Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

Institute of Geometry, Algebra and Topology Ecole Polytechnique Fédérale de Lausanne

> Colloquium Wayne State University 25 October 2010

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture

A tale of many proofs

Outline

The conjecture

- Hochschild cohomology
- Operads

2 A tale of many proofs

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture

A tale of many proofs

Definition

[Hochschild, 1945]

Let \Bbbk be any commutative ring, and let *A* be an associative \Bbbk -algebra.

The Hochschild cochain complex of A is

$$C^*(A,A) = \left(C^0(A,A) \xrightarrow{d^0} C^1(A,A) \xrightarrow{d^1} C^2(A,A) \xrightarrow{d^2} \cdots \right)$$

where

•
$$C^n(A, A) = \operatorname{hom}(A^{\otimes n}, A),$$

• *dⁿ* defined in terms of the multiplication on *A*.

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture Hochschild cohomology Operads

A tale of many proofs

Definition

[Hochschild, 1945]

Let \Bbbk be any commutative ring, and let *A* be an associative \Bbbk -algebra.

The Hochschild cochain complex of A is

$$C^*(A,A) = \left(C^0(A,A) \xrightarrow{d^0} C^1(A,A) \xrightarrow{d^1} C^2(A,A) \xrightarrow{d^2} \cdots \right)$$

and the Hochschild cohomology of A is

$$H^*(A,A) = H^*(C^*(A,A)).$$

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture Hochschild cohomology Operads

A tale of many proofs

Why interesting?

$H^*(A, A)$ classifies infinitesimal deformations of the multiplicative structure of *A*.

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture Hochschild cohomology Operads

A tale of many proofs

$H^*(A, A)$ is a Gerstenhaber algebra, i.e.,

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture Hochschild cohomology Operads

A tale of many proofs

$H^*(A, A)$ is a Gerstenhaber algebra, i.e.,

• a graded k-module

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture Hochschild cohomology Operads

A tale of many proofs

 $H^*(A, A)$ is

- a graded k-module,
- endowed with a graded commutative multiplication:

 $H^*(A, A) \otimes H^*(A, A) \rightarrow H^*(A, A) : \alpha \otimes \beta \mapsto \alpha \cdot \beta$

$$egin{aligned} lpha \in \mathcal{H}^m(\mathcal{A},\mathcal{A}), eta \in \mathcal{H}^n(\mathcal{A},\mathcal{A}) \ & \Longrightarrow lpha \cdot eta = (-1)^{mn}eta \cdot lpha \in \mathcal{H}^{m+n}(\mathcal{A},\mathcal{A}). \end{aligned}$$

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture Hochschild cohomology Operads

A tale of many proofs

 $H^*(A, A)$ is

- a graded k-module,
- endowed with a graded commutative multiplication,
- and a Lie bracket of degree -1:

$$H^*(A, A) \otimes H^*(A, A) \rightarrow H^*(A, A) : \alpha \otimes \beta \mapsto [\alpha, \beta]$$

 $\begin{aligned} \alpha \in H^m(A, A), \beta \in H^n(A, A). \\ \Longrightarrow [\alpha, \beta] \in H^{m+n-1}(A, A). \end{aligned}$

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture Hochschild cohomology Operads

A tale of many proofs

$H^*(A, A)$ is

- a graded k-module,
- endowed with a graded commutative multiplication,
- and a Lie bracket of degree -1 satisfying a graded Jacobi identity, graded anticommutativity and such that

$$[\alpha, \beta \cdot \gamma] = [\alpha, \beta] \cdot \gamma + (-1)^{m(n+1)} \beta \cdot [\alpha, \gamma]$$

for all $\alpha \in H^m(A, A), \beta \in H^n(A, A), \gamma \in H^*(A, A)$.

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture Hochschild cohomology Operads

A tale of many proofs

 $H^*(A, A)$ is

- a graded k-module,
- endowed with a graded commutative multiplication,
- and a Lie bracket of degree -1 satisfying a graded Jacobi identity, graded anticommutativity and such that

$$[\alpha, \beta \cdot \gamma] = [\alpha, \beta] \cdot \gamma + (-1)^{m(n+1)} \beta \cdot [\alpha, \gamma]$$

for all $\alpha \in H^m(A, A), \beta \in H^n(A, A), \gamma \in H^*(A, A)$.

Question

How to encode this complicated algebraic structure as compactly as possible?

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture Hochschild cohomology Operads

A tale of many proofs

Definition

An operad O consists of

• a sequence of k-modules

O(1), O(2), O(3), ...;

• a collection of k-linear maps

$$\mathbb{O}(k) \otimes (\mathbb{O}(n_1) \otimes \cdots \otimes \mathbb{O}(n_k)) \longrightarrow \mathbb{O}(\sum_{i=1}^k n_i)$$

satisfying reasonable associativity and unitality conditions.

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture Hochschild cohomology Operads

A tale of many proofs

The endomorphism operad

Let X be a \Bbbk -module. The endomorphism operad \mathcal{E}_X is given by

• $\mathcal{E}_X(n) = \hom(X^{\otimes n}, X),$ • if $n = \sum_{i=1}^k n_i$, then

$$\mathcal{E}_X(k) \otimes (\mathcal{E}_X(n_1) \otimes \cdots \otimes \mathcal{E}_X(n_k)) \to \mathcal{E}_X(n)$$

sends

$$f\otimes (g_1\otimes\cdots\otimes g_k)$$

to

$$f \circ (g_1 \otimes \cdots \otimes g_k) : X^{\otimes n} \to X.$$

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture Hochschild cohomology Operads

A tale of many proofs

Operad maps

Let ${\mathbb O}$ and ${\mathbb P}$ be operads.

An operad map $\varphi : \mathfrak{O} \to \mathfrak{P}$ consists of k-linear maps

$$\varphi_n: \mathfrak{O}(n) \to \mathfrak{P}(n), \quad n \ge 0$$

such that

commutes for all k, n_1, \dots, n_k .

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture Hochschild cohomology Operads

A tale of many proofs

Algebras over an operad

Let 0 be an operad.

An O-algebra consists of a \Bbbk -module X and an operad map

$$\mathfrak{O} \to \mathfrak{E}_{\boldsymbol{X}}.$$

Thus:

 \bigcirc -algebra structure on X = representation of \bigcirc on X.

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture Hochschild cohomology Operads

A tale of many proofs

In the discussion above of operads and their algebras, we could replace $\Bbbk\text{-modules}$ and $\Bbbk\text{-linear maps}$ everywhere by

- sets and set maps,
- topological spaces and continuous maps,
- chain complexes and chain maps.

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture Hochschild cohomology Operads

A tale of many proofs

The Gerstenhaber operad

There is an operad \mathcal{G} such that

9-algebras = Gerstenhaber algebras.

In particular, for every associative \Bbbk -algebra A, there is an operad map

$$\varphi: \mathcal{G} \to \mathcal{E}_{H^*(A,A)}$$

parametrizing the natural Gerstenhaber algebra structure on Hochschild cohomology.

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture Hochschild cohomology Operads

A tale of many proofs

The little discs operad

Let

 $\mathcal{D}(n) = \{\text{configurations of } n \text{ discs within the unit disc in } \mathbb{R}^2 \}$ (topologized appropriately) and define

$$\mathcal{D}(k) \times (\mathcal{D}(n_1) \times \cdots \times \mathcal{D}(n_k)) \to \mathcal{D}(\sum_{i=1}^{k} n_i)$$

by embedding configurations.

The chain little discs operad is

$$\mathbb{S} = S_*(\mathcal{D}; \Bbbk).$$

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture Hochschild cohomology Operads

A tale of many proofs

Little discs and Gerstenhaber

• D detects double loop spaces:

X a \mathcal{D} -algebra $\iff \exists Y$ such that $X \sim \Omega^2 Y$.

• [Cohen, 1976] $H_* \mathcal{D} = H_* \mathcal{S} = \mathcal{G}$, whence

C an *S*-algebra \implies H_*C a *S*-algebra.

Question

For which chain complexes *C* can the second implication be reversed? Can it be reversed for $C = C^*(A, A)$?

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture Hochschild cohomology Operads

A tale of many proofs

Deligne's letter

[1993]

"I would like the complex computing Hochschild cohomology to be an algebra over the operad \$ (or a suitable version of it)."

Conjecture

For any associative \Bbbk -algebra A, the Hochschild complex $C^*(A, A)$ is an \$'-algebra for some operad \$' that is "equivalent" to the chain little discs operad \$.

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture Hochschild cohomology Operads

A tale of many proofs

Gerstenhaber-Voronov, 1994

Constructed an operad \mathcal{H} that parametrized the explicit "up-to-homotopy Gerstenhaber algebra"-structure of $C^*(A, A)$ and a representation

$$\mathcal{H} \to \mathcal{E}_{C^*(A,A)}$$

Left open the question of the relationship between $\mathbb S$ and $\mathcal H.$

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture

A tale of many proofs

Constructed an operad ${\mathcal G}_\infty$ (a sort of minimal resolution of ${\mathfrak G})$ and operad maps

$$\mathbb{S} \xleftarrow{\sim} \mathbb{G}_{\infty} \to \mathcal{E}_{C^*(A,A)}$$

The first real proof of Deligne's conjecture, though left open the question of the existence of a representation of S directly on $C^*(A, A)$.

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture

A tale of many proofs

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture

A tale of many proofs

Yet another proof!

Constructed an operad $\frac{\delta}{\delta}$ (a "geometric resolution" of δ) and operad maps

$$\mathbb{S} \xleftarrow{\sim} \widetilde{\mathbb{S}} \to \mathcal{H} \to \mathcal{E}_{C^*(A,A)}.$$

McClure-Smith, 1999

Constructed a "cellular" topological operad ${\mathfrak C}$ equivalent to ${\mathfrak D}$ and an operad map

$$S_*(\mathbb{C}; \Bbbk) \xrightarrow{\sim} \mathcal{H},$$

whence

$$\mathbb{S} \xleftarrow{\sim} S_*(\mathbb{C}; \Bbbk) \xrightarrow{\sim} \mathcal{H} \to \mathcal{E}_{C^*(A,A)}$$

and

$$H_*\mathfrak{H}\cong H_*\mathfrak{C}\cong H_*\mathfrak{D}\cong\mathfrak{G},$$

answering a question left open by Gerstenhaber and Voronov.

The first "geometric" proof of Deligne's conjecture: the operad $S_*(\mathcal{C}; \Bbbk)$ comes from topology and acts directly on $C^*(A, A)$.

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture

A tale of many proofs

Kontsevich-Soibelman, 2000

Constructed an operad ${\mathfrak P}$ (a "tree resolution" of ${\mathfrak S}) and operad maps$

$$\mathbb{S} \xleftarrow{\sim} \mathbb{P} \to \mathcal{E}_{C^*(A,A)}.$$

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture

A tale of many proofs

McClure-Smith, 2001 and 2002

Refined and simplified considerably their original proof, establishing a generalization of the "geometric" Deligne conjecture. Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture

A tale of many proofs

Berger-Fresse, 2001

Constructed an operad $\ensuremath{\mathfrak{F}}$ of simplicial sets such that

$$|\mathcal{F}| \sim \mathcal{D}$$

and an operad map

$$C_* \mathcal{F} \to \mathcal{E}_{C^*(A,A)},$$

where C_* denotes the normalized chains functor. Another "geometric" proof. Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture

A tale of many proofs

Other recent proofs

In [Kaufmann-Schwell, 2007] and [Batanin-Berger, 2009], nice, "small" operads were constructed that are

- equivalent to S, and
- act directly on $C^*(A, A)$.

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture

A tale of many proofs

Various generalizations

- [Hu-Kriz-Voronov, 2003] Proved that if *A* is an \mathcal{E}_n -algebra, then $C^*(A, A)$ is an \mathcal{E}_{n+1} -algebra.
- [Costello, 2004] Obtained a generalized version of the Deligne conjecture as corollary of an important theorem about topological conformal field theories.
- [Kontsevich-Soibelman, 2006] Proved that the pair (C*(A, A), C_{*}(A, A)) is an algebra over the chains on a certain colored operad.
- [Vallette, 2006] Generalized Deligne's conjecture to algebras over any finitely generated, binary, nonsymmetric Koszul operad.

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture

A tale of many proofs

What?

A concrete version of Deligne's conjecture...

Theorem (H.-Scott, 2010)

If A is an associative \Bbbk -algebra, let Def(A) be the space of homotopy deformations of the multiplication on A. Then

 $\pi_*\Omega^2 \operatorname{Def}(A) \cong H^*(A, A).$

Connection with Deligne conjecture...

- Ω² Def(A) is a D-algebra, since D detects double loop spaces.
- Back to the roots: H*(A, A) classifies infinitesimal deformations of the multiplication on A.

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture

A tale of many proofs

Why?

Known proofs

- construct an operad X;
- show that it is equivalent to S;and
- show that it acts on $C^*(A, A)$.

Our proof is

- purely homotopy-theoretic;
- makes explicit the link between deformation theory of algebras and Hochschild cohomology;
- lifts the Gerstenhaber algebra structure on H*(A, A) all the way up to the level of topology.

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture

A tale of many proofs

How?

The concrete Deligne conjecture is proved by two applications of...

Theorem (Dwyer-H., 2010)

If (\mathbf{M}, \otimes, I) is a "nice enough" monoidal model category, then for any map of monoids $\varphi : \mathbf{A} \to \mathbf{B}$, there is a fiber sequence

 $\Omega \operatorname{Map}_{\operatorname{Mon}}(A, B) \to \operatorname{Map}_{\operatorname{Bimod}}(A, B) \to \operatorname{Map}_{\operatorname{M}}(I, B).$

Deligne's Hochschild Cohomology Conjecture

Kathryn Hess

The conjecture

A tale of many proofs