
Invent. math. (2021) 225:981–1076
https://doi.org/10.1007/s00222-021-01043-3

Hyperdescent and étale K -theory

Dustin Clausen1 · Akhil Mathew2

Received: 12 June 2019 / Accepted: 11 March 2021 / Published online: 9 April 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of
Springer Nature 2021

Abstract We study the étale sheafification of algebraic K -theory, called étale
K -theory. Our main results show that étale K -theory is very close to a non-
commutative invariant called Selmer K -theory, which is defined at the level
of categories. Consequently, we show that étale K -theory has surprisingly
well-behaved properties, integrally and without finiteness assumptions. A key
theoretical ingredient is the distinction, whichwe investigate in detail, between
sheaves and hypersheaves of spectra on étale sites.
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1 Introduction

Let K denote the algebraic K -theory functor defined on quasi-compact quasi-
separated (qcqs) spectral algebraic spaces.1 After [70], K satisfies Nisnevich
descent, but it does not satisfy the even more useful étale descent. Thus, we let
K et (étale K -theory) denote the étale sheafification of K , viewing the latter
simply as a presheaf of spectra.

The idea of “étale K -theory” has a long history, going back at least to
the work of Soulé [61,62], and there have been many different approaches.
Slightly different (but a posteriori equivalent) versions of this construction
have been considered by Friedlander [20,21] and Dwyer–Friedlander [15] in
the l-adic case (where l is invertible on the base) and in the p-adic case by
Geisser–Hesselholt [24]. In this paper, we simply sheafify K -theory in the
sense of [37, Ch. 6]; this is different from approaches such as [17,32], which
involve a stronger process called hypersheafification. Our main results show
in particular that this yields a functor K et for connective ring spectra which
behaves well in non-noetherian settings and works integrally.

1.1 Main results

For general presheaves of spectra, sheafification is a difficult operation to
access: its only explicit description is as a transfinite composition of Čech
constructions [37, Prop. 6.2.2.7 and proof], and thus one might expect K et to

1 Here we mean the non-connective K -theory of perfect complexes, as in [6,70]. The reader is
free to imagine X a usual algebraic space over Z, but the results hold more generally for X a
spectral algebraic space as in [40]. Furthermore, the structure sheaf need only have an E2-ring
structure, not necessarily E∞.
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Hyperdescent and étale K -theory 983

be difficult to describe. Nonetheless, we prove the following four theorems
which give a good handle on K et .

Let L1 denote Bousfield localization at the complex K -theory spectrum,
and let TC denote the functor of topological cyclic homology.

Theorem 1.1 (Theorem 7.12(1) below) Let X be a qcqs spectral algebraic
space. Then the natural map

K et (X) → L1K (X) ×L1 TC(X) TC(X)

is an isomorphism on homotopy in degrees ≥ −1.

The comparison map in Theorem 1.1 comes from the cyclotomic trace
K → TC and the fact that all of the theories L1K , L1 TC, and TC satisfy étale
descent. For L1K and L1 TC étale descent follows from the generalization of
(some of) Thomason’s work [68] and [70, Sec. 11] provided by [13].2 For TC
it was proved by Geisser–Hesselholt [24], cf. [74] for the more classical case
of ordinary Hochschild homology and [8, Sec. 3] and Theorem 5.16 below for
the current level of generality.

The interest of Theorem 1.1 is the following. The sheafification procedure
defining K et from K destroys the fundamental property of K -theory, which
is that it only depends on the appropriate category of modules. Thus K et

is missing important structure such as proper pushforward functoriality, and
important flexibility such as the ability to define K et of an arbitrary category
(with some kind of exact structure). Theorem 1.1 shows that, miraculously

enough, these losses are only apparent. The theory K Sel def= L1K ×L1 TC TC
on the right, introduced in [11] and dubbed Selmer K -theory, by definition
only depends on the category of perfect complexes. Then Theorem 1.1 says
that Selmer K -theory is essentially the same as étale K -theory.

Selmer K -theory K Sel thus combines the best of both worlds: it has étale
descent and hence can be related to standard cohomology theories, but it only
depends on the category of modules and hence has the same flexibility as
algebraic K -theory. This theorem can be viewed as a kind of combination
and generalization of Thomason’s work [68] on L1K at primes different from
the residue characteristic, and the work of Geisser–Hesselholt [24] on TC at
primes equal to the residue characteristic. Note that Thomason made crucial
use of this “best of both worlds” property he established for L1K in his proof
of Grothendieck’s purity conjecture withQ�-coefficients [67]. The same phe-
nomenon is also crucial to the first author’s new proof of the Artin reciprocity
law [11].

2 Actually, [13] assumed E∞-structure sheaves, and this was crucial to the method of proof;
we will show here how to establish the same result assuming only E2-structure sheaves. And
for this descent result the structure sheaves are even allowed to be non-connective, cf. Sect. 5.1.
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984 D. Clausen, A. Mathew

Theorem 1.2 (Theorem 7.13) Let X be a qcqs spectral algebraic space of
finite Krull dimension, and p a prime. For a field k, and let dk denote the (mod
p) virtual Galois cohomological dimension of k if k has characteristic �= p,
and 1 + dimk �1

k/k p if k has characteristic p. Then the map

K (X) → K et (X)

is an isomorphism on p-local homotopy groups in degrees ≥ max(supx∈X dk(x)

− 2, 0).

Theorem 1.2 is a Lichtenbaum–Quillen-type statement; it says that in high
enough degrees relative to the dimension, algebraic K -theory does satisfy
étale descent. With coefficients prime to the residue characteristics it is well-
known (cf. [56]) that such statements follow from the Gabber-Suslin rigidity
theorem [23] and the norm residue isomorphism theorem of Voevodsky–Rost
[72,73] in the form of the Beilinson–Lichtenbaum conjectures (see [30] for a
textbook account of the norm residue isomorphism, and [22,36] for the relation
to K -theory). We handle the general case by inputting the generalization of
Gabber–Suslin rigidity proved in [12]. This transfers the problem from K -
theory to TC, which satisfies étale descent by the result of Geisser–Hesselholt
mentioned above.

Theorem 1.3 (Theorem 7.12(2) and Corollary 4.40) Let X be a qcqs spectral
algebraic space of finite Krull dimension, with a uniform bound on the virtual
Galois cohomological dimension of its residue fields. Then over X, the étale
sheaf of spectra K et is a Postnikov sheaf: it maps by an equivalence to the
inverse limit of its (étale-sheafified) Postnikov tower. In particular, there is a
conditionally convergent descent spectral sequence

H p(Xet ; πet
q K ) ⇒ πq−p K et (X).

In fact, even any étale sheaf on X which is a module over K et is automati-
cally a Postnikov sheaf.

Remark 1.4 The étale homotopy group sheaves πet
q (K/n) of K -theory with

finite coefficients can be explicitly described in simpler terms, see Corollary
6.12. On the other hand, rational algebraic K -theory is largely unknown.

Theorem 1.3 addresses a subtlety in the theory of sheaves of spectra, whose
exploration is the main theme of this paper. This is that one can have a non-
zero sheaf of spectra all of whose stalks vanish, or all of whose homotopy
group sheaves vanish. In fact, answering a question of Jardine [33, p. 197],
we show by example (Example 4.15) that this can happen even on a site of
cohomological dimension 1, namely the usual site of finite continuousZp-sets.
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Such sheaves of spectra cannot be studied in terms of sheaves of abelian groups,
and they exhibit exotic behavior. What Theorem 1.3 shows is that K et , as well
as any sheaf it “touches,” is non-exotic (the technical term is hypercomplete,
see [17,32], [37, Sec. 6.5.2]), and hence can be studied in terms of its homotopy
group sheaves, or in terms of its stalks, at least in finite-dimensional situations.

In the l-adic context and for Bott-inverted (rather than étale) K -theory,
Theorem 1.3 goes back to Thomason [68,70], with slight additional assump-
tions; see also [55,56], which treat the removal of these assumptions using the
Beilinson–Lichtenbaum conjectures. In the p-adic case and for TC instead,
étale Postnikov descent is essentially due to [24]. Recent work [19] also treats
analogs of Thomason’s results (i.e., Bott-inverted étale hyperdescent) formod-
ules over algebraic cobordism replacing algebraic K -theory, in the context of
motivic stable homotopy theory.

Theorem 1.5 (Theorem7.12(3)) The functor R �→ K et (Spec(R)), from com-
mutative rings3 to spectra, commutes with filtered colimits.

Theorem 1.5 shows (in particular) that the stalks of K et are indeed accessi-
ble, even without any finite dimensionality restrictions on X : they are simply
given by the K -theory of strictly henselian local rings (for which see The-
orem 6.11). We emphasize that this is not at all a formal statement, in this
context of sheaves of spectra. Indeed, the sheaf condition involves infinite
limits, namely homotopy fixed points for finite group actions, so even though
K -theory commutes with filtered colimits this property is a priori destroyed
by étale sheafification. The analogous commutation with filtered colimits for
K Sel follows from that of TC /p; this is also neither formal nor obvious, but
it was proved in [12]. Another use of Theorem 1.5 is in reducing the study
of K et to the case of finite type Z-spaces, which are finite dimensional and
therefore fall into the realm of results like Theorem 1.3.

1.2 Technical ingredients

We have already indicated that the norm residue isomorphism theorem, plus
Gabber–Suslin rigidity and its generalization [12], are key to proving the above
theorems. The general strategy is the one pioneered byThomason [70, Sec. 11]:
use Nisnevich descent to reduce to the henselian local case, then use rigidity
to reduce to the case of fields, then use the norm residue isomorphism theorem
(and its characteristic p analog [26]) to handle fields. (This last step is much
more straightforward than in Thomason’s days, where only the degree≤ 2 part
of the norm residue isomorphism theorem was known, the Merkurjev–Suslin
theorem.)

3 Or connective E2-rings.
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986 D. Clausen, A. Mathew

But in addition, there is another set of technical theorems lying in the
background of our arguments. These have to dowith the question of hypercom-
pleteness for sheaves of spectra, which was touched on in discussing Theorem
1.3. In fact, much of our work in this article centers around the question of to
what extent the hypercompleteness property is automatic in the setting of étale
sheaves of spectra. This is important, because hypercomplete sheaves (also
called hypersheaves) are much easier to access and study, both for computa-
tional and theoretical purposes. In fact, the proofs of the above four theorems
often involve switching back and forth between the hypercomplete and non-
hypercomplete settings. (The non-hypercomplete setting is still useful because
it is closer to being finitary and has better permanence properties.)

Our theoretical work on hypercompleteness holds under finite-dimensiona-
lity hypotheses. The upshot is that hyperdescent is automatic for those sheaves
of spectra which arise in practice in the study of algebraic K -theory, even
though there are counterexamples showing that it is not automatic in general,
even in dimension 1. But let us describe the precise results.

The preliminary observation, again due to Thomason [70, Sec. 11], is that
one can reduce to considering separately the Nisnevich setting and the étale
setting over a field:

Theorem 1.6 (Theorem 4.36) Let X be a qcqs algebraic space, and let F be
a presheaf of spectra on etX , the category of qcqs algebraic spaces étale over
X. Suppose there is a uniform bound on the étale cohomological dimension of
U for all U → X in etX (cf. Corollary 3.29).

Then F is an étale hypersheaf if and only if the following two conditions
hold:

1. F is a Nisnevich hypersheaf;
2. For all x ∈ X, the presheaf x∗F on etx , formed by the stalks Fy at all finite

étale extensions y → x, is an étale hypersheaf.

It is well-known that the Nisnevich setting behaves similarly to the Zariski
setting, so it is natural to consider them together. Our main result in the
Zariski/Nisnevich setting shows that under finite-dimensionality assumptions,
hyperdescent is automatic:

Theorem 1.7 (Theorems 3.12 and 3.18) Let X be a qcqs algebraic space of
finite Krull dimension. Then on either the Zariski site X Zar or the Nisnevich
site X Nis , every sheaf of spectra (or even spaces) is a hypersheaf.

In fact, we show that X Zar and X Nis have homotopy dimension ≤ d in the
sense of [37, Sec. 7.2.1], where d is the Krull dimension of X . This statement
was known in the noetherian case (cf. [40, Theorem 3.7.7.1], [52]), and for
the weaker cohomological dimension was known in general (at least in the
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Zariski setting, [59]). Theorem 1.7 is a version of the Brown–Gersten property
[4]; in those terms, what we have done is removed the noetherian hypotheses
from the familiar Brown–Gersten-style statements.

The next setting to consider is the étale site of a field, or more generally
the site of finite continuous G-sets for a profinite group G (with the usual
topology, where a cover is a jointly surjective collection). An important idea,
philosophically present in Thomason’s work, is that a sheaf of spectra is a
hypersheaf if and only if it satisfies descent in a “uniform way”. We make
this into a theorem using the notion of exponents of nilpotence from [48, Def.
6.36]:

Theorem 1.8 (Theorem 4.26) Let G be a profinite group of finite cohomolog-
ical dimension d, and let F be a sheaf of spectra on the site of finite continuous
G-sets.

Then F is hypercomplete if and only if for every open normal subgroup
N ⊂ G, the spectrum with G/N-action F(G/N ) is nilpotent of exponent
≤ d + 1. (Roughly, this means F(G/N ) can be built from free G/N-spectra
in ≤ d steps.)

This strengthens the theorem of Tate–Thomason (cf. [60, Annex 1, Ch. 1]
and [68, Remark 2.28]) on vanishing of Tate constructions, which says that
if F is hypercomplete then the Tate construction F(G/N )t (G/N ) vanishes for
all N . The converse of the Tate–Thomason theorem itself fails, as we show by
example (Example 4.15).

Putting these three theorems together, we get a good handle on what it
means for a sheaf to be a hypersheaf on Xet , when X is a qcqs algebraic space
satisfying reasonable finite dimensionality hypotheses. A surprising corollary
is that hypercompletion is smashing (in the sense of [54]). To explain what
this means, recall that hypersheaves of spectra are a Bousfield localization of
sheaves of spectra, via a localization functor called hypercompletion. Then:

Theorem 1.9 (Corollary 4.40) Let X be a qcqs algebraic space of finite Krull
dimension, and suppose that there is a uniform bound on the virtual Galois
cohomological dimension of every residue field of X. Then the hypercompletion
functor on étale sheaves of spectra over X is given by tensoring with some
fixed étale sheaf Sh. (Necessarily, Sh is the hypercompletion of the constant
sheaf on the sphere spectrum.)

This means that the collection of hypersheaves is closed under all colim-
its and under tensoring with any sheaf. Adding to this the obvious fact that
hypersheaves are closed under all limits, we see that the property of being a
hypersheaf has very strong permanence properties. An interesting example is
the following:
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Corollary 1.10 Let X be as in Theorem 1.9. Then any étale sheaf on X which
is a module over an étale hypersheaf is itself an étale hypersheaf. In particular,
any sheaf of HZ-modules is automatically a hypersheaf.

In fact, there is a refinement of Theorem 1.9 in the case where X admits
a uniform bound on the honest (not virtual) cohomological dimensions of
the residue fields, namely étale hypercompletion is smashing even just in the
setting of Nisnevich sheaves with finite étale transfers (Corollary 4.39). Note
that all manner of motivic invariants give Nisnevich sheaves with finite étale
transfers. Indeed, in the context of motivic homotopy theory and for modules
over algebraic cobordism, an analogous result appears as [19, Theorem 6.27].

It is generally much easier to prove that an object is a sheaf than a hyper-
sheaf (or Postnikov sheaf). For instance, in [13] itwas shown that telescopically
localized localizing invariants all satisfy étale descent on qcqs spectral alge-
braic spaces. The argument was entirely homotopy-theoretic, relying on the
May nilpotence conjecture [49]. By contrast, proving hyperdescent seems to
require significantly more, and as far as we know requires some version of the
norm residue isomorphism theorem. (Note that the work of Thomason [67]
relies on the Merkurjev–Suslin theorem.) Using the above ingredients, here
we prove the following result. For a qcqs spectral algebraic space Z , we write
Perf(Z) for the monoidal stable ∞-category of perfect modules on Z .

Theorem 1.11 (Theorem 7.14) Let X be a qcqs spectral algebraic space of
finite Krull dimension and with a global bound for the virtual mod p coho-
mological dimensions of its residue fields. Let A be a localizing invariant of
Perf(X)-linear ∞-categories which takes values in L f

n -local spectra. Then
the construction Y → X �→ A(Perf(Y )) defines an étale hypersheaf on X.

In particular, the results of the present paper strengthen those of [13]. How-
ever, [13] also treated the case of non-étale extensions of ring spectra; here we
have nothing to say about them.

Notation

For a qcqs algebraic space X , we let etX denote the category of étale, qcqs X -
schemes. We let X Nis, Xet denote the Nisnevich and étale sites, respectively;
these have underlying categories etX but different structures as sites.

Given a Grothendieck site T , we let Sh(T ) denote the ∞-topos of sheaves
of spaces on T , and Sh(T ,Sp) the ∞-category of sheaves of spectra on T .
We will let PSh(T ) denote presheaves on T and let h denote the Yoneda
embedding (either into PSh(T ) or the sheafified one into Sh(T )).

For a spectrum X and a prime number p, we will typically write X p̂ for the
p-completion of X . We let L1 denote Bousfield localization at complex K -
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Hyperdescent and étale K -theory 989

theory KU and L K (1) localization at the first Morava K -theory (at the implicit
prime p).

For a field k and a prime number p, we write cdp(k) for the mod p Galois
cohomological dimension of k and vcdp(k) for the mod p virtual Galois coho-
mological dimension. Recall also that these can only differ at p = 2, and
vcdp(k) = cdp(k) if k contains

√−1 or 3
√−1.

For a set of primes P , we say that an abelian group (or a spectrum) X is
P-local if every prime number outside P acts invertibly on X . We let XP
denote the P-localization of X (i.e., one inverts every prime number outside
P). The most important case is when P is the set of all primes, in which case
P-locality is no condition at all.

We write K for non-connective K -theory. At times we will also use con-
nective K -theory, which we write as K≥0.

2 Generalities

In this sectionwe collect and review some general results on sheaves of spectra,
hypercompletion, and Postnikov completion.

2.1 Prestable ∞-categories

Throughout this section, we fix a Grothendieck prestable∞-category C≥0 [40,
Appendix C]. Denote by C = Sp(C≥0) its stabilization and by C♥ ⊂ C≥0 its
full subcategory of discrete objects. The natural functor C≥0 → C is fully
faithful, and its essential image gives the connective part of a t-structure on C
for which C♥ is the heart. Furthermore, C♥ is a Grothendieck abelian category.
The t-truncation functors C → Cwill be denoted X �→ X≤n , and the homotopy
object functors C → C♥ will be denoted X �→ πn X ∈ C♥. These functors are
indexed by n ∈ Z.

Example 2.1 The primal example is where C≥0 is the ∞-category of con-
nective spectra. Then C is the ∞-category of spectra, C♥ is the category of
Eilenberg-Maclane spectra in degree 0 and thus identifies with the category
of abelian groups, the truncation functors X �→ X≤n are the usual Postnikov
truncations, and the homotopy object functors X �→ πn X are the the usual
homotopy group functors.

Example 2.2 (Sheaves of spectra)More generally, and all of our examples will
essentially be of this form, let T be a Grothendieck site. Then the ∞-category
of sheaves of connective spectra on T (cf. [40, Sec. 1.3]) is a Grothendieck
prestable ∞-category C≥0. In this case C identifies with the ∞-category of
sheaves of spectra on T and C♥ identifies with the category of sheaves of
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abelian groups on T . The fully faithful inclusions C♥ → C≥0 → C, the trunca-
tion functors (−)≤n : C → C and the homotopy object functors πn : C → C♥
can all be obtained from a two-step process: first apply the corresponding
functors from the previous example object-wise to the underlying presheaves,
then sheafify the result. Recall also that in this context sheafification (from
presheaves on T to sheaves on T ) is t-exact; see [40, Rem. 1.3.2.8].

Example 2.3 (Sheaves of module spectra)We will also need a slight variant of
the above example. If T is a Grothendieck site and R is a connective E1-ring,
then Sh(T ,Mod(R)≥0), i.e., sheaves on T of connective R-module spectra,
is a Grothendieck prestable ∞-category with heart the category of sheaves of
π0(R)-modules on T . We will especially consider this when R = SP for a set
of primes P , i.e., we are considering sheaves of P-local connective spectra.

Definition 2.4 [Compare [40, Def. C.1.2.12]] Let X ∈ C. We say that X is:

1. acyclic if πn X = 0 for all n ∈ Z;
2. hypercomplete if HomC(U, X) = ∗ for all acyclic U .
3. Postnikov complete if X

∼→ lim←−n
X≤n .

The Grothendieck prestable ∞-category C≥0 is called separated if all
objects are hypercomplete, and complete (or left-complete) if the natural map
C → lim←−n

C≤n sending X �→ {
X≤n

}
is an equivalence.

Example 2.5 Let C be the∞-category of sheaves of spectra on a Grothendieck
site T . For Y ∈ T , let �∞+ hY ∈ C denote the sheafification of the presheaf
T op → Sp given by Z �→ �∞+ HomT (Z , Y ). If U• → X is a hypercover in
T (where each Ui is a coproduct of objects in T ), then

lim−→
n∈�op

�∞+ hUn → �∞+ h X

is a π∗-isomorphism in C [37, Lemma 6.5.3.11]. Thus if F is a sheaf of
spectra which is hypercomplete, then F is a hypersheaf, meaning F(X)

∼→
lim←−n∈�

F(Un) for all hypercovers as above. The converse also holds, cf.
[17,71], [37, Cor. 6.5.3.13] for sheaves of spaces. Note also that a sheaf F
of spectra is hypercomplete if and only if the underlying sheaf of spaces is
hypercomplete (or equivalently a hypersheaf), cf. [40, Prop. 1.3.3.3]. Note
that [40, Prop. 1.3.3.3] shows that the subcategory of hypercomplete sheaves
of spectra on T is also intrinsically described as sheaves of spectra on the
hypercompletion of the ∞-topos of sheaves of spaces on T .

We will not use this remark; we simply work directly with the notion of
hypercompleteness as in the above definition.

Lemma 2.6 1. The collection of hypercomplete objects of C is closed under
all limits.
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2. Every t-bounded above object of C is hypercomplete.
3. Postnikov complete objects are hypercomplete. More generally, for all X ∈

C, the object lim←−n
X≤n is hypercomplete.

Proof Claim 1 is clear from the definition. For claim 2, it suffices to see that if
X is acyclic, then X≤n = 0 for all n ∈ Z. Since the t-structure on C = Sp(C≥0)

is right complete by construction, we can assume X is t-bounded below. Then
X≤n is t-bounded with vanishing homotopy objects, and hence is 0, as desired.
Claim 3 follows immediately from claims 1 and 2. ��
Example 2.7 LetA be aGrothendieck abelian category, so then the connective
partD(A)≥0 of the derived∞-categoryD(A) is a Grothendieck prestable∞-
category [40, Example C.1.4.5]. In this case, D(A) has no nonzero acyclic
objects, or equivalently all objects are hypercomplete. However, objects of
D(A) need not be Postnikov complete, cf. [51] for examples.

Definition 2.8 (Cohomological dimension)

1. Let U ∈ C≥0 and A ∈ C♥. For i ≥ 0, define the i th cohomology of U with
coefficients in A to be the abelian group

Hi (U ; A) = [U, �i A] := π0HomC(U, �i A).

2. LetA be a collection of objects of C♥. ForU ∈ C≥0 and d ∈ N, we say that
U has cohomological dimension ≤ d with A-coefficients if Hi (U ; A) = 0
for all A ∈ A and i > d.

3. Let A be a collection of objects of C♥. For d ∈ N, we say that C≥0 has
enough objects of cohomological dimension ≤ d with A-coefficients if
for any X ∈ C≥0, there exists a map f : U → X in C≥0 such that π0 f
is an epimorphism and U has cohomological dimension ≤ d with A-
coefficients.

If we leave out “with A coefficients”, we implicitly mean to take A = C♥.

Remark 2.9 Anarbitrary coproduct of objects of C≥0 of cohomological dimen-
sion ≤ d also has cohomological dimension ≤ d. From this one sees that if
C≥0 is generated under colimits by objects of cohomological dimension ≤ d,
then C≥0 has enough objects of cohomological dimension ≤ d (compare [40,
Def. C.2.1.1]).

Proposition 2.10 Let X ∈ C. Suppose there exists a d ≥ 0 such that C≥0 has
enough objects of cohomological dimension ≤ d with {πn X}n∈Z-coefficients.
Then:

1. The map α : X → lim←−n
X≤n is a π∗-isomorphism.
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2. X is hypercomplete if and only if X is Postnikov complete.

Proof First we note 1 ⇒ 2. Indeed, assuming 1, the fiber of α is acyclic; but if
X is hypercomplete the fiber will also be hypercomplete, hence zero, so α is
an equivalence and X is Postnikov complete. The converse is true in complete
generality by Lemma 2.6.

Now we prove 1. Replacing X by its shifts, it suffices to show that α is an
isomorphism on π0. Suppose U ∈ C≥0 is of cohomological dimension ≤ d
with π∗X -coefficients. Then for all n ∈ Z, the fiber of

HomC(U, X≤n+1) → HomC(U, X≤n)

lies in Sp≥n−d . Taking the inverse limit along these maps for all n ≥ d + 1,
it follows that if we set F to be the fiber of β : lim←−n

X≤n → X≤d+1, then
[U, F] = [U, �F] = 0.

On the other hand, by hypothesis we can chooseU ∈ C≥0 of cohomological
dimension≤ d (with π∗X -coefficients) so that there is a mapU → F≥0 which
is an epimorphism on π0. It follows that π0F = 0; similarly π−1F = 0. Hence
π0β is an isomorphism. But π0β is isomorphic to π0α, and therefore the latter
is an isomorphism, as desired. ��
Example 2.11 (Compare [50, Th. 1.37]) Let T be a Grothendieck site, and
take C to be sheaves of spectra on T . Suppose x ∈ T is of cohomological
dimension ≤ d in the sense that for every sheaf of abelian groups A on T ,
the abelian groups Hi (x; A) = Ri	(x; A) vanish for i > d. By [40, Cor.
2.1.2.3], the derived ∞-category of the category of abelian sheaves on T
is identified with the ∞-category of hypercomplete sheaves of HZ-modules
on T . In particular, ∞-topos cohomology is identified with derived functor
cohomology. It follows that the object hx ∈ C≥0 corepresenting sections over
x has cohomological dimension ≤ d in the above sense.

Nowassume every object ofT admits a covering by objects x of cohomolog-
ical dimension ≤ d. It follows that C≥0 has enough objects of cohomological
dimension ≤ d. Thus the previous proposition applies, and we conclude that
Postnikov complete is equivalent to hypercomplete for sheaves of spectra on
T . We have an analogous statement for P-local cohomological dimension,
where P is some set of primes.

Example 2.12 As a special case of the above, let R be a commutative Fp-
algebra, and consider the étale site Spec(R)et . Recall that for any p-torsion
étale sheaf F of abelian groups on Spec(R), one has H∗(Spec(R)et ,F) = 0
for ∗ > 1. Compare [1, Exp. X, Theorem 5.1] in the noetherian case and the
general case follows from compatibility with filtered colimits. It follows that
for a sheaf F of p-complete spectra on Spec(R)et , then F is hypercomplete
if and only if F is Postnikov complete.
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The previous proposition will cover all of our cases of interest. Thus practi-
cally speaking, hypercomplete and Postnikov complete are equivalent notions.
Nonetheless, they serve different purposes. Postnikov completeness in some
sense reduces the study of sheaves of spectra to that of sheaf cohomology, i.e.,
one obtains the following (standard) descent spectral sequence:

Proposition 2.13 Let U ∈ C≥0 and X ∈ C. Then there is a conditionally
convergent (cohomoligcally indexed) spectral sequence

E2
p,q = H p(U ; πq X) ⇒ πq−pHomC(U, lim←−

n

X≤n).

Proof Consider the filtered spectrum

. . . → HomC(U, X≤q) → HomC(U, X≤q−1) → . . .

indexed by q ∈ Z. The colimit is 0, because the homotopy π∗HomC(U, X≤q)

vanishes in the range ∗ > q which covers everything as q → −∞. Thus the
associated spectral sequence converges conditionally to the homotopy of the
inverse limit, which is exactly HomC(U, lim←−n

X≤n). The E1-term is given by
the homotopy of the fibers of themaps constituting the above filtered spectrum,
and is therefore as claimed because the fiber of X≤q → X≤q−1 is �qπq X .
We reindex E1 to E2 to fit the general convention. ��

On the other hand, hypercompleteness can be studied using the formally
convenient machinery of Bousfield localizations, cf. [37, Sec. 5.2.7]:

Proposition 2.14 (Cf. [40, Sec. C.3.6]) The fully faithful inclusion Ch → C
of the full subcategory Ch ⊂ C spanned by the hypercomplete objects has an
accessible left adjoint. We denote this left adjoint by X �→ Xh and call it
hypercompletion.

Proof By the general machinery [37, Sec. 5.5.4], it suffices to see that the
acyclic objects form an accessible full subcategory of C which is closed under
colimits. It is accessible because it is the kernel of the collected truncation
functors C → ∏

n∈Z C and [37, Prop. 5.4.7.3]. To see that it is closed under
colimits, we need to check closure under cofibers and direct sums. The first
follows from the 5-lemma on homotopy groups. The second follows from the
fact that direct sums are t-exact in a Grothendieck prestable∞-category, since
filtered colimits are t-exact. ��

In particular we see that hypercompletion is an idempotent exact func-
tor; neither idempotency nor exactness is clear for the Postnikov completion
(inverse limit over the Postnikov tower) in general.
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Remark 2.15 By the general theory, the hypercompletion functor comes with
a natural transformation X → Xh . Moreover this pair of functor and natural
transformation can be characterized objectwise, as the uniqueπ∗-isomorphism
from X to a hypercomplete object. In particular, if C≥0 has enough objects of
cohomological dimension ≤ d for some d ∈ N, then by Proposition 2.10
the hypercompletion of X ∈ C is given by the Postnikov completion X �→
lim←−n

X≤n .

The construction of hypercompletion also has a universal property at the
categorical level; for this, we note that the hypercomplete objects inherit a
t-structure.

Construction 2.16 (The universal property of Ch , [40, Sec. C.3.6]) For a
Grothendieck prestable ∞-category C≥0, the the hypercompletion functor
C≥0 → Ch≥0 has a universal property: it is the initial exact, left adjoint functor
to a separated Grothendieck prestable ∞-category.

In general, one can always form a general Postnikov completion construc-
tion on C, but it need not be given by any type of Bousfield localization. This
makes the hypercompletion slightly easier to work with in practice.

Construction 2.17 (Cf. [40, Prop. C.3.6.3]) Let C≥0 be a Grothendieck
prestable ∞-category. Then the homotopy limit Ĉ≥0 = lim←−n

C[0,n] is a
Grothendieck prestable ∞-category too which is complete. The functor
C≥0 → Ĉ≥0 is the universal cocontinuous exact functor out of C≥0 into a
complete Grothendieck prestable ∞-category, and Ĉ≥0 is called the comple-
tion (or left completion or Postnikov completion) of C≥0.

Explicitly, an object of Ĉ≥0 is a compatible (under truncation) collection
of objects Xn ∈ C[0,n]. The functor C≥0 → Ĉ≥0 has a right adjoint, which
carries the compatible collection {Xn} to lim←−n

Xn . In particular, the composite
of the right and left adjoints implements the functor which carries Y ∈ C≥0 to
the limit of its Postnikov tower. The condition that C≥0 should be complete in
particular implies that every object of C≥0 is Postnikov complete.

Example 2.18 It is possible for a Grothendieck prestable ∞-category C≥0 to
have the property that every object is Postnikov complete but such that C≥0 is
not complete in the above sense. For example, we can take C≥0 ⊂ Sp≥0 to be
the subcategory of K (1)-acyclic, connective spectra. Since the subcategory of
K (1)-acyclic spectra inside all spectra is closed under truncations and colimits,
one sees that C≥0 is Grothendieck prestable; however, its left completion is
simply Sp≥0, as the functor C → Sp≥0 induces an equivalence on truncated
objects.

Often, one can compare the Postnikov completion and hypercompletion
at the level of Grothendieck prestable ∞-categories; we will describe such
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comparisons either in cases of finite cohomological dimension or in certain
infinitary situations. For the next result, compare also [39, Prop. 1.2.1.19]
(which essentially treats the case d = 0; the general case is similar).

Proposition 2.19 Let C≥0 be a Grothendieck prestable ∞-category with sta-
bilization C. Suppose that there is a d ≥ 0 such that a countable product
of truncated objects of C≥0 belongs to C≥−d . Then the hypercompletion and
Postnikov completion of C≥0 agree.

Proof Without loss of generality, we can assume that C≥0 itself is hypercom-
plete. Let {Xn}n≥0 be a tower of objects in C≥0 such that for each n, Xn is
n-truncated, and the map (Xn)≤m → Xm is an equivalence for m ≤ n. It

suffices to show that the inverse limit X
def= lim←−n

Xn (computed in C) has the
property that the map X → Xn is given by n-truncation for any n ≥ 0 (in
particular, X ∈ C≥0).

In fact, consider the homotopy fiber Fn+d+1 of X → Xn+d+1. This is the
homotopy limit in C of a countable tower of truncated objects of C≥n+d+2
and therefore (by our hypotheses) belongs to C≥n+2. It follows from the fiber
sequence Fn+d+1 → X → Xn+d+1 that the map X → Xn induces an equiv-
alence on n-truncations, as desired. ��
Corollary 2.20 The hypotheses of Proposition 2.19 are satisfied if C≥0 has
enough objects of cohomological dimension ≤ d in the sense of Definition
2.8. Thus, the hypercompletion and Postnikov completion of C≥0 agree.

Proof Let U be an object of cohomological dimension d. Let {Yi }i∈Z≥0 be
a countable family of truncated objects of C≥0. Then our assumptions show
that the mapping spectra HomC(U, Yi ) belong to Sp≥−d ; taking products, we
find that HomC(U,

∏
i Yi ) ∈ Sp≥−d . This in particular implies that any map

from U to �d+ j ∏
i Yi is nullhomotopic for any j ≥ 1, whence the desired

connectivity assertion. The last claim then follows from Proposition 2.19. ��
Example 2.21 Let A be a Grothendieck abelian category. Suppose that (for
some fixed d ≥ 0) for every object X ∈ A, there exists a surjection Y � X
such that Y has cohomological dimension ≤ d. Then D(A)≥0 is Postnikov
complete. This follows from Corollary 2.20, noting that for any object Z ∈
D(A)≥0, there exists anobject X ∈ A (embedded as the heart)with amap X →
Z inducing a surjection on π0, i.e.,D(A)≥0 is 0-complicial [40, Def. C.5.3.1].

2.2 Smashing hypercompletion

Fix a Grothendieck prestable ∞-category C≥0 as in the previous subsection.
Now suppose that C≥0 has a symmetric monoidal structure⊗which commutes
with colimits in each variable. For example, if C≥0 is given as sheaves of
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connective spectra on a Grothendieck site, then there is such a symmetric
monoidal structure⊗. It can be produced by sheafifying the usual section-wise
smash product, or (equivalently) by stabilizing the cartesian product symmetric
monoidal structure on the associated∞-topos [40, Sec. 1.3.4]. We also denote
by⊗ the unique extension of this symmetric monoidal structure to C = C≥0 ⊗
Sp having the same colimit preserving property.

Lemma 2.22 1. Let X, Y ∈ C. If X is acyclic, then so is X ⊗ Y .
2. There is a unique symmetric monoidal structure ⊗h on Ch making hyper-

completion C → Ch into a symmetric monoidal functor, given on objects
by X ⊗h Y = (X ⊗ Y )h.

3. Every X ∈ Ch has the unique and functorial structure of a 1h-module,
where 1 is the unit of C.

Proof Claims 2 and 3 follow formally from claim 1, cf. [39, Prop. 2.2.1.9].
To prove claim 1, since the t-structure is right complete, we can assume Y is
t-bounded below, say Y ∈ C≥m . Since X is acyclic, it lies in C≥n for any n.
Thus X ⊗ Y ∈ C≥n+m for any n, hence is acyclic. ��
Lemma 2.23 The following conditions are equivalent:

1. The full subcategory Ch is closed under colimits and tensoring with any
X ∈ C.

2. For any X ∈ C, the object 1h ⊗ X is hypercomplete.
3. For any X ∈ C, the map X → 1h ⊗ X of tensoring with 1 → 1h gives the

hypercompletion of X.
4. The forgetful functor Mod1h (C) → C is fully faithful with essential image

Ch.
5. Every X ∈ C which is a module over an algebra A ∈ Alg(Ch) also lies in

Ch.

Proof 1 ⇒ 2 is trivial.
Suppose 2. Then 1h ⊗ X is hypercomplete. On the other hand the fiber of

X → 1h ⊗ X is acyclic by Lemma 2.22, whence 3.
Suppose3. Full faithfulness of the forgetful functor is equivalent to 1h⊗1h =

1h . This is the special case X = 1h of 3. For the essential image claim, suppose
X admits a 1h-module structure. Then X is a retract of X ⊗1h = Xh , hence X
is hypercomplete. Conversely if X is hypercomplete, then X is a module over
1h by Lemma 2.22.

Suppose 4. Then 1 follows because the forgetful functor in 4 commutes with
colimits and tensoring with X ∈ C.

Thus all of 1 through 4 are equivalent, and it suffices to show they are also
equivalent to 5.
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Since a module over A is a fortiori a module over 1h , we see that even just
the essential image claim of 4 implies 5. Conversely if 5 holds, then since
1h ⊗ X is a module over 1h we clearly have 2. ��
Definition 2.24 (Smashing hypercompletions) Suppose that C satisfies the
conditions of Lemma 2.23. Then we say that hypercompletion is smashing
for C (compare [54]).

This represents a desirable formal situation, only one step away from the
ideal situation where Ch = C.

Next we provide a local-global criterion, essentially that of [40, Prop.
1.3.3.6]. To give the setup, let X be an ∞-topos. Recall that a sheaf on X
with values in a presentable ∞-category Y can be defined simply as a limit-
preserving functor X op → Y [40, Sec. 1.3.1]. In particular, we have the
∞-category of sheaves of connective spectra on X , which is a Grothendieck
prestable ∞-category with stabilization the ∞-category of sheaves of spectra
on X and heart the category of sheaves of abelian groups on X .

For x ∈ X , we note by x∗ the pullback functor on sheaves of spectra from
X to the slice topos X/x , defined by

(x∗F)(y → x) = F(y).

Proposition 2.25 Let X be an ∞-topos, and S a collection of objects which
covers X , i.e. the terminal object ∗ lies in the smallest subcategory of X
containing S and closed under colimits.

1. If F is a sheaf of spectra on X , then F is hypercomplete if and only if x∗F
is hypercomplete for all x ∈ S.

2. If F is a sheaf of spectra on X , then F is Postnikov complete if and only if
x∗F is Postnikov complete for all x ∈ S.

3. If hypercompletion is smashing for sheaves of spectra on X/x for all x ∈ S,
then it is also smashing for sheaves of spectra on X .

Proof First we show that x∗ preserves hypercompleteness for any x ∈ X .
For this, note that x∗ is t-exact and preserves limits. Its left adjoint x! then
necessarily sends n-connective objects to n-connective objects for all n, and
in particular preserves acyclics. It follows that x∗ does indeed preserve hyper-
completeness.

Now suppose that F is such that x∗F is hypercomplete for all x ∈ S. Let
A be acyclic; we will check that the mapping sheaf Map(A,F) is terminal. It
is enough to check this on pullback to any x ∈ S, because S covers. However,
pullback is t-exact and hence preserves acyclic objects, whence the claim.

For 2, since x∗ preserves limits and is t-exact, it preserves Postnikov towers
and their limits. On the other hand, since S covers, the map F → lim←−n

F≤n is
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an equivalence if and only if it is an equivalence on x∗ for all x ∈ S. Combining
gives the claim.

Finally we prove 3. We need to see that F ⊗ G is hypercomplete for all
sheaves of spectra F,G on X such that F is hypercomplete, by part 2 of
Lemma 2.23. By the first claim this can be checked after applying x∗. But
x∗ is symmetric monoidal and preserves hypercompleteness, so we do indeed
reduce to hypercompletion being smashing on each X/x , as claimed. ��
Remark 2.26 We do not know the whether the converse to 3 holds, that is
whether having smashing hypercompletion passes to slice topoi. If it does
not, as seems likely, then the notion of locally having smashing hypercomple-
tion, where one requires all slice topoi to have smashing hypercompletion, is
probably more amenable in general than the notion of just having smashing
localization. In all the cases in this paper where we prove that hypercompletion
is smashing, it follows immediately from the statement that the same is true
locally, so this issue does not concern us much here.

Recall from Lemma 2.23 that hypercompletion is smashing for C if and
only if the full subcategory Ch ⊂ C of hypercomplete objects is closed under
colimits and − ⊗ X for all X ∈ C. Using the connection with Postnikov
completion given byRemark 2.15, one can often check the first condition using
abelian cohomology (compare [68, Prop. 1.39]). Here we no longer need the
symmetric monoidal structure on C. First we need an auxiliary notion.
Definition 2.27 Let F : C → D be a left adjoint functor between presentable
∞-categories with right adjoint G : D → C. We say that this adjunction (or
simply the left adjoint F) is strongly generating if given a diagram f : K � →
D (the right cone on a simplicial set K , cf. [37, Notation 1.2.8.4]) such that
G( f ) is a colimit diagram in C, then f is a colimit diagram.

Consider a strongly generating adjunction (F, G) : C � D as above. In
this case, the right adjoint G is conservative since one can apply the definition
to K = ∗. It follows that the image of F generates D under colimits. An
important example of strong generation, though not the one relevant for our
purposes, arises from the theory of Grothendieck prestable ∞-categories. Let
D≥0 be a separated Grothendieck prestable ∞-category, and let X ∈ D≥0 be
an object such that for any Y ∈ D≥0, there exists a set I and amap

⊕
I X → Y

which induces a surjection on π0. Then the functor Sp≥0 → D≥0 given by
tensoringwith X is strongly generating, by the∞-categoricalGabriel–Popescu
theorem [40, TheoremC.2.1.6]. In the following, wewill use strong generation
to deduce hypercompleteness.

Proposition 2.28 Let C≥0 be a Grothendieck prestable ∞-category with sta-
bilization C. Suppose there exist a d ≥ 0 and a functor h(−) : T → C≥0 from
a small ∞-category T such that:
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1. The induced functor PSh(T ; Sp) → C is strongly generating;
2. For every U ∈ T , the cohomology functor Hn(U ; −) = [hU , �n(−)] :

C♥ → Ab commutes with filtered colimits for all n and vanishes for n > d.

Then the collection of hypercomplete objects Ch ⊂ C is closed under all
colimits. Moreover, the hypercompletions of the objects ht , t ∈ T are compact
in Ch.

For instance, if T is a Grothendieck site and C≥0 is given by sheaves of
connective spectra, then 1 is automatic; if 2 is satisfied, it follows that hyper-
complete sheaves of spectra on T form a full subcategory of PSh(T ,Sp)which
is closed under all colimits.

Proof Since Ch ⊂ C is a stable subcategory, it is closed under finite colimits;
thus we need only check closure under filtered colimits. Since each hU is of
cohomological dimension ≤ d by hypothesis 2, the fact that the hU generate
C≥0 under colimits (a weak form of condition 1) implies that C≥0 has enough
objects of cohomological dimension≤ d. Thus an object of C is hypercomplete
if and only if it is Postnikov complete (Proposition 2.10).Wewrite (−)π for the
inverse limit over the Postnikov tower, or equivalently the hypercompletion
(by Proposition 2.10 again). It suffices to show that if i �→ Xi is a filtered
system of Postnikov complete objects of C, then the map

lim−→
i

Xi → (lim−→
i

Xi )
π ,

from lim−→i
Xi to the inverse limit over its Postnikov tower, is an equivalence.

For this, note that for every U ∈ T the spectral sequence of Proposition
2.13 (applied to each Xi as well as their colimit) and the hypothesis 2 imply
that the natural map

lim−→
i

Xi (U ) →
(

(lim−→
i

Xi )
π

)

(U )

is an equivalence. This shows that the restriction of (lim−→i
Xi )

π to PSh(T ; Sp)
identifies with the filtered colimit of the restrictions of the Xi to PSh(T ; Sp).
Since the adjunction was strongly generating, we can conclude that the hyper-
complete objects are closed under colimits. The same spectral sequence
argument also shows that the hypercompletion of hU is compact in Ch for
each U ∈ T , using again the convergence of Postnikov towers in Ch . ��
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2.3 Finite cohomological dimension; nilpotence criteria

Here we specialize to the following setting, instances of which will be the
focus of the remainder of the paper. Recall the following definition as in [40,
A.3.1]; in this paper, by convention, we will always assume in addition the
existence of a terminal object in our sites.

Definition 2.29 (Finitary sites) Afinitary site is a small∞-categoryT with all
finite limits equipped with a Grothendieck topology such that every covering
sieve admits a refinement which is generated by a finite number of elements.

Given a finitary site T , we have a well-behaved theory of sheaves on it,
forming an∞-toposSh(T ); similarlywecan forman∞-categoryof sheaves of
spectra Sh(T ,Sp).We are interested in questions of hyperdescent or Postnikov
completeness in such∞-categories; these two notions are the same under finite
cohomological dimension assumptions.

Definition 2.30 Given a finitary site T , we say that T has cohomological
dimension ≤ d if, for each x ∈ T , the object �∞+ hx ∈ Sh(T ,Sp≥0) (i.e.,
sheaves of connective spectra on T ) has cohomological dimension ≤ d (cf.
Example 2.11). For a set of primes P , we similarly have a notion of P-local
cohomological dimension of a site T .

Our discussion of hypercompleteness will take place primarily in the setting
of finitary sites of bounded cohomological dimension. In this case, hypercom-
pleteness is equivalent to Postnikov completeness by Proposition 2.10, cf. also
[32, Prop. 3.3] or [45, Prop. 3.20] for equivalent results. Note also that by the
local-global principle Proposition 2.25, this and several of the results below
also hold in the more general setting of local finite cohomological dimension.

Even under this finite-dimensionality hypothesis, the condition that a sheaf
of spectra should be hypercomplete seems slightly subtle, and we do not know
whether hypercompletion is smashing in this generality (although it will be
in the cases of interest below). We first observe that hypercompleteness is
automatic for HZ-modules under a mild assumption on T .

Proposition 2.31 Let T be a finitary site ofP-local cohomological dimension
≤ d which is an ordinary category. Then Sh(T ,ModHZP ) is hypercomplete.

Proof We apply the criterion of Proposition 2.28. Since sheafification is t-
exact, the functor HZP ⊗ �∞+ h(−) : T → Sh(T ,ModHZP ) takes values in
truncated, connective objects and strongly generates the target.Our assumption
implies that the functor also takes values in connective objects of cohomo-
logical dimension ≤ d. The hypothesis of finitary implies that cohomology
commuteswithfiltered colimits onT , cf. [1, Exp.VI.5] for a detailed treatment.
Then, Proposition 2.28 shows that the subcategory of hypercomplete objects in
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Sh(T ,ModHZP ) is closed under all colimits. Since the objects HZP ⊗�∞+ hx
are hypercomplete (indeed, truncated) and generate everything, the claim fol-
lows. ��
Proposition 2.32 Let T be a finitary site ofP-local cohomological dimension
≤ d which is an ordinary category. Let F ∈ Sh(T ,SpP,≥0). Then the map
F → lim←−(F ⊗ τ≤nS) exhibits the target as the hypercompletion (equivalently,
Postnikov completion) of the source.

Proof Indeed, the map F → lim←−(F ⊗ τ≤nS) is a π∗-isomorphism. More-
over, each of the terms in the limit on the right-hand-side is hypercomplete
(Proposition 2.31). The result follows. ��

We now give a criterion for hypercompleteness via the notion of nilpotence,
cf., e.g., [41].

Definition 2.33 (Nilpotence and weak nilpotence) Fix an integer m ≥ 0.

1. A filtered object · · · → X−1 → X0 → X1 → . . . in a stable ∞-category
C (resp. Sp) is called m-nilpotent (resp. weakly m-emphnilpotent) if for
each i , the map Xi → Xi+m+1 is nullhomotopic (resp. induces the zero
map on π∗). Either condition implies that lim←− Xi � lim−→ Xi = 0.

2. We say that an augmented cosimplicial diagram X• ∈ Fun(�+, C) (resp. in
Fun(�+,Sp)) is m-rapidly converging (resp. weakly m-rapidly converg-
ing) if the tower

{
cofib(X−1 → Totn(X•)

}
n≥0 ism-nilpotent (resp.weakly

m-nilpotent); this in particular implies that X• is a limit diagram.

The main use of the above notion is that they will enable us to commute
totalizations and filtered colimits, cf. also [45, Sec. 3.1.3]. We will only lightly
use the following lemma here but it will play a crucial role in the sequel.

Lemma 2.34 (Commuting totalizations and filtered colimits) Let X•
α, α ∈ A

be a system of augmented cosimplicial spectra indexed over a filtered partially
ordered set A. Suppose that there exists an m ∈ Z≥0 such that each X•

α

is weakly m-rapidly converging for α ∈ A. Then the colimit lim−→α∈A
X•

α is
weakly m-rapidly converging and in particular a limit diagram. In particular,
the map

lim−→
α∈A

Tot(X•
α) → Tot(lim−→

α∈A

X•
α)

is an equivalence.

Proof For each n, the map

lim−→
α∈A

Totn(X•
α) → Totn(lim−→

α∈A

X•
α)
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is an equivalence, since finite homotopy limits commute with filtered (indeed
all) colimits in spectra. Now the tower

{Zn}n≥0
def=

{

cofib(lim−→
α∈A

X−1
α → Totn(lim−→

α∈A

X•
α))

}

n≥0

(1)

is a filtered colimit of the towers
{
cofib(X−1

α → Totn(X•
α))

}
which are all

weakly m-nilpotent. Thus the tower {Zn}n≥0 of (1) has the property that the
maps Zn+m+1 → Zn are filtered colimits of maps which are zero on homo-
topy, and hence are zero on homotopy. Therefore {Zn} is weakly m-nilpotent,
lim←−n

Zn = 0, and lim−→α∈A
X•

α is a limit diagram as desired. ��
Proposition 2.35 (Nilpotence and hyperdescent) Let T be a finitary site of
P-local cohomological dimension ≤ d. Let F be a sheaf of P-local spectra
on T . Then the following are equivalent:

1. F is hypercomplete (or Postnikov complete).
2. For every truncated hypercover y• in T of an object x ∈ T , the augmented

cosimplicial spectrum

F(x) → F(y)•

is d-rapidly converging (equivalently, weakly d ′-rapidly converging for
some uniform constant d ′ independent of the hypercover). It suffices to
consider truncated hypercovers such that each yi is a finite coproduct of
objects in T .

Proof For ease of notation we will omit the P’s in the following proof, so
everything is implicitly P-localized. Suppose first that F is hypercomplete.
Consider the augmented simplicial object (�∞+ hy•)

h . By applying the functor
HomSh(T ,Sp)(·,F), it suffices to show that (�∞+ hy•)

h is d-rapidly converging
in the opposite category of the hypercompletion of Sh(T ,Sp), in order to prove
2. For this, consider the map

|skn(�
∞+ hy•)|h → |skn+d+1(�

∞+ hy•)|h → (�∞+ hx )
h .

The object |skn(�
∞+ hy•)

h| has cohomological dimension ≤ d + n as an n-
truncated geometric realization of objects of cohomological dimension ≤ d,4

while the secondmaphas homotopyfiber in Sh(T ,Sp)≥n+d+1 (cf. [37, Lemma

4 Note that hypercompletion preserves cohomological dimension, which is tested in terms of
maps into truncated objects.
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6.5.3.11]). This shows that

fib(|skn(�
∞+ hy•)| → �∞+ hx )

h → fib(|skn+d+1(�
∞+ hy•)| → �∞+ hx )

h

is a map from an object of cohomological dimension ≤ d + n to an object
concentrated in degrees ≥ d + n + 1 and therefore vanishes since all objects
are Postnikov complete.

Now suppose 2 holds (with possibly any d ′ replacing d). Note that the class
of sheaves that satisfy 2 (for some d ′, which may depend on the sheaf but
which is independent of the truncated hypercover) forms a thick subcategory.
ReplacingF with the fiber of the map fromF to its hypercompletion, we may
assume that the homotopy group sheaves of F vanish; then we want F = 0.
Then for every hypercover y• → x , we haveF(x) � F(y•): in fact, this is true
for truncated hypercovers with a uniform weak nilpotence, by assumption, so
we can pass to the limit (approximating a hypercover by its skeleta and using
Lemma 2.34) and obtain a statement for all hypercovers. By Proposition 2.36
below, this implies that all sections of F vanish, as desired. ��

In practice, the advantage of the above result is that in explicit examples,
we will be able to work not with all hypercovers but certain specific ones,
especially those arising from Galois covers.

For the above result, we needed the following crucial construction of suffi-
ciently many hypercovers. For ease of notation, we drop the h from the Yoneda
embedding, so identify T as a full subcategory of PSh(T ).

Proposition 2.36 (Cf. Dugger–Hollander–Isaksen [17]) Let T be a finitary
site. Suppose F → G is a map in PSh(T ) which induces an isomorphism on
homotopy group sheaves. Suppose given an object x ∈ T and a map x → G.
Then there exists a hypercover y• of x, by finite coproducts of representables,
and a commutative diagram in PSh(T ),

|y•| F

x G

.

Proof We can assume that x → G is an equivalence by forming the pullback,
so that we have a map F → x which induces an isomorphism on homotopy
group sheaves. We build the hypercover inductively.

For n = 0, we let y0 be a finite coproduct of objects in T such that y0 → x is
a cover and such that y0 → x � G lifts toF . Suppose that we have constructed
the (n − 1)-skeleton y≤n−1• as an object of PSh(T )/F , and then we need to
build the n-skeleton as an object of PSh(T )/F .
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We let Ln y≤n−1, Mn y≤n−1 denote the nth latching and matching objects
of the (n − 1)-truncated simplicial object y≤n−1• , considered as objects in
PSh(T )/F . To this end, by [37, Prop. A.2.9.14], we need to find an object
yn ∈ PSh(T )/F , which is a finite disjoint union of representables, and a
factorization Ln y≤n−1 → yn → Mn y≤n−1 overF, such that yn → Mn y≤n−1

is a surjection on π0 (the hypercover condition). To this end, we observe
that Mn y≤n−1 has the same homotopy groups as an object which is a finite
coproduct of objects in T , since F → x is an isomorphism on homotopy
groups. In particular, there exists an object z ∈ PSh(T )/F which is a finite
coproduct of objects in T and a map z → Mn y≤n−1 which is a surjection on
homotopy groups. Thus, we can take yn to be the coproduct of Ln y≤n−1 � z.
This defines the n-truncated simplicial object y≤n• . Continuing as n → ∞, we
build the desired hypercover. ��

3 The Zariski and Nisnevich topoi

The purpose of this section is to prove some results about the homotopy dimen-
sion of certain∞-topoi. The notion of homotopy dimension, introduced in [37,
Sec. 7.2.1], gives an effective criterion which guarantees hypercompleteness
and the convergence of Postnikov towers, so that one can extract descent spec-
tral sequences.

Definition 3.1 (Homotopy dimension ≤ n) Let X be an ∞-topos.

1. We have internal notions of n-truncated and n-connective objects inX (cf.
[37, Sec. 5.5.6] and [37,Def. 6.5.1.10]). For example, ifX is the∞-category
Sh(C) of sheaves of spaces on a Grothendieck site C, then F ∈ Sh(C) is
n-truncated if the underlying presheaf of F takes values in n-truncated
spaces. Suppose n ≥ 0; we say that all objects are (−1)-connective. Then
F ∈ Sh(C) is n-connective if F is locally non-empty and for any U ∈ C,
basepoint ∗ ∈ F(U ), and class y ∈ πi (F(U ), ∗) for i < n, there exists
a covering sieve {Uα → U } of U such that y pulls back to the unit (or
basepoint for i = 0) in πi (F(Uα), ∗) for each α.

2. We say that X has homotopy dimension ≤ n if every n-connective object
F ∈ X admits a section, i.e., a map ∗ → F from the terminal object.
We say that X is locally of homotopy dimension ≤ n if there exists a set of
objectsUα which generateX under colimits such thatX/Uα is of homotopy
dimension ≤ n.

For us, the main relevance of the notion of homotopy dimension arises from
the following theorem.

Theorem 3.2 (Cf. [37, Cor. 7.2.1.12] and [40, Cor. 1.3.3.11]) Let X be an
∞-topos which is locally of homotopy dimension ≤ n. Then the ∞-category
Sh(X,Sp) of sheaves of spectra on X is Postnikov complete.

123



Hyperdescent and étale K -theory 1005

In this section, we will show that the Zariski and Nisnevich topoi of qcqs
algebraic spaces of finite Krull dimension have finite homotopy dimension.
The Zariski topos only depends on the underlying topological space, which
is a spectral space (cf. [40, Sec. 3.6]), so the statement about Zariski topoi is
equivalently one about spectral spaces of finite Krull dimension. Since these
results (in various forms) are well-known in the noetherian case, the reader
interested primarily in noetherian rings may skip this section without loss of
generality.

In fact, we will give two arguments for the results. The first argument will be
based on a general criterion for passing finite homotopy dimension through a
limiting process, which could be useful in other settings. The second argument
(which in the case of spectral spaces is based on [65, Tag 0A3G]) is based on
a passage to pro-objects, and gives a slightly stronger connectivity assertion.

3.1 Finitary excisive sites and finite homotopy dimension

We continue the discussion of finitary sites from Definition 2.29. A morphism
of finitary sites is a functor F which preserves all finite limits such that the
image under F of a covering sieve generates a covering sieve. This defines the
∞-category of finitary sites. Given a morphism of finitary sites F : C → D
we get a geometric morphism Sh(D) → Sh(C), see [37, Prop. 6.2.3.20]: the
corresponding “pullback” functor Sh(C) → Sh(D) can be characterized as the
unique colimit-preserving functor which sends the representable sheaf hU to
hF(U ) forU ∈ C, and the right adjoint “pushforward” functor Sh(D) → Sh(C)

is given by compositionwith F on the level of presheaves (which sends sheaves
to sheaves).

Lemma 3.3 1. The ∞-category of finitary sites admits all filtered colim-
its, and these commute with the forgetful functor to the ∞-category of
small ∞-categories. Explicitly, if {Ci }i∈I is a filtered diagram of finitary
sites, then one equips the filtered colimit category C := lim−→i∈I

Ci with the
Grothendieck topology described by: a sieve is covering if and only if it
admits a refinement which is generated by the image of a covering sieve in
one of the Ci .

2. If {Ci }i∈I is a filtered diagram of finitary sites with colimit C, then the
induced pushforward functor

Sh(C) → lim←−
i∈I

Sh(Ci )

is an equivalence.
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Proof First we prove claim 1. Since the colimit is filtered, every finite diagram
d : D → C lifts to some d ′ : D → Ci . Furthermore, the limit of d ′ will map to
a limit of d, because again this is a claim about a finite diagram and we know it
at every stage of the filtered system. From this we see that C has all finite limits,
each functor Ci → C preserves finite limits, and C is the filtered colimit of
the Ci in the ∞-category of finitely complete small ∞-categories with finite-
limit preserving functors. The remaining claims concern the Grothendieck
topology; these depend only on the homotopy category ([37, Rem. 6.2.2.3])
and therefore reduce to the classical case, treated in [1, Exp. VI, Sec. 7-8].

For claim 2, since presheaves are functors out, we have PSh(C) �
lim←−i∈I

PSh(Ci ). Thus we only need to check that an F ∈ PSh(C) is a sheaf if
its restriction to each Ci is a sheaf. (The converse follows from functoriality of
the ∞-topos associated to a finitary site, recalled above.) But by refinement,
F is a sheaf if and only if it has descent with respect to covering sieves gen-
erated by finitely many objects X1, . . . Xn covering some X . By a standard
cofinality argument, this descent property is equivalent to requiring thatF(X)

be the limit of a diagram built out of iterated fiber products of the Xα over
X . As each of the Xα → X are realized at some common stage Ci and the
functor Ci → C preserves finite limits, the descent condition only depends on
the restriction to Ci , verifying the claim. ��

Further nice properties of these∞-categories of sheaves are available under
a hypothesis. To motivate what follows, recall that when C is a finitary site,
the representable sheaves hU ∈ Sh(C) for U ∈ C, while coherent in the sense
of ∞-topos theory, are not necessarily compact in the categorical sense of
mapping spaces out of them commuting with filtered colimits. (However, they
have compact image in the d + 1-topos Sh(C)≤d of d-truncated sheaves for
any d ≥ 0: see [40, A.2.3].) An example to have in mind is the ∞-topos of
spaces S: the coherent objects are the spaces all of whose homotopy sets πn
are finite (at any basepoint, when n > 0), and the compact objects are the
retracts of the spaces homotopy equivalent to finite CW-complexes.

Definition 3.4 Let C be a finitary site. We say C is excisive if the full subcat-
egory Sh(C) ⊂ PSh(C) is closed under filtered colimits, or equivalently if the
generating coherent objects hU ∈ Sh(C) for U ∈ C are also compact in the
∞-categorical sense that F �→ Map(hU ,F) = F(U ) commutes with filtered
colimits.

Proposition 3.5 Let C be a finitary site. Denote by Sh f (C) the smallest full
subcategory of Sh(C) closed under finite colimits and containing the repre-
sentable sheaf hU for every U ∈ C.
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If C is excisive, then

Sh(C) = Ind(Sh f (C)).

Proof If C is excisive then each hU is compact, whence so is every object in
Sh f (C). Thus the functor Ind(Sh f (C)) → Sh(C) is fully faithful. It is then
essentially surjective because the hU clearly generate Sh(C) under colimits.
Compare [37, Proposition 5.3.5.11]. ��
Corollary 3.6 Let Ci be a filtered system of finitary excisive sites. Then:

1. The colimit C := lim−→i∈I
Ci is excisive.

2. Sh f (C) = lim−→i∈I
Sh f (Ci ) via the pullback functors.

Proof Claim 1 follows from Lemma 3.3 part 2, which implies that a sheaf on
C is a compatible system of sheaves on {Ci }; the same holds for presheaves,
and thus implies that Sh(C) ⊂ PSh(C) commutes with filtered colimits, since
this is true at each finite level.

For claim 2, the description [37, Corollary 5.3.5.4] of Ind as finite limit-
preserving presheaves gives an identification

Ind(lim−→
i∈I

Sh f (Ci )) = lim←−
i∈I

Ind(Sh f (Ci )).

Combining Proposition 3.5 and Lemma 3.3 part 2 shows that the ∞-
category on the right identifies with Sh(C). In particular we can see that
lim−→i∈I

Sh f (Ci ) → Sh f (C) is fully faithful. On the other hand it is essen-
tially surjective because pullback functors preserve finite colimits (indeed, all
colimits) and the hU for U ∈ C are clearly hit. ��
Remark 3.7 Let d ∈ Z≥0. By [40, Sec. A.2.3], the analog of Proposition 3.5
and claim 2 of Corollary 3.6 hold for the d +1-category of d-truncated sheaves
Sh(−)≤d without any excisive hypotheses.

Next we will give an analog of the previous proposition and corollary also
in the setting of d-connective sheaves. First, some notation: if C is a site, we
write Sh(C)≥d ⊂ Sh(C) for the full subcategory of d-connective sheaves, and
if C is finitary we further set

Sh f (C)≥d := Sh(C)≥d ∩ Sh f (C),

the full subcategory of those sheaves which both are generated by hU ’s under
finite colimits and are d-connnective.
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A key technical lemma for us will be that any F ∈ Sh f (C)≥d has locally
finitely generated πd in the appropriate sense. For motivation one can think of
the case of the ∞-topos S, where it is a standard fact from homotopy theory
that a d-connective finite CW-complex X has finitely generated πd . In fact, X
need not itself be finite: it’s enough for it to have finite d-skeleton. In general,
we articulate this as follows:

Lemma 3.8 Let C be a finitary site, let d ≥ 0, and let F ∈ Sh(C) be such that
the Postnikov truncation F≤d ∈ Sh(C)≤d lies in the smallest full subcategory
(Sh(C)≤d) f of Sh(C)≤d containing the (hU )≤d for U ∈ C and closed under
finite colimits.

Then there are finitely many {Ui }i∈I in C and points xi ∈ F(Ui ) such that
every section of π0F is locally equal to the class of some xi . Furthermore, if
d ≥ 1 and F is d-connective then this data can be chosen so that for each
i ∈ I the homotopy group sheaf πd(F; xi ) over Ui is generated by finitely
many global sections.

Proof For any such F we have that π0(F) = F≤0 lies in (Sh(C)≤0)
f , so that

π0(F) is a compact object in the category of sheaves of sets on C. On the
other hand every sheaf of sets is tautologically the filtered colimit of its locally
finitely generated subsheaves. It follows that π0(F) is a retract of a locally
finitely generated sheaf of sets, hence is locally finitely generated. This gives
{Ui } and {xi } as required.

Now take d ≥ 1, and assume F ∈ Sh(C)≥d . Since we allowed ourselves
to modify the {Ui } and {xi }, we are free to work locally, hence without loss
of generality we can equip F with a basepoint. Since F≤d ∈ Sh(C)≤d is a
compact object, and a point is also compact because the site is finitary, F≤d is
also compact in the ∞-category of pointed objects of Sh(C)≤d . However, [37,
Prop. 7.2.2.12] shows thatπd establishes an equivalence of categories between
pointed, d-truncated, d-connective sheaves and group sheaves (if d = 1) or
abelian group sheaves (if d ≥ 2). Since d-connectivity is preserved by filtered
colimits (indeed, all colimits), we deduce that πdF is compact as a sheaf of
groups (d = 1) or abelian groups (d ≥ 2). But every such sheaf is a filtered
colimit of its locally finitely generated subsheaves, so from compactness we
deduce that πdF itself is locally finitely generated, whence the claim. ��
Proposition 3.9 Let C be a finitary site. Then for every d ≥ 0 we have:

1. If F → G is a map in Sh(C) with F ∈ Sh f (C) and G ∈ Sh(C)≥d , then
there is a factorization F → F ′ → G with F ′ ∈ Sh f (C)≥d .

2. If C is excisive, then Sh(C)≥d = Ind(Sh f (C)≥d).

Proof Claim 2 follows formally from Claim 1 and Proposition 3.5, by a cofi-
nality argument. Thus we need only prove Claim 1.
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When d = 0, we can find finitely many {Ui } covering ∗ and points yi ∈
G(Ui ). Then set F ′ = F � �i∈I hUi with the map to G being the given map on
F and the map classifying the yi on the i th summand of the coproduct. This
F ′ is clearly 0-connective and finite, giving the claim for d = 0. Then we
proceed by induction on d. Thus we can assume thatF itself lies in Sh f (C)≥d ,
and try to find F ′ in Sh f (C)≥d+1 with a factoring F → F ′ → G assuming
G ∈ Sh f (C)≥d+1.

Consider the xi associated to F as in Lemma 3.8, and classify them by a
map of sheaves

�i∈I hUi → F .

If d = 0, then since G is 1-connective, for every (i, j) ∈ I × I there is a
finite cover {Ui jk}k of Ui × U j such that the images of xi and x j in G are
homotopic over Ui jk . In other words, defining F ′ to be the coequalizer of the
two different natural maps �i, j,khUi jk → F , our map F → G factors through
F ′. By construction F ′ ∈ Sh f (C), so we need to see that F ′ is 1-connective,
meaning π0F ′ = ∗, the terminal sheaf of sets. But F → F ′ is epimorphic on
π0 because a coequalizer is a quotient, and furthermore every section of π0F
is locally equal to some xi by Lemma 3.8, so it suffices to show that the xi
become equal in π0F ′, or equivalently that they become locally homotopic in
F ′. But this has exactly been arranged by the definition of F ′.

If d ≥ 1, then for each i ∈ I choose generators for πd(F; xi ) as in Lemma
3.8, and lift them to maps

� j∈Ji Sd × hUi → F .

Collecting together all the i ∈ I , this gives a map

�i, j Sd × hUi → F .

Since G is d + 1-connective, by refining the Ui if necessary we can assume
that each composition Sd × hUi → F → G factors through ∗ × hUi . In
other words, if we define F ′ to be the pushout of the above map along the
projection �i, j Sd × hUi → �i, j ∗ ×hUi , then F → G factors through F ′.
Clearly F ′ ∈ Sh f (C). Further, since the projection Sd → ∗ is d-connective
and d-connective maps are closed under pushouts, we deduce that F → F ′ is
d-connective. Since F is d-connective, it follows that F ′ is as well, and that
the map of group sheaves πd(F; xi ) → πd(F ′; xi ) over Ui is epimorphic for
all i . But by construction the generators of πd(F; xi ) become nullhomotopic
in πd(F ′; xi ), so the latter group sheaf vanishes, hence F ′ is d + 1-connective
as desired. ��
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Proposition 3.10 Let Ci be a filtered system of finitary sites. Let C denote the
filtered colimit site, and let d ≥ 0. Then:

1. If F ∈ Sh f (Ci ) has d-connective pullback to C, then it has d-connective
pullback to C j for some j .

2. If each Ci is excisive, then Sh f (C)≥d = lim−→i∈I
Sh f (Ci )≥d via the pullback

functors.

Proof For claim 1, since Postnikov truncations commute with pullback maps
of ∞-topoi and a sheaf is d-connective if and only if its truncation to degrees
< d is ∗, this follows directly from Remark 3.7.

For claim 2, the functor lim−→i∈I
Sh f (Ci )≥d → Sh f (C)≥d is fully faithful by

Corollary 3.6, and essentially surjective by Remark 3.7 and claim 1. ��
The important principle for us is the following corollary:

Corollary 3.11 Suppose Ci is a filtered system of finitary excisive sites, with
colimit C. If each Sh(Ci ) has homotopy dimension ≤ d, then so does Sh(C).

Proof Let F ∈ Sh(C)≥d . From Proposition 3.9 we see that F admits a map
from an objectG ∈ Sh f (C)≥d . By claim 2 of Proposition 3.10,G is pulled back
from some object G′ ∈ Sh f (Ci )≥d . This G′ has a global section by hypothesis,
hence its pullback G has a global section, hence F has a global section, as
desired. ��

3.2 Spectral spaces

Let X be a spectral space,5 and let ptX denote the category of points of the
topos of sheaves on X . Concretely, the objects of ptX are the points of X ,
there is a map x → y iff every open subset containing y also contains x , and
in this case the map is unique.6 Recall that the Krull dimension of X is the
supremum of the lengths n of the chains x0 → x1 → . . . → xn of non-identity
morphisms in ptX .

We will denote by Sh(X) the ∞-category of sheaves of spaces (∞-
groupoids) on X . As always with an ∞-topos, for d ∈ Z≥0 there is an internal
notion of a sheafF ∈ Sh(X) being d-connective: itmeans the (sheafified) Post-
nikov truncationF<d is ∗ [37, Sec. 6.5.1.12]. Thus, for example, 0-connective
means locally non-empty, and 1-connective means every two sections can

5 Recall this means that the quasi-compact open subsets of X form a basis closed under finite
intersection, and X is T0 and sober; equivalently, by [28], X = Spec(R) for some commutative
ring R, or X is a filtered inverse limit of finite T0-spaces. A continuous map between spectral
spaces X → Y is called spectral if the preimage of a quasi-compact open subset is a quasi-
compact open subset.
6 For instance, this follows using [37, Theorem 5.1.5.6 and Proposition 6.1.5.2].
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locally be connected by a path. Since the usual topos of sheaves of sets on X
has enough points given by the points of X , a sheaf of spacesF is d-connective
if and only if the stalk Fx is a d-connective (equivalently (d − 1)-connected)
space for all x ∈ X .

The main result is:

Theorem 3.12 Let X be a spectral space of Krull dimension d ∈ Z≥0, and
let F ∈ Sh(X) be d-connective. Then F(X) is nonempty. That is, Sh(X) has
homotopy dimension ≤ d.

Note that by applying this statement to iterated loop (or path) spaces on F ,
we deduce the more general statement that for any n ≥ 0, if F is (d + n)-
connective then F(X) is n-connective.

In otherwords, X has homotopy dimension ≤ d. Since the hypothesis clearly
passes to any quasi-compact open subspace of X , the space X is also locally of
homotopy dimension ≤ d. Thus Sh(X) is Postnikov complete, hence hyper-
complete (Theorem 3.2). The useful consequence is that a map of sheaves of
spaces (or spectra) on X is an equivalence if and only if it is an equivalence on
every stalk. Note that this consequence is not ensured by the weaker property
of locally finite cohomological dimension, even in the setting of sheaves of
spectra; see Example 4.15.

The claim that X as in Theorem 3.12 has cohomological dimension≤ d was
proved in [59], and in the noetherian case Theorem 3.12 was proved in [37,
Cor. 7.2.4.17]. The convergence of Postnikov towers and the descent spectral
sequence in the noetherian case appears in [4]. Together these results suggested
that Theorem 3.12 should be true.

The idea of the proof is to reduce to the case of finite spectral spaces (which
are the same as finite T0-spaces), via the result that every spectral space X is
a filtered inverse limit of finite spectral spaces ([28, Prop. 10])—and if X has
Krull dimension ≤ d, these finite approximations can also be taken of Krull
dimension ≤ d [14]. On the other hand, the case of finite spectral spaces is
fairly elementary:

Lemma 3.13 Let X be a finite spectral space andF ∈ Sh(X). IfF is dim(X)-
connective, then F(X) is non-empty.

Proof Weproceed by induction on the number of points of X . If X is empty, the
result is trivial, asF(X) = ∗. If X is nonempty, it has a closed point x . Let Xx
denote the intersection of all open neighborhoods of x ; it is the set of all points
specializing to x , and is itself open. Then X admits an open cover by Xx and
X − x with intersection Xx − x , whenceF(X) = F(Xx )×F(Xx−x)F(X − x).
Thus it suffices to show that F(Xx ) and F(X − x) are non-empty, and that
F(Xx − x) is connected. However, F(Xx ) = Fx is nonempty by assumption,
F(X − x) is non-empty by the inductive hypothesis, and F(Xx − x) is even
connected by the inductive hypothesis, since dim(Xx − x) ≤ dim(X) − 1. ��
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Proof of Theorem 3.12 First, a general remark. A spectral space Y can equiv-
alently be encoded by its category (poset) CY of quasicompact open subsets
under inclusion. Since the quasicompact open subsets of Y form a basis of
the topology of Y closed under finite intersections, the ∞-topos of sheaves of
spaces on Y can equivalently be described as sheaves of spaces on the site CY of
quasicompact open subsets equippedwith the inducedGrothendieck topology,
which is the obvious one of open coverings, cf. [40, Prop. 1.1.4.4]. Since Y is
spectral, CY is a finitary site. It is also excisive (cf. also [37, Prop. 6.5.4.4]):
indeed, induction on the number of quasicompact opens generating a covering
sieve shows that a presheaf F on CY is a sheaf if and only if F(∅) = ∗ and
F(U ∪ V )

∼→ F(U ) ×F(U∩V ) F(V ) for all U, V ∈ CY , and this condition is
preserved under filtered colimit of presheaves.

Furthermore, it is elementary to see that if Y is a filtered inverse
limit lim←−i∈I

Yi in the category of spectral spaces and spectral maps, then
lim−→i∈I

CYi = CY via the pullback maps.
Returning to our X of Krull dimension ≤ d, the results of [14] show that X

can be expressed as a filtered inverse limit lim←−i∈I
Xi of finite spectral spaces

Xi , i ∈ I of Krull dimension ≤ d. More precisely, using the Stone duality
between spectral spaces and distributive lattices and [14, Theorem 3.2] (which
as explained there is essentially due to [31]), we obtain an expression for X
as X � lim←−I

Xi as desired. Each Xi has homotopy dimension ≤ d by Lemma
3.13. Thus Corollary 3.11 and the above remarks let us conclude that X has
homotopy dimension ≤ d, as desired. ��

We also include an alternative argument for Theorem 3.12, which is inspired
by the argument in [65, Tag 0A3G] for the cohomological dimension; it avoids
the use of Corollary 3.11 and the reduction to finite spectral spaces. In fact,
it yields a slightly stronger statement, in that we can relax the connectivity
assumptions on the stalks depending on the point.

Theorem 3.14 Let X be a spectral space of finite Krull dimension, and let
F ∈ Sh(X). Suppose that for each x ∈ X, we have that the stalk Fx is
dim({x})-connective. Then F(X) �= ∅.

Proof Wewill prove the result by induction on theKrull dimension of X .When
X = ∅, the result is evident, so the induction starts. Note that (by taking loop
or path spaces) the statement of the theorem (for a given X ) is equivalent to the
statement that for any F such that each stalk Fx is c + dim({x})-connective,
then F(X) is c-connective.

For convenience and ease of notation (although this is not necessary), we
will assume that X is the spectrumof a ring A of finiteKrull dimension. ThenF
defines a sheaf of spaces on the Zariski site of A; in particular, we can evaluate
F on finite products of A-algebras of the form A[1/ f ], f ∈ A. By extending
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F by forcingF to preserve filtered colimits, we obtain a Zariski sheafF on all
A-algebras which are filtered colimits of algebras of the above form; here we
use implicitly that the Zariski site is finitary excisive. (Moreover, the Zariski
site of a filtered colimit of rings {Ai } is the filtered colimit of the Zariski sites
of the individual {Ai }.) Our assumption is that if p ∈ Spec(A), then F(Ap) is
dim(A/p)-connective.

Now we consider the collection P of all localizations A[S−1] of A such
that F(A[S−1]) = ∅. We want to show that P is empty, so suppose P is
nonempty. By construction, P (considered as a subcategory of A-algebras) is
a partially ordered set, and it admits filtered colimits. By Zorn’s lemma, P
admits a maximal element A′: in particular, F(A′) = ∅ but F takes nonempty
values on any proper localization of A′. Now A′ is not local, orF(A′)would be
nonempty by our assumption, and A′ �= 0. Therefore, there exists an element
f ∈ A′ which is neither a unit nor in the Jacobson radical of A′. We can form
the localization A′′ of A′ at all elements 1 + g f, g ∈ A′ and then we have a
pullback square of spaces

F(A′) F(A′[1/ f ])

F(A′′) F(A′′[1/ f ])

.

Our assumption is that A′[1/ f ] and A′′ are both nontrivial localizations of A′,
so the terms F(A′[1/ f ]),F(A′′) are nonempty. Finally, the Krull dimension
of A′′[1/ f ] is less than that of A: in fact, no maximal ideals belong to the
image of the injective map Spec(A′′[1/ f ]) → Spec(A). In fact, this shows
that for any x ∈ Spec(A′′[1/ f ]), the dimension of the closure of its image
in Spec(A′′[1/ f ]) is strictly less than the closure of its image in Spec(A).
By induction on the Krull dimension, we can conclude (using the statement
of the theorem applied to Spec(A′′[1/ f ])) that F(A′′[1/ f ]) is 1-connective
(i.e., connected). It follows that F(A′) �= ∅, a contradiction which proves the
theorem. ��

3.3 The Nisnevich topos

Next, we would like to prove the finite homotopy dimension assertion for
Nisnevich sites of algebraic spaces. Let us first fix the definitions.

Definition 3.15 (The Nisnevich and étale sites) Let X be a qcqs algebraic
space (overZ). Define the étale site Xet and theNisnevich site X Nis as follows:

1. The underlying category in both cases is the category etX of étale maps of
algebraic spaces U → X such that U is qcqs.
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2. A sieve over U ∈ etX is covering for Xet iff it contains finitely many
U1, . . . Un mapping to U such that �iUi → U has nonempty pullback to
every point of U .

3. A sieve over U ∈ etX is covering for X Nis iff it contains finitely many
U1, . . . Un mapping to U such that �iUi → U admits a section after
pullback to every point of U .

The Nisnevich topos was introduced in [52] in the case of a noetherian
scheme. See [40, Sec. 3.7] for a detailed treatment in the present general
setting. Note that the definition given there is a priori slightly stronger (an
étale map p : Y → X is a cover if there is a stratification of X such that p
admits a section along each stratum). It was shown in [7, Appendix A] that
it is actually enough to demand lifting of field-valued points; the treatment in
loc. cit. is for qcqs schemes, but qcqs algebraic spaces admit Nisnevich covers
by affine schemes, cf. [58], [40, Sec. 3.4.2].

Remark 3.16 One could more generally allow X to be an algebraic space over
the sphere spectrum, but the extra generality is spurious for present purposes,
because every algebraic space over the sphere spectrum has an underlying
ordinary algebraic space with the same étale and Nisnevich sites.

A basic example is the following.

Example 3.17 (The Nisnevich site of a field) Let x = Spec(k) for k a field.
Then the Nisnevich site is equivalent to the site of étale x-schemes (i.e., the
opposite category to products of finite separable extensions of k) and the topol-
ogy is that of finite disjoint unions, i.e. the sheaves are exactly those presheaves
which preserve finite products. Equivalently, we can define this to be the site
of finite continuous Gal(k)-sets with the topology of finite disjoint unions.
We denote this category by Tx so that Nisnevich sheaves are finitely product-
preserving presheaves on Tx .

Our main result is the following.

Theorem 3.18 Let X be a qcqs algebraic space, and suppose that the under-
lying topological space |X | (which is a spectral space, cf. [40, Prop. 3.6.3.3])
has Krull dimension ≤ d. Then Sh(X Nis) has homotopy dimension ≤ d.

The descent spectral sequence for sheaves of spectra is constructed in [52]
under the assumption that X is a noetherian scheme of Krull dimension ≤ d.
Under the same assumptions, the result that the Nisnevich topos has cohomo-
logical dimension ≤ d appears in [34], and the homotopy dimension assertion
(which implies all the others) appears in [40, Theorem 3.7.7.1]. The purpose
of this subsection is thus to remove the noetherian assumptions on all of these
results.
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The idea of the proof of Theorem 3.18 will be the same as in the proof
of Theorem 3.12: to find finite approximations to the Nisnevich site. For this
we need a technical lemma. In its statement we will refer to the concept of a
spectral stratification of a qcqs algebraic space X . This just means a spectral
map p : |X | → S with S a finite spectral space. The strata are the locally
closed subspaces {s} ×S X ⊂ X . For specificity these can be equipped with
their reduced structure sheaves, but in fact every statement we make about
them will be independent of the choice of structure sheaf.

Lemma 3.19 Let X be a qcqs algebraic space and let f : Y ′ → Y be a
Nisnevich covering map of qcqs étale X-spaces. Then there is a spectral strat-
ification p : |X | → S such that for all s ∈ S, the map f admits a section over
the stratum {s} ×S Y ⊂ Y .

Proof First we claim that if the lemma is known for all the strata of a spectral
stratification of X , then it can be deduced for X . Indeed, since every spectral
space is a filtered inverse limit of finite spectral spaces [28, Prop. 10], every
partition of a spectral space into finitely many constructible subspaces can be
refined by a partition given by the strata of a spectral stratification. Thus, if
we have a stratification of each stratum of X , then possibly after refinement
we can collect all of the strata of strata together to a single stratification of X ,
verifying the reduction claim.

By [58, Prop. 4.4], there exists a spectral stratification of X such that Y
is finite étale over each stratum; thus we can reduce to the case where Y is
finite étale over X . By the “étale dévissage” result of [58] (or the “scallop
decomposition” of [40, Theorem 3.4.2.1]), we can further reduce to the case
where X is affine. In fact, the theory of scallop decompositions [40, Definition
2.5.3.1] shows that X admits a finite filtration by quasi-compact open subsets
Ui ⊂ X such that each successive differenceUi+1 \Ui (e.g., endowed with the
reduced algebraic subspace structure) is affine. By noetherian approximation,
we can then assume X is noetherian (and forget that it’s affine if we like).

In that case, proceeding by noetherian induction, it suffices to show that there
is a non-empty open subset U ⊂ X such that f has a section over U ×X Y .
Let x ∈ X be a minimal point (equivalently, a generic point of an irreducible
component of X ). Then {x}×X Y consists of a finite set y1, . . . , yn of minimal
points of Y , which can therefore be separated by disjoint open neighborhoods
V1, . . . , Vn of Y . By the Nisnevich property and spreading out, we can assume
that f has a section over each Vi , hence over V = ∪i Vi . Let U denote the
complement of the image of Y − V in X . Then U is open as f is finite, U
contains x and hence is non-empty, and f has a section over U ×X Y since
U ×X Y ⊂ V . Thus U satisfies the desired conditions, finishing the proof. ��

Now we define the desired finite approximations to the Nisnevich site.
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Definition 3.20 Let X be a qcqs algebraic space, and p : |X | → S a spectral
stratification of X . Define the p-Nisnevich site of X , denoted X Nis,p, to be
the category of qcqs étale X -spaces, equipped with the Grothendieck topology
where a sieve over Y is covering if and only if it contains finitely many {Yi →
Y }i∈I such that �i∈I Yi → Y admits a section over {s} ×S Y for all s ∈ S.

The axioms of a finitary Grothendieck topology follow from the definition.
The following is then immediate from Lemma 3.19:

Lemma 3.21 As p runs over the filtered system of all spectral stratifications
of X, we have an equivalence of finitary sites

lim−→
p

X Nis,p = X Nis,

where all the transition maps, and the identification, are given by the identity
functor on the category of qcqs étale X-schemes.

We also have the following, recovering the well-known result of Morel-
Voevodsky ([50, Prop. 1.4] and [40, Theorem 3.7.5.1]) in the limit over all
spectral stratifications:

Lemma 3.22 Let p : |X | → S be a spectral stratification of a qcqs algebraic
space X. A presheaf F ∈ PSh(etX ) is a sheaf for X Nis,p if and only if the
following conditions are satsified:

1. F sends finite coproducts in etX to finite products of spaces;
2. For every closed subset Z ⊂ S and every map Y ′ → Y in etX which is an

isomorphism over Z ×S Y , the map F(Y ) → F(Y ′) ×F(U ′) F(U ) is an
equivalence, where U = (S − Z) ×S Y and U ′ = (S − Z) ×S Y ′.

In particular, X Nis,p is excisive.

Proof If S is empty, then so is X and thus the claim is trivial. We can therefore
assume S is nonempty and proceed by induction on the number of elements
of S. To make use of the inductive hypothesis, it is useful to note that for
every open subset U ⊂ S, if a presheaf F on etX satisfies conditions 1 and 2
above, then its restriction to the full subcategory etU×S X ⊂ etX also satisfies
conditions 1 and 2 with respect to the restricted stratification U ×S X → U .
(This is elementary: for a closed subset Z ⊂ U , consider the closed subset
Z ∪ (S − U ) of S.)
First assume conditions 1 and 2 hold. By [40, Prop. A.3.3.1] and condition

1, to show that F is a sheaf on X Nis,p it suffices to show Čech descent with
respect to an arbitrary covering map Y ′ → Y in X Nis,p. Let s ∈ S be a closed
point. By hypothesis, Y ′ → Y admits a section σ over {s} ×S Y . Let

Y ′′ := Y ′ − ({s} ×S Y ′ − σ({s} ×S Y )).
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Note that Y ′′ is an open subspace of Y ′, as a section of an étale map is an
open immersion. Furthermore, we have arranged it so that Y ′′ → Y is an
isomorphism over {s} ×S Y , so from condition 2 it follows that to verify Čech
descent for any map Y1 → Y it suffices to verify Čech descent for its pullback
to Y ′′, to (S − {s}) ×S Y , and to (S − {s}) ×S Y ′′. In our situation, where
Y1 → Y is f : Y ′ → Y , the latter two follow from the inductive hypothesis,
and the former follows because Y ′′ → Y factors through f , so that f acquires
a section on pullback along Y ′′ → Y .

To show the converse, assume that F is a sheaf for X Nis,p. To check that
condition 2 holds, it suffices to show that in the situation of condition 2, the
induced map on pushouts of representable sheaves hU �hU ′ hY ′ → hY is
an equivalence. Since all representables are sheaves of sets (the site is a 1-
category) and hU ′ → hY ′ is a monomorphism, hU �hU ′ hY ′ is also a sheaf of
sets, and therefore it suffices to show that ifF is a Nisnevich sheaf of sets, then
F(Y )

∼→ F(U ) ×F(U ′) F(Y ′). For this, by Nisnevich descent for the cover
{U → Y, Y ′ → Y }, it suffices to show that if a section s ∈ F(Y ′) is such
that the image of s in F(U ′) comes from F(U ), then s has the same image on
pullback along the two different projections Y ′ ×Y Y ′ → Y ′. But Y ′ ×Y Y ′ is
covered by the diagonal Y ′ → Y ′ ×Y Y ′ (which is an open immersion since
Y ′ → Y is étale) together with pullback of Y ′ ×Y Y ′ → Y to U ⊂ Y , which
leads to the conclusion. ��
Lemma 3.23 Let p : |X | → S be a spectral stratification of a qcqs algebraic
space X, let Y ∈ etX , and let s ∈ S. For F ∈ Sh(X Nis,p), define

FY,s := lim−→F(U ),

the colimit being over the co-filtered category of all U → Y in etY which are
an isomorphism over {s} ×S Y .

Then this functor F �→ FY,s : Sh(X Nis,p) → S is the pullback functor
associated to a point of the ∞-topos Sh(X Nis,p).

Proof Consider the functor etX → S which sends an f : X ′ → X in etX
to the set of sections of f over {s} ×S Y . This preserves finite limits, and the
definition of the topology on X Nis,p implies that the image of a covering sieve
for X Nis,p is epimorphic. Thus, the criterion of [37, Prop. 6.2.3.20] shows
that there is a unique functor Sh(X Nis,p) → S which restricts to our original
functor etX → S on representables and is the pullback functor associated to a
geometric morphism of∞-topoi.Writing a sheaf in the tautological manner as
a colimit of representable sheaves, we deduce that this pullback functor sends

F �→ lim−→{s}×SY→U→Y

F(U ),
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where the indexing category is all étale neighborhoods of {s} ×S Y in Y . This
indexing category is co-filtered by fiber products, so by a cofinality argument,
to prove the lemma it suffices to see that every étale neighborhood {s}×S Y

σ→
U → Y admits a refinement U ′ → U for which the map U ′ → Y is an
isomorphism over {s} ×S Y (in which case the section {s} ×S Y → U ′ is
unique). For this, let Ss denote the smallest open neighborhood of s in S.
Noting that {s} is closed in Ss , we can take

U ′ = Ss ×S U − ({s} ×S U − σ({s} ×S Y )).

��
Proposition 3.24 Let p : |X | → S be a spectral stratification of a qcqs
algebraic space X and let F ∈ Sh(X Nis,p). Adopting the notation of the
previous lemma, if FY,s is dim(S)-connective for all Y ∈ etX and s ∈ S, then
F(X) �= ∅.

Proof The case S = ∅ is trivial, so assume S nonempty and proceed by
induction on the number of points of S.

Let s be a closed point of S, and let Ss be the smallest open neighborhood
of s in S. There are two cases: Ss �= S, and Ss = S. First consider the first
case. By Zariski descent (or Lemma 3.22) we have

F(X)
∼−→ F(Ss ×S X) ×F((Ss−s)×S X) F((S − s) ×S X).

WehaveF((S−s)×S X) �= ∅ andF(Ss×S X) �= ∅by the inductive hypothesis,
and F((Ss − s) ×S X) is even connected by the inductive hypothesis, as
dim(Ss − s) ≤ dim(S) − 1. Hence we deduce F(X) �= ∅, as claimed.

To finish, assume we are in the second case, so Ss = S. Define

F ′
X,s := lim−→F((S − s) ×S U ),

where the indexing category is the same as the one which defined FX,s =
lim−→F(U ), namely all the U → X in etX which are an isomorphism over
{s} ×S X . Then passing to filtered colimits in Lemma 3.22 shows that

F(X)
∼−→ F((S − s) ×S X) ×F ′

X,s
FX,s .

By the inductive hypothesis, F((S − s) ×S X) is non-empty (and even con-
nected, as dim(S − s) ≤ dim(S)−1), and likewiseF ′

X,s is a filtered colimit of
connected spaces, hence is connected. SinceFX,s is non-empty by hypothesis,
we deduce F(X) �= ∅, as desired. ��
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Corollary 3.25 Let p : |X | → S be a spectral stratification of a qcqs alge-
braic space X. Then:

1. As Y varies over etX and s varies over S, the points of Sh(X Nis,p)

described in Lemma 3.23 form a conservative family of points of the ∞-
topos Sh(X Nis,p).

2. The homotopy dimension of Sh(X Nis,p) is ≤ dim(S), the Krull dimension
of S.

Proof For 1, suppose F → G is a morphism in Sh(X Nis,p) such that FY,s →
GY,s is an equivalence for all Y ∈ etX and s ∈ S. We want to see thatF → G is
an equivalence. By repeating the argument for everyU ∈ etX , it suffices to see
that F(X) → G(X) is an equivalence. Considering the homotopy fiber at an
arbitrary point of G(X), we can further reduce to the case where G = ∗. Then
the hypothesis is that FY,s is ∗, hence is d-connective for all d ≥ 0; therefore
F(X) is d − dim(S)-connective for all d, hence is also ∗, as required.

For 2, if F is dim(S)-connective, then FY,s is dim(S)-connective for all
Y and s since pullbacks preserve connectivity. Thus Proposition 3.24 implies
F(X) �= ∅, as desired. ��

Combining everything, we deduce the desired theorem (Theorem 3.18) on
finiteness of the homotopy dimension of X Nis : from Lemma 3.21 and Corol-
lary 3.11 we reduce to the analogous claim for the X Nis,p, which is Corollary
3.25 part 2 (note also that there is a cofinal collection of spectral stratifications
p : |X | → S with dim(S) ≤ dim(|X |), by [14]). Inputting the classical fact
that the ordinary topos of Nisnevich sheaves on X has enough points given
by the finite separable extensions of the residue fields of X (which can also
be recovered in the limit over p from Corollary 3.25 part 1), we can rephrase
Theorem 3.18 as follows:

Theorem 3.26 Let X be a qcqs algebraic space of Krull dimension d < ∞.
If F ∈ Sh(X Nis) is such that the Nisnevich pullback x∗F ∈ Spec(k(x))Nis =
PSh�(TSpeck(x)) (cf. Example 3.17) is d-connective for all x ∈ X, then
F(X) �= ∅.

Here are the standard corollaries. These follow from Theorem 3.26 and
[37, Proposition 7.2.1.10], in light of [37, Remark 6.5.4.7] and [37, Corollary
7.2.2.30].

Corollary 3.27 Let X be a qcqs algebraic space of Krull dimension d < ∞.
If f : F → G is a map of sheaves of spaces (or spectra) on X Nis such that
x∗ f : x∗F → x∗G is an equivalence for all x ∈ X, then f is an equivalence.
In particular, all sheaves are hypercomplete.

Corollary 3.28 Let X be a qcqs algebraic space of Krull dimension d. Then
X Nis has cohomological dimension ≤ d.
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This bound on cohomological dimension has the following further conse-
quence; at least in the noetherian case, this is well-known, cf. for instance [45,
Theorem 2.8] for the argument.

Corollary 3.29 Let X be a qcqs algebraic space of Krull dimension d, andP a
set of primes. For x ∈ X, denote by cdx the P-local cohomological dimension
of the absolute Galois group of the residue field at x. Then

supx∈X cdx ≤ supU→X∈etX CohDimP(Uet ) ≤ d + supx∈X cdx .

Proof First we show the first inequality. In fact we show something slightly
stronger: for all x ∈ X ,

cdx ≤ supx∈U⊂X CohDimP(Uet ),

where the supremum is now over all Zariski open neighborhoods of x in X .
For this, note that since a point in a spectral space is pro-constructible, x is
a filtered inverse limit of finitely presented closed subspaces Z ⊂ U of qua-
sicompact Zariski open neighborhoods U of x . Standard continuity results
in étale cohomology [65, Tag 03Q4] then imply that the étale cohomologi-
cal dimension of x is bounded by the supremum of the étale cohomological
dimensions of such Z . But étale pushforwards along closed immersions are
exact, so the cohomological dimension of each Z is bounded by that of its
corresponding U , as desired.

For the second inequality, since the Krull dimension of each U ∈ etX is
bounded by that of X , and likewise the Galois cohomological dimension of
each residue field of U is bounded in terms of those of X (residue fields of U
are finite separable extensions of residue fields of X ), it suffices to show that

CohDim(Xet ) ≤ d + supx∈X cdx .

For this, let A be a P-local sheaf of abelian groups on Xet . We wish to show
that Hi (Xet ;F) = 0 for i > d + supx∈X cdx . To this end, we consider the
Leray spectral sequence for the pushforward λ from the étale to the Nisnevich
site,

Hi (X Nis, R jλ∗(F)) �⇒ Hi+ j (Xet ,F).

Since the Nisnevich site has cohomological dimension≤ d, it suffices to show
that R jλ∗(F) = 0 for j > supx∈X cdx . But the Nisnevich stalk of R jλ∗(F)

at y ∈ X is given by H j (Spec(Oh
X,y),F), where Oh

X,y denotes the henselian
local ring at y, and by definition this vanishes for j > cdy . ��
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Finally, as in Theorem3.14,we include an alternative argument for Theorem
3.18, which gives a slightly stronger connectivity bound. For simplicity, we
only treat the case of qcqs schemes.

Theorem 3.30 Let X be a qcqs scheme of finite Krull dimension and let
F ∈ Sh(X). Suppose that for each x ∈ X, the Nisnevich pullback x∗F ∈
Sh((Speck(x))Nis) is dim({x})-connective. Then F(X) �= ∅.

Proof We will prove this by induction on the Krull dimension of X , start-
ing with the (evident) case of dimension −1. In view of Theorem 3.14, it
suffices to show that for each x ∈ X , the Zariski stalk of F at x is dim({x})-
connective for each x ∈ X . In particular, using that the Nisnevich site is
finitary excisive to pass to the limit, we may assume that X = Spec(A) for
A a local ring with closed point x . Since the Nisnevich pullback of X to x
is 0-connective, it follows that there exists an étale neighborhood A′ of x (in
particular, Spec(A′) → Spec(A) pulls back along Spec(k(x)) to an isomor-
phism) such that F(A′) �= ∅. There exists a finitely generated ideal I ⊂ A
such that A → A′ is an isomorphism along I . Therefore, we have a pullback
square

F(A) F(A′)

F(SpecA \ V (I )) F(SpecA′ \ V (I ))

.

The observation now is that themaps Spec(A)\V (I ) → Spec(A) andSpecA′\
V (I ) → SpecA′ miss the closed point, and hence the inductive hypothesis
applies to show that F takes 1-connective values on each of these schemes.
Since F(A′) �= ∅, it follows that the above pullback F(A) is nonempty, as
desired. ��
Remark 3.31 In [56], it is asserted (cf. Theorem 4.1 of loc. cit.) that algebraic
K -theory is a hypersheaf in theZariski orNisnevich topology on a qcqs scheme
X of finite Krull dimension. The argument relies on the fact that this is well-
known (due to [70]) in the case where X is noetherian and of finite Krull
dimension, and then one can write any X as a filtered limit of schemes Xi of
finite type over Z, and appeal to continuity results such as [45, Theorem 3.8].
To the best of our knowledge, however, such an argument requires the Xi to
have uniformly bounded Krull dimension, which generally cannot be arranged
even if X has finite Krull dimension. Nonetheless, our arguments here show
that there is in fact no distinction between sheaves and hypersheaves on a qcqs
scheme X (or algebraic space) of finite Krull dimension. Since the results
of [70] are sufficient to show that K -theory is at least a sheaf on any qcqs
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algebraic space, it follows that the assertions of [56] do indeed hold without
noetherian hypotheses.

4 The étale topos

In this section, we study the ∞-category Sh(Xet ,Sp) of sheaves of spectra on
the étale site of a qcqs algebraic space X of finite Krull dimension and with a
global bound on the étale cohomological dimension of the residue fields: by
Corollary 3.29, this implies that the étale topos of X has finite cohomological
dimension.

Contrary to the examples of the previous subsection, the ∞-topos Sh(Xet )

need not have finite homotopy dimension and Sh(Xet ,Sp) is generally not
hypercomplete. Our main result (Theorem 4.38) is that hypercompletion is
smashing and that we can make explicit the condition of hypercompleteness
on a sheaf of spectra.

Throughout this section, we will fix a set of primes P and will be working
with P-local objects.

4.1 The classifying topos of a profinite group

Let G be a profinite group. First, we review the topos of continuous G-sets,
cf. [46, Sec. III.9] for a treatment.

Definition 4.1 Let TG denote the Grothendieck site defined as follows:

1. The underlying category of TG is the category of finite continuous G-sets.
2. A system of maps {Si → S}i∈I forms a covering sieve if it is jointly sur-

jective.

Given an ∞-category D with all limits, we let Sh(TG,D) denote the ∞-
category ofD-valued sheaves on TG , as usual. We also write PSh�(TG,D) for
the∞-categoryof presheaves onTG with values inDwhich carryfinite coprod-
ucts on TG to finite products; equivalently, these are D-valued presheaves on
the orbit category of G.

Clearly, TG is a finitary site. The category of sheaves of sets on TG is the
category of continuous (discrete) G-sets. More generally, we can describe
sheaves on TG in an arbitrary ∞-category with limits. The category of finite
continuous G-sets has pullbacks, and the pullback of a surjection is a sur-
jection. Moreover, coproducts are disjoint. Consequently, we note that this
Grothendieck topology is a special case of a general construction described in
[40, Sec. A.3.2, A.3.3]. In particular, [40, Prop. A.3.3.1] yields the following
criterion for a presheaf to be a sheaf:
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Proposition 4.2 Let G be a profinite group, and TG the site as above. A
presheaf F on TG with values in an ∞-category D with limits is a sheaf
if and only if:

1. For X, Y ∈ TG, the natural map gives an equivalenceF(X �Y ) � F(X)×
F(Y ). That is, F ∈ PSh�(TG,D).

2. For every surjective map of G-sets T � S, the natural map

F(S) → Tot(F(T ) ⇒ F(T ×S T )
→→→ . . . ) (2)

is an equivalence.

We now need a basic lemma about Kan extensions.

Lemma 4.3 Let C be an ∞-category with finite nonempty products and let
X ∈ C. Let D be an ∞-category with all limits. Let F : C → D be a
functor and let C′ ⊂ C be the full subcategory of objects Y which admit a map
Y → X. Let F̃ denote the right Kan extension of F |C′ to C. Then F̃ is given
by the formula

F̃(Z) = Tot(F(Z × X) ⇒ F(Z × X × X)
→→→ . . . ). (3)

Proof It suffices to see that the functor �op → C′
/Z given by Z × X•+1 is

cofinal. This is an easy argument with Quillen’s Theorem A, cf. [48, Prop.
6.28]. ��
Example 4.4 (Finite groups) Let G be a finite group. In this case, TG is the
category of finite G-sets. We observe that a functorF : T op

G → D (whereD is
an ∞-category with all limits) is a sheaf if and only if it is right Kan extended
from the full subcategory of TG spanned by the G-set G. Indeed, by Lemma
4.3 any sheaf F is Kan extended from the finite free G-sets. Since F takes
finite coproducts of G-sets to finite products,F is actually right Kan extended
from the subcategory {G} itself. Conversely, given a functor F0 : BG → D,
let F be the right Kan extension to TG . It is now easy to see that F carries
finite coproducts to finite products and (via the expression (3)) satisfies the
sheaf property: any surjection T � S of G-sets admits a section after taking
the product with G.

Consequently, one sees that Sh(TG,D) is equivalent to the ∞-category
Fun(BG,D) of objects of D equipped with a G-action. One can also see
this by reducing to the case D = S and then observing that both sides are
1-localic ∞-topoi and agree on discrete objects. Given a surjection of finite
groups G � G ′ with kernel N ≤ G, we obtain an inclusion TG ′ ⊂ TG
and thus by restriction a functor Sh(TG,D) → Sh(TG ′,D); unwinding the
definitions, one sees that under the above identifications this becomes the
functor Fun(BG,D) → Fun(BG ′,D) given by (−)hN .
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Let O(G) ⊂ TG be the full subcategory spanned by nonempty transitive
G-sets, i.e., those of the form G/H, H ≤ G;O(G) is called the orbit category
of G. Similarly, a functor F : T op

G → D preserves finite products if and only
if it is right Kan extended from the inclusion O(G)op ⊂ T op

G . The category
PSh�(TG,D) of product-preserving presheaves T op

G → D is thus identified
with Fun(O(G)op,D).

We can recover any profinite group as a limit of finite groups, and on
Grothendieck sites we obtain a filtered colimit. This leads to the next con-
struction:

Construction 4.5 (TG as a filtered colimit) Let G be a profinite group. For
each open normal subgroup N ≤ G, we have the finitary site TG/N . When
N ′ ≤ N , we have a natural functor of finitary sites TG/N → TG/N ′ by pulling
back along the quotient G/N ′ → G/N . Moreover, it is easy to see that TG =
lim−→N

TG/N , the colimit taken over all open normal subgroups N ≤ G. In
particular, if D is any ∞-category with limits, we have an equivalence of
∞-categories (cf. Example 4.4 and Lemma 3.3)

Sh(TG,D) � lim←−
N≤G

Fun(B(G/N ),D),

where for N ′ ≤ N , the functor Fun(B(G/N ′),D) → Fun(B(G/N ),D) is
given by (·)h(N/N ′).

In a similar fashion, we can describe product-preserving presheaves out of
TG . Let O(G) denote the category of finite continuous nonempty transitive
G-sets; then clearly O(G) = lim−→N

O(G/N ). In view of Example 4.4 again,
we find a natural equivalence

PSh�(TG,D) = Fun(O(G)op,D) � lim←−
N

Fun(O(G/N )op,D).

We next describe the Postnikov sheafification following a method moti-
vated by the pro-étale site [9]. This can be done without any extra finiteness
assumptions either on G or on the target ∞-category.

Construction 4.6 (Postnikov sheafification) Let G be a profinite group and
let F ∈ PSh�(TG,Sp). We can give an explicit construction of the Postnikov
sheafification F̃ ofF . The construction is analogous for presheaves of spaces.

Since F is defined on finite G-sets, we can canonically extend it by conti-
nuity to all profinite G-sets so that it carries filtered limits of G-sets to filtered
colimits of spectra. Given a finite G-set S, we consider the simplicial profinite
G-set

. . .
→→→ G × G × S ⇒ G × S (4)
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augmented over S (equivalently, the product of the Čech nerve of G → ∗with
S), and we claim that there is a natural identification (functorially in S)

F̃(S) � Tot(F(G × S) ⇒ F(G × G × S)
→→→ . . . ). (5)

Indeed, we observe first that the construction (5) defines a sheaf on TG . This
follows in viewofProposition 4.2 and the fact that for any surjection of finiteG-
sets S � S′, the map S×G → S′×G admits a section. Next, the construction
(5) clearly commutes with the inverse limit along Postnikov towers inF . Thus,
it remains to show that if F is coconnective, then F̃(S) is the sheafification
of F ; indeed, the Postnikov sheafification of F is the inverse limit of the
sheafifications of the presheaf-level truncations of F . In this case, we can
simply check on homotopy group sheaves: the map F → F̃ of presheaves on
TG induces an isomorphism of stalks (i.e., extending F̃ to profinite G-sets and
after evaluating on the profinite G-set G), because the simplicial diagram of
profinite G-sets (4) for S = G admits a splitting. Hence F → F̃ induces an
isomorphism on sheafification.

Construction 4.7 (Restriction to open subgroups) Let G be a profinite group,
and let H ≤ G be an open subgroup. We consider the functor u : TH → TG
sending an H -set S to the induced G-set G ×H S. This is a morphism of
finitary sites, so it induces a morphism u∗ (via precomposition) from sheaves
(of spaces) on TG to sheaves on TH . Using Example 7.3 below, it follows
that u∗ commutes with all limits and colimits and with taking truncations, and
hence with Postnikov completions.

Definition 4.8 (Weakly nilpotent group actions) Let K be a finite group acting
on a spectrum X .We say that the K -action isweakly m-nilpotent if the standard
cosimplicial spectrum X ⇒

∏
K X

→→→ . . . computing XhK (and coaugmented

over XhK ) is weakly m-rapidly converging.

Proposition 4.9 Let G be a profinite group, and F a sheaf of spectra on TG.
Suppose there exists a d ≥ 0 such that for each normal containment N ⊂ H
of open subgroups of G, the spectrum with H/N-action F(G/N ) is weakly
d-nilpotent. Then F is Postnikov complete.

Proof Let F̃ denote the Postnikov completion of F . It suffices to show that
the map F → F̃ induces an equivalence after applying to the G-set ∗; we
can then repeat this argument for every open subgroup by Construction 4.7.
Indeed, by (5)

F̃(∗) � Tot(F(G) ⇒ F(G × G)
→→→ . . . ). (6)
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The associated cosimplicial object is the filtered colimit of the cosimplicial
objects

F(G/N ) ⇒ F(G/N × G/N )
→→→ . . . ,

each ofwhich has totalization given byF(∗) sinceF is a sheaf. By assumption,
there is a uniform bound on the weak nilpotence of each of these cosimplicial
objects (augmented overF(∗)), so we can interchange the totalization and the
filtered colimit (Lemma 2.34). Doing so togetherwith (6) yieldsF(∗) � F̃(∗),
as desired. ��

We now want to describe the sheafification construction for TG . In gen-
eral, recall that sheafification is a difficult construction because it requires a
transfinite Čech construction (cf. [37, Prop. 6.2.2.7]), and we cannot expect
something as straightforward as the formula (5). The primary issue is that
totalizations need not commute with filtered colimits. In this case, this turns
out to be essentially the only obstruction. To this end, we describe a slightly
different method of writing TG as a filtered colimit of “smaller” finitary sites.
Here the categories stay the same, but only the topologies change.

Construction 4.10 (The Grothendieck site T N
G ) Let N ≤ G be an open

normal subgroup. We define a finitary Grothendieck topology on the cate-
gory of finite continuous G-sets such that a family {Ti → T } is a covering if⊔

i Ti × G/N → T × G/N admits a section. We write T N
G for the associated

site.
Just as in Proposition 4.2, we see (via [40, Sec. A.3.2-A.3.3]) that a functor

F ∈ PSh�(T N
G ,D) is a sheaf if and only if for every surjection T � S of

finite continuous G-sets such that T × G/N → S × G/N admits a section,
the natural map (2) is an equivalence (i.e., F has Čech descent for the map).
Note also that as N ranges over all open normal subgroups, the T N

G form a
filtered system of finitary sites whose filtered colimit is TG .

One advantage of T N
G over TG is that we can very explicitly describe sheafi-

fication.

Proposition 4.11 Let F ∈ PSh�(T N
G ,D). Then the sheafification of F in

Sh(T N
G ,D) is given via the formula (for any S ∈ T N

G , i.e., any finite continuous
G-set)

FG/N (S) � Tot(F(G/N × S) ⇒ F(G/N × G/N × S)
→→→ . . . )

� F(G/N × S)h(G/N ). (7)

Proof We claim first that FG/N is a sheaf on T N
G . If T ′ � T is a surjection of

finite G-sets such that G/N × T ′ → G/N × T admits a section (e.g., this is
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automatic if the G-action on T ′ factors through G/N ), then we claim

FG/N (T ) → Tot(FG/N (T ′) ⇒ FG/N (T ′ ×T T ′) →→→ . . . )

is an equivalence. This follows because the Čech nerve of T ′ → T admits a
contracting homotopy after taking the product with G/N , so each of the terms
in the totalization defining FG/N in (7) takes the Čech nerve of T ′ → T to a
limit diagram. Note also that if F was a sheaf to start with, then F → FG/N
is an equivalence. However, it remains to verify that F → FG/N actually
exhibits FG/N as the sheafification of F . That is, if F,F ′ ∈ PSh�(T N

G ,D)

and F ′ is a sheaf, then we need to verify an equivalence

HomPSh�(F,F ′) � HomPSh�(FG/N ,F ′). (8)

We observe by Lemma 4.3 that the construction F �→ FG/N is the right
Kan extension of F from the full subcategory (T N

G )′ ⊂ T N
G spanned by those

G-sets S which admit a map S → G/N . In particular, since F ′ is a sheaf and
F ′ � F ′

G/N ,F ′ is right Kan extended from this subcategory. It follows that the
mapping spaces in (8) can be calculated in the ∞-category of presheaves on
(TG/N )′. However, F,FG/N agree on this subcategory (again because FG/N
is a right Kan extension), so the equivalence (8) follows as desired. ��
Proposition 4.12 Let D be a presentable ∞-category and let G be a profinite
group. Suppose that for every open normal subgroup N ≤ G and subgroup
K ≤ G/N, the functor (·)hK : Fun(BK ,D) → D commutes with filtered
colimits. Let F ∈ PSh�(TG,D) be a product-preserving presheaf on TG.
Then the sheafification F sh of F is given by the formula

F sh(G/H) = lim−→F(G/H ′)h(H/H ′),

as H ′ ≤ H ranges over all open normal subgroups.

Proof For each open normal subgroup N ≤ G, we consider the construction
FG/N as in (7) and the augmentation map F → FG/N in PSh�(TG,D). We
claim that the filtered colimit F̃ = lim−→N

FG/N (taken over all open normal
subgroups of G) is the sheafification of F .

To see this, we observe thatFG/N restricts to a sheaf on T N
G , by Proposition

4.11. Moreover, our assumptions and the explicit formula for sheafification (7)
implies that the inclusion Sh(T N

G ,D) ⊂ PSh�(T N
G ,D) is closed under filtered

colimits. It follows that the colimit lim−→N
FG/N is a sheaf on each site T N

G , and
hence on TG . It remains to verify that this colimit is actually the sheafification.
IfF ′ ∈ Sh(TG,D), then we have that (for each N ) HomPSh�(T N

G ,D)(F,F ′) �
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HomPSh�(T N
G ,D)(FG/N ,F ′) in view of Proposition 4.11. Taking the colimit,

we get HomPSh�(TG ,D)(F,F ′) � HomPSh�(TG ,D)(F̃,F ′)which is the desired
universal property. ��

The condition that homotopyfixed points for finite group actions inD should
commute with filtered colimits is a strong one. Here we note three important
cases where this is satisfied:

1. If D is a presentable ∞-category where finite limits and filtered colimits
commute, and which is an n-category for some n < ∞. Then totalizations
(hence homotopy fixed points for finite group actions) and filtered colim-
its commute, since totalizations can be computed as finite limits, cf. [39,
Lemma 1.3.3.10] and its proof. For instance, one can take the ∞-category
S≤n of n-truncated spaces.

2. IfD is the ∞-category Sp≤0 of coconnective spectra, then homotopy fixed
points and filtered colimits commute. In fact, this can be tested after apply-
ing τ≥−d for some d, i.e., in Sp[−d,0] for each d ≥ 0.

3. Fix a prime p and n ≥ 0. If D is the ∞-category of T (n)-local spectra
for T (n) a telescope of height n (for n = 0, we set T (0) = HQ), then
Tate spectra for finite groups vanish [35], so homotopy fixed points are
identified with homotopy orbits and thus commute with colimits.

We will discuss examples of the second two cases now.

Example 4.13 (Continuous group cohomology) For presheaves with values in
coconnective spectra, we can compute sheafification via the Čech construction,
by Proposition 4.12. Recall also that in this case sheafification and hypersheafi-
fication gives the same answer since truncated sheaves are hypercomplete.

LetA be a sheaf of abelian groups on TG , corresponding to a continuous G-
module M . Let K (A, 0) denote the corresponding sheaf of Eilenberg-Maclane
spectra in degree 0. We obtain

K (A, 0)(G/H) = lim−→
N⊂H

(M N )h H/N ,

as the colimit ranges over all normal subgroups N ⊂ H and M N ⊂ M denotes
the usual N -fixed points. In particular

π∗ (K (A, 0)(G/G)) = lim−→
N⊂G

H−∗(G/N ; M N ).

This is exactly the continuous G-cohomology groups of the corresponding G-
module in the usual definition [60]. This of course conforms with the general
theory [40, Cor. 2.1.2.3]: both sides compute the derived functors of the functor
of sections on G (or G-fixed points).
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Remark 4.14 For the next example, we will need the following observa-
tion. Let R be an E1-ring spectrum, and let F be a presheaf in ModR on
a Grothendieck site T . Then the sheafification of F can be calculated either
in R-modules or in Sp. This is an abstract Bousfield localization argument.
To see this, we note that the map F → F sh (from F to its sheafification in
ModR) belongs to the strongly saturated class [37, Sec. 5.5.4] of morphisms
generated by h̃t ⊗ M → ht ⊗ M , for each h̃t → ht a covering sieve and
M ∈ ModR . Such maps induce equivalences upon sheafification, either for
sheaves of ModR or for sheaves of spectra. Since the forgetful functor from
ModR to Sp preserves limits and colimits, the claim follows. For a similar
argument, see also Proposition 7.1 below.

Example 4.15 (A non-hypercomplete example) Next we consider an example
where sheafification and hypersheafification differ. Fix a prime number p and
an integer n ≥ 0, and consider the Morava K -theory spectrum K (n). We
can use Proposition 4.12 to compute the constant sheaf K (n) on TZp , i.e., the
sheafification of the constant presheaf O(Zp)

op → Sp given by K (n) (on
the orbit category, and then extended to T op

Zp
by forcing it to preserve finite

products). Note that this can either be computed as a sheaf of spectra or in
sheaves of K (n)-modules; since Tate spectra of finite groups vanish in the
latter, we can apply Proposition 4.12.

We obtain

K (n)(∗) = lim−→
d

K (n)BZ/pd
Z,

where the transition maps are induced by the quotient maps Z/pd+1
Z →

Z/pd
Z.

When n = 0 we have K (n) = HQ, and the colimit is constant and just
produces HQ again. In fact the constant sheaf HQ is just the constant presheaf
HQ.
When n ≥ 1, let G be the height n formal group over the perfect field k of

characteristic p used to define K (n). Then the above colimit instead gives an
even periodic ring spectrum whose π0 identifies with the ring of functions on
the affine scheme Tp(G ) = lim←−d

G [pd ] over k. Thus when we take G = Ĝm

over k = Fp, we have

π0
(
K (1)(∗)

) = Fp[Qp/Zp].

The value of each K (n)(Zp/pd
Zp) is abstractly the same, but the restriction

map K (n)(Zp/pd−1
Zp) → K (n)(Zp/pd

Zp) corresponds on π0 to pullback
along the multiplication by p map Tp(G ) → Tp(G ). The Z/pd

Z-action on
K (n)(Zp/pd

Zp) is of course trivial.

123



1030 D. Clausen, A. Mathew

This provides an example of a sheaf of spectra onTZp which is not Postnikov
complete (or hypercomplete, which is the same by Proposition 2.10). Indeed,
the homotopy groups of the global sections of its Postnikov completion can
be calculated using the spectral sequence from Proposition 2.13:

E2
i, j = H−i

cont (Zp; π j K (n)) ⇒ πi+ j

(
K (n)h(∗)

)
.

The homotopy of K (n) is k in every even degree and 0 in every odd degree,
so this gives k in every degree for π∗

(
K (n)h(∗)

)
—clearly different from the

above description of π∗
(
K (n)(∗)

)
. Note that [37, Warning 7.2.2.31] gave an

example (due to BenWieland) of a sheaf of spaces on TZp which is not hyper-
complete; herewewe even have a sheaf of spectrawhich is not hypercomplete.
It yields another example of sheaf of spaces which is not hypercomplete, sim-
ply by taking �∞.

Next we give a criterion for a sheaf of spectra on TG to be Postnikov com-
plete in the case where G has finite cohomological dimension, strengthening
Proposition 4.9 to an if and only if assertion.

Proposition 4.16 Let G be a profinite group of finite P-local cohomological
dimension d. Then the following are equivalent for aP-local sheafF of spectra
on TG:

1. F is hypercomplete (equivalently, Postnikov complete).
2. There exists an integer M such that for all normal inclusions N ⊂ H of

open subgroups, the H/N-action on F(G/N ) is weakly M-nilpotent.
3. For all normal inclusions N ⊂ H of open subgroups, the H/N-action on

F(G/N ) is weakly d-nilpotent.

Proof Combine Propositions 4.9 and 2.35. ��
Proposition 4.17 Let G be a profinite group of finite virtual P-local cohomo-
logical dimension d. Then hypercompletion is smashing on P-local sheaves
F of spectra on TG.

Proof Without loss of generality, G has finite P-local cohomological dimen-
sion. Since the cohomology of profinite groups commutes with filtered
colimits, Proposition 2.28 implies that hypercompleteness is preserved under
colimits, so all that remains is to check that it is also preserved under tensor-
ing with an arbitary sheaf F . Resolving F by representables and again using
preservation of hypercompleteness under colimits, we can reduce to the case
where F = hG/H is the representable associated to some G/H in TG . But

G ⊗ hG/H = x!x∗G,
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where x∗ the pullback functor from sheaves of spectra on TG to sheaves of
spectra on TH and x! is the left adjoint to x∗. Thus it suffices to show that x!
preserves hypercompleteness. This can be checked after pullback along any
covering map by Proposition 2.25; but after such a pullback x can be split, and
so x! is just a finite direct sum and hence certainly preserves hypercomplete-
ness. ��

In the remainder of this subsection, we will give a precise description of the
hypercomplete sheaves, which will give a more explicit proof of Proposition
4.17. First we recall some material from [48,49], though for convenience we
abbreviate and reindex the terminology, so that instead of saying “nilpotent of
exponent ≤ d + 1 with respect to the trivial family” we say “d-nilpotent”.

Definition 4.18 Let C be a stable ∞-category. Let G be a finite group and
X ∈ Fun(BG, C) an object with G-action. Then we say X is:

1. 0-nilpotent if it is a retract of an induced object ⊕GY , some Y ∈ C.
2. d-nilpotent if it is a retract of an extension a 0-nilpotent object by an

(d − 1)-nilpotent object.
3. nilpotent if it is d-nilpotent for some d.

More generally, given a family F of subgroups of G (i.e., F is closed
under subconjugation), we can similarly define a notion of F -nilpotence: X
isF -nilpotent if it belongs to the thick subcategory of Fun(BG, C) generated
by objects induced from subgroups in F .7

We now prove some basic properties of the notion of nilpotence. To begin
with, we will take C = Sp; we will observe below (Proposition 4.21) that the
general case can be reduced to this.

Lemma 4.19 1. If X is a d-nilpotent object of Fun(BG,Sp), it is also d-
nilpotent viewed as an object of Fun(B H,Sp) for all subgroups H ⊂ G.

2. For d ≥ 0, the collection of d-nilpotent objects of Fun(BG,Sp) is closed
under shifts, retracts, and tensoring with any Z ∈ Fun(BG,Sp).

3. If A is a d-nilpotent spectrum with G-action with an algebra structure and
M is a module over A in G-spectra, then M is d-nilpotent.

4. If X ∈ Fun(BG,Sp) is d-nilpotent and N ≤ G is a normal subgroup, then
XhN ∈ Fun(B(G/N ),Sp) is d-nilpotent.

Proof Claim 1 is clear by induction, the base case being the observation that
G is free as an H -set. For claim 2, the case of shifts and retracts is clear. For
tensoring, an induction reduces us to the case d = 0, where the claim follows
from the usual remark that the spectrum ⊕G Z with G acting both on G and
Z is equivalent to ⊕G Z with G acting only on Z . Claim 3 follows from claim

7 One can also define exponents in this context, but we will not need them here.
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2, since M is then a retract of A ⊗ M . Claim 4 is easy to check by induction,
starting with d = 0. ��

For future reference we note also the following lemma.

Lemma 4.20 Let G be a finite group, and let X ∈ Fun(BG,Sp). For each n,
let skn(EG) denote the n-skeleton of the standard simplicial model for EG.
Then X is d-nilpotent if and only if the map

�∞+ skd(EG) ⊗ X → X

admits a section in Fun(BG,Sp).

Proof Since skd(EG) is a d-dimensional G-CW complex all of whose cells
are indexed by free G-sets, it follows that �∞+ skd(EG) ⊗ X ∈ Fun(BG,Sp)
is always d-nilpotent.

Conversely, suppose that X is d-nilpotent. Let A = F(G+,S) ∈
Fun(BG,Sp); this is a commutative algebra object, and we can form the cobar
construction CB•(A), a cosimplicial object in spectra. As in [48, Prop. 4.9] the
d-nilpotence means that the map X → Totd(X ⊗CB•(A)) admits a splitting.
However, this is equivalent to the map X → F(�∞+ skd EG, X); adjointing
over gives the section desired. ��

Next,we give the promised reduction of nilpotence in any stable∞-category
to the case of Sp; this will be used in later sections.

Proposition 4.21 Let C be a stable ∞-category and let X ∈ Fun(BG, C).
Then for any d ≥ 0 the following are equivalent:

1. X is d-nilpotent.
2. EndC(X) ∈ Fun(B(G × G),Sp) is d-nilpotent.
3. EndC(X) ∈ Fun(BG,Sp) is d-nilpotent (here the G-action is the diagonal

one).

Proof The fact that 1 implies 2 and 3 follows from a thick subcategory
argument, so we prove that 3 (which is implied by 2) implies 1. Sup-
pose EndC(X) ∈ Fun(BG,Sp) is d-nilpotent. For each n, let skn(EG) be
the n-skeleton of EG; we have a map skn(EG)+ ⊗ X → X. Note that
HomFun(BG,C)(X, X) � EndC(X)hG while

HomFun(BG,C)(X, skn(EG)+ ⊗ X) � (skn(EG)+ ⊗ EndC(X, X))hG .

By assumption, EndC(X, X) is d-nilpotent; therefore, by Lemma 4.20, the
map

(skd(EG)+ ⊗ EndC(X, X))hG → (EndC(X, X))hG
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has image including the identity. Unwinding the above, it follows that there
exists a map f : X → skd(EG)+⊗ X in Fun(BG, C) such that the composite

X
f→ skd(EG)+ ⊗ X → X

is the identity. This in particular implies that X is d-nilpotent as desired. ��
We now observe that for algebra objects in Sp with G-action, nilpotence

can be tested on the Tate construction. Note that the Tate construction (−)tG

vanishes on nilpotent objects of Fun(BG,Sp), but the converse is false in
general.

Lemma 4.22 Let G be a finite group and R an algebra object ofFun(BG,Sp).
Suppose RtG = 0. Then:

1. R is nilpotent.
2. If the underlying spectrum of R belongs to Sp≥−d , then R is d-nilpotent.

Proof As before, choose the standard simplicial model EG•, which is a sim-
plicial free G-set such that |EG•| is contractible. This gives an ascending
filtration sequence of spaces {ski EG}i≥0. For each i , we consider the map
�∞+ ski (EG)⊗ R → R in Fun(BG,Sp). Note that the norm map from homo-
topy orbits to homotopy fixed points is an equivalence on �∞+ ski (EG) ⊗ R
since it is finitely built from induced objects of Fun(BG,Sp). Our assumption
that RtG = 0 thus implies that the natural maps induce an equivalence

RhG = lim−→
i

(�∞+ ski (EG) ⊗ R)hG � lim−→
i

(�∞+ ski (EG) ⊗ R)hG � RhG . (9)

Suppose we are the situation of 2. Since R belongs to Sp≥−d , it follows that
the unit in RhG belongs to the imageof themap (�∞+ skd(EG)⊗R)hG → RhG ,
via (9), since both homotopy fixed points are identified with homotopy orbits.
Unwinding the definitions, it follows that we can find maps in Fun(BG,Sp),

R → �∞+ skd(EG) ⊗ R → R

such that the composite is the identity. Thus R is d-nilpotent by Lemma 4.20.
The situation of 1 is analogous but we do not have a specific d; one just chooses
d large enough such that the map (�∞+ skd(EG) ⊗ R)hG → RhG has image
including the unit. ��
Proposition 4.23 Let G be a finite group. Let R ∈ Alg(Fun(BG,ModHZ))

be an HZ-algebra equipped with a G-action. Suppose that, for each H ≤ G,
the underlying spectrum of Rh H belongs to Sp≥−d for some d ≥ 0. Then R is
d-nilpotent.
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Proof By Lemma 4.22, it suffices to show that R ∈ Fun(BG,Sp) is nilpotent.
We use the more general theory of nilpotence with respect to a family of
subgroups here, cf. [48,49]. By induction, for every proper subgroup H <

G, R|H ∈ Fun(B H,Sp) is H -nilpotent. It thus suffices to show that R is
nilpotent for the family of proper subgroups. Let ρ̃G be the reduced complex
regular representation of G, and let Sρ̃G be the one-point compactification of
G, considered as a spectrum equipped with a G-action. We have the Euler
class e : S → Sρ̃G . We recall from [49] that an object M ∈ Fun(BG,Sp) is
nilpotent for the family of proper subgroups if there exists n � 0 such that
the map

idM ⊗ en : M → M ⊗ Snρ̃G

is nullhomotopic. Since we are working over HZ, we observe that there is an
equivalence HZ ⊗ Snρ̃G � HZ[2n(|G| − 1)] in Fun(BG,ModHZ). In our
setting, we thus need to show that for n � 0, the map

idR ⊗ en : R → R ⊗ Snρ̃G � R ⊗HZ (HZ ⊗ Snρ̃G ) � �2n(|G|−1)R

is nullhomotopic in Mod(BG,Sp). Since this is an R-module map, it is classi-
fied by an element in π−2n(|G|−1)(RhG). However, we have assumed that this
group vanishes for n � 0. This verifies that R is G-nilpotent as desired. ��
Remark 4.24 Proposition 4.23 fails if R is only assumed to belong to
Alg(Fun(BG,Sp)). For instance, it fails for the trivial G-action on the sphere
spectrum; note that the homotopy fixed points are all connective as a conse-
quence of the Segal conjecture, cf. [10].

We now prove a key nilpotence assertion which refines Proposition 2.35
in the case of finite group actions (the previous result gives the nilpotence of
certain cosimplicial digrams,which is implied bynilpotence in the group action
sense). Note that this result is essentially due to Tate–Thomason, originally
in [60, Annex 1, Ch. 1] in the case of profinite group cohomology and [68,
Remark 2.28] for sheaves of spectra for profinite groups. See also [45, Sec.
5.3] for a treatment.

Theorem 4.25 (Tate–Thomason) Let X be an ∞-topos, and let A be an
algebra object of Sh(X ,Sp) which is Postnikov complete. Suppose given a
finite group G and a G-Galois cover Y → X inX , such that the cohomological
dimension of Y/H with πnA-coefficients is bounded by some fixed d ≥ 0 for
all H ⊂ G and n ≥ 0.

Then any module over A(Y ) ∈ Alg(Fun(BG,Sp)) is d-nilpotent.
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Proof By replacing A by its connective cover if necessary, we may assume
thatA is connective. By Lemma 4.22 and part 3 of Lemma 4.19, it suffices to
verify thatA(Y )tG = 0. For each a ≤ b, we letA[a,b] be the [a, b]-Postnikov
section of A. Note that (A[0,0])(X) is, by assumption on the cohomological
dimension, an object of Sp≥−d . In addition,A[0,0] is an HZ-module. Applying
Proposition 4.23 to theG-action on (A[0,0])(Y ), we conclude that thisG-action
is nilpotent. Since eachA[n,n](Y ) is a module in Fun(BG,Sp) overA[0,0](Y ),
it follows by induction that A[0,n](Y ) is nilpotent and A[0,n](Y )tG = 0. We
claimnow thatwe canpass to the limit asn → ∞ to conclude thatA(Y )tG = 0.
To this end, we observe simply that

A(Y ) � lim←−
n

A[0,n](Y ) (10)

becauseA is Postnikov complete, and that the assumption onfinite cohomolog-
ical dimension implies that the homotopy fibers ofA(Y ) → A[0,n](Y ) become
arbitrarily highly connected as n → ∞. Therefore, we can interchange the
limit in (10) with both homotopy fixed points and homotopy orbits, and hence
with Tate constructions; we conclude that A(Y )tG = 0 as desired. ��

Putting things together, we get the main result of this subsection.

Theorem 4.26 Let G be a profinite group of finite P-local cohomological
dimension d, and let F be a sheaf of P-local spectra on TG. The following are
equivalent:

1. F is hypercomplete.
2. F is Postnikov complete.
3. For every normal containment N ⊂ H of open subgroups of G, the spec-

trum with H/N-action F(G/N ) is d-nilpotent.
4. There is a d ′ ≥ 0 such that for every normal open subgroup N ⊂ G, the

spectrum with G/N-ction F(G/N ) is d ′-nilpotent.

Proof 1⇔ 2 by Proposition 2.10. 2⇒ 3 by Theorem 4.25 applied to the hyper-
completion of the unit object. 3 ⇒ 4 trivially. Finally, 4 ⇒ 2 by Proposition
4.16 (see also part 4 of Lemma 4.19). ��
Remark 4.27 These conditions imply that the H/N -Tate construction vanishes
on F(G/N ) for all normal containments N ⊂ H . The converse is false, as
Example 4.15 verifies.

Now we use the nilpotence machinery above to reprove that hypercomple-
tion is smashing under finite cohomological dimension assumptions (which
appeared earlier as Proposition 4.17 via an abstract argument).
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Corollary 4.28 Let G be a profinite group of virtual finite P-local cohomo-
logical dimension. Then hypercompletion is smashing for sheaves of P-local
spectra on TG, and agrees with Postnikov completion.

Proof Without loss of generality (by passing to a finite index subgroup, using
the local-global principle Proposition 2.25), we may assume that G has finite
P-local cohomological dimension, because all these assertions are local. Post-
nikov completion agrees with hypercompletion by Proposition 2.10. The
smashing claim follows from the criterion of Theorem 4.26 via nilpotence.
Indeed, here we use the fact that for finite group H , d-nilpotent objects of
Fun(B H,Sp) form an ideal, as in Lemma 4.19. In particular, ifA is a P-local
sheaf of algebras which is hypercomplete, then any sheaf ofmodulesM over it
is necessarily hypercomplete, which implies that hypercompletion is smashing
if G has finite P-local cohomological dimension. ��
Corollary 4.29 Let G be a profinite group of virtual finite P-local cohomo-
logical dimension. Then any sheaf of HZP -modules on TG is hypercomplete.

Proof The sheafification HZP of the constant sheaf HZP is truncated, hence
hypercomplete. Alternatively this follows from Proposition 2.31. ��

4.2 The étale topos of an algebraic space

The main result of this subsection is essentially due to Thomason. It is an
instance of the intuition that “étale = Nisnevich + Galois”, or more pic-
turesquely that “the étale topos fibers over the Nisnevich topos with fibers
BGk(x)”. Before stating the precise result, we give some recollections on pull-
back functoriality for étale and Nisnevich sheaves. In particular, we review
how a Nisnevich sheaf on a qcqs algebraic space X induces a Nisnevich sheaf
on each of its residue fields via pullback.

In Definition 3.15, we reviewed the Nisnevich and étale sites of a qcqs
algebraic space. Let X be a qcqs algebraic space and let F be a presheaf of
spectra on etX . For every étale map Y → X of qcqs algebraic spaces, we can
evaluateF(Y ); we wish to extend this to pro-étale Y → X . For simplicity and
ease of notation, we will assume that X = Spec(A) is affine. Recall that qcqs
algebraic spaces are Nisnevich-locally affine, so this is no loss of generality,
cf. Proposition 4.34.

Construction 4.30 (Extending Nisnevich sheaves to ind-étale objects) Let F
be a Nisnevich sheaf (of spaces or spectra) on X = Spec(A). ThenF defines a
functor on the category of étale A-algebras. By left Kan extension, F extends
to a functor on the category of ind-étale A-algebras which commutes with
filtered colimits. Given an ind-étale A-algebra B, it follows that F (extended

123



Hyperdescent and étale K -theory 1037

in this manner) also defines a Nisnevich sheaf on Spec(B), since the Nisnevich
excision condition is finitary.

This construction of evaluating sheaves on ind-étale objects will be
extremely useful in this subsection. For instance, we recall that evaluation
on henselian (resp. strictly henselian) local rings recovers the points of the
Nisnevich and étale topoi. Compare [65, Tag 04GE] for a convenient refer-
ence on henselian local rings.

Example 4.31 (Points of the Nisnevich topos) Let B be an étale A-algebra and
p ∈ Spec(B). Then the henselization Bh

p of B at p is an ind-étale A-algebra.
The evaluation F �→ F(Bh

p ) gives the points of the ∞-topos of Nisnevich
sheaves on Spec(A). In particular, for sheaves of spaces, the functor

Sh(Spec(A)Nis) → S, F → F(Bh
p )

commutes with all colimits and with finite limits, and similarly for sheaves of
spectra. Compare [40, Sec. B.4.4].More precisely, the∞-category of points of
the∞-topos of sheaves of spaces on theNisnevich site of Spec(A) is equivalent
to the category of ind-étale A-algebras which are henselian local.

Example 4.32 (Points of the étale topos) Let C an ind-étale A-algebra which
is strictly henselian local. Then the functor

Sh(Spec(A)et ,S) → S

given by evaluation on C defines a point of Sh(Spec(A)et ,S). This follows
similarly as in the Nisnevich case via [37, Prop. 6.1.5.2] as well as [40, Cor.
B.3.5.4] (and of course is classical for sheaves of sets).

Let F be an étale sheaf on Spec(A), and extend to ind-étale A-algebras
as above. By contrast with the Nisnevich case, F need not define an étale
sheaf on Spec(B) for A → B ind-étale; the filtered colimits involved need not
commute with totalizations.

For future reference, we need a slight upgrade of Example 4.31 above. As
above, we fix a commutative ring A.

Construction 4.33 (Pulling back to the Nisnevich site of a point) Let p ∈
Spec(A) and let Ah

p be the henselization of A at p. The category of finite
étale Ah

p-algebras is equivalent to the category of étale k(p)-algebras. Given
a Nisnevich sheaf on Spec(A), it follows that we obtain a Nisnevich sheaf on
Spec(k(p)) by evaluating on finite étale Ah

p-algebras. In particular, we obtain
a product-preserving presheaf on the category of finite continuous Gal(k(p))-
sets. In view of Example 4.31, for sheaves of spaces or spectra, this is a left
exact, cocontinuous functor.
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We can also phrase Construction 4.33 more abstractly and generally in the
language of pullbacks of topoi. A map of qcqs algebraic spaces f : Y → X
induces a pullback functor et X → etY which gives a morphism of sites both
on the étale site and on the Nisnevich site. Thus there are associated pullback
morphisms of ∞-topoi f ∗

et and f ∗
Nis both on étale sheaves and on Nisnevich

sheaves. We will only consider the Nisnevich pullback, so we will drop the
subscript when referring to it: f ∗ := f ∗

Nis .

In particular, suppose x → X is a residue field of X . By abuse, we denote
the map x → X also by x , so we obtain a left-exact, cocontinuous func-
tor Sh(X Nis) → Sh(xNis). By Example 3.17, we can view x∗ as a functor
from sheaves on X Nis to product-preserving presheaves on Tx . Unwinding the
definitions, one finds

(x∗F)(y → x) = lim−→
y→U→X

F(U → X)

where the indexing category is all étale neighborhoods of y in X , i.e. fac-
torizations of the composition y → x → X through a map U → X in etX .
Note that this category is filtered, because etX has pullbacks. By construction
of the henselization [65, Tag 0BSK], it follows that this recovers precisely
Construction 4.33.

Next we include some general preliminaries which enable us to reduce from
qcqs algebraic spaces to affine schemes (via Nisnevich descent).

Proposition 4.34 Let X be a qcqs algebraic space and A a Nisnevich sheaf
of spectra on X. If any of the following is known for the restriction p∗A of A
to every p : U → X in etX with U affine:

1. p∗A is a sheaf on the affine étale site of U;
2. p∗A is a hypercomplete sheaf on the affine étale site of U;
3. p∗A is a Postnikov complete sheaf on the affine étale site of U;
4. p∗A is zero as a presheaf on the affine étale site of U.

then the analogous satement holds for A itself on the étale site of X.

Proof Every qcqs algebraic space is Nisnevich-locally affine (cf. [58], [40,
Theorem 3.4.2.1]), which gives the statements if we replace every occurrence
of “affine étale site” with “étale site.” On the other hand, the affine étale site
over an affine scheme is a defining1-categorical site closed under fiber products
just as the étale site is, and they clearly generate the same topos, hence the
same ∞-topos since everything involved is 1-localic (and determined by the
0-truncated objects), cf. [37, Sec. 6.4.5]. As the notions of sheaf, hypersheaf,
and Postnikov complete sheaf are intrinsic to the ∞-topos, this shows that the
replacement doesn’t affect the content of the statement. ��
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Remark 4.35 (Reduction to finite Galois descent) By [40, Theorem B.6.4.1],
in the affine case étale descent is equivalent to the combination of Nisnevich
descent and finite étale (or Galois) descent. Thus in the situation of this lemma,
1 holds (and hence A is an étale sheaf) if and only if A satisfies finite Galois
descent on affines.

Nowwe state themain results of this section.We emphasize that they should
essentially be attributed toThomason (compare [70, Sec. 11]).Our contribution
is to have rewritten Thomason’s argument in more modern language.

Theorem 4.36 Let X be a qcqs algebraic space and F a presheaf of P-local
spectra on etX . Suppose that there is a uniform bound on the P-local étale
cohomological dimension of each étale U → X (or for a cofinal collection,
e.g., the affines). Then F is a hypercomplete étale sheaf if and only if it is
a hypercomplete Nisnevich sheaf, and the presheaf of spectra x∗F on Tx =
TGalk(x)sep/k(x)

is a hypercomplete étale sheaf for all points x ∈ X.

Remark 4.37 Suppose X is a qcqs algebraic space. Then by Corollary 3.29,

supx∈X CohDim(Galk(x)) ≤ supU→X∈etX
CohDim(Uet )

≤ KrullDim(X) + supx∈X CohDim(Galk(x)).

In particular, if X has finite Krull dimension, then X satisfies the hypotheses
of the theorem if and only if there is a uniform bound on the P-local Galois
cohomological dimension of the residue fields of X .

Proof Without loss of generality (cf. Propositions 2.25 and 4.34), X =
Spec(A) is affine. Let N be the bound on the P-local étale cohomological
dimension. First suppose that F is a hypercomplete étale sheaf. We claim that
x∗F is a hypercomplete étale sheaf on Spec(k(x)). Indeed, we extend F to
all ind-étale A-algebras. For each faithfully flat étale map of étale A-algebras
B1 → B2, we have by assumption

F(B1) � Tot(F(B2) ⇒ F(B2 ⊗B1 B2)
→→→ . . . ), (11)

and furthermore this diagram is N -nilpotent (Proposition 2.35). It follows that
if B1 → B2 is a faithfully flat étale map of ind-étale A-algebras, then (11) still
holds and the diagram is weakly N -nilpotent. Indeed, we can write B1 → B2
as a filtered colimit of faithfully flat maps of étale A-algebras, consider the
Čech nerves of each of those, and we can commute the totalization and colimit
(Lemma 2.34). Applying this fact to a faithfully flat map between finite étale
Ah
p-algebras, we conclude that x∗F is hypercomplete by Proposition 4.16, as

desired.
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Now suppose the Nisnevich pullbacks x∗F are hypercomplete for x ∈ X .
Let Fh denote the étale hypercompletion of F . We have a map F → Fh ,
and we need to see that it is an equivalence. We extend both F,Fh to ind-
étale A-algebras. By assumption, F(B ′) → Fh(B ′) is an equivalence if B ′
is strictly henselian local. Since both F,Fh are hypercomplete Nisnevich
sheaves, it suffices to see that F → Fh induces an equivalence on Nisnevich
stalks, i.e, on each ind-étale A-algebra B which is henselian local. However,
if we fix a henselian local B which is ind-étale over A, then by assumption
and the previous paragraph F,Fh define hypercomplete étale sheaves on the
finite étale site of Spec(B) with the same stalk; therefore F(B) � Fh(B) as
desired. ��

In the case where X has finite Krull dimension, the above result simplifies
to the following.

Theorem 4.38 (Hypercompleteness criterion) Let X be a qcqs algebraic
space of finite Krull dimension d and such that the P-local cohomological
dimension of each residue field is ≤ l. Let F be a P-local Nisnevich sheaf of
spectra on X. Then the following are equivalent:

1. F is a hypercomplete étale sheaf.
2. F is a Postnikov complete étale sheaf.
3. For every finite group G and every G-Galois cover Y → Y ′ of algebraic

spaces étale over X, the map F(Y ′) → F(Y )hG is an equivalence and the
G-action on F(Y ) is (d + l)-nilpotent.

4. For each point x ∈ X, the presheaf x∗F on Tx is a hypercomplete sheaf.
5. There exists an integer N ≥ 0 such that the following holds. For each étale

map SpecA → X and every finite G-Galois cover SpecB → SpecA, the
map F(SpecA) → F(SpecB)hG is an equivalence and the G-action on
F(SpecB) is weakly N-nilpotent.

Proof Combine Theorem 4.36, the fact that Nisnevich sheaves are hypercom-
plete (Corollary 3.27), and the criterion for hypercompleteness for profinite
groups in Theorem 4.26. ��

We deduce that the property of being a hypersheaf propagates to modules
in a fairly strong sense.

Corollary 4.39 Let X be a qcqs algebraic space of finite Krull dimension and
with a global bound on the P-local Galois cohomological dimension of the
residue fields, and let F be a sheaf of P-local spectra on X Nis . Suppose that:

1. F admits finite étale transfers in the sense that for every finite group G
and every G-Galois cover V → U in etX , there is a genuine G-spectrum
FV →U whose induced presheaf of spectra on the orbit category of G agrees
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with the restriction of F to the V/H = V ×G G/H for H ⊂ G.
(For example, if F has finite Galois descent, there is a unique such FV →U :
this follows from the “Borel-completion” yoga, [48] 6.3.)

2. There is a hypercomplete sheaf of algebrasAon Xet such thatF is amodule
over A compatibly with the transfers in the following sense: F admits a
module structure over A as a presheaf, such that for every V → U as
above, this module structure restricted to the orbit category of G extends
to a module structure of FV →U over AV →U .

Then F is a hypercomplete sheaf on Xet .

Proof Let V → U be a G-Galois cover in Xet . FromTheorem 4.38 we deduce
that AV →U is a d-nilpotent G-spectrum. Thus FV →U , being a module over
AV →U , is a d-nilpotent genuine G-spectrum (cf. [48]). In partiucular FV →U
is Borel-complete, meaning F satisfies finite Galois descent, and F(Y ) is
d-nilpotent as a G-spectrum. We conclude by Theorem 4.38. ��
Corollary 4.40 Let X be a qcqs algebraic space of finite Krull dimension
with a global bound on the P-local virtual Galois cohomological dimension
of its residue fields. Then hypercompletion is smashing for sheaves of P-local
spectra on Xet and agrees with Postnikov completion.

Proof This holds locally on X by the special case of Corollary 4.39 where
each FV →U is Borel-complete. The claim then follows by the local-global
principle (Proposition 2.25). Alternatively, we can argue without the use of
Corollary 4.39 (and the implicit use of genuine G-spectra and transfers) sim-
ply by invoking part 3 of Theorem 4.38, noting that m-nilpotent objects in
Fun(BG,Sp) form a tensor ideal for any m. ��

5 Localizing invariants on spectral algebraic spaces

This section collects together several general descent theorems for localizing
invariants on spectral algebraic spaces. First, we introduce the language of
(qcqs) E2-spectral algebraic spaces for maximal generality; here one has a
sheaf of E2-rings rather than E∞-rings, as in [40]. We review the formalism
of localizing invariants, and recall (Proposition 5.15) that localizing invariants
automatically satisfy Nisnevich descent, after Thomason–Trobaugh.

Our main results are that topological cyclic homology is an étale hypersheaf
(Theorem 5.16), and that any L f

n -local localizing invariant is an étale sheaf
(Theorem 5.39). The latter result is an extension of the main results of [13] to
the E2-setting and is based on a careful transfer argument, together with the
use of the Dundas–Goodwillie–McCarthy theorem to reduce from the E2-case
to the discrete (hence E∞) case.
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The use of E2-structures and the generality of localizing invariants intro-
duces some additional technicalities. The reader primarily interested in the
E∞-case and in algebraic K -theory may skip most of this section. The most
important result is Theorem 5.16, which (even in the E∞-case) will be crucial
in the discussion of Selmer K -theory below.

5.1 Preliminaries on E2-spectral algebraic spaces

Herewe briefly review some preliminaries on spectral algebraic spaces, always
assumed quasi-compact and quasi-separated (qcqs). For maximal generality,
we will state all of our results for spectral algebraic spaces modeled on the
spectra of E2-rings rather than the more standard E∞-rings (for which see [40,
Ch. 3] for a detailed treatment). The reader interested primarily in the case of
E∞-rings can skip this subsection without loss of continuity.

Definition 5.1 (E2-spectral algebraic spaces) An E2-spectral algebraic
space X = (Xet ,OX ) is a pair consisting of a site Xet and a sheaf of (pos-
sibly non-connective) E2-algebras on Xet , such that (Xet , π0OX ) is the étale
site and étale structure sheaf of a qcqs algebraic space (over Z) in the usual
sense, πnOX is a quasi-coherent π0OX -module for all n ∈ Z, and OX is
Postnikov-complete. A map of E2-spectral algebraic spaces (Xet ,OX ) is a
map of E2-ringed sites, which on π0 arises from a map of algebraic spaces.
We let AlgSpc denote the ∞-category of E2-spectral algebraic spaces.

Note in particular that X determines an underlying qcqs algebraic space
denoted π0X ; any properties such as noetherian, finite Krull dimension, etc.
will refer to this underlying algebraic space.

Construction 5.2 (The spectrum of an E2-ring)We can construct E2-spectral
algebraic spaces from E2-rings as follows. Let A be an E2-ring. By the results
of [39, Sec. 7.5.4], for every étale π0(A)-algebra A′

0, we can construct an E2-
algebra A′ equipped with a map A → A′ such that π0(A′) � A′

0 and such that
π∗(A) ⊗π0(A) π0(A′) � π∗(A′). Moreover, A′ is characterized by a universal
property in the ∞-category of E2-algebras under A: maps A′ → B (under
A) are in bijection with maps of commutative rings π0(A′) → π0(B) under
π0(A). This easily yields a sheaf of E2-rings on the étale site of Spec(π0A)

and an E2-spectral algebraic space, which we write simply as Specet (A). Any
spectral algebraic space is étale locally of this form.

Definition 5.3 (Étale site) The étale site of an E2-spectral algebraic space
X = (Xet ,OX ) is simply the site Xet , which is the étale site of the underlying
algebraic space. This is a full subcategory of the ∞-category of E2-spectral
algebraic spaces over X ; such objects Y → X are called étale over X .

The theory of étale morphisms of E2-rings [39, Sec. 7.5] gives the following
property of étale morphisms of E2-spectral algebraic spaces. Given Y → X
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étale, for any Z → X , we have an equivalence

HomAlgSpc/X
(Z , Y ) � HomAlgSpc/π0X

(π0Z , π0Y ). (12)

Definition 5.4 (Perfect modules) Let X be an E2-spectral algebraic space. As
usual, we denote by Perf(X) the full subcategory of OX -modules consisting
of those OX -modules which locally lie in the thick subcategory generated by
the structure sheaf. Equivalently, Perf(−) is right Kan extended from its value
on affines, and on an affine X , so X = Specet (A) for an E2-ring A, we have
Perf(X) = Perf(A). (The equivalence of these two descriptions of Perf(X)

follows from étale descent for perfect complexes on E2-rings, for which see
[38, Theorem 5.4, Prop. 6.21].)

Given X , the object Perf(X) is then a monoidal ∞-category. More specifi-
cally, it is an associative algebra object in the symmetric monoidal∞-category
Catperf of small idempotent-complete stable ∞-categories with Lurie’s tensor
product. It further has the property of being rigid: every object is both left and
right dualizable. This is obvious by reduction to the affine case.

Definition 5.5 (Quasi-coherent sheaves) Let A be an E2-ring and let X =
Specet (A) be the associated E2-spectral algebraic space. Given an A-module
M , one obtains a sheaf ofOX -modules on Xet which sends an étale A-algebra
A′ to A′ ⊗A M . Now let X be an arbitrary E2-spectral algebraic space. A
quasi-coherent sheaf on X consists of the datum of an OX -module on Xet
which restricts on each affine to a sheaf of the above form. We let QCoh(X)

denote the presentablymonoidal, stable∞-category of quasi-coherent sheaves
on X . Using general results, cf. [40, Theorem 10.3.2.1],8 it follows that (since
X is always assumed qcqs), then QCoh(X) is compactly generated and the
compact objects are precisely Perf(X).

Definition 5.6 (Algebraic K -theory) We define the K -theory K (X) of an
E2-spectral algebraic space X to be the (non-connective) K -theory of the
stable ∞-category Perf(X). Similarly, we define the topological Hochschild
homology THH, topological cyclic homology TC, etc. via Perf(X).

The main purpose of this section, and the remainder of this paper, is to
investigate the above presheaves of spectra, and their variants, on AlgSpc. We
recall first that these are all Nisnevich sheaves by an argument of Thomason
[70]. It will next be convenient to review the generality of this statement and
the framework of localizing invariants.

8 The results are stated assuming an E∞-structure, but the arguments require only an E2-
structure.
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5.2 Generalities on additive and localizing invariants

Next we review the basic notions of additive and localizing invariants [6,29];
the slight difference is that we work over an E2-base. Fix an E2-spectral
algebraic space X .

Definition 5.7 (Linear ∞-categories over X ) Recall that Perf(X) is a stable,
monoidal∞-category. Let Catperf denote the symmetricmonoidal∞-category
of small, idempotent-complete stable∞-categories and exact functors between
them, with the Lurie tensor product. By definition, a Perf(X)-linear ∞-
category is a left module over the associative algebra Perf(X) in Catperf .
Equivalently, it is a left module over QCoh(X) in the ∞-category of com-
pactly generated, presentable ∞-categories.

Definition 5.8 (Fiber-cofiber and split exact sequences) A sequence of
Perf(X)-linear ∞-categories C → D → E is a fiber-cofiber sequence if and
only if Ind(C) → Ind(D) → Ind(E) is a split exact sequence of QCoh(X)-
linear presentable ∞-categories (cf. [13, Def. 3.8]). Similarly, we have also
the notion of a split exact sequence of Perf(X)-linear ∞-categories.

Remark 5.9 The fiber-cofiber sequences of small idempotent-complete stable
∞-categories are equivalently just the idempotent completions of Verdier quo-
tient sequences (i.e., E = D/C above), and this persists in the Perf(X)-linear
context, cf. [40, Remark D.7.4.4], [29, Prop. 5.4]. That is, given a sequence
C → D → E of Perf(X)-linear ∞-categories, it is a fiber-cofiber sequence
(resp. split exact sequence) if and only if it is so as a sequence of underly-
ing stable ∞-categories; the Perf(X)-linearity of the adjoints (at the level of
Ind-completions) is automatic [29, Prop. 4.9(3)]. Moreover, as the terminol-
ogy suggests a fiber-cofiber sequence is exactly a null-composite sequence
which is both a fiber sequence and a cofiber sequence in the ∞-category of
Perf(X)-modules in Catperf .

Definition 5.10 (Weakly localizing and additive invariants) Recall [6] that
a weakly localizing invariant over X is a functor from Perf(X)-linear small
idempotent complete stable ∞-categories to spectra9 which is exact, meaning
it sends fiber-cofiber sequences to fiber-cofiber sequences. A weakly additive
invariant over X is a functor from Perf(X)-linear ∞-categories to spectra
which carries split exact sequences of Perf(X)-linear ∞-categories to direct
sums.

For a weakly localizing or additive invariant A over X , we can evaluate A
on any qcqs algebraic space Y → X by setting

9 We could allow our localizing invariants to take values in more general target stable ∞-
categories than just Sp, but one can often reduce to the case of Sp using a Yoneda embedding.
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A(Y → X) := A(Perf(Y )).

This is contravariant in Y , via pullback of perfect modules.

Remark 5.11 The “weakly” qualification refers to that we don’t require any
commutationwith filtered colimits,whereas in [6] this is required for localizing
invariants.

Example 5.12 Recall [6] that algebraic K -theory K and topological Hochs-
child and cyclic homology THH,TC define weakly localizing invariants (on
all of Catperf ), while connective K -theory K≥0 defines an additive invari-
ant. Another way to produce such invariants is as follows. Let M be a right
Perf(X)-module in Catperf . Then we obtain a functor on Perf(X)-linear ∞-
categories

C �→ K (C ⊗Perf(X) M)

which defines aweakly localizing invariant over X . To see this, we observe that
the construction C �→ C ⊗Perf(X) M preserves fiber-cofiber sequences (resp.
split exact sequences). This follows because it is (∞, 2)-categorical (i.e., it is
well-defined for functors and natural transformations), and the condition of a
fiber-cofiber sequence is (∞, 2)-categorical. Compare also the discussion in
[13, Sec. 3.2] and [29, Sec. 3].

The primary goal of this section is to analyze étale descent and hyperdescent
properties of weakly localizing and additive invariants. Here we will prove the
weaker Nisnevich descent. We begin with a reduction to the connective case.

Lemma 5.13 Let X be an E2-spectral algebraic space, and let X≥0 =
(Xet , (OX )≥0) be its connective cover. For every map U → X in Xet , the
natural functor of Perf(U≥0)-linear stable ∞-categories

Perf(X) ⊗Perf(X≥0) Perf(U≥0) → Perf(U )

(adjoint to the Perf(X≥0)-linear pullback map Perf(X) → Perf(U ), where
the target has a Perf(U≥0)-linear structure) is an equivalence.

Proof This follows fromLurie’s theory of quasi-coherent stacks [40,Ch. 10],10

cf. also [70] and [69, Theorem 0.2] for precursors. Namely, we can define
a quasi-coherent stack over X≥0 by having its sections over an affine étale
Spec(A≥0) → X≥0 be given by Mod(A). The global sections of this stack
are QCoh(X). Since Mod(A) is compactly generated with compact objects

10 Sometimes Lurie assumes E∞-structures on the structure sheaves, but this is cosmetic: at
most a monoidal structure on the categories of modules is used, and so E2-rings are sufficient.
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Perf(A), it follows from [40, Sec. 10.3.2] that the global sections of this com-
pactly generated stack are compactly generatedwith compact objects Perf(X).
There is an analogous compactly generated quasi-coherent stack over U≥0
whose global compact objects are Perf(U ). Then the tautological fact that the
restriction of the first stack from X≥0 toU≥0 yields the second stack translates,
via the equivalence of [40, Theorem 10.2.0.2], to the claimed equivalence of
Perf(X)-linear categories. ��

This admits the following reinterpretation:

Corollary 5.14 Let X be an E2-spectral algebraic space, and A a weakly
localizing invariant over X. Then we can also view A as a weakly localizing
invariant over the connective cover X≥0 of X via the base-change functor
Perf(X≥0) → Perf(X), and the induced presheaves on etX = et(X≥0) are the
same.

Thus any general claim about descent for all localizing invariants on a qcqs
algebraic space reduces to the connective case.

The classical Thomason–Trobaugh argument (which is also an ingredient
in the theory of compactly generated quasicoherent stacks) then gives the
following basic result:

Proposition 5.15 (Nisnevich descent for localizing invariants) Let X be an
E2-spectral algebraic space, andA a weakly localizing invariant over X. Then
A is a sheaf for X Nis .

Proof By Corollary 5.14, we can reduce to the connective case; then this is
proved in [13, Prop. A.15] following an argument of [70]. Note that while the
result in [13] is stated for E∞-spectral algebraic spaces, the E∞-structure is
nowhere used in the arguments. ��

5.3 THH and TC of spectral algebraic spaces

Wenext study the basic examples of topological Hochschild and cyclic homol-
ogy. It is known from [24] that TC, which stands for topological cyclic
homology, satisfies a very strong form of étale descent, cf. also [74] in the
more classical context of ordinary cyclic homology. Going through that argu-
ment in the current context gives the following crucial result:

Theorem 5.16 Let X ∈ AlgSpc and let M be any right Perf(X)-module in
Catperf . The presheaf of spectra TCM on etX defined by

TCM(U ) = TC(Perf(U ) ⊗Perf(X) M)

is an étale hypersheaf. Moreover, for any prime number p, TCM/p is an étale
Postnikov sheaf.
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Since TCM is a localizing invariant, it is a Nisnevich sheaf, so it suffices
to treat the affine case X = Specet (R), with the affine étale site instead of the
usual étale site (Proposition 4.34). Recall that TC is built out of THH; therefore
we start by studying THH.

Suppose A is an E1-ring. Then A is an A − A-bimodule (in spectra) in the
usual way, and the spectrum THH(A) can be defined as the relative tensor
product

THH(A) = A ⊗A⊗Aop A.

Now suppose that R is an E2-ring and A is promoted to an E1-algebra in
R-modules. Then the R-module structure on A in particular commutes with
its A − A-bimodule structure, and this lets us view THH(A) as an R-module
(via the left-hand copy of A above, say).

Nowwe can state the following étale base change property of THH. Cf. also
[42,47,74] for the result for E∞-algebras.

Theorem 5.17 Let R → R′ be an étale map of E2-algebras, let A an E1-
algebra over R, and let B = A ⊗R R′ be its base change to R′. Then the
comparison map

R′ ⊗R THH(A) → THH(B)

of R′-modules (adjoint to the map of R-modules THH(A) → THH(B) given
by functoriality) is an equivalence.

Proof Associativity of relative tensor products gives

THH(A) ⊗R R′ = A ⊗A⊗Aop A ⊗R R′ � A ⊗A⊗Aop B,

which further evaluates to

(A ⊗A⊗Aop (B ⊗ Bop)) ⊗B⊗Bop B � (B ⊗A B) ⊗B⊗Bop B.

Via this our comparison map becomes

(B ⊗A B) ⊗B⊗Bop B → (B ⊗B B) ⊗B⊗Bop B � B ⊗B⊗Bop B.

Thus it suffices to show that the fiber F of themultiplicationmap B⊗A B → B,
viewed as a B − B-bimodule, satisfies F ⊗B⊗Bop B = 0. By base-change,
we can assume A = R and B = R′, so we are in the E2-setting. At this point
we can follow the proof of [39, Prop. 7.5.3.6], which is the dual claim to what
we’re trying to establish. Let e ∈ π0B ⊗Z π0B be any element lifting the
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idempotent e ∈ π0B ⊗π0 A π0B for which (π0B ⊗π0 A π0B)[e−1] = π0B via
the multiplication map. Then e acts by an isomorphism on π∗B, but it acts
locally nilpotently on π∗F . Now, there is a Tor-spectral sequence converging
conditionally to π∗(F ⊗B⊗Bop B) with E2 page of the form

Torπ∗(B⊗Bop)
p,q (π∗F, π∗B).

Considering the action of e ∈ π0(B ⊗ Bop) on the Tor groups shows that the
E2-page vanishes, whence the conclusion. ��
We can formally deduce the following extension:

Corollary 5.18 Let R be an E2-ring, and M a right Perf(R)-module in
Catperf . Let R → R′ be an étale map of E2-rings. Then the comparison map

R′ ⊗R THH(M) → THH(R′ ⊗R M)

of R′-modules is an equivalence.

Proof When M is generated by a single object, then the Schwede-Shipley
theorem, in the form proved by Lurie in [39, Theorem 7.1.2.1] (with a natural
extension to the R-linear case), gives M = Perf(A) for some E1-algebra
A over R, and so this is equivalent to the previous Theorem by the Morita
invariance of THH. The same holds ifM is generated by finitelymany objects,
because then it is generated by the single object given by their direct sum. In
general, M is a filtered colimit of its full subcategories generated by finitely
many objects. Since THH and base change commute with filtered colimits, we
deduce the claim in full generality. ��
Corollary 5.19 In the situation of the previous corollary, the presheaf THHM
on the opposite of the category of E2-rings over R defined by

THHM(R′) = THH(R′ ⊗R M)

is a Postnikov complete étale sheaf.
In fact, a stronger claim holds: the presheaf-level Postnikov truncations of

THHM are already étale sheaves.

Proof It suffices to prove the second, stronger claim. Since as ∗ varies over
N the functors �∞−∗ from spectra to spaces detect equivalences and preserve
limits, to show each Postnikov truncation (THHM)≤n is a sheaf is suffices to
show that each (THHM)[m,n] is a sheaf for m ≤ n in Z. By dévissage up the
Postnikov tower, it therefore suffices to see that each K (πk THHM, 0) is a
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sheaf for all k ∈ Z. But for R → R′ étale, Corollary 5.18 on homotopy groups
signifies

πk THHM(R) ⊗π0R π0R′ ∼→ πk THHM(R′).

In other words, πk THHM on E2-rings with an étale map from R identifies
with the quasi-coherent sheaf associated to the π0R-module πk THHM(R).
Therefore the claim follows from standard étale descent theory in commutative
algebra (exactness of theAmitsur complexplus preservationoffinite products).

��
Proof of Theorem 5.16 Since TCM is a Nisnevich sheaf, it suffices to treat
this claim on the affine étale site over an E2-ring R. We will first show that it
is an étale hypersheaf. Recall that, by definition (cf. [16, Sec. 6.4.3]), TC(−)

is built from THH(−) and the TC(−; p)/p for primes p via homotopy limits
and extensions. Since THHM(−) is an étale Postnikov sheaf by Theorem 5.17,
it suffices to show that TCM(−; p)/p is a hypersheaf. But again, TC(−; p)

is built from the TRn(−; p) via homotopy limits, and the TRn(−; p) can be
gotten inductively starting from TR1(−; p) = THH(−) by the fundamental
cofiber sequence [27]

THH(−)hC pn → TRn(−; p) → TRn−1(−; p).

Thus it suffices to show that (THHM(−)/p)hC pn is a hypersheaf. We know
THHM /p is a hypersheaf, so the issue is just to check that this property is
preserved by the homotopy orbits in this case.

However, letting k = π0R and viewing THH(−) as a sheaf on Spec(R)et =
Spec(k)et , we have that the sheaf THHM(−)/p vanishes on any k[1/p]-
algebra. Therefore, it is pushed forward from the étale topos of k ⊗Z Fp,
the latter forming the closed complement of Spec(k[1/p])et in Spec(k)et [1,
Exp. IV, Sec. 9]. For sheaves supported on a closed subtopos, the question
of hypercompleteness doesn’t depend on whether we consider the sheaves on
the original topos or on the subtopos, because the pushforward functor is fully
faithful and t-exact. Thus it suffices to see that taking homotopy orbits (−)hC pn

preserves hypercompleteness of p-power torsion sheaves on Spec(k ⊗ZFp)et .
However, the (mod p) étale cohomological dimension of any commutative
Fp-algebra is ≤ 1 [1, Theorem 5.1, Exp. X], so it follows from Proposition
2.28 that hypercomplete sheaves are closed under all colimits of p-power tor-
sion presheaves. This finishes the proof of hypercompleteness.Moreover, since
any hypercomplete p-torsion sheaf of spectra on Spec(k ⊗ZFp)et is Postnikov
complete (cf. Example 2.12), the Postnikov completeness claim follows too.

��
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The above argument by reduction to the étale site of an Fp-algebra also
gives a cohomological dimension bound for the homotopy group sheaves:

Corollary 5.20 Let n > 0. Consider the étale hypersheaf TCM /n over an
arbitrary E2-algebra R. Then its étale homotopy groups sheaves π̃∗ have
cohomological dimension ≤ 1, so TCM /n is actually a Postnikov sheaf, and
the resulting descent spectral sequence

H−p(Spec(R)et ; π̃q) ⇒ πp+q(TCM(R)/n)

simply gives short exact sequences

0 → H1(Spec(R)et ; π̃d+1) → πd(TCM(R)/n) → H0(Spec(R)et ; π̃d) → 0

for all d ∈ Z.

Corollary 5.21 Let X be a qcqs algebraic space, and Y → X a G-Galois
cover, G a finite group, and M a Perf(X)-module in Catperf . Then TCM(Y ) ∈
Fun(BG,Sp) is d-nilpotent for some d ≥ 0.

Proof Every qcqs algebraic space is glued from affines in a finitary manner in
the Nisnevich topology [40, Sec. 3.4.2], so by localization we can reduce to the
case of X affine. In this case we claim that d = 4works. Any rational spectrum
with G-action is 0-nilpotent (being a module over HQ with trivial G-action,
which is a retract of HQ[G]), so it suffices to see that lim−→n

TCM(Y )/n is
3-nilpotent. A countable filtered colimit is the cofiber of a map of countable
direct sums, and a countable direct sum of s-nilpotent objects is s-nilpotent
(for any s), so it suffices to see that each TCM(Y )/n is 1-nilpotent. For this
we can assume n = p j is a prime power. Then again since TCM /p j is zero
over any ring where p is invertible, we can view it as an étale sheaf on the mod
p locus of Spec(A). It is Postnikov complete by Corollary 5.20, but on the
other hand it can be considered as a module over the p-power torsion E1-ring
End(S/p j ). Since the (mod p) locus of any commutative ring has (mod p)
étale cohomological dimension ≤ 1, Theorem 4.25 implies that TCM(Y )/p j

is 1-nilpotent, finishing the proof. ��

5.4 Étale descent for telescopically localized invariants

Herewe prove a generalization of themain result of [13] to the E2-case. That is,
we show that telescopically localized localizing invariants satisfy étale descent.
Since we already know Nisnevich descent (Proposition 5.15), it suffices to
handle finite étale descent by Remark 4.35. For this, we can even work with
additive invariants.
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Definition 5.22 (The finite étale site) Let A be an E2-algebra. The finite étale
site of A is the ∞-category of étale E2-algebras B under A (cf. [39, Corollary
7.5.4.3]) such that π0(B) is finite projective as a π0(A)-module; this is equiv-
alent to the finite étale site of π0(A). We say that a finite étale A-algebra B is
G-Galois (for a finite group G) if π0(B) is a G-Galois extension of π0(A).11

It is well-known (via an elementary transfer argument) that with rational
coefficients, additive invariants satisfy finite étale descent. Compare the fol-
lowing result, which will be proved more generally below.

Proposition 5.23 (Cf. [68, Prop. 2.14]) Let A be an E2-algebra, and let A
be a weakly additive invariant for A-linear ∞-categories valued in Q-module
spectra. Then A defines a sheaf on the finite étale site of Spec(A).

Note that the conditions in [68, Prop. 2.14] are slightly stronger; however,
it is not difficult to deduce the more general result. The key observation to run
the argument is that if A → B is finite étale, then the class that B defines
in K0(A) ⊗ Q is a unit (cf. also [13, Prop. 5.4]). In this subsection, we give
an extension of this transfer argument to additive invariants that take values
in L f

n -local spectra rather than rational spectra. For E∞-rings, this was done
in [13]. We extend to the E2-case using the Dundas-Goodwillie-McCarthy
theorem, starting with K -theory.

Throughout this section we fix an implicit prime p. We use the theory of
finite localizations, cf. [44]. In particular, as is conventional, we let L f

n : Sp →
Sp(p) denote p-localization together with the finite localization away from a
type (n + 1) (p-local) finite spectrum.

Proposition 5.24 Let A be a connective E2-algebra. Then the functor B �→
L f

n (K≥0(B)) defines a sheaf on the finite étale site of A.

Proof This follows using the Dundas–Goodwillie–McCarthy theorem and
[13]. Note that for the finite étale site, the results of [13] do not require a
localizing invariant, only an additive invariant.

Indeed, [13,Theorem5.1, Proposition 5.4] shows that B �→ L f
n (K≥0(π0B))

defines a sheaf on the finite étale site (of A or equivalently of π0(A));
note that this is a purely algebraic statement about the ring π0(A), and
the distinction between E2 and E∞ disappears. By the Dundas-Goodwillie-
McCarthy theorem, it now suffices to show that B �→ L f

n (TC(B)) and
B �→ L f

n (TC(π0B)) are sheaves on the finite étale site. Now Theorem 5.16
shows that B �→ TC(B), B �→ TC(π0B) are étale hypersheaves, so it remains
to see that we still have finite étale descent after applying L f

n -localization, i.e.,

11 In particular, we do not consider here the more general Galois extensions of ring spectra of
[57].
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that we can commute L f
n -localization and finite Galois homotopy fixed points.

However, this follows from Corollary 5.21. ��
To extend the result from connective K -theory to arbitrary additive invari-

ants, we recall the construction of the∞-category of noncommutativemotives.
The basic theorem about this ∞-category is that algebraic K -theory becomes
representable here.

Fix an E2-ring A. We will abbreviate “Perf(A)-linear ∞-category” to “A-
linear ∞-category.”

Construction 5.25 (Noncommutativemotives, cf. [6,29,66])LetMotA denote
the presentable, stable∞-category ofnoncommutative motives over A. By con-
struction, we have a functor C �→ [C] from A-linear ∞-categories to MotA
with the following two properties:

1. C �→ [C] preserves filtered colimits.
2. Given an A-linear ∞-category C admitting a semiorthogonal decom-

position into subcategories C1, C2 (i.e., one has a strict exact sequence
C1 → C → C2), we have that the natural map [C] → [C1] × [C2] is an
equivalence in MotA.

Furthermore,MotA is initial amongpresentable, stable∞-categories admitting
a functor [·] with the above two properties.

In the following, we write FunA(−, −) for A-linear, exact functors between
A-linear ∞-categories.

Theorem 5.26 (Cf. Tabuada [66], Blumberg–Gepner–Tabuada [6], Hoyois-
Schereztoke-Sibilla [29]) Let C1, C2 be small A-linear ∞-categories and
suppose that C1 is compact as an A-linear ∞-category. Then there is a natural
equivalence HomMotA([C1], [C2]) � K≥0(FunA(C1, C2)).

Remark 5.27 The reference [6] considers the case A = S. The paper [29]
proves the result for a stably symmetric monoidal ∞-category with all objects
dualizable (e.g., Perf(A) for A an E∞-ring). However, the arguments all go
through with only a monoidal structure, and hence A is allowed to only be E2.

Remark 5.28 The use here of the language of noncommutative motives is not
essential. For our purposes, it would be sufficient to start with the additive ∞-
category of finite projective B-modules (for each B which is finite étale over
A) and A-linear additive functors; then one can use additive K -theory. It plays
a larger role in [13] because of the use of extensions such as K O → KU ,
which are not étale at the level of π0.

Our goal is to upgrade Proposition 5.24 to a statement at the level of MotA,
and then to deduce a corresponding statement for an arbitrary additive invari-
ant.
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Proposition 5.29 Let A be an E2-ring, B a finite étale E2-A-algebra, and
M an A-linear ∞-category. Then there is a natural equivalence of stable
∞-categories

FunA(PerfB,M) � PerfBop ⊗Perf(A) M.

Proof This is a standard consequence of the fact that B is proper and smooth
as an A-algebra, i.e.:

1. B is perfect as an A-module;
2. B is perfect as a B ⊗A Bop-module.

Namely, passing to Ind-categories and use Lurie’s tensor product on pre-
sentable ∞-categories, we always have

FunL
A(ModB, Ind(M)) � ModBop(Ind(M)) � ModBop ⊗ModA Ind(M)

without any hypothesis on the A-algebra B, see [39, Theorems 4.8.4.1 and
4.8.4.6]. Thus what one needs to see is that an object of ModBop(Ind(M)) is
compact if and only if the underlying object of Ind(M) is compact. “Only if”
follows from condition 1 and “if” follows from condition 2.

In fact, in our case B is not just perfect but finitely generated projective over
both A and B ⊗A Bop, as one checks on homotopy. ��
Remark 5.30 Let A be an E2-ring, and let B be an E2-algebra which is étale
over A. The above construction relied upon B as an E1-algebra in A-modules
(which form a monoidal ∞-category), which enabled us to form the opposite
algebra Bop. However, in fact B is canonically identified with Bop, and both
have the structure of E2-algebras under A; this follows from the theory of étale
morphisms as treated in [39, Sec. 7.5].

Corollary 5.31 Let A be a connective E2-ring, and let B, B ′ be finite étale
E2-algebras under A. By a slight abuse of notation, let B ⊗A B ′ denote
the finite étale E2-algebra over A whose π0 is π0(B) ⊗π0(A) π0(B ′). Then
FunA(PerfB,PerfB′) is identified with the stable ∞-category of perfect mod-
ules over B ⊗A B ′.

Proof We have natural maps of E2-algebras under A, f1 : B → B ⊗A B ′
and f2 : B ′ → B ⊗A B ′, thanks to the general theory of étale mor-
phisms [39, Sec. 7.5]. These maps induce extension of scalars functors
f ∗
1 : PerfB → PerfB⊗A B′, f ∗

2 : PerfB′ → PerfB⊗A B′ and right adjoint restric-
tion of scalars functors f1∗, f2∗; all of these are naturally A-linear. Given a
perfect B ⊗A B ′-module P , we define a functor PerfB → PerfB′ which sends
M �→ f2∗( f ∗

1 (M)⊗B⊗A B′ P). Via Proposition 5.29, this implies that functors
are precisely modules over this tensor product, whence the result. ��
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Corollary 5.32 Let A be a connective E2-ring. Then for any finite étale E2-
algebra B, the functor

B ′ �→ L f
n HomMotA([Perf(B)], [Perf(B ′)])

is a sheaf for the finite étale topology.

Proof From the proposition we deduce that Perf(B) is compact as an A-linear
∞-category, so Theorem 5.26 shows that HomMotA([Perf(B)], [Perf(B ′)]) =
K≥0FunA(Perf(B),Perf(B ′)). Applying Corollary 5.31 again identifies this
with K≥0(Perf(B ⊗A B ′)). Then the claim follows from Proposition 5.24. ��

To extend this to more general localizing invariants, we will need a bit more
nilpotence technology. That is, for aG-Galois extension A → B, we claim that
the noncommutative motive L f

n [Perf(B)] is actually nilpotent, as an object of
Fun(BG,MotA).

Proposition 5.33 Let B be a G-Galois extension of the connective E2-algebra
A.12 Then the G-action on L f

n K≥0(B) is nilpotent.

Proof Using the Dundas–Goodwillie–McCarthy theorem and Corollary 5.21,
we see that it suffices to assume that A, B are discrete and in particular E∞. In
this case, it follows that K≥0(B) is an E∞-algebra in Fun(BG,Sp). It suffices
to show that for each n and prime p, we have (L f

n K≥0(B))tG = 0, thanks to
Lemma 4.22. This effectively follows from the main results of [13], though
since it is not spelled out there explicitly we indicate the argument. Indeed, a
transfer argument (cf. [13, Theorem 5.1]) shows that we have that

(K≥0(B)hG)Q � (K≥0(B)Q)hG � K≥0(A)Q.

The slightly subtle point is the first equivalence. In particular, taking G-
homotopy fixed points commutes with rationalization on K≥0(B). Taking
G-homotopy orbits always commutes with rationalization. Combining these
observations, it follows that

(K≥0(B)tG)Q � (K≥0(B)Q)tG = 0.

But by the May nilpotence conjecture [49], since everything is now E∞, this
implies that for each n, we have L f

n (K≥0(B)tG) = 0. Aswe have a natural ring
map L f

n (K≥0(B)tG) → (L f
n K≥0(B))tG , it follows that the latter vanishes, as

desired. ��
12 That is, B is étale over A, and π0(A) → π0(B) is G-Galois as a map of commutative rings.

123



Hyperdescent and étale K -theory 1055

Construction 5.34 (L f
n -localized noncommutative motives) The presentable

stable ∞-category MotA is compactly generated via the classes [C], for C a
compact A-linear ∞-category (thanks to [29, Prop. 5.5]). It follows that when
we form the L f

n -localized ∞-category L f
n MotA (i.e., Bousfield localization

at the maps F ⊗ X → X, X ∈ MotA, for F a type (n + 1) complex), then
the mapping spaces between compact objects are simply L f

n -localized. That
is, we have

Hom
L f

n MotA
(L f

n [C], L f
n [D]) � L f

n HomMotA([C], [D])
� L f

n K≥0(FunA(C,D))

when C,D are compact A-linear ∞-categories.

Corollary 5.35 Let B be a G-Galois extension of the connective E2-algebra
A. Then the G-action on L f

n [Perf(B)] is nilpotent.

Proof Combine Proposition 5.33, Corollary 5.31, and Proposition 4.21 (and
the above construction). In particular, note that B ⊗A B is a (G × G)-Galois
extension of A. ��
Proposition 5.36 Let C be a stable ∞-category. Let Y ∈ Fun(BG, C) be
nilpotent and let X → Y hG be a morphism. Then the following are equivalent:

1. X → Y hG is an equivalence.
2. For Z either X or Y , the map HomC(Z , X) → HomC(Z , Y )hG is an

equivalence.

Proof The hypothesis of nilpotence implies that Y hG ∈ C belongs to the thick
subcategory generated by Y ; in fact, this holds because the cosimplicial dia-
gram computing Y hG is rapidly converging. Therefore, the cofiber C of X →
Y hG belongs to the thick subcategory generated by X, Y , which easily implies
the claim, since our hypotheses show that HomC(X, C) = HomC(Y, C) = 0.

��
Proposition 5.37 Let A be an E2-ring, and letAbe a weakly additive invariant
of A-linear ∞-categories with values in L f

n -local spectra. Let A → B be a G-
Galois extension of E2-rings. Then A(Perf(A)) � A(Perf(B))hG. Moreover
A(Perf(B)) is d-nilpotent as a G-object for some d ≥ 0 depending only on
A → B, n, and the implicit prime p.

Proof Sincewe are only evaluating on compact objects,wemay aswell assume
thatA is additive.Moreover, we can assume A connective as in Corollary 5.14.
By Proposition 5.36, Corollary 5.35, and Corollary 5.32, it follows that in the
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∞-category L f
n MotA, we have L f

n [Perf(A)] � (L f
n [Perf(B)])hG . Since the

G-action on L f
n [Perf(B)] is nilpotent (Corollary 5.35), it follows that after

applying any exact functor A : L f
n MotA → L f

n Sp, we have that

A(L f
n [Perf(A)]) � A(L f

n [Perf(B)]hG) � A(L f
n [Perf(B)])hG,

where the last equivalence uses the nilpotence. This is the desired claim, since
any additive invariant naturally factors through MotA. ��
Remark 5.38 Using the language of G-equivariant stable homotopy theory
and equivariant algebraic K -theory (cf. [2,5,43]), one can streamline the above
arguments. Since the constructions given there are not exactly in the generality
we need, we have followed the approach above.

Theorem 5.39 (Étale descent) Let X be an E2-spectral algebraic space. Let
A be a weakly localizing invariant for Perf(X)-linear ∞-categories which
takes values in L f

n -local spectra. Then Y �→ A(Perf(Y )) defines an étale
sheaf on X.

Proof By the Thomason–Trobaugh argument, Y �→ A(Perf(Y )) is a Nis-
nevich sheaf (Proposition 5.15). Thus it suffices to see that it satisfies finite
Galois descent on affines, by Remark 4.35. But this follows from Proposition
5.37. ��

6 Selmer K -theory and hyperdescent results

In this sectionwefirst study the basic properties ofSelmer K -theory (Definition
6.1). Ourmain result is that it always satisfies étale descent, and satisfies hyper-
descent under mild finite-dimensionality assumptions (Theorem 6.18). We
show also a version of the Lichtenbaum–Quillen conjecture, that the map from
K to K Sel is an equivalence in high enough degrees undermild assumptions. A
crucial ingredient in proving these statements is the Beilinson–Lichtenbaum
conjecture, proved by Voevodsky–Rost [72,73]. Finally, we use the smash-
ing property of étale hypercompletion to extend these hyperdescent results to
L f

n -local localizing invariants (Theorem 7.14).

6.1 Basic properties of Selmer K -theory

Here we recall the definition of Selmer K -theory, introduced in [11]. Our main
result (Theorem 6.6) is that Selmer K -theory satisfies étale descent and that it
commutes with filtered colimits for connective ring spectra.
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Definition 6.1 (Selmer K -theory, cf. [11]) Let C be a small stable∞-category.
The Selmer K -theory K Sel(C) is defined to be the homotopy pullback

K Sel(C) = L1K (C) ×L1TC(C) TC(C). (13)

For an E2-spectral algebraic space X , we write K Sel(X) = K Sel(Perf(X)).
We define K Sel of an E1-ring R by K Sel(R) = K Sel(Perf(R)).

Note that applying the localization natural transformation id → L1 to the
cyclotomic trace K → TC gives rise to a natural map K → K Sel which
factors both the trace K → TC and the localization K → L1K .

Example 6.2 (Rational Selmer K -theory) Recall that TQ
∼→ (L1T )Q for any

spectrum T . Hence the above formula (13) shows that the rationalization of
K Sel is simply the rationalization of K .

Consequently, the difference between K and K Sel is seen after p-adic comple-
tion (for any prime p). In this case, the idea of Selmer K -theory roughly is to
glue prime-to-p phenomena (which are seen via L1K ) and p-adic phenomena
(which are handled by TC). We illustrate this with two basic examples.

Example 6.3 (Selmer K -theory for ringswith p inverted) Suppose C is a stable
∞-category on which p is invertible. In this case, p is also invertible on
THH(C) and hence on TC(C). It follows that the p-adic completion K Sel(C) p̂
is identified with L K (1)K (C), where K (1) is at the same prime p.

Example 6.4 (Selmer K -theory in the p-complete case) Suppose that R is
a connective associative ring spectrum such that π0(R) is commutative and
p-henselian (e.g., p-adically complete). Then applying K (1)-localization at
the prime p (which we note erases the difference between connective and
nonconnective K -theory) to themain result of [12] combinedwith theDundas–
Goodwillie–McCarthy theorem [16] gives a homotopy pullback square

L K (1)K (R) L K (1)TC(R)

L K (1)K (π0(R)/p) L K (1)TC(π0(R)/p).

. (14)

Note that L K (1)K (Fp) = 0 since the p-completion K (Fp) p̂ vanishes in
positive degrees thanks to [53]. The bottom row in (14) consists of K (Fp) p̂-
modules, and therefore vanishes. It follows that in this case, we have that the
top horizontal arrow in (14) is an equivalence, and consequently K Sel(R) p̂ =
TC(R) p̂.
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Remark 6.5 For any E1-ring R we have a pullback square

K Sel(R) K Sel(Rp̂)

K Sel(R[1/p]) K Sel(Rp̂[1/p]).

(15)

Actually, this holds for any localizing invariant: it can be obtained by iden-
tifying the fiber terms in the localization sequences on perfect complexes
associated to the vertical maps of rings. Supposing R is connective with π0R
commutative of bounded p-torsion, then after p-completion the terms in this
pullback can be described in terms of either L K (1)K or TC by the previous
examples. In [3] it is shown in the same setting that this pullback square iden-
tifies with the p-completion of the pullback square defining K Sel(R), and in
particular each of the terms is a localizing invariant of Perf(R).

We now prove some basic general properties of Selmer K -theory.

Theorem 6.6 1. The functor R �→ K Sel(R), from connective E1-rings to
spectra, commutes with filtered colimits.

2. On E2-spectral algebraic spaces, K Sel is an étale sheaf.

Remark 6.7 Part 2 of this result is not the best possible. In Theorem6.18 below,
wewill prove hyperdescent under the hypotheses of finite Krull dimension and
bounded virtual cohomological dimension of the residue fields. We can also
generalize beyond the étale topology, see Theorem 6.9 below.

Proof For 1, since K -theory itself commutes with filtered colimits and
(L1T ) ⊗ Q = T ⊗ Q for any spectrum T , we reduce to the claim that TC /p
commutes with filtered colimits for any prime p, which is [12, Theorem G].

For 2, we observe that by Theorem 5.39, L1K , L1TC are étale sheaves.
Since TC is an étale hypersheaf by Theorem 5.16, it follows now that the
pullback K Sel is an étale sheaf. ��
Remark 6.8 More generally, for any set of primes P , K Sel

P is an étale sheaf.
This follows because we can check things rationally and mod p (for each
p ∈ P), and we have just done this above. There is also the same result “with
coefficients,” again with the same proof: if X is an E2-spectral algebraic space
and M is Perf(X)-module in Catperf , then K Sel

P (M ⊗Perf(X) Perf(−)) is an
étale sheaf on X .

We can actually strengthen this descent statement slightly when working
with (discrete) rings or algebraic spaces.
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Theorem 6.9 For ordinary qcqs algebraic spaces, K Sel is a sheaf for the fppf
topology.

Proof We reduce to the affine case. We first observe that K Sel is a sheaf for
the finite flat topology. This assertion follows from the finite flat descent for
L1K , L1TC proved in [13, Theorem 5.1], and faithfully flat descent for TC,
cf. [8, Sec. 3]. Now we use the fact that étale descent together with finite flat
descent implies fppf descent, cf. [65, Tag 05WM]. ��
Remark 6.10 Let R be a connective Z-algebra, and consider the p-adic com-
pletion K Sel(R) p̂. The work [3] shows that the first two ingredients of

K Sel(R) p̂ depend only on π0(R)[1/p], π0(R̂)[1/p] respectively. Therefore,
the only part of (p-complete) Selmer K -theory that sees the higher homotopy
groups of R arises from the topological cyclic homology of R.

The proof that Selmer K -theory is an étale hypersheaf (and not only an étale
sheaf) will rely on the norm residue isomorphism theorem, and will be given
in the next subsection. Here, we identify the étale stalks of Selmer K -theory,
via rigidity results, and show that they are very close to those of K -theory
itself.

Theorem 6.11 Let A be a connective E1-ring spectrum such that π0(A) is a
strictly henselian local (commutative) ring with residue field k. Then the map

K (A) → K Sel(A)

is an isomorphism on homotopy in degrees ≥ −1. Furthermore, for a prime
p, we have:

1. If k has characteristic p, then

K Sel(A) p̂
∼→ TC(A) p̂ � (K≥0(A)) p̂.

2. If k has characteristic �= p, then

K Sel(A) p̂
∼→ (L1K (A)) p̂ � KUp̂.

Here � means a non-canonical equivalence of E∞-ring spectra, but
π2(L1K (A) p̂) is canonically identified with Zp(1), and this precisely pins
down the non-canonicity of � since Aut(KUp̂) = Z

×
p given by the Adams

operations [25], which act by scalar multiplication on π2KUp̂ = Zp.

Proof Assume first A is discrete.We first prove the two identifications of K Sel
p̂ .
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If k has characteristic p, then by Example 6.4, we have that K Sel(A) p̂ �
TC(A) p̂, and we can identify this with the p-completion of connective K -
theory via [12, Theorem C].

If k has characteristic �= p, then p is invertible in A, so we have by Exam-
ple 6.3 that K Sel(A) p̂ � L K (1)K (A). By Gabber–Suslin rigidity [23,63]
K≥0(−) p̂ is invariant under all ringhomomorphismsbetween strictly henselian
localZ[1/p]-algebras; again this is only true for connective K -theory, but after
applying L K (1) we find that this also holds for K (−) p̂. Thus to produce the
equivalence (L1K (A)) p̂ � KUp̂ we can use a zig-zag of maps to connect A
toC, where the conclusion follows from Suslin’s comparison with topological
K -theory K (C)/p

∼→ ku/p [64]. The identification π2L1K (A) p̂ = Zp(1) is
then given in the standard manner using μp∞ ⊂ A× = K1(A).

Finally, we claim that K (A) → K Sel(A) is an isomorphism in degrees
≥ −1. We first note that K ⊗ Q

∼→ K Sel ⊗ Q in general, since T ⊗ Q
∼→

(L1T ) ⊗ Q for any spectrum T . Moreover K−1(A) = 0 by [18, Theorem
3.7]. It follows that π−1K Sel(A) is torsion. But the above (mod p) descrip-
tions show that π0(K Sel(A)/p) is generated by the unit, which comes from
π0K Sel(A), so we deduce that π−1K Sel(A) = 0 as well. Thus it suffices
to show that K≥0(A)/p → K Sel(A)/p is an isomorphism in degrees ≥ 0
for all primes p, with K≥0 here meaning connective K -theory. When k has
characteristic p this follows from 1. When k has characteristic �= p this fol-
lows from Gabber–Suslin rigidity again, which reduces us to the obvious fact
ku/p

∼→ (KU/p)≥0.
Now suppose A is a connective E1-ringwithπ0(A) strictly henselian. Using

the Dundas–Goodwillie–McCarthy theorem [16] twice, we have a homotopy
pullback square

K (A) K Sel(A)

K (π0(A)) K Sel(π0(A))

.

In addition, if p is invertible in A, then the map K (A) p̂ → K (π0A) p̂ is
an equivalence (e.g., via Dundas–Goodwillie–McCarthy or more simply by a
group homology calculation). Using these facts, we easily reduce to the case
where A is discrete treated above. ��

Corollary 6.12 Let d ∈ Z and pn a prime power. Then on étale homotopy
group sheaves with (mod pn) coefficients over an arbitrary qcqs algebraic
space X with connective structure sheaf, the natural map K Sel → TC induces
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a surjection

πet
d (K Sel/pn) → πet

d (TC /pn),

with kernel Fd described as follows:

1. For d odd, Fd = 0;
2. For d = 2q even, Fd = j!Z/pn

Z(q) with j the open inclusion of the
characteristic �= p locus of X into X.

Proof Because the map from the units of a ring to K1 of the ring is an
isomorphism on local rings, the pn-torsion in πet

1 K identifies with μpn =
Z/pn

Z(1). Comparing with Proposition 6.11, we deduce that the Bockstein
map πet

2 (K/pn) → (πet
1 K )[pn] = Z/pn

Z(1) is an isomorphism over rings
in which p is invertible. The homotopy group sheaves of j∗K/pn are even
periodic by Proposition 6.11, so by multiplicativity we deduce a comparison
isomorphism Z/pn

Z(q)
∼→ j∗πet

2q(K/pn) for all q ∈ Z. This is adjoint to a
map Fd → πet

2q(K/pn). We need to see that

0 → Fd → πet
d (K Sel/pn) → πet

d (TC /pn) → 0

is exact, but it suffices to check this on stalks, where it follows from Theorem
6.11. ��

6.2 Hyperdescent and Lichtenbaum–Quillen for Selmer K -theory

Here we indicate the Lichtenbaum–Quillen style statements one obtains for
the map K → K Sel , showing that the map is often an equivalence in high
enough degrees. We begin with the case of fields, when the result is known.

Theorem 6.13 Let k be a field and let p be a prime number. Let d be the virtual
cohomological dimension (mod p) of k if p �= char(k), and 1 + logp[k : k p]
if p = char(k). Then:

1. The map K (k)(p) → K Sel(k)(p) induces an equivalence on (d − 2)-
connective covers: more precisely, its homotopy fiber is concentrated in
degrees ≤ d − 4.

2. The construction A �→ K Sel(A)(p) defines a hypercomplete étale sheaf on
Spec(k)et .

Proof Suppose first that p �= char(k). Then the result is essentially contained
in [55,56]. Indeed, K Sel(k)/p � L K (1)K (k)/p. The results of loc. cit. show
that K (k)/p → K Sel(k)/p is an equivalence in degrees ≥ d − 2. Therefore,
the homotopy fiber F of K (k) → K Sel(k) has mod p homotopy in degrees
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≤ d − 3. Since this fiber F is torsion, it follows that F(p) has homotopy in
degrees ≤ d − 4. The hypercompleteness is also proved there, but we verify
it below as well.

Suppose char(k) = p, so that in this case K Sel(k)/p = TC(k)/p by Exam-
ple 6.4. Then the result follows from [24,26]. In fact, K (k)/p and TC(k)/p are
both (d − 1)-truncated and the map K (k)/p → TC(k)/p is an isomorphism
on top homotopy groups (in degree (d − 1)) and an injection in all degrees
(in particular, in degree d − 2), so the homotopy fiber F of K (k) → K Sel(k)

has mod p homotopy in degrees ≤ d − 3, and thus F(p) has homotopy in
degrees ≤ d − 4 since it is torsion. Explicitly, the homotopy groups are given
by πi (K (k)/p) � �i

k,log and πi (TC(k)/p) � �i
k,log ⊕ H1

et (Spec(k), �i+1
log ).

Thus, if F denotes the fiber of the map K (k) → K Sel(k) as before, then F/p
is concentrated in degrees ≤ d − 3, so F is concentrated in degrees ≤ d − 4
(since F is torsion). It also follows that K Sel/p defines a hypercomplete étale
sheaf since it is a truncated étale sheaf; therefore, K Sel

(p) is a hypercomplete
étale sheaf too. ��

For the convenience of the reader, we briefly include a version of the argu-
ment (slightly reformulated) in the case char(k) �= p. In this case, the goal is
to prove that if k has virtual cohomological dimension d, then the homotopy
fiber of K (k)/p → L1K (k)/p belongs to Sp≤d−3.

Construction 6.14 (Review of Beilinson–Lichtenbaum) Let k be a field of
characteristic �= p. The motivic or slice filtration [22,36] of K restricts to a
decreasing, multiplicative Z≥0-indexed filtration

. . . → F≥n+1(K ) → F≥n(K ) → . . . → F≥0(K ) = K

of Nisnevich sheaves on Spec(k) with the following properties:

1. lim←−n
F≥n(K ) = 0;

2. F=n(K ) := cofib(F≥n+1(K ) → F≥n(K )) identifies with�2n HZ(n), the
Nisnevich sheaf representingmotivic cohomology in degree 2n and weight
n.

We will primarily work with mod p coefficients, so that we obtain a filtration{
F≥n(K/p)

}
n≥0 with associated graded given by F=n(K/p) = �2n HFp(n),

i.e., one obtains motivic cohomology with mod p coefficients. By the norm
residue isomorphism theorem (cf. [30] for a textbook reference), we have an
equivalence for any étale k-algebra A and for each n ≥ 0,

HFp(n)(A) � τ≥−n R	et (Spec(A), μ⊗n
p ). (16)

Next we need an elementary connectivity lemma.
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Lemma 6.15 Let F be a sheaf of spectra on a site. Let G denote the presheaf
τ≥ jF and let Gsh denote its sheafification. Then the fiber of the map G → Gsh

is a presheaf of spectra which is concentrated in degrees ≤ j − 2.

Proof We have a sequence of presheaves of spectra G → Gsh → F . Since
sheafification is t-exact, the map Gsh → F is an isomorphism on homotopy
group sheaves in degrees≥ j and an injection in degree j −1. Thus, fib(Gsh →
F) is ( j −2)-truncated as a sheaf of spectra, and hence as a presheaf of spectra.
Using the sequence fib(G → Gsh) → fib(G → F) → fib(Gsh → F), we see
that the second and third terms are ( j − 2)-truncated, and thus so is the first. ��
Proof of Theorem 6.13 in case of finite cohomological dimension Suppose
first that k has cohomological dimension d and p �= char(k). In this case,
it follows from the above filtration and (16) that for n ≥ d, the functor that
F=n(K/p) defines on Spec(k)et is a truncated étale sheaf (hence a hyper-
sheaf). Taking the inverse limit up the tower, we conclude that F≥d(K/p)

defines a hypersheaf on Spec(k)et . Since L1(K/p) � L1F≥d(K/p) (because
L1 annihilates the thick subcategory of Sp generated by Fp-modules) and
hypercomplete sheaves are closed under all colimits in presheaves (Propo-
sition 2.28), it follows that L1(K/p) = K Sel/p is a hypercomplete étale
sheaf; here we also use that L1 is smashing, and hence given by tensoring
with L1S. This proves 2 of Theorem 6.13 for K Sel/p; the assertion for K Sel

(p)
follows using the arithmetic fracture square and using that rational K -theory
is a hypercomplete étale sheaf in this case.

It remains to prove 1. Note that the map F=i (K/p) → F=i (K/p)et (where
the target denotes the sheafification of the source) has homotopy fiber in
Sp≤i−2, again by (16) and Lemma 6.15. We conclude that if (K/p)et denotes
the étale sheafification of (K/p) on Spec(k)et , then (K/p)et fits into a fiber
sequence

F≥d(K/p) → (K/p)et → F<d(K/p)et ,

where the first term is already a hypercomplete étale sheaf. Since the last term
is truncated, we conclude that (K/p)et is hypercomplete and that the homo-
topy fiber of (K/p) → (K/p)et is a (d − 3)-truncated presheaf on Spec(k)et.
Finally, (K/p)et → L1(K/p)et is a map of hypercomplete sheaves of spec-
tra, since hypercompletion and L1-localization are smashing. For a separably
closed field �, we have that (K/p)(�) → L1(K/p)(�) has homotopy fiber
in degrees ≤ −3, and therefore (K et/p)(k) → L1(K et/p)(k) has homo-
topy fiber in degrees ≤ −3. Combining these observations, we conclude that
(K/p)(k) → (K Sel/p)(k) has homotopy fiber in degrees ≤ d − 3 as desired.

��
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Proof (Proof of Theorem 6.13 at 2, cf. [55]) Let k be a field of characteristic
�= 2 and of (mod 2) virtual cohomological dimension d. Note that this implies
that k(

√−1) has cohomological dimension d, cf. [60, Sec. 4]. Herewe indicate
an argument for Theorem 6.13 which should be equivalent to that of [55], but
which does not involve any explicit spectral sequence calculations.

Withmod2 coefficients, the norm residue isomorphism theorem (16) simply
becomes

HF2(n)(A) � τ≥−n R	et (Spec(A),F2),

as A ranges over étale k-algebras. Since k is only assumed of virtual coho-
mological dimension d, HF2(n) need not be an étale sheaf for any n, so the
previous argument does not directly apply. We need to use additionally the
nilpotence of the Hopf map. In other words, unlike previously, the motivic
spectral sequence does not degenerate.

Given an étale k-algebra A, the class −1 ∈ A× defines an element
u ∈ K1(A), which lives in F≥1K . With mod 2 coefficients, it defines
a class in F≥1(K/2)(A). In associated gradeds, this gives the class t in
π1(F=1(K/2)(A)) = H1(Spec(A)et ,F2) arising from −1 ∈ A× via the
Kummer sequence. We can also identify this class as follows. For any A,
we have that

R	(Spec(A)et ,F2) � R	(Spec(A[i])et ,F2)
hC2,

where A[i] = A ⊗Z[1/2] Z[1/2, i] is a C2-Galois extension of A. Note in
addition that A[i] has étale cohomological dimension ≤ d. Unwinding the
definitions, we conclude that the class u arises from the map

F
hC2
2 → R	(Spec(A[i])et ,F2)

hC2

as the image of the generator t ∈ H1(C2;F2).
Now consider the filtered spectrum

{
F≥i (K/2)(A)

}
, for A an étale k-

algebra. This is a module over the filtered spectrum
{

F≥i K (A)
}
. Since u

defines a class in filtration 1, it follows that we get a complete exhaustive
filtration {F≥i (K/(2, u))} on (K/2)(A)/(u) whose associated graded terms
are given by F=i (K/(2, u)) = cofib(�F=i−1(K/2) → F=i (K/2)) (i.e., we
take the cofiber of multiplication by u, but in filtered spectra, recording that it
raises filtration by 1). Unwinding the definition, we have that the associated
graded terms are

F=i (K/(2, u))(A) � �2icofib(�−1τ≥−(i−1) R	(Spec(A[i])et ,F2)
hC2

→ τ≥−i R	(Spec(A[i])et ,F2)
hC2)
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where the map is multiplication by t . By Lemma 6.17, for i ≥ d + 1, we can
remove the truncations and therefore obtain an object which is actually an étale
hypersheaf on Spec(k)et . Passing up the limit, it follows that F≥d+1(K/(2, u))

is an étale hypersheaf.
Note that the map F=i (K/(2, u)) → (F=i (K/(2, u)))et has homotopy

fiber which is (i − 1)-truncated, by checking on each of the terms in the
cofiber. It thus follows that the map

K/(2, u)(A) → (K/(2, u)et (A)

has homotopy fiber in degrees ≤ d − 1, and that the target is hypercom-
plete. Since, however, u is nilpotent—it arises from the Hopf map η13—we
can conclude the result for K/2 itself, i.e., that K/2(A) → (K/2)et (A) has
homotopy fiber which is ≤ d − 3-truncated, via Lemma 6.16 below. This
shows that K/2(k) → (K/2)et (k) has homotopy fiber in degrees ≤ d − 3
as desired. As in the previous proof, we can make the same conclusion with
(K/2)et replaced by K Sel/2. ��
Lemma 6.16 Let X be a spectrum. Suppose that the cofiber C of the Hopf
map η : �X → X belongs to Sp≤n. Then X ∈ Sp≤n−2.

Proof Suppose that there exists x ∈ πi (X) for i ≥ n − 1. Recall that η is
nilpotent in the stable stems; therefore, up to replacing x by an η-multiple (and
thus raising i), we may assume ηx = 0. The cofiber sequence�X → X → C
shows that x , considered as an element πi+1(�X)must be the image of a class
from πi+2(C). This contradicts the assumption that C ∈ Sp≤n . ��
Lemma 6.17 Let M be an F2-module spectrum with a C2-action. Suppose
that the homotopy groups of M are concentrated in degrees [−d, 0]. Then for
each i ≥ d + 1, the map

�−1τ≥−(i−1)(MhC2) → τ≥−i (MhC2)

given by multiplication by t ∈ H1(C2;F2) is identified with the cofiber of the
map t : �−1MhC2 → MhC2 , which is M.

Proof This follows from the fact that multiplication by t induces an isomor-
phism π− j (MhC2) → π− j−1(MhC2) for j > d. In fact, we have a cofiber
sequence

�−1MhC2 → MhC2 → M,

13 Two proofs: one, according to the Barratt–Priddy–Quillen theorem, the Hopfmap is detected
in homology by the sign of a permutation, so it suffices to note that a permutation matrix
has determinant given by the sign of the permutation; two, it suffices to verify the claim in

K1(Z)
∼→ π1ko where it is classical.
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1066 D. Clausen, A. Mathew

where the first map is multiplication by t , using the fiber sequence F2 →
F2[C2] → F2 in Fun(BC2,ModF2), tensoring with M , and taking C2-
homotopy fixed points. ��

Now, finally, we can state the main results about Selmer K -theory for con-
nective E2-spectral algebraic spaces. Note that when p is invertible, the result
appears in [56].

Theorem 6.18 Let X be a connective E2-spectral algebraic space and fix a
prime number p. Suppose X has finite Krull dimension. For a point x ∈ X, let
dx = vcdp(x) if char(k(x)) is prime to p, and dx = logp[k(x) : k(x)p] + 1 if
char(k(x)) = p. Let d = supx∈X dx , and suppose d < ∞. Then:

1. The map K (X)(p) → K Sel(X)(p) has homotopy fiber which is concen-
trated in degrees ≤ max(d − 4, −2). In particular, it is an isomorphism in
degrees ≥ max(d − 2, 0).

2. K Sel
(p) defines a hypersheaf on Xet .

Proof The strategy is to use rigidity to reduce both 1 and 2 to the case of fields.
By working Nisnevich locally, and using the fact that Nisnevich sheaves are
Postnikov complete (Corollary 3.27), we find that for 1, it suffices to treat the
case where X is the spectrum of a connective E2-ring R such that π0(R) is
henselian with residue field k. We can make the same reduction for 2 thanks
to Theorem 4.38 and the fact that Selmer K -theory commutes with filtered
colimits and is a Nisnevich (even étale) sheaf (Theorem 6.6): it suffices to
prove hypercompleteness when X is replaced by one of its henselizations.

Thus, let R be a henselian local ring with residue field k. We need to show
that the homotopy fiber F of K (R)(p) → K Sel(R)(p) lives in degrees ≤
max(d − 4, −2). Consider the composite maps K≥−1(R)(p) → K (R)(p) →
K Sel(R)(p). It suffices to show that the fiber F̃ of the composite lives in degrees
max(d − 4, −2) because the fiber of the first map lives in degrees ≤ −3.

Now with mod p coefficients, we have a homotopy pullback square

K≥−1(R)/p K Sel(R)/p

K≥−1(k)/p K Sel(k)/p

by [16] to reduce to the discrete case and then the main result of [12] as well
as [18, Theorem 3.7], which states that K−1(R) = 0. By Theorem 6.13, we
conclude that F̃/p is concentrated in degrees≤ (d−3). But F̃Q is concentrated
in degrees ≤ −2. It follows that F(p) is concentrated in degrees ≤ max(d −
4, −2) by Lemma 6.19 below. This completes the proof of 1.
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For 2, we observe that if R is a henselian local ring with residue field
k, then the above shows that K Sel(R)/p → K Sel(k)/p has homotopy fiber
concentrated in degrees ≤ 0. More generally, if R′ is a finite étale R-algebra,
then R is a finite product of henselian local rings, so similarly the fiber of

K Sel(R′)/p → K Sel(R′ ⊗R k)/p (17)

lives in degrees ≤ 0. Now if R is the henselization of X at a point, then the
residue field k has finite mod p virtual cohomological dimension. Thus, the
right-hand-side of (17) defines a hypersheaf on the finite étale site of R (or the
étale site of k) by Theorem 6.13. Since the left-hand-side is an étale sheaf, it
follows that it must be a hypersheaf too, since truncated sheaves are always
hypercomplete. Now using the main hypercompleteness criterion (Theorem
4.38), and since K Sel

Q
is a hypersheaf, we conclude that K Sel

(p) is a hypersheaf
on Xet . ��
Lemma 6.19 Let Y be a p-local spectrum. Suppose YQ is concentrated in
degrees ≤ d1 and Y/p is concentrated in degrees ≤ d2. Then Y is concentrated
in degrees ≤ max(d1, d2 − 1).

Proof Suppose that there exists a nonzero x ∈ πi (Y ) for i > max(d1, d2 −1).
Then by assumption x is p-power torsion. Multiplying x by a power of p, we
can assume that px = 0. Then there is a nonzero element in πi+1(Y/p)which
Bocksteins to x , contradicting the assumptions. ��

7 Étale K -theory

Here we formally define étale K -theory as a functor, and prove its basic prop-
erties. The basic ingredient is the properties of K Sel proved in the previous
section.

7.1 Big versus small topoi

Wedefine étale K -theory formally as a functor on E2-spectral algebraic spaces,
via the big site. An observation is that the sheafification process can be done
using either the small or the big site; by contrast if one defines étale K -theory
directly using the small site one has to prove functoriality, although the small
site is much more convenient given our previous discussion. Note that this is
very classical at least when one works with sheaf cohomology, cf. [1, Exp.
VII, Sec. 4] for closely related results for the étale topoi, and cf. [1, Exp. III]
for the general results in the case of sheaves of sets.

LetT be a site, so that for each t ∈ T ,we are given some family of subobjects
of the Yoneda functor ht ∈ PSh(T ). Let u : T ′ → T be a morphism of sites,
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i.e., precomposition with u induces a functor u∗ : PSh(T ) → PSh(T ′) which
carries sheaves on T to sheaves on T ′.
Proposition 7.1 Suppose for each t ∈ T and each covering sieve h̃t → ht ,
the induced map of functors π0(u∗h̃t ) → π0(u∗ht ) ∈ PSh(T ′) induces a
surjection after sheafification. Then:

1. The functor of precomposition with u, u∗ : PSh(T ) → PSh(T ′) commutes
with sheafification.

2. The functor u∗ : Sh(T ) → Sh(T ′) commutes with colimits and with taking
n-truncations, for each n (and thus with Postnikov completion).

3. The functor u∗ : Sh(T ) → Sh(T ′) commutes with taking hypercompletion.

Proof First we verify 1. Let F ∈ PSh(T ) and let F ′ be its sheafification.
Then f : F → F ′ is uniquely characterized by the fact that f induces an
equivalence after sheafification and that F ′ is a sheaf: that is, sheafification
is a Bousfield localization. We know now that u∗F ′ is a sheaf. To see that
u∗F ′ is the sheafification of u∗F , it suffices to show that u∗ carries morphisms
which become equivalences upon sheafification to morphisms which become
equivalences upon sheafification.

To this end, consider first the case ofmaps of the form h̃t → ht associated to
a covering sieve of an object t ∈ T ; by construction these induce equivalences
upon sheafifying inT . Nowwe have a homotopy cartesian diagram in PSh(T ),

h̃t ht

π0(h̃t ) π0(ht )

.

Here the bottom arrow (which is a monomorphism of presheaves of sets)
induces an epimorphism, hence an equivalence after applying u∗ and sheafi-
fying by assumption. Since sheafification and u∗ are left exact, it follows that
u∗h̃t → u∗ht induces an equivalence after sheafification. Now we appeal to
the theory of strongly saturated classes and Bousfield localizations, cf. [37,
Sec. 5.5.4]. Recall that Sh(T ) is the Bousfield localization of PSh(T ) at the
class of arrows h̃t → ht , over all covering sieves. Now the class of morphisms
in PSh(T )which induce an equivalence after sheafification is the strongly sat-
urated class generated by the arrows h̃t → ht , cf. [37, Prop. 5.5.4.15]. Now
u∗ preserves colimits and the class of morphisms in PSh(T ′) which induce an
equivalence after sheafification is again strongly saturated. It thus follows from
the above that u∗ carries the strongly saturated class of morphisms in PSh(T )

which induce equivalences upon sheafification into the strongly saturated class
ofmorphisms in PSh(T ′)which induce equivalences upon sheafification, prov-
ing 1.
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Now 2 follows from 1 because for any sheaf F ∈ Sh(T ), the n-truncation
τ≤nF in Sh(T ) is the sheafification of the presheaf n-truncation. Moreover,
u∗ preserves all limits.

Finally, 3 follows from 2 because if F → F ′ induces an equivalence on
homotopy groups (or on n-truncations for each n), then u∗(F) → u∗(F ′) does
as well by 2. ��
Corollary 7.2 Let D be a presentable ∞-category. Under the hypotheses of
Proposition 7.1, the functor u∗ : PSh(T ,D) → PSh(T ′,D) commutes with
sheafification.

Proof Keep the notation of Proposition 7.1. Then the result follows from the
above by taking the tensor product in presentable∞-categories withD. Alter-
natively, one can argue directly: here Sh(T ,D) ⊂ PSh(T ,D) is a Bousfield
localization at the class of maps d ⊗ h̃t → d ⊗ ht , as h̃t → ht ranges over
covering sieves and d ranges over the objects in D. As in Proposition 7.1, it
suffices to show that each of thesemaps is carried to amap in PSh(T ,D)which
becomes an equivalence after sheafification. However, this follows from the
assumptions. ��
Example 7.3 Suppose the functor u : T ′ → T admits a right adjoint g :
T → T ′. Unwinding the definitions (or using the Hochschild-Serre spectral
sequence), it follows that if t ∈ T , then u∗ carries the representable presheaf
ht ∈ PSh(T ) to the representable presheaf hg(t) ∈ PSh(T ′). If g carries
covering families to covering families, then it follows that the hypotheses of
Proposition 7.1 apply. As an instance of this, let H ≤ G be an open subgroup
of a profinite group G, then the functor IndG

H : TH → TG admits a right
adjoint, given by the forgetful functor. Since this clearly preserves covering
families, it follows that the induced functor on presheaves of spaces commutes
with sheafification.

Definition 7.4 (The big étale site) The big étale site of an E2-spectral alge-
braic space X consists of all E2-spectral algebraic spaces Y over X and maps
between them. The topology is generated by finite families {Yi → Y }i∈I such
that each Yi → Y is étale and they generate a covering in the étale site Yet .

Remark 7.5 Here we should restrict to objects of some bounded cardinality κ

for set-theoretic reasons, but the cardinal number κ does not affect any of the
statements (in view of Proposition 7.6 below), so we omit it.

Proposition 7.6 Fix an E2-spectral algebraic space X. Let F : AlgSpcop
X →

Sp be a functor. Let F̃ be the sheafification of F (in the big étale site). Then
for any E2-spectral algebraic space Y over X, the map F |Yet → F̃Yet exhibits
the target as the sheafification of the source (on the site Yet ).
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Proof This follows from Proposition 7.1. One has to check that given an étale
surjective map Z ′ → Z in AlgSpcop

X , the map hZ ′ → hZ induces a surjection
on π0 after sheafifying in Yet . However, given any Y ′ ∈ Yet , we observe that
any map Y → Z étale locally lifts to Z ′, as desired. Note that this is a purely
algebraic fact (on π0), thanks to (12). ��
Proposition 7.7 Let F : AlgSpcop

X → Sp be a functor. Then the following are
equivalent:

1. F is an étale sheaf (resp. étale hypersheaf, resp. étale Postnikov sheaf).
2. For each Y ∈ AlgSpcX , F |Yet is an étale sheaf (resp. étale hypersheaf,

resp. étale Postnikov sheaf).

7.2 Properties of étale K -theory

Here we give the main applications to étale K -theory. We begin with the
definition.

Definition 7.8 (Étale K -theory) We consider the functor of algebraic K -
theory (Definition 5.6) on AlgSpc, and denote its étale sheafification by K et .
We call this functor étale K -theory.

Remark 7.9 By Proposition 7.6, the étale sheafification defining K et can be
carried out either on the big or small étale sites, and the results are equivalent.

Construction 7.10 (The trace from K et ) We have a natural trace map K →
K Sel . Since K Sel is an étale sheaf (Theorem 6.6), it follows that we obtain a
factorization K et → K Sel of sheaves of spectra.

Our main goal is to control étale K -theory K et . In doing so, we use the map
K et → K Sel , and the fact that we have a good handle on K Sel : it is an étale
sheaf, and commutes with filtered colimits. The following argument is very
general; it would work with the category of commutative rings, or connective
E∞-ring spectra. Let AlgE2

(Sp)≥0 denote the ∞-category of connective E2-
ring spectra. This is a compactly generated ∞-category and for a compact
object R ∈ AlgE2

(Sp)≥0, π0(R) is a finitely generated commutative ring.
Compare [39, Sec. 7.2.4].

Proposition 7.11 Let F : AlgE2
(Sp)≥0 → Sp be a functor with the following

properties:

1. F commutes with filtered colimits.
2. When R ∈ AlgE2

(Sp)≥0 is such that π0(R) is a strictly henselian ring,
F(R) ∈ Sp≤0.

3. When R ∈ AlgE2
(Sp)≥0 is compact, then F restricted to Spec(R)et is

d-truncated (as a presheaf) for some d (possibly depending on R).
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Then:

1. The étale sheafification Fet : AlgE2
(Sp)≥0 → Sp commutes with filtered

colimits.
2. Fet takes values in Sp≤0.
3. Fet is hypercomplete as an étale sheaf.

Proof Let F̃et be obtained by restricting the étale sheafificationFet to compact
objects of AlgE2

(Sp)≥0 and then Kan extending to all of AlgE2
(Sp)≥0, so F̃et

commutes with filtered colimits. We will verify 1, 2, and 3 for F̃et first. Of
course, 1 is automatic by construction.

By construction and Proposition 7.6, F̃et when restricted to the étale site
of a compact object R ∈ AlgE2

(Sp)≥0 is the sheafification of F |Spec(R)et ; this
by assumption is truncated, so F̃et is Postnikov complete. Since the stalks
of F belong to Sp≤0, we conclude that F̃et (R) ∈ Sp≤0. Kan extending, we
conclude that F̃et takes values in Sp≤0, verifying 2.

Given a faithfully flat étale map f : R → R′ in AlgE2
(Sp)≥0, we can

write f as a filtered colimit of faithfully flat étale maps fα : Rα → R′
α

between compact objects in AlgE2
(Sp)≥0. By assumption, F̃et satisfies the

sheaf condition for eachmap fα , i.e., F̃et (Rα) is the totalization of F̃et applied
to the Čech nerve of fα . Now filtered colimits commute with totalizations in
Sp≤0, so it follows that F̃et satisfies the sheaf condition for R → R′, verifying
that F̃et is a sheaf; it is automatically hypercomplete since it is truncated.

Finally, it remains to show that F̃et actually is the sheafification of F . To
this end, we have a map F̃et → Fet by left Kan extension. Since Fet is the
sheafification ofF and F̃et is an étale sheaf receiving amap fromF , we obtain
a mapFet → F̃et . A diagram chase shows that both maps are inverses to each
other, as desired. ��
Theorem 7.12 Let X be an E2-spectral algebraic space with connective struc-
ture sheaf. Then:

1. The map

K et (X) → K Sel(X)

induced by Construction 7.10 is an isomorphism on homotopy in degrees
≥ −1.

2. If X has finite Krull dimension and admits a global bound on the vir-
tual P-local cohomological dimensions of the residue fields, then K et

P is a
hypercomplete sheaf on Xet .

3. The construction K et (·), on AlgE2
(Sp)≥0, commutes with filtered colimits.
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Proof Consider the fiber F of the map K → K Sel . Then F satisfies the
conditions of Proposition 7.11, in view of the results Theorems 6.6, 6.18,
and 6.11. Recall that the residue fields of a scheme (or algebraic space) of
finite type over Z have virtual cohomological dimension at most d + 1, for d
the Krull dimension (which is also finite) [1, Theorem 6.2, Exp. X], so these
results apply. It follows that Fet = fib(K et → K Sel) commutes with filtered
colimits of connective E2-rings, takes values in Sp≤0, and is a hypercomplete
étale sheaf.

Using the above results thatwehave alreadyproved for K Sel again, it follows
that K et has all of the above desired properties too, from the fiber sequence
Fet → K et → K Sel . The fact that K et (X) → K Sel(X) is an isomorphism in
degrees ≥ −1 can now be tested for X finite type over Z, then for X strictly
henselian local by hypercompleteness, and then follows from Theorem 6.11.

��
Finally, we can state and prove the relevant Lichtenbaum–Quillen statement

for K → K et .

Theorem 7.13 Let X be an E2-spectral algebraic space of finite Krull dimen-
sion, and p a prime. For a point x ∈ X, let dx = vcdp(x) if char(k(x)) is prime
to p, and dx = logp[k(x) : k(x)p] + 1 if char(k(x)) = p. Let d = supx∈X dx ,
and suppose d < ∞.

Then the map

K (X) → K et (X)

is an isomorphism on p-local homotopy groups in degrees ≥ max(supx∈X dk(x)

− 2, 0).

Proof Combine the above comparison of étale and Selmer K -theory (Theorem
7.12) as well as Theorem 6.18. ��

7.3 Hyperdescent for telescopically localized invariants

Putting everything together, we can prove our most general étale hyperdescent
results.

Theorem 7.14 (Étale hyperdescent) Let X be an E2-spectral algebraic space.
Suppose that X has finite Krull dimension and that there is a global bound on
the mod p virtual cohomological dimensions of the residue fields of X. Let A
be a weakly localizing invariant for Perf(X)-linear ∞-categories which takes
values in L f

n -local spectra. Then Y �→ A(Perf(Y )) defines an étale hypersheaf
on X.
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Proof As any additive invariant factors through non-commutative motives,
A(Perf(X)) = A([Perf(X)]) carries an action of EndMot(X)([Perf(X)],
[Perf(X)]) = K≥0(X), see Theorem 5.26. This is functorial in the E2-
algebraic space X via pullbacks, so in particular we get that the presheaf
Y �→ A(Perf(Y )) carries an action of the presheaf K≥0. However, by Theorem
5.39A is an étale sheaf; hence this action extends to an action of (K≥0)

et . The
latter is a hypersheaf by Theorem 7.12 (note that the discrepancy between con-
nective and non-connective K -theory is irrelevant because truncated sheaves
are automatically hypercomplete), hence so is A by Corollary 4.40. ��

Finally, we can extend the hyperdescent properties of Selmer K -theory (cf.
Theorems 6.6 and 6.13) to the nonconnective case.

Corollary 7.15 Let X be an E2-spectral algebraic space. Then if X has finite
Krull dimension and theP-local cohomological dimension of the residue fields
of X are bounded, then K Sel(−)P is an étale hypersheaf over X.

Moreover, this also holds “with coefficients” M as in Remark 6.8.

Proof In fact, Theorems 7.14 and 5.16 implies that K Sel/p is a hypersheaf
for each p ∈ P . It follows that the pro-P-completion K Sel

P̂
of K Sel is a

hypersheaf, and so are the rationalizations K Sel
Q

and (K Sel
P̂

)Q by the n = 0

case of Theorem 7.14. Using the arithmetic square, it follows that K Sel(−)P
is an étale hypersheaf as desired. ��
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