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An algebraic characterization of an n-fold loop space in terms of its n different 1-fold loop
structures is established. This amounts to describing the higher homotopy commutativity for
such a space as a strict partial commutativity of the 1-fold loop structures. The tensor product
of operads (a special case of the construction for algebraic theories) is ideally suited for this. In
particular we show that the operad of little n-cubes C, is homotopy equivalent to the n-fold
tensor product CY", i.e., ‘tensoring these A _ -structures yields an iterated loop structure’. This
is not true for arbitrary A _-operads.

Introduction

The use of the tensor product construction for algebraic theories, along with
other ideas from universal algebra, was introduced into iterated loop space theory
by Boardman and Vogt [2, 3]. In [4] they specialized to the case of PROPS in
order to obtain a consistency statement for their delooping of an infinite loop
space. A further restriction yields a tensor product construction for operads.

In this paper the tensor product of operads is used to relate precisely a given
n-fold loop space structure on a space Y to its various 1-fold loop space structures
in the following sense. Let €, denote the operad of little n-cubes and let Y be a
connected 4,-space [11]. Then Y is a %6,-space in n distinct ways via the obvious
inclusions a': €,~— €,, 1 =i < n. Conversely, if Y is a €,-space in n distinct ways
we can ask when Y is (equivalent to) a €, -space. This is the case exactly when
these €,-actions pairwise interchange in the sense that each is a morphism with
respect to the others.

For a precise statement, let € %" denote the n-fold tensor product of €, with
itself. The tensor product has a universal property which together with the maps
@' determine a map a: €%"— €,. Our main result, Theorem 2.9, is that « is a
local X-equivalence, i.e. each q;: €T(j)— €,(j) is a 3,-equivariant homotopy
equivalence. This fact is the main ingredient for showing that the n-fold delooping
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constructions of May and Segal agree up to homotopy. The equivalence of the
two constructions is a consequence of a general axiomatic characterization of
n-fold delooping machines which will appear in a subsequent paper.

Theorem 2.9 is proved by showing the following two statements:

(i) @ induces an isomorphism of €%” onto a suboperad @, of &, .

(i) The inclusion &, — %, is a local ¥-equivalence.

The operad %, has a simple geometric description from which the second
statement easily follows. The proof of the first statement, however, is somewhat
involved, so we will give a sketch of it here.

As is pointed out in [4], little is known about the tensor product construction
for algebraic theories of which the tensor product of operads is a special case.
Thus a direct comparison of €>" and €, is not feasible. Instead we exploit certain
algebraic properties of €%,

We first look at a familiar example of this when » = 1. Any loop space 2.X has
a product which is homotopy associative and has a homotopy unit. By passing to
the space of Moore loops on X, we obtain a strictly associative product with a
strict unit without changing the homotopy type.

Formally, we define a category 7[R, ] and a functor R: 7 — J[R, ] on spaces
for which R2X is the space of Moore loops. This functor converts algebraic
properties up to homotopy into strict algebraic properties. For example, if Y is
any %,-space, then RY is a topological monoid.

Now given an n-fold loop space 2"X, n>1, we must also consider higher
homotopy commutativity. The same functor R converts this to a type of strict
commutativity, called semi-interchange, on the space of n-fold Moore loops
RO"X. Specifically, R"X has n different monoid multiplications which are
related by the semi-interchange property, and we cail this an n-fold monoid
structure (Definition 1.9). This is the analogue for n-fold loop spaces of the well
known fact that any A _-space is equivalent to a topological monoid.

A key point in the proof of Theorem 2.9 is the observation that RC ?”X is an
n-fold monoid, where C%" is the associated monad, and that the semi-interchange
condition corresponds exactly to the defining property of the tensor product. Thus
the notion of n-fold monoid precisely captures the operad structure of € " (see
Proposition 1.11).

In Section 1, we also construct the free n-fold monoid J,RX (Construction
1.10). This is a generalization of the classical James construction to n-fold loop
spaces and should be of some independent interest. We then obtain a commuta-
tive diagram

T

J,RX RC®'X
\ lRa
8
RC,X

in which 7 is an isomorphism of n-fold monoids.
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In Section 2 we show that 8 is a closed inclusion with image RD, X, and it
follows that we have a homeomorphism C"X— D, X on the monad level. It is
now an easy matter to pass back to operads and obtain an isomorphism
a: €% — %,. We conclude Section 2 by extending these results to infinite loop
spaces.

In addition, there are two appendices. Appendix A contains some additional
results on tensor products of operads, including an extension of the main
theorem. Appendix B collects a few basic results on cofibrations in 7[R, ] needed
for the proof of Theorem 2.9.

1. Semi-interchangeable monoid structures

The main objective of this section is to prove Proposition 1.11 which relates
interchangeable operad actions to semi-interchangeable monoid structures on
objects in an appropriate category of spaces J(R). We begin by describing this
and several related categories. The diagram preceeding Proposition 1.11 is a
schematic for the results of this section and the reader may find it helpful to refer
to it occasionally. We will work in the category J of compactly generated (weak
Hausdorff) spaces with nondegenerate basepoints.

Let R, be the non-negative reals with basepoint 0, and write J[R,] for the
category of ‘spaces over R,’. The objects are all maps p: X— R, (also written
(X, p)) with p~'(0) = *, and morphisms are commutative triangles

Xty
N/
R,

A section of p: X— R, is a map 7:R, — X such that ponp=id and 7 is a
cofibration in J[R, ]; this means (X, n{(R)) is an NDR pair by a homotopy % with
(ph)(t, x) = p(x) for x € X and ¢ € I. This condition implies that ( p~'(1), n(1)) is
an NDR pair which is necessary for Lemma 1.2.

Let J°[R. ] denote the subcategory of IR, ] of objects (X, p, n) with section
and maps commuting with sections. These categories are related in the next two
lemmas.

Lemma 1.1. (i) There is a functor R: T— TR, ] right adjoint to the forgetful
functor U : T[R,]— 7.

(ii) The unit (X, p)— RU(X, p) and counit URY — Y are homotopy equival-
ences.

Proof. For Y any space, let RY be the subspace {(y,f)|t>0o0ry =%} of Y XR,
with projection m,: RY— R, given by m,(y, t) = ¢, and define R on maps in the
obvious way. (i) and (ii) are easily verified. 0O



240 G. Dunn

Note that *— Y induces 7,:R, = R(*)— RY, a section of RY—>R, by
Proposition B.1. Hence we can consider R as a functor 7 — J°[R_], but it now
fails to be right adjoint to U restricted to J°[R.].

Let R* denote the multiplicative group of positive reals and let it act on R, by
multiplication. We define an R*-object in T°[R, ] to be an object (Y, ¢, n) with
an R7-action ¢ :R* X Y— Y for which g and 7 are equivariant. Let J(R) denote
the subcategory of J°[R, ] consisting of these R*-objects and the equivariant
maps.

The following internal characterization of such objects will be useful in several
ways. Note that we can regard R as a functor to J(R), where RX is given the
obvious R*-action.

Lemma 1.2. There is a functor U;: T(R)— T such that R and U, determine an
equivalence of categories.

Proof. This is a consequence of the following two observations:

(i) (Y, g, n) is isomorphic in I°[R, ] to (RX, m,, n,) for some space X if and
only if there is an R¥-action ¢:R% X Y— Y with ¢ and 7 equivariant.

(ii) A map g in 7°[R,] of spaces satisfying (i) has g = Rf if and only if g is
R*-equivariant. In particular, the isomorphism in (i) is of this form.

Proof of (i). Given an action ¢ define h:Y— Rq~'(1) by

1 )
(p<——, ) lfy7é*,
iy ={\ay”

(n(1),0)  ify=+.

We give ¢~ '(1) the basepoint * = (1) which as noted above is non-degenerate. It
is easy to see that & is an isomorphism in J(R) with inverse given by

o(t,x), t>0,
ES

(x’t)—){ , t=0.

Conversely for any space X, RX has an obvious R*-action for which the
projection and section are equivariant, and any isomorphism A:(Y, g, n)=
(RX, m,,m,) gives Y an appropriate R*-action.

Proof of (ii). If g:(Y,, g, m)—>(Y,, q,,7,) is an R¥-map of spaces satisfying
(i), then we have g = Rf, where f: q;'(1)—> ¢; '(1) is the restriction of g.

Of course we take U, Y =¢ (1) and U,g=f. O

We will also need the notion of €-space in J°[R, ] and the analogue of Lemma
1.2. For any operad € write €[J] for the usual category of 6-spaces [11], and
denote by 4[R, ] the category of ¥-spaces in J°[R_] defined as follows.
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The objects are those (X, p, ) such that X is a €-space and p and 7 are maps
of €-spaces, where € acts on R, by addition. The morphisms are maps in 7°[R, ]
which are also maps of €-spaces.

The functor R: 9 — J°[R,] restricts to a functor R': [T |— €[R,] as fol-
lows. If (Z, 6) is a €-space, then the composites

. . ., f),.x( }
€(j) X (RZY C€(j)x Z' xR, > Z xR,
Ul
(R'0),
RZ

define an action of € on RZ such that (RZ, R'8) is in €[R.].
The analogue of Lemma 1.2 for €-spaces follows from Lemma 1.3 below. Let r
1 _ roj .
be the composite Y £ 5Rg7'(1) AN g '(HCy.

Lemma 1.3. Let (Y, q,m, ¢) be in T(R) with (Y, 0) in €[R.], so that q and n are
€-maps. Suppose 0 is also compatible with ¢, i.e. 6(c, ¢(s, y,), ..., ¢(s, y;)) =
@(s,6,(yy, - .., ¥;)). The following are equivalent:

(i) 6 = R'6 for some €-action 6 on g '(1), i.e.

R’
%(j)x Rq '(1y——Rq™'(1)
1%k h
G(j)x ¥I— Y

commutes for all j. _
(i) (), (¢, yis- s ¥, =@[X4_y qyis 6(c, 1y, -, 1y)] for all j.
(iii) the two composites

i
r

)=y’ Y Y

()](lxrf)

are equal.

Proof. Suppose 0 is a €-action satisfying (ii). Define 5] to be re 6, restricted to
%(j) x g~ '(1), for j =1 and 6,(n(1)) =n(1). The condition in (ii) implies 6 is a
%-action on g '(1). The remaining verifications are straightforward but
tedious. O

The spaces satisfying Lemma 1.3 and the €-maps in J(R) form a category
%(R), and the functors U, of Lemma 1.2 and R’ determine functors

€T %(R).

U
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This slight abuse of notation should cause no confusion since these functors agree
with those of Lemma 1.2 on underlying objects.

Lemma 1.4
R
‘6[9‘](__%(R)

Uy
is an equivalence of categories.
Proof. The proof of Lemma 1.2 adapts using Lemma 1.3. O
We will be concerned mainly with the case when € is a tensor product of
operads. On the level of operad actions on a space, the following definition

describes the defining property of the tensor product:

Definition 1.5. Let &/ and % be operads acting on a space X. We say the two
actions interchange if the diagrams

(XS)r g (Xr)s b* Xs

) \ l
’ X ——X

commute for all a € «(s), b € B(r) and all r, s, =0. Here a, b etc. denotes action
by that element and o = o, € 3, permutes coordinates according to o, ((i —
Ds+j)=(j—Dr+iforl=i=rand1=sj=<s.

When (*) commutes for fixed r, s we say that (r, s)-interchange holds; note that
this is equivalent to saying (s, r)-interchange holds.

For each s, let & act ‘diagonally’ on X°, i.e. X is the s-fold product in the
category of 9B-spaces. Then Definition 1.5 is the requirement that each a € H(s)
is a morphism of %-spaces, all r,s =0, or equivalently each b€ %(r) is a
morphism of sf-spaces, all r, s =0.

A concrete example of Definition 1.5 is given by the n inclusions a': €,— €, ; if
X is a €,-space, then we show in Example 1.7 below that the induced %,-actions
on X pairwise interchange.

The following result gives a convenient way of verifying interchange in case
A=R:

Proposition 1.6. Let of be an operad which satisfies the condition

#) Each a € A(j), j =3 factors as a = y(d.; jps - - > a;) er some
a€ (k) and a; € A(j;) with 2=k <j and j;>0, all i.
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Let X be a space with two d-actions for which (r, s)-interchange holds when
r,s =2. Then the two actions interchange.

Proof. By the symmetry of the interchange condition, the obvious induction on
pairs (r, s) reduces to the statement: if =2 and (u, v)-interchange holds for u < r
and v =g, then (r + 1, s)-interchange holds.

Now if a € s{(r + 1) and b € 5(s), we must show ba’c,,,  =ab'"". This is a
straightforward calculation once a is replaced by its factorization (#). O

Example 1.7. If (X,0) is a %, ,-space, then the %, -actions induced by
a', a’: €,— €, interchange if i #J.

To see this let c={c,,...,c,)E€/(s),d=(d,,...,d, )€ €(r) and let ¢, d
denote their images under ', @’ respectively. Using the associativity of the action
6, the interchange condition cdo,, =dé is implied by y(¢;d,....d)=
y(d; €, ..., ¢) and this is equivalent to ¢,d,=d,¢, for 1=k=s and 1=I=<r.
This is obvious since the linear factors of ¢, (respectively d,) are all the identity
except for the ith (respectively jth) and i # j.

Notice that appeal to Proposition 1.6 in this case would only complicate a trivial
argument. However, the proof of Proposition 1.9 below is greatly simplified by
the use of Proposition 1.6.

We next discuss briefly the properties of tensor product of operads that we will
need. These are existence and the universal property.

Existence is easily deduced from [4] (see [4, discussion after Definition 5.2])
and the well-known relation between PROPS and operads [1, §2.3].

The universal property is most conveniently expressed in terms of May’s notion
of a pairing 7:(sd, B)— € of operads [13]. This consists of maps 7:(r) X
B(s)— 6(rs) for r, s =0 such that

(i) f p€2 and v € 3, then

T(aw, bv) = 7(a, b)(n A v)

where a € (r), b € B(s) and u A v E 3, is determined by u and .
(i) f a, € A(r;), 1=i=rand b, € B(s,), | =j=s, then

y{rta.b); X rla, b)) 0 = 7(v(@ X a), 306 X b))

where w is an appropriate permutation (see [13, 1.4]).

(iii) 7(1,1)= 1.

The tensor product of @ A is universal for such pairings; thus there is a pairing
7:(A, B)— A QB such that any pairing o: (A, B)— € determines uniquely a
map of operads o: o @ B — € for which the following diagrams commute for all
r,s:
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A(r) X B(s)——— (A & B)(rs)
\ )

If we delete condition (iii) we obtain the notion of non-unital pairing. The
universal property in this case differs from the previous one only in that o may
not preserve units.

Tensor products are commutative and associative up to natural isomorphism
{10], so the universal property extends to finitely many factors in the obvious way.
Explicitly, the notion of pairing generalizes to that of ‘n-linear map’
(oA, ...,9,)— € for n=2, satistying conditions analogous to those above.

(4, ...,4,)—> R/, o is then universal for such n-linear maps.

For example, there is a pairing o :(€,, €,)— %, given by

o(c,d)={c; xXd,...,c;xd,,...,¢c,Xd,,...,c,Xd,)
forc={(c,,...,c,)E6,(r)andd=(d,,...,d,) € 6,(s). More generally there
is an n-linear map (¥€,, . .., €,)— €,, n =2, so the universal property provides a

map of operads a: ®7_, 6,— €,.

The following ‘local’ universal property will also be useful. Note that the
n-finear map 7:(sf,,...,s,)—~> ®_ | o, restricts to give maps of operads
T, — @7, o, with 7(a)=7(1,...,1,a,1,...,1) and a in the jth coordi-
nate. The local universal property now reads as follows:

If the space X has &f-actions 1 =i = n, such that the -
and s -actions interchange for all i#j, then X has a
unique @ _, &, action for which each 7; induces the given
&,;-action.

Remark. If €X is the endomorphism operad of X (see [11]), then the local
universal property is just the universality of 7 applied to the obvious n-linear map
(Ay,...,d )= EX.

We denote the n-fold tensor product of €, with itself by € ?" and its associated
monad by C®". An object in €2"[R. ] has an algebraic structure determined by
its interchangeable %,-actions. The nature of this structure is given in the
following definition:

Definition 1.8. Let (X, p,n) € 9°[R.] and let {u,;};_, be monoid multiplications
on X (with * as two-sided unit) such that p and % are homomorphisms for each u,,
where R, is considered as a monoid under addition. We say that the {u}7;
semi-interchange if p,(p(x,, x,), (x5, x4)) = p (x5 X3), pi(x,, x4)) whenever



Tensor product of operads 245

p(x) - p(x,) = p(x,)- p(x;) and i # . In this case we call X an n-fold monoid. A
homomorphism of n-fold monoids is a map in J°[R, ] which is a homomorphism
for ith multiplications, 1 =i =< n.

The following are the most important examples of n-fold monoids:

(i) If X is a space with n interchangeable €, -actions (e.g. a €, -space), then
RX is an n-fold monoid, (see Proposition 1.9 below).

(ii) The space of n-fold Moore loops RQ"Y is an n-fold monoid.

(iii) The free n-fold monoid on a space X in J°[R, ], (see Construction 1.10
below).

Denote the category of n-fold monoids by / [R,], and let # (R) be the
subcategory with objects and maps also in J(R) such that the R*-action ¢ is
compatible with each u,, i.e. ¢(s, u,(a, b)) = u,{(e(s, a), ¢(s, b)).

The identity functor on J°[R,] induces a functor S': € "[R,]— 4 [R.]
(Proposition 1.9 below) and its restriction S: €"(R)— 4, (R) is an isomorphism
of categories (Proposition 1.11 below). This makes precise the relationship
between interchangeable € ?"-actions and semi-interchangeable monoid struc-
tures on objects in J(R). This is definitely not the case for S’ (see the definition
of T in Proposition 1.9 below) and is related to the fact that only in . ,(R) do we
have homotopy commutative multiplications. Because of this %?"[RJ and
M, [R.] have no particular significance in the present context and should be
regarded merely as technical aids for obtaining the results of Proposition 1.11.

The following conventions will be useful here and in Section 2:

Notation. From now on we will write iterated products involving {u,}; , without
parentheses using the usual conventions. For example, w,(y,, y,) becomes
MY Y,, associativity IS @ y,Y,Y3 = WY, M:Y,yY; and  interchange s
Ml Y1 Yo MY 3Ya = MY 1Y3 Y2 g

We will also write 6 ={8'}"_, for a €7"-action, where 6' is the %,-action
induced from by the ith inclusion €, — €%".

Define elements c(r,,. ., r;) in HOS,(SJ. €, (k) for j=2 and r,€R_, all i,
inductively as follows. Let ¢(r, r,) = (¢, d) in €,(2), where c(¢) = at and d(t) =
(1—a)t+a, 0=t=1, where a=r/(r, +r,) when r,, r,>0. Also let c(r,0) =
c(0,r)=1in %,(1), if r>0 and ¢(0,0)=0€ €,(0).

Suppose ¢(r,, ..., r,_,) is defined and let s = Y.JZ) r.. Then let
v(c(s, rj);c(rl,. .. ,r/._l),l) ifs,r;>0,

c(rl,...,rj)z C(Oyr]') ifs=0,

c(ryseoosriy) ifr,=0.

Proposition 1.9. There are functors S': €%"[R,]— M, [R,] and T:M4,(R)y—
€T R) which are the identity on the underlying objects.
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Proof. S’ and T are both induced by the identity on J°[R, ], so we need to show
how a €%"-action determines an n-fold monoid structure, and conversely.
Given (Y, q,n) with €%"-action 6 = {6'}7_,, define

05(c(qy1s ay2), y1, ¥2) i gy #0,
M:Y1Y, =1 ifqy,=0,
Y2 if gy, =0.

Note that * =7(0) € Y is a two-sided unit for each u,. For notational reasons we
will restrict our calculations to Y — *; the remaining cases are easily checked.
Associativity. Using the associativity of 8 we have

KY 1 HiY2Ys = GQ(Y(C(rl’ rytry); 1, ¢(ry, 13)), Yis Yas V)
and

Ml Y1 Y2Ys = GQ(Y(C(rl + 1y, 13)sc(r, 1), 1), ¥, ¥as ¥a)

where 7, =gqy,. An easy calculation shows that the two elements of %,(3)
appearing here are both equal to c(r,, r,, r3).
Semi-interchange. Let r, = qy,, 1=k=4 with r;r,=r,r; and i #j. We must

show w; i,y Y3 1,Y,Y4 = ;Y1 Y2 4;Y3Y 4, Which in terms of 0 is
Bé(c(rl Try, ), 05(c(ry, 73)s Yis ¥3)s 05(c(r35 7)), ¥as o))
= eg(c(rl +try,rtry), oé(c(rl’ 2), Y15 ¥2)s 0£(c(r3, i) Y35 ¥a)) -
To see this we note first that r,r, = r,r, is equivalent to

ry 7y rotr

ry+r, rytr, rtr,tritr,

>

oD rtr

rotry orytr, oritr,trtrg

Hence ¢(r, +ry, rs+r)=c(r,r5)=c(ry,ry) and c(r; +ry, rytry)=c(ry, ry) =
¢(rs, r;). Therefore the equation holds by interchange of ' and 6.

Since ¢ and 7 are easily seen to be homomorphisms for each y;, the multiplica-
tions {u,};_; do give Y an n-fold monoid structure.

Conversely, let {u;}7_, be an n-fold monoid structure on (Y, ¢, 1, ¢) in T(R).
We will define a €%"-action 6 on X = ¢~ '(1) such that (Y, R'9) is an object in
€®"(R).

Define €,-actions 6' on X by

6_;(‘3’ X5 %)= pmn(b ) pwelay, x )b, — (a, + b)) we(a,, x,)
o e(ay, xm(1—(a; + b))

where ¢ =(c,,...,¢;) with ¢, (t)=a,t+b,, I<k=jand tE€]
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The verification that 8’ is associative is straightforward but tedious, the key fact
needed being u,n(r)n(s) =n(r +s).

It remains to show that 6" and 6’ interchange for i # j. The local universal
property then gives a € ®"-action 6 on X. By Proposition 1.6 we are reduced to
verifying (r, s)-interchange for r, s =2. These calculations are quite lengthy and
can be found in [6], so they will not be reproduced here. This completes the proof
of the proposition. [

As remarked above, S’ restricts to an isomorphism of categories (T is its
inverse). Recall that C®"X is the free €}"-space on X and note that we can
regard RC?"X as the free € ¥"-space over R, on RX (at least in € %"(R)). Hence
we can replace RC®"X by the free n-fold monoid on RX. For this to be useful, we
must produce a model suitable for our purposes. The following construction gives
such a model:

Construction 1.10. Let (X, p,n) be in J°[R,] and define S,, the space of
well-formed words of length r in {u,};_ 11X as follows:

Let S, =X and for r=2, S, = {u,}7, x,_,_, (5,%S,_,), where {u,}/_, is a
discrete set of n elements. Let S, =11 _, S, and define R —n>SX—p> R, by n(t) =
n(t)E S, and p(a)=X}_, p(x,), where a€ S, and x,, ..., x, are the length 1
‘component words’ of a. Now define J, X = S,/~, where ~ is the equivalence
relation generated by the following relations:

(i) pa*~a~p*a, * =7(0);

(i) AT ~ (s + 1), 5, 1 ER, 5

(i) pa, 0,05 ~ p;p,a,0,05, a, € Sy ;

(V) ppa,a, masa, ~ wpa,a; p,0,a,
whenever i # j and p(a,)- p(a,) = p(a,) - p(a,).

We give J, X the quotient topology. It is then a filtered colimit by compactly
generated subspaces, so is itself compactly generated. We thus have an object
(J!X, p,m) in T°[R,] (Proposition B.1), and with the obvious definition of ith
multiplication J, X becomes an n-fold monoid. It is easily checked that J/ X has
the appropriate universal property, and hence is the free n-fold monoid functor
adjoint to the inclusion . ,[R,]— J°[R,]. We also have the restriction
J,: T(R)— M ,(R) and it is adjoint to M, (R)— T(R).

Summarizing, we have produced the following diagram to which Proposition
1.11 refers:

s’

TR, ]—"— M, [R,] €¢¥"[R, ]
U U U
TR M (R) T S6™(R) |*

R]E iy R|=

7 — €% 7]
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Proposition 1.11. (i) S is an isomorphism of categories.
(i) There is a natural isomorphism of functors

7:J R— SRC®" .

In particular identifying M,(R) and €Y"(R) via S (recall that S = id on underlying
objects), we have that X :J RX = RC®"X is an isomorphism of n-fold monoids
and of €%"-spaces over R

Proof. (i) Since § is the identity on underlying objects and maps, we need only
check that n-fold monoid structures correspond to € "-actions over R, . This is
easily verified for the composite SeT. Conversely, for (Y, @) in € 2*(R) with
h: Rq‘l(l) =Y, 0={6'}]_, determines an n-fold monoid structure on Y which in
turn gives 6 = {8’} 12 (6’@ -action on g~ (1) as in the proof of Proposition 1.9.
We need to show R'6' = 6" via h, i.e. h(R’ 6’ =10, (1 X h'), all i, j. Now 6 satisfies
the conditions of Lemma 1.3, so each ' does also Hence we obtain actions 6’ on
g '(1) such that R’ 9'= 0" A somewhat tedious calculation shows §' = ', so (i)
follows.

(i) f n:X—C®X is the unit of the monad C?", then Ry induces
tX:J'RX— S’"RC®"X by the universal property of J/. Now X is clearly
R*-equivariant, hence is a map in 4, (R), and so we have 7X:J RX— SRC®"X.

Now since J,RX = Rp (1) with p'(1) in €¥"[F], the map g: X— p '(1) by
g(x)=(x,1) induces a map g: C?"X—)ﬁ_l(l). It now follows from universal
properties that Rg is inverse to 7X. This completes the proof of the
proposition [

At this point we have the commutative diagram of the introduction. The
advantage of this is that the combinatorial structure of J,RX is relatively easy to
work with (as opposed to C¥"X).

2. Decomposition in €,

We begin by discussing the notion of decomposable elements in €, ; these form
a suboperad denoted by Z,. We then give some elementary properties of
decomposables which are used to show that &, — €, is a local 3-equivalence and
also that 8:J RX— RC,X is a closed inclusion with image RD,X.

First, recall from Section 1 the elements c(r, s) in €,(2) for r, s posmve real
numbers. Let c'(r,s) denote the image under the ith inclusion a': €, — €,
1=i=<n.

Definition 2.1. Let n =2, c€ € (j) and 1 =i = n. Call ¢ i-decomposable if j =0, 1
or if j=2 and ¢ = y(c(r, $); ¢, ¢,) for some r,s>0 and ¢, € €,(j,) with j, >0,
k=1,2. We also write ¢ =c; U, c,, where t=r/r +s.
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If there is a sequence of i-decompositions for various i, say i,, ..., {,_;, such

that ¢ = ¢, U, ¢, is an i;-decomposition, c, or c, is i,-decomposable, and so on to
i,_,, then c is called decomposable; otherwise it is indecomposable.

Visually, ¢ is i-decomposable if we can insert a codimension 1 hyperplane L in

I" orthogonal to the i-axis which does not meet the interior of any component

cube of ¢, and each ‘side’ of L in I” contains at least one component cube. We

shall occasionally use the notation L, = {(r,,...,r,)EI"|r,=1t},0<t<1. Thus
in Definition 2.1 with t=r/r+s, L, is a decomposing hyperplane for ¢ =
c, U, c,.

We note the following elementary facts about decomposable elements:

(a) If j =3, then all elements of €, (j) are decomposable.

(b) If j =4, there are indecomposable configurations in €, ().

(c) The decomposable elements in €, form a suboperad &, .

(a) and (c) are obvious from the definition. For (b), note that Fig. 1 is
indecomposable in €,(4). For j>4, fill in the empty cube arbitrarily and for
n>2, use the inclusion €,— €,.

We remark that &, can also be described as the suboperad of 6, generated by
the image of (6,,..., €,)— €,, the n-linear map of Section 1.

We next show that (€,(j), 9,(j)) is a 3 -equivariant DR pair, all j =0.

Let €, denote the extended n-cubes operad: it consists of little n-cubes
c={c;,..., c/.) whose component cubes ¢, may be degenerate, i.e. some of the
linear factors of ¢, might be constant. There is an obvious inclusion €, — €, .

Let H:IX €,(j)— %,,(j) be the homotopy which shrinks each little n-cube to
its center points. Specifically, define g: I X I—1Iby g(s, t) =g (1) =(1 —s)t + /2
and let g7:I"—I" be the n-fold product. Now taking H(s,c)=
(ciogf,...,cog7) we see that H(0,c)=c¢, H(l,¢0)=c(3,...,3) and
H(s,c)€ %,(j) for s <1.

The following lemma shows that u: €, (j)— I given by u(c) =inf{s| H(s, c¢) €
D,(j)} is well defined:

Lemma 2.2. (i) There is s €[0, 1) such that H(s, ¢c) € 9,(j).
(it) H(u(c), c) € 2,(j), hence u(c) =0 if and only if c€E 9,(j). O

Both of these are visually obvious, so we omit proofs.

Fig. 1.
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Define h:1 X €(j)— 6(j) by h(s, ¢)= H(s- u(c), ¢). (€,(j), 9,(j)) is then a
3.-equivariant DR pair via (h, u), so we have shown

Propesition 2.3. 9, — € is a local 3-equivalence. [

For the remainder of this section X will always denote a countably infinite
discrete space. We will need the following lemma in order to pass from associated
monads back to operads.

Lemma 2.4. Let y: € — 2 be a morphism of operads.
(i) The quotient map

m: |1 6(j) x5 X'>Ccx

J=0

has a section p which is a closed inclusion.

(il) If y: CX— DX is a homeomorphism, then : € — @ is an isomorphism of
operads.

(iii) If each ;- €(j)— D(j) is a closed inclusion, then so is : CX— DX

Proof. Let A, = 6(j) X5 X’ and B, = D(j) X5 X’

(i) For aE CX, there is a unique representatlve (c, y) € A, such that k is
minimal. Let p(a) = (c, y). p is continuous because X is discrete, and a closed
inclusion since e p =id.

(ii) We first observe that an operad can be recovered from its associated monad
as follows. Let X ={0,1,2,...}, a discrete space with basepoint 0. The map
fi 6(j)—U,. A, j>0, given by f(c)=(c,1,2,. .. J) is a closed inclusion
with im f; Cim p. Hence we can identify €(j) with C(j)=(p~ [)(€(j)) in CX
as X .-spaces by requiring p f to be 3 -equivariant. Explicitly, the action is given
by [c, 1,...,j]'e=co,1,...,]] ((6(0) is identified with [*,0].) If y is the
composition in 6, then ¥ in (é is defined by y(c;cy, ..., Ej) =vy(c;cpye .y ;)
where d =[d, 1, ..., j].

One now checks that p~'f:€— € is an isomorphism of operads and that
¥ : CX— DX restricts to a homeomorphism ¢;: é(j)— %(j), for all j.

(ii1) In the diagram

[ 4,
j=0

we have p'oy = 1,/7 °p, so we need each A;— B; a closed inclusion and this follows
from Proposition B.3. [
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From Proposition 2.3, Lemma 2.4 and Proposition B.1 we conclude that
RD,X— RC,X is a closed inclusion. Since the image of the n-linear map
(€,,...,%)~>%, is contained in %, we can regard Ra as a map
RC?"X — RD,X. Thus we can regard 8 as a map J,RX— RD,X which we now
show to be a homeomorphism.

In the next three lemmas we take advantage of the natural filtration of J, RX by
word length. Since the three proofs are similar we will give details for Lemma 2.6
only.

Let 7 and p be the maps of Lemma 2.4 for € = %, and let B= Rpe-pB. If
a € J,RX we define its length A(a) to be the smallest length of a representative
word.

Lemma 2.5. Let B(a) = (c, x,t) with AMa)=2, and suppose c=c, U c, is an
i-decomposition, i.e. ¢ = y(c'(r, 1,); ¢;,¢,) with s=r /r +r,. Then there exist
a,, a,inJ,RX such that a = w,a,a, and B(a,) = (c,, x,, r,) for some x, € X’* k=
1,2. O

Lemma 2.6. § = Rp o B is injective, hence B is also injective.

Proof. § is clearly injective on RX C J,RX, so we can restrict to classes of length
=2. By the preceding lemma it suffices to show B(u.a,a,)= B( ;b b,) implies
miaay = pbb,. Let é(ak) (x> X4, 1) and B(b )=(dy, yi> 8¢), k=1,2. Then
y(c'(t,, ¢t ) ¢, €)= vy(c (s, 8,); dy, dy) withs, +5, =1, + 1,.

If s, =t,, then B(a,) = B(bk) so a, = b,, k=1,2 by induction on length.

Now suppose s, > t,. Then y(c'(¢,, t,); ¢,, ¢,) is i-decomposable by L_ , so that
there exist ay, a; such that wa,a, = waja; and B(a))=(c, x}, t)) k= 1 2 with
LIt + ty) =s,/(s, +s,). Hence B(u,a,al) = B( ;b b,) with ¢ = s, so the previ-
ous case applies.

The case s, <t is similar. [

Lemma 2.7. im 8=RD X. O
Lemma 2.8. 8:/ RX— RD, X is a homeomorphism.

Proof. Let x,=+#, x,, x,,... be the distinct points of X and write X, =
{x¢, X\, ..., x;}. We will show each J,RX,— RD, X, is a homeomorphism and
this will imply that 8 is a homeomorphism as follows.

Note that X = colim X, and each (X}, X;_,) is NDR. Now J, and R preserve
colimits since they are left adjoints, and D, preserves NDR colimits by [11, 2.6],
so the conclusion follows.

We now show g:J,RX,— RD, X, is a homeomorphism, j=1. Applying R to
the standard filtration of D X; we obtam a filtered space RD, X, = U,., F.. Let
G,=B7'(F.) and let p be the map of Lemma 2.4 for D, X,. Now (Rp)(F, —
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F,_)=9,(r) Xy (X—%) X R*, r=1, and this subset is both open and 