. Let R  be the kernel of the composed map P  ->• A A ". 
There result exact sequences 0 -> R -> P -+ A " -+ 0  and 0 - > M -> R  
-> A ' -> 0. We obtain a commutative diagram

T (M )  ► T(R) —  T(A')

k  k  I
0 ----- ► T (P )  ► T (P )  > 0

with exact rows. Thus, by 3.2, the sequence

Ker / '  -> Ker / - >  T{A')

is exact. Since Ker / - >  T{A') is easily seen to coincide with SXT{A") 
-> T(A*) it follows that

S J {A )  -> S J i A ”) -> T(A’)
is exact.

Finally we consider an exact sequence

(7) 0 — ► M  P A" — >• 0

with P  projective. We denote by R  the submodule of the direct sum 
A +  P  consisting of all pairs (a,p) with <p(a) =  y>(p). We define the 
homomorphisms R  -> A and R - ^ P  by (a,p) -> a, (a, p )-> p  and the 
homomorphisms A '-> R  and M  -> R  by a' (<pV,0), m ->
There results a commutative diagram

0 0

0 --- > A '----- > R ------> P ---- > 0

0 ---- >■ A '  >• A ------>■ A " ---- 0

0
Y

0 0
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with exact rows and columns. Further, since P  is projective, the middle 
row splits. We thus obtain a commutative diagram

0  > T (M )-----> T{M )----->0

i
p )0 ---- ► T(A')----- > T(R) ------► T{,

with exact rows. An application of 3.3 yields an exact sequence

Ker (T(M)  —  T(P)) ~ ^ T ( A r)^~*  Coker (T(M)  —  T{R)).

Since the sequence T(M) — > T(R)  - >  T(A)  is exact, it follows that 
Ker v =  Ker (T(A')  -> T(A)),  so that

Ker (T(M)  — >• T(P)) T(A')  — > T(A)

is exact. We must verify that u coincides with the connecting homo­
morphism 0 ^  SXT(A") — > T(A').  We first consider the case when the 
sequence (1) coincides with (7). In this case, it can be easily seen that 
the homomorphism

u : Ker (T(M)  -> T(P)) T(M)

is defined by inclusion. In the general case we consider maps 
0  *■ A f- — - P ----- *Am- *0Af ——  P - — * A

lr'
A ’ —

I7
A —

I7'
— * A"0 ---- - A ' ------ * A  -A 0 ----- -0

where y" is the identity map. The naturality property of u then yields 
a commutative diagram

Ker (T(M ) — >• T(P)) -—>■ T(M)
|  |  T "̂>

Ker (T(M ) —* T(P)) T(A')
U

where the first vertical map is the identity. It follows that u =  T (y') u =  ©x. 
We have thus proved the exactness of

S^CA") -> T(A') -> T(A).

Summarizing, we have established the exactness of the sequence 
S J 'iA ')  -> SXT(A) -> S J ^ A ”) -> T(A') -> T(A) -> T(A").

By a dual argument we show the exactness of

T(A') -> T(A) -> T(A") -> SPTXA') -> S ^ A )  -> S ^ A " ) .

In particular, SXT  and S XT  are also shown to be half exact. The exactness 
of the sequence (2) now follows by iteration.



4. CONNECTED SEQUENCES OF FUNCTORS

A connected sequence of covariant functors is a family T  =  {T n} of 
covariant functors, n running through all integers, together with con­
necting homomorphisms T n(A") -+ T n+1(A') defined for each exact 
sequence O - ^ A '- ^ A - ^ A "  -> 0. The following two conditions are 
imposed:

(c.l) The composition o f any two consecutive homomorphisms in the
seq u en ce  ► T n~ \A ”) -> T n(A') -> T n(A) -> T n(A") -> T n+ \A ') • • • is
zero.

(c.2) I f
0 --- > A '----- > A ---- ► A " ---- >0
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0 ---- > B ' > B  > B "---- >0

is a commutative diagram with exact rows then the following diagram is 
commutative Tn(̂ A!f')___> 'T'n̂ ^(A ’)

Tn(B ") > Tn+ \B ')

Actually, condition (c.2) follows from (c.l). A similar definition for 
contravariant functors is obtained by postulating connecting homo­
morphisms Tn(Ar) —> T n+1(A"). Thus in the sequence of (c.l) the roles 
of A ' and A" get interchanged.

The satellites S nT  of any (additive covariant or contravariant) functor 
together with the connecting homomorphisms defined in § 2 form a 
connected sequence of functors that will be denoted by ST .

Let T  =  {Tn} be a connected sequence of covariant functors, let

(S) 0 -> A ° -> ------->AP-+ 0

be an exact sequence of modules and let Z* denote the kernel of A 1 -> A i+1. 
This yields exact sequences

0 A* -> Z i+1 -> 0

which lead to homomorphisms

T n~i~i(Z i+i) _> Tn-*(Z0 0 < i < p .

Since Z 1 ^  A0 and Z p =  Ap, we obtain by composition a homomorphism

Tn~p(Ap) -> Tn~\A°)



called the iterated connecting homomorphism. This homomorphism 
obviously commutes with the homomorphisms induced by a mapping of 
the exact sequence (S) into another such exact sequence. For contra­
variant functors the iterated homomorphism is T n~p{AQ) -> T n~ \A p).

Using the iterated connecting homomorphism we shall establish a 
curious anticommutativity relation resulting from a commutative diagram

0 0 0

0 --- ► A ' ---- > A ---- ► A ”----- > 0

0 --- >Bf ---- > B ---- > B "----- >0

0 --- > C ---- > C ---- > C "------> 0

\  f Sf

0 0 0
with exact rows and columns.

P r o p o s i t io n  4.1. I f  T  =  {Tn} is a connected sequence o f covariant 
additive functors, then the diagram

T n~ \C ”) --- ► T \ C )

T n(A") --- * T n+1(A f)
is anticommutative, i.e. the two composite homomorphisms T n~ \C ") 
-> T n+1(A') differ in sign.

For contravariant functors interchange A ' and C".
P r o o f . We shall denote by O and Y  the composite homomorphisms

T n~\C ") -> Tn(C') -> Tn+\A ')

Tn~\C ") -> T n(A") -> T + \A ') .

These are obviously the homomorphisms induced by the exact sequences

0 -+ A ' -> B ' C -> C" -> 0

0 ^ A ' - ^ A  - > B" -> C" ->0.

Now using the commutative diagram

A ' JL+ A

' I  I”
B ' — > B

<5
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we define maps
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by setting
A ' —+ A +  B '— + B 

it a' =  (a a'fia '), r(a,b') =  ya — db'.

Then it is easy to verify that the sequence

0 -> A '-+ A  +  B ' -+ B -+ C " ->0

is exact. Further, using the projections (a9b') -> a, (a9b') -> —b' and the 
map e: A ' -> A', e(a') =  —a'9 we obtain a commutative diagram

0 ----> A '----- ► A ,+ B "  > C "---- >0

0- ■+A'-

0  ► A ' ----- > A +  B '---- ^ B ---- > C" -

B' -> C — > C "  >0.

-a' itThis implies T'w+1(e)Y =  O. Since T n+1 is additive and e(a') - 
follows that —Y  — O.

C o r o ll a r y  4.2. For any additive covariant functor T  and any integer n, 
the diagram

S ^ T i C " )  > S nT{C )

S nT(AH) ■ S n+1T(A')

is anticommutative. For contravariant functors interchange C" and A '.

5. AXIOMATIC DESCRIPTION OF SATELLITES

We shall give here an axiomatic description of the connected sequence 
S T  of the satellites of a functor T.

Let T  =  {Tn}, U =  {Un} be connected sequences of covariant functors. 
A map ®: T ^ - U  is a sequence of natural transformations <pn: T n -> Un 
which commute with the connecting homomorphisms; i.e. the diagram

T n(A ")  > T n+1{A’)

Un(A") > Un+1(A')
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is commutative for each exact sequence 0 -> A ' -> A A" -> 0. For 
T  and U contravariant A ' and A" should be interchanged. If, for each n,
<pn is an equivalence, then d> is called an isomorphism. We shall also
consider maps O : T  U defined only for n 0 or for n <1 0.

T heorem  5 .1. Any connected sequence T  =  {Tn} o f covariant functors, 
satisfying the following two conditions:

(c.3) i f  § ^ M - > P ^ > A - ^ 0  is exact with P projective, then
0 -> T \A )  -> Tn+\M )  T n+1(P) is exact for n <  0.

(c.4) if 0 -> A  -> Q -> A  -> 0 w exact with Q injective, //ze/2
r « - i ( 0  _> T^-i(TV) r n(^) -> 0 w exact fo r n >  0,
w isomorphic with the connected sequence ST° o f  the satellites o f the 
functor T°.

The theorem is a consequence of the following more detailed 
proposition.

P r o po sitio n  5.2. Let T  — {Tn}, U — {Un} be connected sequences o f  
covariant functors and let cp°: T° -> U° be a natural transformation. I f  
U satisfies axiom (c.3) then (p° admits a unique extension to a map 
O: T  -> U defined for all n <L 0. I f  T  satisfies axiom (c.4) then (p° admits 
a unique extension to a map ®: T  -> U defined for all n 0.

P r o o f . Assume that U satisfies axiom (c.3). Suppose that cpq: T Q-> Uq 
are already defined for n <  q <L 0 and properly commute with 
the connecting homomorphisms. For a given module A select arbi­
trarily an exact sequence with P projective. This
yields a commutative diagram

0

T \A )

Un(A) -

T n+1(M)

q>n+HM)

Tn+1(P)

<pn+1(P)

Un+1(M )-----   Un+1(P).

The bottom row is exact (axiom (c.3) for U) while in the top row the 
composition is zero (axiom (c.l) for T). There results a unique homo­
morphism <pn(A): T n(A) -> Un(A) which, inserted into the diagram, 
leaves it commutative.

Consider now / :  A 1-> A and let 0 -> M 1 -> P1 -> A x -> 0 be the 
sequence used to define (pn{A1). Then since Px is projective we may find 
homomorphisms g: PX- ^ P  and h : M x -> M  such that the diagram:

0 ' My A -
/

■o

0 ----- ► M ------ - P ----- - A ----- *■ 0
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is commutative. It follows that

d U n(f )(Pn(A 1) =  U n+1(h)d{<pn(A 1) =  U n+1(h)<pn+1( M 1)d^

=  (pn+1(M )  T n+l(h) d[  =  <pn+ \ M ) d ' T n( f )

=  d < p \A )T * { f ) .

Since d: Un(A) Un+1(M) has zero kernel, we obtain

w , )  =  f v ) n / ) -
This proves that (pn is natural, and incidentally implies that it is inde­
pendent of the choice of the auxiliary sequence 0 - > A f - > P - > y 4 ^ 0 .

To verify that cpn commutes with the connecting homomorphisms, 
consider an exact sequence 0 A ' -> A A" -> 0 and let 0 -> M"
-+ P "-> A "-+ 0  be exact with P" projective. Then there exist maps
/ :  P" ->• A and g : M" -> A ' such that the diagram

0 ----- ► M ” >P”- — >A*-----►O'

9 f

0 ----- ► A ' ----- > A  >A”---- >0

is commutative. This yields a commutative diagram:

T n(A" ) -------> T n+1(M ")---► T n+1(A')

Un(A”) ------ ► Un+1(M ")---► t /n+1( ^ /)

which implies the requisite commutativity relation. This proves the
first part of 5.2. The proof of the second part is dual and will be omitted.

Passing to contravariant functors, axioms (c.3) and (c.4) should be
replaced by:

(c.3') i f  0 -> A -> Q -> N 0 is exact with Q injective, then
0 -> T n(A) -> T n+1(N) -> T n+1(Q) is exact fo r n <  0;

(c.4') i f  is exact with P projective, then
T n~ \P )  -> T n~ \M ) -> T n{A) -> 0 is exact fo r n >  0.
Otherwise 5.1 and 5.2. remain unchanged.

C orollary 5.3. Given a natural transformation o f functors

r . T - > u ,

there exists a unique map 4>: ST  -> SU  extending (p. Thus the corresponding 
natural transformations

cpn: S nT -> S nU (— oo <  n <  +  oo) 

commute with the connecting homomorphisms.
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As a rule the functors considered are defined on the category A 
of all A-modules. However there may arise situations where it is con­
venient to consider functors defined only on suitable subcategories J (  
of JK A. For instance, let T  be a half-exact covariant functor, and let 
denote the subcategory of ^ A consisting of all modules A such that 
S nT{A) =  0 for n >  0 and of all maps of one such module into another. 
Clearly all projective modules are in J t  and if 0 -> A' A A" -> 0 
is exact and A, A" then A ’ e . On this c a te g o ry ^ , the functor 
T  is left exact. It can be easily seen that all that was said about left 
satellites of covariant functors and right satellites of contravariant 
functors remains valid for functors considered only on the category 

above.

6 . COMPOSITE FUNCTORS

Let V — TU  be a functor obtained by composition of two functors 
each of one variable. We shall consider the sequence of functors TSU  
defined by (TSU)71 — TS£nU, where e =  + 1 or — 1 depending upon whether 
T  is co variant or contravariant. It is easily seen that TSU  is a connected 
sequence of functors which for n — 0 coincides with SV . Thus 5.2 
implies maps

X: TSU  -> S V  defined for n £ 0

p: S V  -> TSU  defined for n >  0.

Specifically, we obtain natural transformations for n 0

Xn: T(SnU) -> S nV9 Pn: S nV -> T (S nU), Tcovariant

Xn\ T(SnU) -> S nV, Pn: S nV -> T(SnU), T  contravariant.

These homomorphisms commute with the connecting homomorphisms 
and yield the identity for n =  0.

P r o po sitio n  6 .1 . I f  T  is left exact then Xn are isomorphisms. I f  T  
is right exact then pn are isomorphisms.

P r o o f . Assume T  covariant and left exact. Let 0 - ^ M - > P - > A  
-> 0  be exact with P projective. Then 0 S nU ( A ) S ^ U i M )  
-> *SW_1C/(P) is exact for n >  0. Since T  is left exact it follows that

0 -> TSnU(A) -> TSn_ fJ(M )  -> TSn__1U(P)

is exact. Thus TSU  satisfies axiom (c.3). It therefore follows from 5.2
that Xn are isomorphisms. The other cases are proved similarly.
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If the functor U is exact then TSU  collapses to the single term TU =  V  
and Xn, pn are zero for n ^  0. In this case we obtain another connected 
sequence (ST)U  composed of the composite functors {(SnT)t/}. As above 
we obtain maps

on: (SnT )U -> SnV, r n: S nV -> (S nT)U
defined for n 0. The maps on (resp r n) becomes isomorphisms when­
ever (ST)U  satisfies axiom (c.3) (resp. axiom (c.4)).

As an application consider a ring homomorphism: cp: A T. 
Any T-module A may be regarded as a A-module by setting Xa =  (cpX)a. 
This yields a covariant and exact functor U defined for T-modules whose 
values are A-modules. If T  is an additive functor on the category of 
A-modules then T' =  TU  is a functor on the category of T-modules. 
We thus have the natural homomorphisms

ern: (SnT)‘ -> S n(T'), r»: S n(T ') -> (SnT ) \  n >  0.
Proposition 6.2. I f  T regarded as a A-module is projective then 

on are isomorphisms fo r T  covariant and r n are isomorphisms fo r  T  contra­
variant.

P roof. Assume T covariant (resp. contravariant). It suffices then 
to show that (SnT)' satisfies axiom (c.3) (resp. (c.4)). This is an immediate 
consequence of 11,6.2 .

7. SEVERAL VARIABLES

So far we considered only satellites of functors of one variable. Let 
T(A,C) be a functor of two variables. Then for a fixed value of C we 
obtain a functor TC(A) =  T(A,C) of the variable A alone. The resulting 
satellites S nTc(A) will be denoted by
(1) S^T(A,C),
the subscript 1 indicating that we consider the satellites with respect to 
the first variable. A map \p: C -> C ' induces a natural transformation 
TC(A) —> Tc, (A) (if the variable C is contravariant the arrow is reversed) 
which induces a natural transformation of satellites. It follows that (1) 
may be regarded as a functor of the two variables A and C. Similarly 
we introduce the satellites SJ2) T(A,C) with respect to the variable C.

We shall consider exact sequences
(2) 0->  M -+ P -> A  - ^ 0
(3) 0->  A -> Q -> N -+ 0
(4) 0 M ' - ^ P f -> C -> 0
(5)
with P, P' projective and Q, Q' injective.
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Assume now that T  is co variant in both A and C. We obtain then a 
commutative diagram

Interchanging the roles of the variables we obtain a similar sequence

(7) 0 -> S ^ S ^ T ( A ,C )  -> T (M M ')  -*  T(P,M ') +  T(M,P').

(6a) T{Q,N') +  T{Q \N ) -> T(N ,N ') -*  S ^ T ^ C )  -> 0

(7a) T(Q ,N ') +  T (Q \N ) -> T(N ,N ') -> S ^ T ^ C )  -> 0

The above was for T  covariant in both variables, If for instance C 
is a contravariant variable of T  then in the above exact sequences P r and 
M ' should be interchanged with Q' and N '. The isomorphisms (8) and 
(8a) remain valid.

Formulae (8) and (8a) yield by iteration:
T heorem 7 .1. I f T  is any {additive) functor o f two variables then the 

following natural equivalences hold

for m, n both ^  0 or both 0.

The conclusion is false for m,n of opposite signs.
We leave to the reader the discussion of the behavior of (9) with 

respect to the connecting homomorphisms (on either variable).

0

S ^ S ^

T ( A ,C )

0

> S ^ T

( A ,M ')  ► T(M ,M ') — > T(P,M ')

0 — > S ^ T ( A ,P ') ----> T(M ,P')

with exact rows. This yields the exact sequence

The sequences (6) and (7) yield a natural equivalence

(8) ^(2)^(1) ^  *S(1)1*S(2)1*

For the right satellites we obtain similar exact sequences

which imply 

(8a)

(9) cm cw c« cm 
0 (2)°(1) ~  °(1)°(2)
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EXERCISES

1. Show that for any functor T  of one variable, the connected sequence 
of functors S T  is characterized (up to an isomorphism) by the following 
properties:

(i) s ° T =  T.
(ii) For every connected sequence of functors U, every map qP: 

£/°-> T  admits a unique extension <p: U -> ST  defined for n <1 0.
(iii) For every connected sequence of functors U, every map yP: 

T -^ U °  admits a unique extension y>: S T  -> U defined for n 0.
2. Consider a natural transformation of covariant functors

g: T -+ U ,

where T  is right exact and U is left exact. Consider the new functors 

T  ~  Ker g, U =  Coker g.

For each sequence of modules

0 A ' A -> A" ->0, 

consider the commutative diagram (cf. 5.3)

 >  S XT(A')  - >  S XT{A)  - >  S J i A " )  - >  T(A')  - *  T(A)  - >  T(A")  - >  0 - >  0 • • •

 >• 0 - >  0 0 - >  U(A')  - >  V{A)  - >  v \ a ") - >  - >  S W ( A )  • • •

Applying 3.2 and 3.3 to suitable portions of this diagram, define a 
sequence

 > S ^ A ' )  -> St T(A) -> S^CA") -> f(A ')  -> T(A) -> T(A") ->

-> U(A') -> U(A) -> U(A") -> S W iA ')  -> SW (A ) -> SW ^A") -> . . .

and prove that this sequence is exact.
Examine the case when T  and U are contravariant functors.
3. Consider an exact sequence of covariant (resp. contravariant) 

functors and natural transformations

r_ >  U-> V -+ 0

(i.e. for each module A the sequence

T (A )-> U (A )-> V (A )-* 0

is exact). We assume that T(A) U(A) is a monomorphism whenever 
A is projective (resp. injective). Then define a natural transformation



<p: SXV -> T in  the following way: assuming for example that all functors 
are covariant, consider an exact sequence of modules 0 -> M  P A 
-> 0 with P  projective. Using the diagram
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T{M) — U(M) — — V(M) — ~^0

\r \f ir
o — * T(P) —  U(P) —  V(P)

define an exact sequence

(1) SJ 'iA )  -> SXU(A) -> SXV(A) -*  Coker / '  -> Coker / - >  Coker / " .

Using the natural mapping Coker f '- > T ( A ) ,  define S ^ A )  -> T(A), 
which yields the desired transformation (p.

Now define <pn\ S n+1V -> S nT  for any n7> 0, and prove that, in the 
sequence

(£) • • . ^  S n+1T -> S n+1U ^ S n+1V ^  S nT -> . ■ • -> U

the composition of any two consecutive homomorphisms is zero.
4. In the situation of Exer. 3, assume now that T  is right exact and U 

is half exact. Then prove that (2) is an exact sequence.
[Hint: first, using the sequence (1) of Exer. 3, prove that

SXT -> SXU -> SXV V - > 0  

is an exact sequence. Then, by induction on n 1, prove that 

S nT -+ S nV ^ S nV - + S ^ T - >  >S1V -> T -> U -> V -+  0

is an exact sequence].
5. Translate Exer. 3 and 4 for the dual case of an exact sequence

0 - > r - >  U-> V

such that U(A) V(A) is an epimorphism whenever A is injective (in 
the case of covariant functors), resp. projective (in the case of contra­
variant functors). The sequence (S '), dual of (2), will be exact if V  is 
left exact and U is half exact.



CHAPTER IV

Homology
In troduc tion . In this chapter we present all the algebraic tools of 

homology theory that will be needed later, with the exception of spectral 
sequences that will be treated in Ch. xv. The treatment here differs 
from the standard one in that great care is taken to maintain all sym­
metries and thus keep the system self-dual at all times. For example, 
the homology module H(A) is usually defined as a quotient module of 
the module of “cycles” Z(A), which is the kernel of the differentiation 
operator d: A A. We introduce the “dual” Z \A )  which is the co­
kernel of d and show that H(A) is equally well defined as a submodule of 
Z'(A). The reader will have ample opportunities to convince himself 
that the preservation of this kind of a duality is indispensable.

§ 3-5 are concerned with graded and multiply graded modules and 
complexes. In § 6 we introduce a sign convention which causes a large 
number of signs usually present in algebraic topology to disappear from 
the symbolism.

The known homomorphisms a: H(A) 0  H (C )-> H (A  0  C) and
a ': i/(H om  (A,C)) Horn (H(A),H(C)) are studied in § 6 and § 7 and 
are generalized to other functors. As an application we give in § 8 an 
elementary version (not involving spectral sequences) of the Kiinneth 
exact sequences. For the functors 0 and Horn, these results will be made 
more explicit in vi,3. A more advanced treatment must wait until 
Ch. xvii.

1. MODULES W ITH DIFFERENTIATION

A A-module A with differentiation is a A-module A together with a 
A-endomorphism d: A -> A such that d d =  0. We introduce the 
following notations

Z(A) =  Ker d, Z \A )  =  Coker d,
B(A) =  Im d, B \A ) =  Coim d.

Note that the differentiation d induces an isomorphism <5: B \A )  & B(A) 
but nevertheless there will be situations in which it is not convenient to 
identify B  with B'. The operator d admits the following factorization

A — > Z'(A) —  B'(A) B(A) —  Z(A) —  A
53
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The map B(A) -> Z(A) is a monomorphism, valid because dd =  0. 
For the same reason the map A -> B \A )  induces an epimorphism 
Z'(A) -> B'{A).

This factorization yields a map
d : Z '(A )-+ Z (A )

and a sequence
0 _> B(A) -> Z(A) -*  Z'(A) -> B'(A) -> 0

which can easily be seen to be exact. Further we have the following 
equalities

Coker d =  Z(A)IB(A) =  Ker (Z'(A) -> B'(A)) =  Ker d .
This module is denoted by H(A) and is called the homology module of A. 
We thus obtain an exact sequence
(1) 0 -> H(A) —>-Z'(A) -> Z(A) H(A) -> 0
and a commutative diagram

0 0

0 — * B  > Z  > H  >0

\  f \ f  y

(2) 0 — + B -------> A — + Z '-- ^0

Y

Y Y
0 0

with exact rows and columns.
A mapping or map / :  A A ' of modules with differentiation is a 

A-homomorphism/ :  A -> A ' such that d f  =  fd , where d is used to denote 
the differentiations in A and A ' . It induces mappings / :  Z(A) -> Z(A '), 

H(A) H (Af). If f,g : ( A ,d ) ( A ' , d )  are two such maps, a 
homotopy s : is a A-homomorphism s : A -> A '  such that
ds +  sd =  g — / .  Homotopic maps /  and g induce the same homo­
morphism H(A) -> H(A').

Given an exact sequence
(3) 0 -+ A '-> A -> A " -> 0
of modules with differentiation, we obtain a commutative diagram 

Z '(A ')--- ► Z'(A) — > Z '(A ")---- ^ 0

0 ---- > Z (A ') ------^ Z (A ) ------► Z(A")



§1] MODULES WITH DIFFERENTIATION 55

with exact rows, where the vertical maps are d . Applying i i i ,3.3 we 
obtain an exact sequence

(4) H(A') — > H(A) — > H(A") H{A') —  H(A) — > H(A")

with the connecting homomorphism defined in i i i ,3. Explicitly A may 
be described as follows: given h e H(A") choose x e Z'(A) which is mapped 
onto h\ then d x  eZ(A ) is the image of an element z eZ (A ') and Ah is 
determined by the element z. Composing A with the maps H (A ')-^Z '(A ') 
and Z(A") -> H(A") we obtain homomorphisms

H(A") -+Z'(A 'X  Z(A") -> H(A');

it is then easy to verify:
Theorem 1.1. For each exact sequence (3) the sequences

 ^ H(A”) -> H(A') -> H(A) -> H(A") -> Z \A ')  -> Z'(A) ->Z'(A") - >0

0 -> Z(A') -> Z(A) -> Z(A") -> H(A') -> -> ^ " )  _> H{A') -> • • •

are exac^.

If
0- ■ A" ■ 0

0- - > C '  > c C" -0

is a commutative diagram (of modules with differentiation), with exact 
rows, then the vertical maps induce homomorphisms of the exact 
sequences associated with the top row into the corresponding exact 
sequences associated with the bottom row.

R em ark . The two exact sequences displayed in the theorem, coincide 
in their main part (4). One frequently employs the “ exact” triangle

H (A ')---- ^ H(A)

\ /
H(A”)

to indicate this main part.
It should be noted that any A-module A may be regarded as a module 

with differentiation, by taking d — 0. In this case Z(A) =  Z'(A) 
=  H(A) =  A , B'{A) =  B{A) =  0. For any module A with differentiation 
the modules Z(A), Z '(A), H(A), B \A ), B(A) will be regarded as modules 
with zero differentiation.
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The ring of dual numbers T =  (A,d) over a ring A is defined as the 
free A-module with generators 1 and d  (1 being the unit element of A) 
and with multiplication defined by

(A -f- A d) (^/ -f- fji d) =  Xf/, -f- (Âm -J- A fl)d, A,A e A.

In particular dd =  0, Id  — dh
It is immediately clear that a A-module A with differentiation as 

defined in the preceding section is precisely a T-module. A map of 
(A,^-modules is a T-homomorphism. It further follows that Z(A ), 
Z'(A), B(A), B'(A) and H(A) yield covariant functors defined on the 
category of left T-modules with values in the category of left A-modules. 
Each A-module may be regarded as a T-module (by setting d a =  0 for 
all a € A). In particular, A may be regarded as a left or right T-module. 
We observe the following identities

Z'(A ) =  A ® r  A, Z(A) =  Homr  (A,A)
which are consequences of the identifications A =  A  <g)A A and A =  
HomA (A,v4). This again justifies the fact (contained in 1.1) that Z ' is 
right exact and Z  is left exact.

P roposition 2.1. I f
0 0 0

2. TH E RING OF DUAL N UM BERS

0 ----> A '----- > A ---- > A "---- >0

0  > C  > C  > C "---- >0

> r \  f

0 0 0
is a commutative diagram o f modules with differentiation with exact rows 
and columns, then the diagram

H{C")---- >H(C’)

H(A" )---- > H{A’)

is anticommutative. The same holds with H(C") replaced by Z(A") or 
H(A') replaced by Z '(A '), or both.
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P roof. Setting T n =  H  we obtain a connected sequence of functors 
defined on the category of T-modules. The anticommutativity in 
question is then a direct consequence of the general proposition m,4.1. 
The other cases are proved similarly using other connected sequences as 
indicated in the preceding section.

T heorem 2 .2 . The satellites o f the functors Z ', Z, H  are as follows 

S nZ ' =  H  for n <  0, S nZ ' =  0 for n >  0,

S nZ  =  0 fo r  n <  0, S nZ  =  H  for n >  0,

S nH  =  H for all n.

P roof. We use the axiomatic description of satellites. Theorem 1.1, 
and the commutativity relation following 1.1 imply that it suffices to 
prove that H(A) =  0 if A is T-projective or T-injective. This is a conse­
quence of 2.4 below.

We denote by rj the inclusion mapping A -> T.
P roposition 2 .3 . For any left T-module A , the following conditions 

are equivalent:
(a) A is rj-projective.
(a') A is rj-injective.
(b) There is a A-endomorphism s: A -> A such that ds +  s d =  identity.
(c) There is a A-module B with
(c') There is a A-module B with A & {r])B.
P roof. Given any A-module B  we denote by Bx the T-module

B +  B  with — (0A ). It is easy to see that

(v)B =  T (g>A B & Bx & HomA (T,B) =  {ri)B.

Assume that an endomorphism s as required in (b) is given. Let 
B = B (A )  and define cp: A -> B X by setting (pa =  (da,dsa). Then
(pda =  (dda,dsda) =  (0,da) =  d(pa. If (pa =  0 then a — dsa +  sda — 0. 
l ib  e B  then dsb =  b and dssb =  0, therefore (pb =  (0,b) and <p(sb) — (Z?,0). 
Thus (p is a T-isomorphism. This proves the relations (b) => (c), 
(b) (c'). The implications (c) (a) and (c') (a') follow from n ,6 .3 .
There remains to be shown that (a) (b) and (a') => (b).

If v/e identify (r})A with Ax we find that the natural mapping (rj)A -> A  
becomes the mapping / :  A x -> A given by f ( a v a2) =  ax +  da2. If A 
is i^-projective then there exists a T-mapping g: A A x with/f* =  identity. 
Let ga =  (ta,sa). The condition dg — gd  yields ta =  sda while fga  =  a 
yields ta +  dsa =  a . Thus dsa +  sda — a as required. The proof that 
(a') => (b) is similar.



58 HOMOLOGY [Ch a p . IV

C orollary 2 .4. I f  the T-module A is rj-projective (rj-injective), 
then H(A) =  0.

Indeed, by (b) above we have a — dsa if d a =  0.

The proof of the following proposition is left to the reader.
P roposition  2 .5. A Y-module A is T-projective i f  and only i f  A & (rj)B 

where B  is a A-projective module. Similarly A is T-injective i f  and only i f  
A & ^ B  where B is A-injective.

3. GRADED M ODULES, COMPLEXES

A grading in a module A is defined by a family of submodules A n 
(n running through all integers) such that A is the direct sum 2 nA n. 
Each a e A has then a unique representation a =  2 an> on e A n where 
only a finite number of an’s is different from zero; we call an the homo­
geneous component of degree n of a. Each element of A n is called 
homogeneous of degree n. The element 0 is homogeneous of degree n 
for all n.

A graded module A is called positive if =  0 for n <  0, it is called 
negative if A n =  0 for n >  0. We systematically use the notation 
A n — A~n; this is particularly convenient if A is negative.

A submodule B  of a graded module A is called homogeneous if 
B  =  2 Bn where Bn =  B  n  ^ n- The quotient A/B  may then be regarded 
as a graded module by setting

( A /B f  =  (An +  B)/B & A n\Bn.

It will be convenient to identify A/B  with 2 A njBn.
Let A and C be two graded A-modules. A A-homomorphism 

f :  A -> C will be said to have degree p if f ( A n) C Cn+V for all n. The 
induced map / n: A n -> Cn+V is called the n-th component of / .  The 
modules Ker ( / )  and Im ( / ) ' are homogeneous submodules of A and C 
respectively; Coim ( / )  and Coker ( / )  are graded using the convention 
for quotient modules. The mapping Coim ( / )  -> Im ( / )  induced by /  has 
degree p \  thus, despite the fact that this mapping is a A-isomorphism, 
Coim ( / )  and Im ( / )  should not be identified.

A A-complex is a graded A-module A together with an endomorphism 
d: A  -> A of degree 1 such that dd =  0 Thus a complex is completely 
determined by a sequence

„ dn~x dn. . .  yyn—l ------ >. —■— > A n̂ ~   ̂ * * *

such that dndn~1 — 0. Note that we are using the word “complex” to 
denote what is usually called a “cochain complex.” A “chain complex”
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may be obtained by lowering indices. Since a complex is a special 
instance of a module with a differentiation operator, the various definitions 
of § 1 apply. The various modules, Z(A ) , . .  . ,  H(A) are all graded. 
The main diagrams (1) and (2) of § 1 take then the following form

(1') 0 -> H n -> Z 'n -> Z n+1 -> H n+1 -> 0

0 0

0  >Bn  ^ Z n — ■> H n — > 0

\ r

(2')----------------- 0 ----- >Bn ---- ^ A n ---- ^ Z 'n-----

B 'n < ■ B' n ---- ^0

> f \f

0 0

Let A and C be complexes. A map f : A -> C  is a homomorphism of 
degree 0 of the graded modules such that f d  =  df, i.e. f n+1dn =  dnf n 
where the same letter d  has been used for the differentiation operators in 
A and C. A map /  induces homomorphisms of the diagrams (1') and 
(2') of the complex A into the corresponding diagrams of the complex C.

Let f,g : A -> C be maps of complexes. A homotopy s : f  ~ g  is a 
homomorphism s : A -> C of degree —1 such that ds +  s d =  g  — / ,  
i.e. d ^ s 71 +  sn+1dn =  g n — f n. If /  and g  are homotopic, they induce 
the same homomorphisms H n(A) H n(C).

An exact sequence 0 -> A ' -> A A" -> 0 of complexes and maps, 
yields as before homomorphisms

H n(A") -> H n+\ A r)

which induce the connecting homomorphisms

H n{A”) - ^ Z ,n+ \A ')
Z n(A") H n+1(Af).

The sequences

 > H n~\A ") -> H n~ \A ')  -> H n~ \A )  -»  H n~ \A ") -> Z 'n(A')
-> Z 'n( A ) - * Z 'n(A")-> 0

0 -> Z n(A') -> Z n(A) -> Z n(A") -> H n+1(A') -> H n+\A) -*  H n+1(A")
-> H n+2(A') -> .



60 HOMOLOGY [Ch a p . IV

are exact. In particular, we obtain the exact sequence

 ► H n~\A") -> H n(A') -> H n(A) -> H n(A") -> H n+ \A ’) -> . .  .

unlimited in both directions. This last sequence is usually referred to as 
the homology (or rather cohomology) sequence.

A double grading (or bi-grading) in a module A consists of a family of 
submodules A n,m ((n,m) running through all pairs of integers) such that A 
is the direct sum 2  A n>m. The elements of A n>m are called bihomo-

geneous of bidegree (n,m). We define the associated graded module 
(also denoted by A) by setting

An element of bidegree (n,m) has thus degree n +  m.
The bigraded module is said to be positive if A n,m =  0 for n <  0 or 

m <  0. It is said to be negative if A n,m — 0 for n >  0 or m >  0. We 
write A n m =  A~n~m\ this notation is particularly useful if A is negative.

A submodule B  of A is bihomogeneous if B =  2 Bn,m, where 
gn,m __ ft ^  before we identify A/B  with 2y4rz,w/5 w,m.

Let A, C be bigraded modules. A homomorphism / :  A -> C has 
bidegree (p,q) if for all n,m

The induced map f n,m: A n,m Cn+p,m+q is called the («,m)-component 
of / .  The remarks made in § 3 about Ker ( / ) ,  Im ( / )  etc. apply equally 
in this case. A map / :  A -> C of bidegree (p,q) induces a map of degree 
p  +  q of the associated graded modules.

A double complex A is a doubly graded module together with two 
differentiation operators d± and d2 of degree (1,0) and (0,1) respectively, 
which anticommute. Thus we have

4. DOUBLE GRADINGS AND COMPLEXES

n,m

a v =  2  A n-m

f ( A n ,m) £  (Jn+Piin+Q

dl”,m* A n,m > 

A n,m dn,mdn,m-l =  Q

dn+l,md n,m _|_ d»,m+ld«,m =  Q
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These conditions can be expressed by means of the anticommutative 
diagram

. A n+1>

d”,m

.An

n+l,m

n, m d 2

j^n+l,m+l .

n,m+ldi

The (singly) graded module associated with A is now converted into a 
(single) complex by defining a total differentiation operator d\ A p -> Ap+1 
which on A n>m is equal to

(3) d?m + d $ m.

Thus

(4) d(An>m) C A n+hm +  A n>m+1.

Conditions (1) then imply d d — 0. Conversely any differentiation d  in 
the associated graded module satisfying (4) defines uniquely the operators 
dx and d2 which yield a double complex for which d is the total differentiation.

The modules Z n(A) , . . . ,  H n(A) where A is a double complex are 
always understood as those defined for the associated (single) complex 
using the total differentiation operator.

Let A and C be double complexes. A map f : A C is a map of 
bidegree (0,0) of the doubly graded modules, which commutes with the 
first and second differentiation operators in A and C. Clearly /induces a 
map of the associated (single) complexes.

Let f,g : A -> C be two maps of double complexes. A homotopy 
(Si,^) '■ f  — g consists of a pair of homorphisms sl9s2: A C of bidegree 
(—1,0) and (0 ,-1 )  respectively such that

d±si “1“ s\d\ +  d2s2 +  s2d2 =  g  —f

S\d2 +  d2sx — 0, s2d1 -j- d1s2 =  0

where dx and d2 are the first and second differentiations in A and C. Passing 
to the associated single complexes we define sp: A p -> C2*-1 as

vn,m I vn,m "T" s2
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on A n>m. We thus obtain a homotopy s: f  — g  satisfying 

s(An>m) C Cn~hm +  Cn*m“1.

Conversely every such homotopy uniquely determines a pair ( ^ 2) as 
above.

All the concepts introduced above admit an immediate extension to 
^-graded modules and «-tuple complexes. For instance a quadruple 
complex consists of a 4-graded module A =  ^ A n,m,p>9 and four differentia­
tion operators

each having square zero and anticommuting with one another. The 
total differentiation operator d  on the associated (singly) graded module is

=  ^  +  +  4̂*
Instead of passing directly from the /z-tuple complex to the associated 

single complex, we can pass to m-complexes for m <  n by a suitable group­
ing of the indices. For instance in the case of the quadruple complex 
described above, we can obtain a double complex by grouping the first 
index with the third and the second with the fourth:

with <5X and d2 defined as d1 +  d3 and d2 +  d±. The original quadruple 
complex and the double complex just constructed have the same associated 
single complex.

L e tT (^ i, . .  . ,  A r) be a functor of r variables, some co variant, some 
contravariant, where A t is a Ar module and T{Al9 . . . ,  A r) is a A-module. 
Suppose now that each Ai is a graded Ar module. We define an r-graded 
module T(Al9. .  . ,  A r) by setting

where ei =  + 1  or —1 depending whether the variable A t is covariant or 
contravariant. From this r-graded module we may pass to a singly graded 
module by defining T n(A l9. .  . ,  Ar) as the direct sum of the modules

^ n , m , p , q .  ^ n . m . p , q  y ^ n + l . m . v . Q  

^ n , m , p , q . ^ n . m . p . q   ̂ n .m + l .v .Q  

£ n , m , p , q . ^ n .m .v .Q  ^ y ^ n .m .p + l .Q  

^ n , m , p , q .  j j ^ n ,m ,p ,q  J £ n ,m ,p ,q + 1

bY'- Ar-s-> A r+1-s,

n +  p =  r ,m + q =  s, 

brY -  A r’*-+ A r-S+1

5 .  FU N C T O R S O F  C O M PLEX ES

T ni ni A 1, . . . , A r) =  T (A l> \ . . . ,  Ai^r)

T ”1 "r (Al t . . . ,  Ar) for all («1 ;. . . ,  nr) such that n1 ~  nr == n.



§ 5 ] FUNCTORS OF COMPLEXES 63

One should be cautious not to confuse the /--graded module
T(Al9 . . . ,  A r) with the module r ( | A11,. . . ,  | A r |) where | A { | is the
non-graded module underlying A {. It is clear, for instance, that Horn (A,C) 
and Horn (j ^41, | C |) differ not only in the fact that the first one is 
2-graded; they actually differ as modules. The situation is somewhat 
similar to that encountered with topological groups. Let A and C be 
topological abelian groups, | A |, | C [the underlying discrete groups and 
let Horn (A,C) be the group of all continuous homomorphisms A C. 
Then Horn (A,C ) and Horn ( | A |, | C |) are distinct.

Let A \ , . . .  , A'r be another sequence of graded modules and consider 
maps / :  A ^  A'{ (resp./*: Ai -»  A *) if the i-th variable of T  is covariant 
(resp. contravariant). Let/  have degree /?*. We define the map

n / l5. . . , / ) :  T(A19. . . ,  A r) -> T(A[9 . . . ,  A'r)

of /--degree (p l9 . . . , p r), by defining the map T ni> • • •»nr( / l9 . . . , / )  on
T n» —  nr (A1, . . . , A r) as

( - l ) e T ( / / i , . .  . , / / ) :  T (A F  1 ,  . . . ,  A y r )  -> T(A ' { .  .  . ,  AWr+PJ)

where s =  f° r * <  /  h =  ni if T is covariant in A { and /* — — (//*+/?*) 
if T  is contravariant in A t.

If g{: A[ -> A" (resp. g*: A \ -> A •) are maps of degrees qi9 and 
hi =  gift • A i (resp. ^  =  f ig i : ^  -> ^*), then it is easy to verify the 
rule

T(hl9 ( - 1 ) ^ 1 ,  . .  .  ,  gr)T(f.L,  .  .  .  , / )

where ?? =  2 //^ - f° r * < /

Suppose now that each A t is a complex with differentiation / .  Then 
setting

dt = T (A l9 . . . 9di9. . . 9A r)

we find that dl9 .  . .  ,  dr anticommute and define T(Al9 . .  .  ,  A r) as an 
/--tuple complex. If /  are maps of complexes (each /  has then degree 
zero) then T ( f l9 . . . , / )  (this time not involving any signs) is a map of 
r-tuple complexes. If sf. /  ^  / /  are homotopies for / =  1 , . . .  , r, then 
setting ti =  T(Al9 .  . . ,  si9.  . . ,  A r) we obtain a homotopy

n / 15. . .  j r) ~ n / ; , . . . , / / ) .

To illustrate the above definitions we consider the tensor product 
A 0  C  of graded modules. This is by definition the doubly graded 
module A n 0  Cw. I f / :  A  -> A', g: C ->  C" are maps of degrees p  
and q then

( f ® g Y  A ® C - > A ' ® C '
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is the map of degree p  +  q defined for a e A n, c e Cm as

( f  ® g)(a  <g> c) =  (—1 )nqfa  ® gc.

The sign is due to the interchange of the symbols g  and a. If A and C are 
complexes with differentiations dx and d2, then 4̂ ® C is a double complex 
with differentiations dx ® C and A ® d2. The total differentiation in 
A ® C is d =  dx ® C f -  A ® d2 and we have

d(a ® c) =  ® c +  (—1 )na ® (̂ /2C)-

6. THE HOMOMORPHISM a

In the remaining sections of this chapter we study certain relations 
between H(T(A,C )) and T(H(A),H(C)) that play a fundamental role in 
later chapters.

We consider as a typical case, a functor T  of two variables, covariant 
in the first variable and contravariant in the second. If A and C are 
complexes, then T(A,C) is a double complex, and thus T(A,C) may be 
regarded also as a complex.

We consider the commutative diagrams

Z (A )  ^ H(A) Z (C )  ^ H(C)

\ f ^ \ f
A  ---- >Z'(A) C----- > Z \C )

They induce a commutative diagram

T(Z(A),Z'(C)) ~  T(H(A),H(C))

(1) " |  | T
H(T{A,C)) _  T (Z ’(A),Z(C))

Actually all four modules in the diagram should have the operator H  in 
front; however in three of the modules the differentiation is zero so that 
H  may be omitted.

Proposition 6.1. I f  T  is right exact, there exists a unique homomorphism 
o f degree zero

a: T(H(A),H(C) ) ---- > H(T(A,C))

which when inserted in (1), leaves the diagram commutative. The homo­
morphism a is natural relative to maps A A ' and C ’ -> C, and i f  A and C 
have zero differentiations then a is the identity. The last two properties 
characterize a uniquely.
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P roof. Since T  is right exact, £ is an epimorphism. Thus there 
exists at most one a with a £ =  rj. For such an a we have £oc£ =  'Qrj =  r£  
so that & =  r. To show that such an a exists, it suffices to prove that 
Ker £C Ker??. Since T  is right exact it follows from 11,4.3 that Ker f  is 
the sum of the images

T(B(A),Z'(C)) -> T(Z(A)9Z '(Q )  T(Z(A),B'(C)).

Thus to prove Ker £ C Ker ?? amounts to showing that the homomorphisms

T{B(A),Z\C)) -> H(T(A,C)) T(Z(A),B'(C))

are zero. These homomorphisms admit factorizations

T(B(A),Z'(C)) —  H {T{A ,Z \C )))----- ► H(T(A,C))

T(Z(A),B'(C)) H(T(Z(A),C))----- ► H(T(A, C))

and it suffices to show that ft and y  are zero. To show this we factor the 
differentiation operators in T{A ,Z\C)) and T(Z(A),C) as follows

T(A,Z'(C)) -> T(B'(A), Z '{C)) T(̂ Z'<C)\  T(B(A),Z'(C)) —  T (A ,Z '(C ))
T(Z(A),dr ) t /

T(Z(A \C ) T(Z(A),B(C))----------^  T {Z (A \B \C ))----- > T(Z(A),C)

where d is the map B ' -> B  induced by d. Since T  is right exact, the left 
hand homomorphisms are epimorphisms. Since the middle homo­
morphisms are isomorphisms it follows that the image of j8' is in 
B(T(A,Z'{C))) and the image of y* is in B(T(Z(A),C)). Thus ft and y  are 
zero.

The naturality of a and the fact that a is the identity if A  and C have 
derivation zero are obvious. To prove the last assertion assume that 
another family a of homomorphisms is given satisfying these two condi­
tions. The maps Z(A) -> A and C -> Z '(C) then induce a commutative 
diagram

T(Z(A),Z'(C)) —  T(H(A),H(C))

T(Z(A),Z'(C)) _  H(T(A,C))

Therefore a |  =  rj =  a | .  Since £ is an epimorphism, it follows that 
a =  a.

P roposition 6.1a. I f  T  is left exact, there exists a unique homomorphism 
o f degree zero

a ' : H(T(A,C)) T{H(A\H{C))
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which when inserted in (1), leaves the diagram commutative. The homo­
morphism cl is natural relative to maps A —> A' ,C' -> C o f degree zero, and 
i f  A and C have zero differentiation then cl' is the identity. These last two 
properties characterize cl' uniquely.

The proof is dual to the preceding one.

P roposition 6.2. I f T  is right exact and the sequences

0 ^ H ( A ) - + Z '( A ) - > B '{ A ) ^ Q

0 -> B(C) -> Z(C) -> H(C) -> 0

split, then cl has kernel zero and its image is a direct summand o f H(T(A,C )).
P roof. Composing the splitting homomorphisms Z'(A ) ->  H(A) and 

H(C) -> Z(C) with the natural maps A -> Z '(A ) and Z(C) -> C yields maps 
: A -> H(A) and y : H(C ) -> C such that the induced maps : H(A) 

-> H(A), yx : H(C) -> H(C ) are identities. There results a commutative 
diagram

T(H(A),H(C)) —  H (T(A ,Q )
d

T(H(A),H(C)) ----- >T(H(A),H( C))

where the vertical maps are induced by T(j3,y). Thus <5a =  identity, 
which implies the conclusion of 6.2.

P roposition 6.2a. I f  T  is left exact and the sequences

0 -> B(A) -> Z(A) H(A) -> 0

0 -> H (C )-> Z '(C )-> B '(C )-> 0

split, then cl is an epimorphism and its kernel is a direct summand o f  
H(T(A,C)).

The proof is dual to that of 6.2.

7. THE HOMOMORPHISM a (CONTINUATION)

We shall establish here some less elementary properties of the homo­
morphisms cl and cl' ,  that will be needed later. We begin by establishing 
a commutativity relation with the connecting homomorphisms for 
homology.

We consider a functor T(A,C) where C is a covariant variable and A 
denotes all the remaining variables, some of which may precede the variable 
C and some of which may follow it. We shall assume that each of the 
variables is a complex.
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We now assume that we have an exact sequence of complexes
w w

0 —  C ' ^ C ^ C " - ^ 0

THE HOMOMORPHISM  a {CONTINUATION) <57

(1)
(q> and f  having degree zero) such that the sequence

(2) 0 -*  T(A,C') -> T(A,C) -> T(A,C") -> 0

is exact.
We then have connecting homomorphisms

(3)

(4)

Proposition 7 .1 . I f  T  is right exact, the following diagram is 
commutative

I f T  is left exact, the same holds with the vertical arrows reversed and 
replaced by a '2, ol\ .

For T  contravariant in C, we must interchange C ' and C" in (2), in (4) 
and in (5).

R em ark . The homomorphism T(H(A),d) in diagram (5) involves a 
sign (see § 5).

P roof. For the sake of brevity we shall use a notation as if all the 
variables of A were covariant. Thus for instance, if we write T(Z(A),Z(C)) 
we actually replace each covariant variable by Z(A i) and each contra­
variant variable by Z '(A f.

The proof is based on an alternative description of the homomorphism
6. We denote by X  the kernel of the composed homomorphism

where p! and p  are natural factorization homomorphisms, r  is defined by 
dc since dc(X) C Im y>, and t " is defined by (p since y{X) =  Z(C"). Thus 
t " and p" are epimorphisms and it is easy to see that

T (H (A ),d )

(5)

H(T(A,C"))
A

H(T(A,C'))

c —̂  C — * C".

We then obtain the homomorphisms

H(C") Z (C )  Z(C ') H(C')

(6)
t t H Hp r  =  op r  .
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Quite similarly we define Y  as the kernel of the composed homomorphism

If we compose the map T(Z(A),X) -> T(A,C) with (7) we obtain zero, thus 
we have a map

We consider the diagram

T(Z(AIZ(C"))<— T (Z (A ),X )^ T (Z (A ),Z (C '))^ T (H (A )M C '))
I®* I I® I I ai

H(T(A,C")) « _  Z(T(A,C")) Y  —* Z(T(A,C ')) — > H(T(A,C'))
p" a" a' p'

where the maps in the upper row are

7TQu,/), T (Z (A )S 'l  T(Z(A),t '), T { ^ ) .

The commutativity of the extreme two squares follows from the definition 
of oq and a2. The commutativity in the remaining two squares is an easy 
consequence of the definition of 0 . We now compute using (6) and (8)

Since r" are epimorphisms and T  is right exact, it follows that 
is an epimorphism. This proves that (5) is commutative.

For T  left exact we consider instead of X  the cokernel X '  of
.  v dn

C" — C - ^ C .

Theorem 7.2. I f  the functor T  is exact, a and a' are isomorphisms and 
are inverses o f each other.

Proof. We observe that (using the notation of diagram (1) of the 

preceding section)

and since Ker r  =  0 =  Coker f, it follows that a 'a  — identity. There 
remains to be shown that a is an isomorphism. This is clear if all the 
variables have zero differentiation. The proof is carried out by induction

(7)

and obtain

T(A,C) T(A,C) — >T(A,C")

HT(A,C") -L . ZT(A,C") ^  Y - ^  ZT(A,C ') -L . H T(A,C’)

with

(8) / / A n "P G =  A/> o  .

0 :  T(Z(A),X)->  Y.

Ax>>T(u,u”t") =  Ap"a"Q — p'a'Q  =  oc17’(//,///t')

=  a J X p jp 'r ')  =  a.lT(H(A),6)T(fi,fZ't").

=  Z,r] =  ra'otf
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with respect to the number of variables that have a non-zero differentiation.
We denote one of these variables by C and write T(A,C) where all the 
remaining variables have been lumped into a single symbol A . We 
assume T  covariant in C and consider the exact sequence

0 - > Z ( C ) - > C - > 5 ( C ) ^ 0

which yields the homology sequence

   B(C) Z(C) — > H(C) —  5(C) Z(C) —  • • •.

Since T  is exact we obtain an exact sequence

T (H (A ),B (C ))^T (H (A ),Z (C ))^T (H (A )M Q )-^T (H (A X B (C ))

~^T{H{A),Z(C))
where d' =  T(H(A),6).

Now, applying 7.1 and the naturality of « we obtain a commutative 
diagram

T(H(A),B(C)y-*T(H(A),Z(C))-1 -+T(H(A),H(C))J -+T(H(A),B(C))-^T(H(A),Z(C))

| “« | “i !a I®* | “i
H(T(A,B(C))) ^  H(T(A,Z{C)))— ► H(T(A,C)))— ^ H(T(A,B(C)))— + H(T(A,Z(C)))

The lower tqw is the homology sequence of

0 -> T(A,Z(C)) -> T(A,C) -> T(A,B(C)) -> 0.

Since the rows of the diagram are exact, and since, by the inductive 
assumption, oq and a2 are isomorphisms, it follows from 1,1.1 (the “ 5 
lemma” ) that a also is an isomorphism.

Proposition 7.3. Let T(A,C) be right exact and covariant in C. I f

T(A,Z(C)) T(A,C)

is a monomorphism, and

a: T(H(A),B(C))-> HT(A,B(C)) 

is an epimorphism, then the sequence

(9 ) -------> 7 / ( r ( ^ ,c ) A i7 ( r ( ^ ,5 ( C ) ) A i / ( r ( ^ ,z ( C ) ) ) ^ 7 / ( r ( ^ ,  c ))— >•••

induced by the natural maps

(10) C - ^ B f C J - ^ - Z C Q - ^ - C

w exact. For T  contravariant in C, replace B(C) and Z(C) by B '(C ) and 
Z '(C ) and reverse the arrows in (10).



P roof. Since the sequence

0 T(A,Z(C)) T(A,C )-► T{A,B(C)) -> 0

is exact, we obtain a homology sequence like (9) but with i* replaced by 
the connecting homomorphism A. It therefore suffices to show that 
A =  i*.

By 7.1, we have the commutative diagram

T(H(A),B(C)) TWWV T(H(A),Z(C))
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a <xx

HT(A,B(C)) ----------- ► HT(A,Z(C))
A

where <5: B{C) ->Z(C ) is the connecting homomorphism induced by the 
exact sequence 0 -> Z(C) -> C B(C) -> 0. It is clear that d =  i. 
Since by the naturality of a we have /*oc =  cn^TfHiAyS) it follows that 
Aa =  i*a. Thus A =  /* since a is an epimorphism.

P roposition 7.3a. Let T  be left exact and covariant in C. I f

T(A,C) -> T(A,Z'(C))
is an epimorphism, and

ol:H T (A ,B '(C ))^T (H (A ),B '(C ))  

is a monomorphism, then the sequence

(9a) • • • ^  H(T(A,C))-+H(T(A,Z'(C)))->H(T(A,B'(C)))->H(T(A,C))->  • • •

induced by the natural maps
(10a) C -> Z '(C )-> B '(C )-+ C

is exact. For T  contravariant in C, replace B '(C ) and Z '(C ) by B(C) and 
Z(C ) and reverse the arrows in (10a).

The preceding results may be sharpened in the following way. For 
each complex A , let denote the category consisting of the complexes 
A , B{A), B'(A), Z(A ), Z'(A), H(A), the identity maps, the maps occurring 
in diagram (1) of § 1, the maps B'(A) -> B(A) and of their compositions. 
The conditions ‘T  is right exact,” ‘T  is left exact” and ‘T  is exact” that 
occurred before may be replaced by ‘T  is right exact on the categories 
^ ( A ) , ^ ( C y \  etc.

We shall say that a complex splits if the sequences in diagram (1) of § 1 
split.

Proposition 7.4. I f  the complexes A and C split, then a and a ' are 
defined, are isomorphisms and are inverses o f  each other.

This follows directly from 7.2 since the functor T(A,C) is exact on the 
categories *J({A) and JK{C).
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8. K UNNETH  RELATIONS

We shall consider a functor T  of any number of variables. We shall 
denote one of the variables by C and use the symbol A for all the remaining 
variables. We shall use the symbols SXT  and *S1r  to denote the satellites 
of T  with respect to the variable C. We shall assume that all the variables 
in T  are complexes.

T heorem 8.1. Let T  be right exact and covariant in C. I f  the homo- 
morphisms

oq: T(H(A)9B (C ))^H T (A ,B (C ))  

a2: T(H(A),Z(C)) -> HT(A,Z(C)) 

are isomorphisms, and i f

(1) S J I A M  C )) =  0 =  SJX H {A )Z {C )\

then we have an exact sequence

(2) 0 — > T(H(A),H(C)) —  H(T(A,C)) - L  S1T(H(A),H(C)) —  0

with ft o f degree 1. I fT i s  contravariant in C, we replace B(C ) and Z(C) by 
B \C ) and Z'(C).

P roof. We consider the commutative diagram

T(H (A),B(C))^T(H (A),Z{C ))^T(H (A),H (C ))^0

I* 1 aa
H (T (A ,B (C m ^ H (T (A ,Z (C )))^ H (T (A ,C ))^ H (T (A ,B (C )))^ H (T (A ,Z (C ))

-1  -1  ai a2

Since S1T(A,B(C ))=  0, T(A,Z(C)) -> T(A,C) is a monomorphism. 
Thus 7.3 implies that the middle row in the diagram above is exact. Since 
SfT(H (A\Z(C )) =  0, the other two rows also are exact. It follows 
easily that there is a unique homomorphism

>  H (T (A ,Q )^ S J IH (A ) ,H { C ))

which when inserted into the diagram, leads to a commutative diagram. 
The exactness of (2) then follows readily from the diagram above.

The exact sequence (2) is natural in the following sense. Let A \  C ’ be 
another pair satisfying the conditions of 8.1, an d /: A -> .A ',g :  C ->  C 'b e  
maps of complexes (actually /  is a family consisting of one mapping
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f :  Ai~> A\ for each covariant variable in A and f :  A [ -^  A f for each 
contravariant variable in A). Then the diagram

0 ---- ► T(H(A)9H(C)) ---- ► H(T(A,C )) ---- ► SxT(H(A)9H (C ))----- ^0

0 T(H(A')9H (C '))---- ► H (T (A \C '))----- ► S ^ H i A ' l H i C ') )  ► 0

is commutative.
It should further be remarked that if T  is a functor of one variable C, 

then the conditions concerning ax and a2 are automatically satisfied and 
conditions (1) become

O ') S J \B { Q )  =  0 =  S1T’(Z(C)).

Since a has degree 0 and p has degree 1 the exact sequence (2) may be 
rewritten as

0 — > 2  T(H v( A ) ,H % C ) ) H n(T (A ,C)) - L  2  S1T(H v(A),Hq(C))— >0
p + q = n  p + q = n + l

R em ark . The only property of S±T  that was used above is that for 
each exact sequence 0 - > C ' - > C - > C " - ^ 0  the sequence

S±T(C) -> S^TiC")-> T (C ' ) -> T{C)

is exact (assuming T  covariant in C).

T heorem 8.1a. Let T  be left exact and covariant in C. I f  the homo­
morphisms

ai: H(T(A9BXC)))->T(H(A)9B X Q )  

a ' : H(T(A9ZXC ))) T(H (A),ZXQ )

are isomorphisms, and i f

(la) S 1T(A,BXC)) = 0 =  »S1r ( ^ ) ,Z '( C ) ) ,

then we have an exact sequence

(2a) 0 —  S 1T(H(A),H(C)) -L . H(T(A,C )) T(H(A),H(C)) —  0

with P' o f degree 1. I f T i s  contravariant in C, we replace BXC) andZXC) 
by B(C) and Z(C).

EXERCISES

1. Let A and A ' be A-complexes. A map / :  A -> A ' of degree u is 
defined as a homomorphism of degree u such that d f — (—1 )ufd . If 
g : A -> A ' is another map of degree w, then a homotopy s: f  ĉ . g  is a 
homomorphism .s: A->A' of degree u — 1 such that ds +  (—1 )usd — g  — / .
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Show that i f / :  A -> A ' and/ ' :  A ' -> A" are maps of degree u and r  
respectively, then / ' / :  4̂ -> 4̂" is a map of degree u +  v. If  further 

f - g , s ' :  f ' ^ g '  then

s ' f + ( — l ) vg's'- / ' / —  g'g-

2. Extend the above definitions to double and «-tuple complexes. In 
particular show that i f / :  A -> A ',g :  C -> C ' are maps of degrees w and r, 
then

/ ® g :  A ® C - > A '® C \  H om (/,g ): Horn ( A ' ,C ) ^  Horn (A ,C )  

are maps of bidegrees (u,v). Draw appropriate conclusions if s: f  ̂ / ' ,

3. Let A ' and >4" be complexes and let/ :  4̂" -> A ' be a map of degree 0. 
In the direct sum 4̂ =  ^4' -f- A" introduce the grading A n =  A 'n +  A"n+1 
and the differentiation operator df given by

df(a',a") =  (da' + fa " , -da").

Show that with this differentiation the homomorphisms

(1) 0 — +A'~1 + A J ^ A " — +0

given by xpa' =  (a',0), cp(a',a") =  a" are maps (xp is of degree 0, and cp of 
degree 1). Prove that any differentiation operator in A with this property 
has the form df (for some m ap/  of degree zero).

The exact sequence (1) gives rise to an exact homology sequence

   H n(Ar) H n(A) H n+1(A") H n+1(A') —* • • • .

Show that d coincides with the map induced by /
4. Denote the complex A of Exer. 3 by (A ',A "f). Let (C',C",g) be 

another such complex and let h': A ' —> C", h": A" -> C" be maps (of 
degree zero). Show that a map h : (A \A " ,f)  -> (C',C",g) of degree 0 
compatible with t i  and h'\ exists if and only if gh" ^  h'f. Show that each 
homotopy s: gh" ^  h 'f  uniquely determines such a map h and vice-versa.

In particular, a map (A ',A ",f) -> C is given by a map h: A ' -> C and 
a homotopy s : 0 ^  h f  A map 4̂ -> (C',C",g) is given by a map h: A -> C "  
and a homotopy ^ : ghc^O .

5. Let 4̂ and C be graded A-modules. Denote by M U(A,C) the group 
of all A-homomorphisms A -> C of degree w. Assume that 4̂ and C are 
complexes and consider the subgroup M apU(A,C) of all maps of degree u. 
Further let Mapo04,C) denote the subgroup of maps homotopic to zero.

Convert the graded group M(A,C) =  T WM%4,C) into a complex by 
setting

(dg)a =  g(da) +  (— 1 )u+1d(ga), a e A , g e  M U(A,C).
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Prove the equalities

Z U(M(A,C)) =  Map U(A,C), B U(M(A,C)) =  Map %(A,C).

6. Consider an exact sequence of A-complexes
W <P

0 — >a ' - ^ A - ^ A " — >0

with \p e Map\A ',A ), cp € Map1̂ ,^ " ) ,  and assume that each of the exact 
sequences 0 -> A 'n A n -> A"n+1 -> 0 splits. Establish the exact 
sequence of complexes

0 -> M (A \C ) -> M{A,C) -> M (A \C ) -> 0,

and using 1.1 obtain an exact sequence

M apM04,C) — > M apU(A \C ) Map%4'',C)/MapgU'',C).

Assuming that A is given in the form (A \A " , f ) of Exer. 3, show that the 
map d is the one induced by / .  Compare with the last part of Exer. 4. 

Carry out a similar discussion with an exact sequence

0 ->  C '^ C - >  C "-> 0 .

7. Let A and C be double complexes such that A p>9 =  0 =  Cv>q if 
p  <  0, and let A' and C ' denote the double complex obtained from A and 
C by setting the second differentiation equal to zero. Show that if a
m a p / :  A -> C induces an isomorphism H(A') m H{C'), then /  also
induces an isomorphism H(A) & H(C).

[Hint: observe that A ' =  J  Fr(A)A:r' ](A), where I 'r(A) = 2 2  Ar’-q;
r p q7>r

similarly for the complex C. Then, for a given n, prove, by a descending 
induction on r, that H n(Fr(A)) -> H n(Fr(C)) is an isomorphism; this being 
true for r >  n, use the 5-lemma (i, 1.1) for each step of the induction. 
Prove finally that H n(A) -> H n(C) is an isomorphism.]

8. Show that a right exact functor T  is exact, if and only if the map 
a: T (H (A ),H (C ))F f(T (A ,C ))  is an isomorphism for any complexes 
A and C. Establish a similar proposition for left exact functors.
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Derived Functors

In troduction . This chapter is central and should be studied care­
fully. First we define for each module A certain complexes which are called 
projective (or injective) resolutions of A. Then given a functor T(A,C) we 
replace A and C by projective or injective resolutions X  and Y  (depending 
upon the variances of the variables). We then obtain a double complex 
T(X , F). The homology groups of this double complex are independent of 
the choice of X  and Y  and are the left derived functors L nT(A,C) (or the 
right derived functors R nT(A,C) depending upon the case) of the functor 
T. There are connecting homomorphisms which link these functors for 
different values of n, and which lead to various exact sequences. This is 
done in § 1-4.

The fundamental properties of these derived functors are studied in 
§ 5-9. The last § 10 is a digression intended primarily to prepare the 
ground for Ch. xn on finite groups.

1. C O M P L E X E S  O V E R  M O D U L E S ; R E S O L U T IO N S

In what follows it will be convenient to regard a A-module A as a 
complex with A0 — A, A n =  0 for n ^  0 and differentiation zero. Thus 
A coincides with Z(A), Z '(A) and H(A), while B(A) and B \A )  are zero.

A left complex X  over A is a negative complex X  (i.e. X n =  0 for 
n >  0) and a map e : X —> A called the augmentation. Since A n =  0 for 
n ^  0, the map e actually reduces to a single map X° -> A subject to the 
condition that the composition A-1 -> X° A be zero. The left complex 
X  is called projective if all X n are projective, it is called acyclic if e induces 
an isomorphism H (X ) & A. This last condition is equivalent to the 
requirement that the sequence

d n d-t s
 > x n - * + x ^ , - *  ^JTo — ^  —  0

be exact. Note that we have lowered the indices to avoid writing negative 
numbers. This will be done systematically with left complexes.

A left complex X  over A which is both projective and acyclic will be 
called a projective resolution of A.

75
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Letf :  A -> A ' be a homomorphism of modules, and let X ,X ' be left 
complexes over A, A ' with augmentations s,e'. A map F: X ^  X '  such 
that the diagram

RX — + X '

is commutative, is called a map over f .
P roposition 1.1. Let X  be a projective left complex over A , X ’ an 

acyclic left complex over A ' and let f :  A -> A'. There is then a map 
F: X ->  X ' over f  and any two such maps are homotopic (see iv,3).

P roof. In this proof as well as in various proofs in the following 
section it will be convenient to use the following property of projective 
modules which is immediately derivable from the definition. Consider a 
diagram

P

l r
A ' — * A — -A'V <P

in which the row is exact and P  is projective. If cpr =  0 then r  admits 
a factorization xpo where o: A".

We now begin with the construction of the map F: X ->  X f. Consider 
the diagram

lfe
X q 7̂  A ' 0u e

Since X0 is projective there is an F0: X0 -> X q with sfF0 =  fe . Next 
consider the diagram

* i

~r*A 'e

Since s 'F ^  =  fedx =  0 there is a map Fp. Xx -> X[ with d[Fx — F0dv  
Assume by induction that Fn: X n -> X'n are already defined for n <  p  
(p >  1) and satisfy d'nFn =  Fn_xdn for n >  0. Consider the diagram

X,

I ^ p-Ap
x'p — - x ' p_l T ^ x ; _ 2

av av- 1



Since d ' ^ F ^ d y  =  Fp_^dp_xdv =  0 there is a map Fp: X p -> X p with 
^  pFp FP—\dp.

Now suppose that F, F f are two maps of X  into X ' over/ .  Consider 
the diagram
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dx u e

where r =  F'0 — F0. Since s'r  =  s'F'0 — s'F0 — fe  — fe  =  0 there is a 
map ,s0: X0 -> A"! with =  Fq — F0. Assume that : X n -> Xp+1 are 
already defined for n <  p (p >  0) and satisfy d'n+lsn +  ‘V-i<4 =  F„ — Fn 
for n >  0. Consider the diagram

y *dP+i

with t =  Fp — Fv — Since d'pr, upon calculation gives 0, there is
a map sv: X p-> X p+1 with r  =  dp+1sv, i.e. with dp+1sp +  s^yd , =  Fp — Fp.

P roposition 1.2. For each module there exists a projective resolution. 
I f  X  and X ' are projective resolutions o f A and A ', and f :  A -> A ' is a 
homomorphism, then there exists a map F: X  -> X ' over f .  Any two maps 
F, F': X ->  X ' over the same homomorphism A ->  A ' are homotopic.

Proof. The existence proof consists in a successive application of 
1,2.3; given A, choose exact sequences

0 — ► Z0 — ► X0 —̂  A — >0 
0 —  Z x — - X y —  Z0 — 0

with X n projective. Then define dn as the composition X n -> Z n_x -> X n_v  
This yields a projective resolution of A. The second and third part of 1.2 
are consequences of 1 .1 .

Note that actually the above proof yields a projective resolution X  
of A with the modules X n not only projective but free.

It follows from 1.2 that any two projective resolutions X  and X ' of the 
same module A have the same homotopy type, i.e. there exist maps 
F: X ->  X '  and F': X ' - ^  X  over the identity map of A, such that the 
compositions F'F  and FF' are homotopic to identity maps.
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We now briefly and without proofs carry out a similar discussion for 
right complexes.

A right complex X  over A is a positive complex X  and an augmentation 
map e : A -> X. The right complex is called injective if all X n are injective; 
it is called acyclic if e induces an isomorphism A & H(X), or equivalently 
if the sequence

e dQ dn
o — > A — + X Q— + X 1— >-------- - X n — > X n+1 —  • • •

is exact. If X  is both injective and acyclic it is called an injective resolution 
of A.

Let/ :  A -> A ' be a map of modules, and let X, X ' be right complexes 
over A ,A '. A map F: X ->  X ' such that the diagram

A ± A ’

‘I Is'
F

is commutative, is called a map over / .
Proposition 1.1a. Let X  be an acyclic right complex over A , X f an 

injective right complex over A \  and let f :  A -> A '. There is then a map 
F: X -+  X ' o v e r f and any two such maps are homotopic.

Proposition 1.2a. For each module there exists an injective resolution. 
I f  X  and X ' are injective resolutions o f A and A ', and f :  A -> A ' is a homo­
morphism, then there exists a map F: X  -> X ' overf. Any two F, F ' : X-> X' 
over the same map A A ' are homotopic.

Proposition 1.3. I f  A is left Noetherian and A is a finitely generated 
left A-module, then A has a A-projective resolution X  such that each X n is 

free on a finite base.
Proof. We use the notation of the proof of 1.2. Since A is finitely 

generated we may choose X 0 to be free on a finite base. Then since A 
is left Noetherian, Z0 is finitely generated. Thus X 1 may be chosen free 
on a finite base, etc.

2. RESOLUTIONS OF SEQUENCES

Let
(1) 0 —+A'~1 + A ^ A " —*0 

be an exact sequence, and let
t* <x>

(2) 0 —  X '  —  Z —  X"  —  0
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be an exact sequence, where X \  X , A"" are left complexes over A \  A , A " 
respectively, T  is a map over y) and O is a map over p. If X \  X , A"" are 
projective resolutions of A \  A, A" respectively, then we say that (2) is a 
projective resolution of (1).

Proposition 2.1. I f  X ' and X" are projective, then so is X. I f  X 'and  
X" are acyclic, then so is X. I f  X ' and X" are projective resolutions o f  A ' 
and A", then (2) is a projective resolution o f {1).

P roof. For each index n, the sequence 0 ->  X ’n -> X n -> A^ -> 0 is 
exact. If A"" is projective, then the sequence splits and X n is isomorphic 
to the direct sum X ’n +  X". If X'n also is projective then X n is projective.

Suppose now that X ' and X" are acyclic. This means that the sequences

are exact. Let X '  and X" denote the complexes defined by these sequences 
and let X  denote the similar complex defined using X. Since 
H{X') -> H(X) -> H{X") is exact, it follows that H(X) — 0, i.e. X  is an 
acyclic left complex over A .

We shall say that the exact sequence (2) is normal if, for each index «, 
the exact sequence 0 -> X„ -> X n X"  -> 0 splits. This for instance is 
always the case if X" is projective. If the sequence (2) is normal, we may 
replace X n by the direct sum X ’n +  X"  and assume that

• • •

Xn- i - + X £ - + A '^ 0 - +

'T X  =  (X,0), ®(xn,xn) =  xn.

With this representation we have
J  f *  x " \  =  ( J ’ x '  i @ x *un\'An’'A"n/ \un^n r u n^n)

£(*o>*o) =  ipe'x'o +  ctXq
where

a:

P) • y " — y 'A n ^  A n - 1’

The homomorphisms a and 0 W satisfy the conditions

n >  0

(3) y)e'@1 +  od’l  =  0 

A '- l  +  ® n-i<  =  0 n >  1

which are the translations of the conditions £"<I>0 — (pe, ed1 =  0 and 
dn-idn =  0 respectively. This description of a normal sequence (2) will 
be called the normal form  of (2).
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Proposition 2.2. Given an exact sequence (1), an acyclic left complex 
X ' over A ' and a projective left complex X" over A", there exists a left 
complex X  over A and maps T ,  O over the maps ip, cp, such that the sequence
(2) is exact. I f  X ' and X" are projective resolutions o f A ' and A ", then X  is 
a projective resolution o f A.

Proof. The second part follows from 2.1. To prove the first part, 
it suffices to find homomorphisms <x: Xq A and 0 n: X"  
satisfying (3). Consider the diagram

Y"Ao

K - i

■A "■ ■0

Since Xq is projective there is a a: Xq A with cpo =  e". Next consider 
the diagram

x'-
—adĵ

■A"

Since the row is exact, X [  is projective, and <po d" =  e" d± =  0, there is a 
®i: Xi -> Xq with f  e 0 L =  —a d Next we consider the diagram

x;
-Q-ido

X l ~ X l — r+ A '1 d, u e

Since — ip e 0 xd^ =  od[dl =  0 and since Ker ip =  0 it follows that 
— e 0x^2 =  0 so that there exists a homomorphism 0 2: X'j -> X[ with 
d[®2 =  —0 ^ .  For p  >  2 we define 0 P inductively using the diagram

x:

X ’ ___ > V'
A p - 1  A p -

Proposition 2.3. Let

— > y '
2 A p - 3

0 -----^ A ' - ^ A - ^ A " ------ >0

tp* <p*0 ------



be a commutative diagram with exact rows and let

'F o
0 — * X '—  X —+ X " — >0, 0
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o*
Y ' — ► Y — > Y" 0

be normal exact sequences o f left complexes over the rows such that X" is 
projective and Y ' is acyclic.

Given maps F ': X ' -> Y ' and F" : X" -+■ Y" over / '  and / " ,  there is a 
map F: X ->  Y  over f  such that the diagram

0

0-

■ j r -

F'

r -

F

Y -

X"~
F"

r -

•o

-o

is commutative.
I f  G \ G, G" is another triple o f maps o v e r f "  with the same property 

and i f  s': F ' G '  and s": F" ~  G" are homotopies, then there exists a 
homotopy s: F c^ G such that the diagram

0

0-

■ K

r1 n+l

■Xn X"A n

1 w+1 n + l

•0

0

is commutative fo r  all n 0.
P roof. W e assum e that X  and Y  are given  in  norm al form  w ith  the  

m aps o*, 0 ^ ,  oY, 0 ^ .  T he required m ap F: X ->  Y  m ust then  have the  
form

Fn{x'n>x'n) =  (F^x'n +  7nx i  K Xn)

where y n: X ”n Y'n satisfies the cond ition s  

( y>* e' y0 +  oYF0 = f o x

{ d'ny n -  y n-!d 'n  =  F ' ^ f d l  -  0 K ,  « >  0
(4)

which are translations of the conditions eYF0 = f e x  and dYFn =  F^+d*  
for n >  0. Equations (4) allow us to define y n inductively by the same 
method as before.

We now turn to the part concerning the homotopy. The required 
homotopy s: F c^ G must have the form

/ / / / r , , // //
■*»(*»>*») =  (SnXn +  'n



where tn: X"n -> Y'n+l. The condition dn+1sn +  sn_1dn =  Gn — F„ then 
becomes

d[t0 +  0 f Sq =

dn + l fn +  tn-\d"n +  ®n + lsn +  =  Yn ~  Yn\ n >  0.

Again these equations are solved inductively for t0, tl9 . . .  .

The analogs of the results of this section for right complexes are 
straightforward and will not be restated.

3. DEFIN ITIO N  OF DERIVED FUNCTORS

As in Chs. in and iv we shall be concerned with additive functors T  in 
any number of covariant and contravariant variables. We shall treat 
explicitly the case of a functor T(A,C) co variant in the variable A and 
contravariant in the variable C. However it is understood that A may be 
replaced by any number of covariant variables, and C by any number of 
contravariant variables. In most definitions and results the number of 
variables is of no importance. In all other cases specific statements will be 
made.

Consider the (additive) functor T(A,C ) co variant in A, contravariant in 
C, where A is a A-module, C is a A2-module and T(A,C) is a A-module. 
Let A  be a right complex over A and Y  a left complex over C. Then 
T (X ,Y ) is a double complex. With this double complex there is 
associated a single complex, also written T{X, Y ) which is a right complex 
over T(A,C). If F : X ^  X '  and G: F '->  Y  are maps over/ :  A ->■ A \  g: 
C f -> C then

T(F,G): T(X9Y ) - + T ( X \Y ’)
is a map over

T(f9g): T(A9C )-> T (A '9C').

Homotopies F  ^  F ' and G ^  G' imply (see iv, 5) a homotopy 
T(F,G) ~  T(F',G').

Suppose now that in the above discussion X, X '  are A-injective 
resolutions of A, A ' and Y, Y ' are A2-projective resolutions of C, C !. Given 
the m aps/ :  A ->  A ', g: C' -> C, the existence of maps F: X ->  X ' and 
G : Y '->  Y  over/  and g  is assured by 1.2 and 1.2a. If F' : X ->  X ' and 
G': y '- >  T is another pair of such maps, then by 1.2 and 1.2a there exist 
homotopies F  ̂  F ' and < 7^  G'. Thus T(F,G) and T(F',G') are homo­
topic and therefore yield the same homomorphism of the respective 
homology modules. Thus the homomorphism

(1) H (T (X ,Y ) ) ^ H (T (X \Y ') )
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depends only on the maps /  and g  and not on F  and G. We denote the 
homomorphism (1) by (R T )(fg ). It follows now readily that if A — A \  
C =  C' a n d /a n d  g  are identity maps, then (1) is an isomorphism. Thus 
up to natural isomorphisms H T(X , Y) is independent of the resolutions X  
and Y  and may be written as (RT)(A,C ). These modules together with 
the maps (R T)(fg) yield a new (additive) functor R T , covariant in A and 
contravariant in C. The values of R T  are graded A-modules. The 
components of degree n yield a functor R nT  called the right n-th derived 
functor of T. Since the complex T(X, Y) was positive, we have R nT  =  0 
for n <  0.

Let X  be an acyclic right complex over A and Y  an acyclic left complex 
over C. We shall define a natural homomorphism

(2) H(T(X, Y)) RT(A,C).

Indeed, let A ' be an injective resolution of A and Y ' a projective resolution 
of C as used in defining RT{A9C). By 1.1 and 1.1a, there exist maps 
F : X^> X '  and G: Y '->  Y  over the identity maps of A and C. Then 
T(F,G) induces a homomorphism (2). Since, by 1.1 and 1.1a, F and  G are 
unique up to a homotopy, it follows that (2) is independent of the choice 
of F  and G.

Quite similarly if X  is an injective right complex over A, and Y  is a 
projective left complex over C, then we obtain a homomorphism

(3) RT(A9C) -> H(T(X, Y)).

P roposition 3.1. I f  A is injective and C is projective, RT(A,C)
coincides with T(A,C), i.e. R nT (A ,C )=  Oforn >  0 andR°T(A,C) — T(A,C). 
I f  the functor T  is exact, then the same holds fo r all modules A and C.

P roof. If A is injective then A (regarded as a complex) is its own 
injective resolution. Similarly C, if projective, is its own projective 
resolution. Thus RT(A,C ) =  H(T(A,C)) -  T(A,C).

Assume now that T  is exact and let X  be an injective resolution of A 
and Y  a projective resolution of C. We consider the augmentations 
e: A  -> X  and //: Y->  C as maps of complexes. Applying the homo­
morphisms a ' of iv,6 we obtain the commutative diagram

T(A ,C )  > H (T(X,Y))

T(A ,C ) ► T(H(X),H( Y))

The vertical maps a ' are isomorphisms by iv,7.2. Since A —> H(X) and 
H(Y)->C  are also isomorphisms it follows that T(A,C)->H(T(X,Y)) 
=  RT(A,C ) is an isomorphism.
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Proposition 3.2. I f T  is defined fo r modules over hereditary rings, 
then R nT  =  0 i f  n exceeds the number o f variables in T.

Proof. Consider the case of 2 variables as above. Since A is a 
module over a hereditary ring the injective resolution X  of A may be 
chosen with X n =  0 for n >  1. Similarly the projective resolution Y  of 
C may be chosen with Yn — 0 for n >  1. Thus in the complex T(X , Y) 
we have T n(X, Y) =  0 for n >  2. Thus R nT  =  0 for n >  2.

In defining R T  we took injective resolutions for all covariant variables 
and projective resolutions for all contravariant variables. If instead we 
take projective resolutions for all the covariant variables and injective 
resolutions for all contravariant variables we obtain a functor L T  =  2 L nT , 
where L nT  is the n-th left derived functor of T. We have L nT  — 0 for 
n <  0; the indices have been lowered to avoid negative numbers.

As before if X  is an acyclic left complex over A and Y  is an acyclic right 
complex over C, we have the homomorphism

(2a) LT(A,C) -> H (T(X , 7)).

If X  is a projective left complex over A and 7  is an injective right complex 
over C, then

(3a) H(T(X, 7)) -> LT(A,C).

Proposition 3.1a. I f  A is projective and C is injective then LT(A ,C ) 
coincides with T(A,C), i.e. L nT{A,C) — 0for n >  0 andL0T(A,C) — T(A,C). 
I f  the functor T  is exact then the same holds fo r all modules A and C.

Proposition 3.2a. I f  T  is defined fo r modules over hereditary rings 
then L nT  =  0 i f  n exceeds the number o f variables in T.

4. CONNECTING HOMOMORPHISMS  

Consider a functor T{A,C) as in 3, and let

(1) 0 - > A '- > A - > A " - > 0

be an exact sequence. By 2.2 there exists a sequence

(2) 0 ->  X ” -> 0

which is an injective resolution of (1). Let further 7  be a projective 
resolution of C. Since for each degree the sequence (2) splits, it follows 
that the sequence of complexes

0 ^  T (X \  7 ) -*  T(X , 7) ^  T (X \  7) -> 0

is exact. There result connecting homomorphisms

H n(T {X \  7)) -► H n+1(T (X \  7))



which yield homomorphisms

(3) R nT(A",C) -> R n+1T{A',C).

The independence of (3) from the choice of (2) follows readily from 2.3. 
We similarly define the connecting homomorphisms

(4) R nT(A,C ')->  R n+1T{A,C”) 

for each exact sequence

(5) 0 ^ C % C - >  C"->Q.

P roposition 4.1. Let

o -> a ' - > a  -> a "-+  o 0 -> C( ^  Q  - > C[ - > 0
^ ^ ^ ^ ^ ^

0 - >  C '-H -C  - ^ C " ^ 0

be commutative diagrams with exact rows. Then the following diagrams 
are commutative.

R nT(A",C) -> R n+1T(A',C) R nT(A,C') -> R n+1T(A,C")

R nT(Al,C ) -> Rn^T{A[,C ) R VT{A,C'1) -> R ^ T i A , ^ )

R nT(A",C) -> R n+1T(A',C) R nT(A,C') R n+1T{A,C")

R nT{A",C1) R ^ T iA ^ C j)  R ^ A ^ C )  -> R ^ T iA ^ C " )

The diagram
R nT(A",C’) R n+1T(A',C ')

R»+iT(A",C")-> Rn+2T(A',C") 

is anticommutative. The sequences

(6)  > R nT (A \C ) -> R nT(A,C) -> R nT(A",C) -> R n̂ T { A \C )  -> • • •

(7) ------ ► R nT(A,C") -> R nT(A,C) -> R nT(A,C') -> -> • • •

are exact.
P roof. The first four commutativity relations are trivial consequences 

of the definitions and of 2.3. The exactness of the sequences follows from 
the fact that these are homology sequences of suitable exact sequences of 
complexes. It remains to verify the anticommutativity relation.

§4] CONNECTING HOMOMORPHISMS 85



Let then 0 -*■ X '  ->■ X ->  X" -*■ 0 be an injective resolution of (1) and 
0 -v  Y '->  Y Y "  -> 0 a projective resolution of (5). There results a 
commutative diagram

0 0 0

0 ->■ T (X ’, Y") -> T(X, Y") -> r ( r ' ,  y") -> 0

o -> r ( i " ,  y) -> r ( y ,  y) -> t (x ", y ) -> o 

0 -> T(X ', Y ') -> T(X, y ')  -> T(X", y ')  -> o
4 4 4
0 0 0

Thus IV,2.1 yields the anti-commutative diagram

H nT{X", Y ') H n+1T{X ’, y ')

H n+1T(X", Y") -s- H n+2T(X ', Y")
as desired.

An immediate consequence of 4.1 is
C orollary 4.2. R°T is left exact. I f  R n+1T  =  0 then R nT  is right 

exact.

If we consider left derived functors, then (3) and (4) above are replaced
by

(3a) L nT(A",C) -> L ^ T ^ A '  ,C)

(4a) L hT(A,C') -> L n_xT(A,C")

Propositions 4.1 and 4.2 remain valid with the obvious formal changes.

P roposition  4.3. Let X  he an injective right complex over A and let 
0 ->  Y ' -> Y-> Y" -> 0 be an exact sequence o f projective left complexes 
over an exact sequence 0 - > C ' - > C ^ C " - ^ 0 .  Then the sequence 
0 -> T(X, Y 'j  -> T(X, Y) -> T(X, Y ') -> 0 is exact and the diagram

R nT(A,C') -> R n+1T(A,C")
4 4

H n(T(X, y ')) -> H n+\T{X, y"))
is commutative.

Proof. Since 0 ->  Y^->  7 n Y" -> 0 splits for each it follows 
that 0->T(X, Y ")^T (X , Y)->T(X, 7 ')-> 0 is exact. Let 0->Z'->Z->Z"->0 
be a projective resolution of 0 -> C ' C-+  C" -> 0. Then by 2.3 there
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exist maps F \  F, F" over the respective identity maps, which yield a 
commutative diagram

0 ----- - r  ► Y  ► Y " ----- >0

F'

o — ► Z ' — - z  > Z " -----   0

This implies the commutativity relation above.
Proposition 4.3 is only an example of similar propositions with other 

variances and with left derived functors. We leave it as an exercise to the 
reader to state and prove some of these.

The functors R T  =  {RnT} and L T  =  {LnT} are examples of what we 
shall call multiply connected sequences of functors. We consider a sequence 
of functors {T n}, all of the same variables and the same variance. We 
suppose that with respect to each variable we have given connecting 
homomorphisms such that, (1°) with respect to each variable separately
{Tn} is a connected sequence of functors, (2°) with the notation of 4.1 the
diagrams

T \A \C )  -> T n+ \A \C ) T n(A,C') -> T n+ \A ,C ”)

T n{A \C J  -> T \ A l9C )  -> T n+ \A X,C")

are commutative. We then say that {Tw} with the given connecting homo­
morphisms constitute a multiply connected sequence of functors. We do 
not postulate any anticommutativity relation between the connecting 
homomorphisms for the different variables. If, with respect to each 
variable, the connecting homomorphisms yield exact sequences like (6) 
and (7), then we say that the multiply connected sequence {Tn} is exact.

Let {Tnf  {Un} be two multiply connected sequences of functors. A 
homomorphism <3>: {T n {Un} is a sequence of natural transformations 
Ow: T n -> Un which properly commute with the connecting homo­
morphisms.

An example of such a homomorphism can be obtained by considering 
a natural transformation (p: T  U of functors. If X  and Y  are 
appropriate resolutions of the variables A and C of T  and U, then (p 
induces homomorphisms T(X, Y) -> U(X,Y) which in turn induce homo­
morphisms of the homology modules R nT(A,C)-> R nU(A,C). These 
clearly commute with the connecting homomorphisms. The same applies 
to the left derived functors.

Proposition 4 .4 . {Isomorphism criterion.) Let O : {Tn}-> {U n} be 
a homomorphism o f multiply connected exact sequences o f functors. We 
assume that 0 °: T° ->■ U° is a natural equivalence.
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I f  the homomorphism

(8) T n(A1, . . . , A p) - + U n (Ai , . . . , A p)

is an isomorphism whenever n >  0 and all the covariant variables are 
injective and all the contravariant variables are projective, then (8) is an 
isomorphism for n >  0 and fo r  any variables.

Similarly i f  (8) is an isomorphism for n <  0 whenever all the covariant 
variables are projective and all the contravariant variables are injective, 
then (8) is an isomorphism for n <  0 and for any variables.

P roof. We shall only consider the case n >  0. Let p  be the number 
of variables in T n and Un. We first consider the case p  =  1. Assume 
that the functors are contravariant and that we already have shown that 
O*: yields isomorphisms for 0 < ! / < « .  Consider an exact
sequence 0 - > M - + P ^ A - > 0  where P  is projective. We obtain a 
commutative diagram

T n~ \P )  —+ T n~ \M ) — > T \ A ) —  T n(P) — > T n(M )
j* l  j * 2 j*3 j*4 |*5

Un~ \P )  —  Un- \ M )  —  £/%4) —  £/w(P) — > £/w(M)

with exact rows. We know that <p1? 9?2, q?4 are isomorphisms. This 
implies by i, 1.1 (the “ 5 lemma” ) that qp3 has kernel zero. Since this holds 
for all A it follows that qp5 also has kernel zero. Thus by another applica­
tion of the “ 5 lemma” qp3 is an isomorphism.

The case when the variable A is covariant is treated similarly using an 
exact sequence 0 ^  A Q - >  N ->  0 with Q injective.

Suppose now that the proposition is already established if the number 
of variables is p  — 1. Suppose now that T n and Un are functors of p  
variables and that the last variable is contravariant. We replace the last 
variable A p by a fixed projective module and treat T n and Un as functors of 
the p  — 1 remaining variables. It follows from the inductive hypothesis 
that (8) is an isomorphism in this case. We now fix the variables 
A v  . . . ,  A p_x and regard T n and Un as functors of A p alone. Since (8) 
is an isomorphism whenever A p is projective, the result follows from the 
case p  =  1 already treated.

Proposition 4.5. Let {T n} be an exact multiply connected sequence o f  
functors. I f  the exact sequence 0 A ' A -> A" -> 0 splits, then the 
connecting homomorphisms relative to this sequence are zero.

P roof. Assume that A is a covariant variable of T , then (omitting all 
other variables) we know that T n(A) -> T n(A") is an epimorphism and 
T n+1(A') -> T n+1(A) is a monomorphism. Consequently T n(A")->Tn+1(A') 
is zero.
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5. THE FUNCTORS R°T AND L0T

Let X  be an injective resolution of A , and Y  a projective resolution 
of C. The augmentation maps A -> X, Y  C induce a map

T (A ,C )-> T (X ,Y )

where A , C and T(A,C ) are regarded as complexes consisting of elements 
of degree 0 only. There results a natural transformation

t°: T-+ R °T .

Proposition 5.1. The map r° w a natural equivalence i f  and only i fT  is 
left exact.

Proof. By 4.2, is left exact, thus if r°is an equivalence, then T  
also is left exact. Suppose now that T is left exact. By n,4.3a the sequence

0 -> T(A,C ) -*  T (X », F0) -> T (X \  Y0) +  T (X », Y J
is exact. However the kernel of the last homomorphism is precisely 
H°T(X , y) -  R°T(A,C). Thus r° is an isomorphism.

Proposition 5.2. Let T  be a left exact functor. Then T  is exact i f  
and only i f  R}T =  0.

P roof. If T  is exact, then R }T =  0 by 3.1. If R 1T =  0 then, by
4.2, R°T  is exact so that T  is exact by 5.1.

T heorem  5.3. The mapping R nT°: R nT  -> R nR°T induced by 
r ° : T  -> R°T is an equivalence fo r  all n^> 0.

P r o o f . We first consider the case n =  0. We observe that R °t ° 
coincides with the mapping r°: R°T  -> R°(R°T). Since R°T  is left exact, 
it follows from 5.1 that this map is an equivalence.

Next we observe (using 3.1) that both R nR°T  and R nT  yield zero if 
n >  0 and all covariant variables are replaced by injective modules and all 
contravariant variables by projective modules. Since R nr° is a map of 
multiply connected sequences of functors, the conclusion follows from the 
isomorphism criterion 4.4.

If A" is a projective resolution of A and Y  is an injective resolution of C 
then the augmentations X ->  A and C ->  Y yield a map T(X9 Y) -> T(A,C) 
thus defining a natural map

ff0: L0T ^  T.

P roposition 5 .1a. The map o0 is an equivalence i f  and only i fT  is right 
exact.

P roposition 5.2a. Let T  be a right exact functor. Then T  is exact i f  
and only i f  L fT  =  0.

T heorem 5.3a. The mapping L no0: L nL0T L nT  induced by 
(T0: L0T -> T is an equivalence.



90 DERIVED FUNCTORS [Ch a p . V

Theorem 5.3 shows that the right derived functors are of real interest 
only if T  is left exact. Indeed R nT  may always be replaced by R nT ' with 
r  — R°T  which is left exact. Similarly the left derived functors are 
mainly interesting for functors which are right exact.

R em ark . If we regard T  as a connected sequence of functors with the 
functor T  in degree zero and the zero functor in all other degrees, then 
t °  and gq may be regarded as homomorphisms of connected sequences of 
functors

O q T °

L T  T  — ► RT.

6. COMPARISON W ITH SATELLITES

In this section we limit ourselves to functors of one variable.
T heorem 6.1. The natural maps

<r0: Lor - > T ,  t°: T -> R °T

admit unique extensions to maps

Gn : L nT -+ S nT, Tn: S nT R nT

o f connected sequences o f functors. I f  T  is right exact, then on is an iso­
morphism; i f T  is left exact, then r n is an isomorphism.

P roof. The existence and uniqueness of a^ and r n follow from
iii,5.2. If T  is right exact, then a0 is an isomorphism by 5.1a, and 4.4 
implies the same for on. Similarly if T  is left exact.

P roposition 6 .2. I f  the ring A is hereditary, then on and r n are iso­
morphisms fo r  n^> 1.

Proof, We first prove that L nT  =  0 =  S nT  for n 2, and similarly 
S nT — 0 =  R nT  for n}> 2. Assume for example that T  is covariant; 
then each module A has a projective resolution of the form

0 ^  X0- > A - ^ 0 ;

it follows that L nT(A) =  0 for n 2. Moreover, we have

S nT(A) =  Ker ( S ^ T i X J  ->

and S ^ T i X i )  =  0 for n ^  2, since is projective. The proof is similar 
for the other cases. It remains now to be proved that

a^. L fT -^  S J  and r 1: S ' T ^ R 'T

are isomorphisms. We shall give the proof for g19 assuming T  covariant
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Consider the commutative diagram

W  * S fL fT

i » ,  i '
L fT  —^ SXT

where and y  are induced by aQ: L0T -> T , and a is the homomorphism 
a* applied to the functor L0T. Since, by 4.2, L0T  is right exact, it follows 
from 6.1 that a is an isomorphism. By 5.3a, is an isomorphism. In 
order to prove that ox is an isomorphism, it suffices to show that y  is an 
isomorphism. Consider the commutative diagram

0 —  S ^ T i A )  —  LoTiX J  —  LqT(X q)

l v 1“ I*
0 *• SyT(A) —  T iX J  —  T (X 0)

Since and XQ are projective, u and v are isomorphisms by 3.1. The 
conclusion follows.

P roposition 6.3. For any functor T  and any n,

R nS iT  =  0, L nS±T  =  0.

P roof. Assume T  covariant, and let A" be an injective resolution of A. 
Then R nS 1T{A) =  H ^ T i X ) ) .  Since X n is injective, we have 
=  0 for any n ; thus R nS 1T  =  0. The other cases are proved similarly.

7. COM PUTATIONAL DEVICES

We shall give here a number of propositions which will be useful in 
computing the derived functors or the connecting" homomorphisms. 
All the propositions here being auxiliary in nature, we shall limit ourselves 
to stating only the cases needed in the sequel. Restatements for other 
cases are left to the reader.

Let A" be a projective resolution of A. Given i >  0 we denote 
A (i) =  Im (X i -> AV-i). We then obtain exact sequences

(1) 0 ->  A (i) -> ------ > X0-> A ->  0,

(2) • • • - >  A"w A"* -> A (i) 0.

We may regard the sequence (2) as a projective resolution X (i) of A (i) with 
augmentation e{i): X { -> A (i) induced by the map X { -> A O f  course, 
the sequence (2) needs to be renumbered, before it may be regarded as a 
projective resolution of A (i). There is a natural mapping

(3) X -> X (i)



which maps the module X n of X  identically into the module X n of X {i) for
n i, and maps X n into zero for n <  i. The map (3) thus lowers the
degree by i and commutes with the differentiation.

P roposition  7.1. Let T  be a contravariant functor in one variable. 
With the notations above the sequence (1) induces an iterated connecting 
homomorphism

6: R nT(A{i)) -> R n+iT(A) 

tfhile the map (3) induces a homomorphism

y: R nT(A(i)) -> R n+iT(A).

These maps are related by the rule
* ( i\t , * i * 0 + 1 )d =  (—1)+, t = m - \ ------ -— .

P roof. We first consider the case i =  1. We construct a projective
resolution

0 ^  X -+ 0
of the exact sequence

0 -> A (1)-> X0-+ A -> 0  

given by the following diagram:
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0 * + + 2  * + + 2  +  X n+1 * + i+l * 0

1* 1 V
o — —  x n+1 +  x n - ~ x n ” 0 

! ! !

0 — - i i  —  X 1 +  X0 —  X0 — >0
s(l)

0 ~ ^ A {1) —  JT0 — >A — 0

The horizontal maps are

Xn+1 f e +i,0), (xn+1, x j  -+x„, n +  0, Xn+1 € +i+l? € + r

The vertical maps in the middle column (i.e. in the complex Y ) are

(̂ '71+2?-*'n+l) (dxn+2 +  (— l)n+1xn+1,fi6cK+1) n ^ 0

y(x i,xo) =  dxx +  x0.



If we apply the functor T  to this diagram (reversing all arrows) and com­
pute the connecting homomorphism H n(T (X {1)))-* H n+1(T(X)) we find 
that the result differs from the homomorphism induced by X  -> X {1) by the 
sign (—l)n+1. This is the desired result for / =  1.

The general case now follows easily by induction. The connecting 
homomorphism <5 and the map y  both admit factorizations

R nT(A{i)) R n+i- xT(Aa)) R n+iT(A), i >  1,

and we already know that

6' =  ( - I ) V ,  S’ =  ( - 1  )n+Y ,  t ’ =  n(i -  1) +  .

This implies the final result.
Proposition 7.2. Let

(4) 0 -> X n -+  > X ^ A - >  0 n >  0

be an exact sequence with X n_x, . . . ,  X0 projective. I f  T  is a covariant 
functor o f one variable, then the iterated connecting homomorphism yields 
isomorphisms

L ^ nT(A) ~  L pT(X n) fo r  p >  0
and the exact sequence

0 -> L nT{A) -> L0T(Xn) -> L o T iX ^ J  fo r  p =  0.

For T  contravariant, we have the isomorphisms

R pT(Xn) & Rp+nT(A) fo r  p  >  0
and the exact sequence

R°T(Xn-i) -> & T {X n) -> RnT(A) 0 fo r p  =  0.

P roof. For n — 1, the conclusions follow directly from the exact 
sequences for the derived functors. For n >  1 we break the sequence (4) into 
exact sequences O - ^ X ^ X ^ - ^ X ^ ^ O  and ( Y + X ^  -> • • • ->X0->A->0. 
Applying 7.2 to each of these sequences separately yields the desired result. 

P roposition 7.3. Let

0 ^ X n -+ ------ > x 0- > A ^ O ,  0 - > C - >  Y ° -+ ------ > Y n -> 0

be exact sequences with X n_.x, . . . ,  X0 projective and Y n~x, . . . ,  Y° 
injective. We denote by X  and Y  the acyclic complexes over A and C given 
by these exact sequences. IfT (A ,C ) is a left exact functor contravariant in 
A and covariant in C, then the natural homomorphism (v,3,(2))

H k(T(X, Y)) -> R kT(A,C)

is an isomorphism fo r  k<Ln.
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P r o o f . Let A" be a projective resolution of A such that X k =  X k for 
k < n .  Similarly let Y  be an injective resolution of C such that Y k =  Y k 
for k  <  n. There result exact sequences

0 ^  X '- > X - +  X -+ 0 ,  0 ->  F ->  7 '- >  0

where X '  and Y '  are acyclic complexes and X ’k =  0 =  Y 'k for k  <  n. 
Since T  is left exact, n,4.3a yields an exact sequence

0 -> T(X, Y)-> T (X ,Y )  -> T (X \Y )  +  T(X, Y').

If we denote by N  the cokernel of T (X ,Y )->  T(X ,Y)  we obtain exact 
sequences

(5) 0 T(X, Y) -> T(X ,Y ) -> N ->  0

(6) 0 ->  N ->  T (X ',Y ) +  T (X ,Y ').

The desired isomorphisms H kT (X ,Y ) ^  H kT{X,Y) for k<L n will follow 
from the homology sequence of (5), if we prove that H \N )  =  0 for k  <1 n . 
For k  <  n this follows from the fact that 0 is the only homogeneous 
element of N  of degree <  n. To show that H n(N) =  0 it suffices to show 
that the differentiation N n -> N n+1 is a monomorphism. In view of (6) it 
suffices to prove the same fact about the complex Z  =  T (X \Y )  +  T(X, Y'). 
The component of degree n in Z  is T{X^Y°) +  T(X°, Y 'n). Since 
Zw'+1-> and 0 —> Y 'n -> Y 'n+1 are exact and T  is left exact it
follows that

o -> T«,F°) -* r«+1,F°), o -> t (x q # Y'n) -> t ( x 0 , r "+1)
are exact. This proves that Z n -> Z n+1 is a monomorphism.

8. PARTIAL DERIVED FUNCTORS

Let T  be a functor of p  variables, some of which covariant, some 
contravariant. Let s be a subset of {1,. . the variables whose
indices are in s will be called active, the others will be called passive. If 
we fix all the passive variables, we obtain a functor Ts for which we may 
consider the derived functors R nTs; more explicitly these derived functors 
are the homology modules of the complex obtained from T  by taking 
injective resolutions of the covariant active variables, projective resolu­
tions of the contravariant active variables, and leaving the passive variables 
unresolved. We shall denote these partial derived functors by R^T, and 
will regard them as functors of all the variables, both active and passive. 

The homomorphism (2) of § 3 yields natural transformations

(i) RnsT-+ R nT.
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These homomorphisms commute with the connecting homomorphisms 
with respect to each of the active variables.

T heorem 8.1. Given any functor T, the following conditions are 
equivalent:

(a) The mapping (1) is an isomorphism fo r  any n^> 0.
(b) I f  all the covariant active variables are replaced by injective modules 

and all the contravariant active variables are replaced by projective modules, 
then T  becomes an exact functor o f the passive variables.

P roof, (a) => (b). If we replace the active variables as stated in (b), 
then, by 3.1, R™T =  0 for n >  0 and T  & R°ST ; thus (a) implies that 
R nT  =  0 for n >  0 and T  & R°T , hence T  becomes an exact functor of the 
passive variables.

(b) => (a). We shall prove first that R®T -> R°T  is an isomorphism. 
Denote simply by one letter A all active variables, by one letter C all 
passive variables, by one letter X  a set of resolutions of all active variables, 
by one letter Y  a set of resolutions o f all passive variables (injective 
resolutions for covariant variables, projective resolutions for contravariant 
variables). Then T (X ,Y )  may be regarded as a double complex over 
T{A,C), with two differentiation operators dv  d2 corresponding respectively 
to the set X  and to the set Y. Consider the commutative diagram

e° d°>°

0 ----- >• T \X ,C )  — T 0 0(X, 7 )  -5 — Y )

dl dl’°
e1

0 ----- - T \X ,C )  T l ’\ X ,  Y)

By (b), the rows are exact. This implies that induces an isomorphism 

R°ST(A,C) =  Ker d \ ^  Ker d%’° O Ker d?’° =  R°T(A,C).

It remains now to be proved that R™T -> R nT  is an isomorphism for 
n >  0. We regard {RnT} and as multiply connected sequences of
functors in the active variables. If n >  0 and all covariant (contravariant) 
active variables are injective (projective), then both RnT  and R™T yield 
zero. It therefore follows from the isomorphism criterion 4.4 that (1) is 
an isomorphism.

For another proof of the part (b) .=> (a), see Exer. 6.
Now let t be another subset of {1,. . ., /?}, containing s. The homo­

morphism (1) admits a factorization

(2) RnsT -> R™T-> R nT

If (1) is an isomorphism, then it follows from 8.1 that the same is true for 
RnsT-> R fT  and R?T-> R nT.
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The connecting homomorphisms of R™T with respect to a passive 
variable are in general not defined. However, if the conditions of 8.1 are 
satisfied, then (1) is an isomorphism, and we can define these connecting 
homomorphisms using those of R nT. We shall now show how under these 
conditions these connecting homomorphisms can be expressed directly. 
In view of the factorization (2), it suffices to consider the case when there 
is only one passive variable. Suppose this variable A is covariant, and let 
A ' denote all the remaining (active) covariant variables, and C denote all 
the (active) contravariant variables. Let 0 -> Ax -> A -> A2 -> 0 be an 
exact sequence; let further X '  be an injective resolution of A ', and Y  a 
projective resolution of C. It follows from the condition of 8.1 that the 
sequence

0  - >  T(A±X ,  Y) T(A,X\  Y) - >  T(A2X , Y) - >  0

is exact, and therefore yields a connecting homomorphism

R^T(A2,A \Q ->  R ^ T ( A 19A',C).

It remains to show that this connecting homomorphism is the one obtained 
from the connecting homomorphism of R nT  using the isomorphism (1). 
To this end we choose an injective resolution 0 -> X x -> X ->  X 2 -> 0 of the 
sequence 0 -> Ax -> A -> A 2 -> 0 (see 2.2). There results a commutative 
diagram with exact rows

0 - >  T(AxX ,  Y) - >  T ( A X , 1 0  -► Y(A2X ,  Y ) - + 0  

0 -> T ( x l x \  Y ) ^  T ( X X ,  T )->  T(X2x ,  y )->  0 

Passing to homology, we obtain the commutative diagram 

l%T(A2, A ' , C ) ^ K * - 1T(Ai,A',C)

R nT(A2,A ',C )-> R nJrlT{AxX>C) 

which proves our assertion.

In view of 8.1 we introduce the following definition. A functor T  will 
be called right balanced if (1°) when any one of the co variant variables of 
Tis replaced by an injective module, T  becomes an exact functor in the 
remaining variables; (2°) when any one of the contravariant variables in T  
is replaced by a projective module, T  becomes an exact functor of the 
remaining variables.

It follows from 8.1 that for a right balanced functor, the derived functors 
R nT  may be identified with the partial derived functors R^T  taken with 
respect to any non empty set s of active variables.
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A similar discussion applies to left derived functors. The mapping (1) 
is replaced by

(la) L nT (A ,C )^L *nT(A9C)

in 8.1 and in the definition of a left balanced functor, we interchange the 
words “projective” and “ injective” throughout.

It will be shown in the next chapter that A 0  C is left balanced and 
Horn (A,C ) is right balanced. We know no balanced functors that are 
not obtained in a trivial way from these two. In particular, we have no 
example of a balanced functor of three variables.

9. SU M S, PRODUCTS, LIM ITS

Let
% P a

(1) Aa - ^ A - + A a
3fi ?/?

be direct families as defined in 1,1. Then as we have already seen in the 
proof of ii, 1.1, we obtain a direct family

T(ia,qQ) T(PaAa)
(3) T iA ^ C f)  ► T(A,C ) ---------► n A „ C fi).

We recall that as usual T  is assumed covariant in A and contravariant in C.
We introduce the following four types of functors:

Type L 2 —if (1) is a direct sum and (2) is a direct product, then (3) is a 
direct sum.

Type jRII—if (1) is a direct product arid (2) is a direct sum, then (3) is a 
direct product.

Similar definitions can be made for functors with any number of 
variables.

Proposition 9 .1 . The functor HomA (A,C) is o f type RYl.
Proof. We assume that (1) is a direct sum and (2) is a direct product. 

We must show that the direct family

Horn (pa ,fg) Horn (i^ Q r)

(4) Horn (Aa,Cp)------------> Horn (A,C ) ----------- ► Horn (Ax,Cfi)

is a direct product. Let <pap e Horn (Aa,Cfi) be a family of homomorphisms.

(2)
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Let a e A. Since (1) is a direct sum we have a =  2 /atfa, au. € anc* only a 
finite number of tfa’s is ^  0. Since (2) is a direct product, there is for 
each aa a single ca e C with q^c^ =  9?a/3tfa. Setting (pa =  yields a
homomorphism cp: A -> C  with qp(pi(X=  (p^. The uniqueness of cp 
is clear from the construction. This proves that (4) is a direct product 
representation.

Proposition 9.2. The functor A ®K C iso ftyp eL  S.
Proof. Let (1) and (2) be direct sum representations. Since each 

element of A ® C is a sum of a finite number of elements of the form a ® c 
and since a and c are finite sums a =  2 /atfa, c =  'ZjpCp, it follows that each 
element of A ® C is a finite sum of elements of the form (7a ® jp)(aa ® c^). 
This proves that

ôc ® Cp -> A ® C -> ® Cp

is a direct sum representation of A ® C.

Next we consider the functors Z(^4), Z '(^ )  and where yl is a
module with differentiation or a complex. Let

Va>
(5) A ^ A - ^ A ,

be a direct family. Then
Z(ia) Z(pa)

z ( A ) * Z(A) ------- >Z ( A j
Z'(PX)

Z' (AJ * Z \A ) * Z '(A a)
m a> B(Pa)

H(Aa) >H(A) > H(Aa)

also are direct families. It is trivial to verify that if (5) is a direct sum or 
direct product representation, then the same is true for (6)-(8). We thus 
obtain

P roposition 9.3. The functors Z ,Z ' and H  are o f type LL and RU, in 
other words the functors Z ,Z ' and H  commute with direct sums and direct 
products.

T heorem 9.4. I f  the functor T  is o f type L 2  or LU then the same is 
true fo r  the left derived functors L nT. I f  T  is o f type jR2 or R Il then the 
same is true fo r  the right derived functors R nT.

P roof. Assume that (1) is a direct sum representation. Let X a be a 
projective resolution of A a and let X  be the direct sum of the complexes Z a. 
Clearly we may regard X  as a left complex over A . By 1,2.1, X is projective, 
and, by 9.3, X  is acyclic. Thus X  is a projective resolution of A. Similarly 
if (2) is a direct product representation and Yp are injective resolutions of 
Cp9 then the direct product Y  of the complexes Yp is an injective resolution 
of C.

(6)

(7)

(8)
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Suppose now that T  is of type (or type ZTI). Then

T(Xa, Yp) -> n x  7) -> T(Xa9 Yp)

is a direct sum (or direct product) representation. By 9.3, the same applies 
to

H(T(Xa9 Yp)) -> H(T(X, Y)) - > ( 7 ( 7 * ,  Y*))
i.e. to

LT(A„Cp) -> LT(A,C) -> LT(Aa,Cp).

The second half of 9.4 is proved similarly.

R em ark . The analogue of 9.4 holds also for satellites of functors of 
one variable. If T  is of type LL  or Z il then the same holds for S nT , n >  0. 
If T  is of type KL  or RU  then the same holds for S nT , n >  0.

Part of the results established above carries over with direct sums 
replaced by direct limits and direct products replaced by inverse limits. 
Let A — Lim A a be a direct limit of modules Aa and let C =  Lim Cp be an

inverse limit of modules Cp. Then T(Aa,Cp) forms a direct system of 
modules and we have a natural homomorphism

U m T (A a9Cp)-+T(A,C).

If this homomorphism always is an isomorphism we say that the functor 
T  is of type LX*. Similarly if A =  Lim Aa, C =  Lim Cp then T(Aa,Cp)
forms an inverse system of modules and we have 

T(A,C) -> Lim T(Aa9Cp).

If this map always is an isomorphism, we say that T  is of type RII*. 
P roposition 9 A*, The functor HomA (A,C ) is o f type i?II*.
Since this proposition is not used in the sequel, the proof is left as an 

exercise to the reader.
P roposition 9 .2* . The functor A ®A C is o f type LS*.
P roof. Let A be the direct limit of the modules A a with the maps 

<pa,a : Aa -> A4  for a <  a '. Similarly let C =  Lim Cp with xppp: Cp-^Cp,

for p <  p \  The modules Aa ® Cp with the maps <pa,a ® y>p,p form a 
direct system of modules indexed by pairs (a,/?) with direct limit D. The 
maps <pa (g) tppi Aa ® Cp-> A ® C induce a map ju: D - >  A ®  C. We 
must show that (jl is an isomorphism (onto). To this end we shall define a 
map f :  A ® C ->  D and show that ^  and are identity maps. Let
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x e A 9ye C .  There exist then indices a and /3 such that x  — ( p fx j .y  =  y>p(Cp) 
for some xa e Aa, y p e Cp. Let Aa ® D be the natural pro­
jection. Then the element u(x,y) — #a>/3(x;a ® y j)  e D is independent of 
choice of oi$9xa9yp. Further u(x,y) is bilinear and satisfies u(xX,y) — w(x,Aj) 
for A e A. Thus there exists a unique homomorphism f : A ® C-> D 
with f(x ® y) =  The verification that and f/.e are identity
maps is trivial.

Proposition 9.3*. The functors Z ,Z ' and H  are o f type L2*, i.e. they 
commute with direct limits.

Proof. Let A be the direct limit of modules with differentiation A a 
with maps ya>a : Aa -> Aa,. Then the modules H(Af) with maps i / ( ^ a) 
form a direct system of modules with limit D. The homomorphisms

H(<Po): H (A J  -»  H(A)

yield a map ju: H(A) which we shall show is an isomorphism.
Let a € H(A) and let x e Z(A) be an element of the coset a. There is 

then an index a such that x=cp0Lx0L for some ;ca € Aa. Since 0 =da=d(p0LxQL 
=  (padxa there is an index a ' >  a such that (p(X'0Cdxa =  0. Setting 9Vaxa 
we have dxa, =  0 so that xa> determines an element of H (A f)  which in 
turn determines an element £(a) of D. It is easy to see that f(a) is inde­
pendent of the choice of x,a,a ' etc. and yields a map f : H(A) -»  D which 
is the inverse of fx. The proofs for the functors Z  and Z ' are similar but 
simpler.

Remark. The functor Z is also of type RII*, however the functors 
Z' and H  are not of type RII*, i.e. do not commute with inverse limits.

Theorem 9.4*. I f  T  is a covariant functor (in any number o f variables) 
o f  type LX*, then the same is true o f the left derived functors L nT.

The proof is an immediate consequence of
Lemma 9.5*. I f  A =  Lim Aa then there exist projective resolutions Xa 

ofA a forming a direct system such that X  =  Lim Xa is a projective resolution 

o f A.
Proof. Let X0>a be the free module FA<x generated by the elements of 

Aa, and let X 0 =  FA. The maps (pâ : Aa -> Aa, induce maps X 0 (x -> X0t(xr 
and X 0 may be identified with the limit Lim X 0 a. Let Ra be the kernel of

the natural map X0>a -> Aa. Then Ra forms a direct system of modules 
with R  =  Ker (X 0 -> A) as limit. We now repeat the argument with Aa 
replaced by Ra. The complexes Xa are thus constructed by iteration.

Remark. The reason why we restricted ourselves to covariant 
functors in 9.4* is that we have no analogue of 9.5* for injective resolutions 
and inverse limits.
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10. THE SEQUENCE OF A MAP

Let f :  T  U be a natural transformation of functors. As usual, we 
shall treat the case when T  and U are functors of two variables covariant 
in the first and contravariant in the second. We denote by f  the map

f :  LqT -> R°U
obtained from the commutative diagram

L0T --- > T ----- >R°T
i
^ > f  ̂f

L0U ----> U ----- >R°U
and introduce the functors

L0f  =  Ker f , R °f =  Coker f .

The sequence of functors

( 1) . . .  ,L nT , . . .  9L fT 9L J 9 R ° f R 'U , . . .  , R nU, . . .

will be called the derived sequence o f the map f .
Before we define the connecting homomorphisms in the sequence (1) we 

establish the following
Lemma 10.1. Consider a commutative diagram

• • • ► A 1 * A1 ► A 1 ► A0 ► A0 ► A 0 ► 0

I k  I* k  I
0 —  B ' - + B 0- ^ B Z  —  B [ ^  B ^  • • • 

with exact rows. Denote

Aq — Ker cp, B0 =  Coker (p.

and similarly with ' and ". Then with the connecting homomorphism 
Aq -> Bq defined in iii,3 the sequence

 > A ,1 ^ A 1 - > A I - * A q - > A q -> A ' q - > B ^  B q ~> B o B [ - >  B x

->• .51 -»■ • • •
is exact.

Indeed, the exactness of A q -> A 0->A q -> Bo -> 2?0 -> Bq is asserted 
by iii,3.3. The remaining parts of the proof are trivial.

Now consider an exact sequence 0 -> A ' A -> A" -> 0. We obtain a 
commutative diagram

 ►L1r(i4#,C) -> LqT(A\C) -> L0T(A,C) -*  L0T(A\C) -> 0
^ ^ ^ ^ ^
0 -> R°U(A',C) -> R?U(AtC) -> R°U(A",C) -> & U (A \Q  -> • • •
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with exact rows. Applying 10.1 to the above diagram we obtain connecting 
homomorphisms for the sequence ( 1) (with respect to the first variable). 
Moreover these connecting homomorphisms yield an exact sequence for 
each exact sequence 0 -> A ' -> A -> A" -> 0. The same applies to the 
second variable. We thus obtain

P r o po sit io n  10.2. The derived sequence (1) o f a map f : T - ^ U  is a 
multiply connected exact sequence o f functors.

Naming (1) a connected sequence of functors is not quite precise since 
the functors are not properly indexed. However, it is clear that they can 
be so re-indexed. Any such re-indexing would destroy the notational 
symmetry between left and right derived functors, and because of this we 
prefer to leave ( 1) with its indices as they are.

Let

T  ► U

*1 [v 
T  ► U'

9

be a commutative diagram of natural transformations of functors. Then 
the pair (99,ip) defines a map of the derived sequence of/  into that of g.

P r o po sit io n  10.3. Suppose that 90: T(A,C) -> T'(A,C) is an iso­
morphism whenever A is projective and C is injective, and that 
ip\ U(A,C) -> U'(A,C) is an isomorphism whenever A is injective and C is 
projective. Then the pair (9?,y)) induces an isomorphism o f the derived 
sequence o f f  onto that o f  g.

P r o o f . By 4.4, the hypotheses imply that 99 and y  induce isomorphisms
LnT ^ L nT \  R nU &  R nU'.

This implies the result.

In the special case of the identity map / :  T  -> T  we introduce the 
notation

L0T  =  Ker (L0T -> R°T), RQT =  Coker (L0T ->  RQT ).

The derived sequence is then

(2) . . . ,L nT , . . . ^ L ^ L oT, R°T , R 'T , . . . , RnT , . . .

and is called the derived sequence of the functor T.

We now turn to the problem of computing the derived sequence of a 
map / :  T->  U using resolutions of the variables.

Let X  be a left complex over a module A, Y  a right complex over a 
module C and let cp: A —>C  be a map. We denote by (X,qo,Y) the 
complex

 ------------ > X 0 - + Y ° - > ----------------



<p

where X0 — ► A — ► C — ► F° is obtained by composing cp with the augmen­
tation maps. Strictly speaking, (X,cp,Y) is a complex only after the 
modules are renumbered.

P roposition 10.4. Let 0 -> X ' X ->  X "  -> 0 be an exact sequence 
o f left complexes over the exact sequence 0 -»  A ' -> A -> A" -> 0, let 
0 ->  F '->  Y  -> Y" -> 0 be an exact sequence o f right complexes over the 
exact sequence 0 - > C ' - > C —̂ C " —̂ 0  and let

0 — ► A ' — ► A — * A" — * 0

I*  I* | 'p’
0 —  C '— * C —  C" —  0

a commutative diagram. Then the homology sequence o f the exact 
sequence

0 -> (Z  V ,  r ) -> (X,<p9 Y) -> (Z  Y ") -> 0

coincides with the exact sequence obtained from  the diagram

• • -> H 1( X ) ^ H 1( X " ) ^  H0( X ' ) ^  H0(X )->  H0(X ”) ^  0
^ ^ ^ ^ ^
0 -> H \  r  )->  °(F) -> i / 0( 7") -> H \  Y ')

using 10.1 .
P roof. Clearly H n{X) =  H n(X,(p, F ) and i / n( F) -  F ) for

n >  0. Furthermore

770(X,<p, 7) =  Ker (X0 -> 7°)/ Im (* i -> 7 0)

=  Ker (X J  Im -> X0) -> 7°)

=  Ker (Coker (7 X -*  7 0) — Ker ( 7 °->  7 1))

=  Ker (H0(X) -> / /° (7)),

and similarly H°(X,<p, 7) coincides with Coker (H0(X) -> f/°( 7)). It
remains to be verified that the connecting homomorphisms agree. The
only one for which this fact is not evident is the connecting homomorphism

(3) H0(X",<p‘\  7") -> H°(X',<p\ Y').

By definition (see iv ,l) this homomorphism is defined from the diagram

Z & X 'r f, Y ')->  Z ’0(X,<p, 7 )  -> Z 'I X \ 9 ", Y") -> 0

0 -> Z°(X',<p', 7 ') ->  Z%X,cp, 7 ) -> Z\X",<p", 7")

§ 10] SEQUENCE OF A MAP 103
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This diagram is identical with
H0( X ' ) ^ H 0( X ) ^ H 0( X " ) ^ 0

I’ 1 4”
0 -> H°( r ) -> H \  Y) -> H \  Y")

which proves that (3) coincides with the connecting homomorphism 
obtained by 10.1 .

We now return to the map / :  T  -> U. Let X , X  be respectively 
projective and injective resolutions of a module A , and Y, Y  similar resolu­
tions of a module C. It follows from 10.4 that the complex
(4) (T (X ,Y ),f,U (X ,Y ))
has as homology groups the values of the derived sequence of /  for the pair 
(A,C). It further follows from 10.4 that the connecting homomorphisms 
also may be computed by this method. If the functor T  is left balanced 
then in T(X ,Y) in (4) we may replace X  by A or Y  by C. Similarly if U 
is right balanced, then in U(X , Y) in (4) we may replace X  by A or Y  by C.

EXERCISES

1. Let
. . . - > X n ^ X n_1- * - - - - + X 1^ X 0~ > A ^  0 

be a projective resolution of a module A, and let Z n denote the image of 
as in the proof of 1.2. If T  is a covariant functor of one 

variable, prove that
S nT(A) =  Ker ( T i Z ^ )  T ( X n  ^  1 

L nT(A) =  Ker (T (X J  -> T(X n̂ ) ) llm  (T(Xn+1) T (X J).
Then T(X„) > T{Zn_j) induces a map

L nT ( A ) ^ S nT(A), n ^ l .
Prove that this map is an, as defined in 6.1. Prove again that on is an 
isomorphism, whenever T  is right exact, or whenever A is hereditary. 

Examine the other similar cases.
2. Let T  be a covariant, half exact functor of one variable (n,4). 

Given an exact sequence 0->  A ^  Q -> N -> 0  with Q injective, establish 
an isomorphism

^  Ker (T(A) -> T(Q)).
Then prove that

Ker (T(A) -*  7X 0) -  Ker (T(A) -> R°T(A)), 
and deduce an exact sequence of natural transformations of functors 

0 S ' S ^ - ^ T - *  R°T.
If T  is contravariant and half exact, the same sequence is obtained.
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3. Apply Exer. iii,5 to the exact sequence of Exer. 2. 
exact sequence

0 -> S ^ T - *  r - >  R°T-> S 2S1T  -> • •

 > S nT  -»  R nT -> S n+2S1T -

valid for any half exact functor T  of one variable.
Establish the dual exact sequence.
4. If T  is a right exact functor of one variable, then

R nT  ™ S ^ L J '

and there is an exact sequence

0 T ->  R°T-+ S ^ T - *  0

[Hint: observe that L±T ^  S±T, and S nT  =  0 for n >  0.]
Give the dual statements.
5. If  T  is a half exact functor of one variable, then for n >  0

S nS1S 1T  & S nT.

[Hint: replace T  by S XT  in the exact sequence of Exer. 3.]
6. Give an alternative proof of the part (b) => (a) of theorem 8.1, by 

applying Exer. iv,7 to the map T(X,C ) -> T(X , Y).
7. Let T(A,C) be a right balanced functor of two variables, contra­

variant in A, covariant in C. Replacing A by a projective resolution X, 
and C by any acyclic right complex Y  over C, prove that

R nT(A,C) ^  H n(T(X , 7)).

(Use Exer. iv,7 as in Exer. 6.) Examine the case when X  is any acyclic 
left complex over A , and Y  as an injective resolution of C. Examine the 
case of a left balanced functor; example: A 0  C.

8. Consider an exact sequence

(1) o - ^ 7 w- > . . . - > x 0- > ^ o

which may be regarded as an acyclic complex X  over A. For each 
contravariant functor T  of one variable, there results a homomorphism

T(Xn) > H nT(X)

I
R°T(Xn) R nT(A)

where <5 is the iterated connecting homomorphism corresponding to the 
sequence (1). Show that this diagram is commutative or anticommutative 
depending on whether n(n +  l)/2 is even or odd. [Hint: use 7.1.]

9. Let 7"be a half exact covariant functor of type LS* (i.e. commuting 
with direct limits). If T (A /I) =  0 for every (left) ideal I  of A, then T  — 0.

There results an

for n >  0,



CHAPTER VI

Derived Functors o f  0  and Horn
In troduction . The methods of Ch. v are applied to the functors 

A 0  C and Horn (A,C ). The left derived functors of A 0  C are denoted 
by Torn (A,C); the right derived functors of Horn (A,C) are written as 
Extn (A,C). These are also the satellite functors with respect to each of 
the variables A or C. The particular notation chosen will be justified in 
vii,4  and xiv,l.

The notion of the projective dimension of a A-module A is introduced 
in § 2 and will be of considerable use later. It is analogous with the 
topological dimension of a space defined by homological methods. There 
is also the notion of injective dimension for a module and the notion of a 
global dimension for a ring. The semi-simple rings are precisely those of 
global dimension zero; the hereditary rings are precisely those of global 
dimension <11.

In § 3 we return to a more detailed study of the Kunneth relations of 
iv,8. In § 4 we return to the questions concerning the “change of rings” 
initiated in 11,6. These results will be applied to homology theory of 
groups (x,7) and of Lie algebras (xm,4).

1. THE FUNCTORS Tor AND E xt

In this chapter we shall be concerned exclusively with the functors 
A 0 A C, HomA (A,C) and their derived functors. The symbol A will be 
omitted whenever there is no danger of confusion.

We have already seen (11,4.4) that Horn (A,C ) is left exact.
P roposition 1.1 The functor Horn (A,C) is right balanced.
This is an immediate consequence of n,4.6.
We have already seen (n,4.5) that A 0  C is right exact.
P r o p o s it io n  1.1a. The functor A 0  C is left balanced.
P roof. Let F  be a free module. Then F  is the direct sum of modules 

Fa each of which is isomorphic with the ring A. Consequently the functor 
T(C) =  F 0  C is the direct sum of the functors T fC )  — Fa 0  C. Since 
each of the functors Ta is exact it follows that T  is exact. Suppose now 
that A is a direct summand of F. Then the functor T(C) =  F 0  C is the 
direct sum of the functor T \C )  =  A 0  C and some other functor T". 
Since T  is exact, it follows that T ' is exact. A similar argument applies to 
the other variable.

106
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We now apply the results of Ch. v to the balanced functors 
HomA (A,C ) and A  ®A C. The right derived functors of HomA (A,C ) 
are denoted by ExtwA (A,C ) (or Extn (A,C) with A omitted); in particular 
ExtA (A,C) =  HomA (A,C). If A is a projective resolution of A  and Y  is 
an injective resolution of C then ExtA (A ,C )=  2  ExtnA (A,C) can be

n ^ 0
computed as the homology module of any one of the complexes 
HomA (X , Y ), HomA (X,C ) or HomA (A, Y). In view of v,6.1, we can also 
compute ExtA as the «-th satellite S n HomA with respect to either of the 
two variables.

The left derived functors of A  ®A C are denoted by TorA (A,C) 
(or Torn (A,C) with A omitted); in particular, Tor$(A,C) =  A ®A C. 
If  X  and Y  are projective resolutions of A and C then TorA(^4,C) 
=  2  TorA (A,C ) can be computed as the homology module of either of the

n^O
complexes X  ®A Y, X  ®A C or A ®A Y. We can also compute TorA as 
the n-th satellite S n of the functor ® A with respect to any variable.

We shall not study the left derived functors of Horn or the right derived 
functors of ® (cf. Exer. vn, 2-6).

P roposition 1.2. The functors ExtA are o f type R II.
This is an immediate consequence of v,9.1 and v,9.4.
P roposition 1.2a. The functors TorA are o f type L £ .
This follows from v,9.2 and v,9.4.
P roposition 1.3. The functors TorA are o f type LE* (i.e. they commute 

with direct limits).
This follows from v,9.2* and v,9.4*.
As an application of the fact that ®A is left balanced we prove: 
P roposition  1.4. In the situation ( r ^ r O  i f  A is A-projective and C 

is T-injective then Homr  (A,C) is A-injective.
P roof. Let B  be a left A-module. Then A ® A B  is an exact functor 

of B  and therefore Homr  (A ®A B,C) is an exact functor of B. It 
follows from n,5.2 that HomA (B, Homr  (A,C)) is an exact functor of B. 
Thus by n,4.6, Homr  (A,C) is A-injective.

A similar proposition holds for

The next two theorems often allow us to compute Torw and Extn in 
concretely given situations. a

T heorem  1.5. Let 0— >M -^P— >A— K) and 0— >C— >Q— *N— >0 be 
exact sequences with P projective and Q injective. We then have the 
following natural isomorphisms:
(1) Ext^ (A,C) & Ext%~2 (M ,N) for n >  2
(2) Ext^ (A,C) fan Coker ( HomA (a,jff))
(3 )E x ti(^ ,C )^ K er(H o m A(a,i8))/[Ker(HomA(a ,0 )+ K er(H o m A(P^))].
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P r o o f .  First consider the case n >  2. We then have the anti- 
commutative diagram

Ext”- 2 (.M ,N ) -> Ext”" 1 (A,N)
I

Ext”" 1 (M,C) -> Ext” (A,C)

in which all four maps are isomorphisms. This yields two isomorphisms
( 1) differing in sign.

For n =  2 we consider the diagram

Horn (P, Q) -> Horn (M, 0 - >  0

Horn (P,N) -> Horn (M,A) -> Ext1 A) -> 0

0 -> Ext1 (M,C) -> Ext2 ( ^ C )  -> 0
I  j
0 0

with exact rows and columns and which is commutative except for the 
lower right square which is anticommutative. This yields:

Ext2 (A,C) at Ext1 (A,N) & Coker (Horn (a,A)) =  Coker (Horn (<*,£)). 
Replacing Ext1 (A ,N ) by Ext1 (M,C) will yield the opposite isomorphism. 

Finally we consider the case n =  1. We use the exact sequence
a

0 — * M — >P — >A — *0 to define a left complex X  over A  with

X 0= P , Xx=  M  and X = 0 for i>  1. Similarly we use 0— *C— ► Q - ^ N —K) 
to define a right complex Y  over C with Y° =  Q, Y 1 =  N  and
Y*=  0 for i >  1. An application of v,7.3 yields then the isomorphism 
ExtA (A,C ) ^  / f 1(HomA (X , Y)). The complex HomA (X , Y) may be 
written explicitly as

Horn ( P ,0  Horn (.M,Q ) +  Horn (P,N) ^  Horn (M ,N) 

where
d ° f=  (/a, P f), d \g ,h )  =  - p g  +  hoL

f o r / :  P ->  Q, g: P ^ N .
Since Q is injective and P  is projective it follows that Horn (oc,0 and 

Horn (P,/0 are epimorphisms. Therefore the element (g,h) of degree 1 
may be written as (/iOc,/?/2) for some / 1?/ 2: P ->  0  The element f x is 
determined uniquely modulo Ker (Horn (a, 0 )  while f 2 is determined 
uniquely modulo Ker (Horn (P,/S)). Thus the congruence class

<P(g,h)=[f.i - / J

modulo Ker (H o m (a ,0 )  +  Ker (Hom(P,j8)) is uniquely determined.
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Since
d\g ,h ) =  —fig +  ha. =  P(f2 —/ x) a 

we have d\g ,h) — 0 if and only if / 2 — f x e Ker (Horn (oc,/?)). If 
(£,/*) =  d j =  (/a ,/?/) then <p(gjh) == [ / - / ]  =  0. If f e  Ker (Horn (a,/?)) 
then cp(finfi) =  (fa,P0) =  [ / ] .  This shows that 9? induces the isomorphism
(3). Taking [ / x — / 2] instead of [/2 — / J  replaces cp by —99.

Quite analogously we prove
Theorem 1.5a. Let 0— yM —yP— yA— *0 and 0— >M f— yP f— yC— K) 

be exact sequences with P and P ' projective. We then have the following 
natural isomorphisms:
(la) Tor£ (A,C) ^  Tor£_2 for n >  2
(2a) T o if  ( .4 ,0  ^  Ker (a (g>A 0)
(3a) T orf (A,C) & [Im (a ®A P') n  Im (P ®A a')]/ Im (a ®A ft).

We now take up the question of the commutativity of the functors 
Torw. For each ring A, the opposite ring A* has elements A* in 1-1 
correspondence with the elements A e A and the multiplication is given by 
K K  — (A2A1)*. The ring (A*)* clearly may be identified with A. If A 
is commutative then A* and A may be identified. Any left (right) 
A-module A may be regarded as a right (left) A*-module by setting a l* — ha. 
Thus the situation (Aa ,a C) leads to the situation (CA*,A*̂ 4) and the mapping 
a ®A c -> c ®A*a yields an isomorphism A ®A C & C ®a *A. If X  
and Y  are A-projective resolutions of A and C then we may regard X  and 
Y  also as projective A*-resolutions of A and C. We define the map 
(p: X  ®AT -^  Y  ®a *X by setting

<p(x ® y ) = ( — 1 ) " y  ® x , x  € X p9 y  e Yq.

Then cp is an isomorphism of complexes. Passing to homology we obtain 
the isomorphism
(4) Tor£ (A,C) & Tor£* (C,A).

2. DIM ENSION OF M ODULES AND RING S

We shall say that the left A-module A has projective dimension <Ln if A 
has a projective resolution X  satisfying X k =  0 for k  >  n. The least such 
integer n is called the projective dimension of A and denoted by l.dimA A. 
If no such integer exists the dimension is defined to be 00. We shall also 
write dimA A or dim A whenever no confusion can arise. The zero 
module has dimension —1. Projective modules are precisely those of 
projective dimension 0. The integer (or 00) r.dimA A for a right 
A-module is defined similarly.



Proposition 2.1. For each A-module A and each n 0, the following 
conditions are equivalent:

(a) A has projective dimension <Ln.
(b) ExtA+1 (A,C) =  0 fo r  all {left or right) A-modules C.
(c) ExtA (A,C) is a right exact functor o f the variable C.
(d) Given an exact sequence 0 X n -> X n_1 -> • • • X0 A -> 0 

with Xk (0 <1 k  <  72) projective, the module X n is projective.
Proof, (a) => (b). Let A" be a projective resolution of A with 

X k =  0 for k  >  n. Then ExtnA+1 (A,C) =  (Horn (JT,C)) =  0.
(b) => (c) is immediate.
(c) => (d) is trivial if n =  0. Assume n >  0 and let C C" be an 

epimorphism. Applying the iterated connecting homomorphism we 
obtain the commutative diagram

HornA (X n_l9C) HornA (X n,C) -> ExtnA (A ,C )-* 0

HomA {Xn_^C") -> HomA (X n,C'f) -> ExtnA (A,C") -> 0

in which, by v,7.2, the rows are exact. Since X n_x is projective, the vertical 
map on the left is an epimorphism. The vertical map on the right is an 
epimorphism since ExtA (A ,)  is supposed right exact. It follows easily 
that the middle vertical map also is an epimorphism. Thus HomA (X n,C) 
is an exact functor of C, and therefore X n is A-projective (n,4.6).

(d) (a). By an iterated use of 1,2.3 we construct a sequence as 
described in (d). Since, by (d), X n is projective this sequence yields a 
projective resolution and thus dim A<Ln.

Corollary 2.2. In order that ExtA { A ,Y )=  0 fo r  all Y  it is necessary 
and sufficient that A be A-projective.

Proposition 2.3. I f  0 -> A ' -> A -> A h' -> 0 is exact with A projective 
and A" not projective then dim A" =  1 +  dim A'.

This is an immediate consequence of the relation ExtA+1 04 ',C) 
^  ExtA+2 (A'\C) for n^>0.

Proposition 2.4. I f  0 -> A ' -> A -> A" -> 0 is exact, dim A' <Ln and 
dim A" <1 n, then dim A < ^n .

This follows from the exactness of ExtA+1 04",C)-> ExtA+1 (A,C) 
-> ExtA+1 (A \C ).

Proposition 2.5. Assume that A  is left Noetherian and A is a finitely 
generated left A-module. Then dim A <Ln i f  and only i f  ExtA+1 (A,C) =  0 
fo r  all finitely generated left A-modules C.

Proof. The necessity of the condition follows from 2.1(b). To 
prove sufficiency, consider an exact sequence § - > M - > P - > A - ^ 0  with P 
projective and finitely generated. Since A is left Noetherian, M  is finitely 
generated. Assume first that n — 0. Then ExtA {A,M) = 0  so that
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HomA (A,P) -> HomA (A,A) is an epimorphism. It follows that the 
exact sequence 0 - > M - > P - > , 4 - > 0  splits and A is projective. Thus 
dim A =  0. Assume now that n >  0 and the proposition is valid for 
n— 1. Since ExtA (M,C) ^  ExtA+1 (A,C)=  0 it follows that dim M  <1 n— 1, 
which, by 2.3, implies dim A n.

The injective dimension of a module C is defined as the least integer n 
for which there is an injective resolution Y  with Y k =  0 for k >  n. We 
do not introduce a symbol for the injective dimension.

P r o p o s it io n  2.1a. For each A-module C and each n^> 0, the following 
conditions ore equivalent:

(a) C has injective dimension <I«.
(b) ExtA+1 04,C) =  0 fo r  all A-modules A .
(c) ExtA 04, C) is a right exact functor o f the variable A.
(d) Given an exact sequence 0 ->  C-> Y°-> • • •->  7 w_1-> 7 w-> 0 

with Y k (0<Lk < n )  injective, the module Y n is injective.
Corollary 2.2a. In order that ExtA (X,C ) =  0 fo r  all X  it is necessary 

and sufficient that C be A-injective.
Analogues of 2.3 and 2.4 also hold; however there is no analogue of 

2.5.
T heorem  2.6. For each ring A  and each n^> 0, the following conditions 

are equivalent:
(a) Each left A-module has projective dimension <Ln.
(b) Each left A-module has injective dimension
(c) ExtA =  0 fo r  k >  n.
(d) ExtA+1 =  0.
(e) ExtA is right exact.

Here ExtA is understood as a functor o f left A-modules.
Proof. The implications (a) (c) => (d) (e) are obvious. More­

over, it follows from 2.1 that (a) and (d) are equivalent, and from 2 .1a that 
(b) and (d) are equivalent.

The least integer n 0 for which (a)-(e) hold will be called the left 
global dimension of A (notation: l.gl.dim A). The right global dimension 
of A may be defined similarly. We know no connection between the left 
and right global dimensions, except for the following:

C o r o l la r y  2.7. For each ring A  the following conditions are equivalent:
(a) A is semi-simple.
(b) l.gl.dim A -  0.
(c) r.gl.dim A =  0.
This follows from the fact that left and right semi-simplicity coincide 

and are equivalent to all A-modules being projective.
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It may be noted that l.gl. dim A =  r.gl. dim A* and therefore for 
rings for which A =  A* the left and right global dimensions coincide.

Proposition 2.8. A ring A is left hereditary i f  and only i f  l.gl. dim A<11.
The proof follows immediately from 2.1.
Proposition 2.9. I f  A is (left or right) semi-hereditary then Tor£ =  0 

fo r  n >  1 .
Proof. Assume A left semi-hereditary, and let 0->M->P->C->0 be 

an exact sequence of left A-modules with P  projective. Then Tor£ (A,C) 
& Tor£_, (A ,M ). Since Tor^_, commutes with direct limits it suffices to 
prove that Tor£_, (A ,M ') — 0 for any finitely generated submodule M ' 
of M. However, by 1,6.2 each such M ' is projective which implies 
Tor£_, (A ,M ' ) =  0 for n >  1.

3. KUNNETH RELATIONS

Let A be a right A-complex and C a left A-complex. We wish to 
establish connections between the graded groups H{A 0  C), H(A) 0  H(C) 
and Tor, (H{A),H{C)) where 0  =  0 A. We make the following assump­
tions:

I Tor, (B(A),B(C)) = 0 =  Tor, (H(A),B(C))

(1) ITor j (B(A),Z(C)) =  0 =  T o^  (H(A),Z(C)).

We first consider the functor T(D) =  D 0  B(C). Since SfTiBiA)) 
=  SXT{H(A)) — 0 it follows from the exact sequence 0 -> B{A) -> Z(A) 
-> H(A) -> 0 that SXT(Z(A)) =  0. Thus applying iv,8.1 to the functor T  
we obtain that a , : T(H(A)) -> H(T(A)) is an isomorphism. Thus we have 
proved that

a ,: H(A) 0  B(C) -> H(A 0  B(C)) 

is an isomorphism. Similarly

a2: H(A) 0  Z(C) -> H (A  0  Z(C))

is an isomorphism.
Now we consider the functor of two variables A 0  C. Since 

Tor, (B(A),B(C)) =  Tor, (H(A),B(C)) =  0 it follows from the exact 
sequence 0 -> B(A) Z(A) -> H(A) 0 that Tor, (Z(A),B(C)) =  0. Then 
from the exact sequence 0 -> Z(A) -> A -> B(A) -> 0 we deduce that 
Tor, (A,B(C)) =  0. Thus all the conditions iv,8.1 are satisfied and we 
obtain
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T heorem 3.1. Under the conditions (1) we have an exact sequence

(2) 0 —  H(A) 0  H(C) H(A 0  C) Torx (H(A),H(C)) — * 0 

where a is o f degree zero and /5 is o f  degree 1. Explicitly

(2')

0->  2  H fA )  0  H fC )  -> H n{A 0  C )—> 2  T0ri (H fA ),H fC ))  -> 0
p + q=n p + q=n — 1

If the ring A is (right or left) semi-hereditary conditions (1) are 
equivalent with

(1') Torx (B(A),C) = 0 =  Torx (H(A),C).

Indeed, the implication ( 1) - > ( T )  follows from the exact sequence 
0 -> Z(C) -> C —> B{C)-> 0. The implication (1') -> (1) follows from the 
fact that Torx is left exact if A is semi-hereditary. In particular, (1') is 
satisfied if C is projective.

Theorem 3.2. I f  A is left and right hereditary and the A-complexes A 
and C are projective, then the exact sequence (2) is valid and splits.

Proof. Since condition (T) is satisfied the exact sequence (2) is 
valid. Since A and C are projective and A is hereditary it follows that 
B'(A) and B'(C) are projective. Therefore, the exact sequences

0 -> H(A) -> Z \ A ) -> B'(A) 0

0 ^  H(C) ^  Z '(C) -> B \C )  0

split. It then follows from iv,6.2 that the image of a is a direct summand
of H(A (g) C) and thus (2) splits.

Remark. Under the conditions of 3.2 the hypotheses (1) are satisfied 
also with the roles of A and C interchanged. This yields another exact 
sequence (2). The maps a of these two exact sequences are the same; 
however we do not know whether the maps ft of these two exact sequences 
coincide.

If A , instead of being a A-complex is a A-module, then A (g) C may be 
regarded as a functor of the variable C alone. Since B(A) =  0 and 
H{A) =  A  we obtain the following result.

Theorem 3.3 (Universal coefficient theorem for homology). I f  A is a 
right A-module and C is a left A-complex such that

(3) Tori (A,B(C)) =  0 =  Torx (A,Z(C)) 

then we have the exact sequence

(4) 0 >• A 0  H n( C ) H n(A 0 C ) - T o r j  { A t f ^ C ) )  —  0.



I f  A  is left or right semi-hereditary, condition (3) is equivalent to 

(3') Torj (A,C) =  0.

I f  A is left hereditary and C is A-projective, //ze exac/ sequence (4) is valid 
and splits.

We now rapidly state the analogous results for the functor Horn 
(— HomA) where A and C are assumed to be left A-complexes. We assume

I Ext1 CB (A \B '(C )) -  0 =  Ext1 (B(A\H (C))
(la)

[ Ext1 (Z (A \B '(C )) = 0 =  Ext1 (.Z(A),H(C)).

Theorem 3.1a. Under the conditions (la) we have an exact sequence

(2a) 0 —  Ext1 Horn (A,C) ) ^ H o r n  (H (A ) ,H (C ))^ 0

with /3' o f degree 1 and ol o f degree 0.
There is an analogous theorem under hypotheses dual to (la).
If A is left hereditary, conditions (la) are equivalent to

(l'a ) Ext1 (A,B'(C)) = 0 =  Ext1 (A,H(C)) =  0.

In particular, (l'a ) always holds if A is projective.
Theorem 3.2a. I f  A  is left hereditary, the complex A is projective and 

the complex C is injective, then the exact sequence (2a) is valid and splits.
Theorem 3.3a (Universal coefficient theorem for cohomology). I f  A 

is a left A-complex and C is a left A-module such that

(3a) Ext1 (B (A \C ) -  0 =  Ext1 (Z(A),C)

then we have the exact sequence

(4a) 0 —  Ext1 ( H ^ i A l C ) - ^ H n (Horn(A,C ) ) H o r n  (Hn(A),C)— +0. 

I f  A  is left hereditary, condition (3a) is equivalent to 

(3'a) Ext1 (A,C) =  0.

I f  A  is left hereditary and A is projective, then the exact sequence (4a) is 
valid and splits.

We shall use the above result to derive certain associativity relations 
for Tor and Ext.
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Proposition 3.4. In the situation (AA,ABr ,r C ) assume that B is a 
module, A is a A-projective complex, C is a T-projective complex and A  and 
T are left or right semi-hereditary. Then we have the exact sequences

(5) 0 —  H{A) ®A H(B ® r  C) H(A ® A (5  ® r  C))

- L  T orf (H(A),H(B 0 r  C)) —  0

(6) 0 —  //(/( <g>A B) ®r  //(C ) H((A ®A 5 ) 0 r  C)

T orf (//(/t 0 A 5 ),H(C)) —  0, 
wAere a is o f degree 0 and /J o f degree + 1 . I f  further A =  T is commutative 
and B is a A-module {instead o f a A-T-bimodule) then the sequences (5) and
(6) split.

Proof. The exact sequence (6) follows directly from 3.1 since condi­
tions (T) (with A replaced by A ® B) are satisfied. The sequence (5) is 
established similarly. To prove the second half we denote by 7  a pro­
jective resolution of B , and consider the augmentation map Y  -> B. We 
then obtain a commutative diagram

0 -> H{Y) 0  H {C )-> H (Y  ® C )-> Tor1 (H (7),7/(C))-> 0

0 ->  B  ® H(C) - > H { B ® C ) ->  Torx {B,H{C)) 0
with exact rows. Since / / ( 7 )  -> H{B) =  B  is an isomorphism it follows 
from 1,1.1 (the “ 5 lemma” ) that H{ Y  ® C )-> i/(J5  0  C) is an isomorphism. 
Next we consider the commutative diagram
0 -> H(A) ® H( 7  ® C) —>■ //(yl ® ( 7  ® C)) -> T o^  {H{A\H{ 7  ® C)) -> 0

0 #(,4) ® H(B  ® C) -> 7/(^1 ® (B ® C)) -> Torx (H(A),H(B  ® O )  -*  0
with exact rows. Since the two extreme vertical maps are isomorphisms 
it follows again from 1, 1.1 that the middle vertical map is an isomorphism. 
Since 7  ® C is projective by ii,5.3, it follows from 3.2 that the top row in 
the diagram splits. Therefore the lower row, i.e. the sequence (5), also 
splits. The proof that (6) splits is similar.

Proposition 3.5. In the situation {Aa ,aBv,t C) assume that A  and T 
are left or right semi-hereditary. Then we have the natural isomorphism
(7) T o rf {A, T orf (B,C)) *s T o rf (T o if {A,B),C).

Proof. Let X  be a A-projective resolution of A and 7  a T-projective 
resolution of C. Applying 3.4 to the triple (X,B, 7 ) we obtain

H2(X  ®A (B  ®r  7)) w  T o rf (A, T o if (B,C))
H2((X  ® a B) ® r  Y ) m Torir  (TorA (AyB^ C)

which yields the desired result.



P r o p o s it io n  3.6. I f  A  is a commutative and hereditary ring, then fo r  
any A-modules A, B, C we have the {non-natural) isomorphism

(8) A ® ^ ^ ( 5 , 0  + T o r ^ ^ C ^ C ) ^  Torx 04,2?)® C +  ToTt (A ®2?,C).

Proof. With X  and Y  as above, we again apply 3.4 to the triple 
(X,2?, Y). We obtain exact sequences

0 -> A ® Tor* (B,C) -> H f X  ® (B ® Y )) -> Torx (A,B ® C) -> 0

0 -> Tor! (A,B) ® C -> 2/1((Ar ® 5 ) ® 7 ) -> Torx (4 ® i?,C) -> 0.

Since, by 3.4, these exact sequences split, the result follows.

We now state (without proof) similar results involving Horn and Ext. 
Proposition 3.4a. In the situation {Aa ,aBt ,Ct ) assume that A is a 

A-projective complex, C is a Y-injective complex, and A  and Y are right 
hereditary. Then we have the exact sequences

(5a) 0 -> ExtX (#04),7/(2))) -*  27(HomA 04,2))) HomA (2704),27(2)))-> 0

(6a) 0 -> ExtX (27(£),27(C)) -> 27(Homr  (£,C))-> Homr  (27(£),27(C))->0

where D — Homr  (B,C), E — A ®A 5.
I f  further A  =  Y is commutative and B is a A-module then the sequences 

(5a) and (6a) split.
P roposition 3.5a. In the situation (Aa ,aB t ,Ct ) assume that A  and Y  

are right hereditary. Then we have the natural isomorphism

(7a) ExtX (A, ExtX (B,C)) & ExtX (Tor^ {A,BfC).

Proposition 3.6a. I f  A  is a commutative and hereditary ring then fo r  
any A-modules A, B, C we have the {non-natural) isomorphism

(8a) Ext1 (A, Horn {B,C)) +  Horn (A, Ext1 {B,C))
& Ext1 (A ® B,C) +  Horn (To^ {A,B),C).

In Ch. xvi we shall return to these questions and, using the method of 
spectral sequences, we shall obtain much more complete results.

4. CHANGE OF RINGS

We return to the discussion of the change of rings given by a ring 
homomorphism cp: A  -> T, as initiated in n,6. The discussion breaks up 
into four cases, the situation in each case being indicated by an appropriate 
symbol.

Case 1. (^ A,Ar r , r Q ' We have the relation
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0 ) A ®A C — A ^  ® r  C.
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Let Abe a A-projective resolution of A. Then by n,6.1, X((p) is a T-projec- 
tive left complex over A (<p). Thus the homomorphism (3a) of v,3 yields 
a homomorphism

(1) Hn{XW) 0 r  C) T o tf  (A(tp),C).

However, by (1)

H n(XM 0 r  C) =  H n(X  ®A C) =  T <  (^,C).

Thus we obtain a homomorphism

/ i ,w: Tor^ (A,C)->  Tor£ (A((p),C),

which for n — 0 yields the identity (1). An alternative way of obtaining 
the same homomorphism consists in considering the functor

T(A,C) =  A ®A C =  A(^ 0 r C .
Then

L nT(A,C) -  L ^T (A ,C )  =  Tor£ (A,C)

Ln^T(A,C) — Tor£ (A^ ® r  C)

where L ^ T  and L ^ T  denote the partial left derived functors with respect 
to the first and second variable respectively. Then f x n coincides with the 
homomorphism L nT L ^ T  of v,8.

P r o po sit io n  4.1.1. I f  T or^C 4,r) =  0 for all p  >  0 then f l n is an 
isomorphism.

P r o o f . Since

Tor£ (A,F) =  H f X  0 A T) =  H p(X{<p))

the hypothesis implies that X {(p) is acyclic and thus is a projective resolution 
of A(<p). Thus (i) is an isomorphism and so i s / l n.

C o r o ll a r y  4.2.1. In the situation (Ar ,r C) assume that T and C are 
A-projective and A is <p-projective. Then Tor£ (A,C) =  0 fo r n >  0.

Indeed, since A is isomorphic to a direct summand of A ((p) it suffices to 
prove Tor£ (A(ip),C) =  0 for n >  0. However by 4.1.1, Tor£ (A(<p),C) 
^  Tor^ (A,C ) which is zero for n >  0 because C is A-projective.

Case 2. (y4r ,r TA,AC). We have

(2) A  ®A C =  A ® r  ((V)C).

Taking a A-projective resolution of C we obtain the homomorphism

f 2tn: Tor^ (A,C) -> Tor£ (A,(<p)C)

which for n =  0 reduces to (2).
P r o po sit io n  4.1.2. I f  Tor£ (T,C) =  0 fo r  all p  >  0 then / 2>n is an 

isomorphism.
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C o r o ll a r y  4.2.2. In the situation (A r ,r C) assume that T and A are 
A-projective and C is cp-projective. Then Tor£ (A,C) =  0 fo r  n >  0.

Case 3. We have the identity

(3) Homr  ({(p)A 9C) =  HomA (.A,C).

Taking a A-projective resolution of A we obtain the homomorphism

f 3,n: Extp ((<p)A,C) ExtA (A,C)

which for n =  0 reduces to (3).
P r o po sit io n  4.1.3. I f  Tor£ (r,^4) =  0 fo r  all p  >  0 then / 3 n is an 

isomorphism.
C o r o lla r y  4.2.3. In the situation (r T ,r C) assume that T is A-projec­

tive, C is A-injective and A is cp-projective. Then Extp (A ,C )=  0 fo r  n > 0 .  
Case 4. ( r^ A F W O - We have the identity

(4) Homr  (A,MC) =  HomA (A,C).

Taking a A-injective resolution of C we obtain the homomorphism

f 4y .  Ext”r ( A M C ) ^ E x t l ( A ,C )

which for n =  0 reduces to (4).
Proposition 4.1.4. I f  Ext^ (r,C) =  0 fo r  all p  >  0 then f 4n is an 

isomorphism.
C o r o ll a r y  4.2.4. In the situation (rA ,r C) assume that T and A are 

A-projective and C is cp-injective. Then Extp (A,C) =  0 fo r n >  0.
We also could consider two other cases 3' and 4' given by the symbols 

(^A’A ^ r ^ r )  an(* (^r>r^A>^A) anc* aPPty the identification of ii,5.2'. 
However these cases differ from cases 3 and 4 only by a complete inter­
change of right and left operators and give the same results except that in 
case 3' we must replace Tor£ (T,v4) by Tor£ 04, T).

We now place ourselves in the situation (.Ar ,r C), and define a homo­
morphism

<pn:: Tor£ (A,C) -> Tor£ (A,C)

as follows. We first define <p0: A ®A C ->  A ® r  C by a ®A a ® r  c. 
Then we consider T-projective resolutions X  and Y  of A and C. Regarded 
as A-modules X  and Y  are acyclic left complexes over A and C. Thus by 
v,3 we have the homomorphisms

(5) Tor£ (A,C)-> H n{X  ®A F).

Further <p0: X  ®A 7 —> X  ® r  Y yields

(6) H n{X  ®A Y) -> H„(X ®r  Y) =  Tor^ (A,C).

We define <pn as the composition of (5) and (6).
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P roposition 4 .4 . I f  A is a right T-module and C is a left T-module 
then the diagram

Tor£ (A,C) Tor„r  (A(f),C)

9n

TorS ( A , v Q Tor„ (A,C)

is commutative, where g n and g ’„ are induced by the maps g: A Uf:) -> A,
g'- w c - c .

The proof is left as an exercise to the reader.
Similarly in the situation (rA,r C) we define

(pn: Extr (A9Q  -> Ext£ (A,C)

using a T-projective resolution of A and T-injective resolution o f  C. 
P roposition 4.4a. I f  A and C are left T-modules then the diagram

Extp (A,C) *—>■ Extj. (h)A,C)
^ \ ® n

f  3»«

E x tl( /t,C )
4,n

Extp (A™ C)

is commutative, where g n9 hn are induced by the maps g: {(p)A -> A, 
h:

R em ark . It is clear from the definition of the homomorphisms y n 
and (pn that they commute with the connecting homomorphisms relative 
to either variable.

5. DUALITY HOMOMORPHISMS

We consider the situation described by the symbol (;4A,A2?r ,Cr ). In 
ii,5.2' we have established a natural isomorphism

(1) HomA (A, Homr  & Homr  (A ®A B,C).

Now, let X  be a projective resolution of A; we have

ExtA04, Homr (£,C)) =  H(HomA(X , Horn r (B,C)) ™H(Homr (X  ®A£,C)).

An application of the homomorphism a ' of iv,6.1a yields

H(Homr  (X  ®A B,C )) Homr  (.H(X  ®A B),C) =  Homr  (TorA (A,B),C).
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Thus we obtain a homomorphism

(2) p : ExtA (A, Homr  (B,C)) -> Homr  (TorA (A,B),C)

which reduces to (1) in degree zero.
Proposition 5.1. I f  C is T-injective then p is an isomorphism.
Indeed, the functor T{D) =  Homr  (D,C) is exact. Thus by iv,7.2 the 

homomorphism a ' : H (T(X  ® #)) -> T(H (X  <g B)) is an isomorphism.
The preceding result will be obtained, together with many others of a 

similar nature, in Ch. xvi by an application of spectral sequences. The 
homomorphism p and proposition 5.1 can also be found using the results 
of iii,6 about satellites of composite functors.

Next we consider the situation described by the symbol (AA,ABr ,CT) 
and define the homomorphism

(3) o: Homr  (B,C) ®A A -> Homr  (HomA (A,B),C)

by setting
[a (f ® a)]g =  f(g a ) f  e Homr  (B,C), g e HomA (A,B).

Proposition 5.2. I f  A is A-projective andfinitely generated then a is an 
isomorphism.

Proof. First consider the case A =  A. Then cr is easily seen to be an 
isomorphism. Therefore, since the functors involved are additive, it 
follows that g is an isomorphism if A is a free A-module F  on a finite base. 
Consequently, again by a direct sum argument, a is an isomorphism if A 
is a direct summand of F.

Now let A be a projective resolution of A. The homomorphism (3) 
combined with the homomorphism a ' of iv ,6 yield

i/(H om r  (.B,C) ®A X ) -> H(Homr  (HomA (X,B),C ))

Homr  (.H (HomA (X ,B )\C ).

We thus obtain a homomorphism

(4) a : Toi^ (Homr  (B,C),A) -> Homr  (ExtA (A,B),C)

which reduces to (3) in degree zero.
Proposition 5.3. I f  A  is left Noetherian, A is finitely A-generated and 

C is T-injective then a is an isomorphism.
Proof. Since C is T-injective, the functor Homr  (D,C) is exact and 

therefore, by iv,7.2, the map a ' above is an isomorphism. If A is left 
Noetherian and A is finitely A-generated, then, by v,1.3, the resolution X  
may be chosen to be composed of finitely generated projective modules. 
The result now follows from 5.2.



Remark. Instead of assuming that A is left Noetherian and A is 
finitely generated it suffices to assume that A has a projective resolution 
composed of finitely generated modules.

Proposition 5.4. I f  A is left hereditary and left Noetherian and A is 
finitely generated then

ax: T o if  (Homr  (B,C),A) -> Homr  (ExtX (.A,B),C)

is an isomorphism.
Proof. Consider an exact sequence

0 ^  X0-+ A -> 0

with X0 projective and finitely generated. Since A is Noetherian and 
hereditary it follows that X x is projective and finitely generated so that we 
obtain a projective resolution X  of A. By 5.2, the homomorphism

H f  Homr  (£,C) ® A X) -> H f  Homr  (HomA (X,B),C))

is an isomorphism. It therefore suffices to show that

a ' : Hx{ Homr  ( Y,C)) -> Homr  ( H \  Y),C )

is an isomorphism, where Y  =  HomA (X,B). We have the exact sequence

r° ->

and since Homr  is left exact there results an exact sequence

0 —* Homr  {H \Y ),C )  —  Homr  ( Y \ C ) Homr  ( Y°,C).

There results an isomorphism of Homr  with Ker y
— Homr  (K,C)) which can easily be verified to coincide with a '.

Next we consider the case when A =  Y — B. In this case Homr  (B,C) 
is identified with C so that (4) becomes

(4') a: TorA (C,A) -*■ HomA (ExtA (A,A),C) M ,C A).

Proposition 5.5. I f  A is left hereditary and left Noetherian then 

TorA (C,A) -> HomA (Ext^ (A,A),C)

is a monomorphism.
Proof. Let A x be a finitely generated submodule of A. We obtain 

the commutative diagram

Tor, (C ,A J  —  Horn (Ext1 (Aa,A),C)

i<x 4

T o^  (C,A) ----- > Horn (Ext1 (A,A),C).
a.
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Since A is hereditary, E x t\  is right exact by 2.8 and 2.6. Thus 
Ho'mr  (ExtA (A,A),C) is left exact and thus j a is a monomorphism. 
Since, by 5.4, o1 >a is a monomorphism it follows that is a mono­
morphism. Since Torx commutes with direct limits, Torx (C,A) is the 
union of the images of ia for Aa running through all finitely generated 
submodules of A. Thus ax is a monomorphism.

EXERCISES

1. Consider the ring Z n =  Z\nZ. For each divisor r of n, use Exer. i,5 
to define an infinite exact sequence

• • • —> Z n —> Z n -»  Z n —> rZn -> 0.

Show that the projective dimension of rZw, as a Z n-module, is 0 or oo 
according as (r.njr) =  1 or ^ 1 .  Conclude that the ring Z n is either semi­
simple or gl.dim Zn =  oo.

2. Let A be a commutative Noetherian ring. If A and C are finitely 
generated A-modules, then Tor^ ( 4̂,1?) and ExtA (A,B) are finitely generated 
A-modules [cf. Exer. n,6.]

3. We define the weak dimension of a left A-module A (notation: 
w.dimA A) as the highest integer n such that Tor^ (C,A) ^  0 for some 
right A-module C.

If w.dimA A =  0 (i.e. if Tor^ (C,A) =  0 for all C and all n >  0), we 
say that A is A-flat. Similar definitions are made for right A-modules.

(a) Show that w.dimA A <1 dimA A.
(b) Show that if A is left Noetherian and A is finitely generated, then

w.dimA A =  dimA A

[apply 5.3]. Similarly for right A-modules.
4. Show that if A is left Noetherian and {.Aa} is a family of right 

A-modules, then TlAa is A-flat if and only if each A a is [use n, Exer. 2].
5. For each right A-module A and left ideal /  of A establish the 

equivalence of the following conditions:
(a) For each relation ~  0 (ai € A, e I)  there exist elements 

bj c A, XiS e A, finite in number, such that

(b) The map A ® A / - >  A ®A A =  A is a monomorphism.
(c) TorfL4,A//) -  0.
(d) For each exact sequence 0 ^ N - ^ P ^ A - > 0  with P a A-projec- 

tive module, we have N H  (PI) =  NI.
(e) There exists an exact sequence 0 - > N - ^ P - > A - > 0  with P  

projective such that N H  (PI) =  NI.
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6. For each right A-module A establish the equivalence of the following 
conditions:

(a) A is A-flat.
(b) T ori(A ,A //) =  0 for each left ideal / of A.
(c) For each relation — 0 (tf* € A, fjtt € A), there exist elements

bj e A, e A, finite in number, such that

Condition (c) expresses the fact that each linear relation in A is a
consequence of linear relations in A.

7. If a A-module A is a direct sum of A-modules Aa then

dim A — sup dim A a, w.dim A =  sup w.dim Aa.
a a

State a similar result for the injective dimension of a direct product.
8. Let A =  Ax +  * * * +  A n be a direct product of rings. Show that 

l.gl.dim A =  sup l.gl.dim A*.
i

9. Let l.dimA A =  n, 0 <1 n <  oo. Show that ExtA(yl,F) =£ 0 for 
some free A-module F. If further A is left Noetherian and A is finitely 
generated, then ExtA(<4,A) ^  0. [Hint: choose C with ExtA(y4,C) ^  0, 
then consider an exact sequence 0 B -> F —> C - ^ 0  with F  free.]

10. Let cp: A ->  T be a ring homomorphism. Show that for each 
left T-module A

w.dimA A <1 w.dimr  A

dimA A <1 dimr  A

inj.dimA A <1 inj.dimr  A

Show that for each left A-module A

w.dimr ((9))/t) <1 w.dimA A

dimr ({<p)A) dimA A

inj.dimr ((v)y4) <1 inj.dimA A

[Hint: use 4,1.1 -4,1.4.]
11. Let 9o: A -^  F be a homomorphism of commutative rings such 

that T is A-flat. For A-modules A and C, establish a natural isomorphism

(A ®A C){<p) & A (<p)® r C(<p) 

of T-modules. Derive a natural isomorphism

<Tor*(A,C))w  w Tor*Uw ,Cw ).
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if T is left A-flat, 

if T is left A-projective, 

if T is right A-flat.

if T is right A-flat, 

if T is right A-flat, 

if T is left A-projective.
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Establish a natural homomorphism

(Horna (A,C))w  -> U om r(Aw ,Cw )

of T-modules, which becomes an isomorphism if A is A-projective and 
finitely generated. Derive a homomorphism

which becomes an isomorphism if A is Noetherian and A finitely generated.
12. Consider a commutative diagram

0 - ^ A  -> B  C -> 0

f 9 h

with exact rows. Show that if /  and h are monomorphisms then so is g. 
Assume that the exact sequences split and show that if/  and h are mono­
morphisms onto a direct summand (of A' or C'), then the same holds forg.

13. Let A be a (right and left) hereditary ring. Let A and A' be 
projective right A-complexes, and C and C’ projective left A-complexes. 
Consider maps cp\ A -> A' and \p: C ->  C  such that 99*: H(A)-> H (Af)  
is a monomorphism of H(A) onto a direct summand of H(A'), and 
xp*: H(C) H{C') is a monomorphism of H(C) onto a direct summand of 
H(C'). Show that (99 H{A ( g )A C)-> H(A' ( g )A C') is a mono­
morphism of H(A ®A C) onto a direct summand of H(A' (g)A C 
[Hint: use Exer. 12.]

14. In the situation (AA,Br ,ACr), assume that C is a module, A is a 
A-projective complex, B is a T-projective complex, A is left hereditary and 
T is right hereditary. Then state and prove propositions analogous to
3.4, 3.5, 3.4a and 3.5a [use 11, Exer. 4].

15. Let A be a commutative, hereditary ring; A, B, C, D being any 
A-modules, show that the following modules M  and N  are (not naturally) 
isomorphic:

M  =  Tor (A,B) ® Tor (Q D ) +  Tor (Tor (.A,B), C ® D)
+  Tor (A ® B , Tor (C,D))

N  =  Tor (Tor (A,B)9C) ® D +  Tor (Tor (A,B) 0  C, D)
+  Tor (Tor (A 0  B , C), D).

Moreover, any permutation of A,B,C,D  transforms M  (resp. N ) into a 
module isomorphic to M  (resp. N ).

[Hint: use resolutions of A , B , C, Z>.]
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16. Let X  and Y  be two complexes over the ring Z  of integers. Assume 
that X  and Y  have finite Z-bases for each degree. Show that

H (X  ® Z n) ® H { Y ®  Z n) H (X  ® Y ®  Z w),
Z n denoting Z /n Z ; but, if n is not a prime, there is no natural isomorphism.

[Hint: apply the Kiinneth formula to H (X  ® Z n), H (Y  ® Z n) and 
H ((X  ® Z n) ® Y). Then prove that

A ® Torx (ZW,C) ^  Torx (A ® Z n,C)
Torx (A ,Z n) ® Torx (Z n9C) & Torx (Torx (A ,Z J ,C )

whenever A and C are finitely generated abelian groups. Reduce the 
problem to the case of cyclic groups.]

17. Let A =  Lim Aa be a direct limit of rings. Let A be a right A-

module, such that A =  Lim Aa, A a being a right Aa-module. In the same 

way, let C be a left A-module, C =  Lim Ca, Ca being a left Aa-module. 

Prove that
A C — Lim A a ®A(x Ca.

Then, using v,9.5*, prove that

Tor^ (A,C) =  Lim Tor^® (AX,C J.

18. Consider a commutative diagram of A-modules and A-homo- 
morphisms

0 — > M — > P — * A — *0

l y 1 i a
0 — > C —  Q — » N - ^ 0

with exact rows, P projective and Q injective. Let
0 (1>: Horn (M ,C) Ext1 (A,C )
0 <2): Horn (A,N) Ext1 (A,C)

be the connecting homomorphisms induced by the two rows. Prove that

0 (1)(y) +  0 <2,(a) =  0.
[Hint: regard the top row as an acyclic left complex over A, and the 
bottom row as an acyclic right complex over C; then use the commutative 
diagram

HHom (A, Y)) -> HHHom (X, Y)) -+ H \H orn  (X,C))

Ext1 (A,C)
and apply Exer. v,8.]



19. For a right ideal I and left ideal J of the ring A, prove (using 1.5a) 
that

T orf (A//, A/J) ^  (IF) J)/IJ 

Toif(A //, A/J) ™ Ker( /  IJ)

Tor£(A//, A/./) w  T o r ^ 2(/,7), n >  2 

where IJ denotes the image of /  ® A / - >  A ® A A.
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CHAPTER VII

Integral Domains

In troduction . Our main objective is to show how the notions intro­
duced earlier apply to the case of modules over an integral domain A. 
The special case of abelian groups, i.e. of modules over the ring Z  of 
rational integers, is treated in the last two sections.

The fdnctor Tor has remarkable properties if the ring A is a Priifer 
ring (i.e. an integral domain in which all finitely generated ideals are 
inversible in the field of fractions). For such a ring A we have Torw =  0 
for n 2; Torx (A,C) depends only on the torsion sub-modules of A and 
C; in order that Torx (A, Y) =  0 for all Y it is necessary and sufficient that 
A be torsion-free. These properties (studied in § 4) are the origin of the 
notation Tor and explain some of the peculiarities of the elementary 
Kunneth relations (for the tensor product of two Z-complexes).

In the last two sections (§ 6-7) we study the relations of the functors 
T orf and Ext^ with the Pontrjagin duality theory for compact abelian 
groups.

1. GENERALITIES

We shall assume throughout this chapter that A is an integral domain,
i.e. a commutative ring with a unit element ^  0 such that a, ft e A, a ^  0 
and ft i=- 0 imply ol/3 ^  0.

An element a of a module A is called a torsion element if Xa =  0 for 
some A € A, X =̂= 0. The torsion elements form a submodule tA of A. We 
say that A is a torsion module if tA =  A. Clearly tA is a torsion module. 
We say that A is a torsion-free module if tA — 0. For instance A/tA  is 
torsion-free. Any submodule of a torsion-free module is itself torsion- 
free.

If A is a direct sum Za^ a, then tA =  S a(L4a).
Proposition 1.1. A projective module is torsion-free.
Proof. A being an integral domain, is torsion free. Since each free 

module is a direct sum of modules isomorphic with A, it follows that free 
modules are torsion-free. Since each projective module is a submodule of 
a free module, the conclusion follows.

An element a of a module A is called divisible if for each X e A, X ^  0, 
there is an element b e A with a =  Xb. The divisible elements of A form

127
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a submodule <5̂4 of A. A module A is called divisible if SA — A. A  
quotient module of a divisible module by a submodule always is divisible. 
It can be easily proved that S(A/dA) — 0.

If A is a direct product IIa/4a, then SA =  IIa(A4a).
P roposition 1.2. An injective module is divisible.
P roof. Let A be an injective module and let a e A, A e A, 2 ^  0. 

Consider the ideal I  =  A A. Since <xA =  fiA implies a =  f$9 the formula 
f(<xA) =  aa defines a homomorphism/ :  / - >  A. Since A is injective there 
exists, by 1,3.2 , a b € A with — fib for all /? € /. Thus a =  fA  =  Ab so 
that a is divisible.

Proposition 1.3. 4̂ torsion-free module is injective i f  and only i f  it is 
divisible.

P roof. The necessity of the condition follows from 1.2. To prove 
sufficiency assume A torsion-free and divisible. Consider a homo­
morphism / :  / - >  A where /  is a non zero ideal of A. Then for each
A e /, A 0 there is a unique ax e A such that fA  =  Aak. If fx € /, p  ^  0,
then

[iXax =  [ifX =  f fk p )  =  l{ f(i) =  X/ia^

so that ax =  =  a. Thus fA  — Aa for all A e /  and 4̂ is injective by
1,3.2.

Since A is commutative, it follows from ii,3 that for any functor T  
defined for A-modules A whose values T(A) are groups, we may regard 
T{A) as a A-module. It also follows from ii,3 that A (g)A C may be 
regarded as a A-module with A(a <g) c) =  (Aa) ® c =  a ® Ac and similarly 
for HomA (A,C ). Thus Tor^ (A,C ) and ExtA (A,C) are A-modules. We 
shall write ®, Horn, Torw, Extn omitting the symbol A.

P roposition 1.4. I f  the functor T  is covariant and right exact and A is 
divisible then T(A) is divisible. I f  T  is contravariant and left exact and A 
is divisible then T(A) is torsion-free. I f T  is covariant and left exact and A 
is torsion-free then T(A) is torsion-free. I f  T  is contravariant and right 
exact and A is torsion-free then T(A) is divisible. I f  A is divisible and 
torsion-free then T(A) also is divisible and torsion-free fo r any functor T.

P roof. For each Ae A consider the A-endomorphism A : A A
x

given by a — ► Aa. Then A is divisible if and only if A — ► A — ► 0 is
x

exact for all A ^  0, and A is torsion-free if and only if 0 — ► A — * A is 
exact. This implies the conclusions above, since the map T(A)\ T(A)-+  
T(A) by definition coincides with A : T(A) -> T(A).

C orollary  1.5. I f  either A or C is divisible then A ® C is divisible. 
I f  A is divisible or C is torsion-free then Horn (/4,C) is torsion-free.

P roposition 1.6. I f  A is a finitely generated torsion module then fo r
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any functor T  the module T(A) is a torsion module. I f  T  is covariant and 
o f type L2* {i.e. T  commutes with direct limits) then fo r any torsion module 
A, T(A) is a torsion module.

P roof. If A is a finitely generated torsion module then there is a 
A e A, A 7  ̂ 0 such that the homomorphism A: A -> A is zero. Then 
A: T(A)->  T(A) also is zero and T{A) is a torsion module. The second 
part of the proposition is immediate.

C orollary 1.7. I f  A or C is a torsion module, then Torw (A,C ) is a 
torsion module.

This follows from v i,1 .3  and from 1.6.
P roposition 1.8. I f  A is a torsion module and C is divisible then 

A ® C =  0. I f  A is a torsion module and the module C is torsion-free, 
then Horn (A,C) — 0.

P roof. Consider a ® c e A 0  C. If A is a torsion module there is 
an element A e A, A ^ O  with Aa =  0. If C is divisible then there is a 
c' e C with Ac — c. Thus a ® c =  a ® Ac' =  aA ® cf =  0. The other 
half of the proposition is obvious.

Let A be a A-module. For each A e A the mapping a->  Aa is a 
A-homomorphism A: A -> A. We denote

=  Ker (A: 4̂ -> A),
AA =  Im (A: A -> A ),

— ^l/AT =  Coker A.
Since A is an integral domain it follows that A: A ->  A has zero 

kernel for A ^ O .  Thus the sequence

0 —* A A —* Aa — - 0
is exact. Since A is projective this sequence yields a projective resolution 
of Aa. Thus we find

Torx (AA,C) =  XC; Torw (AA,C) = 0  for n >  1
Ext1 (AA,C) =  Q , Extn (A^C) = 0  for n >  1.

In some cases these formulae and direct sum properties facilitate the 
computation of Torw and Extn.

2. THE FIELD OF QUOTIENTS

We shall denote by Q the field of quotients of A and will write 
Q/A. Thus

0 ->  A ^  Q - > K - ^ 0

is an exact sequence. Since Q is torsion-free and divisible, it follows 
from 1.3 that Q is injective. K  is divisible but in general is not injective.



Since Q is torsion free and divisible it follows from the last part of 
1.4 that all the modules Q ® A, Horn (A,Q), Extn (Q,A) are torsion free 
and divisible and therefore injective.

Since Q is the union of its submodules -  A for a e A, a ^  0, it follows
1

that Q is the direct limit of the projective modules -  A. Since Torw and
a

direct limits commute, we obtain

(1) Torn(Q ,A )= 0  n >  0.

It follows that for any module A we have the exact sequence

0 — * Tor-! (K,A) A Q 0  A

where A has been identified with A ® A.
P roposition 2.1. The kernel o f the homomorphism

cp: A -> Q (g) A

given by a 1 ® a is the torsion submodule tA.
In view of the exact sequence above, we obtain the equivalent formu­

lation
P roposition 2.2. The homomorphism

xp: TorA (K,A) A

maps Torx (K,A) isomorphically onto tA.

P roof. Since Q is the union of its submodules -  A for a e A, a 7  ̂ 0,
a

it follows from the fact that ® and direct limits commute, that the kernel 
of (p is the union of the kernels of

9oa: A ->  ^  A j  <g> A 

where cp̂ a =  1 ® a. Consider the mapping

/« : A ® A

given by / a 0  a =  Xa. Since f a is an isomorphism, the kernel of

<pa coincides with the kernel o f / a<pa : A -> A. This latter map is a-^cna. 
Thus the union of the kernels of (pa is tA.

P roposition 2.3. I f  C is torsion free  then the sequence

(2) 0 -> C -^  Q ® C - ^ K ®  C - > 0
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is exact. I f  A is a torsion module, then this exact sequence yields an 
isomorphism

(3) Horn (A,K  ® C) ^  Ext1 (A,C ).

In particular, taking C =  A, we obtain the isomorphism

Horn (A,K) & Ext1 (A,A),

for any torsion module A .
P roof. The exactness of (2) follows from 2.1 since C is torsion-free. 

If A is a torsion module then Horn (A,Q  ® C) =  0, since Q ® C is 
torsion-free. Since further Q ® C is injective we have Ext\A ,Q  ® C) 
=  0. This implies (3).

Proposition 2.4. Every finitely generated torsion-free module admits 
a monomorphism into a free module with a finite base.

P roof. Since the module A is torsion-free we may regard A as a 
submodule of Q ® A. Let (av  . . . ,  an) be generators for A. Then 
Q ® A regarded as a vector space over Q is finite dimensional and has 
a base (el9. . . ,  em). Then a{ =  ^ iqiiej where q{j € Q. Let X e A, 
X ■=£. 0 be such that all Xqu e A. Then

«, =  2 ^  (A-**,)

so that 4̂ is contained in the A-submodule F  of Q 0  A generated by the 
elements X~xej9 j =  1, . . .  ,m . Since F  is free with {X~xel9 . . . ,  2_1ew) 
as base, the proposition follows.

P roposition 2.5. I f  P is a projective module, P ' a projective sub- 
module o f P and A is torsion-free, then the homomorphism

P ' ® A P  ® A

induced by Pf -> P is a monomorphism. Equivalently

Torx (P /P\A) =  0.

Proof. Since tensor products and direct limits commute we may 
limit our attention to the case when A is finitely generated. By 2.4 we 
may then regard A as a submodule of a free module F. There results a 
commutative diagram

P f ® A  >P ® A

P ' ® F  > P ® F

Since P \  P and F  are projective, both vertical and the lower horizontal 
homomorphisms are monomorphisms. Thus P' ® A -> P ® A also is a 
monomorphism.
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P r o p o s it io n  2.6. Any module A admits a monomorphism into a 
divisible module.

P roof. Choose an exact sequence Q -+ M -> P -> A -+ 0  with P
torsion-free (e.g. projective or free). Then, by 2.1, P -> P  0  Q is a
monomorphism. Consequently Coker (M  -> P) -> Coker (M ->  P 0  Q) 
is a monomorphism. Since A ^  Coker (M  -> P) and Coker (M  -> P 0  Q) 
is divisible, the conclusion follows.

3. INVERSIBLE IDEALS

Proposition 3.1. In order that a module A be projective it is necessary 
and sufficient that there exist a family {af) o f elements o f A and a family 
{^a} ° f  homomorphisms qpa: A A such that fo r all a € A

(1) a =  S a C ^ K
where cpaa is zero fo r all but a finite number o f indices a.

P roof. Let ip: A be a homomorphism of a free module with
base {ea} onto A, and let aa — ip{ef). In order that A be projective it 
is necessary and sufficient that there exists a homomorphism <p: A -> F  
such that ip<p =  identity. If we write cpa — 2 a(9 we obtain homo­
morphisms 9oa: A -> A such that for each a e A we have qô a =  0 for all 
but a finite number of indices a. The condition ipqp =  identity is then 
equivalent with

a =  S 8 (<paa)aa
for all a € A.

The above proof did not utilize the fact that A is an integral domain 
and is therefore valid for modules over any ring.

Proposition 3.2. In order that a non-zero ideal I  o f A  be projective 
it is necessary and sufficient that I  be an inversible ideal, i.e. that there exist 

• • • > qn * Q and av . . . ,a n € I  with q j  C A, S i q&  =  1 , / =  1, .  . . , n. 
Proof. Assume I  inversible and define cptx  =  q*x for x  e I. Then 

(pp. / - >  A and
=  x.

Thus, by 3.1, /  is projective. Assume now that /  is projective and let 
{aa}, {<pa} be as in 3.1. Then for each a we have x(ypa y) =  qpfxy) =  y(<pax). 
Thus qa =  (<pax)/x for x e /, x ^  0 is an element of Q such that cp^y =  qay  
for all y  e I. It follows that q j  C A. If x ^  0 then qpax  =  qax  is zero 
for all except a finite number of indices a. It follows that all qa except 
for a finite number are zero. Condition ( 1) of 3.1 yields

* =  s «(y«*K =  % « * k <  =
which is equivalent with S a<7atfa =  1. Thus /  is inversible.

Proposition 3.3. Every inversible ideal is finitely generated.
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P roof. Let /  be an inversible ideal, b e /. With and as above 
we have =  b and qjb e A. Thus al9. . .  9an generate I.

P roposition 3.4. Let I  be an inversible ideal in A and A a divisible 
module. Then the mapping Horn (A,T) -> Horn (I,A) induced by I -> A 
is an epimorphism. In other words fo r each homomorphism f :  I  -> A 
there is an element a € A with fX  — Xa for all X e I.

P roof. Since I  is inversible there exist ql9 . . . , qn e Q and 
Xl9 . . .  9 Xn e I  such that

q j  C A, 2 ^ = 1 .

Since A is divisible, there exist elements at e A with fX t =  X ^ ,  i =  1,. . . ,  n. 
Then

/ X = f ( 2 iqiXiX )= 'L ltSiX)VXd
=  ^IqiXX^Oi =

Thus setting a =  yields fX  =  Xa.
From the exact sequence

Horn (A,A) -> Horn (I,A) -> Ext1 (A//,T) -> 0

it follows that the conclusion of 3.4 may also be stated as Ext1 (A/I,A) — 0.

4. PRUFER RINGS

It follows from 3.2 that an integral domain A is semi-hereditary if 
and only if every finitely generated ideal is inversible. Such rings are called 
Priifer rings. By vi,2.9, we have Tor^ =  0 for n >  1 and Tor^ is left 
exact for such rings A.

P roposition 4.1. A  is a Priifer ring i f  and only i f  every finitely 
generated torsion-free A-module is projective.

Proof. If every finitely generated torsion-free A-module is pro­
jective, then every finitely generated ideal in A is projective and A is a 
Priifer ring. If A is a Priifer ring then it is semi-hereditary and by 
1,6.2 every finitely generated submodule of a free module is projective. 
Thus the result follows from 2.4.

P roposition 4.2. I f  A  is a Priifer ring, then A is torsion-free i f  and 
only i f  Torx (X,A) =  0 fo r all modules X.

Proof. If Torx (K9A) =  0 then, by 2.2, tA =  0 and A is torsion-free. 
Conversely assume A torsion-free. Then by 4.1 each finitely generated 
submodule A a of A is projective. Thus Torx (X 9A a) =  0. Since 
A =  Lim Aa, and Torx commutes with direct limits, it follows that

TorA {X9A) =  0.
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C orollary 4.3. I f  A  is a PriXfer ring and C is torsion free  then the 
functors A ® C and C ® A are exact functors o f A.

P roposition 4.4. I f  A  is a Prufer ring then the homomorphisms
Toil (tA,C)

/  \
Torx (tA,tC) Torx (A,C)

\  /
Tori (A,tC )

are isomorphisms.
Proof. Since the module AjtA  is torsion-free, it follows from 4.2 that 

Tori (AjtA.C) == 0. Since also Tor2 =  0, it follows from exactness that 
Tori (tA,C)->  Torj (A,C) is an isomorphism. The other isomorphisms 
are established similarly.

Proposition 4.5. I f  A  is a Prufer ring and A and C are torsionfree 
then so is A  ® C.

Proof. Since A is torsion-free it follows from 2.1 that the sequence 
0 - > A - + Q ® A is  exact. Since C also is torsion-free, 4.3 may be applied 
to give the exact sequence 0 -> A ® C-> Q ® A ® C. Thus by 2.1, 
A ® C is torsion-free.

Proposition 4.6. I f  A  is a PriXfer ring,, then Torx (A,C) always is a 
torsion module.

This follows directly from 4.4 and 1.7.

5. DEDEKIND RINGS

It follows from 3.2 that an integral domain A is hereditary if and only 
if every ideal is inversible. Such rings are called Dedekind rings. It 
follows from 3.3 that a Dedekind ring is just a Prufer ring which is 
Noetherian.

For any functor T  defined for A-modules over a Dedekind ring, the 
derived functors R nT , L nT  and the satellites S nT , S nT  are zero for n >  1. 
The functor B}T  is right exact and L±T  is left exact.

Proposition 5.1. For each integral domain A  the following properties 
are equivalent:

(a) A is a Dedekind ring.
(b) Each divisible A-module is A-injective.
Proof, (a) ->■ (b). If A is a Dedekind ring then each ideal I  of A is 

inversible. Thus 3.4 and 1,3.2 imply that each divisible module is injective.
(b) (a). Since each quotient of a divisible module is divisible it

follows that each quotient of an injective module is injective. Thus, by
1,5.4, A is hereditary, and therefore a Dedekind ring.
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P roposition 5.2. I f  h i s  a Dedekind ring then the homomorphism 

Ext1 (A,C) -> Ext1 (A,C/dC)
is an isomorphism.

This follows from the fact that Ext1 (A,SC) and Ext2 (A,SC) are zero 
since 3C is divisible and thus injective.

P r o p o s it io n  5.3. I f  h i s  a Dedekind ring, then the module A is torsion- 
free i f  and only i f  Ext1 (A,C) is divisible fo r  all modules C.

P roof. If A is torsion free, then since Ext1 is right exact, it follows 
from 1.4 that Ext1 (A,C) is divisible. To prove the converse we use the 
isomorphism (vi,3.5a)

Ext1 (B, Ext1 04,C)) ** Ext1 (Torx (B,A),C).

If Ext1 (A,C) is divisible, then by 5.1, it is injective. Therefore the expres­
sions above are zero. Since Ext1 (Torx (B,A),C) =  0 for all C it follows 
from vi,2.2 that Torx (B,A) is projective, and therefore, by 1.1, is torsion- 
free. However, by 4.6, Torx (B,A) is a torsion module, so that 
Torx (B,A) =  0. Since this holds for all B  it follows from 4.2 that A is 
torsion-free.

Remark. 5.1 combined with 2.6 yield a new proof that every A- 
module A (where A is a Dedekind ring) admits a monomorphism into an 
injective A-module. In particular, this is valid if A =  Z  is the ring of 
integers (see remark at end of n,6).

6. ABELIAN GROUPS

We shall assume in this section that A =  Z  is the ring of rational 
integers. All modules considered are then simply abelian groups. The 
results established for Dedekind and Priifer rings, all apply in this case. 
In particular “injective” means “divisible.” Since a subgroup of a free 
abelian group is again a free abelian group it follows that “projective” 
means “ free.”

Let R  denote the additive group of real numbers and let T  =  R \Z  be 
the group of reals reduced mod 1 .

For each abelian group A, the group Horn (A,T) will be called the dual 
of A and will be denoted by D(A). Since T  is divisible it is injective. 
Thus Horn (.A,T) is an exact functor of A . Consequently D is a contra­
variant exact functor. For the moment no topology is imposed on R ,T  
and D(A).

Since T  is injective, vi,5.1 gives an isomorphism

(1) r 1: Ext1 (A, Horn (B,T)) ** Horn (Torx {A ,B )J).
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This implies
P roposition 6.1. For any two abelian groups A and B we have 

Ext1 (.A,D(B)) ^  D(Tor*! (.A,B)).
As an application we prove
C orollary 6.2. I f  A is a torsion-free abelian group and C is a finite 

abelian group, then Ext1(v4,C) =  0.
P roof. Since C is finite, there is a (finite) group B with C D(B). 

Then, by 6.1,
ExtK ^C ) & Ext\A ,D (B )) ^  D(Torx (A,B)).

Since A is torsion-free it follows from 4.2 that the latter term is 0.
Proposition 6.1 acquires more force if we introduce a topology in some 

of the groups that appear.
So far we have dealt only with categories of A-modules and A- 

homomorphisms, where A was a ring. Let ^  denote the category of 
compact abelian groups (satisfying the Haussdorf separation axiom) and 
continuous homomorphisms. In particular, all the results of iv,l remain 
valid for compact abelian groups. The continuity of the connecting 
homomorphisms for homology groups is an easy consequence of compact­
ness. When we pass to graded groups A =  ][An (see iv,3) we only 
require that each A n be a compact group. We do not impose any topology 
on the direct sum A. With this convention, the definition and basic 
properties of derived functors remain valid for additive functors whose 
values are in the category of compact abelian groups. The same applies 
to satellites. Also the homomorphisms a and a ' of iv ,6 are continuous.

An example of such a functor is T{A) =  Horn (A ,C ), where A is a 
discrete group and C is a compact abelian group, with the topology in 
Horn (A , C) defined as follows. Given a finite subset F  of A and a neighbor­
hood of zero V in C, we consider the set W(F,V) of all/ e Horn (A,C) with 
/ ( F )  C V. We consider in Horn (A,C) the topology in which the sets 
W(F,V) form a fundamental system of neighborhoods of zero. In this 
topology Hom(^4,C) is compact (and satisfies Haussdorf’s separation 
axiom) and for each cp: A -> A \  Horn (<p,C): Horn (A',C) -> Horn (A,C) 
is continuous.

Let A and B be discrete abelian groups and let C be a compact abelian 
group. It is immediate that the isomorphism

Horn (A, Horn (B,C)) Horn (A ® B,C)
is a topological isomorphism. In particular, taking C — T  with its 
natural topology derived from the representation T  — R /Z , we obtain 
the topological isomorphism

Horn (A,D(B)) ^  D(A ® B).
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If we consider the right derived functors of the functor T(A)=  Horn (A,C) 
with C compact, we find Ext1 04,C) has a natural topology and is a compact 
group. Further all the homeomorphisms used to define p1 in vi,5 being 
continuous, p1 is continuous and therefore is a homeomorphism (since 
the groups are compact). It follows that the isomorphism o f  6.1 is 
topological.

7. A  DESCRIPTIO N OF T o ^  (A,C)

We consider an exact sequence

(S) 0 ->

where A is an integral domain and R  is a divisible and torsion-free 
A-module; the exact sequence

(S') 0 -^  A ->  Q -> K -> 0

is an example of such a sequence. It is clear that Q may be regarded as a 
submodule of R. Since, by 1.3, Q is injective we have a direct sum 
decomposition R =  Q +  R' where R ' again is divisible and torsion-free. 
Consequently T  =  K  +  R ' and (S) is obtained as the direct sum of (S') and 
a trivial exact sequence 0 -> 0 ^  7?' ^  jR' —> 0.

Since, by 1.3, R  is injective we have the exact sequence

Horn (A,T) Ext1 (A,A) — > 0 
and since Horn is left exact we obtain an exact sequence

0 —  Horn (Ext1 (A,A),C) Horn (Horn (A,T),C).

Combining cp with the homomorphism
^ : T o^  (A,C) -> Horn (Ext1 (A,A),C)

of vi,5 we obtain the homomorphism
9ogx\ Torx (A,C) -> Horn (Horn (A,T),C)

which is the object of study of this section.
P r o po sitio n  7.1. I f  A  is a Dedekind ring then cpo1 is a monomorphism. 

I f  further A is a finitely generated torsion module then <pa1 is an isomorphism.
Proof. It follows from vi,5.5 that ox is a monomorphism. Since cp 

also is a monomorphism, it follows that (po1 is a monomorphism.
Assume now that A is a finitely generated torsion module. Then o1 

is an isomorphism by vi,5.4. To show that op is an isomorphism it suffices 
to show that r :  Horn (A , T E x t^ ^ A ) is an isomorphism. However 
T= K -\-R ' and we have already shown in 2.3 that Horn (A,K)-> Ext1 (A, A) 
is an isomorphism (if A is a torsion module). Since A is a torsion module 
and R' is torsion-free we have Horn (A ,R /)=  0. Thus r is  an isomorphism.
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We now assume that A =  Z  is the group of integers, that R  is the group 
of real numbers and that T =  R/Z. Then 7.1 can be applied and we 
obtain a monomorphism

(pa .̂ Torx 04,C) -> Horn (D(A),C).

In D(A) =  Horn (A,T) we have the (compact) topology defined in the 
preceding section.

Proposition 7.2. Let A and C be discrete abelian groups. Then the 
homomorphism

<po1: Torx (A,C) -> Horn (D(A),C)

maps Tor-L (A,C) isomorphically onto the subgroup Homc (D{A),C) o f  
Horn (2)04),C) consisting o f all continuous homomorphisms D(A) -> C.

P roof. Let Aa be a finite subgroup of A. We then have a commuta­
tive diagram

Tori 04a,C) —  Horn (D(Aa),C)

la

Torx 04,C) Horn (D (A \C )

Let x  e Torx (Aa,C). Then <po1 (iax ) admits a factorization

D (A )-> D (A a)-> C

Since D(Aa) is finite it follows that cpo1 (iax ) is continuous. Since each 
element of Torx (A,C) is in the image of /a for some finite subgroup Ax, it 
follows that Im q>a± C Homc (D(A),C).

Conversely, let / :  D (A )-> C  be a continuous homomorphism.
Since C is discrete there is a neighborhood W(F,V) of zero in D(A) such 
that /  maps W(F,V) into zero. In particular, if 99 e D(A) is such that 
9o{a) =  0 for all a € F, then 90 e W(F,V) and f p  =  0. Let A ' be the sub­
group of A  generated by the finite set F. It follows that /  admits a 
factorization

D(A) —  D(A') C

where D(A) -> D(A') is induced by the inclusion A ' -> A  and g  is 
continuous. The group A ' being finitely generated, its torsion subgroup 
t(A ') is finite and A ' is a direct sum of t(A') and a subgroup F  isomorphic 
with Z n (=  direct sum of n factors isomorphic with Z). Since D(Z) & R  
we have D(Zn) ^  T n which is connected. Since D(A') =  D (t(A '))+ D (Zn) 
and g  is zero on the connected part 2)(Zn), it follows that g  admits a 
factorization D(A ') ->  D(t{A’))-> C. Consequently/ admits a factoriza­
tion

D(A) D(t{A')) -> C.
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Taking A a =  t(A') in the diagram above, we find that /  is in the image 
o f j a. Since by 7.1, <pa1(X is an isomorphism, it follows that /  is in the 
image ofya^crla =  (pa^  and thus in the image of q>ax. This concludes the 
proof.

If we combine 7.2 with 6.1 we obtain a natural isomorphism

Ext (A,D(C)) ** Z)[Homc (T)(^),C)]

0/  compact groups. This result was established by Eilenberg-MacLane 
0/ Ma/A. 43 (1942), 757-831) using the notion of a “modular trace.”

EXERCISES

1. If A and C are finite abelian groups, then

Horn (A,C) & A <g) C & Torx (A,C) & Ext1 (A,C ).

Show that these isomorphisms are not natural. Give an example of two 
infinite torsion groups A , C such that A 0  C — 0, Torx (A,C) ^  0.

2. If A is a Dedekind ring, any torsion module has an injective resolu­
tion consisting of torsion modules. Using this, prove that the right 
derived functors R nU(A,C) of U(A,C) =  A 0  C are zero for any n 0, 
whenever A or C is a torsion module [Hint: use 1.8].

3. For any integral domain A, let U(A,C) denote the functor A 0  C, 
and let Q denote the field of quotients of A. Prove that

R°U(A,C) =  0  0  A ®  C

when A and C are torsion-free.
[Hint: consider exact consequences

0 -> A -+ Q ( g )A -> (Ql A) ® A 0 

0 ->  C ->  0  0  C - > ( 0 / A )  0  C - > 0  

O - > ( 0 /A) 0 ^ 1 -> Ax-> A2-^  • • •

O - > ( 0 / A ) 0 C ^  7 ^  72-> • • • 

where A* and 7Z are injective. Then 

(AT) Q (g )A =  A0-> * i - >  Aa -> • • •

(T ) Q ® C =  70 -> 7x-> 72-> —

are injective resolutions of and C. In the complex A 0  7, is zero, 
because ( 0 /A) 0v4  0  70 and A0 0  (0 /A ) 0  C are zero by 1.8.]



4. Let A be a Dedekind ring; then, denoting by U(A,C) the functor 
A ® C, prove that

R°U(A,C) =  Q ® A ® C, R nU(A,C) = 0  ( n ^  1)

for all modules A and C.
[Hint: using Exer. 2, prove first that

R nU(A,C) ** R nU(A/tA,C/tC).

Then, using Exer. 3, prove that

R°U(A,C) =  Q ®  A ®  C.

Finally, observe that Q ® A ® C =  V(A,C) is an exact functor, whenever 
A is a Priifer ring.]

5. Consider the functor
T(A) =  A ®  C,

where C is a given torsion module, the ring A being an integral domain. 
Prove that

R nT(A) =  0 for any n 0.

Then using Exer. v,4, prove that the right satellite of the functor

T1( A ) = T ot1 (A9C)

is A ® C, whenever C is a torsion module. It follows that, assuming that 
A is a Priifer ring, the right satellite of TX(A) =  Torx (A,C) is A ® (tC) 
for any module C.

6. Consider the functor

T(C) =  HomA (A,C)

where A is a torsion module, the ring A being an integral domain. Prove 
that

L nT(C) =  0 for any n 2> 0.

Then prove that the left satellite of the functor

rK C ) =  Ext* 04,C)

is HomA (A,C), whenever A is a torsion module. If  A is a Dedekind 
ring and A  is finitely generated, the left satellite o f T \C )  — E x t\ (A,C) is 
HomA (tA,C).
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7. With the notations of § 7, define a natural map

u : T o^  (A9C) -> Horn (Horn (A,T),C) 

by setting, for x e Torx (A,C) and/ €  Horn 04,T),

(u x ) f=  v(wfx),

where wf : T ot1(A9C ) - ^ T ot1(T9C) is induced by / ,  and i?: T o ^  (r,C ) 
A (8) C =  C is the connecting homomorphism induced by the exact 

sequence (S') of § 7. Show that, with the notations of § 7,

w +  =  0.
[Hint: use Exer. vi, 18.]

8. For each Z-complex X , Z-module (7 and prime p, establish the 
natural isomorphism

H \H o rn  (X 9pG)) «  Horn (Hn(X fi\ G \

where ^G denotes Ker(p:  G -> G )  and denotes X/pX. Derive the 
isomorphism

Ext1 (A ,PG) & Horn (PA,G)

for each Z-module A . [Hint: note that HornZ (X ,VG) ^  Homz (X V,PG) 
and apply the isomorphism a ' over the field Z p\ cf. iv, 7,2.]

p
Assume that X  is torsion-free. The exact sequence 0—>X—>X—*XP—K) 

yields a homomorphism
H n+1(X P) ^ H J X ) .

Combine this with the above to obtain a homomorphism 

H n (Horn (X,G)) -> H n+1 (Horn (X ,PG).

9. Let A be a commutative ring and S  a subset of A with the following 
properties: (1°) 0 is not in S; (2°) 1 e S; (3°) S  is closed under multiplica­
tion. For each A-module A consider the set of all pairs (a,s), a e A, 
s e S, and consider the relation

(a,s) & (a',s')

which means: there exists t e S  such that as't =  a'st. Show that this is 
an equivalence relation, and that the set of equivalence classes As  is a 
A-module under the operations

(a,s) +  (a',s') =  (as' +  a's, ss')9 (a9s)X =  (a l9s).
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Show that 0 -> (a , 1) yields a A-homomorphism A -> A S whose kernel 
consists of all those a e A with as =  0 for some s e S.

Convert into a ring by setting (A,.?)(A',.?') =  (AA',,?/), and show that 
the mapping A -> (A, 1) yields a ring homomorphism cp: A -> A s . Convert 
A s  into a A^-module by setting

(a,^)(A,0 =  (ak,st)

and show that the mapping (a ,s )-^a  0  (1,,?) yields a A^-isomorphism

A s ^  A 0 A A^ =  A (<p).

Show that if A is a A^-module, then, if we regard A as a A-module we 
have A s  =  A.

10. Show that the functor T(A) — As  as described in Exer. 9 is 
exact, i.e. that A^ is A-flat. Apply the results of vi, Exer. 10, and in 
particular show that

w.dimAAs  =  w.dim a As .

Apply vi, Exer. 11 to obtain the isomorphism

(Tor£(A,C))S «  Torfc(AS9Cs)

and similar homomorphisms for Ext.
11. Let A be a commutative ring and let M denote the set of all subsets 

M  of A such that A —M  is a maximal ideal. Show that for each A- 
module A the relation A M =  0 for all M e  M  implies A =  0. Use this 
and Exer. 10 to show that

w.dimA A == sup w.dimA A M.
Mem M

If A is Noetherian and A is finitely generated, then show that 

dimA A — sup dimA A M
MeM M

[Hint: use vi, Exer. 3.]
12. Let A be a finitely generated abelian group, A ^  0. Show that 

there exists a prime p  such that A ® Z p =£ 0. As an application, let A 
and B  be two abelian groups, with A finitely generated and B  free; let 
f :  A ^  B  be a homomorphism such that the induced homomorphism 
A 0  B  0  Z p is a monomorphism for each prime p \  show that /  
is a monomorphism and A is free. [Hint: consider N =  K e r/, and 
observe that A is a direct summand of A.]



CHAPTER VIII

Augmented Rings

In troduction . The homology (and cohomology) theory of augmented 
rings is the unifying concept of which various more specialized instances 
will be studied later: homology of associative algebras (Ch. ix), 
homology of supplemented algebras (Ch. x), homology of groups (x,4) 
and homology of Lie algebras (Ch. xm).

Sections 1-3 are devoted to a general exposition, with some examples. 
The subject matter of § 4-6 is more special; we show how the theorem of 
“chains of syzygies” of Hilbert ties up with the general notion of the 
“projective dimension” of a module. This theory is valid either for 
graded rings or for local rings which are Noetherian.

1. HOMOLOGY AND  COHOMOLOGY OF AN  AUGM ENTED RING

A left augmented ring is a triple formed by a ring A (always with a unit 
element), a left A-module Q, and a A-epimorphism e: A Q. The 
module Q is called the augmentation module, e is called the augmentation 
epimorphism, the kernel /  of e (a left ideal of A) is called the augmentation 
ideal.

We consider the functors

T(A) =  A ®A Q, U(C) -  HomA (Q,C),

where A  is a right A-module and C is a left A-module. The groups

Tor£ (A,Q) =  SnT(A), E x tl (Q,C) =  S nU(C)

are called the n-th homology (resp. cohomology) group o f the augmented 
ring A, with coefficients in A (resp. in C).

Strictly speaking S nT(A) and S nU(C) are abelian groups. However if 
A or C have any additional operators which commute with the operators of 
A, then, following the principles of n,3, these additional operators carry 
over to S nT(A) or S nU(C). In particular, we may always regard these 
groups as modules over the center of A.

To compute S nT(A) and S nU(C), we can use a A-projective resolution 
X  of A and a A-injective resolution Y  of C. Then

Tor£ (A,Q) =  H n(X  <g>A Q), ExtnA (Q ,C )=  H n( HomA (Q, Y )).
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In the case of Tor£ (A,Q ), this method of computation is due to H. Hopf 
{Comment. Math. Helv. 17 (1945), 39-79) who used this process to define 
homology groups of (discrete) groups.

It is often more convenient to compute using a A-projective resolution 
X o f Q .  Then

Tor£ (A,Q) =  H n(A ®A X), ExtnA (Q,C) =  H \  HomA (X,C)). 

The resolution X  consists of a complex

and an augmentation map X0 -> Q such that the modules X n are 
A-projective (n 0) and the sequence

• • •->  Ao-> Q -*  0

is exact. Since the sequence

(1) 0 — / — > A ^ - 2  — 0

is exact, we can always begin the construction of X  by choosing X 0 =  A 
and letting XQ -> Q coincide with e. The remainder of the construction 
reduces to choosing a projective resolution for the left A-module I.

The exact sequence (1) gives rise to connecting homomorphisms for 
Tor and Ext. Since A is A-projective we have Tor^ (v4,A) == 0 
=  ExtA (A,C) for n >  0. This implies the isomorphisms
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(2) T(A) =  A (g)A Q & Coker (A ®A / - >  A)

(2a) U(C) =  HomA (Q,C) & Ker (C -> HomA (7,C))

(3) SXT(A) =  Tor^ (A,Q) & Ker (A <g)A I-+  A)

(3a) SWCC) =  ExtA (0 ,C ) ^  Coker (C ->  HomA (/,C))

(4) S nT(A) =  Tor;) (A,Q) a, T o r ^  (A,I) (n >  1)

(4a) S nU(C) =  ExtA (Q,C) ^  Ext^ 1 (/,C) (n >  1).

The functors Tn(A) =  SnT(A) and Un(C) =  S nU(C) (n 0) are co­
variant functors in the variables A and C. Further they form connected 
sequences of functors: more precisely, given exact sequences

(5) 0 - + A '^ A - > A " - > 0

(5a) 0 ^ C ' - > C ^ C " - > 0 ,
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we have the exact sequences

(6) • • • -> Tn{A') Tn(A) -> Tn(A") -> T ^ f A ')  * * *

(6a) • • • -> TJn-\C " )-+  Un(Cf)-> Un(C)->  t /w(C")-> • • *

In view of v ,8 these sequences may be computed as the homology sequences 
of the following exact sequences of complexes

(7) O ^ A '  <g)A X -> A  ®a X -+ A ” ® a  X -> 0

(7a) 0 -> HomA (X ,C f) -> HomA (X,C ) -> HomA (X 9C") -> 0

where A" is a projective resolution of Q.
Theorem 1.1. The connected sequence o f covariant functors 

Tn(A) =  Tor£ (A,Q) o f the variable A has the following properties:
(i) fo r  each exact sequence (5), the sequence (6) is exact;
(ii) Tn(A) =  0 i f  n >  0 and A is A-projective;

(iii) T0(A) =  A ®A Q.
These three properties characterize the connected sequence o f  functors 
Tn(A) =  Tor£ (A,Q ) up to an isomorphism.

Theorem 1.1a. The connected sequence o f covariant functors 
Un(C) — ExtA (Q,C) o f the variable C has the following properties:

(i) fo r  each exact sequence (5a), the sequence (6a) is exact;
(ii) Un{C) — 0 i f  n >  0 and C is A-injective;

(iii) U°(C) — HomA (Q,C).
These three properties characterize the connected sequence o f functors 
Un(C )=  ExtA (Q,C) up to an isomorphism.

The properties listed in 1.1 and 1.1a are special instances of the pro­
perties of the functors Tor and Ext. The fact that these properties 
constitute axiomatic descriptions; follows from iii,5.1.

So far we have considered left augmented rings. The definition of 
right augmented rings and the ensuing discussion are quite similar with 
T(A) =  Q ®A A and U(C) -  HomA (0,C ).

If the augmentation ideal /  is a two-sided ideal in A, then Q =  A/1  is a 
ring, which may be regarded as a left and as a right A-module; thus in 
this case A is simultaneously a left and a right augmented ring. Since A 
operates on the right on Q it follows that for each right A-module A , the 
group Tn(A) =  Tor£ (A,Q) is again a right A-module. Similarly for 
each left A-module C, Un(C) =  ExtA (Q,C) again is a left A-module.

Assuming again that I  is a two-sided ideal of A, we may replace A by 
Q in the formulas (2), (3), (4) (Q being considered as a right A-module).
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If we observe that 0  ® A /  I \P  (P  being the image of the homo­
morphism /  ®A / - >  A ®A 1 = 1 )  and that the homomorphism 0  ®A / - >  
0  is zero, we obtain

(8) T { Q ) = Q ® a Q k Q

(9) SXT{Q) =  T o il ( 0 ,0 )  ™ Q ® a I k  I/P

(10) S2T(Q) =  Tor£ (Q,Q) ** Tor* (0 ,/)  ** Ker ( /  ®A /-► /).

2. EXAMPLES

In the following examples, /  will be a two-sided ideal in A.

Graded rings. A graded ring is a ring A which is graded as an additive 
group, the grading satisfying the conditions

A 3* =  0 for p  <  0, A*A* C A*-*.

It follows that A0 is a subring which we denote by 0 . We define the
epimorphism e : A ->  0  by assigning to each element A its homogeneous 
component of degree zero. The augmentation ideal is the two-sided ideal 
which consists of all elements with a vanishing zero-component.

We list some examples of graded rings. Let K  be a ring, and x l9. . . ,  x n 
a set of letters. We denote by A — FK(xl9 . . . ,  x n) the free left K- 
module having as a base the elements

1, X,., X i X i%9 . .  . ,  Xh . . .  x im, . . .

where each index ij assumes any value 1 The module A is 
graded by regarding x { • • • x im as a homogeneous element of degree m. 
We define a multiplication in A by setting

(M h  • • • X iJ(k2x h ■ • • Xj)  =

The resulting graded ring FK(xl9 . . . ,  x n) is called the free K-ring on the 
letters xl5. . . ,  x n.

If we divide FK(xl9. . . ,  x n) by the two-sided ideal generated by the 
elements XjX̂  — xpci9 we obtain the graded K-ring K[xl9 . . . ,  x n], called 
the polynomial K-ring on the letters x l9. . .  9 x n.

If we divide FK(xl9. .  . ,  x n) by the two-sided ideal generated by the 
elements x ^  and xpc^ +  xpti9 we obtain the graded K-ring EK(xl9. . . ,  x n) 
called the exterior (or Grassmann) K-ring on the letters x l9. . .  , x n.

For n =  1 the exterior ring EK(d) is easily seen to be the ring of dual
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numbers A =  (K,d) over K , as defined in iv,2. The elements of A are of 
the form kx +  k 2d, the multiplication being given by

(kx +  k 2d)(k[ +  k2d) =  kxk[ +  ( k ^  +  k 2k[)d.

The augmentation epimorphism e is defined by

e{kx +  k2d) =  kv

We find a A-projective resolution X  of K  by taking X n =  A for all n 0, 
and defining dn: X n -> X n_x by

dn(ki +  k2d) =  kxd (n >  0).

For each right A-module A , i.e. for each right X-module>4 with differentia­
tion operator d, the complex A ® A Z  is simply

df» d-t
 > A -jl- A —  - A - ^ A

where dn =  t/. Thus Tor^ (A,K) as a right ^-module, coincides with the
homology module H(A) for n >  0, and A ®A K  =  Coker d  =  Z \A ) .  

Similarly, for each left A-module C, the complex HomA (X,C ) simply is
d° dnc —>c— ----- - c —* c —> • • •

where dn =  d. Thus ExtA (K,C) =  H{C) for n >  0, and HomA (K,C)
=  Ker rf= Z (C ).

The exact sequences (6) and (6a) of § 1 can be seen to coincide with 
those of iv, 1 .1 .

Another class of augmented rings is the class of local rings. A ring A 
is called a local ring if it satisfies the following condition:

(LC) The elements o f  A which do not have a left inverse form  a left 
ideal I.

Proposition 2.1. I  is a two-sided ideal and contains all proper left and 
right ideals o f  A. The elements o f I  have neither left nor right inverse, 
while the elements not in I  have a two-sided inverse. The factor ring A/1 is 
a (not necessarily commutative) field.

Proof. If  J is a proper left ideal then no element of J  has a left inverse. 
Thus J  C L

Next we show that no element of I  has a right inverse. Indeed, 
suppose that xX =  1 for some x  e I. Then (1 — Xx)X =  0 and since 
Xx € l  it follows that 1 — Xx is not in I  so that 1 — Xx has a left inverse y. 
Then X — y( 1 — Xx)X — 0, a contradiction.

For each X e A, IX is a left ideal and since xX ^  1 for x  e /, IX is a 
proper left ideal. Thus IX C I  so that I  is a right ideal.

Now consider X not in /  and let y  be a left inverse of X. Then yX =  1
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and since I  is a right ideal it follows that y is not in /. Thus y  has a left 
inverse £. Then £ =  £yA =  A. Thus Ay =  £y — 1, which shows that 
A has a two sided inverse. Since /  consists of all the elements which have 
no right inverses, it follows as above that /  contains all proper right ideals.

The conclusion that A /I  is a field follows from the facts established 
above.

Because of 2.1, there is no distinction between left and right local 
rings. The maximal (two sided) ideal I  of a local ring A defines A as an 
augmented ring with Q =  A // being a field. Important examples of 
local rings are the following tw o:

K[[xl9. . .  , x n]], the ring of formal power series in the letters x l9. . . 9x n 
with coefficients in the field K.

K{xl9 . . .  , x n}, the ring of convergent power series in the letters 
x l9 . . . ,  x n with coefficients in a commutative field K  with a complete 
non-discrete valuation.

In both cases the ideal I  is generated by the elements x l9. .  . , x n.

Another important class of augmented rings is furnished by the ring o f  
a monoid. A monoid II is a multiplicative associative system with a unit 
element 1. Given a ring K  we define the ring K(H)  as the free ^-module 
generated by the elements jc e II, with multiplication defined by

(ikx)(k 'x’) =  (ikk ')(xx ')9 k ,k ' e K, x 9x  € II.

We observe that if II is the free monoid generated by the elements 
x l9 . . . , x n9 then X(II) may be identified with the free X-ring 
Fk (x i , .  .  . ,  x n). If II is the free abelian monoid generated by x l9 .  .  . ,  x n9 
then AT(I1) may be identified with the polynomial ring K[xl9. .  . , x n].

Given a ring AT(II), there are many possibilities for defining an 
augmentation e : We shall only consider multiplicative
augmentations which satisfy the following condition

e{k\) =  k.

Such an augmentation is determined by a function \x\ II -> K. This 
function must satisfy the conditions

( 1) p,(xx') =  /j,(x)ju(x'), M l) =

and fi must take values in the center of K , because of the relation k x  =  xk  
in the ring AT(II). Conversely, given a function satisfying (1) and taking 
its values in the center of K , we define e: A^II) -> K  by

e(kx) =  k(fxx) ;

e is then a multiplicative augmentation, satisfying e(£l) =  k.
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The introduction of the ring AT(II) is motivated by the following remark. 
Let A  be a right ^(Il)-module. Then A is a right ^-module and further 
each element jc e II determines a 7f-endomorphism of A given by a -> ax. 
These endomorphisms satisfy al =  a, (ax)x =  a(xxr). Conversely each 
right A-module with A-endomorphisms a -> ax for x  e II satisfying 
the conditions above may be regarded as a right A(n)-module. 
Thus A(II) plays the role of an “enveloping ring” for the ring K  and the 
elements x  e II. The same applies to left A(ri)-modules. An analogous 
example of an “enveloping” ring was the ring of dual numbers A =  {K,d) 
mentioned earlier. There will be other examples later.

Since a good deal of space will be devoted later to monoids and groups, 
we shall not pursue the discussion here any further.

3. CHANGE OF RINGS

Given a fixed ring A with a left augmentation e : A -^  g  we have 
considered the homology groups Tor^ (A,Q) and cohomology groups 
ExtA (Q,C) as covariant functors in the variables A and C. We shall 
now show that in some sense these are also functors of A.

Consider two augmented rings A and T with augmentations

€a : A —> Qa , er : T —> QT

and augmentation ideals IA and 7r . A map <p: A ->  T of augmented 
rings is a ring homomorphism such that ^ (/A) C 7r . By passage to 
quotients we obtain a mapping y: Qr  such that the diagram

A ^
A  -C a

| ” | '
r  ► q f

eF
is commutative. It follows that y)(Xx) =  (<pX) (\px) for X e A, x  e QA. 
This shows that \p is a A-homomorphism if we regard £?r  as a A-module 
by means of cp (see 11,6 and vi, 4).

Let A  be a right T-module and C a left T-module. Using cp we may 
regard A and C also as A-modules. We shall define homomorphisms
(1) F*x TorA (A,Qa) -> Torr  (A,Qr)

(la ) Fv: Extr  ( 0 r ,C) -> ExtA (£?A,C).
To this end let XA be a A-projective resolution of QA and XT a T-pro­
jective resolution of Qr . Further let

S : (<p)Qa  — ^  Qa ~> Qr
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be defined by g(y 0  x) =  y(yx). By n,6.1, T ®A XA =  i(p)XA is a 
T-projective complex over r  ®a Qa• Following v , l . l  there is a map

G : T ® A XA - + X r
over g  and this map G is unique up to a homotopy. This yields homo­
morphisms
(2) H(A 0 A JVA) -  7/04 ® r  (T ®A XA)) -> 7/(,4 ® r  X T)
(2a) 7/(Homr  (jrr ,C)) -> 7/(Homr  (T ®A JTA,C)) -  7/(HomA (XA,C)
which are the desired homomorphisms F 9 and Fr

Theorem 3.1 (Mapping theorem). In order that F* be an isomorphism 
fo r  all right T-modules A it is necessary and sufficient that
(0 g : r  0 A Qa ^  Qr
(ii) Tor£ ( I \ 0 a ) =  0 fo r  n >  0.
I f  these conditions are satisfied then Fv also is an isomorphism fo r  all
left T-modules C; and, fo r  any A-projective resolution X A o f QA, the

g
complex r  ®A XA with the augmentation T ®A XA — ► T  ®A QA ** Qr is 
a T-projective resolution o f QT.

Proof. Assume F v is an isomorphism. In particular, taking 
A == r , we obtain that F <p\ TorA (T,£?A) & Torr (T,0r)- This yields
precisely (i) and (ii).

Assume that (i) and (ii) hold and let XA be a A-projective resolution 
of Qa . Then H J T  ®A XA) =  Tor* ( I \ 0 A) =  0 for n >  0. Thus (i) 
and (ii), precisely express the fact that T  ®A XA (with the augmentation 
as above) is a T-projective resolution of Qr . Taking X r =  T  ®A XA 
the map G may be taken to be the identity map. Then (2) and (2a) 
become isomorphisms.

The “Mapping theorem” will have many applications.

4. D IM ENSIO N

Let A be a left augmented ring with e: A ->  Q and I  =  Ker e. We 
shall be interested in the projective dimension of Q as a left A-module 
(see vi, 2). Clearly l.dimA Q l.gl.dim A.

Proposition 4.1. I f  Q is not projective, then 1 +  l.dimA I  — l.dimA Q. 
This is an immediate consequence of vi, 2.3.
Theorem 4.2. Suppose that I  is generated (as a left ideal) by elements 

x i9. . .  9 x n which commute with each other. Let 7fc(0 <^k<Lri) denote the
left ideal generated by x j i  ^ k ) .  i f

(0  (A e A and hck e /M ) => (X e Ik_k), k  =  1 , . . . ,  n,

then l.dim.A Q =  n, provided Q 7  ̂ 0.
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Before we proceed with the proof, we list the three most important 
examples to which 4.2 applies. These are:

A =  K[xl9. . .  , x n], the graded ring of polynomials in the letters 
x l9. . .  9x n with coefficients in the (not necessarily commutative) ring K.

A =  Aft*!, . . . ,  x n]]9 the ring of formal power series in the letters 
x l9. . .  , x n with coefficients in the ring K. If A' is a (not necessarily 
commutative) field, then A is a local ring.

A =  K{xl9. . . ,  x n}, the ring of convergent power series in the letters 
x l9. . .  9 x n with coefficients in the commutative field K  with a complete 
non-discrete valuation. This is also a local ring.

In all three cases the augmentation ideal I  is the two-sided ideal /  
generated b y  x l9. . .  9 x n and A // — K. Condition (i) of 4.2 is verified. 
Therefore, by 4.2, l.dimA K =  n. (For the case of A =  K[[xl9. . .  , x n]]9 
the fact that the dimension of K  is finite has been proved by F. Recillas 
(unpublished).)

Proof of 4.2. Since x l9. . . ,  x n commute, we may regard A as 
a (right) module over the ring T =  Z[xv  . . . ,  x n]. Let Jk(0 <Lk<L ri) be 
the ideal of T generated by x f i  <1 k). Then Ik =  A Jk.

More generally, for each T-module M  we shall define a left complex 
over the module M \M Jn (in the sense of v,l). Consider the exterior 
algebra E(yl9 . . . ,  y k)  on n letters y l9. . . ,  y n with integral coefficients, as 
defined in §2. The tensor product (over Z)

X =  M  ® E(yl9 . . . , y n)
is graded by the modules

X i = M ®  E ly l9 .

where Et{yl9 . . . ,  y n) denotes the group of elements of degree i in 
E( y i , . . . , y n). We define an augmentation e : X 0- >MI MJ n as the 
natural map of X 0 — M  onto M \M Jn. We define a differentiation
d,: X i - > X i_1( i > 0 )  by

d i m  ® y  • • - y 9)  =  2  (.— ty+ K m x,) ® • • • y ,  • • • y , t
1 <j<i

where y  indicates that y v is to be omitted. Using the fact that 
x l9. . . ,  x n commute with each other, it is easy to verify that d ^ d i  — 0 
for i >  1 and edx =  0.

Before proving 4.2 we establish 
P r o p o s it io n  4.3. I f  the T-module M  satisfies

(/') (m e M, mxk € M Jk_J) =>(me MJk_x), k  =  \ , . . . 9n,

then the complex X  is acyclic.
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Proof of 4.3. Condition (/') expresses the fact that the mapping 
M \M Jk_.x -> M J J M J induced by m -> mxk is an isomorphism.

We introduce the left complexes X {k) =  M  0  £ (7 1 , . . .  , y k) over 
M /fc with differentiation and augmentation defined as above. We want 
to show by induction that X (k) is acyclic. For k  — 0 this is clear because 
J0 =  0 and X {0) =  M. Suppose now that we already know that X {k~1} 
is acyclic over MJk_x (k >  0). Consider the complex

y < * > : . . . - > o ^ X <jk̂ ' - - - > X ? ) -+MJk->0.

Since the augmentation Xffl — M  -> M \M Jk is an epimorphism with MJk 
as kernel, the acyclicity of the complex X (k) is equivalent to H{ Y{k)) =  0. 
Since Y {k~X) may be regarded as a subcomplex of Y {k) and since i / ( F (fc-1)) 
=  0, it follows from the exactness of

H (Y {k~D) -> H ( Y (k)) -> H( Y {k)l Y ^-V )
that it suffices to show that H( Y {k)/ F (fe~1)) =  0. To this end we consider 
the diagram

- > • • • - >  x t f - v  - > m \ m i w  - > o

0 ->  X f  -> X ^ J X ^  - > • • • - >  XW/X[k- V  -> MJkjMJk_x -> 0

where X f s ^ ^ X f ^ X f - ^  is defined by right multiplication by y k. 
The mapping M jM Jk_x -> MJk\M Jk_x is the isomorphism induced by 
m -> mxk. This diagram is commutative; the vertical maps are all 
isomorphisms, and the upper row is exact by the inductive assumption; 
it follows that the lower row is exact, i.e. that H ( Y {k)/ Y (fc-1)) =  0.

We now return to the proof of 4.2. If we replace M  by the ring A 
of 4.2, we find that A" is a A-complex. Since the products y Pi • • • y Pi 
(Pi  <  ’ ' * <  Pi) form  a base for the free abelian group E ^y ^  . . . , y n), it 
follows that X  is A-free and has dimension n. Thus X  is a projective 
resolution of Q of dimension «, so that l.dimA Q^Ln.

The preceding resolution X  of  Q — A/ I  can be used to express the 
homology and cohomology modules of the augmented ring A with any 
coefficient module. For a right A-module A , we have

(1) T orf (A,Q) =  Ht(A ® E(yi , y n).

Indeed T orf (A,Q) are the homology modules of the complex

A ®A X =  A ®A (A ® E(yl t . . .  , y n)) =  A ® E(yi , . . .  , y n),

with the differentiation

(2) dla  ® y  • • • y v)  =  2  (—ty+Kax,) ® ' ' ' 9 v, ’ ' ' J V
1 <j<i
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Similarly for cohomology, we have for any left A-module C:

E x 4  (2 ,C ) =  H* (Horn (E(yl9. . . ,  y n)9C)).
Indeed

HomA (X,C ) =  HomA (A ® E (y l9. . .  9y n)9C) =  Horn (E(y l9. . .  ,jO ,C ).

An element of degree i in Horn (E{yl9. . .  , y n),C) may be identified with 
a function f ( p l9. . .  , p {) defined for integers satisfying 1 £ ? ! < ■  ■ • < P i  
<1 n; the differentiation is then given by the formula

(2a) (Sf) (/>!, . . .  ,p i+1) =  2  x  f ( p 1, . . . , p j, . . . , p i+1).

We observe now that in the above method of computation the ring A 
has almost completely disappeared; the only thing that needs to be 
known is how the elements x l9. . .  9x n operate on A (resp. C) and that 
these endomorphisms commute with each other.

In particular, we find

Ext^( Q ,Q )= H n(Hom(E(y1, . . .  , y n),Q) =  Hom(£„(yl5 . ,y„),Q)
=  H o m (Z ,0  =  Q.

Thus if Q ^  0 then l.dimA Q — n. This completes the proof of 4.2.
The complex A ® E(yl9. . . ,  y n) was first found by J. L. Koszul 

(Colloque de topologie, Bruxelles, 1950), in connection with cohomology 
theory of Lie groups.

R emark 1. If we apply (1) to calculate Torf(M ,Z) with M  as in 4.3, 
the acyclicity of the complex M  ® E{yx, . .  . ,  is equivalent to

(3) T orf (M,Z) = 0 ,  i >  0.

The fact that hypothesis (/') for M  implies (3) can be established directly: 
indeed we can show by induction on k  that

Toif(M , r //*) =  0,
xk

using exact sequences 0 — ► — ► F/Jk-i — r/ /*  — ► 0.
Remark 2. Consider the algebra A =  ^T[xa] of polynomials in an 

arbitrary set {xa} of variables. We may regard A as the direct limit of 
algebras A j  =  K(J) where J  runs through the finite subsets of the col­
lection {xa}. The complexes X j  constructed above form then a direct 
system with a complex X  as limit. It is immediately clear that X  is a 
A-projective resolution of K  and that X  is the tensor product A ® ^ ( y j ,  
where i?(ya) is the exterior algebra on the letters {ya}. The differentiation 
in X  is given by the same formulae as above.
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5. FAITH FUL SYSTEM S

We shall assume here that A is an augmented ring with a proper two 
sided augmentation ideal 7. Then Q =  A // may be regarded as a ring 
and e : A Q is a ring homomorphism.

Let A be a right A-module. Then A ®A Q is a right Q-module. 
From the exact sequence 0 -> 7->  A -> Q -> 0 we deduce

(1) A ® a Q** A/AI.

A right A-module 4̂ will be called proper if either A =  0 or A ® A Q ^  0 
(i.e. A ^  AI).  A free module clearly is proper.

Given a subset A  of a module A we consider the free module Fn 
generated by the elements of N. We have a natural homomorphism 
Fn  -> ,4 which leads to the exact sequence

(2 )  0  —> RA —> iv y  — 4̂ —> L A —> 0 .

with R n =  Ker (FN -> A), L N =  Coker (FN A).
Definition. A subset M  of a right A-module A is called faithful if 

for each N  C M  the modules R w and L v are proper. A family Of of 
right A-modules is called allowable if for each A e Sf there is a faithful 
set M  generating A and such that in the exact sequence 0->RM->FM->A-^0 
we have R M e 3).

If A has a faithful subset M , then taking N  =  0 we have L N =  4̂ and 
therefore A is proper. Thus all the modules in an allowable family are 
proper.

To illustrate the notions just introduced we consider two important 
special cases.

First we take up the case when A is a graded ring (see § 2), Q =  A0, 
and /  is the ideal of elements with a vanishing component of degree zero. 
A right A-module A is graded if a grading

A =  A 0 +  A 1 +  • • • +  A n +  • • •

of A  as an abelian group is given, with A PA Q C A v+q. Right A-modules 
for which such a grading exists will be called gradable. Clearly a free 
A-module is gradable.

Proposition 5.1. Let A  be a graded ring. Every graded A-module 
A is proper and every set o f homogeneous elements is faithful. The fam ily  
o f all gradable A-modules is allowable.

Proof. Let A be a graded A-module with A 0 and let a e A m be a 
non-zero, homogeneous element of lowest possible degree. If A =  A I  
then a e 4̂7, i.e. a =  2^2* with homogeneous elements a{ e A and A, € 7.
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Since each at has degree at least m and each A, has degree at least 1, it 
follows that a has degree at least m +  1. This contradiction shows that 
A  is proper.

If N  is any set of homogeneous elements of A then the module Fn  may 
be graded by the requirement that the map Fn  -> A  be homogeneous of 
degree zero. Then R N and L N are graded modules and therefore proper. 
It follows that any subset of A composed of homogeneous elements is 
faithful. In particular, since each graded module is generated by its 
homogeneous elements it follows that the family of gradable modules is 
allowable.

As a second illustration, we take up the case when A is a local ring and 
I  its maximal ideal.

Proposition 5.1'. Let A be a local ring. Every finitely generated 
right A-module is proper. I f  A is right Noetherian then every finite subset 
o f a finitely generated right A-module is faithful and the class o f all finitely 
generated right A-modules is allowable.

Proof. Let A ^  0 be a finitely generated right A-module and let 
(al9 . . . , an) be a minimal system of generators of A. Let B  be the sub- 
module generated by a2, . . . ,  an. If a1 e A I  then a1 =  afkx +  • • • +  
for some Al5. . . ,  An e I. Thus ax(\ — Ax) e B. Since 1 — is not in /  
we may choose A e A with (1 — AX)A =  1 . Then ax =  a f f  — AX)A e B. 
This contradiction shows that ax is not in AI. Thus A I ^  A and A is 
proper.

If A is finitely generated and A is a finite subset of A, then Fn  and L n 
are finitely generated. If further A is right Noetherian then R N also is 
finitely generated. Thus every finite subset of A is faithful. This proves 
the second half of the proposition.

With the notions of “proper,” “faithful,” and “allowable” thus 
illustrated, we return to the abstract treatment.

Proposition 5.2. Let A b e  a right A-module and M  a faithful subset o f  
A. I f  the image o f M  in A  ®A Q =  A /A I  generates A ®A Q as a right Q- 
module, then M  generates A. I f  further Tor^ (A , Q) =  0 and the images o f  
the elements o f M  in A ® A Q form  a Q-base fo r  A ®A Q then M  is a 
A-base fo r  A.

P roof. We consider the exact sequence

0 -> R m ~ ^  F m  A  0

By assumption the map F m  ® a  Q-> A ®A Q is an epimorphism. There­
fore, by the right exactness of the tensor product, L M ®A Q =  0. Since 
L m is proper, it follows that L M — 0, i.e. FM -> A  is an epimorphism. 
Thus M  generates A.
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Since L M =  0, we obtain an exact sequence

Tor^ (A,Q ) ► R m  ®a  0  * FM ®A 0  ► A ®A Q.

The condition that the images of the elements of M  form a 0-base of 
A ®A 0  means precisely that 90 is an isomorphism. Since Tor^ (A ,Q )= 0, 
it follows that R M ®A Q — 0. However R M is proper so that R M =  0. 
This implies that f m -> A is an isomorphism, i.e. M  is a A-base for A.

Theorem 5.3. Assume that 0  is a (not necessarily commutative) 
field , and that T o rf (A,Q) =  0. Then every faithful subset A-generating 
A contains a A-base fo r  A. In particular, i f  A is generated by a faithful set, 
then A is A  -free.

P roof. Let M  be a faithful subset generating A. Then the image of 
M  in A ® A 0  genera tes A ® A 0  as a right 0-module. Since 0  is a field 
M  contains a subset N  such that the images of the elements of N  in A ® A 0  
are a 0-base for A ®A 0 . Since N  also is faithful, it follows from 5.2 
that A is a A-base for A.

T heorem 5.4. Assume that 0  =  A/1 is a field , and let 3  be an allowable 
fam ily o f right A-modules. Then fo r  every module A o f 3

r.dimA A <1 l.dimA 0 .

P roof. Let M  be a faithful subset generating A. Then 
0 -> R M -> Fm A -> 0 is exact. Since is again in 3), this process 
may be repeated with A replaced by R M. Thus by iteration we obtain an 
exact sequence

0 -> X n -> X n_x —> * * • -> XQ -> A -> 0

of right A-modules, with X 0, . . . , A-free and with A"w e 3 .  It 
then follows from v,7.2 that the iterated connecting homomorphism 
yields an isomorphism

Tor^ (Xn,Q) & Tor£+1 (A,Q).

Assume now that dim 0  =  n. Then Tor^+1 (A,Q) =  0 so that 
Tor^ (A"w,0 ) =  0. Since X n € 3 ,  X n is generated by a faithful subset 
and therefore, by 5.3, X n is A-free. Thus dim A <1 n,

6. APPLICATIO NS TO GRADED AND LOCAL RINGS

Theorem 6.1. Let A b e  a graded ring with A0 =  0  a field . I f  A is a 
graded right A-module with Tor^ (A,Q) =  0 then A is free; every homo­
geneous system o f generators o f  such a module A contains a base fo r  A .

This follows from 5.1 and 5.3.
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Theorem 6.2. Let A b e  a graded ring with A0 =  Q a field . For each 
graded right A-module A,

r.dimA A <1 l.dimA Q.
This follows from 5.1 and 5.4.
Corollary 6.3. Under the assumptions o f  6.2, let J  be a homogeneous 

right ideal in A. Then
1 +  r.dimA J  <1 l.dimA Q

unless l.dimA Q — 0, in which case r.dimA J  0.
Indeed, consider the graded module A //. Then by vi,2.3 we have 

1 +  dim J  =  dim A //, unless dim A /J  ̂  0 in which case dim J<L0.  
Since dim A /J  dim Q, the conclusion follows.

Note that Q itself is a graded right A-module. Therefore 
Corollary 6.4. l.dimA Q — r.dimA Q. The conclusions o f  6.2 and 

6.3 apply equally well to left A-modules and left ideals.

Now consider the particular case when A =  K[xl9 . . . , x n] is the ring 
of polynomials in the letters x l9. . .  , x n with coefficients in the (not neces­
sarily commutative) field K. Then Q =  K  and by 4.2, dimA£? =  n. 
We thus obtain

Theorem 6.5. Let K  be a field and let A  =  K[x^  . . .  , x n], n 1. 
For each graded {right or left) A-module A we have

dimA A <1 n.
For each homogeneous {right or left) ideal J  in A  we have

dimA J  <1 n — 1.
This theorem contains Hilbert’s theorem on “chains of syzygies” (see 

W. Grobner, Monatshefte fu r  Mathematik 53 (1949), 1-16). The method 
used here is an extension of the one indicated by J. L. Koszul {Colloque 
de topologie, Bruxelles, 1950). We shall see later (ix,7.11) that if AT is a 
commutative semi-simple ring, then gl.dim A  =  n.

We now pass to the case of a local ring A with a maximal ideal /  and 
with Q =  A/7. We know then by 2.1 that Q is a field.

Theorem 6.1'. Let A  be a right Noetherian local ring with maximal 
ideal I  and with Q — A//. Every finitely generated right A-module A 
such that Tor^ (A,Q) — 0 is then free; every finite set o f generators o f such 
a module A contains a base.

This follows from 5.1' and 5.3.
Theorem 6.2'. Let A  be a right Noetherian local ring with maximal 

ideal I  and with Q — A//. For each finitely generated right A-module A
r.dimA A l.dimA Q.

This follows from 5.1' and 5.4.
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C orollary 6.3'. Under the assumptions o f  6.2' let J  be any right ideal

unless l.dimA Q — 0 in which case r.dimA J  <L 0.
The proof is the same as for 6.3.
C orollary 6.4'. Under the conditions o f  6.2' assume that A  is also 

left Noetherian. Then l.dimA Q =  r.dimA Q. The conclusions o f  6.2' 
and 6.3' apply equally well to left as toi right A-modules and left ideals.

We now consider two particular rings; the ring A =  K[[xl9 . . . ,  x j ]  
of formal power series in xx, . .  . ,  x n with coefficients in the field K , and 
the ring A =  K{xl9 . . . ,  x n} of convergent power series in x x, . . . ,  x n 
with coefficients in a commutative field K  with a complete non-discrete 
valuation. Then A is a local ring with Q =  K  and, by 4.2, dimA Q =  n.

Further A is (both left and right) Noetherian; for K[[xl9. . . ,  x j ]  see 
W. Krull (Crelle 179 (1938), p. 204-226); for K{xv  . . . ,  x n) see Bochner 
and Martin {Several Complex Variables, Princeton, 1948; Ch. x, th. 1). 
We thus obtain

T heorem 6.5'. Let K  be a field and let A =  K[[xl9 . . . ,  x j ] ,  n 1, 
or let K  be a commutative field with a complete non-discrete valuation and 
let A =  K{xx, . . . , x n}, n^> 1. For each finitely generated {right or left) 
A-module A we have

1. In the situation treated in § 3 establish the commutativity of the 
following diagrams

in A. Then
1 +  r.dimA J  <1 l.dimA Q,

dimA A n.

For each {right or left) ideal J  in A  we have

dimA J< Ln — 1 

EXERCISES

T o r £  (A,Qa) T <  (A,Qr)

T o r £  (A,  r < g )  A  Qa) ^  > T o r £  (A,QT)

E x t l ( e A , C ) - ^ - E x t l ( Q r ,C)
n /
<p <Pnf3>n

Ext?- ( r  ®A Qa ,C) — p -  Extp (Qr ,C)

where gn and gn are induced by g, y n and y>n are induced by y>, and the 
i^ ap s /2 „ , / 3(B, <pn and <pn are defined in vi,4.
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2. Show that under the conditions of 5.4 and using the notion of weak 
dimension of vi, Exer. 3, the conclusion of 5.4 may be strengthened as 
follows

w.dim A =  dim A w.dim Q

for each A e 2 ,  Apply this result to the considerations of § 6.
3. Let A be an augmented ring with a two sided augmentation ideal /  

such that C\ I p =  0 where P  is defined by recursion as P  =  P -1/, I 1 =  /. 
Show that each submodule of a free A-module is proper.

4. Let A be a local ring with maximal ideal I  such that n / 5 = 0 ,  and 
let Q =  A //. Show that if A is a finitely generated right (resp. left) 
A-module such that T orf (A ,Q )— 0 (resp. T o r^ (Q,A) =  0), then A 
is free; each system of generators of such a module A contains a base.

5. Consider the example of the ring A given at the end of i,7, and show 
that it can be put in the form

A =  Z[x] +  Z[x]

with multiplication given for a,a\b,bf eZ[jc],

(a,b)(a',b') =  (aa\ ab ' +  (ea')b).

Replace Z[x] by a commutative ring T  with a ring endomorphism 
s: r  -> r .  Prove that the result is a ring A with (1,0) as unit element. 
Show that in A an element (a,b) has a right (or left) inverse if and only if a 
has an inverse in I \  If T  is a (commutative) local ring then A also is a 
local ring with the same field of augmentation as I \

Taking T =  AT[[jc]] where Kis a commutative field and e is the augmenta­
tion of T, prove that the local ring A is left Noetherian without being 
right Noetherian.

6. Let A — K[[x]] be the ring of formal power series in one variable x  
with coefficients in a commutative ring K. Let e : A K  assign to each 
series its “constant term.” Then an element of A has an inverse if and 
only if its image under e has an inverse in K. Hence, by recursion on n : 
the ring ^[[x l5 . . . ,  * J ]  is a local ring if and only if K  is a local ring.

7. Let A =  K[xx, . . . ,  x n] be the ring of polynomials with coefficients 
in a commutative ring K . For any A-module A, establish natural iso­
morphisms

T o r^ (K,A) Ext^-3,(K,A) 0 £ q £ n .

[Hint: let X be the complex A ® E(yv  . . . , j n) as defined in § 4. Define 
isomorphisms

X q HomA (X n_q ,A)
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in order to induce an isomorphism of complexes

X ->  HomA (Af,A) 

raising the degrees by n. Observe that

HomA (X ,A) ®A A t* HomA (X,A).]

8. Let A be a left A-module with A-endomorphisms xk (1 <1 k  <1 n) 
which we shall write as a -> axk. Let Ik (0< Lk <Ln) denote the sub- 
module of all elements of the type a^  +  • • • +  akxk (in particular, 
I0 =  0). Assume that

(ii) (a e A and axk e Ik_x) <==> (a e 1 ^ ) ,  k  =  1 , . . . ,  n.

Show that

l.dimA A jlk <L k  +  l.dimA A , k  — 0 ,. . . ,  n.

9. Let A be an augmented ring. Assume that the augmentation 
ideal / is such that I +  x  has a right inverse for any x  e l .  Show that the 
conclusions of 5.1' remain valid.

10. In the ring X[[x]], where A is a (not necessarily commutative) 
field, consider the subring A consisting of all power series without terms 
of degree 1. Show that A is a local ring.

Let A be the right A-module consisting of all series without a constant 
term. Show that A is not A-free and thus is not A-projective. Establish 
the exact sequence

0 — > A A +  A - ^ A  — *0

with <p(̂ i,A2) — K x * ~  A2X3> — (Ax,A). As an application derive that
r.dimA A =  00.

11. In the ring K[[x,y]], where K  is a (not necessarily commutative) 
field, consider the subring A consisting of all power series in which all 
terms are of even total degree. Show that A is a local ring.

Let A be the right A-module consisting of all series in K[[x,y]] in 
which all the terms have odd degree. Show that A is not A-free and thus 
is not A-projective. Establish the exact sequence

0 — >A ^ A +  A ^ A — >0

with cp(X1,X2) =  Xxy  — A2x, y)X =  (XxfXy). As an application derive that 
r.dimA A =  00.

12. In the ring Â [[x]] +  A'tfj]], where K  is a (not necessarily commuta­
tive) field, consider the subring consisting of all pairs (f(x ) ,g (y )) with 

/ ( 0 )  =  £(0)- Show that A is a local ring.
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Let A and B  be the right modules consisting respectively of all pairs 
( /  (x);*:,0) and (0,g(y)y). Show that A and B  are not A-free and thus are 
not A-projective. Establish the exact sequences

W m w' to'
0 — > A — > A — >B— >0, 0 — ► B  — > A — ► A — ► 0,

where y) and rp' are inclusions while cp(f (x),g(y)) =  (0,g(y)y) and 
v X f ( x )>g(y)) — ( / (*)*,0). As an application derive that r.dimA A 
— r.dimA B =  oo.



CHAPTER IX

Associative Algebras
In troduction . The homology (and cohomology) theory of an associa­

tive A-algebra A is that of an augmented ring, namely the ring 
A® =  A A* (where A* is the “opposite” algebra of A) with the aug­
mentation p : A® A, p{X ® p*) =  Xp. The homology groups H n{A 9A) 
and the cohomology groups H n{A9A) are then defined for any two sided 
A-module A (§4). If the algebra A is A-projective, the homology and 
cohomology groups may be calculated using a “ standard complex” (§6); 
we thus retrieve the initial definition of Hochschild {Ann. o f Math. 46 (1945), 
58-67).

The last section (§ 7) is devoted to the study of “dimension” of algebras 
from the homological point of view. The method utilized leads to new 
connections with the theory of algebras, and deserves further study.

1. ALGEBRAS AND THEIR TENSO R PRODUCTS

Let AT be a commutative ring (with a unit element denoted by 1). A 
K-algebra is a ring A (with a unit element also denoted by 1) which is also 
a A-module such that

( M l ) W 2 ) = ( W A )

for k l9k2 c A, Xl9X2 € A. Setting r jk=  k l  yields a ring homomorphism 
rj: A -> A whose image is in the center of A. Clearly A itself is a A- 
algebra.

Clearly every ring A may be regarded as a Z-algebra, where Z  is the 
ring of integers, with nX9 n e Z 9 X e A  defined in the obvious way.

Let A and T  be A-algebras. A A-algebra homomorphism A -> T is a 
ring homomorphism which also is a A-homomorphism.

Given two A-algebras A and T, the tensor product A 0 ^ -T  is a 
A-module, and the multiplication

(Ai ® yx){X2 ® y2) =  {XxX2) ® {y±y2)

converts A ®^- T into a A-algebra. As long as the ring A is fixed we
162
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shall frequently write A ® T for A ® K T. We have the natural A- 
algebra homomorphisms

given by A A ® 1, y  -> 1 ® y.
The tensor product of A-algebras has the usual associative property 

of the tensor product over a commutative ring.
If A is a A-algebra, every (left or right) A-module A may then also be 

regarded as a A-module. We shall frequently have to consider the 
situation where A  is also a T-module for another A-algebra T. In this 
case we shall always assume that (1°) the operators of A and T on A 
commute; (2°) the structure of A as a A-module induced by A is the same as 
that induced by T. In particular, suppose A is a left A-module and a left 
T-module (situation A_r 4̂). Then setting

converts A into a left A ® K T-module. The converse is also clear: 
every left A ® K T-module is obtained in this way from a unique A-T- 
module. The same applies with “ left” replaced by “ right.”

Suppose now that A is a left A-module and a right T-module (situation 
Â 4r ). We first use the opposite algebra T* (see vi,l) to convert A into 
a left T*-module: y * a = a y , and then, using the definition above, A 
becomes a left A ® T*-module with

Similarly A  may be regarded as a right A* ® T-module.
These considerations generalize in an obvious way to a module A over 

any finite number of A-algebras.
The concept of the tensor product discussed above, can be applied to 

define “ the extension of the ring of operators” in an augmented ring. 
Let A be an augmented ring with augmentation e : A -> Q. Assume that 
A is a A-algebra and e is a A-homomorphism and let L  be another 
A-algebra. Then clearly

is an epimorphism which defines an augmentation for the ring L  ® K A. 
We obtain a commutative diagram

A ->  A ® T, r->  a  ® r

(2 ® y)a =  A(y#) =  y(Aa)

(A ® y*)a =  {Xa)y =  A(ay).

L  ® e: L  ®K A L  ® K Q

e
A

<p

L  ® A
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where cpX =  1 ® A, y>q =  1 ® q. Thus, by viii,3, we obtain homo­
morphisms

F'p: TorA (A,Q) Tor7'®A (A, L  <g> Q), Al _a
F<p • (L  ® Q> C)~> ExtA (Q,C), a—I'F-

Proposition 1.1. I f  the algebra A is K-projective and i f  Torf(L ,Q )—-§
fo r  n >  0, then F* and are isomorphisms. I f  \ furthermore, X  is a
A-projective resolution o f Q, then L  ® K X  is a L  ® K A-projective 
resolution o f L  ® k  Q-

Proof. The result will follow from the “mapping theorem” viii,3.1 
provided we verify its hypotheses which in this case become:
(i) (L ®K A) ®A Q -> L  ® K Q is an isomorphism;
(ii) Tor£ (L ® K A, Q) =  0 for n >  0.
Condition (i) follows directly from associativity. To verify (ii) we 
consider a A-projective resolution X  of Q. Then

Tor^ (L ® K A, Q) =  H n(L ® K A  ®A X ) =  H n(L ®& ^0*
Since A is A-projective, it follows from n,6.2 that X  is also a A-projective 
resolution of Q. Thus H n(L ® K X ) — Tor^f (L,Q) which was assumed 
to be zero for n >  0.

We shall see useful applications of 1.1.
The definition of the tensor product A ® K T of A-algebras has an 

important variant when A and T are graded A-algebras. A graded 
K-algebra A  is a graded ring (viii,2) which is also a A-algebra such that 
K A Q C A q. If T is another graded A-algebra then A ® K T  is a doubly 
graded A-module which is converted into a (singly) graded module in the 
usual fashion. To define the product (Ax ® 7 i)(A2 ® y2), K  € A p, A2 € A m, 
y 1 € y2 e T n we denote by / :  A -> A, g: T  -> T the endomorphisms 
given by left multiplication by and y1 respectively. Clearly /  and g  
have degrees /? and q. Then f ® g  should be left multiplication by 
K  ® 7v  However, by iv,5

( /  ® g)(* 2 ® ra) =  (—i)m!As ® m
and therefore we obtain the multiplication rule

(Aj ® 7i)(A2 ® y2) =  ( 1)w(ZA1A2 ®
where m is the degree of A2 and q is the degree of yv  With this multiplica­
tion A ® K T becomes a graded A-algebra, called the skew tensor product 
of the graded A-algebras A and T.

Proposition 1.2. Let A  and T be graded K-algebras. The map 
9o: A  ® K T ^ r  ® K A  defined by setting

<p(A ® y ) =  (—1 ) pqy ® A, A € A p, y  e T q 
is a K-algebra isomorphism.

The proof is left to the reader.
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R em a r k . The definition of the tensor product A (g) T of non-graded 
algebras may be considered as a special case of the tensor product of 
graded algebras, by defining on A and T the “ trivial” grading which 
assigns to each element the degree zero. With this convention, we may 
apply 1.2 to the case when no grading is given on A and T.

2. A SSO C IA TIV IT Y  FO RM U LA E

We shall consider three A-algebras A, T and 2 . In the situation 
( A -  _r ,AB%) we convert A (g)A B into a right T ® 2-module by setting

(a  (g) b )(y  (g) g) =  a y  (g) bo.

Similarly in the situation (A#s,Cr _s ) we convert Homs (B,C) into a right 
A (g) T-module by setting

m ® y ) ) b = m b ) ) y
for f  € Homs (B,C).

We leave it to the reader to give similar definitions for other situations. 
We can now state associativity formulae which generalize those of n,5. 
Proposition 2.1. Let A, T, 2  be K-algebras. In the situation 

(^A -r’A^S’r-sC ')’ there is a unique homomorphism

r : (A (g)A B) A ®A<g>r ®n Q

such that r((a (g) b) (g) c) =  a (g) (b (g) c). This homomorphism is an 
isomorphism and establishes a natural equivalence o f functors.

Proposition 2.2. Let A, T, 2  be K-algebras. In the situation 
(^a- -r’A^E’^ r - s ) ’ there is a unique homomorphism

s: HomA(8)r (A, Homs (B,C)) -> Homr0)S (A ®A B,C)

such that fo r each A ® T-homomorphism f :  A Homs (B,C) we have 
(sf)(a ® b) =  (fa)b. This homomorphism is an isomorphism and estab­
lishes a natural equivalence o f functors.

We leave the proofs to the reader. Proposition 2.2 has an analogue 
with left and right operators interchanged and with A <g)A B  replaced by 
B (g)A A.

P r o po sit io n  2.3. In the situation (TA_r ,Â i:) assume that A is A (g) T- 
projective and B is TL-projective. Then A ®A B is projective as a right 
T (g) H-module.

P r o o f . It suffices to prove that Homr(g)S04 (g)AB, C) is an exact 
functor of the right T ® 2-module C. In view of 2.2 this last functor is 
equivalent with the composition of HomA0r (A ,D) with D — Homs (B,C).
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Since B is 2-projective, Homs (B,C ) is an exact functor of C. Since A is 
A ® T-projective, HomA(g)r (A,D) is an exact functor of D. Thus the 
composite functor is an exact functor of C.

Replacing A, T, 2 , A , B  by A*, 2 , A, B , A we obtain
C o r o ll a r y  2.4, I f  B is a projective right A* ® 2 -module and i f  A is 

K-projective then B is Y-projective.
C o r o ll a r y  2.5. In the situation (Ar ,Bz), i f  A is T-projective and B is 

Y-projective, then A ® K B is T ® Y-projective.
Quite analogously we prove
P r o po s it io n  2.3a. In the situation (a ^ e jC t- e ) assume that B is A- 

projective and C is T ® 2 -injective. Then Homs (2?,C) is injective as a 
right A ® T-module.

C o r o ll a r y  2.4a. I f  C is an injective right T ® 2 -module and i f  T 
is K-projective, then C is Y-injective.

C o r o ll a r y  2.5a. In the situation (AB,Cr) i f  B is K-projective and C is 
T-injective then H om ^ (B,C) is A ® T-injective.

Proposition 2.6. Let A, T, 2  be K-projective K-algebras. In the 
situation (AA_r ,ABs ) let X  be a A ® T-projective resolution o f  A, and Y  a 
A* ® Y-projective resolution o f B. I f  Tor^ (A,B) =  0 fo r  n >  0 then 
X  ®A Y  is a T ® Y-projective resolution o f A ®A B.

P r o o f . First we note that following iv,5, X  ®A Y  is to be regarded 
first as a double complex and then converted into a complex. Since A 
is A-projective it follows from 2.4 that Y  is 2-projective. Consequently 
by-2.3, X  ®A Y  is T ® 2-projective. There remains to be shown that 
X  ®A Y  is an acyclic complex over A ®A B. Since the tensor product 
is right exact it follows from ii,4.3 that the sequence

® a T0 -f- X q ®a Y1 > X0 ®a Yq > A ®A B > 0
is exact. Thus it suffices to show that H n(X  ®A Y) =  0 for n >  0. 
Since 2  is A-projective, it follows from 2.4 that Y is A-projective; similarly, 
X  is A-projective since T is A-projective. Thus X  and Y  are A-projective 
resolutions of A and B. Consequently H n(X  ®A Y) =  Tor^ {A,B) =  0 
for n >  0 by hypothesis.

C o ro lla ry  2.7. Let T and 2  be K-projective K-algebras. In the 
situation {AVyB^) let X  be a T-projective resolution o f  A and Y  a Y-projective 
resolution o f B. I f  Tor^f 04,i?) =  0 fo r  n >  0 then X  ® K Y  is a T  ® 2 - 
projective resolution o f A ® K B.

We similarly prove
Proposition 2.6a. Let A, T, 2  be K-projective K-algebras. In the 

situation (Â s ,C r _s ) let X  be a A* ® Y-projective resolution o f B , and Y  a 
T ® Y-injective resolution o f  C. I f  Ext^ (B,C) =  0 fo r  n >  0 then 
Homs (X , Y) is a A ® T-injective resolution o f  Homs (B9C).
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C o r o ll a r y  2.7a. Let A,T be K-projective K-algebras. In the situa­
tion (aB,Cf ) let X  be a A-projective resolution o f B and Y  a Y-injective 
resolution o f  C. I f  Ext^ (B,C) =  0 fo r n >  0 then H om ^ (X , Y) is a 
A ® V-injective resolution o f  Homx  (B,C).

T heorem  2.8. Let A, T, 2  be K-projective K-algebras. In the situation 
(^ a —r>A^E>r—s O  assume

(1) Tor£ 04,£) =  0 =± Tor* (B,C) for n >  0.

Then there is an isomorphism

Xorr ®s ®A 5,C) ^  Tor^®1" (̂ 4, B  C)

which, in degree zero, reduces to the isomorphism o f  2.1.
P r o o f . Let X  be a A ®  T-projective resolution of ^4, 7  a A* ®  2  - 

projective resolution of B  and Z a T ®  2-projective resolution of C. In 
view of (1), it follows from 2.6 that X  ®A 7  is a T ® 2-projective resolu­
tion of A ®A 5  and Y  ® ^ Z  is a A (g) T-projective resolution of B  ® s  C. 
Therefore

Torr ®s (A <g>A  5,C) =  J 5 T ( ( J T  ®A Y )  ® r 8 S  Z) «  / / ( X  ® A ® r  ( F  ® s  Z))

=  TorA®r  (^ ,5  ® s C).
Quite analogously we prove
Th eorem  2.8a. Let A , Y, 2  be K-projective K-algebras. In the situation 

(^A -r’A ^ s ^ r - s )  assume

Tor£ 04,5) =  0 -  Ext^ (.B,C) for n >  0.

Then there is an isomorphism

Extr(8)S (A ®A B,C) & ExtA(8)r (A, Homs (B,C))

which, in degree zero, reduces to the isomorphism o f  2.2.

3. THE ENVELOPING ALGEBRA A‘

Let A be a A-algebra. A two-sided A-module is an abelian group A 
on which A operates on the left and on the right in such a way that 
{Xa)fjL =  X(ap) and ka =  ak for a e  A, X,p> e A ,k  e K. With the notations 
of the preceding section we are thus in the situation (A>4A).

A two-sided A-module may be regarded as a left module over the 
algebra A ®K A*, by setting

(2 ® fj,*)a =  Xaja.

The algebra A ®K A* will be called the enveloping algebra of A and 
will be denoted by A e. We may also regard A as a right Ae-module by
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setting a(X ® p*) =  pal. In particular, A is a two-sided A-module; 
we shall therefore always regard A as a left Ae-module with operators

(p  0  y*)X =  pXy X,p,y € A.

In particular, taking I  — 1, we obtain a mapping

p : Ae-> A

given by p(p ® y*) =  p y . This mapping p is an epimorphism of left 
A-modules, and thus defines on A e the structure of an augmented ring 
(vm,l). We shall denote by J  the augmentation ideal i.e. the kernel of p.

P r o po sit io n  3.1. As a left A-module, J  is generated by the elements 
X ® 1 — 1 ® A*.

P r o o f . Let 2/^* ® 7* € J- Then 2 /^ 7 * =  0 anc*

(i) I n  ® y* =  2 (j«i 0  l) (l ® y* — y< 0  l)-

We define a ^-homomorphism

j :  A - + J

by setting jX =  X ® 1 — 1 ® X*. We verify the identity

=  X(jfi) +  (;•;> .

In general, given any left Ae-module A (i.e. a two-sided A-module A) 
we define a crossed homomorphism (also called derivation) f :  A  -> A as a 
^-homomorphism such that

/ ( V )  =  K fv )  +  (fX)n-

Each crossed homomorphism sa tisfies/1 =  0; therefore we may regard 
as defined on A' =  Coker (K  -> A).

P r o po sit io n  3.2. I f  with each h e HomA6 (J,A) we associate the 
mapping hj, we obtain an isomorphism o f the K-module HomA* (J,A) with 
the K-module o f all crossed homomorphisms o f A  into A .

P r o o f . The essential part of the proof consists in showing that
j h

each crossed homomorphism/ :  A — ► A admits a factorization A — *J— ► A 
where h is a A*-homomorphism. Let x  =  2 /^  ® Y* * V. Guided by (1) 
we define

hx =  2  P ifiyd-

Clearly h is a A>homomorphism. To show that h is a Ae-homomorphism 
we compute

h((X ® r*)x) =  h^X/Xi ® (yii-)*)

=  2  V</(y<T) =  2  ty lfy i> r  +  2
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The last term is zero because 2/^7* — 0- The term before last yields 
(A ® r*)hx as desired.

A Ae-homomorphism h: / - >  A is extendable to a Ae-homomorphism 
Ae A if and only if there is an element a e A such that ^ (2 /^  ® 7 i)  
=  ^ ^ a y i .  It follows that the associated crossed homomorphism 
f — h j: A -> A is given by/A =  la  — aX. Such a crossed homomorphism 
is called principal (or inner derivation). The A-module of all principal 
crossed homomorphisms corresponds to the image of A aa HomA« (Ae,A) 
-> HomA* (J,A).

4. HOMOLOGY AND COHOMOLOGY OF ALGEBRAS

Let A be a A-algebra and A a two-sided A-module. Using the 
augmented algebra A e (with augmentation p : A e -> A) we shall now 
define the homology and cohomology groups of A with coefficients in A.

First we regard A as a right Ae-module and define the n-th homology 
group as

H n(K,A) =  T o r f  (A ,A).

Then we regard A as a left Ae-module and define the «-th cohomology 
group as

H n(A,A) =  Ext^e (A,A).

Both the homology and cohomology groups are A-modules. We shall 
see in § 6 that the cohomology groups H n(A,A) coincide with those defined 
by Hochschild (Ann. o f  Math. 46 (1945), 58-67) in the case when A is a 
field. For this reason we shall frequently refer to the groups above as the 
Hochschild homology and cohomology groups of the algebra A.

Remark. The notation H n(A,A) and H n(A,A) is contrary to our 
general conventions concerning graded modules; indeed with the 
notation as is we cannot use the symbol H (A,A) to denote either the 
graded homology or the graded cohomology module.

To compute the homology and cohomology groups of A, a projective 
resolution A of A as a left Ae-module may be used:

H n(A,A) =  H n(A ®Ae X)

H n(A,A) =  H n(HomAe (X,A)).

The functors H n(A,A) and H n(A,A) are connected sequences of covariant 
functors of A. If 0 -> A ' -> A -► A" -> 0 is an exact sequence of two- 
sided A-modules, we obtain the usual exact sequences

 ► H n(A ,A ') -> H n(A,A) H n(A,A") -> A ,A ')  -*  • • •

- • • • - >  H ^ i A 'A ”) -> H n(A,A ') -> H n(A,A) -> H n(A,A") -> • • •
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These exact sequences are the homology sequences of the exact sequences 
of complexes

0 - >  A ' ®Ae X ->  A < g ) A e X - >  A" ®Ae.X-+  0  

0  - >  H o m A e (X ,A ') - >  H o m A e ( X,A )  - >  H o m A e  ( X ,A " )  - >  0 .

The formulae (2)-(4a) of viii,1 are applicable. In particular we have

(2) H0(A,A) =  Coker (A ®Ae J - > A ) =  A /A J

(2a) H°(A,A) =  Ker (A HomAe (J,A))

(3a) H \A ,A )  =  Coker (A -> U o m Ae (.J,A)).

The submodule A J  of A is, by 3.1, generated by the elements of the form
aX — Xa {a e A, Xe A). Let a e A and let / €  HomAe (J,A) be the corre­
sponding homomorphism. In order that /  =  0 it is necessary and 
sufficient that / b e  zero on elements X ® 1 — 1 ® X*, i.e. that Xa =  aX 
for all A € A. We call such elements of A, invariant elements. As for 
the terms in (4a) an interpretation is given in 3.2 and the subsequent 
remark. Summarizing we obtain

Proposition 4.1. The homology group HQ{A,A) may be identified with 
the quotient o f A by the submodule generated by the elements aX — Xa, 
a e A, A € A. The cohomology group H°(A,A) may be identified with the 
subgroup o f the invariant elements o f  A. The cohomology group H \A ,A )  
may be identified with the group o f all crossed homomorphisms A  A 
factored by the subgroup o f principal crossed homomorphisms.

Let us now apply the associativity theorems 2.8 and 2.8a. In 2.8 we 
replace (I \C ) by (X*,2), then TorJ (i?,D) =  0 for n >  0, and if we 
assume that A is semi-simple then also Tor£ (A,B) =  0 for n >  0. Thus 
2.8 yields

Proposition 4.2. Let A  and 2  be K-projective K-algebras with A 
semi-simple. In the situation (s/4A,Â s ) we have isomorphisms

H n(X,A ®A B) Tor£®**(A9B).

Similarly, in 2.8a, we replace (I\y4) by (A*,A). We obtain
Proposition 4.3. Let A  and 2  be K-projective K-algebras with 2  

semi-simple. In the situation (AB^,AC^) we have isomorphisms

H n(A,Homs (B,C)) *  E x t£ .*S(2?,C).

Replacing (A,2 ) by (K,A) in 4.2, and 2  by K  in 4.3 we obtain
Corollary 4.4. I f  A  is a K-algebra with K  semi-simple, we have the 

isomorphisms
H J A , A ® K B) a* Tor£ (B,A) (a A,Ba )

H» (A,Horn* (5,C) ~  Ext* ( 5 , 0  (AJJ,AC).
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Remark 1. Throughout this discussion we have treated A as a left 
Ae-module and thus regarded A e as a left augmented ring. We could 
regard A e as a right augmented ring with augmentation p\pi ® y*) =  ypi, 
and accordingly regard A as a right Ae-module. One then obtains the 
same homology and cohomology groups H n(A,A) and H n(A,A), because 
these are the satellites of H0(A,A) and H °(A,A ) whose description is 
independent of the choice of p or p as augmentation. If A is com­
mutative then p =  p .

Remark 2. The assumption that A is semi-simple may be replaced 
without any loss of generality by the assumption that A is a field. Indeed, 
a commutative semi-simple ring A is a direct sum Kx +  • • • +  Kn of 
fields. This induces a decomposition A =  A x +  * * * +  Aw of any 
A-algebra A into a direct sum of Ar algebras A* =  A*A. For the 
algebra A e we then have a decomposition A e =  A{ +  • * * +  A*, where 
A\ =  Ai A* =  KiAe. These direct sum decompositions induce 
similar direct sum decompositions for ExtA, ExtA*, etc.

5. THE HOGHSCHILD GROUPS A S FUNCTORS OF A

Let A and T  be AT-algebras and cp: A -> T  a AT-algebra homomor­
phism. Then (p induces a homomorphism (pe: A e -> P .  More generally 
let A be a ^-algebra and T an L-algebra. Consider a pair of ring 
homomorphisms

<p: A ->  T, y ) :  K ^ L

such that (p(kX) =  \p{k)cp{X), k  e K, X e A. Then cp induces a homo­
morphism cpe of Ae =  A ®x  A* into Te =  T 0 ^  T* such that the 
diagram

Pr
is commutative. We are thus in the situation described in viii,3 for 
augmented rings. Therefore for each two-sided T-module A (which 
using (p may also be regarded as a two-sided A-module) we have the 
homomorphisms

(1) F*: H n(A,A) -> H n(T,A)

(2) F H n(r,A )-^H n(A,A).

In this sense, H n{A,A) is a covariant functor of A while H n(A,A) is 
contravariant in A.

A 5 ► A

<Pe V
p — > r
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The mapping theorem viii,3 .1  gives necessary and sufficient con­
ditions in order that F% and F* be isomorphisms. We shall apply this 
theorem to the case when T is obtained from A by an extension of the 
ground ring from A  to L . Thus we suppose that A and L  are A-algebras, 
L  is commutative, r  =  I 0 z  A, ( p { X ) = \ ®X \  and y ) ( k )= k l€ L .  
We have

(L  ® K A )e =  (L ® K A) ® L {L A)* ^  (L  ® k  A) ® l (L ® k  A*)

^  L ® K A  ® K A* =  L ® K Ae.

We may therefore apply 1.1 with A ,Q replaced by Ae,A. If A is A-
projective then T o rf (L,A) =  0 for n >  0, so that we obtain

P roposition 5.1. I f  the K-algebra A  is K-projective and L  is a commu­
tative K-algebra, then fo r  each two-sided L  ®K A-module A we have the 
isomorphisms

Fn: Hn(A, A) ^  HJJL ®K A, A),

Fn: H n(L ® K A, A) & H n(A, A ).

Further, i f  X  is a A e -projective resolution o f A  then L ® K X  is an(L ® K A y-  
projective resolution o f L  ® K A.

We should remark here that since L ® K A  is regarded as an L-algebra, 
the left operators of L  on A must coincide with the right operators of L  
on A.

Proposition 5.1 may be applied when A is a field because then A is 
always A-projective. If L  is a field extension of K, we can then say that 
the homology and cohomology groups remain unchanged under an 
extension of the ground field.

Let A and T be two A-algebras. The direct sum A +  Y  with multiplica­
tion and operators defined by

(>Wi)0*2>72) =  (^2>7i72)> K K y) =  (kkjcy)

is then again a K-algebra 2 , called the direct product of A and Y . If  eA 
and ev are the unit elements of A and T, then (eA,er ) is the unit element 
of 2 .

We consider the homomorphisms 90: 2 - ^ A ,  ip: E ^ T  given by 
(p ( fy ) =  A, xp(hy) =  7- These are A-algebra homomorphisms which 
induce homomorphisms

(pe: Ee -> Ae, ipe: Ee -> Ye.

Therefore every two-sided A-module A may be regarded also as a two- 
sided 2-module. Similarly every two-sided T-module A ' may be regarded 
as a two-sided 2-module. Consequently A  +  A ' is a two-sided 2-module.
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Let A be a two-sided 2-module. We introduce the module 
eA ^ eA =  A^4A which is a two-sided A-module. It is easy to see that 
A A A  may be identified with HomSe (Ae,A) and with A A e. We 
further note the following identities

c  ®s. c^ + ^ '^ A C A + rcr) ®S6( i+ i> A C A  ®A, ^ + r c r  ®r« a '

H o m S e (A + A \C )  =  H o m S e ( , 4 + , 4 ' , A C A + r c r )

=  HomA« (,4,ACA) +  Homr e (A \Y C Y )

in the situation (a Aa
P roposition 5.2. A two-sided A-module A is A e-projective i f  and only 

i f  it is -projective.
P roof. For any 2 e-module C we have Homs<5 (A,C)=  HomA« (A, A C  A). 

Assume A is Ae-projective. Since ACA is an exact functor of C it follows 
that HomSe (A,C ) is an exact functor of C, so that A is 2 e-projective. 
Assume now that A is 2*-projective. If  C is any Ae-module then 
HomSe (A,C ) =  HomAe (A,C ). Thus HomA« (A,C ) is an exact functor 
of C, so that A is Ae-projective.

T heorem  5.3. (Additivity theorem). I f  X  is a A e-projective resolution 
o f A  and Y  is a V6-projective resolution o fY , then X  +  Y  is a Y*e-projective 
resolution o f  2  =  A +  Y. Further fo r  any two-sided 2 -module A

(3) H n(Z,A) H J £ ,A A A  +  YAY) ** H n(A ,A A A )  +  H n(Y ,Y A Y ),

(4) H n(Z,A) ** H n(L ,A A A  +  YAY) & H n(A ,A A A )  +  H n(Y,YAY).

P roof. By 5.2, X  and Y  are 2 e-projective, thus X  +  Y  also is 
2 e-projective. Since H (X  +  Y ) =  H (X) +  H (Y ) it follows that X  +  Y  
is a 2 e-projective resolution of 2 . We have

A ®xe(X+ Y) =  (A A A + Y A Y ) ® j..(X +  Y)
=  A^4A ®Ae X + Y A Y  ® re Y,

Homs « (X +  Y,A) — HomSe (X +  Y ,A A A  +  YAY)
=  HomAe (X ,A A A ) +  HomP  ( Y,YAY)

Thus passing to homology we obtain the desired isomorphisms (3) and (4).
Corollary 5.4. I f  A is a two-sided A-module then <p: 2  -> A induces 

isomorphisms
H n(Z,A) nt H n(A,A)

H n(A,A) & H n(L,A).
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6. STAN DA RD  COMPLEXES

As was said in §4 the homology and cohomology groups of a 
ZT-algebra A are usually computed using a A*-projective resolution of A. 
The existence of such resolutions and their uniqueness up to a homotopy 
equivalence are guaranteed by the results of v ,l. We shall describe here a 
construction which to each ZT-algebra A assigns an acyclic left complex 
5(A) over A as a left Ae-module. If A is /T-projective then 5(A) will be 
a Ae-projective resolution of A. In addition, the complex 5(A) will be a 
functor of A.

For each integer — 1, let 5 W(A) denote the (n +  2)-fold tensor 
product (over K) of A with itself. Thus 5_x( A )=  A, S n+1( A )=  A ® KS n( A). 
We convert 5 n(A) into a two-sided A-module by setting

(^  ® y*)(A0 ® X1 ® • • • ® Xn ® Aw+1) = ( / a 0) ® X1 <g> • • • ® Xn ® (An+1y).

We define a ZT-homomorphism

sn- S n(A ) -+ S n+1(A)

by the formula sna =  I a, a e S n( A). Clearly sn is a A-homomorphism 
for the right operators. Further, setting tn{X ® a )=  Xa we obtain a map 
tn: 5 W+1(A )-> 5 W(A) such that tnsn =  identity. Thus sn is a mono­
morphism.

We shall now define for each n ^  0 a left A-homomorphism 

dn: 5 w(A ) -> 5 n_1(A)
such that

(1) d0(A ® fx) =  X[jl € A

(2) dn+]Snx  +  sn_xdnx  =  x  for xeS 'JA ), r£>0.

It is immediate that these conditions determine dn by induction; given 
dn, the homomorphism dn+1 is determined by (2) on the image of sn; 
since the image of sn generates 5 n+1(A) as a left A-module, dn+1 is unique. 
The following closed formula for dn can easily be seen to verify (1) and (2)

(3) dn(XQ® - ■ -® X n+1) =  2  ( - 0 %  ® ® (M m ) ® ® K+v

We further see from this formula that dn also is a right A-homomorphism. 
Thus dn is a Ae-homomorphism.

We now prove that dn_xdn — 0 for n >  0. For n — 1 this follows from 
the associativity relation (20A1)22 =  ^0( ^ 2) *n A. For n >  1 we argue by 
induction on n using (2). Using (2) we compute

d n d n + l ^ n  d n  d n S n__]dn  ^ n —2 ^ n —l^ n *
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Consequently dndn+1sn =  0. Since the image of sn generates 5 W+1(A) as a 
left A-module, it follows that dndn+1 =  0.

We observe that 50(A) =  A ® A coincides with A ® A* =  A e as a 
two-sided A-module; further the map d0: 50( A) -> 5_x( A) is precisely 
the augmentation p: Ae -> A. It follows that 5(A) =  2  S n(A) with the

differentiation dn and the augmentation dQ =  p is a left complex over the 
Ae-module A. Relations (2) prove that this complex is acyclic.

It is frequently convenient to write 5 n(A) in the form

S n(A) — A ® K 5n(A) (g)K A  =  Ae

where 5 0(A) =  /£, and Sn(A) for « >  0 is the ^-module obtained by 
taking the w-fold tensor product of A over K . This form shows more 
explicitly the operators of A e on 5„(A).

If A is /^-projective, then by 2.5, Sn(A) is /^-projective and, again by
2.5, 5 W(A) is Ae-projective. Thus in this case S(A) is a Ae-projective 
resolution of A. This is the standard complex of A. It is clear how a 
map cp: A -> T induces a map S(q>): 5(A) -> 5(T).

In computing the homology groups we use the identification

A ®A« 5 W(A) =  A ®A« A e <S>k  5n(A) =  A 5W(A).

Thus H n(A,A) are the homology groups of the complex A ®K 5(A ) with 
differentiation

dn(<* ® ® ® An) =  aAi ® A2 (g) • * • ®

+  2  (— lYa ® h  ® • • * ® 'Mi-f1 ® ' * ’ ®
0 <i<n

+  (—l)nA„a ® ^  ® -  • ®

In computing the cohomology groups we use

HomAe (5W(A)„4) -  HomAe (A e ® 5W(A), A) =  HomA (5 W(A)„4).

The elements of the latter group are called n-dimensional cochains, and are 
AT-linear functions of n variables in A with values in A. The “coboundary” 
d f of an H-cochain /  is

( W i .  • • * 5 ^ T l+ l)  ^ l / ( ^ 2 >  • • •  9 ^ n + 1 )

+  2  (—1)*/(^1> • • • 5 • • • » ^n+l)
0<£<w + l

+  ( - l ) w+1/(A i,. . . ,  Aw)An+1.

This formula shows that the cohomology groups coincide with those 
defined by Hochschild.
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There is a very useful variant of the standard complex 5(A) called the 
normalized standard complex N (A). We define N n(A) =  A e N n(A) 
where N 0(A) =  K  and N n(A) for n >  0 is the w-fold tensor product over K  
of the A-module A ' =  Coker (A -> A) with itself. The natural A- 
epimorphisms A - > A '  induces A-epimorphisms Sn( A ) ^ N n(A) and 
Ae-epimorphisms 5 n(A) -> N n(A). The operators sn and dn pass to the 
quotients and yield similar operators in N{A) =  2  Nn(A) with (1) and (2) 
still satisfied. Thus N(A) also is an acyclic left complex over A. If  A ' 
is A-projective, then N(A) is a Ae-projective resolution of A.

If A0 ® • • • 0  Xn+1 e S n(A) we denote by A0[Al5. . . ,  AJAW+1 the 
corresponding element of N n(A). For A0 =  1 (resp. Xn+1 =  1) we write 
simply [A1?. . . ,  A JAW+1 (resp. A0[21?. .  . ,  A J ) . We thus have the boundary 
formula

dn[Xi , . . .  , Xn] =  X1[X2, . .  . , AJ +  2  ( ~ • • • » • • • >
Ocicw

+  (“  • • • >
The above convention applies also in the case n =  0. The symbol [ ] 
stands then for the unit element of A 0(A) =  K. Thus the element 
A0 ® Xx e *S*0(A) =  A0(A) will be written as A0[ ]XV With this convention 
the boundary formula above yields

d\[X] =  A[ ] — [ ]A.

The notation just introduced will also be used for the non-normalized 
complex 5(A). Thus the symbol [Xl9. . .  , A J  will be ambiguously 
regarded as representing elements of either 5(A) or N (A). However it 
must be remembered that [Al5. .  . , A J  regarded as an element of N( A) is 
zero whenever one of its coordinates Xt is in the image of K  -> A.

7. DIM ENSION

Let A be a A-algebra, A e its enveloping algebra. We shall be con­
cerned with the projective dimension of A as a left Ae-module. According 
to the conventions introduced in vi,2 this integer (or +oo) is denoted by 
dimAe A or simply by dim A. This coincides also with the projective 
dimension of A as a right Ae-module. The relation dim A <Ln means, 
by definition, that there is a Ae-projective resolution A of A such that 
X k -= 0 for k  >  n (i.e. A is a complex of dimension <1 ri). It follows from 
vi,2.1 that this is equivalent to

H n+\A ,A )  =  E x t^ t1 (A, A) =  0 

for all two-sided A-modules A.
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Proposition 7.1. Let A  be a K-projective K-algebra and L  a commuta­
tive K-algebra. Then

dim (L ® K A) dim A.

I f  further the natural mapping K ->  L  is a monomorphism o f K  onto a
direct factor o f L  {as a K-module) then

dim {L A) =  dim A.

P r o o f . The first inequality follows directly from 5.1. To prove the 
second part, consider a ^-homomorphism o : L ->  K  such that the 
composition K ->  L -> K  is the identity. Let A be any two-sided A- 
module. Then L ® K A may be regarded as a two-sided L  ® K A-module, 
and by 5.1

H n{L ®K A,L A) gh H n(A ,L  (&K A).

Since the composition of the homomorphisms

H n(A,A) -> H n(A ,L  ® K A) -> H n(A,A)

is the identity it follows that the relation H n(L A ,L  <g>K A) =  0
implies H n(A,A) — 0. Thus dim A <1 dim (L ®K A).

Corollary 7.2. I f  A  is an algebra over a commutative field K, and L
is a commutative field containing K , then

dim {L ® K A) — dim A.

Proposition 7.3. Let A  and V be K-algebras and A  +  T their direct 
product. Then

dim (A -f  T) =  max (dim A, dim T).

This follows directly from 5.3 and 5.4.

Proposition 7.4. Let A  and T be K-projective K-algebras. Then

dim (A ®K T) <1 dim A +  dim T.

I f  further K  is a field and A  and T are finitely K-generated then

dim (A ® K T) =  dim A +  dim T.

P r o o f . Let A  be a Ae-projective resolution of A, of dimension p  
and let 7  be a P-projective resolution of T, of dimension q. Since 
Tor^f (A,T) == 0 for n >  0 we may apply 2.7, to deduce that X  ® K 7 is a 
A e ® K P-projective resolution of A T. Since A e Te^ {  A  <g>K T)e 
and since X  ® K Y  has dimension <Lp +  q, the first inequality follows.
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Now assume that K  is a field and that A and T are finitely A-generated. 
Then A e and Fe are also finitely ^-generated and therefore are Noetherian. 
The projective resolutions X  and Y  may then be chosen so that each X n 
(resp. Yn) is Ae-free (resp. T e-free) on a finite base. Then for any two- 
sided A-module A and any two-sided T-module A ' we have the natural 
isomorphisms

H o m A e  (X,A) (S)j£ H o m r e (Y,A  ) ^  H o m ^ ^ p ^  (X  Y,A A )•

Passing to homology this yields an isomorphism

H n( HomAe (X,A) ® K Homr . ( Y,A ')) ^  H n(A ®K T, A ® K A ').

Since K  is a field, it follows from iv,7.2 that the mapping a yields an iso­
morphism of the left hand side with

2  7 P ( H o m A e (X,A)) ® K H Q(R o m Te ( Y,A ' ) ) .

p + q=n

Thus, finally, we obtain an isomorphism

2  H V(A,A) ® K H%T,A') ** H n(A  ® K I \  A ® K A').
p + q=n

Therefore, if H P(A,A) ^  0 and H q{F,A') ^  0 then since K  is a field 
H P(A ,A ) ® K H Q(F ,A ')^0  and consequently H p+Q(A  ®K F,A ® K A ')^ 0 .  
Thus dim (A ® K T) I> p  - f  q.

Proposition 7.4 includes a theorem by Rose (Amer. Jour, o f Math. 74 
(1952), 531-546).

We now propose to compare dim A with the various other dimensions, 
namely: l.gl.dim A, r.gl.dim A, l.gl.dim A*, r.gl.dim A e. Since A6 is 
isomorphic with its opposite ring (Ae)*, the last two numbers are equal and 
will be denoted simply by gl.dim A e.

Proposition 7.5. For any K-algebra A

dim A ^  gl.dim A e.

I f  further A  is semi-simple and K-projective then

dim A =  gl. dim A e.

P roof. The first part follows directly from the definition of the 
global dimension. To prove the second part we use 4.3 with 2  =  A. 
We obtain an isomorphism

H n(A, HomA (B,C)) ^  E x t^  (B,C)

for any two-sided A-modules B  and C, where HomA (B,C) is the group of 
right A-homomorphisms B ^  C. This implies gl. dim A e <1 dim A.
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P roposition 7.6. I f  A  is a K-algebra with K  semi-simple then

l.gl.dim A <1 dim A, r.gl.dim A dim A.

Proof. We apply 4.3 with S  =  K. This yields

H n( A, HomK (B,C)) &  Ext^ (.B,C)

for any left A-modules B and C. This implies l.gl.dim A <1 dim A.
We shall see in x,6.2 numerous examples where the inequalities of 7.6 

are replaced by equalities.

We now proceed to discuss in greater detail algebras for which 
dim A =  0, i.e. algebras A which are Ae-projective.

Proposition 7.7. In order that dim A — 0 it is necessary and sufficient 
that there exist an element e o f the two-sided A-module A  ® A  (iso­
morphic with A e =  A  ® A*) such that he =  eX (i.e. e is invariant) and that 
under the mapping x  0  y  -> xy the image o f e in A  is 1.

P roof. If A is Ae-projective, there is a Ae-homomorphism/ :  A -> A e
f  p

such that the composition A — ► A 6 — ► A is the identity. Then e — f  1 
has the desired properties. Conversely, given an element e with the 
properties listed above, the map fX  — Xe is a Ae-homomorphism A -> A e 
such that p f  is the identity. Thus A is Ae-projective.

Proposition 7.8. Let M n(K) be the algebra o f square matrices o f  order 
n with coefficients in K. Then dim M n(K) — 0.

Proof. We shall apply the criterion of 7.7. Let eu be the matrix with 
1 at the intersection of the z-th row and y-th column, and with zero 
everywhere else. Then ^ e u is the unit matrix. Clearly the elements

i

eu constitute a K-base of A =  M n(K). Consider the element 
e =  ® eu e A  0 K A . Then

i

ers  ̂ ^rl ^  els rs

2 e aeu  =■ =  unit matrix.
i i

Thus the conditions of 7.7 are fulfilled and dim A =  0.
T heorem 7.9. Let A  be a K-algebra with K  semi-simple. Then 

dim A =  0 i f  and only i f  A e is semi-simple.
P roof. If dim A =  0 then, by 7.6, A is semi-simple. Therefore by

7.5, gl.dim A e =  0, i.e. A e is semi-simple. Conversely, if A e is semi-simple 
then, by 7.5, dim A =  0.

T heorem 7.10. Let K  be a commutative field and A  a K-algebra, 
finitely K-generated. In order that dim A =  0 it is necessary and sufficient 
that A  be separable (i.e. that L ®K A b e  semi-simple fo r  every commutative 

field L containing K).
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P roof. Assume dim A =  0. Then, by 7.1, dim (L ® K A) =  0 and 
therefore, by 7.6, L ® K A is semi-simple. Thus A is separable.

Conversely assume that A is separable. Then it is well known (see 
Albert, Structure o f Algebras, New York, 1939, p. 45) that there exists a 
commutative field L  containing A which is a splitting field for A, i.e. such 
that L ® K A is isomorphic to a direct product Ax +  • • • +  Ar of full 
matrix algebras over L. By 7.8 we have dim A* — 0 so that 7.3 implies 
dim (A! +  * * * +  Ar) =  0. Thus dim (L ® K A) =  0 which, by 7.2, 
implies dim A =  0.

To prove the existence of algebras of dimension n for an arbitrary 
integer n we consider the algebra A =  K[xl9 . . . , x j  of polynomials in 
the letters x l9. . . ,  x n. We have shown in vm, 4.2 that dimA K =  n 
provided A is converted into a A-module by means of e0: A A, £0*i —
If e : A - > K  is any A-algebra homomorphism, then the substitution 
x i x i ~  exi yields an automorphism <p of A such that ecp — e0. There­
fore dimA A =  n also with respect to e.

Now we have
A e =  A  ® K A  & K[xl9 . . . ,  x n9y l9 . . . , y n] =  A  [yl9. .  . ,  y n]. The 

map rj: A e -> A yields a A-algebra homomorphism rj: A[yl9. . . ,  y J  -> A 
(actually ^  =  x4). Thus dimAeA =  «, i.e. dim A =  n.

Since dimA K =  n9 we have gl.dim A ^> n ;  if further K  is semi-simple, 
then, by 7.6, gl.dim A ^  dim A =  n. Thus we have

T heorem 7.11. Let K  be a commutative ring and A  =  K[xl9. .  . ,  x n]. 
Then

dim A =  dimA K  — n.
I f  K  is semi-simple then

gl.dim A =  n.

This supplements theorem viii,6.5 in which K  was assumed to be a (not 
necessarily commutative) field and only graded modules were considered.

EXERCISES

1. In the situation (A-r^>^A-i:>rQ:) where A, T, S  are A-algebras, 
establish the isomorphism

HomA 0r (A , Homs (B,C)) ^  HomA0S (B, Homr  (A9C)).

Prove that if A, T, S  are A-projective and

Ext” (A,C) = 0 =  E xtl (B9C) for n >  0
then

ExtA 0r (A9 Homs (B9C)) & ExtA<8.s (B, Homr  (A,C)).
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2. Let A =  FK(xl9 . . . , x n) be the free K-algebra generated by 
x l9 . . .  9 x n. Show that any crossed homomorphism / :  A -> A is deter­
mined by its values on x l9. . .  , x n and that these may be chosen arbitrarily. 
Deduce from this that J  is Ae-free with the elements x t ® 1 — 1 ® x f  9 
i =  1 , as base. Show that dim A =  1 for n >  0.

3. Show that in the normalized standard complex N (A) the “contract­
ing” homotopy s has the form

s{X[Xl9. . . 9Xn]X')=  [2A , • • • , AJA'

and that the sequence

0 —  A_i(A) - H  Nq( A) -------- ► N n( A) N n+1( A) —  • • •

is exact. As a consequence show that dn (n >  0) maps Ker sn 
isomorphically onto Im dn.

4. Given a K-algebra A consider the K-algebra A+ =  K +  A with 
multiplication and operators given by

(^iAX^2>^2) =  (^i^2» ^1 2̂ 4" ^2 1̂ “I_ ^1^2) > k f(k9X) =  (k 'k9k'X).

Show that each two-sided A-module may be regarded as a two-sided 
A+-module. Compare the complexes *S(A) and N{A+). Prove that if 
A is K-projective and A is a two-sided A-module, then

H n(A+,A) ** H n(A ,A )9 H n(A+,A) H n(A,A).

5. Let A and T  be K-algebras. Show that if A is K-free and dim A =  0 
then dim (A T) — dim T. [Hint: assuming H n(T, C) ^  0 show that 
H n( A  ®K T, H om ^ (A e, C)) ̂  0.]

6. Let A be a K-algebra. Show that dim A =  0 if and only if 
H \ A 9J)  =  0.

7. Consider the K-algebra with the basis 1, a, r with multiplication 
aa — a, rr — 0, ar =  r, r a — 0. Show that dim A — 1.

8. Using the results of vi,5 establish the homomorphisms

(1) H n(A, Horn*- (.A9K )) -> H om ^ (.Hn(A ,A),K )

(2) H n{A, Horn* (.A,K )) -> Homz  (H n(A,A),K).

Show that if K is a field then (1) is an isomorphism. If K is a field and A 
is finitely K-generated then (2) also is an isomorphism.



C H A P T E R  X

Supplemented Algebras

In troduction . The notion of a supplemented algebra is a very special 
but very important case of an augmented ring. The homology theory of 
supplemented algebras includes both the homology theory of groups (or 
more generally, of monoids) and of Lie algebras (the .latter will be treated 
in Ch. xiii).

The homology groups H n(A ,A ) of a supplemented algebra A are 
defined for each right A-module A ; the cohomology groups H n(A ,C ) are 
defined for each left A-module C. In the most interesting case when the 
algebra A is X-projective, these homology and cohomology groups may 
be included in the Hochschild theory of Ch. ix. Theorem 2.1 shows 
precisely how a complex which is constructed to be used for the computa­
tion of the Hochschild groups of A, may be used to compute the homology 
and cohomology groups of A, as a supplemented algebra. This procedure 
is applied to the standard complex; in the case A is the algebra A{n) of a 
group IT, we find the “non-homogeneous” complex introduced by 
Eilenberg-MacLane (Proc. Nat. Acad. Sci. U.S.A. 29 (1943), 155-158).

For some particular monoids and groups, it is more convenient to 
use complexes especially constructed rather than the standard complex. 
Some such examples are given in § 5; the cyclic groups will be discussed 
in xn,7.

In § 7 we study some relations between algebras and subalgebras, as 
well as between groups and subgroups.

1. HOMOLOGY OF SUPPLEM ENTED ALGEBRAS

A A-algebra A together with a j^-algebra homomorphism e: A  -> K  is 
called a supplemented algebra. Clearly the kernel I  of e is a two-sided 
ideal, and A is a left and right augmented ring (with e as augmentation). 
If iy  K  A is the map defining the X-algebra structure in A then 
erj =  identity. It follows that K  may be regarded as a subalgebra of A 
with r\ as inclusion map. Then A (as a right or left ^-module) is the 
direct sum K  +  L

A supplemented algebra being a special case of an augmented ring the 
definitions introduced in vm ,l apply. In particular, the homology groups

182
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Tor£ (A,K) and cohomology groups ExtA (K,C) are defined for any right 
A-module A and any left A-module C. These may be computed as 
H n(A ®A X ) and H n(HomA (I,C )) using any A-projective resolution X  
of K  as a left A-module. All the facts listed in viii,1 apply with Q 
replaced by K.

Using the augmentation map s : A — we may convert any A- 
module A into a left (or right) A-module eA (or A e) by setting la  =  (el)a 
(or a l  =  (el)a). We then say that the operators of A on eA are trivial. 
If A  is already a right (or left) A-module then eA (or A e) is a two-sided 
A-module, i.e. a left Ae-module. In particular K  has trivial A-operators.

Using this process, several definitions made for two-sided modules may 
be translated for A-modules. For instance, let C be a left A-module. An 
element c e C will be called invariant if c as an element of Ce is invariant in 
the sense of ix,4, i.e. if 1c =  cl. Since c l =  c(el) =  (el)c, it follows that 
C is invariant if and only if (1 — el)c =  0 for all A € A or equivalently if 
I c =  0. The invariant elements of c form a A-submodule CA; this is 
the largest submodule of C with trivial A-operators. Formula (2a) of 
viii, 1 now can be interpreted as HomA (K,C) =  CA. On the other hand it 
follows from ix,4 that the 0-th Hochschild cohomology group H°(A,Ce) 
also coincides with CA. We thus obtain isomorphisms

(1) HomA (.K,C) a; H°(A,Ce) fe CA.

Similarly if A is a right A-module, then we observe that A I =  (eA)J 
where J  is the kernel of the augmentation fi: A e -> A. We therefore 
obtain isomorphisms

(2) A ®A K  & H0(A ,eA) fe Aa

where Aa  =  A/AI. Clearly A I  is the largest A-submodule in A such that 
the operators of A on the quotient module are trivial.

We return to the consideration of a left A-module C. Following the 
definition made in ix,3 a crossed homomorphism / :  A -> C (or rather 
/ :  A Ce) is a ^-homomorphism satisfying

f ( i i i 2) =  i j ( i 2) +  ( A ) ( £a2).

It is easy to see that each such crossed homomorphism admits a unique 
factorization

A — ►/— ► C

where g is a A-homomorphism and p  is the projection operator p l —l —el. 
The crossed homomorphism /  is principal if and only if the homo­
morphism g  admits an extension to a A-homomorphism A -> C.



184 SUPPLEMENTED ALGEBRAS [Ch a p . X

Combining this with ix,3.2 we obtain an isomorphism 

HomA (/,C) ^  HomAe (J,Ce).

Further, viii,1 (3a) and ix,4.1 combine to give

(3) Extl(K ,C )  ^  W ( A 9Ce).

Both groups are isomorphic with the group of all crossed homomorphisms 
A C reduced modulo principal crossed homomorphisms.

The 0-th homology group A ®A K  and the 0-th cohomology group 
HomA (K,A) both reduce to the module A, if A has trivial A-operators. 
The earlier discussion of the group ExtA (K,A) shows that this is the group 
of all crossed homomorphisms/ :  A -> A (i.e. K-homomorphisms satisfy­
ing /(AjAg) =  (e^X/Ag) +  (/2i)(eA2)), all the principal crossed homo­
morphisms being zero. For the 1-dimensional homology group we have 
by (3) of vm, 1

Tor^ (.4 ,K ) f* Ker (A ®A / - *  A) at Ker (A ®K (K  ®A /)  ■ A ® K K).

Since the homomorphism K ®A I - ^  K  is zero we have Torf  (A,K) 
&  A ® K (K  0 A 7). By (9) of viii,1  we have K  ® A I  &  I  112. Thus we 
obtain

(4) T orf (A,K) ** A ® K / / / 2 

if A has trivial A-operators.

Consider supplemented algebras
e e'

A — >K, T —+L.

A map of the first algebra into the second is a pair of ring homomorphisms 
(p: A - * I \  y>: K->  L  such that sq> =  yjs and q>(JkX) =  (yk)((pX). This 
places us in the situation discussed in viii,3, and we obtain homomorphisms

F ’ : Tor^ (A,K) T orJ (A,L)

F,: Extp (L,C) -> Ext^ (K,C)

defined for any right T-module A and any left T-module C. The case
that most commonly applies is that of K  =  L, y> =  identity.

e
A  somewhat different case is the following one. Let A — ► K  be a 

supplemented K-algebra and let L  be a (not necessarily commutative) 
K-algebra. By extending the ground ring we obtain an augmented ring



This places us in the situation discussed in ix ,l.l and we obtain homo­
morphisms

(5) Tor* (A ,K )->  Tor™ A (A,L)

(5a) E x tl0A(L ,C )-> E x tl(^ ,C )

for any right L  A-module A and any left L  ®.K A-module C. 
Applying ix ,l.l we obtain

Proposition 1.1. I f  the supplemented K-algebra A is K-projective 
then (5) and (5a) are isomorphisms. Further i f  X  is a A-projective resolution 
o f K  then L ® K X  is an L ® K A-projective resolution o f L .

If the ring L  is commutative, then L  0  K A  is a supplemented L-algebra 
(obtained from A by covariant extension of the ground ring). Proposition
1.1 then asserts the invariance of the homology and cohomology groups 
under such extensions.

2. COMPARISON WITH HOCHSCHILD GROUPS

Formulae ( 1)—(3) of the preceding section show that in low dimensions 
the homology and cohomology of a supplemented algebra A coincide with 
the Hochschild homology and cohomology groups of A. To carry out 
this comparison more systematically we consider the diagram

A '- ^ - h. A

q> e

A   >K
e

where <y(A 0  y*) =  X(ey). Since e(p(X 0  y*) =  e(Ay) =  ep(X 0  y*), the 
diagram is commutative, and thus the pair (9o,e) is a map of the augmented 
ring A e into the augmented ring A. We are thus in the situation treated in 
viii,3, and we find homomorphisms

F'p: H n(A , eA) =  T o r f  (eA ,A) -> Tor£ (A,K)

F9: E x tl  (K,C) ^  Ext^e (A,Ce) -  H n(A,Ce)

for a right A-module A and a left A-module C.
T heorem  2.1. I f  the supplemented K-algebra A  is K-projective, then 

F* and F^ are isomorphisms, and fo r each A e-projective resolution X  o f  A, 
the complex X  0 A K is a A-projective resolution o f K  =  A 0 A K a s a left 
A-module.
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We begin with
Lemma 2.2. Let B be a two-sided A-module. Then the homomorphism

r : eA  ®Ae B ->  B ®A K

given by t(A ® b) =  Xb ® 1 w an isomorphism.
Indeed, define a homomorphism or: i? ®a  A ->  eA  ®A« 2? by

<x(Z> ® k) =  k  ® b. Then

ctt(A ® Ae b) =  o(Xb ® A 1) =  1 ® Ae 2Z> =  A ® Ae Z>

t c t ( Z >  ®  a  k) =  T(k ® Aeb) =  kb  ®  A  1  =  Z> ® A  k .

Thus r  is an isomorphism.
We now return to the proof of 2.1. It suffices to verify conditions

(i) and (ii) of the mapping theorem viii,3. 1. Applying the lemma with B =  A  
we find that condition (i) holds. Next we take B =  X  where X  is a A e- 
projective resolution of A. Then

T o r f  (£A,A) =  H n(cA  ®Ae X )  «  H n(X  ®A K).

Since A is A-projective, it follows from ix,2.4 that X  is A*-projective,
i.e. X  is A-projective as a right A-module. Therefore H n(X  ®A K ) 
=  Tor£ (A,AT) which is zero for n >  0. This proves condition (ii) of the 
mapping theorem and thus completes the proof of theorem 2.1.

Theorem 2.1 reduces completely the homology and cohomology theory 
of a A-projective supplemented A-algebra to the Hochschild theory. This 
will allow us to replace the notation Tor£ (A,K) by the homological nota­
tion H n{A,eA) for a right A-module A. To further simplify the notation 
we shall write H n(A,A) omitting e. Similarly for cohomology.

We may apply 2.1 to the standard complex S(A) or the normalized 
standard complex N( A) of ix,6 (note that the normalized standard complex 
may be used because A' =  A /K  & I  is A-projective as a A-direct summand 
of A). We denote the complexes S( A) ® A A and N (A) ®A A  by S(A,e) 
and N(A,e) respectively. To give an explicit description of N (A,e) note 
that JVn(A) =  A ® K N n{A) ® K A  so that N n{A,e) =  N n(A) ®A A 
=  A ® K N n( A). The differentiation operator in

N (A ,e )=  2  A ® K Nn(A)
n^O

is
dx[X] =  X — eX,

. . • , ^n] =  • • . , -j" 2  ( • • • > • • • >
0 <i<n
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We recall that the symbol [Ax, . . . ,  A J  (n 0) is ^-multilinear and is zero 
whenever A* =  1 for some i =  1 , . . .  , n. If this last condition is dropped, 
we obtain the (unnormalized) complex 5(A,e).

The whole discussion of this section could be repeated by regarding K  
as a right A-module and thus treating the supplemented algebra A as a 
right augmented ring. If A is A-projective then S(s, A) =  K  ®A 5(A) and 
N(e, A) =  K  ®A N(A) are A-projective resolutions of A as a right 
A-module.

We conclude this section by discussing the case when the coefficient 
module A (for homology and cohomology) has trivial A-operators, i.e. is 
simply a A-module.

P roposition 2.3. Let A be a supplemented K-algebra and A a K- 
module. Given a projective resolution X  o f A as a left A-module, define 
X  =  A ®A X. We then have natural isomorphisms

Tor£ (A,K) *  H JA  ® K X )

Ext^ (K,A) iv H n(HomK (X,A)).
P roof. W e have

T o i£  ( A , K ) =  H n(A ®A X ) =  H n((A ®K K) ®A X) «  H n(A ® IC(K <g>A X )) 

=  Hn( A ® K X).
A  similar proof applies to cohomology.

Applying the above result to the normalized standard complex N(A,e) 
(under the assumption that A is A-projective) we find the complex 
N(e,A,£)=  A ®A N{A,e) composed of modules N n(e,A,e)=  A ®A N n(A,e) 
=  A ®A A ®K jV*(A) =  N n(A). The differentiation operator in the 
complex

N{s, A ,e )=  2 N n(A)
n^O

IS
4 W  =  o,

K] +  20<i<^

+  •••

 > An_i](£An)-

dn[Xi , . . . ,  A J  —  ( e A ^ A g , . . . ,  A J  +  2  ( " I ) 4 [ ^ i >  • • • » *  • • ?
0<i<w

3. AUGM ENTED MONOIDS

We return to the discussion of monoids initiated in viii,2. Let II 
be a monoid, L  a ring (not necessarily commutative) and e: L(II) -> L  an 
augmentation of the ring L(II). As we have seen in viii,2, the augmenta­
tion is uniquely determined by a function II -> L  also denoted by e,

,(» ')  = (<*XO. . 1 = 1
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and whose values are in the center of L. The monoid II together with 
the augmentation function e : II -> L  is called an augmented monoid.

We shall show that for the purposes of homology theory, one may always 
assume that L  is commutative. Indeed, consider a factorization

of the augmentation e, where K is a commutative ring, p  is a ring homo­
morphism with values in the center of L,  and e is an augmentation 
function. Such a factorization always exists; it suffices to take K  — center 
of L.  The map fi defines on L  the structure of a K-algebra. It is then 
clear that L(II) may be identified with the tensor product of .K-algebras 
L ® K K(II). The augmentation e : L(H)  -> L  then becomes
L  ®  e :  L  ® K K(II) - >  L.  Since the elements x  e II form a K-base for 
K(II), it follows that K(II) is K-projective. We are thus in a position 
to apply 1.1, obtaining isomorphisms

for any right L(II)-module A and any left L(II)-module C.
Relations (1), (la) place us squarely in the theory of supplemented 

algebras. Since K(II) is K-projective, we may (in view of 2.1) regard the 
left sides of (1) and (la) also as Hochschild homology and cohomology 
groups. We shall use the notation H J J l9A) and H n(U,C) to denote the 
left sides of (1) and (la). This notation does not exhibit the ring K and 
the augmentation e : II -> K and will be used only if it is clear what these 
are. The group A is assumed to be a right K(II)-module, while C is a 
left K(II)-module. The augmentation ideal, i.e. the kernel of e : K(II)->K 
will usually be denoted by /(II).

We further minimize the role of K by using the expression “ II-module” 
instead of “K(II)-module” . Similarly we use the notation ® n , Homn , 
Tor” , Ext^ instead of ®£(n), Homx(n), T o rf(n>, Ext^(n).

The most important examples of augmentations in a monoid II are 
the following two: (1°) the unit augmentation ex =  1 for all x e H ;  
(2°) the zero augmentation ex — 0 for x e H ,  x  ^  1 and el — 1; this 
augmentation may be used only if the relation xx ' =  1 in II implies 
x  =  1 =  x ' (i.e. if no inverses exist in II). In the case of either of 
these two augmentations the ring K may be taken to be the ring Z  of 
integers.

The standard complexes S (A,e) and N (A,e) for A =  K(II) will be 
denoted simply by 5(11,e) and A(II,£). The description given in § 2 
need not be repeated. We only observe that the elements [xl9 . . . , x n],

U —  K - ^ L

(1)
(la)

T o r f n > (A,K) T o t f n > (A,L),

Extx(ii) (K,C) ^  Ext^(n) (K,C),
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x t e II, form a F(II)-basis for S n(U,e). The same applies to i^n(II,£), 
except that in AW(II,£) we set [xl9 . . . , x n] =  0 whenever one of the 
coordinates x t is 1 .

The functorial properties relative to the variable IT may be easily 
derived. Let II, II ' be monoids with augmentations e: II K, 
e': A map 90: I T - > n  is a multiplicative map such that
cpl =  1 and E(p= s'. This clearly induces a map cp: F (IT) -> K(H) 
of supplemented algebras, and thus yields homomorphisms

F*: H n( n \A ) - > H n(U,A)

Fyi H n(U ,C )-> H n(U \C )

where A is a right II-module and C is a left II-module.
As an application of the mapping theorem we obtain 
P roposition 3.1. In order that F* be an isomorphism fo r  all right 

H-modules A it is necessary and sufficient that
(i) F (II) ®n / K  & K  under the mapping x  ® k  -> s(x)k9
(ii) / / W(IT,F(II)) =  0 fo r n >  0.
I f  these conditions are satisfied then F^ also is an isomorphism for all left 
H-modules C. Further, fo r any Tl'-projective resolution X  o f K, the 
complex K(II) ®n / X  is a U-projective resolution o f K.

It should be noted that condition (i) is always satisfied when (p: IT ->  II 
is an epimorphism.

4. GROUPS

We assume here that II is a group. We first show that no generality 
is lost by assuming that the augmentation is the unit augmentation. 
Indeed, let e : II -> K  be any augmentation function. We denote by 
F(II,£) the F-algebra K(U) with the supplementation given by s and by 
K(U9i) the same algebra with the supplementation given by the unit 
augmentation /. The mapping <p\ F (II,£ )->  K(U,i) given by x ->  {sx)x 
for x  e II is then an isomorphism of supplemented algebras.

As a consequence we shall always assume that the augmentation is the 
unit augmentation. As a further consequence we shall always assume that 
K  =  Z  is the ring of integers. We shall therefore deal with the algebra 
Z(II) supplemented by e(2  zpxj) =  2  z% € x i € H. The augmenta­
tion ideal /(II) is then a free abelian group with the elements x  — 1 
as basis (x e II).

The standard complexes 5(11) and N(Yl) may be put in a somewhat 
different form by a change of basis. We introduce the symbols

m (x0, . . .  , x n) =  x0[x0 , xnl xx  J ;
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then

(2) x(x0, . . . , x n) =  (xx0, x x n)

(3) [xx, . . . , X n] =  (1 ,XX,XXX2, . . . ,  xx • • • x n)
n

(4) dn(x0, . . . ,  x n) =  2  (— • • •,  Xj , . . . ,  x j .
i = 0

It follows that S JU )  is the free group generated by the elements 
(x0, . . .  , x  J ,  x { e II with II-operators defined by (2) and with differentia­
tion given by (4). This form of the standard complex is known as the 
homogeneous form. The same applies to the normalized standard complex 
N(U) provided we set (x0, . . . ,  x n) =  0 whenever =  x t for some 
/ =  We observe that the differentiation operator does not
involve the operators of II and has the standard form encountered in the 
homology theory of simplicial complexes.

For low dimensions the homology and cohomology groups may be 
described as follows:

tf 0( IM )  =  A /A I=  An  is the factor group of A by the subgroup 
generated by the elements a(x — 1), a e A, x  e l l .

H °(U ,C )=  C n  is the subgroup of invariant elements of C, i.e. 
elements c with x c =  c for all x  eU .

i /^ I I  ,C) is the group of all crossed homomorphisms / :  I I -> C 
(i.e. all functions satisfying f{x y )  =  x(fy ) + fx ,  for x ,y  e II) reduced 
modulo principal crossed homomorphisms (i.e. functions of the form 
f x  — xc — c for a fixed c e C).

If II operates trivially on A (i.e. A u  =  A) these results simplify as 
follows

(5) H0( n ,A ) = A  =  H °(n,A )

(6) H \I l ,A )  ^  Horn (IM ).

Clearly Horn (II,A) may be replaced by Horn (II/ [IT,II],>4) where 
[II,II] is the commutator subgroup of II. In the case of trivial 
operators we can also calculate the group i/^ II ,^ ) . We have from 
formula (4) of § 1 that H fJ l.A ) A 0  ///2 where I  =  /(II). We 
establish maps

r . ///2->n/[n,n], r . n/[n,n] ^ / / / 2

by setting 9o(x — I) =  x, y x  =  x  — 1. Simple calculations show that we
obtain an isomorphism

(7) i/p ** n/[n,n].
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Thus we have

(8) t f i ( iM )  ^  a  ® n / [ n ,n j .

We shall now prove a proposition which shows that in some cases the 
homology and cohomology groups of a group are the same as those of a 
monoid contained in the group.

Proposition 4.1. Let II be a group and II ' a monoid contained in II 
such that each element o f  II has the form  x_1y, x  e IT, y  e II '. Then 
the homomorphisms

H n(U ',A ) -^ H n(U,A), i f w(II,C )->

induced by the inclusion map IT -> II are isomorphisms. Further, i f  
X  is a IT -projective resolution o f  Z, then Z(II) ®n , X  is a U-projective 
resolution o f  Z.

Proof. We apply 3.1. To verify that condition (i) of 3.1 is satisfied 
we must show that the relation z ® ir 1 — 1 0 i r  1 is valid 
in Z(II) Z  for each z e II. Let then z — x~xy, x  e II ', y e  II '. 
Then, writing ® for ®n ,, we have

z ® 1 =  x~xy  ® 1 =  x-1 ® y l  =  x_1 ® 1 =  x-1 0 x 1 = 1  ® 1.

To verify condition (ii) of 3.1 we must show that Tor™' (Z(U ),Z ) =  0 
for n >  0. Since Tor™' commutes with direct limits (vi,1.3) it suffices to 
prove that Z(II) is a direct limit of II'-projective right modules. Indeed, 
we shall show that Z(II) is the union of a directed family of submodules 
M s each of which is isomorphic with Z(IT).

For each .yel l  consider the map f s: I I '-> 11  given by f sx = s x .  
Since II is a group, f s induces a II'-isomorphism of Z (II') with a right 
II'-submodule M s of Z(II). Since s e M s, Z(II) is the union of the 
submodules M s. There remains to be shown that the family {Afs} is 
directed. Given s,t e II we have s~xt v_1w with v,w e II'. Thus 
sv~x — tw-1. Setting u =  sv-1 =  tw~x we have

sx — u(vx) e M u, tx  =  u(wx) e M u, x  e IT.

Consequently M s C M u and M t C M u so that the family {Ms} is directed, 
as required.

Corollary 4.2. Let H be an abelian group and II ' a submonoid 
o f  II generating I I . Then the conclusions o f  4.1 hold.

One fundamental difference between groups and monoids is the 
existence of the transformation cox — x_1 which yields an isomorphism

co: Z(II) ** (Z(II))*.
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This “antipodism” allows us to convert any right Il-module A into a 
left II-module by setting

xa =  a x -1.

It is because of this antipodism, that it is possible to build the whole 
homology and cohomology theory of groups using left n-modules 
exclusively.

5. EXAM PLES OF RESOLUTIONS

The standard complex 5(11) has the advantage of being defined for all 
augmented monoids II and being a co variant functor of the variable II. 
However, for each individual monoid II there are usually simpler II- 
projective resolutions of K  which lead more quickly to the computation of 
the homology and cohomology groups of II. We shall discuss here a 
number of such examples.

As our first example we shall treat simultaneously the following cases: 
II is the free monoid generated by a (finite or infinite) set of letters 

{xa} with any augmentation e : II -> K.
II is the free group generated by a set of letters {xa} with the unit 

augmentation II Z.
Let C be any left ^(Il)-module. It is easy to verify that each crossed 

homomorphism / :  II -> C is uniquely determined by its values on the
elements xa and that these may be arbitrarily prescribed in advance. In 
view of the 1-1-correspondence between crossed homomorphisms and 
^(n)-homomorphisms g : /(II) C it follows that each such homo­
morphism g  is uniquely determined by its values on xa — exa and that 
these values may be arbitrarily prescribed. It follows that the elements 
(xa — exa} form a Ar(II)-base of /(II) as a left Zf(II)-module. Thus 
/(II) is ZT(II)-free. Therefore the exact sequence

0 — > /(II) —  K(Il) K — + 0

yields a projective /f(II)-resolution of K. This implies the well known 
result:

H n(U,A) = 0 =  H n(U,C) for n >  1.

Following formula (9) of viii, 1 we have H fJ l.K )  =  Torp (K,K) & / / / 2. 
The identity xy  — 1 =  (x — 1) -f  (y — 1) +  (x — 1 )(y — 1) implies that 
in the module / / / 2 the images of the elements xa — 1 form a /T-base. Thus 
if {xa} is not empty this module is non-zero. This shows that

l.d im ^n) K =  1

if E[ is the free monoid (or group) on a non-empty base {xa}. Similarly 
r.dim^H) K =  1.
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Incidentally we have shown that if II is a free group generated by the 
letters {xa} then for each x  e II we have

X -  1 =  I  *«(*)(*« — 1)

with aa(x) € Z(U) uniquely determined. The functions aa are crossed 
homomorphisms II -> Z(1I) uniquely determined by the conditions 
a fx f )  =  l and a fx f )  =  0 for a ^  /?. The elements a fx )  are called the

dx
partial derivatives of x and are written as ^—.

dxx
Our next example is that of the f r e e  abelian m o no id  II generated by a 

finite set of letters x l9 . . .  9x n with an arbitrary augmentation e : U -> K. 
We introduce the elements x\ =  x { — ext of #(11). It is then clear that the 
ring K(U) may be identified with the ring K[x[ , . .  . , x'n] of polynomials 
in x [ , . . .  , xn with the augmentation given by e(x^) =  0. We thus fall 
into the case treated in v iii,4  and obtain the complex

•K(n) 0 A Eiy-!,. . . ,  y n)

where E(yl9. .  . , y f)  is the exterior #-algebra on the letters y l9 . . .  9 y n, 
with differentiation

d l x  ® y Vl- - -  y v)  =  2  ( -  iy +1M x, -  exP ) 0  y H ■ ■ ■ y ,  • • • y Pi.
1

In particular, the discussion carried out at the end of viii,4 applies.

The last case treated here will be that of the f r e e  abelian group  II 
generated by a finite set of letters x l9 . . .  9x n (with the unit augmentation 
I I -> Z ) . In this group we have the free monoid II ' generated by 
x l9. . .  9x n and 4.1 may be applied. Using the complex constructed 
above for the free monoid, we find the complex

Z(II) 0  E{yx, . . . , y n)
with

d lx  0  y Vi ■ • - y Pi) =  J  ( - 1  y +1x(xPj -  1) ® y  ■ ■ • y  • • -y  

Further examples will be given in Ch. xn for finite groups.

6. THE INVERSE PROCESS

We have seen in 2.1 that the homology and cohomology theory of a 
#-projective supplemented #-algebra is expressible in terms of the 
Hochschild theory. We shall see here that in some very important cases, 
the converse also holds: the Hochschild homology theory may be derived 
from the homology theory of supplemented algebras.



194 SUPPLEMENTED ALGEBRAS [Ch a p . X

Let A be a supplemented A-algebra and assume that a A-algebra 
homomorphism

E : A ->  Ae 

is given, such that the diagram

A ~ ^ K

*1 I-
A e— >■ A

P

is commutative. In this diagram e is the augmentation of A, r\ is deter­
mined by the A-algebra structure of A and p is the augmentation of Ae. 
This commutativity relation is equivalent with the inclusion

(1) E I C J .

We are now in the situation covered by vm,3 and we obtain homo­
morphisms

F*: Tor£ (AE, K ) ^  H n( A,A)

Fe : H n(A,A) -> Ext^ (K,EA)

where A is a two-sided A-module, EA (or A E) is the left (or right) A- 
module obtained by regarding A as a left (or right) Ae-module and then 
defining the A-module structure using E. In particular, we shall denote 
by A J the algebra A e regarded (1°) as a left Ae-module, (2°) as a right 
A-module by means of the map E.

T heorem 6.1. Assume that the following conditions hold

(E.1) J = A % I

(E.2) A eE is a projective right A-module.

Then the maps FE and FE are isomorphisms, and fo r each projective resolu­
tion X  o f K  as a left A-module, A J (g>A X  is a projective resolution o f  A  as a 
left A e-moduIe.

P roof. We only need to verify conditions (i) and (ii) of the mapping 
theorem vm,3.1.

From the exact sequence 0 ^ / - > A ^ A - > 0  we deduce the exact 
sequence

A J  ® A J A J  AE ® A K * 0
which implies

A J ®A K  ** Coker (A J ®A /  -»  AJ) =  A J/A J/ =  A J //  =  A.
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The isomorphism A E ®A K  ^  A is given by y  ®A 1 py and this 
proves condition (i) of the mapping theorem.

Condition (ii) of the mapping theorem is Tor£ (A eE,K ) =  0 for n>  0. 
This is a direct consequence of (E.2).

We return for a moment to the condition (E.l) above. The inclusion 
AeEI  C /  is equivalent with the inclusion (1). The other inclusion /  C AeEI  
expresses the fact that /  is contained in the left ideal of A e generated by EL 
S in ce /as a left ideal is generated by elements of the form X ® 1 — 1 (g) A*, 
X e A  (see ix,3.1), we find that in the presence of (1), condition (E.l) is 
equivalent with

(E.l'). For each X e A, the element X ® 1 — 1 ® X* is in the left ideal 
o f A e generated by EI.

Theorem 6.2. Assume the conditions o f  6.1 and that A  is K-projective. 
Then

dim A =  l.dimA K  =  r.dimA K.

I f  further K  is semi-simple, then

dim A =  l.gl.dim A =  r.gl.dim A.

Proof. The equality d i m A = l . d i m A E  follows directly from 2.1 
and 6.1. To prove dim A =  r.dimA K  it suffices to prove dim A =  l.dimA* K. 
The map E: A  -> A e induces a map E * : A* -> (Ae)* — (A*)* and it is 
easy to see that conditions (E.l) and (E.2) still hold. Thus by the part of 
the theorem already established, dim A* =  l.dimA* K. Since dim A 
=  dim A*, the conclusion follows.

If K  is semi-simple then, by ix,7.6, we have l.gl.dim A <1 dim A. 
Since dim A =  l.dimA K  <L l.gl.dim A we obtain dim A =  l.gl.dim A. 
Similarly for r.gl.dim A.

As an illustration of the inverse process consider the ring A =  Z(II) 
(or more generally A — A(fl)) where II is a group with unit augmenta­
tion. Define E: A  -> A e by setting Ex =  x  ® (x-1)* for x  e II. Then 
pEx =  1 so that (1) holds. Since

X  ®  1 —  1 ®  X *  =  ( x  ®  1)(1  ®  1 —  X - 1  ®  X * )  —  ( x  ®  1 )E (1  —  X - 1 )

it follows that (E .l') holds. To verify (E.2) observe that the elements 
1 ® x* (x e II) form a base of A e as a right A-module. Thus theorems
6.1 and 6.2 may be applied. Note that if A is a two-sided A-module then 
e A is the left II-module with operators a ^ x a x " 1 and A E is the right 
II-module with operators a x~xax.

In xiii, 5 we shall show that the inverse process can also be applied to 
the homology theory of Lie algebras.
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7. SUBALGEBRAS AND SUBG RO UPS

Let A and Y be .K-algebras and let cp: A -> Y be a X-algebra homo­
morphism. Given an augmentation e : Y K  which converts Y  into a 
supplemented algebra, we define A as a supplemented algebra using the 
augmentation e(p: A ->  K. In most cases A will be a subalgebra of Y  
and 9o will be the inclusion map. We shall use here the notations of n.6.

P roposition 7.1. I f  T, as a left (right) A-module, is projective, then fo r  
any left (right) Y-module A , any Y-projective or Y-injective resolution X  o f  
A is also a A-projective or A-injective resolution o f A.

This follows directly from n,6.2 and n,6.2a.
Proposition 7.2. I f  Y is projective as a left A-module, then we have 

isomorphisms

Tor£ (A9K) *  Tornr  (A(<p),K), Extnr (K ^ C ) )  a* E xft (K,C)

fo r  each right A-module A and each left A-module C.
This follows directly from vi,4.1.1 and vi,4.1.4. Similarly applying 

vi,4.1.2 and vi,4.1.3 we find
P roposition 7.3. I f  Y is projective as a right A-module, then we have 

isomorphisms

Tor%(A,K) ** Tor£ (A,F  <g>A K), Extnr  (T ®A K,C) »  Ext^ (K,C)

for each right Y-module A and each left Y-module C.
We apply these results to groups. Let rr be a subgroup of II and let 

(p: Z(tt) —̂ Z(II) be induced by the inclusion t t ^ U .  If {xa} is a 
system of representatives of right cosets of tt in II, then it is clear that 
{xa} is a base of Z(II) regarded as a left Z (77)-module. Similarly Z(II) is 
free as a right Z (7r)-module. We may thus apply 7.2, replacing A(<p) and 
(<P)C by their definitions.

P r o p o s it io n  7.4. Let it be a subgroup ofYl. Then
(1) H n(iT,A) a* H n(U,A ® n Z(Yl))
(la) H n(7T,C) a* H n(II, Horn,, (Z(II),C))
fo r  each right ir-module A and each left ir-module C.

Before we apply 7.3 we reinterpret the module Z(II) ® n Z  as follows. 
Let Z ( U I tt) be the free abelian group generated by the left cosets xtt of tt 
in H. Then II operates on Z (II/7r) on the left and we may identify 
Z (II/77) with Z(II) ®„Z.

P r o p o s it io n  7.5. Let it be a subgroup o f  II. Then
(2) H n(TT,A) «  T or" (A,Z(U/n)),
(2a) es Extn (Z(U/7r),C),

fo r  each right Tl-module A and each left Tl-module C.



Let 77 be a subgroup of II and let x  e II.
In the situation (Au m C) we define

cx. A C —> A ®X7rX-i C

by setting cx(a c) =  axr1 ®X7TX-i xc. Replacing C by a II-projective 
resolution of Z, and passing to homology we obtain isomorphisms

cx: H n(iT,A) ^  H Jjkttx- 1̂ )

for any right II -m odule A.

Similarly, in the situation (n ^ ,n Q  we define

cx\ Horn,, (A,C)->  H o m ^ -i (A,C)

by setting (cxf ) a =  x (/(x _1tf)). Replacing A by a II-projective resolu­
tion of Z  and passing to homology we obtain isomorphisms

cx: H n(7T,C) & H n{xiTX 1,C)

for any left II-module C.

The following properties of cx are directly verified

(3 )  Cj$Cy Cx y)

(4) If x  e 77 then cx is the identity.

Assume now that 77 is an invariant subgroup of II. Then 77 =  X77jc_1 
and it is clear from (3) and (4) that cx defines left operators of II/77 on 
H n{ 7r,A) and H u(tt,C) for each right II-module A and each left II-module 
C.

There is another w ay in w hich these operators m ay be arrived at. The 
II -m odule Z(II/77) appearing in (2) and (2a) is the group algebra o f  the 
group II/7 7 regarded as a left II-m odule. The structure o f  Z(H/7r) as a 
right II / 77-module can then be used to define right II/77-operators o f  the 
groups appearing in (2) and left II/77-operators o f  the groups appearing in 
(2a). T he verification that these operators agree w ith the operators defined 
using cx, is left to the reader.

In Ch. xiii we shall carry out a similar discussion for Lie algebras. In 
Ch. xvi we shall obtain further results using spectral sequences.

8. WEAKLY INJECTIVE AND PROJECTIVE MODULES

Let A be a A-algebra and rj: K A the natural map. A right A- 
module A is said to be weakly projective if it is ^-projective in the sense of 
11,6. This means that the kernel of the map g : A ® K A ->  A given by
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a 0  A -> aA is a direct summand of A ® K A regarded as a right A- 
module using the right operators of A on A (not on A\). A similar 
definition applies to left A-modules using A A -> A.

Similarly a left A module C is said to be weakly injective if it is rj- 
injective in the sense of 11,6. This means that the image of the homo­
morphism h: C->  Homz  (A,C) which to each c assigns the homo­
morphism A -> Ac is a direct summand of H om ^ (A,C) regarded as a left 
A-module using the right operators of A on A. Similarly for right A- 
modules.

Pr o po sit io n  8.1. Let M  be a K-module, and A a weakly projective 
right A-module. Then M  ® K A is weakly projective and Homz  (A ,M ) is 
weakly injective.

Pr o o f . We shall only prove the second part. Consider the commuta­
tive diagram

8

H om ^ (A ® K A ,M )«—  H om ^ (A, H om ^ (A,M))

Horn K(g,M)

UomK (A,M )

where s is the A-isomorphism of ii,5.2. Since A is weakly projective, 
Ker g is a direct A-summand of A A. It follows that the image of
H om ^ (g,M) is a A-direct summand. Thus the same holds for h, so that 
Homz  (A,M ) is weakly injective.

P r o po sit io n  8.2. Let A b e  a K-projective K-algebra. In the situation 
(Ta ,a Q> i f  C is K-projective and A is weakly projective, then

Tor£ (.A,C) =  0 for n >  0.

P r o po sit io n  8.2a. Let A  be a K-projective K-algebra. In the situation 
(a ^ a Q ,  i f  A is K-projective and C is weakly injective then

Ext^ (A,C) =  0 for n >  0.

These are immediate consequences of vi,4.2.1 and vi,4.2.4. As a
consequence we obtain

C o r o l l a r y  8.3. Let A  be a K-projective supplemented K-algebra. 
Then

H n(A,A) = 0 =  H n(A,C) for n >  0

fo r  any weakly projective right A-module A and any weakly injective left 
A-module C.

We now turn to the discussion of weakly projective and injective 
modules in the case A =  Z(II) where II is a group.
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Let A be a right II-module. On the group A 0  Z(H) we consider 
two right II-module structures given for a e A, x ,y  e II by

(1) (a 0  x)y =  a 0  xy

(1') (a 0  x)y =  ay 0  xy

respectively. The mapping cp: a 0 x ^ a x 0 x  maps structure (1) 
isomorphically onto structure (1'). In defining weakly projective modules 
we used the map g: A 0  Z(II) -> A given by g(a 0  x ) =  ax which was a 
II-homomorphism on the structure (1). The map g' =  g q r1 is given by 
g (a  0  x ) — a, and is a II-homomorphism on the structure (T). We 
thus obtain

Proposition 8.4. A right Yl-module A is weakly projective i f  and only i f  
there exists a Il-homomorphism v : A -> A 0  Z(II) (rel. to structure (1')) 
such that g 'v =  identity.

Let C be a left II-module. On the group Horn (Z(II),C) we con­
sider two left II-module structures given for /  e Horn (Z(II),C), x 9y  e II 
by

(2) ( y f ) x = f{ x y )

(2') (y f)x  =  y f iy - 'x )

respectively. The mapping f  -> xpf given by (y f)x  =  x ( fx _1) maps 
structure (2) isomorphically onto structure (2'). In defining weakly 
injective modules we used the map h: C -> Horn (Z(II),C) given by
(h c )x = x c . The map h' =  yh: C -> Horn (Z(II),C) is given by
(h'c)x =  c, and is a Il-homomorphism on structure (2r). Thus we 
obtain

Proposition 8.4a. A left U-module C is weakly injective i f  and only 
i f  there exists a Il-homomorphism ju: Horn (Z(II),C) -> C (rel. to 
structure (2')) such that /ah' =  identity, i.e. such that i f  f x  is constant and 
has value c then /uf =  c. Such a function ju will be called a mean.

As an application of the above criteria we prove the following two 
propositions that will be used in Ch. xvi.

Proposition 8.5. In the situation (n^,n C) assume that A is weakly 
projective. Then A 0  C with left operators

x(a 0  c )=  xa 0  xc 

is weakly projective. Similarly Horn (A,C) with left operators

(xf)a  =  x i f ix ^ a ) )
is weakly injective.



The proof is similar to that of 8.1 and uses the diagrams

{ A ®  A )®  C - ^  A ® (A ® C)
g' <8> c \ ^  y / g '

A ® C

Horn (A ® A,C) *—  Horn (A, Horn (A,C))
Horn (g ',C ) h'

Horn (A,C)

where A =  Z(II) is treated as a left II-module. The horizontal maps 
r and s' are given by n,5.1 and ii,5.2' and are II-isomorphisms.

Proposition 8 .6 . A left Tl-module A is weakly projective i f  and only 
i f  there exists a Z-endomorphism p: A A such that
(i) for each a € A, p(x~1a) =  0 fo r all but a finite number o f elements x  e II,
(ii) a =  2  xp{x~1a) fo r all a e A.

x e ll

Proof. Let g ' : Z(II) ® A -> A be given by g '(x  ® a) =  a. IT A 
is weakly projective then, by 8.4, there exists a II-homomorphism 
v : A Z(II) 0  A such that

g'va =  a for all a e A.

Here Z(II) 0  A has operators y(x  ® a) =  y x  ® ya. Since the elements 
x e U  form a Z-base for Z(II) each element va can be written as a finite 
linear combination

(3) va =  ]>> <g) g(x,a), x  e II.

Since for y  e II
v(ya) =  0  g(x,ya)

X

y(va) =  Z y x  0  yg(x,a) =  ® y g iy - ^ a )
X X

it follows that the condition v(ya) =  y(va) is equivalent to

(4) g(x,yd) =  y g iy - ^ a )  for all x ,y  e l l .

This in turn is equivalent to

(5) g(x,a) =  xg if^x^a )  for all x  € II.

Therefore setting pa =  g(l,a) we have

(6) g(x,a) =  xp{x~1a).
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Since for a fixed a, g(x,a) =  0 for all but a finite number of elements 
x  e II, condition (i) follows. Finally

a =  g'va =  g '(2 *  ® g(x,a)) =  2 g(x,a) =  J.xpix-'a).
X X X

Conversely, given p : A - ^  A satisfying (i) and (ii), we may define g(x,a) 
using (6) and v using (3). Then v is a II-homomorphism and g v =  identity.

In the discussion concerning groups the ground ring Z  may be replaced 
by any commutative ring K.

EXER CISES

1. Let A be a supplemented A-algebra, and A a A-module. Show that 
A (g)K A is A-projective if and only if A is A-projective. Assume further 
that A is such that A-projective modules are A-free. Then show that if 
A ®K A is A-projective then it is A-free.

2. Show that the inverse process of § 6 can be applied to the algebras 
A =  F ^ x-l, . . .  , x n) and A =  A[xl5. . . , x n] supplemented by ex{ =  0 
using the map E : A A e given by Ext — x { 0  1 — 1 0  x *.

3. Let A be a A-projective supplemented A-algebra with A a hereditary 
(commutative) ring. Establish the exact splitting sequences

0 -*  H n(A,K ) ® K A -> H n(A,A) -> T o rf ( H ^  (A,K),A) -> 0,

0 -> E x ti (H " -1 (A,K),A) -> H n(A ,A ) -> H om ^ (H n(A,K),A) -> 0,

for any module A with trivial A-operators.
4. Let II be a group (or a monoid with an augmentation II Z). 

Establish the splitting exact sequences

0 ^  H n(U ,Z) ® A ^  H n(U9A) -> Tor, (n  ,Z),A) -> 0

0 -> Ext1 (H 71- 1 (TI,Z),A) -> H n(n ,A ) -> Horn (H n(H ,Z \A )  -> 0

for any abelian group A with trivial II-operators.
5. Let A be a A-projective supplemented A-algebra. Then 

A ' =  Coker (A -> A) may be identified with the augmentation ideal /. 
Using this remark give a description of the complex T(A,e) using symbols 
[21?. . . , A J  with e /.

6. Let A be a supplemented A-algebra and let z  be an element in the 
center of A. For any left A-module C, multiplication by z defines an 
endomorphism C ->  C which induces an endomorphism H n(A ,C ) 
-> H n(A,C). Show that the latter is given by multiplication by the 
element ez of A. State a similar result for homology.



CHAPTER XI

Products
In troduction . The functors Tor and Ext may be combined with each 

other using four product operations T , _L, V , A . Each of these products 
involves three algebras, more precisely two algebras A and T  and their 
tensor product A (g) T. They satisfy a number of associative, anti- 
commutative and other rules.

There are also internal products involving only one algebra. To 
obtain internal products rn, corresponding to T ,  _L, we need an algebra 
homomorphism A & A ->  A; such a homomorphism always exists if A 
is commutative. For the internal products U , O corresponding to 
V , A , we need an algebra homomorphism A -> A 0  A ; such a homo­
morphism (usually called a “diagonal map” ) will be exhibited in a number 
of interesting cases.

The external and internal products may be computed using suitable 
multiplication formulae in complexes (§ 5).

The situation outlined above closely resembles that encountered in 
algebraic topology.

The general products for Tor and Ext are applied (§§ 6, 7) to the homo­
logy theories of Chs. ix and x. The internal products U , O will be modi­
fied in §8, using an “antipodism” A ->  A*; this leads to reduction 
theorems (§9) which generalize the “cup product reduction theorem” of 
Eilenberg-MacLane (Ann. o f Math. 48 (1947), 51-78, Ch. hi).

1. EXTERNAL PRODUCTS

In this and the following sections we shall consider ^-algebras over the 
same commutative ring K. We shall therefore simplify the notation by 
writing ® and Horn instead of ® K and Hom ^.

Given complexes X  and Y  composed of X-modules we obtain new 
complexes X  ® Y  and Horn (X , Y) and homomorphisms

(1) a: H (X )®  H (Y )-> H (X ®  Y)

(! ') a ':  //(H o rn (X ,7 ))->  Horn T))
202
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defined in iv,6. The properties of these homomorphisms relative to the 
degrees imply homomorphisms

Since these homomorphisms are fundamental for the theory of products 
that we are about to develop, we give a brief survey of their definitions.

Let hx e iP (  A), h2 e H q{ Y) and let zx € Z*( A), z2 € Z Q( Y ) be representa­
tives of and h2. Regard z1 and z2 as elements of X v and Y q. Then 
zx 0  z2 e X p 0  F 3 and d(z1 0  z2) =  0, thus zx ® z2 e Z P+3(A ® F). The 
element a(Ax ® /*2) e Z 1̂  A ® F) is the class of zx 0  z2.

Let /*! € j^m (Hom (A, F)), /z2 € H P{X) and let /  € Z*+3 (Horn (X, F)), 
z2 e Z V{X) be representatives of hx and h2. T hen/z2 € F 3 and d(fz2) =  0. 
Thus /z 2 determines an element of H q{ Y) which is precisely (afhj)h2.

Let A and T be two A-algebras and consider the A-algebra

where as usual ® stands for 0 K .
If A is a left A module and A ' is a left T-module then A 0  A ' is a left 

fl-module.
Let A be a A-projective resolution of A and X '  a T-projective resolu­

tion of A'. Then, by ix,2.5, X  0  X '  is an Q-projective left complex over 
A 0  A '. Thus we have the homomorphisms (of degree zero)

P r o po sit io n  1.1. (c f. ix,2.7). I f  A and T  are K-projective and 
Tor^f (A,A') =  0 fo r  n >  0 z/ie/i X  0  X ' is an Q-projective resolution o f  
A 0  A ' . In particular, (2) and (2') are then isomorphisms.

P r o o f . Since A and T are A-projective, it follows from n,6.2 that X  
and X '  are A-projective resolutions of A and A'. Thus H n(X  0  X ')  
— Torjf (A ,A’) =  0 for n >  0.

We now place ourselves in the situation described by the symbol 
M ,C A, r ^ C r )  and define the homomorphism

9V (C 0 a A) 0  (C ’ ® r  A ')->  (C 0  C )  0 a (A 0  A ')

given by <p((c ® a) ® (c' 0  a')) =  (c 0  c') 0  (a 0  a '). Replacing 4̂ and 
A ' by X  and A ' we obtain

a: H V(X) 0  H q{ F )-> H p+q(X  0  F) 

a ' : ^ + 3(Hom (A, F)) -> Horn (H p(X ),H q( F)).

(2)

(2')

H(B 0 n (A ® A')) -> TorQ (.B, ^  ® ,4') 

Ext^ ® A ' ,C ) ^ H ( Hom^ (A ® A',C)).

Q

Qp

(C ®A A) ® ( C  ® r  A ') (C ® C )  ® Q (A ® A').



Passing to homology and applying a we obtain the homomorphism 

TorA (C,A) 0  Torr  (C 9,A9) -> H((C  0  C )  0 Q (X  0  X')). 

Composing this with (2) we obtain the T -product

T : TorA (C,A) 0  Torr  (C ',A ') -> Tor° (C 0  C \A  0  A').

Since T  has degree zero, it yields maps

T : TorA (C,A) 0  T or[ (C ',A ') -> Tor£+, (C 0  C',A  0  A ').

P r o p o s it io n  1 .2 . 1 . F or p  — q =  0 the  T  -p roduc t reduces to  the m a p

<Pi-
This follows readily from the definition of T  by applying the augmenta­

tion maps X ->  A and X f -> A'.

Next we consider the situation described by the symbol (AA,CA,r A ',r C'). 
We define Horn (C,C') as a left Q-module by setting

((* ® y ) f)c  =  y(f(cK)) C € C , f €  Horn (Q C )

and define the homomorphism

<p2: HomQ (A 0  A', Horn (C,C')) Horn (C 0 A 4 , Homr  (A',C '))

by setting
((^2f ) ( c ® * )K  =  ( / ( fl ® a'))c-

Replacing A and A ' by X  and X '  we obtain

0>2: Homa (Z  0  JT, Horn (Q C ')) -> Horn (C 0 A X , Homr  (A ',C ')). 

Passing to homology and applying a ' we obtain the homomorphisms 

tf(H om Q (X  0  A ', Horn (C,C')) -> Horn (TorA (CU), Extr  (A ',C 9)). 

Composing this with (2') we obtain the _L-product 

_1_: Extn (A 0  A ', Horn (C,C')) -> Horn (TorA (C,A), Extr  (A ',C %  

Since J_ has degree zero, it yields maps

_L: Ext&+* (A 0  A 9, Horn (Q C 9)) -> Horn (TorA (QA), Extf* (A ',C 9)).

P r o p o s it io n  1.2.2. F or p  =  q =  0, the _L-product reduces to the m ap

<P2-
For the remaining two products V and A we make the following two 

assumptions:
(i) A and V are ^-projective
(ii) T o rf  (A,A') =  0 for n >  0.
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It follows from 1.1 that the homomorphisms (2) and (2') are 
isomorphisms.

We now place ourselves in the situation described by the symbol 
(AA,AC,r A ',r C'). We define the homomorphism

(p3: HomA (A,C) 0  Homr  (A ',C ')->  HomQ (A 0  A \C  0  C ')

by setting
(<Pa(f ®/'))(a ® «') = /«  ® /V .

Replacing 4̂ and ^4' by X and A", we obtain

0>3: HomA (X,C) ® Homr  {X ’,C ’) -»  Homn (X  <g> Z ',C  ® C’). 

Passing to homology and applying a we obtain the homomorphism 

ExtA (A,C ) 0  Extr  (A ',C ') -> i/(H om a (X 0  X ',C  0  C')) 

Combining this with the inverse of (2') we obtain the V -product 

V : ExtA (A,C ) ® Extr  (A ',C ')-+  Exta (A 0  A \C  0  C').

Since V is of degree zero, it yields maps

V : Ext£ 04,C) 0  Extjf, 0 4 \C ')->  Ext£+« 04 ® A',C  ® C').

P r o p o s it io n  1.2.3. For p  =  q =  0 the \ J -product reduces to the 
homomorphism cps.

Finally we place ourselves in the situation described by the symbol 
(AA,AC,r A ',C r ). We define Horn (C,C') as a right Q-module by setting

( /(^  ® y))c =  (/(Ac))y c e C, /  € Horn (C,C')

and define the homomorphism

<p4: Horn (C,C') 0 a 04 ® A ')->  Horn (HomA (A,C ), C  ® r  A ')

by setting
(?>4(/ ® a ® a'))g =  /(#<*) @ a'

for/  e Horn (C,C'), g e HomA (A,C). Replacing A and A' by X and X '  we 
obtain

<D4: Horn (C,C') 0 a (AT 0  X ')  Horn (HomA (X,C), C  ® r  X'). 

Passing to homology and applying a ' we obtain the homomorphism 

H (Horn (C,C') ® n (A" 0  AT')) -> Horn (ExtA 04,C), Torr  (C ',A %
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Combining this with the inverse of (2) we obtain the A product

A : TorQ (Horn (C,C'),A  ® A ') -> Horn (ExtA (A,C), Torr  (C ',A %  

Since A has degree zero, it yields maps
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A : Tor“ (Horn (C,C'),A  ® A') -> Horn (Ext£ (A,C), Tori’ (C ',A %

Proposition 1.2.4. I fp  =  q = 0 ,  the A product reduces to the map <p4.

The notation used above for the four products is convenient as long as 
we do not exhibit individual elements of the groups Tor and Ext involved. 
For formulas involving elements, it is more convenient to adopt the 
following notation

T O  ® b) =  a T  b, (l_a)b =  a _L b,

V (a ®- b )=  a \ /  b, (A a)b =  a A b.

We recall that V and A are defined only if conditions (i) and (ii) are 
satisfied.

2. FORMAL PRO PERTIES OF THE PRODUCTS

The formal properties of the four products are too numerous to be 
listed in detail. We shall therefore be satisfied with an informal discussion 
omitting most proofs. It should be remembered that whenever the 
products V and A occur, suitable assumptions should be made in order 
that these products be defined.

First, for fixed K-algebras A and T we may consider maps A ->■ A l9 
C-> Cl9 A' -> A[ and C' -> C[. For the product T  we then obtain a 
commutative diagram

TorA (C,A) ® Torr  (C \A f) T otq (C ® C \A  ® A')

TorA (Cl9A J  ® Torr  (C^A[) —^  TorQ (Q  ® 'C[,AX ® A[).
Next we can consider homomorphisms cp: A ' - > A ,  ip: T ' ^ T  of 

A'-algebras. Every A-module (resp. T-module) may then be regarded as a 
A'-module (resp. T' module). In the situation (AA,CA,TA f 9C'r ) we then 
obtain a commutative diagram

T ota\C ,A)  ® Torr '(C ',^ ') -—  TorQ'(C ® C \A  ® A')

<p*® v* (<p ® v%

Tor^ (C,A) ® Torr  (C ',A ') Torn (C <g> C',A  ® A')

where <p*: TorA’ -> TorA and xp%: Torr  -> Torr  are induced by 9?
and y).
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Keeping the K-algebras A and T fixed we may consider a ring homo­
morphism £: L ->  K  where L  is a commutative ring. A and T  may then 
be regarded as L  algebras. This leads to a commutative diagram

Tor* (C,A) ® L Torr  T or*® ^ (C ® L C',A ® L A ')

Tor* (C,A) ® K Torr  (C ',A ') Tor*®*r  (C ® K C ',A  A').

Similar diagrams to the above hold for the remaining three products. 
One can also consider more complicated situations in which the 
modules A , C , , the algebras A, T and the ground ring K are all 
mapped simultaneously.

Next we turn to commutativity rules. To formulate these rules we 
must identify Q. =  A 0  T with T 0  A (cf. ix, 1.2).

Proposition 2.1. The following diagram is commutative

Tor£ (A,C) 0  T or[ (A \C )  —  Tor£+4 (A 0  A',C  0  C')

( - 1  )PQf  g

T or[ (A \C f) 0  Tor£ (A,C) —  T o # +ff (A' 0  A ,C '(g) C)

where f  is the map establishing the commutativity o f the tensor products, 
wMe g is induced by similar maps f x\ A 0  A '-^ A ' 0  A, f 2: C 0  C C ' ® C.

P r o o f . T he p ro o f is an easy con sequence o f  the fact that a m ap  
Fx: X  0  X ’ X ' 0- X  o v e r /x is obtained by setting F fx  0  x ')  =  ( — I) 2'9 

(x' (8) x) for x e X p9 x ' e
A similar commutativity rule for the V product is obtained by simply 

replacing Tor by Ext in the diagram above.

We now come to the associativity rules, of which there are six. These 
will be stated without proofs. We consider three K-algebras A, T, S  and 
define Q, =  (A 0 T) 0 2  =  A ® (T 0 S). In general, we shall regard 
the tensor product as an associative operation.

Proposition 2.2. In the situation (AA,CA,r A\C ^,^A",C £) consider 
a e Tor^ (C,A), b e T or[ {C \A 'X  c e Torrs (C \A"). Then ( a J b ) T c  
=  a T ( b T c ) .

Proposition 2.2a. In the situation (aA,a C,t A \ t C ',^A" ,2 C") consider 
a e Ext£ (A,C), b e Ext7r  (A',C '), c e Ext^ (A",C"). Then {a \J b) y  c 
=  a \ /  ( b y  c).

To state the next two associative laws we use the identification 
Horn (C, Horn (C',C")) =  Horn (C 0  C',C"). It should be observed that 
in the situations (CA,C r,2C") or (AC,v C\Clf) this identification is 
compatible with the operators of Q on both groups.
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Proposition 2.3. In the situation (aA ,CA,pv4, 52^  )» consider
a e Ext£+?+r (A 0  A ' ® >1", Horn (C 0  C',C")), b e Tor£ (C,A) and 
c e Tor[ (C ',A '). Then a ±  (b T  c) =  (a ±  b) ±  c.

Proposition 2.3a. In the situation (aA,a Q t A ',r C '^A "  consider
a € Toi£+<r+r (Horn (C 0  C',C"), A ® A ' ® A "), * e Ext^ (^,C ) am/ 
c € Extf, (A \C '). Then a /\ (b \J c) =  (a /\ b) /\ c.

To formulate the last pair of associative laws we consider the natural 
homomorphism

f : Horn ('C,C') 0  C" -> Horn (Q C ' 0  C")
given by

m ® c " ) ] c = ( f c ) ® c " .

We observe that in the situation (AC,Cp,C2) and (CA,r C ',2C"), |  is an 
Q-homomorphism.

Proposition 2.4. In the situation (AA 9AC,r A ',C FfEA",C^) consider 
a e T or£f/  (Horn (C,C'),A ® A'), b e Ext£ (A,C), c e Tor= (C \A "). Then 
(a A b) T  c =  [f *(* T  c)] A b where

f  *: Tor£ (Horn (C,C') 0  C",D) -> Tor£ (Horn (C,C' 0  C"),T>)

ft induced by £.
Proposition 2.4a. In the situation (AA,CA,r A ',FC ',i:A",i:C") consider 

a € Ext£® r  04 0  A', Horn (C,C')), 6 € Tor£ (C,A), c e Exfs  (A",C").
Then (a JL b) V c =  [f*(a V c)] J_ b where

£*: Ext£ (D, Horn (C3C f) ® C ")->  Ext£ (D, Horn (C ,C ' 0  C"))

is induced by £.

We now pass to the discussion of connecting homomorphisms. Since 
there are four products and each of them involves four variables, there is a 
total of sixteen commutativity rules with connecting homomorphisms. 
We shall only state two of these (concerning the variables C, C' in the 
T-product), the others being quite similar.

Proposition 2.5. Let

(1) 0 -> A 1- > A ^ A 2-> 0  

be an exact sequence such that the sequence

(2) 0 -> A 1 0  A ' -> A 0  A' -> A2 0  A' -> 0 

is exact. Then the diagram

TorA (C,A2) 0  Torr  (C ,A ’) — Torn (C 0  C ',A 2 0  A ')

6®i A
T I

Tor^ (C ,^ )  0 Torr  (C ',A ')----- «• Torn (C 0 C ' , ^  0 A ’)
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is commutative. Here d is the connecting homomorphism relative to (1), 
A is the connecting homomorphism relative to (2) and i is the appropriate 
identity map.

P roof. Let 0 - > X 1^ X ^ X 2^ 0  be a projective resolution of 
0 ->  A1-> A A 2~> 0 and let X f be a projective resolution of A'. In 
view of the definition of T , the required relation follows from the following 
commutativity relations

H V{C ®A X 2) ® Hq{C' ® T X ' ) ----- ► H V_X(C ®A X J  0  Hq(C ' ® T X ')

H v+q{{C ®A X2) 0  (C ' ® r  X ' ) )  ► H ^ d C  ®A X,) ® { C '® T X '))

HpJ&C ® C )  ® a (X2 ® X '))  ► J W i ( ( C  ® C )  ®a (X1 ® X '))

Toi^+(j (C ® C ',^ 2 (8) A') ■   Torp+(Z_ 1 (C ® C ’\A  1 ® A')

The first of these relations follows from iv,7.1 (restated for left exact 
functors), the second one follows from the naturality of the map Ol5 the 
third one follows from v,4.3.

P roposition 2.5'. Let

(V) 0 - + A [ - ^ A ' ^ A 2^ 0

be an exact sequence such that the sequence

(2') 0 - > A ® A [ - > A ® A ' - > A ® A 2- >0

is exact. Then the diagram

TorA (C,A) 0  Torr  (C ',A2) ----- ► Torn (C ® C \ A ®  A2)

TorA (C,A) ® Torr  (C ',A [)----- - TorQ (C ® C ', A ® A{)

is commutative.
It should be noted that the definition of the map i ® 6 includes a sign, 

since 6 has degree + 1 . Therefore, for a € TorA (C,A), b e Tor^ (C ',A '), 
we have A(a f  b) =  (~~l)pa T  8b.

3. ISOM ORPHISM S

T heorem 3.1. I f  K  is semi-simple then the maps T  and _L are iso­
morphisms. I f  further A and Y are left Noetherian, A isfinitely A-generated 
and A ' is finitely Y-generated then \J and A a ŝo are isomorphisms.
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P roof. First we observe that since K  is semi-simple, condition (i) 
and (ii) of § 1 are satisfied and therefore the maps (2) and (2 ') of § 1 are 
isomorphisms. Further the functors 0K and H om ^ are exact and there­
fore, by iv,7.2, the maps a and a ' employed in § 1 are isomorphisms.

Next we consider the maps

9V  (C 0 A A) 0  (C ' ® r  A') -> (C 0  C') 0 Q (A 0  A ')

(p2\ HomQ (A 0  A \  Horn (C,C')) -> Horn (C 0 A A , Homr  (^t',C'))

<p3: HomA (A,C) 0  Homr  (A',C')->  HomQ (A 0  A ', C 0  C ')

9?4: Horn (C,C') ® n (A 0  A ') -> Horn (HomA (A,C ), C ' ® r  ^4')

as defined in § 1. It is easy to see that cp± and cp2 are isomorphisms. This 
implies that the maps and 0 2 obtained by replacing the modules A and 
A ' by their projective resolutions X  and X '  also are isomorphisms. This 
proves that T  and J_ are isomorphisms.

As for the maps cp3 and they are isomorphisms if A — A and 
A ' =  T. Therefore, by direct sum properties, it follows that (p3 and <p4 
are isomorphisms if A is projective and finitely A-generated and A ' is 
projective and finitely T-generated. Now, if A and T are left Noetherian 
and A and A ' are finitely generated then, by v,1.3, the resolutions X and X '  
may be chosen so that each module X p is projective and finitely A-generated 
while each module X'q is projective and finitely T-generated. Thus in this 
case the maps <E>3 and 0 4 also are isomorphisms. This concludes the 
proof.

T heorem 3.2. I f  the algebras A and T are K-projective, A is a left 
A-module and A ' is a left T-module such that Tor^f (A,A') =  0 fo r  n >  0, 
then

dimA(g)r (A 0  A ') ^  dimA A +  dimr  A ' .

I f  further, K  is a field , A and T are left Noetherian, A is finitely A-generated 
and A ' is finitely T-generated, then the above inequality is an equality.

P roof. Let dimA A <Lm, dimr  A ' <1 n. There exist then projective 
resolutions X  of A and X ' o f A ' such that X p =  0 for p  >  m and X q =  0 
for q >  n. Then, by 1.1, X  0  X '  is a projective A 0  T-resolution of 
A 0  A '. Since X  0  X '  is zero in degrees >  n +  m, it follows that 
dimAlg,r  (A (8) A ') ^  m  +  n.

Assume now that the second set of hypotheses is satisfied. Suppose 
dimA A ^> m , dimr  A ' «. Then there exist modules C and C" such 
that ExtA (A,C ) 7  ̂ 0 and Ext^ (A ',C ') ^  0. Since K  is a field, we have 
ExtA (A,C) 0  Ext^ ( A \ C f) ^  0. Now, by 3.1, V is an isomorphism so 
that ExtAJ r  (A 0  A \ C  0  C ')^ 0 . This implies dimA(g)r(.4 ® A f ^ m - f n .
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We next consider the products _L and A in the case T =  K =  A '. 
Then O =  A, Extr  (A’,C )  =  Horn (A ',C ') =  C', Torr  (C ',A ') =  C ’. 
The products thus become

(1) _L: ExtA (A, Horn (C,C'))->- Horn (TorA (C,A),C')

(2) A : TorA (Horn (C,C'),A) -> Horn (ExtA (A,C),Cr)

defined in the situations (a A,Ca ,k C'), (aA,a C, K.C) respectively. If we 
inspect the definition of (1) and (2) using a A-projective resolution of A 
(and using A as a A-projective resolution of A) we find that (2) is defined 
without the condition that A be A-projective. Further from this direct 
definition it becomes clear that (1) is a special case of the homomorphism 
p of vi,5 while (2) is a special case of a of vi,5. Consequently vi,5.1 and 
vi,5.3 imply

Proposition 3.3. I f  C  is K-injective then (1) is an isomorphism. I f  
further A is left Noetherian and A is finitely K-generated then (2) is also an 
isomorphism.

4. INTERNAL PRODUCTS

Let A be a commutative ring. If we regard A as a A-algebra and 
observe that A ®A A — A, the products T  and JL yield the following 
internal products

m : Toi^ (C,A) <g>A Toi^ (C ',A ’) -> TorA (C ®A C , A ®A A')

uj : ExtA (A 0  A', HomA (C,C'))-> HomA (TorA (C,A), ExtA (A ',C ))

defined for any A-modules A , C, A \  C ' . Both products are A-homo­
morphisms.

We recall that A operates on C (g)A C ' and HomA (C,C') as follows

K c ® cf) =  Xc ® cf =  c 0  Xc\ {Xf)c =  X(fc) =  /(Ac).

These internal products being special instances of the products of § 1, 
all the formal properties stated in § 2 remain valid.

There is another kind of internal products that can be obtained for a 
A-algebra A (A no longer assumed commutative) provided we are given a 
ring homomorphism D : A ->  A ® A (tensor product over A) which we 
shall call a diagonal map. The map D induces homomorphisms 
T o r^ -^T o r^0A and ExtA(g)A-> ExtA. Composing these homomorphisms 
with the V- and A “Pr°ducts we obtain the following two products 
(called the cup-product and the cap-product):

U : ExtA (A,C) ® ExtA ( A \C )  -> ExtA (A ® A \C  ® C '),

n  : TorA (Horn (C,C'), A ®  A ') -> Horn (ExtA (A,C), Toi^ (C ',A %
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Both products are defined only under the condition that A is A-projective 
and T o rf (A,A') =  0 for n >  0. The U -product is defined in the situa­
tion (a A,a C,a A \ a C') while the O -product is defined for ( a ^ a ^ a ^ ^ a ) -  
The operators of A on A 0  A', C 0  C ' and Horn (C,C') are obtained 
by composing the operators of A 0  A with the diagonal map D.

The rules for connecting homomorphisms are the same as for the V - 
and A-products. For the remaining formal rules, conditions must be 
imposed on the diagonal map D : A -> A 0  A. Specifically, we shall 
say that D is commutative, if the diagram

A ® A

A \

A ® A

where t (A 0  A') =  A' 0  A, is commutative. If D is commutative then we 
have the commutation rule

(1) a U  b — {— \)vq b U a

for a € Ext^ (A,C), b e Ext^ (A ',C ').
The diagonal map D will be called associative if the diagram

D <g)A
• (A 0  A) 0  AA ® A —

D  S

k '

t A<g>Z)
A ® A ------------► A ® (A 0  A)

where 0 A') 0 A") =  A 0 (A' 0 A"), is commutative. Under this 
condition we obtain the associative rules {a U b) U c — a U (b U c) as in
2.2a, and a O (b U c) =  (a O b) O c as in 2.3a.

The precise statements and proofs of these formal rules is left to the 
reader.

A U -pairing is a A-homomorphism

C ® C - > B  ( a W )

Using this homomorphism, the U -product yields

U : ExtA (A,C) 0  ExtA 04 ',C") -> ExtA (A 0  A',B).

A  O -pairing is a A-homomorphism

Horn (C,C') (*a .aC,CA)



Using this homomorphism, the O -product yields

D : TorA (.B, A 0  A ')->  Horn (ExtA (A,C), Toi^ (C',A')).

§ 5] COMPUTATION OF PRODUCTS 213

5. COM PUTATION OF PRODUCTS

We shall discuss here the question of computation of the products 
using specific projective resolutions of A, A ' and A 0  A '. The procedures 
derived in this section will be used later to obtain “product formulae” in 
various specific situations.

Let X be a A-projective resolution of A, X ' a T-projective resolution 
of A ’ and Y  an Q-projective resolution of A 0  A'.

We begin with the products T  and _L. The definitions of T  and _L 
show that these maps admit factorizations

H (C  0 A X) 0  H (C '® r  X ')— #((C  0  C )  (X  0  A'))
 > / / ( ( C 0 C '0 Q Y)

H(Homa ( Y,D) ) ----- * H(Homa (X  0  X \D ))

Horn (.H(C 0 A X ), H(Homr  (X ',C)))

where D =  Horn (C,C'). The maps d>xa and a'd>2 are “ explicit.” The 
remaining two maps were obtained using the fact that X 0  X ' is an 
Q-projective left complex over A 0  A'. Thus to render the remaining 
two maps explicit we need an Q-map

(1) / :  I 0 f - >  Y

over the identity map of A 0  A'.
The situation concerning the products V and A is similar. Again 

looking at the definitions of these products we find that they admit 
factorizations

i/(H om A(X,C)) 0  H(H omr(X ',C ') ) - ^ H (H o m n(X  0  X \C  0  C'))

 >H(HomQ ( Y,C  0  C'))
H(D  0 q  Y) >H(D 0 Q(X 0  X'))

— L>Hom(//(HomA(X,C)), H (C  0 r  X '))

where D =  Horn (C,C '). Therefore the products above obtain explicit 
definition if we have an Q-map

(2) g: Y-+  X 0  X '

over the identity map of A 0  A'.
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In order to give general procedures for finding the maps /  and g  we 
must enter into a more detailed discussion of the resolutions A, X ' and Y.

In practice, the resolution X  of A will be not only A-projective but 
A-free. This implies that each X n may be written in the form A ® X n 
where X n is a A-module. Actually all the resolutions encountered so far 
and all those encountered later, are directly given in the form X  — A 0  X  
where X  is a graded A-module. Clearly X  may be regarded as a A- 
submodule of X, but not as a subcomplex. Under these circumstances 
we say that X  is given in split form. Similar remarks apply to X ' and Y. 
It should further be noted that if X  =  A ® X  and X '  =  T ® X '  are 
given in split form then A ® A ' — £1 ® X  ® X '  also has the split form.

Another notion that we need is that of a contracting homotopy. A 
contracting homotopy {sn,o} for a left complex X  over A is a family of 
A-homomorphisms

g . A >■ A0, sn. X n >- An_ ,̂
such that

<4+1 Snx  +  Sn - ld nX =  X ~  a8X  f°r x  6 X n,

sox =  x  for X € A,
where e : A0 -> A is the augmentation map. Of course the existence of 
a contracting homotopy implies that X  is an acyclic left complex over A. 
Conversely assume that A is an acyclic left complex over A and that A and 
X  are A-projective. Then the sequence

(3)  > X0-> A -> 0

is exact and may be regarded as a A-projective resolution of the zero 
module. It follows from v,1.2 that the identity map of (3) is homotopic 
with the zero map. This yields a contracting homotopy for X.

Proposition 5.1. I f  A  and A are K-projective then every A-projective 
resolution o f A has a contracting homotopy.

Indeed, let A be a A-projective resolution of A. Since A is A-projec­
tive, it follows from ii,6.2 that A is A-projective. Thus the existence of a 
contracting homotopy for A follows from what was said above.

We further note that if {5̂ ,a} is a contracting homotopy for A while 
{s^ g '} is a contracting homotopy for A ' then a contracting homotopy 
{tn,r} for A ® A ' may be obtained by setting

r =  g ® <7 ',

/ =  S ® l +  (o’fi) ® s ’

where i' is the identity map of A'.
The usefulness of the above notions is shown by the following 

proposition.



P r o p o s it io n  5.2. Let C be a left Cl-module. Let Z  =  £1 ® Z  a  
left complex over C given in split form  and let Z ' be a left complex over C 
with a contracting homotopy {tn9r}. Then the inductive formulae

f(co ® z) =  corez z e Z 0

f{co ® z) =  cotq^fdz z  e Z q, q >  0
yield a map

/ :  Z ^ Z '

over the identity map o f C. This map is uniquely characterized by the 
condition

dtfz — 0 z € Z .

P roof. Clearly /  is an £2-homomorphism. For z e Z 0 we have 

ef(co ® z) =  0)8 rez =  coez =  e(co ® z) 

so that e ' / — e. For z e Z l9 we have

df{o) ® z) — codtfdz — co/Jz — corefdz

=  fd{oo ® z) — coredz =  /rf(co ® z).

For z e Z a, ^ >  1 we have inductively
df{o) ® z) — codtfdz =  cofdz — cotdfdz =fd(co ® z) — cotfddz — fd(co (g) z). 
This shows th a t / is  a map as required.

For any m ap/ :  Z ->  Z ' over the identity map we have

/z  =  T£Z +  dfr/z z 6 Z 0

/z  =  +  t/(/z =  Z/i/z +  /̂Z/z z € Z<p q >  0.

Therefore f  satisfies the inductive definition if and only if dtfz =  0 for 
Z € Z .

We now return to the question of finding maps (1) and (2) above. To 
find/ :  J  0  F  we assume that X  and X ' are given in split form
while in Y  we are given a contracting homotopy. Then X  ® Z 'a lso  is 
given in split form and 5.2 may be used to define f

To find g: X  ® X ' we assume that Y  is given in split form while
in X  and X ' we are given contracting homotopies. Then as shown above
we may construct a contracting homotopy in X  ® X ' and then use 5.2 to
define g.

Next we assume that A is commutative and consider the internal 
products m and . The computation requires a A-map

(3) h: X  ®A X r-> Y
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over the identity map of A ®A A', where X, X '  and Y  are A-projective 
resolutions of A, A ' and A ®A A'. We shall assume that X  and X ' are 
given in split form X  =  A ® X , X '  =  A ® X , while in f a  contracting 
homotopy is given. Then X  ®A X ' =  A ® X  ® A ' also is given in split 
form so that 5.2 may be applied to find h.

Finally we consider the U - and O-products corresponding to a 
diagonal map D : A -> A ® A. The computation requires a map

(4) j:  Y ^ X 0 X '

where X, X '  and Y  are A-projective resolutions of A, A ' and A ® ^4', and 
where A operates on A ® A ' and X  ® X '  using the diagonal map D. 
Again if Y  is given in split form, while in X  and X '  we are given contracting 
homotopies, then a contracting homotopy in X  ® X '  also is given and j  
may be found using 5.2.

6. PRODUCTS IN  THE HOCHSCHILD THEORY

Let A and V be A-algebras and A ® K F their tensor product. We 
have

(A ® F)e =  (A ® T) ® (A ® T)* ^  A ® T ® A* ® T* & A e ® Fe

where all tensor products are over K. Henceforth we shall identify 
(A ® F)e with A e ® F6. Having made this identification we apply the 
products of § 1 replacing the symbol (A ,F ,A ,A \C ,C ')by  (A e ,Fe ,A ,F  ,A ,A’) 
and replacing £3 by (A ® F)e. We obtain products

T : H P(A,A) ® H JF ,A ')-+  H p+q(A  ® F,A ® A '\

_L: H*+*(A ® T, Horn O M ')) -> Horn (Hv(A yA),Hq(F,A'%

V : H V(A,A) ® t f ‘ (T ,^ 0 -> # ***( A  ® T,i4 ® >4'),

A : i W A ® r ,  Horn O M ')) Horn ( tf% M ), HQ(F,A')),

where ® and Horn stand for 0 K and Hom/0  A is a two-sided A-module, 
A ' is a two-sided T-module and A 0  A ' and Horn (A,A') are converted 
into two-sided A ® T modules as follows

(2i ® yj)(a 0  a)(X2 ® y2) =  ®

[(*1 ®  7 l) /(^ 2  ®  y 2)]«  =  7 l [ / ( V ^ l) ] y 2 -

The products themselves are A-homomorphisms. The products T  and 
_L are defined without any restrictions. For the products V and A to 
be defined we must assume that conditions (i) and (ii) of § 1 are satisfied. 
These read: (i) A e and Fe are A-projective; (ii) Tor^f (A,T) =  0 for n >  0.
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Clearly the assumption that A and T  are .K-projective, suffices for both
(i) and (ii). Henceforth we shall always assume that A and T are 
K-projective, whenever the products V or A are involved.

The formal properties established in § 2 all apply here and will not be 
restated. The same holds for the results of § 3. We shall only observe 
that proposition ix,7.4 is an easy corollary of 3.2 and actually the proof 
of ix,7.4 used implicitly the V-product and repeated the arguments of
3.1 and 3.2.

We now pass to internal products. Assume that A is a commutative 
K-algebra. Then the same holds for A e and we have A <g> A. A =  A. 
The products m and of § 4 are defined

: H P(A,A) ) —> H v+q(A,A  ®Ae A )

u ; : A, HomAe (A,A')) -> HomAe (.HP(A,A),H% A,A ')).

Here both A  and A ' are two-sided A-modules and A operates two-sidedly 
on A ® a , A '  and HomAe (A,A') as follows

X(a ®  a')X' — Xa ®  a X \  

(XfX')a=X[f(aX')].

Both products m and w  are Ae-homomorphisms.
To discuss the cup- and cap-products we consider a K-projective 

K-algebra A together with a K-algebra homomorphism D : A -> A ®K A  
called the diagonal map. Clearly D induces a K-algebra homomorphism 
De: A e -> (A A )e. We thus obtain the products

U : H »(A ,A )  ® H Q(A ,A ') ->  H*>+%A,A ® A') 

n : H p+q(A, Horn (A,A')) -> Horn ( H % A ,A y H q(A,A'))

where A  and A ' are two-sided A-modules. A  ® A f and Horn (A,A') are 
first regarded as two-sided A ® A-modules and then converted into two- 
sided A-modules using D . As in the case of V and A , the symbols ® 
and Horn stand for ® K and Hom ^, the products U and O themselves 
are K-homomorphisms.

We now come to the question of the computation of the products 
using complexes. We begin by the consideration of the normalized 
standard complexes N (A), N (T)  and N (A  ® T). We assume that A, T, 
Coker(K->A), Coker (K->r) are K-projective. Then Coker (K->A ® T) 
also is K-projective, and therefore the normalized standard complexes 
above are appropriate projective resolutions.
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To compute the T  and _L products we need a map

/ :  N (A) ® N ( T ) ^ N ( A  ® T)

over the identity map of A ® I \  Since the standard complexes are 
always given in split form, and since their definition is always accompanied 
by a contracting homotopy, the procedure given in § 5 may be applied. 
We shall give a closed formula for a map /  and then verify that it satisfies 
the inductive definition given in 5.2. Consider elements

a =  [Aj,. . . ,  AJ, b =  [yl5 . . . ,  y J

of N P(A ) and A^fT). If p  =  0 then a =  [X±, . . . ,  AJ is the unit element 
of N0(A) =  Ae and similarly if # — 0. We define

(1) / ( « ® * ) = I ±

where £1? . . . , ranges over all permutations of the sequence 
® 1 , . . .  ,AP ® 1,1 ® . . . ,  1 ® y q for which ® 1 , . . . ,  X9 ® 1 remain

in order and 1 ® yv  . . . ,  1 ® yq remain in order. The sign is +  for even 
permutations and — for odd ones. The mapping /  is extended to 
N p(A) ® Nq(T) by (A ® r ) e-linearity (see Eilenberg-MacLane, Ann. o f  
Math., 58, (1953)). To convert this into an inductive definition, we recall 
that [fl5. . . ,  £v+q] =  . . .  , £*+*]) where s is the contracting
homotopy of the complex N {A ® T). Now is either ® 1 or 1 ® y1 
and considering these two cases separately we obtain for p  >  0, q >  0

(2) f ( a  ® b ) =  j{(Ax ® l)/(fli <g> b) +  (—1)®(1 <g> Y i)f(a ® *1)} 

where a1 =  [X2, . . .  , XP] and bx =  [y2, . . . ,  yJ .  For p — 0 we have

/ ( I  ® b) =  [1 ® 7 i , . . . ,  1 ® ya]

while for q =  0 we have

f ( a  ® 1) =  [Xx ® 1 , . . . ,  Ap ® 1].

To prove that the above definition of/  checks with the inductive definition 
of 5.2, we must show that f ( a  ® b ) =  sfd{a ® b). We recall that in the 
complex N (A ® T) the operator  ̂ is zero on all elements of form 
[co2, . . . , collet), which do not have an operator in front. Since /  intro­
duces no operators, d(a ® b) may be replaced by Xtat ® b + ( — 1 )^  ® 
assuming that p >  0 ,q  >  0. Thus s/i/(a ® Z>) gives precisely formula (2) 
above. The cases p  =  0 or q =  0 are similarly verified by an easier 
argument.

We now pass to the products V and A . Here we need a map

g: N ( A ® T ) ^ N ( A ) ® N ( T )
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over the identity map of A 0  T. Such a map is given by the formula

(3) g[Xx <g> yl9. . . ,  <g> y j

=  2  D*i> • • •, K V p+i • • • K  ® n  • • • Yp[Yp+1> • • • »yJ-O^p^n

The verification that this formula is precisely the one given by the inductive 
procedure of 5.2 using the standard splitting and contracting homotopies, 
is analogous to the one just discussed and is left to the reader.

If A is commutative, then to compute the products m and we need a 
map

h: N (A) ®Ae N ( A ) ^  A(A).

Such a map is given for

a = [ X l , . - - , X 9 ],
by the formula

A(<*®a * ) = 2 ± ( £ i  w

where £l9 . . . , £p+q ranges over all permutations of the sequence 
Xl9. . . ,  Xp9 X[9. . . ,  A' for which Xl9. . . ,  Xp remain in order and X[9. . . ,  A' 
remain in order. The sign is +  for even permutations and — for odd ones.

For the U and O products depending on a diagonal map, we have no 
explicit formulae except when the diagonal map D is explicitly given.

So far we have used the normalized standard complexes. For the 
unnormalized standard complexes, the inductive procedures of § 5 can 
equally well be applied to obtain maps/ ,  g , h. These will be considerably 
more complicated. It turns out, however, that the same formulae used to 
define / ,  g , h for the normalized complexes preserve their meaning and 
commute with the differentiation even if the complexes are taken un­
normalized. They no longer are the maps given by the inductive pro­
cedure of 5.2. We have no rational explanation of this phenomenon.

7. PRO DUCTS FOR SUPPLEM ENTED ALGEBRAS

Let A and T  be supplemented A-algebras with augmentations sA: A -^K , 
eT: T->A. The tensor product A <g)K T is supplemented by setting

e(X <g) y) =  0 AA)(er y).

In the products of § 1 we replace A and A ' by A, thus obtaining products

T : Toi£ (A,K) 0  Tor?r  (A ',K) T o r ^ r  (A 0  A',K )

_L: Ext^+V (K, Horn (A ,C ')) -> Horn (Tor£ (A,K), Ext[ (AT.C'))
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for (^ A,^'r ,r C'). If A and T are A-projective then so is A 0  T and we 
may pass to homology notation

T : H P(A,A) 0  Hq(r ,A ') -> H p+q(A  0  T,A 0  A')

_L: H»+*(A 0  r ,  Horn (A ,C ’)) -> Horn (Hp(A ,A)9H%r,C')).

For the products V  and A  we must assume that A and T  are A-projective. 
We obtain

V : HP(A,C)  0  Hp+q(A  0  T,C  0  C )

A  : H„+q(A  0  r, Horn (C,A')) -> Horn (Hp(A,C),HQ(r,A')) 

for (AC,A'r ,r C ).

If A is commutative we have the internal products m and a> which, if 
A is A-projective, are A-homomorphisms

m : H V(A,A) 0 A Hq(A,A')  - >  Hv+q(A,A  0 A A')

o> : H p+%A, HomA (^ ,^ ') )  -> HomA (HP(A,A),HQ(A,A')).

Finally we come to the products U and O given by a diagonal map 
D: A - > A 0 A .  Here we postulate that D is compatible with the 
augmentation s. This is expressed by requiring that the diagrams

be commutative, where qA — 1 0  A and /2A =  A 0  1. If we identify A 
with A 0  A and A 0  A and regard ix and /2 as identity maps, the 
conditions become

The conditions imposed on D imply for each (left or right) A-module A , 
that the usual identifications of A with A 0  A and with A 0  A are 
compatible with the A-operators on the modules A 0  A and A  0  A 
induced by D. In particular we may identify A with A 0  A. This leads 
to products

A 0  A A 0  A
n f  D /S

A w  e<g)A A ® e

K  0  A A 0  AT

(e 0  A)D =  identity =  (A 0  e)D.

U : H*(A,C ) 0  H \A ,C ) ->  H p+q(A,C  0  C )

U : H v+q{A, Horn (C,A')) -> Horn {Hp{A ,C \H q{AyA'))-
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The formulae for these products in terms of the standard complexes 
differ only in that the complexes N (A) must be replaced by N(A,e). The 
formulae for the maps

/ :  N(A,eA) 0  N (T,er) -> N (A  0  T,e)

h: N(A,e) 0 A N (A,e) -> N (A 9e) A commutative

are unchanged. The formula for

g: N (A 0  T,e) -> N (A ,ea) 0  A ( I> r )
reads

g[Ai(g)y1(. . . , Xn®y„] =  2 [ V . . , •  • A„)(g>yx- • • y j y ^ , . . .  ,yn]
0 <p < n

The same formulae apply to the unnormalized standard complexes.
We now pass to monoids. Given monoids II and II ' with augmenta­

tions e : II -> K, e :  II ' ->A ' we define the direct product II X II ' as 
the monoid with elements (x,x'), x e l l ,  x ' e l T ,  multiplication 
(x,x')(y9y f) =  (xy,x'y ') and augmentation e(x,x') =  £(x)e'(x'). It is then 
easy to see that AT(II X II ') may be identified with AT(II) ® K K(II ') 
under the identification (x9x f) =  x 0  x ' . Thus all the considerations 
concerning the T ,  _L, m and u; products apply with A, T, A 0  T 
replaced by II, II ', II x II '. We shall not duplicate the various formulae.

To introduce the U and O products we consider the diagonal map 
D : AT(II) AT(TI x II) induced by x -> (x ,x ) . In order that this map 
be compatible with the augmentation we must assume that e(x) =  e(x)e(x) 
i.e. that the augmentation e: II -> K  is idempotent. The unit augmenta­
tion and the zero augmentation clearly are idempotent. Thus assuming 
an idempotent augmentation, we obtain the products

u : H % n ,o  0  H % n9c ')  -> ip + * (n ,c  0  C )
n : H v+q(U, Horn (C9A)) -> Horn (H%U,C)9HQ(U,A)),

in the situation (An , The diagonal map D is commutative and
associative in the sense of § 4, thus the commutative and associative rules 
stated in § 4 apply to the products U and O defined above.

To obtain formulae for the computation of the products, we define a 
map

j:  A (n )->  N(U) 0  A(II)

over the identity map of K , as the composition of the map 
N (U ) - >  N(U X U) induced by D with the map g : N (II X II) 
-> N(U) 0  N(II) defined above. We obtain

j [ x x, . . . , x n] =  2  [ X ! , - - . ,  X j M X v + l  ■ ■ ■ x j  ®  x x ■ ■ • X v [ x ^ x , X n].

This formula also is valid for the unnormalized standard complexes.
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Let A be a supplemented AT-algebra with augmentation s : A -> K. We 
shall assume that a diagonal map

D: A -+  A ® A
and an “antipodism”

co: A ->  A*

are given subject to the following conditions:
(i) D and co are homomorphisms of ZT-algebras.

(ii) D and co are compatible with s, i.e.

s =  £*co, (s ® A)Z> =  identity =  (A ® e)D.

(iii) co*co =  identity, where co*: A* -> A is induced by co.
(iv) D is associative, i.e. (A ® D)D =  (D ® A)D.
(v) Z) and co commute, i.e. D*co =  (co ® co)Z>.

(vi) The map is: A ->  Ae defined by E  =  (A ® co)D satisfies condition
(E.l) of x,6.

It follows from (iii) that coco* also is the identity and therefore co is an 
isomorphism with co-1 =  co*.

Consider the situation (Aa ,a C). We may regard A ® C as a right 
A (g) A*-module, and, using the map E , also as a right A-module. It 
follows from condition (vi) that (A ® C)I =  (A <g) C)J where /  is the 
kernel of e : A ->  K  while J  is the kernel of p: A e A. Since 7 is gene­
rated (as a left Ae-module) by the elements X ® 1 — 1 ® A* and since 
(a ® c)(A ® 1 — 1 ® A*) =  aA ® c — a ® Ac it follows that 04 ® C)7 is 
the kernel of the natural map A ® A ®A C. We thus obtain

(1) A ®A C & (A ® C)/(A ® C ) /=  (^  ® C)A & (A  (g>C) ®A ZT.

Next consider the situation (aA,a C). We consider Horn 04,C) as a 
left Ae-module with operators [(A ® y * )/]«  — Xf{ya). Using the map E  
we may regard Horn (A,C ) also as a left A-module. It then follows from 
(vi) that the elements of Horn (A,C) invariant under the operators of A e 
(i.e. the annihilators of J) coincide with the elements of Horn 04,C) 
invariant under the operators of A (i.e. the annihilators of I). Since 
[(A ® 1 — 1 ® X * )f]a =  X(fa) —f(Xa), it follows that the invariant 
elements of Horn 04,C) are precisely those of the subgroup HomA 04,C). 
We thus obtain

8. ASSO CIATIVITY FORMULAE

(2) HomA 04,C) -  [Horn 04,C)]A ** HomA (K , Horn 04,C)).



Proposition 8.1. In the situation (aA,aB,a C) the isomorphism

(3) Horn (A, Horn (B,C)) ^  Horn (A ® B,C)

o f  11,5.2' induces an isomorphism

(4) HomA (A, Horn (B,C)) & HomA (A 0  B,C)

where Horn (B,C) and A  0  B are regarded as left A-modules using the 
maps E  and D respectively.

We first regard both sides of (3) as left (A 0  A* 0  A*)-modules by 
setting

m  0  7* 0  H*)f]a}b =  h{[f{[A,a)]yb}

for the left side of (3) and

[(A 0  7* 0  /i*)g]{a 0  b) =  k[g(jua 0  yb)]

for the right side of (3). Then (3) becomes an operator isomorphism.
Then we convert both sides of (3) into left A-modules using the map

cp: A -> A 0  A* 0  A*
given by

cp =  (A 0 co 0 co)(A 0 D )D

=  (A 0  co 0  co)(D 0  A)D .

Consequently the invariant elements of both sides of (3) correspond to 
each other under the isomorphism (3). Since

< p= (E ®  A*)E

the operators of A on Horn (A, Horn (B,C)) may be arrived at as follows. 
First regard Horn (B,C ) as a left A-module using the map E, then regard 
Horn (A, Horn (B,C)) as a left A-module again using the map E. Thus 
by (2) the invariant elements are HomA (A , Horn (i?,C)). Now examine 
the right hand side of (3). Since

<p=(A 0  D*)E

we may regard first A 0  B  as a left A-module using the map D and then 
regard Horn (A 0  B,C) as a left A-module using the map E. Thus by (2), 
the invariant elements are HomA (A 0  B,C).

Quite analogously we prove
Proposition 8.1a. In the situation (Aa ,aB,a C) the isomorphism 

(3a) (A ® B) ® C ?*> A ® (B  ® C)

o f  11,5.1 induces an isomorphism 

(4a) (A 0  B) ®A C A ®A (B 0  C).
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where A 0  B is regarded as a right A-module using the map E, and B 0  C is 
regarded as a left A-module using the map D.

As an application of 8.1 we prove
Proposition 8.2. In the situation (aA,aB,a C), i f  A is A-projective and 

B is K-projective then A 0  B is A-projective. I f  B is K-projective and C is 
A-injective then Horn (B,C) is A-injective.

Proof. Assume A is A-projective and B  is A-projective. Then
HomA (A,D) and Horn (B,C) are exact functors of D and C. Thus
HomA (A, Horn (B,C)) is an exact functor of C. Consequently
HomA (A 0  B,C) is an exact functor of C, which implies that A 0  B  is 
A-projective. The second half is proved similarly.

Now consider the situation

( '> a *̂> a C, Ca) •

Applying 8.1 to the triples (Horn (B,C),B,C) and (C \B ,C ' 0  B) (with C  
regarded as a left A-module using co) we obtain isomorphisms

HomA (Horn (B,C), Horn (B,C)) ^  HomA (Horn (B,C) 0  B,C)

HomA (C ' (g) B,C' 0  B) ^  HomA (C', Horn (B,C ' (g) B)).

Substituting on the left the identity maps Horn (B,C) -> Horn (B,C) and 
C ' ® B  -> C ' (g) B  we obtain the A-homomorphisms

(5) 9o: Horn (B,C) <& B->  C

(5a) ip: C' -> Horn (B,C' (g) B)

given by
<p(f 0  b) — fb , (y)c')b — c' 0  b.

Now assume that A is AT-projective and that 

(*) T o rf (A \A ) = 0  for n >  0.

We then have the products

U : ExtA (A \H o rn  {B,C)) 0  ExtA (A ,B)-> ExtA (A' 0  A, Horn (B,C) 0  B) 

O : Toi^ (Horn (B,C'<g) B),A 0  A')->  Horn(ExtA(A ,B \TorA (C  0  B,A')). 

Combining these with the pairings (p and y) we obtain the modified products

(6) U : ExtA (A \  Horn (B,C)) 0  ExtA (A,B) -> ExtA (A ' 0  A,C)

(6a) n : TorA (C',A 0 A ') - >  Horn (ExtA (A,B), TorA (C f 0  B ,A %
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Taking A ' =  K  we find A ® A ' =  A and (*) is automatically satisfied. 
We thus obtain

(7) u : H p(A, Horn (B,C)) 0  Ext^ (A,B) -> Ext^+* (A9C)

(7a) O : Tor^+3 (C',A) Horn (Ext* (^ ,5 ), Htt(A ,C ' 0  5)).

Further, taking A =  K  we have

(8) u : # P(A, Horn (£,C)) 0  A,5) -> H*+%A9C) (AB9AC),

(8a) n : (A ,C ') -► Horn (7P(A,5), t f a( A ,C ' 0  2*)) (a^ O

We recall that Horn (B9C) is regarded as a left A-module and C '®  B  as a 
right A-module using the map E.

Proposition 8.3. For p  =  q — 0 the maps

U : HomA (A \  Horn (.B,C)) 0  HomA (A9B) -> HomA (A ' 0  A,C)

Pi: C ' 0 A (A 0  ^ ')  -> Horn (HomA (C ' 0  £ ) 0 A A'))

are given by
( /  U g)(tf' ® fl) =  (fa')iga) 

[c' 0  (a 0  a')] n  /  =  (c' 0  fa )  0  a'.

This is a direct consequence of 1.2.3, 1.2.4 and the definition of the 
modified products.

In the case A =  Z(II), where II is a group with unit augmentation, 
we define

Dx =  (x,x) =  x  0  x, cox =  (x-1)*.

Axioms (i)-(vi) are then satisfied. Thus all the above considerations 
apply in this case. We note that the operators of II on Horn (B9C) and 
C ' 0  B  are given by

(x f)b  =  x[f{x~1b)]9 (ic' 0  b)x =  c'x  0  x~xb.

We shall see in Ch. xm that the discussion of this section applies 
also to Lie algebras.

9. R E D U C T IO N  T H E O R E M S

We continue with the assumption that A is a X-projective supple­
mented K-algebra. We assume that D: A  A 0  A and co: A -> A* 
satisfying the conditions (i)—(vi) of § 8 are given.

Taking A =  B in the products (7), (7a) of § 8 we obtain

U : H P(A, Horn (A9C)) 0  ExtqA (A J )  -> Ext^+* (A9C)

n : Tor£+? (C',A) -> Horn (Ext* (A ,A \H q(A ,C ' 0  A))
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in the situation (aA9jAC,Ca). We concentrate our attention on the 
element

j  e HomA (A,A) =  ExtA (A,A)

which is the identity mapping of A. We thus obtain maps

(1) U j:  H*{A, Horn (A,C)) -> Ext£ (A,C)

( l a )  n  J: T ot£ (C ',A ) - >  H V{K,C' ® A)

which we propose to investigate.
P roposition 9.1. For p — 0, the maps (1) and (1 a) reduce to the 

isomorphisms
HomA (K, Horn 04,C)) ^  HomA (A,C)

C  ®A a ™ (C' ® A ) ® a K
given by 8.1 and 8.1a.

This is an immediate consequence of 1.2.3, 1.2.4 and the definition of 
the modified products.

P roposition 9.2. I f  A is K-projective then U j  and Pi j  are isomorphisms. 
P roof. Assuming that u  j  and o  j  are isomorphisms in degree 

P (p 0) we shall prove the same for p  -f- 1.
Consider an exact sequence 0 -> C -> Q-> N -> 0  with Q A-injective. 

Since A is X-projective, the sequence

0 -> Horn 04,C) -> Horn (A,Q) -> Horn (A,N) -> 0

is exact, and by 8.2, Horn (A,Q) is A-injective. Using the rules for 
commutation of O with connecting homomorphisms, we obtain a 
commutative diagram

H P(A, Horn 04,0)) — > EP(A, Horn (A ,N )) — > f f p+1 (A, Horn 04,C) — > 0
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U j U j U j

Ext £ 0 4 , 0  — +ExXl{A,N) — >Ext£+104,C) — 0

with exact rows. Since the first two vertical maps are isomorphisms the 
same follows for the third vertical map.

The proof for n  j  is similar using an exact sequence 
with P  A-projective.

Consider an exact sequence

(S) 0 - + A ^ F q̂ ^  >F0-+ F ->  0

of left A-modules (q >  0). The iterated connecting homomorphism

ds : HomA (A9A) -> Ext^ (F,A)



is then defined. The image ds j  e Ext^ (F,A) of the element j  is called the 
characteristic element of (S).

The products (7) and (7a) with A and B  replaced by F  and A yield maps

y: H P(A, Horn (A,C)) -> E x t^ fq (F,C) AC

0: Tor£+4 (C',F) -+ H P(A ,C ' ® A) C'A
given by

yh =  ( - 1  )«* u  <58j, h e H V(A, Horn (A,C)),

w  — h’ r\ dgj, h’ e Tor£+4 (C ,F ).

Proposition 9.3. The homomorphisms y and #  admit factorizations 

H P(A, Horn (A,C)) Ext^ (A,C) - A  Extft+* (F,C)

Tor£+4 (C ',F) 2 L  Tor^ (C',A) -2L H P{A,C' <g> A)

where A and A' are the iterated connecting homomorphisms relative to the 
sequence (S ).

P roof. This clearly follows from the commutativity of the diagrams 

ExtA (K , Horn (A,C)) ® ExtA (A,A) ExtA (A,C)
I ® d  I A

U
ExtA (K, Horn (A,C)) 0 ExtA (F,A) — ► ExtA (F,C)

T o ^  (C ',F )->  Horn (ExtA (F,A), Toi^ ( C  0 A ,K ))
|  A' |  Horn (ds , T )

TorA (C',A) -> Horn (ExtA (A,A), Toi^ (C ' ® A,K))

where I  and V  stand for appropriate identity maps.

Theorem 9.4. {Reduction theorem.) I f  F0, . . . ,  Fq_x are A-projective 
and A is K-projective, then the maps y and F are isomorphisms fo r  p  >  0. 
For p =  0 we have the exact sequences

HomA (iv_1?C) -> HomA (A,C) -> Ext^ (F,C) -> 0

0 Tor* (C',F) - v  C' 0 A A  —> C  ®A i ^ .

Proof. We apply the factorizations given in 9.3 and observe that 
since A is F-projective, the maps U j  and O j  are isomorphisms by 9.2. 
This reduces 9.4 to a statement about the iterated connecting homo­
morphisms A and A', which is a consequence of v,7.2.

Corollary 9.5. Let

(S) 0->  A F q_x -> • • q >  0
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be an exact sequence o f  left A-modules with Fq_x, . . . , F0 A-projective. 
Then fo r p  >  0 we have isomorphisms

H%A, Horn 04,C)) ^  (A,C) AC

H v+q (A ,C ') «  H V{A,C ' ® CA

by h-> h U a/zd h' -> t i  O For p  =  0 vve have the exact 
sequences

HomA (Fa_l5C) -> HomA ( 4 , 0  -*  /F(A ,C ) -> 0

0 -> Hq{A,C') -+ C ’ ®a A - + C ’ ®a  Fq_v

This follows directly from 9.4 provided we show that A is A-projective.
This is immediately seen by decomposing (*S) into short exact sequences.

In particular, if we consider the exact sequence 

0 - > / ^  A - >  A - > 0  

we obtain isomorphisms (p >  0)

H V{A, Horn (/,C)) ^  LP+1 (A,C), AC

77p+1 (A ,C ') ~  t f p(A,C' ® /), CA

given by appropriate products.

E XERCISES

1. Let A, T, 21 be A-algebras with 21 assumed to be A-projective. 
Define the products

T : TorA®2* (C,A) ® Tors ®r * (C ',4 ')  -> TorA®r * (C ' ® s C,A ® s 4 ')

in the situation (A4 s ,s CA,s 4 r , r C2), anc  ̂ the product

JL • ExtAg>r* (A ® z A , Homs (C,C ))
Horn (Tor*®2* (C,A), Exts ®r , (^ ',C '))

in the situation (A-^2’S^A’S,̂ r 5S^r)*
Assume further that A, T, 21 are A-projective and that Tor2 (A,A') =  0 

for n >  0. Define the product

V * ExtA02* (A,C) ® ExtS 0 r* (4  ,C ) —> ExtA 0r* (4  ® 2 4 'jC  ® s C )

in the situation (A4 s ,ACs ,s 4 r , s Cr), and the product

A : TorA® r * (Homs (C ,C '),4 ® s A')
-> Horn (ExtA0S* (A,C), Tor2 ® r * (C ',A ') 

in the situation (AA ^,AC ^,^A r ,r C^).
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Show that replacing the triple (A ,r ,2 )  by (A ,r* ,A ) gives the products 
defined in § 1. Establish the formal properties of the generalized products.

2. Let A be a A-projective A-algebra. Taking A =  T =  2! in Exer. 1 
derive the “products of the second kind” for the Hochschild groups:

T : H 9(A,A) 0  Hq(A ,A ') -+ H v+q(A,A  0 A A')

_1_: H v+q(A, HomA (A,A')) -> Horn {H JiA,A\H % A,A'))

V : H V(A,A) 0  H q(A ,A ') -> H p+q(A, A 0 A A')

A : H p+q(A, HomA (A, A')) -> Horn (H%A,A)9Hq(A 9A'))

defined for any two-sided A-modules A and A'.
Find maps

/ ' :  N(A) 0 A N(A) N(A)

g ': N (A) -»  N(A) 0 A A(A)

analogous to the maps /  and g  of § 6, and show that the products of the 
second kind may be computed using / '  and g .

3. Show that the composition

N(A) <g> N (r )  iV(A 0  T) N(A) 0  iV(D

is the identity. Similarly for the maps / ' ,  g of Exer. 2.
4. Show that in the normalized standard complex A(A) the contracting 

homotopy s has the form
. . .  , ]A ')=

and that the sequence

0 — > N_x( A) ^  A0( A) ----> N n( A) Aw+1( A) — > • • ■

is exact. As a consequence show that dn (n 0) maps Ker sn isomorphic- 
ally onto Im dn.

5. Show that the map / :  N (A) 0  A ( r ) ^  A(A 0  T) constructed in 
§ 6 satisfies ^(ACA) 0  A(T)) =  0. Show that this property characterizes 
the map/ in a unique fashion. Using this method establish commutativity 
and associativity properties of the map / .  Apply a similar discussion to 

/ :  A(A,ca ) (g) N (T 9er ) —> N( A  (g) I\e) for supplemented algebras.
6. Show that the map g: N (A  0  T1) - ^  A(A) 0  N(F) constructed in 

§ 6 satisfies ng(N(A  0  T)) =  0 where n is the contracting homotopy for 
A(A) 0  A(T) constructed, as in § 5, using the contracting homotopies s in 
A(A) and A (r). Show that the above property of g  characterizes that map 
in a unique fashion. Derive an associativity property of g  by this method. 
Apply a similar discussion to the map N (A  0  T,e) -> N(A,eA) 0  N(T,er ) 
for supplemented algebras.
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7. Let op: T be an epimorphism of commutative A-algebras.
Let AT be a projective resolution of T as a A-module, given in split form 
X  — A ® X  with X 0 =  A. Let further Cs^cr) be a contracting homotopy 
for X. Then T ®A r = T ® r r = r  and the complex X  ®A X  
— A ® X  ® X  is a left complex over T also given in split form. Construct 
a m ap

h : X ® A X - > X

over the identity map of T using the inductive procedure of 5.2. Establish 
the following properties of h :

(i) h{x ® y) =  (—1 )vqh{y ® x) for x  e X v9 y e  Xq.
(ii) If .s(Z) =  0 then the element 1 ® A =  XQ is a unit element for h,

i.e. h( 1 ® x) =  x  =  /z(x ® 1).
(iii) If h(X  ® X )  C X  then h is associative, i.e. h(x ® h(y ® z ))

=  h(h(x ® y) ® z).
If all these conditions hold then h converts X  into a graded algebra with 
differentiation.

Apply the above to the case p : A e > A and X  =  N (A), where A is a 
commutative A-algebra. Conclude that N (A) is a graded algebra with 
differentiation under the map h given in § 6.

Apply the above to the case e: A ^  K  where A is a supplemented 
commutative A-algebra. Conclude that N (A,e) is a graded algebra with 
differentiation, under the map h of § 7. In particular, for a commutative 
augmented monoid II -> A, N(U) is a graded algebra with differentiation.

8. Let A be a A-algebra, A a two-sided A-module and M  a A-module. 
Using the homomorphisms at the end of § 3 (also those of vi,5) establish 
homomorphisms

pn: H n{A, Horn (A,M)) -> Horn ( i /n(A,^l),M),

H n(A, Horn (A,M)) Horn (H n(A,A),M)-

Show that pn is an isomorphism if M  is A-injective, and that an is an 
isomorphism if M  is A-injective and A e is Noetherian. In particular 
pn and on are isomorphisms if A is a field, M  =  A and A is finitely 
A-generated.

9. Let II be a monoid with an augmentation II -> Z. Let A be a 
right II-module and r =  R jZ  the group of reals reduced mod 1. Then 
with the topology defined in vn,6, the group D(A) =  Horn (A,T) is a 
compact abelian group with continuous left II-operators. Then pn of 
Exer. 8 becomes

Pn: H n(U 9D(A)) ** D(Hn(Il,A)).
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Assign a natural topology to the group H n(U,D(A)) using a II-projective 
resolution of Z  and show that the isomorphism pn is topological. Carry 
out a similar discussion for

crw: H J J IM C ))  D(Hn(U,C))

where C is a left II-module and the monoid II is finite .
10. Let A =  (K,d) be the algebra of dual numbers over a commutative 

ring K , as defined in iv,2. Show that there is no diagonal map 
D : A ^  A ® A satisfying conditions (i)-(vi) of § 8 (with a> =  identity).



CHAPTER XII

Finite Groups
In troduc tion . If II is a finite group it is convenient to consider the 

homology groups H n(H,A) and the cohomology groups H n(Yl,A) using 
a left II-module A in both cases. The norm homomorphism N: A A  
induces a homomorphism N*: H0(U,A) -> H°(U,A). Using the
method introduced in v,10, this allows us to combine the homology and 
cohomology groups into a single sequence H q(U,A) (—c o < q < c o )  
called the complete derived sequence of II. The interesting fact is that 
for this complete derived sequence a product theory may be established 
(§ 4-6) which generalizes the U and O products. In § 8-10 we study the 
relations between H(Yl,A) and H (tt,A) where 77 is a subgroup of II. 
The last section (§ 11) is devoted to the study of groups II for which 
H 9(H,A) has a periodicity with respect to q.

The theory presented here has been developed by Tate (unpublished) 
with a view to applications in class-held theory. The results of § 11 are 
due to Artin and Tate (unpublished). The writing of this chapter was 
made possible only through the generous help of G. P. Hochschild and 
J. Tate.

1. NORMS

We shall be concerned with finite groups II. The ground ring for 
the construction of the group algebra A =  Z(II) will always be the ring 
Z  of integers; the augmentation Z (I I)-> Z  will always be the unit 
augmentation. Unless otherwise stated all II-modules will be assumed 
to be left II-modules.

In the group ring Z(II) we distinguish a particular element

N  =  Ex, x e n .

Rather than deal with the element N  directly we shall consider the norm 
homomorphism

N: A -> A 

defined for each II-module A by

Na =  Ex<z, x e II.
232
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Since N (x  — 1) — 0 and xN  =  N  it follows that

I  A C Ker N, Im N C  An .

Consequently N  induces a homomorphism

N *: An  -> An

where as usual An = j  A /IA , and A n  is the set of invariant elements of A.
The image of the norm homomorphism N: A -> A will be denoted by 

N(A) and will be regarded as a covariant functor of the II-module A . 
Clearly we have a commutative diagram

where g  is defined by N  and is an epimorphism, while h is an inclusion map. 
The kernel of the homomorphism N : A -> A will be denoted by NA. 
If A and C are II-modules, we convert Horn (A,C) into a II-module 

by setting

defined as (N f)a — ^ x f i x r ^ ^ x  e l l .  The image of (2) is in the sub­
group Homn (A,C). If f :  A -> C is a n-homomorphism then 
N f=  (II : 1)/, where (II : 1) is the order of the group II.

Consider homomorphisms

A B — * C — * D

where /  and h are II-homomorphisms and g  is only a Z-homomorphism. 
Then

P roposition  1.1. For each Tl-module A the following properties are 
equivalent:

(a) The identity map A —>A is the norm o f some Z-endomorphism
p : A -> A.

(b) A is weakly projective.
(c) A is weakly injective.
P roof. T he equivalence o f  (a) and (b) is stated in  x ,8 .6 .
(a)=>(c). Let p: A ->  A be such that Np =  identity. For any

N(A)
(1) V  \ *

v» '

(xf)a  =  x if ix - 'a )) .  

We thus obtain a norm homomorphism

(2) N: Horn (A,C) -> Horn (A,C)

N(hgf) =  h(Ng)f.

f  e Horn (Z(Yl),A) define
H f=  J,xp(xr1(fx)), x  € n .



Then for s e II we have

K sf )  =  J,xp(x~1s f(s -1x)) =  s(p f).

I f  /  is a constant with value a then

p f =  'Xxp{x~la) =  (Np)a =  a.

Thus p, is a “mean” in the sense of x,8.4a and A is weakly injective.
(c) (a). Suppose A is weakly injective and let p : Horn (Z(U),A)-> A

be a mean in the sense of x,8.4a. For each a e A define f a e Horn (Z(Il),A) 
by setting f al =  a, f ax  =  0 for x ^  1. Then 2*/®-% is a function constant 
on E  with value a . Define pa =  pfa. Then

{Np)a =  2xp{x~la) =  J,x/j,(fx-ia) =  p{J,xfx-ia) =  a.

Thus Np is the identity.
Proposition  1.2. In order that f  €Hom n (^4,C) be the norm o f an 

element h e Horn (A,C ) it is necessary and sufficient that f  admit a factoriza­
tion

a - ^ z ( n) ® c —♦ c

where g and h are H-homomorphisms and II operates on Z(II) ® C as
y (x  ® c) =  y x  ®- c.

P roof. Assume /  =  hg. Since Z(II) ® C  is weakly projective 
(x,8.1) there is a Z-endomorphism p of Z(II) ® C such that Np =  identity. 
T h e n /=  %  =  h{Np)g =  N(hpg).

Conversely assume /  =  JVfc for some k  e Horn (A,C ). Define 
ga =  2 *  ® k{x~xa) and /z(x ® c) =  xc. Then /zga =  ^ x k ix ^ a )  =  (A/:)a
- f a -

Proposition 1.3. I f  A is weakly projective, //ze/2 in the diagram (1), //ze 
maps N*, g, h are isomorphisms, z.e.

K e rJV = /.,4 , I m ^ - ^ n

P roof. By 1.1 there exists a Z-endomorphism />: such that
a — 2  ■xpC*-1#) for all a e A. Suppose Na =  0. Then

sen
a =  2*/°(*-10) =  2  xp ix ^a )  — 2p(*_lfl)

— 2 (x “  € I-A

so that Ker g =  0 and g  is an isomorphism. Suppose a e Au . Then 
x _1a =  a for all x  e II and

a — 2  xp(x~1a) =  2  xp(a) — Npa.

Thus Im N  =  An  and h is an isomorphism.
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2. THE COMPLETE DERIVED SEQUENCE

We shall consider the homology and cohomology groups of II with 
coefficients in the same left II-module A. Thus for n 0

tfn flM ) =  Tor*(Z„4), H n(U,A) =  E xt^(Z,A )

where on the left Z  is regarded as a right II-module while on the right Z  
is regarded as a left II-module.

In addition to these functors we also consider the covariant functor N  
which to each module A assigns the image N(A) of the norm homomorphism 
N: A -+ A .

Diagram (1) of the preceding section may thus be rewritten
N

(1) ’/  \
H0  >HQ

0 N*

where N*, g, h are natural transformations of functors.
The three functors and the three maps in diagram (1), each give rise to 

a derived sequence in the sense of v,10. We shall denote these by DH0, 
DH °, DN , D N *, Dh, Dg. Between these six derived sequences we have 
the following maps

Dg -> D N  -> Dh
(2) t  I

DH0-> D N *-+  DH° 

which form a commutative diagram.

For instance the map D N-> Dh is defined by the diagram
N — > N

I I*
N — »• H°h

Proposition 2.1. All the maps in diagram (2) are isomorphisms.
Proof. We consider for example the map D N  -> Dh, induced by the 

diagram above. Since by 1.3, h: N(A) -»  H°(U,A) is an isomorphism 
whenever A is projective, it follows from v,10.3 that D N  Dh is an 
isomorphism.

In view of 2.1 we shall identify the six derived sequences above into one 
sequence called the complete derived sequence of II. We shall use either 
the notation

or
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Thus we have

H n(U,A) =  H n(H,A) =  Extn (Z,A) n >  0

H°(U,A) =  H°(U,A) =  Coker (H0 -> H°) =  Coker (N -+  H°)
=  AU/NA.

H - \ n ,A )  =  H 0(U ,A )= K qt (flo -> //°) =  Ker (ff0-► JV) =  NA/I.A.

H n(U,A) =  =  TorH ^-i (Z,A). n <  - 1

The reason for renumbering the groups and introducing the symbol 
/ / n is to enable us to consider the graded module If(II,A ) including all the 
terms of the complete derived sequence. The graded functor H  is an 
exact connected sequence of functors, i.e. for each exact sequence 
0 -> A ' -> A  -> A" -> 0 of 11-modules we have an exact sequence

 > iP -K IM " )  -> H n(U,A ') H n(U,A) H n(U,A ,f)
-> H n+l( n ,A ') - > - - -

Proposition 2.2. I f  A is weakly projective (=  weakly injective) then 
H(U,A) =  0.

Proof. Since A is weakly projective, it follows from x,8.2 that 
H n(U,A) — 0 for n >  0. Since A  also is weakly injective, it follows 
from x,8.2a that H n(U,A) =  0 for n >  0. Finally it follows from 1.3 
that H \II ,A )  -  0 -

Proposition 2.3. In the complete derived sequence o f  IT, each functor 
is the satellite S1 o f the following one and the satellite S 1 o f the preceding one:

H *-1 =  S ^ ,  H n+1 =  S xH n.

This follows directly from the axiomatic description of satellites 
given by m,5.1.

Given a II-homomorphism / :  i - > C  of II-modules we shall 

denote by f  the induced homomorphism H(I1,A) -> i/(II,C ).
Proposition 2.4. I f f : A -> C is the norm o f an element o f  Horn (A,C) 

then f  =  0.
Proof. It follows from 1.2 that /  admits a factorization 

A -» Z (II) 0  C ->  C. Since Z(II) 0  C is weakly projective (x,8.1), 
we have //(n ,Z (II) 0  C) =  0. Thus f  — 0.

Proposition 2.5. I f  II w o f order r =  (II : 1), then rH(U,A) =  0.
Proof. The map / :  A -> A given by a -> ra is the norm of the identity 

map A A .  Thus /  =  0 and ri^(II,^) =  0.
Corollary 2.6. I f  II — 1 is the trivial group, then //(II,T ) =  0.
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C o r o ll a r y  2.7. I f  II is o f order r — (II : 1) and nA =  0 fo r  some 
n relatively prime to r, then H(H,A) — 0.

It should be noted that in contrast with H n(Tl9A) and H n(U,A) the 
functors H(J1,A) are not functors in the variable II. We shall see 
substitute concepts in § 8 when we discuss the relations between a group 
II and a subgroup 7r.

Using the group Z  with trivial II-operators as coefficient group, we 
have

'H 1(U ,Z )= 0 ,

(4)
H 0(U,Z) = Z r =  Z/rZ, r = ( U :  1),

H - 1(U ,Z )= 0 ,

H - \ n , z )  =  n / [n ,n ] .

The first result follows from the fact that each crossed homomorphism 
II Z  is zero. The second and third follow from the fact that N : Z -> Z  
consists in multiplication by r. The last formula follows from x,4, (8).

It will also be useful to determine the connecting homomorphism 

(5) d: H - ^ A ^ ^ H ^ A ' )

corresponding to an exact sequence 0 — ► A ' A A" — ► 0.

Replacing H -1 and H° by their definitions, we have 

(5') d: nA "IL A ''-> A 'u/N A '.

This homomorphism may be explicitly described as follows. Given 
a" e nA" choose a e A with (pa =  a". Then cpNa =  Ncpa =  Na =  0 so 
that there is an element a e A ' with ipa' =  Na. Since tpxa' =  xNa =  N a =  ipa' 
it follows that a'e A 'n  and determines an element of A 'U/N A'. This is 
da". This description is in agreement with the description obtained from 
the diagrams of v,10.

3. C O M PLE T E  R E SO L U T IO N S

We shall introduce a new type of resolutions which will allow us to 
compute the complete derived sequence of a finite group using a single 
complex.

We need some preliminary considerations. For each Z-module C, we 
denote by C° the Z-module Horn (C,Z). Clearly, if C has a finite Z-base, 
then C° also has one. For any Z-module A, the homomorphism

o: C ® A Horn (C°,A)



given by (cf. vi,5)

[a(c 0  a )] f  =  (fc)a , c € C, a e A, f  e C°,

is an isomorphism whenever C has a finite Z-base. In particular, taking 
A =  Z, we have an isomorphism C ^  C00 if C has a finite Z-base. 

Proposition 3.1. Given an exact sequence o f Z-free modules

(X)  ► z n+1 —  z B_x— ►•••

there exists a “contracting h o m o to p y i.e. a sequence o f Z-homomorphisms 
sn: X n ~* X n+1 such that

(1) dn+1sn +  sn̂ d n =  identity.

Proof. Let Un =  Ker dn =  Im dn+1. Then Un is Z-free (cf. 1,5.3), 
and we have an exact sequence

0 —  Un %̂ X n ^ U n_x - +  0

where in is the inclusion map and dn is induced by dn. Since Un_x is 
projective, this sequence splits: there exist homomorphisms

which together with in and dn yield a representation of X n as a direct sum. 
Set sn =  %pn+1 cpn\ then (1) follows immediately.

Corollary 3.2. Given an exact sequence (X) o f Z free  modules, the 
corresponding sequence 0 0 dn—1 dn
( . . . ___ * v °   + vO * y °  > • • •A n — 1 ^n+l
where X ® =  Horn (X n,Z) and d ® =  Horn (dn+1,Z), is exact.

Proof. Let — Horn (sn_l9Z). Then

d l - i sl  +  sn+idn =  identity,
showing that the complex (Z°) is acyclic.

We observe that if the Z-free modules X n have a finite base, then the 
modules X ® also are Z-free with a finite base, and the sequence (Z 00) is 
simply (X ).

We now consider Z(II)-modules, II being a finite group. If C is a 
left II-module, then C° =  Horn (C, Z) is a left II-module by setting

(1) (.x f ) c = f ( x ~ 1c);

this definition agrees with that given in § 1, if we consider Z  as a II- 
module on which II operates trivially. If A is another left II-module, 
then the homomorphism o becomes a II-homomorphism. Moreover,
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if C is Z(II)-free with a finite base, then a is an isomorphism, because 
C has a finite Z-base. We shall always identify C ® A and Horn (C°,A) 
as (left) n-modules, when C is Z(Il)-free with a finite base. In particular 
taking A =  Z  with trivial operators, we shall identify C and C00 as 
II-modules.

If C is Z(II)-free with a finite base, then C° also has one: it suffices to 
give the proof for the case C =  Z(II). In fact, we have a natural 
isomorphism

(2) Horn (Z(II),Z) ^  Z (n )

defined in the following way: let (e^ be the finite Z-base of C =  Z(II) 
consisting of all elements of II, and let (e*) be the “ dual base” of C°, 
defined by

(0 if i ^  j
ef{et) =

1 i f i = /

There is a Z-isomorphism cp\ C° such that <p{e?) =  e f , and it is 
immediately seen that y  is a Z(II^isomorphism, which proves (2).

This result together with 3.1 and 3.2 implies
Proposition 3.3. Given an exact sequence o f {left) Z{U)-modules and 

Z(J\yhomomorphisms

(X)  >Xn+x^ X n ^ X ,n+1 ^  n A n—1

such that each X n is Z (H )free with a finite base, then the sequence
0 0dn—1 dn

(  Wv . . . _____ > Y °   > Y ° _____► Y °   . . .\ A ) A n - 1 A n A n+1

is exact and each X® is Z{Tl)free with a finite base.

Consider now two (left) II-modules C and A. In the tensor product 
C ®n A it is understood that C is considered as a right II-module by 
setting

cx — x_1c, c € C, Jt e EL

It follows that, considering C <g) A as a left II-module by setting

x(c ® a) =  (xc) ® (xa), c e C, a € A, x  e II,

we have

(3) (C ® A)n =  C ®jj A.
Moreover

(3a) (Horn (C,A))U =  Homn (QA).



Assuming now that C has a finite Z(II)-base, we use the isomorphism a 

C ®  A *t Horn (C°,A),
or, replacing C by C°,

(4) C° ® A x*  Horn (C,A).

Since, by x,8.5, C° ® A is weakly projective (=  weakly injective), it 
follows from 1.3 that

N*: (C° ® A )n ->(C° ® A )n

is an isomorphism. By using (3), (3a), and (4) we have finally an isomor­
phism

r: C° ®n A & Homn (C,A)

when C and A are (left) Il-modules, and C has a finite Z(II)-base. This 
isomorphism can be made explicit by the formula

(5) [ r ( /  ® a)]c =  2 / ( x _1c)xtf, /  € C°, c e C, a € A.
icell

In particular, taking A =  Z(II), we have, for each Z(n)-free module 
C with a finite base, an isomorphism

t : C° ^  Homn (C,Z(II)),
defined by

( j f ) c =  2  f i x - t y x ,  f  e C°, c e C.
x eU

After these preliminaries we return to the main objective of this section. 
A complete resolution X  for a finite group II is an exact sequence

( X ) -------     * 1 ,— ---------► • - •

of finitely generated free (left) Il-modules, together with an element 
e e (X_i)n such that the image of d0 is generated by e.

Since xe — e for each x  e II it follows that Im d0 is the sub-Z-module 
generated by e. Further, since X_x is Z-free, we have ne ^  0 for n e Z, 
n ^  0. Therefore the mapping d0 admits a factorization

(6) X o - ^ Z - ^ Z . !

where e is a II-epimorphism while p  is a II-monomorphism given by 
/ul =  e. We consider the exact sequences
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(X L)

{XR)



The sequence {X f)  provides a projective resolution of Z  by means of 
finitely generated II-free modules; by 3.3, the “dual” of (X R):

(X%) • • • -  x°_n -> x°_n+1

provides also a projective resolution of Z  by means of finitely generated 
Tl-free modules.

Conversely, given two resolutions (X L) and (X 'L) of Z  by finitely 
generated II-free modules, we can construct a complete resolution X  by 
“ splicing” (X L)  with the sequence {X ’f )  suitably renumbered.

Given a complete resolution X  and a (left) II-module A, consider 
the complex

Homn (X 9A).

For « 0  we leave the group Homn (X n,A) as it is. For n <  0 we 
replace Homn (X n,A) by the isomorphic group X Qn ®n A, using the iso­
morphism r. We must examine in detail the map
(7) ^ —i A Homn (XQ,A)
induced by d0: X0 -> X_v  In view of the factorization (6) of d0, we
obtain a commutative diagram

X l i  ®n A — Homn (X_l9A ) -----   Homn (X09A)
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A ~ a~* Homn (Z ,A )'

Thus (7) admits the factorization

* - i  H 0(n,A) ^  H°(H,A) —  Homn (X0,A).

Using the notation of v,10, we obtain
Homn (X 9A) =  (X% ®n A 9N *, Homn (X L,A)).

This applying v,10.4 we obtain
T heorem 3.2. For any left Ti-module A , the group H n(JA,A) may be 

computed as H n{Homn (X,A)) where X  is any complete resolution o f  II. 
I f  f :  A —>» A ' is a homomorphism then f  may be computed from  
Homn (X,A ) -> Homn (X ,A ' ). I f  0 -> A ' -> A -> A" -> 0 is an exact 
sequence o f left U-modules, then the connecting homomorphisms 
H(Jl,A") -> H (J l,A j may be computed from the exact sequence 

0 -> Homn (X ,A ') -> Homn (X,A) -> Homn (X,A") -*  0.

R em ark . In the definition of a complete resolution it would be 
possible to use finitely generated projective II-modules, instead of finitely 
generated free  II-modules. Actually, the first category of modules is 
strictly greater than the second (cf. Dock Sang Rim, Ann. o f  Math., 69, 
1959, pp. 700-712).
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Given two (left) II-modules A and A ' we consider the tensor product 
(over Z) A ® A ' with the diagonal operators x(a ® a ') =  xa 0  x a \  If 
a € An  and a! e A '11 then x(a 0  a ) =  a ® a' and therefore 
a 0  a' € (A 0  A ')n . If a e An  and a' =  M /, b' c >4' then a ® a! 
=  a 0  2 * ^  — 2 *(a ® ® ^0 so a ® a' € N(A 0  ^4').
Similarly if a € iV̂ 4, a ' e ^4'n . There results a homomorphism

(1) f : ,4n /M4 0  A 'U/N A ' ->(,4 0  A ')U/N(A  0  ,4')
or

f :  /f ° (n ,^ )  0 ^ o( n ,v 4 ') ^ ^ ° ( n ,^  0 ^ ' ) -

Theorem 4.1. TTzere w a unique family o f homomorphisms

^ ( n , ^ )  0 # ( n , ^ ' ) - > ^ +"(n ,^  0 ^ ')

defined fo r  each pair o f H-modules A and A ' and all integers p,q such that 
£0,0 coincides with £ and £v,q commutes with the connecting homomorphisms 
with respect to the variables A and A ' as stated in xi,2.5 and xi,2.5'.

We shall only be concerned in this section with the existence of the 
products £p’9. Uniqueness is postponed to the next section.

Let A" be a complete resolution for II with selected element e € X_v  
We consider the double complex 1 0 1  with differentiations d ' =  d  0  X  
and d " =  X  0  d  (the definition of d" involves the usual sign). A mapping

<D: I - > I 0 I  

is a family of II-homomorphisms

% ^P+q~^ 0  Xq

satisfying the following conditions:

(i) =  *<&„+ i>9 +

(ii) if x  e X0 and dx =  e then (d 0  d)O0i0x — e ®

The last condition may be rephrased as follows: if e: X0- ^ Z  is the 
augmentation map obtained from the factorization of d: X0- ^  X_l9 then 
(e 0  e)O0>0 =  s .

Now given two cochains /  e Homn ( A ^ ) ,  g e Homn (Xg,A') we 
define the product cochain/.g e Homn ( A ^ ,^  0  >4') as f g =  ( /  0  g )^  *>,<*• 
Then d (fg )  =  (^ ) .g  +  (—1 Y f  {dg)9 so that passing to cohomology we 
obtain a bilinear map H(Jl9A) ® H{Yl9A ')->  H (fi9A ® A'). The 
verification that this map verifies the condition of the theorem is immediate.

4. PRODUCTS FOR FIN ITE GROUPS



We now proceed to show that there exist mappings <E>: X  -> X  0  X. 
In this construction we shall utilize

1° a contracting homotopy s for X. This is given by 3.1.

2° a Z-endomorphism p: X ->  X  (of degree zero) such that Np  =  /, 
where /  is the identity map of X . The existence of such a p is proved by
1.1 since each X n is projective.

Next we introduce
s' =  s 0  /, — I  0

p '=  p ®  ̂ p" =  I  0 p .

To define O00 we consider the diagram

e

e<g)e
Z0 0  x 0 — ► z  — ► 0

in which the row is exact. Since XQ is projective, there is a map 
®0 Q= X 0-* X 0 0  X0 such that (e 0  £)®00=  e. This implies d"d'O00d=  0. 
We first define 9 with p  +  q =  0 as follows

=  —N{p"s'd"<bv_l;l_v) p >  0

0 _ p p p >  0

and verify by induction that

(d'<Dp._p +  =  0 all p.

We now suppose that Op 9 is already defined for | p  4* q | <  t where f is 
a positive integer, that it satisfies (i) for — t < p  +  q <  t — 1 and that

(hi) (fi?'Op+1() +  d"Opa+1)rf = 0  for p  +  q =  — t.

Now for p  q =  —t define

T w  =  d ' Op+1>9 +  d"Op>8+1

Op,9= iV (p 'T p ^ ) .
Then

Op,3r f=  N(P'T p >9sd) =  N (p'Tpi9(/ -  * ) )  =  iV(p'Tp,9)

=  Yp>9= < fO p +ii9 +  <TOp>9+i.
Further

(d '0 M +  d"Op_l9+1)d =  d 'Tp,9 +  p_1>9+1

=  d^"Op_9+1 +  dV 'O p9+i =  0,
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which verifies condition (iii) at the next stage.
Next define

=  N(s’®v-i,tdp) p +  q =  t.
Then

d'® P,q^ N ((I -s 'd ')< !> p_1)qdp)

=  ®*-i ,Qd —

=  +  N (s'd"®p-2,Q+idp)

=  ®P-i,ad — d”N (s'®»-2,Q+idp)

Thus (i) holds as desired.
This concludes the existence proof.

5. THE U N IQ U E N ESS THEOREM

The argument that will be used in proving the uniqueness of the 
products reappears many times in subsequent considerations. Therefore 
we shall give it an abstract formulation applicable in various situations.

Let II be a fixed finite group; letters A 9Al9 . . . , A n,ByC etc. will all 
be used to denote left II-modules. Let Ul9 . . . , Uk9V each represent an 
exact connected sequence of covariant functors of A. A map

F: U1 0 - - - 0 U k - > V

is a family of homomorphisms

F : U f t A j )  0  • • • ®  U li ( A k ) ^  V i ^ ' " + i ^ ( A 1 0  • • • ®  A k )

which is natural relative to H-homomorphisms of the variables A l9. . . ,  Ak 
and which commutes with connecting homomorphisms in the following 
sense: If 0->  A ' -> A j->  Aj 0 is an exact sequence of II-modules
which splits over Z, then the diagram

U M i)  0  • • - ® UfA") ® • • • ® Uk(Ak) -> V(A1 ® • • • ® A] ® • • • ® A k)

^lC^i) 0  * * * 0  Uj(Aj) 0  • • * 0  Uk(Ak) —> V(Ai 0  ' *m 0  Aj 0  m * ’ 0  Ak) 
is commutative.

T heorem 5.1. ( Uniqueness theorem.) Assume that the functors 
Ul9 . . . ,  Uk9Vsatisfy

^i(Hom (Z(H),A)) =  0

v(z(n) 0 a) = o
fo r  any II-module A. I f

F9G : XJx 0  • • • ® £/*.-> V



are two maps such that F and G coincide on U\ ® • • • ® U®, then F  — G.
Z(II) ® and Horn (Z(Tl),A) are treated as ri-modules with

operators
y(x  ® a) =  y x  ® a, (y f)x  =  f{xy).

P r o o f .  Since F —  G also is a map U1 ®  • • • ®  £ 4  - >  V  we may
assume that ( 7 = 0  and prove that F =  0. To simplify the notation
we shall limit our attention to the case k  =  2.

Suppose that we already know that the map Fp>q: U \{A ^  ® U$(A2) 
—> F3H'ff(Z1 ® v42) is zero. Consider the exact sequence

(1) 0 — >■ B  — ► Z(II) ® Ax A x — >- 0

where cp(x ® a) =  a and B — Ker cp. The Z-homomorphism 
(pf : A1 -> Z(II) ® A 1 given by cp'a =  1 ® a shows that the exact 
sequence splits over the ring Z. It follows that the sequence

0 -> B  ® A 2 -> Z(U) ® Ax ® A 2-+ Ax (g) A 2-> 0

is exact, and we obtain the commutative diagram

0  UZ(A2) Fr~l'q. > Vp+"~1(Al ® a 2)
I

<5<S>£ j A

u \(B )  ® u &a j  ® ^ 2)

Since F p>q =  Owe have AFP_1’« =  0. However F(Z(II) ® Ax ® ^ 2) =  0 
by assumption, so that A is an isomorphism. Thus Fp~x q̂ =  0. In 
exactly the same way arguing on the second variable, we prove that
fP,Q- 1  _  Q

Next we consider the exact sequence

(2) 0 — *A x X *  Horn (Z(Il),Ax) — >■ B ’ — ► 0

where (xpa)x =  xa and B' =  Coker Again we obtain a splitting 
Z-homomorphism ip': Horn (Z(II),y41) -> A 1 by setting 1.
Consequently the sequence

0 -> A x ® A 2-~> Horn (Z(II),T1) ® A 2-> B ' ® A 2 ->■ 0

is exact, and we obtain a commutative diagram

U\(B') ® <71M2)  ----- - V™ (B' ® ^ 2)
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Since Fp>q = O w e  have FM ’q(d ® /) =  0. Since UJHorn (Z(I1),^1) =  0 
by assumption, it follows that d is an isomorphism. Thus Fp+1>q =  0. 
Similarly we prove FV>Q+1 =  0. This completes the proof of the uniqueness 
theorem.

The uniqueness of the products asserted in 4.1 follows readily by 
taking I f  =  U2 =  V — H.

For a € H p(Yl,A), ft e H q(Jl,A') we shall denote the product 
£p>q(a ® b) e H p+q(Yl,A ® A') by the symbol ab. We shall regard the 
tensor product as a commutative and associative operation and thus 
identify A ® A ', A (® {A' ® ^4") with ^4' ® A, (A (® ^4') ® ^4".

Proposition 5.2. For o e JF ^ IM ), ft e /F (II,,4 ') we have 
ab~- (—1 )pqba; more precisely, tfte elements ab e H p+q(Jl,A ® A ') and 
{— \)pqba € H pJrQ(JA,A' ® A) correspond to each other under the iso­
morphism induced by the natural isomorphism A ® A ' & A ' ® A.

P r o p o s it io n  5.3. For a € H p(Tl,A), ft e H q(Yl,A ), c € H r(U,A") we 
have a(bc) =  (ab)c.

To prove 5.2 it suffices to verify that tjp>q(a ® ft) =  (—1 )pqba verifies 
the axioms for a product. The proof of 5 .3  follows from the uniqueness 
theorem by taking U1 =  U2 =  U2 =  V =  H  and F(a ® ft ® c) =  a(bc), 
G(a ®> ft ® c) =  (ab)c.

In the group
H °(Il,Z) =  Z r =  Z /rZ  r = { II : 1)

we denote by 1 the element given by the coset 1 +  rZ (i.e. the unit element 
of the ring Zr).

P r o p o s it io n  5.4. I f  a e H P(H,A) then 1 a =  a — a\ provided we 
identify the modules Z  ® A, A and A  ® Z.

The proof again follows from the uniqueness theorem by taking 
U =  V =  H, Fa =  a, Ga — 1 a.

As usual, a Il-homomorphism A ® A ' -> F  yields products

^ ( n ,^ )  ® / / ( r u ' )  -»  ^ (n ,F )

by composition with the map H(U,A  ® A ')->  In particular
if A is a ring and II operates on A in such a way that x(axa2) =  {xa^){xa^, 
then FUJI,A) becomes a ring. The unit element 1 of A is invariant, and 
its image in H Q(Jl,A) =  A n /NA  is a unit element for H(U,A). If the 
multiplication in A is commutative then the multiplication in H(U,A) is 
skew-commutative.
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6. DUALITY

As in xi,8 we can use the II-homomorphism

<p: Horn (A,C) <g> A -> C (n ^ ,n O

given by /  <g) a fa , to obtain the modified product

(1) H(Yl, Horn (A ,Q )  ® # ( E U )  -> i/(II,C )

where as usual II operates on Horn (A ,C ) as (xf)a  =  x (/(x _1a)). We 
shall still use the symbol ab to denote the image of a ® b under (1).

P roposition 6.1. Let 0 — > A 9— >A -^-+ A "— *0 be an exact 
sequence such that the sequence

0 —* Horn (A",C) Horn (A,C) Horn (A',C) — ■ 0

is exact. Let a e #*(11, Horn (A’,C)), b e H\Xl,A"). Then

(da). b +  ( - l ) ' c  . db =  0

where 6 indicates the appropriate connecting homomorphisms.
P roof. Let A" be a complete projective resolution for II. Let 

g": Xq-> A "  be a cocycle in the class b. Then there is a cochain 
g : XQ-> A with jg  =  g" and a cocycle g \  XM -> A f with igf =  dg. 
The cocycle g ' is then in the class db. Similarly for a we have a cocycle 
/ ' :  X p -> Horn (A \C ) in the class a, and a cochainf :  X p -> Horn (A,C) 
with i ' f = f f and a cocycle /  ": X p+1 -> Horn (A ", C) with j 9f  " =  df. The 
cocycle/  " is in the class da. Consequently (using the notation of § 4) we 
have

d ( f - g ) = ( d f ) . g  +  ( - i y f . d g

= r - j g + < . - w f - g '

= r  . g '  +  ( r - W  - S '

which implies the conclusion.

We introduce the mappings

(2) y M : Hv(Yl, Horn (A,C)) Horn ( m ^ A ) , H v+Q(^,C ))

by setting
(Yp.<fi)b =  a .  b.



P roposition 6.2. I f  fo r a fixed  H-module C and a pair o f integers 
p,q , the mapping y pq is an isomorphism for all H-modules A , then the same, 
holds fo r  all y v>q> with p ' +  q — p  +  q- 

P roof. Consider the exact sequence

0 - > £ ^ Z ( r i )  <g> A ->  A -> 0  

of § 5. Since this sequence Z-splits, the sequence

0 -> Horn (A,C) -> Horn (Z(II) ® A,C) -> Horn (B,C) -*  0 

is exact. Thus by 6.1 we have the commutative diagram (with II omitted)

H v(Hom (B, O )  ^  -■> Horn
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Horn (<5 ,HV+«(C))

/ / p+1(Hom (.A,C)) ----------► Horn ( ^ - 1( ^ ) ,^ p+e(C))

Since Z(II) ® 4̂ is weakly projective, it follows from x,8.5 that 
H om (Z(II) ® A,C) is weakly injective. Consequently both connecting 
homomorphisms involved are isomorphisms. Since y pq is an isomorphism 
by assumption, it follows that y v+i>(?_i is an isomorphism. The proof 
that y v_l q+1 is an isomorphism is similar and uses the exact sequence 5,(2).

P roposition 6.3. The mapping

yQy. H °(n ,  Horn (A,C)) Horn {H q{Yl,A),Hq(Ii,C))

composed with the natural epimorphism

Homn (A,C) -> °(II, Horn (A,C ))

yields a homomorphism

Homn (A,C) -> Horn {H q{Ii9A)9H q{Il9C))

which to each f  e Homn (A,C) assigns the induced homomorphisms

/ :  H q<Jl9A ) - > f iq<Jl9C).

Proof. Consider the map g: Z  -> Horn (A,C) given by g l =  / ,  and 
let h: A =  Z  ® A -> Horn (A,C ) ® A be induced by g. We obtain a 
commutative diagram

# ° (n ,z )  ® H q(n,A )  — > #> (n , z  ® a ) — > # ( i M )

K®* I* „ I?
# 0(H, Horn (A,C)) 0  J f9(Il,A) — *■ Horn (A,C) 0  A )~ ^ H Q(U,C).



If a e # ° ( I I , Horn (A,C)) is the element determined by /  and 1 eH (Jl,Z ) 
is the unit element, then g \ =  a. Thus for each b €H q(U,A) we have

OWO* ^  . b) =  q>(g\ . b) =  $fi(l . 6) = / ( I  . b ) = f b

since, by 5.3, 1 b =  b.

T heorem 6 .4. {Duality theorem). Let C be a group with trivial 
H-operators and which is Z-injective (i.e. C is a divisible abelian group). 
Then fo r  any II-module A the homomorphism

(4) y _ lf_p: H * ~ \II, Horn (A,C)) -> Horn ( H - ^ A I H - ^ C ) )

given by (ya)b — a . b, is an isomorphism.
We note that / / _1(T[,C) =  NC /I C = rC is the subgroup of those 

elements c € C such that re =  0 where r — (II : 1). Since rH(Tl,A) =  0, 
it follows that every homomorphism H(J[,A) -> C automatically is a 
homomorphism H(H,A) -> rC. Thus (4) may be rewritten as follows

(4') yp_1#_p: n ,  Horn (A,C)) -> Horn (H-»(II,A)9C).

In view of 6.2, it suffices to show that y0 is an isomorphism. Since 
[Horn (A,C)]n =  Homn (A,C), we have

yet_!: Homn (A,C)/N  Horn (A ,Q -»  Horn (NA/I.A,C).

It follows from 6.3 that is obtained by restricting Il-homo- 
morphisms A -> C to the subgroup NA. Consider any homomorphism 
/ :  NA ->  C with f ( IA )  =  0. Since C is injective,/adm its an extension 
g: A ^  C. Since g(IA) =  Owe have g e Homn (A,C). Thus y^_x is an 
epimorphism. Next consider g e Homn (A,C ) with g(NA) — 0. Since

N
the sequence 0 — ► NA — ► A — ► A is exact and since C is Z-injective, it 
follows that

Horn (A,C) Horn (A,C) — > Horn (NA,C) — > 0 

is exact. Thus there exists h e Horn (A,C) such that the composition
N h

A — ► A — ► C is g. Then

(Ng)a =  ZxgC x-ty  =  2 g (x ^ a )  =  g(Na) =  ha

and g e N  Horn (A,C ). Thus y0 is a monomorphism. This concludes 
the proof of 6.4.

Taking C =  T =  R /Z  where R  is the group of reals, and using the 
notation D(A) =  Horn {A,T) introduced in vn,6, we obtain
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Corollary 6.5. The homomorphism

(5) y v_ ^ v: H v -\n ,D {A )) D (H ^(U ,A ))

is an isomorphism for all H-modules A.
In particular, taking A =  Z  we have D(A) =  T , so that we obtain the 

isomorphism

(6) y p_lt_p: H*~Hn9T) D{H~p{Il,Z)).

Actually the group D(H~p(Yl,Z)) should be replaced by 
Horn ( / / _2,(II,Z), # _1(II,r))  and / / _1( n , r )  — rT  is a cyclic group of 
order r =  (II : 1).

Theorem 6.6. {Integral duality theorem). The mapping

Yp, - p - H p(Il,Z) ->  Horn (H -p(Il,Z )9Z r)

is an isomorphism. More exactly fo r  every isomorphism cp: H~P(U,Z) -> Z. 
=  //°(n,Z) there is a unique a e H P(U ,Z ) with

cpb =  ab, b e  H ~ P{U,Z).
Proof. Consider the exact sequence

0 - > Z - ^ £ - > r - > 0

where R  is the group of reals with trivial II-operators. Let d denote the 
connecting homomorphism H v{H,T)-> H P+1{U,Z). Define the endo­
morphism p : R - ^  R  by setting pt — r~xt for t e R, r =  (II :  1). Then 
N p= rp— identity. Thus, by 1.1, R  is weakly projective and H{H,R) — 0. 
It follows that 6 is an isomorphism. Since (da)b =  6{ab) for a e H v(JlyT )9 
b e H Q(II,Z), the conclusion follows directly from 6.5.

Using 6.6 we can supplement the list of values of H Q(H9Z) given in (4)
of § 2 by the following one

(7) i f 2(n ,Z ) *  Horn (n/[II,II],Z r), r = ( I I  : 1).

7. EXAM PLES

Our first example is that of a cyclic group II of order h with generator 
x. The ring Z(II) is then the quotient of the ring of polynomials Z[x] by 
the ideal generated by the polynomial x h — 1. In addition to the element 
N  =  2 * * we also consider the element T  =  x  — 1. For every II-module

0^i<h
we thus obtain homomorphisms

N: A A, T: A -> A.

The kernel of T  is A n  while the image of T  is I.A. These are independent
of the choice of the generator x.
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A complete resolution X  for II is obtained by setting

X n =  Z( n), d2n= N , d2n+i =  T,

the distinguished element of X is the element N  — d01. The fact that 
the sequence

 ► z (  n> z (n )  z (n )  z (n )  —* • • •

is exact can be verified trivially. Also the following contracting homotopy 
s may be used for the proof:

10 if A: =  0
sxk =  in even degrees,

,1 + *  + ------b**"1 ( k ^  1)

(0 i f 0 < L k < h — I 
sxk =  | in odd degrees.

(l if k  =  h — 1

For any II-module A  the complex Homn (X, A) is
N T N T

-••<— A<— A ^ - A < — A*— A*--------

with N  appearing in odd and T  in even dimensions. As a consequence we 
have

H 2n(U,A) == AU/NA, H 2n+1(U,A) =  NA /IA .

If A has trivial II-operators then

H 2"(Il,A) =  Ah, H 2n+1(U9A) =  hA.
In particular

H 2n(U,Z) =  Z h, H 2n+\Tl,Z) =  0.

To compute the products we must define a map <t>: X ->  X  0  X 9 or
rather a family of maps X v+q-> X v 0  These are obtained by
setting

0 ^ 1  = 1 ® 1 ,  p  even

0 ^ 1  — I (0 x, p  odd, q even,

=  2  x m 0  x n. p  odd, ^ odd.
0^m<n^h — 1

In verifying that these formulae satisfy the required identities we use the 
identity

( x 0 x — l 0  1) 2  x m 0 x n = N 0 l  — 1 0  N
Q^m<n^h—l

in the ring A ® A.

§ 7] EXAMPLES 251



252 FINITE GROUPS [Ch a p . X II

To exhibit the multiplication of cohomology classes, we consider an 
element of H 9{Jl,A) represented by a e A with a e A n  for p  even and 
a € n A fo rp  odd. Similarly let a' e A f represent an element of H q(J\,Ar). 
Then the product is an element of H v+q(U.,A ® A') represented by

a ® a \  p  even or q even,

2  x ma (g) x na \  p  and q odd.
0<m<n^h

This last product may be simplified if A and A ' have trivial ri-operators. 
Then for p  and q odd we have a e hA, a! e hA and the product is represented

by the element —— a ® a \  Since the result lies in H M (JA9A ® A')
h[h 1")

=  (A ® A \ , it follows that the integer —   may be reduced mod h .

We thus obtain the product (for p  and q odd):

a . a' =  ® a ’ if h is even,

a . a' =  0 if h is odd.

If we wish to treat the cyclic group II within the framework of the 
homology and cohomology theory of Ch. x, we must replace the complete 
resolution X  by its positive part XL. The homology and cohomology 
groups are as follows

f l’oflM ) =  A/I.A, H 2p+1(TI,A) =  A n/NA, H 2l,+2(T1,A) =  NA jIA ,

H \I l ,A )  =  An , H 2p+1(n  ,A) =  nA/IA, H 2v+ \n ,A ) =  An jNA.

The products U and O may be computed using the map 
X ; % l  induced by the map <t> above. In addition we have 

the products m and u ; ; to compute these we need a map X L ® n X L -> X L. 
To define such a map we denote by y v the unit element of X p =  Z(II). 
Now we convert X L into a commutative graded Z(II)-algebra with 
differentiation by setting

JW &  = (pJ^ q)  y**-*

_  _  [P +j2p+ij2a — y^y^v+i — y p  j y 2D+2a+i

y 2v+iy 2a+i=  o*

The description of this algebra may be simplified if we observe that
y iy 2p — J 2i>+i* We may now represent the algebra as a tensor product

Z(II) (g) E fo )  <g> P(y.2, y i , . . .  , y 2v, . . . )
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where is(ji) is the exterior Z-algebra on the element y 1 of degree 1 and P 
is generated by the elements y 2,y& • • • with degrees indicated by the sub­
scripts and with multiplication given by

y ^ y *  =  (p *  9)  J W i r

The differentiation in the algebra is given by dx — 0 for x  e II, dyx =  T, 
dy2 =  Nyv dy2v+2 =  Nyj j 2j).

Our next example is the group II defined by two generators x  and y  
with relations

x* — y 2, xyx  =  y

where t is a non-negative integer. Iterating the second relation we find 
x ty x t =  y  which implies that x 2t =  1. Any element w e II has a unique 
canonical form

w = x my 6, 0< ^m  < 2 t,  6 =  0,1.

The group II has order At. The group II may be regarded as a subgroup 
of the group of quaternions of absolute value 1 by setting

x -> enilt, y  -> j .

These groups are usually considered only when t is a power of 2 and are 
called the generalized quaternion groups.

A complete resolution X  for the group II described above is defined as 
follows, using abstract generators ap, bp, bp, cv, c'p, ev:

Z 4j) =  A ap where A =  Z(II),

^4p+i ~  Abp ~b 
^4p+2 A-Cp -f~ ACp

daP Nep_-± 
dbv = ( x — 1 )ap 

dbp =  O  ~
dcv =  Lbp — (y +  1 )b'p9 L =  1 +  x +  b x 1”1
dcp =  (xy +  1 )bP +  ( x — 1 )bp 
dep =  (x — 1 )cp — (xy — 1 )cp.

The selected element of X_x is the element Ne_v  The verification that 
dd =  0 is straightforward. The verification that the homology groups are 
trivial involves some computations which will be omitted.



2 A +  2 A t even,

iA t odd,

a 2 +  a 2 t even,

a 4 t odd,

A .

The groups H (Jl9A) with trivial operators of II on A  are as follows 

i H l M )  =  A 4t9
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H*p+2(Il9A) =

H ^ ( U 9A) =  4tA

A common feature of the cyclic groups and the generalized quaternion 
groups is the periodicity encountered in the complex X  and the groups 
H (l\9A). A detailed study of the phenomenon of periodicity will be 
carried out in § 11.

8. RELATIONS W ITH SUBG RO UPS

Let tt be a subgroup of a (finite) group II. We shall use the letters A 9 
A' etc. to denote II-modules, which of course may also be regarded as 
7r-modules.

Since Z(II) regarded as a left Z(7r)-module is free on a finite base, it 
follows that every complete resolution X  for II also may be regarded as a 
complete resolution for n.

The inclusion
Homn (X 9A ) C Homw (X,A) 

induces a homomorphism (called restriction)

(1) i(tt,II): H (U 9A) -> H ( tt9A )

Next, consider two (left) II-modules C and A. Define the homo­
morphism (called the transfer)

t : Homff (C,A) -> Hom n (C,A) 

by setting for /  e Hom^ (C9A )

(tf)c =  2  x j i x ^ c )
i

where x4tt9 . . . ,  xttt9 r =  (II : tt)9 are the left cosets of tt in II. If  x t is 
replaced by x ty, fory  e tt, t h e n x j / ^ j ) - ^ )  =  X ty fiy r^x ^c )  =  x j i x f 'c ) ,  
so that the definition of t f  is independent of the choice of the representatives 

x r. Further, for a: € II, we have

(tf)(xc) =  2 x (x -1x i)f((x~ 1x i) -1c) =  x[(tf)c]



since x~xx l9 . . . , x~xxr also is a system of representatives of left cosets of 
77 in II. Consequently t f  is indeed a Il-homomorphism.

Replacing C by a complete resolution X  of II and passing to homology 
we obtain the transfer homomorphisms

(2) /(II,tt): -> H (Il,A).

In addition to the homomorphisms (1) and (2) we also have the 
isomorphisms

(3) c*: H (tt,A )-> H (x7tx- \A )  

defined using the homomorphism (studied in x,7)

cx: Hom„(CU) -> H o m ^ -i (C,A)

given by (cxf ) c  =  x fix ^ c ) .
In degree zero the homomorphisms (1)—(3) yield

0)o i(» ,n): AuINn A A"jNvA,

(2)0 *11,»r): A ’/N ,A  An/N n A,

(3)0 c.: A*IN„A -> A ^ / N ^ A .

The map (1)0 is induced by the inclusion A n  C A"; the map (2)0 is 
induced by the map A” -> A n  given by a -*■ ; the map (3)0 is induced
by the map A* -> given by a -*■ xa.

To verify these rules, we consider a complete resolution X  for II and
e

consider the mapping s: X  — given by X0 — *Z of the factorization
e

X0 — ► Z  — ► X_x of dQ. This induces a homomorphism Homn (Z,A) 
-> ff°(II,A ) which is easily seen to be the natural homomorphism 
A n JT°(n ,A )=  A njNA. Thus the above formal rules follow 
trivially by replacing the complex X  by Z.

The formal properties of the homomorphisms (1)—(3) will now be 
discussed. Clearly the homomorphisms are natural relative to maps 
A -> A ' and commute with connecting homomorphisms relative to exact 
sequences 0 -> A ' -> A -> A" -> 0. Further we have

(4) ^xv

(5) cx =  identity if x  € rr

(6) t ( U 97 T ) i(7 T ,U )a  =  (fl : 7r)a, for a e / /(II ,A).

§ 8] RELATIONS WITH SUBGROUPS 255



If 7t is a subgroup of 77 then we have the following rules

(7) 1(77-',77)1(77,II) =  /( 77',II)
(8) /(n ,7r)/(7r,7r') =  /(II,77')

(9) CJ(7t',7t) =  Z (X77' 1, X7TX~ X)cx

(10) cxt(7r,7r') =  t(x7rxr\x7r'xr^Cg,..
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All the above rules are straightforward consequences of the definitions. 
To consider the rules connecting the homomorphisms (l)-(3) with the 

products, we consider elements a e a' e 77(11,,4'), b € H (tt,A)9
b ' € H(tt,A'). Then

(11) . a’) =  [i(7r,U)a] . [i(7T,U)a'l
(12) t(U,7r)(b . i(7rjl)a') — /(II,77)6 . a'
(13) /(II,77)0'(7r,n)a . b ')=  a . /(II,77)6',

(14) cx{b . b') =  cjb . cjb'.

We first use the rules given earlier for computing *‘(77-,II), /(II,77) and 
cx in degree zero, to verify that (11)—(14) hold if a, a \  b, V  all have degree 
zero. Then we use the uniqueness theorem 5.1 to complete the proof. 
Taking rule (12) as an example, we introduce the functors

UX(A) =  H (tt9A)9 U2(A) -  77(LU), V(A) =  H (U 9A)
and the maps

F9G : U^A) ® U2(A ')->  V(A ® A ')
F(b ® a') =  /(II,7r)(Z?. iiyr jl)^)

G(b ® a') — /(II,77)^?. a'.
We must verify that the maps F  and G properly commute with the connect­
ing homomorphisms; this is immediate, since F  and G are compositions 
of maps which commute with connecting homomorphisms. Next we 
must show that Ul9 U2, V satisfy the conditions of 5.1. Thus we must 
show that 7/ ( 77, Horn (Z(U),A)) =  0. To prove this we observe that 
Z(1I) is 7r-projective and therefore, by x,8.1, Hom(Z(II),^4) is weakly 
77-injective; consequently 7 / ( 77, Horn (Z(II),^)) — 0 by 2.2. We now 
can apply 5.1 to deduce that F =  G.

9. DOUBLE COSETS

Let 77 and 7t be subgroups of II. We shall investigate the map 

( 1) /(77,n)/(n,77'): h ( t t \a )  -> h (tt ,a )
for a II-module A .



To this end we consider double cosets ttxtt' with x € II. It can easily 
be seen that two such cosets are either equal or disjoint, so that we may 
represent II as a disjoint union

(2) 1 1 =  U , 7TXt7Tf

of such double cosets.
P r o p o s it io n  9.1. G iven a decom position  (2) o f  U  as a d isjo in t union  

o f  double cosets we have

(3) (II: tt') =  2i(w : tt n  XiTr’x f 1)

(4) j(77 ,n )/(ny) =  2*/(7r>7T n  x y x f 1) ^  n

P roof. L et y t — tt n  x ^ x f 1 and let

V =  UjyiiYi

be a representation of tt as a disjoint union of left cosets. Then 

TTXi =  U jyifrrXi n  X f \■').

Multiplying by tt' on the right we find

TTXfT’ =  X) $ y H(TTXiTT’ O  XiTT') =

and this union is still disjoint. Combining this with (2) we obtain a 
representation

n  =  u  y jiXiTT'

of II as a disjoint union of left cosets of tt' . This implies (3).
Let /  € Hornw'( X n9A )  where X  is a complete resolution of II. Then

i ( T T , U ) t ( n y ) f  =  2 Cv . x j =  2 (2 c y . c x . f )  =  2  K 7 r , y d K y i , x iTr'xi) c x/ .
j,i i j i

Passing to homology, we obtain (4).
Corollary 9.2. I f  tt is an invariant subgroup o f  II, then f o r  a n y  

II-m odule A  a n d  a ny  a  e H ( t t9A )9

i(Tr9U ) t ( U 9TT)a —  2x a 9 x  e II/7r.

An element a e H ( tt9A )  will be called stab le  if for each x  e II we have

(5) /(TT O X7TX_1,77)a =  i(rr O XTTX~1,XTTX~1)Cxa 

or equivalently if

i(jT Pi XTTX~X9TT)a =  C jiX ^TTX  O  TT,TT)a.
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If 77 is an invariant subgroup, (5) reduces to a =  cxa. Thus in this case 
the stable elements are precisely those invariant under the operators of II/77. 

Proposition 9.3. I f  a is in the image o f  1(77,II) then a is stable.
Proof. Let a =  1(77,11)6 for some b e //( I I , 4̂). Then cxb =  b. 

Therefore
cxa =  cxi(7T,U)b =  i(xirxr19n )c j)  — /(*77;t-1,II)Z>

and thus
1(77 n XTTX~1,XTTX~1)cxa — i(rr n X77X-1,II)Z>

— /(77 O X77X-1,77)/(77,II)Z?

—  i(j7 n X77A:_1,77)a.

Proposition 9.4. I f  a €H (tt9A) is stable then 

f(77,II)/(n,77)a =  (II : 7r)a.

Proof. Applying formula (4) with 77' =  77 we have

/(77,n)r(II,77)a =  5/(77,77 n  XfTXf1) ^  O xprxf1 9xprxf 1)cx a
i

=  ^{TT.TTC^XiTTX^y^nXiTTX^^a  
i

— : TrC^XiTTX^a.
i

Thus formula (3) yields the desired result.

10. p -G R O U P S AND SYLOW GROUPS

For each prime p  we shall denote by H (fl,A ,p) the /7-primary com­
ponent of / / ( I I , ,4). Clearly / /( I I , 4̂) is the direct sum of / /( I I ,A p )  for 
various primes p. Since the order of each element of H (fl9A) is a 
divisor of (II : 1) it follows that / /( I I ,A,p) =  0 unless p  is a divisor of 
(II : 1), and each element of //(II ,/I ,p) has an order which is a divisor 
of pv, where p v is the /7-primary component of (II : 1). In particular, 
if II is a /7-group (i.e. (II : 1) =  /?*'), then H (Jl9A 9p) =  //(II ,>4).

The product of two elements a e H (tt,A ,p) and b e H (Il,A \q)  is zero 
if p  and is in H(J\,A 0  A ',p ) ifp  =  q.

Taking A =  Z  we find that the ring //(II,Z ) is a direct product of the 
rings H(U,Z,p) for p  running through all the prime divisors of (II : 1). 
The unit element of H(U9Z 9p) will be denoted by \ v.



T heorem 10.1. Let nt be a p-Sylow subgroup o f  II and let A be a 
II -module. Then

/(II,77): H(7T,A)->H(Il9A 9p)

is an epimorphism and

/(tt-,11) : HQl,A,p) H(tt9A)

is a monomorphism whose image consists o f the stable elements o f  
Further we have a direct sum decomposition

H(7t,A) =  Im /(7r,II) - f  Ker /(tt,II).

I f  further 77 is an invariant subgroup o f  II then II jir operates on H (tt9A) 
and

NH(tt,A) =  [H(7T,A)]ulir =  Im *(77,II) ^  H(U9A,p)

nH(tt,A) =  I(U/tt)H(tt9A) =  Ker / fo i l)

[H{rr9A)]n h  =  Coim t(77,II) & H(U,A,p).

P r o o f . Let ( tt : 1) =  p v and (II : tt)  =  q. Then p v and q are 
relatively prime so that there exists an integer / such that ql =  1 mod pv.

It follows from 9.3 that the elements of Im /fo il)  are stable. Con­
versely assume that a e H(tt,A) is stable. Then, by 9.2.

//(7r,Ify(II,7r)a =  /(II : 77)a =  Iqa =  a.

Thus a e Im /(7r,II). In view of (6) of § 8 we also have

fc(n,7r)i(7r,n)6 =  /(II : 7r)b — Iqb =  b

for each b € H(Il,A,p), and this yields all the conclusions of the first 
half of the theorem.

If 77 is an invariant subgroup of II then II/77 operates on H(tt9A) and 
the stable elements of H{tt9A) are those invariant under the operators of 
II/77. Thus Im /fo i l)  =  [iT(77,A)]nl”. Further, from 9.2, we have

/(77,n)/(n,77)a =  Na

so that Ker /(II,77) =  nH (tt9A ).
Since p vH{tt9A) =  0 and since II/77 has order relatively prime to p p 

it follows from 2.7 that H(H/tt9H(7t,A)) =  0. In particular, 
nH(tt9A) =  /(II/77) H(tt,A) and [H(7t,A)]u ^  =  NH(jr9A ). This con­
cludes the proof.

§ 10] p-GROUPS AND SYLOW  GROUPS 259
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11. PERIODICITY

We shall discuss here the finite groups n  for which the cohomology 
groups H n(H,A) show a periodicity with respect to n. This question is of 
interest for the problem of groups operating without fixed points on spheres 
(see xvi,9). The results of this section are due to Artin and Tate 
(unpublished).

An element g e H q(U,Z) will be called a maximal generator if it is a 
generator and has order (II : 1).

Proposition 11.1. For each g e H q(H,Z) the following properties are 
equivalent:

(a) g is a maximal generator;
(b) g has order (II : 1);
(c) there is an element g~x e H~q(U,Z) with g~xg — 1;
(d) the map a-+ ag is an isomorphism

H n(Ji,A) & H nJrQ(fl,A) fo r  all n and A .

P roof, (a) => (b) is obvious.
(b) => (c). Assume g  has order (II : 1). Since the order of any 

element of H q(fl,Z ) is a divisor of (II : 1), it easily follows that there 
exists a map cp: H q(U,Z) -> Zr, r =  (II : 1), with q)g=  1. By 6.6 there
is then an element g_1 e H~q(U,Z) with g~xg =  cpg— 1.

(c) => (d). Consider the maps

H n{Y[,A) H n+q{Yl,A) H n(n,A )

given by a a =  ag, j3a — ag~x. Then afia — ag~xg  — a and faa  — agg~1
=  (—1 f a g ^ g  =  (—1 )qa. Thus a and ft are isomorphisms.

(d) => (a). Consider the isomorphism j^°(II,Z) & H q(Tl,Z) given 
by a -> ag. Since JT°(II,Z) is cyclic of order (II : 1) and generated by 
the element 1 it follows that H q(U,Z) also is cyclic of order (II : 1) and 
generated by the element g.

The uniqueness of the element g~x with g ^ g  =  1 follows from the 
following argument. For any a e H ~q(J\,Z)

a =  ag-'g  =  (—1 fg - 'a g .

Thus ag =  1 implies a =  (—l)ffg_1. By the same reason g~x — (— \)qg~x 
so that a =  g~x. This justifies the notation g-1.

P roposition 11.2. I f  g e H q(U,Z) is a maximal generator then so is 
g~x e H~q(H,Z). I f  h € H r(Jl,Z) is another maximal generator, then 
gh e H q+r(JA,Z) also is a maximal generator.
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P roof. The first part follows from (c) above. The second one 
follows from (d) since the map a -> agh is a composition of two iso­
morphisms.

An integer q will be called a period for the group II if H q(H,Z) 
contains a maximal generator, i.e. if H q(U,Z) is cyclic of order (II : 1). 
It follows from 11.2 that the periods form a subgroup of Z. It can easily 
be seen that the periods are even if II ^  {1}. Indeed assume that 
g e H q(U,Z) is a maximal generator with q odd. Theng—gg~xg ~  — g~xgg 
=  —g. Thus 2g =  0 so that (II : 1) =  2. However we know from § 7 
that the group II =  Z 2 has only even periods.

P r o p o s it io n  11.3. I f  II has period q then so does every subgroup tt. 

Further, i f g e  H q(H,Z) is a maximal generator then so is i{irjl)g € H q(tt,Z).
P r o o f . We have /(II,77)1(77,n)g- — (II : n)g. Since (II : 77)g has order 

precisely (77 : 1) =  (II : 1)/(II : 77), it follows that i(7r,Tl)g has order 
at least (77 : 1). However no element of H q{ tt, Z )  has order exceeding 
(77 : 1). Thus i(7rjl)g has order (77 : 1) and thus, by 11.1(b), it is a 
maximal generator.

P r o p o s it io n  11.4. Let it be a p-Sylow subgroup o f  n  and let 
g  * H q(tt,Z) be a maximal generator. Let r be an integer such that

k r =  1 mod (77 : 1)

for all integers k  prime to p. Then the element g r e H qr(7T,Z) is stable and 
/(n,77)gr has order (77 : 1).

P r o o f .  Let x t t x ~ x be a subgroup of II conjugate to 77. Since the 
mapping a -> cxa is an isomorphism it follows that cxg  e H X x ttx t^Z )  
is a maximal generator. Consequently, by 11.3, the elements 
gi — K77 Cl X7rx~1,7r)g and g 2 =  Hjt O X7TX~1,X7TX~1)cxg  both are maximal 
generators of H q{tt O *77x_1,Z). There exists therefore an integer k  
prime to p  such that gx =  kg2. This implies

However,
gl =  K77 n  JC77X-1,77)(gr

g2 — /(77 n  X7TX~1,X7TX~~1)Cxgr

which shows that g r is stable.
Since g r is stable it follows from 9.4 that

z(77,n)/(II,77)gr =  (n  : 77)gr.

Since g r has order (77 : 1), and (II : 77) is relatively prime to (77 : 1), it 
follows that (n  : 77)gr also has order (77 : 1). Consequently /(n,77)gr
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must have as order a multiple of (77 : 1). But t(Jl97r)gr e H(U9A 9p) and 
every element of this last group has order at most (77:1). Thus t(Yl97r)gr 
has order (7r : 1).

T heorem 11.6. For each finite group II the following statements are 
equivalent:

(a) II has a period >  0 ;
(b) every abelian subgroup ofTL is cyclic;
(c) every p-subgroup o f  II is either cyclic or is a generalized quaternion

groups
(d) every Sylow subgroup o f  II is either cyclic or is a generalized

quaternion group.
P roof, (a) (b). A  non-cyclic abelian group contains a subgroup

of the form Z p +  Z p where p  is a prime. In view of 11.3, it therefore 
suffices to show that Z p +  Z p has no period. Consider homomorphisms 
Z p *-> Z p +  Z p -> Z p whose composition is the identity. This induces 
homomorphisms

H Q(ZV,Z) -> H \ Z P +  Z p9Z) -> H Q(Zp9Z)

whose composition is the identity. For each positive even integer q the 
group H q(Zp9Z) is cyclic of order p. Consequently H 9(ZP +  Z p9Z ) has a 
direct summand which is cyclic of order p. Thus H q{Zp +  Z p9Z )9 for 
positive even integers q9 is not cyclic of order p 2. Consequently Z p +  Z p 
does not have a period.

(b) (c). Let 77 be a /^-subgroup of II. Since the center of a /7-group 
is non-trivial (see Zassenhaus, The Theory o f Groups, New York, 1949, 
p. 110), 77 contains a central cyclic subgroup 77' of order p. We claim that 
77' is the only subgroup of 7r of order p. Indeed if 77" is another such sub­
group, then since 77' O 77" =  {1} and since 77' is in the center of 77, it 
follows that 77 contains the direct sum 77' - f  ^  which is a non-cyclic 
abelian group, contradicting (b). Thus 77 contains only one subgroup of 
order p . It is then known (Zassenhaus, ibid., p. 118) that 77 is either 
cyclic or a generalized quaternion group.

(c) => (d) is obvious.
(d) => (a). We have seen in § 7 that a cyclic group has period 2 while 

the generalized quaternion groups have period 4.
Let 7t19 . .  . , 77s be Sylow subgroups corresponding to the primes 

Pv • • • >Ps that occur in (II : 1). Assume that iri has period qt and 
maximal generator g{ e H Qi(pi9Z). By 11.4 there exists an integer u which 
is a common multiple of ql9. . . ,  q8 and such that the elements
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have order (77* : 1). It follows that the sum of these elements is an element 
of H u(U9Z) of order (II : 1), i.e. a maximal generator. Thus II has 
period «.

EXERCISES

1. Let II be a group of order r. Show that a II-module A , such that 
the multiplication by r is an isomorphism r : A m A, is weakly projective.

2. Show that if there exists an exact sequence 0 -> A n -> • • • -+A0 -> A
- >OotO -> A->A0- > ----- >An-> 0 with A0, . . . ,  A n weakly projective, then
ff(TI,A) =  0. In particular, ff(TI,A) — 0 whenever A has a finite 
projective or injective dimension. As an application show that if II ^  1 
then the projective and injective dimensions of Z  as a II-module are 
infinite. Thus gl.dim Z(II) =  00.

3. Show that if A is finitely generated then H q(Jl19A) is finitely generated 
and hence finite.

4. Let II be the cyclic group of order h with generator x  and A a 
cyclic group of order k  (written additively) with generator y. Assume that 
an integer / is given such that /* — 1 == 0 mod k. Then define the operators 
of II on A as xy =  ly. Show that A is weakly projective if and only if 
(h9k ) =  1. Show that if lh — 1 =  k  then H(Jl9A) =  0. In particular 
for h =  2, k  — 8, / =  3, we have H(Jl9A) — 0 without A being weakly 
projective.

5. Given a complete resolution X  for II, show that X °9 suitably 
relabelled, again is a complete resolution for II. Using this result 
establish the isomorphism

H%n,A) ** H_q_x(A ® n X )

where A is regarded as a right II-module by setting ax =  X~xa9 x  € II.
6. Show that the products

U : H»(Il9A) ® H q(U9A') -*  H»+Q(Il9A 0  A')

O : H p+q(U9A 0  A') -> Horn (.H*(n9A)9Hq(U9A '))

of Ch. xi, may be modified (for II finite) so that H° and H0 be replaced by 
H °  and H0. Show that after this modification we have

a U b =  a . b 

for a e H p(J\9A)9 b e JT^II,^ '), p ^ 0 9 q ^ 0 9 and
p(p+i)

a D b =  ( — 1) 2 b . a

for a e H_q(U9A)9 b e H P(U9A ')9 q > 0.



7. Given a subgroup tt of II establish the isomorphism

H{tt,A) & 77(11, Horn, (Z(ITU))

for any II-module A. Show that Hom^ (Z(n),^4) and Z(II) ® „A  are 
isomorphic. Show that the following diagram is commutative

77(1U )

H (tt,A) f* 77(11, Horn,, CZ(U ),A ))

*(n,7r)\ /  H(u,t)
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H(U,A) 
where

/: A =  Homn (Z(Tl),A) Homff (Z(U),A) 

is the inclusion, while

/: Hom„ (Z(Yl),A) -> Homn (Z(U),A) -  A

is the transfer.
8. Let tt be a subgroup of II. In the situation (An ,u C) define

ti A C —> A C
by setting

t(a <g>n  c) =  2 a x t <g>„ x ~ lc

where x±tt9 . . . , xrn  are distinct cosets of tt in TI with r =  (II,tt). 
Examine the formal properties of / and compare it with the natural 
epimorphism

j \  A 0 W C —> A C.

Replace C by a complete resolution X  for II and use Exer. 5 to show that 
/ leads to the homomorphism /(77,II): H(J\,A) -> H(tt,A) while j  leads 
to /(II,tt) : H(tt,A) -> 77(11,,4).

9. Define the transfer homomorphisms

H n(7 T ,A )->  H n(U ,A )  - >  H n(TT,A)

where Ft is any group and tt is a subgroup of II of finite index. Compare 
these homomorphisms with /(II,tt) and /(7r,II) for finite groups. 
Establish the analogue of Exer. 7.

10. Show that the map

i(7r,n): H ~ \n ,Z )  -> H ~ \ tt,Z )
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which coincides with the transfer map

t(7T9U): # i(II ,Z ) -> Hfjr^Z)

(see Exer. 9) coincides with the classical transfer map

t : n / [ n ,n ] -> 7t/[7t,7t]

as defined for instance in Zassenhaus (Theory o f Groups, New York, 1949, 
p. 137).

11. Let P =  (pl9. . . , p t) be a set of primes. We define as
the direct sum of H(JA9A 9p ^ 9 and define (II : 1)P as the product of the 
/?r primary components of (11,1) for An element
g e H Q(H,Z,P) will be called a maximal P-generator if it generates 
//*(II,Z,P) and has order (IT : 1)P. The integer q is then called a 
P-period for II. Restate all the results of § 11 in this more general 
setting. In particular show that theorem 11.6 may be reformulated to 
assert the equivalence of the following four conditions:

(a) II has a P-period >  0;
(b) every abelian subgroup of II whose order is a divisor of (II : 1)P is

cyclic;
(c) every /7-subgroup of II with p  e P  is either cyclic or a generalized

quaternion group;
(d) every p -Sylow subgroup of II with p  e P  is either cyclic or is a

generalized quaternion group.

11. Let p v be the order of the p -Sylow subgroup of II. Show that 
the least integer r satisfying 11.4 is (using the Euler ^-function)

r =  (pip") =  p v- \ p  — 1) i fp  =£ 2

r — (p{pv) — 2*'-1 if p =  2, v— l or 2

r =  l/2cp(pv) =  2V~2 if p =  2, v >  2.

As a consequence, show that if II has a p-period, then 2(p(pv) is a /7-period. 
l f p = 2  and rr is cyclic of order 8 then II has <p{pv) as a /7-period.

If II has a period, then 2^(11 : 1) is a period for IT.
13. Show that if for some integers i and p  the functors ^(11,^4) and 

H i+q(Jl,A) are naturally equivalent (as functors of the II-module A), 
then II has period q.

14. Let II have order r. Show that for each q there exists II-modules 
C with H%Il,C) cyclic of order r. [Hint: for q — 0 take C =  Z, then use 
sequences of the type (1) and (2) of § 5.]



CHAPTER XIII

Lie Algebras
In troduction . In this chapter, Lie algebras are considered from a 

purely algebraical point of view, without reference to Lie groups and 
differential geometry. The “Jacobi identity” may be justified by the 
properties of the “ bracket” operation [x9y] — xy — y x  in an associative 
algebra.

To each Lie algebra g (over a commutative ring K) there corresponds 
a /^-algebra ge (called the “enveloping algebra” of g), in such a way that 
the “ representations” of g in a ^-module C are in a 1-1-correspondence 
with the ge-module structures of C. Since ge has a natural augmentation 
e : it is a supplemented K-algebra. This at once leads to the
homology and cohomology groups of g. To prove that these coincide 
with the ones hitherto considered(Chevalley-Eilenberg, Am. Math.
Soc. 63 (1948), 85-124) we must assume that g is A>free and apply the 
theorem of Poincare-Witt (§3) which is an essential tool in the theory.

While the first two sections contain only definitions and results which 
are essentially trivial, because they do not use Jacobi’s identity, this 
identity is essential for the theorem of Poincare-Witt (§ 3). Once this 
theorem is established, the theory develops in a manner analogous to that 
for groups.

We do not touch upon the more advanced aspects of the homology 
theory of Lie algebras (Whitehead lemmas, Levi’s theorem, semi-simple 
Lie algebras, etc.).

1. LIE ALGEBRAS AND THEIR ENVELOPING ALGEBRAS

We recall that a Lie algebra over a commutative ring ATs a ^-module g 
together with a ^-homomorphism x  ® y  -> [x,y] of g (g)K g into g such 
that for x, y, z  e g :
(1) [x,x] =  0

(2) [x,[y,z]] +  [ y \z 9x\] +  [z,[x9y]] =  0 (Jacobi’s identity).

Condition (1) implies the condition

O ') [x,y] +  [y,x] =  0
and is equivalent with (1') if in the ring K  there is an element k  with 2k =  1.

266
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A (left) g-representation of g is a ^-module A together with a K- 
homomorphism x  ® xa of g 0  A into A such that

x(ya) — y{xd) =  [x,y]a.

We now construct an associative AT-algebra ge with the property that each 
(left) g-representation may be regarded as a (left) ge-module and vice-versa. 
We shall call g® the enveloping algebra of g.

Let T(g) be the tensor algebra of the ^-module g : this is the graded 
(associative) X-algebra such that r 0(g) =  K  and Tn(g) is the «-fold tensor 
product (over K) of g with itself. The product of elements x x 0  • • • 0  x v 
and y 1 0  • • • 0  y Q is xx 0  • • • 0  x v 0  y x 0  • • • y q. It is clear that a 
K-linear map g <g>K A -> A admits a unique extension T(g) ® K A ->  A 
satisfying ( ^  0  • • • 0  x n) 0  a -> (xx • • • (xna) • • •). This converts A 
into a left T(g)-module. Conversely any r(g)-module A is obtained this 
way from a unique map g 0  A -> A. In order that this map g 0  A -> A 
be a g-representation it is necessary and sufficient that the elements of 
7Tg) ° f the form

(3) x  ® y  — y  ® x  — [x,y] x ,y  e g

annihilate A. Consequently, we are led to introduce the two-sided ideal 
t/(g) of T(g) generated by the elements (3) and define the enveloping 
algebra of g as ge =  T(g)/£/(g). Clearly left g-representations and left 
ge-modules may be identified; we shall use the term left g-module to indicate 
either of the above.

We arrived at the enveloping algebra ge by the consideration of left 
representations g 0  A A. A right representation A 0  g -> A with

(ax)y — (ay)x =  a[x,y]

could equally well be used. Indeed, any AT-homomorphism A 0  g A 
extends uniquely to a ^-homomorphism A 0  T(g) -> A satisfying 
a 0  (x± 0  • • • 0  x n) =  (• • ’(a x j-  • • x n). This converts A into a right 
T(g)-module. In order that A 0  g -> A be a right representation of A it 
is necessary and sufficient that the elements of the form (3) in T(g) 
annihilate A. We are thus led to the same enveloping algebra 
ge =  T(q)/U(q). Thus right g-representations and right ge-modules may 
be identified; we shall use the term right g-module to indicate either of 
the two.

The relation between g-representations and ge-modules can be made 
more explicit by the use of the ^-homomorphism

defined by the fact that g =  Ti(g). We then have
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P roposition 1.1. Let f : g ® A -> A be the map which defines A as 
a left g-representation. Then f  admits a unique factorization f  =  h(i ® A) 
where h: ge ® A -> A is a map defining A as a left cf-module. Similarly 
for right representations and right modules.

Since 7Xg) is a graded ring we have a natural augmentation 
e: T(g) -> r 0(g) =  K. Since e is zero on Tw(g) for n >  0 it follows that 
the ideal C/(g) is in the kernel of e. Thus by passing to quotients we obtain 
the augmentation

c f-> K

which converts ge into a supplemented K-algebra. The augmentation 
ideal 7(g) is generated by the image of /: g -> ge.

As an example, consider the case of an abelian Lie algebra g (i.e. 
[xKy] =  0 for x,y e g). The enveloping algebra ge is then the quotient of 
r ( 8) by the two-sided ideal f/(g) generated by the elements x 0  y — y  ® x; 
thus ge is the “ symmetric algebra” of the TT-module g. If g is TT-free with 
TT-basis {xa}, then ge may be identified with the algebra 7T[xa] of polynomials 
in the letters xa.

A homomorphism / :  g -> g' of a Lie algebra g into a Lie algebra g' 
over the same ring TTis a K- homomorphism satisfying/([x,y ] )=  [fx jy ]. 
Clearly /induces a map f e: ge g'e of supplemented algebras such that 
the diagram

J, j ,

9e J T  §'e
is commutative.

Let g and g' be two Lie algebras over the same ring K. The direct sum 
g +  g' (also called “direct product”) is defined as a Lie algebra by setting

[(x9x'),(y,y')] =  ([x ,y l[xf,yf]).

If we identify x with (x,0) and x with (0,x') then g and g' become sub­
algebras of g +  g', and [x,x'] =  0 for x e g, x ' e g'. The inclusion maps 
g -> g +  g', g' -> g +  g' induce homomorphisms

9e-^ (9  +  9 %  g,e^ ( 9  +  g')e

which in turn define a homomorphism

<p: ge ® g'e->(g + g')e.

P r o p o s it io n  1.2. The homomorphism cp is an isomorphism of 
supplemented algebras.
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P r o o f .  The map (x,x') ->  x ® 1 +  1 (g) x ' of g +  g' into the tensor 
product of algebras T(g) ®  T(g') induces a homomorphism of X-algebras

r -  n a  +  G')- ^ ( 9 ) 0  7X00.

After composing ip with the natural map T(g) ® T(g') -> ge ® g'* we 
find that £/(g +  g') is mapped into zero. Thus we obtain a homomorphism

r -  (9 +  9 ')e- > 9e ® fl'%

and it is trivial to verify that yxp and cp\p are identity maps. Thus cp is an 
isomorphism.

The definition of a Lie subalgebra 1) of a Lie algebra is obvious. We 
say that f) is an ideal if [x,y] e f) for x  e g,y e 1). In view of the anti­
commutativity of the bracket operation, there is no need to distinguish 
between left and right ideals. If 1) is an ideal, then g/f) is again a Lie 
algebra with the bracket operation induced by that of g. Consider the 
composite map

(4) f) - L  g ge

w here/is the inclusion, and let L  denote the right ideal in ge generated by 
the image of if. Then L  coincides with the left ideal generated by the 
image i f  since in ge we have

if(x')i(x) =  i(x)if(xf) +  /([> ',* ]) x ' e I), x e g

P roposition 1.3. Let 1) be an ideal in g and cp: g - >  g/f) the natural 
homomorphism. Then cpe: ge -> (g/f))e is an epimorphism and its kernel 
is the ideal L  generated by the image o f the composed map (4).

P roof. The fact that <pe is an epimorphism is obvious. Clearly the 
image of i f  is in the kernel of <pe. Thus <pe induces a homomorphism 
cp: cf/L -> (g/f))e. We choose a function u: g / l ) ->g(not  a homo­
morphism) which followed by cp is the identity. It is easily seen that the 
composite map

g/f) 9 9e — > ff/L

is independent of the choice of u and is a ^-homomorphism. There 
results a ^-algebra homomorphism T(g/f)) -»  gejL  which maps U(g/f)) into 
zero. We thus obtain a map \p: (g/f))e-> ge)L for which both composi­
tions cpy) and yxp are identity maps. Thus cp is an isomorphism.

As in the case of groups we have an antipodism

eo: ge &  (ge)*



defined by the map x x ® • • • 0  x v -> (— l)vx* ® • • • ® x* of T(g) into 
7(g)*. As in the case of groups this allows us to convert a right g-module 
A into a left one, by setting

xa =  —ax.

2. HOMOLOGY AND COHOMOLOGY OF LIE ALGEBRAS

For each Lie algebra g over K , the (associative) /T-algebra ge is a 
supplemented /T-algebra, and therefore, following x ,l, we have homology 
and cohomology groups of ge. We shall write

H n(g,A) =  Tor?; (A,K), H n(g,C) =  Ext£ (K,C)

for any right g-module A and any left g-module C. Thus the homology 
and cohomology groups of g are defined as those of the supplemented 
algebra ge.

I f f :  g ^ D  is a homomorphism of Lie algebras, we have the induced 
homomorphism f e\ ge If  which in turn induces homomorphisms

Ff : H n(Q,A)-+Hn(f),A)9 A ^

Ff : H n(l),C) -> / / n(g,C), %C.

The homology group HQ(§,A) is the ^-module A ®ge K  & A /A I  
where / =  /(g) is the augmentation ideal in ge. Clearly A I  =  A% and 
therefore

(1) / / 0(g,T) =  AIAq.

This AT-module will also be denoted by AQ.
The cohomology group H°(q,C) is the group Homg* (AT,C) which may 

be identified with the /T-module of all invariant elements of C, i.e. all 
elements c such that xc — 0 for any x e g. Denoting this module by C9, 
we have

(la) H°(a,C) =  CK

The group / / 1(g,C) has been described in x,l as the group of all crossed 
homomorphisms / :  g6-> C modulo the subgroup of principal crossed 
homomorphisms. Composing /  with the map i: g -> ge we obtain a 
/T-homomorphism g: g -> C such that

x(gy) — y(gx) =  gifcy]) x>y€ 9
which we call a crossed homomorphism of g into C. Clearly the crossed 
homomorphisms of g and those of ge are in a 1-1-correspondence given 
by the relation g ^ f i -  The principal crossed homomorphisms g A
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are those of the form gx  — xc for some fixed c e C. We thus obtain again 
that H \§ 9C) may be identified with the group of crossed homomorphisms 
g -> C reduced modulo principal homomorphisms.

If A has trivial g-operators (i.e. xa =  0 for all a e A ,x e g), then we find

(2) H0(§,A) = A =

(3) jy1(B̂ )= H o m (g /[ f l ,g M )

where [g,g] is the image of g ® g -> g under the map x ® y  [x,y].
We shall also interpret the group Hx(q9A) for A with trivial g-operators. 

We know from x,l,(4) that Hf &A)  & A ® K I/I2 where 1 =  7(g) is the 
augmentation ideal. Since / maps g into 7 and [g,g] into 72 it defines a map 
9o: g/[g,g] -> 7//2. On the other hand the map T (g)->g which is the 
identity on 7\(g) =  g and is zero on Tn{g) for n ^  1, maps U{g) into 
[g,g] thus defining a map / - >  g/[g,g]. Since this map is zero on 72 we 
obtain a map y>: 7//2 -> g/[g,g]. Both compositions <py) and xpcp are 
identities and we obtain an isomorphism

(4) III2 ** g/[g,g].

We thus have
(5) H ^ A )  A ®K g/[g,g]

if g operates trivially on A.

3. THE POINGARE-W ITT THEOREM

Throughout this section it will be assumed that the Lie algebra g over 
K  is TT-free. A fixed AT-base {xa} will be chosen and it will be assumed that 
this AT-base (or rather the set of indices) has been simply ordered.

We shall use the following notation: ya will stand for the image of 
xa under the map i : g -> ge; if I  is a finite sequence of indices a1?. . . , olp 
we shall writey T — y  • • • y a ; we say that I  is increasing if oq <1 • • • <1 clp ; 
we define y x =  1 if 7 is empty, and we regard the empty set as increasing; 
the integer p  will be called the length of 7.

T heorem 3.1. The elements j 7, corresponding to finite increasing 
sequences 7, form  a K-base o f the enveloping algebra Qe.

Corollary 3 .2 . g* is K-free.
Since by 3.1, the elementsy a are linearly independent in ge we obtain 
C orollary 3.3. The map i: g -> ge is a K-monomorphism.

P roof of 3.1. We first show that the elements y x corresponding to 
finite increasing sequences generate ge. We denote by Ff cf )  the image of 
the submodule 2  ^ ( 9) of T(q) under the natural mapping T(g) -> ge. It

i< p
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suffices to show that the elements y z corresponding to increasing sequences 
/  of length p  generate Ffcf ) .  Clearly the elements y z corresponding to 
all sequences /  of length <1 p  generate FJyf). The conclusion thus follows 
by recursion from the following lemma (in which the fact that g is K-free is 
not needed):

Lemma 3.4. For each sequence al9 . . . , ap e g and each permutation 
7t o f  ( 1 we have

As usual i : g ->  ge is the natural map. It clearly suffices to consider 
the case when tt interchanges two consecutive indices j 9 j  +  1. In this 
case the conclusion is evident from the relation

We now come to the more difficult part of the proof which consists in 
showing that the elements y z of 3.1 are K-linearly independent. We shall 
denote by P  the polynomial algebra 7f[za] on letters {za} in a 1-1-cor­
respondence with the base {xa}. For each finite sequence I  of indices 
a1? . . . , we shall denote by z7 the element zai • • • za of P.

Lemma 3.5. There exists a left representation o f  g in P such that

whenever a I  {i.e. whenever a fo r  all e 7).
Postponing the proof of the lemma, we can complete the proof of the 

theorem. The representation of g in P  induces a left ge-module structure 
on P. If I  is an increasing sequence of indices of length n it follows from
(1) by recursion on n that y z . 1 =  zz. Since the elements zz are K - 
linearly independent in P, the same follows for the elements y z of ge.

P roof of 3.5. In the graded algebra P , we denote as usual by Pv the 
TT-module of homogeneous polynomials of degree p  and set Qv =

Lemma 3.5 is an immediate consequence of the following inductive 
proposition:

(Ap). For each integer p  there is a unique homomorphism

i(ai) • • • i(a„) -  ■ • • i(a^v)) e F^_x{ge).

# K i )  — Kai+dKai) =  '( k -A +1])>

(i) V i  =  V i

f :  g ® Qv ^ - P
such that

O')

(2)

/(*«  ® z i) =

f(x*  0  Zj) e Qv+1

a ^  Zj e Qv

zi e Qq, q < p

(3) f ( x a ®f {xp  0  Z j ) )  = f ( x fi <8>f(xx 0  Z j ) )  + f([ x a,Xp] 0  Zj), Zj  e Qv_x

( 4 )  f ( x a 0  Zj)  -  z aZj  e Q „  Z j  e Q a, q < L  p .
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It is immediate that (2) is a consequence of (4); however we wrote (2) 
out explicitly in order to make it clear that the terms in (3) are well defined.

For p  =  0, the definition/(xa 0  1) =  za is forced by (1') and trivially 
satisfies also (2)-(4).

Assume now that ( A ^ )  is established for some p  >  0. We shall show 
that the map /  satisfying (Ap_x) admits a unique extension (also denoted 
by / )  satisfying (AP). We must define / ( x a ® z7) for /  of length p. If 
a <1 /, the definition is forced by (1'). If a <1 /  is false then /  may be 
uniquely written as / — (/?,J) where Then z7 — z^Zj = f { x $ ®  Zj)
so that the left side of (3) is / ( x a ® z7). In order to be able to use (3) 
as a definition we must verify that the right hand side of (3) is already 
defined. To this end we use (4) to write

/ ( * «  ®  z j )  =  z a Z j  +  w ,  w e  Q v _ v

Then the right hand side of (3) becomes

W /  + A xp @ w) + M xv x p] ® zj).
This defines/in  all cases, and (T), (2) and (4) are clearly satisfied. As for
(3) we only know that it holds if a >  /? <1 / .  Because of the anti-symmetry 
of [xa,Xp] it follows that (3) also holds if ft >  a <1 / .  Since (3) trivially 
holds if a =  /?, it follows that (3) is verified if either a <1 /  or P <1 / .  We 
shall show that this together with (T) and (4) and together with the induc­
tive assumption (Ap_x) implies (3) in all cases.

Indeed suppose that neither a nor p <1 J. Then J  has positive 
length and J  =  (y,L) where y ^ .L ,  y <  a, y <  ft. Using the abridged 
notation / ( x a ® z7) =  xaz7 we then have by the inductive assumption

Xffcj) =  =  x y(xnzL) +  iX^ Xy]ZL
=  X y ( Z p Z L )  +  XyW +

where w =  x^z^ — z^z^ e 2p_2. Applying xa to both sides we have

X*(XfiZj) =  X«(Xy(ZPZL)) +  X*(XyW) +  X«(lXP’Xy]ZL)-
Since y <1 (P,L), (3) may be applied to the term xa(xy(zpZL)); to the 
remaining two terms on the right we may apply (3) by the inductive 
assumption. Upon computation we obtain

(5 ) ( Xp Z j )  =  x y( x a(XpZL ))  +  [xa,x y](x^Zjr) +  [x /3,x y](xaz jL) 

+  [xa,[xp9xY]]zL.
Our assumptions on a and p were symmetric, so that (5) holds with a and P 
interchanged. Subtracting from (5) this yields

(6) xa{xpZj) — Xp{xaZj) =  x y{xa{xpzL) — x ^ x azL)} +  [xa,[xfs,x^]zL
— [xfi\ x ajcY]\zL.



Applying (3) we have

x{xya(x^zL) -  Xp(xazL)} =  x y([xa,Xp]zL)

=  [x a , X p \ { x Yz L )  +  { x v , [ x a , x ^ ] z L

=  [x a ,X p ]Z j  +  [ x ^ X ^ X p ] ]  ZL .

Substituting this in (6), we find that the three terms involving double 
brackets cancel by virtue of Jacobi’s identity, and the final result is

* « (X fiZ j)  -  X f,(x aZ j )  =  [x a ,x p ] z j

as desired.

Theorem 3.1 was first proved by Poincare (Cambridge Philosophical 
Transactions 18 (1899), 220-225, §m);  a complete proof, based on the 
same principles, was given later by E. Witt (Journ.fur r.u.a. Math. (Crelle) 
111 (1937), 152-166; Hilfsatz, p. 153). The proof given here is modeled 
after Iwasawa.

4. SUBALGEBRAS AND IDEALS

Iff) is a Lie subalgebra of a Lie algebra g over K, then the inclusion map
I) ->■ g induces a  .K-algebra homomorphism

(1) r .
so that ge may be regarded either as a left or as a right If-module.

P r o p o s it io n  4.1. I f  the K-modules I) and g/l) are both K-free, then cp 
is a monomorphism and qe regarded as a left or right -module is \f-free.

Proof. In the exact sequence 0 -> b g -> g/f> ->• 0 of K-modules, 
the modules I) and g/f) are K-free. Therefore the sequence splits and g also 
is K-free. Furthermore, we can find a K-base of g composed of two 
disjoint sets (xa}a € A, {y$}p € B suc^ that {xo}1S a K-base for \). We simply 
order the union A U B  of the disjoint sets A and B so that each a € A 
precedes each ft e B. If we identify each element of g with its image in ge 
under the monomorphism i: g ->  ge, then it follows from 3.1 that the 
elements of the form

• ' X a J h  • • 'yfi'  ai ^  • • P i £ - - - £ P a e B

of ge form a K-base for ge, while the elements x a • • • x a form a K-base for 
f)e. This implies that (1) is a monomorphism and that the elements 
y?x " ' ' yp form a left If-base for g*. The proof that these elements also 
form a right l)e-base is similar.

We may now apply x,7.2 and x,7.3. We obtain
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Proposition 4.2. Under the hypotheses o f  4.1 we have

(2) HJfy,A) ** Hn(&A ®*. g«)

(2a) t f w(b,C) ^  H%g, Horn*. (g«,C)),

fo r each right ^-module A and each left I)-module C.
Proposition 4.3. Under the hypotheses o f  4.1 we have

(3) H Jb,A ) ** Tor? 04,g« ®*. tf),

(3a) t f w(f)>Q ^  ExtJ. (g* ®*. tf,C),
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/o r  eoe/z right g-module A and each left g-module C.
The module g* ®^« K  appearing in (3) and (3a) may also be written as 

H0(l),cf) which has been computed in § 2 to be g79eb* If b is an ideal in 
g then geb coincides with the ideal L  of 1.3. Thus if 1) is an ideal in g we 
have the isomorphism

9e 0<,« K  ™ (g/I))e.

Corollary 4.4. I f  b is an ideal in g and the hypotheses o f  4.1 are 
satisfied then

(4) H J b ,A )f*  Tor* { A m n

(4a) H n(fyyC) & Extge ((g/b)e,C),

fo r  each right ^-module A and each left g-module C. These isomorphisms 
may be used to define a right g/f)-module structure on H n($yA) and a left 
Q/fy-module structure on FTw(b,C).

In xvi,6 we shall establish closer relations between the homology 
(and cohomology) groups of g, b and g/b-

5. THE DIAGONAL M AP AND IT S APPLICATIONS

For each Lie algebra g over K , the diagonal map

D : ge-> ge ® ge

is defined by the requirement

Dx =  j c ® 1  +  1 ® x ,  * £ 9-

If we identify ge ® g6 with (g +  g)e as in 1.2, and consider the map
I- 9 9 +  9 given by Ix =  (x,x) =  (x,0) +  (0,x), then D =  T. This
diagonal map D is compatible with the augmentation (in the sense 
explained in xi,8) and is commutative and associative (in the sense defined 
in xi,4).
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The diagonal map D may be combined with the antipodism co: ge^ g e* 
defined in § 1, to obtain a map

E  : g  -> g  0  g *  =  (g )e
as the composition

D  ge ® a>
g  ” g * ®g * --------’■g'Og**.

It follows that the map E  satisfies

Kx =  x ® 1 — 1 ®  x*, x e g,

and that this condition determines E  uniquely.

We first verify that the map E  satisfies condition (K.l) of x,6. To this 
end we denote by /  and /  the kernels of the respective augmentation maps

e : ge - > K , p: g* ®  g** - >  ge.

By rx,3.1, /  is the left ideal generated by the elements u ® 1 — 1 ® w* for 
u e of. In view of the relation

(uv) ® 1 — 1 ® (uv)* =  (u ® l)(v ® 1 — 1 ® t>*)+(l ® v*)(u ® 1 — 1 ® W*)

valid for u,v € ge, we find that J  is the left ideal in ge ® ge* generated by 
the elements

x ® l  — 1 ® x * =  jE'x  x e g .

Since the elements x e g generate the ideal /  of ge it follows that J  is the 
left ideal generated by the image of E l  in ge ® ge*. This is precisely 
condition (£.1) of x,6.

We now introduce the assumption that the Lie algebra g is .K-free. 
Then, by 3.2, ge also is K-free. Consequently, the diagonal map D may be 
used to define U - and O -products as in xi,7. Further we find that the 
conditions (i)-(vi) of xi,8 are satisfied by the maps D and co. Consequently 
the considerations of xi,8 and xi,9 (reduction theorems) are applicable to 
the homology and cohomology groups of a K-free Lie algebra g.

Next (still under the assumption that g is K-free) we shall show that 
condition (E.2) of x,6 is satisfied, i.e. that ge ® ge* regarded as a right 
ge-module by means of the map E  is ge-projective. Since the map g6 ® co is 
an isomorphism, it clearly suffices to show that ge ® ge regarded as a right 
ge-module using the map £>, is ge-free. To this end we identify ge ® of 
with (g +  g)e and notice that D =  le, where I: g g +  g is the map of 
Lie algebras given by Ix =  (x,x). Since / is a monomorphism and since 
Coker / is a K-module isomorphic with g which is K-free, it follows from
4.1 that (g +  g)c is ge-free.
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Now that condition (£.1) and (£.2) of the “inverse process” have been 
verified, we may apply x,6.1. We obtain

T heorem  5.1. Let g be a Lie algebra over K  which is K-free, and let A 
be a two-sided ge-module. Let A E be the right g-module obtainedfrom A by 
setting

(a9x) -> ax — xa a e A, x  e g

and let EA be the left g-module obtained by

(x,a) -> xa — ax a e A ,x e g.

We then have isomorphisms

F E: H n(Q\A) & H„(q,Ae )

Fe : H \ q,eA) ** H n(tf,A).

Furthermore i f  A =  ge and i f  X  is a K-projective resolution o f K  (as a left 
A-module) then A e 0 A X  is a A e-projective resolution o f A  as a left 
A e-module.

In particular, let g be the abelian Lie algebra with the letters x l9 . . .  9x n 
as a A-base. Then ge =  K[xl9 . . . , x n] =  A, and we know from viii,4 
that A 0  E(xl9 . . . ,  x n) with a suitable differentiation operator is a 
ge-projective resolution of K. It follows that A e 0  E(xl9 . . . , x n) with a 
suitable differentiation operator is a Ae-projective resolution of A.

An application of x,6.2 gives
T heorem  5 .2. I f  § is a Lie algebra over K  which is K-free then 

dim ge =  dimge K.

I f  further the commutative ring K  is semi-simple, then

dim ge =  gl.dim ge.

In view of the antipodism co, there is no need to distinguish between
l.dimge K  and r.dimge K  and between l.gl.dim ge and r.gl.dim ge.

6. A  RELATION IN  THE STANDARD COMPLEX

For the purpose of the next section we shall establish here a relation 
valid in the normalized standard complex N( A) of an arbitrary (associative) 
Af-algebra A.

The notation [xl9. . . ,  x n\ in the complex N( A) introduced in ix,6 will 
be replaced here by {xv  . . . ,  x n} in order to avoid confusion with the 
brackets in the Lie algebras.



For each y e  A we consider the Ae-endomorphisms o(y) and $(y) of 
N(A) defined by

(1) <r( y){x1; . . . ,  x n} =  2  (— l)jK> • • • ,X i,y ,x i+1, . . .  ,*„}
0 <Zi<Ln

(2) #(.y){*i, . . .  , x n} =  y{xl t . . . ,  x n} — , x n)y

— 2  { x i , . . . , * h » [ m W i ......... *«}l^ i^n
where [y ,x ] =  y x  — xy.

Proposition 6.1. For each y  e A we have the identity

(3) do(y) +  o ( y ) d - $ ( y ) = 0 ,

where d is the differentiation operator o f N{A).
Proof. Let A(y) denote the left hand side of (3). We must show that 

for all n 0,

(4) A y ) { x i ,  . . . , x n } = o .

This is immediate if /z =  0. We now assume, by induction, that (4) holds 
for n — 1 (n >  0). In the complex N (A) we have the contracting homo­
topy s defined in ix,6 and satisfying the identity

ds +  sd =  identity

when applied to any element of degree >  0. Thus for n >  0, relation (4) 
is equivalent to the pair of relations

(5) sAiyY^ , . . . ,  x n) =  0,

(6) sdA{y){xx, . . . ,  x n} =  0.

We recall that in the normalized complex we have .?(v{x3, . . . ,  x n}y ') 
=  { vvYj,. . . ,  x n}y' and that the right hand side is zero if y  --= 1. This 
rule easily implies

sda(y){xlt =  ^(y{x1(. . . ,  x n} -  x ^ i y ) ^ , x n})

sa(y)d{x1, . . . , x n} =  , x„})

-5 i?(y){xi,. . . ,  x n}=  —sCyfo , . . . ,  x j ) .

Adding these relations yields (5).
To prove (6) we first compute the element

z =  dA{y){xr, da(y)d{x1, . . . , x n} — dd{y){xx, . . . ,  x n}.

An application of the inductive assumption yields

Z =  &(y)d{x1, . .  . ,  xn} — d&{y){xx, x n}-
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We must show that z  == 0 mod the kernel of s. Calculating modulo this 
kernel we find that d&{ . . . ,  x n} gives

yd{xi , . . . ,  x„}  —  x ^ x * . . . ,  x n}y —  [ ^ , x j { x a, . . . ,  x B}

— 2  • • • » *i-l, [/>*«],*i+l> •••>*»}2zZi<Ln

while d(y)d{xx, . . . ,  x n} gives

xj_ y{x2, . . . ,  x j  +  y(d{xx, . . . , x n} — x x{x2, x n})

—x x{x 2, . . . ,  x n}y — 2  x iix 2> • • •,  x i-iXy,Xi],xi+1, x„}.
2

The two results coincide and this concludes the proof.

Suppose now that A is a supplemented K-algebra with augmentation 
e: A ->  K. In the normalized standard complex N(A,s) =  N (A) <g)A K 
we have endomorphisms induced by o{y) and #(y). These will still be 
denoted by o(y) and 'd'(y). These operators are left A-endomorphisms of 
N(A,e) and we still have the relation (3). The explicit definition of o(y) is 
still given by formula (1), while the definition of # (j)  gets replaced by

(2 ') # (  j){ x 1 ; . . . ,  x„} =  y{xx, . . . ,  xn} — {xx, . . . ,  xn}(ey)

— 2  {*i> • • • > x i-iAy,x i^x i+n • • •» *„}•

7. THE COMPLEX V ($)

Throughout this section g will denote a Lie algebra over K which is 
K- free.

We denote by K(g) the exterior algebra of the K-module g. The 
tensor product (over K)

F(g) -  g« ® K(g)

is a left ge-module and is ge-free since K(g) is .K-free. Using the grading 
of K(g) we define a grading in F(g) as

V M  =  ge ® E j g ) .

Since K0(g) =  K it follows that F0(g) =  ge, and the augmentation e : ge -> K 
defines an augmentation e: F(g) -> K  which is zero on Fn(g), n >  0.

For u € ge, xv  . .  . , x n e g, the element u ( g )  (x± • • • x n) e ge ® K(g) 
=  F(g) will be written as u(xl9 . . . ,  x n>. If w =  1 we shall simply write 
(xl9 . . . ,  xw). Consequently the symbol ( )  will denote the element 
1 (g) 1 of ge ® K(g).
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We now consider the normalized standard complex N(cf,e) of the 
supplemented algebra ge. Let

/ :

be the gl’-h om om orphism  defined by the requirement

/< * !, . . . , x „ ) =  Z ( - l ) T(,r,K (i) .  • • • . *„<«>},
TT

where the summation extends over all permutations tt of ( 1 , . . .  , n) and 
t ( tt)  is the signature of 77. To verify that / i s  well defined we only need to 
observe that f ( x l9 . . . , x n) =  0 if x { =  x j for some 0 < L i< j< L n .  In 
particular, the definition yields / ( ) = { } •

If we choose a simply ordered J£-base for g, we obtain in the usual 
fashion a A-base for is(g) which in turn induces a ge-base for F(g). It 
follows then by inspection that/  maps this ge-base of F(g) into elements of 
N(cf9e) which are gMinearly independent. Consequently /  is a mono­
morphism. In the sequel we shall identify F(g) with a ge-submodule of 
N(gf,e) and regard /  as an inclusion map.

T heorem 7.1.  The submodule F(g) o f  N(cf,e) is a subcomplex. The 
differentiation in F(g) is given by the formula

(1) d(xl t . . . ,  x n) =  2  (— l) i+1x i{x1, . . . , x i, . . . , x n)
l^ i ^n

~f" 2  WpCfoXj\)X 1» ••• 9 %i9 * * * 9 Xj9 ••• 9 x f).
1  ^ i<j

With the augmentation e : F(g) -> K , the complex F(g) is a cf-free resolution 
o f K  as a left of-module.

Proof. Once formula (1) is proved, it will follow that F(g) is a sub­
complex of N(ge,e). For n =  0 formula (1) needs d{ ) =  0 which is 
obviously correct. We now proceed by induction and assume that (1) 
holds for n.

We shall use the endomorphisms o(x) and #(;c) of the complex N(ge,e) 
as defined by formulas (1) and (2') of § 6. For y ,x l9 . . . , x n e g, we 
obtain

(2) o{y){x 1, . . . , x n) =  (y ,xv

(3) ^ y ) { x x, =  y (x lt . . . , x n) — 2  <*i» • • • > I  • • • > *«>•

The formula do(y) +  o(y)d =  #(y) (established in 6.1) together with (2) 
yields

d{y9x l9. . . ,  x n)= do(y){x l9. . . ,  x n)=& (y)(xl 9 x n)—o(y)d{xl9. . . ,  x n).
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Using (2) and (3) and the inductive assumption, this implies

d(y ,x1, . . . , x n) =  y (x 1, . . . , x n) +  2  (— ! ) * < [ ; > , •  • • >*<,• • • ,*»>
1

~1~ 2  ( i j  .  • • ? .  .  .  ,

l^ i^n
— 2  (— • • • , X i,. . . , Xj, . . . ,  x n).

1
This is precisely the desired formula for d (y ,x l9. . . ,  x n). Thus (1) is 
proved.

We have already exhibited a ge-base for K(g), which is thus g^-free. 
The kernel of the augmentation F0(g) -> A is the A-module generated 

by the elements of the form x x • • • x P( ), with x { e g, /? >  0. Since 
x i • * • x P( ) — d(xx • • • **_!(**», it follows that ^ (g ) - ^  F0(g)-> A ->0 is 
exact. Thus to conclude the proof of the theorem it suffices to show that 
Hq(V(c$) =  0 for q >  0. The following proof is due to J. L. Koszul.

We choose a simply ordered A-base {xa} for g. The elements 
(jca , .  . . ,  jca ) with a x <  • • • <  oen, n ^  0 form a A-base for E(q). The 
elements x ^  • • • Xpm with /?i <  ̂ ‘ * * <  ̂/?m, m^> 0, form by 3.1, a A-base for 
ge. Consequently we obtain a A-base of F(g) =  ge ® E(g):

(4) (Xai, . . . ,  xan), * ! < • • • <  <x„, n ^ O

^  - ' ^  /*»» w ^  0.
We introduce the submodule FvV(§) generated by the elements (4) with 
m -{-n< Lp. In the quotient module Wp =  FpV(q)IFjh_1V(q) we then 
have the A-base represented by the elements (4) with m +  n — p. Further­
more, it follows from 3.4 that the class represented in Wv by an element (4) 
is independent of the order in which the elements x^ 9. . . ,  xp are written. 
The formula (1) for the differentiation d in V(q) implies

(5) d(xh  • • • xPm(xv  xaJ )
=  2  (“ l ) ^ 1̂  • • • Xfsmx*( xai, x  , x  )

modulo Fm+n_1V(g). This implies that the modules FvV{g) are sub­
complexes and that the differentiation induced in Wv is given by the formula 
(5).

It is now clear that the complex W  =  2  Wp is the complex
v

A [xJ (8) E (xJ
with the differentiation given by (5). This complex is isomorphic to the 
projective resolution of A as a left A[xa]-module constructed in viii,4. 
It follows that Hq(W ) =  0 for q >  0, and therefore that HQ(W P) =  0 
for q >  0.



Now consider the exact sequence

-> Hq(FvV(9)) -> Hq{ W ,\  q >  0.

This implies that H q(Fv_iF(g))->- Hq(FvV(g)) is an epimorphism. Since 
i 7_1 F ( g ) = 0  we obtain Hq(FvV(g)) =  0 for # > 0  and all p . Since 
F(g) =  U*F„K(g) it follows that Hq{V{§)) =  0 for <7 >  0. This concludes 
the proof of the theorem.

8. APPLICATIO NS OF THE COMPLEX V($)

We first show how the homology and cohomology groups of g may be 
computed using the complex F(g).

If A  is a right g-module, then the homology groups H q(q,A) are the 
homology groups of the complex

A ^(9) =  A  ® £(9) =  A ® ^(9)*
The differentiation operator in this complex is

d(a ® (x l9. . . ,  xn»  =  2  (— l) i+1( ^ i )  ® <*i> xn>

“f" 2  ( 0  ^^a ® ([x^,x^],x 1, . . . , Xj-, . . . , X̂-, . . . , Xn}.

If C is a left g-module, the cohomology groups H Q(q,C) are the 
homology groups of the complex

H o n v  (F(g),Q  =  Homge (g« 0  £(g),C) =  Horn (£(g),C).

In this last complex, a gr-cochain/ :  i^(g) -> C is simply a AT-linear alternating 
function / ( x l5 . . . , xq) of <7 variables in g, with values in C. The co­
boundary d f  of such a cochain is the q +  1-cochain given by the formula

(<5/)(*i,. . . ,  xq+1) =  2  (— l)i+1* i/(* i, • • •>Xt, . . . ,  x9+1)
l^i^g+1

—f- 2  ( I) j\9Xif . . . , Xj, . . . , Xj9 . . . ,

This description of the cohomology groups H Q($,C) shows directly that 
these coincide with the cohomology groups of g considered hitherto 
(C. Chevalley and S. Eilenberg, Trans. Am. Math. Soc. 63 (1948), 85-124).

We recall that the complex F(g) is a subcomplex of the normalized 
standard complex jV(ge,e). In this connection the following proposition 
will be useful.

Proposition 8.1. Every cochain f  e Homge (F(g),C) admits an extension 
f  e Hom0< (N(ge,e),C). I f  f  is a cocycle then / '  may be chosen to be a 
cocycle.
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P roof. The first fact follows from the observation that F(g) as a 
ge-module is a direct summand of N(qe,s). This is clear from the bases 
exhibited in § 7. Now assume that d f =  0. Since the cohomology 
groups obtained using F(g) and N(ge,e) are isomorphic under the inclusion 
map, there exists a cocycle g e Homg« (N(qe,e),C) whose restriction g to 
F(g) is cohomologous to / ;  then /  — g =  dh. Let hf be an extension of 
the cochain h. It follows that / '  =  g '+  dh' is an extension of/  and d f '=  0 
as desired.

The next application of the complex F(g) has to do with dimension. 
T heorem 8.2. I f  q has a K-base composed o f n elements, then

dim qe =  dimge K =  n.

I f  further the commutative ring K  is semi-simple then

gl.dim qe =  n.

P roof. In view of 5.2,.we only need to prove dimQe K =  n. Since 
Eq(g) =  0 for q >  «, it follows that the complex F(g) is /2-dimensional and 
thus dimge K<Ln. Now consider the group isn(g), with g operating on 
the left by

y.(xv  . . . ,  x n) =  2  <*i, • • • > ly,xt] , . . . ,  *„>.
l^ i^ n

Let / b e  a (n — l)-cochain with values in isn(g); an easy computation 
(cf. Exer. 12) shows that d f =  0; thus H n(q9En(q)) is isomorphic to the 
^-module of «-cochains ^ ( g )  -> En(g), which is obviously isomorphic 
to K. Hence dimge K ^> n.

Next we pass to the question of computing the products using the 
complexes F(g). We begin with the external products for two Lie algebras 
g and I) over K, both of which are ^T-free. As agreed upon in § 1, we shall 
systematically identify (g +  f))e with qe ® As we have seen in xi,5, to 
compute the products J_ and T  we need a map

/:  V(q)®  F(l))->F(g +  l)) 

while for the products V and A we need a map

n a  +  W ^ n g ) ®  v<$).

The answer to both of these problems is quite trivial here since the 
identification (g +  f))e =  ge ® V  and the natural isomorphism ^(g +  1)) 
^  ^ g )  ® E(§) imply a natural isomorphism

(i) n g  +  W « ^ f l ) ® ^ )

compatible with the (g +  I))e-operators and the differentiations.
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For the internal products u; and m we assume that g is an abelian Lie 
algebra. Then ge is a commutative algebra. As we have seen in xi,5, to 
compute the products and m we need a map

To obtain such a map it suffices to regard F(g) =  ge 0  £(g) as a ge-algebra, 
and verify that this map is compatible with the differentiation (cf. Exer. 15).

We finally consider the products U  and O  defined using the diagonal 
map D : ge -»  ge 0  ge =  (g +  g)e. According to xi,5, we need a map

n g ) “*  Via) ® ng).

This is given by the maps ge -> ge ® ge and E(q) -> E($) 0  ^(g) both 
defined by x ^ x 0 1  +  l 0 x , x e g .  If we carry out the explicit computa­
tion and apply this map to find the cup product of cochains we obtain the 
classical formula for the multiplication of alternating multilinear forms. 
Explicitly, consider cochains f e  Horn (Ep(q)9C)9 f ' e  Horn (is^gXC'), 
where C and C' are left g-modules. If C ® C ' is regarded as 
a left g-module by means of the map Z>, we find that the cochain 
/ U / '   ̂Horn (Ev+q(§),C ® C') is given by

( /  U  / ') ( * i. • • • ? Xv+a) =  s  ± / ( * v  • • • ’ x0 • • • ’ x 0’

the sum being extended over all partitions of the sequence (1,. . .  , p  +  9) 
into two increasing sequences (il9 . . . , ip) and ( j l9 .. . , j q). The sign is 
the signature of the permutation (/l5 . . . , ip9j l9. . . , j Q).

EXERCISES

1. Given an associative ^-algebra A, define

[x,y] =  x y — y x  x ,y  e A

and prove that this assigns to A the structure of a Lie algebra, denoted by 
1(A). Show that for any Lie algebra g (over K), the map i is a Lie algebra 
homomorphism

i- s->KaO-
2. Given a Lie algebra g and an associative algebra A (both over the 

same ring K ), show that any Lie algebra homomorphism / :  g -> I(A ) 
admits a unique factorization

i h A
g — " ge —  A

where h is a AT-algebra homomorphism. Show further that this property 
of the pair (ge9i) characterizes this pair uniquely up to an isomorphism.
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Show that in order that there exists an associative A-algebra A and a 
Lie algebra monomorphism/ :  g -> 1(A), it is necessary and sufficient that 
/: g -> ge be a monomorphism.

3. For a given Lie algebra g, let g denote the image of the homo­
morphism i : g gg; we regard g as a Lie algebra. Show that the inclu­
sion map g ge satisfies the criterion of Exer. 2 and thus we may identify 
g* with (g)e.

4. Given a Lie algebra g over A, consider the associative A-algebra 
A =  Hom^(g,g) and the map

p : g ^ i ( A )
given by

( p X ) y  =  [ x 9y ] m

Show that p is a homomorphism of Lie algebras and that p =  0 if and only 
if g is a commutative (i.e. [g,g] =  0). As an application show that if 
g 7  ̂ 0 then the natural map /: g -> ge is not zero.

5. Let M  be a A-module. Consider the graded A-module 
A(M ) =  2k'£ i A \M ) ,  where

AHM) =  M, A \M )  =  2  A i{M )® K Ak~ \M )  for A; >  1.
0 < i< k

Define the mapping A(M ) ®K A (M ) -> A(M ) by the inclusion maps 
A \M )  Ah(M )->  Ak+h(M). We call A(M ) the free non-associative 
K-algebra (without unit element) over M. In A(M ) consider the two- 
sided ideal J(M ) generated by the elements

xx and x{yz) +  y(zx) +  z(xy), x,y,z € A(M ).

Show that the quotient L(M ) =  A(M )/J(M ) is a (graded) Lie algebra; 
we call L(M ) the free Lie algebra over M. Show that the. m apy: M->L(M), 
defined by composition M  =  A \M )  -> A{M) L(M), is a mono­
morphism. Show that every A-homomorphism / :  Af-> g into a Lie

j
algebra g admits a unique factorization M  — ► L(M ) — ► g, where cp is 
a homomorphism of Lie algebras over A.

6. Let M  be a A-module, and k a A-homomorphism of M  into a Lie 
A-algebra 1. Suppose that each A-homomorphism / :  Af-> g into a Lie 
A-algebra g admits a unique factorization

where %p is a homomorphism of Lie A-algebras. Prove that there exists a 
unique isomorphism a : t ^ L ( M )  such that ock— j. This gives an 
axiomatic description of the pair (.L(M ),j).

k y>
M  — ► I — ► g,
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7. Consider the tensor algebra T(M ) of the AT-module M. Show that
the natural injection M  -> T(M ) admits a unique factorization

j i
M  — ► L{M) — ► T(M), where i is a homomorphism of the Lie algebra 
L{M) into the Lie algebra I T h i s  mapping i is compatible with 
with the gradings in L(M ) and T(M). Show that T(M) may be identified 
with the enveloping algebra L(M )e of L(M). If L(M ) denotes the image of 
/, show that L(M) is the Lie subalgebra of I(T(M)) generated by the elements 
of degree 1 in T (M ), i.e. by M.

8. Prove the following theorem: if M  is a ^-free module, then L(M ) 
is if-free and i: L(M )->  T(M ) is a monomorphism; thus the Lie sub­
algebra L(M ) of \(T (M )\ generated by M, is AT-free and isomorphic to 
L(M).

[Hint: if L(M ) is A-free, then, by 3.3 and Exer. 7, i is a monomorphism. 
Hence the theorem is proved when K  is a field. For any commutative 
ring K , and any K-free module M, there exists a free abelian group A such 
that M  =  A 0  K; show that L(M ) =  L(A) 0  K . This reduces the proof 
to showing that L(A) is Z-free when A is Z-free; it will be sufficient to 
prove that /: L(A) T(A) is a monomorphism. Let A T be the subgroup 
of A generated by any finite subset /  of the base of A ; then T(A f) -»  T(A) 
is a monomorphism, which reduces the proof to the case of a finitely 
generated free abelian group. Let now A be an abelian group 
with a finite base; for proving that i : L(A ) -> T(A) is a mono- 
morphism, observe that, for each prime /?, L(A) 0  Z v -> T{A) 0  Z v is a 
monomorphism of degree zero, since the theorem is proved for 
a field; then apply vn, Exer. 12 to each graded component 
LjjA) 0  Zp —» Tk(A) 0  Zp.]

9. Show that any representation satisfying 3.5 automatically satisfies 
condition (4) and therefore is unique.

10. Show that if g is X-free and ge is commutative then g is an abelian 
Lie algebra.

11. Given a map K - ^ L  (of commutative rings) examine the effects of 
this change of ground ring upon the homology and cohomology groups of 
a Lie algebra.

12. Let g be a Lie algebra with a A-base x l9 . . . ,  x n. Define the 
constants o f structure cijk by the relations

[Xi,X,] =  2  cijkxk.
k

Express the axioms of the Lie algebra in terms of cijk. Prove that in the 
complex K  0 ge F(g) we have

d{xi , . . .  , x f)  2  ( 1) Cijj(Xii •. * j Xj , . . . ,  x f).
I <:i -£n 
1
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13. Under the conditions of Exer. 12, g is said to be unimodular if for 
any y e  g, the relation

2  • • • * „  =  o
1 ̂  j

holds in E(g). Show that this is equivalent with

d(xl9 . . . 9x n) = 0

in the complex K  ®Qe F(g).
14. (Alternative description of the complex F(g)). Let A =  (K,d) be 

the ring of dual numbers over K  and consider the AT-module A ® K g with 
endomorphism d. Let T (A ® g) be the tensor algebra over K  of the 
J^-module A ® g. The map i : x  -> 1 ® x  will be used to identify g with 
a submodule of A ® g and thus also of T{A ® g). In T{A ® g) intro­
duce a grading written with lower indices in which the elements x  e g have 
degree 1 and the elements dx (x e g) have degree 0. The endomorphism d  
of A ® g may now be extended uniquely to an antiderivation d  of T( A ® g), 
i.e. a A^-endomorphism satisfying

d(uv) =  (du)v +  (—1 )pu(dv)

for u of degree p  in T(A ® g). This operator d  satisfies d d =  0 and is of
degree —1 (with respect to the lower indices).

Let L  be the two-sided ideal in T{A ® g) generated by the elements

(1) xx

(2) (dx)y — y(dx) — [x,y]

(3) (dx)(dy) -  (dy)(dx) -  d[x,y]

for x ,y  e g.
Prove that L  is a homogeneous ideal and is stable under d. Consider 

the AT-algebra
W(g) =  T (A  ®  g)/L

which is a left ge-complex over K.
Use the maps

/: g -»  A 0  g, j  — di: g A ® g

to obtain maps

i T { g ) ^  T(A  ® g), j ' :  T(g) T(A ® g)

i*: £ ( g ) ^  ^(g), j * :  ge -> ^ (g )

<p = j *  ® /*: ge <g> E ( g) -> W (q).
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Prove that (p is an isomorphism of graded A-modules and is an isomorphism 
of the complexes F(g) and W(g).

[Hint to the last part: denote by M  the ideal of T{A ® g) generated by 
the elements (2). Prove that j ' ® i ': T(g) ® J(g) T(A  ® g) induces an 
isomorphism T(g) ® T(g) ^  T(A ® g)/M.]

15. Let g be a Lie algebra with a A-base; then fcL(g) (Exer. 14) is a 
graded differential algebra and ge a subalgebra of degree 0, thus W(c£) is a 
two-sided ge-module. The multiplication of W(g) defines a map

(1) W ($ )® ,e W (& )^ W ^ )

which is compatible with the structures of two-sided ge-modules. Let A 
be a left ge-module; (1) defines

(2) W(g) A -> Homge ( JL(g),fF(g) ®g* A),

where Homg« is related to the left ge-module structures. Let n be the 
number of the elements of the A-base of g ; (2) induces

(3) ^n-fc(9) A Homge (W k(§ \W n(%) ®g* A)

for any integer k \  this is a map (pk of the module of (n — fc)-chains (with 
coefficients in A) into the module of &-cochains (with coefficients in 
Wn(g) ®ge A & En(g) <g>K A). Show that the collection of maps (pk 
commute (up to the sign) with the boundary and coboundary operators, 
and that each q>k is an isomorphism. Compute explicitly the left opera­
tions of g on Aw(g) A , and establish the natural isomorphisms

H n- k(%A) H*(q,E„(q) <2>k  A).

For k  =  n and A =  K  (with trivial operators) we find again H n(Q,En(Q)) 
=  K  (cf. 8.2).



C H A P T E R  X I V

Extensions
In troduction . In general an extension over A is given by an epi­

morphism / :  X -+  A. This concept may be considered for various kinds 
of algebraic structures:

(1) X  and A are A-modules, and / i s  an epimorphism of A-modules.
(2) T and A are .K-algebras, and/ :  Y A is a K-algebra epimorphism.
(3) W  and II are groups, an d /: W -> II is an epimorphism of groups.
(4) \) and g are Lie algebras, and / :  1) -> g is an epimorphism of Lie 

algebras.
In the case (1), the kernel C o f / i s  a A-module. The knowledge of A 

and C does not yet determine the extension even up to “equivalence.” 
Indeed, the set of equivalence classes of extensions is in a 1-1-cor- 
respondence with the group Ext\(A ,C ); this was the origin of the notation 
“Ext” .

Cases (2), (3), (4) are more complicated, and will be studied here only 
under restrictive conditions which permit the introduction of a suitable 
structure into the kernel C of /  In the case (2), C is assumed to be a 
two-sided A-module; in the case (3), C is assumed to be a II-module (C 
is then an abelian subgroup of W )\ in the case (4), C is assumed to be a 
g-module (C is then an abelian ideal in 1)). In each of these cases, the set 
of all equivalence classes is in a-1-1-correspondence with a 2-dimensional 
cohomology group with coefficients in C. These are: the Hochschild 
cohomology group H \A ,C )  in the case (2), the group i / 2(II,C) in the 
case (3), and the group i / 2(g,C) in the case (4).

The four problems of extensions listed above are inter-related and some 
of these relations are studied in detail.

1. EXTENSIO NS OF MODULES

Let A and C be (left) A-modules. An extension over A with kernel C 
is an exact sequence

(E) 0 - + C - 1 + X - ^ A — +0
where X  is a A-module and cp and ip are A-homomorphisms. The 
extension (E) is said to be equivalent with an extension 
(.E ') 0 ->  C ->  X '- > A - > 0

289
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if there is a A-homomorphism k: X ->  X '  such that the diagram

X
z  xV / \ .  9>

c \  k 
v#\ .  /  v’

\ y/
X '

is commutative. It is clear that such a A; is an isomorphism. We denote 
by E{A,C) the set of all equivalence classes of extensions of A and C. All 
split exact sequences are in the same class, called the “ split class” of E(A,C).

Following Baer {Math. Zeit. 38 (1934), 375-416) we define a multiplica­
tion in the set E(A,C): given extensions (E) and (£"), we define their 
product as an extension 0 ->  C 4̂ -> 0 as follows. In the direct
sum X  +  X '  consider the submodule B  consisting of pairs (x ,x f) with 
cpx =  <p'x', and the submodule D of pairs of the form (—y)c,y)'c) for c e C. 
Then D C B ; we define Y  =  B/D. The maps Y  and O are defined by

Y c =  class of (ipcfi) =  class of (0,ip'c)9 

O (class of (x ,x ')) =  <px =  (p'x\ 

where by “class” we mean congruence class of B  mod D.

The verification that the sequence 0 — ► C — ► Y  — ► A — ► 0 is exact 
is immediate. It is also clear that this multiplication defines a multiplica­
tion in the set E(A,C).

An extension

(E) 0 —  C X - ^ A - ^ 0

defines a connecting homomorphism 0 # :  Horn (C ,C)-> Ext1 (A,C)
which maps the identity element j  e Horn (C,C) into the “characteristic 
class” of the extension (E) (cf. xi,9). Equivalent extensions have the same 
characteristic class.

T heorem 1.1. Given two A.-modules A and C the mapping (E) -> @Ej  
establishes a l-l-correspondence 0  between E(A,C) and Ext\(A ,C ) .  
Baer multiplication in E(A,C) is carried into the addition in E x t\  (A,C); 
the split class o f  E(A,C) is carried into the zero element o f  E x t\ (A,C).

C orollary 1.2. The set E(A9C) with the Baer multiplication is an 
abelian group with the split class as zero element.

(This assertion could be proved directly although the proof is somewhat 
laborious.)
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P roof o f  1.1. W e ch oose  once and for all an exact sequence

P a
0 — > M — >P— > A — >0

with P  projective. For each extension (E) we can find homomorphisms 
y  and t  such that the diagram

(1)
0  > M  >P > A  >0

is commutative (i denotes the identity map of A ).
Diagram (1) gives rise to a commutative diagram

HomA (C,C)N
(2) Horn (y,C)

HomA (P,C) —  HomA (M,C) E x t\ (A,C) —  0

in which the row is exact and where #  is the connecting homomorphism 
induced by the top row of (1). Since Horn (y,C) maps j  into y , it follows 
that $y  is the characteristic class ®Ej  of the extension (E).

Now consider the direct sum C +  P and define an exact sequence

(3) O ^ M - ^ C  +  P ^ X — 'O

by setting

(4) /um =  (—ym 9pm), tt(c,/7) =  yjc +  rp.

Using the exact sequence (3) to identify X  with Coker p, we obtain

( y)C — class of

 (c,0), rp =  class of (0,/?),

<p (class of (c,p)) =  cup,

where “class” means “congruence class mod the image of //.”
Now assume that a homomorphism y e Horn (M,C) is given. We may 

then define p, by formula (4), take X  =  Coker p, and define rp, r, cp by (5). 
The resulting sequence

(Ev) 0 — *• C - ~ >• X~—̂  A — <• 0

is then exact, and diagram (1) is valid with the prescribed map y. The 
characteristic class of (Ey) is therefore fty. Since HomA (M,C) 
-> E x tA G4,C) is an epimorphism, it follows that the correspondence 
0  maps E(A,C) onto ExtA (A,C).
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In order to prove that the correspondence 0  is 1-1 we must show that 
&yt =  &y2 implies that (En ) and (EyJ  are equivalent. From the exactness 
of the row in (2) it follows that ${y1 — y 2) =  0 is equivalent with 
Vi ~  ?2 — W? f°r some oo e HomA (F,C). Using oo we define an auto­
morphism Q: C +  P ->  C +  F  by setting

Cl(c,p) =  (c +  cop,p).
It follows readily that //2 — thus induces an isomorphism 
Q,': X 1-> X 2 (where X {■ =  Coker p i9 i =  1,2), such that Qt,xp1 = xp2, 
<p2Q.f =  9ov  Therefore (Eyi) and (Ey^  are equivalent.

If the extension (£) splits, then by v,4.5 the connecting homomorphism 
@E is zero, and therefore ®Ej  =  0. An alternative proof is obtained by 
taking y  =  0 in the construction of (Z?y). Then //ra =  (0,/?ra) so that 
Coker // =  C +  4̂.

It remains to be proved that 0  carries the Baer multiplication in 
E(A,C) into the addition in ExtA (v4,C). To this end we consider the 
Baer product (E) of two extensions (£yi) and (Eyz); define y: M ->  C and 
r :  P - > X by

y = 7 i  +  y 2> rP =  class of (Trf'T^p).
Then <pr= a and

xpym =  \pypn -f  ^ y 2ra =  c âss ° f  (Yh>Tw>0) +  class of (0 ^ 27  2m)
— class of {r^p n .T ^^m )  =  T / ? r a .

Thus we have a commutative diagram like (1), which proves that the 
extension (E) is defined by y =  y x +  y 2.

This concludes the proof of theorem 1.1.

R em ark . Instead of using the connecting homomorphism 
0 # :  HomA (C,C) -> ExtA 04, C) we could use the connecting homo­
morphism

© i: HomA (A,A) Ext^ 04,C)

induced by (E). If i e HomA (A,A) denotes the identity element, it can 
be shown (see Exer. 1) that ©Ei +  ©Ej  =  0. There exists a proof of 1.1, 
dual to the one given above, and adjusted to the connecting homo­
morphism &E. We choose once and for all an exact sequence

6 rj
0 — > C — > Q — > N — >0 

with Q injective. Diagram (1) is then replaced by
V> <P

0  >C  ► X  > A  -0

d ') j C
<5

N -
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As before, the map e : A -> N  determines essentially the rest of the 
diagram. Indeed if we define v: A +  Q-+ N  by v(a,q) =  — ea +  rjq 
and identify X  with Ker v, then

tpc =  (0,<5c),

(5') i(M )  =  q,

<p(a,q) =  a.

2. EXTENSIO N S OF ASSOCIATIVE ALGEBRAS  

Let K  be a commutative ring. An epimorphism of K-algebras

/ :  T ->  A,

will be called an extension over A. The extension is called inessential if 
there exists a K-algebra homomorphism u : A -> T with fu  — identity.

The kernel C of /  is a two-sided ideal in T and therefore is also a 
two-sided T-module. In particular, the multiplication in T induces a 
multiplication in C. If this multiplication is zero, i.e. cxc2 =  0 for all 
c1?c2 € C, then the structure of C as a two-sided T-module induces on C 
the structure of a two-sided A-module:

(1) Ac =  yc, cA =  cy c e C,y e T, A =  f y  € A.

Conversely if C carries the structure of a two-sided A-module satisfying
(1) then the multiplication in C induced by that of T is zero.

D e f in it io n . Let A be a K-algebra and C a two-sided A-module.
An extension over A with kernel C is an exact sequence

(F) C - ^ T - L a

where T is a K-algebra,/ is a K-algebra epimorphism, g  is a monomorphism 
of K-modules and

(2) g(Ac) =  y(gc), g(ck) =  (gc)y, c e C,y e T, X =  f y  e A.

These last conditions are simply a translation of (1).
Two extensions (F) and (F ') over A with kernel C are equivalent if

there exists a K-algebra homomorphism k : T T ' such that the diagram

/ \

% :>
is commutative. The map k  is then necessarily an isomorphism.

(3)
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The set of all equivalence classes of extensions over A with kernel C 
will be denoted by F(A,C).

From now on we shall assume that A is A-projective. Under this 
assumption the exact sequence 0 - ^ C - > r ^ A - > 0  regarded as a 
sequence of A-modules, splits. Therefore without loss of generality we 
may assume that T as a A-module coincides with the direct sum

r =  C +  A
and that

gc =  (c,0), f(c,X) =  L  

The multiplication in T has then necessarily the form 

<A,0)(c2,0) =  0 

(ci50)(0,22) — (Ti^2>0)

((UiXcfcO) =  ( V 2,0)

(0,A i ) (0,A2) =  AjAg.) # (2 i,A 2) e C .

The first of these relations expresses the fact that (gc1)(gc2) =  0, the second 
and third conditions are translations of (2), while the last condition 
expresses the fact that /  is multiplicative. The function a is a A-homo- 
morphism a: A 0  A -> C and will be regarded as a 2-cochain in the 
standard complex 5(A) with coefficients in the two-sided A-module C. 
The multiplication table above may be summarized in the single formula

(4) (ciA X ^A g) =  ( c x A 2  +  A x c 2  +  0(A1,A2), A ^ ) .

Conversely, consider an arbitrary 2-cochain a, define a multiplication in 
T =  C +  A by (4) and examine the associativity of this multiplication. 
Upon calculation we obtain

( 5 )  ( c i j A 1 ) ( ( c 2 , A 2 ) ( c 3 , A 3 ) )  ( ( c i ? A 1 ) ( c 2 , A 2 ) ) ( c 3 , A 3 )

— (2^(23,A3) -f- 0(2i , A 2 A 3 )  fl(AiA2,A3) — fl(A1,A2)A3, 0)

—  ( & z ( A i , A 2 , A 3 ) , 0 ) .

This shows that the multiplication (4) is associative if and only if a is a
2-cocycle. If this is the case then

20( 1 , 1) =  0(2 , 1), < i(l,1)2  =  0( 1 ,2)
which implies

( - 0( l , l ) , l ) ( c ,2) =  (c ,2) -  (c ,2) ( - 0( l , l ) , l ) .

It follows that the element (—0(1,1), 1) is the unit element of I \  Then, 
defining g : C ->  T and / :  T  -> C by gc =  (c,0), /(c ,2 ) =  2, it is 
immediately verified that (2) holds.



Summarizing, we find that (4) defines a mapping of the group Z 2̂  A), C) 
onto the set F(A,C). There remains to find when two cocycles a and a ' 
yield equivalent extensions (F) and (F '). The commutativity of the diagram
(3) is equivalent with

k(c,X) =  {c +  b(k),X\ 6(A) e c .
Since

[A:(c1,A1)][A:(c2,A2)] =  (ciA2 ^ic2 +  ^i^(^2) b{X^)X2 +  a'C^Ag), AXA2)

&[(c1,A1)(c2,A2)] =  ( c x A 2  +  A j C 2  +  fl̂ A^Ag) +  6(AjA2 ) ,  AXA2) 

we find that A; is multiplicative if and only if

Ai^(A2) +  ^(A^Ag +  a'(Ai,A2) =  a(A1,A2) +  ^(AiA2)
i.e. if

a — a — 6b.

This condition implies a ( l,l)  — tf'(M ) =  6(1), so that k  maps the unit 
element of T  into that of T'.

Finally let us examine the conditions under which the extension given 
by a cocycle a is inessential. A F-homomorphism u : A ->  T such that 
fu  — identity, must have the form

wA =  (6(A),A) 6(A) e C.
Then

(wAjXwAg) — w ( A x A 2 )  =  ( 6 ( A j ) A 2  +  A^Ag) +  a(Al9A2 — 6(A1A2), AjAg),

so that m is multiplicative if and only if a =  —db. If this is the case then 
a (l,l)  =  —6(1) so that ul =  1.

We thus obtain
Theorem 2.1. The set F(A,C) o f all equivalence classes o f extensions 

over A with kernel C is in a 1-1-correspondence with the group H 2(A,C). 
This correspondence co: H 2(A,C) -> F(A,C) is obtained by assigning to each 
cocycle a e Z 2(S(A),C), the extension given by the multiplication (4). The 
inessential extensions form a single class o f  F(A,C) and correspond to the 
zero element o f HHA,C).

This exposition follows Hochschild {Ann. o f Math. 46 (1945), 58-67).

3. E X TEN SIO N S OF SUPPLEM ENTED ALGEBRAS

Let A be a supplemented F-algebra with e: A  K  as augmentation. 
We shall always assume that A is F-projective. I f / :  T A is an exten­
sion over A, then T may be regarded as a supplemented F-algebra With 
ef: T K  as augmentation.
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Let C be a left A-module; we denote by Ce the two-sided A-module 
obtained from C by defining the right operators by the formula

(1) cX — c(eX) =  (eX)c c e C, X e A .

We may then consider the set F(A,Ce) as defined in § 2. We are thus led 
to consider exact sequences

(F) c - ^ r - ^ > A

where T is a A-algebra,/is a A-algebra epimorphism, g  is a monomorphism 
of A-modules, and

(2) g(te) =  y(gc), (gc)y =  g(c(eX)) c e C ,y  e V ,A = f y  e A.

Such a sequence will be called an extension over A with kernel C. The set 
of all equivalence classes F(A,Ce) of such extensions will be denoted simply 
by F(A,C). The discussion carried out in § 2 now applies without change. 
In particular, the basic formula (4) may be written as

(3) (ci>^i)(c2>̂ 2) =  (^1( ^ 2) +  ^ic2 ^1^2)*
In the calculation (5) of § 2 the term a(Xl9X2)Xs is therefore to be replaced 
by a(Xl9X2)(eX2). It follows that a is to be regarded as a cocycle in the 
complex S(A,e) =  S(A) ®A A.

There is one further improvement that can be introduced. Since as a 
A-module, A is the direct sum A +  1(A), it follows that 1(A) is A-projective.

Q f
Therefore for each extension C — ► T — ► A the A-homomorphism 
u : A -^  T which shows that the sequence 0 - > C - ^ r ^ A - > 0  splits 
(over A) may be chosen so that ul =  1. Thus the identification of T with 
C +  A may be chosen so that the unit element of T corresponds to the 
element (0,1). This implies that the cocycle a satisfies a(X, 1) — 0 — a(\,X). 
We thus find that a is a cocycle in the normalized standard complex 
N( A,c).

We shall now relate the extensions over supplemented algebras with the 
extension theory for A-modules of § 1. Consider an extension

(F) c - ^ r - ^ - > A

over A with kernel C. Let X  denote the set of all x e T with f x  € /(A). 
Then g(C) C X  and there results a commutative diagram

0 -----^ C - 1 — X - ^ — I(A ) ------>0
(4) j  k i

0— - c — >r—-+ a  — -0Q I
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where k  and i are inclusion maps, /  is the identity, and ip and 90 are induced 
by g  and/ .  The top row clearly is exact. Since X  is an ideal in T we may 
regard A" as a left T-module. For each c e C we have

(gc)x =  g (c(fx )) =  g(c(efx)) =  0.

This implies that X  may be regarded as a left A-module, and that ip and 
cp are A-homomorphisms. It follows that the top row of the diagram is 
an extension over /(A) with kernel C. We have thus obtained a mapping

(5) rj: F (A ,C )-> £ ( /(A),C).

T heorem 3.1. I f  A  is a K-projective supplemented K-algebra and C is a 
left A-module, then the following diagram is anticommutative

F( A,C)-
7)

E{I{ A),C)-

H % A ,C )= E x t2A (K,C)

•E xti(/(A ),C )0
where 0  and co are the correspondences o f  1.1 and 2 .1 , and# is the connecting 
homomorphism corresponding to the exact sequence

0 -> /(A )->  A ->  A -^ 0 .

Since & is an isomorphism, and 0  and co are 1-1-correspondences, we 
obtain

Corollary 3.2. The correspondence (5) is a l-l-correspondence. 
Proof of 3.1. To simplify the notation, let N  denote the complex 

N(A,e). The extension (F ) will be assumed given in the form T =  C +  A, 
with the multiplication described by a cocycle a e HomA (A2,C). Then X  
consists of all elements (c,2 — eX). Let M  denote the image of d2: N 2->NV 
The maps d2\ N 2 -> N 1 and d±\ N 1 —> N0 =  A  then admit factorizations

n 2— >m — > n 19

Consider the commutative diagram

N ± —  1(A) —> A.

0

(6)

with

M - N ,  ” /(A) •

1(A)-

v[k] =  (0,A -  e X)

0 ► c > x

0

►0
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and with w defined by v. The lower row is the exact sequence (E) =  rj(F). 
The element 0(E ) e ExtA (7(A),C) defined in §1, is the image of the 
identity element j  e HomA (C,C) under the connecting homomorphism 
corresponding to the lower row of (6). It then follows from the com­
mutativity in (6) that 0(E ) is the image of w e HorirA (M,C) under the 
connecting homomorphism corresponding to the upper row of (6). It 
follows that the composition # 0 (E ) is the image of w under the iterated 
connecting homomorphism

d : HomA (Af,C) -> Ext^ (.K,C)

corresponding to the exact sequence

0 -> M ->  N ± -> A -> 0.

We are now in the situation described in v,7.1. The element dw — &®(E) 
is thus the negative of the cohomology class given by the 2-cocycle

d2 w

n 2- ^ m — c .

To complete the proof it suffices to show that wd2 =  a. Since y) is a 
monomorphism it suffices to show that ywd2 =  yja. Since \pwd2 =  vi2d'2
=  vd, it suffices to show that vd — \pa. We have

vd{XL,A2} =  v[X fX ^  — {^1^2} 4~ {^1) ^ 2]

— — ^ 2) — — eXxeX )̂ +  (0,^1 — eXj)(0,eX^)

— (^(21,A2),2122 X-̂ eX̂ ) (0,A1A2 — eX-̂ eX^
+  (0 ,X1eX2 — eX1eX2)

=  (a(Xv X2),0) =  yja(Xv X2).

This concludes the proof.
Proposition 3.3. The composite map

E(I(A),C) Exti(/(A ),C ) Exti(A,C) =  H  \A ,C )  

may be described as follows. For each extension 

(E) 0 ->  C ->  X  -> 1(A) -> 0

the element #0(E ) is the characteristic element dsj  (see xi,9) o f the exact 
sequence
(S) 0 - * C - >  X ->  A ->  K->  0

ob tained by joining (E) with the exact sequence

(L) 0-> 1(A) K ^ O .
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P roof. We recall that j  e HomA (C,C) is the identity map C —> C and 
that ds  is the iterated connecting homomorphism. Thus

<W =  =  W E )  =  m (E ) ,

by the definition of the map 0  (§ 1).

4. EXTENSIO N S OF GROUPS

Consider two groups W  and II (not necessarily commutative, and 
written multiplicatively). An epimorphism

/ :  n

will be called an extension over II. The extension is called inessential if 
there exists a group homomorphism u : II -> W  with fu  — identity.

The kernel of f  (i.e. the set of all w e W  with fw  =  1) is an invariant 
subgroup C of W. The mapping (w,c) -> wcw~1 of W  X C into C defines 
operators of W  on C. If C is abelian, then C (written additively) is a left 
JT-module, and since the elements of C C W  operate trivially, we find that 
C is a left II-module satisfying

(1) xc — \vcw~1 c € C, w e W, x  =  fw  e II.

Conversely, if II operates on C so that (1) holds, C is necessarily abelian.
D efinition . Let II be a (multiplicative) group and C a left II- 

module. An extension over II with kernel C is a sequence

(S) c - ^ w - ^ u

where W  is a (multiplicative) group, /  is a group epimorphism, g is a 
monomorphism of the additive structure of C into the multiplicative 
structure of W, the image of g is the kernel of f  and

(2) g(xc) — w(gc)w~1 c € C, w € W, x  =  fw  € II.

Two extensions (2) and (S ') over II with kernel C are equivalent if 
there exists a group homomorphism k \ W -> W ' such that the diagram

w

1’/

c  k . n

W '

is commutative; k  is then necessarily an isomorphism.
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The set of all equivalence classes of extensions over II with kernel C will 
be denoted by 2(11,C).

With the group II and the left II-module C given, consider the 
supplemented algebra Z(II) (with the unit augmentation). We shall 
consider the set F(Z(U),C) of equivalence classes of extensions over Z(II) 
with kernel C. Such an extension is an exact sequence

(F) c - ^ r - ^ z ( i i )

where T is a Z-algebra, f  is an epimorphism of algebras, g is a mono­
morphism of abelian groups, and

(3) y(g  C) =  g(Ac), (g c )y =  g(c(sA)), c e C ,y  e T, I  = j y  e Z(II).

P roposition 4.1. Let (F) be an extension as above. The set W  o f  
elements w e V with f w  e l l  is a group under the multiplication defined 
by that o f the ring T. I f  f  denotes the map W - ^ U  induced by f  and 
g : C-> W  is given by g c =  g c  +  1, then the sequence

(2) c-^w-^  n

is an extension over II with kernel C.
Proof. Clearly W  is closed under multiplication, is associative and 

has a unit element, namely the element 1 e T. To show that w e W  has 
an inverse, choose v e W  such that f(w )f(v )  — 1 — f{v)f{w ). Since the 
elements 1 — wv and 1 — vw yield zero in Z(II), there exist elements 
ci, c2 e C with gC i=  1 — wv, g c 2 =  1 — vw. The second of the rela­
tions (3) then yields (1 — wv)w =  1 — wv, (1 — vw)w =  1 — vw. This
implies

w(l — v(w — 1)) =  (1 — wv)w -|- wv — 1 — wv +  wv — 1

(1 — v(w — 1 ))w =  (1 — vw)w +  vw =  1 — vw +  vw =  1

which shows that w has an inverse. Thus IP is a group.
It is clear that f :  W -> II is a group epimorphism whose kernel is the 

image of g. Since

(gCi)(gc2) =  ( g Cl+  1 )(g c2 +  1) =  g +  g c 2 +  1

= g(C 1 + C2) + 1 = s(ci + C2)
it follows that g  is a homomorphism o f the additive structure of C into 
the multiplicative structure of W. Finally for c e C, w e W, x  =  fw  we 
have, using (3)

w(gc)w~1 =  w(gc)w~1 +  1 =  g ixc lw -1 +  1 =  g(xc) +  1 =  g(xc). 

This proves (2) and concludes the proof.
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Proposition 4.1 assigns to each extension (F ) an extension (2). Clearly 
if (F ) and (F ' ) are equivalent, then so are the corresponding extensions (2) 
and (S')* There results a mapping

r. F ( z (n ) ,c ) - > s ( n ,c ) .

T heorem 4.2. FAe mapping qp establishes a \-\-correspondence between 
the set F(Z(II),C) and the set 2(11,C). The inessential extensions (2) 

form  one equivalence class, corresponding to the inessential class in 
F(Z(U)9C).

P roof. We first show that if two extensions (F) and (F ') yield two 
equivalent extensions qo(F) and qp(F'), then (F) and (F ') are equivalent. To 
do this, we shall give a complete description (up to an equivalence) of any 
extension (F) using the extension (2) =  qp(F).

We have the commutative diagram

with jw  =  w — 1, in x  =  x  — 1. The map j  may be factored as follows

w - ^ z ( w ) - ^ r

where iw (w) =  w — 1 and k  is a homomorphism of Z-algebras defined by 
k{w) =  w. We obtain a commutative diagram

1W9

W n

f*
n

C - ^ Z ( W ) ----- ► Z(I1)
k

1 —  z(  ri)

Let C =  V gC  and let C .Z (W )  (resp. C . I(W )) denote the set of all 
linear combinations of elements cw (resp. c(w — 1)) for c e C, w e W. 
Then q  . Z(W ) is precisely the kernel o f /* ,  while C . I(W ) is, by virtue of 
the second relation (3), in the kernel of k . There results a commutative 
diagram

0 ------   c Z(W )IC  . I{W ) Z(IT) ► 0

(4)
■Z(U)

g f
c —  pf—  n

.  .  'n
’̂ r 9 -Ti S ry/Jrx
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We can now show that I is additive. Indeed we have

iwg(c 1 +  C2> =  (gCl)(gC2> — 1 =  (gCl — 1) +  (gc2 — 1) +  (gCl — 1 )(gc2 — 1)

=  hvgci +  'wgc2 +  (iwgci)(gc2 -  !)•

Since the last term is in C . I(W ), we obtain that /(c1+ c 2)= /c 1+ /c 2. The 
kernel of / '  is C . Z (W )/C  . I{W ) and this is precisely the image of /. 
Finally / is a monomorphism since g =  k 'l  is one. Thus the top row is an 
exact sequence of Z-modules. Since the lower row is exact by hypothesis, 
k ' is an isomorphism.

This shows that C . I(W ) is the kernel of k  which was a homomorphism 
of Z-algebras. Thus C . I{W ) is a two-sided ideal of Z (W ) (this could be 
seen directly). Consequently k ' is an isomorphism of Z-algebras.

We now see that the top row of (4) is an extension (F0) described 
entirely in terms of the extension (2) and equivalent with (F). This 
proves our assertion.

We now show that (F) is inessential if and only if (2) =  (p(F) is 
inessential. Suppose (F) is inessential and let u : Z(H) -> T  be a homo­
morphism of Z-algebras such that f u  — identity. The induced group 
homomorphism u : II -> W  then satisfies fu  =  identity. Conversely 
given a group homomorphism u : II W  with fu  =  identity, the 
homomorphism ku* : Z(II) T shows that {F) is inessential.

There remains the proof that cp maps F(Z(II),C) onto 2(11,C). 
Given an extension (2) over II with kernel C, choose a function u : U -+W  
such that fu  =  identity and «(1) =  1. Then each element of W  may be 
written uniquely as a product (gc)(ux) with c e C, x  e I I ; we shall denote 
this element by (c,x). Then the unit element of W  is (0,1) and

g c = (c ,  1), f ( c , x ) = x .

Let us find the product of two elements (cuXi) and (c2,x2). Using (2) 
we have

(C1.XiXC2.X2) =  <'gc1Xwx1Xgc2)(wx2)

=  (gc-diuxJigc^iux^-Hux^iuXz)

=  igc-dg{xxC^{ux^{ux^.

To calculate (ux1)(ux2) we observe that this element has the same image in 
II as u(x1x 2). Thus there is a unique element a(xv x 2) e C such that

(wXiXwXg) =  g a ix ^ x ^ u fa x ^ .

Since g  maps the additive structure of C into the multiplicative structure of 
W, we have the final result

(5) (c1,x1)(c2,x2) =  (cx +  x xc2 +  a(xl9x 2), x ±x 2)
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Because of the choice w( 1) =  1, we have a(xv l) =  0 =  a (l,x2). We 
shall treat a as a 2-cochain on the normalized complex N(II) with 
coefficients in C.

Let us express the fact that the multiplication given by formula (5) is 
associative. We have

(ciXi)((c2,x2)(c3,X3)) =  (cv f  x xc2 +  x ^ c ^  +  x xa{x2,x ^  +  a(xl9x 2x^)9 x ^ x ^ )  

( ( C i , x J ( c 29x J i ) ( C z 9x J  =  (C l +  * 1 ^ 2  +  * 1 * 2 C3 +  +  a ( X  l x 2>x s)> * 1* 2* 3)-

In order that the two results coincide it is necessary and sufficient that 

x xa(x2,x ^  — a ix ^ X z )  +  a(xl9x 2xs) — a(xv x 2) =  0

i.e. that da(xl9x 2,x3) =  0. We thus find that a is a 2-cocycle of the 
complex iV(II) =  N(Z(U),e).

We now use this cocycle a to construct an extension

with T = C  +  Z(II), g c = ( c ,0), f(c,X) =  A, and with multiplication 
given by formula (3) of § 3 as

(ci >A1)(c2,2.2) =  (c1( ^ 2) H“ ^ ic 2 +  a(A i^2)’ ^1^2)*

It is clear that if we apply cp to this extension (F) we find exactly the 
extension (2) with which we started, with multiplication given by (5). 
This concludes the proof of 4.2.

R em ark . Our results so far may be summarized in the following

in which all the maps are 1-1 correspondences and the square is commuta­
tive (in the sense that the composition of any four consecutive maps is the 
identity). The preceding proof shows that the map cpco: H \U , C )^ 2 ( I I , C) 
is obtained by assigning to each cocycle a e Z \N (U ),C )  the extension (£) 
given by formula (5). This is the familiar method of describing group 
extensions by means of “factor sets.” The composition # 0  was described 
in 3.3. For a discussion of the composition

(F) c  r  — >■ z(U )

diagram

2(11,C) F ( Z ( I I ) ,C ) ^  '^ > E x tZ(1n)(/(n),C)

see Exer. 3.
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Let t) and g be Lie algebras over a commutative ring K. An epi­
morphism of Lie algebras

/ : ! ) - >  9

will be called an extension over g. The extension is called inessential if 
there exists a Lie algebra homomorphism u : g -> 1) with fu  =  identity.

The kernel C of /  is an ideal in I). The mapping y  (g) c -> [y,c] of 
I) ® C into C defines C as a left l)-module, because of Jacobi’s identity

[ j u b v ] ]  — [y2,[yi,c]] =  [[ji,M c].

If the Lie algebra C is abelian, then the structure of C as a left I)-module 
induces on C the structure of a left g-module:

(1) x c = [y ,c ] , c e C ,y  € ^ , x = f y  eg.

Conversely, if C carries the structure of a left g-module satisfying (1), then 
C is an abelian Lie algebra.

D e fin itio n : Let g be a K-Lie algebra and C a left g-module. An 
extension over g with kernel C is an exact sequence

(2)
where 1) is a K-Lie algebra, /  is a Lie algebra epimorphism, g  is a mono­
morphism of ^-modules, and

(2) g(xc) =  [y,gc] for c e C, y  e I), x =  f y  e g.

Two extensions (2), (2)') over g with kernel C are equivalent if there 
exists a j^-Lie algebra homomorphism k\ f) -> 1)' such that the diagram

5. EX TENSIO N S OF LIE ALGEBRAS

f)

y  X /

\  ^ > 9

V
is commutative; k  is then necessarily an isomorphism.

The set of all equivalence classes of extensions over g with kernel C will 
be denoted by 2(g,C).

We shall always suppose that the Lie algebra g is K-free. As we have 
seen in xiii,3.3 this permits us to identify g with a ^-submodule of the 
enveloping algebra ge. With ge and a left ge-module C given, consider the 
set F(ge,C) of equivalence classes of extensions over ge with kernel C.
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Such an extension is an exact sequence

(F) C 9 n  '  e- ^ r — >ge
where T is a F-algebra, f  is an epimorphism of F-algebras, g  is a mono­
morphism of F-modules, and

(3) y(gc) =  g(Xc), (gc)y  =  g(c(eX)) c e C, y e I \  X = / y e Qe.

Proposition 5.1. Let (F) be an extension as above. The set \) o f  
elements y  e T with f y  e g is a Lie algebra over K  with the bracket operation 
[ j i ^ ]  =  7 i72 — y^yi- V f  denotes the map f : f) -> g induced by J , and 
g: C —> f) is defined by g , then the sequence

is an extension over g with kernel C.
Proof. If f y x =  x l9 f y 2 =  x 2 for x v x 2 e g, then f ( y 1y 2 — y 2y i) 

=  x xx 2 — x 2x x; this last term is equal to [xl 5x2] because of the relations 
in the enveloping algebra ge. Thus y 1y 2 — y 2y x e 1), so that 1) is closed 
under the bracket operation. Thus {) is a F-Lie algebra. Since f g  =  0, 
it follows that g maps C into 1) and its image is the kernel of/ .  Relations
(3) with y =  y, A =  x  give y(gc)  — g(xc) and (gc)y  =  0, which implies 
[/>££] =  T (^ c) ~~ (<?£)/ =  <?(xc)* This proves (2) and concludes the 
proof.

Proposition 5.1 assigns to each extension (F) an extension (2). Clearly 
if (F) and (F ') are equivalent, then so are the corresponding extensions
(2) and (2/). There results a mapping

defined whenever g is F-free.
Theorem 5.2. The mapping cp establishes a 1 - \~correspondence 

between the set F(ge,C) and the set 2(g,C). The inessential extensions (2) 
form one equivalence class, corresponding to the inessential class in F(ge,C).

Proof. We first show that if two extensions (F) and (F ') yield two 
equivalent extensions cp(F) and <p{F'), then (F) and (F ') are equivalent. To 
do this, we shall give a complete description (up to an equivalence) of any 
extension (F) using the extension (2) — 9o{F).

We have the commutative diagram

(2)
9 f

r . F(a,e,C) 2(g,C)

_  Q t  f
C  - I) ----- ► g

_  j  -  ‘8 

C — r  — ge
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where j  is given by inclusion and /g is the natural injection of g into ge. The 
map j  may be factored as follows

a b
$ — Tift) —  r

where a is the natural injection of I) into its tensor algebra and b is a 
^-algebra homomorphism. Since b is zero on all elements of the form 
J i  ® J 2 — J 2 ® y i  ~ ' [T i^ L  we fin<̂  a factorization

*f) k „i) —> i)e —> r

of]\ where ^  is the natural injection and k  is a ^-algebra homomorphism. 
There results a commutative diagram

f

Let C =  i^gC. The kernel of f e is then, by xm,1.3, the ideal C . f)e. 
We shall also consider the JV-module C . /(I)) where 1(f)) is the augmentation 
ideal of f)e. In virtue of the second relation (3), C . /(I)) is in the kernel of 
k. There results a commutative diagram

0- -vtc .m r
-or ■0

(4)
0 -

k'

L * L fr

The kernel of / ' i s  C . 1)7 C . 1(f)) which is precisely the image of /. 
Finally / is a monomorphism since g =  k ' I is one. Thus the top row is an 
exact sequence of X-modults. Since the lower row also is exact, this 
implies that k ' is an isomorphism.

This shows that C . /(I)) is the kernel of k  which was a homomorphism 
of J£-algebras. Thus C . /(I)) is a two-sided ideal of f f  (this could be seen 
directly). Consequently k f is an isomorphism of X-algebras.

We now see that the top row of (4) is an extension (F0) described 
entirely in terms of the extension (S) and equivalent with (F). This 
proves our assertion.

We now show that (F) is inessential if and only if (2) =  (p(F) is inessen­
tial. Suppose (F) is inessential and let u : g6 T  be a homomorphism of

- o

c — - D — >b

l ug I f e

C  ----- >g«

k

c —  r —  #



K-algebras such that f u  =  identity. The induced Lie algebra homo­
morphism u: g ->  t) then satisfies fu  =  identity. Conversely given a Lie 
algebra homomorphism u : g -> b with fu  =  identity, the K-algebra 
homomorphism kue: ge -> T shows that (F ) is inessential.

There remains the proof that (p maps F(ge,C) onto 2(g,C). Consider 
an extension (2) over g with kernel C. Since g is .K-free we may assume 
that, as a K-module, 1) is the direct sum C +  g with

gc =  (c, 0), f(c ,x )  =  x .

The bracket in I) then necessarily has the form

[(c1}0),(c2,0)] =  0

[(c^O),(0,*a)] — (—x 2c190)

[(0,x1),(c2,0)] =  0 ^2 ,0 )

[(O^M O,^)] =  (a(xv x 2),[xv x 2]), a(xv x 2) e C.

The first relation expresses the fact that C is an abelian Lie algebra, the 
second and the third conditions follow from (2), while the last one 
expresses the fact that /  is a Lie algebra homomorphism. Combining 
these relations we obtain

(5) [(Ci,X1),(c2,X2)] =  (—X2CX +  XiC2 +  0(*i,*2),[Xi,X2]).

Let us now express the conditions that the bracket operation in C +  g 
given by (5) satisfies the axioms of a Lie algebra. The K-bilinearity of the 
bracket implies the K-bilinearity of a(xl9x^). The condition [(c,x),(c,x)] =  0 
is equivalent with a(x,x) =  0. Thus a(xl9x 2) is an alternating bilinear 
function, and we may regard a(xl9x 2) as a 2-cochain of the complex 
F(g) of xiii,7. Let us now express the Jacobi identity. We have

[(Ci ,Xi),[(c2X2),(C3,X3)]]

= ( —[x2>*s]ci — x 1x3c2 +  Xxx 2c3 +  x 1a(x2,x3) +  a(xlt [x2x3]), [x1? [x2,*3]]).

Permuting cyclically and adding we find that the sum is zero if and only if

x ^ x ^ x g )  +  x ^ i x ^ )  +  x3a(x1,x2) +  a(x1,[x2,x3])

+  a(*2,[*3>*i]) +  a(x3,[*i,x2]) =  0.

Since a is alternating, this is equivalent with da(x1,x2,x3) =  0. Thus a is 
a 2-cocycle.
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By xiii,8.1, there exists a cocycle a of the normalized standard complex 
N(cf,e)  which induces a on the subcomplex F(g). With this cocycle a let 
us construct the extension

(F) C ^ Y - ^ c ?

with T =  C +  Qe, g c  =  (c,0), f  (c,x) =  x, and with multiplication given 
by the formula (3) of § 3 as

( c i ^ i ) ( c 2 , A 2 )  =  (c^ekz)  +  X±c2 +  a(XVX2\  X±X2).

In particular, for x 1?x 2 eg  we obtain

(c1,x1)(c2,x2) =  (xxc2 +  a(xl9x j ,  x ±x 2).

If we compute the bracket of (c^x^ and (c2,x2) and recall that a(xx,x2) =  
d(xv x 2) — ^(x^x-l), we find precisely formula (5). This shows that if we 
apply (p to the extension (F) we find exactly the extension (2) with which 
we started. This concludes the proof of 5.2.

R em ark . The remark at the end of § 4 may be repeated here with II 
and A(II) replaced by g and K(g).

EXERCISES

1. Consider an extension of A-modules 

(E) 0 ^ C ^ X - > A - > 0  

and the connecting homomorphisms

Qe  : Horn (C ,C)-> Ext1 (A,C)

G'e : Horn (A,A) — Ext1 (A,C)

Show that 0^./ +  @Ej  =  0 where i e Horn (A,A) and j  e Horn (C,C) are 
identity maps. [Hint: use Exer. vi,18.]

2. Given a A-algebra A and a two-sided A-module C, introduce a 
Baer multiplication in the set F( A,C) of § 2. Show that the correspondence 
established in 2.1 carries the Baer multiplication in F(A,C) into the addition 
in / / 2(A,C). Carry a similar discussion for the sets 2(11,C) and 2(g,C) of 
§§4 and 5.

3. Let II be a group and C a left II-module. Consider a group 
extension

(S) c - ^ w - ^  n
and an extension of left Z(II)-modules

(E) 0 — *• C -I-+ X  —* /(II) — ► 0.
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We shall say that (2) and (E) are related if there is a map k : W -> X  
satisfying

k(w±w2) =  kw j +  ( fw j ( k w j  

and such that the following diagram is commutative
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g f
c —  i f —  n

k i
' ' / S ' -  a
c — - x — >/(ll)

where /n (x) =  x — 1 (x e II). Show that (2) and (E) are related if and 
only if (2) and (E) correspond to the same class of F(Z(II),C) under the 
correspondences

V- F(Z(Xl),C) -> E(I(YV),C)

<p: F{Z(Jl),C) -> 2(11,C)

established in §§ 3 and 4, i.e. if and only if (2) =  cpYi~\E).
4. Let g be a K-Iaq algebra which is K-free, and C a left g-module. 

Consider a Lie algebra extension

(2) C ^ D - ^ g

and an extension of left ge-modules

(£) 0 ► C -E- X  — 7(g) ► 0.

We shall say that (2) and (.E) are related if there is a map k : !)->■ X 
satisfying

^ ( [ ji» j2]) =  (fydiky*) — (fy2)(kyi)
and such that the following diagram is commutative:

_  V T /
C  >■ I) ----- >■ g

k iQ
P * a

C  > X  * /(g)

where iQ denotes the natural map. Show that (2) and (E) are related if 
and only if (2) and (E) correspond to the same class of F(cf,C) under the 
correspondences

r . f (q\ c ) ^ e (i (q),c )

r . F(g‘,C )-> 2 (g ,C )

established in §§ 3 and 5, i.e. if and only if (2) =  <prf~\E).
5. Let

(£) 0 — *• C — >• X — >• A — *• 0
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be an exact sequence of (left) A-modules, where A is a A-algebra. Assume 
that A is A-projective. Then A ® K A is a projective A-module; let N  
be the kernel of p: A ® A ^  A defined by setting

p(X 0 a) =  Xa.

Choose a A-homomorphism u : ^  
consider the commutative diagram

X  such that qou =  identity, and

0 ■ N - ■ A

■A >00 — ► c — ► 2

with exact row s,/being  defined by setting

/(2  0  a) =  X(ua);

v is induced by/ ,  and i denotes the identity map of A.
Show that the image of v e HomA (N,C) under the connecting homo­

morphism HomA (A ,C)-> ExtA(T,C) is the characteristic class of the 
extension (E).

[Hint: identify X  with A -j- C by using the map

x -> (qox, y r ^ x  — uqpx)).]

6. Consider an extension over A with kernel C :
„  g ^  f

(F) ■A

in the sense of § 2. Let zr  and iA be the maps

defined by ir (y) — y 0  1 — 1 0  y*, iA(X) = 2 0 1  — 1 0 2 * .  Let I  be 
the sub-A-module of J(T) generated by the elements (gc)u and u(gc) 
(c e C, u e / ( r ) ) ;  show that /  is a two-sided T-module, using (2) of § 2. 
Let X  =  J(Y)/I be the quotient which is now a two-sided A-module; and 
let k  be the natural epimorphism /(T ) -> X. Then the map f : /(T ) 
^ J r(A) induces a: X ^ J ( A ) .  Define j  =  k ir : Y - ^ X  and/? =  j g : C ^ X .  
Show that a and ft are homomorphisms of two-sided A-modules, and that 
the bottom row of the commutative diagram

a f(F) c — r  —

(E)

- A 

>'a

•AA)-



is exact. Thus we obtain a mapping

rj: F (A ,C )-> F (/(A ),C )

which to each extension (F) over A with kernel C associates an extension
(E) of Ae-modules.

Assume now that A is F-projective, and prove that the following 
diagram is anticommutative

F(A,C) -1 ^ H 2(A ,C )= E x t2Ae(A,C) 

rj &

E(J(A),C) —  E x t\e(/(A),C),

where © and co are the correspondences of 1.1 and 2.1, and #  is the 
connecting homomorphism corresponding to the exact sequence

0 — *J(A) — *■ A e A — <■ 0.

[Hint: use the standard complex and proceed as in the proof of 3.1.]
7. Let A be a F-projective F-algebra, and let C be a two-sided 

A-module. Consider an extension over A with kernel C

(F) c - ^ r ^ - A  

and an extension of two-sided A-modules

(£) 0 —  C - ^  X - ^ J ( A ) - ^ 0 .

We shall say that (F) and (E) are related if there is a map k : T ->  X  
satisfying

Hyi?*) =  (fYi\kYi) + (kydifyz) 
and such that the following diagram is commutative:

c - ^ r - r—  a
k iA

C — X  ——* /(A )

where iA(X) =  A ® 1 — 1 ® 2 * .  Show that (F) and (F) are related if 
and only if their classes in F(A,C) and F(7(A),C) correspond to each other 
under the correspondence rj of Exer. 6.

8. Let g be a Lie F-algebra and C a (left) g-module. In the direct sum 
C +  g we introduce a Lie algebra structure by setting

[(ci>*i)>(c2>*2)] =  (x ic2 — X2CV lXVX2!)•
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There results an extension

(2) c —> c + g 9
with the maps g  and h defined in the obvious way. Show that this exten­
sion is the inessential extension in 2(g,C). Show that each Lie algebra 
homomorphism u: g ->  C +  g satisfying h u =  identity, is of the form 
ux =  (<px9x ) where (p: g -> C is a crossed homomorphism. Note that the 
above is valid without the assumption that g is K-free.

9. Apply the above exercise to the case when g — L(M ) is the free Lie 
algebra of a .K-module M  (xm, Exer. 5). Show that for any (left) L(M)- 
module C, every K-homomorphism M ->  C admits a unique factorization

j  <p
M — ► L(M ) — ► C, where (p is a crossed homomorphism. [Hint: Consider 
the Lie algebra homomorphism L ->  C +  L(M ) which when composed 
with C +  L(M ) -> L(M ) gives the identity.]

10. Formulate exercises analogous to Exer. 8 and 9 for groups. Here 
M  will be an arbitrary set, and L(M ) will be replaced by the free group 
generated by the elements of M.

11. Let / :  A b e  an epimorphism of K-algebras, A being a supple­
mented algebra with e : A -> K. For a left A-module A, we shall say that 
a K-homomorphism

a: Y ^ A

is a crossed homomorphism with respect to /  (or simply an /-crossed homo­
morphism) if

aOi72> =  (a7i)(£/ 7 2) +  (/7 i)(a72)- 
We shall say that Y  is projective with respect to f  if, for any epimorphism of 
left A-modules

g: A -+ A ",

any / - crossed homomorphism a" : Y -> A " may be factored a" — gcc, 
where a : Y -> A is an / - crossed homomorphism.

Let now C be a left A-module. Assuming that an extension of algebras

(F) C ^ T - > A

corresponds to an extension of left A-modules

(E) C ->  X  1(A) —> 0

under the correspondence rj of 3.1, show that Y is projective with respect 
to / ,  if and only if A is a projective A-module.

12. Let/ :  W -> II be a homomorphism of groups. We shall say that 
W  is f-projective if, given any FLepimorphism g: A->A"  of left ri- 
modules, and any crossed homomorphism (rel. to / )  a": W -> A \  there 
exists a crossed homomorphism (rel. t o / )  a: W -> A with got =  a".



Let now C be a left II-module. Assuming that a group extension

(2) c - ^ w - ^ + n

and an extension of left Il-modules

(£) o - > c - > r - + i ( n ) - > o

are “related” (cf. Exer. 3), show that W  is /-projective if and only if X  is a 
projective Z(II)-module.

13. Let / :  F->  II be an epimorphism of groups, F  being a free 
group, and R — Ker/ .  Let [R,R] denote the commutator subgroup of R  ; 
then [R,R] is an invariant subgroup of F. Show that, in the induced exact 
sequence

R /[ R ,R ] -^  F / [ R ,R ] ^ U ,

the group F/[R,R] is /'-projective (in the sense of Exer. 12).
14. Formulate the analogue of Exer. 12 for Lie algebras. Consider 

a Lie algebra epimorphism / :  L(M ) -> q with kernel I). Show that [{),!)] 
is an ideal in I) and in L(M ), and that in the extension

(£)

with / '  induced by / ,  the Lie algebra L(M)/[I),f)] is /'-projective. 
[Hint: use Exer. 9.]

15. Consider a group extension

(2) c — w - ^ n

and let / =  o r 1qr1(L) € H 2(U.,C) be the cohomology class determined by 
(E). Consider the homomorphisms

(1) H%Il, H o m (C ,D )) -> ^ + 2(n,D ), UD

(1 a) H v+2(U,Df) -> H v{Yl,D' ® D), Dn

given by the products h-> h U  I and h' -> h' D /. The II-operators on 
Horn (C,D) and D' (g) C are given by

(x f)c  =  x f  (x_1c), / €  Horn (C,D),

x(d' ® c) =  ® xc.

The cup- and cap-products are those of xi,8, (8) and (80).
Prove that if W  is /-projective, then (1) and (la) are isomorphisms for 

p  >  0, while for p  =  0 we have exact sequences

Homn (IV,D) -> Homn (C,D) -> H \Y l,D )  -> 0

0 -> H 2(U,D') -> D' ® n C-> D'
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where Homn (W,D) denotes the module of crossed homomorphisms 
W -> D with respect to / ,  and D' 0 n W  is the group generated by pairs 
d' 0  co with relations {d{ +  d%) 0  co =  d[ 0  co - f  d'2 0  co. [Hint: pass to 
the sequence (E): 0 A -^ /(T I)-> 0  related to (2), consider the
sequence 0 -> C ->  A ->  Z(II) -> Z - ^  0 in which X  is IT-projective, and 
apply xi,9.5.]

Apply the above result to the sequences given in Exer. 13.
16. Formulate exercises analogous to Exer. 13 and 15 for Lie algebras.

17. Let (2): C — ► W — *11 be a group extension with W  being / -  
projective and with II finite of order r. Let / € H 2(U,C) be the correspond­
ing cohomology class. Using Exer. 15 and xn, Exer. 14, prove that / has 
order r.

18. Consider a diagram of A-modules and A-homomorphisms

0 ----   A ' ------ - A ----- ► A" — -  0

0  > C  >C  >C”----- -0

with exact rows. It is asked whether a homomorphism / :  A —>C  can be 
found so as to give commutativity in this diagram. A necessary condition 
is the commutativity of

Extn(C ',D y    Extn+1(C",D)

cp*
9 &A

xp*

Ext n{A’,D )------> Extn+1(yl",-D)

for any A-module D and any integer n. In particular, taking D — C', 
n =  0, we have a necessary condition

dAcp*j= rp*dc j,

with j  e Horn (C ',C ') denoting the identity map.
Is this last condition sufficient?
Give the dual procedure.
19. Let A be an abelian group with a finite torsion group tA. Show 

that tA is a direct summand of A. [Hint: use vn, 6.2.]
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Spectral Sequences

In troduction . This chapter is devoted to a purely algebraical study of 
spectral sequences, which arise whenever a complex is given with a filtration 
(i.e. a sequence of subcomplexes ordered by inclusion). In particular, 
every double complex gives rise to two spectral sequences (§ 6). The 
applications will be presented in Chapters xvi and xvn. In all these 
considerations the multiplicative structure is left aside (see exercises).

Spectral sequences arose in connection with topological investigations 
concerned with fiber bundles (Leray, C.R. Acad. Sci. Paris, 222 (1945), 
1419-1422). The main applications are still in the domain of algebraic 
topology.

The notion of a spectral sequence was first algebraicized by Koszul 
(C.R. Acad. Sci. Paris, 225 (1947), 217-219); our exposition involves some 
modifications. The theory could equally well be presented using the 
“exact couples” of Massey (Ann. o f Math. 56 (1952), 363-396).

1. FILTRATIONS AND SPECTRAL SEQUENCES

A filtration F  o f a module A is a family of submodules {FpA },p  running 
through all integers, subject to the conditions

(1) • • O  F*A D FP+XA D • • •

(2) U F*A =  A.

It is convenient to set F™A =  0 and F ~coA  =  A. We also sometimes 
lower the index by setting FVA =  F~PA.

With each module A with a filtration F  we associate a graded module 
E0(A) defined by

Eg(A) =  FpA\FpJrlA.

Suppose that A is a module with differentiation d  and a filtration F  
compatible with d, i.e. such that

d(FpA) C FVA.

The inclusion FPA  C A induces a homomorphism

H(FPA) -> H(A)
315



whose image we denote by FPH(A). In this way we obtain a filtration, also 
denoted by F, of H(A).

We are particularly interested in the associated graded module 
E0(H(A)). It is the direct sum of the modules

Eg(H(A)) =  FPH(A)/FP+1H(A).

In what follows, we shall frequently encounter commutative diagrams

,C

9

A ' — r > A  >A”
9 V

in which the row is exact.
L emma 1.1. The map r\ defines an isomorphism

Im (pi Im <p' ^  Im \p.

Indeed we have Im (p\ Im q/  — Im cp\ Ker rj which is mapped by rj 
isomorphically onto Im (rjcp) =  Im y).

If we apply this lemma to the diagram

H(FpA)
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H(Fp+1A )  > H (A )  > H(A/FP+1A)

we obtain an isomorphism

(3) E§(H(A)) ™ Im (H(FPA) -> H(A/FP+1A )).
We define

Z K A )  =  Im (H(FPA) -> H{FPA!FP+1A )\  

B^{A) =  Im (.H(A/FPA ) -> H(FPA/FP+1A )), 

EP(A) =  Z*0(A)/BP0(A).

Applying 1.1 to the diagram
H(FpA)

H{AjFpA )  ► H(FPA/FP+1A )  ► H(A/FP+1A)

we obtain an isomorphism

(4) EISA) ™ Im (H(FPA) -> H(A/FP+1A))



Combining this with the isomorphism (3) we obtain

(5) m H (A ) )  to* E*(A).

We denote by E^{A) the graded module ^ pE^{A)\ it is isomorphic with 
the graded module EQ(H(A)) associated with H(A).

We shall now introduce modules Z f  (A), Bf(A) and E P(A) which, in a 
sense that will be specified later, approximate the modules Z ^(A ), B%{A) 
and EV̂{A). We define for each r^> 1

Z P(A) =  Im (H(FpA/Fp+rA) -> H(FPA/FP+1A))

Bp(A) =  Im (H(Fp- r+1A/FpA) -»  H(FPA/FP+1A))

Ef(A) =  Z?(A)/B?(A).

Setting r =  oo and using the conventions F 00A — 0, F~°°A =  A we find the 
previous definitions. We have the inclusions

• • • C B f C Bpr+! C • • • C B l  C Z* C • • • C Z f+, C Z* C • • •

Further since A/FPA is a direct limit of Fp~r+1AIFpA and since the functor 
H  commutes with direct limits, we have

B l = U r Bp.

In general, it is not true that is the intersection D Zf .
Applying 1.1 to the diagrams (in which we write Fp for FPA)

H(Fp/Fp+r)

Nn\ .
H(FP/ Fp+r+1) -----> H(FP/FP+1) ----► H(FI>+1/Fp+r+1)

y f  H(FpjFv+r)

s V
f f ( f P + l / f P + r ^ _____ ^  j j y p j p + r j  p V + r + 1^ ________>  f P + 1  /  f P + r + 1 ^

we obtain isomorphisms

Z f j Z f +1 Im (H(Fp/Fv+r) -»  H(Fv+1IFp+r+1)) & B p+{/Bf+r 

which yield an isomorphism

(6) d>: Z?IZ*+1 «  B?+i/B?+r.

We define the homomorphism

d f: Ef (A)  -> E f +\A )
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as the composition

E f  =  Zf / B f  —  Zf / Z f +1 ^  B*XilBf+r —-  Z f +r/ B f +r -  E*+r.

It follows that

(7) Ker d f  -  Z f +1/Bf,  Im df  =  B f f l / B f ^ .

Thus in the diagram

E f ~ r(A) Ef(A)  —^  E f +r(A)
we have

Im d f ~ r =  B f+1/B f C Z f +1/Bf  =  Ker df

which yields the natural isomorphism

Ker df j  Im d f ' r as Z f +1jBf+1 =  Ef+1(A).

Therefore if we introduce the graded modules

Er(A) =  Z PE?(A)

and the endomorphisms dr of Er(A) defined by d f  we obtain:
T heorem 1.2. For each r l>  1, the endomorphism dr o f Er(A) is a 

differentiation o f degree r. The graded homology module H(Er(A)) relative 
to the differentiation dr, is naturally isomorphic with Er+i(A).

For r =  1 we have B f =  0 and E f =  Z f  =  H(FP/FP+1). Since 
E f  =  FpjFp+1 we find that if we denote by d0 the differentiation induced 
in E0 =  2E §  by the differentiation d of A, then H(E0) =  Ev  Thus the 
theorem remains valid also for r =  0.

An alternative description of d f  may be obtained as follows. Applying
1.1 to the diagram

H(Fp/Fp+r)
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/  \
H{Fv~rJrljFv)  ^ H(FP/FP+1)  > H(Fp~r+1/Fp+1)

we obtain an isomorphism (for 1 <1 r <1 oo)

(8) E*(A) Im (H(Fp/Fp+r) -> H(Fp~r+1/Fp+1)).

From the commutative diagram

KH{ Fp / Fp+r) —^  H( Fp~r+1 / Fp+1)

/ / ( p p + rjp p + 2r j  _ _ _ >  m p p + 11p p + r+ 1)
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we obtain a homomorphism

Im cpf -> Im 9of+r

which when combined with the isomorphisms (8) yields df. If r — 1 then 
9o\ is the identity and so is the isomorphism (8). Thus we see that d f  is 
simply the connecting homomorphism H(FP/FP+1) -> F[(FP+1/FP+2) from 
the exact sequence 0 -> F 3H’1/F P+2 -> Fp/Fp+2 -> Fp/Fp+1 -> 0.

The sequence of graded modules E 2(A), E3(A) , . . .  , with the differentia­
tions d2, d3, . . .  and the isomorphisms H(Er{A)) & Er+1(A) (r 2) is 
called the spectral sequence of the module with differentiation A corre­
sponding to the filtration F. The reason for not including EX(A) into the 
spectral sequence will appear later.

2. CONVERGENCE

We shall now investigate the problem of the sense in which the spectral 
sequence E2, Es, . .  . approximates the module E ^(A ) & EQ{H{A)).

The filtration F  is said to be weakly convergent if

(1) Z PX(A) =  n  Zf(A).

We shall now show how in the case of a convergent filtration, the 
spectral sequence “ determines” the module E which is its “ limit.” 
Consider any term Ek of the spectral sequence. In E% we have the following 
relations:

E l  ** (ZpJB l)l{B pJ B pk)

z y j f = a <zy/j*)

Thus in order to show that the sequence Ek, Ek+1, . . . determines E ^  it 
suffices to show how the modules

Z f/B f, B f\B \ r ^ k

can be reconstructed from the spectral sequence. If r = k ,  these terms 
reduce to E f  and 0. For r > k  we first observe that Zf/B% is in the kernel 
of the operator dk. Further, the natural homomorphism y, mapping 
Z(E f) onto E f+1 and which has B f+1/B f as kernel, satisfies

Z*lBi =  W-'[Z flB pk+l]

B ^ B l  =  f~'[B?/B%+1].

This yields a recursive description of the desired modules.



We shall now derive two characterizations of weakly convergent 
filtrations. Applying 1.1 to the diagram

H(Fp/Fp+r)
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i
H(FP) -> H(FP/FP+1) -> H(FV+1) 

we obtain an isomorphism

(2) Z P(A)IZPX(A) ^  Im (H(Fp/Fp+r) -> H(FP+1))

where the latter homomorphism is obtained by composition 
H(Fp/Fp+r}->H(Fp+r)^ H (F p+1). Since (1) is equivalent with O Z?/Zpm= 0

r

we obtain:
Proposition 2.1. In order that the filtration F  be weakly convergent it 

is necessary and sufficient that fo r  eachp the intersection o f the images o f the 
homomorphisms

H(FpA/Fp+rA) -> H{FP̂ A )  r 1
be zero.

We define
R* =  n  Im (H(Fp+rA) -> H(FPA)) r >  1

r

R~co =  O FPH(A) =  n  Im (H(FPA) -> H(A)).
p p

The homomorphisms H{FP+1A) -> H(FPA ) and H(FPA ) -> H(A) induce 
homomorphisms

R P + 1  R P  R P  _ >  R ~o—oo

P roposition 2.2. The filtration F  is weakly convergent i f  and only i f  
each R p+1 -> R p is a monomorphism.

P roof. Consider the diagram

H(FP+1)

H(Fp/Fp+r) -> H(Fp+r) -> H(FP)

and let x e 7^+1. Then x is in the image of H(Fp+r), and it follows that 
x is in the image of H{FpjFp+r) if and only if the image of x in R p is zero. 
We thus obtain the relation

n  Im (H(Fp/Fp+r) -> H(FP+1)) =  Ker (R**1 -> R p).r^l

Thus 2.2 follows from 2.1.



We shall say that the filtration F  of A is convergent if it is weakly 
convergent and

D pFpH(A) =  0 

(i.e. Br™ =  0). If we consider the homomorphism 

u: H(A) Lim H(A)/FPH(A)

defined by up: H(A) -> H(A)/FPH(A), we find that R-°° =  Ker u. Thus 
for a convergent filtration, u is a monomorphism. We shall say that the 
filtration F  of A is strongly convergent, if it is weakly convergent and if u 
is an isomorphism. Clearly a strongly convergent filtration is convergent. 

In addition we can also consider the homomorphism

v: Lim H(A)/FPH(A) -> Lim H(A/FPA)

induced by
vv: H(A)/FPH(A) -»  H(A/FPA).

Since each vP is a monomorphism, it follows that v is a monomorphism. 
It can be proved that if 7̂  ̂=  0 for all /?, then v is an isomorphism.

3. M APS AND HOMOTOPIES

Let / :  A - ^ A '  be a map of modules with differentiation, and let 
filtrations of A, A ' compatible with the differentiations be given. We say 
th a t / is  compatible with the filtrations if

f ( F pA) C FPA'.

Such a map clearly induces homomorphisms

/ * :  H (A )-* H (A ')

f f :  Er(A )-+ E r(A')

/ * :  E n W - ^ E ^ A ' )

and drf f = f f d r where dr denotes the differentiation both in Er(A) and
E M ’)-

If/  and g  are two such maps, we define a homotopy s: f  — g  of order 
<1 k  as a homomorphism s: A A '  satisfying

ds +  sd =  g — / ,  s{FpA) C Fp~kA'.

P r o p o s it io n  3.1. I f  s : /  ~ g  is a homotopy o f order <1 k , then f *  =  g*, 
/ *  — g% a n d f f  =  g f  for r >  k.

P roof. The fact th a t/ *  =  g* is trivial and well known. To show 
that/  * =  g f  for k  <  r <1 oo we utilize the natural isomorphism (8) of § 1.
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We consider the commutative diagram

H(FpA/Fp+rA) —^  H ^ - ^ A / F ^ A )
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H(FpA '/F p+rA ') H(Fp~r+1A '/F p+1A ')

where the vertical maps are induced by the map g  —/ :  A -> A f. In view 
of (8) of § 1 it suffices to show that P<x= 0 if k  < r < L o o. Let then 
x  € FPA be such that dx e Fp+rA. Since

gx —f x  =  sdx +  dsx

and sdx e Fp+r~kA ' and sx  e Fp~kA ' we have

sdx e FP+1A \  sx e Fp~r+1A'.

This expresses the fact that gx — f x  yields the zero element of 
H(Fp~r+1A '/FP+1A').

T heorem 3.2. Let f : A -> A ' be a map o f modules with differentiations 
and with filtrations compatible with f  I f  for a certain index k, f * : Ek(A) 
-> Ek(A') is an isomorphism then the same holds fo r every finite index r^> k. 
I f  the filtrations are weakly convergent, then f ^ : E^{A) —> E ffA ')  also is an 
isomorphism. Finally, i f  the filtrations are strongly convergent then 

f * : H(A) -> H(A') also is an isomorphism.
P roof. Since f f  is an isomorphism and commutes with the differentia­

tion operators dk in Ek(A) and Ek(A') it follows that f f +1 also is an iso­
morphism. Thus f f  is an isomorphism for all finite r ^ k .  The weak 
convergence conditions of F  and F ' imply then that f f  also is an 
isomorphism.

Since the homomorphisms

FP~1H(A)/FPH(A) -> Fp~1H (Af)/FpH(A') 

are isomorphisms for all/?, it follows by recursion that the homomorphisms 

Fp~rH(A)IFpH(A) -> Fp- rH(A')/FpH(A') 

are isomorphisms for all p  and all r 1. It follows that

H(A)/FpH(A) -> H(A')/FPH(A') 

is an isomorphism. Therefore in the commutative diagram

H(A) Lim H(A)/FPH(A)

f* 9

H (A ') - ^ + L im  H(A')/FpH(A')
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g  is an isomorphism. If the filtrations are strongly convergent, then u and 
u' are isomorphisms and thus / *  also is an isomorphism.

For the last argument it suffices to assume that the filtration of A is 
strongly convergent while the filtration of A ' is convergent. Indeed u is 
then an isomorphism while u is a monomorphism. Since g  is an iso­
morphism, it follows that gu is an epimorphism so that u is an epimorphism. 
Thus u is an isomorphism and the filtration of A ' also is strongly convergent.

4. THE GRADED CASE

Suppose that A is a complex (i.e., A is graded and the differentiation 
d  of A has degree 1). We then require that each module FPA  of the 
filtration of A be homogeneous, i.e., that FPA be the direct sum of the 
submodules Ap+q O FPA. We introduce the notations

F*’QA =  A p+q n  FPA =  FpA p+q

Ep>q{A) =  F ^ A j F ^ ^ A .

The module E$(A) may be identified with the direct sum ^E%,q(A), so that
q

the module E0(A) is doubly graded

E0(A )=  2Eg’\A).
P,Q

Similarly the module E0(H(A)) is bigraded by the modules 

El'%H(A)) =  FpH p+q(A)IFp+1H p+q(A).

As in § 1 we define for 1 <1 r oo

Z*-q(A) =  Im (Hp+q(FpA/Fp+rA) -> H p+q(FpA/Fp+1A)),

B?'q(A) =  Im (Hp+q- \ F p~r+1AIFpA) -> H p+q(FpA/F*+1A)),

E f \A )  =  Z p\A ) \B p\ A ) .

Each of the modules EP(A) may be identified with the direct sum
^ E p>q, so that Er(A) is doubly graded. The isomorphism E*f(A) 
q
& Efi,q(H(A)) still holds. The differentiation operator dr: Er -> E r is 
composed of homomorphisms

d?>q: Epr’q ^  Ep+r'q~r+1

i.e. dr has bidegree (r, 1 — r). In all these bigraded modules the first 
degree, /?, is called the degree o f the filtration, the second degree, q, is called 
the complementary degree; p  +  q is the total degree.



Sometimes to avoid negative numbers we find it convenient to lower 
the indices using the rule

p r  —  p —v, —q 
P A  r

The differentiation then becomes
7 if • TTT T?T
PA * PA ~p- r , q+r—l

and has bidegree (—r,r — 1).

The filtration F  of the complex A will be called regular if for each n 
there exists an integer u(n) such that
(1) H n(Fp(A)) = 0  for p  >  u(n).

We shall show that (1) implies

(2) Z™(A) =  Z™(A) for r > u ( p  +  q + l ) - p .  
Indeed, from (2) of § 2 (in graded form) we have

Z?>%A)/Z™(A) & Im (H p+q(Fp/Fp+r) -> H*+*+\F»+1)).

This last homomorphism admits a factorization
f f P + Q ( f P j f P + r ^  fJ P + Q + 1 ^ fP + 1 ^

and the term in the middle is zero if p  +  r >  u(p +  9 + 1 ) .  This proves
(2).

In § 2 we introduced the notion of a strongly convergent filtration by 
requiring that the homomorphism

u : H(A) -> Lim H(A)/FPH(A)

be an isomorphism. In the graded case we may consider the homo­
morphisms

un : H n(A) ^  Lim H n(A)/FpH n(A).

If  u is an isomorphism so is each of un; the converse is false. But for 
our purpose it suffices that each un be an isomorphism; therefore, in 
the graded case, we shift to this weaker definition of strong convergence. 
The last part of Theorem 3.2 remains then valid in the graded case, 
provided the map has degree zero.

Proposition 4.1. A regular filtration o f a complex A is strongly 
convergent.

P roof. (2) implies that the filtration is weakly convergent. We must 
now  verify that for each n

un: H n(A)-> Lim H n(A)/FpH n(A)

is an isomorphism. Since FpH n(A) is the image of H n(FpA) -> H n(A), 
it follows from (1) that FpH n(A) =  0 for p >  u(n). Thus un is an iso­
morphism.
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For a regular filtration we can give a better interpretation of the way in 
which the spectral sequence {Er{A)} “ tends” to E^{A) as “ limit.” Indeed, 
for r >  u(p +  # +  1) — p  we have the relations

C Bp9x C • • • C BP* C Z?« =  • • • =  Z p qx =  Z p 9

and Bp? — U B p9. There results a direct sequence of groups and
epimorphisms
(3)

with Ep? as direct limit. Each homomorphism in (3) is given by the 
spectral sequence, since

E f 9! =  E p9/ Im dpr- r^ r-K
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5. INDUCED HOMOMORPHISMS AND EXACT SEQUENCES

Let A be a complex with a filtration F. We shall derive certain 
homomorphisms and exact sequences involving the terms of the spectral 
sequence of F, the modules E p9(A) and H n(A). We shall abbreviate the 
notation and write E p9, H n, etc. instead of E p9(A), H n(A), etc.

Proposition 5.1. E p9 =  0 implies E p9 =  0 fo r all s >  r {s oo). 
Indeed since Bp9 =  it follows that the modules

Bp9 C Bp9 C Z p 9 C Z p 9 °
are all equal.

P r o p o s it io n  5.2. Z,e/ r <  s< , oo; ifE p v =  0 /b r  w +  *; =  /> +  £ — 1, 
p  — s <C u<Lp  — r, ,q. There results a monomorphism
pv>Q Ep,q.

P roof. Take an integer t such that r t <  s. By (7) of § 1 we have 

Bf+i/Bp9 =  Im

Since E =  0, thus by 5.1, E f =  0, so that df-**9**-1 =  0 
and B f f x =  Bp9. If s — oo, the same conclusion follows from Bp9 
=  U J3f •*.t 1

Proposition5.2a. L e t r < s < L o o . I fE p v =  0fo r u  +  v = p  +  q +  1, 
jP +  r ^ w < / ?  +  .s’, and i f  moreover s is finite or the filtration is weakly 
convergent, f/ze/z Z p 9 =  Z p 9. There results an epimorphism E p9 —> E p9.

The proof is dual to the preceding one, when s is finite. If s is infinite 
and the filtration is weakly convergent, we have Z v£  =  n  Z p 9 and this
concludes the proof.

By combining 5.2 and 5.2a, one obtains conditions for E p9 & Ep9 
(r < s< L  oo).
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Proposition 5.3. I f  E ^ n~u =  0 fo r u < p , then FpH n =  H n. There 
results an epimorphism H n -> Evf l~v.

P roof. The conditions imply F uH n — Fu+1H n for u <  p. Since 
H n =  U F uH n, we have H n =  FpH n. Since E%n~p ** FpH n/Fp+1H n,

u
the conclusion follows.

Proposition 5.3a. I f  the filtration is convergent and E uf l~u — 0 fo r  
u >  /?, then Fp+1H n =  0. There results a monomorphism Epf n~p -> H n.

P roof. The conditions imply FuH n =  f u+1H n for u >  p. Since the 
filtration is convergent we have n  F uH n =  0, so that Fp+1H n =  0. Since
E ^ f -v  & FpH n/Fp+1H n, the conclusion follows.

Corollary 5.4. I f  the filtration is convergent and Euf l~u — 0 for  
u ^  p, then H n ^  E ^ n~p.

More generally we have
Proposition 5.5. I f  the filtration is convergent and, fo r some integers 

n, p  and k  (k >  0), we have E uf l~u =  0 fo r  u ^  p p  +  k , then there is an 
exact sequence

0 -> ££+*.»-»-* E p£ ~ p -> 0.

P roof. The homomorphism E pf f k'n~ p~k H n is defined by 5.3a and 
and has Fp+kH n as image. The homomorphism H n E pf l~p is defined by 
5.3 and has Fp+1H n as kernel. Since 0 = E uf l~~u^ F uH n/F u+1H n for 
p <  u <  p  +  k, it follows that Fp+1H n =  Fp+1cH n.

Proposition 5.6. (a) I f  E y  =  Ofor u +  v =  n — 1, u<^ p  — r, and 
for u +  v — n, u <  /?, there is a homomorphism

(1) H n -> E p>n- p.

(b) I f  the filtration is convergent and E f v =  0 fo r u +  v — n +  1, 
u ^  p  +  r, and for u +  v =  n, w >  p, there is a homomorphism

(2) E p'n~p -> H n.

(c) I f  (a) and (b) both hold, then (1) and (2) are reciprocal isomorphisms. 
P roof, (a) follows from 5.1, 5.3 and 5.2. Similarly (b) follows from

5.2a, 5.1 and 5.3a. Finally, (c) follows from 5.1, 5.2 and 5.2a, and 5.4. 
Proposition 5.7. I f  the filtration is convergent, and i f  E ^,v — 0 for

u +  v — n, p  and =fp — k  (k >  0, given)

u +  v = n + l ,  u ^ > p - \- r

u - \ - v ~ n — 1, u<Lp — k  — r,

then the following sequence is exact

(I) E P,n~P H n -> £P~lc>n-p+k'



Proof. By 5.5, we have an exact sequence
0 -> E pf l~p —> H n —> £P yk>n-p+k _> o.

Moreover, 5.2a yields an epimorphism E p,n~p -> E ^ n~p, and 5.2 yields a 
monomorphism i%p^k>n~p+k ^  £p-k,n-v+ka conciudes the proof.

We shall now give a new series of propositions. First we define a 
generalization of the homomorphism

rfPA • J7P,Q J7P+r,q-r+l'

Definition : Given a finite integer s >  r, suppose that E ^ f  — 0 for 

u +  v =  p  +  q + \ ,  p  +  r ^ u < p  +  s,
and for

u +  v =  p  +  q , p  < u < L p  +  s — r.

We define a homomorphism df f :  E p’q -> E p+8,q~8+1 as the composition 
E p>q — > £ P > q  JL- ]?p+s,q-s+i _L* £ p+s>q~s+1̂  where /? is dp,q, and y and a are 
defined because of 5.2 and 5.2a.

Lemma 5.8. I f  E p~ŝ +s~1 =  0 (r <1 s <  oo), we /zaz;e //?e exact sequence
d V ,Q

(3) 0 ----- ► Es% \  ► E™  -JL— E p+8i9~8+1.

Proof. By 5.1, e p~8*9+8~x =  0, thus dp~s,q+s~x =  0, and consequently 
Bf+ i =  £?**• Thus F f f ! =  Z f f J B ™,  and this last module is the kernel of 
dg’9* by (7) of § 1.

P r o p o s i t io n  5.9. 7/7/? e  filtration is weakly convergent, i f  fo r some
integer s^> r, — 0 for

u - \-v  =  p - \ - q  — 1, u f k p ~  r>
and for

u +  v =  p  +  q, p  =£ u<Lp +  s — r,
and fo r

u +  v =  p  +  q +  1, p  +  +
//?e« we have the exact sequence

d V ,Q

(II) 7P+*----- ► E PA
Proof. Since jE;p-s»3+s-i =  0, we can apply lemma 5.8. Thus we 

have the exact sequence (3). But Effix ^  and E p,q ^  E p’q by 5.2 and 
5.2a. Moreover, by 5.2, we have a monomorphism E p+8i9~8+x->Ep+8t9~8+x. 
Thus (3) yields an exact sequence

d P ,Q

0 ----- * £P,q j. £P,q _Il!L*. £P+S,q-s+1

Finally, by 5.3 we have an epimorphism H v+q ^  E™. This yields the 
exact sequence (II).
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P r o p o s i t io n  5.9a. I f  the filtration is convergent, and i f  fo r some 
integer s^>r,  E f v =  0 for

u +  v =  p  +  q +  1, u^>p +  r
and for

u +  v =  p  +  q, p  +  r — s < L u f ^ p ,
and for

u Jr v =  p Jr q — 1 , p  — s 7  ̂w<^/? — r,

then we have the exact sequence
flP-s,q+s-l

(III) £ V - s , q + 8 - l ------------------- > E P , q -------------------- > f f P + Q

The proof is dual to the preceding one.

It is now possible to combine the cases in which exact sequence such as
(I), (II) or (III) hold. For example:

Theorem 5.10. Assuming that r^> 1, let p andp' be two integers such 
that p  — p f r. I f  the filtration is convergent and E?,v =  0 fo r  u ^  p^p \ 
then we have an exact sequence

• • • —>  £ P > n - v  f j n  £ P ' , n - p '  £ p , n - \ - l - p  J - f n + 1  £ P * , n + l - p '  > . . .

T h e o r e m  5.11. Assuming that r^>2,  let q and q ' be two integers such 
that q — q ^ > r — 1. I f  the filtration is convergent and E “’v =  0 fo r  
v q,q\ then we have an exact sequence

. . . _> Er~q,q —> H n -> Ey~q'’q' —> E r+1~q,q — H n+1 -> E r+1~~q,q' -> • • •

T h e o r e m  5.12. Assume that the filtration is convergent and that 
E£,q — 0 i f  p  <  0 or q <  0. Assume further that E%,q =  0 for  0 < q < n  
(n >  0). We then have isomorphisms

Ei>'° H 1 i <  n
and an exact sequence

o EZ>° ^  I I n -> E%n -*  E$+1-° -> H n+1.

P r o o f .  The isomorphisms follow from 5.6(c). The exact sequence 
follows from 5.7, 5.9 and 5.9a.

The dual result is
T h e o r e m  5.12a. Assume that the filtration is convergent and that 

Ep q — 0 i f  p  <  0 or q <  0. Assume further that E f q =  0 fo r  0 < q < n  
(n >  0). We then have isomorphisms

Effi ^  H t i < n
and an exact sequence

H n+1 -> E l+1>0 E \n E lo 0.
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To conclude, we list a number of special cases needed in the sequel. 
Case A. H{FPA!FP+1A) = 0  for p  <  0. Then E f q =  0 for p  <  0 

(r <1 oo), and 5.6(a) yields the homomorphisms

H n -> ££•*.

Case B. H P+Q(FPA) — 0 for q <  0. The filtration is regular (and 
thus convergent), E f q = 0  for q <  0, (r <1 oo), and 5.6(b) yields the 
homomorphisms

E n,° R n

Case C. H(FpA /F P+1A) =  0 for p  <  0 and H P+Q(FPA) =  0 for q <  0. 
The filtration is regular, E f ,q =  0 for p  <  0 and for q <  0 (r oo), we 
have the homomorphisms

E%'° El'n
and the exact sequence

0 -> El>° -> H 1 -> E ^1 -> £ | ’° -> H 2.

There are three dual cases.
Case A'. H{FPA) =  0 for p  >  0. The filtration is regular, 

Epq =  0 for p  <  0 (r <1 oo) and we have homomorphisms
17 2 v IT^0,n n*

Case B'. H*±«(FPAIFP+1A) =  0 for # >  0. Then E rp q =^0 for 
q <  0 (r <1 oo) and we have homomorphisms

77 . 772
11 n ^ n ,0

Case C'. H(FPA) =  0 for p  >  0 and H p+q(FpA /F P+1A) =  0 for ? >  0. 
The filtration is regular, =  0 for p  <  0 and for <7 <  0 (r 00), we 
have the homomorphisms

772 ZJ 772

and the exact sequence

H 2 -> JEf.o -> £f,i -> # i  -> £f,o -> 0.
We shall consider two more cases:
Case D*. H P+'1(FPA) =  0 for q <  k  and Ffp+q{FpA jF p+1A) =  0 for 

q >  h +  1 • The filtration is then regular and 5.11 yields the exact sequence

. . . Ef~k,k —> H n —> E%~k~ —> pn—k+i,Jc —>■ H n —> F'£-k’k+i _> • . .

Case E*. H(FPAIFV+1A) =  0 for p  <  k  and H(FPA) =  0 for p >  k  + 1 .  
The filtration is then regular. By 5.2 and 5.2a, we have E., =  , and
5.5 yields an exact sequence

0 -> E \ n~k 0.
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The homomorphisms obtained in cases A, B , A', B ,' will be called edge 
homomorphisms. The exact sequences obtained in cases C and C ' will be 
called the exact sequences o f terms o f low degree.

So far we have dealt with spectral sequences connected with a specific 
complex with a filtration. In the applications that will be given in the 
next two chapters, the situation will be somewhat different. We shall 
encounter situations in which the complexes and the filtrations will be 
constructed with a large degree of arbitrariness. It will however turn out 
that the homology modules of these complexes, the filtrations of these 
homology modules, and the spectral sequences involved will be “ inde­
pendent” of the choices involved in the construction of the complexes.

Because of this it will be necessary to develop a notation and termin­
ology which will allow us to handle spectral sequences without explicit 
reference to the complex and its filtration from which the spectral sequence 
results.

Let 2 Bp,q be a doubly graded module and ^ D n a graded module. We 
shall use the notation

B P*Q=> Dn
p

to say that there exists a complex A with a regular filtration F  such that 
H n(A) is isomorphic with Dn for all n, and such that the terms EQq(A) of 
the spectral sequence of the filtration F  are isomorphic to Bv,q. We 
indicate the degree of the filtration under the arrow, because when the 
terms Bv,q have an explicit (and sometimes complicated) form it may be 
impossible to tell which of the two integers involved is the degree of the 
filtration and which is the complementary degree.

6. APPLICATION TO DOUBLE COMPLEXES

Let A =  ][Ap,q be a double complex with differentiations dx and d2, as 
defined in iv,4. With this double complex, there is associated a (single) 
complex with total differentiation d and homology modules H n(A).

We introduce the bigraded module H-fA) which is the homology 
module with respect to the differentiation dv  We regard Hj(A) as a 
double complex with differentiation d1 =  0 and with d2 induced by the 
differentiation d2 in A. Similarly we define the double complex Hn (A) 
which is the homology of A with respect to d2. We may thus also con­
sider the modules Hj jH^A)  and H j H ^ A ) ,  bigraded by Hf f Hf i A)  and 
H f ^ H j f A )  respectively.

We introduce two filtrations Fj (the first filtration) and Fn (the second 
filtration) as follows

F fA  =  2  2A™, F&A =  2  2 A p’s.
r ^ p  q s ^ q  p
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These filtrations regarded as filtrations of the (single) complex associated 
with A are compatible with the total differentiation operator d. There 
result two filtrations of H(A)  and two spectral sequences which we call 
the first and the second spectral sequence of the double complex A. The 
term Ep'q of the first spectral sequence will be denoted by lp,q. The term 
Ep,q of the second spectral sequence will be denoted by l \q,p; the switch of 
indices is justified by what follows. The module H(A)  with its graduation 
and two filtrations, and the two spectral sequences will be called the 
invariants of the double complex A.

The module F f A / F f +1A may be identified with 2 A p,q. Thus the
Q

module I0 associated with A by the filtration may be identified with A 
itself. The differentiation operator in I0 is then easily seen to be given by 
the homomorphism d$,q. Consequently, the homology module of I0 i.e. 
the module Ix may be identified with Hn (A).

The differentiation operator dT1 of (i.e. of the term E X(A) for the 
first filtration) is the connecting homomorphism for the homology modules 
of the exact sequence

0 -> F f +1/ F f +2 -> F f/F ?+2 -> F f / F f +1 -> 0.

Let x € Hf f (A)  be an element of bidegree (p,q) of Hn (A), and let a e A P>Q 
be an element representing x. Then d2x  =  0 so that dx =  dxx. It 
follows that the connecting homomorphism H{Ff jFf+1) H(F£+1/F£+2) 
is induced by dv  Thus if Ix and HU(A) are identified it follows that the 
differentiation dl t of coincides with the differentiation dx of Hjfi^A). 
There results the identification

(I) U A ) = H 1HJ£A).

This identification is compatible with the double gradings of the modules 
involved.

To compute the initial term E 2 of the spectral sequence for the second 
filtration we resort to the following trick. We introduce the transposed 
double complex lA defined by

*A™ =  A q'p, ld Y  =  d q2’p, ld Y  =  d f p.

The double complexes A and *A have the same associated single 
complex A . Further, the second filtration of A is the first filtration of *A. 
Thus the required term E 2 is H ^ n ^ A ) .  This latter term coincides with 
the transposed of the bigraded module H uH ^A ). Thus if we denote by 
II2 the transposed of the term E2 for the filtration Fn of A we obtain

(2) II 2(A) =  Hn Hi{A).
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This is the reason why earlier in defining 11^ we transposed the degree of 
the filtration and supplementary degree.

A m ap /: A A ' of double complexes is always compatible with the
filtrations and It therefore induces maps of the respective spectral
sequences.

P r o p o s i t io n  6.1. Two homotopic maps o f double complexes induce the 
same maps o f the invariants.

P r o o f .  Let f g :  A A ' be the maps in question and let (sl9s^):/  —  g 
be a homotopy as defined in iv,4. There results a total homotopy s in the 
associated (single) complexes. This homotopy is of order <^l with 
respect to the filtrations Fl and Thus 3.1 implies that/  and g  induce 
the same homomorphisms I?,9(A) -> \ p,q{A') and II^(v4) -> \ \p,q{A') for 
r 2 .

Incidentally, the above fact is the main reason for defining the spectral 
sequence as beginning with the term F 2, rather than with the term E x (or 
even with the term E0 composed of FPA/FP+1A).

We shall derive various relations between the modules I f ’/  U gq and 
H n(A) of a double complex A under the assumption that some terms A p,q 
are zero. All the results follow from those of § 5.

Case 1. A P,Q =  0 if q <  0. The filtration Fj is regular. We are in 
Case B for the filtration F1 and in Case A for the filtration There 
result edge homomorphisms

I”’0 -+ H n -> II£’°

Case 2. A p,q =  0 i f / ? < 0 o r ^ < 0  (i.e. the double complex A is 
positive). Both filtrations are regular and we are in Case C. We obtain 
edge homomorphisms

I”’0 -> H n -> IIS’0 

Ilg’w -> H n -> l°2’n 

and exact sequences for terms of low degree

0 Ii>° I0,1 -> Il»° -> H 2

o -> njp h 1 I # 0 iisp -> m

Case 3. A p,q =  0 for q ^  0,1. Both filtrations are regular, Fx is in 
Case D° and is in Case E°. We thus obtain exact sequences

 ► Ig-° - > H n - >  I f 1-1 I£+1-° -> H n+1 I f 1

0 Ilg "1-1 - > H n ^  Ilg-0 -> 0.



Case 4. A PtQ =  0 for p  ^  0,1 or q ^  0,1. The sequences above 
collapse to the exact sequences

0 -> I1/  I0’1 -> 0,

0 -> Ilf’1 -> i / 1 ^  III '0 -> 0,

and the isomorphisms
I*1 ^  H 2 & III'1.

The above cases were geared towards applications to cohomology and 
right derived functors. For applications to homology and left derived 
functors, we need four dual cases. These can be most conveniently 
stated using the principle of lowered indices:

A — A —P>—Q Y  t  - p , - q  TTr _  tj — z i- n— sl , ip q  — i r , X1p,q A1r > X1n

We then consider

Case 1': A PQ =  0 if q <  0

Case 2 ': A PQ =  0 if p  <  0 or q <  0.

Case 3 ': A PQ= 0  if#  ^ 0 ,1 .

Case 4 ': A PQ = 0  i f p  ^  0,1 or q ^  0,1.

The conclusions in these cases are obtained from the cases 1-4 by 
lowering indices and reversing all arrows. The only difference is that 
in Case 1' it is the filtration Fu that is regular.

R em ark . If the first differentiation operator d1 in A is zero then we 
have Hj(A) =  A and

H(A) =  HU(A) =  H M A )  =  HnHj(A).

The module H(A) is then bigraded and coincides with I2 and II2. All the 
differentiation operators in the spectral sequences are zero. Further, in 
Case 1, the composite map If’0 -> I lf’0 is the identity map.

7. A GENERALIZATION

We shall indicate here a more general setting in which the theory of 
spectral sequences may be developed. This generalization is particularly 
interesting for geometrical applications (see below).

We shall assume that for each pair of integers (/?,#) such that 
—c o < L p < ^ q ^ c o  a module H(p,q) is given. We shall write H(p) 
instead of H(p,oo) and we shall write H  instead of H (—oo,oo).
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Given two pairs (p,q), (p \ q ) such that p ^ p \  q ^ q '  (notation: 
(p,q) ^  (p\q) )  we shall assume that a homomorphism

(1) H (p\q ')-+ H (p,q) 

is defined.
Given any triple (p,q,r) such that — o o ^ p ^ q ^ r ^ c o  we shall 

assume a connecting homomorphism

(2) d: H(p,q) -> H(q,r) 

is defined.
The above three primitive concepts are subjected to the following 

axioms
(SP.l) H(p,q) -> H(p,q) is the identity.
(SP.2) If (p,q) <1 (p \q  ) <1 ( p \ q )  then the diagram

H (p\q")-> H (p,q)
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is commutative.
(SP.3) If (p,q,r) <1 (p\q ,r )  then the diagram

H(p\ q f)  >H(qf/ )

H (p,q) >H(q,r)
is commutative.
(SP.4) For each triple (p,q,r) the sequence

 > H(q,r) —  H(p,r) —  H(p,q) ^  H(q,r) — -  • •
is exact.
(SP.5) For a fixed q the direct system of modules

H{q,q) - + H ( q -  1,9) ^  H(p,q) H (p -  l,q) -> • • ■

has H{—oo,q) as direct limit (under the mappings H (p ,q )^H (— co ,q).
From (SP.l) and (SP.4) we deduce that H(p,p)=0. From (SP.3) we 

deduce that (2) admits a factorization

(2') H(p9q ) - ^ H ( q ) — »Hiq9r).

This indicates that we could postulate (2) only with r =  oo and define (2) 
in general using (2'). Axioms (SP.3) and (SPA) may then be weakened by 
replacing r by oo. It can be shown that the weaker system of axioms 
implies the stronger one.
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Usually the modules H(p,q) will be graded. It is then assumed that 
(I) is a map of degree zero while (2) has degree 1.

Example 1. Let A be a module with differentiation d  and filtration F. 
Define H(p,q) =  H(FP/Fq) where F~°° =  A, Fco =  0. For (p,q)<^(pf,q')we 
have a natural map Fp'/Fq'—Fp/Fq which induces (1). For each triple 
(p,q,r) we have an exact sequence

0 -> Fq/F r -> FpjF r -> Fp/F q -> 0

which induces (2). Axioms (SP.l)—(SP.5) are readily verified. This is 
the case studied earlier in the chapter.

Example 2. Let X  be a topological space and {Xp} a family of sub­
spaces defined for all integers p  such that X p C X p+1. We set X~co = 0 ,  
X°° =  X  and define

H (p ,q )= Z nH n(X q,X p)

where H n(X q,X p) is the n-th cohomology of the pair (X q,X p) with respect to 
some fixed cohomology theory. The maps (1) and (2) are then the induced 
homomorphisms and the coboundary operations of the cohomology theory. 
Axioms (SP.1)-(SP.4) are consequences of usual properties of cohomology 
groups. Axiom (SP.5) is not valid in general, but depends on the spaces 
involved and the cohomology theory that is being used.

Example 3. In the situation of example 2 set

H(p,q) =  2 nHn(X-»,X-«)

using the relative homology groups of the pair (X~p,X~q).

We now return to the abstract situation governed by the axioms 
(SP.1)-(SP.5) and define

FPH =  Im (H (p)-+ H )

Z* =  Im (H(p,p+r) H (p,p+ 1))

B f -  Im (H(p - r + l 9p ) ^  H(p,p +  1))

E f =  Z p/B*

where 1 <1 oo, —oo <  p  <  oo. It follows readily that FPH  is a 
filtration of H. All the results of § 1, 2, 4, 5 now carry over without any 
change. The questions studied in § 3 require some care.

We consider two systems {H(p,q)} and {H'(p,q)} with homomorphisms 
(1) and (2). A map/ of the first system into the second is a family of maps 
(p,q): H(p,q) -> H'(p,q) which properly commute with (1) and (2).



Clearly/induces m a p s / *: Er -> E '  for 1 <1 r <1 oo. If g  is another map 
of {H(p,q)} into {H'(p,q)} then we say that /  and g  are k-equivalent, 
k  0, (notation /  ^  g) if the composition

H(p,q) t f '(M )  —" # '0> -  *,? -  k)

is zero for all (p,q), where y =  g(/?,#) —f(p,q)- As an analogue of 3.1 we 
prove that /  ~  g implies f *  =  g* for r  >  k. As in the proof of 3.1 we
must show that the composition

H(p>P +  r) * H \p ,p  +  t) ► H '(p  — r -f- l,p  +  1)

is zero. This, however, is immediate, since the second map can be factored 
as follows

H ’(p,p  +  r) -> H \ p  — k,p +  r — k)->  H \p  — r +  l,p  +  1).

This argument, incidentally, gives a new proof for 3.1. The remaining 
results of § 3 carry over without change.

To conclude we observe that the exact sequences

• • • -> H(p +  1 )-> H (p)-+ H (p ,p  +  l) ->  H(p +  l ) ->  • • •

taken for all finite integers p  may be recorded in a single diagram

C  ► C

P) \ /
A

where C =  ^ pH(p)9 E 1 =  ^ pH(p,p +  1). Diagram (3) is an exact 
couple in the sense of Massey {Ann. o f Math. 56 (1952), 363-396, 1952). 
This again provides an alternative exposition of spectral sequences.

EXERCISES

1. Let A and A' be two K-algebras, and T =  A ® K A'. Let A 
(resp. A', A") be a A-complex (resp. A'-complex, resp. T-complex). 
Suppose we are given a map of T-complexes

q>: A <g)k A '-+ A "

such that cp maps FV{A) ® FP (A') into FV+V'(A").
Show that the homomorphism a: H{A) ® H{A') -> H(A") induces 

maps
$*•': E£(H(A)) 0  Efi (H(A')) ->■ E$+p (H(A”)) 

compatible with the gradings.
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2. Using isomorphism (4) of § 1, give another definition of the map 
qv,v 0f Exer. 1, by defining maps

Z l(A )  0 Z%(A') Zl+P’(A")

which induce maps of

B U A )  0 Z t fA ')  and Z PJ A )  0 B*(A') 

into BP+P\ A ”).
Show that the maps

<pv’v‘- E fJA ) 0  E ' i ( A ') ^  E l+P'(A")

may be obtained by “passing to the limit” from maps

<f™ ': Ef{A) 0 E f(A ')  -+ E f +P\A")

obtained by defining maps

Zf(A) 0 Z f( A ’) Z f +P (A").

Define now on Er(A) 0 Er(A') a differentiation dr by setting, for a e Ef(A), 
a' e E f\A ') ,

dr(a 0  a ' )  =  ( dra)  0  a' +  ( —  l ) p «  0  (dra');

show that the maps <pf,p’ are compatible with the differentiations of 
Er(A) 0 Er(A') and Er(A"). Passing to homology, the maps

H p(Er(A)) 0 H p'(Er(A ')) -> H p+p {Er(A"))

are precisely the maps <pff [ (by using the natural isomorphisms H p(Er(A)) 
~  E*+1(A), H p(Er(A')) *  H p+p'(Er(A")) to, E ?+ f(A '%

3. Let A be a graded A-algebra with a differentiation satisfying

d(aa) =  (da)a' +  (—1 )pa(da') p  — deg. a .

Then, taking A =  A' =  K, A ' =  A" =  A, apply Exer. 1 and 2 to the 
present situation.

4. Let {AP,Q}, {.A ' p,,q'}, {.A"Stt} be three double complexes. Consider 
the double complex

C s ,t =  2 A P,Q 0  , 4 'p V  p + p ' =  q  +  =  f

with differentiation operators (5X and <52 defined as in iv,4. Assume we are 
given a map of double complexes

C S,t A * 8 ,tm

Consider the first filtration on {A™}, {A,p'’Q'} and {A”s,t}\ show that 
Exer. 1 and 2 may be applied to corresponding spectral sequences. The 
same result applies for the second filtration.
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5. Let A be a double complex with differentiation operators dx and d2. 
Denote B1 =  Im dl9 Zx =  Ker dl9 and show that these are double com­
plexes in which the first differentiation operator is zero. Similarly 
introduce Bn (A) and Z n (A). Consider the doubly graded module

C(A) =  Zj(A) O Z n (A) =  Z(Zn (A)) =  Z(Z£A)).

Clearly CPtQ(A) =  A P,Q D Z(A). Define the maps in the diagram

C(A) =  Z I(ZII(A))

f  I Q
k  ^

H {R£A))----- >H(A) HAHrfA))

where k  and /  are defined by inclusions Bj(A) C A, C(A) C A , while g  is 
defined by the natural homomorphisms Zn -> Hu  and Z 1 -> Hv  Show 
that g  is a map of doubly graded groups, while k  and/ are compatible with 
both and the first and the second filtration. We denote by

f x : C(A) -> I J A )  =  2  F f H(A)IF[+1H(A)
P

the induced map of the associated graded groups. Similarly we may 
introduce / n , and ku .

6. With the notations as above, establish the equivalence of the follow­
ing two propositions:

(a) If a,b e A and dxa =  d2b, d2a = .0 '9 then there is c e A such that 
d ^ c  — dxa.

(a') g  is an epimorphism.
Assuming that the above conditions hold, show that:

(i) f(F ? C ) =  F?H (A\ f(F& C ) =  F&H(A).
(ii) / ,  f j  and f u  are epimorphisms.
(iii) the first filtration of A is weakly convergent and satisfies Z ^ A )  

=  Z 2(A).
All the differentiation operators in the first spectral sequence of A are 

then zero and one obtains an isomorphism <p: I^(A ) & H ^H ^A )).  
This isomorphism satisfies cpfY =  gj — g. [Hint to (i): if a € 2  A p+i,q~l

is a d-cycle, then a is rf-homologous to some element of 2  Cp+t,Q~t ;
o^i^r

proof by induction on r.]
7. With the notations of Exer. 5 show that an element u e C(A) is in 

the kernel of g  if and only if there exist elements b,c e A such that 
u =  dxb +  d2c, d2b — 0. Establish the equivalence of the following 
conditions:
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(b) If a e A is such that d2d±a =  0, then there exist elements b,c e A 
satisfying dxa =  d±b +  d2c, d2b — 0.

ob') g(Z(BI(A))) =  0.
Assuming that the above conditions hold, prove:

(iv) Ker g  =  Z(BI(A)) - f  Ker /  [Hint: prove Ker /  C Ker g  and
K e r^ C Z (^ U ) )  +  K e r/] .

(v) C k iH ^ - ^ B j iA ) ) ) .
(vi) =  0.

(vii) Im k C n  FfH{A).

(viii) If the filtration Fj of A is convergent, then k  =  0.
8. Assume that in the double complex A conditions (a) and (b) of 

Exer. 6 and 7 are both satisfied. Establish the exact sequence

H(BjHA)) H(A) HAHjAA)) — > 0

where / =  g /-1, and show that the maps are compatible with both filtra- 
tions. In particular, kY =  0 and l1 =  (p: l^ (A )  ^  H ^H ^A )).

Show that if A: =  0 then both filtrations of H(A) are those obtained 
from the double grading of H ^ j^ A )  using the map /_1.

Establish the equivalence of the following conditions:
(c) k =  0 ;
(d) The filtration Fj of A is convergent.
9. Suppose that the double complex A is the direct limit of double 

complexes Aa such that for each index a:
(1) Aa satisfies condition (b) of Exer. 7;
(2) the filtration F1 of A^ is convergent.

Then condition (b) holds in the complex A and the map k: H^B'-^A^^H^A) 
is zero. If moreover A satisfies condition (a) of Exer. 6, then / is an iso­
morphism H(A) aa H ^H jĵ A)), which is compatible with both filtrations.



C H A P T E R  X V I

Applications o f  Spectral Sequences

In troduction . In v,8, we have considered functors of several variables 
and have studied the relations between the derived functors and the partial 
derived functors. Our results there were rather incomplete, because a 
complete treatment of the problem requires the use of spectral sequences 
(see § 1).

These spectral sequences arise each time we have an associativity rela­
tion of the type

Horn (A, Horn (B,C )) ^  Horn (A (g) B,C).

There result two spectral sequences with essentially the same “limit,” 
and with terms E 2 given by

Ext* (A , Ext* (j5,C)), Ext* (Tor^ (A,B),C).

This method provides a large number of spectral sequences. Among 
others, spectral sequences are obtained for the homology of a group, an 
invariant subgroup and the quotient group, as well as for the homology 
of a Lie algebra, an ideal and the quotient algebra.

§ 9 is a modest attempt to show how these spectral sequences can be 
applied to various problems in topology involving groups of operators.

1. P A R T IA L  D ERIV ED  FU N C T O R S

Let T(A,C) be a functor co variant in A and contravariant in C. In 
addition to the right derived functors R nT  we shall consider the partial 
right derived functors R ^ T  and R ^ T  obtained by regarding one of the 
variables as active and the other one as passive. According to v,8 we then 
obtain natural maps

(1) Ra)T ~>RnT’ 5^2)T —> R nT.

Let X  be an injective resolution of A and Y  a projective resolution of C. 
As described in iv,5, T (X ,Y ) is then a double complex. An argument 
similar to the one given in v,3 shows that the invariants of this double 
complex are independent of the choice of the resolutions and are functors 
of A and C. The homology module of T(X, Y) clearly is RT{A,C).
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Using the method of xv,6 for computing the initial terms of the spectral 
sequences we find

Hu ( T (X ,Y ) )= R {2)T(X,C)
so that

I2 =  H M T i X ,  Y)) = H (R i2)T(X9C)) =  R {1)R i2)T(A,C).

With the double grading indicated we have

(2) I $>« =  R ^ R fa T
and similarly
(3) Il$ ’« =  R fa R ^T .

Since the double complex T(X , Y) is positive, both filtrations are regular 
and we thus have

(4) R h Rh)T ^  RnT>

(5) Rk Ra)T T RnT-
The above spectral sequences give rise to edge homomorphisms and exact 
sequences for terms of low degree. It will be convenient to assume that 
T  is left exact so that R°T =  R ^ T  =  R ^ T  =  T.X Then the edge homo­
morphisms are
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(6) R \i ) T ~ ^  R nT , B f o T - *  R nT

(7) RnT ^  R ^ R ^ T ,  R nT - » R ^ R ^ T

while the exact sequences take the form

(8) 0 -> R ^ T - ^  R ^ R ^ T - *  R f^T -*  R 2T

(9) 0 R\2)T ^  R xT  -> F ^ R ^ T - *  Rf2)T -> R 2T.

We shall now show that the homomorphisms (1) and (6) coincide. 
To this end we consider the (single) complex B =  T(X 9C) and define the 
filtration F  of B  by FVB  =  2 B n for n^> p. The augmentation maps 
define a map T(X,C) -> T (X ,Y ) which maps the filtration F  into the 
filtration FT of the complex T(X, Y). There results a commutative diagram

E% \B) -> H \B )
* j

R ^ T iA .C )-*  R nT(A,C).

For the filtration F  of B  we find E0(B) =  B  and E?°(B) =  E$’°(B) =  H n(B) 
=  R q ^ A ^ C ).  The upper horizontal map is thus the identity and so is the 
left vertical map. It follows that the lower horizontal map and the right 
vertical map coincide. These are precisely the two maps R ^ T  —> R nT  
given in (6) and (1).
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We can now give a short alternative proof of the fact established in 
v,8 that for a right balanced functor T, (1) are isomorphisms. Indeed, T  
being right balanced we have Rl2)T(A,C) =  0 for q >  0 and A injective. 
Therefore R f^ R ^ T  = 0  for q >  0. Thus the first spectral sequence 
collapses and yields RfifT  & R nT.

The discussion generalizes easily to the case when A and C each represent 
a set of variables, some of which may be covariant and some contravariant.

Similar results may be obtained for left derived functors. The 
sequences (4) and (5) become

(4a) L V L f T ^ L 'T ,

(5a) L fL fT = > L nT.

2. FU N C T O R S O F C O M PLEX ES

Let T(A,C ) be a right balanced functor co variant in A and contra­
variant in C. We shall consider here the case when A is a complex and C 
is a module. Given a projective resolution Y  of C, we obtain a double 
complex T(A , Y). The invariants of this double complex are independent 
of the choice of Y  and are functors of A and C.

We introduce the notation & nT(A,C) for the homology module 
H n(T(A, Y)). Next, we have HU(T(A, Y )) =  RT{A,C) so that

(1) I f ’* =  H P(RQT(A,C)).

Since H f,q(T(A,Y)) =  H p(T(A,Yq)), and since the functor T(A,YQ) is 
exact for Yq projective, it follows from iv,7.2 that we may identify 
H p(T(A,Yq)) with T(Hp(A),Yq). Thus H f,q(T(A, T)) =  T(HP(A), Yq). 
Consequently applying Hn  we obtain

(2) Ilf*  =  RqT(Hp(A),C)

The double complex T(A, Y) falls into the case 1 of xv,6 so that we have 
the edge homomorphisms I^’0 H n -> Ilg'0 which in this case become

(3) H n(T(A,C)) -> & nT(A,C) -> T(H n{A\C).

Proposition 2.1. The composition o f the homomorphisms (3) coincides 
with the homomorphism

a ': H n(T (A ,C ))^ T (H n(A),C)
o f  iv,6.1a.

Proof. Let a denote the composition of the homomorphisms (3). 
Clearly a is natural relative to maps A -> A' of complexes. In view of 
iv,6.la  it therefore suffices to show that a is the identity if A has zero 
differentiation. In this case the double complex T(A ,Y) has the first 
differentiation zero. Thus, by the final remark of xv,6, a is the identity.
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In all the applications that we shall encounter in this chapter, the 
complex A will be positive. In this case the double complex T{A , Y) also 
will be positive and both filtrations will be regular. Thus we obtain

(4) H P(R9T(A,C)) m nT{A,C)

(5) R 9T(HP(A),C) m nT(A,C).

A similar discussion can be carried out when A is a module and C is a 
(positive) complex. Using an injective resolution X  of A we obtain a 
double complex T(X,C) in which we regard the degree of C as the first 
degree and the degree of X  as the second. This yields modules & nT(A,C) 
=  H n(T(X,C )) and spectral sequences

(4') R PT(A,H 9(C)) => m nT(A,C)

(5') H 9(RPT(A,C)) => M nT(A,C).

Both these cases are special cases of the more general situation considered 
in chapter xvn in which both A and C will be allowed to be complexes.

Quite analogous results are obtained for left balanced functors. The 
details are omitted.

3. COMPOSITE FUNCTORS

As a preparation for the later sections we shall consider here a functor

(1) T(A,C) =  U(A,V(C)) =  U \V \A \C )

represented in two different ways as a composite functor.
We first consider the case when U and U' are both right balanced, 

contravariant in the first variable, covariant in the second variable, 
V is covariant and left exact while V' is covariant and right exact. Then T  
is left exact, contravariant in the first variable, and covariant in the second. 
We wish to compute R f^R ^TiA ^C ) and Rl2)RfX)T{A,C).

If in (1) we replace A by a projective resolution X  and C by an injective 
resolution T, (1) yields a double complex. We have

Hf[%T(X, Y)) =  Hf[q(U(X,V( Y)) — H 9(U(Xv,V( T)) ^  U(Xv,HQV(Y))

=  U(Xv,R9V(C))9

where the isomorphism is given by the map a ' of iv,6.1a, applied to the 
functor U(XP,C) which is exact since X p is projective and U is right 
balanced. Consequently we find

H f qHu {T{X,Y)) ^  R PU(A,RQV(C)).



Thus we have a spectral sequence

(2) R VU(A,RQV(C)) RnT(A,C).

In the same way we have a spectral sequence

(3) RqU'(LPV '(A ),C )j> R nT(A,C).

The spectral sequences (2) and (3) yield edge homomorphisms

(4) R nU(A,V(C)) R nT(A,C),

(5) R nU '{V '(A),C)-* R nT{A,C),

(6) U(A,RnV{C)),

(7) R nT (A ,C )^ U '(L nV'(A),C).
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We shall show how these homomorphisms can be computed. We have

RnU(A,V(C)) =  H n(U(X,V(C)) =  H n(T(X,C)) =  K?y)T(A,C),

and it follows from § 1 that (4) coincides with the natural homomorphism 
R(i)T -> RnT. Similarly (5) may be identified with the natural homo­
morphism r *t .

Next we consider the composition of (4) and (7)

(8) R nU(A,V(C)) -> U'(LnV'(A),C).

We have
R nU(A,V(C)) =  H n(U(X,V(C)) =  H n(U '(V '(X ),C ))

U'(LnV'(A),C) — U \H n{V \X % C )

and it follows from 2.1 that (8) coincides with the homomorphism a ' of 
iv,6. la. The composition of (5) and (6) can be computed similarly.

We also note here the exact sequences for terms of low degree that 
result from (2) and (3)

(9) 0 -> R W {A y(C ))  -> R 1T(A,C) -> I I ^ R ^ C ) )

-> R 2U(A,V(C)) -> R 2T(A,C)

(10) 0 ^ R l U \V \A \C ) ->  R 1T{A ,C )-^ U \L XV \A \C )

-> R 2U (V '(A \C )->  R 2T(A9C)

We shall also have occasion to consider the case when in (1) all the 
functors are covariant, U and U' are left balanced and V and V' are right
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exact. We then take projective resolutions X  and Y  of the variables A 
.and C. The invariants of T(X , 7) yield spectral sequences

(2a) L pU (^ L qV(C)) ^  L J ( X , Y \

(3a) LqU'(LvV'(A),C) f  L nT(X, Y).

These yield edge homomorphisms 

(4a) L nT ( A ,C ) ^ L nU(A,V(C)),

(5a) L nT(A,C) L J J \  V'(A),C),

(6a) U(A,LnV(C)) -> L nT(A,C),

(7a) U'(Lnr (A ),C )~ > L nT(A,C).

The rules for computing these homomorphisms are similar to the previous 
case. The exact sequences for terms of low degree are

(9a) L 2T(A,C) -> L 2U(A,V(C)) -> U {A ^V (C ))  -> L J ^ C )

- ^ C f ^ C ) ) - ^

(10a) L 2T(A,C) -> L 2U'(V'(A),C) U '^V 'C A X C ) L - J ^ C )

- ^ L ^ X V X A X C ) ^  0.

4. ASSOCIATIVITY FORMULAE

We shall use the term “associativity formulae” for the type of iso­
morphisms established in 0,5 and ix,2.

We begin with the situation described by the symbol 04A_r ,Al?E,Cr _s) 
where A, Y and S  are A’-algebras. The identification of ix,2.2 yields two 
expressions for the functor

(1) T(A,C) =  HomA 8r (A, Homs (B,C)) =  Homr0 £  (A ®A B,C). 

We are thus exactly in the situation described in § 3 with

V(C) =  Horn£ (B,C), VXA) =  A ®A B.

BQV(C) =  Ext* (B,C), L vVXA) =  To i f  (A,B).

Now assume that T is A-projective, and let X  be a A (g) T-projective 
resolution of A , and Y  a T ® E-injective resolution of C. It then follows 
from ix,2.4 and ix,2.4a that X  is also a A-projective resolution of A and Y  
is a S-injective resolution of C. Consequently the spectral sequences (2) 
and (3) of § 3 become (if T is A-projective):

(2) Ext*Ur  (A, Ext! (B,C)) ^  R"T(A,C)

(3) Ext»r a s  ( T o f  (A,B),C) f  R nT{A,C).



Assuming that
Tor£ (A9B) -  0 -  E x t| (B9C) for n >  0,

both spectral sequences (2) and (3) collapse, and we obtain

(4) ExtA 0r (A, Horns (B,C)) ^  Extr0 S  (4  ®A B,C).

This is a generalization of ix,2.8a.
If we replace A by A and T  by A*, then the spectral sequence (3) 

collapses and (2) becomes

(5) H*{A, Ext! (B,C)) ^  ExtA*0S W O

in the situation (A2?s,ACs) anc* under the assumption that A is X-projective. 
This generalizes ix,4.3.

We now replace (A ,T,2) by {K,YeX e) and (A,B,C) by (T,S,C) with 
C a two-sided T ® 2-module. Assuming that T is X-projective, it 
follows that T* also is A>projective so that the spectral sequences (2) and
(3) apply. They become

H»(T9H g(L 9C)) => R nT(T 9C)

Extfr0S)e(Tor^ ( r ,S ) ,c )  ^  * » r ( r ,o .

Since T is X-projective, the second sequence collapses to the isomorphism 

R nT(T 9C) ** Extfr0S)e ( r  ® 2,C ) -  H n(T  ® 2 ,0 -  

Thus we obtain the spectral sequence

(6) H*(T9H q(Z 9C)) => H n(T  ® 2 , 0

under the assumption that V is X-projective.
In view of x,2.1, the spectral sequence (6) applies also to the case when 

T and 2  are supplemented A-algebras provided both T  and 2  are K- 
projective. However a stronger result may be obtained by directly 
substituting A =  A =  B  — K  in (2) and (3). Then (3) collapses and (2) 
becomes

(7) Ext£ (A, Ext! W O )  t * E x t!0 s W O , r - 2C

under the assumption that F is A-projective.

There is an analogous discussion for homology. We consider the 
situation (^A -r,A ^z,r-sO  anc*, using the identification of ix,2.1, define

(la) T(A9C) =  A ®A 0r (B C) =  (A ®A B) ® r0 2  C.
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Then, under the assumption that F is A-projective, we obtain the spectral 
sequences

(2a) Tor£®r  (A, Tor2 (B,C)) ^  L nT(A,C)

(3a) Tor[® 2 (Tor£ (A9B)9C) f *  L nT(A9C).

If Tor„ (A,B) =  0 =  Tor2 (B,C) for n >  0, then both (2a) and (3a) 
collapse and we obtain

(4a) Tor*®1, (A,B  ® £ Q  ^  T o r (A ®A B9C)

which is a  generalization of ix,2.8.
If we replace C by 2  and F by 2* , then (2a) collapses and (3a) becomes

(5a) Hq(2 , Toi£ (A,B)) => T o r ^  2* (A,B)

in the situation (^AA9AB^) and under the assumption that 2  is A-projective.
We now replace (A ,F ,2) by (Ae,F e,A) and (A,B,C) by (A ,A,F) with A 

a two-sided A 0  T-module. Assuming that F is A-projective, the sequence 
(2a) collapses and (3a) becomes

(6a) HQ(Y 9H P(A 9A)) => H n{A ® Y,A).

For supplemented algebras we obtain similarly

(7a) T or[ (Tor£ (^,A),A) => Tor£®r  04,A) A a^t

under the assumption that Y is A-projective.

5. APPLICATIO NS TO THE CHANGE OF RINGS

We apply the results of §4 to obtain more detailed results for the 
“change of rings” as discussed in n,6 and vi,4. We assume a ring 
homomorphism

(p: A - > T

and adopt the various notations introduced in n,6. We shall treat A and 
T as Z-algebras and apply the results of § 4.

Case 1. 04A,AF r ,r C). Then (la) of §4 with (A ,r ,2 )  replaced by 
(A ,Z ,r) reduces to

(l)i T(A,C) =  A ®A C =  A(y) ® r  C.

The spectral sequence (2a) of § 4 collapses to the isomorphisms Tor„ (A,C) 
^  L nT(A,C). Thus the spectral sequence (3a) of § 4 yields

(2>! T or[ (Tor^ (A,T),C) =► Tor£ (A,C).
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The edge homomorphisms are

(3)x Tor* ( A , C ) T o r ^  (A{<phC)

(4)x Tor£ 0 4 ,0  ® r  Tor£ (A,C ).
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The homomorphism (3)x coincides with the homomorphism f l n of vi,4. 
If Tor^ 04, T) =  0 for p  >  0, then (2)x collapses and (3)1 is an isomorphism. 
We thus obtain a new proof of vi,4.1.1.

Case 2. (^ r jr^ A ’AO- Then (la) of § 4, with (A ,r ,2 )  replaced by 
(r,Z ,A ) reduces to

(1)2 T{A,C) — A ((^jC) — A ®A C.

The spectral sequence (3a) of § 4 collapses to the isomorphism Tor£ 04,C) 
^  L nT(A,C). Thus (2a) of § 4 yields

(2)2 TorJ (A, Tor^ (r,C)) => Tor^ (A,C).

The edge homomorphisms are

(3)2 Tor^ (A,C)->  TorJ (A,{(p)C)

(4)2 A ® r  Tor£ (I\C ) -> Tor£ 04,C).

The homomorphism (3)2 coincides with the homomorphism n of vi,4. 
If Tor^ (T,C) =  0 for q >  0, then (2)2 collapses and (3)2 becomes an
isomorphism. We thus obtain a new proof of vi,4.1.2.

Case 3. (Â 4,r TA,r C). Then (1) of § 4 with (A ,r ,2 )  replaced by
(A *,Z ,r*) reduces to

(1)3 T(A9C) =  HomA (A,C) =  Homr  (A(<p),C).

The spectral sequence (2) of § 4 collapses to the isomorphisms ExtA 04,C) 
& R nT(A,C), so that the spectral sequence (3) yields

(2)3 E x it (Tor£ ( r ,A),C) ^  Ext” (A,C).

The edge homomorphisms are

(3)3 Extp ((q>jA,C) -> ExtA (A,C)

(4)3 Ext” (A,C) Homr  (Tor* (T ,A),C).

The homomorphism (3)s coincides with the homomorphism f 3 n of vi,4. 
If  Tor^ -  0 for p  >  0 then (2)3 collapses and (3);i becomes an 
isomorphism. We thus obtain a new proof of vi,4.1.3.

Case 4. (r ^l,Ar r ,AC). Then (1) of §4 with (A ,r ,2 )  replaced by
(r* ,Z ,A *) reduces to

(1)4 T(A,C) =  Homr  ( A ^ C )  =  HomA (A,C).



The spectral sequence (2) of § 4 collapses to the isomorphisms ExtA (A,C) 
& R nT(A9C)9 so that the spectral sequence (2) yields

(2)4 Extf. (A, Ext% (Y ,Q )  ^  E xtl (A,C).

The edge homomorphisms are

(3)4 Extnr (A ^ C )-> E x t l (A ,C )

(4)4 E x tl (A,C) -> Homr  (A, ExtnA (Y ,C)).

The homomorphism (3)4 coincides with the homomorphism f 4 n of vi,4. 
If Ext^ (r,C) =  0 for q >  0, then (2)4 collapses and (3)4 is an isomorphism. 
We thus obtain a new proof of vi,4.1.4.

6. NORMAL SUBALGEBRAS

Let A and Y  be supplemented A-algebras and consider a ^-algebra 
homomorphism

<p: A - > T

compatible with the augmentations. In Y  we may consider the left ideal 
T. 1(A) generated by the image of /(A) under (p. We shall say that the 
map (p is (right) normal if the left ideal Y. 1(A) is also a right ideal. If <p 
is normal then T. /(A) is a two-sided ideal contained in /(T). Therefore 
T /r . 1(A) is again a supplemented ^-algebra which will be denoted by 
I7 /99. From the exact sequence 0 -> /(A) -> A K  0 we deduce the 
exact sequence

r  ®A / ( A ) ^ r - > r  <g>A 7 ^ o

where Y  is regarded as a right A-module. Since Y. 1(A) =  Im (r ®A 7(A) 
-> Y) it follows that I7/99 may alternatively be defined by

r//<p =  r  ® A

Theorem 6.1. I f  the map A ->  Y is (right) normal and i f  T, 
regarded as a right A-module, is A-projective, then setting Q =  Y//(p we 
have the spectral sequences

(1) Ext& (A, Ext! (K9C)) ^  Ext^ (A,C), (nA,r C),

(la) Tor£ (Tor* (A9K )9C) ^  Tor£ (A9C)9 (Ar 9Ca).

The operators o f Y//(p on Ext^ (K9C) and Tor* (A,K) will be defined below. 
Proof. With Q =  I7/99 we consider the situations
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(Q/4,r£2fl,rO>



These are cases 4 and 1 of the change of rings corresponding to the natural 
map %p: F -> Q. Thus the spectral sequences (2)4 and (2)x yield

(2) Extfj. (A, Ext^ ( 0 , 0 )  ^  Extf^ (A,C),

(2a) T o #  (T o #  (A,Q),C) f  T o #  (A,C).

Since F is right A-projective, vi,4.1.3 and vi,4.1.2 imply isomorphisms:

Ext«r  (Q,C) =  Ext?r  ( r  ®A K,C) E x #  (K,C),

T o #  (/1,Q) -  T o #  (A ,T  0 A K) «  T o #  (A,K).

This introduces left O-operators in Ext^ (K,C) and right O-operators in 
Tor£ (A ,K ). Carrying out the appropriate replacements in (2) and (2a) 
we obtain (1) and (la).

In most interesting applications A will be a subalgebra of F and (p will 
be the inclusion map. In this case we say that “ A is normal” instead of 

is normal” and write T//A instead of T//<p.
Consider an invariant subgroup 77 of a group II. Then Z(77) is a 

subring of Z(II). For x € II, y  e 77 we have

*(y  — i) =  (xyx~1— i)*> (y —- 1)* =  x{x~*yx — l).

This shows that Z (H ). I(tt) =  I{tt) . Z(II), and thus Z(tt) is a normal sub- 
algebra of Z(II). It is further clear that Z(II)//Z(77) =  Z(II) ® nZ =  Z(U /tt). 
Since Z(H) is 77-projective it follows that 6.1 applies and we obtain 
spectral sequences
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(3) E x t^ S A M K ^ Q )  ^  Extnu (A,C), ( n i ^ n C),

(3a) Tor?l%Hq{TT,A \C )^7or% (A ,C ), (An ,n h C)-

Taking A — Z  in (3) and C =  Z  in (3a) we obtain

(4) H v(H.Itt,H9(tt,C)) f -  H n(Yl,C), n C,

(4a) H ri(n /7T,Hg(7T,A)) f  H JIl,A ), A n .

The sequence (4) is that of Hochschild-Serre {Trans. Am. Math. Soc.lA  
(1953), 110-134).

As a second example consider an ideal I) of a Lie algebra g over K , and 
assume that b and g/b are A-free. Take

A = V ,  r = g %  £2=(g/t))E
Then we have the natural maps

cp: A -> F, \p: T -> O.
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It follows from xiii,4. 1 that T  regarded as a right A-module is free. In 
particular cp is a monomorphism which may be regarded as an inclusion. 
In xiii, 1.3 we have studied the kernel of the epimorphism y> and have 
proved that its kernel is the left ideal I \  /(A) (which coincides with 
7(A).r). This proves that the subalgebra A of T is (both left and right) 
normal and that £2 =  T//A. It follows that 6.1 applies; we obtain 
spectral sequences

(5) Ext& (A,Hq( ^ Q )  ^  Extr (A,C) (g/f)A 9QC)

(5a) Tor£ (Hg0),A),C) Tor„r  (A,C) (Ag,g/t)C).

Taking A =  K  in (5) and C =  A in (5a) we obtain

(6) 7 7 % /f ) ,^ ( I ) ,C ) )^ / /w(g,C), gC

(6a) H ^ H ^ A ) )  ^  H n{$9A )9 A g.

The sequence (6) is that of Hochschild-Serre {Ann. o f Math. 57 (1953), 
591-603).

7. ASSOCIATIVITY FORMULAE U SING  DIAGONAL M APS

We shall consider a supplemented A-algebra A together with a diagonal 
map D: A -+  A 0  A and an antipodism co: A ->  A* satisfying condi­
tions (i)-(vi) of xi,8. In the situation (a^>a^>aO we may use the identifica­
tion of xi,8.1 to obtain two representations for the functor

(1) T(A,C) =  HomA (A, Horn =  HomA (A 0  B9C).

Thus applying the procedure of § 3 we obtain spectral sequences

(2) Ext^ (A 9 Ext9 (.B,C)) => R nT{A9C)9

(3) E x ti (Torp (.A9B)9C) ^  R nT(A,C).

Here Ext9(i?,C) and Torp (A9B) are regarded first as left A 0  A*- and 
A 0  A-modules and then converted into left A-modules using the maps 
E: A ->  A 0  A* and D: A ^ A 0 A .  We recall that Ext9 and Tor^ 
stand for Ext^, Tor^.

Assuming that Torp {A9B) =  0 for p  >  0 the spectral sequence (3) 
collapses and (2) becomes

(4) Ext£ (A, Ext9 (2?,C)) ^  ExtA {A 0  B9C).

In particular, for A — K  we obtain

(5) Ext^ (A, Ext9 {B9C)) => ExtA (B,C). ,



If  further Ext9 (B,C) =  0  for q >  0  then (5) collapses to the isomorphism

(6) ExtA (K, Horn (B,C)) «  ExtnA (B,C).

A similar discussion applies to homology. In the situation (Aa,aB,aC) 
we use xi,8. la  to define

(la) T(A,C) =  A ® A (B ® C) =  (A ® B) ®A C.

This yields spectral sequences

(2a) Tor£ (A, Tor, (B ,C ))f> L nT(A,C),

(3a) Tor^ (Tor, (A ,B ),Q  f  L nT(A,C).

If Tor, (B,C) =  0  for q >  0 ,  then (2a) collapses and (3a) becomes

(4a) TorA (Tor, (A,B),C) f -T o tf  (A,B  ® C).

In particular, for C =  K  we obtain

(5a) Tor£ (Tor* (A,B),K) ^  Tor£ (A,B).

If  further Torp (A,B ) =  0 for p  >  0 ,  then

(6a) Tor£ (A ® 5 ,A) ^  Tor* (,4,5).

The considerations of this section are applicable to groups and to Lie 
algebras; we only need to replace A by Z(II) or by gg.

8. COMPLEXES OVER ALGEBRAS

Let A be a A-projective supplemented A-algebra. We shall consider 
a positive complex C composed of left A-modules and in which the 
differentiation is a A-homomorphism. To the functor

T(A9C) =  HomA (>4,C)

where A is a left A-module, we apply the considerations of § 2. The 
spectral sequences (4') and (5') of § 2 then give

ExtJ (A9H\C))=> ® nT(A,C) 

H%ExtpA (>4,0) f*  8i nT{A9C).

If  we take A — K  and denote 0£nT(K9C) by J ^ n{A,C) we obtain

(1) H \ A 9H%C)) Jf?n(A 9C)

(2) J f n(A 9C).
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We recall that in virtue of the definition of & nT  we have

,C) -  H n(HomA (X,C))

where A" is a A-projective resolution of K  and HomA (X 9C) is regarded as 
a double complex.

P r o po sitio n  8.1. I f  H q(C) — 0 fo r  q ^  0, then we have the spectral 
sequence

(3) H q{Hp{A ,C \  => H n(A fH°(C)j).

Indeed, in this case the spectral sequence (1) collapses to the iso­
morphisms J(?n(A,C) ^  H n{A ,H \C )).

P r o po sitio n  8.2. I f  C is weakly injective, then we have the spectral 
sequence

(4) H p(A ,H q(C)) ^  H n(HomA (K,Q).

Indeed, in this case H P(A ,C ) — 0 for p  >  0 so that the spectral 
sequence (2) collapses to isomorphisms ^ n{A ,C) ^  H n{H \A ,C ))  
=  H n{ HomA (K,C)).

P r o po sitio n  8.3. I f  the conditions o f  8.1 and 8.2 are simultaneously 
verified then

(5) H n{A ,H \C )) ™ H n(HomA (.K,C)).

This result may be interpreted as follows. The complex C may be 
called a weakly injective resolution of H°(C). The isomorphism (5) 
then generalizes the usual rule for computing H n(A,H°(Cj) using an injec­
tive resolution of H \C ).

Similar considerations apply to homology. We denote by A a 
negative right A-complex and consider the functor

T(A,C) =  A (g)A C

where C is a left A-module. In particular, taking C =  K, we obtain 
spectral sequences

(la) H p( H j { A , A ) ) ^ ^ n(A,A)

(2a) H A K H JA )) f - ^ n(A,X)

where
J T X M )  =  H n(A <g>A X )  

for any A-projective resolution X  of K.
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Proposition 8.1a. I f  H V(A) =  0 fo r  p  >  0, then we have the spectral 
sequence

(3a) H p(HjtA,A)) ^  H n(A ,H 0(A)).

Proposition 8.2a. I f  A is weakly projective, then we have the spectral 
sequence

(4a) Hq(A ,H fA )) ^  H n(A ®A Z).

P roposition 8.3a. I f  the conditions o f 8. la  and 8.2a are simultaneously 
verified then

(5a) H n(A ,H 0(A)) ** H n(A ®A Z).

We shall apply the above results to the case A =  Z(II) where II is a 
group with unit augmentation. We consider a negative II-complex X . 
Thus (using lower indices) X n =  0 for n <  0.

T heorem 8 .4. I f  X  is weakly projective then for any left H-module C 
we have the spectral sequence

(6) 7/p(I I ,/ /9(Hom (X,C)j) f*  H n(Homn (X ,Q )

while fo r  any right II-module A we have

(6a) H p(Il,HQ(A ® X)) ^  H n(A ® n X).

We recall that s e II operates on Horn (X,C ) and A 0  X  as follows

(sf)x  =  ^[/(^_1x)], {a ® x)s =  as ® 5_1x.

For the proof, we first observe that, by x,8.5, Horn (X,C) is weakly 
injective and A ® X  is weakly projective. Thus 8.2 and 8.2a yield

/P(II,//*(H om  (X,C)) => / / ”(Homn (Z, Horn (A,C))

i / P( n , / / ^  ® X)) H n((A ® A) ®n Z).

Since by associativity relations

Homn (.K, Horn (AT,C)) »  Homn (A,C)

(^  ® A) ®n K  ^  A ®n X ,

the spectral sequences (6) and (6a) follow.
The spectral sequence (6) was first indicated by H. Cartan and 

J. Leray (Colloque Top. Atg.9 Paris, 1947, pp. 83-85) for the case when 
II is a finite group, and by H. Cartan (C.R . Acad. Sci. P a ra  226 (1948), 
303-305) for the general case.

In the next section we shall give a number of topological applications of 
theorem 8.4.

354 APPLICATIONS OF SPECTRAL SEQUENCES [Ch a p . X V I



§9] TOPOLOGICAL APPLICATIONS 355

9. TOPOLOGICAL APPLICATIONS

Let SC be a topological space on which a group II operates on the left. 
We shall assume that the operators of II are proper, i.e. that for each 
point x € SC there is a neighborhood U such that

U O sU  =  0 for s € II, s 1.

In particular, for s ^  1, the transformation s : SC SC admits no fixed 
points.

We shall denote by «®"n , the space obtained from SC by identifying 
each point x  with its images sx , s € II. If we assume that SC is arc wise 
connected, then SC is a regular covering of SCn  and the fundamental group 
of SC may be identified with an invariant subgroup of the fundamental 
group of SCji. The factor group is then the group II.

Let X  denote the total singular complex of the space SC. Clearly X  
has left II-operators and, since the transformations of II on SC have no 
fixed points, X  is II-free.

Given a right II-module A and a left II-module C we may consider 
the homology and cohomology groups

H n{SC;A) =  H n(A 0  X ), H \SC \C) =  H \H o rn  (X,C)).

The operators of II on A and C are not used in this definition. However, 
they are used (together with the operators of II on X )  to convert H^SC \A) 
into a right II-module and H n(SC;C) into a left II-module.

The modules A and C may also be regarded as local coefficient systems 
on the space SCn  and can be used in defining the homology and cohomology 
groups

H n(arn -,A), H ”(3?n ;C)

with local coefficients. It is well known that we have natural isomorphisms

H n(&n ;C) ^  H n(Homn (X,C))

H n(.Tn -A) ^  H n(A @n X).

Since X  is II-free, we may apply theorem 8.4. We thus obtain spectral 
sequences

(1) H»(Il,HQ(SC;C)) ^  H n(SCu ;C),

(la) H p(UyHq(SC;A)) ^  H n(SCu ;A).

We shall now examine various applications of these spectral sequences.



A pplication  1. Assume that X  is path wise connected and that for 
some integer n

(2) H q(X  ;C) = 0  for 0 <  q <  n.

Then H °(X ;C )=  C. By xv,5.12, the spectral sequence (1) gives 
isomorphisms

(3) H%XU;C) ^  H q(U9C), q < n ,

and an exact sequence

(4) 0->Hn( n ,C ) ^ H n(X n ;C )M H n( X ;C)]n-> / /w+1( n , C ) ^ H n+ \X n ;C).

For analogous homology results we assume that X  is pathwise con­
nected and that

(2a) Hq{X  ;A) — 0 for 0 <  q <  n.

Then H0(X ;A ) =  A and using xv,5.12a we obtain isomorphisms 

(3a) Hq(X n ;A) ** Hq(U,A) q < n

and the exact sequence

(4a) H n+1(X U;A) -> H n+1(U,A) -> [Hn(X;A)]u

HJJ%n ;A) -> H n(U,A) -> 0.

These results include various results of Eckmann (Comment. Math. 
Helv. 18 (1945), 232-282), Eilenberg-MacLane (Proc. Nat. Acad. Sci. 
U.S.A. 29 (1943), 155-158; Trans. Am. Math. Soc. 65 (1949), 49-99; 
Ann. o f Math. 51 (1950), 514-533) and Hopf (Comment. Math. Helv. 17 
(1944), 39-79). Not included are the results of Eilenberg-MacLane 
dealing with the invariant k n+1 (see Exer. 9). The knowledge of this 
invariant yields a complete determination of H n(X n ;C) and H n (X u ;A) 
rather than the partial information contained in the exact sequences (4) and 
(4a).

A pplication 2. Assume that II is cyclic infinite with generator s. 
Then a II-projective resolution of Z  is given by

0 —  Z(U) Z(U) — - Z — > 0 

where d  is multiplication by s — 1. It follows that

H °(n,C ) =  Cn , H \n ,C )  =  Cn , H p(U9C) =  0 forp  >  1

H0( n ,A ) = A n , H 1( n ,A ) = A n , H p( n ,A ) = 0  for/7 >  1.
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Therefore in the spectral sequences (1) and (la) non-zero terms occur only 
for =  0, 1 and case E of xv,5 applies. We thus obtain exact sequences

0 [H^H ariAyia  -> H n(X u \A) [Hn(X;A)]u  0

0 [ H j a r ^ h  -+ Hn(arn9a ) -> [Hn̂ (X;A)]n -> o

For a direct proof see Serre (Ann. o f Math. 54 (1951), 503).
A pplication 3. Assume that X  is an ^-dimensional manifold which is 

acyclic, i.e.
H0(X ;Z ) =  Z , HfSC ;Z) — 0 f o r ? > 0 .

The Euclidean «-space is an example of such a manifold. It follows from 
the Kiinneth relations (vi,3.1 and vi,3.1a) that

H °(X ;Q  =  C, H Q(S£;C) = 0  for q >  0

Hq(2£ ;A) =  A , Hq(2£ ;A) =  0 for q >  0

for any coefficient group. This can also be deduced from the fact that 
the singular complex X  of X  is a Z-projective resolution of Z.

The spectral sequences (1) and (la) collapse, therefore, to the iso­
morphisms

H p(X n ;C) ™ H p(U;C)9 

H9(X u ;A) ** Hp(nui)~

Since X u  is an ^-dimensional manifold, we havcH p(X n ;C) =  0 forp >  n. 
Therefore

H p(U9C) =  0 for p  >  n

for all coefficient modules C. This means that (cf. x,6.2)

dimz(n) Z  =  dim Z(II) <[ n.

If further X n  is compact, then H J U 9Z 2) & H n(X n ,Z g) ^  0, and thus

dimz(n) Z  =  dim Z(II) =  n.

This imposes severe limitations upon the groups II that can operate 
properly on X .  In particular, all finite groups (except for II =  {1}) are 
excluded (see xn, Exer. 2).

A pplication 4. Assume that X  =  S n is the w-sphere. Since X  is 
compact and II operates properly, it follows that II must be finite. If n 
is even, then because of well known fixed point theorems every element 
s € II, s f=- 1 must reverse the orientation of S n. Therefore either
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II =  {1} or n  =  Z 2. Eliminating this not too interesting case, we may 
assume that n is odd. Then each element s e II preserves the orientation 
of S n. Further

H Q(Sn;C) =  C fo rq  =  09n

Hq(Sn;A) =  A for q =  0,«

and the remaining groups are zero. In the spectral sequence (1) and (la)
non-zero terms are obtained only for q — 0 Thus xv,5.11 implies the
exact sequences

 > H p(Tl,C) -> tf%S£;C) -> H p~n(U9C) -*  H P+1(U9C) -»-----

 > H P+1(n,A)  -> H v_n(Yl,A) H P(iSn ;A) -> H P(U,A) •

Since is an «-dimensional manifold, we have

;C) =  0 =  H V(S& ;A) for p  >  n.

The exact sequences above thus yield the isomorphisms

H V{S ^ ;C) ^  H»{n ;C ), 0 £ p < n

H p(SyiI A) & H P(TI;A), 0 £ p < n

hxii^c) & H i+n+1(U,c), / >  o
i/,(iM ) ^  i / i+n+1( iu )  i >  o.

We now consider the complete derived sequence H q(Jl9C) of xn,2. We
have the natural isomorphism ^ 1(II,C) ^  H n+2(U,C). Since H° and
H n+1 are left satellites of H 1 and H n+2 there results an isomorphism 
/ / n+1(II,C) ^  # 0(II,C). Therefore the finite group II has period 
n +  1, in the sense of xn, l l .  We have seen in xn, 11 that this imposes 
severe limitations on II. It is an open question whether every finite 
group II with period n +  1 (n odd) can operate properly on S n.

10. THE ALM OST ZERO THEORY

Let II be a group and X  a negative (left) II-complex (i.e. X n— 0 for 
n <  0) and A an abelian group. An ^-dimensional cochain/ :  X n A is 
called Il-jinite if for every x e X n we have f ( s x ) =  0 for all but a finite 
number of elements s e II. The II-finite cochains form a subcomplex 
Horn (X 9A) of Horn (X,A ).

With each II-finite cochain / :  X n -> A we associate the cochain 
/ '  e Homn (X n,Z(U) ® A) given by

f x  =  2  s  ®
sen
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Here Z(1I) 0  A is regarded as a left II-module using the left II- 
operators of Z(II). Conversely any / '  has the form f ' x  — 2  s ® g(s>x)

sell
and we may define / b y  setting f x  =  g(l,x). It is now clear that we obtain 
an isomorphism

(1) Horn (X,A) & Homn (X,Z(Yl) 0  A).

If X  is a projective II-resolution of Z, then we define

(2) H n(U,A) =  H n( U ^ i  (X 9A)).

These are the cohomology groups of II in the “almost zero theory” ; they 
were considered by Eckmann (Proc. Nat. Aca. Sci. U.S.A. 33 (1947), 
275-281, 372-376; 39 (1953), 35-42). Combining this with (1) we obtain

H n(U,A) a* H n(U ,Z(n) 0  A).

This reduces the “almost zero theory” to the usual cohomology theory of 
groups.

We now drop the assumption that X  was a II-projective resolution of 
Z  and assume only that X  is weakly projective. Then 8.4 may be applied 
to yield the spectral sequence

(4) /P(II,//«(H om  (X 9Z(Il) 0  A))) => H n(Horn (X,A )).

Assume now that, for each n, the II-module X n is II-free on a finite base 
{on J .  The elements san a, for s e II, form a Z-base for X n. A cochain/ :  
X n -> A is II-finite if and only iff{ so n0i)-= 0 except for a finite number of 
pairs C?,oc). Thus the II-finite cochains coincide with the finite cochains 
on X  relative to the system of cells san a. Thus the spectral sequence
(4) becomes

(4') J^(II,tf*(Hom  (2f,Z(II) 0  A))) §>n(X,A)

where <$n(X,A) is the cohomology group of X  based on finite cochains.
These considerations may be applied in the following topological 

situation. Let J  be a topological space with II as a group of left 
operators. Assume further that a cellular decomposition of &  is given 
which is invariant under the operations of II and such that no cell is 
transformed onto itself except by the element 1 of II. We finally assume 
that SCn  is compact. If we denote by X  the II-complex of the chains 
of the cellular decomposition of 2£, we find that each X n is II-free on a 
finite base. Therefore $)n{X,A) is the cohomology group based on the 
finite cochains of the cell complex. This group, denoted by ^ n( ^ 9A )9 is
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known to be independent of the choice of the cell decomposition, and is 
known as the “cohomology group of SC with compact supports.” The 
spectral sequence (4') may now be rewritten as

(4") H% n,H% sc,z{n) ® A)) ^  $ n($r,A).

EXERCISES

1. In the situation (A-z^^r-s»A^r) where A, T and 2  are Af-algebras, 
define the isomorphism

HomA(g)5: (A, Homr  (B,C)) e* Homr<g)S (B, HomA (A,C))
and derive appropriate spectral sequences.

2. Show that the homomorphism p of vi,5 is an edge homomorphism in 
one of the spectral sequences of § 4. Use this to generalize vi,5.1.

3. Show that the maps U j  and O j  of xi,9 are edge homomorphisms in 
two of the spectral sequences of § 7. Use this to generalize xi,9.2.

4. Prove vi,3.5, vi,3.5a and vi, Exer. 14 using the spectral sequences 
of § 4 and Exer. 1.

5. Let cp: A -> T be a ring homomorphism and let A be a left T-module. 
Show that

l.w.dimA A <1 l.w.dimA T -f  l.w.dimr  A, 
l.inj.dimA A <1 r.w.dimA T +  l.inj.dimr  A , 

l.dimA A <1 l.dimA T +  l.dimr  A.
6. Let A be a AT-projective supplemented algebra. Let C be a positive 

complex, composed of left A-modules and in which the differentiation is a 
A-homomorphism. Assuming that

H \C ) = 0  for 0 <  q <  n,
define an exact sequence

0 — >■ H n(A,H°(C )) —  J r n(A,C) —  H °(A ,H n(C)) H n+\A,H °(C))

— * J f n+1(A,C).
[Hint: use the spectral sequence (1) of § 8.]

Give a dual statement.
7. Let SC and SC' be two ^-dimensional spheres (n odd), with the cyclic

group II of order p  operating on SC and on SC' (p odd prime). Let /  be a
continuous mapping SC SC' compatible with the operations of II. 
Then, using Exer. 6, define a commutative diagram

H n{ T  ;ZV) H n+ \T l,H \% ' ;ZP))

(A) f n f°

H n{sc\zv) — > H n+l (n ,H % a r& j)



Assume now that II operates properly on SC; then, using 
H n+1(3^u ;Zp) =  0 and Exer. 6 (or the exact sequence (4) of § 9), prove 
that cp is an isomorphism. Using the diagram (A), show that the homo­
morphism f n does not depend on the choice of the m apping/. In other 
words, the “degrees” of any two mappings SC SC' (compatible with II) 
are congruent mod. p.

8. Let SC be a connected topological space, with a group II operating 
on SC; assume that

Hq(9C) =  0 forO < q < n .

X  denoting the singular complex of SC, show that

H%Homz (.X,Hn(SC))) =  0 0 < q < n

H ”( Homz (X,HJ3C))) =  Homz (H n(3£\H n(9C%

Applying Exer. 6, define a homomorphism

cp: Homn (Hn(SC),Hn(SC)) ->

Let i denote the identity map: H n(SC) H n(SC). Then <p(i) is the 
Eilenberg-MacLane invariant

fc»M-i € H ^ \ U ,H n(SC)).

Let SC' be another space satisfying the same conditions, with the same 
group II operating on SC'. Let / b e  a continuous mapping SC -> SC’ 
compatible with the operations of II. Show that the corresponding 
homomorphism

H ^ \Y i ,H n(SC) ) -> H ^ \ U 9H n(SC:)y

maps the invariant k n+1 of SC into the invariant k ' n+1 of SC'.
Using the invariant k n+1 give a new proof of the final result of Exer. 7.
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Hyperhomology

In troduction . In Chapter v a resolution of a m odule^ was defined to 
be a complex with suitable properties. If A itself is a complex the resolu­
tion must be defined as a double complex satisfying rather strong condi­
tions (§1). Given a functor T  of one variable, a complex A and a resolu­
tion X  of A, it turns out that the invariants of the double complex T(X) are 
independent of the choice of X  and yield the “hyperhomology invariants” 
of T(A). There result two spectral sequences with essentially the same 
“ limit” and with terms E 2 given by

H p(RqT(A)) and (R9T)(HP(A)).

Similar results hold for functors of any number of variables.
The spectral sequences obtained may be regarded as a general solution 

of the problem partially solved earlier by the Kunneth relations (iv,8 and 
v i,3).

1. RESO LUTIONS OF COMPLEXES

In the sequel we shall have to consider modules, complexes and double 
complexes all in the same context. The following conventions will 
simplify matters. Given a double complex A and an integer p , we denote 
by A p>* the complex B  defined by Bq — A p,q and the second differentiation 
operator d2 of A. Similarly A *,q is the complex C defined by Cp — A p,q 
and the first differentiation operator dx of A. We shall refer to A p’* and 
A *,q as the p-th row and g-th column of A, respectively. The differentiation 
operators of A yield maps

For each double complex A we defined in xv,6 the double complexes 
Hj(A) and HU(A). The double complex H ^A ) is obtained by taking 
homology modules with respect to the first differentiation operator in A . 
Thus in Hj(A) the first differentiation operator is zero and the second one is 
induced by d2. In HU(A) it is the other way around. Clearly

H ft*(A) =  H(A»*), H f« (A ) =  H(A*>q)
362
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In quite the same way we define the double complexes 

B ^A), B'(A), Z JA ), Z[(A)

and similar double complexes with I replaced by II.
As in v ,l, a module A will be regarded as a complex with A 0 =  A, 

A n =  0 for n •=£ 0. A complex A will as a rule be regarded as a double 
complex such that A p,° =  A p, A p,q = 0  for q ^  0. Thus A * ’0 =  A and 
the given complex appears as a 0-th column in the double complex.

Let A be a complex. A left double complex X  over A consists of a 
double complex X  such that X P,Q =  0 for q >  0, and of an augmentation 
map e : X ->  A. The augmentation actually is given by the map e : Z * ’° 
-> A such that the composition X * ’~1 -> X *’° -> A is zero.

Let / :  >4 -> ^4' be a map of complexes and let X , X ' be left double 
complexes over ,4,T' with augmentations £, e . A map i7: A" such
that e'F =  fe  is called a map over f

Let X be a left double complex over the complex A . There result the 
following left complexes:

(1), X v’* over A p

(2), Zf-*(X) over Z P(A)

(3), over Z 'V(A)

(4), B f'*(X ) over B*(A)

(5), B ? '*(X ) over B 'V(A)

(6), Hf-*(X) over H»(A)

We shall say that X  is a projective resolution of the complex A if for all /?,
(l)-(6) are projective resolutions.

Proposition 1.1. I f  fo r  all p, (4) and (6) are projective resolutions, 
then X  is a projective resolution o f A.

P r o o f .  Since {$)v+1 and (5)^ are naturally isomorphic, it follows that
(5)^ is a projective resolution. The sequences 0 -> (4)^ -> (2)^ -> (6)^ -> 0, 
0 -> (6)*, -> (3)p -> (5)p -> 0 being exact, it follows from v,2.1 that (2)p 
and (3)^ are projective resolutions. For the same reason the exactness of 
the sequence 0 -> (4)  ̂-> (1)^ -> (3)  ̂-> 0 implies that (1) ,̂ is a projective 
resolution.

Proposition 1.2. Each complex has a projective resolution. I f  X  and 
Y  are projective resolutions o f complexes A and C, and f :  A ->  C is a map, 
then there is a map F : X  -> Y  over f  I f  F,G : X ->  Y  are maps over 
homotopic maps f g : A -> C then F and G are homotopic {in the sense o f 
iv,4).



P roof. Let A be a complex. For each p  select projective resolutions 
X P,B and X P,H of B P{A) and H P{A). By v,2.2 we may find for each p  an 
exact sequence

0 _> x PtB -> X p’z  -> X V'H -> 0

where X p,z is a projective resolution of Z P(A). Applying v,2.2 again we 
obtain exact sequences

0 -> x p>z  -> X P’A -> X p+hB -> 0

where X P,A is a projective resolution of A p. We define X  to be the 
doubly graded module with X P,A as the p-th row. The first differentiation 
operator d± is defined by composition

Xv>A _> x p+1,B -> X p+1,z X P+1’A.

The second differentiation d2 is defined for each row X P,A as the differentia­
tion in X P,A with the sign (— l )p. Then d1d2 +  d2dx =  0 and X  is indeed 
a double complex. The augmentation X^> A is defined by the augmenta­
tions X p,a - > A p. For this double complex X,  the complexes Bf *(A)  
and H f ’*(A) are isomorphic with X P,B and X P,H. Thus it follows from
1.1 that X  is a projective resolution of A.

Let X  and Y  be projective resolutions of the complexes A and C and let 
/ :  A -»  C be a map. Consider the maps

f p-B : B P(A)->BP(C \ f p'z : Z P( A ) ^ Z P(C), f p>H: H P(A)->HP(C)

induced by / .  By v,1.2 there exist maps

F p>B: Bf '*(Xy+B¥-*(Y),  Fp>H: Hf>*(Xy+H¥'*(Y)

over f p,B and f p,H. By v,2.3, there exist maps

Z f ’*(X) -> Z f’*( 7)

over f p,z such that the diagrams

0 ^ B ¥ ' * ( X ) - + Z ¥ ' * ( X ) - + H ? ' * ( X ) - * 0

0 ^  *( 7 ) -> Z f>*( 7 ) ^  i f f  •*( 7 ) ^  0

are commutative. Applying v,2.3 again we find maps

Fv’* : -> 7 p’*

over such that the diagrams
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0 Z f * ( X )  -»  X p'* -> Bf +1-*{X) -> 0 

0 -> Z f * (  Y)  y p'* -> y ) -> o



are commutative. It follows that the diagrams

dx
y p , *  . 1 > y p + 1 , *
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F p>* FP+1,*

y p , *  — > y p + l , *
di

are commutative. Thus the maps FPt* yield a map F: X  -> 7  over 
/  as desired.

Finally let F,G : Z  -> 7 be maps overf , g : A -»  C and let ^ : f  ~  g be a 
homotopy. By v, 1.2 there exist maps S'®**: pH-1** over

Cp+1. The maps 5 p,gr' yield a homomorphism 5: JST -> Y  of 
bidegree (1,0), which commutes with the augmentation and anticommutes 
with the second differentiation. Setting

J = F + d 1S + S d 1

we find that J: X  Y  is a map over g and that (Sf0) is a homotopy 
F c ^ J .  It thus remains to be shown that the maps G and J  over the same 
map g  are homotopic.

In each of the rows Xp’*, YVt*, etc., we consider the differentia­
tion operator given by (—1 )vd2. By v,1.2 we may choose homotopies,

y p , B .  j p , B  Q P ’B  y p M  • j p , n  ^  ( J P > H %

Then v,2.3 yields a homotopy

y p , Z . J P , Z  r ^  £ 2? , ^

which properly commutes with the above two. Applying v,2.3 we obtain 
homotopies

y p , *  .  J P , *  Q P > *

which commute with the above. The maps (—1 )PTP’* yield a homo­
morphism T : Y  of bidegree (0,1) and such that

d1T + T d 1 = 0 ,  d2T + T d 2 =  G - J .

Thus (0,T) is the desired homotopy G. This concludes the proof
of 1.2.

A right double complex over a complex A  is a double complex X  such 
that X Pt9 =  0 for # < 0  and an augmentation map e : A -> X .  The 
definition of an injective resolution of A and the formulation and proof of 
the analogue of 1.2 are left to the reader.
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P roposition 1.3. Let A b e  a complex such that A n — 0 fo r  some set N  
o f integers. Then the projective resolution X  o f A and the injective resolution 
Y  o f A may be chosen so that X n,q =  0 and Y n,q — 0 fo r  all indices q and all 
integers n e N.

This is a direct corollary of the construction of X  given in the proof 
of 1.2.

P roposition 1.4. Let A. be a ring such that fo r  some integer n the 
functor Extw+1 is zero. Then fo r any A-complex A the projective resolution 
X  and the injective resolution Y  may be chosen so that X v,q — 0 and 
Yv>q =  0 for | q | >  n.

P roof. The condition Extn+1= 0  implies, by vi,2.1 and vi,2.la, that all 
A-modules have projective (injective) dimension <lw. Thus all projective 
and injective resolutions of A-modules may be chosen of dimension <i». 
Thus the conclusion of 1.4 again follows from the construction given in 
the proof of 1.2.

2. THE INVA RIAN TS

Consider the (additive) functor T(A,C) covariant in A, contravariant in 
C, where A is a A-m odule, C is a A 2-module and T(A,C) is a A-module.

Let A be a A^complex and X  an injective resolution of A, and let C be a 
A2-complex with a projective resolution Y. Then T(X, Y) is a quadruple 
complex. We pass from this quadruple complex to a double complex by 
grouping (see iv,4) the first and the third index and the second and the 
fourth index. Thus

T p'q(X, Y) =  YW i), P l + P ,  =  P, q i + q 2 =  q.

The differentiation operators and <),, on T{X ,Y) are defined on
T (X ^'(‘\  Yv q ) as

=  T(dlt YPttVi ) +  T(XPl,qi,d1)

$2 =  T(d2, Y ^ j )  +  T(X pi>q\d 2).

We shall show in a moment, that the invariants of the double complex 
T (X ,Y ), consisting of the graded module H Hn(T(X , Yj), its two filtrations, 
and the two spectral sequences belonging to these two filtrations, are 
independent of the choice of the resolutions of A and C. We shall refer to 
these as the “cohomology invariants of the functor T  and the complexes 
A and C” or, by abuse of notations, as the cohomology invariants of 
T(A,C). The module H n(T(X , 7)) will be written as & nT(A,C) and will be 
called the n-th hypercohomology module of T(T,C).

Consider another pair A', C ’ of complexes and their resolutions X \ Y r. 
Given maps f f x: A - ^ A '  and g,gx\ C  -> C, we can find maps F,FX: 
X ->  X ', G ,^ :  7 '- >  7  over f f l9 g,gx respectively. These induce maps
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J  =  T(F,G), J x =  T iF ^G J  of the double complex T(X , Y ) into T (X \  Y '). 
Thus J  and J x induce maps of the invariants of these double complexes. 
Suppose now that we have homotopies /  ̂ / i ,  g g v  Then by 1.2 we 
also have homotopies F  ̂  Fl9 G ~  G±. As was shown in iv,4, this yields 
a homotopy J ^ J X and therefore by xv,6.1, J  and J x yield the same 
homomorphisms of the invariants of T(X, Y) into those of T(X ', F ').

The above reasoning yields the following conclusions. The invariants 
of T(A,C) as defined above are independent of the choice of the resolutions 
of A and C; m aps/: A -> A ',g :  C"-> C induce a map of the invariants 
of T(A,C) into those of T(A',C '); homotopic maps/ c ^ f l9 g g x induce 
the same maps of the invariants. Thus the invariants of T(A,C) may be 
regarded as a functor co variant in A, contravariant in C and invariant with 
respect to homotopies.

We now proceed with the computation of the initial terms IIf,? of 
the two spectral sequences associated with T(A,C). By xv,6 this amounts 
to computing the doubly graded modules

H jH v in X ,  F)), H M T i X ,  Y))

where X  is an injective resolution of A and F is a projective resolution of C.
We begin by computing Hu{T{X , F)). Since in Hu  only the second 

differentiation operators are used, we may concentrate our attention on a 
fixed row X Pv* of X  and a fixed row YP2 * of F. Then

HfiQ(T(X, Y)) =  2  m T ( X ^ * , Y ^ ) ) .
Pl+P2=P

Since X r>* is an injective resolution of A r and Ys * is a projective resolution 
of Cs we find

H % T (X ^* ,Y P̂ ) )  =  B?T{A^,CP) .
We thus find
(1) H ? f(T (X ,Y ))=  2  R>T(A*CP)

PX+P2=P

or equivalently
(1') H& 9 =  RQT(A,C).

The differentiation operators on both sides of (1') coincide. Since 
H p(H*j q) is precisely the module of degree (p,q) of HjHn  we obtain

(2) I £■« =  H p(RqT(A,C)).

We now proceed with F I^ T ^ C )) .  Since only the first differentiation 
operators are employed in computing HT we may limit our attention to 
fixed columns X * ’\  F* ^  of X  and F. Then

H f*(T(X , F)) =  2  H p(T(X*>\ F*^)).
q1+q2==q
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Since X * ’91, Z (X *'Ql), B{X*'Ql\  . . . ,  H (X *’Ql) are all composed of injective 
modules, the complex X * ,Ql splits. Similarly Y#tVt splits. Therefore by 
iv,7.4 the maps a and a ' are defined and are isomorphisms. This leads to 
the identification

P l + P 2 =*P

Combining the last two formulae we obtain

(3) HA T(X, Y)) =  Y)).

The differentiation operators on both sides coincide and are both given 
by the second differentiation operators. Since H ^X )  is an injective 
resolution of H(A) and i / x( Y) is a projective resolution of H(C), we may 
apply (1) to (3). We find in this way the terms i.e. the terms U%’9 as

(4) Ilf   ̂=  2  RqT (H ^(A \H P2(C)).
P l + P 2 = P

We recall here that in the notation for the second spectral sequence, the 
second index q indicates the degree of the filtration. In (2) the degree of 
the filtration is p.

The case of two variables considered above was only an example. The 
discussion applies to any number of variables provided all covariant 
variables are resolved injectively and contravariant variables are resolved 
projectively.

There is a dual discussion for homology invariants based on projective 
resolutions of covariant variables and injective resolutions of contra­
variant variables. The homology invariants of T{A,C) consists of hyper­
homology modules JS?nT(A,C) possessing two filtrations, and of two 
spectral sequences beginning with the terms

(2a) I | ;4 =  H v{LqT(A,C))

(4a) I IL  =  2  LqT(HPi(A),H*KQ)
P ! + P Z= P

where the filtration degree in (2a) is p  while in (4a) it is q.

3. REGULARITY CONDITIONS

As above let A and C be complexes, X  an injective resolution of A and 
Y  a projective resolution of C. Since X P,Q =  0 and YPtQ =  0 for q <  0, 
it follows that

T P’Q( X ,Y ) =  0 for </ <  0
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where T  is a functor covariant in the first variable and contravariant in the 
second. Therefore the first filtration is regular. Thus, by xv,6 (Case 1), 
we have the edge homomorphism

I H n(T (X ,Y)) 

which becomes the homomorphism

(1) H n(R°T(A,C)) -> & nT(A,C).

As for the second filtration, it need not be regular, but nevertheless by 
xv,6, we have the edge homomorphism,

H n(T (X ,Y ))->  II£’°
which yields
(2) M nT(A,C) -> R°T(H(A),H(C)).

Proposition 3.1. The composition o f the homomorphisms (1) and (2) 
coincides with the homomorphism

a ': H(R°T(A,C)) -> R°T(H(A),H(C)) 

o f  iv, 6.1a, applied to the left exact functor R°T.

Proof. Let a be the composition of (1) and (2). Clearly a is natural. 
In view of iv,6.1a it therefore suffices to show that a is the identity if A and 
C have differentiation zero. In this case the resolutions X  and Y  may be 
constructed simply by choosing resolutions for the modules A p and CQ 
and letting the first differentiation operators be zero. Thus T (X ,Y ) will 
have the first differentiation operator zero. The fact that a is the identity 
follows from the final remark of xv,6.

In practice, we shall not be able to say much about the cohomology 
invariants of T(A,C) unless we know that the second filtration also is 
regular. We have no general criteria for this, but the following two cases 
include all the situations actually encountered.

Case 1. The complex A is bounded from below (i.e. A p =  0 for p  
sufficiently small) and the complex C is bounded from above (i.e. Cp =  0 
for p  sufficiently large). Then by 1.3, the resolution X  of A may be 
chosen with X p,q =  0 for p  small and Y  may be chosen with Yp,q =  0 for p  
large. Therefore since Tp’q(X, Y) == llT{X p̂ q\  YT̂ q) yp x +  p 2 =  p ,q i +  ?2 
=  q, it follows that Tp’q(X , T) =  0 for p  sufficiently small. In this case the 
second filtration of T(X , Y) is regular.

Case 2. Suppose that the rings A x and A 2 over which the nodules A 
and C are given are such that E x t^  =  0, Ext^z =  0 for # sufficiently large. 
Then, by 1.4, the resolutions X  and Y  may be chosen so that X p,q =  0 
_  y p>q for | q | sufficiently large. It follows that TPfQ(X , Y) =  0 for | q | 
sufficiently large. In this case the second filtration is regular.



In the sequel, when considering the cohomology invariants we shall 
automatically assume that we are in one of these two cases. We thus 
have the sequences

(3) H p(RqT(A,C)) =f  M nT(A,C)

(4) 2  RqT{H ^(A),H H{C)) => !MnT{A,C)
P l + P 2 = P

called, respectively, the first and the second cohomology spectral sequences 
of T(A,C).

If we assume that R 9T(A,C) =  0 for q >  0, then the sequence (3) 
collapses and (4) becomes

(5) 2  RqnH *'{A),H v (<C))^H% R'>T{A,C)).
P l + P 2 = P

If we assume that A is an acyclic right complex over a module M  and C 
is an acyclic left complex over a module N, then (4) collapses and (3) 
becomes

(6) H P(RQT(A,C)) R nT(M,N).

If further R QT(A,C) =  0 for q >  0 then (6) yields

(7) H n(R°T(A,C)) R nT(M ,N ).

This generalizes the rule for expressing the derived functors R nT  using 
resolutions of the variables.

We now briefly state the corresponding facts for homology invariants. 
If X  is a projective resolution of A and Y  an injective resolution of C, then 
Tp q(X, Y) =  0Tor q <  0 and the second filtration T (X , Y) is regular. We 
have the edge homomorphisms

11*0 H n{ T { X ,Y ) ) ^ l l 0
which give

L 0T(H(A)9H(C) )-*  J?0T(A,C)-> H(L0T(A,C)).

P roposition 3.1a. The composition o f the above two homomorphisms 
coincides with the homomorphism

a: LqT(H(A),H(C)) -> H(L0T(A,C))
o f  iv,6.1.

In the sequel, in order to assume the regularity of the first filtration we 
shall automatically assume that we are in one of the following two cases: 

Case la . The complex A is bounded from below, while the complex 
C is bounded from above.
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Case 2a. The same as case 2.
In either of these two cases we have the sequences

(3a) H p(LaT(A,C)) f - J ? nT(A,C)

(4a) 2  LqT(Hh(A),H*KC)) => J?nT(A,C)
Pl+P2=P

called, respectively, the first and the second homology spectral sequences 
of T(A,C).

4. M APPING THEOREMS

Proposition 4.1. The natural transformation t: R°T  -»  T  induces an 
isomorphism o f all the cohomology invariants o f R°T(A,C) onto those o f 
T(A,C).

Proof. In view of xv,3.2 it suffices to verify the conclusion for the 
initial terms of the spectral sequences (the regularity conditions of § 3 
being tacitly assumed). This, however, is clear, since by v,5.3 t induces 
isomorphisms R QR°T ^  RQT.

The above proposition shows that T and R °T have the same cohomology 
invariants. Thus without any loss of generality, we may assume that T  is 
left exact.

P roposition 4.2. Let f :  A -> A ', g : C '->  C be maps o f complexes 
such that the induced mappings

H(RT(A,C)) -> H (R T (A ',C ))

RT(H(A)9H (Q ) -> RT(H (A'),H(C f))
are isomorphisms. Then f  and g induce isomorphisms o f all the cohomology 
invariants o fT(A ,C ) onto those o f T(A',C').

This is an immediate consequence of xv,3.2.
T heorem 4.3. L e t f : A ->  A ', g: C  -> C be maps o f complexes which 

induce isomorphisms H(A) -> H(A'), H (C ')->  H(C). Let T  be a left 
exact functor such that RqT(A,C) =  0 =  R qT(A \C ') fo r  q >  0. Then, i f  
the regularity conditions o f  § 3 are satisfied, /  and g induce an isomorphism 
H(T(A,C))-+ H (T(A\C ')).

Proof. Since R QT(A,C) =  0 for q >  0, the first spectral sequence of 
T(A,C) collapses and reduces to an isomorphism H n(T(A,C)) ^  R nT(A,C). 
Thus the second spectral sequence yields

2  R 9T(HPl(A),HvfC )) H n(T(A,C)).
P l + P 2 = P

The same holds with A,C  replaced by A \C '. Since /  and g  induce iso­
morphisms of the terms on the left, the conclusion follows from xv,3.2.

We leave to the reader the statement of analogous propositions for 
homology invariants.
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5. KUNNETH  RELATIONS  

We shall suppose here that the functor T  is left exact and satisfies

(1) R nT  =  0 for w >  1.

We are in Case 3 of xv,6. Thus the first spectral cohomology sequence 
yields the exact sequence

— >  i ^ 0 - >  mnT->  i ”- 1’1 - *  i * + 1 *° - >  mn+lT-^  i i *1 - >  • • •

which can be conveniently recorded as the exact triangle of graded modules

8 p'

h (r ' t (a ,c ) ) - ^ h (t (a ;c ))

with the degrees of y, p, d being 2, 0, —1 respectively.
The second spectral cohomology sequence yields exact sequences

0 -> I P - 1*1 -> MnT->  I P ’0 -> 0

which can be recorded as the exact sequence

0 —  R 1T(H(A)9H(C)) — * StT{A,C) T(H (A\H (C)) — + 0

with o', r  having degrees 1,0.
We already know from 3.1 that the composition rp is the homo­

morphism a ': H(T(A,C))->T(H(A),H(C)). It can be shown by a similar 
argument that the composition da coincides with the homomorphism 
a: R }T {H (A \H (C ))^  H iR 'T ^ C ) )  which is defined since, by (1), the 
functor R XT  is right exact.

In sum all the information available can be recorded in a single diagram

0 ------   R 'T iH iA lH iQ ) - 1 -* M T {A £ )ZZ -+ T(H(A),H(C)) ► 0

(2)
H { R 'T { A ,C ------------ — ------- ► H(T{A,C))

in which the top row and center triangle are exact, and the remaining two 
triangles are commutative.

Suppose now that for some integer n we have

(3) H \R }T (A ,C )) =  0 io xk  — n — l ,n  — 2
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Then p yields an isomorphism

p : H n(T(A,C)) S inT(A,C) 

so that the top row of the diagram yields the exact sequence

(4) 0—  2  R 1T(Hp(A),H q(C ))-^H n(T(A,C))-~-> 2  T(H*(A),HQ(C))— 0
p + q = n —l  p + q=n

where — p~xo.
Theorem 5.1. Let n >  1 be given. I f  T  is a left exact functor (cov. 

in A , contrav. in C) such that RnT  =  0, and i f  A and C are complexes 
such that (3) holds, then we have the exact sequence (4).

In particular the theorem may be applied to the functor HomA (A,C) 
where A is a hereditary ring. We obtain

C orollary  5.2. I f  A  is a hereditary ring and A and C are complexes 
such that

# fc[ExtX 04,C)] =  0 for k  =  n -  1, n -  2, 

then we have the exact sequence

0 *■ 2  E x t\ (H v{A),Hq(C)) — * / f ”(HomA (A,C))
p + q = n - 1 a'

—  2  HomA (H V(A ),H \C ))  — > 0
p + q=n

To obtain analogous results for homology invariants we assume that T  
is right exact and satisfies L nT =  0 for n >  1. In diagram (2) we then 
replace 0t by JSf, R 1 by L l9 we interchange a and a ' and reverse all arrows. 
We obtain:

T heorem 5.1a. Let n >  1 be given. I f  T  is right exact {cov. in A, 
contrav. in C), and satisfies L nT  =  0, and i f  A and C are complexes such

that H ^L jTiA .C )) = 0  for k  =  n — 1, n — 2

then we have the exact sequence

(4a) 0 — 2  T(Hv{A),Hq(C)) —  H n(T(A,C))
p + q = n  a

—  2  L 1T(Hv(A),Hq(C ) ) - » 0 .
p + q = n —l

C orollary  5.2a. I f  A is a hereditary ring and A and C are complexes 
such that

t f fc(T o r* 0 4 ,C ))= 0  f o r f c = » - l , n - 2  

then we have the exact sequence 

(5a) 0 ->  2  H p(A )® A Hq(C )-+ H n( A ® A C)
p + q = n

I  Tofl (Hp(A),Hq( C ) ) ^ 0 .
p + q = n —1
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In stating 5.1 and 5.1a we tacitly assumed that the regularity conditions 
of § 4 are satisfied. This is no longer necessary in 5.2 and 5.2a since the 
ring A is supposed hereditary, so that we are in Case 2 of § 3.

The reader should compare these results with those of iv,8 and vi,3.

6. BALANCED FUNCTORS

T heorem 6.1. Let T  be a right balanced functor (cov. in A , contrav. in 
C), X  an injective resolution o f a complex A , and Y  a projective resolution 
o f  a complex C. Then the maps

T{X,C) - L  T(X, Y ) T(A, Y)

induced by the augmentations, yield isomorphisms between the cohomology 
invariants o f T(A~C) and'the invariants o f the double complexes T(X,C) and 
T (A ,Y ).

P roof. Since the regularity conditions of § 3 are tacitly assumed, it 
suffices, in view of xv,3.2, to establish the isomorphisms of the initial terms 
of the spectral sequences. We shall limit our attention to //, the proof for 
£ being quite analogous.

We begin by considering the operator Hn . Since only the second 
differentiation operator is involved, we may concentrate on a single row 
X Pv* of X  and a single row of Y. Then

H ft% T (X ,Y ))=  2  H Q(T(XPl'*, Tp2,*)
P l + P 2 = P

H fiq(T(A, Y)) =  2  H % T (A \Y V̂ ) ) .
P l + P ^ P

Since X Vl>* is an injective resolution of A Pl, while Yv * is a projective 
resolution of Cv and the functor T  is right balanced, the two terms of the 
right hand side coincide with R qT(Av',Cvj). We thus obtain

(1) HU(T(X, Y)) — HU(T(A, T)).

Applying Hj to both sides we obtain the equality of the initial terms in 
the first spectral sequences.

Before we proceed with the second spectral sequences we establish: 
Lemma 6.2. I f  T  is right balanced and C is a complex such that both 

Bn(C) and H n(C) are projective fo r all n then fo r any complex A the map

a ': H T (A ,C )^ T (H (A )M C ))
is an isomorphism.

To prove the lemma we first observe that all the modules Cn, Z n(C), 
Z 'n(C), Bn(C), B 'n(C) and H n{C) are projective. If we therefore denote
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by J ( c  the category consisting of these modules and all their homo­
morphisms into one another, we find that all exact sequences 
0 -»  D' D D" -> 0 in c split. Thus if we regard T  as a functor 
defined only if the second variable is m ^ c , we find that T  is exact with 
respect to the second variable. Since all modules in <J(c  are projective 
and T  is right balanced, it follows that T  is also exact with respect to the 
first variable, provided the second variable is in Thus it follows
from iv,7.2 that a ' is an isomorphism.

We now return to the proof of 6.1 and apply the operator Hv  We find 
a commutative diagram

i/i(T (Z ,F)) —  H £T{A,Y))
cl' cl'

TXHjUnHjH Y)) 1 \H (A ),H t Y))
f*

We assert that the vertical maps are isomorphisms. Indeed, since only 
the first differentiation operator is involved we may replace Y  by one of 
its columns F*’a. Since B p(Y * ’q) and H p(Y * ,q) are both projective 
modules, the conditions of 6.2 are satisfied and therefore the vertical maps 
in the diagram are isomorphisms. Applying Hn  to the diagram we obtain 
the commutative diagram

Y)) <- Hn H £T(A 9Y))

H ^ T m X W  r))) +- Hn (T(H(A),H,{ F)))

in which the vertical maps are isomorphisms. Since H fX )  is an injective 
resolution of H{A) and //j( Y) is a projective resolution of H(C) it follows 
from (1) that the lower horizontal map also is an isomorphism. This 
concludes the proof.

T heorem 6 .1a. Let T  be a left balanced functor (cov. in A, contrav. in 
C), X  a projective resolution o f a complex A , and Y  an injective resolution o f  
a complex C. Then the maps

T(X,C) <- T(X, Y) -> T(A, Y)

induced by the augmentations, yield isomorphisms between the cohomology 
invariants o fT(A ,C ) and the invariants o f the double complexes T(X,C) and 
T(A,Y).

It should be noted that 6.1 justifies the notation M nT(A,C) used in 
xvi,2; these modules are indeed the hypercohomology modules of T(A,C). 
Similarly the module ^ f n(A,M) of xvi,8 is the hypercohomology of 
HomA (K,M ).
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7. COMPOSITE FUNCTORS

We apply the concepts developed in this chapter to study a composite 
functor V =  TU  where for simplicity we assume that U is a covariant 
functor of one variable defined for A-modules whose values are T-modules, 
and T  is a covariant functor of one variable defined for T-modules.

Given a A-module A, choose an injective resolution X  of A and let 
Y  =  U(X). We consider the cohomology invariants of T(Y) and intro­
duce the notation W q=  (RqT)U . Then

=  H p(RqT(Y)) =  H P(W \X ))  =  R pWq(A),

II** =  RqT{Hp{ Y)) -  RqT(RpU(A)).

We thus obtain

(1) R PWQ(A) => @nT{U (X)\
p

(2) R qT(RpU(A)) M nT(U{X)).

Further it is clear that since the functor R nT  is invariant under homotopies, 
the module & nT(U(X)) is independent of the choice of the injective resolu­
tion A of A.

Both spectral sequences are in the case 2 of xv,6 and therefore we have 
the edge homomorphisms

R nW \A ) - ^ M nT<JJ{X)) —  R° W n(A),

R nT(R°U(A))— *MnT{U(X)) - ^ R 0T(RnU(A)).

If  T  is left exact, then R°T =  T  and W° =  (R°T)U  =  V. We thus obtain 
a homomorphism o

(3) R nV -> T(RnU).

If T  is exact, both spectral sequences collapse, and cp and y) become 
isomorphisms. Thus (3) is then an isomorphism.

Assume now that U is exact. Then the second spectral sequence 
collapses to an isomorphism R nT(U{A)) & MnT(U{X)) and the first 
spectral sequence then becomes

R p((RqT)U)=> (RnT)U

This yields edge homomorphisms

R n((R°T)U)-► (RnT)U-+ R%(RnT)U)



and the exact sequence of terms of low degree:

0 ->  R \( R ° T ) U ) ^  (JWOCf-* i£°((jR1T ')t/)-> R 2( ( R ° T ) U ) ( R 2T)U  

which for T  left exact becomes

0 -> R 'V -*  ( ^ 1r)C /->  R ^ R ^ U )  -> R 2V-> (R2T)U.

Similar considerations apply to left derived functors and to functors 
with a larger number of variables of various variances.
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Appendix: Exact Categories

by David A. Buchsbaum

In troduction . Throughout this book, the authors dealt with functors 
defined on categories of modules over certain rings and whose values 
again were modules over a ring. It will be shown here that the theory may 
be generalized to functors defined on abstract categories that will be 
described below, and whose values are again in such abstract categories. 
The advantages of such an abstract treatment are manifold. We list a few: 
(1°) The dualities of the type

kernel — cokernel

projective — injective 

Z(A) — Z \A l)

that were observed throughout the book may now be formulated as 
explicit mathematical theorems.
(2°) In treating derived functors, it suffices to consider left derived 
functors of a covariant functor of several variables; all other types 
needed may then be obtained by a dualization process.
(3°) Further applications of the theory of derived functors are bound to 
show that the consideration of modules over a ring A will be insufficient. 
Rings with additional structure such as grading, differentiation, topology, 
etc. will have to be considered. With the theory developed abstractly,
these generalizations are readily available.

The following treatment has some points in common with that of 
MacLane {Bull. Amer. Math. Soc. (1950), pp. 485-516). No proofs will 
be given here; they will be found in a separate publication.

1. D efinition of exact categories. An exact category s i  is given 
by the following four data:

(i) a collection of objects A ;

(ii) a distinguished object O, called the zero object;

3 7 9
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(iii) an abelian group H(A,B) given for any two objects A, B estf. The 
elements cp e H(A,B) will be called maps. We shall frequently write 
(p: A ->  B instead of 90 e H(A,B). The zero element of any of the 
groups H{A,B) will be denoted by 0;

(iv) a homomorphism H(B,C) ® H(A,B)-> H(A,C) given for each triple 
of objects A , B , C e  stf. The image of xp ® <p in H(A,C) will be denoted 
by xpq> and will be called the composition of xp and <p. The primitive 
terms (i)-(iv) are subjected to four axioms:
A xiom I. If a: A -> B, /?: B-+  C, y: C D  then y(pcn) =  (y/?)a. 
A xiom II. //(<£,O) =  0.
A xiom  III. F or each A  e j /  there is a m ap eA \ A ^  A  such that 
e Ap  =  p  for each P : B - >  A ,  and =  7  for each y : A - +  C.

It is easy to verify that H(A$>) =  0 =  #(0,^4) for all ^  e j /  and that the 
identity map of A xiom III is unique.

A  map 90: A ->  B  will be called an equivalence if there exists a map 
9/ :  B - ^  A such that 9o'cp =  eA, q>q>' =  eB. It is easy to see that 90 is 
unique; we write 9/  =  q r1. Clearly 9?_1 is also an equivalence and 
(9?- 1 )-1  =  <p. If xp: B  -»  C is another equivalence, then xpq) also is an 
equivalence and (xpq>)7~1 =  q>~1xp~1.

D efinition . We shall say that the pair o f maps
a p

A  — * B — ► C

has property (E) i f  the following three conditions hold:
(1) pCL — 0
(2) I f  a! : A ' -> B and Pol' =  0, then there exists a unique y: A ' -> A with 

ol — cay.
(3) I fP ' : B ->  C ' andP'ol — 0, then there exists a unique d: C -> C ’ with

P'=*P-
A xiom  IV. For any map a: A~> B  there exist objects K , /, F and

maps
<5 r  6  k  r r

(*) K — ► A — ► / — > I  — ► B — ► F

such that
(4) a =  k Qt

(5) 6 is an equivalence
d  T

(6) K  — ► A — ► I  has property (E )

(7) / '  — ► B  — ► F  has property (E ).
T heorem 1: I f

<5, T-i 8-t K-i
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also satisfy (4)—(7) then there exist unique maps %, p, £, co such that the 
diagram

8  r  6  m K IT

K   > A  >1  > r  >B  >F

t

is commutative. The maps %, p, £, co are equivalences.

2. E xact sequences. In view of Theorem 1, we shall call the pairs 
(K,d), (/,r), ( I ' , k )  and (F,7t) the kernel, coimage, image and cokernel of a. 
The sense in which these notions are uniquely associated with a is clear 
from Theorem 1.

A sequence

A m~ ^ A m+1 ----- > -- -^ = L* A n m + l < n

is now called exact if it satisfies the usual condition:

Ker aq =  Im m < q  < n .

The following two theorems are crucial.
« P

Theorem 2. The maps A — ► B  — ► C have the property (E) i f  and only 
i f  the sequence

CC P
& —+ A — + B — + C — +®

is exact.
Theorem 3. A map 6: A ->  B is an equivalence i f  and only i f  

is exact.
Monomorphisms and epimorphisms are now defined in the usual way.
With this done it is possible to establish the usual lemmas encountered 

when dealing with exact sequences. In particular, the “ 5 lemma” , 1,1.1 
may now be proved.

3. Duality. For each exact category stf we define the dual category 
j / *  as follows. The objects of s f*  are symbols A* with A e <$/; the zero 
object of <$/* is <D*; the group Ff(A*,B*) is defined as H(B,A); for each 
map cp: B  -> A in s /  we denote by 99*: A* -> B* the corresponding “dual” 
map in s /* .  The composition in stf* is given by ^* 99* =  (9oyj)*.

It is now a trivial matter to verify that s f*  is an exact category. 
Clearly

Given any diagram of objects and maps i n j / ,  we obtain a dual diagram 
in s / * 9 with the maps reversed. It is clear that the dual of a commutative
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diagram is commutative, and that the dual of an exact sequence is exact. 
The dual of a monomorphism is an epimorphism and vice versa.

As an illustration as to how one can utilize the dual category, we discuss 
the “5 lemma” 1,1.1. In the hypothesis, a certain commutative diagram 
with exact rows is given. Then there are two conclusions (1) and (2). It 
is easy to see that conclusion (2) is precisely conclusion (1) applied to the 
dual diagram. Thus (2) is actually a consequence of (1) and vice versa.

Suppose now that A is a ring. The totality of all left A-modules and 
A-homomorphisms (with the usual composition) forms an exact category 
J ( A. In this category, H(A,B) =  HomA (A,B ). However, the dual 
category admits no such concrete interpretation. This explains the 
fact that the duality principle could not be efficiently used, as long as we 
were restricted to categories concretely defined, in which the objects were 
sets and the maps were maps of those sets.

Another use of the dual categories is the following. Let T(A,C) be an 
additive functor defined on the exact categories s i  and ^  and with values 
in an exact category Of. Suppose that T  is covariant in A and contra­
variant in C. Then replacing 9S by ^ * , the functor T  is converted into a 
covariant functor in both variables. Another procedure consists in 
replacing s i  and Of by s i*  and 3)*.

A few remarks are needed concerning exact categories intended to 
represent graded groups, graded modules over a graded ring, etc. If only 
maps of degree zero are considered, then no change in the description of 
abstract categories is needed. If we wish to consider maps of all degrees, 
then it is necessary to assume that H(A,B) is graded and that the composi­
tion of homogeneous maps adds the degrees. Axiom IV is assumed only 
for homogeneous maps, and they are the only ones for which the notions of 
kernel, image, exactness, etc. are defined. In defining the dual s i*  of such 
a graded exact category, we set H n(A*,B*) — H~n(B,A) — H n(B,A). 
This is in keeping with the general principles of iv,5.

4. Hom ology. An object with differentiation in an exact category s i  
is a pair (A,d) consisting of an object A e s i  and a map d: A  -> A with 
dd =  0. The definition of Z(A), Z \ A \  B(A), B'(A) and H(A) then takes 
place essentially as in iv ,l. The same holds for the definition of the 
connecting homomorphisms and the exact sequences of iv ,l.l.

The self-duality of the definition of H(A) may now be stated in terms of 
the dual object {A*,d*) in the category s i* .  We have

Z(A*) =  [Z'(A)]*, B(A*) =  [B'(A)J*

Z'(A*) =  [Z(A)]*, B \A * )  =  [B(A)]*

H(A*) =  [H(A)]*
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In discussing complexes, we avoid direct sum considerations and there­
fore define a complex in A as a sequence

dn~x dn dn+1-------------   A n - 1 ------ .  A n  > A n+1 -------- > A n+2 -------- * . . .

with dn+1dn =  0.
We may mention that for each exact category s i ,  the objects (A,d) with 

differentiation may themselves be converted into an exact category s i d. 
This is the analogue of the construction of the ring of dual numbers 
T =  (A,d) of iv,2. Similarly the complexes in A may be treated as objects 
in an exact category s i c.

5. D irect su m s. So far we have carefully avoided any use of direct 
sums and products. We see no way of discussing infinite direct sums and 
products in an exact category s i .  A finite direct sum (=  direct product) 
may be defined as follows. A family of maps

% v*
Aa — - A — -A a

where a belongs to a finite set of indices, is a direct sum representation of A 
if

P J a  =  e A QL

pfia =  0 for £ ^  a

2 a * a /* a  ^  A

This of course does not guarantee the existence of a direct sum of given 
factors. For this purpose we introduce

A xiom  V (Existence of direct sums.) For any two objects A l9 A 2 € s i  
there is an object A € s i  and maps

% Pol
Aa — >A — ► Aa a = 1 , 2

which yield a direct sum representation of A.
It can then be proved that the direct sum of any finite number of 

factors exists and is essentially unique (up to equivalences).
Using this axiom it is possible to discuss double (and multiple) com­

plexes A =  {Ap,Q9dl9d2} provided that for each n only a finite number of the 
objects A p>q with p  +  q =  n is different from <I>. It is then possible to 
assign to each such double complex an essentially unique complex, and 
thus define H n(A).

It is now also possible to duplicate the discussion of iv,6 and iv,7 
concerning the homomorphisms a and a ' for functors of any number of
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variables. Note that for functors of one variable, the discussion does not 
utilize Axiom V.

6. P ro jective and  injective objects. An object P e s i  is called 
projective if any diagram

P

A ^ A " ^ 4 >

in which the row is exact, may be imbedded in a commutative diagram

P
/  

j/  i
A - * A '- > Q  

Similarly, Q e s /  is called injective if any diagram

< $ > ^ A '^ A

I
Q

in which the row is exact, may be imbedded in a commutative diagram

& -> A '-+ A
/

I  ✓
Q

The two notions are dual in the sense that P e s i  is projective if and only if 
P* e s i*  is injective.

For further work we need the following axioms:
A xiom  VI (Existence of projectives). Given A  € s i  there is an exact 

sequence with P  projective.
A xiom  VI* (Existence of injectives). Given A  € s i  there is an exact 

sequence O -> ,4 Q-> N ->  O with Q injective.
The axioms are clearly dual to one another.
With Axiom VI assumed, propositions 2.1 (restricted to finite sums), 

2.4 and 2.5 of Chapter I may be established. Similarly, if Axiom VI* is 
assumed, the dual propositions 3.1, 3.4 and 3.5 of Chapter I automatically 
follow. The same applies to the discussion of v,l,  v,2, and xvn,l.

We are now ready to discuss satellite functors and derived functors.
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Let T  be a covariant functor defined on an exact category j /  satisfying 
Axioms V and VI with values in an exact category 88 (with no axioms 
beyond I-IV). We can then define the left satellite functor S f T of T. To 
define the right satellite functor, we assume that s i  satisfies Axiom VI* 
instead of VI. We then define tne covariant functor 7 * : s i*  -> 88* and 
set

S 1T = ( S 1T*)*.

All the main results o f  Chapter h i, can be duplicated.
The derived functors L nT  and R nT  are handled similarly, except that 

now T  may be a covariant functor of any number of variables.
The requirement that all variables be covariant is made entirely to 

simplify the notation; the contravariant variables may always be replaced 
by their duals.

7. T he func to rs E x tn. For each exact category s i ,  the functor 
H(A,C) may be regarded as a functor contravariant in >4, co variant in C and 
with values in the exact category^# of abelian groups. This functor is left 
exact; for a fixed A0 e s i ,  H(A0,C) is exact if and only if A0 is projective; 
for a fixed C0 e s i ,  H(A,C0) is exact if and only if C0 is injective. Thus 
H(A,C) is right balanced.

If s i  satisfies Axioms V and VI, then Extn (A,C) may be defined as the 
right derived functor with respect to the variable A (i.e. using a projective 
resolution of A ). If A satisfies Axioms V and VI* then injective resolu­
tions of C may be used to define Extn (A,C ). If A satisfies Axioms V, VI 
and VI*, either or both may be used.

The discussion of dimension in vi,2 can be carried over mutatis 
mutandis. The global dimension of an exact category s i  is the highest 
integer n for which Extn (A,C) ^  0. A category has global dimension 
zero if and only if H(A,C ) is exact,.i.e. if all elements of s i  are projective 
(or injective). This takes the place of semi-simple rings.

8. O th er applications. We should like to mention here some 
applications of exact categories which step outside the framework of this 
book.

The axiomatic homology and cohomology theories of Eilenberg- 
Steenrod (.Foundations o f Algebraic Topology, Princeton, 1952) may be 
defined using an arbitrary exact category s i  as the range of values of the 
theory. Thus, replacing s i  by s i*  replaces a homology theory by a 
cohomology theory, and vice versa. This duality principle simplifies the 
exposition of the theory. Furthermore, the uniqueness proof (loc. cit., 
Ch. iv) remains valid for such generalized homology and cohomology 
theories.
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The Pontrjagin duality for discrete and compact abelian groups 
readily shows that the category ^  of compact abelian groups is the dual 
of the category of discrete abelian groups. Thus we conclude that ^  
satisfies Axioms V, VI and VI*. In fact, in the injectives are the 
toroids (since the only discrete abelian projectives are the free groups); 
and the projectives in ^  are those compact groups whose character groups 
are divisible.
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allowable family, 154 
antipodism, 222, 269, 351 
associative algebra: 162 ff; cohomology 

of, 169; dimension of, 176; direct 
product of, 172; enveloping algebra of, 
167; graded, 164; homology of, 169; 
homomorphism of, 162; normal homo­
morphism of, 349; normalized standard 
complex of, 176; normal subalgebra 
of, 350; projective, with respect to 
map, 312; standard complex of, 175 

augmentation: 75; epimorphism, 143; 
ideal, 143; module, 143; idempotent, 
221; unit, 188; zero, 188 

augmented ring: 143; cohomology of, 
143; homology of, 143; map of, 149

bi-graded module: 60; associated graded 
module of, 60; bihomogeneous element 
of, 60; bihomogeneous submodule of, 
60; homomorphism of, 60; negative 
homomorphism of, 60; positive homo­
morphism of, 60

characteristic element, 227 
complex: 58; homomorphism of, 59; 

injective resolution of, 365; left, 75; 
acyclic left, 75; projective left, 75; 
projective resolution of, 363; right, 78; 
acyclic right, 78; injective right, 78; 
split, 70

connected sequence of functors: 43;
map of, 45; multiply, 87; homo­
morphism of multiply, 87 

connecting homomorphism, 43, 334 
contravariant ^-extension, 29 
covariant ( -̂extension, 29 
crossed homomorphism: 168,270; prin­

cipal, 169, 270; principal, with respect 
to map, 312

Dedekind ring, 134 
derived sequence of map, 101 
diagonal map: 211,351; associative, 212; 

commutative, 212; commutative of a 
Lie algebra, 275

divisible element, 127 
dimension: 109 If; injective, 111;, left 

global, 111; projective, 109; right 
global, 111; weak, 122 

double complex: 60; first spectral
sequence of, 331; homomorphism of, 
61; invariants of, 331; left, 363; 
right, 365; second spectral sequence 
of, 331 

dual category, 381
duality theorem: 249; integral, 250

edge homomorphisms, 330 
epimorphism, 4 
exact category, 379
exact sequence: 4; of terms of low 

degree, 330; normal, 79; normal form 
of, 79; split, 5 

extension of ring of operators, 163 
extensions: 289 ff; Baer multiplication 

of, 290; characteristic class of, 290; 
equivalent, 289, 293, 299, 304; in­
essential, 293, 299, 304; split class of, 
290

faithful set, 154
filtration: 315 ff; compatible with differ­

entiation, 315; complementary degree 
of, 323; convergent, 321; degree of, 
323; regular, 324; strongly convergent, 
321; total degree of, 323; weakly 
convergent, 319 

functor: 18 ff; additive, 19; contra­
variant, 18; covariant, 18; derived, 
83; left derived, 84; right derived, 83; 
derived sequence of a, 102; exact, 23; 
half exact, 24; left balanced, 97; left 
exact, 24; partial derived, 94; right 
balanced, 96; right exact, 24

graded module: 58; homogeneous com­
ponent of, 58; homogeneous sub- 
module of, 58; homomorphism of, 58; 
negative, 58; positive, 58 

graded ring: 146; graded module over 
a, 154
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groups: 189 ff; cyclic, 250; finite, 232 ff; 
complete derived sequence of a finite, 
235; complete resolution for a finite, 
240; free abelian, 193; free, 192; 
generalized quaternion, 253; pro­
jective, with respect to map, 312

hereditary ring, 13
homomorphism: 3; coimage of, 3;

cokernel of, 3; direct family of, 4; 
compatible with filtration, 321; image 
of, 3; kernel of, 3 

homotopy: 54, 59, 61, 72; contracting, 
214; of order ^ k, 321 

hypercohomology module, 366 
hyperhomology module, 368

injective resolution: 78; of a complex, 
365

invariant elements, 170, 183 
inversible ideal, 132 
isomorphism, 4
iterated connecting homomorphism, 44

Lie algebra: 266 ff; abelian, 268;
cohomology of, 270; constants of 
structure of, 286; enveloping algebra 
of, 267; homology of, 270; representa­
tion of, 267 

local ring, 147

mapping theorem, 150 
maximal generator, 260 
module: 3; bimodule, 22; direct sum 

of, 4; direct product of, 4; divisible, 
127; flat, 122; free, 5; injective, 8; 
with differentiation, 53; map of with 
differentiation, 54; projective, 6; 
proper, 154; semi-simple, 11; simple, 
11; torsion-free, 127; torsion, 127;

weakly injective, 198, 199; weakly 
projective, 197, 199 

monoid: 148, 187 ff; augmented, 188; 
free abelian, 193; free, 148, 192; 
ring of a, 148 

monomorphism, 4

natural equivalence, 20 
Noetherian ring, 15 
norm homomorphism, 232

opposite ring, 109

period, 261
/7-primary component, 258 
products: 202ff; cap-pairing, 212; cap- 

product, 211; cup-pairing, 212; cup- 
product, 211; modified, 224, 247; 
modified of second kind, 229 

projective resolution: 75; split form of, 
214

proper operators, 355 
Priifer ring, 133

reduction theorem, 227 
restriction homomorphism, 254 
ring of dual numbers, 56

satellites: 33 ff; left, 36; right, 36 
semi-hereditary ring, 14 
spectral sequence, 319 
stable element, 257
supplemented algebra: 182 ff; coho­

mology of, 182; homology of, 182; 
homomorphism of, 184

tensor product: 21; skew, 164 
torsion element, 127 
total differentiation operator, 61 
transfer homomorphism, 254
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