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We prove the following generalized version of the complex Adams conjecture (see
Theorem 10-4), as announced in (5).

THEOREM. For any integer r > 0, the triangle of spaces localized away from r

BU — ^ — BU

BSG

is the first stage of a homotopy commutative triangle of connected ^.-spectra, where
ifrr: BU ->BU is the r-th Adams operation on complex K-theory and J:BU-> BSG is the
complex J-homomorphism.

Our proof also applies to prove the quaternionic analogue of this conjecture (see
Theorem 10-5). These theorems assume added interest in view of the fact that J,
Jo i/rr: BSO->BSG are not homotopic as maps of //-spaces localized away from r for
any odd integer r. The reader can find certain applications of this theorem in (12).

Our interest in this infinite loop Adams conjecture is based to some extent upon
the fact that it is a natural (but apparently difficult) sharpening of the usual Adams
conjecture. More significantly, we view this conjecture as an excellent challenge to
the methods used in the various proofs of the Adams conjecture and to the various
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110 E R I C M. F B I E D L A N D E R

approaches to infinite loop space theory. Furthermore, there are few techniques
available to prove that two maps between infinite loop spaces are homotopic as maps
of fi-spectra: any new techniques developed to prove the existence of such a homotopy
in a particular situation should have more general interest.

Our proof of the infinite loop Adams conjecture follows the following slightly
modified outline of D. Sullivan's proof (16) of the complex Adams conjecture. After
completing away from r, Sullivan obtains a model for the universal sphere bundle over
BU(n) using algebraic geometry, and he verifies that the Adams operation ^rr can be
realized algebraically in such a way that it is covered by a self-map of this universal
sphere bundle. This leads to a diagram of spaces completed away from r consisting
of cartesian squares

B(U{n), S2") — B{U{n), S2») — B(SG(n), S2»)

BU(n) *-— BU(n) • BSG(n)

Thus, B{ U(n), S2n) ->• B U(n) represents the pull-back of B(SG(n), S2n) -+ B8G{n) by both
J and Joirr. Because B(SG(n),S*n)^BSG(n) is a universal S2n fibration, J and
Joifrr are homotopic after completing away from r. The complex Adams conjecture
follows upon stabilization.

In providing an infinite loop space analogue of this outline, we replace spaces by
^"-spaces (formerly called F-spaces). The basic properties of ^"-spaces are given in
Section 1, recalling the foundations provided by G. Segal in (15) and extended in (2).
Sections 2—7 are devoted to the development of the requisite classification theory.
With the expectation of additional applications, we develop this theory in full generality
with arbitrary pointed simplicial sets a8 fibre. The classification theory relates equi-
valence classes of Jf-fibrations (as defined in Section 3) to homotopy classes of maps
into a universal ^"-space constructed from the monoids of self-equivalences of the
iterated smash products of X (see Section 5). The somewhat awkward requirement that
an X-fibration be a sectioned map as defined in Section 2 is necessary for the construc-
tion of associated principal fibrations given in Section 4. Section 6 proves the classifica-
tion theorem for JC-fibrations, whereas Section 7 provides the completed version we
require. Section 8 sets the J-homomorphism into the context of S2-fibrations of
.^"-spaces. We exhibit an algebro-geometric model of the completion of the S2-
fibration associated to the J-homomorphism in Section 9. Our proof of the infinite
loop Adams conjecture is concluded in Section 10.

With deep gratitude, we thank J. P. May for his constant encouragement during
the lengthy development of our classification theory and for his patient influence
upon every aspect of its final presentation. We thank J. F. Adams for introducing us to
infinite loop spaces. Finally, we acknowledge our debt to the Hoobler-Rector paper (7)
which demonstrated the relevance of etale homotopy to infinite loop spaces.

1. ^-SPACES

In this section, we recall the definitions and properties of ^"-spaces which we shall
employ in subsequent sections. These ^"-spaces are due to Segal, although the point
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The infinite loop Adams conjecture 111
of view we adopt is a modification of Segal's due to D. Anderson. Details not presented
here can be found in (2), where ̂ "-spaces are called F-spaces.

Definition 1-1. An &-space is a functor

from the category ^ of finite pointed seta to the category <$"* of pointed simplicial
sets such that 88 sends each singleton set to the point simplicial set. The category of
js'-spaces, denoted ^"[5^], is the category whose objects are ^"-spaces and whose
maps are natural transformations. More generally, if # is a category with a given
final-cofinal object 0, an ^"-object of ^ is a functor 88:2? -»• # sending each singleton
set to 0.

We let n e O b j ^ ) denote the set {0,1,..., n} with base point 0. The J^-object
88 .IF^-^ is canonically equivalent to the functor whose value on 5e0bj (^") is
defined to equal 8§(n) for that n such that \S\ = n (i.e. S ~ n in IF). Consequently, we
shall usually view ^ : ^ " - > ^ a s a functor defined on the full subcategory of IF con-
sisting of objects n for n ^ 0. For notational convenience, we let 88n denote 8S(n) and
a: 8Sm -> 88a denote the morphism determined by a: m -+ n in !F for any J^-ob ject 88.

All ^"-spaces we consider will be provided with a structure map to the ^"-space ~W
introduced in Example 1-2.

Example 1-2. Let N denote the set of non-negative integers. For any n > 0, let
jVa = Nxn, the discrete simplicial set given as the %-fold cartesian product of N with
itself. For a: n -»• k in ^, define a: J^ -*• Jfk by sending the «.-tuple / = (*lf..., in) e J^
to the i-tuple a(I) = (j,, ...,jk), where j t = S is.

O(«) = J

If ^ ->^" i s a map of ^"-spaces, 8Sj <=• 8Sn will be used to denote the inverse image of
/ e ^~a; in particular, 8St denotes the inverse image of (i) eJ/"x-

The following proposition is proved in (2). The purpose of a closed model category
structure is that it provides a good homotopy category defined by inverting weak
equivalences (13).

Proposition 1-3. The following definitions determine a simplicial closed model
category structure on the category of ^"-spaces.

(a) / : $4^-88 in &[&*] is a weak equivalence if/n: s/n-+8§a is a weak equivalence for
each n > 0.

(b)f: ,s/^y 88 in ̂ [S^]ia &cofibration ifTor eachn > 0 the induced map

/ ( n ) :colim(.<U 8St)^8Sn

is a 2n-equivariant cofibration (i.e./(n) is injective and the permutation group Snacts
freely on any simplex of 8Sa not in the image of /(n )), where colim is indexed by all maps

r -»• n in IF with r < n.
(c) / : stf -* 88 in ̂ " [ ^ ] is afibration if for each n > 0 the induced map

t

is a fibration (i.e. a Kan fibration), where lim is indexed by all maps n-*t with n > t.
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112 EBIC M. FRIEDLANDER

An object 88 in &[£?*] is said to be cqfibrant if * ->8§ is a cofibration and fibrant if
<%-*•* is a fibration. The ^"-space Jf of Example 1-2 is neither cofibrant (the Sn-
equivariance condition fails), or fibrant. The homotopy category of lF\Sf+\ (with respect
to the structure specified in Proposition 1-3) is the category obtained by formally
inverting the weak equivalences defined in 1-3(a)). If«s^ is cofibrant and & fibrant,
then any map fromj^ to 88 in Ho J 5 " ^ ] (the homotopy category of ^"[<^]) is re-
presented by a mapjj/-^-^1 in ̂ \_Sf^\.

The category &[Sf+\/jV admits finite limits and finite colimits. Therefore, the
forgetful functor

is a map of simplicial closed model categories provided that weak equivalences,
cofibrations, and fibrations in ^[S^^/^V are defined by 1-3(a), (b) and (c) via the
inclusion Maps(^"[^,] /^r)->Maps(^[^]) . We denote by

the homotopy category Ho (&r[&+]/Jr), which equals Ho
An .^"-space determines a simplicial pre-spectrum in the following manner (this

formulation was explained to me by A. K. Bousfield). Let E be the finite simplicial
set representing the circle with exactly two non-degenerate simplices, and let S n be
the n-fold smash product of S with itself. For any J^-space 88: &-*•&+ and any
finite pointed simplicial set S, let 88(8) denote the diagonal of the bi-simplicial set
k,l-*38(Sk\. We define

where S A 88{1>) -> ̂ (2n + 1) is defined by the maps {x} A@((Zn)k)^@((Zn+\) given
by applying 88 to x A ( ): 2£ -> I%+1 for all k > 0, x e (L)k.

The following proposition, due to G. Segal, is proved in (2).

Proposition 1-4. As defined above, <D determines a functor

where H o ^ " [ ^ ] is the homotopy category of ^-spaces determined by the structure of
Proposition 1-3 and where HoSp is the homotopy category of spectra. Furthermore,
O(^) is an Q-spectrum (i.e. the adjoints of the maps 2 A^?(2n)-»^?(Zn+1) are weak
equivalences) whenever 88 satisfies the condition that for all n > 0

1=1 i=l

is a weak equivalence, where pt: n-> 1 is the projection sending i en and j 4= i to 0.

2. SECTIONED MAPS

In Definition 2-1 we introduce the definition of a sectioned map of ^"-spaces. The
remainder of this section is devoted to introducing various forms of ' good' sections
and to showing that any sectioned map may be modified so as to possess such 'good'
properties. The categorically inclined reader might prefer to view this discussion as
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The infinite loop Adams conjecture 113
providing various verifications necessary to show that the fibred category of sectioned
maps over ^"[^*] admits a closed model category structure.

Definition 2-1. Let / : &->£§ be a map of ^"-spaces. A section for/consists of pointed
sub-simplicial sets <ff <= £a for each n > 0 and each pointed S e n such that

(a) If S = {0}, then <?f = @n and / restricted to £$ is the identity; if S = n, then
^ = C

(6) If J1 is a pointed subset of S, then «?J <= <f£.
(c) For any map d:n->-t in IF, let (d:#) <=t be the pointed subset defined by

0 4= je(d:S) if and only if d-^j) <= 5. Then d:«?n->«?t restricts to &*-+g\ilS).
A map (<7, A) : / ' -> / between sectioned maps / ' : <?'-»• ̂ ?' and/:<?->^? is said to be

section preserving M gn:S'a^-3Sn restricts to g*n'•&'•«!-*•&% f°r each w > 0 and each
pointed (Sen . Here, g:i'^-S and h:38' -*38 satisfy fg = hf.

The examples of sectioned maps/:(^->^? which we shall consider are maps over
•/K (cf. Example 1-2) having the property t h a t / ^ : ^ - * ^ - has fibres homotopy equi-
valent to a product X1 = X*» x ... x X** for I = (t^ ..., in), where Xi is the i-fold smash
product of some simplicial set X. The section S\ <= <fn restricted to S\ = Ss

n n<?7 <= St

singles out subfibres of fl:&l^-38I homotopy equivalent to XS(/), where Xs^> <=• X1

consists of simplices whose^th factor is the base point whenever i$ S. A structure map
d.S'j^-$dd) induces a map on fibres (over d:3Sj^-SS^D) which is to be identified with
the smash product map XI->Xd{J). Condition 2-1 (c) requires that a subfibre of
fi'-&i~*^i corresponding to XSir> <= X1 be mapped to the appropriate (with respect
to smash product) subfibre of/d(/): ̂ d(/)~>i '̂d(7)-

A most important aspect of this definition is that it requires no actual product
structure on the fibres oifI:&l->8&1. This enables us to obtain new sectioned maps
from previously defined ones by applying a functor from SP+ to &+ which does not
commute with products. For the examples arising from algebraic geometry, this
generality is crucial.

If 2 s <=• Sn denotes the subgroup of 2 n consisting of those permutations which
stabilize S <= n, then the action of Sn on <fn restricts to an action of 2 s on <ff (as can
be seen by applying 2-1 (c) with d e2 s ) .

The following proposition describes our standard technique of constructing section-
preserving maps.

Proposition 2-2. Let $':§'-*• 38' and /': &->• £8 be sectioned maps of ^"-spaces, let
h:08'^-38 be a map of ^"-spaces, and assume colim g'*-*-^ is a cofibration for all

LS|<n

n > 0 (where colim is indexed by the pointed, proper subsets S of n). A section-
preserving map

(9.h) :/'-*/
is equivalent to the following inductive data: for each n > 0 and each k ^ n, a choice
of Ss-equivariant lifting

colim £'2,~'(S) U colim <f'J • <??
rs •*
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114 E R I C M. F R I E D L A N D E R

for some choice of pointed subset S <= n with \S\ = k, where colim is indexed by maps

6 : m - > n i n ^ ' w i t h m < n and lim is indexed by maps d :n->-t in ^with n > t.

Proof. A section-preserving map (g, h) : / ' -> / determines such liftings: condition
2« 1(6) implies the condition that (&:£'£-*£^ restricts to colim g% on colim <?£";

TcS TcS

condition 2-1 (c) implies that q\ restricts to colim ĝ ,~1(S) on colim S"^"1^1 and covers

n>t n>t n>t

Conversely, we define g£(S): g'«®-*g«® for <r e 2 n and gf already defined by

Since gf is Ss-equivariant, g^(S) depends only on a(S) c n (i.e. only the equivalence
class of cr in Sn /Ss ) . The condition that colim g'n

s-+$'a is a cofibration guarantees
SSen

that d?'n
s and S"a

T have intersection inside S"a equal to S"a
sn T. Thus, the above definition

of <?£(S> extends g% to a Sn-equivariant map on U S"a
T. Consequently, the inductive

| | S |
construction provides a section-preserving map as asserted.

We continue to employ the notation introduced in Proposition 2-2. The following
definition is introduced to facilitate lifting arguments suggested by Proposition 2-2.

Definition 2-3. L e t / : ^ - » ^ be a sectioned map of ^"-spaces. If for each n > 0 and
each pointed S e n the natural map

colim^-HS) u colim <C
m<n TcS

is a Sf equivariant cofibration then / is said to be cofibrantly sectioned. Moreover, / is
said to befibrantly sectioned if, for each n > 0 and each pointed S <=• n, the natural map

l s t D
n>t *

is a fibration.
A map a: n-»-k in IF is said to be a projection if o-1(j) is a singleton set for all j

with 0 # j e k . Such a projection corresponds to a pointed subset of n (i.e. a subset
containing 0 e n) with k non-zero elements together with a permutation of those
non-zero elements. If a :n ->k and 6:n->r are projections, then an intersection of
a and b is a projection c: n-> s with the property that c(i) # 0 if and only if a{i) ^ 0
and b(i) / 0. The projections under n form a category (isomorphic to the partially
ordered set of pointed subsets of n).

We shall require the following property of fibrantly sectioned maps when we con-
sider principalizations in Section 4.

Proposition 2-4. Let / :<^->^ be a fibrantly sectioned map of ^"-spaces. Let I be
some non-empty full subcategory of the category of projections under n with the
property that some intersection of any two projections in / is again in / . For any
pointed S e n , the natural map
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ae.1

is a fibration.

Proof. Because lim <f£a:S) x ̂ ^ is naturally isomorphic to lim «f£a:6f) x # k ^ , , where
J is the full subcategory of the category of projections under n which factor through
a projection in / , we may assume that every projection factoring through a projection
of / is actually in / . Since (ff-> lim(f{d:S> x ̂ 33^ is a fibration, it suffices to prove the

n>t
existence of a lifting (aa dotted) for the following square

A[r) -> lim <?<J:S) x et@a

for all i > 0, 0 < i < r (where ei: A[r]->A[r] is the inclusion of the (r — l)-skeleton of
A[r] minus its ith. face into A[r]). The lifting into any factor indexed by b: n-> 1 in
S' which does not factor through a projection in / is achieved using the facts that
g<£-s^38x (and thus «ff:S) x g^SSu-^ 38n) is a fibration and that only n->0 and b itself
factor through b:n->l. Proceeding inductively with respect to m < n, we obtain a
lifting into any factor indexed by b :n->m in IF which does not factor through a
projection in / by using the preceding liftings and the fact that

m>l
is a fibration.

The following proposition provides a factorization of a section-preserving map which
will facilitate lifting arguments.

Proposition 2-5. Let / ' :£" •^•88' and/ : <?->^ be sectioned maps, and let (g,g) • / ' - > /
be section preserving. There exists a factorization of (g,g),

together with a section of/" : $"-+!%" such that
(a) (j,j):/' ->/" and (p, p) :/"->•/are section preserving,
(6) j and J are trivial cofibrations; moreover, for each n > 0 and each pointed

( S e n , the natural maps
colim <C~1(S) U £'s U colim #? -> <?"s,

are trivial 2s-equivariant cofibrations.
(c) p and p are fibrations; moreover, for each n > 0 and each pointed 5 < n, the

natural maps

are fibrations.
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116 ERIC M. FBIEDLANDER

Proof. The proof proceeds by induction on n and \8\ = k ^ n. We first factor g
alspoy.g§'->@"^g& with j a trivial cofibration and p a fibration. Setting ^ m = S&l
for n > 0, we satisfy 2-5 (a), (6) and (c) for $ = {0}. For a given 0 < k ^ n, we define
<?nS for each S c n to be the pointed simplicial set with a 2s-action functorially
constructed to provide a Zs-equivariant factorization

colimS^'1*® u £'n
s U colim£"n

T-+ g"n
s-+ lim£"t<

d:S> x g\
m<n TcS n>t

with left arrow a Ss-equivariant trivial cofibration and right arrow a fibration (cf. (6),
proposition 5-51, where such a factorization is constructed - without the Ss-equi-
variant condition - as the colimit of an infinite sequence of canonical factorizations;
this construction need only be modified by attaching k\(n — k)\ simplices for each
'horn' at each stage with 2 s acting freely on the new simplices). If 8' = <r(S) for some
cr e Sn, then naturality and induction imply that <r induces an isomorphism

which is 2s-equivariant provided that S s acts on Sf via the conjugation isomorphism
( )"•: S s Z. 2 s ' followed by the defining action of S s ' on £f.

By construction, the composition inclusions

- colim S"m U $n U colim S"U
T -+ S"u

m<n Ten

satisfy conditions 2-1 (a), (b) and (c). (An easy inductive argument implies that these
maps are inclusions.) Our construction also guarantees that the composites

3n'• <$"n-*colim#J,u^U colim«?"J-»££,
m<n Tea

n>t
are section preserving.

We assume inductively that

colim g'£~HS)^- colim S1^'1^
m<n m<n

is a trivial cofibration for all 8 <=• n. By construction,

colim S"^~llS) U &'a
s U colim S"U

T-
m<n TcS

is a trivial cofibration. Therefore,
s u colim S"n

TcS

is a trivial cofibration. Using an easy patching argument together with induction on
| S | = k, we conclude that colim S'J -> colim S"n

T (and thus S"n
s^-S"^s) is a trivial

TS TSTcS TcS

cofibration. Therefore, col im^6"1^ u < s - ^ - < s is a trivial cofibration. The same

https://doi.org/10.1017/S0305004100056577 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100056577


The infinite loop Adams conjecture 117
form of patching argument now implies that

colim d>"J[~1(y)-+ colim $"£~^}
m<n+l m<n+l

is a trivial cofibration for all pointed V <= n +1 so that the induction continues. In
particular, we conclude that j : <§" -+ S" is a trivial cofibration of ^"-spaces.

The proof of 2-5 (c) is similar.
We leave to the reader the minor modifications of Proposition 2-5 which yield a

'cofibration - trivial fibration' version. Because the special case of Proposition 2-5 in
which g:38' -+38 is a trivial cofibration and. f: $-*• 38 is the identity map will be so
frequently employed, we explicitly provide its statement as Corollary 2-6.

Corollary 2-6. Let J: 33' -> 38" be a trivial cofibration in ^ [ ^ * ] and l e t / ' :$' ^-38'
be a sectioned map. There exists a fibrantly sectioned map / " : S" ^-38" and a trivial
cofibration j : <?' -+ S" satisfying

(a) (j,j) :/'->-/" is section preserving,
(6) colim <?̂ f-1(S) u <̂ nS U colim $£T -+ ̂ s is a trivial cofibration for each n > 0 and

m<n TcS

/Sen.
Such an / " : S" -+ 38" is said to be a compatibly sectioned mapping fibration for

3. X-VIBRATIONS

An X-fibration is the .^"-space analogue of an oriented fibration with fibres weakly
equivalent to a given simplicial set X. The main result of this section is Theorem 3-5
asserting that the functor defined in Definition 3-3 which associates to the «^-space
38 the set X(38) of X-fibrations over 38 is a homotopy functor.

We consider a fixed (but arbitrarily chosen) pointed simplicial set X and the various
smash products Xm of X with itself. For any pointed simplicial set Y (e.g. Y = X or
Xm), G(Y) denotes the simplicial monoid of pointed self-equivalences of | Y\; that is,
G(Y) = Sin(^( | r | ) ) , where ^ ( | r | ) is the topological monoid of pointed self-equi-
valences of | F| and Sin () is the singular functor. For any «-tuple / = (ilt . . . , in), we
let G(Xy denote the product G(XH) X ... X G(Xin). Because smash product commutes
with geometric realization (as Kelley spaces) (6), smash product of maps determines
a map

associated to any d: n -> t in ^ and any n-tuple / .
We assume in this section, and in all subsequent sections, that X is provided with a

suitable orientation. By definition, such a suitable orientation consists of a choice of
submonoid SG(Xm) of G(Xm) for each m > 0 (consisting of' special self-equivalences')
satisfying for each m > 0:

(a) no(SG(Xm)) is a subgroup of no(G(Xm)).
(b) SG(Xm) consists of those connected components of G(Xm) indexed by no(SG(Xm)).
(c) Sm c 8G(X»).
(d) Smash product, G(Xm) x G(Xm) -> G(Xm+n), restricts to

SG(Xm) x
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118 ERIC M. FBIEDLANDER

With this definition of a suitable orientation in mind, we define an oriented fibration
as follows.

Definition 3-1. Let (Y, y) be a pointed simplicial set and let f:E^-B be a fibration
with given section whose fibres are weakly equivalent to (Y,y0). Let G(Y) be the
simplicial monoid of pointed equivalences of |F | , let Sn be a chosen subgroup of
no(G(Y)) and let SO(Y) consist of those components of G(Y) indexed by Sn. An
orientation of f with respect to SG( Y) is a choice of subset (Sf)b (of ' orienting equi-
valences ') for each b: A[<] -> B of the set of homotopy classes of maps

(ExBA[t],A[t])^(Sin\Y\,y)
such that

(a) (Sf)b is a simply transitive left Sn-set.
(b) For any face b': A[t — 1] ->• B of b, composition with the inclusion

E x B A[t - 1] -> E x B A[t]

determines a bisection from (Sf)b on to (Sf)b,.
Let/ ' :E' -+B' and/": E^-B be pointed fibration with given sections oriented with

respect to Sn <= no(G(Y)). A map (g,g) :/'->/ is said to be orientation preserving if
composition on the right with g induces a bijection (8f)g(b')-> (Sf)b, for every simplex
b' oiB'.

If f:E->B is a pointed fibration with given section oriented with respect to Sn,
a map v:(Yx A[t], y x A[t]) -> (E, B) is said to be special i f /o v factors through some
^-simplex v: A[t] -> B and if the composition of some orienting equivalence

and the induced map v, v:(Yx A[t], y x A[<]) -> (E x B A[t], A[t]) is a ^-simplex of G( Y)
in a connected component of Sn.

We remind the reader of our vector notation employed for ^"-spaces over J/~. If
/ : S^-SS is a sectioned map over ~V, then/z : SI^>-3SI is the restriction of/„ above an
n-tuple I = (iu ..., in) e ^ , and &f denotes £T n <?n. We let ff denote the restriction
of fj to Sf. Moreover, for any pointed subset S <= n, XS(/) <= X1 = X^ x ... x I**1 con-
sists of simplices whose jth factor is the base point whenever j ^ S.

Definition 3-2. A map f:S^>-3S of ^"-spaces over ^"is said to be an X-fibration
provided that for each n > 0 and each n-tuple I = (iv ...,in)

(a) / z :SI^>-3S1 is an oriented fibration with respect to

SG{Xy = SG(XH) x ... x
n

(b) II pjKoj-*-!! tfiiX-naij^i *s a n orientation-preserving fibre homotopy equi-

valence over SST, where p^: n -> 1 is the projection sending^' e n to 1 e 1.
(c) For any pointed S c n, ff: £f -+8§j is a fibration. Furthermore, if a: n-» k is a

projection which restricts to an isomorphism of 8 onto k, then

is an orientation-preserving fibre homotopy equivalence over SSj.
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(d) Let /*:n->l send every non-zerojen to l e i . Then any special equivalence

v: X1 xi[(]-> Sx which restricts to vs : XS(7) xA[(]-> Sj for every pointed S e n extends
to a special equivalence X ^ x A[<]->- S'^.

A map of X-fibrations, (g,g) : / ' - » / , ia a section-preserving map such that

is orientation preserving for all n > 0 and all n-tuples / .
Even without condition 3-2 {d), /iov:XJx A[t] -> <?7-> S^ factors through a unique

(because XI-^-X>dX) is surjective) map I ^ x A p ] - ^ ^ ) thanks to condition 2-1 (c).
Thus, the content of 3-2 (d) is that this map X ^ x A[t]-> ̂ ( i ) is a special equivalence:
this means that /i: St -»• (f^j has the effect of smash product on fibres.

Definition 3-3 below defines the set X(88) (by Theorem 6-1, X(88) is indeed a set)
only for cofibrant ^"-spaces 88 over •/K Because X(88) is classified by homotopy
classes of maps from 88 into a classifying ^"-space (by Theorem 6-1 again), it should
not be surprising that X(&8) can be more readily described for cofibrant 08.

Definition 3-3. Let 88 be a cofibrant ^"-space provided with a given map g&^-Jf
(we say that SB is a cofibrant ^"-space over JV). We define X{38) to be the set of equi-
valence classes of X-fibrations over 38, where the equivalence relation is generated by
pairs of Jf-fibrations over 38 between which there is a map over 88. If g: ^S" -> 38 is a
map of cofibrant ^"-spaces over JV, we define

by sending f:£-+88 to g*<J):£' = £xm38''-*&' (where < , s = <£°£x#n^n for all
n > 0 and pointed S e n ) .

Proposition 3-4. Let ^ be a cofibrant ^"-space over Jf. Any element of X(38) is
represented by an X-fibration which is fibrantly and cofibrantly sectioned. If/: S-+8&
and f :$'-*• 88 are fibrantly and cofibrantly sectioned X-fibrations which are equal
in X{38), then there exist maps/->/ ' and/ ' ->/ of X-fibrations over 88.

Proof. If/ is an X-fi bration over 38, we obtain maps of X-fibrations over 38
f^-h-^k,

where h is fibrantly sectioned (using Proposition 2-5) and k is fibrantly-cofibrantly
sectioned (using the cofibration - trivial fibration version Proposition 2-5). Using
Proposition 2-2 and this construction, we conclude that, i f / a n d / ' are fibrantly and
cofibrantly sectioned X-fibrations over 88 equal in X(88), then there exists a chain of
maps of fibrantly and cofibrantly sectioned X-fibrations over 88 relating/and/ ' .

Consequently, it suffices to prove that, iig.f ->/is a map of fibrantly and cofibrantly
sectioned X-fibrations over 88, then there exists a map / -* / ' of X-fibrations over 88.
Factor g as poj :/'->•/''->/ using Proposition 2-5. Proposition 2-2 together with the
hypothesis that / is fibrantly sectioned and / ' cofibrantly sectioned implies the
existence of a section-preserving right inverse for p and a section-preserving left in-
verse for j .

We next prove that 88Y-+X{88) determines a functor on the homotopy category.

THEOBEM 3-5. The functor 38\-*X{88), defined in Definition 3-3 on the category of
cofibrant IF spaces over ^V, induces a contravariant functor

X( ): Ho W . ] / . / r -> (sets).
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Proof . For any closed model category #, Ho'g' is equivalent to the category of
fractions of the category ^cof (the full sub-category of # consisting of cofibrant objects)
determined by inverting weak equivalences in ^?cot. Consequently, it suffices to prove
that g* :X(33)->X(33') is a bijection whenever g:38' -+38 is a weak equivalence of
cofibrant ^"-spaces over ^V.

We first assume that g is a trivial cofibration. Define

g*:X(33')-+X(38)

by sending an equivalence class of an X-fibration / ' : $' -> 38' to the equivalence class
of a compatibly sectioned mapping fibration, gof = g+(f), for g of :£'->• 38 (cf.
Corollary 2-6). Using Proposition 2-2, we readily conclude that gm is well defined. The
natural inclusionf'->g*(f') determines f -+g*ogif(J'); thus, g*og* = 1. \if:S^-38
is a fibrantly sectioned X-fibration, then the natural map g*(f)->f can be extended
to g*og*fj)->f using Proposition 2-2. Therefore, g*og* = 1.

Since any weak equivalence g:08'^-38 of J^-spaces factors as poy.38'' ->38"' ̂ -38,
where j is a trivial cofibration (so that ^?" is cofibrant provided that 38' is cofibrant)
andp a trivial fibration, the theorem will be proved if we verify that#* : X(38) -»• X{38")
is a bijection whenever p: 38" -> & is a trivial fibration between cofibrant ^"-spaces
over Jf. Because 38 is cofibrant, p admits a right inverse; thus, p* is injective. If
qoi:3&-> 38" is some factorization of some right inverse of p with i a trivial cofibration
and q a trivial fibration, our proceeding arguments imply that i*oq* : X(38")-+X(38)
is injective as well as left inverse to p*. Therefore, i*oq* and consequently #* are
bijective.

We conclude this section with the following simple observation concerning X{38)
for .^"-spaces 3S over ./^which are not necessarily cofibrant.

Proposition 3-6. Let 38 be an ^"-space over Jf. An X-fibration over 33, f:&->-38,
naturally determines an element of X(8fi). Moreover, i f / ' ->/ is a map of X-fibrations
over 38, then/ ' and/determine the same element in X{38).

Proof. Let g: 38' -*• 38 be a trivial fibration with 38' cofibrant. Then g*(f) determines
an element [g*f] in X(38'). By Theorem 3-5, [g*f] eX(3S') determines an element of
X(3S) independent of the choice of g. If /-*•/' is a map of X-fibrations over 38, then the
induced map g*f-*g*f implies that [g*f] equal? [g*f] in X(38'); thus, Theorem 3-5
implies t h a t / a n d / ' determine the same element in X{38).

4. PRINCIPAIJZATION OF X-FIBRATIONS

The usual method of classifying fibrations with a specified homotopy type F as
fibre ia to pass from the fibration f:E-+B to the associated principal fibration

The total space P(J) is defined to be the space of maps F->E which are equival-
ences between F and some fibre of/. The key property of/is that it is a fibration with
fibres equivalent to the monoid of self-equivalences of/.

We provide an ^"-space analogue of such a principalization. The construction is
very delicate. If /:<£->• 33 is an X-fibration and / is an n-tuple, one considers special
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equivalences from X1 into a fibre of / 7 :<?7-»-̂ ?7. In order that SG(X)1 act on these
equivalences, we replace / 7 by Sin |/7| :Sin |<?7| ->Sin |^?7|. Moreover, conditions must
be imposed on these weak equivalences in order that a map d: n->t induces a weak
equivalence from Xd(/) into a fibre of Sin |<̂ d(j)| -^-Sin \3$dU)\- Such conditions are pre-
scribed using the section given j:S^-3S. The delicacy arises in obtaining such con-
ditions with the additional property that the fibres of the resultant principalization
are equivalent to SG(X)1 (this is the content of Theorem 4-5).

The reader should observe that / -> P( / ) 7 as defined in Definition 4-1 is not functorial
on !F. This is an intrinsic failing of any principalization: if P(/)( i 3) consists of certain
maps Xi x X3'->Sin |< (̂ff3-)|, these maps must be sent to maps -X^'-^-Sin \Si+i\ via the
sum map /*: 2-*• 1 and to maps X> xI'->-Sin | < ĵf>| via the flip map T : 2-> 2. One can
at most require that /i: P(f)(ii fi^-P(f)i+i and JIOT: i>(/)(i,,)->•?(/)<>,,)-»• P{f)i+i differ
by an involution of Xi+i (the domain of maps in P(,f)i+j).

As in Section 3, X is a pointed simplicial set provided with a suitable orientation.

Definition 4-1. Let / :<?->^ be an X-fibration. For any n-tuple / = (ilt ...,in), we
define

as follows. A jfc-simplex of -P(/)/ above a given ^-simplex b:&[k]-*-@j is a special
equivalence

projecting to 6: Affc]-*-^ which satisfies
(a) For every pointed i S s n , t i restricts to

(6) For every d: n ->-t with n > £ and every pointed S £ n, ir51 projects to

j/d: s>. Xv-sum X A[jfc] ̂  Sin | £"£$ > |.

The map i/d:S> of 4-1 (6) is necessarily unique because XS(/)->-X(d:S) (d(/)) is surjective.
By 3-2 (6) and (c), the maps Vs of 4-1 (a) and tfd:s> of 4-1 (6) are special equivalences.

Proposition 4-2. L e t / ' :<£"->^?' and/:*?-*^1 be X-fibrations, let TO > 0, and let /
be an n-tuple. A map (<?, £ ) : / ' ->/of X-fibrations induces a map P(f')i->-P(f)i- A map
c: n-> r in !F determines a natural map c: -P(/)7 — P(f)di) (which is not functorial
with respect to compositions in IF). Furthermore, there is a natural pairing

Proof. The map P(J')I^-P(f)I induced by (g,§)'•/'->/ is defined by sending
v:ZJxA[Jfc]^Sin|(f7| to gov. For c : n -* r i n satisfyingc(i) # c(j) for i ^j,XI-^Xc^
is an isomorphism; for such c: n-> r, t>: XJ x A[&]->Sin \<aj\ is sent to the composition

covoc-1 -.X^x A ^ ^ P x A[ifc]->Sin |^7| ->Sin \£dI)\.

More generally, factor c: n-»- r as CiOCg: n->t->- r, where cx satisfies C1(i) ?̂  ̂ (j) for
i <£j and c2 is the unique surjective map satisfying for each i with c(i) # c(j) for i > j
the condition that c2(i) > cz(j) for i > j . Define c:P(f)I-^P{f)dI) as the composition
of c2: P{f)i^p(f)<M) determined by 4-1 (6) and cx: -?(/)«*(/)-•-P(/)C(J) defined above.
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Using the adjointness of Sin ( ) and 1|, we identify a ̂ -simplex of G(X)1 =
with a map X1 x A[A;]-*Sin \X*\. Then the pairing P{f)2x SG(X)I-yP(f)Iia defined
to send (v:Xzx A[fc]->Sin |<?j|,a: Xxx A[A]->-Sin \X*\) to the composition

where ijr: (Sino | |)2->Sino | | is induced by the adjunction map | | oSin-> 1 (giving
Sino | | the structure of a 'triple' or 'monad'). So denned, voa satisfies 4-1 (a) and
4-1 (6) whenever v does because a is a product of maps XH xA[i]-> Sin \XH\.

The next proposition justifies the lifting arguments in our proof of Theorem 4-5.
The intuition for Proposition 4-3 arises from the associated isomorphisms

lim.

• limX<d:S)(d(/» (/Sen)

for any n-tuple / .

Proposition 4-3. Let/:S-+3& be a fibrantly sectioned X-fibration. For any n-tuple
/ = (ij,..., in) and any pointed S e n , the natural maps

(fj-^linKfatfjX

n>t

are trivial fibrations, where lim is indexed by all projections c:n-> k with n > k
n-»>

and lim is indexed by all d: n-»-t in & with n > t.

Proof. By Definition 2- 3 and Proposition 2-4, these maps are fibrations. To prove that

SSa(l)S3I

is a weak equivalence, we first recall that SI-^-W.SSi, x a< SSj is a trivial fibration by
Definition 3- 2 (a) and Proposition 2-4. We then use induction to verify that

lim gM x m ar -> Urn ̂  x m Sdj
n—•> n~»>

is a trivial fibration, where lim is indexed by all projections b : n -» k with k ^ r.

Let o:n->kbea projection chosen so that a restricts to an isomorphism of 8 on to
k. By Definition 3-2 (c) and Proposition 2-4, <^f -*-^aa)x a}ait)^i *8 a trivial fibration.
We proceed to prove that the projection

is a trivial fibration. We factor this map as a sequence
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where Lt = lim^i}?' x & SBj, with lim indexed by those d: n->-t with n > t which do

not initiate a chain with j non-isomorphic maps none of whose composites factors
through the chosen projection a:n->k. Because (d:S)czt whenever d:n-+t does

not factor through a, we may apply induction to conclude that

is a trivial fibration for each d e T(j) — T(j — 1). Therefore, each Lj -> L]_x is a fibration.
We state as a corollary the factorization of the projection

lim #fo? x a^tf, * gM x m

imphcitly described in the proof of Proposition 4-3.

Corollary 4-4. Let / : <f -+38 be a fibrantly sectioned X-fibration. For any n-tuple /,
any pointed S e n , and any projection a: n-> k which restricts to an isomorphism of

S on to k, the projection

lim£%? x a afj^gM x m SSj

factors as a composite of trivial fibrations each of which is the pull-back of the trivial
fibration

associated to some map d: n->t which does not factor through a.
The following ' Principalization Theorem' provides the core of our proof of the

classification theorems.

THEOREM 4-5. Letf: S-+88 be, a fibrantly sectioned X-fibration and let I be an n-tuple.
Thenfj: P(/) / -> 3SZ is a fibration. Moreover, for any vertex z of Bj, there exists a homotopy
equivalence

which fits in the following commutative square

r
SG{ xy x sa{xy -* sa{xy

whose horizontal arrows are determined by composition.
Proof. To prove / z is a fibration, we exhibit a ' suitable' lifting (determining a

^-simplex of P(f)j) for commutative squares of the form
X' x A[t] * » Sin \*,\

b-r''
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for any k > 0, any 0 ^ r ^ k, any u: A[k]-+P(J)It and any w which factors through
a ^-simplex of SBt. Using the fact that each £^-+38^ is a fibration, we first choose
liftings for the squares

u (* x Sin \S(. x a <

(4-5-1)

Sin |

(using the fact that Sino | | preserves fibrations (14)).
We proceed by induction on \8\ to obtain a suitable lifting for the square

x A[fc]) U (Xs"> x A[k]) Sin |

Urn Sin|<?&?> x

(4-5-2)

For any projection a: n-> r which restricts to a surjection of 8 onto r, fi'Sffi = ,̂(7) so
that a suitable lifting XSiI)x A[k]-^-S'm\^jf)\ is obtained by inductively choosing a
Lifting for the following square with the aid of Proposition 4-3 and the chosen liftings
of (4-5-1):

(colim X<°:2

(4-5-3)

• Urn Siii

(we imphcitly use the fact that Sin o | | commutes with finite limits (6)). If d: n->t
is any map with n > t which factors through such a projection a: n-> r restricting to
a eurjection <S-> r, then

projects to a (uniquely defined) map

because we have inductively required that the 'axes' of X(a:SXatn)x A[A;] (namely
for T c S) map correctly. In particular, for 8 = n, the lifting of

(4-5-3) provides a lifting for (4-5-2).
For S e n , we inductively consider maps d:n->t not factoring through any

projection o: n-»- r which maps S on to r so that (d: S) <= t. Applying Proposition 4-3,

we choose liftings for the following square

(colim Z(*rxn x A[fc]) U X^M' x A[k] -+ Sin | ^ j f

(4-5-4)
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Finally, we use Proposition 4-3 again to obtain a lifting for (4-5-2). Thus,/j: P (/)/-> ^ /
is a fibration.

Because the right veitical arrows of (4-5-2), (4-5-3), and (4-5-4) are trivial fibrations,
the same lifting arguments prove that

P i j { ,

is a trivial fibration. This map is clearly #(r(.Xy-equivariant. Consequently, to con-
struct <j>ZiI it suffices to construct the (SG^-X^-equivariant equivalences

for each j , 0 < j ^ n. These <f>v{z) u are determined by choices of orienting equivalences
/^()KSi|X%|

5. UNIVERSAL X-ITERATIONS

We continue to consider a pointed simplicial set X provided with a suitable orienta-
tion. The purpose of this section is to introduce the sectioned maps of ^"-spaces which
we employ in Section 6 to prove the classification theorems. Example 5-3 provides the
universal JT-fibration. Example 5-5 introduces the maps which will yield a classifying
map. Proposition 5-6 uses these maps to relate a given X-fibration to the universal
X-fibration.

We begin by constructing the classifying ^"-space 3SSG(X). The reader should
recall that X1 denotes the i-fold smash product of X with itself.

Example 5-1. Let ^x be the permutative category whose object space is the discrete
set {|Zl|}i>0~ N and whose morphism space equals 11^^(1-^*1), wherey^lX*!) is

i>0

the topological monoid of special self equivalence of |

(so that Sin (y&{\X*\)) = SG(X*)).

We define the product

by setting |X*| D |X'| = |Xi + ' | and aDy? = a A/?.
As shown in (ll), <&x determines a functor

9j>x: &-*• (permutative categories)

such that ( f x)i = ^>x- We define the ,^-space

by setting 38SG{X)a = BSiB(C^x)B), where jBsln( ) applied to a topological category <g
is the diagonal of the bisimplicial set defined by applying Sin ( ) to the nerve of <€.

To make this construction more concrete, we describe &SG(X) in terms of explicit
formulas. If K is a simplicial group,we denote by B(K,K) (or B(*,K,K)) the con-
tractible simplicial set obtained by applying the bar construction to K; in particular,
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Proposition 5-2. There exists a canonical structure map 38SG(X)-^-JV' of .^"-spaces
induced by functor on permutative categories. Moreover, for any n-tuple / , £&SG(X)j
is isomorphic to

n B8G(X)*ix n B(SH{X*T),8H{X*T)),
Ten

where the product is indexed by pointed subsets T e n with more than one non-zero
element, where iT = 2 ip and where SH^X*) <=• SG{Xi) consists of special self-equi-

valences which are homeomorphisms. Furthermore, 3S8G(X) is a cofibrant JF-space.

Proof. The ^"-space Jf is obtained by applying the construction of Example 5-1
to the permutative category whose objects are the natural numbers, whose only maps
are identities, and whose product is addition. &8G(X)->^V is induced by the forgetful
functor.

To obtain the specific formula for SS8G{X)I> we identify (cf. (10)) Obj (C?x)n) with
U II y^°( |Zi J T | ) , where SfJf0(\XiT\) is the topological submonoid oi9"S{\XiT\)

Je./fn Ten
|T|>1

consisting of homeomorphisms (i.e. invertible elements of «$^(|Z^|)) and iT = 2*<-

We identify the morphism space of \$GX )n with

II
Because @SG(X)Z c @SG{X)n is the inverse image of / e J^,

is a cofibration. Because any transposition (k, I) which fixes some %-tuple I = (i1;..., in)
with each ij > 0 (i.e. / is not the image of some m-tuple for m < n) acts freely on
B(SH(Xk+l),SH(Xk-")) (recall that (k,l) eSfc+, c y^(|Z*-H|))f we conclude that
colim @SG(X)m^38SG(X)n is a Sn-equivariant cofibration. Therefore, @SG{X) is

cofibrant.
We next construct the sectioned map n: &(SG(X), X) -> <%SG{X) which determines

the universal X-fibration. If if is a simplicial monoid acting (on the left) on a simplicial
set Y, we denote by B(K, Y) (or B(*,K, Y)) the simplicial set obtained by applying
the bar construction to K and Y; in particular, B(K, Y)t = Kxt x Y.

Example 5-3. We define a functor between permutative categories

as follows, where ^x is defined in Example 5-1. The map on object spaces

obj (<rx) = i i \x*\+{\x%>tt = obj {vx)

sends x e |Xf| to l ^ l - The map on morphism spaces
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is the projection map (so that ^x(x>y) c ^(1-^*1. |-^l|) consists of special self-equi-
valences sending x e |Xl'| to y e | Jf *|). The product

is defined as smash product on ob jects (x e | X* | D y e | Xi \ = % A y e \ Xi | A | Xi \ = \ Xi+i \)
and on maps.

The projection ^x -> ̂ x determines a map of ^"-spaces

n :

defined by applying -BSin() *° *n e natural transformation f j j - > ^ x obtained from
^'x -*• ̂ x a s m (1J)- -^or a n y w-tuple / , ^(iSG(X), X)j is given by the following explicit
formula

Ten

for any pointed subset S e n , @I(8G(X), X)f is given by

B(USG(X%Sin\Xs^\)x U
TTen

\T\>1

This section for n is determined by the natural right inverse functor (of permutative
categories) of the projection ^'x^-^x-

Proposition 5-4 verifies that Example 5-3 does indeed yield an X-fibration.

Proposition 5-4. Any compatibly sectioned mapping fibration

n: 3 {SG(X), X) -+ @SG(X)

of the map n:3S{SG{X),X)^3SSG{X) constructed in Example 5-3 is a fibrantly
augmented X-fibration.

Proof. By construction, 7f is fibrantly sectioned. Condition 3-2 (a) is verified by
inspection. Condition 3-2(6) is implied by the weak equivalence

and Condition 3-2(c) is similarly implied. Condition 3-2(d) is implied by the corres-
ponding property for n.

The following construction yields maps

depending upon the principalization f:P(f )-*•£$ given in Proposition 4-1. These
maps will be shown (in Section 6) to determine the classifying map for the Z-fibra-
tion /': $'-*• S8'. Our definition below of the categories ^ n is merely a modification of
an explicit definition of the categories (^ X)D °f Example5-3in which the objects (Xj,...,
xn) e |Z7| of C^x)n a r e replaced by objects v: \X*\ ->• |^7| in ^ 7 . Moreover, we now apply
the bar construction to a simplicial monoid K and a right action of K on a simplicial
set Z, B{Z, K,*).
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Example 5-5. For each n > 0, we define a functor ^n-> C&x)n
 a s follows, where%

is defined in Example 5-1. The map on object spaces

= U <?(/)/x n Sr*i\X*T\)
Ierfa Ten

u n

is the projection, where 0>(f)I is the topological space of maps v: \X*\ -> |<fj| such that
Sin (^(f)x) x &i = P(f)i (as denned in Definition 4-1). The map on morphism

Sin|<B/|

spaces

->U n ^ J f ( | Z * r | ) x US^^(\XH\) = Maps((**)„)

is the projection: a map in ̂ n from (v, x 6T) to («', x O'T} is an element geU Sf&i^X1^)
such that w = v' og.

For any d: n ->• t, we define d: 5*,, ->• 8PK on objects by sending

(v,xdT) to <d{v),d(xdT)},

where d( x 0r) is determined by d: (̂ "x)!!"5- ̂ ^ ) t a n ( i d(v) is the unique map fitting in
the following commutative square

|X*"| •

The map 6d: \X*\ -*• \Xd(f>\ has j th factor defined to be the projection if

\d~\j) c n| *S 1

and to be 6ro/iT otherwise, where T = d-10") and / i T : n - » l in IF sends 0 =£ iel
if and only if i eT. We define d: 0^-*^ on maps by projecting to d: (^x)n~^" C$x)t-
This definition is now functorial with respect to maps d of 3F in contrast to the situation
described in Proposition 4-2 for P(f): the map sending (v, x 0T) to (d(v), d( x dT)~)
differs in its first coordinate from the map d: P(f)i-^P{J)dU) of Proposition 4-2 in that
the definition of d{v) includes an action on the domain associated to x 6T.

Consequently, we obtain a map of ^"-spaces

cof: a(&(f), 8G(X), *) -» @SG(X)

by applying the functor -BSm( ) ^° ^ne above-defined natural transformation. If we
view the space |^ n | as a topological category whose only maps are identities, then the
natural map £Pu-> \&n\ sending (v, x 0T> to/7ov(|X7|) e \08n\ is a natural transforma-
tion of functors on «̂ ". Applying Bsin( ), we obtain another map of .^"-spaces
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We define the map of ^"-spaces

qf:@(P(f),SG(X),*) =

129

) x
Sin |*|

to be the projection and the map

to be the composite a>, opr^: @(P{f), SG(X), *) -> @(&(J), SG{X), *) -+ @8G{X).
The role of the above maps pf and qf begins to be revealed in the following pro-

position.

Proposition 5-6. Let /': S'->88Tje an Jf-fibration. Then there is a naturally defined
chain of sectioned maps

Sin |^| x &

Sin \J)\

3S(P(S), SG(X), X)-

et ), SG(X), *)

3(SG(X), X)

9SSG{X)

(5-6-1

where nf is defined to be q*(n).

Proof. To define pf, we observe that

where @(0>(f),SG(X),X)n is defined by applying JBsln( ) to

(an object of which is an ordered set (v, x 6T, x), with

]^], xdeHS>'Jt!'(\XiT\),xe\XI\.

)

If we view |< n̂| as a topological category whose only maps are identities, then the
natural map ̂ - ^ |<fn| sending (v, x dT,x) to v(x) e\#n\ is a natural transformation
of functors on &'.

We define pf to be the map of ^"-spaces determined by applying jBsln( ) to this
natural transformation. Clearly, pf covers pf. The map (pf,pf): Tfy-̂ -Sin | / | is section
preserving because any v: |Z7| -> |^7| in ^ ( / ) n sends |Z s y ) | to \Sf\.

6. THE CLASSIFICATION THEOREM FOR X-FIBRATIONS

Theorem 6-1 is the classification theorem asserting that if: 0§(SG(X), X) ->• 3SSG(X)
is a universal X-fibration. The proof employs diagram (5-6-1) of Proposition 5-6
together with Theorem 4-5. This proof is an adaptation of May's proof of an analogous
classification theorem for fibrations of topological spaces with a fixed homotopy
type as fibre (9). Corollary 6-2 derives an easy necessary and sufficient condition on an
X-fibration in order that it be universal. This condition is precisely the one suggested
by analogy with the context of fibrations of topological spaces.

5 P S P 87
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THEOREM 6-1. Let Xbea suitably oriented, pointed simplicial set and let

be as in Proposition 5-4. The association to a homotopy class [g~\:33-+£&SG(X) in
class ofg*(n) determines an isomorphism of functors

A: Hom

Proof. The fact that A is well defined follows from Theorem 3-5 and Proposition 5-4.
In order to prove that A is an isomorphism, it suffices to prove that

A&: Horn

is a bijection for every cofibrant ^"-space SB over Jf.
\j&tf:$-*-3B be a fibrantly sectioned X-fibration. We easily verify that the maps

/ / ->Sin( | / | ) 7 , (7r/)/^-(Sin | / | ) z , and (TT/)/->^/ induce oriented equivalences on hom-
otopy fibres. Consequently, diagram (5-6-1) determines a chain of X-fibrations

/-•Sin |/1 +-nf-+n

obtained as compatibly sectioned mapping fibrations (because Sin o | | commutes
with finite limits and preserves fibrations, Sin | / | is an X-fibration whenever / is).
We conclude that

qf(jf) = nf = pnf) in X(a(P{f),8G(X),*)).

For any n-tuple / and any ^-simplex A[k] -+8Bj, we readily verify that

is weakly equivalent to B(P{f)j x mi A[lc], SG(Xy, *) which is contractible by Theorem
4-5. We conclude thatpf is a weak equivalence: this implies th&tp* is an isomorphism,
so that A@ is surjective.

Consider the function

fa : X(SI) ->HomHo <?ly.vA

defined by fa(f) = [qf] o [P/]'1. To verify that r]rm is well defined, we employ Pro-
position 3-4 and the fact that a map (g,g) :/ '-»•/ of X-fibrations over !%) determines
a commutative diagram of ^"-spaces

We conclude this proof by verifying that i/r^ o Aa is bijective for 88 cofibrant over
JV . Let y.3S8G(X)-^SS' be a trivial cofibration with SB' fibrant over Jf. For any
homotopy class [g]:@-> @SG{X) in Ho ̂ [^/JV, let g': 38 -> SB' be a map of ^-spaces
representing [g] (i.e. [g] = [j]~x o \g']). We consider the following commutative diagram
of ^"-spaces over Jf
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) , SG{X),

'(n), SG{X),'

where r': £' -»- ̂ " is a compatibly sectioned mapping fibration for

and where T = g'*(r'). Because A5B([gr]) is represented by T, the top row represents
i^aoAjjffj]) whereas the left column represents [g].

To prove that \jrm o Â g is bijective, it now suffices to prove that q^ is a weak equi-
valence. We easily verify that the fibre of (^)z above any ^-simplex A[&]-> 3§8G(X)I

is weakly equivalent to P(^)7 for any n-tuple / . To show that P(jf)j is weakly con-
tractible (thus implying that (q^)j is a weak equivalence), we apply the principalization
construction of Definition 4-1 to -n:3S{SG(X),X)^-3§8G{X). Because the quasi-
fibration Sin |T7J| has fibre equal to Sin |X1], a special equivalence

v: X1 x &[k] -• Sin \a8G(X)z\

satisfies 4-1 (o) and 4-1 (6) if and only if it is given by a ifc-simplex of SG(X)1. Therefore,
P(7r)7 is equivalent to the contractible simplicial set B(8G(Xy, SG(X)1). The inclusion
TT->-n determines P(7r)r^-P(w)2 over 3§SG{X)j which induces an equivalence on fibres
by Theorem 4-5. Therefore, P(n)j is weakly equivalent to the contractible simplicial
set P(n)T.

Diagram (5-6-1) easily implies that A £ B o^([ / ] ) = \J]eX(0fi). Consequently, our
proof above of Theorem 6-1 implies that f s o A a = 1, so that

qg, p^:3S{P(n), SG(X), *) -> 2§SG{X)

are equal to Ho &[£?„]/JV.
Another easy consequence of Theorem 6-1 is the following corollary.

Corollary 6-2. Let f •.&->&$ be a fibrantly sectioned X-fibration. The natural
transformation

A': Horn ( , @) -> X( )

sending a homotopy class [g]: SB' -*• SB to [g*f] e X(SS') is an isomorphism of functors
if and only if P(f)j is contractible for every n-tuple / . Such a fibration is said to be
universal.

Proof. By Theorem 61 , A'( ) is an isomorphism if and only if

5-2
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is an isomorphism in H o ^ [ y , ] / / (because tya is inverse to A&). Because [jpf] is
always an isomorphism and because the homotopy fibres of (qf)z are equivalent to
P(f)z (cf. argument in proof of Theorem 6-1 for (<fc?)7), (qf)j is a weak equivalence if
and only if P(/)7 is contractible.

7. -R-COMPLETED X-PTBRATIONS

In Theorem 7-8, we present an J?-completed version of the classification theorem
(Theorem 61). Theorem 7-9 then provides sufficient conditions for the iJ-completion
of a universal X-fibration to be a universal i?-completed X-fibration. Throughout this
section, R will denote either a subring of the rationals or a prime field and i?-completion
will refer to the Bousfield-Kan functor i?00( ): SP+-*•£?+. (Some technical properties of
Rm( ) which we require are proved in the appendix.)

As defined in Definition 7-2, an iZ-completed X-fibration involves fibrations
/ / '•£I-*-@I with fibres equivalent to B.J^X)1. Since smash product does not commute
with the functor i?00( ) (not even up to homotopy when R is a prime field), some
modification of the discussion of preceding sections is required. Since i?co( ) does not
commute with fibre products (unlike Sino| |), care must be taken when applying
lifting arguments to R«,{f)-

We require that X is pointed, connected, and R-good (i.e. #*(X, R) -5- H+{Rm(X), R)).
As discussed and proved in Proposition A 1, this implies that the simplicial set of
.R-equivalences from Xi to Ra)(X

i) is an equivalent submonoid of the simplicial
monoid of equivalences of i?00(X

i). (The product of a, /?: Xi->Ra)[Xi) is defined to be
the composition

where l^-i?0O( ), \jr: R%( )->Roo( ) constitute the monad structure (3).) The advantage
of considering maps with domain X* is that the smash product of such maps is a
similar map.

For any i > 0, we define RGiX*) to be this simplicial monoid of .R-equivalences
from X* to R^X*). For any n-tuple / = (ix,..., in), we define RG(Xy to be the product
RG(X^) x ... x RG{X^). By Corollary A 2, smash product RJX*) x RX(X^) -> R
induces a monoid homomorphism RG(Xi) x RG(X>)^>-RG(Xi+i). Thus, a map d:
in IF determines a monoid homomorphism

Definition 7-1. Let X be a pointed, connected, .R-good simplicial set. An R-suitable
orientation for X is a choice of simplicial submonoid SRG(Xi) c RG^X*) (of ' special
iZ-equivalences') for each i > 0 such that

(a) no{SRG(Xi)) is a subgroup of ^(^^(X1)) and SRGiX*) consists of those com-
ponents of RGiX*) indexed by no{8RG(Xi)).

(b) S« c 8BG{X*).
(c) RG(Xi)xRG(Xi)-+RG(Xi+i) restricts to SRGiX^x SRG(Xi)->SRG(Xi+i) for

all j > 0.
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(d) no{SRG(Xi)) acts nilpotently on //!tl(.R00(X

i),.R) viewed as the homology of the
homotopy fibre of the map £(&RG(Xl),.Ra,(X

i))^£>S.R(?(X*).
For the remainder of this section, we assume that X is a pointed, connected .R-good

simplicial set provided with an J?-suitable orientation. For any n-tuple / = (ilt ...,in),
we let SRG(X)1 denote SRO{X*i) x ... x SRGiX**).

Since no(RG(Xi)) = no(G(Raa[Xi)), we may employ Definition 3-1 when considering
fibrations/j :<oI->-&I with given section oriented with respect to 8RG(X)Z. For such a
fibration, a map v: X1 x A[&]-»-<?r is said to be a special R-equivalence provided that
/ o r factors through a A-simplexof S§x, A[&]->^?7, and if composition with an orienting
equivalence determines a A-simplex of SRG(X)1,

= RX(XH) x ... x R

Condition 7-1 (d) guarantees that the natural m&pfI->Ra>(fI) induces equivalences
on fibres whenever fz is oriented with respect to SRG(X)1.

Definition 7-2. A sectioned map of J^-spaces over Jf, $:&->S8, is said to be an
R-completed X-fibration provided that/ z satisfies 3-2(6), 3-2 (c), and

(o)/7 :Sl-^-SSl is an oriented fibration with respect to SRG{X)1;
(d) = 3-2 (d) with 'special equivalence' replaced by 'special i?-equivalence' for each

n > 0 and each w-tuple / .
A map of i?-completed X-fibrations (g,g) : / ' -> / i s a section-preserving map such

that (gI,gI) ://->•// is orientation preserving for all ^-tuples / .
The arguments in Section 3 apply without change to prove the following .R-completed

version of Theorem 3-5. The fact that RX{SS) is a set follows from Theorem 7-8.

Proposition 7-3. For any cofibrant ^"-apace 88 over *W, let RX(0§) denote the set
of equivalence classes of .R-completed X-fibrations over SB, where the equivalence
relation is generated by pairs between which there is a map over SB. If g: SB' ->• 8) is a
map of cofibrant ^"-spaces over JV, define g* :RX{S8)^RX{@1') by sending the
equivalence class oif:&-+S8 to the equivalence class of g*(f) :S y. mSB' ̂ -SB'. Then
this definition extends to a homotopy functor

RX( ): Ho^ iS f ^ jV -> (sets).

Because the natural map RJ^X1) -> RJ^Xf is a weak equivalence for R a subring
of the rationals, RX(S8) equals Rm(X) {S3) (as defined in Definition 3-3) for such a ring
R. However, if R is a prime field, then an .R-completed X-fibration is not an R^X)-
fibration.

The following is the .R-completed version of Definition 4-1.

Definition 7-4. Let f:£->S8 be an .R-completed X-fibration. For any n-tuple /,
we define

in 6^

as follows. A A-simplex of RP{f)I above a given ^-simplex b:A[k]-^-SSt is a special
.R-equivalence

v -. [X' x A[i], * x A[i]) -* (*
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projecting to b: A[k]^>&z which satisfies
(a) For every pointed S c n , » restricts to

(6) For every d: n ->t with n > t and every S <=• n, Vs projects to

We omit the easy verification of the i2-completed version of Proposition 4-2. The
natural pairing analogous to that of Proposition 4-2, is defined by sending

v: X1 x

to the composition

^ o i J » o ( » x l)o(gx l):X

where i: i?00(X)/->i?00(X
/) is induced by the natural equivalence

B9{X* x X>).

The functor i?00() : ^ , -> 5^ in Definition 7-4 replaces the functor Sin o| | in Definition
4-1. We require Proposition 7-5 in order to justify the lifting arguments which must
be applied to Ra>(f) in proving the i?-completed version of Theorem 4-5.

Proposition 7-5. Le t / : $-+SB be an iJ-completed X-fibration. Then the natural map

admits the structure of a map of i?-completed X-fibrations. Moreover, if / is fibrantly
sectioned and & is fibrant over JTt then RJ<j) is also fibrantly sectioned.

Proof. i?oo(/) is sectioned by defining i?00(#)® to equal Bn{S%) for any n > 0 and
any pointed 8 £ n. Definition 7-l(d) assures that R<o(f) satisfies 7-2 (a) and 7-2(6).
Condition 7-2 (c) for -Roo(/) is implied by 7-1 (d) together with the fact that Rm()
preserves fibrations. Finally, 7-2 (d) for Rx{f) is implied by 7-2 (d) for / and 7-1 (d).
Therefore, Rx(f) is an i?-completed X-fibration. Clearly,/-*- Raoif) is section preserving
and orientation preserving, and hence a map of jR-completed X-fibrations.

We now assume t h a t / is fibrantly sectioned and that 38 is fibrant over ~W. Then
Proposition A 5 applies to prove that the canonical map

Rm (Urn £%# x a a2) -> Urn *
n>t

is a fibration for any n > 0, any pointed S s n , and any «.-tuple / . Because
preserves fibrations, this implies that the natural maps

lim R

are fibrations. Thus Ra>{f) is fibrantly sectioned.
The following theorem is the i?-completed analogue of Theorem 4-5.
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THEOREM 7-6. Let f-.S^-SS be a fibrantly augmented, R-completed X-fibration vrith
38 fibrant ewer JV and let I be an n-tuple. Thenfj : RP{f)I^-^I is afibration. Moreover,
for any vertex z of SSj, there exists a homotopy equivalence

which fits in the following commutative square

fr>(z)xSRG(xy-*ffi{z)

SRG(X)1 x SRG(Xy->- SRG{Xy

whose horizontal arrows are determined by composition.

Proof. As in Proposition 4-3, the natural maps

are trivial fibrations: the proof given in Proposition 4-3 applies thanks to Proposition
7-5.

The proof of Theorem 4-5 now applies with only slight notational changes to prove
Theorem 7-6.

The constructions of X-fibrations in section 5 provide i2-completed X-fibrations
by formally replacing Sin \XJ\, SG(X)1, SH{Xy, P(/)z by R^X)1, SRG(X)1, SI{Xy,
RP(f)j (where SI(Xi) <=• SHiX*) consists of special homeomorphisms of I-X̂ l which
are realizations of isomorphisms of X1). These notational changes also provide the
following .R-completed version of Proposition 5-6.

Proposition 1-1. Let f:&^>-88 be an .R-completed X-fibration. Then / fits in a
naturally defined chain of section maps

S+RJfi) v.3i -—— Sl(RP<J), SRG(X), RX) • 3(SRG(X), RX)

a —i-» a ~—l &(RP(f), SRG(X), .) • 3SRG(X)

where Rnf = qf(Rn).
The following classification theorem, whose statement recalls our standing hypo-

thesis on X, is the .R-completed analogue of Theorem 6-1.

THEOREM 7-8. Let X be a pointed, connected, R-good simplicial set provided with an
R-suitable orientation. Let Rn: 8& (SRG(X), RX) -> 3>SRG(X) be a compatibly augmented
mapping fibration for Rn. Sending a map \g]:3§->-38SRG(X) in HocF[&>+]/^V to
g*(Rn) determines an isomorphism of functors

A:
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Proof. The fact that Rn is an U-eompleted X-fibration is verified as in Proposition
5-4. The surjectivity of A^ for & fibrant-cofibrant over Jf is proved exactly as in the
proof of Theorem 6-1, with Theorem 7-6 and Proposition 7-7 replacing Theorem 4-5
and Proposition 5-6. Similarly, the fact that ^ 9 o A a is bijective for 38 fibrant-
cofibrant over Jf is proved exactly as in the proof of Theorem 6-1. The fact that A a

is an isomorphism for all 38 which are fibrant-cofibrant over Jf, together with the fact
that any object in Ho ^[S^^/JV is isomorphic to a fibrant-cofibrant object, implies
that A is an isomorphism.

To prove the infinite loop Adams conjecture, we require that the .R-completion
of the universal <S2-fibration is a universal iJ-completed <S2-fibration.

THEOREM 7*9. Let X be a finite, nilpotent, connected, pointed simplicial set whose
homotopy groups are finitely generated and which is provided with a suitable orientation.
Assume for alii > 0 that n^SGiX1)) acts nilpotently on H*(Xi, R) viewed as the homology
of the homotopy fibre of B(*,-SG(Zi),Sin|Zi|)^B(*,<S(?(Xf),*). Sending a map
[g]: 38' -> R<o(&) in Ho ^[SP^/JV to g*(Rx(f)) determines an isomorphism of functors

whenever f: S^-38 is a universal X-fibration.

Proof. The nilpotency condition on the action of no(SG(Xi)) on H*(Xi,R) implies
that Roo(f) is an jR-completed X-fibration whenever/: <?->• 3§ is an X-fibration, where
SRGiX1) is defined to consist of those components of RG{Xi) in the image of 8G{Xi).
Thus, a map {RX{S{) x ^ ^ A[£], A[<]) -*• (R^X)1, *) is an orienting equivalence if and
only if it is equivalent to the i?-completion of an orienting equivalence

Let j:38->38 be a trivial cofibration with 38 fibrant over J/~ and let p: 38' ->38
be a trivial fibration with 38' cofibrant. Using Proposition 7-3, we shall assume 38 is
fibrant-cofibrant by replacing/ (if necessary) by p* oj*(f) 6 RX(38').

Let n > 0 and let 7 be a ?i-tuple. Let i?P'(2200(/))/ denote the simplicial set whose
&-simplices are maps X1 x A[&] -*• R^ij) whose composite with the canonical map
i-.R^^^RK^) are ifc-simplices of 2JP(i?a)(/))i. Similarly, define

RP'iR* o Sin |/|)7-» RPiR* o Sin | / | )7.

The proof of Theorem 7-6 applies equally well to RP' (£<„(/)) -» RJ3S) and

RP'{RX o Sin | / | ) -> R^ o Sin | ^ | ,

so that the natural inclusions EP'(i?00(/))z^- i?P(JR00(/))/,

i J P ' ^ o S i n | / | ) z^ /#>(#„oSin | / | ) 7

are fibre homotopy equivalences over Ra>{381) and Rmo Sin \38t\. Define

by composition with the canonical map i:Sino l^l^-iJooOSino 1^1, and define
.RP'(.Roo(/))/->.RP'(.R<DoSin|/|)/ by composition with the canonical map
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o Sin | ̂  |. These maps fit in the following map of fibre triples

SG(X)'

P{f)r

SG(X, SRO(X)' 'SRO(X)'

BP'(SM)h "
©3

•SP(RM)h

» , •

whose fibres have been identified (up to homotopy) by Theorem 4-5 and 7-6, where
SG(Xi, Rx o Sin I-X l̂) is defined to be the function complex of special iJ-equivalences
from Xi to -RojoSin |Xf|. By Proposition A 4, our hypotheses on X imply that the
natural maps

8G(X*) -> SGiX*. RK o Sin |Z*|)

are J?-equivalences and that SG(Xi,RaooSiii IX*]) and SRG(Xi) are incomplete.
Consequently, d2 is an equivalence of fibre triples and P(f)I^-RP'(RoooSin\f\)I is
an i?-completion map, so that RP'(R^oSin | / | ) 7 is contractible. Because d3 is clearly
an equivalence, we conclude that i?P(i?00(/))/ is contractible (for any n-tuple 7). As
argued in the proof of Corollary 6-2, this implies that -#«>(/) is universal as asserted.

8. THE J-HOMOMORPHISM AND *S2-FIBRATIONS

In this section, we consider the complex J-homomorphism in the context of ̂ "-spaces.
Proposition 8-2 shows that the *S2-fibration introduced in Example 8-1 corresponds to
the J-homomorphism. Example 8-3 introduces a modification of Example 8-1 which
will be shown in Section 9 to have Z/^J-completion which is 'algebraically defined'.
The close relationship between Examples 8-1 and 8-3 is described in Proposition 8-4.

Example 8-1. Let °tt be the permutative category whose object space is the discrete
set {C^-^o ~ N of finite-dimensional complex vector spaces and whose morphism
space equals II U{i) (where U(i) is the topological group of i x i unitary complex

i>0

matrices). We define
- * • *

by setting 000 = &+* and a]jfi = oc@/J:0n0-*0D0 (i.e. 'block' or
'Whitney' sum).

We define a functor between permutative categories

as follows. The map on object spaces

Obj (*') = U (C*)+->{C*}<>9 = Obj (*)
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sends x e (Cf)+ (the one-point compactification of Cf with base point at infinity) to C*.
The map on morphism spaces

Maps(<T) = IJ (Cf)+x U(i)^- U U(i) =
{> o »> o

is the projection map (so that °U'{x, y) <= <%(€*, O) consists of the set - of at most one
element - of unitary matrices sending x to y). The product

is defined as Whitney sum of objects and maps.
As in Examples 5-1 and 5-3, the forgetful functor < '̂-><^ together with the natural

right inverse determines a sectioned map of ^"-spaces

defined by applying the functor -Bsin() to the natural transformation '̂-»-<?5f (where
<%£', tf!f : ^ -> (permutative categories) are obtained from %', % as in (11)). In particular,
for any i ^ 0, ri is the natural projection

Ti:£(Sin(U{i)),Sin((Cf)+)^BSin(U(i)).

The reader can easily verify (as in the proof of Proposition 5-4) that any compatibly
sectioned mapping fibration f for T is an *S2-fibration, where S2 is the finite gimplicial
set representing the 2-sphere with exactly two non-degenerate simplices, suitably
oriented by choosing the connected component of the identity of each G(S2m).

The next proposition implies that the classifying map for f determines the complex
J-homomorphism.

Proposition 8-2. Identify \S2i\ with (C*)+, where S2 is the above 'smallest' simplicial
model for the 2-sphere. Then the natural action of U(i) on (€*)+ determines a map of
^"-spaces

such that O ^ ) (cf. Proposition 1-4) is equivalent to the complex J-hbmomorphism

J:kU^BSGinHoSp,

where kU is the Q-spectrum of complex connective Jf-theory. Moreover, £ *{n) = f
in S2(@U), where n: !%(SG{S2), S2)^@SG(S2) is the universal £2-fibration of Theorem
6-1 and f is a compatibly sectioned mapping fibration for T of Example 8-1 (with
orientations chosen so that f-^-n is orientation preserving).

Proof. Let / = (ilt..., in) be an arbitrary n-tuple for some n ^ 0. The natural action
of U(I) = C7(ix) x ... x U{in) on

|,S2J| = |£2t2| x x I ^ J ~ (<?<,)+X ... X (CS)+

determines a functor °U -> ̂ s* (where °U is discussed in Example 8-1 and 'tfgt is discussed
in Example 51). This functor determines a natural transformation aU-^-<^^, which
in turn determines Jf: SSTJ -^-SS8G(S2). Clearly, the group completion of

/ j . : 28TJX = U SSin (U(i))-> U BSG(SiC) = @SG(S\
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is equivalent to the J-homomorphism J : BJJ'->• BSG in the homotopy category. Con-
sequently, O(^) is equivalent to J : kU -> BSG in the homotopy category of spectra
(by the uniqueness theorem of (11)).

The natural action of GL(i, C) on \S2i\ actually determines a commutative square
of permutative categories

(whose vertical arrows are the projection functors of Examples 5-3 and 8-1). This
square respects the natural right inverses of $/'-*•$/ and <^'ss-^%si' therefore, the
square determines a section-preserving map T->n. Since TZ ->• nz is homotopy cartesian
for every ?i-tuple / , the induced map f -»• n of compatibly sectioned mapping fibrations
is a map of jS2-fibrations covering £. This implies that ^*(n) = f.

In order to employ algebraic geometry in the study of the J-homomorphism, we
consider the simplicial space S%1 defined as the simplicial cone on the space Cl — 0:

8*l = *u (C f -0 )xA[ l ]u* .

Thus, Sf in dimension k equals * II ( C ^ - O ^ I I *. Letting GL{i, C) act in the usual
way on each component of each dimension of S%1 determines a natural action

The 'addition' simplicial pairing A[i]xA[l]-?-A[l] (interpreted by viewing A[l] as
the line from vertex 0 to vertex oo) determines a natural' sum' pairing

which factors through the smash product, S*? A Sl}, and which restricts to the natural
'equatorial inclusions', {0}x S^^Sf+2j and 8? x {0} -* Sf+« (sending (0,0) x (z',f)
to (z',f), and (z,t)x (0,0) to (z,t)).

The action of /i respects the pairing p in the sense that the following square commutes
for all i,j^0:

Eocam-plt 8-3. Let JS? be the permutative category whose object space is the discrete
set {Cf}f>0 — N, and whose morphism space is IJ GL(i, C), and whose product

fSsO

• :j£? xSC->SC is given by Whitney sum (so that % is a faithful subcategory of SC).
We define a functor between permutative categories of simplicial spaces whose map
on object simplicial spaces

Obj (&') = u S?^{<C%>0 = Obj (X)
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is the projection (where Obj (J§?) is viewed as a discrete simplicial space), and whose
map on morphism simplicial spaces

Maps (.£") = II 8? x GL(i, C) -> U GL{i, C) = Maps (JSf)

is also the projection. The product • :J§?' xJZ"->£(" is the natural one which covers
U-.Se-xSe-+<£ and is given by the pairings pu y: 5** x 5jj* -•Sf+V on objects.

The projection functor £" ^-S? together with the natural right inverse
determines an augmented map of ^"-spaces

defined by applying i?sin( ) to2"-^S^ (where £?', £P: J^-^permutative categories)
are obtained from jSf", ££ as in (11)). (The functor Bsin( ) applied to a category # of
simplicial spaces is defined by BSin{^) = AoSinoi^C^), the diagonal of the tri-
simplicial set obtained by applying Sin ( ) to the nerve of <<?'.) In particular,

(Te)

is the projection

We conclude this section by establishing the following relationship between TC

and T.

Proposition 8-4. There is a naturally defined commutative diagram of ^"-spaces
of the following form:

@{QL, Sl)-*SS(GL,\Sl\)

| , ,

= 3SOL *- @U

constituting section-preserving maps TC~*- \TC\ <~T. Moreover, the induced maps of
compatibly sectioned mapping fibrations, TC-*-|TC|-<-T, are maps of <S2-fibrations
(provided that fc and |fc| are given orientations induced from f).

Proof. |TC| is defined by repeating the construction of TC in Example 8-1 with U(i)
replaced by GL(i,C), (Ci)+ replaced by the geometric realization of the simplicial
space S^ (denoted |*Sc*|), and Whitney sum on objects replaced by the geometric
realizations of pairings piyi. The actions /i{: GL(i, C) x S%1 ->• S%1 and the pairings
piti: Sf x Sf^-Sli+2i were so defined that the natural equivalence

(Cf)+^ISfl = C*-0x{0}\C«-0x |A[1]|/Cf-0x{oo}

defined by sending zeCf — {0} to (z, \z\2) is C7(i)-equivariant for each i > 0 and com-
patible with products. Therefore, these equivalences and the natural inclusions
U(i)-*GL{i, C) determine a commutative square of permutative categories inducing
the map T-»|TC| .

Similarly, the map TC-»-|TC| is determined by the canonical weak equivalences
AoSin((SI*)-»Sin\S?\ (which are Sin(GL{i,C)) equivariant and compatible with
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products). Since the maps (TC)Z->- 17-^-^-TJ are homotopy cartesian for all n-tuples / ,
the induced maps of compatibly sectioned mapping fibrations are maps of #2-fibration8.

9. i?-COMPLETED yS2-FIBRATIONS FROM ALGEBRAIC GEOMETRY

Theorem 9-4 relates the (Z/p)-completion of the <S2-fibration associated to the
complex J-homomorphism to a (Z/p)-completed /S2-fibration which arises from
algebraic geometry. The latter has the valuable property that it is acted upon by
discontinuous algebraic automorphisms. As the reader will see, the functorial link
from algebraic geometry to simplicial sets is etale homotopy theory.

The following example is essentially a repetition of the construction of Example 8-3,
except that simplicial spaces are replaced by simplicial varieties (i.e. simplicial
complex algebraic varieties).

Example 9-1. The simphcial spaces of Example 8-3 have natural structures of
simpKcial varieties and the maps of this example are algebraic with respect to this
structure. Let jS?'alg-^-JSfaIe be the natural transformation of ' permutative categories
of simplicial varieties' with natural right inverse. We define

to be the sectioned map of ^"-simplicial varieties (i.e. functors from the category !F
to the category of pointed, simplicial complex algebraic varieties) obtained by applying
AoN (the diagonal of the nerve) toS"^^-^^, where ,2"aI«J<g?aIe are obtained from
ĝf aig) jgfaig a s m (JI) j n particular, for any i ^ 0 we identify T*18 as the natural projection

where GLitC is the algebraic group whose complex points constitute GL(i,C) and
B(GLiC,Sli) is the diagonal of the bi-simplicial variety obtained from the bar
construction.

We briefly recall the (Cech) etale homotopy type functor

( ) :ret (s. ex. alg.

which associates an inverse system (F.)ret of pointed simplicial sets to a pointed sim-
plicial complex algebraic variety V. (4). To any V. in (s. ex. alg. var.#), one associates
a left-filtering partially ordered set RC( V.) (of 'pointed, rigid etale coverings' U. -> 7.).
Then (F.)ret is defined to be the functor RC(V.)^-S^ which sends U.^V.in RC(V.)
to no(ANv (U.)), whose fc-simplices are the connected components of the fc-fold fibre
product of Uk over Vk.

Proposition 9-2. Let R = Z/p for some prime^). There exists a commutative diagram
of ̂ "-spaces of the following form

l)^-R«,(2i(QL, SI))
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whose horizontal arrows are weak equivalences, where RT^ = (holim o Rx o ( )ret)(7
Ale)

(with holim ( ) the Bouafield-Kan homotopy inverse limit functor).

Proof. For any V. in (s. ex. alg. var.+), one associates the left-filtering partially
ordered set RLH(V.) (of 'pointed, rigid local homeomorphism coverings' U.->V.)
containing RC( V). The (Cech) local homeomorphism type functor

( hh • (s- ex.alg. var.*)->-pro-^

associates to V. the functor (V.)rlh :RLH(V.)^^, which sends U.-> V. in RLH(V.)
to no(ANv (U.)). The inclusion RC(V.)^-RLH(V.) determines a natural transforma-
tion ( )ret<- ( )rih- We define another functor

( )A(sm, rih): ( s - c x - a l g -

which associates to V. the functor (V.)^Sintrjh):RLH(V.)^-^ sending U.->V. to
A o Sin (JVF (£/.))). The natural maps

determine natural transformations ( )rJft-«-( )A(Sln)r;A)-^AoSin( ). The reader should
recall that TC = A o S i n ^ ) (cf. Example 8-3).

Since holim ( ) is functorial on maps of pro-^. induced by a functorial change of
indexing categories, there are natural transformations

holim o i?OT o ( )ret«- holimo Rx o ( )A(sln> Tlh)-> Rx o A o Sin ( ).

When applied to T ^ : 3S^{GL, S%) -• SS^GL, these natural transformations determine
the asserted commutative diagram of ^-spaces. The ' classical comparison theorem'
of Artin-Mazur implies for any n-tuple I that the maps

o( )A(sln,

)A(sln, rl

are the i?-completions of maps in pro-^,, which are simply connected diagonals
of inequivalences in pro-5^, and thus are inequivalences. These maps become
.R-equivalences of i?-complete simplicial sets after holim has been applied, because
the pro-simplicial sets involved are either equivalent to simplicial sets or are
pro-objects of pointed simply connected Kan complexes with finite homotopy groups
(obtained as the ./^-completions of diagonals of connected bi-simplicial sets with finite
homotopy groups). We conclude that holim applied to these maps yields weak
equivalences of simplicial sets.

Corollary 9-3. Let S2 be given an R-suitable orientation defined by setting SRG(S2i)
equal to the connected component of the identity of RG(S2i) for each i > 0. The maps

RT111 -> Rm TC of Proposition 9-2 determine maps of i2-completed <S2-fibrations

obtained as induced maps of compatibly sectioned mapping fibrations.
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Proof. The fact that RT^ <- RT111 -> Rx TC are section-preserving maps between
sectioned maps of ̂ -spaces is a formal consequence of the fact that these maps were
determined by natural transformations between functors applied to the sectioned
map &*8(GL,S*)->@ai8GL. As argued in the proof of Theorem 7-10, Rxfc is an
i?-completed #2-fibration. The natural map Ra>Tc^-RxTc over R^SSGL extends to a
section-preserving map R!OTc^-R00fc so that R^T,. is indeed an i?-completed S2-
fibration. Moreover, the equivalences of Proposition 9-2, RT*-^<- RT*h->Rm TC, extend

to maps RT0^ -«- R?h -+ R~rc of .R-completed, ,S2-nbrations.
We now summarize the relationship between the J-homomorphism and RT*38.

THEOREM 9-4. Let S2 be the simplicial model of the 2-sphere with exactly two non-
degenerate simplices, and provide S2 with the R-suitable orientation defined by setting
SRG(S2i) equal to the connected component of the identity of RG(S2i) for each i > 0. Let

be the isomorphism in Ho fF\Sf%\ determined by the weak equivalences

RSS^GL <r- R£§lhGL -+ Rx 3SGL

of Proposition 9-2 and the R-completion of the natural equivalence i :&U->&GL. Then

Q*o(RtaJ)* (R^n) eRS2{R^^GL)

is represented by RT*^.

Proof. Rather than verify that various ^"-spaces are cofibrant, we implicitly use
Proposition 3-6. Proposition 8-2 implies that

so that
(Ra,J?)*(Rmn) = R

Proposition 8-4 implies that
»*(TC) = T

so that

i*(Rnfe) = Rxf

Finally, Corollary 9-3 implies that

©*(;*(£„ TC)) = .R7a

10. THE INFINITE LOOP ADAMS CONJECTURE

This conjecture is proved in Theorem 10-4 by adapting Sullivan's proof of the
Adams conjecture to J^-spaces. A quaternionic analogue is given in Theorem 10-5.
Our proof does not apply to the (false) real analogue because the /S1-fibration

corresponding to the real J-homomorphism cannot be approximated algebraically
(even though its complexification ^(0 , Sz)->@0 can be so approximated).
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We begin by relating .R-completions of ̂ "-spaces and spectra.
LEMMA 10-1. Let R = Z/q for some prime q and let 38 be an IF space such that 38n

is R-good (e.g. nilpotent) for all n > 0. The R-completion map for the spectrum <S>(38)
associated to 38,

fits in a natural commutative square of spectra

I I
whose right vertical map is an equivalence.

Proof. The commutative square is induced by the natural map 38 -*• Ra, 38 and the
natural transformation ^ - ^ i J ^ o O . Because 38n is iJ-good, 38U-+Rx38n induces
isomorphisms H^ (38a,R) ^- H*(Rx38a,R) which imply isomorphisms

where Afc denotes the kth. term of the spectrum A. These isomorphisms imply the
required equivalences

for all fc > 1.
Following Sullivan's approach (16), we next describe how to obtain the (Z/q)-

completion of Adams operations using Galois actions. Our use of the ring structure
to identify the maps of spectra was suggested to us by J. P. May.

Proposition 10-2. Let R = Z/q for some prime q and \etp be another prime different
from q. Let rj/ eGal (C, Q) be an extension of the automorphism of the Witt vectors
of fp (the algebraic closure of the prime field Up) which uniquely lifts the pth. root
map( yi»:FP^F Let

be the automorphism induced by i/r on R38algGL and let

Then i

where kU is the spectrum of complex connective JT-theory and \jrv ia the pth. Adams
operation.

Proof. Since the J^-simplicial variety 38^GL is denned over Z, \jr induces an
automorphism of SS^^OL. (If X = Xz x Spec2 Spec C is a complex variety denned over
Z, then \jr induces an automorphism of X by ' acting on the second factor'.)

is therefore well denned once we identify R^ kU with Rm o <i>(Rx 38 U) using Lemma 10-1.
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Moreover, Rx o Q>(\]f A ) is a map of ringed spectra: ^"-space theory permits considera-
tion of ring structures yielding ring spectra (15), and both Rijj*^ and 0 respect the ring
structures. This ring structure on RK38U is determined by tensor product, thus
corresponding to the usual ring structure on BJJ. Because R^o $>{$*) and Raa^rp

determine equivalent maps of ringed spaces as shown in (16), we conclude that
Rm o <&(\lr *) = Rx rjrv as maps of ringed spectra (10).

The introduction of algebraic geometry into our study of the complex J-homo-
morphism was done in order to obtain the following result.

Proposition 10-3. The automorphism R ^ .RSS^GL-^RSS^GL of Proposition
10-2 is covered by an automorphism R$a* :R^lai«(GL,S^)^R^a^(GL,S2

c). More
precisely, these automorphisms determine a map

(Rfrte, Rx^): RT*18 -> .RT*1*

of sectioned maps of ^"-spaces.

Proof. As discussed in Proposition 10-2, ijr determines a commutative square of
•^"-simplicial varieties

Jr
, SI) — — - SS^GL, Sf)

constituting an automorphism of the sectioned map T*18. The proposition now follows
from the functorality of holimo R^ o ( )ret (which, when applied to 7*18, yields RT*^).

The orientation for S2 implicit in the statement and proof of our title theorem
below is that given by the choice of connected component of the identity of £r(»S2m) for
each m > 0. Our formulation of the theorem differs slightly from that given in the
introduction in order to eliminate any possible ambiguity in its statement.

THEOREM 10-4. For any integer r > 0,

in the homotopy category of spectra, where BSG = <S>(@SG(SZ)), J is the complex J-
homomorphism, and ( )xyr is the Bousfield-Kan Z[l/r]-completion functor.

Proof. Since i/rr = xj/^o ft* whenever r = st, it suffices to consider r equal to a prime
p. Since (BSG)1/p is naturally equivalent to the product of (Z/gr)00(BSG) for primes
q + p, the naturality of the map ( )1/p -»(Z/q)x( ) implies that it suffices to prove that
(Z/g-)co {J) = (£/?)«, (Jofv) for each prime q =f= p.

Let R = Z/q for some prime q =# p. Employing Lemma 10-1 to identify R^Qffl)
with R^ <D(i200 (0S)) for 88 = SSTJ and 38 = 38SG, we apply Proposition 8-2 to prove
that RX(J) = R^o^R^f) equals R^^oR^v). By Proposition 10-2, i ? 0 0 ^ =

). Consequently, it suffices to prove that
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By Theorem 7-9, it suffices to prove

in R^R^JJ). Proposition 10.3 implies that (R^) * (Rr^) = Rr0^ which equals
0 * o (Rn / ) * (Rjff) by Theorem 9.4. Consequently, ( £ „ / ) * [Rjf) equals

(0-1) * o (R^) * o 0 * o (Rxf) * (Rjf),

which equals (^A) *oRaOlf* {Rxn) because f = QoR^oQ-1.
The following quaternionic analogue of Theorem 10.4 is proved by substituting

the symplectic groups Sp (2m, C) for the linear groups GL(i, C) and by substituting
8" for S2i in the proof of Theorem 10.4.

In order to define i/rr: (kSp)1/r -> (kSp)1/r for r even, the reader should use the equiva-
lence (kSp)1/2«(k0)1/2.

THEOREM 10-5. For any integer r > 0,

J = Jofr: (kSp)1/r->(BSG)1/r

in the homotogy category of spectra, where kSp is the spectrum of connective qvaternionic
K-theory and J is the quaternionic J-homomorphisrn.

APPENDIX, .^-COMPLETION TECHNICALITIES

In this appendix, we consider various technical properties of the Bousfield-Kan
.R-completion functor which are employed in Section 7. As in that section, R denotes
either subring of the rationals or a prime field and JB-completion is the functor

RAY-f*-*?*
of (3).

Proposition A 1. Let Y be a pointed, connected, i?-good simplicial set. Then the
simplicial function space of pointed jR-equivalences from Y to Rm( Y), RG( Y), admits a
natural structure of a sub-simplicial monoid of (?(#<„( 7)), where GiR^Y)) is the
simplicial function space of pointed self-equivalences of R^i Y). Moreover, this inclusion
is a homotopy equivalence with homotopy inverse given by restriction.

Proof. The inclusion RG{Y)^G(Rai{Y)) is given by sending v.Yx A[fc]->£«,(Y) in
RG( Y)k to the composition

Because ^0.80,(1) = td:.R00()->.R00() (cf. (8)), the restriction ofthismapto Yequals v,
v = ^o i Joo^o i (where i: id^-Rx and \jr: R^-^R^ constitute the monad structure on
Rx). To verify that j is a monoid inclusion, we must check that j(v) oj(w) e Gr(i200( Y))k

is in the image of j for any pair of t-simplices v,we RG( Y)k. We leave to the reader the
straightforward verification t\x&tj(v)oj{w) = j(yow) where

vow = i/roRoo(v)o(wxl): Y x

(cf. (8), p. 134).
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To verify that the restriction map G{RK{ Y)) -+ RG( Y) is a homotopy equivalence we

employ the fact that both GiR^Y)) and RG(Y) are Kan complexes consisting of cer-
tain components of the function complexes horn. (-B00( Y), R^i Y)) and horn. (Y, R^ Y)).
Moreover, G(Ra>(Y))-+RG(Y) induces a bijection on n0 by (3), VII. 2 1 . ii). Thus, the
homotopy equivalence follows from the Whitehead theorem and the observation that
the restriction induces a bijection on connected components of

horn. (5» A i20O(y),i?0O(7))^hom. (Sn x Y.R^Y))

for each n > 0 (loc. cit.).

Corollary A 2. Let X be a pointed, connected .R-good simplicial set. For any i, j > 0,
the natural map, R^X*) A i200(X

J')->-i200(Z
l'+3') determines a homomorphism

BG{X*) x

Proof. The m&pp: R^X*) A R^X^^-R^X™) arises from the fact that the natural
map

RJX*) V (X^R^X*) x R^X'^R^X* x Xi^R^X™)

is trivial, where R^X*) x R^X')-*R^X* x X>) is the canonical right inverse to the
projection map. The pairing RG(Xi) x RG(X*)->RG(X*+i) is defined to send

v: X* x A[fc] ->R^iX*), w:X*x A[fc]-»• RJX*)

to po (v A to): Z*A Xi x A[fc]^i?00(Z<) A Rn{Xi)-*RJX<**).

The fact that this pairing is a homomorphism is a simple consequence of the explicit
definition of the product in RG( Y) given in the proof of Proposition A 1 (so that for
any v,v'eRG{X\ and w,w'eRG{Xi)'k,

po((vov') A (wow1)) = (po(v A w))o(pa(v' AW')).

Proposition A 4. Let Y be a finite nilpotent, connected, pointed simplicial set with
finitely generated homotopy groups. Let G( Y) denote Sin <S{ | Y\), the singular complex
of the topological monoid of pointed self-equivalences of | Y\, and let G(Y)0 be some
connected component of G(Y). There are natural ^-equivalences

G{Y)0-+Q(Y,Rno8in\7\)0+-RG{Y)0,

where G( Y, Rx o Sin | Y\) is the function complex of ^-equivalences from Y to

and where G(Y,RmoSin | r | ) 0 and RG(Y)0 are connected components of

G(Y,RKoSin\Y\)

and RG( Y) corresponding to G( Y)o.
Moreover, both RG(Y)0 and G(Y, iJ^oSin | F|)o are i?-complete.

Proof. The adjointness of the geometric realization functor | | and the singular
functor Sin ( ) enables us to interpret G( Y) as the subsimplicial set of the function
complex horn. (Y, Sin \Y\) consisting of components which contain weak equivalences.
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The map G(Y)-*-G(Y,R0OoS'm\Y\) is defined by composition with the natural
JR-equivalence Sin | Y\ -^iJ^oSin | 7|. By (3), VI. 7-1,

nn(G{Y)0) = 7rn(hom. (7,Sin | 7|)0)

->7Tn(hom . (Y, Rx o Sin | Y\ )0) = nn(G( Y, Rx o Sin 1Y\ )0)

is i?-completion of groups, and G( Y, iJra o Sin | Y\ )0 is incomplete ((3), VI. 5-4). Because
the groups irn(G( Y)o) are finitely generated (recall that Y is finite) and because the
monoid structure on G{Y) implies that G(Y)0 is simple (in particular, nilpotent), we
conclude that G(Y)0^G(Y,^oSinlyl),, is an i?-completion ((3), VI. 5-2). In par-
ticular, G( Y)0->G( Y, Rxo Sin | Y\)0 is an ^-equivalence.

The map RG( Y)0->G( Y, Rx o Sin | Y\ )0 is defined by composition with the natural
equivalence R^ Y) -»-R^Sin | Y\), and is thus an equivalence.

Proposition A 5. Let / b e a finite, partial ordering satisfying the condition that
i/I Hj/I has an initial element for every i,jel. Let F: I-*•£?+ be a functor satisfying
the condition that for each i.e. /

HI

is surjective, where i/I c / consists of j with i J j . Then

Rx (lim F(i)) -> lim Ra o F(i)
i i

is a fibration.

Proof. The map R^lim.F(i))^-livaR^oF(i) is induced by a map of cosimplicial
simplicial sets J

R(lim F{i)) ̂  lim R o F(i).
i i

Since this map commutes with the i2-module structure in each codimension, it suffices
to verify that this map is surjective in each codimension (3), X. 4-9 and X. 5-1. This is
implied by the assertion that R(lira.F(i))-+limRoF(i) is surjective, where R( ) is the

basic functor which provides the definition of R and thus RK.
For each iel and each t ^ 0, choose a set-theoretic inverse

HI

to the canonical (surjective) map F(i)t^-]imF(j)t. For each <-simplex/(j): &[t]-*F(j),
m

let/(j) be the -̂simplex of limi^i) determined by these liftings (for j ' < j , the j ' th
7

component oif(j) is the image of/( j); for other j " #= j , use the chosen inverses to induc-
tively define thej"th component of/(j)).

Let {Lriffs(i); iel, s > 0} be an arbitrary f-simplex of limi?. F(i). We define the
function I: / ->2 by
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We claim that Sr^/^i) io the image of the following ^-simplex

t"6/
8>0

We proceed to show that the jth projection of this element, pr̂  ( 2 H}) r»,/s(*))> equals
S>0

riJsU)- We observe that pr3 (/(&)) equals pr;- (/(i)), where i = init (j, k) (the initial
S>0

element oij/I n A;//). Consequently,

s>0

Moreover,
S l(i)rjs(i)) = 2 m(i)rJ8(i),

itUi illitUi ill
t*3 8>0

«>o
where

»»(•) = '(•)+ S
i=inlty, ft)

t*fc

Ifiej/I is maximal, then &nyj'el/i either factors through j or satisfies i = init (j, j ').
Thus,

= - S
W , ft)

i+ft

so that m(i) = 0. If i sjfl is not maximal, then

* +

so that m(i) = 0 for all iej/I. Therefore,

i*I s>0
8>0

as required.

This work was partially supported by the N.S.F. and the S.R.C.
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