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Infinity-operads and Day convolution in Goodwillie calculus

Michael Ching

Abstract

We prove two theorems about Goodwillie calculus and use those theorems to describe new models
for Goodwillie derivatives of functors between pointed compactly generated ∞-categories. The
first theorem says that the construction of higher derivatives for spectrum-valued functors is a
Day convolution of copies of the first derivative construction. The second theorem says that the
derivatives of any functor can be realized as natural transformation objects for derivatives of
spectrum-valued functors. Together these results allow us to construct an ∞-operad that models
the derivatives of the identity functor on any pointed compactly generated ∞-category. Our main
example is the ∞-category of algebras over a stable ∞-operad, in which case we show that the
derivatives of the identity essentially recover the same ∞-operad, making precise a well-known
slogan in Goodwillie calculus. We also describe a bimodule structure on the derivatives of an
arbitrary functor, over the ∞-operads given by the derivatives of the identity on the source and
target, and we conjecture a chain rule that generalizes previous work of Arone and the author
in the case of functors of pointed spaces and spectra.

The fundamental construction of Goodwillie calculus is, for a functor F : C → D, a tower of
approximations to F that mimics the Taylor series in ordinary calculus. One of the basic
principles of this theory is that the fibres of the maps in that tower can be described relatively
simply in terms of stable homotopy theory. Goodwillie showed that when C and D are either
the categories of pointed spaces or spectra, the nth homogeneous piece of a functor F : C → D
is determined by a single spectrum ∂nF together with an action of the nth symmetric group
Σn.

A central question in calculus is how to reconstruct the Taylor tower of the functor F (and
hence, in cases where the tower converges, the functor F itself) from these homogeneous pieces,
that is, from the symmetric sequence ∂∗F = (∂nF )n�1. In the cases where C and D are each
either pointed spaces or spectra, this question was answered in a pair of papers by Arone and
the author [1, 2]. We first showed that, for F : C → D, the symmetric sequence ∂∗F has the
structure of a bimodule over the two operads ∂∗IC and ∂∗ID formed by the derivatives of the
identity functor on the categories C and D. We then showed that the resulting adjunction,
between the categories of (n-excisive) functors F : C → D and (n-truncated) bimodules, is
comonadic, so that the Taylor tower of F can be recovered from the action of a certain comonad
on the bimodule ∂∗F .

In this paper, we extend the first part of that previous work to a broad class of ∞-categories.
In particular, we show that the derivatives of the identity functor on any pointed compactly
generated ∞-category form a stable ∞-operad in a natural way, and that the derivatives of
any functor form a bimodule over the appropriate ∞-operads.
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INFINITY-OPERADS AND DAY CONVOLUTION 1205

Note that the approach taken in this paper is significantly different from that of [1], and
even in the cases of pointed spaces and spectra it gives a new perspective on how the operad
structures arise. In particular, this paper provides a new construction of the spectral Lie operad,
as an ∞-operad, distinct from the cobar construction described in [7].

One of the differences we encounter in the general case is that the nth layer of the Taylor
tower is no longer determined by a single spectrum with Σn-action. Our definition of derivatives
(given in Section 1) is therefore necessarily more involved. For us the nth derivative of a functor
F : C → D is a diagram of spectra of the form

∂nF : Sp(C)n × Sp(D)op → Sp,

that is, symmetric in the n copies of Sp(C), and is linear in each variable. Here Sp(C) denotes
the stabilization of the ∞-category C as described by Lurie in [21, 1.4].

When C and D are each the ∞-category of pointed spaces or spectra, these stabilizations are
both Sp, the ∞-category of spectra. If F preserves filtered colimits, the resulting symmetric
multilinear functor Spn × Spop → Sp is determined by its value on the sphere spectrum in each
variable. This value recovers the spectrum with Σn-action that is usually referred to as the nth
derivative of the functor F . To simplify this introduction we suppress the dependence of the
derivative on other variables in what follows. More explicit statements in the case of general C
and D can be found in the main body of the paper.

Our philosophy is to start by focusing on functors F : C → Sp. Let FC denote the ∞-category
of those functors of this type that are reduced (that is, F (∗) � ∗) and finitary (preserve filtered
colimits). The construction of the nth derivative can then be viewed as a functor

∂n : FC → Sp.

Now the ∞-category FC has a (non-unital) symmetric monoidal product given by the objectwise
smash product of functors, and therefore the category Fun(FC ,Sp) of functors FC → Sp has a
symmetric monoidal product ⊗ given by the Day convolution of the objectwise smash product
on FC and the ordinary smash product on ∧.

Our first main theorem (proved in Section 2) gives a relationship between the functors ∂n,
for different n, in terms of this Day convolution structure.

Theorem 0.1. Let C be a pointed compactly generated ∞-category. Then there is a Σn-
equivariant equivalence, in the ∞-category Fun(FC ,Sp), of the form

∂n � ∂⊗n
1 .

Next we turn to (reduced, finitary) functors F : C → D between two arbitrary pointed
compactly generated ∞-categories. Our second main theorem (proved in Section 3) allows
us to identify the derivatives of such a functor F in terms of the derivatives of spectrum-valued
functors on C and D.

Theorem 0.2. Let F : C → D be a reduced functor that preserves filtered colimits. Then
there is a natural equivalence

∂nF � Nat(∂1(−), ∂n(− ◦ F )),

where the right-hand side is the spectrum of natural transformations between two functors of
type FD → Sp.
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1206 MICHAEL CHING

Combining Theorems 0.1 and 0.2, we get new models for ∂nF that can be defined entirely in
terms of the first derivative construction for spectrum-valued functors, and Day convolution:

∂nF � Nat(∂1(−), ∂⊗n
1 (− ◦ F )). (0.3)

One unanswered question of [1] was whether such models can admit (unital and associative)
composition maps of the form

∂∗(G) ◦ ∂∗(F ) → ∂∗(GF ) (0.4)

which, in particular, provide the derivatives of the identity functor (or, indeed, any monad)
with an operad structure. The models given in (0.3) permit the construction of composition
maps of the form (0.4) for a wide range of ∞-categories. (In the case of pointed spaces and
spectra a simpler approach is due to Yeakel [24].)

When F is the identity functor IC on a pointed compactly generated ∞-category C, equation
(0.3) takes the form

∂nIC � Nat(∂1, ∂
⊗n
1 ).

The symmetric sequence ∂∗IC has an operad structure given by composition of natural
transformations, a so-called ‘coendomorphism operad’ for the object ∂1 with respect to Day
convolution. In a similar way, for F : C → D, the derivatives of F form a bimodule over the
operads ∂∗IC and ∂∗ID.

To be more precise, what we get are ∞-operads (in the sense of Lurie [21, 2.1]) and bimodules
over those ∞-operads. We give explicit constructions of these objects in Sections 4 and 6.
Those constructions rely heavily on some technical constructions with symmetric monoidal
∞-categories: work of Lurie [21, 2.2.6] (on Day convolution) and of Barwick–Glasman–Nardin
[4] (on opposite symmetric monoidal structures). Combining these two pieces of work, we get
a (non-unital) symmetric monoidal ∞-category

Fun(FC ,Sp)op,⊗

whose underlying ∞-category is the opposite of the ∞-category of functors FC → Sp. (In fact,
we have to take care over size issues at this point, and replace FC with a small symmetric
monoidal subcategory, but we ignore that issue for the remainder of this introduction.)

Taking the suboperad of Fun(FC ,Sp)op,⊗ generated by ∂1 then produces an ∞-operad I
⊗
C

that encodes the coendomorphism operad structure on ∂∗IC described above.
In Section 5, we focus on one principal example of our general theory: the case where C is the

∞-category of (non-unital) stable algebras over a stable ∞-operad O⊗. This example includes
∞-categories of structured ring spectra, such as En-ring spectra and spectral Lie algebras. Our
general result is a calculation of the ∞-operad I

⊗
C in this case:

Theorem 0.5. Let O⊗ be a stable ∞-operad and let AlgO⊗ be the ∞-category of non-unital
stable O⊗-algebras. Then I

⊗
AlgO⊗ is (Morita-)equivalent to O⊗ itself.

By a Morita equivalence of stable ∞-operads, we mean an equivalence between the ∞-
categories of stable algebras over those ∞-operads. We actually show a stronger result: that
I
⊗
AlgO⊗ contains O⊗ as a full suboperad, and it is the inclusion of that suboperad that induces

an equivalence between ∞-categories of algebras.
Theorem 0.5 verifies a long-standing principle in Goodwillie calculus: that the derivatives

of the identity functor on a category of operadic algebras recovers the original operad. For
example, this principle can be seen on an arity-wise basis in the work of Harper and Hess
[18, 1.14]. Here we promote that principle to a full equivalence of (∞-)operads. An alternative
approach to this calculation was recently introduced by Clark [10].
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INFINITY-OPERADS AND DAY CONVOLUTION 1207

In Section 6 we turn back to the derivatives of an arbitrary (reduced, finitary) functor F :
C → D between pointed compactly generated ∞-categories, and provide a precise construction
of the derivatives of F as a bimodule over the ∞-operads ∂∗IC and ∂∗ID. By a bimodule over
two ∞-operads, we mean a Δ1-family of ∞-operads (in the sense of Lurie [21, 2.3.2.10]) that
restricts to the given ∞-operads over the endpoints of Δ1.

For a pair of functors F : C → D and G : D → E , our construction gives rise to a ‘composition’
map

D
⊗
G ◦

I
⊗
D

D
⊗
F → D

⊗
GF .

We conjecture a chain rule, generalizing that of [1], which says that the above map is an
equivalence of (I⊗E , I

⊗
C )-bimodules.

Technical background

We use ∞-categories, or quasi-categories, as our basic model for (∞, 1)-categories, yet very
little technical knowledge of this theory is required in Sections 1– 3 of the paper. Our two main
results about Goodwillie calculus depend only on basic homotopy theory such as properties
of homotopy limits and colimits. These results could be stated, and proved, in more or less
exactly the same way in the context of simplicial model categories instead.

In later sections, the theory of ∞-categories, and in particular that of ∞-operads, as
developed by Lurie, plays a much more concerted role. We rely heavily on [20, 21] as
references, though we do recall the basic principles of the theory of ∞-operads in Section 4.
We require two particularly technical constructions on symmetric monoidal ∞-categories: the
Day convolution structure of [21, 2.2.6]; and the opposite monoidal ∞-category construction
due to Barwick–Glasman–Nardin [4].

For the initial development of Goodwillie calculus in the context of ∞-categories, we rely on
[21, Chapter 6], though the reader will not need any of the technical details of that work.

Notation

We use letters such as C,D to stand for pointed compactly generated ∞-categories, and the
symbol ∗ to denote a null object in such. In particular, we have T op∗, the ∞-category of
pointed (small) Kan complexes, and Sp, the ∞-category of spectra from [21, 1.4.3]. We also
use the standard adjunction

Σ∞ : T op∗ � Sp : Ω∞.

For a pointed ∞-category C, we write HomC(−,−) for (some model of) the pointed simplicial
set of maps between two objects of C. If C is stable, it admits mapping spectra which we denote
MapC(−,−), so that HomC(−,−) � Ω∞ MapC(−,−).

A pointed compactly generated ∞-category C admits tensors by pointed simplicial sets, which
we write with a smash product symbol. In particular, we have suspensions ΣLx � SL ∧ x for
x ∈ C. Note that we then have natural equivalences of pointed simplicial sets

ΩL HomC(x,−) � HomC(ΣLx,−).

We often consider the ∞-category of functors between two other ∞-categories, which we
denote in the form Fun(C,D). When D = Sp, the ∞-category Fun(C,D) is stable in which case
we write

NatC(−,−) := MapFun(C,Sp)(−,−).

This plays the role of a spectrum of natural transformations between two such functors.
We omit notation for the nerve construction: for example, Surj∗ is the nerve of the category

of finite pointed sets and pointed surjections.
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1208 MICHAEL CHING

When we say limit or colimit, we almost always mean homotopy limit or colimit (and we
denote these as holim or hocolim). The exception is when constructing an ∞-category, for
example as a pullback of other ∞-categories, in which case we intend a strict pullback in the
category of simplicial sets.

1. Goodwillie derivatives in ∞-categories

Let F : C → D be a reduced functor between pointed compactly generated ∞-categories. Such
F has a Taylor tower constructed in this generality by Lurie [21, 6.1] following Goodwillie’s
original approach [16]. This tower is a sequence of functors of the form

F → · · · → PnF → Pn−1F → · · · → P1F → P0F � ∗,
where F → PnF is initial (up to homotopy) among natural transformations from F to an
n-excisive functor. The nth layer in the Taylor tower is the fibre

DnF := hofib(PnF → Pn−1F )

and DnF : C → D is an n-homogenous functor.
One of Goodwillie’s main results provides a classification of homogeneous functors, which

shows that the nth layer DnF can be recovered from a symmetric multilinear functor ΔnF :
Sp(C)n → Sp(D) by the formula

DnF (X) � Ω∞
D [ΔnF (Σ∞

C X, . . . ,Σ∞
C X)hΣn

],

where

Σ∞
C : C � Sp(C) : Ω∞

C

is the stabilization adjunction for C; see [21, 6.1.4.7 and 6.2.3.22].

Definition 1.1. Let F : C → D be a reduced functor between pointed compactly generated
∞-categories, and let ΔnF : Sp(C)n → Sp(D) be the symmetric multilinear functor described
above. The nth derivative of F is the functor

∂nF : Sp(C)n × Sp(D)op → Sp
defined by

∂nF (X1, . . . , Xn;Y ) := MapSp(D)(Y,ΔnF (X1, . . . , Xn)),

where MapSp(D)(−,−) denotes a mapping spectrum construction for the stable ∞-category
Sp(D). In other words, we can think of ∂nF as the composite of ΔnF with the stable Yoneda
embedding for the stable ∞-category Sp(D).

Note that ∂nF is symmetric multilinear in the Sp(C) variables, and preserves all limits in
Sp(D)op (that is, takes colimits in Sp(D) to limits in Sp).

Example 1.2. When C and D are both either T op∗ or Sp, and F preserves filtered colimits,
the functor ∂nF of Definition 1.1 is determined by the single spectrum (with Σn-action)

∂nF (S0, . . . , S0;S0),

where S0 is the sphere spectrum. We write ∂nF also for this individual spectrum, which is the
object typically referred to as the nth derivative of F in this case.

Example 1.3. When D is T op∗ or Sp, there is an equivalence

∂nF (X1, . . . , Xn;S0) � ΔnF (X1, . . . , Xn).
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INFINITY-OPERADS AND DAY CONVOLUTION 1209

We also write this object as ∂nF (X1, . . . , Xn). More generally, whenever either C or D is T op∗
or Sp, we may omit the corresponding arguments of the functor ∂nF , in which case those
arguments are assumed to be the sphere spectrum S0.

2. Derivatives of spectrum-valued functors

We now turn to our first main result, which concerns the derivatives of spectrum-valued
functors.

Definition 2.1. Fix a pointed compactly generated ∞-category C and let FC be the full
subcategory of Fun(C,Sp) whose objects are the reduced functors C → Sp that preserve filtered
colimits. For objects X1, . . . , Xn ∈ Sp(C), Example 1.3 says that we have a functor

∂n(−)(X1, . . . , Xn) : FC → Sp.

The goal of this section is to understand how these functors are related to one another for
varying n.

The relationship we are looking for is via a version of Day convolution (see [11]) for functors
FC → Sp with respect to the following symmetric monoidal structures: on FC the objectwise
smash product of functors; and on Sp the ordinary smash product. Later in the paper, we work
with a symmetric monoidal ∞-category that represents this Day convolution, but for now it is
sufficient to describe convolution by its universal property.

Definition 2.2. The Day convolution of A,B : FC → Sp, if it exists, consists of a functor

A⊗B : FC → Sp

and a natural transformation of functors FC ×FC → Sp of the form

α : A(−) ∧B(−) → (A⊗B)(− ∧−)

that induces equivalences of mapping spaces

HomFun(FC,Sp)(A⊗B,C) −̃→ HomFun(FC×FC,Sp)(A(−) ∧B(−), C(− ∧−))

for an arbitrary functor C : FC → Sp. Note that we use the symbol ∧ on the right-hand side to
denote both the smash product of spectra and the objectwise smash product on FC . We define
convolution of more than two functors in a similar way.

Remark 2.3. Definition 2.2 says that Day convolution is a left Kan extension and implies
that it is unique up to equivalence. In the cases we care about, we will prove existence directly,
primarily via Lemma 2.18.

The main result of this section is the following relationship between the nth and first
derivative constructions for functors from C to Sp.

Theorem 2.4. Let C be a pointed compactly generated ∞-category, and consider objects
X1, . . . , Xn ∈ Sp(C). Then there is a natural equivalence

∂n(−)(X1, . . . , Xn) � ∂1(−)(X1) ⊗ · · · ⊗ ∂1(−)(Xn),

where ∂n denotes the nth derivative construction for functors C → Sp, and ⊗ denotes the Day
convolution of Definition 2.2.
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1210 MICHAEL CHING

Corollary 2.5. When C = T op∗ or Sp, taking X1 = · · · = Xn = S0 in Theorem 2.4 gives
the formula

∂n � ∂⊗n
1 .

Remark 2.6. The Day convolution cannot be calculated objectwise. In particular, The-
orem 2.4 does not imply that the nth derivative of a particular functor F : C → Sp can be
calculated from the first derivative of F (which would clearly be false). Rather it says that ∂nF
can be calculated as a homotopy colimit of the form

∂nF � hocolim
G1∧···∧Gn→F

∂1G1 ∧ · · · ∧ ∂1Gn

calculated over the ∞-category of n-tuples of functors G1, . . . , Gn with a map G1 ∧ · · · ∧Gn →
F .

Remark 2.7. Since Day convolution is, in fact, a symmetric monoidal structure, Theo-
rem 2.4 allows us to see that the collection of functors (∂n)n�1 possesses additional structure.
Suppose we define a coloured operad IC , enriched in Sp, with colours given by the objects of
Sp(C) and terms

IC(X1, . . . , Xn;Y ) = NatFC (∂1(−)(Y ), ∂1(−)(X1) ⊗ · · · ⊗ ∂1(−)(Xn)), (2.8)

where NatFC (−,−) denotes a mapping spectrum construction for the stable ∞-category
Fun(FC ,Sp). The operad structure is given by composition of natural transformations. It is
an easy consequence of Theorem 2.4 that the derivatives of any functor C → Sp form a right
module over the operad IC . As stated, these operad and module structures are only associative
up to homotopy; a more precise definition of IC as an ∞-operad is given in Section 4.

The remainder of this section consists of the proof of Theorem 2.4. This proof relies largely
on Goodwillie’s identification of the derivative as a multilinearized cross-effect. That is, we
have, for x1, . . . , xn ∈ C and F : C → Sp:

ΔnF (Σ∞
C x1, . . . ,Σ∞

C xn) � hocolim
L→∞

ΩnL crn F (ΣLx1, . . . ,ΣLxn), (2.9)

where ΔnF is the symmetric multilinear functor that classifies the homogeneous functor DnF .
(An ∞-categorical version of this result follows from [21, 6.1.3.23 and 6.1.1.28].)

We also use the fact, extending [3, 3.13], that cross-effects of spectrum-valued functors can
be represented as natural transformation objects. To see this fact we first need a version of the
Yoneda Lemma in this context.

Lemma 2.10. Let C be a pointed ∞-category, x an object of C, and F : C → Sp a reduced
functor. Then there is a natural equivalence of spectra

NatC(Σ∞ HomC(x,−), F (−)) � F (x),

where NatC(−,−) denotes a mapping spectrum for the stable ∞-category Fun(C,Sp).

Proof. Any functor F : C → Sp admits a natural map

HomC(x,−) → HomSp(F (x), F (−)) � Ω∞ MapSp(F (x), F (−))

which is basepoint-preserving when F is reduced and which corresponds by adjunction to the
desired map

F (x) → NatC(Σ∞ HomC(x,−), F (−)).
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INFINITY-OPERADS AND DAY CONVOLUTION 1211

To prove this map is an equivalence of spectra, it is sufficient to show that the induced map

Ω∞Σ−kF (x) → Ω∞Σ−k NatC(Σ∞ HomC(x,−), F (−))

is an equivalence of simplicial sets for all k ∈ Z. We can identify the right-hand side with

HomFun(C,Sp)(HomC(x,−),Ω∞Σ−kF (−)),

and the claim follows from the ordinary Yoneda Lemma. �

We then have the following description of the cross-effects of a functor F : C → Sp.

Lemma 2.11. Let C be a pointed ∞-category. For any F : C → Sp and objects x1, . . . , xn ∈
C, we have a natural equivalence

crn F (x1, . . . , xn) � NatC(Σ∞ HomC(x1,−) ∧ · · · ∧ Σ∞ HomC(xn,−), F (−)).

Proof. The first cross-effect is the fibre

cr1 F (x) := hofib(F (x) → F (∗)).

When G : C → Sp is reduced, the map

NatC(G, cr1 F ) → NatC(G,F )

has inverse given by

NatC(G,F ) → NatC(cr1 G, cr1 F ) � NatC(G, cr1 F ).

Since we also have an equivalence crn(cr1 F ) −̃→ crn F , we can replace F with cr1 F in the
lemma, that is, we may assume that F is reduced.

The case n = 1 now follows from Lemma 2.10. We describe the case n = 2. The general case
is virtually identical.

The nth cross-effect is defined as the total fibre of an n-cube (see [15]); for n = 2, this cube
takes the form

Using Lemma 2.10 we can write this square as

Since NatC(Σ∞−, F ) takes colimits (of T op∗-valued functors on C) to limits (of spectra), we
therefore have

cr2 F (x1, x2) � NatC (Σ∞A(−), F (−)), (2.12)
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1212 MICHAEL CHING

where A(−) is the total cofibre of the 2-cube of spaces of the form

That square can be written in the form

But then the total cofibre A(−) is equivalent to the smash product

HomC(x1,−) ∧ HomC(x2,−)

which, together with (2.12), provides the desired equivalence. For the case of general n, the
key observation is that the total cofibre of an n-cube of pointed spaces of the form{∏

i∈S

Ai

}
S⊆{1,...,n}

is equivalent to the smash product A1 ∧ · · · ∧An. �

It follows from Lemma 2.11 that the terms appearing in the homotopy colimit of (2.9) can
also be expressed in terms of natural transformation objects:

ΩnL crn(F )(ΣLx1, . . . ,ΣLxn) � ΩnL NatC

(
n∧

i=1

Σ∞ HomC(ΣLxi,−), F

)

� NatC

(
n∧

i=1

Σ∞ΣLΩL HomC(xi,−), F

)
,

(2.13)

where the first equivalence is that of Lemma 2.11, and the second is built from several instances
of the adjunction (ΣL,ΩL).

It remains to identify how these equivalences interact with the maps in the colimit in (2.9).

Lemma 2.14. For reduced F : C → Sp and objects x1, . . . , xn, the following diagram of
spectra commutes up to equivalence:

where the vertical maps are the equivalences of (2.13), the top horizontal map is (the
multivariable version of) the stabilization map t1 appearing in Goodwillie’s construction of
the linearization of a functor (see [14, 1.10; 21, 6.1.1.27]), and the bottom horizontal map is
that induced by the counit

ε : ΣL+1ΩL+1 = ΣL(ΣΩ)ΩL → ΣLΩL.
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INFINITY-OPERADS AND DAY CONVOLUTION 1213

Proof. We illustrate with the case n = 1. The general case is similar. Since cr1 F � F for F
reduced, our diagram takes the form

(2.15)

where the bottom square commutes by naturality of ε, and the top square is (ΩL applied to)
the L = 0 case of the lemma, with x1 replaced by ΣLx1. It thus is sufficient to consider the
case L = 0.

To do this, first recall how the map t1F is constructed. Let D denote the diagram

where I is a closed interval with one of its endpoints as the basepoint, and the two maps are
the inclusions into the two halves of the circle S1.

Two copies of the inclusion S0 → I form a cone over D and induce the horizontal (and
diagonal) maps in the following commutative diagram:

(2.16)

where Yx denotes the stable Yoneda embedding from Lemma 2.10 applied with object x, and the
right-hand bottom vertical map is a canonical equivalence involving the tensoring adjunction
for objects in C.

We now argue that the right-hand column of (2.16) can be identified with the right-hand
column in (2.15) by observing that since I is contractible, each homotopy limit/colimit is
a loop-space/suspension. That is, we have the following commutative diagram in which the
horizontal maps are induced by the equivalences ∗ −̃→ I:
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1214 MICHAEL CHING

The top map of (2.16) is precisely t1F , and it is easy to identify the bottom map with ε∗ when
combined with the bottom map in the diagram above. �

Taking homotopy colimits as L → ∞ over the diagrams in Lemma 2.14, and applying (2.9),
we get the following result.

Proposition 2.17. For reduced F : C → Sp and objects x1, . . . , xn ∈ C, there is an
equivalence

ΔnF (Σ∞
C x1, . . . ,Σ∞

C xn) � hocolim
L→∞

NatC

(
n∧

i=1

Σ∞ΣLΩL HomC(xi,−), F

)
,

where the maps in the homotopy colimit are induced by the counit map ε : ΣΩ → I.

We also require the following result about Day convolution of representable functors.

Lemma 2.18. For F1, . . . , Fn ∈ FC , we have an equivalence:

NatC(F1 ∧ · · · ∧ Fn,−) � NatC(F1,−) ⊗ · · · ⊗ NatC(Fn,−).

Proof. We describe the case n = 2. The general case is virtually identical. According to
Definition 2.2, we have to produce a natural transformation

α : NatC(F1,−) ∧ NatC(F2,−) → NatC(F1 ∧ F2,− ∧−)

which is given by taking the smash product of natural transformations.
We then have to show that α induces equivalences

for arbitrary A : FC → Sp.
First note that since NatC(F1 ∧ F2,−) and NatC(F1,−) ∧ NatC(F2,−) are reduced, it is

sufficient to prove α∗ is an equivalence when A is reduced. (This is because any natural trans-
formation out of a reduced functor between pointed ∞-categories factors, up to equivalence,
via the universal reduction of its target.)

Now note that a functor of the form NatC(G,−) is linear and hence is equivalent to the
linearization of

Σ∞Ω∞ NatC(G,−) � Σ∞ HomFC (G,−).

We therefore have an equivalence

NatC(G,−) � hocolim
k→∞

Σ−kΣ∞ HomFC (G,Σk(−))

� hocolim
k→∞

Σ−kΣ∞ HomFC (Σ−kG,−).

Similarly, the natural transformation α can be identified with the map
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INFINITY-OPERADS AND DAY CONVOLUTION 1215

given by inclusion into the term with k = k1 + k2, and therefore, by the Yoneda Lemma (2.10),
the map α∗ is equivalent to

induced by projecting onto the term k = k1 + k2. This map is an equivalence since the diagonal
map N → N × N is final. �

Remark 2.19. One way to interpret the proof of Lemma 2.18 is that the ordinary
Day convolution, as in Definition 2.2, is equivalent to a spectrally enriched version of Day
convolution, where the universal property is satisfied only with respect to spectrally enriched
(or, by [6, 4.22], exact) functors FC → Sp.

Theorem 2.4 is now a fairly simple consequence of Proposition 2.17 and Lemma 2.18, though
we have to be careful about how we extend to X1, . . . , Xn ∈ Sp(C).

Proof of Theorem 2.4. We have to prove that for X1, . . . , Xn ∈ Sp(C), the functor
∂n(−)(X1, . . . , Xn) is a Day convolution of the form

∂1(−)(X1) ⊗ · · · ⊗ ∂1(−)(Xn).

First suppose that Xi = Σ∞
C xi where x1, . . . , xn are compact objects in C. In this case, we can

apply Lemma 2.18 with the functors Fi = Σ∞ΣLΩL HomC(xi,−) (which are in FC since each
xi is compact).

It follows easily from Definition 2.2 that the Day convolution commutes with colimits in
each variable, so we can take the homotopy colimit as L → ∞ of the result of Lemma 2.18 and,
using Proposition 2.17, we get

Δn(−)(X1, . . . , Xn) � Δ1(−)(X1) ⊗ · · · ⊗ Δ1(−)(Xn). (2.20)

Recalling that ∂nF (X1, . . . , Xn) � ΔnF (X1, . . . , Xn) for spectrum-valued functors, we see that
(2.20) is precisely the desired equivalence in this case.

Next, note that arbitrary objects x1, . . . , xn in the compactly generated ∞-category C can
be written as filtered colimits of compact objects. We can therefore recover the case of general
x1, . . . , xn from (2.20)) since again the Day convolution commutes with filtered colimits.

Finally, consider the case of general X1, . . . , Xn ∈ Sp(C). The linearization of the functor
Σ∞

C Ω∞
C is equivalent to the identity functor on Sp(C), that is,

Xi � P1(Σ∞
C Ω∞

C )(Xi) � hocolim
k→∞

ΩkΣ∞
C Ω∞

C ΣkXi.

In other words, an arbitrary object of Sp(C) can be built from suspension spectrum objects by
filtered colimit and desuspension, both of which commute with the Day convolution. We thus
obtain the case of general X1, . . . , Xn from that of suspension spectrum objects. �

3. Derivatives of arbitrary functors

In this section we describe models for the derivatives of an arbitrary (reduced) functor F : C →
D between pointed compactly generated ∞-categories. In particular, we deduce that the terms
in the coloured operad IC described in Remark 2.7 are given by the derivatives of the identity
functor on C. This claim is a consequence of the following theorem.
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1216 MICHAEL CHING

Theorem 3.1. For reduced F : C → D, X1, . . . , Xn ∈ Sp(C) and Y ∈ Sp(D), we have

∂nF (X1, . . . , Xn;Y ) � NatFD (∂1(−)(Y ), ∂n(− ◦ F )(X1, . . . , Xn)).

Corollary 3.2. For any pointed compactly generated ∞-category C, we have

∂nIC(X1, . . . , Xn;Y ) � NatFC (∂1(−)(Y ), ∂n(−)(X1, . . . , Xn)).

Example 3.3. When C = D = T op∗, we have

∂nF � Nat(∂1, ∂n(− ◦ F ))

and, in particular,

∂nIC � Nat(∂1, ∂n) � Nat(∂1, ∂
⊗n
1 ).

In other words, the derivatives of the identity functor on T op∗ form the coendomorphism operad
of the functor ∂1 : Fun(T op∗,Sp) → Sp with respect to Day convolution. In [7] an operad
structure on these derivatives was constructed by taking the Koszul dual of the commutative
operad in spectra. It is not obvious that these two operad structures on ∂∗IT op∗ are equivalent,
though, as we will see in the proof of Theorem 3.1, both depend on the cosimplicial resolution
of the identity functor via the adjunction (Σ∞,Ω∞), making a connection plausible.

Before giving the proof of 3.1, let us construct the map that realizes the desired equivalence.
That map is based on a natural transformation

c : Δ1G(ΔnF (X1, . . . , Xn)) → Δn(GF )(X1, . . . , Xn) (3.4)

which we now define for F : C → D reduced and G : D → Sp reduced and preserving filtered
colimits.

Definition 3.5. With F and G as above, there is a natural transformation of symmetric
functors Cn → Sp

c′′ : G crn F → crn(GF )

coming from the definition of the cross-effect as a total homotopy fibre. Taking multilineariza-
tion of c′′, we get a map of symmetric multilinear functors Cn → Sp:

c′ : P1,...,1(G crn F ) → P1,...,1(crn(GF ))

which corresponds to a map of symmetric multilinear functors Sp(C)n → Sp which we can
write

c : Δ1,...,1(G crn F ) → Δ1,...,1(crn(GF )).

The target of c is equivalent to Δn(GF ) by [16, 6.1] (or [21, 6.1.3.23] in the ∞-categorical
setting). To identify the source of c with Δ1G(ΔnF ) we apply [21, 6.2.1.22], that is, the
multivariable version of the Klein–Rognes [19] chain rule for first derivatives.

Definition 3.6. For any reduced G : D → Sp, the functor Δ1G = ∂1G : Sp(D) → Sp is,
by definition, linear, and hence enriched over Sp, at least up to homotopy. In other words we
have natural maps

MapSp(D)(Y,ΔnF (X1, . . . , Xn)) → NatFD (Δ1(−)(Y ),Δ1(−)(ΔnF (X1, . . . , Xn))).
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INFINITY-OPERADS AND DAY CONVOLUTION 1217

Composing with our map c from (3.4) we get

MapSp(D)(Y,ΔnF (X1, . . . , Xn)) → NatFD (Δ1(−)(Y ),Δn(− ◦ F )(X1, . . . , Xn)) (3.7)

which is the form of the equivalence required by Theorem 3.1.

Proof of Theorem 3.1. First note that each side of the desired equivalence commutes with
desuspension and filtered colimits in the variable Y . The argument in the proof of 2.4 implies
that it is sufficient to consider the case Y = Σ∞

D y for some compact object y in the compactly
generated ∞-category D.

Using Proposition 2.17, the right-hand side of the desired equivalence can be written in the
form

holim
L→∞

NatFD (NatD(Σ∞ΣLΩL HomD(y, •),−), ∂n(− ◦ F )(X1, . . . , Xn))

which, by a stable version of the Yoneda Lemma [22, 6.4], is equivalent to

holim
L→∞

∂n(Σ∞ΣLΩL HomD(y, F ))(X1, . . . , Xn).

On the other hand, for the left-hand side of the desired result, we have an equivalence

∂nF (X1, . . . , Xn; Σ∞
D y) � ∂n(HomD(y, F ))(X1, . . . , Xn)

which follows from the fact that

HomD(y,ΔnF ) � Δn(HomD(y, F ))

for a compact object y ∈ D.
It is now sufficient to show that, for reduced G : C → T op∗, there is a natural equivalence

α : ∂nG −̃→ holim
L→∞

∂n(Σ∞ΣLΩLG), (3.8)

where the map α has components given by

with c as in (3.4). This claim contains the real substance of the result we are trying to prove,
and it occupies the majority of our effort here.

We first show that α is an equivalence when G = Ω∞G for some G : C → Sp (in which case
note that ∂nG � ∂nG). Then there is a map

β : holim
L→∞

∂n(Σ∞ΣLΩLΩ∞
G) → ∂nG

given by projection onto the L = 0 term followed by the counit of the adjunction (Σ∞,Ω∞).
It is easy to check from the definitions that βα is equivalent to the identity. It is therefore
sufficient to show that β is an equivalence.

For this task, we need an instance of the chain rule for spectrum-valued functors which tells
us that there is an equivalence

∂n(Σ∞ΣLΩLΩ∞
G) �

∏
P(n)

∂k(Σ∞ΣLΩLΩ∞) ∧ ∂n1G ∧ · · · ∧ ∂nk
G,

where P(n) is the set of unordered partitions of the set {1, . . . , n}, where n1, . . . , nk denote the
sizes of the pieces of a partition, and where we have suppressed the dependence on variables
X1, . . . , Xn ∈ Sp(C) for the sake of readability. This result is a generalization of the main
theorem of [8] with a similar proof. Details are provided in Appendix A.

The source of the map β thus splits as∏
P(n)

holim
L→∞

[∂k(Σ∞ΣLΩLΩ∞) ∧ ∂n1G ∧ · · · ∧ ∂nk
G] (3.9)
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1218 MICHAEL CHING

and β is given by projection onto the term corresponding to the indiscrete partition, that is,
with k = 1. (Note that in this term all the maps in the inverse system are equivalences and the
homotopy limit is just ∂nG.)

A standard calculation shows that ∂k(Σ∞ΣLΩLΩ∞) � S−L(k−1), a negative-dimensional
sphere spectrum. The maps in the inverse systems in (3.9) are induced by the counit ΣΩ → I
via maps

∂k(Σ∞ΣL+1ΩL+1Ω∞) → ∂k(Σ∞ΣLΩLΩ∞)

and hence are trivial when k > 1 for dimension reasons. It follows that the homotopy limits
appearing in (3.9) are trivial when k > 1, and hence that the projection map β is an equivalence.
This completes the proof that the map α is an equivalence when G = Ω∞G.

Now consider arbitrary reduced G : C → T op∗. There is a commutative diagram

where Tot denotes the totalization of cosimplicial spectra which are built from the (Σ∞,Ω∞)
adjunction. The horizontal maps are equivalences by induction on the Taylor tower of G (by
the argument of [1, 4.1.1] and using the fact that Tot commutes with holim), and the right-
hand vertical map is an equivalence by the case already considered. Therefore the map α is an
equivalence for arbitrary G. This completes the proof of Theorem 3.1. �

Remark 3.10. A key part of the proof of Theorem 3.1 was the construction of the
equivalence

for a functor G : C → T op∗. In particular, when G = IT op∗ , we get

∂∗IT op∗ � holim
L→∞

∂∗(Σ∞ΣLΩL).

The terms in the homotopy limit on the right-hand side turn out to be equivalent to the operads
K(EL) given by the Koszul duals of the stable little L-discs operad, themselves equivalent to
desuspensions of those little disc operads by [9], and this formula expresses ∂∗IT op∗ as the
inverse limit of a ‘pro-operad’. Similarly, we have an equivalence

∂∗ISp � ∂∗Ω∞ � holim
L→∞

∂∗(Σ∞ΣLΩLΩ∞) � holim
L→∞

S−L

which expresses ∂∗ISp as the inverse limit of a pro-operad whose components are certain operads
S−L formed by desuspensions of the sphere operad.

In [3], Arone and the author showed that these two pro-operads classify the Taylor towers of
functors T op∗ → Sp and Sp → Sp, respectively. We believe that an analogous pro-operad can
be constructed for any pointed, compactly generated ∞-category C. The inverse limit of this
pro-operad is equivalent to the operad ∂∗IC and modules over the pro-operad should classify
the Taylor towers of functors C → Sp.

Remark 3.11. Theorem 3.1 provides models of the derivatives of a functor F : C → D that
admit natural composition maps in the following sense. Define a collection DF of spectra by

DF (X1, . . . , Xn;Y ) := NatFD (∂1(−)(Y ), (∂1(−)(X1) ⊗ · · · ⊗ ∂1(−)(Xn))(− ◦ F ))
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INFINITY-OPERADS AND DAY CONVOLUTION 1219

for X1, . . . , Xn ∈ Sp(C) and Y ∈ Sp(D). By Theorem 3.1, these spectra are the derivatives of
F . Note that DIC is the same collection of spectra as in the coloured operad IC in Remark 2.7.

Now suppose we have reduced functors F : C → D and G : D → E that preserve filtered
colimits. Then we can build maps of the form

where Z ∈ Sp(E), Y1, . . . , Yk ∈ Sp(D) and each Xi is a sequence of objects in Sp(C). In
particular, the derivatives DF form a bimodule over the operads IC and ID described in
Remark 2.7, at least up to homotopy. This structure is made precise, in the context of
∞-operads, in Section 6.

4. Stable ∞-operads and derivatives of the identity

In this section we provide a formal definition of the operad IC of Remark 2.7 in the context of
Lurie’s theory of ∞-operads. Here is an outline of our main construction.

We start by describing a symmetric monoidal ∞-category that represents the objectwise
smash product of functors C → Sp, and hence the desired monoidal product on FC . Then we
turn to the Day convolution, using a construction of Lurie to describe a symmetric monoidal
∞-category that represents the convolution of functors FC → Sp.

Some care is needed here because the ∞-category FC is not small. However, it is generated
under filtered colimits by a small symmetric monoidal subcategory Fω

C . We construct a
symmetric monoidal ∞-category Fun(Fω

C ,Sp)⊗ that represents the Day convolution of functors
Fω

C → Sp, and note that the proof of Theorem 2.4 carries over to this context.
As Remark 2.7 shows, we are interested in morphisms into the Day convolution rather

than out of it, so we next apply work of Barwick, Glasman and Nardin [4] to construct a
symmetric monoidal ∞-category Fun(Fω

C ,Sp)op,⊗ with the same monoidal product, that is,
Day convolution, but with the opposite underlying ∞-category.

Finally, in Definition 4.19, we restrict to the full subcategory of Fun(Fω
C ,Sp)op,⊗ generated

by those objects of the form ∂1(−)(X) for X ∈ Sp(C). The resulting ∞-operad I
⊗
C is a precise

version of the operad described informally in Remark 2.7.
We should also note that all the ∞-operads appearing in our work, including the symmetric

monoidal structures, are non-unital in the sense that they do not encode unit objects. We start
our description of these constructions by recalling the basic theory of ∞-operads from [21] with
some slight adjustment to take into account our focus on the non-unital case. The language
of (co)cartesian edges and fibrations from [20, 2.4] features heavily in the remainder of this
paper.

Definition 4.1. Let Surj∗ be the category whose objects are pointed finite sets and
whose morphisms are surjections which preserve the basepoint. We write 〈n〉 := {∗, 1, . . . , n}.
A morphism in Surj∗ is inert if the inverse image of every non-basepoint contains exactly
one element. For example, let ρi : 〈n〉 → 〈1〉 denote the inert morphism with ρi(i) = 1 and
ρi(j) = ∗ for j �= i. A morphism is active if the inverse image of the basepoint consists only of
the basepoint.

A non-unital ∞-operad is a map of ∞-categories of the form

p : O⊗ → Surj∗
that satisfies the following conditions:
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1220 MICHAEL CHING

(i) for every object X ∈ O⊗, every inert morphism α in Surj∗ with source p(X) has a
p-cocartesian lift ᾱ in O⊗ with source X;

(ii) for every n � 0, the p-cocartesian lifts ρ̄i determine an equivalence of ∞-categories

ρ̄ : O⊗
〈n〉 � (O⊗

〈1〉)
n

where O⊗
〈n〉 denotes the fibre p−1(〈n〉);

(iii) for every morphism α : 〈m〉 → 〈n〉 in Surj∗ and every pair of objects X,Y ∈ O⊗ with
p(Y ) = 〈n〉, the p-cocartesian lifts ρ̄i : Y → Yi determine an equivalence

HomO⊗(X,Y )α −̃→
n∏

i=1

HomO⊗(X,Yi)ρiα

between spaces of morphisms for the ∞-category O⊗; we use a subscript to denote the
subspace consisting of those morphisms that map by p to the given map in Surj∗.

Since all ∞-operads appearing in this paper are non-unital, we drop that adjective. We also
commonly leave the map p implied and refer to the ∞-operad O⊗. We write O = O⊗

〈1〉 and
refer to this as the underlying ∞-category for the ∞-operad O⊗.

Remark 4.2. An object X ∈ O⊗ with p(X) = S can be identified with a collection of
objects of O indexed by S: a bijection α : S ∼= 〈n〉 induces a sequence of equivalences

Based on this observation, we typically use a finite sequence of objects in O as a representative
for an arbitrary object of O⊗. For example, in part (iii) of Definition 4.1 we identify the object
Y with the sequence (Y1, . . . , Yn).

Remark 4.3. An ∞-operad O⊗ is an ∞-categorical version of a simplicial coloured operad
whose colours are the objects of the underlying ∞-category O. Given objects X1, . . . , Xn, Y ∈
O, for n � 1, we write

HomO⊗(X1, . . . , Xn;Y ) := HomO⊗((X1, . . . , Xn), Y )〈n〉→〈1〉

for the fibre of the morphism space in O⊗ over the unique active morphism 〈n〉 → 〈1〉 in Surj∗.
We call these spaces the multimorphism spaces of the ∞-operad O⊗. They admit composition
maps that are associative up to homotopy and through which we can view O⊗ as the analogue
of a coloured operad (or symmetric multicategory) enriched in simplicial sets. The definition
of ∞-operad ensures that all mapping spaces for O⊗ are determined by the multimorphism
spaces described here.

Definition 4.4. Given ∞-operads p1 : O⊗
1 → Surj∗ and p2 : O⊗

2 → Surj∗, a map of ∞-
operads g : O⊗

1 → O⊗
2 is a functor g such that p2 ◦ g = p1, and that sends p1-cocartesian lifts

in O⊗
1 of inert maps in Surj∗ to p2-cocartesian lifts in O⊗

2 . An equivalence of ∞-operads is a
map of ∞-operads that is an equivalence on the underlying ∞-categories.

Definition 4.5. Let p : O⊗ → Surj∗ be an ∞-operad, and let O′ be a full subcategory of
the underlying ∞-category O. Then we let O′⊗ be the full subcategory of O⊗ whose objects
are those equivalent (via the identifications of Remark 4.2) to sequences (X1, . . . , Xn) where
X1, . . . , Xn ∈ O′. The restriction of p to O′⊗ is also an ∞-operad, and the inclusion O′⊗ → O⊗

is a map of ∞-operads. We refer to O′⊗ as the suboperad of O⊗ generated by O′.
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INFINITY-OPERADS AND DAY CONVOLUTION 1221

Definition 4.6. A non-unital symmetric monoidal ∞-category is a non-unital ∞-
operad p : C⊗ → Surj∗ such that p is a cocartesian fibration. This condition implies that for
X1, . . . , Xn, Y ∈ C, we have

HomC⊗(X1, . . . , Xn;Y ) � HomC(X1 ⊗ · · · ⊗Xn, Y )

for some object X1 ⊗ · · · ⊗Xn that depends functorially on X1, . . . , Xn, and such that the
operation ⊗ is associative and commutative up to higher coherent homotopies. This definition
mimics the way in which a symmetric monoidal category can be expressed as a coloured operad.

A map of ∞-operads g : C⊗
1 → C⊗

2 between non-unital symmetric monoidal ∞-categories is
symmetric monoidal if it takes all cocartesian morphisms in C⊗

1 to cocartesian morphisms in
C⊗
2 .

The ∞-operads we study in this paper are stable in the following sense.

Definition 4.7. An ∞-operad O⊗ is stable if the underlying ∞-category O is stable (in
the sense of [21, 1.1.1.9]) and, for each n � 1, the functor

(Oop)n ×O → T op; (X1, . . . , Xn, Y ) �→ HomO⊗(X1, . . . , Xn;Y )

preserves finite limits in each variable. In that case, those functors are linear in each variable
and so factor via corresponding spectrum-valued functors which we denote

MapO⊗(X1, . . . , Xn;Y ).

We refer to these objects as the multimorphism spectra of the stable ∞-operad O⊗.

Example 4.8. A symmetric monoidal ∞-category C⊗ is stable if and only if C is stable
and the monoidal product ⊗ is exact (that is, preserves finite limits and finite colimits) in each
variable. In that case we have

MapC⊗(X1, . . . , Xn, Y ) � MapC(X1 ⊗ · · · ⊗Xn, Y ).

Example 4.9. There is a non-unital symmetric monoidal ∞-category Sp∧ → Surj∗ whose
underlying ∞-category is Sp and whose monoidal structure represents the ordinary smash
product of spectra. See [21, 4.8.2] for the unital version which is a cocartesian fibration Sp∧u →
F in∗. The corresponding non-unital ∞-operad is given by pulling back this fibration along the
inclusion Surj∗ → F in∗.

Example 4.10. Let O⊗ be a stable ∞-operad with O equivalent to the ∞-category of finite
spectra. Then the multimorphism spectra for O⊗ are determined by their values on the sphere
spectrum. In particular, the data of O⊗ are determined by the symmetric sequence of spectra

O(n) := MapO⊗(S0, . . . , S0︸ ︷︷ ︸
n

;S0)

together with appropriate composition maps (that are associative up to higher coherent
homotopies). In this way, O⊗ can be viewed as the ∞-categorical version of an ordinary
monochromatic operad of spectra.

We now turn to the main subject of this section, and we start with the construction of a
symmetric monoidal ∞-category that represents the objectwise smash product on FC .

 14697750, 2021, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12458 by U

niversity O
f R

ochester, W
iley O

nline L
ibrary on [14/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1222 MICHAEL CHING

Construction 4.11. Consider the pullback of simplicial sets of the form

where the right-hand map is induced by the cocartesian fibration Sp∧ → Surj∗ and the bottom
map sends a finite pointed set to the constant functor with that value. The induced map pC is
then also a cocartesian fibration of ∞-operads, with fibres

Fun(C,Sp)∧〈n〉 � Fun(C,Sp∧〈n〉).

Thus pC is a (non-unital) symmetric monoidal ∞-category with underlying ∞-category
Fun(C,Sp) and monoidal product given by the objectwise smash product of functors; see [21,
2.1.3.4].

Definition 4.12. Let F∧
C → Surj∗ denote the restriction of the symmetric monoidal ∞-

category pC of Construction 4.11 to the full subcategory generated by those functors C → Sp
that are reduced and preserve filtered colimits. Since this collection of functors is closed under
the objectwise smash product, F∧

C is also a non-unital symmetric monoidal ∞-category. (Note
that we are forced to deal with a non-unital symmetric monoidal structure because the unit
object for the objectwise smash product is not a reduced functor.)

Our next goal is to describe a non-unital symmetric monoidal ∞-category that represents the
Day convolution of functors introduced in Definition 2.2. We use a construction of Lurie from
[21, 2.2.6]. Glasman [13] describes a similar construction for ordinary (that is, not non-unital)
symmetric monoidal ∞-categories.

Construction 4.13. Let C⊗ and D⊗ be non-unital symmetric monoidal ∞-categories such
that C is small, D admits all small colimits, and the monoidal structure on D preserves colimits
in each variable. Applying [21, 2.2.6.7] with O⊗ = Surj∗, we get a non-unital symmetric
monoidal ∞-category Fun(C,D)⊗ with the following universal property: for any ∞-operad
A⊗, there is an equivalence between the ∞-categories of ∞-operad maps A⊗ → Fun(C,D)⊗

and ∞-operad maps A⊗ ×Surj∗ C⊗ → D⊗.

We would like to apply 4.13 to functors FC → Sp, but since FC is not small, we cannot do
this directly. However, FC is a compactly generated ∞-category, that is, is generated under
filtered colimits by the small subcategory Fω

C of compact objects.

Lemma 4.14. Let C be a pointed compactly generated ∞-category. Then the ∞-category
FC is compactly generated and the subcategory Fω

C of compact objects is closed under the
objectwise smash product of functors.

Proof. Let R ⊆ FC be the full subcategory generated by the representable functors, that is,
those of the form Rx := Σ∞ HomC(x,−) for some compact object x ∈ C. It is a standard conse-
quence of the Yoneda Lemma 2.10, and the fact that equivalences in FC are detected objectwise
on compact objects in C, that an arbitrary F ∈ FC is the colimit of the canonical diagram

F � colim
Rx→F

Rx,

 14697750, 2021, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12458 by U

niversity O
f R

ochester, W
iley O

nline L
ibrary on [14/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



INFINITY-OPERADS AND DAY CONVOLUTION 1223

indexed by the overcategory R/F . It follows, by the argument of [20, 5.3.4.17], that an arbitrary
F is a filtered colimit of finite colimits of diagrams in R, and therefore that the compact
objects in FC are the retracts of those finite colimits. In particular, FC is compactly generated.

Finally, from Lemma 2.11 it follows that the objectwise smash product of two representable
functors is compact, since the cross-effect construction commutes with filtered colimits. Thus,
the objectwise smash product of any two compact functors is compact. �

Definition 4.15. Let (Fω
C )∧ → Surj∗ be the suboperad of the symmetric monoidal ∞-

category pC of Definition 4.12 generated by the compact objects in FC . By [21, 2.2.1.1], this
suboperad is an essentially small stable symmetric monoidal ∞-category.

Definition 4.16. Applying Construction 4.13 to the symmetric monoidal ∞-category of
the previous paragraph, we get a new stable non-unital symmetric monoidal ∞-category

qC : Fun(Fω
C ,Sp)⊗ → Surj∗.

To proceed to the definition of the ∞-operad I
⊗
C , we need one more general construction.

Construction 4.17. Let q : E⊗ → Surj∗ be a non-unital symmetric monoidal ∞-category.
Then Barwick, Glasman and Nardin [4, 3.6] define another non-unital symmetric monoidal
∞-category q∨,op : Eop,⊗ → Surj∗ that represents the induced symmetric monoidal structure
on the opposite ∞-category of E . Note that when E⊗ is stable, so is Eop,⊗.

Definition 4.18. Applying 4.17 to the non-unital symmetric monoidal ∞-category qC of
Definition 4.16, there is a stable non-unital symmetric monoidal ∞-category

q∨,op
C : Fun(Fω

C ,Sp)op,⊗ → Surj∗
that represents the monoidal structure corresponding to Day convolution on the opposite
∞-category of the category of functors Fω

C → Sp. Note that the multimorphism spectra in
Fun(Fω

C ,Sp)op,⊗ are given by the mapping spectra

NatFω
C (A,B1 ⊗ · · · ⊗Bn),

where ⊗ denotes the Day convolution of functors Fω
C → Sp. Comparing with Remark 2.7, this

observation motivates the following definition, which is the central construction of this paper.

Definition 4.19. Let C be a pointed compactly generated ∞-category. Then let I
⊗
C be

the suboperad of the symmetric monoidal ∞-category Fun(Fω
C ,Sp)op,⊗ generated, in the sense

of 4.5, by those objects essentially of the form

∂1(−)(X) : Fω
C → Sp

for X ∈ Sp(C). We usually denote the object ∂1(−)(X) of the underlying ∞-category IC simply
by X.

Proposition 4.20. The ∞-operad I
⊗
C is stable and has multimorphism spectra

Map
I
⊗
C
(X1, . . . , Xn;Y ) � ∂nIC(X1, . . . , Xn;Y ).

In particular, the underlying ∞-category of I
⊗
C is equivalent to Sp(C)op.

Proof. Since I
⊗
C is a full subcategory of a stable symmetric monoidal ∞-category, it has

multimorphism spectra given by

Map
I
⊗
C
(X1, . . . , Xn;Y ) � NatFω

C (∂1(−)(Y ), ∂1(−)(X1) ⊗ · · · ⊗ ∂1(−)(Xn)).
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1224 MICHAEL CHING

Note that the tensor symbol on the right-hand side here denotes Day convolution for functors
Fω

C → Sp, rather than FC → Sp, so we cannot directly apply Theorem 2.4. However, the
functors ∂1(−)(Xi) and ∂n(−)(X1, . . . , Xn) all preserve filtered colimits, so are equivalent to
the left Kan extensions of their restrictions to Fω

C ⊆ FC (by [20, 5.3.5.8(2)]). It follows that
the Day convolution calculated in the subcategory Fω

C is equivalent to that calculated over FC .
We thus have, by Theorem 2.4,

Map
I
⊗
C
(X1, . . . , Xn;Y ) � NatFω

C (∂1(−)(Y ), ∂n(−)(X1, . . . , Xn)).

Since ∂1(−)(Y ) also preserves filtered colimits, a similar argument implies that in fact

Map
I
⊗
C
(X1, . . . , Xn;Y ) � NatFC (∂1(−)(Y ), ∂n(−)(X1, . . . , Xn))

which yields the desired formula by Corollary 3.2.
In particular, the underlying ∞-category of I

⊗
C has mapping spectra

Map
IC (X,Y ) � ∂1(IC)(X;Y ) � MapSp(C)(Y,X)

so is equivalent to Sp(C)op. It also now follows that the ∞-operad I
⊗
C is stable. �

Remark 4.21. It is sometimes convenient to restrict I
⊗
C to the small ∞-operad Ǐ

⊗
C ⊆ I

⊗
C

whose underlying objects are the functors ∂1(−)(X) for compact objects X in Sp(C). Since
Sp(C) is compactly generated by [21, 1.4.3.7], those compact objects generate Sp(C) under
filtered colimits. Moreover, the functor ∂nIC preserves filtered colimits in each of its variables,
and so the previous proposition shows that the ∞-operad I

⊗
C is determined by its restriction

to these compact objects in a canonical way.

Remark 4.22. The ∞-operad I
⊗
C satisfies the additional property of being corepresentable

in the sense of [21, 6.2.4.3], that is, the structure map I
⊗
C → Surj∗ is a locally cocartesian

fibration. In other language, we can think of I
⊗
C as encoding an oplax normal symmetric

monoidal structure on the underlying ∞-category Sp(C)op or, equivalently, a lax normal
symmetric monoidal structure on Sp(C) in the sense of [12].

More explicitly, this lax monoidal structure consists of the functors

Δn(IC) : Sp(C)n → Sp(C)

associated to the layers in the Taylor tower of IC , together with suitably compatible natural
transformations

Δn(IC)(X1, . . . ,Δr(IC)(Y1, . . . , Yr), . . . , Xn) → Δn+r−1(IC)(X1, . . . , Y1, . . . , Yr, . . . , Xn).

Such a structure is also referred to sometimes as a functor-operad [24, 2.7].

Lemma 4.23. The ∞-operad map I
⊗
C → Surj∗ is a locally cocartesian fibration.

Proof. This follows from [21, Remark 6.2.4.5] and the natural equivalences

Map
I
⊗
C
(X1, . . . , Xn;Y ) � ∂n(IC)(X1, . . . , Xn;Y ) � MapSp(C)(Y,Δn(IC)(X1, . . . , Xn))

of 4.20 and 1.1. �

We have therefore proved the following result, which verifies [21, Conjecture 6.3.0.13].

Proposition 4.24. Let C be a pointed compactly generated ∞-category. Then there is a
stable corepresentable ∞-operad I

⊗
C with underlying ∞-category Sp(C)op whose corresponding

lax monoidal structure consists of the symmetric multilinear functors

Δn(IC) : Sp(C)n → Sp(C)

associated to the Taylor tower of IC .
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INFINITY-OPERADS AND DAY CONVOLUTION 1225

Remark 4.25. One would expect there to be a close relationship between the ∞-operad I
⊗
C

constructed here and Lurie’s ∞-operad Sp(C)⊗ of [21, 6.3.0.14]. As described in [21, 6.3.0.17],
we expect these two ∞-operads to be Koszul dual, but as far as we know a theory of Koszul
duality for (stable) ∞-operads has not yet been sufficiently developed to allow this conjecture
to be verified.

5. Stable algebras over ∞-operads

We now turn to our main example: the case where C is an ∞-category of algebras over a
(non-unital) stable ∞-operad. In particular, this covers the ‘classical’ case of algebras over a
(reduced) operad of spectra: for example, the reader may have in mind (non-unital) A∞- or
E∞-ring spectra.

Let O⊗ be a stable non-unital ∞-operad, and let AlgO⊗ be the category of stable O⊗-algebras
defined in 5.1. It is a well-known slogan in Goodwillie calculus that the derivatives of the identity
functor on AlgO⊗ should be equivalent to O⊗ itself. For example, in the monochromatic case a
model for the Taylor tower for the identity on AlgO⊗ is constructed by Pereira in [23], where
the derivatives can be read off directly as the terms of the operad O⊗. This tower was also
studied by Harper and Hess in [18]. The goal of this section is to improve that slogan to a
version that takes the operad structures into account.

We are therefore interested in comparing the ∞-operad I
⊗
AlgO⊗ , given by applying Defini-

tion 4.19 to AlgO⊗ , with the ∞-operad O⊗ itself. We will see, however, that the underlying
∞-categories of these two ∞-operads are not equivalent, thus precluding an actual equivalence
of ∞-operads. Instead, we can identify I

⊗
AlgO⊗ with an ∞-operad Pro(O)⊗

ex
whose underlying

∞-category is that of pro-objects in O. There is a fully faithful embedding of O⊗ into
Pro(O)⊗

ex
, so we can identify O⊗ with a full suboperad of I

⊗
AlgO⊗ .

Moreover, we show that the inclusion of this suboperad induces an equivalence

Alg
I
⊗
AlgO⊗

−̃→ AlgO⊗

which we take to mean that I
⊗
AlgO⊗ is Morita-equivalent to O⊗. This is our most precise version

of the slogan mentioned at the beginning of this section.

Definition 5.1. Let O⊗ be a small stable non-unital ∞-operad. A stable O⊗-algebra is a
map of (non-unital) ∞-operads

X : O⊗ → Sp∧

such that the underlying functor X : O → Sp is exact. Let AlgO⊗ denote the ∞-category of
stable O⊗-algebras, a full subcategory of Fun(O⊗,Sp∧).

Example 5.2. Let O be an ordinary reduced monochromatic operad in the symmetric
monoidal model category of spectra. As described in Example 4.10, O corresponds to a stable
∞-operad O⊗ whose underlying ∞-category is equivalent to Spω, the ∞-category of finite
spectra. The ∞-category AlgO⊗ is then equivalent to that of fibrant–cofibrant objects in the
projective model structure on the category of (non-unital) O-algebras. For example, if O is
the ordinary commutative operad, then AlgO⊗ is equivalent to the ∞-category of (non-unital)
E∞-ring spectra.

Lemma 5.3. For a small stable non-unital ∞-operad O⊗, the ∞-category AlgO⊗ is pointed
and compactly generated.
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1226 MICHAEL CHING

Proof. Let Algun
O⊗ be the ∞-category of all O⊗-algebras in Sp (that is, the ∞-operad maps

O⊗ → Sp∧ with no restriction on exactness of the underlying functor). Then we have a pullback
of ∞-categories:

where Funex(O,Sp) ⊆ Fun(O,Sp) is the subcategory of exact functors.
The ∞-category Algun

O⊗ is compactly generated by [21, 5.3.1.17], and the forgetful functor U
has a left adjoint by the adjoint functor theorem [20, 5.5.2.9], since limits and filtered colimits
of O-algebras are calculated objectwise by [21, 3.2]. The ∞-category Funex(O,Sp) is closed
under all limits and colimits in Fun(O,Sp) and the inclusion admits a left adjoint Dex given
by the Goodwillie excisive approximation (applied to the reduction of a functor O → Sp). It
follows from [20, 5.5.7.3] that Funex(O,Sp) is compactly generated.

By [20, 5.5.3.18], the pullback diagram above is also a pullback in the ∞-category of
presentable ∞-categories and right adjoint functors. It follows that the inclusion AlgO⊗ →
Algun

O⊗ has a left adjoint, and so, by [20, 5.5.7.3] again, AlgO⊗ is compactly generated. Finally,
AlgO⊗ is pointed with the constant trivial functor as a null object. �

Remark 5.4. The proof of Lemma 5.3 also shows that the forgetful functor

U : AlgO⊗ → Funex(O,Sp)

has a left adjoint F , the free (stable) O⊗-algebra functor.

We now wish to calculate the derivatives of the identity functor on AlgO⊗ , and the first
step is to identify the stabilization of this ∞-category of algebras. The following result is a
generalization of a theorem of Basterra and Mandell [5].

Proposition 5.5. Let O⊗ be a small stable non-unital ∞-operad. Then there is an
equivalence of ∞-categories

Sp(AlgO⊗) � Funex(O,Sp),

where O is the underlying ∞-category of O⊗, and the right-hand side is the ∞-category of
exact functors O → Sp.

Proof. We apply a version of [21, 7.3.4.7] to the stable O-monoidal ∞-category

O⊗ ×Surj∗ Sp∧ → O⊗.

That result is stated by Lurie for unital ∞-operads, but a similar proof applies in the non-unital
case. In particular, we apply [21, 6.2.2.17] to the free-forgetful adjunction between AlgO⊗ and
Funex(O,Sp). �

Proposition 5.5 implies that I
⊗
AlgO⊗ is an ∞-operad whose underlying ∞-category is

equivalent to Funex(O,Sp)op. That ∞-category, however, has another interpretation.

Definition 5.6. Let C be a small ∞-category that admits finite limits. Then the ∞-category
of pro-objects on C is the full subcategory

Pro(C) ⊆ Fun(C, T op)op
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INFINITY-OPERADS AND DAY CONVOLUTION 1227

consisting of those functors C → T op that preserve finite limits (see [20, 5.3.5.4] for a dual
description of ind-objects).

Lemma 5.7. If C is a small stable ∞-category, then composition with Ω∞ determines an
equivalence

Funex(C,Sp)op −̃→ Pro(C).

In particular, for a small stable ∞-operad O⊗, there is an equivalence

Sp(AlgO⊗)op � Pro(O).

Proof. A functor C → T op that preserves finite limits is excisive and linear (since C is stable)
and hence by [21, 6.1.2.9] factors via Ω∞ and an exact functor C → Sp. Conversely, any functor
that factors in this way preserves finite limits. �

Example 5.8. Let O⊗ be a stable non-unital ∞-operad whose underlying ∞-category is
that of finite spectra, corresponding to an ordinary operad O of spectra as in Example 4.10.
Then Sp(AlgO⊗) � Sp, and I

⊗
AlgO⊗ is a corepresentable stable non-unital ∞-operad whose

underlying ∞-category is equivalent to Pro(Spω) � Spop. Such an object can also be identified
with an ordinary operad O.

The goal of the rest of this section is to identify the ∞-operad structure on Pro(O) that
corresponds to the derivatives of the identity on AlgO⊗ . To describe that structure we use the
monoidal envelope construction.

Definition 5.9 [21, 2.2.4.1]. Let O⊗ → Surj∗ be a small non-unital ∞-operad. The
symmetric monoidal envelope of O⊗ is the non-unital symmetric monoidal ∞-category

O⊗
act → Surj∗,

where O⊗
act := O⊗ ×Surj∗ Act(Surj∗) and Act(Surj∗) is the category of active morphisms in

Surj∗ (where objects are active morphisms and morphisms are commutative squares).
The objects of the underlying ∞-category Oact can be identified with the objects of O⊗,

that is, finite sequences of objects in O. For each n � 0, we can identify On with a subcategory
of Oact, whose objects are the sequences of length n and whose morphisms are those that cover
the identity map on 〈n〉. Note that the empty sequence (the case n = 0) is disjoint from the
rest of the ∞-category Oact because there are no active surjections between 〈0〉 and any other
object of Surj∗.

Remark 5.10. The symmetric monoidal ∞-category O⊗
act has the following universal

property: for any symmetric monoidal ∞-category D⊗, there is an equivalence between the
∞-category of ∞-operad maps O⊗ → D⊗ and that of symmetric monoidal functors O⊗

act → D⊗.

The ∞-operad structure on Pro(O) is based on a version of Day convolution for functors
Oact → Sp that are exact in the following sense.

Definition 5.11. We say that F : Oact → Sp is exact if, for each n � 1, the restriction
F |On : On → Sp is exact in each variable, and F () � ∗. (That is, on the empty sequence in
Oact, F is null.) Let Funex(Oact,Sp) denote the full subcategory of Fun(Oact,Sp) consisting
of the exact functors.

Lemma 5.12. The inclusion Funex(Oact,Sp) → Fun(Oact,Sp) admits a left adjoint Dex.
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1228 MICHAEL CHING

Proof. We show that Funex(Oact,Sp) is a strongly reflective subcategory of Fun(Oact,Sp)
in the sense of [20, 5.5.4.17]. Now Funex(Oact,Sp) is the intersection of a (small) collection of
subcategories of Fun(Oact,Sp), each determined by the condition that a particular restriction
to O is exact. To be precise, there is such a restriction for each n � 1, each 1 � i � n, and each
sequence of objects J1, . . . , Ji−1, Ji+1, . . . , Jn ∈ O. The corresponding restriction is along the
inclusion

O ↪→ Oact; I �→ (J1, . . . , Ji−1, I, Ji+1, . . . , Jn).

The subcategory of functors that restrict to an exact functor along this inclusion is given by a
pullback (of ∞-categories) of the form

where rα is restriction along the relevant inclusion O ↪→ Oact. By the adjoint functor theorem,
the map rα has a left adjoint, as does the bottom inclusion; see the proof of Lemma 5.3.
Thus, by [20, 5.5.3.18], the above pullback can be done in the ∞-category of presentable ∞-
categories and right adjoints. In particular, Funex

α (Oact,Sp) is a strongly reflective subcategory
of Fun(Oact,Sp). Therefore, by [20, 5.5.4.18],

Funex(Oact,Sp) =
⋂
α

Funex
α (Oact,Sp)

is also strongly reflective. �

Definition 5.13. Applying Construction 4.13 to Oact we obtain a (non-unital) stable
symmetric monoidal ∞-category

Fun(Oact,Sp)⊗

with symmetric monoidal structure given by Day convolution. Let

Funex(Oact,Sp)⊗
ex ⊆ Fun(Oact,Sp)⊗

be the suboperad generated by the exact functors.

Lemma 5.14. There is a symmetric monoidal functor

Dex : Fun(Oact,Sp)⊗ → Funex(Oact,Sp)⊗
ex

whose underlying functor is the left adjoint to the inclusion.

Proof. The existence of the left adjoint Dex was demonstrated in Lemma 5.12. We now
apply [21, 2.2.1.9] to show that Dex extends to a symmetric monoidal functor as shown. It is
sufficient to show that the Day convolution of functors Oact → Sp preserves Dex-equivalences.
That is, suppose F1 → F2 and G1 → G2 each become equivalences after applying Dex. We have
to show that F1 ⊗ F2 → G1 ⊗G2 has the same property.

It is sufficient to show that for any exact H : Oact → Sp, the induced map

NatOact
(Dex(F2 ⊗G2), H) → NatOact

(Dex(F1 ⊗G1), H)

is an equivalence. Using the universal properties of Dex and the Day convolution, this map can
be written in the form

NatOact×Oact
(F2(−) ∧G2(−), H(−,−)) → NatOact×Oact

(F1(−) ∧G1(−), H(−,−)),
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INFINITY-OPERADS AND DAY CONVOLUTION 1229

or equivalently

NatOact
(F2(−),NatOact

(G2(−), H(−,−))) → NatOact
(F1(−),NatOact

(G1(−), H(−,−))),

where H(−,−) denotes H applied to the concatenation of its two variables (that is, the
monoidal product on Oact). Since H is exact, it is exact in each of those variables. The
hypotheses on the maps F1 → F2 and G1 → G2 therefore imply that the above map is an
equivalence. �

Remark 5.15. Lemma 5.14 tells us that the exact functors Oact → Sp have a symmetric
monoidal structure ⊗ex which we call the exact Day convolution. This structure satisfies the
same universal property as ordinary Day convolution (Definition 2.2) but with respect only to
exact functors. It follows from 5.14 that ⊗ex is given by taking the ordinary Day convolution
and then applying Dex. In fact, we believe that the ordinary convolution of exact functors
is already exact, so that this last step is unnecessary, and the inclusion of the suboperad in
Lemma 5.14 is a symmetric monoidal functor. However, we do not need this fact here, so we
do not include a proof.

We now use the exact Day convolution to define an ∞-operad structure on Pro(O).

Lemma 5.16. There is a fully faithful embedding of stable ∞-categories

where � is left Kan extension along the inclusion i : O ↪→ Oact. The essential image of � consists
of those functors F : Oact → Sp such that

(i) F (I1, . . . , In) � ∗ for any I1, . . . , In ∈ O where n �= 1;
(ii) the restriction of F to O ⊆ Oact is an exact functor O → Sp.

Proof. Since the embedding i : O ↪→ Oact is fully faithful, the Kan extension � is too, and
since there are no morphisms in Oact of the form I → (J1, . . . , Jn) for n �= 1, the functor �(F )
satisfies condition (i) and its restriction to O is given by F itself. �

Definition 5.17. Let Funex(Oact,Sp)op,⊗
ex

be the symmetric monoidal ∞-category given
by applying Construction 4.17 to the symmetric monoidal ∞-category Funex(Oact,Sp)⊗

ex
of

Definition 5.13.
Let Pro(O)⊗

ex
be the full suboperad of Funex(Oact,Sp)op,⊗

ex
generated by those functors

F : Oact → Sp that satisfy conditions (i) and (ii) of Lemma 5.16. This suboperad has underlying
∞-category equivalent (via the map �op of 5.16) to Pro(O).

Remark 5.18. We can describe the ∞-operad structure on Pro(O) in the following way.
Suppose we have exact functors X1, . . . , Xn, Y : O → Sp. Then the multimorphism spectrum

HomPro(O)⊗ex (X1, . . . , Xn;Y )

is equivalent to the spectrum of natural transformations (of functors Oact → Sp) of the form

�Y → �X1 ⊗ex · · · ⊗ex �Xn,

where ⊗ex denotes the exact Day convolution. Equivalently, this is the spectrum of natural
transformations (of functors O → Sp) of the form

Y → r(�X1 ⊗ex · · · ⊗ex �Xn),
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1230 MICHAEL CHING

where r is restriction along i : O ↪→ Oact. In other words, the ∞-operad structure on Pro(O)
is corepresented by the construction

(X1, . . . , Xn) �→ r(�X1 ⊗ex · · · ⊗ex �Xn)

which we can write, using coend notation for the Day convolution, as the functor

J �→ MapO⊗(I1, . . . , In;J) ∧I1,...,In∈O X1(I1) ∧ · · · ∧Xn(In).

The main result of this section is that the ∞-operad I
⊗
AlgO⊗ is equivalent to Pro(O)⊗

ex
. In

order to make the comparison, we require the following construction.

Definition 5.19. Let O⊗ be a small stable non-unital ∞-operad. Using Construction 4.11
we can produce a map of ∞-operads

ev : O⊗ → F∧
AlgO⊗ ⊆ Fun(AlgO⊗ ,Sp)∧

given, on underlying ∞-categories, by

I �→ evI ,

where evI : AlgO⊗ → Sp is the functor that evaluates an O⊗-algebra X at the object I ∈ O.
By the universal property of the monoidal envelope, the map ev extends canonically to a
symmetric monoidal functor

ev• : O⊗
act → F∧

AlgO⊗

given by

(I1, . . . , Ik) �→ evI1 ∧ · · · ∧ evIk .

Note that the proof of [21, 2.2.4.9] demonstrates that ev• is a (relative over Surj∗) left Kan
extension of ev along the inclusion of ∞-operads O⊗ → O⊗

act.
Finally, restriction along ev• determines a map of ∞-operads (or lax symmetric monoidal

functor)

ev∗
• : Fun(FAlgO⊗ ,Sp)⊗ → Fun(Oact,Sp)⊗

by [22, 3.8].

Remark 5.20. There is one technical wrinkle in the previous definition that we have to
be careful with. Recall that the ∞-category FAlgO⊗ is not small, and so in the construction
of IAlgO⊗ we replaced it with the small subcategory Fω

AlgO⊗ of compact objects. Since it is
unclear whether the functors evI are compact, we can simply add them in the following way.

Let F̃ω
AlgO⊗ be the (essentially) small full subcategory of FAlgO⊗ obtained from Fω

AlgO⊗
by adjoining the objects evI for all I ∈ O, and then taking closure under the objectwise
smash product. The functor ev• takes values in this (essentially small) symmetric monoidal
∞-category, and we get an associated restriction functor

ev∗
• : Fun(F̃ω

AlgO⊗ ,Sp)⊗ → Fun(Oact,Sp)⊗. (5.21)

Since F̃ω
AlgO⊗ generates FAlgO⊗ under filtered colimits, the arguments of Proposition 4.20 imply

that I
⊗
AlgO⊗ can be identified with the suboperad of Fun(F̃ω

AlgO⊗ ,Sp)op,⊗ generated by objects
of the form ∂1(−)(X) for X ∈ Sp(AlgO⊗).

Our goal now is to show that ev∗
• determines an equivalence of ∞-operads between I

⊗
AlgO⊗

and Pro(O)⊗
ex

by taking opposites and restricting to the relevant suboperads. The following
result contains the main calculation that establishes this equivalence.
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INFINITY-OPERADS AND DAY CONVOLUTION 1231

Proposition 5.22. Let J⊗ ⊆ Fun(F̃ω
AlgO⊗ ,Sp)⊗ be the monoidal subcategory consisting

of those objects of the form

∂n(−)(X1, . . . , Xn)

for X1, . . . , Xn ∈ Sp(AlgO⊗) � Funex(O,Sp). (This subcategory is closed under Day convolu-
tion by Theorem 2.4.) Then the map of ∞-operads (5.21) restricts to a symmetric monoidal
functor

ev∗
• : J

⊗ → Funex(Oact,Sp)⊗
ex
.

Proof. First note that

ev∗
•(∂n(−)(X1, . . . , Xn)) � ∂n(ev•)(X1, . . . , Xn)

is an exact functor Oact → Sp because the underlying functor of a stable O⊗-algebra is
exact, the smash product preserves colimits in each variable, and ∂n(−)(X1, . . . , Xn) preserves
colimits. So ev∗

• takes values in the ∞-operad Funex(Oact,Sp)⊗
ex

as claimed.
We then have to show that the lax symmetric monoidal functor ev∗

• is, in fact, symmetric
monoidal. The lax monoidal structure determines maps

∂1(ev•)(Y1) ⊗ex · · · ⊗ex ∂1(ev•)(Yk) → (∂1(−)(Y1) ⊗ · · · ⊗ ∂1(−)(Yk)(ev•),

where ⊗ex is the exact Day convolution of Lemma 5.14. By Theorem 2.4 we can write this map
as

∂1(ev•)(Y1) ⊗ex · · · ⊗ex ∂1(ev•)(Yk) → ∂k(ev•)(Y1, . . . , Yk), (5.23)

and it is sufficient to show that each such map is an equivalence.
Changing perspective slightly, consider the functor

ev�
• : AlgO⊗ → Funex(Oact,Sp); X �→ ev•(−)(X).

Since limits in the ∞-category Funex(Oact,Sp) are calculated objectwise, the Taylor tower
of ev�

• is the Oact-indexed diagram consisting of the Taylor towers of each of the functors
evJ1 ∧ · · · ∧ evJn

: AlgO⊗ → Sp. In other words we have a natural equivalence, of functors
Oact → Sp

Δk(ev�
•)(Y1, . . . , Yk) � Δk(ev•)(Y1, . . . , Yk) � ∂k(ev•)(Y1, . . . , Yk).

Recall from Definition 5.19 that ev• is given by an operadic left Kan extension along the
inclusion of ∞-operads O⊗ → O⊗

act. In other words, we can write ev�
• as the composite

of that Kan extension �⊗ with the forgetful functor U ′.
We can interpret the middle ∞-category in the above composite as follows. By the universal

property of Day convolution [21, 2.2.6.9], there is an equivalence

AlgO⊗
act

� CAlg(Funex(Oact,Sp)⊗
ex

), (5.24)

where the right-hand side is the ∞-category of (non-unital) commutative algebras in the
symmetric monoidal ∞-category Funex(Oact,Sp)⊗

ex
. (To be precise, that universal property

gives an equivalence at the level of all O-algebras, not just those that are stable, and for
the ordinary, not exact, Day convolution. However, the monoidal adjunction of Lemma 5.14
determines an equivalence between the ∞-categories of (i) those commutative algebras whose
underlying functor is exact, and (ii) the commutative algebras for the exact Day convolution.)
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1232 MICHAEL CHING

Now consider the following diagram of adjunctions:

(5.25)

where

(i) �⊗ is the (relative over Surj∗) left Kan extension along i : O⊗ ↪→ O⊗
act, combined with

the equivalence (5.24), and r⊗ is its right adjoint, the corresponding restriction;
(ii) (F,U) is the free-forgetful adjunction of Remark 5.4;
(iii) (F ′, U ′) is the free-forgetful adjunction for commutative algebras in the symmetric

monoidal ∞-category Funex(Oact,Sp)⊗
ex

;
(iv) the map l is as in Lemma 5.16 with right adjoint r the restriction along O ↪→ Oact.

Noting that the diagram of right adjoints commutes, it follows that the diagram of left adjoints
also commutes. Also, recall that we have identified the functor ev�

• with the composite U ′�⊗.
Our goal is therefore to calculate Δk(U ′�⊗), or equivalently Δk(U ′�⊗F ) since the derivatives

of a functor on O-algebras can be identified on free O-algebras. We thus have

∂k(ev•)(Y1, . . . , Yk) � Δk(U ′F ′�)(Y1, . . . , Yk) � Δk(U ′F ′)(�Y1, . . . , �Yk),

where the last equivalence follows from the fact that � is a left adjoint and [21, 6.1.1.30].
We have now related the derivatives of ev�

• to the derivatives of the free commutative
algebra functor in the symmetric monoidal stable ∞-category Funex(Oact,Sp)⊗

ex
which can

be calculated directly. That free algebra functor is given by

U ′F ′(X) �
∨
n�1

X⊗exn
Σn

so has Taylor tower layers

Dk(U ′F ′)(X) � X⊗exk
Σk

and derivatives

Δk(U ′F ′)(X1, . . . , Xk) � X1 ⊗ex · · · ⊗ex Xk.

Taking Xi = �Yi, we therefore have

Δk(ev•)(Y1, . . . , Yk) � (�Y1) ⊗ex · · · ⊗ex (�Yk)

from which the desired equivalence (5.23) follows. �

Remark 5.26. An informal, but perhaps more intuitive, proof of Proposition 5.22 can
be given by providing coend formulas for the various Kan extensions and Day convolutions
involved. In particular, we can calculate the derivatives

∂k(evJ )(Y1, . . . , Yk) � MapO⊗(I1, . . . , Ik;J) ∧I1,...,Ik∈O Y1(I1) ∧ · · · ∧ Yk(Ik).

A standard computation for the derivatives of a smash product of spectrum-valued functors
such as ∂k(evJ1 ∧ · · · ∧ evJn

)(Y1, . . . , Yk) then gives⎡
⎣ ∨
k�n

n∧
i=1

MapO⊗(Ii1 , . . . , Iiki
;Ji)

⎤
⎦ ∧I1,...,Ik∈O Y1(I1) ∧ · · · ∧ Yk(Ik)
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INFINITY-OPERADS AND DAY CONVOLUTION 1233

from which the equivalence (5.23) can be recovered by directly calculating the relevant (exact)
Day convolution.

We can now prove the main result of this section.

Theorem 5.27. There is a fully faithful embedding of ∞-operads

I
⊗
AlgO⊗ ↪→ Funex(Oact,Sp)op,⊗

ex

whose essential image is Pro(O)⊗
ex

.

Proof. Applying the opposite symmetric monoidal construction to the map of Propo-
sition 5.22, we get a symmetric monoidal functor (ev•)∗ : Jop,⊗ → Funex(Oact,Sp)op,⊗

ex
.

Restricting to the suboperad I
⊗
AlgO⊗ ⊆ Jop,⊗, we obtain the required map of ∞-operads.

Identification of the essential image of that map with Pro(O) follows from Lemma 5.16 and
the calculation of ∂1(ev•)(Y ) in the proof of Proposition 5.22.

It remains to show that ev∗
• induces equivalences on multimapping spectra. By Theorem 2.4,

it is enough to show that restriction along ev• induces equivalences

(5.28)

for all X1, . . . , Xn, Y ∈ Sp(AlgO⊗).
Recall from the proof of Proposition 5.22 that ∂1(ev•)(Y ) � �(Y ), so we can write the target

of the map ev∗
• as a natural transformation object over O. Precomposing with the equivalence

of Theorem 3.1, we are reduced to showing that evaluation determines an equivalence

MapSp(AlgO⊗ )(Y,ΔnIAlgO⊗ (X1, . . . , Xn)) → NatO(Y, ∂n(ev)(X1, . . . , Xn)),

that is, the canonical maps

evJΔnIAlgO⊗ → Δn(evJ ) = ∂n(evJ )

are equivalences, which follows from the fact that evJ preserves limits. �

Having identified the ∞-operad I
⊗
AlgO⊗ with Pro(O)⊗

ex
, we now wish to relate this calculation

to O⊗ itself and justify the slogan mentioned at the beginning of this section. To do this, we
show that O⊗ embeds fully faithfully, via a stable Yoneda map, into Pro(O)⊗

ex
, and hence is

equivalent to a full suboperad of I
⊗
AlgO⊗ .

Definition 5.29. Glasman shows in [13, Section 3] that a symmetric monoidal ∞-category
such as Oop,⊗

act admits a multiplicative Yoneda embedding, that is, a fully faithful symmetric
monoidal map

Yact : Oop,⊗
act → Fun(Oact, T op)⊗.

By [22, 3.7], the suspension spectrum functor Σ∞
+ : T op → Sp induces a symmetric monoidal

functor

Σ∞
+ : Fun(Oact, T op)⊗ → Fun(Oact,Sp)⊗.
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1234 MICHAEL CHING

Composing Yact with Σ∞
+ , and with the symmetric monoidal functor Dex of Lemma 5.14, and

then taking opposites, we get a symmetric monoidal functor, the stable Yoneda embedding

Y : O⊗
act → Funex(Oact,Sp)op,⊗

ex
.

Lemma 5.30. The restriction of Y to O⊗ ⊆ O⊗
act determines a fully faithful embedding of

∞-operads

Y : O⊗ → Pro(O)⊗
ex

; I �→ MapO(I,−).

Proof. By construction, the value of Y on an object I ∈ O is given by

Dex(Σ∞
+ HomOact

(I,−)).

Since there are no maps in Oact from I to (J1, . . . , Jn) with n �= 1, we have

Σ∞
+ HomOact

(I, (J1, . . . , Jn)) �
{

Σ∞
+ Ω∞ MapO(I, J1) if n = 1;

∗ otherwise.

Since Dex(Σ∞
+ Ω∞ MapO(I,−)) � MapO(I,−), we deduce the desired formula for Y and see

that it takes values in Pro(O).
It remains to show that Y induces equivalences of multimorphism spaces

HomO⊗(I1, . . . , In;J) → HomPro(O)⊗ex (MapO(I1,−), . . . ,MapO(In,−);MapO(J,−)).

This claim follows from the calculation of the operad structure on Pro(O)⊗
ex

given in
Remark 5.18. �

In combination with Theorem 5.27, Lemma 5.30 allows us to identify O⊗ with a suboperad
of I

⊗
AlgO⊗ .

Theorem 5.31. Let O⊗ be a small stable non-unital ∞-operad. The suboperad of I
⊗
AlgO⊗

generated by the representable pro-objects MapO(I,−) ∈ Sp(AlgO⊗) is equivalent to O⊗.

In Remark 4.21 we noted that sometimes it makes sense to restrict to the small ∞-operad
Ǐ
⊗
C ⊆ I

⊗
C generated by the compact objects of Sp(C). If we do that with C = AlgO⊗ then we

get the small stable ∞-operad with underlying ∞-category

ǏAlgO⊗ � (Ind(Oop)ω)op

which, by [20, 5.4.2.4], is an idempotent completion of O. In particular, we have the following.

Corollary 5.32. Let O⊗ be a small stable ∞-operad with O idempotent-complete. Then
there is an equivalence of ∞-operads

Ǐ
⊗
AlgO⊗ � O⊗.

More generally, we can see that Ǐ
⊗
AlgO⊗ is Morita-equivalent to O⊗, that is, that the inclusion

induces an equivalence between the corresponding ∞-category of (stable) algebras.

Lemma 5.33. Let i : A⊗ → B⊗ be a fully faithful map of stable ∞-operads. Then the
corresponding restriction map

i∗ : AlgB⊗ → AlgA⊗

has a fully faithful left adjoint.
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INFINITY-OPERADS AND DAY CONVOLUTION 1235

Proof. Limits and filtered colimits of (stable) algebras are calculate objectwise (by [21,
3.2.2.4, 3.2.3.1]), and so i∗ preserves those (co)limits. Thus, by the adjoint functor theorem
[20, 5.5.2.9], the desired left adjoint i! exists. This left adjoint must be given by the same
formula as for not necessarily stable algebras, described in [21, 3.1.3.1]: for an A⊗-algebra X,
and object J ∈ B, we have

i!(X)(J) = colim
(I1,...,In)∈(A⊗

act)/J

X(I1) ∧ · · · ∧X(In).

Since A⊗
act is a full subcategory of B⊗

act, it follows that the counit is an equivalence

i∗i!(X) −̃→ X

and so i! is fully faithful. �

Theorem 5.34. Precomposition with the inclusion of stable ∞-operads

Ȳ : O⊗ → Ǐ
⊗
AlgO⊗

induces an equivalence of ∞-categories

Ȳ ∗ : Alg
Ǐ
⊗
AlgO⊗

−̃→ AlgO⊗ .

In other words, Ǐ
⊗
AlgO⊗ is Morita-equivalent to O⊗.

Proof. Given that Ȳ is fully faithful, Lemma 5.33 tells us that Ȳ ∗ has a fully faithful left
adjoint Ȳ!. It is then sufficient to show that Ȳ ∗ is conservative. Since equivalences of algebras
are detected on the underlying ∞-categories, this follows from the fact that ǏAlgO⊗ is an
idempotent completion of O and [20, 5.1.4.9]. �

We conclude this section by noting that there is a natural comparison map between a pointed
compactly generated ∞-category C and the ∞-category of stable algebras over I

⊗
C .

Definition 5.35. Let ev : C → Fun((Fω
C )∧,Sp∧) be adjoint to the evaluation functor

C × (Fω
C )∧ → Sp∧; (X, (F1, . . . , Fn)) �→ (F1(X), . . . , Fn(X)).

It is evident that ev takes values in symmetric monoidal functors Fω
C → Sp. Using an

equivalence similar to that of (5.24), ev can be viewed as a map

ev : C → CAlg(Fun(Fω
C ,Sp)⊗).

The Yoneda embedding for the stable symmetric monoidal ∞-category Fun(Fω
C ,Sp)⊗ of

Nikolaus [22, Section 6] determines a functor, there denoted j′St, from these commutative
algebra objects to the ∞-category of stable algebras over Fun(Fω

C ,Sp)⊗,op. Composing and
restricting to I

⊗
C we obtain the desired functor

η : C → Alg
I
⊗
C
.

For an object x ∈ C, the I
⊗
C -algebra η(x) has underlying functor

Sp(C)op → Sp; Y �→ NatFC (∂1(−)(Y ), ev(x)).

Note that when C = AlgO⊗ for a stable ∞-operad O⊗, we do not necessarily expect the map
η to be an inverse to the equivalence of Theorem 5.34.

Remark 5.36. We conjecture that η is the unit of a ‘quasi-adjunction’ [17, Section 7], or
‘lax 2-adjunction’ between the functors

C �→ Ǐ
⊗
C
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1236 MICHAEL CHING

and

O⊗ �→ AlgO⊗

which, we conjecture, can be interpreted as relating certain (∞, 2)-categories of pointed
compactly generated ∞-categories (and reduced finitary functors) and small stable non-unital
∞-operads (and bimodules between them). That quasi-adjunction would consist of adjunctions
of ∞-categories

∂∗ : Fun(C,AlgO⊗) � Bimod(O⊗, Ǐ⊗C ) : Φ

of the form examined by the author and Arone in [2] in the classification of Taylor towers of
functors of based spaces and spectra. To try to develop this theory any further is beyond the
scope of this paper, though we introduce bimodules between ∞-operads in the next section.

6. Bimodules over ∞-operads

Consider a functor F : C → D between pointed compactly generated ∞-categories. We wish
to show that the derivatives of F have the structure of a bimodule over the ∞-operads I

⊗
C

and I
⊗
D. Bimodules are studied by Lurie in [21, 3.1.2.1] under the guise of correspondences,

or Δ1-families, of ∞-operads. In order to state our conjectured chain rule, we need families of
∞-operads indexed by an arbitrary ∞-category, not just by Δ1. The following is a non-unital
version of [21, 2.3.2.10].

Definition 6.1. Let S be an ∞-category. An S-family of non-unital ∞-operads consists of
a categorical fibration

p : M⊗ → S × Surj∗
with the following properties:

(i) the restriction ps : M⊗
s → Surj∗ of p to each object s ∈ S is an ∞-operad;

(ii) for each object (X1, . . . , Xm) ∈ M⊗
s , each inert morphism α : 〈m〉 → 〈n〉 in Surj∗ has

a lift

ᾱ : (X1, . . . , Xm) → (X ′
1, . . . , X

′
n)

in M⊗
s such that ᾱ is p-cocartesian (and not merely ps-cocartesian);

(iii) for each morphism f : s → s′ in S, morphism α : 〈m〉 → 〈n〉 in Surj∗, and each pair of
objects (X1, . . . , Xm) ∈ Ms, and (Y1, . . . , Yn) ∈ Ms′ , the inert maps ρ̄i : (Y1, . . . , Yn) →
(Yi) in M⊗

s′ induce equivalences

HomM⊗((X1, . . . , Xm), (Y1, . . . , Yn))f,α �
n∏

i=1

HomM⊗((X1, . . . , Xm), (Yi))f,ρiα

between the spaces of morphisms in M⊗ that project via p to f and the given morphisms
in Surj∗.

Definition 6.2. We say that an S-family of ∞-operads M⊗ → S × Surj∗ is stable if the
∞-operad M⊗

s is stable for each s ∈ S and, for each n and each morphism f : s → s′ in S, the
functor

HomM⊗(−, . . . ,−;−)f : (Mop
s )n ×Ms′ → T op

preserves finite limits in each variable, where the multimorphism spaces are defined in the
same manner as in Remark 4.3. In this case, as in Definition 4.7, we have corresponding
multimorphism spectra MapM⊗(X1, . . . , Xn;Y )f .
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INFINITY-OPERADS AND DAY CONVOLUTION 1237

Definition 6.3. Let L⊗ and R⊗ be stable non-unital ∞-operads. An (L⊗,R⊗)-bimodule is
a stable Δ1-family of non-unital ∞-operads p : M⊗ → Δ1 × Surj∗ together with equivalences
of ∞-operads

M⊗
0 � R⊗, M⊗

1 � L⊗.

Remark 6.4. Let M⊗ be an (L⊗,R⊗)-bimodule. Then, for X1, . . . , Xn ∈ R and Y ∈ L,
the multimorphism spectra

MapM⊗(X1, . . . , Xn;Y )

have actions, on the left by the multimorphism spectra of L⊗, and on the right by the
multimorphism spectra of R⊗, that form the structure of a bimodule over the coloured operads
corresponding to L⊗ and R⊗, up to coherent homotopy.

Remark 6.5. We can think of a stable S-family of ∞-operads M⊗ → S × Surj∗ as a
diagram of operads and bimodules over them indexed by the ∞-category S:

(i) for each object s ∈ S we have an ∞-operad M⊗
s ;

(ii) for each morphism f : s0 → s1 in S we have an (M⊗
s1 ,M⊗

s0)-bimodule M⊗
f ;

(iii) for each 2-simplex

in S, we have a map of (M⊗
s2 ,M⊗

s0)-bimodules

M⊗
g ◦M⊗

s1
M⊗

f → M⊗
h ;

where the left-hand side denotes a relative composition product of two bimodules over
the ∞-operad M⊗

s1 .

The last part of this description requires some explanation. Composition in the ∞-category
M⊗ determines maps of spectra

for objects Z ∈ Ms2 , Yi ∈ Ms1 and Xij ∈ Ms0 . We can interpret these maps as a map of
(coloured) symmetric sequences from the composition product of two bimodules to the third
bimodule. Associativity of composition in the ∞-category M⊗ implies that this map factors
through a relative composition product over the ‘middle’ ∞-operad M⊗

s1 .

The aim of this section is to construct families of ∞-operads that capture the Goodwillie
derivatives of a diagram of ∞-categories, together with all the bimodule structures that those
derivatives possess. More precisely:

Goal 6.6. Let S be an ∞-category, and let

p : X → Sop
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1238 MICHAEL CHING

be a cartesian fibration that encodes a diagram of pointed compactly generated ∞-categories,
Xs for each object s ∈ S, and reduced finitary functors, Xf : Xs → Xs′ for each morphism
f : s → s′ in S. We wish to construct from p a stable family of ∞-operads

p0 : D
⊗
X → S × Surj∗

with the following properties:

(i) for each object s ∈ S, the fibre

(p0)s : (D⊗
X )s → Surj∗

is equivalent to the stable ∞-operad I
⊗
Xs

associated to the pointed compactly generated
∞-category Xs, that is, this fibre encodes the derivatives of the identity functor on Xs;

(ii) for each morphism f : s → s′ in S, the bimodule

(p0)f : (D⊗
X )f → Δ1 × Surj∗

encodes the derivatives of the reduced finitary functor Xf : Xs → Xs′ .

In particular, when the diagram consists of a single functor F : C → D, the stable family is an
(I⊗D, I

⊗
C )-bimodule D

⊗
F that consists of the derivatives of F .

When the diagram consists of a pair of functors F : C → D, G : D → E , and their composite
GF : C → E , we obtain the stable family of ∞-operads that encodes the three bimodules given
by the derivatives of these three functors, together with a map of (I⊗E , I

⊗
C )-bimodules of the

form

D
⊗
G ◦

I
⊗
D

D
⊗
F → D

⊗
GF .

In 6.27 we conjecture a chain rule which claims that this map of bimodules is an equivalence.

Remark 6.7. Here is the idea behind our construction of D
⊗
X in the case where p : X →

(Δ1)op is a cartesian fibration that represents a single reduced finitary functor F : C → D.
The functor F determines, by precomposition, a functor

F ∗ : FD → FC ; G �→ GF

which is symmetric monoidal with respect to the pointwise smash product.
The functor F ∗ in turn induces a lax symmetric monoidal functor (that is, a map of ∞-

operads) between the Day convolution monoidal structures:

F∗ : Fun(FC ,Sp)⊗ → Fun(FD,Sp)⊗; A(−) �→ A(−F ).

The functor F∗ has a left adjoint F ! given by left Kan extension along F ∗, and this left adjoint
is a symmetric monoidal functor

F ! : Fun(FD,Sp)⊗ → Fun(FC ,Sp)⊗.
Taking opposites, we get a symmetric monoidal functor

(F !)op : Fun(FD,Sp)op,⊗ → Fun(FC ,Sp)op,⊗.
Pulling back the left action of Fun(FC ,Sp)op,⊗ on itself along the map (F !)op, we get a
(Fun(FD,Sp)op,⊗,Fun(FC ,Sp)op,⊗)-bimodule M⊗ whose multimorphism spectra are given by

MapM⊗(A1, . . . , An;B) = NatFC (F !B,A1 ⊗ · · · ⊗An).

Restricting to the ∞-operads I
⊗
D and I

⊗
C , we get a bimodule D

⊗
X whose multimorphism spectra

are

Map
D

⊗
X

(X1, . . . , Xn;Y ) � NatFC (F !∂1(−)(Y ); ∂1(−)(X1) ⊗ · · · ⊗ ∂1(−)(Xn)).
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INFINITY-OPERADS AND DAY CONVOLUTION 1239

Via the universal property of the left Kan extension F ! and Theorems 2.4 and 3.1, these spectra
are equivalent to the derivatives

∂nF (X1, . . . , Xn;Y ).

Now suppose we are given an S-indexed diagram X of pointed compactly generated ∞-
categories and reduced finitary functors. Then the above procedure yields an Sop-indexed
diagram of stable symmetric monoidal ∞-categories Fun(FXs

,Sp)op,⊗ and exact symmetric
monoidal functors (X !

f )op. Such a diagram can be expressed as an S-family of stable ∞-operads

Fun(FX ,Sp)op,⊗ → S × Surj∗ (6.8)

whose fibre over s ∈ S is the symmetric monoidal ∞-category

Fun(FXs
,Sp)op,⊗ → Surj∗.

(Note the reversal here: an Sop-indexed diagram of symmetric monoidal functors is encoded as
an S-family of ∞-operads.) Finally, the desired S-family of ∞-operads

D
⊗
X → S × Surj∗

is the restriction of (6.8) to the full subcategory whose fibre over s is the ∞-operad I
⊗
Xs

⊆
Fun(FXs

,Sp)op,⊗.

Let us now carry out the precise construction envisaged in Remark 6.7. For this purpose, we
need functorial versions of the three main tools involved in that construction. We start with
the following fibrewise mapping space construction.

Definition 6.9. Let X → S and Y → S be maps of simplicial sets. We define FunS(X,Y )
to be the simplicial set over S for which an n-simplex consists of

(i) an n-simplex Δn → S;
(ii) a map Δn ×S X → Y over S;

with simplicial structure given by precomposition with simplex maps Δm → Δn in a standard
way. The construction FunS(−,−) is the internal mapping object in the cartesian closed
category of simplicial sets over S.

Here is our fibrewise version of Construction 4.11.

Construction 6.10. Let p : X → Sop be a cartesian fibration. Define a pullback of simplicial
sets

(6.11)

where the right-hand map is induced by the cocartesian fibration Sp∧ → Surj∗, and the bottom
map sends an n-simplex Δn → Sop × Surj∗ to the composite

Δn ×Sop X → Δn → Sop × Surj∗.

Proposition 6.12. Let p : X → Sop be a cartesian fibration. Then the map

p′ : FunSop(X ,Sp)∧ → Sop × Surj∗
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1240 MICHAEL CHING

of Construction 6.10 is a stable Sop-family of ∞-operads with the following properties:

(a) the map p′ is a cocartesian fibration;
(b) the fibre of p′ over s ∈ S is the symmetric monoidal ∞-category Fun(Xs,Sp)∧ of

Construction 4.11;
(c) the multimorphism spectra for p′, over f : s′ → s in Sop, are given by

MapFunSop (X ,Sp)∧(F1, . . . , Fn;G)f � NatXs
(X ∗

f (F1) ∧ · · · ∧ X ∗
f (Fn), G),

where X ∗
f denotes precomposition with the functor Xf : Xs → Xs′ in the diagram of

∞-categories classified by the cartesian fibration p.

Proof. Firstly, it follows from [20, 3.2.2.12] that the right-hand vertical map in (6.11) is
a cocartesian fibration, hence the pullback p′ is too, giving condition (a). Comparing with
Construction 4.11, the fibres of p′ are indeed the symmetric monoidal ∞-categories Fun(Xs,Sp),
satisfying (b).

To see that p is a stable Sop-family of ∞-operads, we check conditions (i)–(iii) of
Definition 6.1, and verify the conditions on Definition 6.2.

We have already seem that the fibres of p′ are stable ∞-operads, which gives (i). Since
p′ is a cocartesian fibration, the p′s-cocartesian lifts of inert morphisms in Surj∗ are also p′-
cocartesian, which gives (ii). We also know that p′ classifies an Sop × Surj∗-indexed diagram
of ∞-categories of the form

(s, 〈n〉) �→ Fun(Xs,Sp∧〈n〉),
where the arrows in this diagram are those induced by pulling back along Xf : Xs → Xs′ , for
edges f : s′ → s in Sop, and by the functors

ᾱ : Sp∧〈n′〉 → Sp∧〈n〉
associated to a morphism α : 〈n′〉 → 〈n〉 by the cocartesian fibration Sp∧ → Surj∗.

The mapping space in the ∞-category FunSop(X ,Sp)∧, over some morphism

(f, α) : (s′, 〈n′〉) → (s, 〈n〉)
in Sop × Surj∗, is then given by

HomFunSop (X ,Sp)∧((F1, . . . , Fn′), (G1, . . . , Gn))(f,α)

� HomFun(Xs,Sp∧
〈n〉)

(ᾱ(F1, . . . , Fn′)Xf , (G1, . . . , Gn)).

Since Fun(Xs,Sp∧〈n〉) � Fun(Xs,Sp)n, this formula yields condition (iii) of Definition 6.1 and
gives us the multimorphism spaces

HomFunSop (X ,Sp)∧(F1, . . . , Fn′ ;G)f � HomFun(Xs,Sp)(X ∗
f (F1) ∧ · · · ∧ X ∗

f (Fn′);G).

Finally, since X ∗
f is an exact functor and Fun(Xs,Sp) is a stable ∞-category, we get the second

part of Definition 6.2, so p′ is a stable Sop-family of ∞-operads, and hence also condition
(c). �

Let us introduce the following terminology for the type of ∞-operad family described in
Proposition 6.12.

Definition 6.13. Let S be an ∞-category. A cocartesian S-family of symmetric monoidal
∞-categories is an S-family of ∞-operads

p : C⊗ → S × Surj∗
for which the structure map p is a cocartesian fibration.
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INFINITY-OPERADS AND DAY CONVOLUTION 1241

Remark 6.14. A cocartesian S-family of symmetric monoidal ∞-categories p corresponds
to an S-indexed diagram of symmetric monoidal ∞-categories C⊗

s → Surj∗ and symmetric
monoidal functors Cf : Cs → Cs′ for each edge f : s → s′ in S. Such a family is stable if and
only if each Cs is stable and each Cf is exact. In this case the multimorphism spectra are given
by

MapC⊗(X1, . . . , Xn;Y )f � MapCs′ (Cf (X1) ⊗ · · · ⊗ Cf (Xn), Y ).

Definition 6.15. Now suppose that the cartesian fibration p : X → Sop encodes a diagram
of pointed compactly generated ∞-categories and reduced finitary functors. Let

p′′ : F∧
X → Sop × Surj∗

be the restriction of the map p′ of Construction 6.10 to the full subcategory F∧
X ⊆

FunSop(X ,Sp)∧ generated by the reduced finitary functors Xs → Sp for s ∈ S. Then p′′ is also
a stable cocartesian Sop-family of symmetric monoidal ∞-categories because each fibre is the
stable symmetric monoidal ∞-category FXs

, and the functors X ∗
f restrict to exact symmetric

monoidal functors FXs′ → FXs
.

Recall that since each FXs
is not small, we have to restrict further to compact objects before

applying the Day convolution. These objects are not necessarily preserved by the pullback
functors X ∗

f so we have to enlarge the subcategories of compact objects to include all those
functors obtained by pulling back a compact object.

Definition 6.16. Let p : X → Sop and p′′ : F∧
X → Sop × Surj∗ be as in Definition 6.15, and

let

p1 : (F̂ω
X )∧ → Sop × Surj∗

be the restriction of p′′ to the symmetric monoidal subcategories generated by those reduced
finitary functors Xs → Sp that are of the form X ∗

f (G) for some compact object G ∈ Fω
Xs′

and
some f : s → s′ in S.

Proposition 6.17. The map p1 : (F̂ω
X )∧ → Sop × Surj∗ is a stable cocartesian Sop-family of

symmetric monoidal ∞-categories for which each fibre (F̂ω
X )s is essentially small and generates

FXs
under filtered colimits.

We now wish to apply to p1 a functorial version of the Day convolution symmetric monoidal
∞-category of Construction 4.13. The following proposition summarizes what we need.

Proposition 6.18. Let p1 : C⊗ → Sop × Surj∗ be a stable cocartesian Sop-family of
symmetric monoidal ∞-categories such that each fibre Cs is essentially small. Let q : D⊗ →
Surj∗ be a stable symmetric monoidal ∞-category for which the monoidal product commutes
with colimits in each variable. Then there is a stable cocartesian Sop-family of symmetric
monoidal ∞-categories

p2 : FunSop(C,D)⊗ → Sop × Surj∗

such that

(i) the fibre of p2 over s ∈ S is the Day convolution symmetric monoidal ∞-category

(p2)s : Fun(Cs,D)⊗ → Surj∗

of Construction 4.13;
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1242 MICHAEL CHING

(ii) the multimorphism spectra over f : s′ → s in Sop are given by

MapFunSop (C,D)⊗(A1, . . . , An;B)f � MapFun(Cs,D)(C!
f (A1) ⊗ · · · ⊗ C!

f (An), B)

� MapFun(Cs,D)(C!
f (A1 ⊗ · · · ⊗An), B)

� MapFun(Cs′ ,D)(A1 ⊗ · · · ⊗An, BCf )

for A1, . . . , An : Cs′ → D and B : Cs → D. Here C!
f denotes left Kan extension along the

symmetric monoidal functor Cf : Cs′ → Cs associated to f by the family p1.

Proof. There are two parts to this construction: (i) functoriality of the Day convolution in
the variable C; (ii) formation of the left Kan extensions C!

f .
Let Cat⊗∞ be the nerve of the simplicial category whose objects are the (non-unital) symmetric

monoidal ∞-categories, and whose mapping spaces are the maximal Kan complexes in the ∞-
categories of symmetric monoidal functors. Let Cat⊗,lax

∞ be the corresponding construction with
all maps of ∞-operads, not only the monoidal functors.

Lurie’s explicit construction of Day convolution in [21, 2.2.6.18] is functorial with respect to
∞-operad maps and determines a functor

Fun(−,D)⊗ : (Cat⊗∞)op → Cat⊗,lax
∞ .

Nikolaus proves in [22, 3.8] that when F : C⊗
1 → C⊗

2 is symmetric monoidal, and under the
given conditions on D, the induced map

F ∗ : Fun(C2,D)⊗ → Fun(C1,D)⊗

admits a symmetric monoidal left adjoint F !. The functor Fun(−,D)⊗ above therefore takes
values in the subcategory

Cat⊗,lax,R
∞ ⊆ Cat⊗,lax

∞

whose morphisms are the lax monoidal functors that admit a symmetric monoidal left adjoint.
Now let Cat⊗,L

∞ ⊆ Cat⊗∞ be the subcategory whose morphisms are the symmetric monoidal
functors that admit a lax monoidal left adjoint. An argument similar to that of [20, 5.5.3.4]
implies there is an equivalence of ∞-categories

(Cat⊗,lax,R
∞ )op � Cat⊗,L

∞

that sends a lax monoidal functor to its symmetric monoidal left adjoint. Combining this
construction with the functor Fun(−,D)⊗ above, we therefore have a map

Fun!(−,D)⊗ : Cat⊗∞ → Cat⊗∞

given on objects by Construction 4.13, and which sends a symmetric monoidal functor F to
the symmetric monoidal left adjoint F !.

Our given cocartesian fibration p1 : C⊗ → Sop × Surj∗ corresponds to a functor Sop → Cat⊗∞.
Applying Fun!(−,D)⊗, we get another functor Sop → Cat⊗∞ and hence another cocartesian
family of symmetric monoidal ∞-categories p2 : FunSop(C,D)⊗ → Sop × Surj∗.

Finally, each symmetric monoidal ∞-category Fun(Cs,D)⊗ is stable, and each left adjoint
C!
f is exact, so the family p2 is stable. By construction the multimorphism spectra are given

by the desired formulas. �

Definition 6.19. Let p : X → Sop be a cartesian fibration as in Definition 6.15, and let
p1 : F̂ω

X → Sop × Surj∗ be as in Definition 6.16. Applying Proposition 6.18 with this p1 and with
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INFINITY-OPERADS AND DAY CONVOLUTION 1243

q : Sp∧ → Surj∗ the usual (non-unital) symmetric monoidal ∞-category of spectra under the
smash product, we obtain a stable cocartesian Sop-family of symmetric monoidal ∞-categories

p2 : FunSop(F̂ω
X ,Sp)⊗ → Sop × Surj∗.

The final step is to apply a fibrewise version of Construction 4.17. The details of this
construction are in Appendix B; here is what we need from it.

Proposition 6.20. Let p2 : M⊗ → Sop × Surj∗ be a stable cocartesian Sop-family of
symmetric monoidal ∞-categories corresponding to a diagram of exact symmetric monoidal
functors Mf : Ms′ → Ms between stable symmetric monoidal ∞-categories, for each f : s′ →
s in Sop. Then there is a stable S-family of symmetric monoidal ∞-categories

p3 : Mop,⊗ → S × Surj∗

such that

(i) for each s ∈ S, the fibre Mop,⊗
s → Surj∗ is equivalent to the opposite symmetric

monoidal ∞-category of M⊗
s , as in Construction 4.17;

(ii) for each f : s → s′ in S, we have multimorphism spectra

MapMop,⊗(Y1, . . . , Yn;X)f � MapMs
(Mf (X), Y1 ⊗ · · · ⊗ Yn).

Definition 6.21. Let p : X → Sop be a cartesian fibration as in Definition 6.15, and let
p2 : FunSop(F̂ω

X ,Sp)⊗ → Sop × Surj∗ be as in Definition 6.19. Applying Proposition 6.20, we
obtain a stable S-family of symmetric monoidal ∞-categories

p3 : FunSop(F̂ω
X ,Sp)op,⊗ → S × Surj∗

whose fibre over s ∈ S is the symmetric monoidal ∞-category

Fun(F̂ω
Xs

,Sp)op,⊗ → Surj∗

and with multimorphism spectra

MapF̂ω
Xs

(X !
f (A), B1 ⊗ · · · ⊗Bn)

for A : F̂ω
Xs′

→ Sp and B1, . . . , Bn : F̂ω
Xs

→ Sp, where X !
f is the left Kan extension along the

functor X ∗
f .

Definition 6.22. With p and p3 as in Definition 6.21, let D
⊗
X be the full subcategory of

FunSop(F̂ω
X ,Sp)op,⊗ whose objects over s ∈ S are those of the ∞-operad I

⊗
Xs

. Let

p0 : D
⊗
X → S × Surj∗

be the restriction of p3 to this subcategory. Recall that the objects of I
⊗
Xs

are the functors

∂1(−)(X) : FXs
→ Sp

for X ∈ Sp(Xs), and that we usually denote this object just by X.

Theorem 6.23. Let p : X → Sop be a cartesian fibration that encodes a diagram of pointed
compactly generated ∞-categories and reduced finitary functors. Then the map

p0 : D
⊗
X → S × Surj∗
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1244 MICHAEL CHING

is a stable S-family of ∞-operads whose fibre over s is the stable ∞-operad I
⊗
Xs

, and for which
the bimodule corresponding to a morphism f : s → s′ in S has multimorphism spectra given
by

Map
D

⊗
X

(X1, . . . , Xn;Y )f � ∂n(Xf )(X1, . . . , Xn;Y )

for X1, . . . , Xn ∈ Sp(Xs) and Y ∈ Sp(Xs′). Here Xf : Xs → Xs′ is the functor associated to f
by the cartesian fibration p.

Proof. The fact that p0 is a stable S-family of ∞-operads follows from the fact that p3

is, and that each I
⊗
Xs

is a stable ∞-operad. It remains to identify the multimorphism spectra.
These are a priori given by

NatF̂ω
Xs

(∂1(X ∗
f (−))(Y ), ∂1(−)(X1) ⊗ · · · ⊗ ∂1(−)(Xn))

which can be written as

NatF̂ω
Xs

(∂1(−Xf )(Y ), ∂1(−)(X1) ⊗ · · · ⊗ ∂1(−)(Xn)).

The argument of Proposition 4.20 tells us that both the Day convolution and the natural
transformation object can be calculated over FXs

instead of F̂ω
Xs

. It then follows from
Theorems 2.4 and 3.1 that the multimorphism spectra are given by

∂n(Xf )(X1, . . . , Xn;Y )

as claimed. �

Definition 6.24. Let F : C → D be a reduced finitary functor between pointed compactly
generated ∞-categories. We write

D
⊗
F → Δ1 × Surj∗

for the (I⊗D, I
⊗
C )-bimodule given by applying Definition 6.22 in the case that p is the cartesian

fibration X → (Δ1)op corresponding to the functor F . The multimorphism spectra of the
bimodule D

⊗
F are then simply the derivatives of F .

Proposition 6.25. The stable S-family of ∞-operads of Definition 6.22 is corepresentable
(that is, a locally cocartesian fibration) via the functors

Δn(Xf ) : Sp(Xs)n → Sp(Xs′)

for f : s → s′ in S.

Proof. From Theorem 6.23 and Definition 1.1 we have
Map

D
⊗
X

(X1, . . . , Xn;Y )f � ∂n(Xf )(X1, . . . , Xn;Y )

� MapSp(Xs′ )(Y,Δn(Xf )(X1, . . . , Xn))

which implies the claim. �

Remark 6.26. Proposition 6.25 can be interpreted as providing for the existence of maps
of the form

ΔkG(Δn1F, . . . ,Δnk
F ) → Δn1+···+nk

(GF )

that make the construction Δ∗ lax monoidal (up to higher coherent homotopies).

We conclude with a conjectured chain rule that generalizes that of Arone and the author for
the ∞-categories of based spaces and spectra [1].
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INFINITY-OPERADS AND DAY CONVOLUTION 1245

Conjecture 6.27. Let F : C → D and G : D → E be reduced finitary functors between
pointed compactly generated ∞-categories. Let X → (Δ2)op be the cartesian fibration that
encodes the diagram consisting of the functors F , G and GF , and let

D
⊗
X → Δ2 × Surj∗

be the associated Δ2-family of ∞-operads of Theorem 6.23. Then the corresponding map,
described in Remark 6.5, of (I⊗E , I

⊗
C )-bimodules,

D
⊗
G ◦

I
⊗
D

D
⊗
F → D

⊗
GF

is an equivalence.

One of the challenges in proving 6.27 is identifying the underlying property of a stable Δ2-
family of ∞-operads which implies that this associated map of bimodules is an equivalence. This
property should be some version of Lurie’s ‘flatness’ condition [21, B.3]. Note that [21, 3.1.4.2]
describes a consequence of that assumption in the unstable case. This result suggests that
we describe the chain rule in terms of induced functors between ∞-categories of algebras. In
particular, it seems that any stable S-family of ∞-operads should determine a locally cartesian
fibration that classifies those induced functors. The chain rule would then follow from showing
that this locally cartesian fibration is in fact cartesian in the case at hand.

We note further, however, that the proof of the chain rule in [1] depends considerably on
Koszul duality between the operad ∂∗IC and the cooperad formed by the derivatives of the
functor Σ∞Ω∞. Since that duality does not play an explicit role in the current constructions,
we might expect to need a new argument here.

Finally, we should note that Lurie proves a version of Conjecture 6.27 in [21, 6.3.2] for
coderivatives instead of derivatives. We expect the operad theory developed here to be Koszul
dual, in a suitable sense, to Lurie’s, in which case we might expect to deduce 6.27 directly from
Lurie’s results.

Appendix A. The chain rule for spectrum-valued functors

In the proof of Theorem 3.1 we needed a chain rule for composites of functors G : C → Sp and
F : Sp → Sp. The purpose of this section is to state and prove the needed result, which is a
mild generalization of [8, 1.15].

Theorem A.1. Let C be a pointed compactly generated ∞-category and let G : C → Sp
and F : Sp → Sp be reduced functors. Assume that F preserves filtered homotopy colimits.
Then for X1, . . . , Xn ∈ Sp(C) we have

where the product is over the set P(n) of unordered partitions μ of {1, . . . , n} into k pieces
μ1, . . . , μk, with nj = |μj |.

Proof. We follow the approach of [8] very closely. Indeed, many of the results proved there
carry over to this more general situation with no change. Specifically, we can construct, as in
[8, 2.5], a map

Δ : FG →
∏
λ

[Pk1 , . . . , Pkr
] crr(F )(P�1G, . . . , P�rG),
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1246 MICHAEL CHING

where λ varies over expressions of the form

n = k1�1 + · · · + kr�r,

with ki and �i positive integers such that �1 < · · · < �r. We can also prove, as in [8, 4.2], that
Δ induces an equivalence on Dn, and hence on nth derivatives. Moreover, we can show, as in
the proof of [8, 2.6], that the nth derivative of the functor

[Pk1 , . . . , Pkr
] crr(F )(P�1G, . . . , P�rG)

is equivalent to the nth derivative of the n-homogeneous functor

(∂kF ∧ (D�1G)∧k1 ∧ · · · ∧ (D�rG)∧kr )hΣk1×···×Σkr
, (A.2)

where k = k1 + · · · + kr. It now remains to calculate this nth derivative at an n-tuple
(X1, . . . , Xn) in Sp(C).

Since all the functors involved here are homogeneous, and thus factor via Σ∞
C : C → Sp(C),

we can assume without loss of generality that C is stable. Using the equivalence

D�G(X) � ∂�G(X, . . . ,X)hΣ�

we can write the functor (A.2) as mapping X to

(∂kF ∧ ∂�1G(X, . . . ,X)∧k1 ∧ · · · ∧ ∂�rG(X, . . . ,X)∧kr )hH(λ),

where H(λ) denotes the subgroup (Σ�1 � Σk1) × · · · × (Σ�r � Σkr
) of Σn formed from wreath

products. It is convenient to rewrite the formula above as

(∂kF ∧ ∂n1G(X, . . . ,X) ∧ · · · ∧ ∂nk
G(X, . . . ,X))hH(λ),

where n1, . . . , nk are the numbers �1, . . . , �r with �i repeated ki times.
Now when E : Cn → Sp is a multilinear functor, the nth derivative of the functor X �→

E(X, . . . ,X) at (X1, . . . , Xn) can be written as∏
σ∈Σn

E(Xσ(1), . . . , Xσ(n)).

It follows from all these calculations that ∂n(FG)(X1, . . . , Xn) can be expressed as

∏
λ

( ∏
σ∈Σn

∂kF ∧ ∂n1G(Xσ(1), . . . , Xσ(n1)) ∧ · · · ∧ ∂nk
G(Xσ(n−nk+1), . . . , Xσ(n))

)
hH(λ)

.

It remains to identify this expression with the formula stated in the theorem, which we do this
by showing that a choice of λ, together with a coset [σ] of H(λ) in Σn, uniquely corresponds
to an unordered partition of {1, . . . , n}.

In one direction, we map the pair (λ, [σ]) to the partition whose pieces are the sets
(σ(1), . . . , σ(n1)), . . . , (σ(n− nk + 1), . . . , σ(n)). On the other hand, given an unordered par-
tition μ, let kj be the number of pieces of size �j (determining λ). If we put the pieces of μ
in ascending size order, and concatenate them, we get an element σ ∈ Σn which determines a
coset of H(λ). This is well defined because changing the order of elements within each piece,
or the order of pieces of the same size, only changes σ by an element of H(λ). It is a simple
check that these two constructions are inverse, setting up the desired correspondence. Via this
bijection, the expression given above for ∂n(FG)(X1, . . . , Xn) corresponds with the desired
formula. �
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INFINITY-OPERADS AND DAY CONVOLUTION 1247

Appendix B. Fibrewise duals for cocartesian fibrations

The goal of this section is to prove Proposition 6.20. Recall that the opposite of a symmetric
monoidal ∞-category is built from the following general construction of [4].

Definition B.1. Let q : Y → T be a cocartesian fibration. Then there is a cartesian
fibration

q∨ : Y ∨ → T op

that classifies the same diagram of ∞-categories as q.
The construction q �→ q∨ is functorial in the following way. Let p : Y → Y ′ be a map between

cocartesian fibrations over T that takes cocartesian edges to cocartesian edges. Then p induces
a map

p∨ : Y ∨ → Y ′∨

between cartesian fibrations over T op that takes cartesian edges to cartesian edges.

Definition B.2. Let S be an ∞-category, and let p : Y → Sop × T be a map of simplicial
sets such that

(i) for each s ∈ S, the fibre ps : Ys → T is a cocartesian fibration;
(ii) each ps-cocartesian lift of a morphism in T is also p-cocartesian.

It follows that p is a map between cocartesian fibrations over T that takes cocartesian edges
to cocartesian edges. Therefore p induces a map

p∨ : Y ∨ → (Sop × T )∨ � Sop × T op

between cartesian fibrations over T op that takes cartesian edges to cartesian edges.
Taking opposites, we obtain another map

p∨,op : Y ∨,op → S × T

between cocartesian fibrations over T that takes cocartesian edges to cocartesian edges.

Definition B.3. Now let p : M⊗ → Sop × Surj∗ be a stable cocartesian Sop-family of
symmetric monoidal ∞-categories. Then p satisfies the conditions in Definition B.2, and so
determines a map

p∨,op : Mop,⊗ → S × Surj∗
between cocartesian fibrations over Surj∗ that takes cocartesian edges to cocartesian edges.
By factoring p∨,op as an acyclic cofibration followed by a fibration in the cocartesian model
structure of (naturally)marked simplicial sets over Surj∗ (see [20, 3.1.3.9]), we can assume that
p∨,op is a fibration in that model structure.

We now check that p∨,op satisfies the requirements of Proposition 6.20.

Proposition B.4. The map p∨,op : Mop,⊗ → S × Surj∗ constructed in Definition B.3
is a stable S-family of symmetric monoidal ∞-categories. The fibre of p∨,op over s ∈ S is
equivalent to the opposite symmetric monoidal ∞-category (ps)∨,op : Mop,⊗

s → Surj∗ and the
multimorphism spectra are given, for f : s → s′ in S, by

MapMop,⊗(X1, . . . , Xn;Y )f � MapMs
(Mf (Y ), X1 ⊗ · · · ⊗Xn),

where Mf : Ms′ → Ms is the symmetric monoidal functor associated to f by the original
cocartesian family p.
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1248 MICHAEL CHING

Proof. We check that p∨,op satisfies the conditions of Definition 6.1. Since p∨,op is a
cocartesian fibration, it follows from [20, 3.1.5.1] that it is also a categorical fibration.

In [4, 1.4], it is shown that (−)∨,op is a self-equivalence of the ∞-categories of cocartesian
fibrations over Surj∗, so this construction preserves fibre sequences. Therefore the fibre (p∨,op)s
is equivalent to (ps)∨,op as claimed. This observation also verifies condition (i) of Definition 6.1.

Since Mop,⊗ → Surj∗ is a cocartesian fibration, each morphism α : 〈n〉 → 〈m〉 in Surj∗ has,
for (X1, . . . , Xn) ∈ M⊗

〈n〉, a cocartesian lift

ᾱ : (X1, . . . , Xn) → (X ′
1, . . . , X

′
m),

where X ′
i =

⊗
α(i)=j Xj .

By construction, p∨,op maps ᾱ to an edge of S × Surj∗ that is also cocartesian over Surj∗. It
follows from (the dual of) [20, 2.4.1.3(3)] that each ᾱ is also p∨,op-cocartesian, which implies
(ii).

For (iii), consider objects (X1, . . . , Xn) ∈ Ms and (Y1, . . . , Ym) ∈ Ms′ , a morphism f : s → s′

in S, and a morphism α : 〈n〉 → 〈m〉 in Surj∗.
We then have

HomMop,⊗((X1, . . . , Xn), (Y1, . . . , Ym))f � Hom(M⊗)∨((Y1, . . . , Ym), (X1, . . . , Xn))fop .

Since the cartesian fibration (M⊗)∨ → Surjop∗ encodes the same diagram of ∞-categories and
functors as the cocartesian fibration M⊗ → Surj∗, the part of the above mapping space over
α is equivalent to

HomM⊗
〈m〉

((Y1, . . . , Ym), (X ′
1, . . . , X

′
m))fop

and hence to
m∏
i=1

HomMs
(Mf (Yi),

⊗
α(j)=i

Xj).

Using this decomposition, we verify part (iii) of Definition 6.1, complete the proof that the
family Mop,⊗ is stable, and obtain the desired description of its multimorphism spectra. �
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