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ORIENTABILITY OF HIGH-DIMENSIONAL MANIFOLDS

WITH ODD EULER CHARACTERISTIC

RENEE S. HOEKZEMA

Abstract. We call a manifold k-orientable if the ith Stiefel-Whitney
class vanishes for all i < 2k (k ≥ 0), generalising the notions of orientable
(1-orientable) and spin (2-orientable). In [Hoe18] it was shown that k-
orientable manifolds have even Euler characteristic (and in fact vanish-

ing top Wu class), unless their dimension is 2k+1m for some m ≥ 1. This
theorem is strict for k = 0, 1, 2, 3, but whether there exist 4-orientable
manifolds with an odd Euler characteristic is an open question. This
paper discusses the question of finding candidates for such a manifold
X

32m.
As part of our investigation we study the example of the three ex-

ceptional symmetric spaces known as Rosenfeld planes, which have odd
Euler characteristic and are of dimension 32, 64 and 128. We perform
computations of the action of the Steenrod algebra on the mod 2 coho-
mology of the first two of these manifolds with the use computer cal-
culations. The first Rosenfeld plane, (O ⊗ C)P2, is 2-orientable but not
3-orientable and thus not an example of X32. We show that the second
Rosenfeld plane (O ⊗ H)P2 is 3-orientable and we present a condition
under which is may be 4-orientable if the action of the Steenrod alge-
bra is established further, and therefore it remains a potential candidate
for X

64. No other clear candidate manifolds for X
32m or in particular

candidates for X32 are known to the author.
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1. Introduction

It is a straightforward consequence of Poincaré duality in mod 2 homology
that all manifolds of odd dimension have a vanishing Euler characteristic.
For orientable manifolds, the Euler characteristic is moreover even in dimen-
sions that are not a multiple of 4. Ochanine’s theorem for the divisibility of
the signature of spin manifolds implies that the Euler characteristic of spin
manifolds is even unless the dimension is a multiple of 8 ([Och81]). This
sequence of statements was generalised in [Hoe18].

Definition 1.1 ([Hoe18]). We call a manifold k-orientable if wi = 0 for
0 < i < 2k.

Theorem 1.2 ([Hoe18]). A k-orientable manifold or Poincaré complex M
(k ≥ 0) has an even Euler characteristic χ(M) if its dimension is not a
multiple of 2k+1.

This paper discusses the question whether this theorem is strict: does a k-
orientable manifold with odd Euler characteristic (χ) exist in all dimensions
admitted by Theorem 1.2, for all values of k? For k = 0, 1, 2, 3, the answer is
yes, and the exemplifying manifolds are summarised in the following table.

k corresponds to dimensions with k-orientable
odd χ possible manifolds with

odd χ

0 any manifold 2m RP2m

1 orientable manifolds 4m CP2m

2 spinable manifolds 8m HP2m

3 implied by stringable 16m (OP2)m

4 implied by fivebraneable 32m X
32m?

Whether a 4-orientable manifold with odd Euler characteristic exists, here
referred to as X

32m, is currently an open question. By theorem 1.2, such
a manifolds would need be of a dimension divisible by 32. One might look
for examples of highly orientable manifolds with odd Euler characteristic
by considering special classes of manifolds that generalise the sequence of
projective planes over division algebras.

Rational projective planes. In [KS17] the existence of rational projective
planes in different dimensions is considered. Rational projective planes are
simply connected, smooth, closed manifolds with rational cohomology iso-
morphic to Q[a]/〈a3〉, and thus in particular have odd Euler characteristic.
Kennard and Su show that these manifolds exist in dimensions 4, 8, 16, 32,
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128 and 256, but there are none in any dimension between 256 and 213, with
the possible exception of 544, 1024, 2048, 4160 and 4352. Whether there
exist infinitely many rational projective planes remains an open question.
However, the authors did show that no spinable rational projective planes
exist in dimensions other than 8 and 16 ([KS17], Theorem C). Hence all
rational projective planes besides those in the same dimensions as HP2 and
OP2 are 1-orientable but not 2-orientable, and hence this class of manifolds
does not give rise to any candidates for X32m.

Rosenfeld planes. A different direction in which to generalise the notion
of projective planes is given by considering symmetric spaces. All projective
spaces over different division algebras are in particular symmetric spaces of
different Lie groups. Irreducible compact symmetric spaces were classified by
Cartan and there are seven infinite families and twelve exceptional spaces in
this classification. Recently, a uniform construction of all compact symmet-
ric spaces was found, describing them as different types of Grassmannians
using the four division algebras and the Freudenthal magic square ([HL11]).
Three particularly interesting symmetric spaces in this context are given by
the Rosenfeld planes of dimensions 32, 64 and 128. We here denote them
as (O ⊗ C)P2, (O ⊗ H)P2 and (O ⊗ O)P2, but in Cartan’s classification
scheme they are denoted EIII, EVI and EVIII respectively. They are also
known as the bioctonionic projective plane, the quateroctonionic projective
plane and the octooctonionic projective plane. These manifolds have an odd
Euler characteristic. They can be described as Lie group quotients of the
exceptional groups E6, E7 and E8 in the following way ([Bae02]):

(O ⊗ C)P2 = E6/ ((Spin(10) × U(1))/Z/4)

(O ⊗H)P2 = E7/ ((Spin(12) × Sp(1))/Z/2)

(O ⊗O)P2 = E8/ (Spin(16)/Z/2)

The cohomology of EIII or (O⊗ C)P2 is known integrally, for EVI or (O ⊗
H)P2 the cohomology is known modulo 2 and for EVIII or (O⊗O)P2, as well
as EV and EIX in Cartan’s classification scheme, the cohomology remains
undetermined.

Results. In this paper we consider the orientability of (O⊗C)P2 and (O⊗
H)P2 by considering the action of the Steenrod algebra on their mod 2
cohomology. We compute the action of specific Steenrod squares with target
the top cohomology for both these manifolds. The computations make use
of a program written in Wolfram Mathematica by the author that aids in
the expansion of the Cartan formula on large products. In section 3 we show

Theorem A. (O ⊗ C)P2 is 2-orientable and not 3-orientable.

We therefore establish that (O ⊗ C)P2 is not a candidate for X
32. Moving

on to the next Rosenfeld plane, we show in section 4

Theorem B. (O⊗H)P2 is 3-orientable.

However, the question whether (O⊗H)P2 presents a candidate for X64 cannot
be resolved within our present-day understanding of the cohomology of the
manifold.
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Theorem C. (O ⊗ H)P2 is 4-orientable if β′′ + ν ′′ = 1, where β′′ is the
prefactor of y2y

2
3y12 in Sq8y12 and ν ′′ is the prefactor of y2y

2
3y20 in Sq8y20.

The prefactors β′′ and ν ′′ are part of the indeterminacy in our current knowl-
edge of the action of the Steenrod algebra on the mod 2 cohomology of
(O⊗H)P2 as established in [Nak01].
The following table now summarises our updated knowledge of the ori-
entability of the Rosenfeld planes and their candidacy for finding an X

32m.

Rosenfeld Cartan’s k-orientable Status
plane classification for k:
(O⊗ C)P2 EIII 2 not 3 Not a candidate for X32

(O⊗H)P2 EVI 3 maybe 4 Potential candidate for X64

(O⊗O)P2 EVIII unknown Potential candidate for X128,
currently cohomology unknown

No other clear sources of candidate manifolds for X
32m are known to the

author. In particular, one can wonder whether if an X
32 exists, a 4-orientable

a manifold with odd Euler characteristic in the lowest possible dimension.

Outline. In section 2 we give an overview of the computational method-
ology for establishing k-orientability of a high-dimensional manifold when
one is presented with its mod 2 cohomology and the (partial) action of the
Steenrod algebra on this cohomology. Section 3 discusses application of this
methodology to (O ⊗ C)P2. As intermediate computational results we list
an additive basis for the integral cohomology of (O ⊗ C)P2 and the corol-
lary that its signature is 3. Section 4 discusses computations and results
for (O ⊗ H)P2. The 64 additive groups and generators in terms of the ring
generators are listed in subsection 4.4, and a full list of relations can be
found online1. Moreover we give the explicit calculations of the action of
Sq3, Sq5, Sq6 and Sq7 on the ring generators. We list a number of explicit
computational results in this paper in the hope that they will make the
methodology for determining k-orientability as well as the study of the first
two Rosenfeld planes accessible to interested researchers and students with
little computational background.

Acknowledgements. It is a pleasure to acknowledge contributions to this
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icki, MasakiNakagawa, Robert Bruner, André Henriques, Christopher Dou-
glas and Ulrike Tillmann. The author is particularly indebted to Robert
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1Supplementary materials can be found online at reneehoekzema.nl/Mathematics.
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2. Determining k-orientability from the action of the

Steenrod algebra on mod 2 cohomology

2.1. Link to Wu classes. In [Hoe18] it was shown that k-orientability can
be established by considering the values of the Wu classes rather than the
Stiefel-Whitney classes. Given a manifold M of dimension n and i ≤ n/2,
the Wu class vi ∈ H i(M ;Z/2) is the class such that squaring to the top
dimension corresponds to cupping it with the corresponding Wu class:

(2.1) vi ⌣ xn−i = Sqi(xn−i) ∈ Hn(M ;Z/2),

for any class xn−i ∈ Hn−i(M ;Z/2).
It was shown in [Hoe18] that rather than requiring the lowest Stiefel-Whitney
classes to vanish, one can equivalently define k-orientability by requiring that
Wu classes in the same degrees vanish.

Lemma 2.1 ([Hoe18]). A manifold is k-orientable if and only if vi = 0 for
0 < i ≤ 2k−1.

Hence, whether a manifold is k-orientable can be established by considering
the action of the Steenrod algebra on its cohomology. In particular, in order
to determine whether an n-dimensional manifold is k-orientable, we need to
evaluate the Steenrod squares of degree 2j on all generators in degree n−2j

for j = 0, 1, ..., k − 1. Steenrod squares are generated by those of degree a
power of two, so if all these operations vanish then we can conclude that the
manifold is k-orientable.

2.2. Establishing an additive basis. The integral cohomology of (O ⊗
C)P2 was determined in [TW74]. The mod 2 cohomology of (O⊗H)P2 was
determined in [Nak01]. Cohomology is generally presented as a graded ring,
with ring generators and ring relations. However, in order to do computa-
tions we need to expand this compact information and determine what the
groups look like individually, establishing an additive basis and relations in
terms of homogeneous monomials in the ring generators in every degree. In
the case of (O ⊗ C)P2 we do this in Wolfram Mathematica by generating
a list of homogeneous monomials in every degree, computing homogeneous
parts of the ideal of relations and solving this system of equations degree-
wise. The cohomology ring of (O ⊗ C)P2 has two generators of degree 2
and 8 and two relations in degrees 18 and 24. The notebook can be found
online1, and the resulting additive basis plus all relations between monomials
is shown in Table 3.1. The action of the Steenrod algebra on the cohomology
of (O⊗C)P2 was determined in [Ish92], and using this information, the rest
of the computations for (O ⊗C)P2 in this paper could be done by hand.
The mod 2 cohomology of (O ⊗ H)P2 has five generators in degree 2, 3,
12, 16 and 20, and twelve relations in degrees 9, 18, 19, 26, 27, 28, 36,
40, two in 44, 48 and 52. This means that for example in the top dimen-
sion 64, there are 123 homogeneous monomials in the generators and 245
relations amongst them. In this case Mathematica could no longer handle
computations. However, Magma computational algebra system is a program
specialised in algebraic computations such as these and was able to carry out
the computation with ease. Apart from establishing an additive basis, which
is shown in Table 4.4, a list of 49 pages of relations between monomials is
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listed online1. For the case of dimension 64, this information is presented in
section 4.7. There are 123 monomials in the ring generators in this degree,
of which eleven equal the fundamental class and the other 112 equal zero.
This explicit information is required for the calculations in section 4.

2.3. Expanding the Cartan formula. In order to establish k-orientability
we want to evaluate Steenrod operations on high-dimensional classes, which
are written as monomials in ring generators. To do so we use the Cartan
formula:

(2.2) Sqn(x ⌣ y) =
∑

i+j=n

(Sqix) ⌣ (Sqjy).

On a larger product we can rewrite the formula as follows:

(2.3) Sqn





k
∏

j=1

xj



 =
∑

{p}

k
∏

j=1

Sqpjxj,

where {p} ranges over the collection of ordered partitions of n into k numbers
between 0 and n. A program was written in Mathematica by the author to
aid in the expansion of this formula. The program can be found online1 and
can be applied more generally. The use of the Mathematica code is essential
as the expansion of the Cartan formula on larger products with high squares
involves a large number of terms. For example, if we want to apply Sq8 on a
product of twelve generators, the sum over partitions contains 75,582 terms,
each of which is a product of twelve squaring operations on a class. In the
case of (O ⊗ H)P2, each one of these operations has up to five terms when
fully expanded in terms of monomials in the ring generators. In the end
most terms appear an even number of times and hence vanish.

2.4. Computing lower Steenrod operations. Nakagawa partially estab-
lished the action of Sq1, Sq2, Sq4 and Sq8 on all generators of the mod 2
cohomology of (O⊗H)P2 in the process of determining this cohomology in
[Nak01]. When we compute

(2.4) Sqn





k
∏

j=1

xj





by applying the Cartan formula, the output is a linear combination of prod-
ucts of terms of the form Sqixj , for xj a ring generator of the cohomology,
where i ranges between 0 and n. Hence we need to determine values of the
squaring operations that are not a power of two. We do so by using the
Adem relations: for all a and b such that a < 2b, we have

(2.5) SqaSqb =

⌊a/2⌋
∑

c=0

(

b− c− 1

a− 2c

)

Sqa+b−cSqc.

In particular we obtain

Sq2n+1 = Sq1Sq2n(2.6)

Sq6 = Sq5Sq1 + Sq2Sq4.(2.7)
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We use these equations to compute the action of Sq3, Sq5, Sq6 and Sq7 on
all generators of the cohomology of (O⊗H)P2 in section 4.6.

2.5. Determining k-orientability. Concluding the above, a manifold M
is k-orientable if

(2.8) Sq2
i

(zn−2i) = 0

for i = 0, .., k − 1 on all additive generators zn−2i of Hn−2i(M ;Z/2). In
our approach for determining whether M is k-orientable, we establish the
additive generators zn−2i as monomials in the ring generators and expand
the Cartan formula on this product to obtain a large expression in terms of
squaring operations on ring generators. Finally we substitute the values of
these operations into our expression and quotient by all relations between

monomials in the top degree to obtain the value of Sq2
i

(zn−2i).

3. Orientability of the first Rosenfeld plane (O⊗ C)P2

In this section we determine that the first Rosenfeld plane (O ⊗ C)P2 is
2-orientable and not 3-orientable by performing calculations of the action
of the Steenrod algebra on its cohomology. The integral cohomology of this
manifold was determined as a ring in [TW74]:

(3.1) H∗((O ⊗ C)P2;Z) = Z[t, w]/(t9 − 3w2t, w3 + 15w2t4 − 9wt8),

where t is in degree 2 and w in degree 8. From this expression we determined
an additive basis in every degree using Mathematica.

Table 3.1. Below we give an explicit list of the groups H∗((O ⊗ C)P2;Z)
and the values of the monomials in the ring generators t and w. The even
dimensional groups all vanish.
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∗ H∗((O ⊗ C)P2;Z) generators relations
0 Z 1
2 Z t
4 Z t2

6 Z t3

8 Z2 t4, w
10 Z2 t5, tw
12 Z2 t6, t2w
14 Z2 t7, t3w
16 Z3 t8, t4w, w2

18 Z2 t5w, tw2 t9 = 3 tw2

20 Z2 t6w, t2w2 t10 = 3 t2w2

22 Z2 t7w, t3w2 t11 = 3 t3w2

24 Z2 γ1, γ2 t12 = 3 γ1 + 9 γ2; t
8w = 2 γ1 + 5 γ2;

t4w2 = γ1 + 3 γ2; w
3 = 3 γ1.

26 Z γ3 t13 = 78 γ3; t
9w = 45 γ3;

t5w2 = 26 γ3; tw
3 = 15 γ3.

28 Z tγ3 t14 = 78 tγ3; t
10w = 45 tγ3;

t6w2 = 26 tγ3; t
2w3 = 15 tγ3.

30 Z t2γ3 t15 = 78 t2γ3; t
11w = 45 t2γ3;

t7w2 = 26 t2γ3; t
3w3 = 15 t2γ3.

32 Z t3γ3 t16 = 78 t3γ3; t
12w = 45 t3γ3;

t8w2 = 26 t3γ3; t
4w3 = 15 t3γ3.;

w4 = 9 t3γ3

As the integral cohomology is concentrated in even degrees, the mod 2 co-
homology is given by

(3.2) H∗((O ⊗ C)P2;Z/2) = H∗((O⊗ C)P2;Z)⊗ Z/2.

We write t′ and w′ for the mod 2 reductions of the generators t and w. The
calculations are done by considering a general expression for the Steenrod
operations, for which we subsequently substitute the coefficients as estab-
lished in [Ish92].

Lemma 3.2. The action of the Steenrod algebra on H∗((O⊗C)P2;Z/2) is
fully determined by four coefficients α, β, γ, δ ∈ Z/2, where:

Sq2w′ = αt′5 + βt′w′;(3.3)

Sq4w′ = γt′6 + δt′2w′.(3.4)

Proof of Lemma 3.2. As there is no odd degree cohomology, all odd squares
are zero. The action of Sqi on any class can be decomposed into its action
on t′ and w′ by use of the Cartan formula. Hence the entire action of the
Steenrod algebra is determined by Sq2t′ = t′2, Sq2w′, Sq4w′ and Sq8w′ =
w′2. H10((O⊗C)P2;Z/2) is spanned by t′5 and t′w′, therefore Sq2w′ is some
linear combination of these. Similarly H12((O ⊗ C)P2;Z/2) is spanned by
t′6 and t′2w′. �

We list the signature of the manifold, which follows from the explicit com-
putations.
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Lemma 3.3. The signature of (O⊗ C)P2 is 3.

Proof of Lemma 3.3. Computer calculations show that

H32((O⊗ C)P2;Z) ∼= Z

with t16 = 78, t12w = 45, t8w2 = 26, t4w3 = 15 and w4 = 9.

H16((O ⊗ C)P2;Z) ∼= Z3

spanned by t8, t4w and w2 hence in this basis the cup square is given by

(3.5)





78 45 26
45 26 15
26 15 9





which has three positive eigenvalues. �

The orientability of (O ⊗ C)P2 can be established by computing the action
of the Steenrod squares reaching up to the top dimension.

Proposition 3.4. For α, β, γ, δ ∈ Z/2 as in Lemma 3.2, (O ⊗ C)P2 is
2-orientable if β = 1 and 3-orientable if also δ = 1.

Proof. As H1((O ⊗ C)P2;Z) = 0, we have w1 = 0 hence (O ⊗ C)P2 is 1-
orientable.
Computer calculations show that

H30((O ⊗ C)P2;Z) ∼= Z,

with t15 = 78, t11w = 45, t7w2 = 26 and t3w3 = 15. In order to check
whether w2 = 0, we check whether

Sq2 : H30((O⊗ C)P2;Z/2) → H32((O⊗ C)P2;Z/2)

vanishes. Denote by t′ and w′ the images of t and w under the ring homomor-
phism given by tensoring H∗((O ⊗ C)P2;Z) with Z/2. Then the generator
of H30((O ⊗ C)P2;Z/2) can be represented as t′11w′ or as t′3w′3. Applying
Sq2 to this and using the Cartan formula:

Sq2(t′11w′) = Sq2(t′11)w′ + t′11Sq2(w′)

= t′12w′ + t′11
(

αt′5 + βt′w′
)

= (1 + β) t′12w′ + αt′16

= (1 + β) t′12w′

= (1 + β)(3.6)

And similarly

Sq2(t′3w′3) = (1 + β)t′4w′3

= (1 + β).(3.7)

Both t′12w′ and t′4w′3 represent the generator of H32((O⊗C)P2;Z/2), hence
w2 = 0 if and only if β = 1.

H28((O⊗ C)P2;Z) ∼= Z
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with t14 = 78, t10w = 45, t6w2 = 26 and t2w3 = 15, hence

H28((O ⊗C)P2;Z/2) ∼= Z/2

generated by t′10w′ or equivalently t′2w′3.

Sq4(t′10w′) = Sq4(t′10)w′ + Sq2(t′10)Sq2(w′) + t′10Sq4(w′)

=

(

10

2

)

(

Sq2(t′)
)2

t′8w′ + 0 + t′10(γt′6 + δt′2w′)

= (1 + δ) t′12w′ + γt′16

= (1 + δ) t′12w′

= (1 + δ)(3.8)

and similarly

Sq4(t′2w′3) = (1 + δ) t′4w′3

= (1 + δ).(3.9)

Hence (O⊗ C)P2 is 3-orientable if and only if β = 1 and δ = 1.
�

Theorem 3.5. (O⊗ C)P2 is 2-orientable (spin) and not 3-orientable.

Proof. By [Ish92], α = β = γ = 1 and δ = 0. Hence by Proposition 3.4,
(O⊗ C)P2 is 2-orientable but not 3-orientable. �

4. Orientability of the second Rosenfeld plane (O ⊗H)P2

4.1. Recalling what is known about (O⊗H)P2. For (O⊗H)P2 the mod
2 cohomology was established as a ring by [Nak01], and it is generated by
five classes in degrees 2, 3, 12, 16 and 20, modulo an ideal generated by
twelve relations. In [Nak01] also the action of Sq1, Sq2, Sq4 and Sq8 was
determined on all generators, modulo twelve undetermined coefficients. We
here perform calculations that show that (O⊗H)P2 is at least 3-orientable,
but because of two of the undetermined coefficients it cannot be established
from this information whether (O⊗H)P2 is 4-orientable.

Theorem 4.1 ([Nak01]).

(4.1) H∗((O ⊗H)P2,Z/2) = Z/2 [y2, y3, y12, y16, y20] /J

where J is an ideal generated by twelve homogeneous relations:

J =









y33, y16y2 + y12y
2
3 + y62y

2
3, y16y3, y

2
12y2 + y12y

4
2y

2
3 + y20y

2
3,

y212y3, y12y16 + y142 + y12y
5
2y

2
3 + y112 y23, y

3
12 + y16y20 + y52y20y

2
3,

y212y16 + y220 + y12y
11
2 y23, y

2
12y20 + y12y

13
2 y23 + y12y

3
2y20y

2
3 ,

y12y
2
16 + y12y

13
2 y23, y

3
16 + y12y16y20 + y12y

5
2y20y

2
3 , y

2
16y20 + y132 y20y

2
3









The following is known about Steenrod operations on the generators.
Sq1yi = 0 unless i = 2, in which case

Sq1y2 = y3.
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We have that

Sq2(y12) = y72 + y2y12 + y42y
2
3 ,

Sq4(y12) = y82 + y22y12 + α′y52y
2
3 ,

Sq8(y12) = y20 + y42y12 + α′′y72y
2
3 + β′′y2y

2
3y12,

for some coefficients α′, α′′, β′′ ∈ Z/2,

Sq2(y16) = 0,

Sq4(y16) = y72y
2
3,

Sq8(y16) = y212 + γ′′y92y
2
3 + δ′′y32y

2
3y12,

for some coefficients γ′′, δ′′ ∈ Z/2, and

Sq2(y20) = y112 + y2y20 + µy82y
2
3 + νy22y

2
3y12,

Sq4(y20) = y212 + y62y12 + µ′y92y
2
3 + ν ′y32y

2
3y12,

Sq8(y20) = y12y16 + y82y12 + λ′′y112 y23 + µ′′y52y
2
3y12 + ν ′′y2y

2
3y20,

for some coefficients µ, ν, µ′, ν ′, λ′′, µ′′, ν ′′ ∈ Z/2.

In order to determine the entire action of the Steenrod algebra on the coho-
mology of (O ⊗ H)P2, one would need to establish the values of the twelve
unknown coefficients above and compute Sq16y20.

4.2. 3-orientability of (O⊗H)P2. The orientability of (O ⊗H)P2 can be
established by calculating the actions of the Steenrod squares that reach
up to the top dimension. An additive basis for the cohomology is listed in
section 4.4, and we will moreover need the values of all monomials in the
top degree 64 which is given in section 4.5. A full list of additive relations
can be found online1. This description lists all monomials in the five ring
generators y2, y3, y12, y16 and y20 up to degree 64, listing which of these are
zero in the cohomology and which are equated.

Lemma 4.2. (O⊗H)P2 is 1-orientable.

Proof. The first generator of the mod 2 cohomology of (O ⊗ H)P2 is y2 of
rank 2, hence H1((O⊗H)P2,Z/2) = 0. Therefore w1 = 0. �

Theorem 4.3. (O⊗H)P2 is 2-orientable.

Proof. In order to establish 2-orientability of (O ⊗ H)P2, we will compute
the action of Sq2 on H62((O ⊗ H)P2;Z/2), which is generated by y2y

3
20, as

can be read off in the table listed in section 4.4. The Cartan formula for Sq2

on a 4-term product has 10 terms. Applying this using the Mathematica
code and reducing modulo 2 yields:

Sq2(y2y
3
20) =

∑

i+j+k+l=2

Sqiy2 Sq
jy20 Sq

ky20 Sq
ly20

= (Sq1y2)y
2
20(Sq

1y20) + y2y20(Sq
1y20)

2(4.2)

+(Sq2y2)y
3
20 + y2y20(Sq

2y20).
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We now substitute the values of the squaring operations from Theorem 4.1
to obtain

Sq2(y2y
3
20) = y2y

3
20 + y2y20(y

11
2 + y2y20 + µy82y

2
3 + νy22y

2
3y12)

= y122 y220 + µy92y
2
3y

2
20 + νy32y

2
3y12y

2
20

= 0,(4.3)

where the last equality follows from the fact that all three monomials vanish
in H64((O⊗H)P2;Z/2) as we can read off in section 4.5.
Hence we see that the Sq2 to the top dimension vanishes, thus w2 = 0. As
(O⊗H)P2 is a smooth manifold, w3 = 0 as well. �

Theorem 4.4. (O⊗H)P2 is 3-orientable.

Proof. We see from the table in section 4.4 that H60((O⊗H)P2;Z/2) ∼= Z/2
generated by y320. The Cartan formula for applying Sq4 on a product of three
generators has 15 terms. We apply the Cartan formula in Mathematica and
reduce mod 2, and subsequently substitute the squaring operations from
Theorem 4.1.

Sq4(y320) =
∑

i+j+k=4

Sqiy20 Sq
jy20 Sq

ky20

= (Sq1y20)
2Sq2y20 + y20(Sq

2y20)
2 + y220(Sq

4y20)

= y20
(

y112 + y2y20 + µy82y
2
3 + νy22y

2
3y12

)2

+y220
(

y212 + y62y12 + µ′y92y
2
3 + ν ′y32y

2
3y12

)

= y222 y20 + µ2y162 y43y20 + ν2y42y
4
3y

2
12y20 + µ′y92y

2
3y

2
20

+y62y12y
2
20 + ν ′y32y

2
3y12y

2
20 + y212y

2
20 + y22y

3
20

= 0,(4.4)

where the last equality follows from the fact that all monomials equal zero
except for the last two which cancel one other, as we can read off from the
table in section 4.5.
Hence the action of Sq4 up to the top dimension is zero, so w4 = 0. Then
w5 = w6 = w7 = 0 as well. �

4.3. Potential 4-orientability. The action of Sq3, Sq5, Sq6 and Sq7 on
all generators of the cohomology of (O ⊗ H)P2 is established in section 4.6
and will be used in this section.

Theorem 4.5. (O ⊗ H)P2 is 4-orientable if β′′ + ν ′′ = 1. Here coefficient
β′′ is the prefactor of y2y

2
3y12 in Sq8y12 and ν ′′ is the prefactor of y2y

2
3y20

in Sq8y20.

Proof. H56((O ⊗ H)P2;Z/2) has two generators. Generator y122 y12y20 has
a unique monomial representing it. The other generator has five repre-
senting monomials, one of which reads y92y

2
3y12y20. The Cartan formula

for Sq8(y122 y12y20) has 203490 terms and for Sq8(y92y
2
3y12y20) it has 125970

terms. Expanding the Cartan formula and substituting in lower squares in
Mathematica yields:

Sq8(y122 y12y20) = (1 + β′′ + ν ′′)y2y
3
20

Sq8(y92y
2
3y12y20) = 0.
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Hence Sq8 vanishes on both generators of H56((O ⊗H)P2;Z/2) precisely if
β′′ + ν ′′ = 1, in which case (O⊗H)P2 is 4-orientable. �

4.4. Additive basis for the mod 2 cohomology of (O⊗H)P2.

Table 4.6. In the table below, bi is the dimension of H i((O ⊗ H)P2;Z/2).
We give a possible set of generators for the cohomology in each degree.
i bi generators
0 1 1
1 0
2 1 y2
3 1 y3
4 1 y22
5 1 y2 y3
6 2 y32 , y

2
3

7 1 y22 y3
8 2 y42 , y2 y

2
3

9 1 y32 y3
10 2 y52 , y

2
2 y

2
3

11 1 y42 y3
12 3 y12, y

6
2 , y

3
2 y

2
3

13 1 y52 y3
14 3 y42 y

2
3, y2 y12, y

7
2

15 2 y62 y3, y3 y12
16 4 y22 y12, y

8
2, y

5
2 y

2
3, y16

∗ bi generators
17 2 y72 y3, y2 y3 y12
18 4 y23 y12, y

9
2, y

2
3 y12 + y2 y16, y

3
2 y12

19 2 y22 y3 y12, y
8
2 y3

20 5 y42 y12, y
2
2 y16, y2 y

2
3 y12, y

10
2 , y20

21 2 y32 y3 y12, y
9
2 y3

22 5 y32 y16, y
5
2 y12, y

2
2 y

2
3 y12, y

11
2 , y2 y20

23 3 y42 y3 y12, y
10
2 y3, y3 y20

24 6 y212, y
3
2 y

2
3 y12, y

12
2 , y42 y16, y

6
2 y12, y

2
2 y20

25 3 y2 y3 y20, y
5
2 y3 y12, y

11
2 y3

26 6 y23 y20, y2 y
2
12 + y52 y16 + y23 y20, y2 y

2
12, y

7
2 y12, y

13
2 , y32 y20

27 3 y22 y3 y20, y
6
2 y3 y12, y

12
2 y3

28 6 y82 y12, y12 y16, y
4
2 y20, y

2
2 y

2
12, y

2
2 y

2
12 + y62 y16 + y2 y

2
3 y20, y

6
2 y16

29 3 y132 y3, y
3
2 y3 y20, y

7
2 y3 y12

30 5 y72 y16, y2 y12 y16 + y22 y
2
3 y20, y

9
2 y12, y2 y12 y16, y

5
2 y20

31 2 y82 y3 y12, y
4
2 y3 y20

32 7 y82 y16, y
2
16, y

8
2 y16 + y22 y12 y16, y12 y20, y

2
2 y12 y16 + y32 y

2
3 y20,

y102 y12, y
6
2 y20
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∗ bi generators
33 2 y92 y3 y12, y

5
2 y3 y20

34 5 y112 y12, y2 y12 y20, y
3
2 y12 y16 + y42 y

2
3 y20, y

3
2 y12 y16, y

7
2 y20

35 3 y102 y3 y12, y3 y12 y20, y
6
2 y3 y20

36 6 y52 y
2
3 y20, y

4
2 y12 y16 + y52 y

2
3 y20, y

12
2 y12, y

8
2 y20, y16 y20, y

2
2 y12 y20

37 3 y112 y3 y12, y2 y3 y12 y20, y
7
2 y3 y20

38 6 y23 y12 y20 + y2 y16 y20, y
5
2 y12 y16, y

13
2 y12, y

3
2 y12 y20, y2 y16 y20, y

9
2 y20

39 3 y22 y3 y12 y20, y
8
2 y3 y20, y

12
2 y3 y12

40 6 y2 y
2
3 y12 y20, y

10
2 y20, y

2
2 y16 y20, y

2
12 y16, y

2
12 y16 + y220, y

4
2 y12 y20

41 3 y92 y3 y20, y
13
2 y3 y12, y

3
2 y3 y12 y20

42 5 y22 y
2
3 y12 y20 + y32 y16 y20 + y2 y

2
20, y

5
2 y12 y20,

y22 y
2
3 y12 y20 + y32 y16 y20, y

2
2 y

2
3 y12 y20, y

11
2 y20

43 2 y42 y3 y12 y20, y
10
2 y3 y20

44 5 y62 y12 y20, y
4
2 y16 y20, y

2
12 y20 + y22 y

2
20, y

12
2 y20, y

2
12 y20 + y42 y16 y20

45 2 y52 y3 y12 y20, y
11
2 y3 y20

46 4 y2 y
2
12 y20, y2 y

2
12 y20 + y52 y16 y20, y

7
2 y12 y20, y

13
2 y20

47 2 y62 y3 y12 y20, y
12
2 y3 y20

48 4 y12 y16 y20, y
6
2 y16 y20, y

2
2 y

2
12 y20 + y12 y16 y20, y

8
2 y12 y20

∗ bi generators
49 2 y72 y3 y12 y20, y

13
2 y3 y20

50 3 y2 y12 y16 y20, y
7
2 y16 y20 + y2 y12 y16 y20, y

9
2 y12 y20

51 1 y82 y3 y12 y20
52 3 y22 y12 y16 y20 + y12 y

2
20, y

2
2 y12 y16 y20, y

10
2 y12 y20

53 1 y92 y3 y12 y20
54 2 y112 y12 y20, y

3
2 y12 y16 y20

55 1 y102 y3 y12 y20
56 2 y122 y12 y20, y

4
2 y12 y16 y20

57 1 y112 y3 y12 y20
58 2 y132 y12 y20, y

5
2 y12 y16 y20

59 1 y122 y3 y12 y20
60 1 y320
61 1 y132 y3 y12 y20
62 1 y2 y

3
20

63 0
64 1 y22 y

3
20

4.5. List of non-zero monomials in degree 64.

Table 4.7. Below we list the non-zero monomials of degree 64 in the ring
generators y2, y3, y12, y16 and y20 of H∗((O ⊗ H)P2;Z/2). There are 123
64-dimensional monomials in total, out of which 11 equal the generator of
H64((O⊗H)P2;Z/2) and the others vanish.
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Degree 64
y162 y12y20 = y22y

3
20

y142 y312 = y22y
3
20

y142 y16y20 = y22y
3
20

y132 y23y12y20 = y22y
3
20

y102 y212y20 = y22y
3
20

y82y12y16y20 = y22y
3
20

y22y
3
20 = y22y

3
20

y412y16 = y22y
3
20

y212y
2
20 = y22y

3
20

y12y
2
16y20 = y22y

3
20

y416 = y22y
3
20

4.6. Determining smaller squares. In this section we calculate the re-
maining actions of the Steenrod operations up to Sq8 on the generators,
namely the action of Sq3, Sq5, Sq6 and Sq7. Mathematica was used in some
places for the expansion of the Cartan formula on larger products and to au-
tomatically replace the previously established smaller squaring operations.

4.6.1. Computing the action of Sq3 on the generators.

Sq3y3 = y23

Sq3y12 = Sq1Sq2y12

= Sq1(y72 + y2y12 + y42y
2
3)

= Sq1(y72) + Sq1(y2y12) + Sq1(y42y
2
3)

= y62y3 + y3y12 + 0 + Sq1(y42)y
2
3 + y42Sq

1(y23)

= y62y3 + y3y12

Sq3y16 = Sq1Sq2y16

= 0

Sq3y20 = Sq1Sq2y20

= Sq1(y112 + y2y20 + µy82y
2
3 + νy22y

2
3y12)

= Sq1(y2)y
10
2 + Sq1(y2)y20 + y2Sq

1(y20) + µSq1(y82y
2
3) + νSq1(y22y

2
3y12)

= y102 y3 + y3y20 + µSq1(y82)y
2
3 + νSq1(y22)y

2
3y12

= y102 y3 + y3y20
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4.6.2. Computing the action of Sq5 on the generators.

Sq5y12 = Sq1Sq4y12

= Sq1(y82 + y22y12 + α′y52y
2
3)

= α′y42y
3
3

Sq5y16 = Sq1Sq4y16

= Sq1(y72y
2
3)

= y62y
3
3

Sq5y20 = Sq1Sq4y20

= Sq1(y212 + y62y12 + µ′y92y
2
3 + ν ′y32y

2
3y12)

= Sq1(y212) + Sq1(y62y12) + µ′Sq1(y92y
2
3) + ν ′Sq1(y32y

2
3y12)

= Sq1(y62)y12 + y62Sq
1(y12) + µ′Sq1(y92)y

2
3 + µ′y92Sq

1(y23)

+ν ′Sq1(y32)y
2
3y12 + ν ′y32Sq

1(y23)y12 + ν ′y32y
2
3Sq

1(y12)

= 0 + 0 + µ′Sq1(y92)y
2
3 + 0 + ν ′Sq1(y32)y

2
3y12 + 0 + 0

= µ′y82y
3
3 + ν ′y22y

3
3y12

4.6.3. Computing the action of Sq6 on the generators.

Sq6y12 = Sq5Sq1y12 + Sq2Sq4y12

= 0 + Sq2(y82 + y22y12 + α′y52y
2
3)

= (Sq1(y42))
2 + Sq2(y22y12) + α′Sq2(y52y

2
3)

= 0 + y92 + y62y
2
3 + y32y12 + y23y12 + α′y62y

2
3 (Using Mathematica)

= y92 + (1 + α′)y62y
2
3 + y32y12 + y23y12

Sq6y16 = Sq5Sq1y16 + Sq2Sq4y16

= 0 + Sq2(y72y
2
3)

= Sq2(y72)y
2
3 + Sq1(y72)Sq

1(y23) + y72Sq
2(y23)

= (y82 + y62y3)y
2
3 + 0 + 0

= y82y
2
3 + y62y

3
3

Sq6y20 = Sq5Sq1y20 + Sq2Sq4y20

= 0 + Sq2(y212 + y62y12 + µ′y92y
2
3 + ν ′y32y

2
3y12)

= (Sq1y12)
2 + Sq2(y62y12) + µ′Sq2(y92y

2
3) + ν ′Sq2(y32y

2
3y12)

= 0 + y132 + y102 y23 + y72y12 + y42y
2
3y12 + µ′(y102 y23)

+ν ′(y102 y23 + y72y
4
3 + y2y

4
3y12) (Using Mathematica)

= y132 + (1 + µ′ + ν ′)y102 y23 + y72y12 + y42y
2
3y12 + ν ′(y72y

4
3 + y2y

4
3y12)
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4.6.4. Computing the action of Sq7 on the generators.

Sq7y12 = Sq1Sq6(y12)

= Sq1(y92 + (1 + α′)y62y
2
3 + y32y12 + y23y12)

= Sq1(y92) + (1 + α′)Sq1(y62y
2
3) + Sq1(y32y12) + Sq1(y23y12)

= y82y3 + 0 + y22y3y12 + 0

= y82y3 + y22y3y12

Sq7y16 = Sq1Sq6(y16)

= Sq1(y82y
2
3 + y62y

3
3)

= Sq1(y82y
2
3) + Sq1(y62y

3
3)

= 0

Sq7y20 = Sq1Sq6(y20)

= Sq1(y132 + (1 + µ′ + ν ′)y102 y23 + y72y12 + y42y
2
3y12 + ν ′y72y

4
3 + ν ′y2y

4
3y12)

= y122 y3 + 0 + y62y3y12 + 0 + ν ′y62y
5
3 + ν ′y53y12

= y122 y3 + y62y3y12 + ν ′y62y
5
3 + ν ′y53y12
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