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Abstract
We construct Galois extensions of the T (n)-local sphere, lifting all finite abelian Galois

extensions of the K(n)-local sphere. This is achieved by realizing them as higher semiadditive
analogues of cyclotomic extensions. Combining this with a general form of Kummer theory, we
lift certain elements from the K(n)-local Picard group to the T (n)-local Picard group.
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1 Introduction

1.1 Overview

Background & main results

As a general approach, chromatic homotopy theory proposes to study the ∞-category Sp(p), of
p-local spectra, via the “chromatic height filtration”. In practice, there are two prominent candi-
dates for the “monochromatic layers” for such a filtration. The first, are the K(n)-localizations
LK(n) : Sp(p) → SpK(n), where K(n) is the Morava K-theory spectrum of height n. The second,
are the telescopic localizations LT (n) : Sp(p) → SpT (n), where T (n) is obtained by inverting a vn-self
map of a finite spectrum of type n. The two candidates a related by the inclusion SpK(n) ⊆ SpT (n),
which is known to be an equivalence for n = 0, 1 by the works of Miller [Mil81] and Mahowald
[Mah81]. Whether this inclusion is an equivalence for all n is an open question and is the subject
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of the celebrated “telescope conjecture” of Ravenel. On the one hand, the ∞-categories SpT (n) are
fundamental from a structural standpoint, as they arise via the thick subcategory theorem [HS98,
Theorem 7]. They also admit a close connection to unstable homotopy theory [Heu21], and figure
in the “redshift” phenomena for algebraic K-theory [AR08, HW20, LMMT20, CMNN20]. However,
they are hard to access computationally. On the other hand, the ∞-categories SpK(n), which a
priori might contain somewhat less information, still exert a large control over Sp(p), due to the
nilpotence theorem of Hopkins-Devinatz-Smith [HS98, Corollary 5] and the chromatic convergence
theorem of Hopkins-Ravenel (see [Rav92, Theorem 7.5.7]). Moreover, they possess deep connec-
tions to the algebraic geometry of formal groups, and are consequently much more amenable to
computations.
One of the key instances of the relationship between the theory of formal groups and SpK(n), is the
construction of the Lubin-Tate E∞-ring spectrum En

1 (see [GH04], or alternatively [Lur18, Con-
struction 5.1.1]). Simply put, En provides a faithful and relatively computable (highly structured)
multiplicative (co)homology theory for K(n)-local spectra. Moreover, the cohomology operations of
En can be understood in terms of the Morava stabilizer group Gn = ẐnAut(Γ), where Γ is a formal
group law of height n over Fp, and Γ is its base-change to Fp. From a more conceptual perspective,
by the work of [DH04, Rog08, BR08, Mat16], En can be viewed as an “algebraic closure” of SK(n)
in SpK(n), with Gn as its Galois group. Hence, as in ordinary commutative algebra, one can apply
“Galois decent” to study the ∞-category SpK(n) in terms of the, far more tractable, ∞-category of
K(n)-local En-modules.
In light of that, it seems beneficial to study Galois extensions of ST (n) in SpT (n) as well. In this
regard, we have the following result.

Theorem A (Theorem 5.27). Let G be a finite abelian group. For every G-Galois extension R of
SK(n) in SpK(n), there exists a G-Galois extension Rf of ST (n) in SpT (n), such that LK(n)R

f ' R.

In particular, all of the Galois extensions of SK(n), that are classified by finite quotients of the
determinant map det : Gn → Z×p , can be lifted to Galois extensions of ST (n) in SpT (n). In fact, the
lifting of the various abelian Galois extensions can be done in a compatible way. In the language of
[Mat16], the localization functor LT (n) : SpT (n) → SpK(n) induces a map on the weak Galois groups
(in the opposite direction), and we show that after abelianization this map admits a retract. The
proof of Theorem A relies on the ∞-semiadditivity of the ∞-categories SpT (n) ([CSY18, Theorem
A]), and the theory of “higher cyclotomic extensions”, which we develop in this paper. The latter
builds on the theory of semiadditive height and semisimplicity ([CSY20, Theorem D]).
A related structural invariant, which is better understood for SpK(n) than for SpT (n), is the Picard
group. Recall that for a symmetric monoidal∞-category C , the Picard group Pic(C ) is the abelian
group of isomorphism classes of invertible objects in C under tensor product. While Pic(SpK(n)) was
intensively studied (e.g. [HMS94, Lad13, GHMR15, Hea15]), very little is known about Pic(SpT (n)).
Our second main result concerns the construction of non-trivial elements in Pic(SpT (n)).

Theorem B (Theorem 5.28). For an odd prime p, the group Pic(SpT (n)) admits a subgroup
isomorphic to Z/(p− 1).

Moreover, under K(n)-localization, this subgroup is mapped isomorphically onto the subgroup of
Pic(SpK(n)), consisting of objects which are (p− 1)-torsion and of dimension 1. We also construct

1In this paper, we use the version of En whose coefficients satisfy π0En ' W (Fp)[[u1, . . . , un−1]].
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some non-trivial elements in Pic(SpT (n)) for p = 2, and describe their image in the algebraic Picard
group (Theorem 5.29). We deduce Theorem B from theorem A by a generalized Kummer theory,
which we develop in this paper.

Higher cyclotomic extensions

We shall now outline our approach to Theorem A. As mentioned above, the Galois extensions of
SK(n) are governed by the Lubin-Tate spectrum En, whose construction relies on the theory of
complex orientations. In the absence of an analogue of this construction in the T (n)-local world,
we take our cue from classical algebra, where we have a natural source of abelian Galois extensions
– the cyclotomic extensions. Namely, for a commutative ring R, we have the m-th cyclotomic
extension R[ωm] := R[t]/Φm(t), where Φm(t) is the m-th cyclotomic polynomial, whose roots are
the primitive m-th roots of unity. If m is invertible in R, this extension is Galois (though not
necessarily connected) with respect to the natural action of (Z/m)×.
As a concrete example, consider R = Qp. Starting integrally, for every d ∈ N, the cyclotomic
extension Zp[ωpd−1] splits into a product of copies of the Z/d-Galois extension W (Fpd), exhibiting
the latter as a subextension of a cyclotomic one. After inverting p, we getQp(ωpd−1) = W (Fpd)[p−1],
which assemble into the maximal unramified extension Qur

p :=
⋃
dQp(ωpd−1) of Qp2. However, as

p is now invertible, we have also the cyclotomic extensions of p-power order, which assemble into
Qp(ωp∞) :=

⋃
r Qp[ωpr ]. It is a classical theorem in number theory that all abelian Galois extensions

of Qp can be obtained in this way.

Theorem (Kronecker-Weber). We have Gal(Qp/Qp)ab ' Ẑ×Z×p , where Gal(Qp/Qp)→ Ẑ classifies
Qur
p , and the p-adic cyclotomic character χ : Gal(Qp/Qp)→ Z×p classifies Qp(ωp∞).

Incidentally, for 1 ≤ n <∞, we also have Gab
n ' Ẑ×Z×p .3 The finite Galois extensions of SK(n) that

are classified by the map Gn → Ẑ, are the K(n)-localizations of the spherical Witt vectors SW (Fpd)
(see [Lur18, Example 5.2.7]). Hence, just as for Qp, they can be obtained from cyclotomic exten-
sions of order prime to p (see Proposition 5.9 and corollary 5.11). Similarly, the T (n)-localizations
of SW (Fpd) constitute a lift of the said Galois extensions of SK(n) to Galois extensions of ST (n).
However, unlike for Qp, the element p is not invertible in SpK(n), and in fact, aK(n)-local commuta-
tive algebra can not admit primitive p-power roots of unity ([Dev20, Theorem 1.3]). Nevertheless,
and it is the main insight leading to the results of this paper, the higher semiadditivity of the
∞-categories SpK(n) (in the sense of [HL13]) allows one to view the Galois extensions classified
by det : Gn → Z×p , as a “higher analogue” of the classical cyclotomic extensions of p-power order.
Furthermore, the higher semiadditivity of the ∞-categories SpT (n) ([CSY18, Theorem A]), is what
allows us to construct their T (n)-local lifts. We shall now explain these ideas in more detail.
We begin by reformulating the construction of the (ordinary) cyclotomic extensions in a way which
lands itself to ∞-categorical generalizations. Recall that a pr-th root of unity in a commutative
ring R, is a homomorphism Cpr → R×, and it is called primitive, if it is nowhere (in the algebro-
geometric sense) of order pr−1 (see Definition 3.3). For a given R, the functor which assigns to
every R-algebra, the set of its pr-th roots of unity, is corepresented by the group algebra R[Cpr ].

2We denote by Qp(ωm) the splitting field of Φm(t) over Qp, as opposed to Qp[ωm] := Qp[t]/Φm(t) which may be
not connected, but rather a product of copies of Qp(ωm).

3For height n = 1, this similarity was also discussed in [Rog08, §5.5].
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Consider now the short exact sequence of abelian groups

0→ Cp → Cpr → Cpr−1 → 0,

the associated R-algebra homomorphism f : R[Cpr ]→ R[Cpr−1 ], and the set map ι : Cp ↪→ R[Cpr ].
If p is invertible in R, we can define the idempotent

ε := 1
p

∑
g∈Cp

ι(g) ∈ R[Cpr ],

which splits f . That is, inverting ε and 1− ε respectively, yields a decomposition

R[Cpr ] ' R[Cpr−1 ]×R[ωpr ].

In particular, we get that the cyclotomic extension R[ωpr ] corepresents the set of primitive pr-th
roots of unity. Furthermore, the natural action of the group (Z/pr)× on Cpr induces an action on
the group algebra R[Cpr ], which then restricts to the cyclotomic extension R[ωpr ] by the invariance
of ε, making it a (Z/pr)×-Galois extension of R. Reformulated in this way, the construction of
the cyclotomic extensions can be carried out for a commutative algebra object R in any additive
symmetric monoidal ∞-category, provided that p is an invertible element in the ring π0(R) (see
[SVW99, Theorem 3]). An extension of these ideas, which allows adjoining roots of any invertible
element, was studied in [Law20].
To define higher cyclotomic extensions, we first observe that for a commutative algebra R in a
symmetric monoidal ∞-category C , the group-like commutative monoid (or equivalently, the con-
nective spectrum) of units R×, need not be discrete in general. Taking advantage of that, we define
a height n root of unity of R, to be a morphism of the form Cpr → ΩnR×. For such a higher
root of unity, we also have a corresponding notion of primitivity (see Definition 4.2). The functor
assigning to each R-algebra the space of its height n roots of unity is corepresented by the higher
group algebra R[BnCpr ]. By analogy with the above, we consider the fiber sequence

BnCp → BnCpr → BnCpr−1 ,

the associated morphism of commutative R-algebras f : R[BnCpr ] → R[BnCpr−1 ], and map of
spaces

ι : BnCp → Map(1C , R[BnCpr ]).

To proceed, assume now that C is stable and n-semiaddive. This allows one to integrate families
of morphisms in C indexed by n-finite spaces. In particular, we can consider the cardinality of
the n-finite space BnCp. This is given by integrating over BnCp, the unit map 1C

1R−−→ R, and is
denoted by

|BnCp| :=
∫
BnCp

1R ∈ π0(R) = π0 Map(1C , R).

Recall from [CSY20, Definition 3.1.6], that R is said to be of height ≤ n, if the element |BnCp| is
invertible in π0(R), in which case we can define

ε := 1
|BnCp|

∫
x∈BnCp

ι(x) ∈ π0(R[BnCpr ]).

5



Note that for n = 0 we have |Cp| = p, hence, R is of height 0 precisely when p is invertible in the
ring π0(R). We then show that, as in the case n = 0, the element ε is idempotent and induces a
(Z/pr)×-equivariant decomposition

R[BnCpr ] ' R[BnCpr−1 ]×R[ω(n)
pr ],

such that the projection onto the first factor coincides with f (Proposition 4.5). As a result, the
commutative R-algebra R[ω(n)

pr ] corepresents the space of primitive pr-th roots of unity of height n
(Proposition 4.8). We call R[ω(n)

pr ] the height n cyclotomic extension of R of order pr.
To apply the abstract construction of higher cyclotomic extensions to the chromatic world, we
recall from [CSY20, §4.4], that the semiadditive height generalizes the chromatic height. Namely, all
objects of SpT (n), and hence also of SpK(n), are of semiadditive height exactly n. We then prove that
the resulting (Z/pr)×-equivariant algebras SK(n)[ω

(n)
pr ] are Galois (Proposition 5.2). Furthermore,

by comparing the infinite cyclotomic extension SK(n)[ω
(n)
p∞ ], with Westerland’s Rn [Wes17], we

deduce that it is classified by4 det : Gn → Z×p (see Theorem 5.7 and the following discussion).
Thus, the determinant map can be viewed as the higher chromatic analogue of the p-adic cyclotomic
character. In the same spirit, the realization of all the abelian Galois extensions of SK(n) in terms
of (ordinary and higher) cyclotomic extensions can be viewed as the higher chromatic analogue of
the Kronecker-Weber theorem. Finally, we deduce Theorem A from the above, by showing that the
T (n)-local higher cyclotomic extensions ST (n)[ω

(n)
pr ] are Galois as well (Proposition 5.2), using the

nilpotence theorem in the guise of “nil-conservativity” (see [CSY18, §4.4]).

Kummer theory

We now outline the relationship between abelian Galois extensions and the Picard spectrum, which
allows us to deduce Theorem B from Theorem A. Classically, given a field k which admits a primitive
m-th root of unity, and a finite abelian group A which ism-torsion, Kummer theory identifies the set
of isomorphism classes of A-Galois extensions of k, with Ext1

Z(A∗, k×), where A∗ = hom(A,Q/Z)
is the Pontryagin dual of A (e.g., for A = Z/m, we have Ext1

Z((Z/m)∗, k×) = (k×)/(k×)m). One
way to construct this identification is to observe that for every A-Galois extension L/k we can
simultaneously diagonalize the action of all the elements of A on L, producing an eigenspace de-
composition L '

⊕
ϕ∈A∗ Lϕ as k-vector spaces. The Lϕ-s turn out to be all 1-dimensional, and the

multiplication of L restricts to give isomorphisms Lϕ ⊗Lψ ∼−→ Lϕ+ψ. As a result, a choice of basis
elements 0 6= xϕ ∈ Lϕ provides a 1-cocycle representative of a class in the group Ext1

Z(A∗, k×),
which can then be shown to depend only on L and to completely characterize it.
For a more general commutative ring R, which admits a primitive m-th root of unity (so, in
particular, m ∈ R×), and an A-Galois extension S of R, one can still produce a decomposition
S '

⊕
ϕ∈A∗ Rϕ and isomorphisms Rϕ ⊗ Rψ ∼−→ Rϕ+ψ as before. However, this only implies that

the Rϕ-s are invertible R-modules, rather than that Rϕ ' R. This leads to a classification of
A-Galois extensions of R, which involves both the Picard group Pic(R) and the group of units R×.
These groups can be recognized as the π0 and π1 respectively, of the Picard spectrum of R, which
we denote by pic(R).

4This requires one to choose a normalizable formal group law in the sense of [HL13, Definition 5.3.1]. In [Wes17],
Westerland uses the Honda formal group law, in which case one has to replace det with det±.
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Generalizing this, we show that for every additive presentable symmetric monoidal ∞-category C ,
such that the commutative ring π01 admits a primitive m-th root of unity, there is a homotopy
equivalence of spaces (Theorem 3.18)

CAlgA-gal(C ) ' MapSpcn(A∗,pic(C )),

where on the left-hand side, we have the full subcategory (which turns out to be an∞-groupoid) of
CAlg(C )BA consisting of A-Galois extensions of the unit 1C . This can be considered as a general
form of “Kummer theory” in the context of ∞-categories. The main difficulty in establishing
the above homotopy equivalence is to handle the multiplicativity of the eigenspace decomposition
coherently. To this end, we realize the eigenspace decomposition, under the above assumptions, as
a symmetric monoidal equivalence (Proposition 3.13)

F : Fun(BA,C )Ptw
∼−→ Fun(A∗,C )Day,

where the subscript ‘Ptw’ indicates the usual point-wise symmetric monoidal structure, while the
subscript ‘Day’ indicates the Day-convolution symmetric monoidal structure. This can be viewed
as a general form of the discrete Fourier transform.
Applying the above to A = Z/m and taking π0, gives rise to a (non-canonically) split short exact
sequence of abelian groups (Proposition 3.23)

0→ (π01
×)/(π01

×)m → π0 CAlgZ/m-gal(C )→ Picev(C )[m]→ 0,

where Picev(C ) ≤ Pic(C ) is the subgroup of invertible objects of monoidal dimension 1 (Defini-
tion 3.22), and Picev(C )[m] is its m-torsion subgroup. We note that when C is p-complete for some
odd prime p, the Zp-algebra π01 always admits primitive (p− 1)-st roots of unity. Thus, to every
Z/(p−1)-Galois extension of 1, corresponds a (possibly trivial) (p−1)-torsion element of Picev(C ).
Specializing to the chromatic world, we show that the K(n)-local Picard object Zn, which cor-
responds to the higher cyclotomic Z/(p − 1)-Galois extension SK(n)[ω

(n)
p ], generates the group

(Proposition 5.19)
Picev(SpK(n))[p− 1] ' Z/(p− 1).

We deduce that ST (n)[ω
(n)
p ] corresponds to a T (n)-local Picard object Zfn ∈ Picev(SpT (n))[p − 1],

which lifts Zn, implying Theorem B. We use a variation of the above method to produce non-trivial
T (n)-local Picard objects in the case p = 2 as well, using the three Z/2-subextensions of ST (n)[ω

(n)
8 ]

(Theorem 5.29).

Faithfulness & descent

Taking the colimit over all pr-th cyclotomic extensions, we obtain the infinite cyclotomic extension

Rn := SK(n)[ω
(n)
p∞ ] = lim−→ SK(n)[ω

(n)
pr ].

This continuous Z×p -Galois extension of SK(n), which is classified by det : Gn → Z×p , enables several
key constructions in SpK(n). Among them, are the class ζn ∈ π−1(SK(n)) (see [DH04, §8]) and the
determinant sphere SK(n)〈det〉 ∈ Pic(SpK(n)) (see [BBGS18]). Using our results, we can similarly
construct the T (n)-local infinite cyclotomic extension Rfn := ST (n)[ω

(n)
p∞ ]. Assuming Rfn is faithful,
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one could lift ζn and SK(n)〈det〉 to the T (n)-local world. However, while all finite Galois extensions
of ST (n) are faithful, we do not know whether the infinite Galois extension Rfn is faithful5. As far
as we know, Rfn might be even K(n)-local, in which case the faithfulness of Rfn would be equivalent
to the telescope conjecture. As an example, one can argue directly to show that Rf1 is both faithful
and isomorphic to R1, which leads to a new proof of the telescope conjecture at height n = 1. A
more detailed account of this circle of ideas will appear elsewhere.

1.2 Conventions

Throughout the paper, we work in the framework of ∞-categories (a.k.a. quasi-categories), and
in general follow the notation of [Lur09] and [Lur]. The terminology and notation for all concepts
related to higher semiadditivity and (semiadditive) height are as in [CSY20]. In addition,

(1) We use the notation hom(X,Y ) for the enriched/internal hom-objects, as opposed to Map(X,Y )
which always denotes the mapping space.

(2) For an object X in a monoidal ∞-category C , we write Ω∞X for Map(1, X) and π0X for
π0 Map(1, X).

(3) We denote by Pr the∞-category of presentable∞-categories and colimit preserving functors,
and by

Prצn ⊆ Pr⊕-n
st ⊆ Prst ⊆ Pradd ⊆ Pr

the full subcategories spanned by∞-categories which are additive, stable, stable n-semiadditive
and stable n-semiadditive of semiadditive height n (with respect to an implicit prime p).6
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2 Galois Theory

We begin by discussing some special features of Galois extensions following [Rog08], under the
assumption that the classifying space of the acting group is ambidextrous with respect to the ∞-
category. We shall work mainly in the setting of additive presentable ∞-categories. These include
the stable presentable∞-categories as well as ordinary additive presentable categories, such as that
of abelian groups.

5In an earlier stage of this project, we believed that we have a proof for the faithfulness of Rf
n, which led to

[BBB+19, Remark 8.5.3]. However, while writing this paper we have discovered a crucial gap in the argument.
6In the language of [CSY20, §5.2], these properties are classified by the modes Spcn, Sp, ,[n]צ and nצ respectively.
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The main result of §2.1, is that the Galois property can be detected by nil-conservative functors
(Proposition 2.9), and of §2.2, that it can be characterized by the fact that a certain associated lax
symmetric monoidal functor is strong monoidal (Proposition 2.13).

2.1 Definition and Detection

We begin by recalling the following definition from [Rog08]:

Definition 2.1 (Rognes). Let C ∈ CAlg(Pradd), let G be a finite group and let R ∈ CAlg(CBG).
We say that R is a G-Galois extension (or just Galois) if it satisfies the following two conditions:

(1) The canonical map 1→ RhG is an isomorphism.

(2) The canonical map R⊗R→
∏
GR, given informally by x⊗y 7→ (x·σy)σ∈G, is an isomorphism.

A Galois extension R is called faithful if in addition the functor (−)⊗R is conservative. We denote
by CAlgG-gal(C ) ⊆ CAlg(CBG) the full subcategory spanned by G-Galois extensions.

Remark 2.2. For S ∈ CAlg(C ), by a G-Galois extension of S, we shall mean a G-Galois extension
in the symmetric monoidal ∞-category ModS(C ) in the sense of Definition 2.1.

Remark 2.3. It is proved in [Rog08, Proposition 6.3.3] that faithfulness of a Galois extension R
is equivalent to the condition that the norm map

Nm: RhG → RhG

is an isomorphism. We shall be particularly interested in situations where BG is C -ambidextrous
(e.g. when C is 1-semiadditive or |G| is invertible in C ), in which case this condition is satisfied
automatically.

Unlike in the classical Galois theory for fields, Galois extensions are not required to be connected.
In particular, for every group G, there is always the “trivial” G-extension:

Example 2.4 (Split Galois extension). Let C ∈ CAlg(Pradd) and let G be a finite group with
e : pt→ BG the inclusion of the basepoint. The functor e∗ : C → CBG is lax symmetric monoidal
and the induced object

e∗1 '
∏
G

1 ∈ CAlg(CBG)

is a G-Galois extension. We say that a G-Galois extension R is split if it is isomorphic to e∗1 as a
G-equivariant commutative algebra.

The underlying object of a Galois extension is always dualizable (see [Rog08, Proposition 6.2.1] and
[Mat16, Proposition 6.14]). To detect Galois extensions, it will be useful to establish certain closure
properties for dualizable objects.

Proposition 2.5. Let C ∈ CAlg(Pr) and let I ∈ Cat∞. If the tensor product of C preserves Iop-
shaped limits in each variable, then the dualizable objects in C are closed under I-shaped colimits.
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Proof. We denote by hom(X,Y ) ∈ C the internal hom-object of X,Y ∈ C . An object X ∈ C is
dualizable if and only if for every Y ∈ C , the canonical map

hom(X,1)⊗ Y → hom(X,1⊗ Y ) ' hom(X,Y )

is an isomorphism (e.g. see [PS14a, Theorem 2.2]). Let X = lim−→ a∈IXa, such that Xa ∈ C is
dualizable for all a ∈ I. For every Y ∈ C the canonical map above fits into a commutative diagram

hom(lim−→ a∈IXa,1)⊗ Y

o
��

// hom(lim−→ a∈IXa, Y )

o
��

(lim←−−a∈Iop hom(Xa,1))⊗ Y ∼ // lim←−−a∈Iop(hom(Xa,1)⊗ Y ) ∼ // lim←−−a∈Iop hom(Xa, Y ).

The vertical arrows are isomorphisms since hom(−,−) takes colimits in the first variable into limits.
The bottom left arrow is an isomorphism because the tensor product preserves Iop-limits in each
variable and the bottom right arrow is an isomorphism because each Xa is dualizable. It follows
that the top map is an isomorphism and hence that X is dualizable.

Remark 2.6. For C stable, the tensor product preserves finite limits, and we recover the classical
facts that dualizable objects in C are closed under finite colimits (see, e.g., [May01])

Corollary 2.7. Let C ∈ CAlg(Pr) and let A be a C -ambidextrous space. The dualizable objects in
C are closed under A-shaped limits and colimits.

Proof. Since A is C -ambidextrous, A-shaped limits coincide with A-shaped colimits. It, therefore,
suffices to show that the dualizable objects are closed under A-shaped colimits. Moreover, since the
tensor product preserves A-shaped colimits in each variable, it also preserves A-shaped limits in each
variable (see [CSY20, Proposition 2.1.8]). Therefore, the claim follows from Proposition 2.5.

Remark 2.8. The special case of a constant A-shaped colimit was already treated in [CSY18,
Proposition 3.3.6], where we have further shown that dim(A⊗1) = |LA| ∈ π01 ([CSY18, Corollary
3.3.10]).

The following proposition shows that in the stable setting, the Galois property can be detected by
nil-conservative functors ([CSY18, Definition 4.4.1]).

Proposition 2.9. Let F : C → D be a nil-conservative functor in CAlg(Prst), let G be a finite
group such that BG is C -ambidextrous, and let R ∈ CAlg(CBG). If F (R) ∈ CAlg(DBG) is Galois
and R is dualizable in C , then R is Galois.

Proof. First, by [CSY18, Corollary 3.3.2], the space BG is also D-ambidextrous. Now, since BG is
C - and D-ambidextrous and F preserves colimits, F also preserves BG-limits by [CSY20, Propo-
sition 2.1.8]. Thus, applying F to the maps

1→ RhG , R⊗R→
∏
G

R
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in conditions (1) and (2) of Definition 2.1, we get the corresponding maps

1→ F (R)hG , F (R)⊗ F (R)→
∏
G

F (R)

for F (R) ∈ CAlg(DBG). Since F (R) is Galois, these maps are isomorphisms. Since the underlying
object of R is dualizable in C , all the objects 1, RhG, R ⊗ R and

∏
GR are dualizable as well.

Indeed, RhG is dualizable by Corollary 2.7, and the other three by standard arguments. Thus, as
nil-conservative functors are conservative on dualizable objects (see [CSY18, Proposition 4.4.4]), we
get that R is Galois.

2.2 Twisting Functors

It will be useful for the sequel, to observe that the Galois property can be characterized using the
following notion:

Definition 2.10. For every C ∈ CAlg(Pradd) and R ∈ CAlg(CBG), we define the twisting
functor of R to be the composition

TR : CBG R⊗(−)−−−−→ CBG (−)hG

−−−−→ C .

The functor TR is lax symmetric monoidal as a composition of the lax symmetric monoidal functor
(−)hG and the functor R ⊗ (−), which is itself lax symmetric monoidal as a composition of the
functors in the free-forgetful symmetric monoidal adjunction

CBG F−→ ModR(CBG) U−→ CBG.

We note the following immediate consequence of assuming that BG is C -ambidextrous:

Lemma 2.11. If BG is C -ambidextrous, then TR preserves colimits and is C -linear. More pre-
cisely, for all X ∈ CBG and Z ∈ C , the canonical map

TR(X)⊗ Z = (R⊗X)hG ⊗ Z → (R⊗X ⊗ Z)hG = TR(X ⊗ Z)

is an isomorphism.

Proof. The norm map
Nm: (R⊗X)hG → (R⊗X)hG = TR(X)

is an isomorphism, and hence the functor TR is isomorphic to the colimit preserving functor
X 7→ (R ⊗ X)hG. Furthermore, this functor is C -linear by [CSY18, Proposition 3.3.1] and the
commutativity of the norm square.

Remark 2.12. The C -linearity of TR can be rephrased as follows. Let TR be the restriction of TR
along SBG → CBG. The functor TR : SBG → C is colimit preserving and

TR : CBG ' C ⊗ SBG → C

is its C -linear extension.

11



The lax symmetric monoidal structure of TR can be used to characterize the Galois property for R.

Proposition 2.13. Let C ∈ CAlg(Pradd) and let G be a finite group such that BG is C -ambidextrous.
A G-equivariant commutative ring R ∈ CAlg(CBG) is Galois, if and only if TR is (strong) sym-
metric monoidal.

Proof. The Galois property of R can be related to the properties of the functor TR as follows. First,
for BG q−→ pt, the unitality of TR amounts to the unit map

1→ TR(q∗1) ' RhG

being an isomorphism, i.e., it is equivalent to the first Galois condition for R. Second, let pt e−→ BG
denote the basepoint. We have, on the one hand,

TR(e∗1)⊗ TR(e∗1) ' (
∏
G

R)hG ⊗ (
∏
G

R)hG ' R⊗R.

and on the other,
TR(e∗1⊗ e∗1) ' (

∏
G×G

R)hG '
∏
G

R.

Moreover, the canonical map, induced by TR being lax symmetric monoidal,

R⊗R ' TR(e∗1)⊗ TR(e∗1)→ TR(e∗1⊗ e∗1) '
∏
G

R

is exactly the map appearing the in second Galois condition for R. Hence, the second condition is
equivalent to the structure map TR(X)⊗TR(Y )→ TR(X ⊗Y ) to be an isomorphism in the special
case X = Y = e∗1 ' e!1. In particular, if TR is strong symmetric monoidal, then R is Galois.
Conversely, assume that R is Galois. By the C -linearity of TR (Lemma 2.11), to show that TR
is strong symmetric monoidal, it suffices to show that the restriction TR : SBG → C is strong
symmetric monoidal (Remark 2.12). By the above, the structure map for the symmetric monoidality
of TR is an isomorphism in the case X = Y = e!(pt). The local system e!(pt) generates SBG under
colimits, and TR is colimit preserving. It follows that TR is strong symmetric monoidal and hence
so is TR.

The strong symmetric monoidality of the twisting functor implies that it induces a “descent” map
Pic(CBG) → Pic(C ). This allows one to construct Picard objects in C by twisting Picard ob-
jects in CBG (see e.g. [BBGS18]). Though we shall adopt a somewhat different perspective, our
construction of Picard objects from Galois extensions in the next section fits into this paradigm.

3 Kummer Theory

In this section, we study the relationship between abelian Galois extensions and the Picard spec-
trum. As in §2, we shall work mainly in the setting of additive ∞-categories.
In §3.1, we review the notion of (primitive) roots of unity (Definition 3.3) and prove a general
form of the “orthogonality of characters” (Proposition 3.11). In §3.2, we give a general form of the
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discrete Fourier transform (Proposition 3.13) and use the results of §2.2 to characterize the Galois
property of a commutative algebra in terms of its Fourier transform (Corollary 3.17). In §3.3,
we use this characterization to establish the general form of Kummer theory (Theorem 3.18), and
analyze the special case of a cyclic group (Proposition 3.23). We conclude with a certain variant
for constructing Picard objects out of Z/2-Galois extensions (Proposition 3.27), which will play a
role in the chromatic world when p = 2.

3.1 Character Theory

Roots of unity

For every C ∈ CAlg(Pr), there is a unique symmetric monoidal colimit preserving functor S → C ,
which induces an adjunction

CAlg(S) � CAlg(C ).

Furthermore, CAlg(S) ' CMon(S) contains a coreflective full subcategory of group-like commu-
tative monoids CMongp(S) ⊆ CMon(S), which is equivalent to the full subcategory of connective
spectra Spcn ⊆ Sp. Composing these adjunctions, we get an adjunction of the form

1[−] : Spcn � CAlg(C ) : (−)×.

We think of the left adjoint 1[−] as the group algebra functor, and of the right adjoint (−)× as
the commutative group of units.
A symmetric monoidal∞-category C itself can be viewed as a commutative algebra object of Cat∞
endowed with the Cartesian symmetric monoidal structure. Thus, we can apply the operation (−)×
to C as an object of CAlg(Cat∞).

Definition 3.1. For C ∈ CAlg(Cat∞), the Picard spectrum of C is given by

pic(C ) := C× ∈ Spcn

and
Pic(C ) := π0(pic(C )) ∈ Ab

is the Picard group.

Less formally, the Picard spectrum of C consists of tensor invertible objects of C with the tensor
product as a coherently commutative group operation. This is a (usually non-trivial) delooping of
the connective spectrum 1×C in the following sense:

(Ωpic(C ))≥0 ' 1×C ∈ Spcn.

Remark 3.2. For a large symmetric monoidal ∞-category C , the spectrum pic(C ) might a-priori
be large as well. However, if C is presentable, the spectrum pic(C ) is (essentially) small (see e.g.
[MS16, Remark 2.1.4]).

Having introduced the space of units of a commutative algebra, we can now further consider roots
of unity.

Definition 3.3 (Roots of Unity). Let C ∈ CAlg(Pradd) and let R ∈ CAlg(C ). For every m ∈ N,
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(1) We define the space of m-th roots of unity in R by

µm(R) := MapSpcn(Cm, R×).

(2) We say that an m-th root of unity Cm
ω−→ R× is primitive, if R is m-divisible (i.e. m is

invertible in π0R), and for every d which strictly divides m, the only commutative R-algebra
S for which there exists a dotted arrow rendering the diagram of connective spectra

Cm

����

// R×

��
Cd // S×

commutative, is S = 0. We denote by µprim
m (R) ⊆ µm(R) the union of connected components

of primitive m-th roots of unity.

By convention, a (primitive) m-th root of unity of C is a (primitive) m-th root of unity of 1C .

Employing the adjunction 1[−] a (−)×, the functor µm : CAlg(C ) → S is corepresented by the
group algebra 1[Cm]. If we further assume that 1 is m-divisible, then for every divisor d | m, the
map 1[Cm]→ 1[Cd] can be identified with 1[Cm]→ 1[Cm][ε−1

d ], for the idempotent

εd = d

m

∑
a∈d·Cm

a ∈ π0(1[Cm]).

Definition 3.4 (Cyclotomic Extensions). Let C ∈ CAlg(Pradd), such that m is invertible in C .
We define the m-th cyclotomic extension to be

1[ωm] := 1[Cm][ε−1],

where
ε =

∏
1≤d<m, d|m

(1− εd) ∈ π0(1[Cm]).

By the above discussion, the cyclotomic extension 1[ωm] corepresents the functor of primitive m-th
roots of unity µprim

m : CAlg(C )→ S. Namely, for all R ∈ CAlg(C ) we have a natural isomorphism

µprim
m (R) ' MapCAlg(C )(1[ωm], R).

Example 3.5. For the∞-category C = Spcn of connective spectra, them-th cyclotomoic extension

S[1/m]→ S[1/m, ωm]

is the unique étale extension which on π0 induces the ordinary m-cyclotomic extension (see [Lur,
Theorem 7.5.0.6])

Z[1/m]→ Z[1/m, ωm] := Z[1/m, t]/Φm(t).

Here, Φm(t) is the m-th cyclotomic polynomial.
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For C ∈ CAlg(Pradd), we have a unique symmetric mmonidal colimit preserving functor Spcn → C ,
whose right adjoint (the “underlying connective spectrum”) we denote by X 7→ X.
Lemma 3.6. Let C ∈ CAlg(Pradd) and let R ∈ CAlg(C ). For every m, there is a canonical
isomorphism µm(R) ' µm(R), which restricts to an isomorphism µprim

m (R) ' µprim
m (R), if R is

m-divisible.

Proof. The first claim follows from the adjunction CAlg(Spcn) � CAlg(C ) as follows:

µm(R) = MapCAlg(C )(1[Cm], R) ' MapCAlg(Spcn)(S[Cm], R) = µm(R).

Assuming R is m-divisible, we can without loss of generality assume that 1 is also m-divisible, by
replacing C with Mod(R). Thus, the second claim follows similarly:

µprim
m (R) = MapCAlg(C )(1[ωm], R) ' MapCAlg(Spcn)(S[1/m, ωm], R) = µprim

m (R).

We deduce that Example 3.5 is universal in the sense that a primitive m-th root of unity in C is
the same as a symmetric monoidal colimit preserving functor from ModS[1/m,ωm](Spcn) to C .
Proposition 3.7. Let C ∈ CAlg(Pradd). For every m, we have

µprim
m (C ) ' MapCAlg(Pr)(ModS[1/m,ωm](Spcn),C ) ∈ S.

Proof. The mode Spcn classifies additivity (in the sense of [CSY20, §5.2]). Namely, we have an
equivalence Pradd ' ModSpcn(Pr) (see [GGN16, Corollary 4.8]). Thus, by [Lur, Theorems 4.8.5.11,
4.8.5.16 and Corollary 4.8.5.21], we have an adjunction

Mod(−)(Spcn) : CAlg(Spcn) � CAlg(Pradd) : 1(−).

Applying this to S[1/m, ωm] ∈ CAlg(Spcn) and C ∈ CAlg(Pradd), we get by Lemma 3.6,

µprim
m (1C ) ' µprim

m (1C ) ' MapCAlg(Spcn)(S[1/m, ωm],1C ) ' MapCAlg(Pradd)(ModS[1/m,ωm](Spcn),C ).

We also deduce that for an m-divisible commutative algebra R, the space of (primitive) m-th roots
of unity is discrete and depends only on π0(R).
Proposition 3.8. Let C ∈ CAlg(Pradd) and let R ∈ CAlg(C ) which is m-divisible. We have a
canonical bijection µm(R) ' µm(π0R), which restricts to a bijection µprim

m (R) ' µprim
m (π0R).

Proof. By Lemma 3.6, it suffices to consider the universal case C = Spcn. In this case, we have
that

Ω∞(R×) ⊆ Ω∞(R) ∈ S
is an inclusion of connected components. Thus, πnR ' πnR× for all n ≥ 1. Namely, the fiber R×≥1
(in Sp) of the truncation map R× → π0R

× has the same homotopy groups as the spectrum R≥1.
We therefore deduce that R×≥1 is m-divisible and hence MapSpcn(Cm, R≥1) = 0. It follows that

µm(R) = MapSpcn(Cm, R×) ∼−→ MapSpcn(Cm, π0R
×) = µm(π0R).

Since the invertibility of an idempotent is a condition on π0, under this bijection, primitive roots
correspond to primitive roots.
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Of specific importance for us, is the following special case:

Corollary 3.9. Let C ∈ CAlg(Pradd) and let R ∈ CAlg(C ) be p-complete7 for some prime p. For
every m | (p− 1), the commutative algebra R admits a primitive m-th root of unity.

Proof. First of all, since R is p-complete, it is m-divisible. Now, by Proposition 3.8, it suffices to
show that π0R admits a primitive m-th root of unity. This follows from the fact that π0R is a
Zp-algebra, and Zp admits primitive m-th roots of unity given by Teichmüller lifts.

Characters

As in ordinary commutative algebra, primitive roots of unity in C allow us to set up a character
theory for C . Let A be a finite m-torsion abelian group with Pontryagin dual denoted by

A∗ := hom(A,Cm) = hom(A,Q/Z).

Given C ∈ CAlg(Pradd) with a choice of a primitive m-th root of unity ω : Cm → 1× (so that in
particular m is invertible in C ), the canonical pairing of A with A∗ induces a map of spectra

A∗ ⊗A→ Cm
ω−−→ 1× → Ωpic(C ).

This map corresponds to a map of connective spectra

A∗ → hom(A,Ωpic(C )) ' hom(ΣA,pic(C )).

Definition 3.10. Let C ∈ CAlg(Pradd) with a primitive m-th root of unity ω, and let A be a finite
m-torsion abelian group. We define a map of connective spectra

1(−) : A∗ → pic(CBA)

to be the composition

A∗ → hom(ΣA,pic(C ))→ pic(C )BA ' pic(CBA),

where the first map is the one given above and the second is induced from the counit S[BA]→ ΣA
by pre-composition. Even though the construction of 1(−) depends on ω, we shall keep this
dependence implicit.

Intuitively, for every character A ϕ−→ Cm, the object 1(ϕ) ∈ CBA is the unit 1 ∈ C , on which the
group A acts through the composition of the character ϕ with Cm

ω−→ 1×. The fact that 1(−) is a
map of connective spectra encodes in a coherent way the A-equivariant identities

1(0) ' 1 , 1(ϕ+ ψ) ' 1(ϕ)⊗ 1(ψ).

For X ∈ CBA, we define its twist by a character ϕ ∈ A∗, to be

X(ϕ) := X ⊗ 1(ϕ) ∈ CBA.

We shall implicitly treat an object X ∈ C as an object of CBA with a trivial action. The main fact
we shall need about this construction is the following analogue of the “orthogonality of characters”
from classical algebra:

7That is, homC (X,R) ∈ Spcn is p-complete for all X ∈ C .
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Proposition 3.11. Let C ∈ CAlg(Pradd) with a primitive m-th root of unity and let A be a finite
m-torsion abelian group.

(1) For every X ∈ C and ϕ ∈ A∗, we have

X(ϕ)hA '
{
X ϕ = 0
0 else

∈ C .

(2) For every X ∈ C , we have ∏
a∈A

X '
⊕
ϕ∈A∗

X(ϕ) ∈ CBA,

where on the left side we have the induced representation (i.e. A acts by permuting the factors).

Proof. (1) Since BA is C -ambidextrous, we have (by [CSY18, Proposition 3.3.1])

X(ϕ)hA ' (X ⊗ 1(ϕ))hA ' X ⊗ (1(ϕ)hA).

Thus, it suffices to show the claim for X = 1. By Proposition 3.7, we have a colimit preserv-
ing symmetric monoidal functor F : ModS[1/m,ω](Spcn) → C , which in particular takes the unit
S[1/m, ω] to the unit 1. Since A is m-torsion, by [CSY20, Proposition 2.1.8], F also preserves
A-homotopy fixed points, thus it suffices to prove the claim for S[1/m, ω]. Since π∗ preserves A-
homotopy fixed points for m-divisible spectra, the result for S[1/m, ω] follows from the analogous
fact for π∗(S[1/m, ω]) = π∗(S)[1/m, ω].
(2) It again suffices to consider the case X = 1. Under the free-forgetful adjunction C � CBA, the
non-equivariant map 1(ϕ) ∼−→ 1 corresponds to the map

ιϕ : 1(ϕ)→
∏
a∈A

1,

which on the a-factor is given by multiplication with ωϕ(a). Hence, the induced map

ι :
⊕
ϕ∈A∗

1(ϕ)→
∏
a∈A

1

is represented by the discrete Fourier transform (A∗ × A)-matrix cϕ,a = ωϕ(a), which is invertible
in the ring Z[1/m, ω], and hence also in π0(1).

3.2 Fourier Transform

Construction

An abelian group A can be viewed as a discrete symmetric monoidal ∞-category, where the group
operation gives the symmetric monoidal structure. Hence, we can consider the composition

A∗
1(−)−−−→ Ω∞pic(CBA)→ CBA,

17



which we still denote by 1(−), as a symmetric monoidal functor. Since the symmetric monoidal
inverse, when exists, coincides with the symmetric monoidal dual, we have

1(ϕ)∨ ' 1(−ϕ).

Consider the following composition of functors

F̂ : A∗ × CBA 1(−)∨×Id−−−−−−→ CBA × CBA ⊗−→ CBA (−)hA

−−−−→ C .

On the level of objects, for every X ∈ CBA and ϕ ∈ A∗, we have

F̂(X,ϕ) ' X(−ϕ)hA.

This should be thought of as extracting from X the eigenspace corresponding to the character ϕ.
Taking the mate of the above functor under the exponential law, we get:

Definition 3.12 (Fourier Transform). Let C ∈ CAlg(Pradd) with a choice of a primitive m-th root
of unity and let A be a finite m-torsion abelian group. We define the C -Fourier transform to be
the functor

F : CBA → Fun(A∗,C )

given by F(X)ϕ := F̂(X,ϕ).

The category of functors from A∗ to C can be endowed with the Day convolution symmetric
monoidal structure, which we denote by Fun(A∗,C )Day. By [Lur, Example 2.2.6.9], the construction
of Fun(A∗,C )Day is a special case of the norm construction for ∞-operads, in the sense of [Lur,
Definition 2.2.6.1]. Thus, by its universal property, we have an equivalence of ∞-categories

Funlax(A∗ × CBA,C ) ' Funlax(CBA,Fun(A∗,C )Day).

Since F̂ is lax symmetric monoidal, as a composition of functors that are canonically such, the
functor F acquires a lax symmetric monoidal structure as well. In fact,

Proposition 3.13. Let C ∈ CAlg(Pradd) with a choice of a primitive m-th root of unity and let A
be a finite m-torsion abelian group. The C -Fourier transform

F : CBA → Fun(A∗,C )Day

is a (strong) symmetric monoidal equivalence.

Proof. We first show that F is an equivalence of ∞-categories (ignoring the symmetric monoidal
structure) by showing that it admits a fully faithful and essentially surjective left adjoint. The
functor F admits a left adjoint

F−1 : Fun(A∗,C )→ CBA,

whose values on objects are given by

F−1({Xϕ}) =
⊕
ϕ∈A∗

Xϕ(ϕ).
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To show that F−1 is fully faithful, it suffices to show that the unit of the adjunction F−1 a F is an
isomorphism. Unwinding the definitions and using Proposition 3.11(1), we get

F(F−1({Xϕ}))ψ ' (
⊕
ϕ∈A∗

Xϕ(ϕ− ψ))hA ' Xψ

and that the unit map under this identification is the identity. Now, we observe that for all X ∈ C ,
the induced representations (see proposition 3.11(2))∏

A

X '
⊕
ϕ∈A∗

X(ϕ)

are in the essential image of F−1. Since these generate CBA under colimits (by [HL13, Proposition
4.3.8]), and F−1 is fully faithful, we deduce that F−1 is essentially surjective and hence is an
equivalence.
We now turn to the preservation of the symmetric monoidal structure. To show that F is strong
symmetric monoidal, it suffices to consider objects of the form X(ϕ) for X ∈ C and ϕ ∈ A∗, as they
generate CBA under colimits and F is colimit preserving (being an equivalence). For such objects,
we have by Proposition 3.11(1)

F(X(ϕ))ψ ' X(ϕ− ψ)hA '
{
X ψ = ϕ

0 else

and the structure map
F(X(ϕ))⊗ F(Y (ψ))→ F((X ⊗ Y )(ϕ+ ψ))

is the obvious isomorphism. One can similarly show that F is unital and hence strong symmetric
monoidal.

Fourier of rings

In the situation of Proposition 3.13, the symmetric monoidal equivalence

F : CBA ∼−→ Fun(A∗,C )Day

induces an equivalence of the ∞-categories of commutative algebra objects. By [Lur, Example
2.2.6.9], we have

CAlg(C )BA ' CAlg(CBA) ∼−→ CAlg(Fun(A∗,C )Day) ' Funlax(A∗,C ).

Remark 3.14. Informally, this equivalence expresses the fact that for R ∈ CAlg(C )BA, the A-
equivariant decomposition into eigenspaces

R '
⊕
ϕ∈A∗

Rϕ(ϕ) ∈ CBA

is also compatible with the multiplicative structure. Namely, the unit and multiplication maps of
R decompose respectively through maps

1→ R0 and Rϕ ⊗Rψ → Rϕ+ψ,

in a coherent way.
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Given R ∈ CAlg(CBA), we shall now express the lax symmetric monoidal functor F(R) : A∗ → C ,
in terms of the twisting functor TR of Definition 2.10. For this, we first discuss the following general
setting. Let D ∈ CAlg(Pr) and let R ∈ CAlg(D). The functor R ⊗ (−) : D → D can be made
lax symmetric monoidal in two ways. First, as a composition of the functors in the free-forgetful
symmetric monoidal adjunction

D
FR−−→ ModR(D) UR−−→ D .

Second, the tensor product functor D ×D
⊗−→ D corresponds to a lax symmetric monoidal functor

S(−) : D → Fun(D ,D)Day,

which on objects is given by SX(Y ) = X ⊗ Y. This induces a functor on the ∞-categories of
commutative algebras

S(−) : CAlg(D)→ Funlax(D ,D),
so that SR(−) = R⊗ (−), becomes lax symmetric monoidal. We shall need the fact that these two
lax symmetric monoidal structures on the functor R⊗ (−) are in fact equivalent.

Proposition 3.15. Let D ∈ CAlg(Pr) and let R ∈ CAlg(D). We have an isomorphism

UR ◦ FR ' SR ∈ Funlax(D ,D).

Proof. For convenience we write U := UR and F := FR. We observe that the composition

D ×ModR(D) F×Id−−−→ ModR(D)×ModR(D) ⊗−→ ModR(D)

induces the lax symmetric monoidal functor

S(−) ◦ F : ModR(D)→ Fun(D ,ModR(D))Day.

Conider the following diagram of symmetric monoidal ∞-categories and lax symmetric monoidal
functors:

D

F

��

S(−) // Fun(D ,D)Day

F◦(−)
��

ModR(D)

U

��

S(−)◦F // Fun(D ,ModR(D))Day

U◦(−)
��

D
S(−) // Fun(D ,D)Day.

The top square commutes by construction. The bottom square is obtained from the top square by
taking right adjoints of the vertical functors. Thus, it canonically “lax commutes” in the sense that
we have the Beck-Chevalley natural transformation of lax symmetric monoidal functors

β : SU(−) → U ◦ S(−) ◦ F.

Unwinding the definitions, for everyM ∈ ModR(D) and X ∈ D this is just the “projection formula”
isomorphism

SU(M)(X) ' U(M)⊗X ∼−→ U(M ⊗R (R⊗X)) = U(M ⊗R F (X)) ' U(SM (F (X))),
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and therefore the diagram commutes up to homotopy. Applying CAlg(−) to it, we get that the
composition

CAlg(D)
S(−)−−−→ Funlax(D ,D) F◦(−)−−−−→ Funlax(D ,ModR(D)) U◦(−)−−−−→ Funlax(D ,D)

can be identified with the composition

CAlg(D) F−−−−−→ CAlgR(D) U−−−−−→ CAlg(D)
S(−)−−−−−−→ Funlax(D ,D).

Applying this to 1 ∈ CAlg(D), we get U ◦ F ' SR ∈ Funlax(D ,D).

Proposition 3.16. Let C ∈ CAlg(Pradd) with a choice of a primitive m-th root of unity and let A
be a finite m-torsion abelian group. For R ∈ CAlg(CBA), the functor F(R) : A∗ → C is homotopic,
as a lax symmetric monoidal functor, to the composition

A∗
1(−)∨−−−−→ CBA TR−−→ C .

Proof. Unwinding the definitions, for all ϕ ∈ A∗ we have

F(R)ϕ ' R(−ϕ)hA ' TR(1(−ϕ)).

More precisely, we have
TR ' (−)hA ◦ (UR ◦ FR)

and
F(R) ' (−)hA ◦ SR ◦ 1(−)∨

as lax symmetric monoidal functors. Thus, the claim follows from Proposition 3.15.

As a consequence, we obtain a characterization of the Galois property of R ∈ CAlg(CBA), in terms
of its Fourier transform F(R) : A∗ → C .

Corollary 3.17. Let C ∈ CAlg(Pradd) with a choice of a primitive m-th root of unity and let A
be a finite m-torsion abelian group. A commutative algebra R ∈ CAlg(CBA) is Galois, if and only
if, the lax symmetric monoidal functor F(R) : A∗ → C , is strong symmetric monoidal.

Proof. Since BA is C -ambidextrous, by Proposition 2.13, R is Galois if and only if TR is strong
symmetric monoidal. Under the equivalence of ∞-categories CBA ' CA∗ of Proposition 3.13,
the functor 1(−) : A∗ → CBA corresponds to the Yoneda embedding. Hence, its essential image
generates CBA under colimits and tensoring with objects of C . Since TR is C -linear and colimit
preserving (by Lemma 2.11), it is symmetric monoidal if and only if the composition TR(1(−)) is.
The result now follows from Proposition 3.16.
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3.3 Galois and Picard

Using the results of the previous subsection, we obtain the following∞-categorical version of Kum-
mer theory:

Theorem 3.18 (Kummer Theory). Let C ∈ CAlg(Pradd) with a choice of a primitive m-th root of
unity and let A be a finite m-torsion abelian group. The C -Fourier transform induces an isomor-
phism

CAlgA-gal(C ) ∼−→ MapSpcn(A∗,pic(C )).

Moreover, one can replace pic(C ) with its 1-truncation pic(C )≤1 in the above isomorphism.

Proof. In view of Corollary 3.17, the equivalence

F : CAlg(CBA) ∼−→ Funlax(A∗,C )

restricts to an equivalence
CAlgA-gal(C ) ∼−→ Fun⊗(A∗,C ).

Since A∗ is an abelian group, we have

Fun⊗(A∗,C ) ' MapCAlg(Cat∞)(A∗,C ) ' MapSpcn(A∗,pic(C )).

Finally, for n ≥ 2, we have
πnpic(C ) ' πn−1(1×) ' πn−1(1),

which is m-divisible (since C admits a primitive m-th root of unity). Thus, we get

CAlgA-gal(C ) ' MapSpcn(A∗,pic(C )) ' MapSpcn(A∗,pic(C )≤1).

To summarize, given R ∈ CAlg(CBA), we have a decomposition into eigenspaces R '
⊕

ϕ∈A∗ Rϕ
as objects of C , and the unit and multiplication of R are induced from maps

1→ R0 , Rϕ ⊗Rψ → Rϕ+ψ.

Now, R is Galois if and only if those maps are isomorphisms, in which case the Rϕ-s are invertible
and assemble into a map R(−) : A∗ → pic(C ).

Remark 3.19. The equivalence of Theorem 3.18 induces an abelian group structure on the set
π0(CAlgA-gal(C )). In fact, this set always admits a canonical group structure, even without assum-
ing the existence of primitive roots of unity. The objects of CAlgA-gal(C ) can be viewed as local
systems of commutative algebras on BA. The external product R�S of two such, as a local system
on BA× BA, can be pushed forward along the addition map BA× BA α−→ BA to produce a new
local system R+A S := α∗(R� S) of commutative algebras on BA. It can be shown that if R and
S are A-Galois extensions, then R +A S is an A-Galois extension and that this operation endows
π0(CAlgA-gal(C )) with an abelian group structure. In the situation of Theorem 3.18, this group
structure coincides with the one induced from pic(C ).
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Cyclic group

We shall now analyze the case A = Z/m in greater detail. For a symmetric monoidal∞-category C
and a dualizable object X ∈ C , we can form the symmetric monoidal dimension (a.k.a Euler char-
acteristic) dim(X) ∈ π0(1) (e.g., see [PS14b, Defintion 2.2]). The symmetric monoidal dimension
satisfies

dim(1) = 1 and dim(X ⊗ Y ) = dim(X) · dim(Y ).
Hence, it restricts to a group homomorphism dim: Pic(C ) → (π01)×. We shall now describe this
homomorphism in terms of the spectrum pic(C ).

Proposition 3.20. Let C be a symmetric monoidal ∞-category. The homomorphism

π0pic(C ) ' Pic(C ) dim−−→ (π01)× ' π1pic(C )

is given by pre-composition with the Hopf map η ∈ π1(S).

Proof. The space Ω∞S admits a structure of a commutative monoid in S that we can regard as a
symmetric monoidal∞-category. An element Z ∈ Pic(C ) is classified by a map of connective spectra
S → pic(C ), which corresponds to a symmetric monoidal functor Ω∞S → C sending 1 ∈ Z = π0S
to Z. Since both the dimension and pre-composition with η are natural in C , it suffices to prove
the claim for C = S and Z = 1.
In this case, we have

dim(1) ∈ π1S ' Z/2 · η,
so we only need to show that dim(1) 6= 0. For this, it suffices to produce some example of an
invertible object with a non-trivial dimension. For example, in C = Sp we have

dim(ΣS) = −1 ∈ Z× = π0S×.

Corollary 3.21. Let C be a symmetric monoidal ∞-category. For every X ∈ Pic(C ), we have
dim(X)2 = 1. In particular, if π01 is a connected ring and 2 is invertible in π01, then dim(X) = ±1.

Proof. The first part follows Proposition 3.20 and the fact that η ∈ π1S is 2-torsion. Now, if 2
is invertible and π01 admits no non-trivial idempotents, then the only solutions to the equation
t2 − 1 = 0 are t = ±1.

Given the above, we shall be interested in the following variant of the Picard group:

Definition 3.22. The even Picard group of a symmetric monoidal∞-category C , is the subgroup
Picev(C ) ≤ Pic(C ) given by the kernel of the map Pic(C ) dim−−→ (π01C )×.

We shall now describe the collection of isomorphism classes of Z/m-Galois extensions in C in terms
of the homotopy groups of the Picard spectrum of C .

Proposition 3.23. Let C ∈ CAlg(Pradd) with a choice of a primitive m-th root of unity. We have
a (non-canonically) split short exact sequence of abelian groups

0→ (π01
×)/(π01

×)m → π0 CAlgZ/m-gal(C )→ Picev(C )[m]→ 0.
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Proof. Throughout the proof, we work in the ∞-category Spcn. In particular, for X,Y ∈ Spcn we
denote by hom(X,Y ) the internal mapping object in connective spectra. By Theorem 3.18, we have

π0 CAlgZ/m-gal(C ) ' π0 hom(Z/m, pic(C )≤1).

Let S/η be the cofiber of the map ΣS η−→ S. Since (S/η)≤1 ' Z, we get

hom(Z,pic(C )≤1) ' hom(S/η,pic(C )≤1).

Hence, hom(Z,pic(C )≤1) is the fiber of the map

pic(C )≤1
η−→ Ωpic(C )≤1 ∈ Spcn.

By Proposition 3.20, we have

π0 hom(Z,pic(C )≤1) ' ker(Pic(C ) dim−−→ (π01)×) ' Picev(C )

and we also have
π1 hom(Z,pic(C )≤1) ' π1pic(C )≤1 ' (π01)×

πn hom(Z,pic(C )≤1) = 0 , ∀n ≥ 2.

Since hom(Z,pic(C )≤1) is a Z-module, it splits (non-canonically) as a direct sum

hom(Z,pic(C )≤1) ' Picev(C )⊕ Σ(π01)×.

Thus, inspecting the long exact sequence in homotopy groups associated with the fiber sequence

hom(Z/m,pic(C )≤1)→ hom(Z,pic(C )≤1) m−→ hom(Z,pic(C )≤1),

we get a (non-canonically) split short exact sequence of abelian groups

0→ (π01
×)/(π01

×)m → π0 hom(Z/m,pic(C )≤1)→ Picev(C )[m]→ 0.

The following example shows that Theorem 3.18 indeed generalizes classical Kummer theory for
field extensions.

Example 3.24. For a field k and C = Vectk, we have Pic(C ) = 0. Hence, if k contains a primitive
m-th root of unity, Proposition 3.23 reduces to the classical fact that the isomorphism classes of
Z/m-Galois extensions of k are in bijection with the set (k×)/(k×)m.

At the other extreme, we have the following:

Example 3.25. Let C be a smooth projective algebraic curve over an algebraically closed field k
whose characteristic is prime to m (and hence, admits primitive m-th roots of unity), and let C be
the category of quasi-coherent sheaves on C. We have (k×)/(k×)m = 0, while Picev(C )[m] is the
m-torsion of the Jacobian of C. In this case, Proposition 3.23 recovers the classification of cyclic
m-covers of C by the m-torsion points on the Jacobian.
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A Z/2-variant

In the case A = Z/2, one can carry out the construction of Picard objects out of Z/2-Galois exten-
sions with fewer assumptions on the ambient category than in Proposition 3.23. For convenience,
we shall use here the multiplicative notation µ2 = {±1}, instead of the additive Z/2, for the group
of order 2. For simplicity, we shall assume that all the∞-categories under consideration are stable.

Definition 3.26. Let C ∈ CAlg(Prst) and let R ∈ CAlgµ2-gal(C ). We denote by R the cofiber of
the unit map 1→ R.

When 2 is invertible in C , and hence −1 ∈ π01 is a primitive 2-nd root of unity, we have by Kummer
theory a splitting R ' 1⊕R, and furthermore, R ∈ Pic(C ) (see the discussion after Theorem 3.18).
It turns out that the invertibility of R holds regardless of whether 2 is invertible.

Proposition 3.27. Let C ∈ CAlg(Prst). For every R ∈ CAlgµ2-gal(C ), we have R ∈ Pic(C ).

Proof. If R is split-Galois then R ' 1 ∈ Pic(C ). We now reduce the general case to the split case.
The object R ∈ C is the cofiber of a map between dualizable objects and hence dualizable (see
Remark 2.6). Hence, it suffices to show that the evaluation map R ⊗ R∨ → 1 is an isomorphism.
This can be checked after applying the conservative symmetric monoidal functor

R⊗ (−) : C → ModR(C ).

The image of R under this functor is split-Galois, and so the general case follows from the split
case.

We stress, however, that unlike the case where 2 is invertible in C , the element R ∈ Pic(C ) need
not be 2-torsion.

Example 3.28 (see [Rog08, Proposition 5.3.1]). We have KU ∈ CAlgµ2-gal(ModKO(Sp)). The unit
map KO→ KU fits into the (non-split) Bott periodicity cofiber sequence

ΣKO η−→ KO→ KU ∈ ModKO(Sp).

It follows that KU ' Σ2KO. Hence, by real Bott periodicity, KU ∈ Pic(ModKO(Sp)) is of order 4.

Warning 3.29. More generally, when 2 is not invertible in C , the function

(−) : π0(CAlgµ2-gal(C ))→ Pic(C )

need not be a group homomorphism with respect to the group structure on the source given by
Remark 3.19.

4 Higher Cyclotomic Theory

In this section, we define and study “higher” cyclotomic extensions in the setting of higher semiad-
ditive stable ∞-categories. These are the higher (semiadditive) height analogues of the cyclotomic
extensions of Definition 3.4. We shall work primarily in Pr⊕-n

st ⊆ Pr for some n ≥ 0, which is the full
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subcategory of Pr, spanned by stable n-semiadditive∞-categories. We also fix an implicit prime p,
with respect to which one can consider semiadditive height. We recall from [CSY20, Theorem C],
that every∞-category in Pr⊕-n

st splits into a product of∞-categories according to height. Moreover,
the finite height factors are ∞-semiadditive ([CSY20, Theorem A])8. We shall mainly concentrate
on the full subcategory Prצn

⊆ Pr⊕-n
st of those ∞-categories which are of height n.

We begin in §4.1, by discussing primitive higher roots of unity (Definition 4.2), and continue in §4.2,
with the higher cyclotomic extensions which corepresent them (Definition 4.7 and Proposition 4.8).

4.1 Higher Roots of Unity

In Definition 3.3, we have recalled the space µm(R) of m-th roots of unity of a commutative algebra
object R in a symmetric monoidal ∞-category C . By decomposing m into a product of distinct
prime powers m = pr1

1 · · · prs
s , we obtain a decomposition of the functor µm : CAlg(C ) → S into a

product
µm ' µpr1

1
× · · · × µprs

s
.

We may thus restrict attention to the case m = pr. While the definition of pr-th roots of unity
is rather general, the notion of primitive roots behaves well only when R is p-divisible, in which
case µpr (R) is discrete (see Proposition 3.8). In the terminology of [CSY20, Definition 3.1.6], the
condition that R is p-divisible, amounts to R having (semiadditive) height 0. More generally, when
C is higher semiadditive, the properties of the construction µpr (R) turn out to be closely related
to the height of R. To begin with,

Proposition 4.1. Let C ∈ CAlg(Pr⊕-n
st ) and let R ∈ CAlg(C ). If R is of height ≤ n, then for all

r ∈ N the space µpr (R) is n-truncated.

Proof. By [CSY20, Proposition 2.4.7], we have R[Bn+1Cpr ] ' R. We thus get a sequence of
isomorphisms

Ωn+1µpr (R) ' Ωn+1 MapCAlg(S)(Cpr , R×) ' MapCAlg(S)(Bn+1Cpr , R×) '

MapCAlg(C )(1[Bn+1Cpr ], R) ' MapCAlgR(C )(R[Bn+1Cpr ], R) ' MapCAlgR(C )(R,R) ' pt.

Since all connected components of the space µpr (R) are isomorphic, it follows that it is n-truncated.

As we shall demonstrate, when R is of height exactly n, the set πn(µpr (R)) serves as a good
substitute for the set π0(µpr (R)) of ordinary pr-th roots of unity of R. With that in mind, we
introduce the following generalization of Definition 3.3:

Definition 4.2 (Higher Roots of Unity). Let C ∈ CAlg(Pr⊕-n
st ) and let R ∈ CAlg(C ). For every

prime p and r ∈ N,

(1) We define the space of pr-th roots of unity of height n in R to be

µ
(n)
pr (R) := Ωnµpr (R) ' MapSpcn(Cpr ,ΩnR×).

8To be precise, the height n = 0 factor is only p-typically ∞-semiadditive.
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(2) We say that a higher root of unity Cpr
ω−→ ΩnR× is primitive, if R is of height n and the

only commutative R-algebra S for which there exists a dotted arrow rendering the diagram
of spectra

Cpr

����

// ΩnR×

��
Cpr−1 // ΩnS×

commutative, is S = 0. We denote by µ(n),prim
pr (R) ⊆ µ(n)

pr (R) the union of connected compo-
nents of height n primitive pr-th roots of unity.

By convention, a height n (primitive) pr-th root of unity of C is a height n (primitive) pr-th root
of unity of 1C .

The (higher) pr-th roots of unity for various r-s are interrelated in two ways. First, for all k ≤ r, the
surjective group homomorphisms Cpr � Cpk induce, by pre-composition, natural transformations

µ
(n)
pk (R) ' Map(Cpk ,ΩnR×)→ Map(Cpr ,ΩnR×) ' µ(n)

pr (R).

We can think of this as the inclusion of the (higher) pk-th roots of unity into the (higher) pr-th roots
of unity. Second, the injective group homomorphisms Cpr−k ↪→ Cpr induce, by pre-composition,
natural transformations

(−)p
k

: µ(n)
pr (R) ' Map(Cpr ,ΩnR×)→ Map(Cpr−k ,ΩnR×) ' µ(n)

pr−k (R).

We can think of this as raising a (higher) pr-th root of unity to the pk-th power to get a (higher)
pr−k-th root of unity.

Proposition 4.3. Let C ∈ CAlg(Prצn) and let R ∈ CAlg(C ). For 0 ≤ k < r, a higher root of
unity ω ∈ µ(n)

pr (R) is primitive, if and only if ωpk ∈ µ(n)
pr−k (R) is primitive.

Proof. This follows from the definition of primitivity (Definition 4.2) and the fact that we have a
pushout diagram in Spcn of the form

Cpr−k

����

� � // Cpr

����
Cpr−k−1

� � // Cpr−1

4.2 Higher Cyclotomic Extensions

Definition and properties

We shall now mimic the construction of cyclotomic extensions, which corepresent primitive roots of
unity, to produce higher cyclotomic extensions, which corepresent primitive higher roots of unity.
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For C ∈ CAlg(Prst) and a fixed r ∈ N, the functor

µ
(n)
pr : CAlg(C )→ S

is corepresented by the group algebra 1[BnCpr ]. The group homomorphism q : Cpr � Cpr−1 induces
a map of commutative groups in spaces qn : BnCpr → BnCpr−1 and hence a map of group algebras

qn : 1[BnCpr ]→ 1[BnCpr−1 ] ∈ CAlg(C ).

The map qn corepresents the inclusion µ(n)
pr−1(R) ↪→ µ

(n)
pr (R) discussed above. The key point is that

if C is higher semiadditive of height n, then we can realize qn as a splitting of an idempotent in
π0(1[BnCpr ]). To translate between local systems and modules we need the following general fact,
which seems to be well known, but for which we could not find a reference in the literature.

Proposition 4.4. Let C ∈ CAlg(Pr) and let B be a pointed connected space. There is a natural
equivalence of C -linear ∞-categories

CB ' LMod1[ΩB](C ) ∈ ModC (Pr).

Proof. We first consider the case C = S. Let pt e−→ B be the base point of B and let M = e!(pt) in
SB . The functor FM : S → SB , which is given by point-wise product with M , is left adjoint to the
pullback functor e∗ : SB → S. Since e∗ is itself a symmetric monoidal, conservative left adjoint, it
follows from [Lur, Proposition 4.8.5.8], that SB is equivalent to LModEnd(M)(S). Finally, under the
Grothendieck construction equivalence SB ' S/B , the object M = e!(pt) corresponds to pt e−→ B
and its endomorphisms are given by ΩB ∈ AlgE1(S). For a general C ∈ CAlg(Pr), we shall deduce
the claim by tensoring the equivalence

SB ' LModΩB(S) ∈ Pr

with C in Pr. Indeed, it follows from [Lur, Proposition 4.8.1.17] that C ⊗SB ' CB , and from [Lur,
Theorems 4.8.4.6 and 4.8.5.16] that

C ⊗ LModΩB(S) ' LModΩB(C ) ' LMod1[ΩB](C ).

This allows us to use the results of [CSY20, §4.3], to deduce the following:

Proposition 4.5. Let C ∈ CAlg(Prצn). There exists an idempotent ε ∈ π0(1[BnCpr ]), such that

1[BnCpr ][ε−1] ' 1[BnCpr−1 ],

and under this isomorphism, the canonical map 1[BnCpr ]→ 1[BnCpr ][ε−1] is identified with qn.

Proof. By the naturality of the equivalence of ∞-categories in Proposition 4.4

CBn+1Cpr ' Mod1[BnCpr ](C ),
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restriction of scalars along qn is identified with the functor q∗n+1 : CBn+1Cpr → CBn+1Cpr−1 . By
[CSY20, Theorem 4.3.2], this induces an equivalence of ∞-categories

CBn+1Cpr ∼−→ CBn+1Cpr−1 × (CBn+1Cpr−1 )⊥,

where (CBn+1Cpr−1 )⊥ ⊆ CBn+1Cpr is the full subcategory spanned by the objects X, for which
(qn+1)∗X = 0. Let

ε : Id
C

Bn+1Cpr → Id
C

Bn+1Cpr

be the idempotent natural endomorphism which projects onto the essential image of CBn+1Cpr−1

under the functor q∗n+1. This corresponds to an idempotent element in the commutative ring
π0(1[BnCpr ]), which by abuse of notation we also denote by ε. The decomposition

1[BnCpr ] ∼−→ 1[BnCpr ][ε−1]× 1[BnCpr ][(1− ε)−1]

identifies the projection onto the first factor with qn.

In [CSY20, Proposition 4.3.4], we have also provided an explicit description of the idempotent ε
of Proposition 4.5 in the language of local systems. Translating into the language of rings, we
get the following description of ε ∈ π0(1[BnCpr ]), in terms of the higher semiadditive structure of
C . The fiber of qn : BnCpr → BnCpr−1 is isomorphic to BnCp, and we thus get a map of spaces
ι : BnCp → Ω∞1[BnCpr ]. The idempotent ε can be identified with the “average of ι”, in the sense
that

ε = 1
|BnCp|

∫
BnCp

ι ∈ π0(1[BnCpr ]).

When n = 0, we recover the classical formula of Definition 3.4, for the casem = pr (see also [CSY20,
Example 4.3.3]).

Remark 4.6. Consider the ∞-group G = BnCp and the canonical maps

f : 1[G]hG → 1[G]

and
g : 1[G]→ 1[G]hG ' 1.

It can be shown that if C is ∞-semiadditive of height n (and hence in particular G is C -stably
dualizable in the sense of [Rog05, Definition 2.3.1]), then h = g ◦ f is invertible and f ◦ h−1 = ε. In
the case C = SpK(n), the fact that h is invertible, which suffices for the construction of ε, was first
observed in [Rog05, Example 5.4.6]. We thank John Rognes for explaining to us this alternative
description of ε.

We are now ready to give the main definition of the paper.

Definition 4.7 (Higher Cyclotomic Extensions). Let C ∈ CAlg(Prצn
). For every integer r ≥ 1,

we define
1[ω(n)

pr ] := 1[BnCpr ][(1− ε)−1] ∈ CAlg(C ),
where ε ∈ π0(1[BnCpr ]) is the idempotent provided by Proposition 4.5. For every R ∈ CAlg(C ),
we define

R[ω(n)
pr ] := R⊗ 1[ω(n)

pr ] ∈ CAlgR(C ).
We refer to it as the (height n) pr-th cyclotomic extension of R.
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As promised, the higher cyclotomic extensions indeed corepresent the higher primitive roots:

Proposition 4.8. Let C ∈ CAlg(Prצn). The object 1[ω(n)
pr ] ∈ CAlg(C ) corepresents the functor

µ
(n),prim
pr : CAlg(C )→ Set ⊆ S.

Proof. By Proposition 4.1, the essential image of µ(n),prim
pr is contained in the full subcategory

Set ⊆ S. Using the adjunction

1[−] : CMon(S) � CAlg(C ) : (−)×,

we see that for R ∈ CAlg(C ), a higher root of unity 1[BnCpr ] ω−→ R is primitive, if and only if

1[BnCpr−1 ]⊗1[BnCpr ] R ' 0.

The claim now follows from the decomposition

1[BnCpr ] ∼−→ 1[BnCpr−1 ]× 1[ω(n)
pr ].

The higher cyclotomic extensions enjoy some additional pleasant properties:

Proposition 4.9. Let C ∈ CAlg(Prצn
).

(1) 1[ω(n)
pr ] is dualizable as an object of C for all r ∈ N.

(2) 1[ω(n)
p ] is faithful.

Proof. (1) We have a fiber sequence

1[ω(n)
pr ]→ 1[BnCpr ]→ 1[BnCpr−1 ] ∈ C .

Since C is ∞-semiadditive, B ⊗ 1 is a dualizable object of C for every π-finite space B (see Corol-
lary 2.7), and dualizable objects in a stable category are closed under (co)fibers (see Remark 2.6).
(2) For every object X ∈ C we have a fiber sequence

X ⊗ 1[ω(n)
p ]→ X ⊗ 1[BnCp]→ X ∈ C .

Therefore, X ⊗ 1[ω(n)
p ] = 0, if and only if the fold map X ⊗BnCp → X is an isomorphism. Hence,

by [CSY20, Proposition 2.4.7], we have X ⊗ 1[ω(n)
p ] = 0, if and only if X is of height < n. Since

C is of height n, the only object X ∈ C which is of height < n is X = 0. It follows that 1[ω(n)
p ] is

faithful.
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Infinite cyclotomic extensions

From Proposition 4.8, it follows in particular, that we have canonical maps 1[ω(n)
pr−1 ] → 1[ω(n)

pr ]
corepresenting the natural transformation ω 7→ ωp on primitive roots of unity (see Proposition 4.3).
Gathering the cyclotomic extensions for all r ≥ 0 along these maps we get:

Definition 4.10. Let C ∈ CAlg(Prצn). We define

1[ω(n)
p∞ ] := lim−→ r∈N 1[ω(n)

pr ].

Loosely speaking, the commutative algebra 1[ω(n)
p∞ ] corepresents choices of compatible systems of

height n primitive roots of unity ωp, ωp2 , ωp3 , . . . such that ωppr = ωpr−1 for all r ∈ N. The infinite
cyclotomic extension 1[ω(n)

p∞ ] can also be constructed directly by splitting off an idempotent from a
group algebra. The group homomorphism Zp

×p−−→ Zp induces a map of commutative algebras

q : 1[Bn+1Zp]→ 1[Bn+1Zp].

The following is a direct analogue, and a consequence, of Proposition 4.5 for the case r =∞:

Proposition 4.11. Let C ∈ CAlg(Prצn) for some n ≥ 1. There exists an idempotent element
ε ∈ π0(1[Bn+1Zp]), such that

1[Bn+1Zp][(1− ε)−1] ' 1[ω(n)
p∞ ]

and
1[Bn+1Zp][ε−1] ' 1[Bn+1Zp],

and under the second isomorphism, the canonical map 1[Bn+1Zp] → 1[Bn+1Zp][ε−1] is identified
with q.

Proof. Using Proposition 4.5 for every r ≥ 0, and taking the colimit, we get that Cp∞
×p−−→ Cp∞

induces an idempotent ε ∈ π0(1[BnCp∞ ]), such that

1[BnCp∞ ][ε−1] ' 1[BnCp∞ ]

and
1[BnCp∞ ][(1− ε)−1] ' 1[ω(n)

p∞ ].

Now, the short exact sequence of abelian groups

0→ Zp → Qp → Cp∞ → 0

induces a Bockstein homomorphism

BnCp∞ → Bn+1Zp,

which becomes an isomorphism upon p-completion. Since C is assumed to be of height ≥ 1, it is
p-complete and the result follows.
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Equivariance and Galois

For every C ∈ CAlg(Prst) and R ∈ CAlg(C ), the space

µ
(n)
pr (R) = MapSpcn(Cpr ,ΩnR×)

admits a canonical action of the group (Z/pr)× by pre-composition. If C is higher semiaddi-
tive and of height n, then µ(n)

pr (R) is discrete (Proposition 3.8), and the subset of primitive roots
µ

(n),prim
pr (R) ⊆ µ(n)

pr (R) is clearly stable under the action of (Z/pr)×. We therefore obtain an action
of (Z/pr)× on the corepresenting object 1[ω(n)

pr ] ∈ CAlg(C ) making the map 1[BnCpr ] → 1[ω(n)
pr ]

equivariant with respect to (Z/pr)×. Given C ∈ CAlg(Prצn
), it is natural to ask whether the

objects
1[ω(n)

pr ] ∈ CAlg(CB(Z/pr)×)
are Galois. For n = 0, this is always the case. However, some novel examples of higher semiadditive
∞-categories constructed by Allen Yuan suggest that for n ≥ 1, this is not always the case. In
the next section, we shall address this question for higher semiadditive ∞-categories arising in
chromatic homotopy theory.

5 Chromatic Applications

In this final section, we apply the general theory of higher cyclotomic extensions to the chromatic
world and deduce the main results of the paper. We begin in §5.1 by showing that the higher
cyclotomic extensions in SpK(n) are Galois, and deduce using the results of §2.1, that the same
holds for SpT (n) (Proposition 5.2). Then, in §5.2, we review the Galois theory of SpK(n), and
identify the quotients of the Morava stabilizer group corresponding to the (higher) cyclotomic
extensions of SK(n) (Theorem 5.7 and Corollary 5.11). In particular, we deduce that all the abelian
Galois extensions of SK(n) can be obtained as a combination of ordinary and higher cyclotomic
extensions. In §5.3, we apply the results of §3 to relate the higher cyclotomic extensions of SK(n) to
the K(n)-local Picard group (Proposition 5.19 and Proposition 5.26). Finally, in §5.4, we establish
the consequences of the above for the Galois extensions of SpT (n) (Theorem 5.27) and its Picard
group (Theorem 5.28 and Theorem 5.29).

5.1 Cyclotomic Galois Extensions

We fix a natural number n ≥ 1, a prime number p, and a formal group law Γ of height n over Fp
(which will be kept implicit throughout). We denote by K(n) and En the Morava K-theory and
Lubin-Tate ring spectra associated to Γ. In particular, the homotopy groups of K(n) and En are
given by

π∗K(n) = Fp[v±n ] , |vn| = 2(pn − 1)
π∗En = W (Fp)[[u1, . . . , un−1]][u±] , |ui| = 0, |u| = 2.

We view En as an object of CAlg(SpK(n)) and denote the symmetric monoidal ∞-category of
K(n)-local En-modules as follows:

Θn := ModEn(SpK(n)).
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For M ∈ Θn, we consider π∗(M) as a graded module over the twisted continuous group algebra
of Gn over π∗En. Namely, as an object in the category of Morava modules (see [BB19, Definition
3.37]). If πodd(M) = 0, we say that the Morava module of M is even. In this case, one can consider
the equivalent data of π0(M) as a module over the twisted continuous group algebra of Gn over
π0(En), which we call the even Morava module ofM . For X ∈ Sp, we refer to the (even) Morava
module of LK(n)(En ⊗X), simply as the (even) Morava module of X.
In addition, we let F (n) be some finite spectrum of type n, with a vn-self map v : ΣdF (n)→ F (n),
and an associated ”telescope”

T (n) := F (n)[v−1] = lim−→ (F (n) v−→ Σ−dF (n) v−→ Σ−2dF (n) v−→ . . . ).

The ∞-categories SpK(n), SpT (n), and Θn are all ∞-semiadditive and of height n ([CSY20, Pro-
postion 4.4.4 and Theorem 4.4.5]). That is, we have

SpK(n), SpT (n), Θn ∈ CAlg(Prצn).

Thus, we can consider height n cyclotomic extensions in each one of them. Our first goal is to
show that all these extensions are Galois. We begin by showing that in Θn, the higher cyclotomic
extensions are, in fact, split Galois (Example 2.4).

Proposition 5.1. For every r ∈ N, there is a (Z/pr)×-equivariant commutative ring isomorphism

En[ω(n)
pr ] '

∏
(Z/pr)×

En.

Proof. For every finite abelian p-group A, we denote by

A∗ ' hom(A,Qp/Zp)

the Pontryagin dual of A. By [HL13, Corollary 5.3.26], we have an isomorphism

En[BnA] ' EA
∗

n ∈ CAlg(SpK(n)),

which is furthermore natural in A. Consider the (Z/pr)×-equivariant decomposition

En[BnCpr ] ' En[BnCpr−1 ]× En[ω(n)
pr ].

The group homomorphism Cpr � Cpr−1 induces an injection on Pontryagin duals, which we can
identify with the embedding Cpr−1 ↪→ Cpr , whose image is pCpr . Noting that

Cpr r pCpr ' (Z/pr)×,

it follows that we have an isomorphism

En[ω(n)
pr ] '

∏
(Z/pr)×

En ∈ CAlg(SpK(n)).

Moreover, the naturality of [HL13, Corollary 5.3.26] promotes this isomorphism to be (Z/pr)×-
equivariant.
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Using nil-conservativity, we can now deduce that the higher cyclotomic extensions of SpT (n) (and
hence SpK(n)) are Galois as well.

Proposition 5.2. For all r ∈ N, the pr-th cyclotomic extensions in SpK(n) and SpT (n) are Galois.

Proof. The functors
SpT (n)

LK(n)−−−−→ SpK(n)
En⊗(−)−−−−−→ Θn

are nil-conservative by [CSY18, Corollary 5.1.17] and ST (n)[ω
(n)
pr ], and SK(n)[ω

(n)
pr ] are dualizable by

Proposition 4.9(1). Thus, the claim follows from Propositions 5.1 and 2.9.

5.2 The K(n)-local Cyclotomic Character

In classical algebra, Galois theory allows one to classify the Galois extensions of a commutative ring
in terms of its Galois group. For example, the sequence of pr-th cyclotomic extensions Qp(ωpr ) is
classified by the (p-adic) cyclotomic character

χ : Gal(Qp)→ Z×p .

By the work of Devinatz-Hopkins [DH04], Rognes [Rog08], Baker-Richter [BR08] and Mathew
[Mat16], the Galois extensions of SK(n) can be similarly classified in terms of the (extended) Morava
stabilizer group. In this subsection, we define the higher analogue of the p-adic cyclotomic character
for SpK(n), which classifies the higher cyclotomic extensions SK(n)[ω

(n)
pr ], and prove that it identifies

with the determinant map of the Morava Stabilizer group (see Theorem 5.7). We also show that the
canonical map Gn → Ẑ classifies the (ordinary) prime to p cyclotomic extensions (Corollary 5.11),
by analogy with the map Gal(Qp)→ Ẑ, which classifies the maximal unramified extension of Qp.

Morava stabilizer group

We begin with a recollection of the Galois theory of SpK(n). The commutative ring π0(En) carries
the universal deformation of the formal group Γ = Γ ×Fp

Fp. As such, it is acted by the following
group:

Definition 5.3. For every integer n ≥ 1, the height n (extended) Morava stabilizer group Gn
is defined to be the group of pairs (σ, ϕ), where σ ∈ Gal(Fp/Fp) and ϕ : σ∗Γ ∼−→ Γ. We denote by

π : Gn � Gal(Fp/Fp) ' Ẑ

the projection (σ, ϕ) 7→ σ, whose kernel is Aut(Γ/Fp).

In [DH04], Devinatz and Hopkins have lifted the canonical continuous action of the pro-finite group
Gn on the (p, u1, . . . , un−1)-adic ring π0(En), to a continuous action on En itself as an object
of CAlg(SpK(n)), which allows taking continuous fixed points with respect to closed subgroups.
This action was shown to exhibits En as a pro-finite Galois extension of SK(n) in [Rog08, Theorem
5.4.4]. Furthermore, En itself is algebraically closed (by [BR08, Theorem 1.1] for p odd, and [Mat16,
§10] for all p). Consequently, Gn classifies Galois extensions of SK(n) via a version of the “Galois
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correspondence” that we recall (with some paraphrasing) from [Mat16]. For every finite group G
and a continuous group homomorphism ρ : Gn → G, we equip

C(G,En) :=
∏
G

En ∈ CAlg(SpK(n))

with the (continuous) ρ-twisted action of Gn, which, in addition to the standard action on each
factor, permutes the factors through ρ and the left regular action of G on itself. In addition, the
group G acts on C(G,En) by permuting the factors through the right regular action of G on itself,
and the two actions clearly commute. Thus, C(G,En)hGn acquires a G-action.

Proposition 5.4 (“K(n)-local Galois Correspondence”, [Mat16, Theorem 10.9]). Let G be a finite
group. Taking Gn → G to C(G,En)hGn , establishes a bijection

{cont. homomorphisms Gn → G} / conj. ' {G-Galois ext. of SK(n)} / iso.

In particular, for a surjective homomorphism with kernel U ≤ Gn, the corresponding Galois exten-
sion is given by EhUn (with the residual G-action).

We deduce that the Morava module of a Galois extension R can be described in terms of the
ρ-twisted action.

Proposition 5.5. For R ∈ CAlgG-gal(SpK(n)) classified by ρ : Gn → G, the Morava module of R
is even, and there is an isomorphism of even Morava modules

π0(En ⊗R) ' C(G, π0(En)),

where on the left hand side the action of Gn is induced from the action on En, and on the right
hand side, it is the ρ-twisted action. In particular, the Gn action on π0(En ⊗ R) determines ρ up
to conjugation.

Proof. By Proposition 5.4, we haveR ' C(G,En)hGn . The canonical map C(G,En)hGn → C(G,En)
induces a Gn-equivariant isomorphism ([DH04, Theorem 1(iii)])

En ⊗R ' En ⊗ C(G,En)hGn ∼−→ C(G,En),

to which we can now apply π∗. For the final claim, observe that the set Xρ of closed points of
Spec(C(G, π0(En))) is free and transitive as a G-set. Thus, the action of Gn on Xρ as a G-set
corresponds to a conjugacy class of maps Gn → G, which contains ρ.

The p-adic cyclotomic character

By Proposition 5.4, the cyclotomic extensions SK(n)[ω
(n)
pr ] are classified by a sequence of homomor-

phisms χr : Gn → (Z/pr)×. These assemble into a single continuous group homomorphism

χ : Gn → Z×p ' lim←−−r∈N (Z/pr)×,

corresponding to the infinite cyclotomic extension

SK(n)[ω
(n)
p∞ ] = lim−→ r∈N SK(n)[ω

(n)
pr ].

35



Definition 5.6. We refer to χ : Gn → Z×p as the p-adic cyclotomic character of SpK(n).

To compute the p-adic cyclotomic character in explicit terms, we need to recall the structure of
the group Gn. Let Dn be a division algebra over Qp of invariant 1/n ∈ Q/Z, and On ⊆ Dn the
maximal order. The group of units O×n ⊆ On is isomorphic to Aut(Γ/Fp), which is the kernel
of Gn

π−→→ Gal(Fp/Fp). As for any finite dimensional division algebra, there is a determinant
(a.k.a reduced norm) multiplicative map det : Dn → Qp, which restricts to a group homomorphism
det : O×n → Z×p .

Theorem 5.7. The restriction of the p-adic cyclotomic character χ : Gn → Z×p , to the subgroup
O×n /Gn, is the determinant map.

Proof. By Proposition 5.5 and Proposition 5.2, for every r ∈ N, the action of Gn on

π0(En[ω(n)
pr ]) ' C((Z/pr)×, π0(En))

is the χr-twisted action. Since SK(n)[ω
(n)
p∞ ] ' lim−→SK(n)[ω

(n)
pr ], we deduce that the action of Gn on

π0(En[ω(n)
p∞ ]) ' lim−→ r∈N C((Z/pr)×, π0(En)) =: C(Z×p , π0(En))

is the χ-twisted action. On the other hand, by Proposition 4.11, the commutative algebra SK(n)[ω
(n)
p∞ ]

is obtained from SK(n)[Bn+1Zp] by splitting the complement of the idempotent ε corresponding to
the map Zp

×p−−→ Zp. For p odd, it is shown in [Wes17, Proposition 3.21] that there is an isomorphism
of even Morava modules

π0(En[Bn+1Zp]) ' C(Zp, π0(En)), (1)

where on the right hand side, the action of O×n /Gn is the det-twisted action. The proof of [Wes17,
Proposition 3.21] relies on the work of Peterson [Pet11], which identifies, in the odd prime case, the
formal spectrum Spf(E∗n(Bn+1Zp)) with the n-th exterior power of the p-divisible group associated
with Γ. This result, however, has been extended to p = 2 in [HL13, Theorem 3.4.1] and the
isomorphism in eq. (1) can be deduced from it as in the odd prime case. Moreover, by [HL13,
Corollary 5.3.26], the isomorphism in eq. (1) is functorial with respect to the endomorphisms of Zp.
Thus, the splitting of the commutative algebra SK(n)[Bn+1Zp] provided by ε, corresponds to the
splitting of even Morava modules induced by the set-theoretic decomposition Zp = pZp ∪Z×p . That
is, we get an isomorphism of even Morava modules

π0(En[ω(n)
p∞ ]) ' C(Z×p , π0(En)),

where on the right hand side, the action of O×n /Gn is the det-twisted action. The two homomor-
phisms χ, det : O×n → Z×p are therefore conjugate (e.g. by Proposition 5.4) and hence equal since
Z×p is abelian.

Theorem 5.7 identifies the p-adic cyclotomic character χ : Gn → Z×p only on the kernel of the map
π : Gn � Gal(Fp/Fp) ' Ẑ. However, it is possible to identify χ on the entire group Gn as well. The
choice of Γ (namely, the choice of an Fp-form of Γ) yields a section of π, and hence, a semidirect
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product decomposition Gn ' Ẑ n O×n . It therefore remains to identify the restriction of χ to the
subgroup Ẑ ≤ Gn under this decomposition, which we denote by

χgal : Ẑ→ Z×p .

When p is odd and Γ is the Honda formal group [Wes17, Proposition 3.21] identifies χ with det±.
Namely, we get χgal(m) = (−1)m if n is even, and χgal ≡ 1 if n is odd. In general, by [HL13,
Corollary 3.5.4], the n-th alternating power Alt(n)

Γ is an étale p-divisible group of height 1 over Fp,
and hence Alt(n)

Γ (Fp) ' Qp/Zp. The action of Gal(Fp/Fp) on Alt(n)
Γ (Fp), corresponds to a map

Ẑ ' Gal(Fp/Fp)→ Aut(Qp/Zp) ' Z×p ,

which can be shown to be exactly the character χgal. Since χ : Gn → Z×p is independent of the
choice of Γ, the Morava module of SK(n)[ω

(n)
p∞ ] is isomorphic to the Morava module of Westerland’s

Rn [Wes17, Definition 3.11], which implies SK(n)[ω
(n)
p∞ ] ' Rn by Proposition 5.4. We also note that

one can always choose Γ, such that Alt(n)
Γ is isomorphic to the constant p-divisible group Qp/Zp

(such an isomorphism is called a normalization in [HL13, Definition 5.3.1]), in which case we get
χgal ≡ 1.
For future use, we record here a mild variation on [BG18, Lemma 1.33] regarding the fixed points
of the action of Gn on the ring π0En.

Proposition 5.8. Let N /Gn be the kernel of the cyclotomic character χ : Gn → Z×p . We have

(π0En)N = Zp ⊆ π0En.

Proof. Recall that π0(En) = W (Fp)[[u1, . . . , un−1]], and that W (Fp)[1/p] is isomorphic to Q̂ur
p , the

completion of the maximal unramified extention of Qp. Since π0En is torsion free, it embeds in
π0En[1/p]. Therefore, it suffice to show that (π0En[1/p])N = Qp. Consider the subgroup O×n ≤ Gn,
and recall that the algebra On has the following presentation:

On 'W (Fpn){S}/(Sn = p, Sx = ϕ(x)S ∀x ∈W (Fpn)),

where S is a non-commutative indeterminate and ϕ : W (Fpn) → W (Fpn) is the (unique) lift of
the Frobenius endomorphism of Fpn . By [DH95, Proposition 3.3], we have an O×n -equivariant
embedding9

π0En[1/p] ↪→ Q̂ur
p [[w1, ..., wn−1]],

such that the of action of O×n on the right hand side is Q̂ur
p -linear, and each x ∈ W (Fpn)× ≤ O×n

acts on a power series f = f(w1, . . . , wn−1) by

(x · f)(w1, ..., wn−1) = f(ϕ(x)
x

w1, . . . ,
ϕn−1(x)

x
wn−1).

It will suffice to show that
Q̂ur
p [[w1, ..., wn−1]]N = Qp.

9This embedding exhibits the target as the completion of the source with repsect to its unique maximal ideal. We
also remark that the wi-s do not belong to the image of π0En.
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Consider now the subgroup

W (1)(Fpn)× := W (Fpn)× ∩N ≤ O×n .

If f is fixed by N , and hence byW (1)(Fpn)×, the only monomials wd1
1 wd2

2 · · ·w
dn−1
n−1 , that can appear

in f with non-zero coefficients, are those for which

xd1+d2+...+dn−1 = ϕ(x)d1ϕ2(x)d2 · · ·ϕn−1(x)dn−1 , ∀x ∈W (1)(Fpn)×.

For x ∈ W (Fpn)× ≤ O×n , the determinant det(x) coincides with the norm Nm(x) :=
∏n−1
i=0 ϕ

i(x).
Taking p-adic logarithm, this implies that the equation

(d1 + d2 + · · ·+ dn−1)y = d1ϕ(y) + d2ϕ
2(y) + · · ·+ dn−1ϕ

n−1(y) (∗)

holds for every y ∈ W (Fpn) with Tr(y) =
∑n−1
i=0 ϕ

i(y) = 0 and a sufficiently high p-adic valuation.
Since (∗) is a linear equation, it in fact holds for all y ∈ Qp(ωpn−1) = W (Fpn)[1/p], such that
Tr(y) = 0. We deduce, by “independence of characters”, that d1 = · · · = dn−1 = 0. This means
that f has to be constant, i.e., an element of Q̂ur

p ⊆ π0En[1/p].

Finally, we have a semi-direct product decomposition Gn ' Ẑ n O×n , by which we identify the
topological generator 1 ∈ Ẑ with an element σ ∈ Gn. Since det = Nm: W (Fpn)× → Z×p is surjective
([Mil97, Proposition III.1.2]), there exists an element a ∈ W (Fpn)×, with det(a) = det(σ). Thus,
we get an element a−1σ ∈ N , which acts on Q̂ur

p ⊆ π0En[1/p] as the Frobenius (see [BB19, §3.2.2]).
By the Ax-Sen-Tate theorem, the fixed points of a−1σ on Q̂ur

p are Qp ⊆ π0En[1/p] ([Ax70]).

The total cyclotomic character

We conclude this subsection by discussing the Galois extensions classified by the map π : Gn � Ẑ
from Definition 5.3. Roughly speaking, π classifies the ordinary, i.e. height 0, cyclotomic extensions
of SK(n) of order prime to p (see Corollary 5.11 for the precise statement). This perspective is
originally due to Rognes (see [Rog08, §5.4.6]) and we review it for completeness.
We begin by considering the Galois extensions of the p-complete sphere Sp ∈ Sp. Since Sp is connec-
tive, by [Mat16, Theorem 6.17], all Galois extensions of Sp (i.e. of ModSp

) are algebraic. Namely,
they are étale and, by applying π0, correspond bijectively to the (ordinary) Galois extensions of the
ring π0(Sp) = Zp. The Galois extensions of Zp are in turn classified by the Galois group

Gal(Zp) ' Gal(Fp) ' Ẑ.

More concretely, the finite quotients Ẑ � Z/m correspond to the rings of Witt vectors W (Fpm)
with the action given by the lift of Frobenius. Hence, the corresponding Galois extensions of Sp are
the rings of spherical Witt vectors SW (Fpm), which are characterized by being étale over Sp and
having π0(SW (Fpm)) 'W (Fpm) (see [Lur18, Example 5.2.7]).

Proposition 5.9. For every m ∈ N, the composition

Gn
π−→ Ẑ � Z/m

classifies the Z/m-Galois extension LK(n)SW (Fpm) of SK(n).
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Proof. By Proposition 5.5, it suffices to show that LK(n)SW (Fpm) is Galois and the even Morava
module

π0(En ⊗ LK(n)SW (Fpm)) ' π0(En)⊗W (Fpm)

is equivariantly isomorphic to C(Z/m, π0(En)) with the π-twisted Gn-action. The first claim follows
from the second by [Wes17, Theorem 3.24]10 and the second follows from the fact that the action
of Gn on the coefficient ring W (Fp) ⊆ π0(En) factors through π and is given again by the lift of
Frobenius (see [BB19, §3.2.2]).

Remark 5.10. In the language of [Mat16, Definition 6.8], the map π : Gn � Ẑ is the map induced
on (weak) Galois groups by the functor LK(n) : ModSp

→ SpK(n).

The relation to cyclotomic extensions of order prime to p (i.e. of height zero) is as follows:

Corollary 5.11 (Rognes). For every m ∈ N, the composition

Gn
π−−→→ Ẑ −−→→ Z/m

p(−)

↪−−→ Z/(pm − 1)×

classifies the (non-connected) cyclotomic Galois extension SK(n)[ωpm−1].

Proof. By Proposition 5.9, it suffices to show that the composition

f : Ẑ � Z/m
p(−)

↪−−→ Z/(pm − 1)×

classifies Sp[ωpm−1]. Since all Galois extensions of Sp are algebraic ([Mat16, Theorem 6.17]), it
suffices to show that the Galois extension of Zp = π0Sp classified by f is Zp[ωpm−1]. The splitting
of the cyclotomic polynomial Φpm−1(t) into irreducible factors over Zp induces an isomorphism of
the ring

Zp[ωpm−1] ' Zp[t]/Φpm−1(t)

with a product of φ(pm−1)
m copies of W (Fpm). Moreover, as a Z/(pm − 1)×-equivariant ring,

Zp[ωpm−1] is isomorphic to the induction of W (Fpm) along the group homomorphism

p(−) : Z/m ↪→ Z/(pm − 1)×

and hence the claim follows.

Remark 5.12. For every N ∈ N with (N, p) = 1, we have N | (pm − 1) for some m ∈ N. Thus,
π : Gn � Ẑ accounts for all prime to p cyclotomic extensions of SK(n).

Taken together, π and χ assemble into a single map

χtot : Gn � Ẑ× Z×p ,

which we call the (total) cyclotomic character. We recall the following standard fact:

Proposition 5.13. The map χtot exhibits Ẑ× Z×p as the abelianization of Gn.
10Alternatively, it follows from [Mat16], that a symmetric monoidal colimit preserving functor takes Galois exten-

sions to Galois extensions.
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Proof. The map det : O×n → Z×p exhibits Z×p as the abelianization of O×n and the induced action of
Ẑ on Z×p is trivial. Hence,

Gab
n ' (Ẑ nO×n )ab ' Ẑ× (O×n )ab ' Ẑ× Z×p .

Consequently, every abelian Galois extension of SK(n) is a sub-extension of a cyclotomic extension,
obtained by adding an ordinary root of unity of some order prime to p and a higher root of unity
of some p-power order.
Remark 5.14. For Qp ∈ CAlg(SpQ), considered as the extrapolation to height n = 0 of the se-
quence SK(n) ∈ CAlg(SpK(n)), we have a completely analogous picture. By the (p-local) Kronecker-
Weber theorem, every abelian extension of Qp is contained in a cyclotomic extension. Moreover,
we have Gal(Qp)ab ' Ẑ × Z×p , where the Ẑ component corresponds to the maximal unramified
cyclotomic extension Qun

p =
⋃
mQp(ωpm−1), and the Z×p component corresponds to the maximal

ramified cyclotomic extension Qp(ωp∞).

5.3 Picard Groups

In this subsection we relate the higher cyclotomic extensions of SK(n) to the Picard group of SpK(n).

Definition 5.15. Let Picn := Pic(SpK(n)), and let Pic0
n ≤ Picn be the (index 2) subgroup of

objects X ∈ Picn, such that En ⊗X ' En as En-modules.

We also denote by Picalg,0
n the Picard group of the category of even Morava modules. The functor

π0(En ⊗ −) induces a map Pic0
n → Picalg,0

n (whose kernel is known as the exotic Picard group).
Furthermore, there is a canonical isomorphism [GHMR15, Proposition 2.5]

Picalg,0
n ' H1

c (Gn; (π0En)×).

Remark 5.16. Since it will play a role in the sequel, we recall briefly how this identification goes.
Given M ∈ Picalg,0

n , we have M ' π0En as π0En-modules. By choosing a generator x ∈ M , we
associate with M the function αM : Gn → π0E

×
n given by αM (σ) := σ(x)/x. This function is a

1-cocycle, whose cohomology class [αM ] ∈ H1
c (Gn; (π0En)×) is independent of the generator x ∈M .

Odd prime

We begin by considering the case where the prime p is odd. First,
Lemma 5.17. If p is odd, then Pic0

n = Picev(SpK(n)).

Proof. Since (π0SK(n))red ' Zp (e.g. [CSY20, Proposition 2.2.6]), the commutative ring π0SK(n)
is connected with 2 invertible. Hence, by Corollary 3.21, every X ∈ Picn satisfies dim(X) = ±1.
Applying the symmetric monoidal functor

En ⊗ (−) : SpK(n) → ModEn(SpK(n)),

we can test whether dim(X) is 1 or −1, by looking at dim(En ⊗X). Finally, by [BR05, Theorem
8.7], we have Pic(En) ' Z/2, with representatives given by En and ΣEn, which have dimensions 1
and −1 respectively.
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We can now apply the Kummer theory developed in §3, to relate the p-th cyclotomic extension to
the (p − 1)-torsion in the Picard group of SpK(n). Namely, since the p-th cyclotomic extension is
Galois it provides us with a distinguished Picard object.

Definition 5.18. For p odd, let Zn ∈ Pic0
n[p − 1] be the Picard object corresponding to the

Z/(p− 1)-Galois extension SK(n)[ω
(n)
p ] in SpK(n), under the map of Proposition 3.23.

That is, Zn is a (p− 1)-torsion Picard object of dimension 1 in SpK(n), such that

SK(n)[ω(n)
p ] '

p−2⊕
k=0

Z⊗kn ∈ SpK(n).

The Picard object Zn can be characterized in an intrinsic way to Picn as follows:

Proposition 5.19. The group Pic0
n[p− 1] is isomorphic to Z/(p− 1) and is generated by Zn.

Proof. Using Proposition 3.23, and its naturality with respect to the functor

LK(n) : ModSp
(Sp)→ SpK(n),

we obtain the following commutative diagram of abelian groups:

0 // (π0S×p )/(π0S×p )p−1

f

��

// π0 CAlgZ/(p−1)-gal(Sp)

g

��

// Pic0(Sp)[p− 1]

��

// 0

0 // (π0S×K(n))/(π0S×K(n))
p−1 // π0 CAlgZ/(p−1)-gal(SpK(n)) // Pic0

n[p− 1] // 0.

In the top left corner, we have

(π0S×p )/(π0S×p )p−1 ' (Z×p )/(Z×p )p−1 ' Z/(p− 1).

Furthermore, the left vertical map f is an isomorphism. Indeed, the map

Zp ' π0Ŝp → π0SK(n)

admits a retract r : π0SK(n) → Zp, whose kernel consists of nilpotent elements (e.g. see [CSY20,
Proposition 2.2.6]). In particular, every element in the kernel of r× : π0S×K(n) → Z×p , is of the form
x = (1 + ε) for some nilpotent ε ∈ π0SK(n). Since p− 1 is invertible in π0SK(n), every such element
x has a (p − 1)-st root, and hence r× induces an isomorphism after modding out the (p − 1)-st
powers. Since this induced isomorphism is a left-inverse of f , it follows that f is an isomorphism
as well.
Next, by Proposition 5.13, the map

(π, χ) : Gn → Ẑ× Z×p

exhibits the target as the abelianization of the source. Hence, g can be identified with the inclusion
(see Remark 5.10):

hom(Ẑ,Z/(p− 1)) ↪→ hom(Ẑ,Z/(p− 1))⊕ hom(Z×p ,Z/(p− 1)).
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Since hom(Ẑ,Z/(p− 1)) ' Z/(p− 1), the entire diagram can be identified with

0 // Z/(p− 1)

=
��

= // Z/(p− 1)� _

��

// 0

��

// 0

0 // Z/(p− 1) �
� // Z/(p− 1)⊕ hom(Z×p ,Z/(p− 1)) // Pic0

n[p− 1] // 0.

Thus, the bottom right map restricts to an isomorphism

Z/(p− 1) ' hom(Z×p ,Z/(p− 1)) ∼−→ Pic0
n[p− 1].

Chasing through the identifications, the generator 1 ∈ Z/(p−1) corresponds to the Z/(p−1)-Galois
extension SK(n)[ω

(n)
p ], and thus its image, Zn, generates Pic0

n[p− 1].

Remark 5.20. By [Wes17, §3.3], the image of Zn in Picalg,0
n is classified by the composition

Gn
χ−→ Z×p � F×p

τ−→ Z×p ⊆ (π0En)×,

where τ is the Teichmüller lift.

Even prime

In the case p = 2, we can not rely on Kummer Theory to produce Picard objects in SpK(n). However,
we can use instead the variant afforded by Definition 3.26. Recall that givenR ∈ CAlgµ2-gal(SpK(n)),
where µ2 = {±1}, the cofiber of the unit map 1 → R, denoted by R, belongs to Picn (Proposi-
tion 3.27). In fact, we have a somewhat stronger statement:

Lemma 5.21. For every R ∈ CAlgµ2-gal(SpK(n)), we have R ∈ Pic0
n.

Proof. Let R ∈ CAlgµ2-gal(C ). We need to show that En ⊗R ' En as an En-module. For this, we
first observe that R⊗R is isomorphic to the cofiber of the unit map 1→ R tensored with R. Since
this map can be identified with the diagonal R→ R×R, whose cofiber is R, we get that R⊗R ' R
as R-modules. Since R is a Galois extension of SK(n), there exists a map of commutative algebras
R→ En. Base-changing from R to En along this map, we get that En ⊗R ' En.

Thus, we get a function

Ξ: homc(Gn, µ2) ' π0 CAlgµ2-gal(SpK(n))
(−)−−→ Pic0

n.

To analyse the image of Ξ, we shall consider its further image in Picalg,0
n . For this, it will be

convenient to identify homc(Gn, µ2) with H1
c (Gn;µ2) for the trivial Gn-action on µ2.

Proposition 5.22. The composition

H1
c (Gn;µ2) ' homc(Gn, µ2) Ξ−→ Pic0

n → Picalg,0
n ' H1

c (Gn;π0E
×
n )

is induced by the inclusion µ2 ⊆ π0E
×
n .
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Proof. Let Gn
ρ−→ µ2 be a homomorphism, and let R ∈ CAlgµ2-gal(SpK(n)) the Galois extension

classified by ρ by the Galois correspondence (Proposition 5.4). We have an isomorphism of Gn-
equivariant En-modules En ⊗R '

∏
µ2
En, where Gn acts on the right hand side via the ρ-twisted

action (Proposition 5.5). Hence, we can identify π0(En ⊗ R) with the cokernel of the diagonal
map π0En →

∏
µ2
π0En. This cokernel can be further identified with π0En, via the difference map∏

µ2
π0En → π0En. Choosing the generator x0 ∈ π0(En⊗R), that corresponds via this identification

to 1 ∈ π0En, we get that the action of σ ∈ Gn on x0 is given by σ(x0) = ρ(σ)x0. This implies that
the image of R in H1

c (Gn, π0E
×
n ) is the 1-cocycle Gn

ρ−→ µ2 ⊆ π0E
×
n (see Remark 5.16).

Remark 5.23. The above shows that the composition

π0 CAlgµ2-gal(C ) (−)−−→ Pic0
n → Pic0,alg

n

is a group homomorphism. This is in contrast to the fact that (−) itself is not (see Example 3.28).

From Proposition 5.22 we deduce the following:

Proposition 5.24. The composition

homc(Z×2 , µ2) χ∗−→ homc(Gn, µ2) Ξ−→ Pic0
n

is injective.

Proof. It suffices to show that composing further with Pic0
n → Picalg,0

n yields an injective map. By
Proposition 5.22, this reduces to showing that the composition

H1
c (Z×2 ;µ2) χ∗−→ H1

c (Gn;µ2)→ H1
c (Gn;π0E

×
n )

is injective. Let N / Gn denote the kernel of the cyclotomic character χ : Gn � Z×2 . Since, by
Proposition 5.8, we have µ2 ⊆ Z×2 = (π0E

×
n )N , we can decompose the above map as

H1
c (Z×2 ;µ2)→ H1

c (Z×2 ;Z×2 ) = H1
c (Z×2 ; (π0E

×
n )N )→ H1

c (Gn;π0E
×
n ).

The first map is injective because the residual action of Gn/N = Z×2 on (π0E
×
n )N = Z×2 is trivial.

The injectivity of the second map follows from the inflation-restriction exact sequence in (continu-
ous) group cohomology.

In concrete terms, we have

homc(Z×2 , µ2) ' homc((Z/8)×, µ2) ' Z/2× Z/2.

The three non-zero elements correspond to the Z/2-Galois sub-extensions of the (Z/8)×-Galois
cyclotomic extension SK(n)[ω

(n)
8 ], which we denote by R1, R2, R3. The zero element corresponds of

course to the split Z/2-Galois extension R0 :=
∏
µ2

SK(n).

Definition 5.25. For i = 0, . . . , 3, we define the Picard objects Wi := Ri ∈ Pic0
n.

Proposition 5.24 implies that W0(= SK(n)),W1,W2 and W3 are all different. We shall now show
further that all of their (de)suspensions are different as well.
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Proposition 5.26. The various (de)suspensions of W0(= SK(n)),W1,W2 and W3 are all different
elements of Picn.

Proof. We need to show that if ΣkiWi = ΣkjWj , then i = j and ki = kj . By (de)suspending, we
may assume that kj = 0, and by Proposition 5.24, it suffices to show that we must have ki = 0 as
well. Let k = ki and let R = Ri and R′ = Rj . By Lemma 5.21, we have

En ' En ⊗R′ ' En ⊗ ΣkR ' ΣkEn,

as En-modules. Thus, we get that k = 2m for some m ∈ Z. To show that m must be zero, we shall
consider the image of Σ2mR in Picalg,0

n . More specifically, since the center Z×2 ≤ Gn acts trivially
on π0E

×
n , restriction along its inclusion into Gn is a map of the form

θ(−) : Picalg,0
n ' H1

c (Gn;π0E
×
n )→ H1

c (Z×2 ;π0E
×
n ) ' homc(Z×2 , π0E

×
n ).

Every element of the center a ∈ Z×2 /Gn acts on the polynomial generator u ∈ π2(En) by multipli-
cation u 7→ au (see [BB19, §3.2.2]). Thus, the object π2mEn ∈ Picalg,0

n is mapped to

θπ2m(En) = (−)−m : Z×2 → Z×2 ⊆ π0E
×
n .

Since we have
π0(En ⊗ Σ2mR) ' (π2mEn)⊗π0En

π0(En ⊗R),
we get

θΣ2mR(a) = a−mθR(a) , ∀a ∈ Z×2 .
If θΣ2mR were to be equal to θR′ , it would in particular have to factor through the finite group
µ2 ⊆ Z×2 . However, this can not happen unless m = 0.

5.4 Telescopic Lifts

We can now combine the results of the previous subsections to deduce the main results of the paper
regarding the Galois extensions and Picard groups of the telescopic categories SpT (n). First, we
have
Theorem 5.27. Let G be a finite abelian group. For every G-Galois extension R in SpK(n), there
exists a G-Galois extension Rf in SpT (n), such that LK(n)R

f ' R.

Proof. By Proposition 5.13, the abelian Galois extensions of SpK(n) are classified by the group
Gab
n ' Ẑ× Z×p , through the homomorphism

χtot : Gn � Ẑ× Z×p .

Thus, it suffices to show that the Galois extensions corresponding to the finite quotients

Gn � Ẑ � Z/m

and
Gn � Z×p � (Z/pr)×

can be lifted to SpT (n). For the first kind, we can take LT (n)SW (Fpm), which is Galois by the
nil-conservativity of LK(n) : SpT (n) → SpK(n) (see [CSY18, Proposition 5.1.15]) and Propositions
5.9 and 2.9. For the second kind, it follows from Proposition 5.2, that we can take ST (n)[ω

(n)
pr ].
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The proof of Theorem 5.27 shows in fact a bit more. Namely, that the telescopic lifts of the abelian
Galois extensions in SpK(n) can be chosen in a “compatible way”. In the language of [Mat16], the
situation can be described as follows. The functor LK(n) : SpT (n) → SpK(n) induces a continuous
homomorphism on weak Galois groups ([Mat16, Definition 6.8])

πweak
1 (SpK(n))→ πweak

1 (SpT (n))

and after passing to abelianizations, this homomorphism admits a left-inverse. Hence, πweak
1 (SpT (n))ab

contains
πweak

1 (SpK(n))ab ' Ẑ× Z×p
as a direct summand.
Consider now the telescopic Picard group Picfn := Pic(SpT (n)) and its subgroup Picf,0n ≤ Picfn
of objects that map to Pic0

n under K(n)-localization. When p is odd, the cyclotomic extension
ST (n)[ω

(n)
p ] provides us with the following:

Theorem 5.28. For every n ≥ 1 and an odd prime p, there exists Zfn ∈ Picf,0n [p − 1], such that
LK(n)Z

f
n ' Zn (see Definition 5.18). In particular, Picf,0n [p − 1] contains Pic0

n[p − 1] ' Z/(p − 1)
as a direct summand.

Proof. We define Zfn to be the image of the Z/(p−1)-Galois extension ST (n)[ω
(n)
p ] under the map of

Proposition 3.23. By the naturality with respect to the functor LK(n) : SpT (n) → SpK(n), we have
LK(n)Z

f
n ' Zn. In view of Proposition 5.19, this provides a section to the map

Picf,0n [p− 1]→ Pic0
n[p− 1] ' Z/(p− 1),

which proves the last claim.

In the case p = 2, the cyclotomic extension ST (n)[ω
(n)
8 ] provides the following:

Theorem 5.29. For every n ≥ 1 and p = 2, there exist objects W f
1 ,W

f
2 ,W

f
3 ∈ Picf,0n , such

that LK(n)W
f
i = Wi (see Definition 5.25). In particular, all the (de)suspensions of the W f

i -s are
different and non-trivial.

Proof. Let Rf1 , R
f
2 , R

f
3 ∈ Picfn be the non-trivial Z/2-Galois sub-extensions of the (Z/8)×-Galois

cyclotomic extension ST (n)[ω
(n)
8 ], corresponding to the three order 2 subgroups of

(Z/8)× ' Z/2× Z/2.

We define W f
i = Rfi ∈ Picfn for i = 1, 2, 3. Since LK(n)W

f
i ' Wi, the last claim follows from

Proposition 5.26.
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