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Chapter 1

Introduction

Let A be an associative ring spectrum. We will say that A is a Morava K -theory if
it satisfies the following conditions (i) and (ii):

(i) The homotopy ring 74 A is isomorphic to a Laurent polynomial ring x[t*!], where

k is a perfect field of characteristic p > 0 and deg(t) = 2.

It follows from (i) that the cohomology A°(CP®) is (non-canonically) isomorphic
to a power series ring x[[e]], so that the formal spectrum Gg = Spf A°(CP®) can be
regarded as a 1-dimensional formal group over k.

(7i) The formal group Gy has finite height (that is, it is not isomorphic to the formal
additive group).

Lubin and Tate have shown that condition (i7) implies that the formal group Gy
(which is defined over k) admits a universal deformation G (which is defined over a
complete local ring R with residue field k). We will refer to R as the Lubin-Tate ring of the
pair (k, Go); it is non-canonically isomorphic to a power series ring W (x)[[v1, ..., vn—1]].
Applying the Landweber exact functor theorem to the pair (R, G), one deduces that
there is an essentially unique cohomology theory FE satisfying the following conditions:

(i") The homotopy ring 74 E is isomorphic to a Laurent polynomial ring R[t*].

(ii") The formal spectrum Spf E°(CP®) is isomorphic to G (as a formal group over
R).

We then have the following result:



Theorem 1.0.1 (Goerss-Hopkins-Miller). The cohomology theory E is (representable
by) a commutative ring spectrum, which is unique up to a contractible space of choices
and depends functorially on the pair (k,Go).

We will refer to the commutative ring spectrum E of Theorem as the Lubin-Tate
spectrum associated to A (it is also commonly referred to as Morava E-theory). One
can show that there is an essentially unique E-algebra structure on the ring spectrum
A which is compatible with the identification between Gy and the special fiber of G.
For many purposes, it is useful to think of the Morava K-theory A as the “residue field”
of the Lubin-Tate spectrum E (in the same way that x ~ mpA is the residue field of the
Lubin-Tate ring R ~ moFE). However, this heuristic has the potential to be misleading,
for two (related) reasons:

(a) Morava K-theories A can never be promoted to commutative ring spectra (in
fact, if the field x has characteristic 2, Morava K-theories are not even homotopy
commutative).

(b) As an associative ring spectrum, the Morava K-theory A cannot be recovered
from the Lubin-Tate spectrum FE.

To elaborate on (b), it is useful to introduce some terminology.

Definition 1.0.2. Let E be a Lubin-Tate spectrum, so that R = mpF is a complete
regular local ring with maximal ideal m € R. We will say that an F-algebra A is atomic
if the unit map £ — A induces an isomorphism (7. E)/m(m.E) ~ 7, A.

If A is a Morava K-theory and FE is its associated Lubin-Tate spectrum, then A can
be regarded as an atomic E-algebra. Conversely, if E is a Lubin-Tate spectrum and
A is an atomic F-algebra, then A is a Morava K-theory whose associated Lubin-Tate
spectrum can be identified with E. Using Definition we can rephrase (a) and (b)
as follows:

(a’) If E is a Lubin-Tate spectrum, then atomic E-algebras are never commutative.

(t/) If E is a Lubin-Tate spectrum, then not all atomic E-algebras are equivalent (at
least as E-algebras; one can show that they are all equivalent as E-modules).

Motivated by (b'), we ask the following:

Question 1.0.3. Let E be a Lubin-Tate spectrum. Can one classify the atomic
E-algebras, up to equivalence?



Remark 1.0.4. Question [I.0.3]is essentially equivalent to the problem of classifying
Morava K-theories up to equivalence as associative ring spectra. Note that the datum of
a Morava K-theory is equivalent to the data of a triple (k, Go, A4), where & is a perfect
field of characteristic p > 0, Gg is a one-dimensional formal group of finite height over
k, and A is an atomic algebra over the Lubin-Tate spectrum of the pair (x, Go).

Before describing our approach to Question let us consider a similar problem
in a more familiar setting.

Definition 1.0.5. Let K be a field. We will say that a K-algebra A is an Azumaya
algebra if 0 < dimg (A) < o0 and the actions of A on itself by left and right multiplication
induce an isomorphism A ® A°® — Endg (A).

We say that Azumaya algebras A and B are Morita equivalent if the tensor product
A ®g B°P is isomorphic to a matrix ring Endg (V'), for some vector space V over K.
We let Br(K') denote the set of Morita equivalence classes of Azumaya algebras over K.
If A is an Azumaya algebra over K, we let [A] € Br(K) denote the equivalence class of
A. We refer to Br(K) as the Brauer group of K.

The essential features of Definition [[.0.5] can be summarized as follows:

(1) For any field K, the set Br(K) can be equipped with the structure of an abelian
group, whose addition law satisfies the formulae

[Al+[B] =[A®k B] 0=[K]  —[A]=[A"]

(73) Let D be a central division algebra over K: that is, a finite-dimensional K-algebra
whose center is K in which every nonzero element is invertible. Then D is an
Azumaya algebra over K.

(#47) The construction D — [D] induces a bijection

{Central division algebras over K}/Isomorphism — Br(K).

It follows from (i), (i¢) and (éi7) that the problem of classifying central algebras
over K (up to isomorphism) has more structure than one might naively expect: the
collection of isomorphism classes has the structure of an abelian group. We would like
to apply similar ideas to the analysis of Question [1.0.3} roughly speaking, we want to
think of atomic F-algebras as analogous to “division algebras” over E, and organize
them into some sort of Brauer group.

Definition 1.0.6. Let E be a Lubin-Tate spectrum. We will say that an E-algebra A
is an Azumaya algebra if it is nonzero, dualizable as an E-module spectrum, and the
natural map A ®p A°® — Endg(A) is a homotopy equivalence.



We say that Azumaya algebras A and B are Morita equivalent if the relative smash
product A ®pg B°P is equivalent to Endg (V') for some dualizable E-module V. We let
Br(E) denote the set of Morita equivalence classes of Azumaya algebras over E. We
will refer to Br(FE) as the Brauer group of E.

Remark 1.0.7. The Brauer group Br(E) was introduced by Baker, Richter and Szymik
in [3]. For atomic FE-algebras, the Azumaya condition has appeared in the work in
Angeltveit ([2]).

As the terminology suggests, the Brauer group Br(E) can be regarded as an (abelian)
group: just as in classical algebra, it comes equipped with an addition law which satisfies
the formulae

[A]+[B] =[A®eB] 0=[E] —[A]=[A"]
However, the homotopy-theoretic analogues of (i7) and (ii7) are not as strong:

(1) An atomic F-algebra A need not be an Azumaya algebra. For example, if the
residue field x has characteristic different from 2, then there exist atomic E-algebras
which are homotopy commutative; such algebras are never Azumaya.

(2) Not every Azumaya algebra over FE is Morita equivalent to an atomic E-algebra.
For example, the Lubin-Tate spectrum F itself is not Morita equivalent to an
atomic E-algebra.

Because of (1), we cannot completely rephrase Question in terms of the Brauer
group Br(FE). We therefore restrict our attention to a slightly less ambitious problem:

Question 1.0.8. Let E be a Lubin-Tate spectrum. Can one classify the atomic
Azumaya algebras over E, up to equivalence?

It is not difficult to show that atomic Azumaya algebras are equivalent (as E-
algebras) if and only if they are Morita equivalent (Proposition [10.1.1]). It follows that
the construction A — [A] induces a monomorphism of sets

6 : {Atomic Azumaya algebras over E}/Equivalence <— Br(FE).

Consequently, we can break Question [1.0.8|into two parts:
Question 1.0.9. Describe the Brauer group Br(E) of a Lubin-Tate spectrum E.

Question 1.0.10. Describe the image of the map € (as a subset of Br(E)).

Our primary goal in this paper is to address Questions[1.0.9/and [1.0.10] For simplicity,
let us assume that the field x has characteristic different from 2. Our main results can
be summarized as follows:




Theorem 1.0.11. Let E be a Lubin-Tate spectrum, let m denote the maximal ideal
in the Lubin-Tate ring R = moF, and assume that the residue field k = R/m has
characteristic # 2. Then the Brauer group Br(E) is isomorphic to a direct product
BW (k) x BY'(E), where BW (k) is the Brauer-Wall group of k (see §2.8) and Br'(E) is
the inverse limit of a tower of abelian groups

- — Br) — Br} — Br} LEN Br] — Brj,

where:

(a) The group Br( is isomorphic to m?/m3.
(b) For k > 0, the transition map Br), — Br)_, fits into a short exact sequence of
abelian groups

k+2/mk+3

0—m — Brj, - Brj,_; — 0.

(¢) Let x be an element of Br(E) having image y € BW(k) and z € Bry ~ m?/m3.
Let us identify z with a quadratic form q on the Zariski tangent space (m/m?)Y .
Then x is representable by an atomic Azumaya algebra over E if and only if the
quadratic form q is nondegenerate and y is represented by the Clifford algebra Cl,
(as an element of the Brauer-Wall group BW (k) ).

Warning 1.0.12. In the statement of Theorem [1.0.11] the projection map Br(E) —
BW (k) and the isomorphisms

ker(Br}, — Br,_;) ~ m*"2/mk*3

are not quite canonical: they depend on a choice of nonzero element of (moFE)/m(maE).
We refer the reader to the body of this paper for coordinate-independent statements
(and for extensions to the case where x has characteristic 2).

Let us now summarize our approach to Theorem Our first goal is to give a
precise definition of the Brauer group Br(F). In we associate a Brauer group Br(C)
to a symmetric monoidal co-category C (Definition . This notion simultaneously
generalizes the classical Brauer group of a field K (obtained by taking C to be the
category Vecty of vector spaces over K), the classical Brauer-Wall group of a field K
(obtained by taking C to be the category of Z/2Z-graded vector spaces over K), and
the Brauer group Br(E) of interest to us in this paper (obtained by taking C to be the
co-category Mod'¢ of K (n)-local E-module spectra). We adopt this general point of
view not merely for the sake of generality, but in service of proving Theorem

Theorem [1.0.11] implies the existence of an inverse limit diagram of abelian groups

Br(E) — ---Bry — Brg — Bry — Br; — Bry,



where Bry = BW(k) x Brj. We will see that every term in this diagram can be
conveniently realized as the Brauer group of a suitable symmetric monoidal co-category,
and every map in the diagram is obtained by functoriality.

In §4] we introduce an oo-category Synp which we refer to as the co-category of
synthetic E-modules. Our definition of the co-category Synp is inspired by the “resolution
model category” technique introduced by Dwyer-Kan-Stover. The co-category Syng is
equipped with a fully faithful symmetric monoidal embedding ModljfjC — Syng. The
essential image of this embedding contains all dualizable objects of Syng and therefore
induces an isomorphism of Brauer groups Br(E) = Br(Mod'9°) — Br(Syng). The unit
object 1 € Syny comes equipped with a Postnikov filtration

and the abelian groups Bry described above can be realized as the Brauer groups of the
oo-categories Syny<x = Mod; <k (Syng).

To understand the group Brg, we need to analyze the heart Syng of the co-category
Syng. This is an abelian category, which we will refer to as the category of Milnor
modules. In we will carry out a detailed analysis of the category Syng. Our main
result is that, if the field x has characteristic different from 2, then there is a symmetric
monoidal equivalence of SynQE? with the category of Z/2Z-graded modules over the
exterior algebra A*(m/m?2)V (Proposition . Using this equivalence together with
a purely algebraic analysis (which we carry out in , we obtain a (not quite canonical)
isomorphism of abelian groups Brg ~ BW(x) x m?/m? (Remark .

In §8 we prove the bulk of Theorem by establishing that the canonical map
Br(E) — lim Bry, is an isomorphism and analyzing the transition maps Bry — Bry_; (see
Theorem [8.0.2)). To carry this out, we will need to understand the relationship between
(Azumaya) algebras over 15 and (Azumaya) algebras over 15¥~1 in the oo-category
Syng of synthetic EF-modules. This is a deformation-theoretic problem which can be
reduced to the calculation of certain Hochschild cohomology groups, which we compute
in §7]

In §10] we turn to the study of atomic FE-algebras. In particular, we prove that
atomic E-algebras are equivalent if and only if they are Morita equivalent (Proposition
and explain how the classification of atomic E-algebras relates to the algebraic
analysis of §6| and the obstruction theory of We then combine these results to prove
part (¢) of Theorem (see Theorem [10.3.1)).

To complete the proof of Theorem [T1.0.11} it will suffice to show that the composite
map

Br(E) — Brg ~ BW(k) x m?/m®> - BW(k)

admits a section. We will prove this in §9| by constructing a subgroup Br’(E) < Br(E)
which maps isomorphically to the Brauer-Wall group BW(k) (see Theorem [9.3.1)).



Concretely, the subgroup Brb(E) will consist of those Brauer classes which can be
represented by an Azumaya algebra A for which 7, A is a free module over 7, (E).

Remark 1.0.13. Theorem does not provide a completely satisfying answer to
Question [L.0.9} it computes the Brauer group Br(E) only up to filtration (thus giving a
rough sense of how large it is), but does not describe the extensions which appear. We
will return to this problem in a sequel to this paper.
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Chapter 2

Brauer Groups

In this section, we define the Brauer group Br(C) of a symmetric monoidal oo-category

C (Definition [2.3.1]) and discuss several examples.

2.1 Morita Equivalence

Throughout this section, we fix a symmetric monoidal co-category C satisfying the
following condition:

(#) The oo-category C admits geometric realizations of simplicial objects, and the
tensor product functor ® : C x C — C preserves geometric realizations of simplicial
objects.

Definition 2.1.1. Let A and B be associative algebra objects of C. We will say that
A and B are Morita equivalent if there exists a C-linear equivalence LMod4(C) ~
LModz(C).

Our first goal is to characterize those algebras A € Alg(C) which are Morita trivial:
that is, which are Morita equivalent to the unit object 1 € Alg(C).

Definition 2.1.2. Let M be an object of C. We will say that M is full if the construction
X — M ® X determines a conservative functor from C to itself.

Proposition 2.1.3. Let A be an associative algebra object of C and let M be a left
A-module, so that the construction (X € C) — (M ® X € LMod4(C)) determines a
functor T : C — LMod4(C). Then T is an equivalence of co-categories if and only if the
following conditions are satisfied:

(1) The object M is dualizable in C.

11



(i7) The left action of A on M induces an equivalence A ~ End(M).

(iii) The object M is full (Definition[2.1.9).

Corollary 2.1.4. Let A be an associative algebra object of C. The following conditions
are equivalent:

(a) The algebra A is Morita equivalent to the unit algebra 1 € Alg(C).
(b) There exists an equivalence A ~ End(M), where M € C is full and dualizable.

Corollary 2.1.5. Let M and N be full dualizable objects of C, and suppose that there
exists an equivalence o : End(M) ~ End(N) in Alg(C). Then there exists an invertible
object L € C and an equivalence u : LQ® M ~ N such that o factors as a composition

End(M) ~ End(L ® M) “ End(N).

Proof. Using Proposition we obtain a commutative diagram of C-linear equiva-
lences

c i C
iN@. lM@.
LModgna(n)(€) — LModgnq(ar) (€),
where the bottom horizontal map is given by restriction of scalars along a.. We conclude

by observing that F' is given by tensor product with an object L € C, which is invertible
by virtue of the fact that F' is an equivalence. O

Proof of Proposition[2.1.3. Assume first that T is an equivalence; we will show that
conditions (i), (#i) and (i7i) are satisfied. We begin with condition (7). Using the
essential surjectivity of T' to choose equivalence of left A-modules A ~ M @ N =T(N),
for some object N € C. Let ¢: 1 — M ® N be the composition of this equivalence with
the unit map 1 — A. The action of A on M determines a morphism of left A-modules

TINQM)~T(N)®M ~ARQM — M =T(1).

Since T is full, we can assume that this map has the form 7'(e), for some morphism
e: N®M — 1 in the co-category C. We claim that e and ¢ determine a duality between

M and N: that is, that the composite maps
a:M~10M 2L MeoNeM 42 Mol ~ M

B:N2N®19 NegMeN CL1gN~N

are homotopic to the identity maps on M and N, respectively. The existence of a
homotopy « =~ idys follows immediately from the definition of e. To verify that 3 is

12



homotopic to the identity, it will suffice (by virtue of the faithfulness of T') to show that
T(B) is homotopic to the identity on T(N) ~ A. It now suffices to observe that T'(53)
can be identified with the composition A ~ A® 1 id®u, ARA A whereu:1 — A
is the unit map and m : A® A — A is the multiplication on A. This completes the
proof of (i).

To verify conditions (ii) and (iii), let G’ : C — C denote the functor given by
G(X) =M ® X. We then have a commutative diagram of co-categories

C r LMod 4 (C)
C,

where G’ is the forgetful functor. Condition (i) guarantees that G admits a left adjoint
F:C— C,given by F(Y) = MY ®Y. Note that G’ also admits a left adjoint F”,
given by F/(Y) = A®Y. The diagram o induces a natural transformation of functors
v:G o F' — G o F. Unwinding the definitions, we can restate conditions (i) and (i)
as follows:

(77') The natural transformation 7 is an equivalence.

(i7i") The functor G is conservative.

We now observe that if 7" is an equivalence, then assertion (ii') is automatic and assertion
(i7i") follows from the observation that G’ is conservative.

Conversely, suppose that (i), (i7), and (iii) are satisfied. Applying Corollary
HA.4.7.3.16 (and Remark HA.4.7.3.17) to the diagram o, we deduce that T is an
equivalence. O

2.2 Azumaya Algebras

Throughout this section, we continue to assume that C is a symmetric monoidal
oo-category satisfying the following:

(%) The oo-category C admits geometric realizations of simplicial objects, and the
tensor product functor ® : C x C — C preserves geometric realizations of simplicial
objects.

Definition 2.2.1. Let A be an associative algebra object of C. We will say that A is
an Azumaya algebra if there exists an associative algebra object B € C such that A ® B

is Morita equivalent to the unit object 1 € C (which we identify with the initial object
of Alg(C)).

13



Proposition 2.2.2. Let A be an associative algebra object of C. The following conditions
are equivalent:

(a) The algebra A is Azumaya.

(b) The construction X — A ® X induces an equivalence of oo-categories C —
ABMod 4(C).

Corollary 2.2.3. Let A be an associative algebra object of C. Then A is an Azumaya
algebra if and only if it satisfies the following conditions:

(1) The algebra A is dualizable when regarded as an object of C.
(ii) The left and right actions of A on itself induce an equivalence A® A°® — End(A).
(iii) The algebra A is full when regarded as an object of C.

Corollary 2.2.4. Let A and B be Azumaya algebras in C. Then the tensor product
A® B is an Azumaya algebra.

Proof of Proposition[2.2.2. Let CatZ, denote the subcategory of Cats, spanned by those
oo-categories which admit geometric realizations and those functors which preserve
geometric realizations. Then the Cartesian product endows Catg, with the structure of
a symmetric monoidal co-category. Moreover, Caty, is presentable and the Cartesian
product preserves small colimits separately in each variable.

Let us regard C as a commutative algebra object of Cat?, and set Modg =
Mod¢(CatZ,). More informally, Modg is the co-category whose objects are co-categories
M which are left-tensored over C, for which M admits geometric realizations of simpli-
cial objects and the action C x M — M preserves geometric realizations of simplicial
objects, and the morphisms in Modg are C-linear functors which commute with geometric
realizations.

For each algebra object A € Alg(C), we can regard the oco-category LMod 4(C) as an
object of ModZ. The bimodule co-category 4BMod 4(C) can be identified with the tensor
product (in ModZ) of LMod4(C) and LMod40p(C), where A°" denotes the opposite
algebra of A. Moreover, the functor

p:C— ABMOdA(C) ~ LMOdA(C) &c LMOdAop(C) X—X®A

exhibits LMod 4(C) as a dual of LMod 4or (C) in the symmetric monoidal co-category
Modg. Consequently, the functor p is an equivalence if and only if LMod4(C) is an
invertible object of Modg: that is, if and only if A is an Azumaya algebra. O

14



Remark 2.2.5 (The Center of an Azumaya Algebras). Suppose that the co-category C
is presentable and that the tensor product ® : C x C — C preserves small colimits in
each variable. Then, to every associative algebra object A € Alg(C), we can associate
an [Eo-algebra object 3(A) € Algg,(C), called the center of A, which is universal among
those Es-algebras for which A an be promoted to an algebra object of the monoidal
co-category LModsz(4)(C) (see Theorem HA.5.3.1.14). As an algebra object of C, the
center 3(A) classifies endomorphisms of A as an object of the bimodule oo-category
ABMod 4(C) (regarded as an oo-category tensored over C); see Theorem HA.4.4.1.28.
In the special case where A is an Azumaya algebra object of C, there exists a C-linear
equivalence C — 4BMod4(C) which carries the unit object 1 to A. Consequently, we
can identify the center 3(A) with the endomorphism algebra End¢(1) ~ 1 as an algebra
object of C. It follows that the unit map 1 — 3(A) is an equivalence of associative
algebra objects of C, and therefore also an equivalence of Es-algebra objects of C.

2.3 The Brauer Group

Throughout this section, we continue to assume that C is a symmetric monoidal
oo-category satisfying the following:

(%) The oo-category C admits geometric realizations of simplicial objects, and the
tensor product functor ® : C x C — C preserves geometric realizations of simplicial
objects.

Definition 2.3.1. We let Br(C) denote the set of Morita equivalence classes of Azumaya
algebras A € Alg(C). We will refer to Br(C) as the Brauer group of C. If A is an Azumaya
algebra, we let [A] denote the Morita equivalence class of A in Br(C).

Proposition 2.3.2. There exists a unique abelian group structure on the set Br(C)
satisfying the following condition: for every pair of Azumaya algebras A, B € Alg(C),
we have [A® B] = [A] + [B] in Br(C).

Proof. Let Modg be as in the proof of Proposition Then ModZ is a symmetric
monoidal co-category. Let G denote the collection of isomorphism classes of invertible
objects of Modg, so that the tensor product on Mod? endows G with the structure of
an abelian group (which we will denote additively). The construction [A] — LMod 4(C)
determines an injective map p : Br(C) — G satisfying p([A ® B]) = p([A]) + p([B])-
It follows that the image of p is closed under addition. Moreover, p([1]) is the unit
element of G (given by the co-category C, regarded as a module over itself). Using
the identity p([A°P]) ~ —p([A]), we conclude that the image of p is a subgroup of G,
so there is a unique abelian group structure on Br(C) for which the map p is a group
homomorphism. O
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Remark 2.3.3 (The Brauer Space). For every symmetric monoidal co-category C, let
Pic(C) denote the subcategory of C spanned by the invertible objects and equivalences
between them. Then Pic(C) is a grouplike Eq.-space, so that m Pic(C) has the structure
of an abelian group. If C admits geometric realizations and the tensor product ® :
C x C — C preserves geometric realizations, then we can identify C with a commutative
algebra object of the co-category Caty, (as in the proof of Proposition . Let £
denote the full subcategory of Mod¢(CatZ,) spanned by those oo-categories of the form
LMod 4(C), where A is an associative algebra object of C. We let Br(C) denote the space
Pic(€) of invertible objects of £. Then Br(C) is a nonconnected delooping of Pic(C): it
is equipped with canonical equivalences

Q1Br(C) ~ Pic(C) mo Br(C) ~ Br(C).

Remark 2.3.4. Since Br(C) is an infinite loop space, the homotopy groups 7, Br(C)
can be regarded as a graded module over the ring m,(S) (where S denotes the sphere
spectrum). In particular, the unique nonzero element 7 € 71(S) induces a map Br(C) =
7o Br(C) 2 7 Br(C) ~ m Pic(C). Concretely, this map is given by the formation of
Hochschild homology: if A is an Azumaya algebra of C, then it carries the Brauer class
[A] to the equivalence class of the tensor product A ® ag4cr A (which is an invertible
object of C.

2.4 Functoriality

We now study the extent to which the Brauer group Br(C) of Definition depends
functorially on C.

Proposition 2.4.1. Let C and D be symmetric monoidal co-categories. Suppose that C
and D admit geometric realizations of simplicial objects, and that the tensor product
functors

®:CxC—-_C R:DxD—->D

preserve geometric realizations. Let F': C — D be a symmetric monoidal functor which
satisfies the following condition:

(%) If C € C is full and dualizable, then F(C) € D is full (note that F(C) is automati-
cally dualizable, since the functor F is symmetric monoidal).

Then:
(a) The functor F carries Azumaya algebras in C to Azumaya algebras in D.
(b) There is a unique group homomorphism Br(F) : Br(C) — Br(D) satisfying
Br(F)[A] = [F(4)].
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Proof. Assertion (a) follows from Corollary (note that conditions (¢) and (i7) of
Corollary are preserved by any symmetric monoidal functor). To prove (b), we
first observe that if A and B are Azumaya algebra objects of C satisfying [A] = [B] in
Br(C), then we have A ® B°P? ~ End(M) where M is a full dualizable object of C. We
then obtain equivalences

F(A)® F(B)® ~ F(A® B°®?) ~ F(End(M)) ~ End(F(M)),

so that [F(A)] = [F(B)] in Br(D). It follows that there is a unique map of sets
Br(F') : Br(C) — Br(D) satisfying Br(F)[A] = [F'(A)]. Since F' commutes with tensor
products, the map Br(F') is a group homomorphism. O

Remark 2.4.2. In the situation of Proposition [2.4.1] it is not necessary to assume that
the functor F' preserves geometric realizations of simplicial objects.

2.5 Example: The Brauer Group of a Field

Let k be a field and let Vect, denote the category of vector spaces over k. We regard
Vect,, as equipped with the symmetric monoidal structure given by the usual tensor
product ®,;. Then:

e An object V € Vect, is full (in the sense of Definition [2.1.2) if and only if V' # 0.

e An object V € Vect,, is dualizable if and only if V' is finite-dimensional as a vector
space over K.

It follows from Corollary that that a x-algebra A is an Azumaya algebra if and
only if 0 < dim,(A) < o0 and the natural map A ®, A°? — End,(A) is an isomorphism.
In this case, the class of Azumaya algebras admits several other characterizations. The
following results are well-known:

Proposition 2.5.1. Let A be an algebra over a field k. The following conditions are
equivalent:

(a) The algebra A is Azumaya: that is, 0 < dimy(A) < 00 and the natural map
A®,; A°? — End,(A) is an isomorphism.

(b) The algebra A is central simple: that is, dim,(A) < oo, the unit map k — A is an
isomorphism from k to the center of A, and for every two-sided ideal I = A we
have either I =0 or I = A.

(¢) The algebra A is isomorphic to a matriz ring M, (D), where n > 0 and D is a
central division algebra over k.
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Proposition 2.5.2. Let D and D’ be central division algebras over the same field k.
Then matriz algebras M, (D) and M,:(D") are Morita equivalent if and only if D and
D’ are isomorphic.

Definition 2.5.3. Let x be a field. We let Br(k) denote the Brauer group of the
category Vect,. We will refer to Br(k) as the Brauer group of k.

Combining Propositions and we obtain the following:

Corollary 2.5.4. Let k be a field. Then the construction D — [D] induces an isomor-
phism of sets

{ Central division algebras over k}/Isomorphism — Br(k).

Remark 2.5.5. The Brauer group of a field x admits a natural description in the
language of Galois cohomology. If x*P denotes a separable closure of x, then there is a
canonical isomorphism Br(k) ~ H?(Gal(k%P /k); K*).

2.6 Example: The Brauer Group of a Commutative Ring

Let R be a commutative ring. We let Modg denote the abelian category of (discrete)
R-modules, equipped with the symmetric monoidal structure given by tensor product
over R. Then:

e An object M € Modg is dualizable if and only if it is a projective R-module of
finite rank.

e A dualizable object M € Mod?2 is full if and only if the rank of M is positive
(when regarded as a locally constant function on the affine scheme Spec R).

Definition 2.6.1. Let R be a commutative ring. We let Br(R) denote the Brauer
group of the symmetric monoidal category Modg. We refer to Br(R) as the Brauer
group of R.

Example 2.6.2. When R is a field, then the Brauer group Br(R) of Definition
specializes to the Brauer group of Definition [2.5.3]

Remark 2.6.3. If ¢ : R — R’ is a homomorphism of commutative rings, then extension
of scalars along ¢ carries full dualizable objects of Modf2 to full dualizable objects of
Modg,. It follows that ¢ induces a homomorphism of Brauer groups Br(R) — Br(R’)

(Proposition [2.4.1)).
We will need the following result of Grothendieck (see Corollary 1.6.2 of [4]):

Proposition 2.6.4. Let R be a Henselian local ring with residue field k. Then the map
Br(R) — Br(k) of Remark[2.6.3 is an isomorphism.
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2.7 Example: The Brauer Group of a Connective Ring
Spectrum

Let R be a connective Eq-ring and let Mod% denote the co-category of connective
R-modules. We regard Mod} as a symmetric monoidal co-category (via the relative
smash product over R). Then:

e An object M e Mod% is dualizable if and only if it is a projective R-module of
finite rank.

e A dualizable object M € Mod§ is full if and only if the rank of M is positive
(when regarded as a locally constant function on Spec R).

Definition 2.7.1. Let R be a connective Ey-ring. We let Br(R) denote the Brauer
group of the symmetric monoidal category Mod%. We refer to Br(R) as the Brauer
group of R.

Beware that we now have two different definitions for the Brauer group of a commu-
tative ring R: one given by Definition (in terms of the abelian category Modg),
and one given by Definition [2.7.1] (in terms of the oo-category Mod%). Fortunately,
there is little danger of confusion:

Proposition 2.7.2. Let R be a commutative ring. Then the symmetric monoidal functor
7o : Modf — Modg induces an isomorphism of Brauer groups Br(Mod%) — Br(Modg).

Proof. The functor mg : Modg — Modz induces an equivalence from the full subcategory
of Mod% spanned by the dualizable objects to the full subcategory of Modg spanned
by the dualizable objects (moreover, a dualizable R-module is full as an object of Mod%
if and only if it is full as an object of Modg. O

Remark 2.7.3 (Functoriality). If ¢ : R — R’ is a morphism of E,-rings, then extension
of scalars along ¢ carries full dualizable objects of Mod% to full dualizable objects of
Mod%,. It follows that ¢ induces a homomorphism of Brauer groups Br(R) — Br(R')

(Proposition [2.4.1)).

Our next result shows that the Brauer groups of Definition do not capture any
more than their algebraic counterparts:

Proposition 2.7.4. Let R be a connective Eo. Then the canonical map R — mR
induces an isomorphism of Brauer groups Br(R) — Br(mR).
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Proposition will be useful us in for the purpose of comparing the Brauer
group of a Lubin-Tate spectrum F (in the sense of Definition with the Brauer
group of its residue field (see Proposition . The proof of Proposition is also of
interest, since it highlights (in a substantially simpler setting) some of the ideas which
will be used to analyze Br(F) in

Lemma 2.7.5. Let R be a connective Eo-ring and let A be an Azumaya algebra object of
the co-category Mod%. Suppose that there exists an isomorphism o : oA ~ Endr,r(Mo)
for some finitely generated projective mwoR-module My. Then oy can be lifted to an
equivalence A ~ Endg(M), for some finitely generated projective R-module M.

Proof. We will deduce Lemma from the following:

(*) The module My belongs to the essential image of the extension-of-scalars functor

LMod$ — LModS, 4, M — (mpA) ®a M.

Assume that (*) is satisfied, so that we can write My = (m9pA) ®4 M. Since A is flat
over R, we also have an equivalence My ~ (moR) ®r M. It follows that M is a locally
free R-module of finite rank. Moreover, the action of A on M is classified by a map of
flat R-modules e : A — Endg(M) which induces an equivalence on 7. It follows that e
is an equivalence, which proves Lemma

It remains to prove (*). Note that we can identify LMod§ with the inverse limit of
the tower of oo-categories {LMod7_ 4}n>0 (see Proposition SAG.??). It will therefore
suffice to show that we can extend My to a compatible sequence of objects {M,, €
LMod?_ 4}n>0. Assume that n > 0 and that the module M, has been constructed.
Theorem HA.7.4.1.26 implies that 7<, R can be realized as a square-zero extension
of T<n—1R by N = ¥"(m,R): that is, there exists a pullback diagram of connective
Ey-rings

7'<nR Tgn_lR

| ld

d
T<n—1R 4>0<7—<n—1R) @ XEN.
Set A = A®pg (T<n—1R@® XN), so that we have a pullback diagram of Op 1-algebras

TSTLA > Tén—lA

L,k

Ten1 A A
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and therefore a pullback diagram of co-categories o :
LMOd,CI.<nA I LMOdf'Sn,lA

| -

C w* C
LMOd’Tgn_1A LMod ’

(see Proposition SAG.??). Set R’ = (7<p—1R) ® XN, so that K = ¢*M,,_; and
K' = ¢*M,_; are finitely generated projective R’-modules and we have equivalences

EndR/(K) «— A/ e EndR/(K')).

Applying Corollary [2.1.5] we see that these equivalences are determined by an identi-
fication K/ ~ L ®p K for some invertible R’-module L. Note that L becomes trivial
after extending scalars along the projection map R’ — 7<,_1R. In particular, we have
a canonical isomorphism moL ~ myR. It follows that L is (non-canonically) equivalent
to R, so that K and K’ are equivalent objects of the co-category LMod%,. Invoking the
fact that o is a pullback diagram of co-categories, we deduce that M, _1 can be lifted to
an object of M, € LMod7_ 4, as desired. O

Lemma 2.7.6. Let R be a connective Ey-ring and let A and B be Azumaya algebra
objets of the co-category Mod%. Suppose that there exists an (moA)-(moB) bimodule M
that determines a Morita equivalence between mgA and moB (as Azumaya algebra objects
of Mod; g). Then Mgy can be lifted to an A-B bimodule M which determines a Morita
equivalence between A and B.

Proof. Apply Lemma to the tensor product A ®p B°P. O

Lemma 2.7.7. Let R be a connective Ey-ring and let A and B be Azumaya algebra
objets of the wo-category Mod%. Then every isomorphism ag : mpA ~ moB (in the
category of moR-algebras) can be lifted to an equivalence o : A ~ B (in the co-category
of connective R-algebras).

Proof. Set My = myB, which we regard as a left (m9A)-module via the isomorphism
ap and a right (mpB)-module in the tautological way. Then Mj is a bimodule which
determines a Morita equivalence between m9A and myB. Applying Lemma [2.7.6] we can
liftt My to an A-B bimodule M which determines a Morita equivalence from A to B.
The unit element 1 € mgB ~ mgM determines a right B-module map p: B — M. By
construction, p induces an isomorphism on my. Since the domain and codomain of p are
flat R-modules, it follows that p is an equivalence. The left action of A on M classifies
an R-algebra map

a:A— EndRModB (M) =~ EndRModB (B) = B.
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which induces the isomorphism «g after applying the functor 7. Since the domain and
codomain of «a are flat R-modules, it follows that « is an equivalence. O

Lemma 2.7.8. Let R be a connective Eoy-ring. Then every Azumaya algebra object Ag
of Mody, g can be lifted to an Azumaya algebra object A of Mod%.

Proof. We proceed as in the proof of Lemma Using Proposition SAG.??7 | we can
identify Alg(Mod%) with the inverse limit of the tower of co-categories

{Alg(Mod?_ 5)}nz0.

It will therefore suffice to show that we can extend Ay to a compatible sequence of
algebra objects {4, € Alg(Mod?_ g)}n>0. Assume that n > 0 and that the algebra
A,,_1 has been constructed. Let R’ be as in the proof of Lemma so that we have
a pullback diagram of co-categories

Alg(ModignR) —_— Alg(ModisnilR)

L ek

Alg(Mod?_ | r) ¢~ Alg(Mod%).

To show that A,_1 can be lifted to an algebra object A, € Alg(Mod7_ g), it will suffice
to show that d*A,_1 and djA,_1 are equivalent as algebras over R’. By construction,
they become equivalent after extension of scalars along the projection map R’ —
T<n—1R. In particular, mo(d*A,—1) and mo(diAn—1) are isomorphic (as algebras over

the commutative ring moR). The desired result now follows from Lemma m O

Proof of Proposition[2.7.4. Let R be a connective Eq,-ring and let u : Br(R) — Br(mR)
be the homomorphism given by extension of scalars along the map R — mgR. We wish
to show that u is an isomorphism. The injectivity of u follows from Lemma [2.7.5 and
the surjectivity follows from Lemma [2.7.8] O

2.8 Example: The Brauer-Wall Group of a Field

Let k be a field. We let Vect®" denote the category of (Z/2Z)-graded vector spaces
over k: that is, vector spaces V equipped with a decomposition as a direct sum
V=Vwe V. If Vand W are (Z/2Z)-graded vector spaces over k, then we can regard
the tensor product V ®, W as equipped with the (Z/2Z)-grading described by the
formulae

(V (S W)O = (VYO s WO) (&) (Vl Rk Wl)
(V ®H W)l = (% ®n WI) @ (Vl ®I€ WO)
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We will regard Vect8" as a symmetric monoidal category via the Koszul sign rule: for
(Z/2Z)-graded vector spaces V and W, the symmetry constraint oyw : V ®, W ~
W ®, V is given by oyw (v Q@w) = (=1)¥(w ®v) for v € Vi, w e Wj.

As in it is easy to see that:

e An object V € Vect®" is full (in the sense of Definition [2.1.2)) if and only if V' # 0.

e An object V € Vect®' is dualizable if and only if V' is finite-dimensional as a vector
space over K.

Definition 2.8.1. Let A be a (Z/2Z)-graded algebra over k, which we regard as an
associative algebra object of Vect®. We will say that A is a graded Azumaya algebra
over £ if it is an Azumaya algebra object of Vect®', in the sense of Definition [2.2.1]

Warning 2.8.2. A graded Azumaya algebra over x need not remain an Azumaya
algebra over k when the grading is ignored. Using Corollary [2.2.3] we see that A
is a graded Azumaya algebra if and only if 0 < dim,(A) < o and the canonical
map p? : A®, A — End,(A) is an isomorphism, where p is given by the formula
PP (z ®y)(2) = (—1)*zzy for x € A;, y € Aj, and 2z € Ag. By contrast, A is an
Azumaya algebra (in the ungraded sense) if and only if 0 < dim,(A) < oo and the map
p: A®; A — End,(A) is an isomorphism, where p is given by p(z ® y)(2) = zzy.

Example 2.8.3. Let k be a field of characteristic # 2, let a be an invertible element of
k, and define

r(v/a) = rle]/(a® — a).

Then k(4/a) is either a quadratic extension field of x (if a is not a square) or is isomorphic
to the product  x & (if a is a square). The decomposition k(y/a) ~ k @ k+/a exhibits
k(y/a) as a graded Azumaya algebra over k. However, k(4/a) is not an Azumaya algebra
over k in the ungraded sense (since the center of k(4/a) is larger than k).

Remark 2.8.4. Let A = r(y/a) be as in Example Then the opposite algebra A°P
(formed in the symmetric monoidal category Vect®') can be identified with x(v/—a).

Definition 2.8.5. Let x be a field. We let BW(x) denote the Brauer group of the
category Vectg". We will refer to BW (k) as the Brauer-Wall group of k.

Example 2.8.6 (Clifford Algebras). Let V be a vector space over k and let ¢ : V' — & be
a quadratic form. We define the Clifford algebra Cly(V') to be the x-algebra generated
by V, subject to the relations 2 = g¢(x) for z € V. We can regard Cl (V) as a
(Z/2Z)-graded algebra over k, where the generators x € V' are homogeneous of degree 1.
Then:
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e The Clifford algebra Cl,(V') is a graded Azumaya algebra if and only if the
quadratic form ¢ is nondegenerate.

e The construction (V,¢q) — [Cly(V)] induces a group homomorphism W (x) —
BW(k), where W (k) denotes the Witt group of quadratic spaces over .

We now briefly review the structure of the Brauer-Wall group BW (k). For a more
detailed discussion, we refer the reader to [7].

Proposition 2.8.7. Let A be a graded Azumaya algebra over k. Then exactly one of
the following assertions holds:

(a) The graded Azumaya algebra A is also an Azumaya algebra over k.

(b) The characteristic of K is different from 2 and A is isomorphic to a tensor product
B®y k(+y/a), where B is an Azumaya algebra over k (regarded as a graded Azumaya
which is concentrated in degree zero) and r(+/a) is defined as in Ezvample[2.8.5

Proof. The dimension of an Azumaya algebra over x is always a square, so (a) and (b)
cannot both occur. Assume that A is not an Azumaya algebra; we will show that (b) is
satisfied. Note that the field x must have characteristic different from 2 (otherwise, the
forgetful functor Vect® — Vect, is symmetric monoidal and carries Azumaya algebras
to Azumaya algebras).

Let o denote the involution of A which is the identity on Ay and multiplication
by (—1) on A;. Then o is an algebra automorphism of A, and therefore carries the
radical of A to itself. It follows that £ = {f € End,(A) : f(I) < I} is a (Z/2Z)-graded
subalgebra of End,(A). Note that the map p# : A®,; A — End,(A) factors through
E. Our assumption that A is a graded Azumaya algebra guarantees that p®" is an
isomorphism, so that £ = End,(A). It follows that I = 0, so that the algebra A is
semisimple.

Let Z be the center of A. Then Z is invariant under the automorphism o, and
therefore inherits a grading 7 ~ Zy @ Z;. Note that if z is an element of Zj, then
z®1—1® z is annihilated by p®". Since the map p®" is an isomorphism, it follows that
Zy = K consists only of scalars. Since condition (a) is not satisfied, the center Z must
be larger than k. We can therefore choose some nonzero element x € Z;. Set a = 2?2 € k.
The element a must be nonzero (otherwise x would belong to the radical of A), so that
x is invertible. We can therefore write

A=A® A = A ® Aoz ~ Ay Qs k(Va).

Using the centrality of z, we see that this identification is an isomorphism of (Z/2Z)-
graded algebras. To complete the proof, it will suffice to show that the algebra Ay is
central simple over k. Note that any central element z € Ay is also central in A (since
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it also commutes with z), and therefore belongs to Zy = k. Moreover, we can write
I = J+ Jx, where J is the radical of Ag; consequently, the vanishing of I implies the
vanishing of J. O

Proposition 2.8.8. Let k be a field of characteristic # 2. Then:

(1) The inclusion functor Vect, < Vect® induces a monomorphism of Brauer groups

¢ : Br(k) = Br(Vect,) — Br(Vects") = BW(k).

(2) There exists a unique surjective group homomorphism € : BW (k) — Z/27Z with
the following property: if A is a graded Azumaya algebra, then e([A]) = 0 if and
only if A is an Azumaya algebra.

(3) The composition € o v vanishes, and the homology ker(e)/Im(c) is canonically
isomorphic to k* /K2,

It follows from Proposition [2.8.8| that if the field x has characteristic # 2, then the
Brauer-Wall group BW (k) admits a composition series whose successive quotients are
Br(k), k*/k*?, and Z/2Z. In general, it is a nontrivial extension of those groups:

Example 2.8.9. Let R be the field of real numbers. Then we have isomorphisms
Br(R) ~ R* /R*? ~ Z/2Z. The Brauer-Wall group BW(R) is isomorphic to Z/8Z.

Remark 2.8.10. If « is a field of characteristic 2, then the maps ¢ : Br(k) — BW(k)
and € : BW(k) — Z/2Z are still well-defined. However, the map e is identically zero,
and the map ¢ is split injective (with a left inverse given by the forgetful functor
Vect& — Vect,). In this case, one can show that the Brauer-Wall group BW (k) splits as
a direct sum BW (k) ~ Br(x) ® HL, (Spec k, Z/2Z), where the étale cohomology group
H., (Spec k, Z/2Z) can be described concretely as the cokernel of the Artin-Schreier map

xr—>xfa:2

K.

Proof of Proposition[2.8.8 The well-definedness of the map ¢ : Br(k) — BW(k) is a
special case of Proposition To complete the proof of (1), it will suffice to show that
¢ is injective. Let A be an Azumaya algebra over x and suppose that ¢([A]) vanishes in
the Brauer-Wall group BW (k). Then there exists a finite-dimensional (Z/2Z)-graded
vector space V and an isomorphism of (Z/2Z)-graded algebras A ~ End, (V). It follows
that [A] vanishes in the Brauer group Br(k), as desired.

We now prove (2). Note that if A is a graded Azumaya algebra over s, then
Proposition implies that we can write dim,(A4) = 26()d?, where

0 if A is an Azumaya algebra
e(A) = .
1 otherwise
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and d4 is a positive integer. If A and B are Morita equivalent, then the product
dim,(A) dim,(B) = dimx (A ®, B°P)

is a perfect square (since A ®, B°P is isomorphic to a matrix ring), and therefore
e(A) = e(B). It follows that there is a unique map of sets € : BW(k) — Z/2Z
satisfying €([A]) = e(A) for every graded Azumaya algebra A. From the identity
dim, (A ®, B) = dim,(A) dim,(B), we deduce that

e(A®. B) =e(A) +e(B) (mod 2),

so that € is a group homomorphism. The surjectivity of € follows from the observation
that not every graded Azumaya algebra is an Azumaya algebra (Example .

We now prove (3). The vanishing of € o ¢ follows immediately from the definitions.
For each element a € K™, set Q(a) = [k(y/a)] € BW(k). Note that Q(a) depends only
on the residue class of a modulo xk*2, so we can regard Q as a function from x> /k*?
to the Brauer-Wall group BW (k). Note that e(Q(a)) = 1 for each a € k*, so that
Q(a) — Q(1) belongs to the kernel ker(e).

To complete the proof, it will suffice to show the following;:

(i) The construction a — Q(a) — Q(1) induces a group homomorphism X : K% /k*? —
ker(e)/Im(e).

(74) The homomorphism A is surjective.
(#i7) The homomorphism A is injective.

To prove (i), we must show that for every pair of elements a,b € ™, we have
Q(ab) — Q1) = (Q(a) — Q1)) + (Q(b) — Q1)  (mod Im(s)). (2.1)

Using Remark we obtain an identity Q(—1) = —Q(1), so we can rewrite (2.1)) as
an identity

Q(ab) = Q(a) + Q(b) + Q(—1)  (mod Im(:)) (2.2)

Note that the right hand side of is represented by the graded Azumaya algebra
A generated by anticommuting odd variables z, y, and z satisfying 22 = a, y> = b,
and 22 = —1. We now observe that ¢t = zyz is a central odd element of A satisfying
t2 = ab, so that the proof of Proposition supplies an isomorphism of graded
algebras A ~ Ay ®, x(+v/ab) which witnesses the equality .

To prove (i7), it will suffice to show that every element u € BW (k) satisfying e(u) = 1
can be written as (%) + Q(a), for some element a € £* /2. This follows immediately
from Proposition [2.8.
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To prove (iii), suppose we are given an element a € k* satisfying A(a) = 0, so that
Qa) — Q1) = Q(a) + Q(—1) belongs to the image Im(¢); we wish to show that a is
a square. The class Q(a) + Q(—1) is represented by the graded Azumaya algebra A
generated by anticommuting odd elements = and ¥y satisfying 22 = @ and y> = —1. Our
assumption that [A] € Im(¢) implies that we can choose an Azumaya algebra B over k
(which we regard as a graded Azumaya algebra which is concentrated in degree zero) for
which the tensor product A ®,; B is Morita-trivial: that is, it is isomorphic to End, (V)
for some (Z/2Z)-graded vector space V over k. Write dim,(B) = d?, so that V has
dimension 2d over x. Note that multiplication by = € A induces an automorphism of
V which shifts degrees, so we must have dim, (Vp) = dim, (V1) = d. It follows that the
action of B on Vj induces an isomorphism B ~ End,(V}), so that [B] = 0 in Br(x). We
may therefore replace B by x and thereby reduce to the case d = 1.

Fix a nonzero element v € V. Then xv and yv are nonzero elements of the 1-
dimensional vector space Vi, so we can write xv = cyv for some scalar ¢ € k. We now
compute

av = 2% = z(cyv) = —cy(zv) = —cy(eyv) = —y?v = v,

so that a € k*? as desired. O
Remark 2.8.11. Let k be a field of characteristic different from 2. The proof of

Proposition shows that the Brauer-Wall group BW (k) is generated (as an abelian
group) by the image of the map ¢ : Br(k) — BW(k) together with elements of the form

[k(y/a)], where k(4/a) is defined as in Example

2.9 The Brauer Group of a Lubin-Tate Spectrum

We now introduce the main object of interest in this paper. Let x be a perfect field
of characteristic p > 0, let Gy be a formal group of height n < co over &, and let £
denote the associated Lubin-Tate spectrum. We let Modg denote the co-category of
FE-module spectra, and we let Mod1§C denote the full subcategory of Modg spanned by
the K (n)-local E-module spectra.

Remark 2.9.1. Let R = mgE be the Lubin-Tate ring and let m € R be the maximal
ideal of R. An object M € Modg belongs to the subcategory ModlﬁC if and only if, for
every element x € m, the homotopy limit of the tower

MBS MSMS MM

is contractible.
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We will regard Modg as a symmetric monoidal co-category with respect to the
formation of smash products relative to E, which we will denote by

@E : MOdE X MOdE — MOdE .

Let L : Modp — Mod'2® denote a left adjoint to the inclusion functor. The localization
functor L is compatible with the smash product ®g (in other words, the collection of
K (n)-local equivalences is closed under smash products). It follows that there is an
essentially unique symmetric monoidal structure on the co-category ModIEOC for which
the localization functor L : Modg — Modg® is symmetric monoidal. We will denote
the underlying tensor product by

®p : Mod'2® x Mod9® — Modlee.
Concretely, it is given by the formula M@gN = L(M ®g N).

Definition 2.9.2. Let E be a Lubin-Tate spectrum. We let Br(E) denote the Brauer
group of the symmetric monoidal co-category Mod'2¢. We will refer to Br(E) as the
Brauer group of E.

Warning 2.9.3. The terminology of Definition has the potential to cause some
confusion: it would be more accurate to refer to Br(E) as the K (n)-local Brauer group
of E (this is the terminology used in [3]). We can also consider the Brauer group
Br(Modpg) of the co-category Modg of all E-modules. However, this turns out to be
less interesting: we will see later that Br(Modg) can be identified with a subgroup of

Br(E) (Proposition [9.2.1} see also Conjecture [9.4.1)).

Let us now make Definition [2.9.2]a little bit more explicit by describing the Azumaya
algebras of ModlEOC. The following result is standard:

Proposition 2.9.4. Let M be an E-module spectrum. The following conditions are
equivalent:

(1) The E-module M is perfect: that is, it is a dualizable object of the co-category
MOdE.

(2) The E-module M is a dualizable object of ModC.

(3) The homotopy groups mo(K (n)®g M) and m1 (K (n) ®g M) are finite-dimensional
vector spaces over k, where K(n) is an atomic E-algebra.

(4) The homotopy groups moM and m M are finitely generated modules over the
Lubin-Tate ring R = moE.
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Remark 2.9.5. It follows from Proposition [2.9.4] that if M is a dualizable object of
Mod2¢, then the construction N — M®pg N preserves K (n)-local objects. Consequently,
we do not need to distinguish between the smash product M ®g N and the completed
smash product M@EN.

Proposition 2.9.6. Let M be a K(n)-local E-module spectrum. Then M is a full
object of ModIEOC (in the sense of Deﬁm’tion if and only if M is nonzero.

Proof. The “only if” direction is obvious. Conversely, suppose that M is nonzero; we
wish to show that the functor e®gM is conservative. Equivalently, we wish to show
that if N € Mod2° is nonzero, then the tensor product N®gM is nonzero. Let K (n)
be an atomic E-algebra, so that K(n) ®z M and N ® K(n) are nonzero. Since every
(left or right) K (n)-module can be decomposed as a sum of (possibly shifted) copies of
K (n) (Proposition [3.6.3), it follows that

(N ®r K(n)) @k (n) (K(n) ®s M) ~ N®p K(n) ®s M ~ K(n) ®5 (M @ N)
is also nonzero, so that M ®g N must be nonzero as desired. O

Corollary 2.9.7. Let A be an E-algebra. Then A is an Azumaya algebra object of
ModlEOC if and only if it is nonzero, the homotopy groups mgA and A are finitely
generated modules over R = moE, and the natural map A ®p A°® — Endg(A) is an
equivalence.

Proof. Combine Proposition Remark Proposition and Corollary
223 O

Warning 2.9.8. Corollary 2.9.7 does not imply that every Azumaya algebra object A
of Modl}%C is also an Azumaya algebra object of Modg: beware that A need not be full
as an object of Modg. This is exactly what happens in the case of greatest interest to
us: we will see that there are plenty of examples of atomic Azumaya algebras in ModlEOC,

but atomic F-algebras are never full as objects of Modg.
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Chapter 3

Thom Spectra and Atomic
Algebras

Let E be a Lubin-Tate spectrum and let m € mpE denote the maximal ideal. We
will say that an E-algebra A is atomic if the unit map 7, F — m,A is a surjection, whose
kernel is the graded ideal m(my E) (Definition [1.0.2). In this section, we review some
standard facts about atomic F-algebras:

(a) Atomic E-algebras always exist (Proposition [3.5.1]).

(b) If A and A" are atomic E-algebras, then A and A’ are equivalent as E-modules

(Corollary [3.6.6]).

(c) If the residue field k = (mpFE)/m has characteristic different from 2, then there
exists an atomic FE-algebra A whose multiplication is homotopy commutative

(Proposition |3.5.2)).

To prove assertions (a) and (c), it will be convenient to introduce a general procedure for
producing E-algebras as Thom spectra (Construction . As we will see, every atomic
E-algebra can be realized as as the Thom spectrum of a polarized torus (Proposition
. More generally, Thom spectra associated to polarized tori provide a useful tool
for investigating the structure of the Brauer group Br(FE), which we will exploit in the
sequel to this paper.

3.1 Thom Spectra

We begin by reviewing the theory of Thom spectra from the oo-categorical perspective.
For more details, we refer the reader to [1J.
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Let R be an Ey-ring, which we regard as fixed throughout this section. We let
Pic(R) = Pic(Modpg) denote the subcategory of Modr whose objects are invertible
R-modules and whose morphisms are equivalences (see Remark . Note that Pic(R)
is closed under tensor products in Modg, and therefore inherits the structure of a
symmetric monoidal co-category: in other words, it can be regarded as an Ey-space.

Notation 3.1.1. The E,-space Pic(R) is grouplike, and can therefore be identified
with the Oth space of a connective spectrum. In particular, Pic(R) admits a canonical
connected delooping, which we will denote by BPic(R). The space BPic(R) can be
identified with a connected component of the Brauer space Br(Modpg) appearing in
Remark

Notation 3.1.2. Let S,pjc(g) denote the co-category whose objects are pairs (X,Q),
where X is a Kan complex equipped with a map @ : X — Pic(R). Note that, since
Pic(R) is a commutative algebra object of the oo-category S of spaces, the co-category
S/ pic(r) inherits the structure of a symmetric monoidal oo-category (see Theorem
HA.2.2.2.4). Concretely, the tensor product on S /Pic(R) 18 given by

(X,Qx)®(Y,Qy) = (X xY,Qxxy) Qxxvy(v,y)=0Qx(r)®r Qy(y).

Let R be an Ey-ring. The construction
(L € Pic(R)) = ((, L) € S/pic(r))

determines a symmetric monoidal functor f : Pic(R) — S/ pic(r)- Since the co-category
S/ pic(r) admits small colimits (and the tensor product on S /Pic(R) Preserves small
colimits separately in each variable), the functor f admits an essentially unique extension
to a colimit-preserving symmetric monoidal functor F': P(Pic(R)) — S/ pic(r), where
P(Pic(R)) = Fun(Pic(R)°P, S) denotes the oo-category of S-valued presheaves on Pic(R)
(regarded as a symmetric monoidal co-category with respect to Day convolution; see
§HA.4.8.1 for more details). It is not difficult to see that the functor F is an equivalence
of oo-categories. Invoking the universal property of P(Pic(R)), we obtain the following
result:

Proposition 3.1.3. Let C be a symmetric monoidal co-category. Assume that C admit
small colimits and that the tensor product functor ® : C x C — C preserves small colimits
separately in each variable. Then composition with the functor f : Pic(R) — S/ pic(r)
described above induces an equivalence of c0-categories

LFun®(S/ pic(r),C) — Fun®(Pic(R),C).

Here Fun®(Pic(R),C) denotes the owo-category of symmetric monoidal functors from
Pic(R) to C, while LFun®(S/piC(R),C) denotes the co-category of colimit-preserving
symmetric monoidal functors from S;pic(r) to C.
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Corollary 3.1.4. There is an essentially unique symmetric monoidal functor Th :
S/pic(r) — Modpg with the following properties:

(1) The functor Th commutes with small colimits.

(13) The diagram of symmetric monoidal co-categories

S/ Pic(R)

Pic(R) - Mod g

commutes up to homotopy, where f is defined as above and i denotes the inclusion
map.

Construction 3.1.5 (Thom Spectra). Let Th : S/pij(ry — Modg be the functor of
Corollary We will refer to Th as the Thom spectrum functor. Given an object
(X, Q) € S/pic(r), we will refer to Th(X, Q) as the Thom spectrum of X with respect to

Q.

Remark 3.1.6. Let (X, Q) be an object of S pic(r). Then the Thom spectrum Th(X, Q)
can be identified with the colimit, formed in the co-category Modg, of the composite

functor X % Pic(R) — Modpg.

Remark 3.1.7 (Cap Products). Let X be a space. For any map @ : X — Pic(R),
the Thom spectrum Th(X, Q) carries an action of the function spectrum RX. If X is
finite (which is the only case of interest to us), then the action map RX ®g Th(X, Q) —
Th(X, Q) is dual to the map

Th(Q,X) —» (RQ LX) ® Th(X, Q) ~ Th(X x X,7*Q)

induced by the diagonal map § : X — X x X, where 7 : X x X — X denotes the
projection onto the second factor.

Example 3.1.8. Let X be a space, let @ : X — Pic(R) be a map, and let u be an
invertible element in the ring moRX. Then cap product with u induces an automorphism
of the Thom spectrum Th(X, @). Concretely, this automorphism is obtained using the
functoriality of the construction (X, Q) — Th(X, Q) (note that v can be identified with
a homotopy from the map @ : X — Pic(R) to itself).
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3.2 Polarizations

Let E be a Lubin-Tate spectrum, which we regard as fixed throughout this section.
Our goal is to single out a special class of Thom spectra (in the sense of Construction
3.1.5) which will be useful for studying the Brauer group Br(FE).

Definition 3.2.1. A lattice is a free abelian group of finite rank. If A is a lattice, we
let K (A, 1) denote the associated Eilenberg-MacLane space, which we regard as a group
object of the oo-category S of spaces. A polarization of A is a map @Q : K(A,1) — Pic(FE)
in the oo-category of group objects of S. If ) is a polarization of A, then we can regard
(K(A,1),Q) as an associative algebra object of the co-category S pic(g) of Notation

We let Thg € Algy denote the Thom spectrum Th(K (A, 1), @), which we regard
as an associative algebra object of Modg.

Variant 3.2.2 (Reduced Thom Spectra). Let A be a lattice and let @ : K(A,1) —
Pic(E) be a polarization. We define the reduced Thom spectrum Thbed to be the cofiber
of the unit map £/ — Thg, which we regard as an object of Modg.

Remark 3.2.3. Let A be a lattice equipped with a polarization @ : K(A,1) — Pic(F).
Then the Thom spectrum Thg is equipped with an action of the function spectrum
EE@AD yia cap products (see Remark . Note that the homotopy ring T EEAD)
can be identified with the exterior algebra (7+E) ®z A7z A", where each element of the
dual lattice AY is regarded as homogeneous of degree (—1). In particular, each element
AY e AY induces a map D)+ : Thg — ¥ Thg, whose square is nullhomotopic.

Remark 3.2.4 (Conjugate Polarizations). Let A be a lattice and let @ : K(A,1) —
Pic(E) be a polarization, so that we can regard the pair (K(A,1),Q) as an associa-
tive algebra object of the co-category S/ pic(r). We can identify the opposite algebra
(K(A,1),Q)° with a pair (K(A,1),Q), where Q : K(A,1) — Pic(E) is some other
polarization. We will refer to @ as the conjugate of the polarization (). Beware that
although @ and Q are always homotopic as maps of spaces, they are usually not homo-
topic as morphisms of group objects of S (see Example |3.2.13|). Note that we have a
canonical equivalence of E-algebras Thy ~ Thyy .

Remark 3.2.5. Let A be a lattice. Then K (A, 1) is a finite space. It follows that,
for any polarization @ : K(A,1) — Pic(E), the Thom spectrum Thg can be written
as a finite colimit of invertible objects of Modg (Remark [3.1.6)). In particular, Thg is
dualizable as an E-module, and is therefore belongs to Modg®.

Remark 3.2.6. Let A be a lattice. Then we can identify polarizations of A with maps
K(A,2) — BPic(E) in the co-category of pointed spaces, where BPic(E) is the space
described in Notation B.1.11
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We close this section by introducing some useful invariants of a polarization Q.

Notation 3.2.7. Let A be a lattice. Since K(A,2) is an Ey-space, the unreduced
suspension spectrum XY K (A, 2) inherits the structure of an Ey-ring. Note that we
have canonical decompositions

SPK(A,2) ~ S@®EPK(A,2)

mYTK(A,2) ~ mS @ mXPK(A,2) ~ mS @A,

where S denotes the sphere spectrum. This decomposition yields a map p; : A —
mX LK (A,2). Using the multiplication on 7. X7 K (A, 2), we can extend p; to a family
of maps

pm : Sym™(A) — mo,, XY K (A, 2).

Construction 3.2.8 (The Coefficients of a Polarization). Since Pic(F) is a grouplike

Ey-space, there is an essentially unique connective spectrum pic(F) equipped with

an equivalence of Ey-spaces Pic(F) ~ Q% pic(F). Note that the homotopy groups of

pic(E) are given by

Z/2Z  ifn=0

mopic(B) = { (0B i =1
Tp1E ifn>1

0 otherwise.

Let A be a lattice equipped with a polarization ), which we can identify with a
map of pointed spaces K(A,2) — BPic(F) or a map of spectra XX K (A,2) — X pic(E).
For each positive integer m, we define the mth coefficient of QQ to be the map of abelian
groups ¢ : Sym™(A) — 79, BPic(E) given by the composition

Sym™(A) £ 7y SPK (A, 2) = momEPK (A, 2) 2 w903 pic(E) = mapm BPic(E),
where p;,, is the map defined in Notation [3.2.7]

Example 3.2.9. Let A be a lattice and let @ : K(A, 1) — Pic(F) be a polarization of
A. Then the 1st coefficient le (in the sense of Construction ' can be identified with
the group homomorphism

A~mKM1) ™D, 1 Pie(E) ~ (10E)*

determined by @ at the level of fundamental groups.

34



Remark 3.2.10. Let A be a lattice equipped with a polarization @ : K(A,1) — Pic(E).
From the Example it follows that the 1st coefficient c(f? depends only on @ as a
map of spaces K(A,1) — Pic(E), rather than as a map of group objects in §. Beware
that this is not true for the higher coeflicients.

Example 3.2.11. Let A be a lattice of rank 2 with basis Ag,A\1 € A, and let @ :
K(A,1) — Pic(E) be a polarization. For i € {0, 1}, let p; : K(A,1) — K (A, 1) be the
(pointed) map given by projection of A onto the summand Z\;, and let @); denote the
pullback of @ along p;. Using the multiplicativity of (), we obtain canonical equivalences

Qo®r Q1 ~Q ~Q1®r Qo

in the co-category Fun(K (A, 1), Pic(E)). Beware that the composition of these equiv-
alences is usually not the canonical equivalence Qg ®r @1 ~ Q1 g Qo given by the
symmetry constraint on the symmetric monoidal co-category Modg. Instead, the two
maps differ by multiplication by

1+ % (NoA1) € TE @ mE ~ mgEXA2),

where cg is the second coefficient of @) (see Construction .

Remark 3.2.12. Let A be a lattice. One can show that a polarization of A is determined,
up to homotopy, by its coefficients {C%}m>0. Beware, however, that not every collection
of maps {fm : Sym”(A) — 7oy, BPic(E)}n=0 can be realized as the coefficients of a
polarization of A.

Example 3.2.13 (Coefficients of the Conjugate Polarization). Let A be a lattice and
let @ be a polarization of A, which we will identify with a map of pointed spaces
K(A,2) — BPic(E). Let Q denote the conjugate of the polarization @ (in the sense
of Remark . Then we can also identify Q with a map of pointed spaces from
K(A,2) to BPic(F), which is characterized (up to homotopy) by the requirement that

the diagram

K(A,2) —2~ BPic(E)

o, b

K(A,2) —2~ BPic(E)

commutes up to homotopy. Note that the left vertical map induces (—1)* on the
cohomology groups H2¥(K (A, 2); M), while the right vertical map induces (—1) on each
homotopy group of BPic(E). It follows that the coefficients of Q and Q are related by
the formula c@ = (—1)" "%

m*
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3.3 Nonsingular Polarizations

Let E be a Lubin-Tate spectrum and let m € mpF denote the maximal ideal. Our
goal in this section is to give a concrete criterion for the vanishing of the Thom spectrum
Thq of a polarization @ : K (A, 1) — Pic(E) (Proposition 3.3.2).

Definition 3.3.1. Let A be a lattice and let @ : K(A, 1) — Pic(E) be a polarization
of A. We will say that @ is nonsingular if the first coefficient c? : A — (mpE)* factors
through the subgroup 1 +m < (moE)*.

Proposition 3.3.2. Let A be a lattice and let Q : K(A,1) — Pic(E) be a polarization
of A. Then Q is nonsingular (in the sense of Definition if and only if the Thom

spectrum Thg s nonzero.
The proof of Proposition will require some preliminary remarks.

Notation 3.3.3. Let p: A’ — A be a homomorphism of lattices and let @ : K (A, 1) —
Pic(E) be a polarization of A. We let Q[p] denote the polarization of A’ given by the
composition

K(N,1) 2 K(A, 1) % Pic(E).
By construction, p can be promoted to a map (K (A’,1),Q[p]) — (K(A,1),Q) between
algebra objects of the co-category S pic(r), and therefore induces a morphism Thg,) —
Thg in the co-category Algp.

Now suppose that @ : K(A,1) — Pic(FE) is a polarization of a lattice A and that
we are given an element A € A. Then we can identify A with a group homomorphism
Z — A (given by n — nX). We let Q[A] denote the induced polarization of Z, so that
obtain a morphism Thg[yj — Thg as above.

Remark 3.3.4. Let A be a lattice and let @ : K(A,1) — Pic(FE) be a polarization
of A. Suppose we are given a finite collection of lattice homomorphisms {p; : A; —

A}1<i<n which induce an isomorphism (P p;) : @ A; — A. Then the canonical maps
(K(Ai,1),Q[pi]) — (K(A,1),Q) induce an equivalence

(K(A1,1),@Q[p1]) ® -+ @ (K(An, 1), Qlpn]) — (K(A,1),Q)

in the co-category S/ pic(p). It follows that the composite map

Thq,,)®8 ® -+ ®p Thyy,] = The®f -+ ®k Thg > Thg

is an equivalence of F-modules; here m is induced by the multiplication on Thg,.
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Warning 3.3.5. In the situation of Remark [3.3:4] the equivalence

ThQ[m] ReER - - Rf ThQ[pn] ~ ThQ

generally depends on the ordering of the factors (since the multiplication on Thg is not

commutative). Beware also that this equivalence is usually not a map of algebra objects
of Modg.

Example 3.3.6. Let A be a lattice of rank 2 with basis Ao, \; € A, and let Ay, A} € AV
denote the dual basis for AY. Let a denote the composition

ThQ >~ ThQ[)\O] ®E ThQ[)\l] ~ ThQ[)\l] ®E ThQ[)\O] ~ ThQ,

where the outer equivalences are supplied by Remark and the inner map is
given by the symmetry constraint on Modg. Combining Examples [3.1.8 and [3.2.11]
we deduce that « is homotopic to the map id +62Q()\0, )\1)D>\g D)y, where the maps
D)y, Dyy : Thg — X Thq are defined in Remark @

Remark 3.3.7. Let A be a lattice and let @ : K(A,1) — Pic(E) be a polarization of
A. For each )\ € A, the induced polarization Q[A] : K(Z,1) ~ S! — Pic(E) is classified
(as a pointed map) by the element C?(/\) € (mpE)* ~ m Pic(E). Using Remark
we obtain a canonical fiber sequence

e (N)

—1 e

in the co-category Modpg, where e is the unit map. In particular, we see that Thgpy is

nonzero if and only if C?(/\) belongs to the subgroup 1+ m < (moFE)*.

Variant 3.3.8. Let A be a lattice and let @ : K(A, 1) — Pic(E) be a polarization. For
each A € A, the cofiber sequence

e (N)

BT B S Ty,

determines a canonical identification Thgﬁ\] = cofib(e) ~ X F.

Proof of Proposition[3.53.9. Let A be a lattice and let @ : K(A,1) — Pic(E) be a
polarization of A. Suppose first that the Thom spectrum Thg is nonzero. For each
element A € A, we have a morphism Thg(y) — Thq in Algg, so that Thgy is also
nonzero. Applying Remark we deduce that c?(A) belongs to the subgroup
1+mc (mpE)*. Allowing \ to vary, we deduce that @ is a nonsingular polarization.
We now prove the converse. Let @ : K(A,1) — Pic(E) be a nonsingular polarization,
and choose a basis A1, Ag,..., A\, for the lattice A. Then each c?()\i) belongs to the
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a full object of Modljg)C (Proposition [2.9.6). Applying Remark [3.3.4, we deduce that the
Thom spectrum

subgroup 1 +m < (moE)*, so each of the Thom spectra Thgpy,] is nonzero and therefore
_

Thg ~ Thgpx,] ®F - - ®& Thoa,]

is also full (and therefore nonzero). O

We conclude with a few observations which will be useful later for recognizing when
the Thom spectrum construction yields Azumaya algebras.

Construction 3.3.9 (The Map &). Let A be a lattice and let @ : K(A,1) — Pic(FE)
be a nonsingular polarization. By functoriality, each element X\ in A determines an
E-algebra map Thg[y) — Thq, and therefore an E-module map Thgfk] — Thrq‘jd. Under

the canonical identification Thgf)\] ~ ¥ F supplied by Variant the homotopy class

of this map determines an element &(\) € my Thbed.

Proposition 3.3.10. Let A be a lattice and let Q : K(A,1) — Pic(E) be a polarization.
Then the elements &(\) € mp Thgd satisfy the cocycle formulae

a0)=0 aA+N)=a\) +E2NaN)  a(=a) = =W ta).

Proof. We will prove the identity a&(A+\') = @(\) + c({?()\)&()\’); the other two identities
follow as a formal consequence. Let X = S'11, ST be a wedge of two circles, so that A
and A determine a map u : X — K(A,1). Let Qx denote the restriction of @ to X,
so that we can form the Thom spectrum Th(X, Qx) and the reduced Thom spectrum
Th(X, Qx)™? (given by the cofiber of the map E — Th(X, Qx) determined by the base
point of X). We then have a commutative of E-modules

d
Thgiy

l &)
f

Thisth , y1 — Th(X, Qx)"*? — This*

| =

red

where the vertical maps are given by the two inclusions of S* into X, the map f is induced
by the loop S' — X given by concatenating the two inclusions, and the horizontal
composition is homotopic to &(A + A’). Since the formation of Thom spectra preserves
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colimits, the vertical maps induce an equivalence of E-modules g : Thbefl)\] @Thg[ n—
Th(X, Qx)"4. It will therefore suffice to observe that the composite map

red f red 97" red re
SE = ThSH o & Th(X, Qx)™ L5 ThiSh @ ThiSh| ~ SE@ SE

is homotopic to (id, c?()\)) O

3.4 Atomic Polarizations

Let E be a Lubin-Tate spectrum with maximal ideal m € mgFE and residue field
k = (moE)/m. In this section, we will supply a criterion which can be used to test
whether the Thom spectrum Thg of a polarization @ : K(A, 1) — Pic(F) is an atomic
FE-algebra, in the sense of Definition (Proposition . We also show that every
atomic F-algebra arises in this way (Proposition 3.4.6)).

Construction 3.4.1. Let A be a lattice and let @ : K(A, 1) — Pic(E) be a nonsingular
polarization, so that the first coeflicient c? determines a group homomorphism A —
1+mc< (mpE)*. We let 6? : K ® A — m/m? be the unique k-linear map for which the
diagram

Q
A 14+m
(1+m)/(1+m?)
.
K® A : m/m?

comimutes.

Definition 3.4.2. Let A be a lattice and let @ : K (A, 1) — Pic(E) be a polarization
of A. We will say that Q is atomic if it is nonsingular and the map

& k®A > m/m?
of Construction [3.4.1] is an isomorphism of vector spaces over k.

Remark 3.4.3. Let A be a lattice equipped with a basis (A,...,A,), and let @ :
K(A,1) — Pic(F) be a polarization. Then @ is atomic (in the sense of Definition
if and only if the elements C?()\Z’) — 1 form a regular system of parameters for the local
ring moF. In particular, this is possible only when the rank of A (as an abelian group)
coincides with the height of the Lubin-Tate spectrum FE.
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The terminology of Definition [3.4.2] is motivated by the following:

Proposition 3.4.4. Let A be a lattice and let Q : K(A,1) — Pic(FE) be a polarization
of A. If Q is atomic (in the sense of Definition , then the Thom spectrum The is
an atomic E-algebra (in the sense of Definition .

Remark 3.4.5. We will prove later that the converse of Proposition is also true:
if the Thom spectrum Thg is atomic, then the polarization @ is atomic (Corollary

F5.12).

Proof of Proposition[3.4.4. Let {\;}1<i<n be a basis for the lattice A. Our assumption
that @ is atomic guarantees that we can write ci‘?()\i) = 1+ x;, where {z;}1<i<n is a
regular system of parameters for the local ring moE' (Remark . For 0 <m < n, let
A(m) denote the E-module given by the formula

We will prove the following assertion for 0 < m < n:
(#m,) The unit map E — A(m) induces an isomorphism (74 F)/(x1, ..., Zm) — 7A(m).

We proceed by induction on m, the case m = 0 being obvious. Assume that 0 < m < n
and that assertion (#,,_1) is true. Applying Remark we deduce the existence of a
fiber sequence of E-modules

Alm —1) 22 A(m — 1) — A(m).

Using the regularity of the sequence x1, ..., x,, together with (#,,_1), we deduce that
multiplication by ,, induces a monomorphism from 7, A(m — 1) to itself, and therefore
a short exact sequence

0 — meA(m —1) 2 1, A(m — 1) — me A(m) — 0,

from which we immediately deduce ().
Combining (#,) with Remark we deduce that the Thom spectrum Thg is
atomic. O

We now show that every atomic F-algebra arises as a Thom spectrum.

Proposition 3.4.6. Let A be an atomic E-algebra. Then there exists a lattice A, an
atomic polarization @ : K(A,1) — Pic(E), and an equivalence of E-algebras A ~ Thg.
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Proof. Let Picy(FE) denote the subcategory of (Modg) /4 whose objects are E-module
maps u : L — A where L is invertible and u extends to an equivalence of A-modules
ug: A®p L ~ A, and whose morphisms are equivalences (note that, since A is atomic,
the map u4 is an equivalence if and only if u is nonzero). Using the algebra structure on
A, we can regard (Modg),4 as a monoidal co-category (see Theorem HA.2.2.2.4). The
subcategory Pic4(FE) is closed under tensor products, and therefore inherits a monoidal
structure. If A is a lattice and @ : K (A, 1) — Pic(F) is a polarization, then the following
data are equivalent:

(a) Lifts of @ to a map K(A,1) — Pica(E) (as group objects of S).
(b) Morphisms of E-algebras Thg — A.

Moreover, suppose we are given the data of a polarization @ : K(A,1) — Pic(E) and
a map ¢ : Thg — A. If ) is atomic, then ¢ is a morphism of atomic E-algebras
(Proposition , and is therefore automatically an equivalence. It will therefore
suffice to prove the following:

(#) There exists a lattice A with basis A1,..., A, and a map p: K(A,2) — BPics(F)
for which the composite map

f:A=mK(A,2) —> mBPicy(FE) — w3 BPic(F) ~ (moE)™

has the property that {f(\;) — 1} is a regular system of parameters for the local
ring moE.

The proof of () proceeds by obstruction theory. Unwinding the definitions, we see that
the homotopy groups of BPic4(E) are given by the formula

1+m ifn=2

7, BPicy (F) =
" A(B) {mﬂ'n_gE if n > 2.

Consequently, if x1,...,x, is any regular system of parameters for E, then ps :
K(Z",2) — 17<2 BPic4(F) inducing the group homomorphism
Z" = oK (Z",2) — ma(7<2 BPicy(E)) =1+ m

(a1,...,an) — [ [(1 + x;)%. To show that ps can be lifted to a map p : K(Z",2) —
BPica(FE), it will suffice to verify the vanishing of a sequence of obstructions

o € H¥Y(K(Z",2), mp BPica(E)) ~ HFL(K(Z",2), m(7y,_oF))

for k = 3. These obstructions automatically vanish, since the groups m_oF are trivial
when k is odd, while the cohomology groups HFT1(K(Z", 2), M) are trivial for any
abelian group M when k is even. O
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3.5 Existence of Atomic Algebras

We now apply the theory of Thom spectra to prove the following:

Proposition 3.5.1. For every Lubin-Tate spectrum E, there exists an atomic E-algebra

A.

Proof. We proceed as in the proof of Proposition By virtue of Proposition [3.4.4]
it will suffice to prove the following:

(%) There exists a lattice A with basis A1,..., A, and a map of pointed spaces p :
K(A,2) — BPic(E) for which the map

f:A=mK(A,2) —> mBPic(E) ~ (mpFE)™

has the property that {f(\;) — 1} is a regular system of parameters for the local
ring moF.

The proof of (x) proceeds by obstruction theory. If z1,...,x, is any regular system
of parameters for the local ring mgFE, then there is an essentially unique map ps :
K(Z",2) — 7<2 BPic(F) which induces the group homomorphism

7" = WQK(ZTL,2) — 7T2(7'$2 BPIC(E)) =14+m.

To show that ps can be lifted to a map p : K(Z",2) — BPic4(FE), it will suffice to verify
the vanishing of a sequence of obstructions

op € HMY(K(Z",2), 7, BPic(E)) ~ HFFY(K(Z",2), 1o E)

for k = 3. These obstructions automatically vanish, since the groups m_oF are trivial
when k is odd, while the cohomology groups H**1(K(Z",2), M) are trivial for any
abelian group M when k is even. O

We will also need the following variant of Proposition [3.5.1]

Proposition 3.5.2. Let E be a Lubin-Tate spectrum with residue field k. If the
characteristic of k is different from 2, then there exists an atomic E-algebra A which is
homotopy commutative.

Warning 3.5.3. If k has characteristic 2, then atomic F-algebras are never homotopy
commutative.

Warning 3.5.4. In the situation of Proposition we cannot arrange that A is a
commutative algebra object of the co-category Modpg, even if the residue field x has odd
characteristic.
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Remark 3.5.5. If the residue field of E has characteristic different from 2, then the
atomic commutative algebra object of hModg whose existence is asserted by Proposition
is unique up to unique isomorphism; see Corollary

Proof of Proposition[3.5.3. Let x1,...,2, be a regular system of parameters for the
maximal ideal m € myE. For 1 < i < n, we can choose a polarization Q; : K(Z,1) —
Pic(E) with ¢7*(1) = 1 + z; (this follows by obstruction theory, as in the proof of
Proposition . Let @, denote the conjugate polarization (see Construction |3.4.1]).
We let Q) : K(Z,1) — Pic(E) denote the polarization given by Q: = Q; ® Q; and let
A(i) denote the Thom spectrum ThQ;. Note that, as an EF-module, we can identify
A(7) with the cofiber of the map from E to itself given by multiplication by

(1) = 1= (1)eP(1) — 1 = (s + 1) — 1 = 2a; + 22

Since 2; + x? is not a zero divisor in the ring moE, it follows that the homotopy group
m1A(7) vanishes.

By construction, the polarization @} is conjugate to itself, so there exists an equiva-
lence of E-algebras o : A(i) ~ A(7)°P. Note that we have a fiber sequence

Mapyoa,, (BE, A(1)P) — Mapyioq,, (A(7), A(9)°P) — Mapyjq, (£, A(7)P).

Since the homotopy group m A(7)°P vanishes, the first term of this fiber sequence is
connected, so the map

™0 Mapyioa,, (A(2), A(i)°) — mo Mapyioq,, (E, A(i))

is a monomorphism. It follows that, as a morphism of EF-modules, a is homotopic to
the identity.

Set A= A(1)®g- - -®rA(n). Our assumption that x has characteristic different from
2 guarantees that the elements {2z; + ¥?}1<i<y is also a regular system of parameters
for the local ring moF, so that A is an atomic E-algebra (this follows Proposition
or more directly from the proof of Proposition . By construction, the identity
map from A to itself can be promoted to an equivalence of E-algebras A ~ A°P. In
particular, the multiplication on A is homotopy commutative, as desired. O

3.6 Atomic and Molecular Modules

Let E be a Lubin-Tate spectrum, which we regard as fixed throughout this section.
We now show that although atomic objects of Algy need not be equivalent as algebras
over E, they are always equivalent as modules over E (Corollary . For later use,
it will be convenient to establish a slightly stronger result, which applies to E-algebras
which are only homotopy associative.
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Definition 3.6.1. Let A be an associative algebra object of the homotopy category
hModg. We will say that A is atomic if the unit map F — A induces an isomorphism
(m+E)/m — 1, A, where m € mpFE denotes the maximal ideal.

Remark 3.6.2. An algebra object A € Algy, = Alg(Modg) is atomic in the sense of
Definition [1.0.2] if and only if it is atomic in the sense of Definition [3.6.1

Proposition 3.6.3. Let E be a Lubin-Tate spectrum, let A € Alg(hModg) be atomic,
and let M be a left A-module object of the homotopy category hModg. Then M is
equivalent (as a left A-module) to a coproduct of copies of A and the suspension L A.

Proof. Let M be a left A-module object of hModg. Then we can regard mgM and
m1M as vector spaces over the field k = mgA, which admit bases {u;}ier and {v;};es.
The elements {u;,v;} determine a map of left A-modules (P;c; 4) ® (D;c; TA) — M,
which induces an isomorphism on homotopy groups and is therefore an isomorphism in
hModg. O

Corollary 3.6.4. Let E be a Lubin-Tate spectrum, let A € Alg(hModg) be atomic, and
let M be an E-module. The following conditions are equivalent:

(a) The module M is equivalent to a coproduct of copies of A and X A.

(b) The E-module M admits the structure of left A-module in the homotopy category
hModg.

Remark 3.6.5. In the situation of Corollary [3.6.4] suppose that A is an algebra object
of the co-category Modg. Then we can replace (b) by the following apparently strongly
condition:

(') The E-module M admits the structure of a left A-module object of Modg.

The implications (a) = (b') = (b) are obvious, and the implication (b) = (a) follows
from Proposition [3.6.3

Corollary 3.6.6. Let E be a Lubin-Tate spectrum and let A, A’ € Alg(hModg) be
atomic. Then A and A’ are isomorphic as objects of Modg.

Proof. Let B denote the relative smash product A ®g A’. Using Proposition we
can choose a decomposition

B~ (@A (@A)

el jed

of left A-modules in hModg. For each i € I, let e¢; : B — A denote the projection onto
the ith factor. Since B # 0, the unit element 1 € myB is nonzero. It follows that we can
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choose an index i € I for which the map e; : B — A does not annihilate 1. It follows that
the composite map A’ — B <5 A is nonzero on homotopy groups. Using the assumption
that A’ and A are atomic, we deduce that the composite map 7 A’ — T, B —> 1, A is
an isomorphism, so that A and A’ are equivalent as F-modules. O

Warning 3.6.7. In the situation of Corollary A and A’ need not be isomorphic
as associative algebra objects of hModg.

Definition 3.6.8. Let £ be a Lubin-Tate spectrum. We will say that an F-module M
is atomic if there exists an equivalence M ~ A, where A € Alg(hModg) is atomic.

Remark 3.6.9. It follows from Proposition [3.5.1 and Corollary that, up to
equivalence, there exists a unique atomic E-module. We will sometimes refer to this
E-module as the Morava K -theory associated to E, and denote it by K (n) (where n is
the height of F).

Let E be a Lubin-Tate spectrum and let M be an E-module. If M is atomic,
then 7 M is isomorphic to the quotient (7, F)/m(mE) as a graded module over the
homotopy ring 7, E (here m denotes the maximal ideal of the local ring moF). However,
the converse is false in general:

Counterexample 3.6.10. Let E be a Lubin-Tate spectrum of height n = 3 and let
xo,x1,x2 € ToE be a regular system of parameters. For 0 < i < 2, let A(7) denote the
cofiber of the map x; : E — FE, so that we have cofiber sequences

E— A6 2 sE.

Set A = A(0) ®p A(1) ®g A(2), and let A denote the fiber of the map

A 5(0)®5(1)®4(2)

(XE) ®g (XE) ®p (E) ~ ¥3E.
We then have a fiber sequence of E-modules ©2E £ A — A which induces a short exact
sequence of abelian groups

0—>W0E—>ﬂ2ﬁg7T2A—>0

(since the homotopy groups of E and A are concentrated in even degrees). Because
the groups Ext]} p(m2 A, mE) vanish for m € {0, 1}, this sequence splits uniquely: that
is, the map ¢ has a unique section 1 : myA — moA. Set p=p+u(u)e ﬂgg, where u
is a nonzero element of moA, and let M denote the cofiber of the map p’ : ¥?°E — A.
Then 7, M is isomorphic to the quotient (7 E)/m(m.E). However, M is not an atomic
FE-module: for example, one can show that the tautological map M — M ®g A induces
the zero map on homotopy groups, so that M cannot admit the structure of a (unital)
algebra object of hModg.
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We will also need to consider some generalizations of Definition [3.6.8]

Definition 3.6.11. Let F be a Lubin-Tate spectrum and let M be an EF-module. We
will say that M is molecular if it is equivalent to direct sum of finitely many atomic
E-modules and suspensions of atomic E-modules. We let Mod2° denote the full
subcategory of Modg spanned by the molecular E-modules.

Variant 3.6.12. Let F be a Lubin-Tate spectrum and let M be an E-module. We will
say that M is quasi-molecular if it is equivalent to a (not necessarily finite) direct sum
of atomic F-modules and suspensions of atomic E-modules.

Example 3.6.13. Let A be a lattice and let @ : K(A,1) — Pic(F) be a nonsingular
polarization. Then the Thom spectrum Thg is a molecular E-module if and only if the
map

& k®A > m/m?

of Construction [3.4.1] is an epimorphism.

Remark 3.6.14. Let M be an E-module. Then M is molecular if and only if it is both
quasi-molecular and perfect (see Proposition [2.9.4)).

Remark 3.6.15. Let M be a molecular E-module. Then M is a dualizable object of
Modg; let us denote its dual by M. The module M" is quasi-molecular (this follows
from the criterion of Corollary note that if M has the structure of a left A-module
object of hModg, then MY has the structure of a left A°’-module object of hModg)
and perfect, and is therefore also molecular (Remark .
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Chapter 4

Synthetic £-Modules

Let E be a Lubin-Tate spectrum of height n and let ModlEOC denote the co-category
of K(n)-local E-modules. In this section, we will construct a (symmetric monoidal)
embedding of ModlEOC into a larger co-category Synpg, which we refer to as the co-category
of synthetic E-modules.

4.1 The oo-category Syny

We begin by introducing some definitions.

Definition 4.1.1. Let E be a Lubin-Tate spectrum, let Mod2°' € Modg be the oo-
category of molecular F-modules, and let S denote the co-category of spaces. A synthetic
E-module is a functor X : (ModB°)°P — S which preserves finite products. We let Synp
denote the full subcategory of Fun((Mod®2°')°P S) spanned by the synthetic E-modules.

The oo-category Syng, is an example of a nonabelian derived co-category, in the sense
of §HTT.5.5.8. Its formal properties can be summarized as follows:

Proposition 4.1.2. Let E be a Lubin-Tate spectrum. Then:
(1) The oo-category Syny, is presentable. In particular, Syng admits small colimits.

(2) The inclusion functor Syny < Fun((ModB°)°P, S) preserves small sifted colimits.
In other words, sifted colimits in Syng are computed “pointwise.”

(3) The Yoneda embedding j : Mod'5®! < Fun((ModE°)°P, S) factors through Synp.

Moreover, the functor j : Mod%101 — Syny preserves finite coproducts.

(4) Let C be an co-category which admits small sifted colimits, and let Funy,(Syng, C) be
the full subcategory of Fun(Syng, C) spanned by those functors which preserve small
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sifted colimits. Then composition with j induces an equivalence of co-categories
Funy(Syng, C) — Fun(Mod2°!, C).

(5) Let C be an oo-category which admits small colimits, and let LFun(Syng,C) denote
the full subcategory of Fun(Syng, C) spanned by those functors which preserve small
colimits. Then composition with j induces a fully faithful functor LFun(Syng,C) —
Fun(Mod®°!, C), whose essential image consists of those functors ModE®' — C
which preserve finite coproducts.

Proof. Combine Propositions HTT.5.5.8.10 and HTT.5.5.8.15. O

Remark 4.1.3. Assertion (4) of Proposition can be summarized informally by
saying that the co-category Syng is obtained from Modlfg101 by freely adjoining (small)
sifted colimits.

Remark 4.1.4. Let E be a Lubin-Tate spectrum. Then the co-category of molecular
F-modules Mod‘f;101 is additive (since it is a subcategory of a stable co-category which is
closed under finite direct sums). It follows that Syng is a Grothendieck prestable oo-
category (see Proposition SAG.??). In particular, the functor X% : Synp — Sp(Synpg)
is a fully faithful embedding. Here we can identify Sp(Syny) with the full subcategory
of Fun((Mod®°)°P, Sp) spanned by the additive functors

Remark 4.1.5 (The Structure of Syng). Let E be a Lubin-Tate spectrum and let M
be a molecular E-module for which both myM and 7; M are nonzero (for example, we
could take M = K @ XK, where K is an atomic E-module). Then every molecular
E-module can be obtained as a retract of M*, for some integer k& » 0. It follows
that the image of M under the Yoneda embedding j : Mod2® — Syny is a compact
projective generator for the co-category Syng of synthetic E-modules. We therefore
obtain an equivalence of co-categories Synp ~ LMod$, where A = Endsyn,, (j(M)) is
the (connective) ring spectrum classifying endomorphisms of j(M). Unwinding the
definitions, we can identify A with the connective cover of the endomorphism algebra
Endg(M).

This explicit description of Syng will not be particularly useful for us: it is not
canonical (since it depends on a choice of the module M), and does not behave well
with respect to the symmetric monoidal structure of

4.2 The Restricted Yoneda Embedding

We now investigate the relationship between modules and synthetic modules over a
Lubin-Tate spectrum FE.
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Construction 4.2.1 (Restricted Yoneda Embedding). Let E be a Lubin-Tate spectrum
and let M be an E-module. We let Sy[M] : (ModB°)°P — S denote the functor given
informally by the formula Sy[M](N) = Mapyj,q, (M, N). It follows immediately from
the definitions that Sy[M] is a synthetic E-module: that is, it preserves finite products.
We will refer to Sy[M] as the synthetic E-module associated to M.

The construction M — Sy[M] determines a functor Modg — Synpg, which we will
denote by Sy and refer to as the restricted Yoneda embedding.

Remark 4.2.2. When restricted to the full subcategory Mod%Ol of molecular E-modules,
the functor M — Sy[M] coincides with the usual Yoneda embedding j : ModE® —
Syny € Fun((Mod®°)°P, S).

We begin by recording a few elementary properties of the construction M +— Sy[M].

Proposition 4.2.3. Let E be a Lubin-Tate spectrum and let Sy : Modg — Syng be
the restricted Yoneda embedding. Then:

(1) The functor Sy preserves small filtered colimits.
(2) The functor Sy preserves small limits.
(3) The functor Sy preserves small coproducts.

Proof. Assertion (1) follows from the observation that every molecular E-module M is
a compact object of Modg (see Proposition [2.9.4)), and assertion (2) is immediate. To
prove (3), we note that (2) implies that the functor Sy preserves finite products. Since
the oo-categories Modg and Syny are both additive (Remark , it follows that Sy
preserves finite coproducts. Combining this observation with (1), we conclude that Sy
preserves all small coproducts. ]

Proposition 4.2.4. Let E be a Lubin-Tate spectrum of height n and let « : M — N
be a morphism of E-modules. Then the induced map Sy[M] — Sy[N] is an equivalence
of synthetic E-modules if and only if o is a K(n)-equivalence.

Proof. Let K(n) denote an atomic E-module, and let K (n)Y denote its E-linear dual.
The following assertions are equivalent:

(a) The map Sy[M] — Sy[N] is an equivalence of synthetic E-modules.

(b) For every molecular E-module P, the map of spaces
MapModE (Pv M) - MapModE (P> N))

is a homotopy equivalence.
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(c) The map of spaces Mapyy,q,, (K (n)Y, M) — Mapyoq, (K(n)Y, N) is a homotopy
equivalence.

(d) For every integer m < 0, composition with « induces an isomorphism of abelian
groups
Exty (K (n)Y, M) - Extg(K(n)",N).

(e) For every integer m, composition with « induces an isomorphism of abelian groups

Extg (K (n)Y,M) — Extz(K(n)",N).

(f) The map « induces an isomorphism of homotopy groups
T (K(n) ®p M) — m(K(n) ®g N).

(9) The map « is a K(n)-local equivalence: that is, the induced map K(n) g M —
K(n)®g N is an equivalence.

The implications (a) < (b) = (¢) < (d) < (e) < (f) < (g) are easy. The implication
(c) = (b) follows from the fact that every molecular E-module can be obtained as a
direct sum of K(n)Y and XK (n)Y, and the implication (e) = (d) follows from the
periodicity of E. O

It follows from Proposition [£.2.4] that the restricted Yoneda embedding Sy : Modp —
Syng factors (up to homotopy) through the K (n)-localization functor L : Modg —
ModlEOC. For this reason, we will generally confine our attention to the restriction
Sy |Mod1§c, which (by slight abuse of notation) we will also denote by Sy.

Proposition 4.2.5. Let E be a Lubin-Tate spectrum. Then the restricted Yoneda
embedding Sy : 1\/Iod1§C — Synpg is a fully faithful embedding. Its essential image consists
of those synthetic E-modules X : (Mod%wl)"p — & which satisfy the following additional
condition:

(%) For every molecular E-module N, the canonical map X(XN) — QX(N) is a
homotopy equivalence.

Remark 4.2.6. The restricted Yoneda embedding Sy : 1\/Iod1§C — Synp, is not essentially
surjective. For example, if M is an E-module, then the construction

(N € Modg®) — (mo Mapyjoq,, (N, M) € Set < S)

determines a synthetic E-module, which we will denote by Sy~ [M] (see Notation [6.1.7)).
The synthetic E-module Sy¥ [M] never belongs to the essential image of the restricted
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Yoneda embedding, except in the trivial case where M is K (n)-acyclic (in which case
we have Sy[M] ~ Sy”[M] ~ 0). The truncation Sy”[M] is an example of a Milnor
module (Definition : that is, it is a discrete object of the co-category Synp. We
will carry out a detailed study of Milnor modules in §6]

Proof of Proposition[4.2.5. Let C denote the full subcategory of Syny spanned by those
functors which satisfy condition (*). Note that C contains Sy[M] for every E-module
M and is closed under limits in Syng. Moreover, for each object X € C, condition
(#) supplies a canonical equivalence 2 o X ~ X o X. Since the suspension functor ¥
induces an equivalence of Mod2°' with itself, it follows that the functor Q : C — C is
an equivalence of oo-categories. Applying Proposition HA.1.4.2.11, we deduce that the
oo-category C is stable.

Let F : Modg — C denote the functor given by F(M) = Sy[M]. The functor Sy
preserves small limits (Proposition , so that F' also preserves small limits. Since
domain and codomain of F' are stable co-categories, it follows that F also preserves finite
colimits (beware that this property is not shared by the functor Sy : Modg — Synpg).
Moreover, the functor F' also preserves filtered colimits (Proposition , and so
preserves all small colimits.

We next prove the following:

(a) Let M and N be E-modules, where N € Mod'2°. Then the canonical map
QM,N : MapModE (M7 N) - MapSynE(Sy[M]7 SY[N]) = MapC(F(M)a F(N))
is a homotopy equivalence.

To prove (a), let us regard the E-module N as fixed. We will say that an E-module
M is good if the map 6y y is a homotopy equivalence. Using Yoneda’s lemma, we
see that every molecular EF-module is good. Because the functor F' preserves small
colimits, we conclude that the collection of good FE-modules is closed under small
colimits. Let £ € Modg denote the smallest full subcategory which contains Mod2°!
and is closed under small colimits, so that every object of £ is good. Applying Corollary
HTT.5.5.2.9, we deduce that the inclusion £ — Modg admits a right adjoint: that is,
every object M € Modg fits into a fiber sequence M’ — M — M”", where M’ € £ and
Mapyjoq,, (P, M") is contractible for each P € £. In particular, the synthetic £-module
Sy[M"] vanishes. Applying Proposition we deduce that M” is K (n)-acyclic. We
therefore have a commutative diagram

0
MapModE (Ma N) ﬂ) MapSynE (SY[M]a SY[N])

l Onrr N l

Mapyjod, (M, N) — Maps,, , (Sy[M’], Sy[N])
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where the vertical maps are homotopy equivalences (by virtue of our assumption that
N belongs to ModlEOC). Since the map 03 n is a homotopy equivalence, we conclude
that 0y, is also a homotopy equivalence. This completes the proof of (a).

Note that the functor F': Modg — C factors as a composition

Modg 2 Modge LN

where F' = F |M0dlEoc. The functor F also preserves small colimits, and (a) guarantees

that F is faithful. Using Corollary HTT.5.5.2.9, we deduce that F' admits a right adjoint
G : C — Mod%°. Note that for every object X € C and every molecular E-module M,
we have canonical homotopy equivalences

X (M) ~ Mapg(F(M), X) ~ MapModlEoc(M,a(X)).

It follows that G is conservative, so that F' and G are mutually inverse equivalences of
co-categories. O

4.3 Hypercoverings

We now study a special class of colimits in Modg which are preserved by the
restricted Yoneda embedding Sy : Modg — Synp.

Definition 4.3.1. Let F be a Lubin-Tate spectrum, let A be an atomic E-algebra, and
let M, be an augmented simplicial object of Modz. We will say that M, is A-split if
A®p M, is a split augmented simplicial object of the oo-category LMod 4 (see Definition
HA.4.7.2.2).

Remark 4.3.2. Let A be an atomic E-algebra and let M, be an augmented simplicial
object of Modg. If M, is A-split, then M, ®g N is also A-split, for every E-module N.

Proposition 4.3.3. Let E be a Lubin-Tate spectrum, let A be an atomic E-algebra,
and let M be an E-module. Then there exists an A-split augmented simplicial object
M, of Modg such that M _1 = M and M, is quasi-molecular for n > 0.

Proof. Let G : Modg — LMod 4 be the functor given by G(N) = A®g N. Since A is
dualizable as an E-module, the functor G admits a left adjoint F' : LMod4 — Modg,
given concretely by the formula F(X) = AY ®4 X. Set U = F o G, so that U is a
comonad on Modg. Then the construction My = U¥+1(M) determines an augmented
simplicial object with the desired properties (note that the functor F carries each object
of LMody4 to a quasi-molecular object of Modg). O
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Proposition 4.3.4. Let E be a Lubin-Tate spectrum and let M, be an augmented
simplicial object of Modg. Suppose that there exists an atomic E-algebra A such that
M, is A-split. Then Sy[M.] is a colimit diagram in the co-category Synpg.

Proof. We prove a stronger assertion: for every molecular F-module NV, the augmented
simplicial space Sy[M,](N) = Mapyoq,, (IV, M,) is a colimit diagram. Since the category
A°P ig sifted, the collection of those objects N € Modg which satisfy this condition is
closed under finite coproducts. We may therefore assume without loss of generality that
N ~ ¥™AY | where m is an integer and AY denotes the E-linear dual of A. In this
case, we have an equivalence Mapyjoq, (N, M.) ~ QP (A ®p M,), which is a split
augmented simplicial object of S by virtue of our assumption that M, is A-split. [

Corollary 4.3.5. Let E be a Lubin-Tate spectrum and let L : Modp — Mod'2® denote
a left adjoint to the inclusion functor. Let M, be an augmented simplicial object of
Modpg. If there exists an atomic E-algebra A for which M, is A-split, then LM, is a
colimit diagram in the co-category Modlﬁc.

Proof. Combine Propositions [£.3.4] and [£.2.5] O

4.4 Smash Products of Synthetic F-Modules

Throughout this section, we let E denote a Lubin-Tate spectrum. We regard the
co-category 1\/Iodlj.§;)C as equipped with the symmetric monoidal structure given by the
localized smash product ®g (see . Our goal in this section is to construct a
compatible symmetric monoidal structure on the co-category Syng of synthetic E-

modules. Our starting point is the following:

Proposition 4.4.1. Let E be a Lubin-Tate spectrum. If M and N are molecular
E-modules, then the relative smash product M ®g N is also molecular.

Proof. Using the criterion of Corollary [3.6.4] we see that if M is quasi-molecular and N
is an arbitrary F-module, then the relative smash product M ®g N is quasi-molecular.
If M and N are perfect E-modules, then M ®g N is perfect. The desired result now
follows from Remark [3.6.14] O

Corollary 4.4.2. The symmetric monoidal structure on ModljgC restricts to a nonunital

symmetric monoidal structure on the full subcategory Mod%ml. In other words, there
is an essentially unique nonunital symmetric monoidal structure on the oo-category
Mod®°! for which the inclusion Mod2®' < Mod'9® has the structure of a nonunital
symmetric monoidal functor.

Warning 4.4.3. The nonunital symmetric monoidal structure on Mod2°! cannot be
promoted to a symmetric monoidal structure (note that the module E is not molecular).
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Applying the constructions of §HA.4.8.1 to the oo-category of synthetic F-modules
Syng = Px(ModE) we obtain the following result:

Proposition 4.4.4. Let E be a Lubin-Tate spectrum. Then there is an essentially unique
nonunital symmetric monoidal structure on the co-category Syng with the following
features:

(a) The Yoneda embedding j : 1\/[0d]j{;101 — Syng is a nonunital symmetric monoidal
functor.

(b) The tensor product functor Syng x Syny — Syng preserves small colimits sepa-
rately in each variable.

Moreover, this nonunital symmetric monoidal structure is characterized by the following
universal property:

(¢) Let C be a presentable co-category equipped with a nonunital symmetric monoidal
structure. Assume that the tensor product C x C — C preserves small colimits
separately in each variable, and let LFung?u(SynE,C) denote the oo-category of
nonunital symmetric monoidal functors from Syng to C which preserve small colim-
its. Then composition with j induces a fully faithful embedding LFunf?u(Syn 5C) —
Fun® (Mod°!, C), whose essential image is spanned by those nonunital symmetric
monoidal functors F : ModgOl — C which preserve finite coproducts.

Notation 4.4.5. Let E be a Lubin-Tate spectrum. We let A : Syng x Syngp — Syng
denote the tensor product functor underlying the nonunital symmetric monoidal structure

of Proposition [£.4.4]

Applying part (¢) of Proposition in the case C = Mod%®, we deduce the
following:

Corollary 4.4.6. There is an essentially unique nonunital symmetric monoidal functor
F:Synp — ModlEOC with the following properties:

(a) The functor F preserves small colimits.

(b) The composite functor Mod B! 7, Syng EiN Mod¢ is equivalent to the inclusion
(as nonunital symmetric monoidal functors from Mod2°! to Modla®).

Unwinding the definitions, we see that the functor F' of Corollary can be
identified with the left adjoint of the restricted Yoneda embedding Sy : Modg — Syng
of Construction It follows formally that Sy inherits the structure of a laz nonunital
symmetric monoidal functor from ModlgC to Syng. However, we can say more:
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Proposition 4.4.7. The lax nonunital symmetric monoidal functor Sy : ModIEOC —
Syng is a nonunital symmetric monoidal functor. In other words, for every pair of
objects M, N € Mod®, the canonical map parn : Sy[M] A Sy[N] — Sy[M®gN] is an
equivalence of synthetic E-modules.

Proof. Let A be an atomic E-algebra (see Proposition . Applying Proposition
we can choose a A-split augmented simplicial E-module M,, where M _; = M
and M, is quasi-molecular for each n > 0. Note that M, ®g N is also A-split (Remark
. Applying Proposition , we deduce that the augmented simplicial objects
Sy[M.] and Sy[M.®g N| ~ Sy[M.®gN] are colimit diagrams in the co-category Syn .
Consequently, we can identify pps,x with a colimit of morphisms of the form PRI, N
for n > 0. We may therefore replace M by M, and thereby reduce to the case where
M is quasi-molecular. Note that for fixed N, the construction M — pj; y commutes
with filtered colimits. Since every quasi-molecular E-module can be written as a filtered
colimit of molecular E-modules, we may further reduce to the case where M is molecular.
Applying the same argument with the roles of M and N reversed, we can reduce to
the case where N is also molecular. In this case, the desired result follows immediately
from the definitions. O

We now construct a unit with respect to the tensor product on Syng.

Notation 4.4.8. Let E be a Lubin-Tate spectrum. We let 1 denote the synthetic
E-module given by Sy[E].

Lemma 4.4.9. Let E be a Lubin-Tate spectrum. Then the construction X — 1 A X
determines a functor Syng — Syng which is homotopic to the identity.

Proof. Since precomposition with the Yoneda embedding j : Mod2®' — Synj, induces
a fully faithful embedding LFun(Syng, Syng) — Fun(Mod®2°!, Syny), it will suffice to
show that the functors 7 and 1 A j are equivalent: that is, to show that there is an
equivalence Sy[M] ~ Sy[E] A Sy[M] depending functorially on M € Mod°!. This is a
special case of Proposition [1.4.7] O

Proposition 4.4.10. Let E be a Lubin-Tate spectrum. Then the co-category Syng
admits an essentially unique symmetric monoidal structure extending the monunital
symmetric monoidal structure of Corollary[{.4.6, Moreover, the unit object of Syng can
be identified with 1 = Sy[E].

Proof. Combine Lemma with Corollary HA.5.4.4.7 . O

Variant 4.4.11. Let F be a Lubin-Tate spectrum. Then the nonunital symmetric
monoidal functor Sy : ModlEOC — Syng can be promoted, in an essentially unique way,

to a symmetric monoidal functor.
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Proof. By virtue of Corollary HA.5.4.4.7, it suffices to observe that the functor Sy
carries the unit object E € Mod2® to the unit object 1 = Sy[E] of Synp. O

4.5 Truncated Synthetic F-Modules

Let E be a Lubin-Tate spectrum, which we regard as fixed throughout this section.
In we proved that the restricted Yoneda embedding Sy : ModlEo'3 — Synp induces
an equivalence of the co-category ModlﬁC with a full subcategory of the co-category
Syng of synthetic E-modules (Proposition . In this section, we consider some
other full subcategories of Syng which will play an important in our calculation of the
Brauer group Br(E).

Definition 4.5.1. Let n > 0 be an nonnegative integer. We will say that a synthetic
E-module X is n-truncated if, for every molecular F-module M, the space X (M) is
n-truncated (that is, the homotopy groups 7, (X (M), x) vanish for m > n and every
choice of base point z € X(M)). We let Syn" denote the full subcategory of Synp
spanned by the n-truncated synthetic F-modules.

Remark 4.5.2. A synthetic F-module X is n-truncated in the sense of Definition
if and only if it is n-truncated when viewed as an object of the co-category Syng: that
is, if and only if the mapping space MapsynE(Y, X) is n-truncated, for every synthetic
E-module Y.

Remark 4.5.3. Let n > 0 be an integer. Then the inclusion functor Syny" —
Syng admits a left adjoint 7<, : Syng — Synf;", given concretely by the formula
(T<n X)(M) = 7<n X (M).

Remark 4.5.4. Let M be an E-module and let n be a nonnegative integer. Then the
associated synthetic E-module Sy[M] € Syng is n-truncated if and only if it is zero
(this follows immediately from the criterion of Proposition

Remark 4.5.5. We will carry out a detailed analysis of the category Syn§0 in
We now study the composite functor
(T<n ©Sy) : Modg — Syn%",

where n is a nonnegative integer. Unlike the functor M — Sy[M] itself, the composite
functor 7«, o Sy is not fully faithful. However, it is close to being fully faithful provided
we restrict our attention to quasi-molecular E-modules.

Remark 4.5.6. Using Proposition we see that the functor
(T<n 0 Sy) : Modg — Syn3"

preserves filtered colimits and arbitrary coproducts.
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Proposition 4.5.7. Let n = 0 be an integer and let M, N € Modg. If M is quasi-
molecular, then the canonical map

0 : Mapyjod, (M, N) — Mapg,<n (< Sy[M], 7<n Sy[N])

exhibits the mapping space MapSynE”(Tgn Sy[M], 7<n Sy[N]) as an n-truncation of
MapModE(M,N).

Proof. Write M as a coproduct @ M,, where each M, is molecular. Using Remark
we can write 6 as a product of maps

Oo MapModE (MOH N) - MapSynE” (TSTL SY[Ma]a T<n SY[N])
It will therefore suffice to show that each of the maps 6, exhibits
Mapgy,<n (T<n Sy[Ma], 7<n Sy[N]) ~ Mapgy,,  (Sy[Ma], 7<n Sy[N])

as an n-truncation of the mapping space Mapyoq,,(Ma, V). This follows immediately
from the definition of the synthetic E-module <, Sy[N]. O

We now prove a dual version of Proposition [4.5.7], which is a bit less formal.

Proposition 4.5.8. Let n = 0 be an integer and let M, N € Modg. If N is quasi-
molecular, then the canonical map

0: MapModE (M’ N) - :[\/Ia“pSynEn (TSn SY[M]> T<n SY[N])

exhibits the mapping space Mapsynén(’rgn Sy[M], 7<n Sy[N]) as an n-truncation of
MapMOdE (M, N)

Proof. Fix an atomic algebra A € Alg(Modg) (Proposition [3.5.1). Using Proposition
we can choose a A-split augmented simplicial F-module M, where M _; = M
and M, is quasi-molecular for n > 0. Let M, be the underlying simplicial object of M,.
Then the map 6 fits into a commutative diagram

T<n Mapyjoq,, (M, N) Mapgyy , (T<n Sy[M], 7<, Sy[N])

| |

Tot <, Mapyjoa,, (Me, N) — Tot Mapgyy, . (T<n Sy[Ma], T<n Sy[N]).

The bottom horizontal map is a homotopy equivalence by virtue of Proposition
We will complete the proof by showing that the left and right vertical maps are also
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homotopy equivalences. For the right vertical map, this follows from Proposition [£.3.4]
To prove that the left vertical map is a homotopy equivalence, it will suffice to show
that the augmented cosimplicial space T<, Mapyoq,, (M,,N) is a limit diagram in the
oo-category S. In fact, we claim that it is a split augmented cosimplicial object of S.
To see this, note that our assumption that N is quasi-molecular guarantees that we can
promote N to a left A-module object of Modg. We therefore have an equivalence of
augmented cosimplicial spaces

T<n MapModE (Mﬁa N) = T<n MapLModA (A QF M., N>7

the desired result now follows from our assumption that M, is A-split. O
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Chapter 5

Representations of Exterior
Algebras

Let E be a Lubin-Tate spectrum, let Syngy denote the co-category of synthetic
E-modules, and let Syng € Syng denote the full subcategory spanned by the discrete
objects. In we will prove that Syng is equivalent to the abelian category of (Z/27Z)-
graded modules over an exterior algebra A*(V), where V ~ (m/m?)V is the Zariski
tangent space to the Lubin-Tate ring moE at its maximal ideal m < mgE (Theorem
[6.6.6). To prove this result (and to make effective use of it), we will need some purely
algebraic facts about (graded) modules over exterior algebras, which we have collected
in this section.

5.1 Conventions

We begin by establishing some conventions.

Notation 5.1.1. Throughout this section, we let K, denote a commutative graded
ring with the following properties:

(a) Every nonzero homogeneous element of K is invertible.
(b) The graded component K, is nonzero if and only if n is even.

We let k = K denote the subring of K, consisting of elements of degree zero. It follows
from (a) and (b) that k is a field, and that K, is isomorphic to a Laurent polynomial
ring x[t*!] where t is homogeneous of degree 2. Beware that this isomorphism is not
canonical (it depends on the choice of a nonzero element t € K»).
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Example 5.1.2. Let F be a Lubin-Tate spectrum and let m € 7w F be the maximal
ideal. Then the graded ring K, = (m+F)/m(m«E) satisfies the requirements of Notation
For our ultimate applications, this is the example of interest.

Notation 5.1.3. We let Mod%>k denote the abelian category of Z-graded modules over
K. We will refer to the objects of Mod%& simply as graded K.-modules. Note that the
construction V — (Vo @ V1) determines an equivalence of categories Mod%>X< — Vectg';
here Vect&" is the category of (Z/2Z)-graded vector spaces over r (see §2.8).

Notation 5.1.4. Let V be a graded K,-module. For every integer n, we let V|[n]
denote the graded K,-module given by the formula V[n],, = V;,_,. Note that if n is
even, we have a canonical isomorphism V[n] ~ V ®, K_,.

If V and W are graded K,-modules, then the tensor product V ®x, W inherits the
structure of a graded K,-module. The construction (V,W) — V ®g, W determines
a monoidal structure on the category Modi*. We will regard Mod*%* as a symmetric
monoidal category by enforcing the usual Koszul sign rule: for graded K,-modules V/
and W, the symmetry constraint oyw : V®gr, W ~ W®k, V is given by oyw (vQw) =
(-1)¥(w®w) for ve V;, we W;.

Remark 5.1.5. Suppose we are given a nonzero element ¢t € Ks, which determines
an isomorphism of graded rings x[t*!] ~ K. It follows that there is a unique ring
homomorphism 6 : K, — « which is the identity on x and satisfies #(¢) = 1. In this case,
extension of scalars along 6 induces an equivalence of symmetric monoidal categories
F: Modg* — Vect®". Note that the underlying equivalence of categories (obtained by
ignoring monoidal structures) is isomorphic to the functor V +— V@ V3 of Notation
0. 1.0l

Warning 5.1.6. Let F': Mod%* — Vect®" be the equivalence of categories described in
Notation Then F' does not canonically admit the structure of a monoidal functor.
It is not hard to see that promoting F' to a monoidal functor is equivalent to choosing
a nonzero element t € Ky (with the inverse equivalence given by the construction of

Remark [5.1.5]).

5.2 Exterior Algebras

Throughout this section, we let K, denote a graded ring satisfying the requirements
of Notation and we let kK = Ky be the underlying field.

Notation 5.2.1. Let V be a vector space over k. We let /A\*(V) denote the exterior
algebra on V. We regard A* (V) as a Z-graded Hopf algebra over r, where each element
v € V is a primitive element of degree (—1). We let /\}X}* (V') denote the tensor product
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Ky ®x /\*(V), which we regard as a Z-graded Hopf algebra over K, (in other words,
as a Hopf algebra object of the abelian category Modﬁ*).

Remark 5.2.2 (Duality). In the situation of Notation suppose that the vector
space V is finite-dimensional. In this case, the exterior algebra /\}}* (V) is a dualizable
object of Modig*. It follows that the dual of /\?(* (V) inherits the structure of a Hopf
algebra object of Mod%‘. In fact, there is a canonical Hopf algebra isomorphism
Nk, (V)Y =~ Nk, (V'), where V! = Hom,(V, K_3). This isomorphism is uniquely
determined by the requirement that the composite map

VeV - AL ek, AL (V)

*

AVRUSL:TAN(OX

Ky

12

-~ K,
coincides with the tautological pairing V ®, V' — K_.

Remark 5.2.3. Let t be a nonzero element of K5, and let F' : Modi* — Vect8" be
the symmetric monoidal equivalence of Remark For every vector space V over k,
we have a canonical isomorphism F(A% (V)) =~ A} in the category of (Z/2Z)-graded
Hopf algebras over k.

In the situation of Notation the bialgebra structure on /\;{* (V) is unique in
the following sense:

Proposition 5.2.4. Let H be a bialgebra object of Mod%&. Suppose that there exists
an isomorphism of graded K -algebras H ~ /\}* (V), for some finite-dimensional vector
space V' over k. Then there also exists an isomorphism of bialgebras H ~ /\}}* (V).

Remark 5.2.5. In the statement of Proposition we do not assume a priori that
the comultiplication on H is (graded) commutative: this is part of the conclusion.

Proof of Proposition[5.2.7. Since V is finite-dimensional, the existence of an algebra
isomorphism o : A% (V) — H guarantees that H finite-dimensional in each degree.
Let HY denote the dual of H (in the symmetric monoidal category Modi*), so that
HY inherits the structure of a graded bialgebra over K. Let ¢ : H — K, be the counit
map, let I be the kernel of ¢, and let I/I? be the space of indecomposable elements
of H. Note that there is a unique graded K-algebra homomorphism /\Z* (V) - K,
(which annihilates each element of V). Consequently, o induces isomorphisms

AN (V)~1 K@V~
Ke
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in the category of graded K,-modules, where we regard V as concentrated in degree
(—1). Let W < H" be the subspace of primitive elements, so that we have a canonical
isomorphism W ~ K, ®, VV. It follows that W is concentrated in odd degrees.
For every pair of elements w,w’ € W, the supercommutator ww’ + w'w € HY is a
primitive element of even degree, and therefore vanishes. It follows that the inclusion
W — HVY extends to a graded algebra homomomorphism j : /\}*(W_l) — HY.
Since W consists of primitive elements, the map 3 is a bialgebra homomorphism. Set
W’ = Hom, (W_1, K_3). Passing to duals, we obtain a bialgebra homomorphism

Voo, * Vo * '
Y H = N\ (W) =~ (W)
(where the second isomorphism is supplied by Remark [5.2.2). By construction, the com-

posite map /\}}* (V) S H £, /\}}*(W’ ) induces an isomorphism on indecomposables
and is therefore an isomorphism. Since « is an isomorphism, it follows that 5 is also
an isomorphism. ]

Definition 5.2.6. Let V' be a vector space over k. We let M(V') denote the abelian
category of Z-graded modules over the exterior algebra /\?(* (V).

Remark 5.2.7. Let V be a vector space over k. Unwinding the definitions, we
see that the datum of an object M € M(V) is equivalent to the datum of a pair
(M, {dy}vev), where M, is a graded K,-module and {d,},ey is a collection of K,-linear
maps d, : My — M,_ satisfying the identities

=0 dyyy =dy+dy  dy, = \d,.
Remark 5.2.8. Let V be a vector space over k. The Hopf algebra structure on the

exterior algebra /\;{* (V) determines a symmetric monoidal structure on the category
M(V). We will denote the underlying tensor product functor by

Rk, : MV) x M(V) - M(V).
Concretely, it is described by the formula

(M {du}vev) @ty (My, {d) }oev) = (M @, My, {dy}oev),
where d” is given by the graded Leibniz rule d”(z ®y) = (dy(2) ®y) + (—1) (z @ d,,(y))
for x € M;.

Remark 5.2.9. Let V be a vector space over k. We let Alg(M (V")) denote the category
of associative algebra objects of M(V) (where M(V) is equipped with the symmetric
monoidal structure of Remark [5.2.8)). Concretely, we can identify objects of Alg(M(V))
with pairs (Ax, {dy}vev ), where A, is a graded K,-algebra and {d,},ev is a collection
of K,-linear derivations A, — A._1 satisfying the identities

B =0 dyy=dy+dy  dy, = \d,.
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5.3 Clifford Algebras

Throughout this section, we let K, denote a graded ring satisfying the requirements
of Notation and we let k = K be the underlying field. For each vector space V
over k, we let M(V') denote the abelian category of Definition [5.2.6]

Definition 5.3.1. Let V be a finite-dimensional vector space over k. We will say that
an object M € M(V) is atomic if, as a module over the exterior algebra A% (V), it is
freely generated by a single homogeneous element of degree dimy (V).

We will say that an algebra A € Alg(M(V)) is atomic if it is atomic when regarded
as an object of M(V). We let Alg*™ (M (V)) denote the full subcategory of Alg(M(V))
spanned by the atomic algebra objects of M(V).

Our goal in this section is to show that the category Alg*™(M(V)) has a very
simple structure (Corollary [5.3.6)).

Construction 5.3.2 (Clifford Algebras). Let V' be a finite-dimensional vector space
over £ and let ¢ : V¥ — K> be a quadratic form. We let Cl, (V") denote the quotient of
the free K,-algebra generated by K, ® V'V, subject to the relations w? = ¢(w) for each
we VY. We regard Cl (V") as a graded K,-algebra, where each generator w e V'V is
homogeneous of degree 1. We refer to Cl, (V") as the Clifford algebra of q.

For each v € V, we let d,, : Clg(VV), — Clg(V")s—1 denote the unique K-linear
derivation satisfying the identity d,(w) = (v, w), for v € V and w € V'V (here (v,w) € k
denotes the scalar obtained by evaluating w on v). An elementary calculation shows
that d2 = 0 for each v € V, so we can regard (Cl,(V'"), {dy,}vsev) as an algebra object of
the category M(V).

Remark 5.3.3. Let ¢ : VYV — K5 be as in Construction 2, and let ¢ be a nonzero
element of Ky. Then the symmetric monoidal equivalence Modgr — Vect8" of Notation
carries Cly (V') to the usual (Z/2Z)-graded Clifford algebra of the quadratic form
t g : V'V — k (see Example [2.8.6)).

Remark 5.3.4. Let ¢ : V¥ — K3 be as in Construction [5.3.2] The following conditions
are equivalent:

(a) The quadratic form ¢ is nondegenerate: that is, the associated bilinear form
b(z,y) = q(z +y) — q(x) — q(y) induces an isomorphism VY — Ky ®, V

(b) The Clifford algebra Cly(V'") is an Azumaya algebra object of the symmetric
monoidal category M (V).

This follows immediately from Remark and Example

Proposition 5.3.5. Let V' be a finite-dimensional vector space over k. Then:
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(1) For each quadratic form q : VY — mo K, the Clifford algebra Cly(V'') is an atomic
algebra object of M(V').

(2) Let A be an atomic algebra object of M(V'). Then there exists an isomorphism
A~ Cly(VV), for some quadratic form q: V" — mK.

(3) Let q,q' : VY — mK be quadratic forms. Then there exists a morphism from
Cly(VY) to Cly(VY) (as algebra objects of M(V')) if and only if ¢ = ¢'. If such a

morphism exists, then it is unique (and is an isomorphism).

Corollary 5.3.6. Let V be a finite-dimensional vector space over k. Then the con-
struction q¢ — Clg(V'Y) induces an equivalence of categories from the set of quadratic
forms q : VY — Ks (which we regard as a category having only identity morphisms) to
the category Alg*™(M(V)) of atomic algebras in M(V).

Proof of Proposition[5.3.5, We first prove (1). Let ¢ : V¥ — K3 be a quadratic form.
Let {vi}1<i<n be a basis for V' and {v;” }1<i<n the dual basis for VV. For 1 < i < n,
let d, denote the associated derivation of Cly(V') (see Construction [5.3.2). For each
I={i1<iag<---<igx}<{l,...,n}, we define

vf =y € Cly(VY)  dr = dy, dyy, - dy, -

Note that the elements v)” form a basis for Cl,(V'") as a module over K,. A simple
calculation shows that d[’U{vl o} = +v7, where I={1,...,n} — I denotes the comple-

ment of I. It follows that the element vy} € Cly(VY)y, freely generates Cl, (V") as

a module over A% (V), so that Cl, (V") is atomic.

We next prove (2). Let A = (Ax, {dy}vev) be an atomic algebra object of M(V).
We will abuse notation by identifying K, with its image in A. For each element w e V'V,
set wt = {v eV :{v,w) =0} and let A denote the subalgebra of A consisting of those
elements which are annihilated by the derivations {d,},c,, .. Our assumption that A is
atomic guarantees that there is a unique element w € A} such that d, (@) = (v, w) € &,
and that A¥ ~ K, ® K,w. In particular, the element w? € AY belongs to K. The map
(we VV) — (w? e K3) determines a quadratic form ¢ : V¥ — K. By construction,
there is a unique graded K,-algebra homomorphism p : Cly(VY) — A, satisfying
p(w) = w for we VY. For each v € V, let us abuse notation by using the symbol d, to
also denote the corresponding derivation of Cly(V'"), so that the maps pod, and d, o p
are K-linear derivations of Cly(V'"v) into A,. By construction, these derivations agree
on V'V < Cly(VVY)1. Since V'V generates Cly(V'") as an algebra over K,, it follows that
pod, =d,op for each v e V: that is, p is a morphism of algebra objects of M (V).

Let x € A,, freely generate A as a module over /\}}* (V). Let I = {1,...,n} and
write p(vy) = na for some ne Aj (V). We then have dr(nz) = p(drvy) = p(£1) # 0.
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It follows that 7 is not annihilated by the product vivy--- v, € /\;(* (V') and is therefore
invertible, so that p is an isomorphism. This completes the proof of (2).

We now prove (3). Let ¢,¢' : V¥ — K3 be quadratic forms and let w be an element
of V'V. Note that, when regarded as an element of either Cl, (V") or Cly(V"), w is
characterized by property that d,(w) = {(v,w) for each v € V. It follows that any
morphism p : Cly(VY) — Cly(V'"Y) in Alg(M(V)) must restrict to the identity on V.
It follows immediately that such a morphism p is uniquely determined, and can exist
only if ¢ = ¢. O

5.4 The Fiber Functor of an Atomic Algebra

Throughout this section, we let K, denote a graded ring satisfying the requirements
of Notation and we let k£ = Ky be the underlying field.

Definition 5.4.1. Let V be a finite-dimensional vector space. We will say that a
Modi*-linear monoidal functor F': M(V) — Mod%* is a fiber functor if it preserves
small limits and colimits. The collection of fiber functors F': M(V) — Mod%* forms a
category which we will denote by Fib.

Our goal in this section is to show that the category of fiber functors Fib can be
identified with the category Alg®™(M(V)) studied in (Proposition [5.4.4)).

Construction 5.4.2. Let V be a vector space over k. For each associative algebra object
A = (Ay, {dy}vev) of the category M(V), we define a functor yia : M(V) — Mod% by
the formula

paA(M)y = Hom v (K« [n], M Qk, A).

Note that if A is an algebra object of Modi{* V)’ then the multiplication on A
K

determines natural maps

pa(M) @k, pa(N) — pa(M @, N)
which endow 4 with the structure of a lax monoidal functor.

Proposition 5.4.3. Let V' be a finite-dimensional vector space over k and let A €
Alg(M(V)). The following conditions are equivalent:

(a) The lax monoidal functor pa of C’onstruction is monoidal.
(b) The algebra A is atomic (in the sense of Definition .
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Proof of Proposition[5.4.3. Assume first that condition (a) is satisfied. Then there exists
an isomorphism 14 (Ky) ~ Ky, so that A # 0. Let A% (V)" denote the K,-linear dual
of Ak, (V). For any M € M(V), we have canonical isomorphisms

pa(/\r, (V)Y ®r, M) = Homp) (Kulnl, A\ (V)" ®k, M @k, 4)
~ Hom ) (Ak, (V)[n], M @k, A)
=~ (M ®K* A)n

Taking M = K, we obtain a canonical isomorphism pa (A%, (V)") ~ A. Since the
functor p4 is monoidal, we have A-linear isomorphisms

M®K, A ~ ,UA(/\;*(V)V ®x, M)

nal/\ s, (V)") @i, pa(M)
A R Ky ,uA(M).

10

10

In particular, if M is finite-dimensional in each degree, then A ®g, p14(M) is finitely
generated as an A-module, so that p4(M) is also finite-dimensional in each degree.
Applying this observation in the special case M = /\}k{* (V)V, we conclude that A is
finite-dimensional in each degree.

If M is a graded K,-module, we define

dimK* (M) = dimH(Mo) + dim,i(Ml) € Z>0 U {OO}
For M € M(V), the preceding calculation gives
dimg, (M) dimg, (A) = dimg, (A) dimg, (pa(M)).

Since we have shown above that 0 < dimg, (4) < o, we can divide by dimg, (A) to
obtain dimg, (M) = dimg, (pa(M)).
We now show that the functor 4 is exact. For every exact sequence

0->M >M->M' >0

in the abelian category M(V'), we evidently have an exact sequence of graded K-
modules
0 — pa(M') = pa(M) = pa(M");

we wish to show that u is surjective. Using a direct limit argument, we can reduce to
the case where dimg, (M) < co. In this case, the equality dimg, (M) = dimg, (M') +
dimg, (M") guarantees that dimg, (pa(M)) = dimg, (pa(M')) + dimg, (pa(M")), so
that the map wu is surjective as desired.
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Let AV denote the K,-linear dual of A, which we regard as an object of M(V).
Since dim ., (A) < o0, we have canonical isomorphisms g4 (M), ~ Hom yy)(AY [n], M).
Consequently, the exactness of the functor u4 guarantees that AV is projective when
regarded as a module over A%, (V). Note that every projective A%, (V)-module is
free, and the existence of an isomorphism pa(Ky) ~ K, guarantees that A is freely
generated by a homogeneous element of degree 0. It follows that A ~ /\}*(V)v is
freely generated by a homogeneous element of degree n = dim,(V'). This completes the
proof that (a) = (b).

Now suppose that (b) is satisfied; we will prove (a). Note that (b) guarantees
that A is dualizable as a graded K,-module, and that the dual AY is isomorphic to
Nk, (V) (asa A%, (V)-module). Tt follows that 14 is isomorphic to the forgetful functor
MV) - Mod%a as a functor (but not necessarily as a lax monoidal functor). We first
claim that py preserves unit objects: that is, the canonical map u : Ky — pa(Ky) is
an isomorphism. Since p (K ) is abstractly isomorphic to K, it will suffice to show
that u is nonzero. This is clear, since u is the unit map for an algebra structure on
pa(Ky) # 0.

To complete the proof that p4 is monoidal, it will suffice to show that for every pair
of objects M, N € M(V'), the canonical map

OmnN : pa(M) @, pa(N) — pa(M ®r, N).

Since the construction (M, N) — 60y ny commutes with filtered colimits, we may assume
without loss of generality that dimg, (M), dimg, (V) < c0. Because the construction
(M,N) — O n is exact in each variable, we may further reduce to the case where M
and N are simple modules over /\}}*(V) Moreover, the functor ps commutes with
shifts, so we can reduce to the case M ~ N ~ K,. In this case, we wish to show that
the multiplication map pa(Kx) ®k, 1ta(Kx) = pa(Ky) is an isomorphism. This follows
from the fact that the unit map K, — pa(Ky) is an isomorphism. O

Proposition 5.4.4. Let V be a finite-dimensional vector space over k. Then the
construction A — pa induces an equivalence of categories Alg*™ (M(V)) — Fib.

Proof. Let F: M(V) — Modﬁg* be an object of Fib. Since F'is a Mod%k -linear functor
which preserves small limits, it is given by the formula (M), = Hom ) (C[n], M)
for some object C'€ M(V'). The lax monoidal structure on F' exhibits C' as a coalgebra
object of M(V). Moreover, since F' preserves colimits, the coalgebra C is a finitely
generated projective module over /\}}* (V). Let A = C"Y be the Ky-linear dual of C,
which we regard as an algebra object of M(V). Then F' ~ p4, so our assumption
that F' is monoidal guarantees that A is atomic (Proposition . Unwinding the
definitions, we see that the construction F' — A determines a homotopy inverse to the
functor p : Alg®™(M(V)) — Fib. O
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5.5 Extensions in M(V)

Throughout this section, we let K, denote a graded ring satisfying the requirements
of Notation [5.1.1]and we let kK = K be the underlying field. Our goal in this section is to
compute some Ext-groups in the abelian category M(V'), where V' is a finite-dimensional
vector space over k.

Construction 5.5.1. Let V' be a vector space over k. For each element w e V'V, let
M, denote the direct sum K,[—1] ® K, whose elements we identify with pairs (z,y)
for z,y € K,. We regard M,, as a /\}‘(* (V)-module, where an element v € V acts on
M, via the formula v(z,y) = (v, w)(y,0). We have an evident exact sequence

0— Kyi[-1] > My > Ky — 0
in the abelian category M(V'), which determines an extension class
Y(w) € Bxtlyy (K, Ku[-1]).
Our next goal is to show that Construction [5.5.1] induces a vector space isomorphism
v VY = Extly ) (K, Ko[1]).
For later reference, it will be convenient to formulate a stronger version of this result.

Notation 5.5.2. Let V be a vector space over k. For every pair of integers i,j € Z,
we let H"/(V)) denote the group Ext)y (K, K«[j]) (by convention, these groups
vanish for i < 0). Note that the canonical isomorphisms K,[j] ®x, K.«[j'] determine a
multiplication map

HI(V) x H (V) = Extiy)(Ka, Kalf]) x Extiy ) (K, Ka[j'])
- EXti\tli(IV)(K*vK*[j +7')
sz'+z‘/,j+j/(V)

which endows H** (V') with the structure of a bigraded ring; moreover, it satisfies the
bigraded commutative law

vy = (—1)" 9 yz for z € HY (V) and y € H' 7' (V)
Note that we have a canonical isomorphism of graded rings H%*(V) ~ K_,.

Construction 5.5.3 (The Koszul Complex). Let V' be a finite-dimensional vector
space over k. For every pair of integers m and n, we let K'(V) denote the graded
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vector space given by Sym™ (V") ®, A" "(V"). We regard the sum @, , K7'(V) as
a commutative differential (bi)graded algebra, whose differential d of bidegree (1,0) is
given on generators by the identity map

K0 = A7) 5 sym () = KL(V),
We regard the pair (K}, d) as a cochain complex
KLV) S KL (V) S K2(V) = -
in the category of Z-graded vector spaces over k.

Lemma 5.5.4. Let V be a finite-dimensional vector space over k. Then the unit map
k — Ki(V) is a quasi-isomorphism. In other words, the Koszul complex

KLUV) 5 K (V) S KE(V) — -
is an acyclic resolution of k < K2(V).

Proof. Decomposing the Koszul complex K3 (V) as a tensor product, we can further
reduce to the case where V' is one-dimensional, so that the exterior algebra A*(V") can
be identified with the algebra A = k[e]/(€?). In this case, the Koszul complex k¥ (V)
can be identified with the acyclic chain complex A S A 5 A4 5 ... . O

Remark 5.5.5. Let V be a finite-dimensional vector space over k. For each n > 0,
we can identify the nth term of the Koszul complex K} (V) with the graded vector
space Hom, (A*(V), Sym™(VV)[n]), where A\*(V) is equipped with the grading where
each element of V is homogeneous of degree (—1). In particular, each K} (V) can be
regarded as a graded module over A*(V), and the differentials of the Koszul complex
are \*(V)-linear.

Proposition 5.5.6. Let V' be a finite-dimensional vector space over k. Then the map
v VY > Ext}\/l(v)(K*, K.[—1]) of Construction extends to a collection of maps

Yij: K i j ®x Sym" (V) — Extiw(v)(K*, K.[j])
which induce an isomorphism of bigraded rings K, ®, Sym* (V") — H**(V).
Proof. 1t follows from Lemma (and Remark |5.5.5)) that we can regard the chain

complex

Ky ®x ICQ(V) — Ky ®x IC}F(V) —
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as an acyclic resolution of K in the abelian category M(V'). Moreover, for each object
M e M(V), we have a canonical isomorphism

Hom gy (M, Ky @, K (V) ~ HomModir* (M, Ky ®; Sym"™(VY)[n]).

It follows that each K, ®, K%L (V) is an injective object of the abelian category M(V),
so that the Ext-groups Extjvl(v) (K, K«[j]) can be described as the cohomology of a
cochain complex whose ith term is given by

Hom vy(v) (K, Ka[j]1®x Ki(V)) = Homygoqer (Kl =], Ka @ Sym'(V¥)][i])
~ K,i,j ®H SymZ(VV)

The differentials in this chain complex are trivial (which follows either by inspection or
by considerations of degree), so we obtain isomorphisms v; j : K_;—; ® Sym‘(VV) —
EXti\/t(v) (K, K«[j]). Since the unit map K, — K}(V) is a quasi-isomorphism of
differential graded algebras, the isomorphisms ~; ; are multiplicative: that is, they give
rise to an isomorphism of bigraded rings Ky ®, Sym*(VY) ~ H**(V). We leave it to
the reader to verify that the map v; —1 agrees with the description given in Construction

b.5.1) O

5.6 Automorphisms of M(V)

Throughout this section, we let K, denote a graded ring satisfying the requirements
of Notation [.1.1jand we let kK = K{ be the underlying field. Let V be a finite-dimensional
vector space over k. Our goal in this section is to analyze the automorphism group
of M(V) as a Modi*—linear monoidal category. Our first step is to filter out those
automorphisms which arise from automorphisms of the vector space V itself.

Definition 5.6.1. Let V' be a vector space over k and let F' : M(V) - M(V) be a
Modi*—linear monoidal functor which is exact. Then F' induces a x-linear map

DF : VY 2 Ext}y) (Ku, Ki[~1]) 5 Ext}y ) (Ko, K [-1]) 2o VY,

where 7y is the isomorphism of Construction We will say that F'is normalized if
DF is the identity map.

We now refine Construction to produce some examples of normalized functors.

Construction 5.6.2. Let V be a finite-dimensional vector space over x and let
A = (As, {dv}rev) be an atomic algebra object of M(V'). For each M e M(V),
postcomposition with the map

—(idM ®K*dv) : M@K* A— M®K* A[l]
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determines a map 0, : pa(M) — pa(M)[1] in M(V). We will regard the pair
(11a(M), {0s}vev) as an object of the category M(V'), which we will denote by ud (M).
It follows from Proposition (and its proof) that the construction M > ud (M)
determines a Mod%*—linear monoidal exact functor from the category M(V) to itself.

Example 5.6.3. Let V be a finite-dimensional vector space over x and suppose we are
given a pair of quadratic forms ¢,¢' : V¥V — K. Set A = Cly(V"Y) and A" = Cly(VV).
Then the tensor product A ®x, A’ can be identified with Clygy (VY @ V'), where
q®q : VV@VY — K, denotes the quadratic form given by the formula (¢®q") (wdw') =
q(w) + ¢'(w’). The antidiagonal embedding (—id®id) : VY — V¥ ® V" induces an
isomorphism from Cl,,(VY) to u%,(A) € A®g, A’

Proposition 5.6.4. Let V' be a finite-dimensional vector space over k and let A be an
atomic algebra object of M(V). Then the functor u : M(V) — M(V') of Construction

is normalized (in the sense of Definition .

Proof. Write A = (A, {dv}vev). For w € VV, let M, be as in Construction [5.5.1}
Unwinding the definitions, we see that pa(M,,) can be identified with the collection of
those elements (z,y) € A[—1] @ A satisfying

= dyr + {(v,wyy =0 dyy =0
for all v e V and y € A;. Using the exactness of the sequence
0 — K.[-1] » pa(M,) > K. — 0,

we see that p4(M,, )1 contains a unique element of the form (z,1); here x is an element
of A satisfying d,z = (v, w) for v € V. We then compute 0,(x,1) = —(—d,(x),d,(1)) =
(v, w),0), so that pa(M,) is isomorphic to M,, as an extension of K, by K,[—1]. O

Proposition 5.6.5. Let V' be a finite-dimensional vector space over the field k, and let
Aut® (M(V)) denote the category of normalized Modf;, -linear monoidal equivalences

of M(V') with itself. Then the functor A — M(Zx of Construction determines an
equivalence of categories

Alg™™(M(V)) — Aut, (M(V)).

Proof. We first note that if A € Alg®™(M(V)), then A is isomorphic to Ni, (V)Y

as an object of M(V') (see the proof of Proposition , so that x is isomorphic
to the identity as a functor from the category M(V) to itself (though not necessarily
as a monoidal functor). In particular, ,ui is an equivalence of categories. We have
already seen that u% is a normalized Mod%g*—linear monoidal functor (Proposition
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5.6.4), so the construction A +— pg carries Alg®™(M(V)) into Aut®, (M(V)). Let
U : M(V) — Mod¥_ be the forgetful functor and let Fib be as in Definition
Then composition with U determines a functor Aut® (M(V)) — Fib. It follows from
Proposition that the composition

Alg*™(M(V)) - Aut® (M(V)) — Fib

is an equivalence of categories. Note that the category Alg®™(M(V)) is a groupoid
(Corollary , so that the category Fib is also a groupoid. We will complete the
proof by showing that the forgetful functor Aut®, (M(V)) — Fib is fully faithful.

Fix a pair of normalized Mod§;, -linear monoidal equivalences F, F : M(V) — M(V)
and let a : UoF' - UoF bea Mod%ék -linear monoidal functor; we wish to show that
a can be promoted uniquely to a Modi*—linear monoidal functor @ : F/ — F. The
uniqueness of @ is immediate. To prove existence, we can replace F' by F o F/~! and
thereby reduce to the case where F’ = id. Since the morphism « is an isomorphism
(because Fib is a groupoid), we can reduce to the case UoF = U and « = id. In this case,
the functor F is given by restriction of scalars along some map f : A% (V) — Ak, (V)
of graded K .-algebras. Because the functor F' is monoidal, the map f is a Hopf algebra
homomorphism, and therefore obtained by applying the functor /\’;(* (e) to some r-linear
map fy: V — V. Our assumption that F' is normalized guarantees that fy = idy, so
that [ is the identity functor as desired. O

Remark 5.6.6. Let V be a finite-dimensional vector space over x and let Aut® (M(V))
be defined as in Proposition Then Aut® (M(V)) is a monoidal category (with
monoidal structure given by composition of functors). The construction

(F € Autd, (M(V)), A € Alg™™(M(V))) — (F(A) € Alg™™(M(V)))

determines an action of Aut®_ (M (V)) on the category Alg®™(M(V)), and the equiv-
alence pd @ Alg®™(M(V)) — Aut® (M(V)) of Proposition is Aut® (M(V))-
equivariant. It follows that the action of Aut® (M(V)) on Alg®™(M (V) is simply
transitive.

Proposition 5.6.7. Let V be a finite-dimensional vector space over k, let QF denote
the set of quadratic forms q : V¥ — Ka, and let Aut® (M(V)) be as in Proposition
. Then the construction q — ,u%lq(vv) induces an equivalence of monoidal categories

Q — Aut® (M(V)). Here we regard the set QF as a category with only identity
morphisms, with the monoidal structure given by addition of quadratic forms.

Proof. 1t follows from Propositions |5.4.3| and |5.3.5 that the construction ¢ — ,u%lq V)
is an equivalence of categories. To show that this equivalence is monoidal, it will
suffice to show that for every pair of quadratic forms ¢,q' : V¥V — K>, the functors
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M%lq(VV)Oﬂglq/(VV) and “%lq+q/(VV) are isomorphic (as objects of Aut® (M (V))). Choose
an isomorphism “%IQ(VV)O/‘?HQ/(VV) ~ N%lq,,(VV) for some other quadratic form ¢” : V'V —
K5; we wish to show that ¢” = g+¢’. To prove this, we invoke Example to compute

Cly(VY) =~ M%lq,,(vv)(Clo(Vv))
~ N%lq(VV)(Mglq/(vv)(CIO(Vv)))
= M%lq(vv)(01Q'(Vv))
~ Clgg(VY),
so that ¢” = g + ¢’ by virtue of Proposition [5.3.5 O

Remark 5.6.8. We can extend Proposition [5.6.7]to describe the category of all Modi*—
linear monoidal equivalences of M (V') with itself: it is equivalent to the semidirect
product @ x Aut,(V'), regarded as a (monoidal) category having only identity morphisms.

Proposition 5.6.9. Let V be a finite-dimensional vector space and let A be an atomic
algebra object of M(V'). Then the construction M — A ®g, M induces an equivalence
of categories Mod — LModa(M(V)).

Proof. Let us regard A as a graded K-algebra equipped with a collection of derivations
{dy}vey of degree (—1) (see Remark [5.2.9). Unwinding the definitions, we see that
LMod4(M(V)) can be identified with the category of graded A*-modules, where A™
denotes the graded K,-algebra generated by A and /\;(* (V) subject to the relations
va + (—1)"av = dy(a) for a € Ay, and v € V (note that we have an isomorphism A" ~
A®rc, Nk, (V) of graded K,-modules). Combining the left action of A on itself with the
action of /\;{* (V) on A, we obtain a map of graded K-algebras p: AT — Endg, (A).
Moreover, Proposition [5.6.9] is equivalent to the assertion that p is an isomorphism
(Proposition [2.1.3).

Let g : VYV — mK be the quadratic form which is identically zero and let A’ =
Clg(V'") be as in Construction [5.3.2) (so that A’ is an exterior algebra over K, on the
vector space V'V, placed in degree 1). Then A’ is atomic (Proposition . Using
Remark we can choose a Mod¥; -linear monoidal equivalence of M (V') with itself
which carries A to A’. We may therefore replace A by A’ and thereby reduce to the
case where A = Cly(V'Y). In this case, the map p depends only on the vector space V.
Moreover, the construction V' +— p carries direct sums of vector spaces to tensor products
of graded algebra homomorphisms. We may therefore reduce to proving that p is an
isomorphism in the special case where dim, (V') = 1, which follows by inspection. [
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5.7 The Brauer Group of M(V)

Throughout this section, we let K, denote a graded ring satisfying the requirements
of Notation [5.1.1] and we let kK = K be the underlying field. Our goal in this section is
to describe the Brauer group of the symmetric monoidal category M(V'), where V is a
finite-dimensional vector space over k. We begin by treating the case V = 0:

Proposition 5.7.1. The Brauer group Br(Mod%;*) is isomorphic to the Brauer-Wall
group BW(k) of the field k.

Proof. A choice of nonzero element ¢t € Ko determines a symmetric monoidal equivalence
of categories Mod%* ~ Vect? (see Remark [5.1.5), hence an isomorphism of Brauer
groups Br(Mod¥ ) ~ Br(Vect¥') = BW(x). O

Warning 5.7.2. The isomorphism Br(Mod% ) — BW(x) of Proposition is not
canonical: in general, it depends on the choice of nonzero element ¢ € Ko. Put another
way, the canonical isomorphism

BW(k) ~ Br(ModiIEtil])

determines an action of the multiplicative group * on BW(k (since k* acts on the
graded ring k[t!] by rescaling the generator t), and this action is generally nontrivial.

To extend the calculation of Br(M(V)) to the case where V is nontrivial, we will
need the following algebraic fact.

Proposition 5.7.3. Let A be an Azumaya algebra object ofMod%* and letd : A[—1] —
A be a derivation of degree (—1). Then there exists a unique element a € A_y such that
dr = ax + (—1)""lza for all z € A,,.

Proof. Let M denote the direct sum A @ A[—1], which we regard as a left A-module
object of Mod%*. We endow M with the structure of a right A-module via the formula

(z,y)a = (za+ y(da), (~1)"ya)
for a € A;. We have an evident exact sequence
0—>A—-> M5 A[-1]—-0

in the category 4BModa(Mod¥ )) of A-A bimodules. Let s : A[~1] — M be left
A-module map satisfying uo s = id4j_1). Then we can write s = (sp,id) for some left A-
module map sg : A[—1] — A, which we can identify with an element a € A_;. In this case,
the map s is given concretely by the formula s(y) = (—ya,y) for y € A;. Unwinding the
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definitions, we see that s is a map of A-A bimodules if and only if a satisfies the identity
dr = ax + (—1)"za for all x € A,. Consequently, Proposition is equivalent to
assertion that u admits a unique section (in the category aABModa(Mod%))).

Let ' : Mod% — aBMod4(Mod¥%, ) be the functor given by F(M) = A ®x, M.
Since A is an Azumaya algebra object of Mod%*, the functor F' is an equivalence of
categories. We are therefore reduced to showing that the exact sequence

-1
0K, - F v " g 1] >0

splits uniquely in the abelian category Modg*. The existence of the splitting is now

obvious (the category Mod%& is semisimple), and the uniqueness follows from the
observation that there are no nonzero maps from K,[—1] to K. O

Let V be a vector space over x and let A be an algebra object of M(V'), which we

write as A = (A, {d,}vev) (see Remark [5.2.9). Using Corollary we see that A is
an Azumaya algebra object of M(V) if and only if A is an Azumaya algebra object of

Modi* )

Proposition 5.7.4. Let V be a vector space over k and let A = (A, {d,}vev) be an
Azumaya algebra object of M(V'). Then:

(a) For each element v € V, there exists a unique element a, € A_y such that
dy(z) = ayz + (—=1)"* lza, for all x € A,.

(b) The construction v — a, determines a k-linear map V- — A_j.
(¢) The construction v — a? determines a quadratic form q7:V — K_o.

Proof. Assertion (a) follows from Proposition and assertion (b) is immediate from
the uniqueness of a,. To prove (c), we note that the equation d? = 0 guarantees that
qa(v) = a? belongs to the center of A. Since A is an Azumaya algebra object of Mod%*,
the even part of the center of A coincides with K. O

Remark 5.7.5. Proposition admits a converse. Suppose that A is an Azumaya
algebra object of Modg;*, and that we are given a k-linear map p: V — A_; satisfying

p(v)? € K_5 € A5 for all v € V. Then we can promote A to an Azumaya algebra
object A = (A, {dy}ver) of M(V) by defining d,(z) = a,x + (—1)"za, for x € A,.

Theorem 5.7.6. Let QF denote the set of quadratic forms q : V. — K_o. Then the

construction [A] = [(A,{dy}vev)] — ([A], ¢z) induces an isomorphism of abelian groups
¢ : Br(M(V)) ~ Br(Mod§_ ) x QF.
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Proof. We first show that ¢ is a well-defined group homomorphism. Note that the
construction [A] ~— [A] determines a group homomorphism Br(M(V)) — Br(Mod, )
(this a special case of Proposition . It will therefore suffice to show that the map
[A] — ¢z determines a group homomorphism Br(M(V)) — QF. The proof proceeds in
several steps:

(4)

(iii)

(iv)

(v)

Let M = (M,{d,}.ev) be a nonzero dualizable object of M(V). Let End(M)
denote the endomorphism ring of M as a graded K,-module, so that each d,
can be identified with an element of End(M)_;. Then we can write End(M) =
(End(M),{Dy}vev ), where each D, is the derivation of End(M) given by D, (f) =
dyo f+ (=1)""1fod, for f € End(M),. The equation d> = 0 then shows that
the quadratic form qp A() = 0.

Let A = (A, {dy}vey) and B = (B,{d,},ev) be Azumaya algebra objects of
M(V) with associated quadratic forms ¢7,q5 : V — K_». For each v € V, let
a, € A_1 be as the statement of Proposition and define b, € B_1 similarly.
Unwinding the definitions, we can write A® B = (4 ®k, B, {d}}wev), where
di(x) = (ay + by)x + (—=1)" 1 z(ay, + by) for z € (A Rk, B)n. Since a, and b,
anticommute, we obtain ¢zo5(v) = (ay + by)? = a2 + b2 = qz(v) + ¢5(v).

Let A be an Azumaya algebra object of M (V). We then compute
0= Gpna@) = dagar = 4a + 4z
so that gzor = —q7.

Let A and B be Azumaya algebras in M (V) satisfying [A] = [B]. We then have
A®B” ~ End(M) for some nonzero dualizable object M € M(V). We then have

0= dgnaqr) = Yagp™ = 94 T 95° = 42 ~ 95

so that g5y = ¢g5. It follows that the construction [A] — g7 determines a well-
defined map of sets Br(Mod} ) — QF.

Combining (iv) and (4i), we deduce that the map [A] — ¢ is a group homomor-
phism, as desired.

We now complete the proof by showing that the group homomorphism

¢ : Br(M(V)) ~ Br(Mod% ) x QF

is an isomorphism of abelian groups. We first show that ¢ is surjective. Observe
that every Azumaya algebra A € Alg(Mod%*) can be lifted to an Azumaya algebra
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A = (A {dy}vev) € Alg(M(V)) by setting d, = 0 for each v € V, so that ¢z = 0. To
complete the proof of surjectivity, it will suffice to show that for every quadratic form
q: V — K_j, there exists an Azumaya algebra A = (A, {dy}vev) satisfying ¢z = ¢.
For this, we let Cl;(V) denote the Clifford algebra of ¢, regarded as a graded K-
algebra where each element of V' is homogeneous of degree —1. Let A = End(Cl,(V)),
and define derivations {d,}.c1y by the formulae (d,f)(z) = vf(z) + (—1)""1 f(vz) for
f € End(Cly(V))n. Setting A = (A, {dy}vev ), a simple calculation gives g5 = g.

We now show that the homomorphism ¢ is injective. Let A = (A, {dy}vev) be an
Azumaya algebra object of M(V') satisfying ¢([A]) = 0. Then [A] = 0 € Br(Mod¥_ ),
so we can write A = End(M) for some nonzero dualizable object M € Mod%*. Let
{a, € A_1}yev be as in Proposition m so that each a, can be identified with a map
M[—1] — M. We then have a2 = g5(v) = 0 for v € V, so that M = (M, {ay}yev) can
be viewed as an object of M(V'). Unwinding the definitions, we see A can be identified
with the endomorphism algebra End(M), so that [A] vanishes in the Brauer group
Br(M(V)). O
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Chapter 6

Milnor Modules

Let E be a Lubin-Tate spectrum. Our goal in this paper is to understand the Brauer
group Br(F). In this section, we introduce an abelian group BM(E) which we call the
Brauer-Milnor group of E, and construct a group homomorphism Br(E) — BM(E).
Roughly speaking, the abelian group BM(FE) captures the “purely algebraic” part of
the Brauer group Br(FE). More precisely, we can describe BM(FE) as the Brauer group
the abelian category Syng of discrete synthetic E-modules, which we will refer to as
Milnor modules. Our main results can be summarized as follows:

(a) The abelian category of Milnor modules SynfJ is abstractly equivalent, as a
monoidal category, to the category M(V') introduced in Definition here
V = (m/m?)¥ denotes the Zariski tangent space to the Lubin-Tate ring moF

(Theorem [6.6.6)).

(b) If the residue field k of E has characteristic # 2, then there exists a canonical
equivalence Syng ~ M(V') which is symmetric monoidal (Proposition .

(c) If the field k has characteristic # 2, then by combining (b) with the calculation of
we obtain an isomorphism

BM(FE) ~ BW(x) x m?/m?

(which is not quite canonical: it depends on a choice of nonzero element ¢ €
(mE)/m(mF)).

6.1 The Abelian Category Syng

We begin by introducing some terminology.
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Definition 6.1.1. Let E be a Lubin-Tate spectrum and let Syny denote the co-category
of synthetic F-modules. A Milnor module is a discrete object of Syng. We let Syng
denote the full subcategory of Syny spanned by the Milnor modules.

Remark 6.1.2. The co-category SynfJ is identical to the co-category Synf;0 defined in

.5

Remark 6.1.3. Since every object of Syng is discrete, the co-category Syng is equivalent
to (the nerve of) its homotopy category hSyng. Throughout this paper, we will abuse
terminology by not distinguishing between the oco-category Syng and the ordinary
category hSyng.

Remark 6.1.4. Unwinding the definitions, we see that a Milnor module can be identified
with a functor X : (hMod®°')°P — Set which preserves finite products.

Remark 6.1.5. According to Remark the oo-category Syny of synthetic FE-
modules is a Grothendieck prestable co-category. It follows that the category Syng of
Milnor modules is a Grothendieck abelian category. In fact, we can be more precise:
the category Syng can be identified with the abelian category of left modules over
the associative ring mg Endg(M), where M is any molecular E-module for which
moM # 0 # m M (see Remark . The main goal of this section is to obtain a
similar identification which is compatible with tensor products (see Theorem and
Proposition [6.9.1]).

Variant 6.1.6. Let E be a Lubin-Tate spectrum of height n, let M be an atomic
E-module. We will see that the category Syng can be identified with the abelian
category of graded modules over the graded ring 7, Endg (M) (see Corollary [6.4.13)),
which can itself be described as the exterior algebra on an n-dimensional vector space V'
(Proposition . Here we can think of V' as having a basis {Q"}o<;<, which is dual to
to a regular system of parameters {v; }o<i<n for the Lubin-Tate ring moE. The operators
Q' € Ext¥,(M, M) can be viewed as analogues (in the setting of Morava K-theory) of the
classical Milnor operators in the Steenrod algebra (which act on ordinary cohomology
with coefficients in Z/pZ). The terminology of Definition is motivated by this
analogy.

Notation 6.1.7. Let M be an E-module. We let Sy”[M] denote the truncation
7<0 Sy[M], More concretely, Sy”[M] is the Milnor module given by the formula

Sy”[M](N) = mo Mapyteq,, (N, M).

We regard the construction M — Sy¥[M] as a functor from the oo-category Modp of
FE-modules to the category Syng of Milnor modules.
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Proposition 6.1.8. The category Syng of Milnor modules admits an essentially unique
symmetric monoidal structure for which the truncation functor

T<0 : Synp — Syng

is symmetric monoidal (where we regard Syng, as equipped with the symmetric monoidal
structure constructed in §4.4)

Proof. This is a special case of Definition HA.2.2.1.6 (note that the truncation functor
T<o is compatible with the symmetric monoidal structure on Synpg). 0

Notation 6.1.9. For the remainder of this paper, we will regard the category Syng as
equipped with the symmetric monoidal structure of Proposition We will denote
the tensor product functor on Syng by

: Syng X Syng — SynQEp

and we will denote the unit object of Syng by 1¥. Concretely, the functor [X] is given
by the formula M XIN = 7<o(M A N).

Note that the symmetric monoidal structure on the truncation functor 7<g determines
canonical isomorphisms

T<0(X A Y) ~ (7<0X) X (T<0Y)
for synthetic E-modules X and Y, and an isomorphism 1% ~ 7<¢1 = Sy¥ [E].

Remark 6.1.10. Tt follows from Variant [4.4.11| that we can regard the functor Sy" :
Modg — Syng as a symmetric monoidal functor. Similarly, the restriction of Sy" to
the full subcategory ModIEOC is also symmetric monoidal.

Definition 6.1.11. Let E be a Lubin-Tate spectrum. We let BM(E) denote the Brauer
group of the symmetric monoidal category SynfJ of Milnor modules. We will refer to
BM(F) as the Brauer-Milnor group of E.

6.2 Atomic and Molecular Milnor Modules

Let E be a Lubin-Tate spectrum, which we regard as fixed throughout this section.
Definition 6.2.1. Let X be a Milnor module. We will say that X is
e atomic if it is isomorphic to Sy¥[M], where M € Mod is atomic.

e molecular if it is isomorphic to Sy¥[M], where M € Mody is molecular.
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e quasi-molecular if it is isomorphic to Sy© [M], where M € Modg is quasi-molecular.

Remark 6.2.2. Let M be an atomic E-module (so that M is uniquely determined
up to equivalence). Using the fact that the construction N — Sy¥[N] commutes with
coproducts (Proposition 4.2.3)), we conclude:

e A Milnor module X is atomic if and only if it is isomorphic to Sy” [M].

e A Milnor module X is molecular and only if it is isomorphic to a direct sum of
finitely many objects of the form Sy¥[M] and Sy”[2M].

e A Milnor module X is quasi-molecular and only if it is isomorphic to a direct sum
of objects of the form Sy¥[M] and Sy [EM].

Remark 6.2.3. A Milnor module X is quasi-molecular if and only if it projective as
an object of the abelian category Modg. Moreover, the abelian category Modg has
enough projective objects: that is, every Milnor module X fits into an exact sequence
0 —> X' — P — X — 0 where P is quasi-molecular.

Remark 6.2.4. Let X be a molecular Milnor module. Then X is a dualizable object
of Syng, and the dual XV is also molecular (see Remark [3.6.15]).

Using Propositions [£.5.7] and [£.5.8, we obtain the following:

Proposition 6.2.5. Let {M;}icr be a finite collection of E-modules and let N € Modg.
If either N or some M; is quasi-molecular, then the canonical map

0 MapModE (® M;, N) - Homsyng (iEI Sy(? [Ml]a Syo [N])

iel
is a bijection.

Corollary 6.2.6. Let M be an object of Modfc. Then M is quasi-molecular (in the
sense of Variant if and only if the Milnor module Sy” [M] is quasi-molecular

(in the sense of Definition .

Proof. Tt follows immediately from the definition that if M is quasi-molecular, then
Sy“[M] is quasi-molecular. For the converse, suppose that Sy”[M] is quasi-molecular.
Then there exists a quasi-molecular F-module N and an isomorphism of Milnor modules
a:SyY [M] ~ SyY [N]. Applying Proposition we can assume that « is obtained
from a morphism of E-modules @: M — N. We will complete the proof by showing
that @ is an equivalence. By virtue of Proposition it will suffice to show that @
induces an equivalence of synthetic E-modules Sy[M] — Sy N. Let n > 0 be an integer;
we will show that @ induces an isomorphism of Milnor modules m,, Sy[M ] — m, Sy[V].
When n = 0, this follows from our assumption that « is an isomorphism. The general
case follows by induction on n, since the synthetic E-modules Sy[M] and Sy[/N] both
satisfy condition (%) of Proposition O]
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Corollary 6.2.7. Let M be an object of Mod'9°. Then M is molecular (atomic) if and
only if the Milnor module Sy¥[M] is molecular (atomic).

Corollary 6.2.8. Let O be an co-operad, let Alg%mOI(hModE) denote the full subcategory
of Alg(hModg) spanned by those O-algebras A such that A(X) € hModg is quasi-
molecular for each X € O, and define Alg%mOI(Syng) < Algo(Syny) similarly. Then

the construction A — Sy“[A] induces an equivalence of categories Alg%mOI(hModE) —

Alg(égn01 (Syng) .

Example 6.2.9. Applying Corollary[6.2.§in the case where O is the trivial co-operad, we
conclude that the construction M — Sy" [M] induces an equivalence from the homotopy
category of quasi-molecular F-modules to the full subcategory of Syng spanned by
the quasi-molecular objects (this also follows directly from either Proposition or

Proposition |4.5.8)).

Example 6.2.10. Applying Corollary in the case where O is the associative
oo-operad, we obtain an equivalence between the following;:

e The category of quasi-molecular associative algebras in the homotopy category
hMOdE

. .. . (V)
e The category of quasi-molecular associative algebras in the category Syny,

Note that we have a similar equivalences for the categories of atomic and molecular
associative algebras.

Example 6.2.11. Applying Corollary in the case where O is the commutative
co-operad, we obtain an equivalence between the following;:

e The category of quasi-molecular commutative algebras in the homotopy category
hMOdE.

. . . %
e The category of quasi-molecular commutative algebras in the category Syny

Note that we have a similar equivalences for the categories of atomic and molecular
commutative algebras.

6.3 Constant Milnor Modules

Let E be a Lubin-Tate spectrum, which we regard as fixed throughout this section.
Let E, denote the graded commutative ring m. F, let m € Ey = mpF be the maximal
ideal, and let K, denote the graded commutative ring F,/mFE,. Note that K, satisfies
the hypotheses of Notation (that is, K is noncanonically isomorphic to a ring of
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Laurent polynomials x[t*!], where k = Kj is the residue field of E and ¢ is homogeneous

of degree 2).

We let 1\/[odgEr>X< denote the abelian category of graded E,-modules, and we let MOdi%>X<
denote the abelian category of graded K,-modules. We regard Mod%* and Mod%& as
symmetric monoidal categories by means of the usual Koszul sign rule, so that the
construction M — 7w, M determines a lax symmetric monoidal functor Modg — ModgEr*.

Definition 6.3.1. Let M, be a graded module over the graded ring F.. We will say
that M, is free if there exists a collection of homogeneous elements {x, € M.} which
freely generate M, as a module over E,. We let Modfbﬁ* denote the full subcategory of
ModgEr* spanned by the free graded E-modules.

Remark 6.3.2. In the setting of Definition [6.3.1} we could replace the graded ring
FE, with the graded ring K,. However, the resulting notion would be vacuous: since
every nonzero homogeneous element of K, is invertible, every graded K,-module is
automatically free.

Remark 6.3.3. Let m € Fy = mgF denote the maximal ideal. Then the construction
M, — M,/mM, determines a symmetric monoidal functor Mod%r* — Modg*. We
make the following observations:

(a) Every object of Mod%* can be written as a quotient M, /mM,, where M, € ModgEr*
is free.

(b) If M, and N, are graded F,-modules for which M, is free, then the canonical
map

is a surjection whose kernel can be identified with Homyy,qer (M, mNy).
*

Combining (a) and (b), we obtain an equivalence Modi* ~ C, where the category C can
be described as follows:

e The objects of C are free graded E,-modules.

e If M, and N, are free graded E,-modules, then the set Hom¢ (M, Ny) is the
cokernel of the inclusion map Homyg,qer (M, mN,) — Homyy, qer (M, Ny).
* *

Definition 6.3.4. Let M be an E-module. We will say that M is free if m, M is free
when regarded as a graded Ex-module, in the sense of Definition We let Mod,
denote the full subcategory of Modg spanned by the free EF-modules.

Remark 6.3.5. An F-module M is free if and only if it can be written as a coproduct
of E-modules of the form E and X F.
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Remark 6.3.6. Let M and N be E-modules. If M is free, then the canonical map
7o Mapyjoq, (M, N) — Homyy, qer (mM, 7, N) is bijective. Consequently, the construc-
*

tion M +— m, M induces an equivalence of categories hMod® ~ Moder*. Moreover, this
equivalence is symmetric monoidal.

Definition 6.3.7. Let X be a Milnor module. We will say that X is constant if
it is isomorphic to Sy”[M], where M € Mod is free. We let Syn% denote the full
subcategory of Syng spanned by the constant Milnor modules.

Remark 6.3.8. Since the construction M — Syv [M] commutes with coproducts, an
object X € Syng is constant if and only if it is isomorphic to a coproduct of objects of
the form 1V = Sy¥[E] and Sy”[ZE].

Remark 6.3.9. Since the collection of free objects of Modpg is closed under tensor
products and the functor M — Syg is symmetric monoidal, the full subcategory
Syng < Syng is closed under the tensor product functor [X] : Syng X Syng — Syng.

The following result describes the structure of the category Syn:

Proposition 6.3.10. Let M and N be free E-modules. Then the canonical map
p : 70 Mapygoa,, (M, N) — Homgyne (Sy”[M], Sy”[N])
s surjective, and its kernel is the image of the canonical map
HomMod%r* (me M, mm N) — HomMOdgEr* (meM, e N) =~ mg Mapyjoq,, (M, N).

Combining Proposition [6.3.10] with Remark we obtain the following:

Corollary 6.3.11. There is an essentially unique equivalence of symmetric monoidal
categories @ : Syng ~ Mod%;* for which the diagram

Mod, LN Modfé*
-
Syn$, — 2> Mod?(*
commutes up to equivalence.

Proof of Proposition [6.5.10, Without loss of generality, we may assume that M ~ E.
Let us identify the domain of p with mo/N. We wish to show that p is a surjection with
kernel ker(p) = m(moN). We first show that the kernel of p contains m(moN). Choose
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an element x € m and an element y € moN; we wish to show that p(zy) = 0. In other
words, we wish to show that the composite map

vanishes in the abelian category Syng. In fact, we claim that z induces the zero map
from Sy”[E] to itself. For this, it suffices to show that for every molecular E-module M,
multiplication by = annihilates the abelian group 7o Mapyjq,, (M, E) ~ moM ", which
follows from the fact that M is also molecular (Remark [3.6.15).

We now establish the reverse inclusion ker(p) € m(moN). Suppose we are given
an element y € moN =~ o Mapyjq, (E, N) with the property that the induced map
SyY[E] — Sy”[N] vanishes. Let K be an atomic E-module and let K denote its E-
linear dual, so that the induced map Sy”[E](K") % Sy“[E](K ") vanishes. Unwinding
the definitions (and using our assumption that N is free), we deduce that the composite
map

Wo(K RF E) i 7T0(K RFr N) >~ (TF()N)/m(ﬂ'()N)

vanishes, so that y € m(moN) as desired.
We now show that p is surjective. Let o : Sy”[E] — Sy”[N] be a natural transfor-
mation. Evaluating o on KV, we obtain a map

agy ik =Sy”[E](KY) = Sy”[N](K") ~ (moN)/m(mN),

which carries the unit element 1 € x to some element 7 € (moN)/m(moN). We will
complete the proof by showing that o = p(y). To prove this, we can replace a by
a — p(y) and thereby assume that av (1) = 0. We will complete the proof by showing
that a = 0: that is, the induced map ap : Sy¥[E](P) — SyY[N](P) is vanishes for
every molecular E-module P. Choose an element z € 1¥(P), which we can identify with
an element of myPY. Since P is molecular, we can choose a map f : K — P which
carries the unit element of oK to z. In this case, the vanishing of ap(z) follows from
the commutativity of the diagram

[63:¢%

SyV[EN(KY) —— Sy [N](K")
lSyO[E](fV) J{SyU[N](fV)
Sy [E](P) —==Sy"[N](P).
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6.4 The Structure of Syn}

Let E be a Lubin-Tate spectrum, which we regard as fixed throughout this section.
Let E, denote the graded commutative ring 7. F, let m € Ey = mpF be the maximal
ideal, and let K, denote the graded commutative ring F,/mFE,.

Construction 6.4.1 (Enrichment in Graded K,-Modules). Let @ : Mod% =~ Synf; <

Syng be the symmetric monoidal functor of Corollary 6.3.11} If X and Y are Milnor
modules, we let Hom(X,Y), denote a graded K,-module with the following universal
property: for every graded K,-module M,, we have a canonical bijection

HomMOdir (M, Hom(X,Y),) ~ Homsyng(q)(M*) X X,Y).
*

Note that the construction (X,Y) — Hom(X,Y), determines an enrichment of the
category of Milnor modules Syng over the symmetric monoidal category Mod%*.

Remark 6.4.2. Let X be a Milnor module. For every integer n, we let X [n] denote
the Milnor module given by the tensor product X &Sy [S"E]. We will refer to X[n]
as the n-fold shift of X. Note that if Y is another Milnor module, then the graded
Ky-module Hom(X,Y), can be described concretely by the formula Hom(X,Y), =
Homsyng (X[n],Y).

Warning 6.4.3. If X € Synjy, ~ Syny, is a Milnor module, then the n-fold shift X[n]
should not be confused with the n-fold suspension "X (which we can regard as a
non-discrete synthetic E-module).

Proposition 6.4.4. Let M and N be E-modules. If M or N is quasi-molecular, then
the canonical map

p: meMap (M, N) — Hom(Sy"”[M], Sy”[N]).
s an tsomorphism of graded E.-modules.

Proof. Replacing M by a suitable suspension, we can reduce to proving that the

canonical map
moMap (M, N) — Hom(Sy®[M], Sy’ [N])g

is bijective, which follows from either Proposition (if M is quasi-molecular) or
Proposition (if N is quasi-molecular). O

Warning 6.4.5. Proposition does not necessarily hold without the assumption
that either M or N quasi-molecular: note that the codomain of p is a graded K,-module,
but the domain of p need not be annihilated by the maximal ideal m € moE.
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Notation 6.4.6. Let X be a Milnor module. We let End(X), denote the mapping
object Hom (X, X), of Construction [6.4.1] Then End(X), is an associative algebra
object of the category Mod%‘: that is, it is a graded algebra over K.

Example 6.4.7. Let M be an E-module, and let Endg(M) € Alg(Modg) denote the
associative F-algebra classifying endomorphisms of M. Then we have a canonical map
of graded F-algebras m, Endp(M) — End(SyY[M])«, which is an isomorphism if M is
quasi-molecular (Proposition [6.4.4)).

We now elaborate on the characterization of Milnor modules given in Variant

Construction 6.4.8. Let A be a Milnor module. We let T'4 : Syng - Mod%& denote
the functor given by T'4(X) = Hom(1¥, AX X),.

Remark 6.4.9. Construction makes sense if A is any Milnor module. However,
we will primarily be interested in the case where A is an associative algebra object of
Syng (as suggested by our notation).

Remark 6.4.10. Let A be a dualizable object of Syng, with dual AY. Then the functor
T4 :Syny — Mod§ is given by the formula T'4(X) = Hom(AY, X ). It follows that
the functor I' 4 admits a left adjoint F', given concretely by the formula F(V) = AV XV
(here we abuse notation by identifying Mod%* with the full subcategory Syn% < Syng

by means of Corollary [6.3.11]).
Example 6.4.11. Let M be a molecular E-module and set A = Sy¥[M]. Then the
functor I'4 is given concretely by the formula

L 4(X), = Hom(AY, X),, = Map (Sy”[E"M V], X) = X(Z"M").

Proposition 6.4.12. Let A be a nonzero molecular object of Syng. Then the functor
I'4 induces an equivalence from the category of Milnor modules to the category of graded

left modules over End(A) (see Notation [6.4.6).

Proof of Proposition[6.4.14 Let C = LModgpq(a, (Mod%a) denote the abelian category

of graded left modules over End(A),, so we can promote I'4 to a functor G : Syng —C.
Since A is nonzero and molecular, we can write A = Sy¥[M], where M is a nonzero
molecular E-module. Using Example we see that the functor G can be described
concretely by the formula G(X), = X(X"M"). From this, we deduce the following:

(1) The functor G commutes with small colimits.

(73) The functor G is conservative (since every molecular EF-module is a retract of a
direct sum of modules of the form X"M").
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The functor G admits a left adjoint F': C — Syng, which we can describe concretely
by the formula F'(Ny) = AXgnd(a), N« (here we abuse notation by identifying graded
K,-modules with their image under the equivalence & : Mod%>X< ~ Syn%, of Corollary
6.3.11). To complete the proof, it will suffice to show that F' is fully faithful: that is,
that the unit map u : Ny — (G o F')(N,) is an isomorphism for every object N, € C.
Since the functors F' and G both preserve small colimits, the collection of those objects
N, € C for which u is an isomorphism is closed under small colimits. We may therefore
assume without loss of generality that M, is a free left End(A).-module on a single
homogeneous generator. In this case, the desired result follows immediately from the
definitions. O

Combining Proposition [6.4.12] with Example we obtain the following:

Corollary 6.4.13. Let M be a nonzero molecular E-module. Then the construction
X = {X(X"MVY)}nez determines an equivalence from the category of Milnor modules
to the category of graded left modules over 7y Endp(M).

6.5 Endomorphisms of Atomic EF-Modules

Throughout this section, we fix a Lubin-Tate spectrum E. Let m denote the maximal
ideal of moE, let K, denote the graded ring (74 F)/m(7E), and let k = (7o E)/m denote
the residue field of E. Suppose we are given an atomic F-module M. It follows from
Corollary that the category of Milnor modules Syng can be identified with the
category of modules over the graded ring m Endg(M). Our goal in this section is to
describe 7, Endg (M) more explicitly.

Proposition 6.5.1. Let E be a Lubin-Tate spectrum of height n and let M be an
atomic E-module. Then there exists an n-dimensional vector space V over k and an
isomorphism of graded K-algebras  : /\}* (V) ~ e Endg(K) (see Notation .

Proof. Let vg,v1,...,v,—1 be a system of parameters for the regular local ring mgE. For
0 < m < n, let P, denote the cofiber of the map v; : E — E (formed in the co-category
Modg), so that we have a canonical fiber sequence

gl p 9 osp.

Since each vy, is a regular element of m,FE, we have canonical isomorphisms m, P, ~
(74 E) /v (7 E). In particular, the graded 7y E-module 7, P,, is concentrated in even
degrees and annihilated by v,.

Let BZ™ denote the graded ring 7 Endg(F,,). Using the fiber sequence

Endg(P,,) — P 2> Py,
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together with our calculation of 7, F,,, we conclude that BZ™ is isomorphic to a free
(74 E) /Uy (7 E)-module on generators 1 = idp, and ,,, where (3,, € m_1 Endg(FP,,) is
given by the composition

-1
»-p, =Y, gt p,.

From this description, we immediately deduce that 32, = 0.

For0<m <n,set Qn =P Qg Qg Pn_1, and set Bém = 7 Endg(Q,,). For
k < m, we abuse notation by identifying the element ) € (BEk)_l with its image in
B5"™)_1. We will establish the following claim for each 0 < m < n:

(
(#m) The graded ring Bém is isomorphic to an exterior algebra over the commutative
ring (7. E)/(vo, ..., Um—1) on generators fy, ..., Bm—1.

Note that the statement of Proposition follows immediately from assertion (x)
(since @y, is atomic and therefore equivalent to M). We will prove (s#,,) by induction on
m, the case m = 0 being trivial. To carry out the inductive step, let us suppose that
m > 0 and that assertion (#,,—1) holds. There is a canonical equivalence of E-modules
Endg(Qm-1) ®g Endg(P,,) ~ Endg (@), which yields a convergent spectral sequence
TorT#F(B5™~1 Bx™) = B5™. Since the elements vy, . . ., v,—1 form a regular sequence
in 4 F, our inductive hypothesis guarantees that the groups Tor;r*E (BEm_l, ByZ™) van-
ish for s > 0. Consequently, the spectral sequence degenerates to yield an isomorphism
of graded rings B5™ ~ Bém_l ®nr. e BE™, from which (x,,) follows immediately. [

Corollary 6.5.2. Let E be a Lubin-Tate spectrum of height n. Then the group
1 0 10
Ethyng(l ,1 [—1])
s an n-dimensional vector space over the residue field k of E.
Proof. Combine Proposition Corollary and Proposition [5.5.6 O
Our next goal is to obtain a more intrinsic description of the vector space
1 0 10
Ethyng(l ,17[—1])
and, by extension, the vector space V appearing in Proposition [6.5.1]).

Proposition 6.5.3. Let x be an element of the maximal ideal m and let M, denote
the fiber of the map © : E — FE, so that we have a fiber sequence of E-modules
Y~ 1E — M, — E. Then the induced sequence

0— Sy’[E7'E] - Sy¥[M,] — Sy [E] — 0

is exact (in the abelian category of Milnor modules).
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Proof. Let N be a molecular E-module; we wish to show that the sequence of abelian
groups

0 — 7m0 Mapygoq, (N, 7' E) — 70 Mapygoa, (N, Mz) — mo Mapya, (N, E) — 0
is exact. Equivalently, we wish to show that the boundary maps
70 Mapyoq,, (N, ©7' E) 5 10 Mapyoq,, (N, 571 E)

0 MapModE (Na E) = 0 MapModE (Nv E)

both vanish. To see this, we note that NV is also a molecular E-module (Remark [3.6.15]),
so the homotopy groups of NV are annihilated by the maximal ideal m € myFE. O

Theorem 6.5.4. There exists a unique vector space isomorphism
. 2 1 © 10
P :m/m” — Extsyng(l ,1V[—1])

with the following property: for every element x € m having image T € m/m?, (%) is the
extension class of the exact sequence 0 — 19[—1] — Sy”[M,] — 1Y — 0 of Proposition

65,3

Proof. Tt is not difficult to show that the construction x — M, induces a (mE)-linear
map

2 - 1 Q19

Prm— Ethyng(l , 1V [—1)).

Since the codomain of 1) is annihilated by the maximal ideal m < 7y E, we see that i
descends to a map of vector spaces

Y :m/m? — Extéyng(lo, 1°[-1]).

It follows from Corollary that the domain and codomain of 1) are vector spaces of
the same (finite) dimension over k. Consequently, to show that ) is an isomorphism, it
will suffice to show that v is injective.

Choose an element x € m, and suppose that the exact sequence 0 — 19[-1] —
Sy“[M,] — 1¥ — 0 splits (in the abelian category Syng); we wish to show that z
belongs to m?. Suppose otherwise. Then we can choose a regular system of parameters
0, . .., Un—1 for the local ring moE which contains x. The proof of Proposition [6.5.1]
then shows that there exists an atomic E-module M which factors as a tensor product
M, ®g N, for some auxiliary E-module N. We then obtain

SyO[M] ~ Sy7[M,]ESy[N]
~ Sy°[N]@SyC NI

It follows that the endomorphism ring 7 Endg (M) ~ End(Sy” M), contains an invert-
ible element of degree 1, contradicting Proposition [6.5.1 O
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6.6 The Monoidal Structure of Syny,

Let E be a Lubin-Tate spectrum, which we regard as fixed throughout this section.
Our next goal is to promote the equivalence of Proposition [6.4.12] to an equivalence of
monoidal categories.

Remark 6.6.1. Let A be an associative algebra object of Syng and let ['4 : Syng —
Mod¥, be as in Construction Then I' 4 can be written as a composition

Syng Apd, Syng I Mod%*

where the first functor is lax monoidal (since A is an associative algebra object of
Syng) and I is right adjoint to the inclusion Syn%, < Syng (and therefore inherits the
structure of a lax symmetric monoidal functor). It follows that we can regard I'4 as a
lax monoidal functor from Syng to Modﬁ*.

Remark 6.6.2. In the situation of Remark [6.6.1] suppose that A is a commutative
algebra object of the category Syng. Then we can regard I'{ as a lax symmetric
monoidal functor from Syng to Modf .

Our goal is to prove the following analogue of Proposition [5.4.3}

Proposition 6.6.3. Let A be an associative algebra object of Syng. If A is atomic,
then the lax monoidal functor T'4 : Syn% - Mod%* is monoidal.

The proof of Proposition [6.6.3] will make use of the following:

Lemma 6.6.4. Let A € Alg(hModg) be atomic, and let M and N be E-modules. If M
1s perfect, then the multiplication on A induces an isomorphism

On,n 2 mMap (M, A) @4 meMap (N, A) — mMap (M Qg N, A)
of graded modules over T, A.

Proof. Let us regard N € Modg as fixed. The collection of those EF-module spectra M
for which 07 y is an isomorphism is closed under retracts and extensions. Consequently,
to show that 057, is an equivalence for all perfect E-modules M, it will suffice to show
that the map 0p y is an equivalence. Unwinding the definitions, we see that 0 y can
be identified with the endomorphism of Map (N, A) given by postcomposition with the
composite map

A~E@p AL Ay A2 A

, where e : ' — A is the unit map. Since the multiplication on A is unital, we conclude
that 0g y is an isomorphism. O
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Proof of Proposition[6.6.3 Let A € Alg(Syng) be atomic. We first show that the
functor I"4 preserves unit objects: that is, the canonical map K, — Hoim(lqp, A)y is
an isomorphism. Using Example we can choose an isomorphism A ~ Sy“[A],
where A is an atomic algebra object of the homotopy category hModg. In this case, the
desired result follows from Proposition [6.2.5

We now complete the proof by showing that, for every pair of objects X,Y € Syng,
the canonical map Oxy : T'4(X)®k, [a(Y) - T'a(XXY) is an isomorphism. Note that
for fixed Y € Syng7 the collection of those objects X for which fx y is an isomorphism
is closed under small colimits. We may therefore assume without loss of generality that
X = Syn”[M V], where M is a molecular E-module. Similarly, we may assume that
Y = SyY[N], where N € Mod is molecular. In this case, the desired conclusion is a
special case of Lemma [6.6.4] O

Our next goal is to apply Proposition [6.6.3] to construct an equivalence of monoidal
categories Syng ~ M(V), where V = (m/m?)V denotes the Zariski tangent space of the
Lubin-Tate ring and M (V) is the category of graded modules over the exterior algebra
/\}}* (V) (as in Definition . It will be useful to formulate a more precise statement.

Definition 6.6.5. Let F': Syng — M(V') be an equivalence of Mod%* -linear monoidal
categories. Then F' induces a k-linear isomorphism

-1
DF :m/m2 % Extd, o (1°]1],17) L Extly ) (Kel1], Ky) T m/m?,

where v is the isomorphism of Theorem and ~y is the isomorphism of Proposition
We will say that F' is normalized if DF is the identity map idy m2.

Our main result can now be stated as follows:

Theorem 6.6.6. There exists a normalized Mod%a -linear monoidal equivalence of

categories F : Syny — M(V).

Corollary 6.6.7. The tensor product functor [X] : Syng X Syng — Syng is exact in
each variable.

Corollary 6.6.8. The fully faithful embedding Mod%é* ~ Syng — Syng induces an
isomorphism on Picard groups. In other words, every invertible Milnor module is
isomorphic either to the unit object 1% or to its shift 1¥[1].

Proof. By virtue of Theorem [6.6.6] it suffices to observe that any invertible object M
of the symmetric monoidal category M (V) is isomorphic either to K, or to the shift
K.[1]. O
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Remark 6.6.9. Let F : Syny — M(V) be as in Theorem let M be a Milnor
module, and regard F'(M) as a graded module over the exterior algebra A% (V). Then:

(a) The Milnor module M is quasi-molecular if and only if F(M) is a free module
over /\*K* (V') on homogeneous generators.

(b) The Milnor module M is molecular if and only if F(M) is a free module over
/\}k(* (V) on finitely many homogeneous generators.

(¢) The Milnor module M is constant (in the sense of Definition [6.3.7)) if and only if
V acts trivially on F(M).

Corollary 6.6.10. Let M and N be nonzero Milnor modules. If M [XI N is constant,
then M and N are constant.

Corollary 6.6.11. Let M be a quasi-molecular Milnor module. Then M is an injective
object of the abelian category Syng.

Corollary 6.6.12. Let A be a lattice and let Q : K(A,1) — Pic(E) be a polarization.
If the Thom spectrum Thq is an atomic E-algebra, then the polarization Q is atomic

(in the sense of Definition .

Proof. 1t follows from Proposition [3.3.2] that @ is nonsingular, and therefore induces a
map
6? ‘R A — m/m?

(see Construction . We wish to show that E? is an isomorphism. Choose a
basis A1, ..., Ay, for the lattice A. Let Agp denote the Milnor module Sy [Thg], and
define Agpy,] for 1 < i < m similarly. Using Remarks [3.3.4 and [6.1.10, we obtain an
isomorphism of Milnor modules

Ag ~ Agp X K Ag,.g

(beware that this isomorphism does not necessarily respect the algebra structures on
both sides).
Write c?()\i) =1+ ; for ; € m. Using Proposition we see that each of the

cofiber sequences E = E T—h>Q[)\i] determines a short exact sequence of Milnor modules
0—1Y = Agp, — 1V[1] =0,

classified by an element of Ext;y 0 (1%[1],1%), which corresponds to the element 6?(&)
g
under the isomorphism v : m/m? ~ Extéyn@(lv, 19[—1]) of Theorem [6.5.4
E
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Set V = (m/m?)¥ and let F : Syn}, be a normalized Mod;, -linear equivalence of
monoidal categories (which exists by virtue of Theorem - The condition that F' is
normalized guarantees that each F/(Ag(y,)) can be identified with the extension of K.[1]
by K, classified by z; = CQ()\ ): that is, with the shifted exterior algebra A (x)[1],
regarded as an object of M(V') by means of the homomorphism

N, V) = A\ (%)

induced by the linear map V — & given by evaluation at Z;. It follows that

F(AQ) = F(AQ[M]) Ok OKy F(AQP‘"‘])

can be identified with the shifted exterior algebra AJ%, (x# ® AY)[m], regarded as an
object of M(V') by means of the homomorphism A% (V) — A%, (k®AY) given by
the x-linear dual of E?. Note that if Thg is an atomic E-algebra, then F(Ag) is an
atomic object of M(V') (see Remark , so that E? is an isomorphism as desired. [J

The proof of Theorem [6.6.6] will require some preliminaries.

Construction 6.6.13 (The Bialgebra Structure on End,(A)). Let A be an atomic
algebra object of Syng, let T4 : Syng — Modg be as in Construction 8 and let F':

Modg — SynE be a left adjoint to "4 (given concretely by the formula F(V) AVKV;
see Remark . Then the composition I'4 o F': Modgr — Modg K, 1sa monad T’
on the category Mod T, given concretely by the formula T (V) End,(A4) ®k, V (see

Proposition [6.4.12)).

Since the functor I' 4 is monoidal, the functor F' inherits a colax monoidal structure
for which the unit and counit maps

idModir* —TyoF Fol'y— idSyng

are natural transformations of colax monoidal functors. In particular, the functor
T = T4 o F inherits a colax monoidal structure for which the unit and multiplication
maps

id—>T ToT —>T

are colax monoidal natural transformations. It follows that the endomorphism algebra
End.(A) = T(K,) can be regarded as an associative coalgebra object of Mod%*, for
which the unit and multiplication maps

are morphisms of coalgebras: that is, End,(A) has the structure of an (associative and
coassociative) bialgebra object of the category Mod%*
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Remark 6.6.14. In the situation of Construction [6.6.13] the coalgebra structure on
End.(A) can be described more explicitly as follows. Set V' = Hom(A X A, A)y, so
that V inherits a left action of the graded ring End,(A) (via postcomposition with
endomorphisms of A) and a commuting right action of the tensor product (End(A)®k,
End,(A)) (via precomposition with endomorphisms of each factor of A). It follows
from Proposition that V is freely generated as an (End,(A4) ® End,(A))-module
by the multiplication map m : AX] A — A (which we can regard as an element of
Vo). Consequently, the left action of End.(A) on V is classified by a homomorphism of
graded K-algebras A : Endy(A) — End,(A) ® End,(A). More concretely, an equation
A(f) =2 fl® fI' in the graded vector space End,(A4) ®k, End.(A) is equivalent to the
equation fom = > mo (f/[x f/) in the graded vector space Hom(A X A, A),.

Remark 6.6.15. Let A be an atomic algebra object of Syng7 and regard End,(A) as
a graded bialgebra over K= (see Construction . If Vi and W, are graded left
End,(A)-modules, then the tensor product Vi ®x, W inherits the structure of a left
End,(A)-module by means of the comultiplication

A : Endy(A) — Endy«(A) ®k, End.(A).

In the special case where V, = T'4(X) and W, =T 4(Y) for X, Y € Syng, the isomor-
phism I'4 (X) @k, ['a(Y) ~ T'4(XXY') supplied by Proposition is End, (A)-linear.
In other words, we can regard the functor I'4 : Syng ~ LModgn da(A)) of Proposi-
tion [6.4.12) as an equivalence of monoidal categories, where the monoidal structure on

LMod§ ds(4) 18 obtained from the comultiplication on End,(A).

Proof of Theorem[6.6.6. Let A be an atomic algebra object of Syng. Combining Propo-
sitions |6.5.1| and [5.2.4} we can choose a bialgebra isomorphism Ends(A) ~ A% (W),
where W is some finite-dimensional vector space over k. Applying Proposition we
obtain an equivalence of monoidal categories F' : Syng ~ M(W), hence an isomorphism

of vector spaces

DF :m/m? % Extéyngu@[u, 19) 5 Bxcth gy (Ka[1], Ky) ~ WY,

Composing F with the monoidal equivalence M(W) ~ M((m/m?)V) determined by
DF, we can reduce to the case where W = (m/m?)¥ and F is normalized. O

6.7 Milnor Modules Associated to a Polarization

Fix a Lubin-Tate spectrum E with residue field x. Let m < 7wy E denote the maximal
ideal, and let K denote the graded ring (m. E)/m(m. F).
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Construction 6.7.1 (The Milnor Module of a Polarization). Let A be a lattice, let
Q : K(A,1) — Pic(E) be a polarization, and let Thg denote the Thom spectrum of
@ (see Definition [3.2.1). We let Ag denote the Milnor module Sy[Thg] associated to
the Thom spectrum Thg, and we let Asd denote the Milnor module Sy[Thgd] of the
reduced Thom spectrum Thrc‘jd (see Variant . We regard Ag as an associative

algebra object of the abelian category SynfJ of Milnor modules.

Our goal in this section is to relate the quadratic coefficient cg of a polarization
Q@ : K(A,1) — Pic(E) (in the sense of Construction [3.2.8)) to the algebra structure

on the Milnor module Ag. Roughly speaking, our main result (Proposition [6.7.15))

articulates the idea that cg measures the noncommutativity of the algebra Ag. This

result will be used in to characterize those polarizations @) for which the Thom
spectrum Thg is an Azumaya algebra, but otherwise plays no role in this paper.

Remark 6.7.2. Let A be a lattice and let @ : K(A,1) — Pic(E) be a nonsingular
polarization. Then the Thom spectrum Thg is nonzero (Proposition , so the
algebra Ag € Syng is also nonzero. It follows that the unit map e : 1¥ — Ag is nonzero,
and therefore a monomorphism (since 1v is a simple object of the abelian category
Syng). The fiber sequence of spectra £ — Thg — Tthed determines a long exact
sequence

195 Ag — At - 17[1] S Ag[1]

in the abelian category Syng. Using the injectivity of e, we obtain a short exact sequence
0—-1V 5 Ag — Abed — 0: that is, we can identify Agd with the cokernel of the unit

map e: 1Y — Ag.

Example 6.7.3. Let A = Z and let Q : K(A,1) — Pic(E) be a polarization. Then we
have a canonical isomorphism ArQed ~ Sy[ZE] = 1%[1] (see Variant . Beware that
this isomorphism depends on the choice of identification of A with Z.

Example 6.7.4. Let A = Z and let Q : K(A,1) — Pic(E) be the constant map taking
the value £ € Pic(E). Then the Thom spectrum Thg is equipped with an augmentation
€ : Thg — E, and therefore splits as a direct sum of E (via the unit map F — Thg)
and fib(¢) ~ Y E. It follows that Ag splits as a direct sum Ag ~ 1¥ @ 1%[1] in the
abelian category Syng, where 1%[1] is the kernel of an algebra map Ag — 19 and

is therefore closed under multiplication. Since Homsyn@(lo[l] 19[1],1[1]) ~ 0, it
E

follows that the direct sum decomposition Ag ~ 1% @ 1%[1] exhibits Ag as the trivial
square zero extension of 1¥ by the module 1¥[1].

Construction 6.7.5 (Derivations of Ag). Let A be a lattice and let @ : K(A,1) —
Pic(FE) be a nonsingular polarization. For each element A\“ of the dual lattice AV,
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the map Dyv : Thg — X Thg of Remark [3.2.3] induces a map of Milnor modules
dyv 1 Ag — Ag[1].

Proposition 6.7.6. Let A be a lattice and let Q : K(A,1) — Pic(E) be a nonsingular
polarization. For each ANV in the dual lattice AV, the map dyv : Ag — Ag[l] is a
derivation (of degree (—1)) in the category Syng: that is, it satisfies the equation

dyv om =mo (dyv Xid) + m o (idd,\v) € HomSyng (AQ AQ, AQ[l]),
where m denotes the multiplication on Ag.

Proof. We let QT denote the composite map K (A x Z,1) — K (A, 1) 9, Pic(E), which
we regard as a polarization of the lattice A x Z. Let Thy+ denote the Thom spectrum of
Q™, which we regard as an algebra object of Modg. Since the formation of Thom spectra
is symmetric monoidal, we can identify Thg+ with the tensor product Thg ® g Thg,
as objects of Algp, where Qo : K(Z,1) — Pic(E) is the constant map taking the
value E € Pic(F). Combining this observation with the analysis of Example we
obtain a canonical isomorphism Ag+ ~ Ag @ Ag[1] in Alg(Syng)7 where the right hand
side denotes the trivial square-zero extension of Ag by the shift Ag[1] (regarded as a
bimodule over Ag).

Let AY be an element of the dual lattice A¥. Then the construction (A € A) —
(NN AY)) € A x Z) determines a section of the projection map A x Z — A, and
therefore induces a map of Thom spectra Thg — Thg+, hence a map of Milnor modules

¢:Ag — Ag+ ~ Ag @ Agl1].

Using the description of the cap product given in Remark we see that ¢ is given by
(id, dyv ). Since ¢ is a morphism of algebra objects, it follows that dyv is a derivation. []

Remark 6.7.7. In the situation of Construction the derivations dyv satisfy the
equations
dyv v = dyv + dyv d3. = 0.

These relations follow immediately from the analogous assertions for the maps Dyv :
Thg — X Thg of Remark

Construction 6.7.8. Let A be a lattice and let @ : K(A,1) — Pic(FE) be a polarization.
For each A € A, we let a(\) € Homsyn@(IQ?[l],Agd) denote the composition of the

isomorphism 1%[1] ~ ASFA] of Example with the natural map ArQeFA] — Agd.
In the situation of Construction the map « is given by the composition

A % m This! — Homg o (17[1], AZY),
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where & is defined as in Construction Applying Proposition [3.3.10, we obtain the
following:

Proposition 6.7.9. Let A be a lattice and let Q : K(A,1) — Pic(E) be a nonsingular
polarization. Then the map

@ d
a:A— Homsyng(l AGY)

of Construction[6.7.8 is a group homomorphism.

Remark 6.7.10. In the situation of Proposition [6.7.9] suppose that @ fails to be
nonsingular. Then Thg ~ 0 (Proposition [3.3.2)), so Remark supplies a canonical
equivalence Abed ~ 10[1]. Using this equivalence, we can identify « with the function

A — Homsyng(lv[l]7 19[1]) ~ & given by the composition

C? X r—xr—1
A — (mpE)" ——— myE — k.
In this case, a need not be a group homomorphism.

Remark 6.7.11. Let A be a lattice, let Q : K(A,1) — Pic(EF) be a nonsingular
polarization, and let AY € AY be an element of the dual lattice. Then the derivation
dyv : Ag — Ag[1] automatically annihilates the unit map 1Y - Ag, and therefore
factors through a map AE’Sd — Ag[1]. For any element A € A, the composite map
a(A) dyv
17[1] == AF! 25 Ag[1]

is obtained by multiplying the unit map 1¥ — Ag by the integer (A, \¥) (this follows
from the functoriality of Construction |6.7.8)).

Definition 6.7.12. Let A be a lattice, let @ : K(A, 1) — Pic(F) be a polarization of
A, and let cg be the second coefficient of @) (Construction , which we regard as a
map Sym?(A) — 74 BPic(E) ~ mE. We let b% : A x A — mK denote the symmetric
bilinear form given by the composition

9
A x A — Sym?(A) 2> mFE — mK.

We now describe the bilinear form b9 more explicitly in terms of the algebra
Ag € Synj,
Q Edyng.

Construction 6.7.13 (The Commutator Bracket). Let A be a lattice and let @ :
K(A,1) — Pic(E) be a nonsingular polarization, so that Ag is an associative algebra
object of Syng. Let m : Ag Xl Ag — Ag denote the multiplication on Ag, and let
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m°P : Ag Xl Ag — Ag be the opposite multiplication (that is, the composition of m
with the automorphism of Ag [X] Ag given by swapping the two factors). We regard the
difference m — m°P as a morphism [e, o] : Ag[x] Ag — Ag in the abelian category Syng,
which we will refer to as the commutator bracket. Note that the commutator bracket
annihilates the subobjects

1V " Ag, Ag 1Y € Ag K Ag,

and therefore factors uniquely through a map Agd Agd — Ag, which we will denote
also by [e,e].

Remark 6.7.14. In the situation of Construction [6.7.13] suppose we are given a
monoidal functor F : Syny — Mod% . Then B = F(Aq) inherits the structure of a
graded K-algebra, and the commutator bracket map [e, o] : AgXJAg — Ag determines
amap s: B®g, B — B. If the functor F' is symmetric monoidal, then we can identify s
with the “super-commutator”: that is, it is given by the formula s(z®vy) = zy—(—1)Yyz
for x € B; and y € B;. Beware that if F' is not assumed to be symmetric monoidal, then
it is not possible to describe the map s using only the algebra structure of B.

We can now formulate our main result:

Proposition 6.7.15. Let A be a lattice, let Q : K(A,1) — Pic(E) be a nonsingular
polarization, let o : A — Homsyn@(lw[l],Agd) be as in Construction |6.7.8, and let
E

b2 : A x A — m K be the bilinear form of Definition|6.7.12. Then the diagram

e

A xA 7T2K
axXo
Homsyng (1¥[1], Agd) X Homsyng (1¥[1], Agd) Homsyng (19[2],19)

e e [.’.]
Homsyng (1@ [2], AQd AQd)

Homg,,.o(19[2], Ag)

commautes.

Remark 6.7.16. In the situation of Proposition [6.7.15] suppose we are given an exact
Modf -linear monoidal functor F : Syny, — Modf , and set B = F(Ag). The exact
sequence of Milnor modules

0-1Y - Ag — AT — 0
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then determines an exact sequence of graded Ky-modules 0 - K, - B — F (Az’fd) —
0. For each A € A, we can identify F(a()\)) with an element of F (ATQEd) which is
homogeneous of degree 1, which can be lifted uniquely to an element a(\) € B;. In
this case, Proposition supplies a formula s(a(A\) ® a(X)) = b9 (), N') in B, where
both sides are homogeneous of degree 2 (here s : B ®g, B — B is the map of Remark
. If the functor F is assumed to be symmetric monoidal, then we can rewrite
this formula as a(A\)a(X) + a(V)a(A) = b\, \).

Proof of Proposition[6.7.15. Choose elements A\, \' € A; we wish to prove the identity
[a(A), a(X)] = 69X, X)

in the abelian group Homsyno (10[2], Ag). By functoriality, we can reduce to the case
E

where X\ and )\ form a basis for A. Let AV and )V be the dual basis for AV. Let

m, m° : Agp X Agpv] — Ag denote the isomorphisms induced by the multiplication

on Ag and its opposite, respectively. Using Example we see that m°P is given by

composing m with the map id —b% (X, X)dyvdy~. It follows that the composite map

Ag B gy — AgE Ag 5 Aq

is equal to the the composition

dav dyry bR(A,N)
_

Aq B Agpvy = Ag Aql2]
Using the fact that dyv and dyv are derivations which vanish on Agpy) and Agpy,

respectively, we can rewrite this composition as
d \/d 1A% bQ()‘7)‘l)
Combining this observation with Remark we see that the restriction of the map

[0, 0] : Agd Abed — Ag to Agﬁ\] Agf)\,] is given by the composition

Te: re bQ(/\,)\’)
AS B ASH = 171 R 1V[1] —"=— 1Y - Ag,
from which we conclude that [a()), a(N)] = bQ( A, V) as desired. -

6.8 Nondegenerate Polarizations

Fix a Lubin-Tate spectrum E with residue field x. Let m < 7wy E denote the maximal
ideal, and let K denote the graded ring (m. E)/m(m. F).
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Definition 6.8.1. Let A be a lattice and let @ : K(A, 1) — Pic(E) be a polarization.
We will say that Q is nondegenerate if it is nonsingular and the bilinear form b% :
A x A — m K of Definition is nondegenerate (that is, the bilinear form b9 induces
a vector space isomorphism £k ®z A — (mK) ®z AV.

Our goal in this section is to prove the following:

Theorem 6.8.2. Let A be a lattice and let Q : K(A,1) — Pic(E) be a polarization.
Then @ is nondegenerate if and only if the Thom spectrum Thg is an Azumaya algebra
over E.

The proof of Theorem [6.8.2] will require some preliminaries.

Notation 6.8.3. Let A be a lattice and let @ : K(A,1) — Pic(E) be a nonsingular
polarization. For each A € A, we let [a()), o] : Ag — Ag[—1] denote the map given by
the composition

Ag ~ 19[1] @ Ag[1] At Ag[-1] 2L Ag[-1).

Proposition 6.8.4. Let A be a lattice, let Q : K(A,1) — Pic(E) be a nonsingular
polarization For each X € A, the map [a(X), ] : Ag — Ag[—1] of Notation can be
identified with the image of \ under the composite map

A= (1K) ®z A = (1K) ®z Homg o (Ag, A[1]) = Homg v (Aq, Ag[-1]),

where u is the map classifying the bilinear form bQ : A x A — K of Definition
and v is induced by the homomorphism \¥ — dyv .

Proof. Let D : Ag — Ag[—1] denote the difference between [a()), o] and (v o u)(N);
we wish to show that D = 0. Choose a basis A1,..., A\, for the lattice A, so that the
multiplication on Ag induces an isomorphism Agpy, X - X Ag,] — Ag- Since D is
a derivation, it will suffice to show that D vanishes on each Agpy,). Factoring D as a

red
composition Ag — Agd b Ag[—1], we are reduced to showing that the composition

19[1] o), Agd — D™ A5[—1] vanishes, which follows immediately from Proposition
6.7.15 and Remark [6.7. 111 O

Proof of Theorem[6.8.3 Let @ : K(A,1) — Pic(E) be a polarization of a lattice A. We
wish to show that @ is nondegenerate if and only if the Thom spectrum Thg is an
Azumaya algebra. Without loss of generality we may assume that () is nonsingular
(Proposition [3.3.2). In this case, Thg is nonzero and dualizable as an E-module (Remark
. It will therefore suffice to prove that the following assertions are equivalent:
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(1) The left and right actions of Ag on itself induce an isomorphism £ : Ag A(ép —
End(Agq) in the abelian category Syng.

(2) The bilinear form 5% of Definition [6.7.12] is nondegenerate.

Using Theorem , we can choose an exact Modi*—linear monoidal functor
F: Syng — Mod‘%;* (beware that if the characteristic of  is 2, we cannot necessarily

arrange that F is symmetric monoidal). Set A’ = F(Ag) and A’*d = F (Agd), so that
we can regard A’ as a graded K,-algebra. The map « of Construction determines
a group homomorphism o' : A — Homy, (K[1], A’*d) = Ajred ~ Ay Let ¢ = F(€),
which we regard as a morphism of graded K,-modules A’ ®x, A" — Endg, (A’). Since
F is a monoidal functor, the restriction of ¢’ to the first tensor factor A’ ~ A'®p, K, <
A’ ®k, A is an algebra homomorphism, which classifies the left action of A’ on itself
(beware that since F' is not necessarily symmetric monoidal, we cannot assume that &’
is an algebra homomorphism, or that the restriction of £ to the second factor classifies
the right action of A’ on itself). Since £ is an algebra homomorphism, the image of &
is a subalgebra of End(Ag). It follows that Im(¢') = F(Im(€)) is also a subalgebra of
EndK* (A/) .

Choose a basis A1, Aa,..., Ay € A. For 1 < i < n, set A'(i) = F(Agp,]) and
a; = May). Tt follows from Remark that the multiplication on A’ induces an
isomorphism

A/(l) OK, " QK A/(n) — A

It follows that A’ is freely generated, as a module over K, by the ordered products
ar = aj, - -a;, € Al where I = {iy <--+ < i,,} ranges over all subsets of {1,...,n}. It
follows that the construction (A€ A) — o/(A) ®1 — 1® &/(\) induces a monomorphism
of vector spaces Kk ®z A — (A’ ®k, A’)1. Consequently, if the map ¢’ is an isomorphism,
then the map

(AeA) =@ N @L-1®a'(N) = F([a(r, )])

induces a monomorphism k ®z A — Homp, (A’, A'[—1]). It follows from Proposition
that this map factors through the map u : Kk ®z A — (73K ) ®z A determined by
the bilinear form b%, so that b? is nondegenerate. This shows that (1) implies (2).
We now complete the proof by showing that (2) = (1). Assume that the bilinear
form b9 is nondegenerate; we wish to show that & is an isomorphism in Syng. Let
A, ..oy Ay € AY be the dual basis of A\,..., A\, € A. For 1 <i<mn,letd,: A — A'[1]
be the image under the functor I of the derivation dyy : Ag — Ag[1]. Then each d; is
a derivation of the graded K-algebra A’, which is homogeneous of degree 1. Using the

1 ifi—d
calculation of Remark [6.7.11) we compute d}(a;) = nr=d . For each subset

0 otherwise.
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I'={iy <ig<--<ip}<{l,...,n},set dy =d; o---od € Endg,(A")_;. Note
that for J < {1,...,n}, we have

Doy~ {1 =T
! 0 ifI#J,|1]=]J|.

Using the nondegeneracy of b% and Proposition , we conclude that each dy,
belongs to the image of the map &, so that d; belongs to the image of the map &’. Note
that the domain and codomain of ¢’ are free K,-modules of the same rank. Consequently,
to show that & is an isomorphism, it will suffice to show that £ is surjective. Let
/ be a homogeneous element of Endg, (A’); we wish to show that f belongs to the
image of the map &'. If f = 0, there is nothing to prove. Otherwise, there exists a
subset I < {1,...,n} such that f(as) # 0. Choose I such that m = |I| is as small as
possible. We proceed by descending induction on m. For every homogeneous element
x of A', let I, € Endg, (A’) be the map given by left multiplication by z. Define
f" € Endg, (A') by the formula f* = > ;e @,y Then f"is a homogeneous
element of Endg, (A’) (of the same degree as f). Moreover, since the image of &' is
a subalgebra of A" which contains each d and each [ , the endomorphism f’ belongs
to the image of &¢’. Consequently, to show that f belongs to the image of &', it will
suffice to show that f — f’ belongs to the image of £’. This follows from our inductive
hypothesis, since (f — f')(ay) = 0 whenever |J| < m. O

6.9 The Case of an Odd Prime

Let E be a Lubin-Tate spectrum, let m © wyFE be the maximal ideal, and let
V = (m/m?) denote the Zariski tangent space of the Lubin-Tate ring moE. If the residue
field k = (mpE)/m has characteristic # 2, then we can promote the equivalence Theorem
[6.6.6] to a symmetric monoidal functor.

Proposition 6.9.1. Suppose that the residue field k has characteristic # 2. Then
there exists a mormalized Mod%* -linear symmetric monoidal equivalence of categories

F Syng ~ M(V). Moreover, the equivalence F' is unique (up to unique isomorphism).

Proof. Using Proposition we can choose an atomic commutative algebra A in
the homotopy category hModg. Let A = Sy [A] denote the associated Milnor module,
so that Construction supplies a symmetric monoidal equivalence I'4 : Syng —

Modf, ds (A) (see Remark . Arguing as in the proof of Theorem we can

identify Mod®, d,(4) With the category M(V) so that the functor F' is normalized. This

proves the existence of F'.
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Now suppose that F” : Syng — M(V) is another normalized Mod‘%*—linear sym-
metric monoidal equivalence. Then F’' o F~! is a normalized symmetric monoidal
Mod%*—linear equivalence of the co-category M (V') with itself. Using Proposition W,
we can choose an isomorphism F’ o F~! ~ ;% for some atomic algebra B € Alg(M(V)).
Write B = Cl, (V") for some quadratic form ¢ : V¥ = m/m? — K, (Proposition .
Using our assumption that the functor F/ o F~1 is symmetric monoidal, we deduce that
B is a commutative algebra object of M(V'), so that the quadratic form ¢ vanishes.
It follows that there is a unique isomorphism of Modﬁ*—linear symmetric monoidal

functors ,uaB ~ id, and therefore a unique isomorphism F ~ F’. O

Corollary 6.9.2. Suppose that the residue field k has characteristic # 2. Then there
exists a unique atomic commutative algebra object of the homotopy category hModg (up
to unique isomorphism,).

Proof of Corollary[6.9.3. Using Proposition we are reduced to showing that the
category M(V') contains a unique atomic commutative algebra object (up to unique
isomorphism). Using Proposition we see that every atomic algebra object of
M(V) is isomorphic (in a unique way) to a Clifford algebra Cl,(V'"); such an algebra
is commutative if and only if ¢ = 0. O

Using Corollary we can give a concrete description of the Brauer-Milnor group
BM(FE) at odd primes:

Proposition 6.9.3. Let E be a Lubin-Tate spectrum whose residue field has char-
acteristic different from 2. Then there is a canonical isomorphism p : BM(E) ~
Br(Modg*) x QF, where QF denotes the set of quadratic forms q : (m/m?)¥ — K_,.

Proof. Combine Theorem [5.7.6] with Proposition [6.9.1 O

Remark 6.9.4. A choice of nonzero element ¢ € Ko determines an isomorphism of
Brauer groups Br(Modg*) ~ BW(k), and an isomorphism QF ~ m?/m3. In this case,
Proposition [6.9.3| supplies an isomorphism

BM(E) ~ BW(x) x m?/m3.
Beware that this isomorphism depends on the choice of t.

Remark 6.9.5. Let E be a Lubin-Tate spectrum of arbitrary residue characteristic. The
fully faithful embedding Mod%g* — Syn§; constructed in induces a monomorphism
of Brauer groups

v+ Br(Mod¥, ) — Br(Syny,) = BM(E),
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whose domain can be identified with the Brauer-Wall group BW(k) (by choosing a
nonzero element ¢ € moK'). Using Remark we see that ¢ fits into a commutative
diagram
gr L
Br(Mody, ) BM(E)

.

o Pic(Mod%*) — T Pic(Syng).

Here the bottom vertical map is an isomorphism (Corollary , with both groups
being isomorphic to Z/2Z. Using the classical theory of the Brauer-Wall group, one
can show that the left vertical map is surjective when s has odd characteristic, but
vanishes when x has characteristic 2. However, one can show that the right vertical map
is always surjective. Consequently, it is possible to view the failure of Proposition [6.9.3
in characteristic 2 as a feature, rather than a bug. The Brauer-Wall group exhibits some
degenerate behavior over fields of characteristic 2 that is not shared by the Brauer-Milnor
group, so we cannot expect to reduce the latter to the former.

By virtue of Theorem [6.8.2, the Thom spectrum construction @ — Thg can be
used to produce many examples of Azumaya algebras over E. Using the isomorphism
of Proposition we can describe their images in the Brauer-Morava group BM(E).

Proposition 6.9.6. Assume that the residue field k of E has characteristic different
from 2. Let A be a lattice and let Q : K(A,1) — Pic(E) be a nondegenerate polarization,
so that Ag is an Azumaya algebra object of Syng representing a Brauer class [Ag] €
BM(E). Then p([Ag]) = (z,q), where:

(a) The class x € Br(Modg*) is represented by the Clifford algebra Cl,(k®z A) of the
quadratic form u : (k ®z A) — mK associated to the bilinear form b? : A x A —

mo K of Deﬁm’tion (so that u(X) = b9\, \) for each A€ A).

(b) The quadratic form q : (m/m?) — 7oK is given by the composition
(m/mQ)V £> Homz(A, /i) — 97T_2K Rz A LN 7T_2K,

where 0 is the isomorphism induced by the (nondegenerate) bilinear form b2_and
€ is the dual of the map 6? : (k®z A) — m/m? appearing in Construction .

Proof. Set V = (m/m?)¥ and let H = A%, (V) be denote the exterior algebra over
V. Since the characteristic of k is different from 2, there is an essentially unique
normalized symmetric monoidal equivalence F': Syng — Mod¥;. Let A’ = F(Ag) and
o/ : A — A} be as in the proof of Proposition [6.8.2] Using Remark we see
that o/ (\)a/(N) + /(X)) + o/ (X) = @\, \) for X\, N € A, so that o induces a graded
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K «-algebra homomorphism Cl,(k ®z A) — A’. The analysis of Proposition shows
that this map is an isomorphism, so that x = [A’] = [Cl,(k ®z A)], which proves (a).
To prove (b), we need to analyze the action of the Hopf algebra H on A’. For each
veV,let d,: A — A'[1] denote the derivation (of degree —1) determined by v. Note
that, for each A € A, the element J,(a/(\)) is an element of A’ which is homogeneous of
degree zero which belongs to the image of the canonical map F(Agpy) — F(Aq) = A”.
It follows that d,(c/()\)) = ¢, » for some scalar ¢, ) € k. Our assumption that F is
normalized implies that ¢, = £(v)(A), so that the derivation 0, is given by (super)-

commutation with the element 6(£(v)) € A_;. Unwinding the definitions, we obtain
q(v) = 0(§(v))* = u(9(£(v))), which proves (b). O
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Chapter 7

Hochschild Cohomology

Let E be a Lubin-Tate spectrum and let Syng denote the category of Milnor modules
studied in In this section, we associate to each algebra object A € Alg(Syng) a
bigraded ring HC**(A), which we call the Hochschild cohomology of A (Definition [7.2.1]).
Our main goals are to show that the Hochschild cohomology groups HC**(A) control
the problem of lifting A to an associative algebra object of Syny (see §7.3)), and to
compute HC**(A) in the case where A is an Azumaya algebra (Proposition [7.2.7)).

7.1 Digression: Modules in Syn; and Synj

Let E be a Lubin-Tate spectrum and let Syng denote the co-category of synthetic
E-modules. We can regard Syny as a tool for relating questions about the homotopy
theory of F-module spectra to more concrete questions about linear algebra. More
precisely, we have shown that the co-category Syny has two features:

(a) Tt contains the stable oo-category Mod'S® of K(n)-local E-modules as a full sub-

category (Proposition [4.2.5]).

(b) The heart of Syny is the abelian category Syng of Milnor modules, which can be
identified with the category of graded modules over an exterior algebra (Theorem

[6.6.6).

To make effective use of (a) and (b), we would like to know to what extent the oo-category
Synpg is determined by its heart Syng. It is not true that Syny can be identified with
(the connective part of) the derived category of the abelian category Syn%: for example,
the co-category Syny is not Z-linear. However, we will show that the next best thing
is true: for every associative algebra A of Syng, the oo-category LMod 4(Syng) can be
identified with (the connective part of) the derived category of the abelian category
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LMod A(Syng) (Proposition . To prove this, we need to compare the symmetric
monoidal structures on Syny and Syng.

Lemma 7.1.1. Let M be an E-module. Then the canonical map 6 : Sy[M] A 1¥ —
Sy“[M] is an equivalence of synthetic E-modules.

Proof. The map 0 fits into a commutative diagram of cofiber sequences

Sy[M] A Q1 —— Sy[M] A 1 —= Sy[M] A 1¥

T

20 8y[M] —— Sy[M] —— Sy7[M].

Using the left exactness of the functor M — Sy“[M], we see that 6” can be identified
with the suspension of the canonical map Sy[M] A Sy[X~1E] — Sy[X~'M]. Applying
Proposition we conclude that 6" and 6” are equivalences, so that 6 is also an
equivalence. ]

Proposition 7.1.2. The inclusion functor
Syn ~ Mod, o (Syny) < Mod;o (Syny)

is symmetric monoidal. In other words, if X and Y are Milnor modules, then the
relative smash product X nqo Y € Synpg, is discrete (and can therefore be identified with
the Milnor module X XY = 7o(X A0 Y)).

Proof. Let X and Y be Milnor modules; we will show that the Milnor modules 7, (X Ao
Y’) vanish for n > 0. Our proof proceeds by induction on n. Choose an exact sequence
of Milnor modules 0 — X’ — P — X — 0, where P is quasi-molecular (Remark [6.2.3).
We then have a long exact sequence of homotopy groups

7Tn(P N1Q Y) - TI'n(X N1Q Y) - 7Tn_]_(X/ N1Q Y) - 7Tn_]_(P N19 Y)
Consequently, it will suffice to prove the following:
(1) The groups 7, (P Aqo Y) vanish for n > 0.

(i) The canonical map mo(X' Aq0 Y) — mo(P Aq0 Y is a monomorphism (in the
abelian category Syng).

Assertion (i7) follows immediately from Corollary [6.6.7 To prove (i), we can replace X
by P and thereby reduce to the case where X = y[ , where M is a quasi-molecular
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E-module. Similarly, we may assume that ¥ = Sy” [IV], where N is a quasi-molecular
E-module. In this case, we apply Lemma to compute

X A =~ (Sy[M] A1%) Ao (Sy[N] A 1Y)
~ Sy[M] A Sy[N] A 1Y
~ Sy[M ®g N] A 1"
~ Sy’[M ®g N].

O]

Notation 7.1.3. Let A be an associative algebra object of the co-category of synthetic
E-modules Syng. We let Syn denote the co-category LMod4(Syny) of left A-module
objects of Syng, and we let Syn?l = LMod A(Syng) denote the full subcategory of Syn 4

spanned by the discrete objects.

Proposition 7.1.4. Let A be an algebra object of the abelian category Syng. Then the
inclusion functor Synz — Syn 4 extends to an equivalence of c0-categories D(Syng)
Syny.

~

=0 —

Proof. By construction, the co-category Syny admits compact projective generators
given by Sy[M], where M is a molecular E-module. It follows that Syn 4 admits compact
projective generators given by A A Sy[M ], where M is a molecular E-module. By virtue
of Proposition HA.1.3.3.7, it will suffice to show that each of the synthetic F-modules
A A Sy[M] is discrete. Using the equivalence

A ASy[M] ~ A rqe (19 A Sy[M])

and invoking Proposition we can reduce to the case where A = 1V in which case
the desired result follows from Lemma [Z.T.11 O

7.2 Hochschild Cohomology of Milnor Modules

Throughout this section, we fix a Lubin-Tate spectrum FE. Let m € mgFE be the
maximal ideal, let K, denote the graded ring (m.E)/m(m«E), and let Syng denote
the category of Milnor modules. For every pair of algebras A, B € Alg(Syng), we let
ABMod B(Syng) denote the abelian category of A-B bimodule objects of Syng.

Definition 7.2.1. [Hochschild Cohomology]| Let A be an associative algebra in the
category Syng. For every pair of integers i, j € Z, we define

HC* (A) = EXtZBModA(Syng)(A’ A[j])

We will refer to HC*/ (A) as the Hochschild cohomology groups of A.
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Remark 7.2.2. Let A be an algebra object of Syng. Then the Yoneda product on

* *, % . . .
EXtABMO da(Synd) (e, ) endows HC*™*(A) with the structure of a bigraded ring. Moreover,

it satisfies the bigraded commutative law xy = (=1)#+ii"yg: e HCHI+'(A) for x €
HC™ (A) and y € HCY7'(A).

Remark 7.2.3 (Periodicity). Let A be an algebra object of Syng'.. Then the graded ring
K, acts on HC**(A) by means of maps K,, x HC"/(A) — HC"/~"(A). We therefore
obtain periodicity isomorphisms

(TomK) ®, HCH (A) ~ HCW 2™ (A).

Remark 7.2.4 (Functoriality of Hochschild Cohomology). Let A and B be algebra
objects of Syng. Using Corollary we see that the construction M — M X B
determines an exact functor of abelian categories

F : 4BMod4(Syng) — agsBMod azp(Synp).

In particular, for every pair of bimodules M, N € 4BMod A(Syng), we get a canonical
map

Ext*

ABMod 4 (Syng)

*
(M,N) — EXtABBMOdAB(SynE) (MX B, NX B).

Taking M = A and N = A[j], we obtain maps of Hochschild cohomology groups
HC"(A) — HC"(A[x] B). It is easy to see that these maps are compatible with
composition, and therefore yield a bigraded ring homomorphism

HCO**(A) — HC** (AR B).

Using the results of §7.1], we can give an alternative description of the Hochschild
cohomology groups HC**(A).

Proposition 7.2.5. Let A and B be algebra objects of Syng. Then the inclusion functor
ABModB(SynQE?) — 2BModp(Syn;v)

extends to an equivalence of c0-categories D(ABModB(Syng))Zo ~ 4BModpg(Syn;o).

Proof. Combine Propositions and O

Corollary 7.2.6. Let A and B be algebra objects of Syng. Then, for every pair of
objects M, N € ABModB(Syng), the canonical map

Ext*

ABModp (Syng) (M’ N) - EXtZBModB(

Synlqg)(Mv N)

s an isomorphism of graded abelian groups. In particular, we have canonical isomor-
phisms

HCi’j(A) - EthqBModA(Synlqp) (A, AL5])-
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We now compute Hochschild cohomology in some particularly simple examples.
Proposition 7.2.7. Let E be a Lubin-Tate spectrum and let
Y m/m? — Extéyn@(lv, 1¥[-1]) - HCY1(19)
E

be the isomorphism of Theorem |6.5.4 Then v extends to an isomorphism of bigraded
Tings
Ky ®, Sym* (m/m2) ~ HC*’*(lo)

Ky ®, Sym™(m/m?) ~ HC~™m7(19).
Proof. Combine Theorem [6.6.6] with Proposition [5.5.6] O

Let A and B be algebra objects of the category Modg. If A is an Azumaya algebra,
then the extension of scalars functor

BBModg(Syny) — agpBModagp(Syny) M — MXA

is an equivalence of categories, and therefore induces an isomorphism of bigraded rings
HC**(B) — HC**(A X B). Combining this observation with Proposition we
obtain the following:

Corollary 7.2.8. Let A be an Azumaya algebra object of Syng. Then we have canonical
isomorphisms N o
HC"(A) ~ K_;_; ® (m?/m*1),

which determine an isomorphism of bigraded rings HC**(A) ~ K, ®, Sym*(m/m?).

7.3 Obstruction Theory

Let E be a Lubin-Tate specturm, which we regard as fixed throughout this section.
We would like to analyze the structure of the co-category Syng by bootstrapping from
the description of the abelian category SynQE? given in Our strategy will to study the
relationships between the co-categories 7<,, Syng of n-truncated synthetic E-modules
as m varies.

Notation 7.3.1. Let n be a nonnegative integer. We let 15" denote the synthetic
E-module 7<, 1. More concretely, 15" is the functor which assigns to each molecular
E-module M the n-truncated space

15"(M) = T<n Mapyoq, (M, E) = 1<, Q° M Y.
Note that we have a tower
1— .ov —

in the oo-category Syng.
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Notation 7.3.2. For each n > 0, we can regard 1S" as a commutative algebra object
of the symmetric monoidal co-category Synp. We let Syn;<» denote the co-category
Mod < (Syng) (see Notation [7.1.3). Note that the forgetful functor Syn;<. — Syng
induces an equivalence on n-truncated objects (in other words, every n-truncated
synthetic E-module can be regarded as a module over 15" in an essentially unique way).

The following observation will be useful for comparing the oo-categories Syn;<» and
T<n Syng.

Proposition 7.3.3. Let n be a nonnegative integer and let X be a dualizable object of
the symmetric monoidal co-category Syny<n. Then X is n-truncated.

Proof. Let XV be a dual of X in the co-category Syn;<». For each object Y € Syn;<n,
we have a canonical homotopy equivalence

Mapgy, ., (Y, X) ~ Mapgy, _, (Y Aq<n XV, 1s™).

Since 1S" is an n-truncated object of Synj<n, it follows that the mapping space
Mapgy, _, (Y, X) is n-truncated. O

Corollary 7.3.4. Let X be a dualizable object of Syny<n. Then, for 0 < m < n, the
canonical map p: X Aq<n 1S™ — 7, X is an equivalence.

Proof. 1t is clear that p exhibits 7<,, X as an m-truncation of X A1<n 15™. Consequently,
it will suffice to show that the relative smash product X Aj<n 1S is m-truncated.
This follows from Proposition m since X Aq<n 15™ is dualizable as a module over
1sm, O

Proposition 7.3.5. Let n be a positive integer. Then the commutative algebra 15" is
a square-zero extension of 15771 by the module ¥"1Y[—n]. In other words, there exists
a pullback diagram o :

1<'n 1$n71

|

1sn—1 doz 1<n71®2n+11©[_n]_

in the co-category CAlg(Syng) of commutative algebra objects of Syng. Here dy denotes
the tautological map from 15771 to the trivial square zero extension 1<"_1@2”+11©[—n],
and d is some other section of the projection map 15"t @ L"*+11%[—n] — 15771,

Proof. This is a special case of Theorem HA.7.4.1.26 . O
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Proposition 7.3.6. Let n be a positive integer and set C = Synj<n-1gyn+119[_p]- Then
the pullback diagram o of Proposition induces a pullback diagram of symmetric
monotdal co-categories T :

Synqy<n — Syhq<n—1

.

Synj<n—1 ——C.
Proof. The diagram 7 determines a functor
F Synlgn g Synlsnfl Xc Synlsnfl .

Let us identify objects of the codomain of F' with triples (X, Y, «), where X, Y € Synj<n—1
and o : d*Y ~ d§X is an equivalence. The functor ' admits a right adjoint G, given by
the construction G(X,Y, @) = X x4« x Y. We first claim that the unit map id - Go F
is an equivalence: that is, for every object X € Synj<n», the diagram ox:

X X Aq<n 15771

|

X Aq<n 1<n—1 — X Aq<n (1Sn—l @Zn-i-ll@[_n])

is a pullback square in the co-category Syn;<». This is clear: the diagram ox is a
pushout square (since o is a pushout square and the relative smash product functor
A1<n preserves colimits in each variable), and therefore also a pullback square (since
the oo-category Synj<n is prestable). This proves that the functor F is fully faithful.
To complete the proof, it will suffice to show that the functor G is conservative.
Let u be a morphism in the oo-category Synj<n-1 X¢ Synj<n—1 for which G(u) is an
equivalence in Synj<n; we wish to show that u is an equivalence. An easy calculation
shows that G is right exact, so that G(cofib(u)) ~ cofib(G(u)) ~ 0. We will complete the
proof by showing that cofib(u) ~ 0. Suppose otherwise, and write cofib(u) = (X,Y, «).
Then there exists some smallest integer k such that either 7 X # 0 or 7Y # 0. Without
loss of generality, we may suppose that 7Y # 0 and m; X ~ 0 for 0 < i < k. It then
follows that the projection map (X X gk x Y) — m;Y is an epimorphism, so that
G(X,Y,a) # 0 and we obtain a contradiction. O

Corollary 7.3.7. Let n be a nonnegative integer. Then:
(a) An object X € Syny<n is zero if and only if X Aq<n 1V is zero.

(b) An object X € Syny<n is dualizable if and only if X A1<n 1¥ € Synyo is dualizable.
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(¢) A morphism X — Y in Synqy<n is an equivalence if and only if the induced map
X Aq<n 1Y > Y Aq<n 1Y is an equivalence.

(d) An associative algebra object A € Alg(Syny<n) is an Azumaya algebra if and only
if A Aq<n 19 is an Azumaya algebra object of Synqo.

Proof. Assertions (a) and (b) follow from Proposition using induction on n. Asser-
tion (c) follows from (a) (since a morphism « : X — Y is an equivalence if and only if
cofib(a) ~ 0). To prove (d), let A € Alg(Syny<n) and set Ay = A Aq<n 1¥. Then A is
full if and only if Ay is full (this follows from (a) and Lemma and A is dualizable if
and only if Ag is dualizable (this follows from (b)). If these conditions are satisfied, then
the canonical map A A 1S"A° — End(A) is an equivalence if and only if the canonical
map Ag Aqo AJY — End(Ap) is an an equivalence (by virtue of (c)). Using the criterion
of Corollary we deduce that A is Azumaya if and only if Ay is Azumaya. O

Corollary 7.3.8. The functor Sy : 1\/[0(11;3)C - Syng is conservative.

Proof. Let f : M — N be a morphism in Mod%® for which the induced map Sy”[M] —
Sy¥ [N] is an isomorphism of Milnor modules. Combining Corollary with Lemma
we deduce that f induces an equivalence 15" A Sy[M| — 15" A Sy[N] for every
integer n. Allowing n to vary, we deduce that Sy[f] is an equivalence of synthetic
FE-modules, so that f is an equivalence by virtue of Proposition O

We now introduce some notation which will be useful for exploiting Proposition
(0.0l

Construction 7.3.9. Fix an integer n > 0 and let
d,dp: 15771 > 15 L @ un 1Y p)
be as in Proposition Then d and dy induce symmetric monoidal functors
d*,dy : Syny<n—1 = SyNj<n-1gynt119[_y)

(given by extension of scalars along d and dy, respectively). These functors admit lax
symmetric monoidal right adjoints

d*, d()* : Synlgn—l (—an+11©[—n] - Syn1<n—1
(given by restriction of scalars along d and dy, respectively). We let
© = (dyx 0 dgy) : Syny<n—1 — Synj<n—1

denote the composition of d, with dfj, which we regard as a lax symmetric monoidal
functor from the co-category Synj<n—1 to itself. Note that the projection map 15"~! @
»+119[—n] — 17! induces a lax symmetric monoidal natural transformation ¢ :

0 —id.
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Remark 7.3.10. The functor © of Construction [7.3.9] can be described more informally
by the formula
O(M) =M@Y (M Aq<n1 19[=n]).

However, this formula is a bit misleading: it really describes the composition of © with
the forgetful functor Synj<n—1 — Syng. In order to regard © as a functor from the
co-category Synj<n—1 to itself, one needs to understand the derivation

d - 1<n—1 N 1<n—1 @ Zn-i—ll@[_n]

which appears in Proposition (the nontriviality of these derivations encode the
contrast between the homotopy-theoretic character of the co-category Syng and the
purely algebraic character of the co-category Syn;o ~ D(Syng)>0).

In the special case where M is a dualizable object of Mod;<n-1, we can identify the
tensor product M Aj<n—1 1¥[—n] with (moM)[—n] (Corollary In this case, we
obtain an equivalence of synthetic E-modules ©(X) ~ X @ %" (7o X)[—n].

Remark 7.3.11. Let n be a positive integer and suppose we are given objects X,Y €
Syni<n—1. The following data are equivalent:

(1) Morphisms a : d*Y — d§ X in the oo-category Synj<n-1gyn+119[_p]-
(7) Morphisms 3 :Y — ©(X) in the co-category Synj<n-1.

Moreover, a morphism « : d*Y — d§X is an equivalence if and only if the corresponding
morphism (3 : Y — O(X) has the property that the composite map Y LN O(X) 2 X
is an equivalence in Synj<n—1. It follows that the co-category Synj<n—1 X¢ Synj<n-1
appearing in the proof of Proposition can be identified with the co-category of
pairs (X, s), where X is an object of Syn;<n—1 and s : X — O(X) is a section of the
map ¢ : O(X) - X.

7.4 Lifting Associative Algebras

Let E be a Lubin-Tate spectrum, which we regard as fixed throughout this section.
Our goal is to apply the analysis of to study the problem of lifting associative
algebra objects of Synj;<n—1 to associative algebra objects of Syn;<», where n is a
positive integer.

Notation 7.4.1. Let n > 0 and let A be an associative algebra object of Syn;<n-1.
We let Lift(A) denote the set mo(Alg(Syny<n) X alg(syn,<,_1) {4}), which parametrizes

equivalence classes of objects A € Alg(Syn;<») equipped with an equivalence A ~
Z AN1<n 1<n71.
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Remark 7.4.2. Let n > 0 and let A be an associative algebra object of Synj<n-1.
Combining Proposition with Remark we obtain a canonical homotopy

equivalence

Alg(syn1<") ><Alg(Synlgnfl) {A}) = MapAlg(Synlgn,l)(Aa G(A))

In particular, we can identify Lift(A) with the set of homotopy classes of sections of the
canonical map ¢ : ©(A) — A described in Construction [7.3.9 (taken in the oo-category
of associative algebra objects of Synj<n-1).

Our next goal is to obtain a homological description of the space Lift(A).

Proposition 7.4.3. Let A be an associative algebra object of Syny<n—1 which is dualiz-
able as an object Syny<n—1. Then the map ¢4 : O(A) — A appearing in Construction
exhibits ©(A) as a square-zero extension of A by the X" (mgA)[—n] (which we
regard as an A-A bimodule object of the co-category Synqy<n—1).

Proof. Combine Theorem HA.7.4.1.26 with Remark [7.3.10 O

Notation 7.4.4 (The Cotangent Complex). Let n > 0 and let A be a dualizable
associative algebra object of Synj<n—1. Set Ag = A ~ A Aq<n-1 1V (see Corollary
. Let Ly € 4BMod4(Syny<n-1) denote the absolute cotangent complex of A
(regarded as an associative algebra object of the co-category Synj<n-1), and define
L4, € 4,BMod 4, (Syn;o) similarly, so that L4, can be identified with the image of L4
under the extension of scalars functor M +— M Aj<n-1 1¥. Using Theorem HA.7.3.5.1
(together with Proposition , we see that the cotangent complex L4, is a discrete
object of 4,BMod 4,(Syn;v ), which fits into a short exact sequence of bimodules

0 — Ly, — Ay X Ay = Ay — 0.
where m is the multiplication on Ag.

Remark 7.4.5 (Classification of Lifts). Let n > 0, let A be a dualizable associative
algebra object of Synj<n-1, and set Ag = mpA. Then the square-zero extension ¢ :
©(A) — A of Proposition is classified by an element

o(d) € EXtZE%\/IOdA(SanSn_l ) (La,Ao[—n])
~ +2 B
- EXtZO BMOdAO (Synlo)(LA()v AO[ n])
~ n+2 _
~ EXtAO BMOdAO (Syng) (LA() ’ AO[ TL])

(where the second isomorphism is supplied by Corollary [7.2.6)). Using Remark we
deduce:
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(a) The obstruction o(A) vanishes if and only if the set Lift(A) is nonempty.

(b) If the set Lift(A) is nonempty, then it forms a torsor for the abelian group

n+1 o
B o sy (Edor Ao[=n)).

Construction 7.4.6 (Obstructions in Hochschild Cohomology). Let n > 0, let A be a
dualizable associative algebra object of Synj<n—1, and set Ag = mgA. Using the short
exact sequence 0 — L, — AgX] Ag — Ap — 0, we obtain a boundary map
n+1 _ N n+2 _
e: Ext BModAO(SynE)(LAO’ Ao[—n]) EXtAOBModAO(SynE)(AO’ Ao[—n])
_ ch+2 n(AO)

Suppose we are given a pair of lifts A, A e Lift(A). Then the set Lift(A) is nonempty, and

n+1 .
is therefore a torsor for the abelian group Ext “BMod, (Syn )(L Ag» Ao[—n]). Tt follows

. . n+1 o . .=
that there is a unique element g € Ext o BMod s, (Syns )(L Ays Ao[—n]) which carries A to

A'. We let 6(A, A') denote the element e( ) € HC" 271 (Ay).
In the special case where A is an Azumaya algebra object of Synj<n—1 the Milnor
module Ay is an Azumaya algebra object of Syng In this case, Corollary [7.2.8] supplies

a canonical isomorphism
HCn+2,—n(A0) ~ (71__2K) R (mn+2/mn+3)'

In this case, we will abuse notation by identifying 6(A, Z’) with its image under this
isomorphism.

Remark 7.4.7 (Functoriality). Let n > 0, and Suppose we are given dualizable algebra
objects A, B € Alg(Synq<n-1) together with lifts A4, A’ € Lift(A) and B € Lift(B). Then
we can regard A Aq<n B and A A1<n B as elements of Lift(A Aq<n—1 B). Then we have
an equality

§(A Aq<n B, A" Aq<n B) = 0(8(A,A")) e HC" > " (g AR 70 B),
where § : HC"*2 7" (15 A) — HC" 2" (19 AXImo B) is the map on Hochschild cohomology
described in Remark [7.2.4
In particular, if A and B are Azumaya algebras, then we have an equality (A4 Aq<n
B, A Ay<n B) = 6(4, A" in the abelian group (1_2K) ®, (m"2/m"*3).
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7.5 Digression: Molecular Objects of Syn;<»

Let E be a Lubin-Tate spectrum. In we introduced the notion of a molecular
Milnor module M € 7<(Syny (see Definition [6.2.1). In this section, we consider a
generalization of this notion to the setting of n-truncated synthetic E-modules, for any
nonnegative integer n.

Definition 7.5.1. Let n be a nonnegative integer and let X € Syn;<». We will say that
X is molecular if it is dualizable (as an object of the symmetric monoidal co-category
Synq<») and the Milnor module mpX is molecular (in the sense of Definition [6.2.1)).

Remark 7.5.2. Let X be a molecular object of Syny<».. Then X is n-truncated
(Proposition [7.3.3). It follows that the 1S"-module structure on X is unique up to a
contractible space of choices; see Notation [7.3.2

Warning 7.5.3. The terminology of Definition [7.5.1] is potentially ambiguous: if X
is a molecular object of Synj<n, then it is usually not molecular when regarded as an
object of Syn;<m for m = n.

Remark 7.5.4. Let X be an object of Syn;<o. Then X is molecular in the sense of
Definition [7.5.1] if and only if it discrete and molecular in the sense of Definition [6.2.1

Proposition 7.5.5. Let n be a nonnegative integer and let X € Syny<n be molecu-
lar. Then there exists a molecular E-module M and an equivalence X ~ 1<, Sy[M].
Moreover, the module M is unique up to equivalence.

Proof. Our assumption that X is molecular guarantees that we can choose a molecular
E-module M and an isomorphism of Milnor modules ayq : Sy¥[M] ~ moX. Note that we
can identify ag with an element of (w9 X )(M) = mo(X (M)), which we can identify with a
homotopy class of maps « : 7<,, Sy[M] — X in the oo-category 7<, Syng >~ T<p Synj<n.
Since T<, Sy[M] and X are dualizable objects of the co-category Synj<n, Corollary
implies that ag can be obtained from « by applying the extension of scalars
functor N +— N aq<n 1¥. Tt follows from Corollary that o is an equivalence. This
proves the existence of M. For the uniqueness, it suffices to observe that a molecular
FE-module M is determined, up to equivalence, by the Milnor module SyO[M ] (Corollary
6.2.8]). O

Corollary 7.5.6. Let n be a positive integer and let X € Synj<n—1 be molecular. Then
there exists a tiny object X € Syny<n and an equivalence X ~ X Aq<n 15771,

Proposition 7.5.7. Let n be a nonnegative integer and let X,Y € Synj<n. If X is
dualizable and Y is molecular, then X Aq1<n' Y is molecular.
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Proof. Tt is clear that X A< Y is a dualizable object of Syn;<n. It will therefore suffice
to show that 7mo(X Aq1<n Y) ~ (m9X) Xl (mpY) is a molecular Milnor module. By virtue
of Theorem M there exists an equivalence of monoidal categories F' : Syng ~ M(V),
where V' is a finite-dimensional vector space over k. Observe that a Milnor module
M is molecular if and only if F(M) is a finitely generated module over the exterior
algebra H = /\}*(V) We now complete the proof by observing that if F(mpX) is
finitely generated H-module and F(m(Y") is a finitely generated free H-module, then the
tensor product F(myX) ®k, F(mY) ~ F((moX)X (mpY)) is also a finitely generated
free H-module. O

7.6 Lifting Molecular Algebras

Let E be a Lubin-Tate spectrum, let m € mgFE be the maximal ideal, and let &
denote the residue field (moE)/m. In this section, we specialize the deformation-theoretic
ideas of §7.4] to study the problem of lifting molecular algebras.

Proposition 7.6.1. Let n be a positive integer, let A be a molecular Azumaya algebra
object of Syny<n-1, and set Ag = mpA. Then:

(a) The set Lift(A) is nonempty.
(b) The boundary map

el ¢ n+2,—n
EXtAOBMOdAo(SynE)(LAO’ Ap[—n]) = HC (Ao)

appearing in Construction is an isomorphism. Consequently, we can regard
the set Lift(A) as a torsor for the abelian group

ch+2,fn(A0) ~ (7T_2K) R (mn+2/mn+3)'

Proof. Let C denote the abelian category 4,BMod 4, (Syng). Combining the short exact
sequence 0 — Ly, — AgXl Ag — Ag — 0 appearing in Construction with the
calculation

EXté(AQ A, Ao[—n]) ~ EXt;yng (]_O7 Ao[—n]),

we obtain a long exact sequence

Ext;;p(l@,Ao[—n]) — Extz—l(LAo,Ag[—n]) — HC* ™(Ag) — Ethy o(lqp,Ao[—n])
nE nE

Since A is molecular, the object Ag[—n] € Syng is injective (Corollary |6.6.11)), so the
boundary maps
Extz_l(LAo, Ao[—n]) — HC*’_n(Ao)
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are isomorphisms for * > 0. This proves (b). To prove (a), it will suffice (by virtue of
Remark [7.4.5)) to show that the Hochschild cohomology group HC™™~"(Ag) vanishes,
which is a special case of Corollary O

Corollary 7.6.2. Let n be a positive integer and suppose we are given Azumaya
algebras A, B € Alg(Syny<n-1) together with a lift B € Lift(B). If A is molecular, then
the construction A — A Any<n B induces a bijection p : Lift(A) — Lift(A Aq<n—1 B).

Proof. Note that A Aq<n—1 B is also molecular (Proposition . Using Proposition
we can regard Lift(A) and Lift(A Aq<n—1 B) as torsors for the abelian group
G = K_ 5 ®, (m™"2/mn+3). Tt follows from Remark that p is G-equivariant and
therefore bijective. O

Remark 7.6.3 (Lifting Algebra Automorphisms). In the situation of Proposition
Corollary [7.2.8 also guarantees the vanishing of the group

+1,— - _
HC™ n(AO) - EXtZOBMOdAO (Syng)(LAO’ AO[ Tl])
It follows that every connected component of the space
Alg(synlgn) ><A1g(Syn1<n,1) {A}
is simply connected. In particular, for each A € Lift(A), the canonical map my Aut(A) —

7o Aut(A) is surjective: here Aut(A4) denotes the subspace of Map Alg(syn1<n)(z, A)
spanned by the equivalences, and Aut(A) is defined similarly.
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Chapter 8

The Calculation of Br(F)

Let E be a Lubin-Tate spectrum, which we regard as fixed throughout this section.
Let m € moE be the maximal ideal and let K, denote the graded ring (7 E)/m(7. E).
Our goal is to compute the Brauer group Br(FE), at least up to filtration.

Notation 8.0.1. Let A be a commutative algebra object of Syny. We let Br(A) denote
the Brauer group of the symmetric monoidal co-category Syn 4 = Mod 4 (Syng).

We will obtain information the Brauer group Br(E) by analyzing the tower of
symmetric monoidal co-categories

Modle 5y, Syng — - -+ — Synj<z — Synj<i — Synj<o —> Syng.

Our principal results can be summarized as follows:

Theorem 8.0.2. (1) The restricted Yoneda embedding Sy : Mod'9® < Synp induces
an isomorphism of Brauer groups Br(E) — Br(Syng).

(2) The functor my : Synj<o — SynQEQ induces an isomorphism of Brauer groups
Br(1=°) — Br(Syng) = BM(E).

(3) The canonical maps Synp — Synq<n induce an isomorphism of abelian groups
Br(Syng) — lim Br(1").

(4) For each n > 0, the extension of scalars functor
Synlgn - Synlgnfl M L d M /\1<n 1<TL—1

induces a homomorphism of Brauer groups Br(15") — Br(15"71) which fits into
a short exact sequence

00— K_9®x (mn+2/mn+3) — Br(lgn) — Br(lgn_l) — 0.
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The remainder of this section is to devoted to the proof of Theorem [8.0.2] We will
establish each assertion in turn (see Propositions 8.1.1] [8.2.1} [8.3.1] and [8.4.1]). The
most difficult part of the argument will be the proof of (4): this will require the theory
of Hochschild cohomology developed in §7]

8.1 Comparison of Mods® with Syn;

We begin by establishing the first assertion of Theorem [8:0.2] which we restate for
the reader’s convenience:

Proposition 8.1.1. The Yoneda embedding Sy : Modﬂgc — Syng induces an isomor-
phism of Brauer groups Br(E) = Br(Mod2®) — Br(Syny).

The proof of Proposition will require some preliminary observations.

Lemma 8.1.2. Let X and Y be nonzero Milnor modules. Then the tensor product
X XY s nonzero.

Proof. By virtue of Proposition there exists a conservative monoidal functor
Syng — Mod%g*. We are therefore reduced to the observation that if M and N are
nonzero objects of Mod%*, then the tensor product M ®g, N is also nonzero. O

Lemma 8.1.3. (i) Let X and Y be nonzero synthetic E-modules. Then the smash
product X A'Y is also nonzero.

(1i) Letn =0 and let X and Y be nonzero objects of Syny<n. Then the relative smash
product X Aq<n Y is nonzero.

Remark 8.1.4. The proof of Proposition will use only part (i) of Lemma
However, part (ii) will be useful later in this section.

Proof of Lemma[8.1.3. We will prove (i); the proof of (ii) is similar. Let m be the
smallest positive integer such that m,, X is nonzero. Since the co-category Syng is
prestable, we can write X = X™ Xy, where m9Xg # 0. We then have X A Y ~
Y™(Xo AY). Consequently, to show that X A Y is nonzero, it will suffice to show
that Xg A Y is nonzero. We may therefore replace X by Xy and thereby reduce to the
case where mpX # 0. Similarly, we may assume that mpY # 0. In this case, we have
T0(X AY) ~ moX K mY # 0 by virtue of Lemma O

Lemma 8.1.5. (i) An object X € Syng, is full (in the sense of Definition[2.1.9) if

and only if it is nonzero.

(1) Formn =0, an object X € Synq<n is full if and only if it is nonzero.
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Proof. The “only if” direction is obvious. Conversely, suppose that X # 0. Let a : Y —
Z be a morphism in Syng and suppose that the induced map ax : X A Y - X A Z
is an equivalence. We then have X A cofib(a) ~ cofib(ax) ~ 0. Since X is nonzero,
Lemma guarantees that cofib(a)) ~ 0. Because the co-category Synp, is prestable,
it follows that « is an equivalence. ]

Lemma 8.1.6. Let X be a synthetic E-module. The following conditions are equivalent:

(1) The synthetic E-module X is dualizable (as an object of the symmetric monoidal
o0-category Syng ).

(2) There exists a perfect E-module M and an equivalence X ~ Sy[M].

Proof. The implication (2) = (1) is immediate (note that the functor M — Sy[M]
is symmetric monoidal by Variant and therefore carries dualizable objects to
dualizable objects). Conversely, suppose that (1) is satisfied. We will show that
X ~ Sy[M] for some M € Mod®. Applying the same argument to the dual XV,
we can write XV = Sy[N] for some N € Mod%°. Using the fact that the functor
Sy : Modg® — Syng is fully faithful (Proposition and symmetric monoidal
(Variant , we conclude that M and N are mutually dual objects of Mode°, so
that M is perfect (Proposition .

To show that X belongs to the essential image of the functor Sy, it will suffice to
verify that it satisfies condition (*) of Proposition m That is, we must show that for
every molecular F-module M, the canonical map

MapSynE (SY[ZM]a X) - MapSynE (Z SY[M]7 X)
is a homotopy equivalence. Equivalently, we must show that the canonical map
MapSynE (SY[ZM] A XV» 1) - NIapSynE((E SY[M]) A XV> 1)

is a homotopy equivalence. Let F': Synp — ModlEOC be a left adjoint to the functor Sy;
we claim that canonical map F(XSy[M] A XV) — F(Sy[XM] A XV) is an equivalence.
This is clear, since the functor F' is nonunital symmetric monoidal (see Corollary
and induces an equivalence F(X Sy[M]) — F(Sy[XM]). O

Proof of Proposition[8.1.1. Using Lemma [81.5] we see that the restricted Yoneda em-
bedding Sy : Mod2® < Synj carries full objects of Mod2¢ to full objects of Syny, and
therefore induces a group homomorphism 6 : Br(E) = Br(Mod2¢) — Br(Syng) (see
Proposition [2.4.1)). We first claim that 6 is injective. Let A be an Azumaya algebra
object of Modz®, and suppose that 6([A]) = [Sy[A]] vanishes in Br(Syng). Then there
exists an equivalence o : Sy[A] ~ End(X) in Alg(Syng), where X is a nonzero dualiz-
able object of Syng. Using Lemma we can choose an equivalence X ~ Sy[M],
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where M is a perfect E-module (and thus a dualizable object of Mod'2¢). Since the
functor Sy is fully faithful (Proposition and symmetric monoidal (Variant ,
we can lift o to an equivalence @ : A ~ End(M) in Alg(Mod®), so that [A] vanishes in
Br(E) = Br(Mod®).

We now complete the proof by showing that 6 is surjective. Let B be an Azumaya
algebra object of Syng. Using Lemma [8.1.6] we deduce that there is an equivalence
B : B ~ Sy[A] for some dualizable object A € Modg®. Because the functor Sy
is symmetric monoidal and fully faithful, there exists an essentially unique algebra
structure on A for which 8 can be promoted to an equivalence of algebras. The canonical
map AQg A°? — End(A) becomes an equivalence after applying the conservative functor
Sy : Mod2® <> Syny, and is therefore an equivalence. Applying Corollary we
deduce that A is an Azumaya algebra, so that [B] = [Sy[A]] = 6([A]) belongs to the
image of 6. O

8.2 Comparison of Syn,;o with Syn%

We now prove the second part of Theorem [8.0.2] which we formulate as follows:

Proposition 8.2.1. The inclusion functor v : Syng — Syn;o induces an isomorphism
of Brauer groups BM(E) = Br(SynE) — Br(19).

Proof. 1t follows from Proposition that the functor ¢ is symmetric monoidal, and
from Lemma [8.1.5| that ¢ carries full objects of Syng to full objects of Syn;o. Applying
Proposition [2.4.1) we deduce that ¢ induces a group homomorphism p : BM(E) =
Br(Syny) — Br(1¥). Note that if A is an Azumaya algebra object of Syn} and p([A])
vanishes in Br(1%), then we can choose an equivalence A ~ End(M) for some nonzero
dualizable object M € Syn;o. The dualizability of M implies that M is discrete
(Proposition [7.3.3), so that [A] vanishes in the group BM(E). This shows that p is
injective. To prove surjectivity, it suffices to observe that every Azumaya algebra
A € Alg(Syn;o) is discrete (Proposition , and can therefore also be regarded as
an Azumaya algebra object of the category Syng of Milnor modules (this is immediate
from the criterion of Corollary . O

Remark 8.2.2. Let n be a nonnegative integer. Then the co-category 7<, Syng of
n-truncated synthetic E-modules admits an essentially unique symmetric monoidal
structure for which the truncation functor 7, : Synp — 7<, Syng is symmetric
monoidal; concretely, the tensor product on 7<, Syng is given by the construction

(X,Y) > 7<n (X AY).
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It is not difficult to show (by a variant on the proof of Proposition [8.2.1)) that the
truncation functor 7, induces an isomorphism of Brauer groups

Br(15") = Br(Syny<n) — Br(7<, Syny)

(in the case n = 0, this is the inverse of the isomorphism appearing in Proposition |8.2.1]).
The essential observation is that every Azumaya algebra object of Syn;<. is dualizable,
and therefore n-truncated (Proposition . Since we do not need this result, we leave
further details to the reader.

8.3 Passage to the Inverse Limit
It follows from Lemma [8.1.5] that the extension-of-scalars functors
Syng — Synq<n Syny<m — Synj<n

X—>XA1S" X X Aq<m 15"

carry full objects to full objects. Applying Proposition [2.4.1 we obtain a diagram of
Brauer groups

Br(Syng) — --- — Br(15%) - Br(15?) — Br(15') — Br(1%°).

Our goal in this section is to prove the third part of Theorem [8:0.2] which we restate as
follows:

Proposition 8.3.1. Let 0 : Br(Syng) — LUmBr(15") be the group homomorphism
determined by the diagram above. Then 6 is an isomorphism of abelian groups.

The proof of Proposition [8:3.1] will require some preliminaries.

Lemma 8.3.2. Let n be a nonnegative integer and let L be an invertible object of
Syny<n. Then L is equivalent either to 1S™ = 1<, Sy[F] or to 1<, Sy[XE].

Proof. Note that any invertible object of Synj<» is dualizable, and therefore n-truncated
(Proposition . We proceed by induction on n, beginning with the case n = 0. If
L € Syny <o is invertible, then L is invertible when regarded as a Milnor module. Using
Theorem @ we can choose an equivalence of monoidal categories Syng ~ M(V),
where V' is a finite-dimensional vector space over the residue field k = (7pE)/m. We
observe that M(V) is equipped with a monoidal forgetful functor M(V) — Mod% ,
and that every invertible object of Mod%g* is isomorphic either to the unit object K, or
to its shift K [1]. Moreover, since K, is concentrated in even degrees, every action of
the exterior algebra A% (V) on K, or K4[1] is automatically trivial on V. It follows
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that every invertible object of M (V') is isomorphic either to the unit object K, or K,[1],
which proves Lemma [8.3.2 in the case n = 0.

We now carry out the inductive step. Suppose that n > 0 and that L is an invertible
object of Synj<n. Our inductive hypothesis guarantees that L Aq<n 15771 is equivalent
either to 7<,—1 Sy[E] or to 7<p—1 Sy[XE]. Without loss of generality, we may assume
that Lo = L A< 15771 is equivalent to 15771, Let © : Synj<n—1 — Synj<n—1 be the
functor described in Construction Using Proposition and Remark
we can identify lifts of Lg to an object of Syn;<» with sections of the canonical map
¢ : ©(Ly) — Lo in the co-category Synjy<n—1. Since the set of such lifts is nonempty, the
map ¢ admits a section; it therefore exhibits ©(Lg) as a direct sum Lo @ X" 119[—n].
We can therefore identify the set of equivalence classes of lifts of Ly with the group

Extit] (1571 19[—n]) ~ Extg;nlg(lv, 19[—n]).
E

Synlén—l
We now observe that this group vanishes (see Proposition [7.2.7]). O

Lemma 8.3.3. Let n be a positive integer, let A be a molecular Azumaya algebra object
of the symmetric monoidal 0co-category Syny<n-1, and let z € Br(15") be an element

whose image in Br(1S"1) coincides with [A]. Then x = [A] for some molecular
Azumaya algebra object A of Synq<n satisfying A ~ A Aq<n 15771,

Proof. Write x = [B] for some Azumaya algebra B € Syn;<n, and set B = BAq<n 15771,
Then [A] = [B] in Br(15"71). It follows that there exists an equivalence of algebras

A Aq<n—1 B? ~ End(M)

for some nonzero dualizable object M € Synj<n-1. Let N be an atomic E-module.
Replacing B by B A Sy[Endg(N)], we can arrange that M is molecular. In this case,
we can apply Corollary to lift M to a molecular object M € Synj<n.. Then
End(M) can be regarded as an element of the set Lift(A Aq<n—1 B°P) (see Notation
7.4.1)). Invoking Corollary we deduce that there exists an equivalence

End(M) ~ A Ay<n B
for some A € Lift(A). Then A is an Azumaya algebra satisfying [A] = z, as desired. [J

Proof of Proposition[8.3.1. We first show that the homomorphism 6 : Br(Syng) —
lim Br(1S") is injective. Suppose that A is an Azumaya algebra object of Syny and that
0([A]) = 0 in lim Br(15"); we wish to show that [A] = 0. For each n > 0, we can choose
a full dualizable object M,, € Syn;<» and an equivalence A A 15" ~ End(M,,) (where
the endomorphism object is formed in the symmetric monoidal co-category Synj<n).
We therefore have equivalences

Bp : End(M,,) ~ End(My, 11 Aq<ni1 157)
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in the oo-categories Alg(Syn;<n). Using Corollary we see that each (3, is induced
by an equivalence
Mn >~ (Mn+1 ANq1<n+1 ]_Sn) ANq1<n Ln

for some invertible object L, € Syn;<». Using Lemma we can assume L, = 1S A
Sy[X*n E] for some integers k,, € {0,1}. Replacing each M,, by M,, A Sy[SFo++kn-1F]
we can arrange that each L, is trivial, so that each (3, is induces by an equivalence
M, ~ M,,1 Aq<n+1 1S, In this case, we can regard M = {M,},>0 as a nonzero
dualizable object of the co-category Synp =~ lim 7<,, Synp. We then have an equivalence
A ~ End(M), so that [A] = 0 in Br(Syng).

We now prove that ¢ is surjective. Suppose we are given an element x of lim Br(1s"),
which we can identify with a compatible sequence of elements {z,, € Br(1S")},>0. Write
xo = [Ap] for some Azumaya algebra Ay € Syn;<o. Without loss of generality, we may
assume that Ay is molecular. Invoking Lemma [8.3.3] repeatedly, we can choose Azumaya
algebras A, € Alg(Syn;<n) satisfying

[An] = 20 Ap1~ Ay Aqen 15771,

We can therefore identify each A,,—; with the truncation 7<,_1A4, (Corollary ,
so that A = {A,}n>0 can be regarded as an algebra object of the co-category Synp ~
lim 7<,, Synp. It follows immediately that A is an Azumaya algebra satisfying 0([A]) = =
in lim Br(15"). O

8.4 Comparison of Syn;<. with Syn;<.
Let us now fix an integer n > 0. We saw in that the extension-of-scalars functor

Synq<n — Synj<n-1 M > M Aq<n 15771

induces a homomorphism of Brauer groups p : Br(1S") — Br(1"7!). The final
assertion of Theorem [8.0.2]is a consequence of the following more precise result:

Proposition 8.4.1. The homomorphism p : Br(1S") — Br(15""1) is surjective. More-
over, there is a unique isomorphism £ : ker(p) ~ K_5 ®, (m"2/m"*3) which satisfies
the following condition:

(%) Let B be an Azumaya algebra object of Syny<n—1 and suppose we are given lifts
B, B’ € Lift(B) (see Notation . Then £([B] — [B']) = 6(B,B'), where § is
defined as in Construction|7.4.6]

Proof. We first show that p is surjective. Fix an element x € Br(15""1); we wish to
show that x belongs to the image of p. Write x = [A] for some Azumaya algebra A in
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Synj<n—1. Let N be an atomic E-module. Replacing A by A A Sy[Endg(N)], we can
arrange that A is molecular. In this case, Proposition implies that there exists a
lift A € Lift(A). Then A is an Azumaya algebra object of Syn;<. and z = [A] = p([A4]).

We will carry out the construction of £ in several steps. Let us first fix a molecular
Azumaya algebra A in Syn;<s—1 satisfying [A] = 0 in Br(15"71) (this can be achieved
by setting A = Sy[Endg(N)] A 1571 where N is an atomic E-module as above). We
now argue as follows:

(1)

(2)

Every element of ker(p) can be written as [A], for some A € Lift(A). This is a
special case of Lemma [8:3.3

If A, A’ € Lift(A) are elements satisfying [A] = [A'] in Br(15"), then A = 4 (as
element of Lift(A)). To prove this, note that the equality [A] = [A'] guarantees
the existence of an equivalence A’ Aq<n A ~ End (M) for some nonzero dualizable
object M € Syny<n. Set M = M Aq<n 15771 50 that we have equivalences

End(M) ~ A®q<n-1 AP’ ~ End(A)

in the co-category Alg(Synj<n-1). Applying Corollary we deduce that there
exists an invertible object L € Synj<n—1 satisfying A ~ L Aq<n—1 M. Using Lemma
we can lift L to an invertible object L € Syny<n. Replacing M by L Aq<n M,
we can arrange that there exists an equivalence M ~ A in Synj<n-1. Since A
is molecular, this guarantees the existence of an equivalence M ~ A in Synj<n
(Corollary . Because A is an Azumaya algebra, we obtain an equivalence

a: A Apen A ~ End(M) ~ End(A) ~ A @<n A

in the oo-category Alg(Synj<n). Let a denote the image of @ in Alg(Synj<n-1),
which we regard as an automorphism of End(A). Using Remark we can lift
a to an automorphism @ of End(4) in the oo-category Alg(Syn;<n). Replacing
@ by @~ ! o@, we can reduce to the case where « is homotopic to the identity.
It then follows that A’ Aq<n A and A ®q<n A" represent the same element of
Lift(A Aq<n—1 A°P). Applying Corollary we deduce that 4 and A’ represent

the same element of Lift(A), as desired.

It follows from (1) and (2) that the construction A — [A] induces a bijection of
sets b : Lift(4) — ker(p). Using Proposition [7.6.1 we can regard Lift(A4) as a
torsor for the group G = K_5 ®, (m""2/m"*3). It follows that there is a unique
bijection £4 : ker(p) — G such that £4(0) = 0 and £4 o b is a map of G-torsors.
Concretely, £4 is given by the formula £4([A]) = 6(A, Ag), where § is defined as
in Construction and Ag denotes the unique element of Lift(A) satisfying
[Ag] = 0 € Br(1s").
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(4)

We now claim that the bijection 4 : ker(p) — G does not depend on the choice of
A. To prove this, suppose that we are given some other molecular Azumaya algebra
B of Synj<n—1 satisfying [B] = 0 € Br(15"1); we will show that £4(z) = &g(x)
for each x € ker(p). Using (1), we can choose lifts

Z, Zo € Llft(A) E, Eo € Llft(B)
satisfying [A] = [B] = x and [Ap] = [Bo] = 0 in Br(15"). Then
[Z N1<n PO] =T = [ZO AN1<n 7],

so (2) guarantees that A Aq<n Bg and Ag Aq<n B represent the same element of
Lift(A Aq1<n-1 B). Using Corollary we compute

fa(z) =

(o0

|
o
~—

|
>

AN1<n Eo,ZO N1<sn Eo)

SN N

0 N1sn E, Zo A1<n Eo)
7BO)

[

S

—~ o~~~
o]

|
s,
sy

It follows from (4) that there exists a unique bijection & : ker(p) — G such that
& = €4 for every molecular Azumaya algebra A of Syn;<.—1 satisfying [A] = 0. We
claim that ¢ is a group homomorphism. Choose elements z,y € Br(1") satisfying
p(z) = p(y) = 0; we wish to show that £(z +y) = £(x) +&(y) in Br(1S™). Choose
Azumaya algebras A, B € Alg(Syn;<n) such that z = [A] and y = [B]. Set
A=A A< 15" 1 and B = B Aq<n 15771, Without loss of generality, we can
assume that A and B are molecular. Using (1), we can choose lifts Ay € Lift(A)
and By € Lift(B) satisfying [Ag] = [Bo] = 0 € Br(1s"). Set C = A Aq<n-1 B.

Using Corollary we compute

§x+y) = &([Ari=n B])
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(6)

We now show that the homomorphism ¢ satisfies condition (). Let B be an
arbitrary Azumaya algebra in Syn;<.-1, and suppose that we are given lifts
B, B € Lift(B). We wish to show that &([B] — [B']) = 6(B,B') in the abelian
group G. To prove this, choose a molecular Azumaya algebra in Syn;<n—1 such
that [C] = —[B] in Br(1s"71). Using Proposition we can lift C' to an
Azumaya algebra C in Synj<.. Set A = B Aq<n—1 C, so that A is a molecular
Azumaya algebra whose Brauer class [A] € Br(15"71) vanishes. Using (1), we can
lift A to an Azumaya algebra A in Syn,<n. satisfying [A] = 0 € Br(15"). Using
(5) and Corollary we compute

§[B]-[B]) = &([B ar=n O)) = &([B 1= C))

= 5(B A1<n 6,2 —6(§ A1<n 6,2)
= 6(§/ A1<n 6,? A1<n 6)
- §(B,B)

We now complete the proof by showing that the homomorphism £ is unique.
Suppose that £ : ker(p) — G is some other group homomorphism satisfying
condition (x). We will show that £(x) = &(z) for each = € ker(p). To prove
this, write = [A] for some molecular Azumaya algebra A in Synj<n. Set
A=A nyp<n 15771 Using (1), we can choose Ag € Lift(A) such that [Ag] = 0 €
Br(1s™). We then compute

{(x) =

([A]) — &([Ao])

[A]) — &'([Ao])

|
SORAN

¢'(
¢'(
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Chapter 9

Subgroups of Br(F£)

Let E be a Lubin-Tate spectrum and let P be some property of F-modules which
satisfies the following requirement:

(%) If M and N are E-modules having the property P, then the tensor product
M ®pg N also has the property P. Moreover, the Lubin-Tate spectrum E has the
property P.

In this case, we let Br”(E) denote the subset of Br(F) spanned by those Brauer
classes which can be represented by an Azumaya algebra A having the property P. It
follows immediately from (*) that Br(E) is a subgroup of Br(E). In this section, we
will study subgroups

Br’(E) < Br'(E) c Br'(E) < Br(E)
which can be defined by this procedure:

e The subgroup Br’(E) consists of those element of Br(E) which have the form [A],
where A is an Azumaya algebra which is flat as an E-module: that is, equivalent
to a sum of (finitely many) copies of E.

e The subgroup Br'"(E) consists of those elements of Br(E) which have the form
[A], where A is an Azumaya algebra which is free in the sense of Definition [6.3.4}
that is, equivalent to a sum of copies of F and its suspension X F.

e The subgroup Br'"!(E) consists of those elements of Br(E) which have the form
[A], where A is an Azumaya algebra which is full (in the sense of Definition
2.1.2))) when regarded as an object of the co-category Modg (for a more concrete
characterization, see Proposition [9.2.2).
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Remark 9.0.1. Let P be as above, and let C denote the full subcategory of Modg
spanned by those E-modules having the property P. Condition (%) is equivalent to the
requirement that C is a symmetric monoidal subcategory of Modg. Roughly speaking,
we can think of the subgroup Br”(E) < Br(F) defined above as a Brauer group of the
oo-category C. Beware, however, that C might not fit the general paradigm of §2| (in the
examples of interest to us, the co-category C does not admit geometric realizations of
simplicial objects).

Warning 9.0.2. Let P be as above, and let « be an element of Br”(E). The condition
that 2 belongs to Brf(E) guarantees that there exists some Azumaya algebra A
representing x which satisfies the property P. However, it does not guarantee that every
Azumaya algebra representing x has the property P (in the examples of interest to us,
this stronger property is never satisfied).

9.1 The Subgroup Br’(E)

Let E be a Lubin-Tate spectrum with maximal ideal m and residue field x. Our first
goal is to describe the group Brl’(E) < Br(E) of Morita equivalence classes of Azumaya
algebras A which are flat over E. Our main result can be stated as follows:

Theorem 9.1.1. There is a unique isomorphism of abelian groups u : Br' (E) — Br(k)
with the following property: if A is an Azumaya algebra over E which is flat as an

E-module, then u([A]) = [(mpA)/m(moA)].

To prove Theorem it will be convenient to compare both Br’(E) and Br(k)
with an auxiliary object: the Brauer group of the connective cover 7> F, in the sense of
Definition 2.7.1]

Proposition 9.1.2. The tautological map of Eo-rings 70 — k induces an isomor-
phism of Brauer groups Br(r=oFE) — Br(k).

Proof. Combine Propositions and (note that moFE is a complete local Noethe-
rian ring, and therefore Henselian). O

Let L : Modg — Mod2¢ be a left adjoint to the inclusion functor. Note that the
construction

M — L(E®ror M)

determines a symmetric monoidal functor Mod?_ p — Mod%¢, which carries full du-
alizable objects to full dualizable objects. Applying Proposition [2.4.1], we obtain a
homomorphism of Brauer groups 7 : Br(r>oF) — Br(Modg).
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Proposition 9.1.3. The image of v : Br(rs0E) — Br(E) is the subgroup Br’(E) <
Br(E).

Proof. Unwinding the definitions, we see that an element = € Br(E) belongs to the
image of v if and only if v = [E ®,_,r Ag] for some Azumaya algebra object Agy of
the symmetric monoidal oo-category Mod?_ p. In this case, Ay is a free 7>0F-module
of finite rank, so that A = EF®,_,r Ao is a free E-module of finite rank. Conversely,
suppose that = = [A], where A is an Azumaya algebra which is free of finite rank over
E. Then A ~ F ®,_,r Ao, where Ag is the connective cover of A. To show that x
belongs to the image of &, it will suffice to show that Ag is an Azumaya algebra object
of Mod7_ p. By virtue of Corollary it will suffice to show that the multiplication
on Ag induces an equivalence e : Ag @k AP — End,_,£(Ag). Note that the domain
and codomain of e are free modules of finite rank over 7~oF. Consequently, to show
that e is an equivalence, it will suffice to show that e becomes an equivalence after
extending scalars along the map 7>0F — E. This follows from our assumption that A
is Azumaya. O

Our next goal is to show that the map v of Proposition [9.1.3] is injective. This is a
consequence of the following algebraic assertion:

Lemma 9.1.4. The canonical isomorphism k ~ Endsyno (1Y) determines a fully faithful
E
symmetric monoidal functor

F:Vect, —Syny  F(V)=V®.1Y
which induces a monomorphism of Brauer groups vo : Br(k) — Br(Syng) = BM(E).

Proof. The first assertion follows immediately from Proposition [6.3.10] and the well-
definedness of ¢y follows from Proposition [2.4.1} To show that ¢g is injective, it will
suffice to show that if M is a dualizable Milnor module and End(M) belongs to the
essential image of F', then either M or M[1] belongs to the essential image of F'. To
prove this, choose a Modg*—linear equivalence of monoidal categories G : Syng ~ M(V)
(Theorem, for some finite-dimensional vector space V over k. Then we can identify
G(M) with a graded module over the exterior algebra A% (V) which is of finite rank
over K. Our assumption that End(M) belongs to the image of F' guarantees that
G(End(M)) = G(M) ®k, G(M)" is concentrated in even degrees. Replacing M by
M]|1] if necessary, we can assume that G(M) is also concentrated in even degrees. It
follows that the action of V' on G(M) must be trivial, so that G(M) is a direct sum of
copies of Ky = G(1) and therefore M belongs to the essential image of F. O
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Proposition 9.1.5. The homomorphism ~ of Proposition[9.1.3 fits into a commutative
diagram of Brauer groups

Br(rs0E) —— Br(E)

| l

Br(k) ——> BM(E)

where 1y is the monomorphism of Lemma and the left vertical map is the isomor-

phism of Proposition [9.1.)

Proof. Let A be an Azumaya algebra object of the symmetric monoidal co-category
Mod?_ g, and let Ag = k ®:_,r A be the induced Azumaya algebra over k. To prove
Proposition it will suffice to show that F(Ag) and Sy”[E ®..,r A] are isomorphic
(as Azumaya algebra objects of Syng), where F' is the symmetric monoidal functor
of Lemma [9.1.4. This follows from the commutativity of the diagram of symmetric

monoidal co-categories o :

ModeOE —— Modg

T

.

Vect,, a Syng,

where Modi>O g denotes the full subcategory of Mod,_,, spanned by the flat modules
over 7>9F. The commutativity of ¢ is implicit in the construction of F' (see §6.3). [

Corollary 9.1.6. The map 7 : Br(r=0E) — Br’(E) is an isomorphism.
Proof of Theorem |9.1.1. Proposition [9.1.2] and Corollary supply isomorphisms
Br(k) « Br(rsoE) 2> Br’(E).

Note that if A is an Azumaya algebra over E which is free as an E-module, then this
isomorphism carries the element [A] € Br"(E) to the class of the Azumaya algebra
R@TZOE T;(]A >~ (WQA)/m(ﬂ'oA). O

9.2 The Subgroup Br''(E)

Let E be a Lubin-Tate spectrum. In this paper, we have defined the Brauer group
Br(E) to be the Brauer group of the co-category Mod'2¢ of K (n)-local E-modules, where
n is the height of . One can also consider the co-category Modg of all E-modules.

However, this gives rise to a smaller Brauer group:
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Proposition 9.2.1. Let L : Modg — ModIEOC be a left adjoint to the inclusion functor.
Then L induces a group homomorphism o : Br(Modg) — Br(Mod'2®) = Br(E). More-
over, a induces an isomorphism from Br(Modg) to the subgroup Br''(E) consisting of
those elements of Br(E) which have the form [A], where A is an Azumaya algebra over
E which is full when regarded as an object of Modg.

Proof. To show that « is well-defined, it will suffice to show that the functor L carries
full dualizable objects of Mod to full objects of Mod2¢ (Proposition . Note that if
M € Modg is dualizable, then M already belongs to ModlEOC, so we have an equivalence
LM ~ M (Proposition . If M is full as an object of Modg, then it is necessarily
nonzero, so that LM ~ M is a full object of ModlEOC by virtue of Proposition m This
proves that « is well-defined.

Note that every Azumaya algebra object A of Modg is also an Azumaya algebra
object of Mod'2¢, and the converse holds if and only if A is full as an object of Modp.
It follows that the image of « is the subgroup Br'"(E) < Br(E).

We now complete the proof by showing that « is injective. Suppose that A is an
Azumaya algebra object of Modg and that a([A]) vanishes in Br(Mod2®); we wish
to show that [A] vanishes in Br(Modg). The vanishing of a([A]) guarantees that we
can identify A with End(M) for some dualizable object M € Mod2¢. Proposition
[2.9.4] guarantees that M is also dualizable as an object of Modg. Moreover, since
A= MQ®g MV is a full object of Modg, the module M must also be full as an object
of Modg. Applying Corollary we deduce that [A] vanishes in Br(Modg). O

The following result gives a concrete criterion for testing the fullness of dualizable
objects of Modg:

Proposition 9.2.2. Let M be a perfect E-module. The following conditions are equiv-
alent:

(a) The module M is full (as an object of the co-category Modg ).

(b) For every nonzero element x € moF, multiplication by x induces a nonzero map
M S 1 M.

The proof of Proposition [0.2.2] will require some preliminaries.

Lemma 9.2.3. Let M be a nonzero E-module. Then there exists a prime ideal p S moF
and a regular system of parameters x1,...,xy for the local ring (moE), for which the
tensor product M ®p A is nonzero, where A = ®@1<;<k cofib(z; : B, — Ey).

Proof. Let p be minimal among those prime ideals of moF for which the localization M,
is nonzero (such a prime ideal must exist by virtue of our assumption that M is nonzero).
Choose elements x1, ...,z € p which form a regular system of parameters for the local
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ring (moE),. For 0 < j <k, let A(i) denote the tensor product &);;; cofib(z; : By —
E,) (formed in the co-category of modules over the localization Ey), so that A(0) = E,
by convention. We will prove the following assertion 0 < ¢ < k:

(#;) The tensor product A(i) ®z M is nonzero.

Note that (#g) follows from our assumption that the localization M, is nonzero, and
(#x) implies Lemma We will complete the proof by showing that (%;_1) implies
(#;). Note that we have a cofiber sequence

Al —1) @ M 55 A(i — 1) @ M — A(i) ®g M.

Consequently, if (#;) is not satisfied, then multiplication by x; induces an equivalence
from A(i — 1) ®g M to itself, so that the tautological map e : A(i — 1) ®g M —
A(i — 1) ®g M[z; '] is an equivalence. Assumption (*;_1) guarantees that the domain
of e is nonzero. It follows that the codomain of e is also nonzero, so that the localization
M|z, 11 is nonzero. It follows that there exists a prime ideal q¢ < p which does not
contain z; for which the localization M, is nonzero, contradicting our assumption that
p is minimal. O

Lemma 9.2.4. Let M be an E-module spectrum. The following conditions are equiva-
lent:

(1) The module M is a full object of Modg: that is, the functor N — M ®g N is
conservative.

(2) For every nonzero E-module N, the tensor product M ®g N is nonzero.

(3) For every prime ideal p € moE and every regular system of parameters xy, ..., xy
for the local ring (moE),, the tensor product M ®g A is nonzero, where A is defined
as in Lemma [9.2.3.

Proof. The implications (1) = (2) = (3) are obvious, and the implication (2) = (1)
follows from the stability of the oco-category Modg. We will complete the proof by
showing that (3) = (2). Let N be a nonzero E-module; we wish to show that M @z N
is nonzero. Applying Lemma [9.2.3] we can choose a prime ideal p € mgF and a regular
system of parameters z1, ...,z for the local ring (moE), for which the tensor product
A®pg N is nonzero, where A is defined as in Lemma We note that A admits the
structure of an algebra over the localization E, (for example, it can be obtained by a
variant of the Thom spectrum construction studied in §3)). By construction, 7, A is
isomorphic to x(p)[t¥!], where (p) denotes the residue field of the local ring (moE),
and the element ¢ has degree 2. It follows that every (left or right) A-module spectrum
can be decomposed as a direct sum of copies of A and the suspension X A. Assumption
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(3) guarantees that the tensor product M ®g A is nonzero. Consequently, we can assume
that M ®g A contains XA as a direct summand (as a right A-module) and A ®g N
contains 37 A as a direct summand (as a left A-module), for some 4, j € {0, 1}. It then
follows that the tensor product

M®rA®r N ~ (M ®p A)®a (AR N)

contains Y17/ A as a direct summand (in the oo-category Modg). In particular, M ®p
A®pg N is nonzero, so that M ®g N is also nonzero. O

Proof of Proposition[9.2.3. Let M be a perfect E-module. If M is full and x € mE is
nonzero, then the localization M[z~!] ~ M ®g E[z~!] must be nonzero, so the abelian
group meM[r71] ~ (7 M)[z7!] is likewise nonzero, which shows that (a) = (b).

Conversely, suppose that (b) is satisfied. We will show that M satisfies condition
(3) of Proposition Fix a prime ideal p < moF and a regular system of parameters
Z1,...,xy for the local ring (moE),. Note that m, M is a finitely generated module over
the Noetherian ring 7. F (Proposition which is not annihilated by any element
of (mpE) — p. It follows that the localization M, is a nonzero (perfect) module over
the localization E,. For 0 < i < k, define A(i) as in the proof of Lemma and set
M (i) = A(i) ®g M. We will prove the following assertion 0 < i < k:

(#;) Each homotopy group of M (i) is a nonzero finitely generated module over the
commutative ring moE,.

Note that assertion (xg) is obvious (since M (0) = M,), and assertion (xj) will complete
the proof of (a) (by virtue of Proposition [9.2.4]). It will therefore suffice to show that
(#;—1) implies (%;). For this, we note that we have a fiber sequence

M(i—1) 25 M@ —1) — M(i)
which yields a long exact sequence of homotopy groups
T M (i — 1) Z5 1, M (i — 1) — mp M (i) — T 1 M (i — 1) — 71 M (i — 1).

Here the outer terms are finitely generated modules over moE, (by virtue of assumption
(*i—1)), so the middle term is as well (since the ring moE} is Noetherian). Moreover,
if we choose m so that m,, M (i — 1) is nonzero, then m,, M (i) is also nonzero (the map
X M (i — 1) — 7, M (i — 1) cannot be surjective, by Nakayama’s Lemma). O

9.3 The Subgroup Br"(FE)

Let E be a Lubin-Tate spectrum and let x be the residue field of E. Our goal in
this section is to show that the subgroup Br™(E) € Br(E) (defined in the introduction
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to is isomorphic to the Brauer-Wall group BW (k) (defined in §2.8]). More precisely,
we have the following result:

Theorem 9.3.1. The composite map
Br'(E) — Br(E) — BM(E)

is a monomorphism, whose image coincides with the image of the monomorphism
L Br(Mod%*) — BM(E) be the monomorphism v of Remark .

Corollary 9.3.2. The Brauer group Brfr(E) is isomorphic to the Brauer- Wall group
BW (k).

Proof. Combine Theorem [9.3.1] with Proposition [5.7.1 O

Warning 9.3.3. The isomorphism Br'™(E) ~ BW(k) of Corollary is not quite
canonical: it depends on a choice of nonzero element ¢ € Ky (see Warning [5.7.2)).

Remark 9.3.4. Suppose that the residue field x of E has characteristic different from
2. It follows from Theorem and Proposition that Brauer group Br(E) splits
as a direct sum Br™(E) @ Br'(E), where Br'(E) is the kernel of the composite map

Br(E) — BM(E) £ Br(Mod% ) x QF — QF

(here p is the isomorphism of Proposition [6.9.3). Using Theorem we deduce that
Br'(E) can be obtained as the inverse limit of a tower of surjective group homomorphisms

--Br’(1<3) 23, Br’(1<2) LEN Br’(lgl) LN Br/(lgo) 2,0

)

where we have canonical isomorphisms ker(p;) ~ K_3 ®, (m**2/mi*3) After making a
choice of nonzero element ¢ € Ky, we obtain the (slightly less canonical) description of

Br(E) given in Theorem [1.0.11

Theorem [9.3.1] is an immediate consequence of the following three assertions:

Proposition 9.3.5. There exists a commutative diagram of Brauer groups

Br*(E) Br(E)

| |

Br(Mod%‘) ——=BM(E),
where the upper horizontal map is the canonical inclusion, the bottom horizontal map
is the monomorphism of Remark [6.9.3, and the right vertical map is induced by the
functor Syn" : Mode¢ — Syng.
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Proposition 9.3.6. The image of the composite map Br™(E) < Br(E) — BM(E)
contains the image of the monomorphism ¢ : Br(Mod% ) — BM(E).

Proposition 9.3.7. The map Br(E) — BM(E) is a monomorphism when restricted to
the subgroup Br™(E).

Proposition follows immediately from the construction of the map ¢ (by
definition, if A is an F-algebra having the property that m, A is a free module over m, F,
then the Milnor module Syn“[A] is constant in the sense of Definition |6.3.7)).

Proof of Proposition[9.5.6, For simplicity, let us assume that the field x has character-
istic different from 2 (for the characteristic 2 case, we refer the reader to Remark
below). Choose a nonzero element t € moF, so that we can identify Modfg* with the
category Vect®" of (Z/2Z)-graded vector spaces and the Brauer group Br(Mod%*) with
the Brauer-Wall group BW (k) of the field k. According to Remark the group
BW (k) is generated by the image of Br(x) together with elements of the form [k(y/a)]
for a € k*. Using Theorem we are reduced to showing that ¢([k(4/a)]) belongs to
the image of aq, for each a € k*. We will prove this by establishing the following more
precise assertion:

(¥) There exists a full Azumaya algebra A € Algy, such that Sy”[A] is isomorphic to
the tensor product 1¥ ®, k(y/a) (as an associative algebra object of the category
Syng of Milnor modules).

To prove (x), choose an element @ € (moF)* representing a, and Pic(E) denote the
Picard space of E (see §3.1). Unwinding the definitions, we see that the truncation
T<1 Pic(E) can be identified with the groupoid C of free graded (7, E)-modules (up to
isomorphism, this category has two objects, given by 7 E and its shift 7,XF). The
tensor product of E-modules endows Pic(E) with the structure of an Eq-space and C
with the structure of a symmetric monoidal category. Note that the data of a monoidal
functor Z/2Z — 7<; Pic(E) is equivalent to the data of an object L € C equipped
with an isomorphism e : L&? ~ 7, E. In particular, we can choose a monoidal functor
corresponding to the object L = m,(XF), where e is the isomorphism 74(X%2E) — 7. F
given by multiplication by a@t. This monoidal functor determines a map of classifying
spaces Qo : BZ/2Z — 7<9 BPic(E). Since the homotopy groups m,, BPic(E) are uniquely
2-divisible for n > 2, we can lift Qo to a map @ : BZ/2Z — BPic(E). Let A denote the
Thom spectrum of the induced map Q(Q) : Z/2Z — Pic(F). Unwinding the definitions,
we see that A can be identified with the direct sum F @ X F, and that we have a
canonical isomorphism 7, A ~ (7, E)[z]/(2? — a@t) where x is homogeneous of degree 1.
It is now easy to see that A satisfies the requirements of (). O
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Remark 9.3.8. Proposition [0.3.6]remains valid when « has characteristic 2, but requires
a different proof. As above, we can choose a nonzero element t € K5, which supplies an
isomorphism Br(Mod%E*) ~ BW(k). Let Ap be a graded Azumaya algebra over . The
assumption that s has characteristic 2 guarantees that [Ap] is annihilated by the map
BW (k) — BW(x'), for some finite Galois extension «’ of £ (see Remark [2.8.10). In this
case, we can choose an isomorphism &’ ®, Ag ~ End,/(V'), where V' is a (Z/2Z)-graded
vector space over k. It follows that there exists a semilinear action of the Galois group
G = Gal(+'/k) on the algebra End,/(V'), whose algebra of invariants can be identified
with Ag. In this case, we can regard ' as the residue field of a Lubin-Tate spectrum E’
which is étale over F, and we can lift V to an E’-module M such that 7, M is a finitely
generated free module over 7, E’. The action of the Galois group G on End,/ (V) can
then be lifted to an action of G on Endg: (M) (in the oo-category of E’-algebras), whose
(homotopy) fixed point algebra A = Endg/(M)% is an Azumaya algebra over E. It is
then easy to check that the Brauer class [A] belongs to Br¥(E) which is a preimage of
t([Ao]) under the map Br'"(E) — Br(E) — BM(E).

Proof of Proposition[9.3.7. Let 2 belong to the kernel of the map Br(E) — BM(E);
we wish to show that x vanishes. Write x = [A], where A is an Azumaya algebra for
which 74 A is a free module over 4 E. Then the Milnor module Sy”[A] can be identified
with End(M), where M is a nonzero dualizable object of Syng. Our assumption
that m4A is free over myE guarantees that the Milnor module Sy¥[A] is constant.
Applying Corollary we deduce that M is constant. Replacing M by M|[1] if
necessary, we may assume that M contains 1v as a direct summand. Let € : M — M
denote the associated projection map. Then we can identify € with an element of
Homsyng(lo,End(M)) ~ (mpA)/m(mpA). Because moE is a Henselian local ring (and
moA is a finite algebra over mgF), we can lift € to an idempotent element e € myA.
This idempotent determines a decomposition A ~ N @ N’ in the co-category of left
A-modules, where 1, N ~ (m,A)e and 7. N’ ~ (7,A)(1 — e). The left action of A on
N endows Sy”[N] with the structure of a left module over Sy”[A]. By construction,
this module is isomorphic to M. Consequently, the map A — Endg(/N) induces an
isomorphism of Milnor modules, and is therefore an equivalence (Corollary . It
follows that 2 = [A] vanishes in Br"(E) < Br(E), as desired. O

9.4 Comparison of Br’(E) and Br'"!(E)

Let E be a Lubin-Tate spectrum with residue field .

Conjecture 9.4.1. If the residue field x has characteristic different from 2, then the
inclusion Br'"(E) < Br'"(E) is an equality. In other words, every Azumaya algebra A
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over E which is full as an E-module is Morita equivalent to an Azumaya algebra B
such that 7. B is free as a module over . E.

As partial evidence for Conjecture [9.4.1] we offer the following:

Proposition 9.4.2. Assume that k has characteristic different from 2 and let p :
BM(E) — Br(Mod%*) x QF be the isomorphism of Proposition . Then the com-
posite map

Br™!(E) - Br(E) — BM(E) & Br(Mod% ) x QF — QF
vanishes.

Remark 9.4.3. Assume that s has characteristic different from 2. If Conjecture [0.4.1]is
satisfied, then Proposition [9.4.2] follows immediately from Proposition Conversely,
Propositions w and M guarantee that Br!'(E) and Br’(E) have the same image
in the Brauer-Milnor group BM(E). It follows that Conjecture is equivalent to the
assertion that the composite map Bri"(E) — Br(E) — BM(E) is a monomorphism

(see Proposition [9.3.7)).

Proof of Proposition[9.4.3. Let m € moE denote the maximal ideal, let K, denote the
graded ring (74 E)/m(7.E), and set V = (m/m?)" so that QF is the set of quadratic
forms ¢ : V — K_5. Let A be a full Azumaya algebra over E, and let 1 denote the
class of the Azumaya algebra Sy“[A] in the Brauer-Milnor group BM(E), so that we
can write p(n) = (no, q) for some ¢ € QF; we wish to prove that ¢ = 0. The associated
bilinear form of ¢ determines a linear map

AV — Homg(V, K_5) = (m/m?) ®, K_».

Since the characteristic  is different from 2, it will suffice to show that the map A
vanishes. Assume otherwise. Then we can choose an element v € V' such that \(v) # 0.
Write A(v) = ¢, where t is nonzero element of Ky and 7 is the residue class of some
element x € m — m?.

Let F : Syng — M(V) be the normalized Mod%*—linear equivalence of sym-

metric monoidal categories of Proposition and set B = F(SyY[A]). Write
B = (Bx,{dw}uwev), where B* is a graded K,-algebra equipped with derivations
dw : By — Bs_1. For each element w € V, Proposition [5.7.4] supplies a unique el-
ement b, € B_; satisfying the identity d,,(b) = byb + (—1)deg(b)+ bby,. In particular, we
have

dw(by) = buwby + byby = (w, AN(v)) = t 1w (T) (9.1)
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Let Mz be the A (V)-module described in Construction so that we have an
exact sequence
0— Ki[-1] > Mz —» K, — 0.

Tensoring with B, we obtain an exact sequence
0 — B[-1] > Mz®k, B> B — 0 (9.2)

Note that we can identify Mz ®k, B with B[—1] @ B as a graded K,-module, with
action of /\}}* (V') given by the formula

w(t,b) = (—dwb + w(T)b, dyb).

An elementary calculation using shows that the construction b — (¢1b,b,b)
determines a section of u in the category M(V): that is, the exact sequence (9.2)
splits (in the abelian category M (V")) Shifting and invoking our assumption that F is
normalized, we deduce that the exact sequence of Milnor modules

0 — SyV[A] — Sy"[cofib(z : A — A)] — Sy’ [SA] — 0

splits. In particular, the Milnor module Sy“[A] is isomorphic to a direct summand of
Sy [cofib(z : A — A)].

Since = does not belong to m?, we can extend x to a regular system of parameters
T, Y1, .., Ym for the local ring moE. Set B = X);,,, cofib(E Y, E). Using the above
argument (and the fact that the functor Sy¥ is symmetric monoidal), we deduce that
the Milnor module Sy”[A ®g B] is a direct summand of

Sy"[cofib(z : A — A) ®g B] ~ Sy”[A ®g cofib(z : B — B)].

By construction, the cofiber cofib(xz : B — B) is an atomic E-module, so that A ®p
cofib(x : B — B) is a quasi-molecular F-module. It follows that the Milnor module
Sy“[A ®g cofib(z : B — B)] is quasi-molecular, and therefore the direct summand
Sy¥ [A ®g B] is quasi-molecular. Applying Corollary [6.2.6, we deduce that E-module
A ®g B is a quasi-molecular. In particular, the localization

(A REr B)[:E_l] ~ AQRg B[l‘_l]

vanishes. This contradicts our assumption that A is full, since B[z~!] is a nonzero
E-module. O
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Chapter 10

Atomic Azumaya Algebras

Let k be a field. Then every element of Br(x) has the form [D], where D is a central
division algebra over x. Moreover, the division algebra D is unique up to isomorphism.
In this section, we establish a weak analogue for the Brauer group Br(E) of a Lubin-Tate
spectrum E: if an element = € Br(FE) can be represented by an atomic Azumaya algebra
A, then A is determined up to equivalence (Proposition . We also characterize
those elements x € Br(E) which admit such representatives, at least when the residue
field of E has characteristic # 2 (Theorem . Beware, however, that not every
element of Br(E) has this property (see Example [10.1.6)).

10.1 Atomic Elements of Br(FE)

Let E be a Lubin-Tate specturm, which we regard as fixed throughout this section.

Proposition 10.1.1. Let A,B € Algy be atomic E-algebras. Then A and B are
equivalent (as objects of the co-category Algy ) if and only if they are Morita equivalent

(in the sense of Definition .

Corollary 10.1.2. Let A, B € Algy be atomic Azumaya algebras. Then A and B are
equivalent (as objects of the co-category Algy ) if and only if the Brauer classes [A] and
[B] are identical (as elements of the abelian group Br(E)).

Definition 10.1.3. Let x be an element of Br(E). We will say that x is atomic if we
can write x = [A], where A is an atomic Azumaya algebra over E.

Remark 10.1.4. It follows from Corollary [10.1.2 that the construction A — [A]
determines a bijection of sets

{Atomic Azumaya algebras over F }/equivalence ~ {Atomic elements of Br(E)}.
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Proof of Proposition[I0.1.1] The “only if” direction is obvious. For the converse, assume
that A and B are atomic E-algebras which are Morita equivalent. It follows that there
exists a Mod!2-linear equivalence of co-categories

A : LMody = LMod 4 (Mod2®) — LModp(Mod2¢) ~ LModp .

Note that the ring k = mgA is a field. In particular, it contains no idempotents other
than 0 and 1. It follows that A is indecomposable as a left A-module spectrum: that is,
it cannot be written as direct sum M @ N where M and N are both nonzero. Because
the functor A is an equivalence, it follows that A\(B) is an indecomposable object of
LModpg. Our assumption that B is atomic guarantees that every B-module can be
decomposed as a direct sum of modules of the form B and B (Proposition . It
follows that A(A) is equivalent either to B or ¥ B (as an object of LModp). Composing
A with the suspension functor ¥ if necessary, we may assume that there exists an
equivalence \(A) ~ B.

Let £ = (MOdMOdlé)c (PrL)ModlEoc /) denote the co-category whose objects are pairs

(C,C), where C is a presentable co-category equipped with an action of MOdIEOC and

C € C is a distinguished object (which we can identify with a Mod'9°-linear functor
A : Modg® — C). Our assumption that A(A) ~ B guarantees that A can be promoted
to an equivalence A : (LModg, A) ~ (LModp, B) in the co-category £. According to
Theorem HA.4.8.5.5, the construction R — (LModg(Mod2®), R) determines a fully
faithful embedding Alg(Mod®) < £. Tt follows that X can be lifted to an equivalence
A ~ B in the co-category Alg(Mod2®) < Algy. O

Remark 10.1.5. The proof of Proposition [10.1.1] does not require the full strength of
our assumption that A is atomic: it is sufficient to assume that B is atomic and that
the ring mgA does not contain idempotent elements different from 0 and 1.

Example 10.1.6. The identity element 0 € Br(F) is not atomic. In other words, there
does not exist an atomic Azumaya algebra B satisfying [E] = [B] in Br(FE). This
follows immediately from Remark (since moF is an integral domain, and B is not
equivalent to F as an E-algebra).

10.2 Atomic Elements of BM(E)

Let E be a Lubin-Tate spectrum and let = be an element of the Brauer group Br(E).
Our goal in this section is to show that the question of whether or not x is atomic (in
the sense of Definition depends only on the image of x in the Brauer-Milnor
group BM(E) (Proposition . We begin by establishing some purely algebraic
analogues of the results of
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Lemma 10.2.1. Let B be an atomic algebra object of the abelian category of Milnor
modules Syng, and let M be a left B-module object (in the abelian category Syng).
Then M can be decomposed as a direct sum of modules of the form B and B[1].

Proof. Let m denote the maximal ideal of myF and let K, denote the graded ring
(m+E)/m(m4 F). Combining Proposition with Theorem we obtain an equiv-
alence of categories LModB(Syng) ~ Modg*. It now suffices to observe that every
graded K,-module can be decomposed as a direct sum of copies of K, and K,[1]. O

Proposition 10.2.2. Let A and B be atomic algebra objects of Syng. Then A and B
are isomorphic (as algebra objects of Syng) if and only if they are Morita equivalent (in

the sense of Definition .

Proof. We proceed as in the proof of Proposition [[0.1.1] The “only if” direction is
obvious. To prove the converse, assume that A and B are Morita equivalent: that is,
there exists a Syng—linear equivalence of categories

A LModA(Syng) — LModB(Syng).

Note that the endomorphism ring of A in the abelian category of left A-modules
can be identified with Homsyng(lv,A) ~ K, where k is the residue field of E (see
Proposition . It follows that A is an indecomposable object of the abelian category
LMod 4 (Syny,), so that A(A) is an indecomposable object of LModB(Syng). Invoking
Lemma we deduce that A\(A) is isomorphic to either B or B[1]. Replacing A by
A[—1] if necessary, we may assume that A\(A) is isomorphic to B.

Let & = (MOdSynE (PrL)Syng /) denote the oco-category whose objects are pairs
(C,C), where C is a presentable oco-category equipped with an action of Syng and
C € C is a distinguished object (which we can identify with a Syng—linear functor
A Syng — C). Our assumption that \(A) ~ B guarantees that A can be promoted
to an equivalence A : (LModA(Syng),A) ~ (LModB(Syng),B) in the oo-category &.
According to Theorem HA.4.8.5.5, the construction R — (LMod R(Syng), R) determines
a fully faithful embedding Alg(Syng) «— &. It follows that \ can be lifted to an
isomorphism A ~ B in Alg(Syng). O

Corollary 10.2.3. Let A and B be atomic Azumaya algebra objects of the abelian
category Syng. Then A and B are isomorphic (as algebra objects of Syng) if and only
if the Brauer classes [A] and [B] are equal (as elements of the Brauer-Milnor group

Definition 10.2.4. Let E be a Lubin-Tate spectrum. We will say that an element
x € BM(E) is atomic if we can write z = [A], where A is an atomic Azumaya algebra
object of Syng.
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Proposition 10.2.5. Let x be an element of the Brauer group Br(E) and let T denote
the image of = in the Brauer-Milnor group BM(E). Then x is atomic (in the sense of

Definition if and only if T is atomic (in the sense of Definition|10.2.4)).

Proof. The “only if” direction is clear: if we can write x = [A] for some atomic
Azumaya algebra A € Algp, then SyQ[A] is an atomic Azumaya algebra in SynQQ
satisfying T = [Sy¥[A]]. Conversely, suppose that T is atomic, so we can write T = [A]
for some atomic Azumaya algebra A € Alg(Syng). For n > 0, let z,, denote the
image of z in Br(1s") (see . Applying Lemma repeatedly, we can choose a
compatible sequence of Azumaya algebras {A,, € Alg(Synj<n)}n>0 satisfying A9 = A
and [A,] = 2, € Br(15"). Then A = {A,},>0 can be identified with an Azumaya
algebra object of the co-category Syng ~ lim 7<,, Syng. In particular, A is dualizable
as a synthetic F-module, so we can write A = Sy[B] for some essentially unique object
B e Alg(Mod®) (Lemma [8.1.6)). It follows immediately that B is an Azumaya algebra
(as in the proof of Proposition [8.1.1)). The equivalence A ~ Sy”[B] shows that Sy [B]
is an atomic algebra object of Syn, so that B is an atomic F-module (Corollary
Using the injectivity of the map Br(E) — lim Br(15") (Theorem , we deduce that

O

[B] = xz € Br(E), so that x is atomic as desired.

10.3 The Case of an Odd Prime

Let E be a Lubin-Tate spectrum, let m € myFE be the maximal ideal, and let
K, denote the graded ring (7w E)/m(m.E). If the residue field k = (moE)/m has odd
characteristic, then we can use the isomorphism of Proposition [6.9.3]to explicitly describe
the atomic elements of the Brauer-Milnor group BM(E).

Theorem 10.3.1. Assume that k has characteristic # 2, and let
) ~ gr
p: BM(E) ~ Br(Mody, ) x QF

denote the isomorphism of Proposition[6.9.3; here QF denotes the set of quadratic forms
q: (m/m?)Y — K_o. Let x be an element of the Brauer-Milnor group BM(E) and write
p(z) = (Z,q). Then x is atomic if and only if the following conditions are satisfied:

(a) The quadratic form q is nondegenerate. In particular, q induces an isomorphism
(m/m?)Y — (7_2K) ®, (m/m?), under which we can identify q with a quadratic
form §:m/m? - mK.

(b) We have T = [Clz(m/m?)] € Br(Mod¥%. ), where Clz(m/m?) denotes the Clifford
algebra of g (see Construction[5.3.3).
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Proof. Let V denote the vector space (m/m?)" and let F : Synp ~ M(V) be the
symmetric monoidal equivalence of categories supplied by Proposition Suppose
that z is atomic, so we can write x = [A] for some atomic Azumaya algebra A € Syng.
Then F(A) is an atomic algebra object of M(V) (in the sense of Definition [5.3.1)),
and is therefore isomorphic to the Clifford algebra Clg (V") for some quadratic form
7 : VYV — mK (Proposition [5.3.5). Let b : VY x V¥ — mK be the bilinear form
associated to ¢ (given by the formula b(z,y) = ¢'(z + y) — ¢'(x) — ¢'(y)). Note that we
have the identity b(x,y) = 2y + yx € Cly (V" )2. Consequently, if x € V¥ belongs to
the kernel of b (meaning that b(z,y) = 0 for all y € V'V), then x belongs to the graded
center of the Clifford algebra Cly(V"¥). Our assumption that A is an Azumaya algebra
guarantees that Clg (V") is an Azumaya algebra object of Mod%g*, so its graded center
coincides with K. It follows that the bilinear form b is nondegenerate, and induces an
isomorphism ¢ : (7_2K) ®, V¥ — V. Using this isomorphism, we can identify ¢’ with
a quadratic form ¢’ : V¥V — 7m_9K. To verify (a) and (b), it will suffice to show that
q = ¢ (sothat ¢ =¢).

Fix an element v € V; we claim that ¢(v) = ¢/(v). Let us regard \ as a primitive
element of the Hopf algebra /\}}* (V), so that it determines a derivation

dy: Cly(VY) — Clg (V)

of degree —1, characterized by the identity d,(\) = A(v) for A € V'V. Choose a nonzero
element t € m_oK. According to Proposition [5.7.4] there exists a unique element
a, € Clg (V'V); satisfying

dy(y) = t(avy + (—1)" yay) (10.1)

for every element y € Cly (V") which is homogeneous of degree n. Note that, to establish
that (10.1)) holds for all y, it suffices to consider the case where y € V'V (since both
sides of can be regarded as derivations of the Clifford algebra Cly (V') of degree
(—1)). Consequently, the element a, is characterized by requirement that the formula

A©) = dp(N) = t(aph + Aay) = th(t e (v), \)

holds for all A € V. We therefore have a,, = t1¢~!(v) € VV. Unwinding the definitions,
we obtain

q(v) = (tay)? = 2 (ay) = 2t (v)) = ¢'(v),

as desired. This completes the proof of the “only if” assertion of Theorem

For the converse, suppose that (a) and (b) are satisfied. Condition (a) guarantees
that B = Clg(V'V) is an Azumaya algebra object of M(V') (see Remark . Using
Proposition [6.9.1) we can choose an isomorphism B ~ F(A), where A is an atomic
Azumaya algebra object of Syng. Using assumption (b) and the preceding calculation,
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we see that p([A]) = (T, q). Since the map p is an isomorphism (Proposition [6.9.3)), we
deduce that [A] = x € BM(FE), so that x is atomic. O

Remark 10.3.2. In the situation of Theorem[I0.3.1] we have an isomorphism of Clifford
algebras

Clg(m/m?) ~ Clg(V),

where V = (m/m?)V, and Cl (V') denotes the graded K-algebra generated by V (whose
elements we regard as homogeneous of degree (—1)) subject to the relations v? = ¢(v)
forveV.

Corollary 10.3.3. Let E be a Lubin-Tate spectrum whose residue field k has character-
istic # 2 and let © be an element of the Brauer group Br(E) having image (T, q) under
the composite map

Br(E) — BM(E) % Br(Mod%, ) x Q,

where p is the isomorphism of Proposition [6.9.3. Then x is atomic if and only if
the quadratic form q is nondegenerate and T is represented by the Clifford algebra

Cly((m/m?)V) of Remark|10.5.2,
Proof. Combine Theorem [10.3.1, Remark [10.3.2] and Proposition [10.2.5 O
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