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The purpose of the present paper is to develop in further 

detail the remarks, concerning the relationship of Kan functor 

extensions to closed structures on functor categories, made in 

"Enriched functor categories" | 1] §9. It is assumed that the reader 

is familiar with the basic results of closed category theory, 

including the representation theorem. Apart from some minor changes 

mentioned below, the terminology and notation employed are those of 

|i], |3], and |5]. 

Terminology 

A closed category V in the sense of Eilenberg and Kelly |B| 

will be called a normalised closed category, V: V o ÷ En6 being the 

normalisation. Throughout this paper V is taken to be a fixed 

normalised symmetric monoidal closed category (Vo, @, I, r, £, a, c, 

V, |-,-|, p) with V ° admitting all small limits (inverse limits) and 

colimits (direct limits). It is further supposed that if the limit 

or colimit in ~o of a functor (with possibly large domain) exists 

then a definite choice has been made of it. In short, we place on 

V those hypotheses which both allow it to replace the cartesian 

closed category of (small) sets Ens as a ground category and are 

satisfied by most "natural" closed categories. 

As in [i], an end in B of a V-functor T: A°P@A ÷ B is 

a Y-natural family mA: K ÷ T(AA) of morphisms in B o with the 

property that the family B(1,mA): B(BK) ÷ B(B,T(AA)) in V o is 
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universally V-natural in A for each B 6 B; then an end in V turns out 

to be simply a family sA: K ~ T(AA) of morphisms in V o which is 

universally V-natural in A. The dual concept is called a coend. 

From [i] we see that the choice of limits and collmlts 

made in V determines a definite end and coend of each V-functor 
o 

T: A°P®A ÷ V for which such exist. These are denoted by 

SA: fAT(AA) ~ T(AA) and sA: T(AA) ÷ fAT(AA) respectively. We can 

now construct, for each pair A, B of V-categories with A small, a 

definite V-category [A,B] having V-functors S, T, ...: A + B as its 

objects, and having [A,B](S,T) = ~AB(SA,TA). An element 

E V;AB(SA,TA ) clearly corresponds, under the projections 

VSA: V;AB(SA,TA) ÷ Bo(SA,TA) , to a V-natural family of morphlsms 

mA: SA ÷ TA in the sense of [3]. It is convenient to call a, rather 

than the family {a A} of its components, a V-natural transformation 

from S to T; for then the underlying ordinary category [A,B] o i_~s 

the category of V-functors and V-natural transformations. 

Limits and colimits in the functor category [A,B] wlll 

always be computed evaluationwlse, so that the choice of limits and 

colimlts made in V fixes a choice in [A,V] for each small V-category 

A. Included in this rule are the concepts of cotensoring and 

tensoring,which were seen in |5] to behave like limits and collmits 

respectively. 

In order to replace the category of sets by the given 

normalised closed category V, we shall "lift" most of the usual 

terminology. A V-monoidal category ~ is a V-category A together with 



a M-functor @: A@A + A, an object Y • A, and V-natural isomorphisms 

a: (A@B)@C a A@(B@C), ~: A@I a A,snd r: Y@A a A, satisfying the 

usual coherence axioms for a monoidal category - namely axioms MC2 

and MC3 of [3]. If, furthermore, -@A and A@-: A ÷ A both have 

(chosen) right M-adJoints for each A • A, then ~ is called a 

M-biclosed category (see Lambek |8]). A M-symmetry for a 

V-monoidal category (A, @, I~ r, A, a) is a V-natural isomorphism 

c: A@B ~ B@A satisfying the coherence axioms MC6 and MC7 of [3]. 

Finally we come to the concept of a M-symmetric-monoidal-closed 

category which can be described simply as a M-biclosed category 

with a M-symmetry; we do not insist on a "M-normalisation" as part 

of this structure. An obvious example of such a category is M 

itself, where ~ is taken to be the M-functor Ten: M@M ÷ M defined in 

[ 3] Theorem 111.6.9. 

We note here that, for M-functors S: A ÷ C and T: B ÷ P, 

the symbol S@T may have two distinct meanings. In general it is 

the canonical M-functor A®B ~ C@D which sends the object (ordered 

pair) (A,B) • A@B to the object (SA,TB) • C@D, as defined in [3] 

Proposition III.3.2. When C and P are both M, however, we shall 

also use S@T to denote the composite 

S@T Ten 
A@B ~ V@M ~ V. 

The context always clearly indicates the meaning. 

Henceforth we work enti~el~ over M and suppose that the 

unqualified words "cate~ory"~ "functor"~ "natural transformation"~ 

etc. mean "M-category", "M-functor", "V-natural transformatlon"~ etc. 
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i. Introduction 

Let A be a small category and regard A °p as a full 

subcategory of |A,V], identifying A 6 A °p with the left represented 

functor LA: A ÷ V in the usual way. For each S 6 |A,V] we have the 

canonical expansion (see |l]) S ~ ~AsA@LA which asserts the density 

(adequacy) of A °p in |A,V]. If [A,V| has the structure of a 

biclosed category V then, in view of this expansion, the value 

S@T of @: [A,V]®|A,V] ÷ |A,V] at (S,T) is essentially determined by 

the values LA@T, because -@T has a right adJoint. These in turn are 

determined by the values LA@L B, because each LA@ - has a right 

adJoint. Writing P(ABC) for (LA@LB)(c), we see that the functor 

is essentially determined by the functor P: A°P@A°P@A ~ V, in the 

same way that the multiplication in a linear algebra is determined 

by structure constants. 

These considerations suggest what is called in section 3 

a premonoldal structure on A. This consists of functors 

P: A°P@A°P@A ÷ V and J: A ÷ V, together with certain natural 

isomorphisms corresponding to assoclativity, left-ldentity, and 

rlght-ldentlty morphlsms, which satisfy suitable axioms; a monoldal 

structure is a special case. Before attempting to write the axioms 

down, we collect in section 2 the properties of ends and coends that 

we shall need. 

The main aim of this paper is to show that, from a 

premonoidal structure on a small category A, there results a 

canonical biclosed structure on the functor category tA,V]; this is 
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done in section 3. As one would expect, biclosed structures on 

[A,V] correspond biJectlvely to premonoldal structures on A to 

within "isomorphism". However we do not formally prove this 

assertion, which would require the somewhat lengthy introduction 

of premonoldal functors to make it clear what "isomorphism" was 

intended. 

The concluding sections contain descriptions of some 

commonly occurring types of premonoidal structure on a (possibly 

large) category A. The case in which the premonoidal structure is 

actually monoidal is discussed in section 4. In section 5 we 

provide the data for a premonoidal structure which arises when the 

hom-obJects of A are comonoids (@-coalgebras) in V in a natural way. 

In both cases the tensor-product and internal-hom formulas given 

in section 3 for the biclosed structure on [A,V| may be simplified 

to allow comparison with the corresponding formulas for some 

well-known examples of closed functor categories. 

2. Induced Natural Transformations 

Natural transformations, in both the ordinary and 

extraordinary senses, are treated in [2] and [3]. Our applications 

of the rules governing their composition with each other (and with 

functors) are quite straightforward and will not be analysed in 

detail. 

The following dualisable lemmas on induced naturality are 

expressed in terms of coends. 

Lemma 2.1. Let T: A°P~A@B + C be a functor and let 

aAB: T(AAB) ÷ SB be a coend over A for each B E B. Then there 
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exists a unique functor S: B ~ C makin~ the family ~AB natural in B. 

Proof. For each pair B, B' E B consider the diagram 

SBB, 
B(BB') > C(SB SB') 

T(AA-)BB' I C(~,I) 

C(T(AAB),T(AAB')) ~ C(T(AAB),SB') , 

C(l,~) 

Because C(s,l) is an end and C(I,a).T(AA-)BB , is natural in A we 

can define SBB , to be the unique morphism making this diagram 

commute. The functor axioms VFI' and VF2' of [ 3| are easily 

verified for this definition of S using the fact that C(~,I) is 

an end. S is then the unique functor making ~AB natural in B. 

Lemma 2.2. Let T: A°P@A@B * C and S,R: B ÷ C be functors, 

let aAB: T(AAB) + SB be a coend over A, natural in B, and let 

8AB: T(AAB) + RB be natural in A and B. Then the induced family 

YB: SB ÷ RB is natural in B. 

Proof. For each pair B, B' E B consider the diagram 
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C(l,~) 
C(T(AAB),T(AAB')) ~ C(T(AAB),SB') 

T( 1 ~,i) " ~  C(l,y) 
\ 
\ 

/ SBB, ,. ~ ,  
B(BB') -. .~- C(SB,SB') 2 C(T(AAB),RB') 

C(RB,RB') ~ C(SB,RB') 

c(y,x) 

The commutatlvity of region i and that of the exterior express 

the naturallty in B of ~ and 8 respectively. Region 2 clearly 

commutes hence, because C(e,1) is an end, region 3 commutes for 

each pair B,B' 6 B, as required. 

By similar arguments we obtain 

Lemma 2.3. Let T: A°P@A@B°P@B ÷ C and S: B°P®B ÷ C 
,,= 

be functors t let eABB': T(AABB') ÷ S(BB') be a coend over A, 

natural in B and B', and let 8AB: T(AABB) ÷ C be natural in A 

and B. T_hen the induced family YB: S(BB) ÷ C is natural in B. 

Lemma 2.4, Let T: A°P@A ÷ C and R: B°P@B ÷ C be 

functors~ let CA: T(AA) ÷ C be a coend over A, and let 

8AB: T(AA) * R(BB) be natural in A and B. Then the induced family 

YB: C ~ R(BB) is natural in B, 
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Let Abe a category and let T(AA-) be a functor into V 

whose coend sA: T(AA-) ÷ fAT(AA-) over A E A exists for all values 

of the extra variables "-". Then, by Lemma 2.1, fAT(AA-) is 

canonically functorlal in these extra variables. In the special 

case where T(AA-) ~ S(A-)@T(A-) for functors S and R into V 

(with different variances in A) we will frequently abbreviate 

this notation to sA: S(A-)@R(A-) ÷ S(A-)2R(A-) , leaving the 

repeated dummy variable A in the expression S(A-)2R(A-) to 

indicate the domain of ~'. 

In order to handle expressions formed entirely by the 

repeated use of 2, it is convenient to introduce the following 

considerations which we do not formalise completely. To each 

expression N which is formed by one or more uses of 2, there 

corresponds an expression N in which each 2 is replaced by @, 

the dummy variables in N becoming repeated variables in N; for 

example, if N is (RA2S(AB))2T(BC) for functors R: A ÷ V, 

S: A°P@B ~ V, and T: B°P@c ÷ V, then N is (RA@S(AB))@T(BC). 

Moreover, there is a canonical natural transformation 

q = qN: N ÷ N defined, as follows, by induction on the number of 

occurrences of @ in N. If N contains no occurrence of @ then 
- -  - -  m 

N ~ N and qN = i; otherwise N = N'@N" and qN is the composite 

N'@N" ~ N'@N" ~ N'@N". 

q'@q" s 

In the above example, q is the composite 

(RA@S(AB))@T(BC) ~ (RA2S(AB))@T(BC) ~ (RA2S(AB))@T(BC) 

s@l s 

and this is natural in A, B,snd C; we say that the variables A 

and B are "summed out" by q. 



The path qN: N ÷ N is in fact a multiple coend over 

all those variables in N which are summed out by qN: 

Le_~.. Let M be a functor into V and let 

f: N ÷ M be a natural_transformation which is~ in particular, 

natural in all the repeated variables in N which are summed out 

~ qN: N ÷ N. Then f factors as g'qN for a unique natural 

transformation g: N ÷ M. 

Proo=~f. This is by induction on the n~ber of 

occurrences of @ in N. If N contains no occurrence of @ the 

result is trivial; othe~ise N = N'@N" and we can factor f in 

three steps: 

q'@l l@q" s 

N = N'@N" ) N'@N" > N'@N" ~ N'@N" = N 

M 

First consider the transfo~ w(f): N' ÷ [N",M] of f under the 

tensor-hom adJunction isomorphism ~ = Vp of V. By the induction 

hypothesis and routine naturality considerations, the diagr~ 

q' 

N' ~ N' 

[ N",M] 

commutes for a unique morphlsm ~(f'): N' ÷ |N",M] where 
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f': N'®N" ÷ M is natural in all the variables not summed out 

by q'. Similarly f' factors as f".(l@q") for a unique morphism 

f": N'@N" ~ M which is natural in all the variables not summed out 

by either of q' or q". Finally, because s is a coend, f" factors 

as g.s for a unique g: N ÷ M which is natural in all the 

remaining variables in N and M by Lemmas 2.2, 2.3, and 2.4. 
m 

Combining these steps• we have that f factors through qN = s(q'@q") 

in the required manner. 

When the transformation f in Lemma 2.5 is of the form 

q'.n for a path q': N' ~ N' the induced transformation g: N ÷ N' 

is denoted by n. Such induced transformations are a necessary 

part of the concept of a premonoidal category and we consider 

three relevant special cases below. 

First, if n: N ÷ N' is a natural isomorphism constructed 

entirely from the coherent data isomorphisms a, r, £, c of V then 

n: N ÷ N' is a natural isomorphism and is called an induced 
m 

coherence isomorphism. In view of the uniqueness assertion of 

Lemma 2.5, and the original coherence of a, r, £, c, it is clear 

that induced coherence isomorphisms are coherent. In other words, 

the induced coherence isomorphism n: N + N' is completely 

determined by the arrangement of @ in N and N'; consequently we 

shall not label such isomorphisms. 

Secondly, when n z h@k: S(A-)@R(A-) ÷ S'(A-)@R'(A-) for 

natural transformations h: S ~ S' and k: R ÷ R', let us write 
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h@._k for h@k. This not only makes the symbol @ En~-functorial 

whenever it is defined on objects, but also makes the coend 

sA: S(A-)@R(A-) ÷ S(A-)@_R(A-) End-natural in S and R. Under 

reasonable conditions the same observations can be made at the 

V-level. 

If we restrict our attention to functors into V with 

small domains then the functors themselves may be regarded as 

extra variables. For example, let T: A°P@A@B + V be a functor with 

A and B small. Then fAT(AAB) is canonically functorial in T and B 

for we can write T(AAB) = F(AATB) where F is the composite 

A°P@A@([A°P@A@B,V]@B) ~ [A°P@A@B,V]@(A°P@A@B) 

> V, 
E 

and where E is the evaluation functor defined in [i] §4. Similarly, 

if S(A-) and R(A-) are functors into V with small domains (and 

different variances in A) then S(A-)@__R(A-) is functorial in S and 

R in a unique way that makes sA: S(A-)@R(A-) ÷ S(A-)@R(A-) 

natural in S and R. 

Lastly, let S(A-) be a functor into V which is covariant 

in A E A. As part of the data for S, we have a family of morphisms 

SAB: A(AB) ÷ [S(A-),S(B-)] which is natural in A and B and also in 

the extra variables in S. Transforming this family by the 

tensor-hom adJunction of V, we get a transformation 

w-I(SAB): A(AB)@S(A-) + S(B-) which is natural in A and B and the 

extra variables in S. As a result of the generalised "higher" 

representation theorem (see [I], §3 and §5), this induces the 

Yoneda isomorphism 
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YS,B: A(AB)@S(A-) ÷ S(B-). 

By Lemma 2.2, we then have 

Lemma 2.6. The Yoneda isomorphism YS,A is natural in 

A and in the extra variables in S; if the domain of S is small 

then it is natural in S. 

The following diagram lemmas for the Yoneda isomorphism y 

are all proved using [3] Proposition II.7.4 which we shall refer to 

as the representatlon theorem. These lemmas are presented here 

in their most convenient forms for application in sections 3 and 4. 

Lemma 2.~. Given functors S: A ~ V and T: A °p * V 

for which SA@_TA exlsts m the following diagram commutes: 

(A(AB)O_SA)O3B > SBe_TB 

ZEk 

SA@(A(AB)e_TB) > SAe_TA • 

icy 

Proof. Replacing @ by @, y by its definition, etc., 

we obtain a new diagram: 
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(A(AB) @SA)~TB 

\ 

s@l \ 
\ 

(A(AB) Q_SA)@TB 

\ 

( A(AB)@SA) @_TB 

~II 

Y@I 

y~_l 

SA@( A( AB ) @_TB ) 

SA@ ( A( AB ) @__TB ) 

SB@TB 

"~ SB@TB 

l@y 

SA@TA 

SA@TA 

SA@(A(AB)@TB) . 

By Lemma 2.5, s(s@l) is a coend over A and B hence it suffices 

to prove that the exterior of this new diagram commutes for all 

A, B E A. This is easily seen to be so on applying the 
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representation theorem; put B m A and compose both exterior 

legs with 

(I@SA)@TA ~ (A(AA)@SA)@TA; 

(JA®I)@I 

the resulting diagram commutes, hence the original one does. 

Lemma 2.8. Given functors S: A°P@B ÷ V and T: B °p ÷ Y 

for which S(AC)0_TC exists for each A E A, the followin~ diagram 

commutes for each A E A: 

A(AB)@(S(BC)®_TC) 

S(AC)e_TC 

(A(AB)®_S(BC))@_TC , 

Proof. Again replacing @ by @, y by its definition, 

etc., we obtain a new diagram: 
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A(AB)~(BC)emc) 

A(AB)e(s (BC)_eTc) 

~, ~" S(AC)_OTC ~ S(AC)eTC 

A AB aS BC ~ I / ~  (( )_( ))_ / j~ 

(A(AB)_eS(BC) ~//// 

(*(AB)eS(BC))~C 
I n  t h i s  d i a g r a m  t h e  r e g i o n  l a b e l l e d  1 commutes  b e c a u s e  i t  i s  t h e  

t r a n s f o r m  of t h e  d i a g r a m  

S(-C)eTC 
A(AB) > [ S(BC)®TC,S(AC)~ 'C]  

! 

S(-C)eTC I [ 1,s] 

[ S(BC)e_TC,S(AC)eTC! ~ [ S(BC)®TO,S(AO)®TC] 
[ s , 1 ]  
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which expresses the naturality of s = sC: S(AC)@TC ÷ S(AC)@TC 

in A. Hence, because s(l@s) is a coend over B and C by Lemma 

2.5, it suffices to prove that the exterior of the new diagram 

commutes for all A, B E A and C E 8. Again this is a simple 

consequence of the representation theorem. 

The remaining lemmas are obtained by the same type of 

argument. 

~ .  Given functors S: A°P@B ~ V and T: B °p ~ V 

for which TCSS(AC) exists for each A E A, the following diagram 

commutes for each A E A: 

A(AB)@(TCe_S(BC)) 

~~'TCQS(AC) III 

/ 

j J  ley 

TCO_(A (AB)®_S (BC)) 

Lemma 2.10. For any functors S; A ~ 8 and T: B °p ÷ V 

the followln~ diagram commutes for each A E A: 

l~y 
A(AB)@(8(SB,C)®_TC) > A(AB)%TSB 

8(SA,C)~3C ~ TSA 
Y 
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Lemma 2.11 For an~ functor T: A@B + V the following 

diasram commutes for all B, D E A: 

ley 
A(AB)@_(B(CD)@_T(AC) ) ~ A(AB)@_T(AD) 

S(CD )@_T(BC)- ~ T(BD) . 

Y 

3. Premonoidal Categories 

We emphaslse again that, unless otherwise indicated, 

all concepts are relative to the given normallsed symmetric 

monoidal closed category V. 

Definition 3.1 A premonoidal category P = (A,P,J,A,p,~) 

over V consists of 

a category A, 

a functor P: A°P@A°P@A ÷ V, 

a functor J: A * V, 

and natural isomorphisms 

I = AAB: JX@P(XAB) ÷ A(AB), 

P = PAB: JX@P(AXB) ~ A(AB), 

a = aABCD: P(ABX)@P(XCD) ÷ P(BCX)@_P(AXD), 

satisfying the following two axioms: 
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PC1. For all A,B,C E A, 

JX@_(P(AXY)@_P(YBC) ) - 

(JX~P(AXY))~P(YBC) 

the following diagram commutes: 

l@a 

> JXQ_(P(XBY)Q_P(AYC) ) 

(JX~_P (XBY)) ~P (AYC) 

p@l 

A(AY)~_P (YBC) A(BY)~P(AYC) 

P(ABC) . 

PC2. For all A,B,C,D,E E A, the following diagram commutes: 

P(ABX )0_( P (XCY) ~_P (YDE) ) 

(P(ABX)@P(XCY))@P(YDE) 

( P (BCX) ~P (AX¥)) ~_P (YDE) 

~II 

P (BCX)@( P(AXY) ~_P(YDE) ) 

P (BCX)@(P(XDY) ~_P (AYE)) 

P(ABX)O(P(CDY)~P(XYE)) 

P(CDY)@(P(ABX)@P(XYE)) 

P(CDY)~(P(BYX)@P(~E)) 

(P(CDX)~P(BXY))~P(AYE) 

(P(BCX)@P(XDY))@P(AYE) 
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Remark 3.2 It is assumed in the definition that the 

requisite ~'s exist for the given A, P, and J. They do so, by 

hypothesis on V, when A is small. They also exist whenever 

P(AB-): A÷ V and J: A ÷ V are representable for all A,B 6 A. 

In the remainder of this section we will suppose that 

A is small and show that each premonoidal structure P on A 

"extends" to a blclosed structure [P,V] on the functor category 

|A,V]. For the monoidal part define a tensor-product 

*: [ A , V ] ~ [ A , V ]  ÷ [A,V]  by 

(3.1) S*T = fAsA@;BTB@P(AB-) = SA@(TB@P(AB-)) 

for all S,T E [A,V]; this expression is canonically functorlal 

in S and T by the considerations of section 2. Next, let 

J 6 [A,V] be the identlty-obJect of., and define natural 

Isomorphisms £* = ~: J*T ÷ T and r* = r~: T.J ÷ J as the 

respective composites 

J,T = JX@(TA@P(XA-)) a (JX@P(XA-))@_TA 

A(A-)@TA ~ T 

k@l y 

and 

T.J = TA@(JX@P(AX-)) m (JX@P(AX-))@_TA 

A(A-)@_TA > T. 

p®l y 

Lastly, define a natural isomorphism a* = a~ST: (R,S),T ÷ R*(S,T) 

as the composite 
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(R*S)*T = (RA@(SB@P(ABX)))@(TC~P(XC-)) 

RA@(SB@(TC@(P(ABX)@P(XC-)))) 

RA@(SB~(TC@(P(BCX)@P(AX-)))) 

i®(1®(1®~)) 

RA~((SB@(TC@P(BCX)))@P(AX-)) 

= R,(S,T). 

Then £*, r*, and a* are natural by Lemmas 2.5 and 2.6. 

Theorem 3.3 [P,V] = ([A,VJ,*,J,£*,r*,a*) is a 

monoidal category admittln5 a biclosed structure. 

Proof First, to show that [P,V] is a monoidal 

category, we need to prove PC1 ~ MC2 and PC2 ~ MC3. The first 

of these is obtained by considering diagram (3.2) in which the 

exterior commutes by PCI; l, 2, and 3 commute by the 

definitions of *,r*,a*, and £*; 4, 5, 6, 7, 8, and 9 commute 

by the naturality and coherence of the induced coherence 

isomorphlsms (Lemma 2.5 and the succeeding remarks); I0 and Ii 

commute by Lemma 2.7; and 12 commutes by Lemma 2.9. The proof 

of PC2 ~ MC3 requires a diagram that is too large for the space 

available but, apart from the definitions of * and a*, uses 

only the naturality and coherence of the induced coherence 

isomorphlsms involved. 

To complete the structure on [A,V] to that of a 

biclosed category, consider the composite isomorphism: 
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[ A,v] (R.S,T) = IC[ (R.S)C,TC] 

-- ;C [ IARA@fBsB@P(ABC) ,TC] 

a IC~A [ RA®~BsB@P(ABC) ,TC] 

;CIA [RA,[ [BsB®P(ABC) ,TC] ] 
lip 

a ;A;C [ RA,[ IBsB®P(ABC),TC] ] 

IA [ RA,~c[ ;BsB@P(ABC) ,TC] ] 

= ;A [RA,(T/S)A] say, 

= [A,V] (R,T/S), 

where the unlabelled isomorphlsms are the canonical ones which 

assert that llmlt-preservlng functors preserve ends and that 

repeated ends commute (see [i] §3). Assuming that each of the 

ends involved is made functorlal in its extra variables using 

the dual form of Lemma 2.1, we see that each isomorphism is 

natural in R, S, and T, by the dual form of Lemma 2.2. Consequently 

-*S has a right adJoint -/S, given by the formula 

(3.3) T/S -- ~C [IBSB@P(-BC),TC] 

for all S,T 6 [A,V]. Similarly we have the natural composite 

[A,V] (S*R,T) = ~C [;ASA®~BRB@P(ABC) ,Tel 

;C [ IBRB@;AsA@P(ABC),TC] 

~B [ RB,~c[ ;AsA®P(ABC) ,TC] ] 

-- IB[RB,(S\T)B] say, 

= [A,V] (R,S\T). 

Thus S,- has a right adJolnt S\-, given by the formula 

(3.4) S\T = ;C [~ASA@P(A-C),TC| 
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for all S,T E [A,V]. This completes the proof. 

Definition 2.4 A symmetry for the premonoidal 

category P is a natural isomorphism 

a = aABC: P(ABC) * P(BAC) 

satisfying the following two axioms: 

PC3. a 2 = I 

PC4. For all A,B,C,D 6 A, the following diagram commutes: 

P(ABX)@P(XCD) > P(BCX)@P(AXD) 

P(BAX)@P(XCD) P(BCX)@P(XAD) 

P(ACX)@P(BXD) ~ P(CAX)@P(BXD) . 

o@i 

This definition does not, of course, require 

A to be small. 

It remains to be shown that [ P,V] admits a symmetric 

monoidal closed structure whenever P has a symmetry. For this, 

define a natural isomorphism c * = C~T: SwT * T~S as the composite 



- 24 - 

S*T = SA@(TB@P(AB-)) ~ TB@(SA®P(AB-)) 

TB@(SA®P(BA-)) = T*S. 

i®(l~c) 

Again, the naturallty of e* is a consequence of Lemma 2.5. 

If e is a symmetry for P then c* is a 

s~etr~ for [P,V]. 

P~oof To prove PC3 ~ MC6 consider diagram (3.5): 

TB~(SA@P(BAC)) 

TB@(SA@P(ABC)) SA@(TB@_P(BAC)) 

(3.5) ~ 2 

II~ I@(I~o) 
TB@(SA@P(ABC)) 

u 

SA~(TB~P(ABC)) SA~(TB~P(ABC)) 

Region 1 commutes by PC3, and region 2 commutes by the naturallty 

of the Induoed coherence isomorphism involved; hence the exterior 

commutes and so, by definition of c*, Me6 is satisfied. To prove 

PC4 ~ MC7 consider diagram (3.6), in which the exterior commutes 

by PC4; i, 2, and 3 commute by the definitions of , and c*; 

4, 5, and 6 commute by the definition of a*; and 7, 8, 9, and i0 

commute by the naturality and coherence of induced coherence 

Isomorphlsms. 
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4. Monoidal Categories 

A monoldal category is a particular instance of a 

premonoidal category. Let (A,~,l,£,r,a) be a monoidal structure 

on A; we write ~ for ~, etc. when the meaning is clear. The 

data for the corresponding premonoldal category P are obtained 

by taking P(ABC) to  be A(A@B,C) and JA to be A(I,A), and by 

defining k, p, and s by the commutatlvlty of the diagrams 

JX~P(XAB) ~-- A(AB) 

1 ; A(~,I) 
A(IX)®_A(X@A,B) r- A(I@A,B) , 

Y 

and 

JX@P(AXB) P ~ A(AB) 

II A(r,l) 

A(IX)~A(AOX,B)~ A(A@I,B) 
Y 

P(ABX)~P(XCD) = A(A®B,X)~A(XOC,D) 
Y 

A((A@B)eC,D) 

A(a,1) 

P(BCX)®P(AXD) = A(B®C,X)@A(A@X,D) )A(AQ(BQC),D) . 
Y 

Theorem 4.1 P = (A,P,J,k,p,a) is a premonoldal 

category. 
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Proof Naturality of the data ~, D, and m follows 

from the naturality of the Yoneda isomorphism y (Lemma 2.6) 

and of ~, ~, and a. It remains to establish axioms PCI and PC2; 

we shall only provide the diagram (4.1) for MC2 ~ PCI. In this 

diagram region 1 commutes by axiom MC2; 2, 3, and 4 commute by 

the definitions of p, a, and ~; 5, 6, and 7 commute by the 

evident En~-naturality of y; 8 and 9 commute by Lemma 2.8; and 

I0 and Ii commute by Lemma 2.10. Hence the exterior commutes, 

as required. To prove MC3 ~ PC2 one requires a similar (but 

larger) diagram; the only additional results needed are 

Lemmas 2.9 and 2.11. 

Monoidal structures on A are in fact characterised 

among premonoidal ones by the representability of J and of 

P(AB-): A * V for all A,B 6 A. It is also straightforward to 

verify that a symmetry ~ for @ provides a symmetry o for F, 

defined by: 

c ommut e s. 

category. 

P(ABC) 

A(A@B,C) -~ 

P(BAC) 

A(B@A,C) 

A(c,l) 

Now suppose that (A,~,Y,K,~,~) is a small monoidal 
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Applying the generallsed representation theorem to the 

internal-hom formulas (3.3) and (3.4) for [P,V], we get: 

(T/S)A = ]c[fBsB@P(ABC),TC] 

= ~c[~BsB@A(A@B,C),TC] 

]B[SB, ]c[A(A®B,C),TC]] 

fB[SB,T(A@B)], 

and 

(S\T)A = ~C[ fBsB~P(BAC),TC] 

fB[SB,T(B~A)], 

for all S,T E [A,V] and A e A. If, in addition, the functor 

P(A-C): A °p ~ V admits a representation A(-,A\C): A °p ÷ V for all 

A,C E A then, on applying the generallsed representation theorem to 

the tensor-product formula (3.1) for [P,V], we get a convolution 

formula: 

(S*T)C = ]AsAQ~BTBQP(ABC) 

= IAsAQIBTBQA(B,A\C) 

]AsA®]BA(B,A\C)@TB 

fAsA@T(A\ C) 

for all S,T E [A,V] and C e A. 

Here are three examples of closed functor categories that 

arise in this way. For certain choices of the ground category V 

(e.g. V = En~ and V = Ab) these examples are quite well known. 
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If A is a category with only one object Y 

whose endomorphism - monoid (i.e. endomorphism - algebra) (M = A(Y,Y), 

~: M@M * M, n: I ÷ M) is commutative then we can, by [3] 

Proposition III.4.2, define a functor @: A@A * A with the data 

I~r = Y and ~: M@M * M. Taking each of £, r, a, and ~ to be the 

identity transformation of the identity functor on A, we see that 

(A,~, Y, ~, r, a, 5) is a symmetric monoidal category. In this 

example we may also take I-~Y = T = Y@rbecause A °p = A; it is then 

easy to check that [P,V] is the category of M-modules with the 

usual tensor-product and internal-hom. 

Let V = E,6 and let A be a (finitary) 

commutative theory in the sense of Linton [9]. Recall that 

commutativity of A means that, for each m-ary operation ~ 6 A(m,1) 

and n-ary operation ~ E A(n,l), the following diagram commutes: 

~m 
(in) m = n m ~  i m = m 

[ 

(lm) n = m n ~ 1 n = n / / ~  
~n 

This condition is sufficient for the existence of a functor 

@: A×A ~ A defined by m~n = n m and W@v = ~.~m. Let i = I, let 

~, ~, and a be the appropriate identity isomorphisms, and let 

be the canonical "switching" isomorphism shown in the diagram. 

These data provide A with the structure of a symmetric monoidal 
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category which, in turn, yields a symmetric monoidal closed 

structure [P,En~] on the category [A,En~] of A-prealgebras. When 

this structure is restricted to the full subcategory of [A,ER~] 

determined by the A-algebras, we obtain the usual symmetric 

monoidal closed category of algebras over the commutative theory A. 

In fact the above assertions remain valid if we 

replace En~ by any cartesian closed V (having small limits and 

colimits); a finltary V-theory is a V-category A having for 

objects the non-negative integers O, I, ... , n, ... and having 

the property that n = i n in A 0 and A(m,n) ~ A(m,l) n in V 0 for 

all m,n E A; the definition of commutativity is the V-analogue 

of the above and can easily be deduced from [3] IIl Proposition 

4.2. For still further generalisation see Kock [6] and [7]. 

Example 4.4 First let us note that the monoidal 

closed normalisation functor V: V ÷ En~ has a monoidal closed 

left adJoint F: E,~ + V which sends a set X to the copower 

I in V O of X copies of I (see [5] §5 for related generalities). 
X 
The induced monoidal functor F#: En~# ÷ V# (of [3] Proposition 

III. 3.6) sends the E~-category C to the category F#C whose 

objects are those of C and whose hom-obJects are given by 

= ~ I in V. (F#C)(AB) C(_B) 

Now let C be the discrete E,~-category whose object-set 

is the abelian group of integers Z. Putting A = F#C, defining 
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m@n = m + n, n\m = m - n, Y = 0 E Z, and taking t, r, a, and 

to be the appropriate identity transformations, we obtain a 

symmetric monoidal closed structure on A. Because C is a 

discrete Es~-category, ~" reduces to [ and ; to H in V 0 so that 

the resulting symmetric monoidal closed structure on the 

category [A,V] of Z-graded objects in V is given by 

(X,Y) m = ~nXn~Yn\ m = [ Xn~Ym_ n 
neZ 

and 

(Y/X) m = ~n[Xn,Ym@ n] = n~[Xn,Ym+n] 

for all X,Y E [A,V] and m E ~_. 

5. Other Examples 

Another type of premonoidal structure arises when a 

category A has the structure of a comonold in the monoidal 

category V#. Such a comonoid consists of a comultiplication 

functor 6: A ÷ A@A and a counit functor ¢: A ÷ I satisfying the 

following coassociative and left and right counit laws (in which 

the unlabelled isomorphisms are the data isomorphisms of V#): 

6@1 

d////A@A > (A~A)~A 

6 

1®6 
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commutes, and 

7@A 

¢@I l@c 

A@A A®I 

~tl 11~ 

A A A 

commute. These laws imply that 6 sends an object A E A to 

(A,A) E A~A and that the morphisms 6AB: A(AB) * A(AB)~A(AB) and 

CAB: A(AB) ÷ I provide a comonoid structure on the hom-obJect 

A(AB) for each pair of objects A,B E A. 

A premonoidal structure P is now defined on A with the 

following data. Take P and J to be the respective composites 

( A ° P e A ° P ) e A  

a n d  

le6 Hom(AeA) 

(A°PeA°P)e(AeA) - > V 

I g 

so that, on objects, P(ABC) = A(AC)@A(BC) and JA = I. 

A = AAB as the composite 

JX®_P(XAB) = JX@(A(XB)@A(AB)) ~ (A(XB)@_JX)@A(AB) 

> JB@A(AB) r-- A(AB), 

y®l £ 

noting that, for each A E A, the last arrow is actually the 

B-component of the horizontal composite 

Define 



- 3 4  - 

A~A 

Z8 V 

of natural transformations. Similarly, define p = PAB as the 

composite 

JX@P(AXB) = JX@(A(AB)@A(XB)) • A(AB)@(A(XB)@_JX) 

A(AB)@JB ~ A(AB), 

l®y r 

and m = mABCD as the composite 

P(ABX)@P(XCD) = P(ABX)@(A(XD)@A(CD)) i (A(XD)@P(ABX))@A(CD) 

P(ABD)@A(CD) = (A(AD)@A(BD))@A(CD) 

y@l 

A(AD)@(A(BD)@A(CD)) = A(AD)@P(BCD) 

a 

:~ A(AD)@(A(XD)@P(BCX)) a P(BCX)@(A(AD)@A(XD)) 

-i 
l@y 

= P(BCX)@P(AXD). 

Furthermore, if the comultiplication 6 is commutative we can 

define a symmetry o = ~ABC for P as 

P(ABC) = A(AC)@A(BC) > A(BC)@A(AC) = P(BAC). 
c 
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We now suppose that A is small and, as in section 4, 

use the £enerallsed representation theorem to reduce the 

tensor-product and internal-hom formulas (3.1), (3.3), and (3.4) 

for [P,V]: 

(S,T)C = ]AsA@fBTB@P(ABC) 

= ]AsAe]BTB@(A(AC)@A(BC)) 

(]AsA@A(AC))e(]BTB@A(BC)) 

(]AA(AC)@SA)@(]BA(BC)@TB) 

SC@TC 

for all S,T E [A,V] and C E A, and 

(T/S)A = ]C | ~BsB@P(ABC),TC] 

-" ]C [ IBp(ABC)eSB,TC] 

= fc ! fB(A(AC)eA(BC))eSB,TC] 

-" ]C [ A(AC)@]BA(BC)@SB,TC] 

= IC[ A(AC)@SC,TC], 

(S\T)A = ~C [ fBsBeP(BAC),TC] 

-" ]C [ SC@A(AC),TC] 

for all S,T E [A,V] and A E~. 

It is easy to find instances of this bfclosed structure 

and several commonly-occurrlng examples are given below. 
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Example 5.1 If A is a comonoid in V# with only one 

object then its hom-obJect is a Hopf monoid in V, and [P,V] 

is the usual biclosed category of modules over this monoid 

(cf. [3] IV §5). 

Example 5.2 If V is cartesian closed then V~ is a 

cartesian monoidal category, hence every V-category A admits a 

unique (commutative) comonoid structure in V# with the diagonal 

functor A ~ AxA as comultiplication and the unique functor 

A ÷ Z as counit. Taking A small, the reduced tensor-product 

formula given above shows [P,V] to be cartesian closed. 

Example 5.3 Let F: En~ ÷ V be the monoidal closed 

functor described in Example 4.4, and let C be any Ens-category. 

En~ is cartesian closed so C is a comonoid in End# and this 

induces an evident (commutative) comonoid structure on F#C. 

Hence, when C is small, the category [F~C,V], whose underlying 

End-category [F#C,V] 0 consists of the ordinary En~-functors 

from C to ~0 and the End-natural transformations between them, 

automatically admits a symmetric monoidal closed structure over 

V. For V = At, this fact was pointed out by P. Freyd in [4]. 

The types of premonoidal category noted here, and in 

section 4, are far from being exhaustive. We have not, for 

instance, considered the premonoidal category which yields the 

following canonical biclosed structure on the category [A°P®A,V] 

of "bimodules" over an arbitrary small category A: 
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(S*T)(AB) = SCs(AC)@T(CB) = S(AC)®_T(CB), 

(T/S)(AB) = Sc|S(BC),T(AC)], 

(S\T)(AB) = ~c|S(CA),T(CB)], 

J(AB) = A(AB) 

£* = A(AC) @T(CB) 

r* = T(AC)~A(CB) 

T(AB), 

Y 

A(CB)@T(AC) ~T(AB), 
c y 

a* = (R(AC)@S(CD))®_T(DB) ~ R(AC)~(S(CD)@_T(DB)), 
a 
m 

where R,S,T 6 [A°P@A,V] and (A,B) 6 A°P@A (axioms MC2 and MC3 

for this definition of * are easily verified). In this case 

it is decidedly easier to describe the blclosed functor category 

than to give an explicit premonoldal structure on A°P@A. 

In conclusion I wish to express my gratitude to 

Professor Max Kelly for his helpful advice and discussions 

during the preparation of this article. 

Remark The editor informs me that J. B4nabou, in lectures in 

1967, had proposed the consideration of premonoldal categories, 

in the case V = Ea~, defining the functor P by considerations 

of section 4 above. 
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