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Hopf algebras, Witt vectors, 
and Brown-Gitler spectra 

P. GOERSS, J. LANNES, AND F. MOREL 

ABSTRACT. Here we give a very simple construction of Brown-Gitler spec-
tra, using only the existence of certain projective bicommutative Hopf al-
gebras as proved by Schoeller and the analysis of the homology of fibration 
sequences of infinite loop spaces given by Moore and Smith. 

This paper is an outgrowth of [5] but considerably simpler as we are working 
stably; indeed, Brown-Gitler spectra are a consequence of Brown representability 
for homology theories, and it is this we wish to explain. 

Here is an outline of the method. We will work at a fixed prime p. Let 1i 
be the category of graded, commutative, cocommutative Hopf algebras over the 
field Fp of p elements. In 1{, let S(n) be the free commutative algebra on a single 
primitive generator of degree n. Thus 

S(n) = { Fp[z], 
A(z), 

if p = 2 or p > 2 and n even 
if p > 2 and n odd. 

and z is of degree n. Here A(·) denotes the exterior algebra. Then Schoeller 
proves that there is a projective Hopf algebra H(n) E 1t and a map of Hopf 
algebras H(n)-+ S(n) making H(n) the projective cover of S(n). In fact H(n) = 
S(n) unless p = 2 and n = 2mk, where k is odd and m > 0, or p > 2 and 
n = 2pmk where (k,p) = 1 and m > 0. In this case, 
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112 P. GOERSS, J. LANNES, AND F. MOREL 

where deg (xi) = 2ik or 2pik for p = 2 and p > 2 respectively, and H(n) is 
equipped with the "Witt vector" diagonal. This, and more of Schoeller's work, 
is explained in Section 1. 

Here "projective" means projective in the usual sense: maps out of H(n) in 
1t lift through surjections. Define an exact functor from 1t to abelian groups by 

forK E 1t. Note that if P K denotes the graded vector space of primitives inK, 
and if (PK)n denotes the elements of degree n in PK, then 

(PK)n ~ Homrt(S(n), K). 

Thus we obtain a natural inclusion of (PK)n into DnK. 
The main result of this paper is the following. Let H* = H*( ,IFp)· 

THEOREM 2.1. Let n > 1 and n=/=± 1 mod (2p). Then there is a homology 
theory B(n)* so that for any CW spectrum X there is a natural isomorphism 

This is an application of Brown representability, as given in [1]. The wedge and 
limit axioms hold essentially because H(n) is finitely generated as an algebra. 
Thus Theorem 2.1 would hold immediately if whenever one had a cofibration 
sequence 

of spectra, then one had that 

(1) 

was exact as Hopf algebras. Then, because H(n) is projective 

(2) 

would be exact. However, the sequence (1) fails to be exact and one must appeal 
to Moore and Smith to show (2) is exact for n=/=± 1 mod (2p). This is the content 
of Section 2. 

In Section 3 we identify the representing spectrum B(n) of B(n)* as a Brown-
Gitler spectrum. If n = 0, set B(O) to be S0 completed at p; if n = ±1 mod (2p), 
set B(n) = B(n- 1). Let A denote the mod p Steenrod algebra. 

THEOREM 3.1. For all n 2 0, B(n) is a p-complete spectrum so that 
{1) H* B(n);:;A/A{x(/3" Pi) : 2pi + 2c: > n}, if p > 2, and 

H* B(n);:;A/A{x(Sqi): 2i > n}, ifp = 2. 
(2) If i : B(n) -> HZj(p) generates H0 B(n), then for all CW complexes Z, the 

reduction 
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HOPF ALGEBRAS, WITT VECTORS, AND BROWN-GITLER SP~CTRA 113 

is onto. 

Part (1) is proved by investigating DnH*K(Z/(p), k) and then part (2) is 
proved by examining DnHSl00 'E00 Z. In (1), A{·} denotes the left ideal, X the 
canonical anti-automorphism. The results of Theorem 3.1 completely character-
ize the spectra of Brown and Gitler. See [2] and [3]. 

The first author wishes to thank Lionel Schwartz and the Universite de Paris-
Sud at Orsay for their hospitality in 1989. This work was begun there. 

1. Witt vectors and Hopf algebras 

Let 1{0 be the category of graded commutative, cocommutative connected 
Hopf algebras over the field f P for some fixed prime p. Connected means that 
HE 1{0 has the property that H 0 ~Fp. Colette Schoeller [9] notes that Ho is an 
abelian and locally noetherian category with a set of projective generators, and 
that 1{0 is equivalent to a category of easily described modules. This section is 
devoted to an outline of her work. 

Let B be the category of graded, commutative Z algebras. Fix an integer 
k > 0. Define C(k) E B to be the polynomial algebra 

C(k) = Z[xo, x1, x2, .. . ] 

where deg (xi)= 2pik. Define elements Wn E C(k) by 

PROPOSITION 1.1. There exists a unique Hopf algebra structure on C(k) so 
that Wn is primitive for n ~ 0. With this Hopf algebra structure, C(k) is a 
cocommutative Hopf algebra. 

It is easy to see that such a structure exists on Z[~] Q9 C(k). For example, 

b.xo = b.wo = xo 0 1 + 1 0 xo 
p-1 

b.x1 = x1 Q9 1 + 1 Q9 x1- L ~ (~)x~ 0 Xb-i· 
i=l p 

The trick is to show that the diagonal is defined over the integers. For a proof 
one can appeal to [10, p. 41]. 

Remark 1.2: Since C(k) is a cocommutative Hopf algebra, the set 

HomB(C(k), R) 

has a natural structure of an abelian group for every R E B. If we were to neglect 
the grading, this group would be the Witt vectors in R. 

Now define, for any integer m ~ 0, C(k, m) <;;:: C(k) to be the sub-algebra 

(1.3) C(k, m) = Z[xo, ... , Xm]· 
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114 P. GOERSS, J. LANNES, AND F. MOREL 

Since Wn E C(k, m) for n :S m, C(k, m) is a sub-Hopf algebra of C(k). 
We can use these Hopf algebras to produce Hopf algebras over Fp. First 

suppose p > 2. Define, for each integer n > 0, a Hopf algebra H(n) E 'Ho as 
follows. If n is odd, let 

(1.4.1) H(n) = A(x) 

be the exterior algebra on a single primitive generator of degree n. If n is even; 
write n = 2pm k where (p, k) = 1 and set 

(1.4.2) H(n) = Fp 0 C(k, m) 

with the induced Hopf algebra structure. 
For p = 2, one must confront the anomaly of signs present in graded Z alge-

bras, but not in F2 algebras. To do this, one needs the "doubling" functor <I>. If 
Vis a graded F2 vector space, define <I>V by 

{ Vm n=2m 
(<I>V)n = 

0 n =2m+ 1. 

Now, if n is any integer, write n = 2mk where (2, k) = 1 (i.e., k is odd) and let 
H(n) be the unique f2-Hopf algebra so that 

(1.5) <I>H(n) = f2 0 C(k, m). 

Note that f2 0 C(k, m) = F2[xo,. 00 , Xm] where deg (xi)= 2i+1k; thus 

H(n) = F2[xo, 00. , Xm] 

where deg (xi) = 2ik. In particular, deg (x0 ) = k is odd. The following is a 
result of Schoeller's [9]. 

PROPOSITION 1.6. For each n, H(n) E 'Ho is projective; that is, given a 
diagram 

H 

l q 

H(n) ___!__. K 
in 'Ho with q surjective, then a lifting off exists. The set { H( n )}n>l form a set 
of small projective generators, and H(n) is the projective cover of S(n). 

The Hopf algebras S(n) were defined in the introduction. 
This is proved by Schoeller [9]. Here "small" means the functor 

Homrt0 (H(n), ·) 

from 'Ho to abelian groups commutes with filtered colimits; this is a consequence 
of the fact that H(n) is a finitely generated algebra. "Set of generators" means 
that given H in 'Ho the His a quotient of some coproduct of various H(n)s. 

The set { H( n) }n:::-: 1 can be used to describe 'Ho as a category of modules, after 
Dieudonne. Fbr this one needs some facts about the groups H omrt0 ( H ( n), H ( m)). 
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HOPF ALGEBRAS, WITT VECTORS, AND BROWN-GITLER SPECTRA 115 

LEMMA 1.7. The order of the identity H(n)---+ H(n) in Hom11.0 (H(n), H(n)) 
is 

1.} p if n is odd; 
2.) pm+l if n = 2pmk with (k,p) = 1 and p > 2 
3.) 2m+1 if n = 2mk with (k, 2) = 1 and p = 2. 

This follows immediately from the next result. For HE 'Ho let 

be the Verschiebung. Let, for p > 2, n = 2pmk as in 1.7, or, if p = 2, n = 2mk. 
Then 

H(n) = 1Fp[xo, ... , Xm]· 

LEMMA 1.8. In H(n), ~Xi= Xi-1· 

PROOF. Let [p] : H(n)---+ H(n) be p times the identity. Since [p](x) = (~x)P 
and H(n) is a polynomial algebra, it suffices to show that [p](xi) = xf_1, with 
the convention that x_1 = 0. For that, one examines 

[p] : C(k, m)---+ C(k, m) 

and in this case [p](xi), i ~ 0, are the unique polynomials so that 

The second equality uses that Wn is primitive. Induction on i shows [p](xi) = 
xf_1 mod p. 

Now choose an integer n, and assume n is even if p > 2. Define maps 

(1.9.1) 
(1.9.2) 

cp: H(n) ---t H(pn) 

'ljJ : H(pn) ---t H(n) 

in 1io as follows. The map cp is the inclusion of Hopf algebras 

H(n) = 1Fp[Xo, ... , Xm] ~ 1Fp[xo, ... , XmH] = H(pn) 

and 'ljJ is obtained by the composition 

H(pn) = 1Fp[xo, ... , Xm+ll ---+ 1Fp[xo, ... , XmHJI(xo)~IFp[xo, ... , Xm] 

where f(xi) = xf_1; that is, 'ljJ is the unique map so that the following diagram 
commutes 

H(pn) 

=! 
H(pn) 

H(n) 

lcp 
H(pn) 

where [p] is p times the identity. The following is obvious. 
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116 P. GOERSS, J. LANNES, AND F. MOREL 

LEMMA 1.10. The composites <p'I/J: H(pn)-+ H(pn) and '1/J<p: H(n) -+ H(n) 
are both p-times the identity. 

Now define a functor D*(·) on 1io as follows: D*H is a graded abelian group 
with 

There are maps of groups 

V : DpnH -+ DnH 

F : DnH -+ DpnH 

(where n is even if p > 2) given by F = H om11.0 ( ¢, 1H) and V = H om11.0 ( <p, 1H ). 
Thus D* defines a functor (here we apply 1.7 and 1.10) 

where V is the category of graded abelian groups M so that 
1.) Mn = 0 if n < 1, pMn = 0 if n is odd, pm+lMn = 0 if n = 2pmk with 

(p,k) = 1 and p > 2, or 2m+lMn = 0 if n = 2mk with (2,k) = 1 and p = 2; 
2.) there are homomorphisms V : Mpn -+ Mn and F : Mn -+ Mpn, where n is 

even if p > 2, so that FV = V F = p, where "p" is multiplication by p. 
Note that D*(·) is an exact functor and commutes with colimits, by Proposi-

tion 1.6. 

THEOREM 1.11. The functor D* : 1i.o -+ V is an equivalence of categories. 

This is one of Schoeller's main theorems: see Section 5 of [9]. D*H may be 
called the Dieudonne module of H; this result says that the Dieudonne module 
determines H. 

The functor D*(·) is computable. In fact, for the proof of Theorem 1.11, 
Schoeller makes the following calculation. The module D*H(n) is the "free 
projective" object in V characterized by the natural isomorphism 

(1.12) 

Thus, for example, if p > 2 and n = 2pmk, as above, then DsH(n) = 0 unless 
s = 2ptk and 

D2p'kH( n);;'zj (pi) 

where i = t + 1 if t :S: m and i = m + 1 if t 2: m. If Yn E DnH(n) is the 
generator, then FJyn generates D2prn+ikH(n) and VJyn generates D2prn-ikH(n). 
And, obviously, 

Yn E DnH(n) = Hom'H.o (H(n),H(n)) 

is the identity H(n) -+ H(n). 
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HOPF ALGEBRAS, WITT VECTORS, AND BROWN-GITLER SPECTRA 117 

2. The Dieudonne module yields homology theories 

Let 1i be the category of graded, commutative, cocommutative Hopf algebras 
over !Fw Note that the elements of degree 0 form a sub-Hopf algebra Ho ~ H 
and if H+ = IFP ®Ho H, then there is a natural splitting H;;Ho ® H+. Note 
also that 11.0 ~ 1i is a full sub-category. The functor Dn ( ·) defined on 1-f.o in the 
previous section can be extended to 1i by setting, for HE 1-f., 

DnH = Hom11. (H(n),H). 

Note that since H(n) E 11.0 , DnH;;DnH+ and the generalization is illusory. 
The main theorem of this section is the following. 

THEOREM 2.1. Ifn > 1 is an integer and n ¢. ±1 mod (2p), then there is a 
homology theory B(n)* so that for all spectra X there is a natural isomorphism 

B(n)nX;;DnH*0.00 X. 

We will make a remark on n = 0 at the end of the section. 
For the proof we apply Brown representability [1 J to the functor 

X ---+ DnH.0.00 X. 

Since homotopic maps, f, g: X-+ Y induce the same map from DnH*0.00 X to 
DnH*0.00Y, we need to check the following axioms. See Lemmas 2.2 and 2.8. 

(B.1) For any wedge of spectra V01X01 , the natural map 

ffiDnH.noo X a ---+ DnH.0.00 (V aX a) 
Ot 

is an isomorphism; 
(B.2) If X is a CW spectrum and {Xa} is the filtered system of finite CW 

subspectra, then the natural map 

colim DnH.noo Xa -+ DnH.0.00 X 

is an isomorphism; and 
(B.3) if X -+ Y -+ Z is a cofibration sequence, then 

DnH.noo X -+ DnH.0.00Y -+ DnH.0.00 Z 

is exact. 

LEMMA 2.2. {B.1) and (B.2) hold for all integers n ~ 1. 

PROOF. This is a consequence of the fact that 

Dn(·) = Hom'H. (H(n), ·) 

commutes with all colimits. To see this, note that since H(n) is a finitely gen-
erated algebra, Dn(·) commuted with filtered colimits. Then, since H(n) is 
projective, Dn(·) must commute with all colimits. 

Now to be specific, 
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118 P. GOERSS, J. LANNES, AND F. MOREL 

where rrw denotes the weak product; only finitely many coordinates are not the 
base point. Thus 

where the coproduct on the right is in 1-l. Hence (B.1) holds. For (B.2) 

colim 0 00 (Xa)~0 00 colim Xa~noo X 

and 
colim H*noo Xa = H*colim 0 00 Xa 

since homology commutes with filtered colimits. 
Axiom (B.3) requires only a little more work, using the exactness of Dn(·). To 

begin we need a preliminary result. Let V be the category of graded 1Fp vector 
spaces W equipped with Verschiebung ~ : Wpn """""""' Wn, where n is even if p > 2. 
The indecomposables functor Q on 1-£0 defines a functor 

Q:1-lo""""""'V 

where QH inherits a Verschiebung from H. 

LEMMA 2.3. Q: 1-lo """""""'V has a right adjoint U: V ---tHo. 

PROOF. This is well known, but an easy proof goes as follows. Define a 
functor "Ill : 'D """""""' V by 

w(M) = M/FM 
and~: w(M) """""""'w(M) is given by ~(x + FM) = V(x) + FM. Then one checks 
that QH = wD*H. Since "Ill has a right adjoint (namely the inclusion functor 
V """""""' 'D that sets F = 0 and V = ~ on W E V) Q must have a right adjoint. 

LEMMA 2.4. Let MEV, then DnU(M)::;;_Mn. 

PROOF. We have 
DnU(M)~Hom'Ho (H(n), U(M)) 

~Homv (D*H(n), M) ;;;Mn 

where M is regarded as an object in 'D and we use 1.12. 
Now let K ( G, m) denote the Eilenberg-Mac Lane spectrum so that 1f * K ( G, m) 

~G in degree m. Call a sequence of spectra 

K(G,m).!_.x.:!...y~K(G,m+ 1) 

a fibration sequence if q is a fibration with fiber K( G, m) classified by k. 

LEMMA 2.5. Given a fibration sequence 

K(G, m).!_.x.:!...y ~K(G, m + 1) 

with m 2: 1 and n-=f=± 1 mod (2p) then the sequence of abelian groups 

DnH*noo K(G, m)~· DnH*noo X 0~· DnH*0 00 Y~DnH*noo K(G, m + 1) 

Algebraic Topology : Oaxtepec 1991, edited by Martin C. Tangora, American Mathematical Society, 1993. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/ucb/detail.action?docID=3112878.
Created from ucb on 2023-02-14 15:38:00.

C
op

yr
ig

ht
 ©

 1
99

3.
 A

m
er

ic
an

 M
at

he
m

at
ic

al
 S

oc
ie

ty
. A

ll 
rig

ht
s 

re
se

rv
ed

.



HOPF ALGEBRAS, WITT VECTORS, AND BROWN-GITLER SPECTRA 119 

is exact. 

PROOF. Consider the (classified) principal fibration of spaces 

noo K(G, m)~·noo X 0~·nooyn~·noo K(G, m + 1). 

According to Moore and Smith [8] 

H*noo X 0~· H*nooyn~. H*noo K(G, m + 1) 

is exact (in 'H). Thus 

DnH*noo X--+ DnH*nooy--+ DnH*noo K(G, m + 1) 

is exact, since Dn (-) is exact. 
Also (same reference) if K is the kernel in '}-{ of 

H*noo X --+ H*nooy 

there is a factoring 

H*noo K(G, m) 

1= 
H*noo K(G, m) 

and an exact sequence 

(2.5.1) 

where MEV is concentrated in degrees congruent to ±1 mod (2p). Thus 

DnH*n00 K(G,m)--+ DnH*noox--+ DnH*nooy 

is exact, by Lemma 2.4. 

Remark. The module M can be identified. Let C E 1t be the cokernel in 1t of 

nook*: H*nooy--+ H*noo K(G,m + 1). 

Since nooK ( G, m + 1) is an Eilenberg-Mac Lane space 

H*n00 K(G,m+ l):;;U(Nl) 

where N1 = QH*noo K(G, m+ 1). Then C = U(N2 ) where N1 ~N2 is a quotient 
map and H*noo K(G, m + 1)--+ Cis isomorphic to 

Let No be the kernel of !fJ· Then the sequence of (2.5.1) is isomorphic to 

U(nN1) --+ U(nN2) --+ U(n1N0) --+ lFp. 

Here N1,N2, etc. are unstable right modules over the Steenrod algebra and n(-) 
is the right adjoint of the "suspension" functor of unstable modules. The functor 
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120 P. GOERSS, J. LANNES, AND F. MOREL 

nl(·) is the first derived functor, and is well-known to be concentrated in degrees 
congruent to ±1 mod (2p). The unstable modules N1, N2 etc. become objects 
in V by setting ~ to be the top Steenrod operation. 

We also need to examine the case m = 0. 

LEMMA 2.6. Let K(G,o)_.!:.,x.!!...y ..!:..K(G, 1) be a fibration sequence where k*: 
1!"1 Y --.. G onto and suppose n# 1 mod (2p). Then the sequence of abelian groups 

0--.. DnH*noo Xn~. DnHJJooyn~. DnHS200 K(G, 1) 

is exact. 

This follows immediately from the next result, which is a mild extension of 
the results of Moore and Smith. 

LEMMA 2. 7. Let X .!!...y ..!:..K(G, 1) be a fibration sequence of spectra with 7r1Y--.. 
G onto. Then there is an exact sequence of Hopf algebras 

JFP--.. U(M)--.. H*noo Xn~. H*nooyn~. H*noo K(G, 1) 

where M is concentrated in degrees 2pk - 1, k 2:: 0. 

PROOF. The Eilenberg-Moore spectral sequence 

CotorH.n"" K(G,l) (H*000 Y, 1Fp) => HS200 X 

converges since H*noo K(G, 1) acts trivially on H*noo X. See [4]. But 

CotorH.n"" K(G,l)(H*000 Y, 1Fp);; 

H*o=Y\ \0.= k*0CotorH.n"" K(G,l)/ ;n"" k. (JFp, lF p)· 

Since H*000K(G, 1);;U(M1) where M1 is concentrated in degrees 1 and 2pk, 
k 2:: 0, and since nook* : 7r10 00 Y--.. G is onto, H*noo K(G, 1)/ j000 k*;;U(M2) 
where M 2 is in degrees 2pk, k 2:: 0. Finally, 

CotorH.noo K(G,l)/ /flk. (JFp, 1Fp);;A(OM2) 

where OM2;;Cotor1 and A(·) denotes exterior algebra. This is a spectral se-
quence of Hopf algebras and it must collapse. 

LEMMA 2.8. Axiom {B.3) holds for all n::f:.± 1 mod (2p). 

PROOF. Consider a cofibration sequence x_.!:.,y .!!...z. Since the homotopy fiber 
of q is weakly equivalent to X, we may assume that this is a fibration sequence, 
so that 

noox~nooy~nooz 
is a fibration sequence. Next we show that we may assume Y and Z are 0-
connected. For if Yo and Z 0 are the 0-connected covers, we get a diagram of 
fiber sequences 
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F --t Yo ~ Zo 

1 1 1 
X --t Y --t Z 

where F is the fiber of q0 • Then there is a weak equivalence of 0-connected covers 
Fo~Xo and a diagram with isomorphisms 

This diagram shows that there is no loss of information in passing to the 0-
connected covers. 

Thus, given Y and Z both 0-connected, let 

... --t Ys+l --t ... z 
1 ko 

K(G0 , 1) 

be the Postnikov tower of Y over Z. If is : Xs ~ Ys is defined by the fibration 
sequence 

Xs~Ys ~ Z 
and ls = ksis, then there is a tower of fibrations 

--t ... --t X1~K(Go,O) 

1h 
K(GI.2) 

that is the Postnikov tower for X. If YsH : K(G8 , s) ~ Xs+l is the inclusion of 
the fiber of rs, then IsH = is+lYs+l : K(Gs, s) ~ Ys+! is the inclusion of the 
fiber of qs. 

Now iff: A~ B is a map of spectra write f# for Dn0.00 f*. 
Suppose y E DnH*n,ooy and q#(Y) = 0. We must produce x so that i#(x) = 

y. Define Ys E DnH*0.00Y8 to be the image of y under projection. Inductively, 
we will produce X 8 E DnH*0.00 Xs so that (is)#(xs) = Ys and (rs)#xs+l = X 8 • 

Then, since DnH*K(G8 , s) = 0 for large s, the result will follow from the diagram 

DnH*noox 
i# 

DnH*0.00Y --t 

1~ 1~ 
lim DnH*0.00 X 8 --t lim DnH*nooy, 
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122 P. GOERSS, J. LANNES, AND F. MOREL 

First note that Y1 = 0. This follows from 2.6 and the fact that rr0Y = 0. Thus 
we set x1 = 0. Now suppose X 8 has been chosen. Since 

there exists, by 2.5, a z E DnHS200 Xs+l so that (rs)#z = X 8 • Since 

there exists, again by 2.5, awE DnHS200 K(G 8 ,s) so that 

and the induction step is complete. 
Remark 2.9. We could refine the definition of 1t as follows. LetHE 1t and 

rroH = { x E H : ~x = x 0 x} 

be the subset of group-like elements. The multiplication of H makes rr0H into 
an abelian group and there is a natural inclusion of Hopf algebras 1Fp[rr0H] ~ 
H, where 1Fp[·] denotes the group ring. Let 1t9 be the full sub-category of H 
consisting of those HE 1t so that 1Fp[rroHFHo. Then, for example, 

Define, for HE 1t9 , 

The Hopf algebra H(O) = 1Fp[Z] is evidently projective in 1t9 and Theorem 2.1 
holds. Set B(O) = 8°. Then 

3. The homology theories from Dieudonne 
modules are represented by Brown-Gitler spectra 

The section is devoted to identifying the spectra B(n) of the previous section 
as Brown-Gitler spectra. It is convenient to define B(n) for all integers n; if 
n=f=± 1 mod (2p) then B(n) is defined by Theorem 2.1. If n = ±1 mod (2p) set 
B(n) = B(n -- 1). 
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THEOREM 3.1. For n ~ 2 B(n) is a p-complete spectrum so that 
{1) H* B(n)~A/A{x(f3E pi): 2pi + 2E > n}, ifp > 2, and 

H* B(n)~A/A{x(S¢): 2i > n}, if p = 2. 
{2) If B(n)---+ HZ/(p) is a generator of H* B(n), then 

B(n)nZ---+ HnZ 

is onto for all CW complexes Z. 

These properties uniquely characterize the spectra B(n) as the Brown-Gitler 
spectra. See [3]. Here x is the anti-automorphism of the Steenrod algebra. 

We begin with the following result. 

LEMMA 3.2. B(n) is bounded below in the sense that 7rkB(n) = 0 fork< 0. 

PROOF. 
1rkB(n) = [Sk, B(n)]~[Sn, B(n) 1\ sn-k] 

~B(n)nsn-k 

~DnHStX) sn-k 

for n=f=± 1 mod (2p). If k < 0, n- k >nand DnHS'-cosn-k = 0. If n = ±1 
mod (2p), 7rkB(n) = 7rkB(n- 1). 

LEMMA 3.3. Assume n=f=± 1 mod (2p). There is a natural transformation of 
homology theories 

~: B(n)*(·)---+ H*(-) 
so that if Z is a CW complex, then 

~: B(n)nZ---+ HnZ 

is onto. 

PROOF. Let X be a spectrum. Then the counit of the adjunction 

a: Econcox---+ X 

defines a map of modules over the Steenrod algebra 

QH*nco X ---+ H*X 

and, hence, a map of unstable modules 

QHS'-co X ---+nco H*X 

where nco ( ·) is right adjoint to the inclusion functor of unstable modules into 
the category of all A-modules. Then let 

cp : H*nco X ---+ U(nco H*X) 

be the adjoint. This gives a natural map 

DnH*nco X ---+ DnU(nco H*X) 

~[nco H*X]n ~ HnX. 
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If n=/=-± 1 mod (2p), we obtain the map B(n)*(·)--+ H*(·). Also if Z is a CW 
complex noo H*Eoo z:;;ftz and 

QH*noor,oo Z--+ itz 
is onto. Hence, by exactness, 

is onto. 
In order to compute H* B(n) we discuss Spanier-Whitehead duality for mod-

ules over the Steenrod algebra. Let A be the Steenrod algebra and A* the dual. 
All A-modules will be right A-modules- for example, H*X- unless specifically 
labeled otherwise. 

Let M be a finite A-module. Then the Spanier-Whitehead dual of M is a pair 
(N,J-t) consisting of an A-module Nand a non-singular pairing 

that is also a map of A-modules. One often calls N the Spanier-Whitehead dual 
of M, leaving the map J-t implicit. 

LEMMA 3.4. Let M be a finite A-module. Then the Spanier- Whitehead dual 
of M exists and is unique. 

PROOF. Uniqueness follows by standard methods. To prove existence, define 
N by the equation 

Nn = HomJFP(M-n,TFp) 
and let J-t: N 0 M--+ TFp be the evaluation homomorphism. Then the A-module 
structure on N is defined by the equation 

(3.4.1) J-t(xO 0 y) = p,(x 0 yx(O)) 

for() EA. 
Remark 3.5. Note that if N is the Spanier-Whitehead dual of M, then there 
is an isomorphism 

¢: M---+ N*, 

where N* is the graded dual, given by 

¢(y) = J-t(· 0 y). 

This reverses degrees: ¢ : Mn --+ (N*)-n. Also N* is a left A-module (in the 
fashion of H* X) and the equation (3.4.1) implies that 

¢(yO)= x(O)¢(y) 

for () E A. 
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Example 3.6. Let G(n) E U be the free unstable A-module on one generator 
characterized by the equation 

(3.6.1) Homu(G(n), K) ~ Kn 

for all unstable A-modules K. Then we know (from [6], for example) that re-
garded as a cyclic A-module on a generator Ln E G(n)n, there is an isomorphism 

G(n) ~ ~n A/{,8£ pi : 2pi + 2£ > n}A, if p > 2; 

~ ~n Aj{Sqi : 2i > n}A, if p = 2. 

Here {-}A denotes the right ideal. It follows from Remark 3.5 that if N is the 
Spanier-Whitehead dual of G(n), then as left A-modules 

~nN* ~ A/A{x(,BePi): 2pi + 2e > n}, if p > 2; 

~ A/A{x(Sqi): 2i > n}, if p = 2. 

These are exactly the left A-modules of Theorem 3.1. 

To characterize the Spanier-Whitehead dual of a module, we have the next 
result. 

LEMMA 3. 7. Let M be a finite A -module. Then the following statements are 

equivalent: 
1 ) the A-module N is the Spanier- Whitehead dual of M; 

2 ) there is a natural isomorphism 

HomA(K1 0 M,K2) ~ HomA(K1,K2 0 N) 

valid for all A-modules K1 and K2; and 
3 ) there is a natural isomorphism 

HomA(M, S) ~ HomA(IFp, S 0 N) 

where S runs through the full sub-category of A -modules with objects consisting 
of A* and its various suspensions. 

PROOF. That parts 1) and 2) are equivalent is standard. Part 3) is a special 
case of part 2). To prove that part 3) implies part 2), filter K 1 "by skeleta" and 
take an injective resolution of K2. 

PROOF OF THEOREM 3.1. That B(n) isp-complete follows from the fact that 
B(n) is connected (Lemma 3.2) and the fact that H*(B(n),Z) is an JFP vector 
space. This in turn follows from the case n ::/= ±1 mod (2p), where 

We next compute H* B(n). It is sufficient to examine the case n ;:f= ±1 mod 
(2p). Let G(n) be as in example 3.6. Then the equation 3.6.1 implies that for 
all A-modules M there is a natural isomorphism 

(3.8.1) HomA(G(n), M) ~ [000 M]n· 
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126 P. GOERSS, J. LANNES, AND F. MOREL 

Also, if K is a suspension of H'lljp, then there is a natural isomorphism 

(3.8.2) 
B(n)nK ~ DnHS!00 K 

~ [000H*K]n 

Thus, setting K = r;n-k H'lljp, we have natural isomorphisms 

HkB(n) ~ B(n)nr;n-k H'lljp 

~ HomA(G(n), r;n-k A*) 

~ HomlFv(G(n)n-k,lFp)· 

Hence, H*B(n) is finite. Finally, we have 

(3.8.3) 

because K is a suspension of H'lljp. Combining equation 3.8.1- 3.8.3, we have 
a natural isomorphism 

where S runs through the full sub-category of all A-modules with objects the 
suspensions of A*. Thus, by Lemma 3.7, 

where N is the Spanier-Whitehead dual of G(n). The calculation of H* B(n) is 
then completed by Example 3.6 

Part 2 of Theorem 3.1 holds for n¢ ± 1 mod (2p) by Lemma 3.3. Thus the 
result holds for all n if we can show 

is onto for n == ±1 mod (2p) and Z a CW complex. We isolate this as a separate 
lemma. 

LEMMA 3.9. Let n = ±1 mod (2p) and let Z be a CW complex. Then 

is onto. 

PROOF. We may assume that Z is connected. Then note that 

and we are confronted with the composition 
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However, this map factors as 

Dn-1HS2ooE-1 Z --t [QHSlooE-1 Z]n-1 

~[PHSl 00 E 00 Z]n 

~[QHS~oor,oo Z]n 

--t HnZ 

where a is induced from the counit 

and the map q is given by the composite 

PHS~oor,oo z_1_.ifs~oor,oo Z --t QHS~oor,oo Z. 

The unlabeled maps are evidentally onto, the map a is onto because nf2 mod 
(2p) by [8] (see the proof of Theorem 4.3 there) and the map q is onto since n=f!J 
mod (2p). 
Remark 3.10: After Lemma 1.10 we defined natural transformations (at p = 2, 
say) 

and 
F: Dn(·) --t D2n(·) 

so that V F = FV = 2. These yield, via Brown representability, maps of spectra 

f: B(2n) --t r,n B(n) 

and 
g: r,n B(n) --t B(2n) 

so that the composites g f and f g are both twice the identity. The map f is 
well-known, being the map introduced by Mahowald in [7]. The map g seems 
less well-known, although it was certainly constructable by previously known 
methods. Similar remarks hold at other primes. 
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