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We discuss the current state of knowledge of stable homotopy
groups of spheres. We describe a computational method using
motivic homotopy theory, viewed as a deformation of classical
homotopy theory. This yields a streamlined computation of the first
61 stable homotopy groups and gives information about the stable
homotopy groups in dimensions 62 through 90. As an application,
we determine the groups of homotopy spheres that classify smooth
structures on spheres through dimension 90, except for dimension
4. The method relies more heavily on machine computations than
previous methods and is therefore less prone to error. The main
mathematical tool is the Adams spectral sequence.

stable homotopy groups of spheres | smooth structures on spheres | Adams
spectral sequence | motivic homotopy theory

One of the most fundamental problems in topology is to
determine the set of homotopy classes [Sn+k ,Sn ] of contin-

uous based maps f :Sn+k→Sn between spheres. For n + k ≥ 1,
these sets have a natural group structure, and they are abelian
when n + k ≥ 2. Despite their essential topological importance,
they are notoriously difficult to compute. Detailed computations
exist only when k is at most ∼30 (1–6).

Theorem 0.1 summarizes some basic structural results about
[Sn+k ,Sn ].

Theorem 0.1.

1) [Sn+k ,Sn ] = 0 when k < 0.
2) [Sn ,Sn ] =Z.
3) [Sn+k ,Sn ] is a finite group, except when k = 0, or n is even and

k =n − 1 [Serre finiteness theorem (7)].

Unfortunately, Theorem 0.1 gives little information about the
groups [Sn+k ,Sn ] when k > 0.

The Freudenthal suspension theorem (8) provides a relation-
ship between the groups [Sn+k ,Sn ] for fixed k and varying n .
The suspension map induces a sequence

· · ·→ [Sn−1+k ,Sn−1]→ [Sn+k ,Sn ]→ [Sn+1+k ,Sn+1]→· · ·

of group homomorphisms, and these homomorphisms are in fact
isomorphisms when n > k + 1. The stable value [Sn+k ,Sn ] for n
sufficiently large is known as the k th stable homotopy group πk .

The stable homotopy groups πk enjoy additional structure
that make them more amenable to computation than the unsta-
ble groups. The rest of this article is entirely concerned with
the stable homotopy groups. While the study of stable homo-
topy groups gives much information about the structure of the
unstable groups, it does not give complete information. Stable
homotopy group information does not tell us much about the
unstable groups when n ≤ k + 1.

Theorem 0.1 implies that πk is zero if k < 0, that π0 is isomor-
phic to Z, and that πk is a finite group for all k > 0. Because each
group πk is finite, it makes sense to study the groups one prime at
a time. More specifically, we can compute the p-primary compo-
nent of the group πk for all primes p and then reassemble these
components into a uniquely determined finite abelian group.

History has demonstrated the effectiveness of this p-primary
approach. For the remainder of this article, we will focus on
the 2-primary components of πk , except that we record odd pri-

mary information in Tables 1 and 2 as a convenience for the
reader. We write π∧k for the 2-primary component of πk . There
are plenty of interesting phenomena to study at odd primes, but
we leave that discussion for other work. See Ravenel’s com-
prehensive book (5) for an extensive source of information on
computations at odd primes.

We will not discuss the long history of stable homotopy
group computations thoroughly. Some of the key results include
the original definitions of homotopy groups by Čech and
Hurewicz, the discovery of the Hopf maps (9), the connection
to framed cobordism due to Pontryagin (10, 11), Serre’s method
using fiber sequences and Eilenberg–Mac Lane spaces (12),
the Adams spectral sequence (13), the May spectral sequence
(14), Toda’s work involving higher compositions and the EHP
sequence (6), deeper analysis of the Adams spectral sequence
by Mahowald (with Barratt, Bruner, and Tangora) (15–17),
the Adams–Novikov spectral sequence (18), and Kochman’s
approach involving the Atiyah–Hirzebruch spectral sequence for
the Brown–Peterson spectrum BP (19, 20).

The stable homotopy groups have important applications
in the study of high-dimensional manifolds. See 2. Groups of
Homotopy Spheres for more discussion of one such application.

1. Stable Homotopy Group Computations
We use the C-motivic homotopy theory of Morel and Voevod-
sky (21), which has a richer structure than classical homotopy
theory, to deduce information about stable homotopy groups.
In practice, our procedure works remarkably well. Already we
have obtained nearly complete information to dimension 90,
extending well beyond the previously known range that ended
at dimension 61.

Significance

The geometric objects of interest in algebraic topology can
be constructed by fitting together spheres of varying dimen-
sions. The homotopy groups of spheres describe the ways
in which spheres can be attached to each other. From the
viewpoint of algebraic topology, detailed knowledge of these
groups would lead to a classification of geometric objects.
We summarize the state of previous knowledge of the stable
homotopy groups of spheres through dimension 61 and pro-
vide information in dimensions 62 through 90. It is a highly
counterintuitive fact that some high-dimensional spheres can
be viewed in more than one way from the perspective of dif-
ferentiability. We enumerate these differentiable structures
through dimension 90, except for dimension 4.
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Table 1. Stable homotopy groups in dimensions 1 to 61

k v1-torsion at the prime 2 v1-torsion at odd primes v1-periodic Group of smooth structures

1 · · 2 ·
2 · · 2 ·
3 · · 8·3 ·
4 · · · ?

5 · · · ·
6 2 · · ·
7 · · 16·3·5 b2

8 2 · 2 2
9 2 · 22 2·22

10 · 3 2 2·3
11 · · 8·9·7 b3

12 · · · ·
13 · 3 · 3
14 2·2 · · 2
15 2 · 32·3·5 b4·2
16 2 · 2 2
17 22 · 22 2·23

18 8 · 2 2·8
19 2 · 8·3·11 b5·2
20 8 3 · 8·3
21 22 · · 2·22

22 22 · · 22

23 2·8 3 16·9·5·7·13 b6·2·8·3
24 2 · 2 2
25 · · 22 2·2
26 2 3 2 22·3
27 · · 8·3 b7

28 2 · · 2
29 · 3 · 3
30 2 3 · 3
31 22 · 64·3·5·17 b8·22

32 23 · 2 23

33 23 · 22 2·24

34 22·4 · 2 23·4
35 22 · 8·27·7·19 b9·22

36 2 3 · 2·3
37 22 3 · 2·22·3
38 2·4 3·5 · 2·4·3·5
39 25 3 16·3·25·11 b10·25·3
40 24·4 3 2 24·4·3
41 23 · 22 2·24

42 2·8 3 2 22·8·3
43 · · 8·3·23 b11

44 8 · · 8
45 23·16 9·5 · 2·23·16·9·5
46 24 3 · 24·3
47 23·4 3 32·9·5·7·13 b12·23·4·3
48 23·4 · 2 23·4
49 · 3 22 2·2·3
50 22 3 2 23·3
51 2·8 · 8·3 b13·2·8
52 23 3 · 23·3
53 24 · · 2·24

54 2·4 · · 2·4
55 · 3 16·3·5·29 b14·3
56 · · 2 ·
57 2 · 22 2·22

58 2 · 2 22

59 22 · 8·9·7·11·31 b15·22

60 4 · · 4
61 · · · ·

n stands for Z/n, n·m stands for Z/n⊕Z/m, and nj stands for (Z/n)j . Underlined symbols indicate contribu-
tions from Θbp

n , and bk stands for 22k−2(22k−1− 1) times the numerator of 8ζ(1− 2k), where ζ is the Riemann
zeta function.
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Table 2. Stable homotopy groups in dimensions 62 to 90

k v1-torsion at the prime 2 v1-torsion at odd primes v1-periodic Group of smooth structures

62 24 3 · 23·3
63 22·4 · 128·3·5·17 b16·22·4
64 25·4 · 2 25·4
65 27·4 3 22 2·28·4·3
66 25·8 · 2 26·8
67 23·4 · 8·3 b17·23·4
68 23 3 · 23·3
69 24 · · 2·24

70 25·42 · · 25·42

71 26·4·8 · 16·27·5·7·13·19·37 b18·26·4·8
72 27 3 2 27·3
73 25 · 22 2·26

74 43 3 2 2·43·3
75 2 9 8·3 b19·2·9
76 22·4 5 · 22·4·5
77 25·4 · · 2·25·4
78 23·42 3 · 23·42·3
79 26·4 · 32·3·25·11·41 b20·26·4
80 28 · 2 28

81 23·4·8 32 22 2·24·4·8·32

82 25·8 or 3·7 2 26·8·3·7 or
24·8 or 25·8·3·7 or
23·4·8 24·4·8·3·7

83 23·8 or 5 8·9·49·43 b21·23·8·5 or
23·4 b21·23·4·5

84 26 or 32 · 26·32 or
25 or 25·32 or

85 26·42 or 32 · 26·42·32 or
25·42 or 25·42·32 or

24·43 24·43·32

86 25·82 or 3·5 · 25·82·3·5 or
24·82 or 24·82·3·5 or

23·4·82 or 23·4·82·3·5 or
22·4·82 22·4·82·3·5

87 28 or · 16·3·5·23 b22·28 or
27 or b22·27 or

26·4 or b22·26·4 or
25·4 b22·25·4

88 24·4 · 2 24·4
89 23 · 22 2·24

90 23·8 or 3 2 24·8·3 or
22·8 23·8·3

n stands for Z/n, n·m stands for Z/n⊕Z/m, and nj stands for (Z/n)j . Underlined symbols indicate contribu-
tions from Θbp

n , and bk stands for 22k−2(22k−1− 1) times the numerator of 8ζ(1− 2k), where ζ is the Riemann zeta
function.

We briefly describe the main breakthrough here, and we
elaborate further in 6. Algebraicity of the Cofiber of τ . Motivic
homotopy theory is equipped with a parameter τ . If we set
τ equal to zero, then we obtain a category that has a purely
algebraic description and is thus amenable to machine computa-
tion. We can pull back information from this algebraic category
to the C-motivic category, thus transporting machine data to
C-motivic homotopical information. Finally, we can transform
C-motivic homotopical information to classical information by
inverting τ .

Theorem 1.1. Tables 1 and 2 describe the stable homotopy groups
πk for all values of k up to 90.

We adopt the following notation in Tables 1 and 2. An integer
n stands for the cyclic abelian group Z/n , the expression n·m
stands for the direct sum Z/n ⊕Z/m , the symbol · by itself stands
for the trivial group, and n j stands for the direct sum of j copies
of Z/n . Table 1 gives previously known information. Table 2 is
derived from ref. 22.

Tables 1 and 2 describe each group πk as the direct sum
of three subgroups. The first and third columns describe the
2-primary component of each group, while the second and
third columns describe the odd primary components of each
group. See 3. v1-Periodic Stable Homotopy Groups for a brief
explanation of the meaning of the v1-torsion and v1-periodic
subgroups.

The last columns of Tables 1 and 2 describe the groups of
homotopy spheres that classify smooth structures on spheres in
dimensions at least 5. See 2. Groups of Homotopy Spheres and
Theorem 2.1 for more details.

Starting in dimension 82, there remain some uncertainties in
the v1-torsion subgroups at the prime 2. In most cases, these
uncertainties mean that the order of πk is known only up to a
factor of 2. Unknown Adams differentials are the source of these
problems, to be discussed in 4. The Adams Spectral Sequence. In
a few cases, the additive group structure is also not completely
determined due to possible hidden 2 extensions.

Isaksen et al. PNAS | October 6, 2020 | vol. 117 | no. 40 | 24759
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Fig. 1. The 2-primary stable homotopy groups.

Fig. 1 displays the 2-primary stable homotopy groups in a
graphical format. Vertical chains of n dots in column k indi-
cate a copy of Z/2n in π∧k . The nonvertical lines indicate
additional multiplicative structure that we will not discuss here.
The blue dots represent the v1-periodic subgroups. The green
dots are associated to the topological modular forms spectrum
tmf ; the precise relationship is too complicated to describe here.
Finally, the red dots indicate uncertainties. This type of graphical
description of stable homotopy groups is a modification by Allen
Hatcher of Adams spectral sequence charts (23).

The orders of individual 2-primary stable homotopy groups
do not follow a clear pattern, with large increases and decreases
seemingly at random. However, an empirically observed pattern
emerges if we consider the cumulative size of the groups, i.e., the
product of the orders of all 2-primary stable homotopy groups in
dimensions 1 through k .

Our data strongly suggest that asymptotically, there is a lin-
ear relationship between k2 and the logarithm of this product of
orders. In other words, the number of dots in Fig. 1 in columns 1
through k is asymptotically linearly proportional to k2. Thus, in

extending from dimension 61 to dimension 90, the overall size of
the computation more than doubles.

Conjecture 1.2. Let f (k) be the product of the orders of the 2-
primary stable homotopy groups in dimensions 1 through k . Then
log f (k) =O(k2).

One interpretation of this conjecture is that the expected value
of the logarithm of the order of the 2-primary component of πk

grows linearly in k .

2. Groups of Homotopy Spheres
An important application of stable homotopy group compu-
tations is to the work of Kervaire and Milnor (24) on the
classification of smooth structures on spheres in dimensions at
least 5. Let Θn be the group of h-cobordism classes of homo-
topy n-spheres. This group classifies the differential structures
on Sn for n ≥ 5. It has a subgroup Θbp

n , which consists of homo-
topy spheres that bound parallelizable manifolds. See also ref. 25
for a survey on this subject.

Kervaire and Milnor (24) showed that Θbp
n is cyclic, and

they determined the order of this group in terms of Bernoulli
numbers. They also showed how Θn can be determined via
exact sequences from Θbp

n , the cokernel πn/J of the J -
homomorphism, and the Kervaire invariant. See 3. v1-Periodic
Stable Homotopy Groups for further discussion of the cokernel
of J . Despite the recent breakthrough of Hill, Hopkins, and
Ravenel (26), there is still one remaining unknown value of the
Kervaire invariant in dimension 126. See the introduction of ref.
27 for a more detailed discussion of these ideas.

Theorem 2.1. The last columns of Tables 1 and 2 describe
the groups Θn for n ≤ 90, with the exception of n = 4. The
underlined symbols denote the contributions from Θbp

n , and bk is
22k−2(22k−1− 1) times the numerator of 8ζ(1− 2k), where ζ is
the Riemann zeta function.

The first few values, and then estimates, of the numbers bk (for
k ≥ 2) are given by the sequence

28, 992, 8128, 261632, 1.45× 109,

6.71× 107, 1.94× 1012, 7.54× 1014, . . . .

We restate the following conjecture from ref. 27, which is based
on the current knowledge of stable homotopy groups and a
problem proposed by Milnor (25).

Conjecture 2.2. In dimensions greater than 4, the only spheres
with unique smooth structures are S5, S6, S12, S56, and S61.

Uniqueness in dimensions 5, 6, and 12 was known to Kervaire
and Milnor (24). Uniqueness in dimension 56 is established in
ref. 28 and uniqueness in dimension 61 is established in ref. 27.

Conjecture 2.2 is equivalent to the claim that the group Θn is
not of order 1 for dimensions greater than 61. This conjecture has
been confirmed in all odd dimensions by the second and the third
authors (27) based on the work of Hill, Hopkins, and Ravenel
(26) and in even dimensions up to 140 by Behrens, Hill, Hopkins,
and Mahowald (29).

3. v1-Periodic Stable Homotopy Groups
Adams provided the first infinite families of elements in the sta-
ble homotopy groups (30). Within the stable homotopy groups,
there is a regular repeating pattern of subgroups. These sub-
groups are known as the “v1-periodic stable homotopy groups,”
and they are closely related to the “image of J .”

Theorem 3.1. Table 3 gives the v1-periodic stable homotopy
groups inside of π∧k for all k ≥ 2. Here ν(k + 1) is the 2-primary
factor of the integer k + 1 (30).

The odd-primary v1-periodic stable homotopy groups can be
similarly described using odd-primary factors of integers.

The v1-periodic subgroups are direct summands of the stable
homotopy groups. Their complementary summands are known

24760 | www.pnas.org/cgi/doi/10.1073/pnas.2012335117 Isaksen et al.
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Table 3. The 2-primary v1-periodic stable homotopy groups

k v1-periodic subgroup of π∧k

0 mod 8 2
1 mod 8 22

2 mod 8 2
3 mod 8 8
7 mod 8 2ν(k + 1)

as the “v1-torsion subgroups.” The language involving periodicity
and torsion derives from the theory of nilpotence and periodicity
due to Devinatz, Hopkins, Ravenel, Smith, and others (31–33),
which goes beyond the scope of this article.

The cokernel of the J -homomorphism appeared in 2. Groups
of Homotopy Spheres as an ingredient in classifying smooth struc-
tures on spheres. This cokernel is slightly different from the
v1-torsion part of πn at the prime 2. In dimensions 8m + 1 and
8m + 2, there are classes detected by Pmh1 and Pmh2

1 in the
Adams spectral sequence. These classes are v1-periodic, in the
sense that they are detected by the K (1) -local sphere. However,
they are also in the cokernel of the J -homomorphism.

4. The Adams Spectral Sequence
The most powerful tool for computing π∧k is the Adams spec-
tral sequence (13). Information about ordinary cohomology,
together with its higher structure in the form of cohomol-
ogy operations, yields information about the stable homotopy
groups. See ref. 34 for a graphical representation of the Adams
spectral sequence.

The Steenrod algebra A is the ring of stable operations on
cohomology with F2 coefficients (35). It is the associative alge-
bra generated by the Steenrod squaring operations Sqi modulo
the Adem relations, which are easy to write down explicitly but
hard to handle conceptually. The Steenrod algebra also has a
coproduct that gives it the structure of a Hopf algebra.

Following ideas of Milnor (36), it turns out to be much eas-
ier to work with the F2-dual. In other words, we consider A∗=
HomF2(A,F2). Then the product and coproduct on A become a
coproduct and a product on A∗, respectively, and A∗ is again a
Hopf algebra.

The Hopf algebra A∗ is much easier to describe. It is isomor-
phic to the polynomial ring F2[ζ1, ζ2, . . .], where the coproduct is
given by the formula

ζi 7→
i∑

k=0

ζ2
k

i−k ⊗ ζk .

By convention, we let ζ0 equal 1.
The next step in the Adams spectral sequence program is to

consider the derived groups ExtA(F2,F2) of HomA(F2,F2), in
the sense of homological algebra. Roughly speaking, these Ext
groups capture higher information about the structure of A,
including generators, relations, relations among relations, etc.

The groups ExtA(F2,F2) serve as the input to the Adams
spectral sequence. Up to dimension 13, these algebraic Ext
groups give complete information about π∧k . However, in higher
dimensions, further complications occur. Specifically, one must
compute Adams differentials. These differentials measure the
deviation between algebra and homotopy. In practice, the com-
putation of these differentials is the limiting factor in our
knowledge of stable homotopy groups.

In even higher dimensions, the algebraic groups ExtA(F2,F2)
themselves become difficult to compute directly. The May spectral
sequence is the best way to compute these groups by hand (14).

In the modern era, the most efficient way to compute Ext
groups is by machine. Bruner (37–39), Nassau (40), and G.W.

(41) have constructed various efficient algorithms that provide
a wealth of algebraic data, far surpassing our ability to inter-
pret. The most extensive computations extend beyond dimension
200. For practical purposes, we can take this Ext data as given.
Computer-assisted techniques are likely to continue to grow in
importance in the computation of stable homotopy groups.

Beyond dimension 30, the analysis of Adams differentials
becomes more difficult (15–17, 28). The stable homotopy groups
possess higher structure in the form of Massey products and
Toda brackets, and this higher structure leads to additional
information about differentials. However, these arguments are
notoriously tricky, and the published literature contains several
incorrect computations.

The practical limit of this style of argument occurs at dimen-
sion 61. See ref. 28 for a thorough accounting of the Adams spec-
tral sequence through dimension 59. The article (27) employs
strenuous efforts to obtain just two more stable homotopy groups
in dimensions 60 and 61. Beyond dimension 61, these methods
are simply no longer practical.

5. The Motivic Adams Spectral Sequence
Morel and Voevodsky (21, 42) developed motivic homotopy
theory in the mid-1990s as a means of importing homotopical
techniques into algebraic geometry. This program found great
success in Voevodsky’s resolutions of the Milnor conjecture (43)
and the Bloch–Kato conjecture (44).

Motivic homotopy theory is bigraded, so all invariants, includ-
ing cohomology and stable homotopy groups, are bigraded.
There is a bigraded family of spheres Sp,q that serve as the
basic building blocks of motivic homotopy theory. While motivic
homotopy theory can be studied over any base field, we will focus
only on the case when the base field is C. We may further simplify
the theory somewhat by considering only cellular objects and by
taking appropriate 2-completions.

The additional structure contained in C-motivic homotopy
theory provides a new tool for computing classical stable homo-
topy groups (22). There are now two entirely topological models
for 2-complete cellular C-motivic homotopy theory (45, 46). In
these models, all computations can be derived from first prin-
ciples, using only well-known standard classical computations.
Therefore, even though our work is very much inspired by
motivic homotopy theory, it is logically independent of the deep
and difficult foundational and computational results in motivic
homotopy theory, including refs. 21, 42, 43, 47, and 48.

In fact, very recent work of Robert Burklund, D.C.I., and
Z.X. demonstrates that alternative versions of these topologi-
cal models allow us to construct new exotic homotopy theories
with additional computational consequences. More details will
appear in forthcoming work.

The C-motivic cohomology of a point takes the form F2[τ ],
where τ has degree (0, 1). The dual C-motivic Steenrod algebra
AC
∗ takes the form

F2[τ ][τ0, τ1, . . . , ξ1, ξ2, . . .]

τ2i = τξi+1
,

where the coproduct is given by the formulas

τi 7→ τi ⊗ 1 +

i∑
k=0

ξ2
k

i−k ⊗ τk , ξi 7→
i∑

k=0

ξ2
k

i−k ⊗ ξk .

By convention, we let ξ0 equal 1.
Comparison to the classical dual Steenrod algebra illumi-

nates the subtleties of the C-motivic dual Steenrod algebra.
After inverting τ , the element ξi+1 becomes decomposable, so
AC
∗ [τ
−1] is a polynomial algebra over F2[τ±1] on generators τi .

Isaksen et al. PNAS | October 6, 2020 | vol. 117 | no. 40 | 24761
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This recovers the classical dual Steenrod algebra, where τi and
ξi+1 correspond to ζi and ζ2i , respectively.

On the other hand, after setting τ equal to zero, the result
is an exterior algebra on generators τi tensored with a polyno-
mial algebra on generators ξi+1. This structure is analogous to
Milnor’s description of the classical dual Steenrod algebra at odd
primes (36).

As in the classical case, ExtAC(F2[τ ],F2[τ ]) can be computed
by machine in a large range. Then C-motivic Adams differentials
can be determined by the standard methods. As in the classi-
cal case, dimension 61 seems to be the practical limit of this
approach.

6. Algebraicity of the Cofiber of τ
There is a map S0,−1→S0,0 in the C-motivic stable homotopy
category that induces multiplication by τ in C-motivic cohomol-
ogy. Therefore, we use the same notation τ for this map between
spheres. Let S/τ be the mapping cone (or cofiber) of τ . Surpris-
ingly, this stable two-cell complex turns out to have a remarkably
algebraic structure.

The Adams–Novikov spectral sequence is a remarkably effec-
tive tool for computing stable homotopy groups (5). The
input for this spectral sequence is the purely algebraic object
ExtBP∗BP (BP∗,BP∗), in which BP is the Brown–Peterson spec-
trum (49) and BP∗BP is the dual of the ring of its stable
operations. The algebraic input itself is complicated and can be
computed in a range by machine or by hand using the algebraic
Novikov spectral sequence (18, 50).

Theorem 6.1. The C-motivic Adams spectral sequence that com-
putes the motivic stable homotopy groups of S/τ is isomorphic to
the algebraic Novikov spectral sequence (51).

In fact, Theorem 6.1 is a computational corollary of other
more structural results. In particular, Gheorghe demonstrated
that the C-motivic spectrum S/τ is an E∞-ring object in an
essentially unique way (52), and the homotopy category of
cellular S/τ -modules is equivalent to a derived category of
BP∗BP -comodules (51).

Deformation theory provides a unifying perspective on this
circle of ideas. The key insight is that C-motivic cellular stable
homotopy theory is a deformation of classical stable homotopy

theory (51), after completing at a prime p. From this perspec-
tive, the generic fiber of C-motivic stable homotopy theory is
classical stable homotopy theory, and the special fiber has an
entirely algebraic description. The special fiber is the category
of BP∗BP -comodules, or equivalently, the category of quasico-
herent sheaves on the moduli stack of one-dimensional formal
groups.

Theorem 6.1 is particularly valuable for computation. It means
that the Adams spectral sequence for S/τ can be computed in
an entirely algebraic manner, i.e., can be computed by machine
in a large range. This observation leads to the following innova-
tive program for computing classical stable homotopy groups: 1)
Compute the C-motivic Adams E2-page by machine in a large
range. 2) Compute the algebraic Novikov spectral sequence by
machine in a large range, including all differentials and multi-
plicative structure. 3) Use Theorem 6.1 to deduce the structure of
the motivic Adams spectral sequence for S/τ . 4) Use the cofiber
sequence

S0,−1 τ→S0,0→S/τ→S1,−1

and naturality of Adams spectral sequences to pull back and push
forward Adams differentials for S/τ to Adams differentials for
the motivic sphere. 5) Apply a variety of ad hoc arguments to
deduce additional Adams differentials for the motivic sphere. 6)
Invert τ to obtain the classical Adams spectral sequence and the
classical stable homotopy groups.

The machine-generated data that we use in steps 1 and 2 are
available at ref. 41.

As the dimension increases, the ad hoc arguments of step 5
become more and more complicated. Eventually, this approach
will break down when the ad hoc arguments become too
complicated to resolve. It is not yet clear when that will occur.

Data Availability. Spreadsheets, source code, and documentation have
been deposited in GitHub (https://github.com/pouiyter/morestablestems
and https://github.com/pouiyter/MinimalResolution).
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