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Introduction

The Theory of Green functors

L, G-uuJ1U L.u.J'5" ~r.

Wi th field coefficients being an essential tool for calculations

in non-equivariant cohomology, one could expect some kind of field co­

efficients to play an even more significant role in equivariant coho­

mology where the homological barrier to cal cUlati ons is far mora for­

midable. In a search for the Green functor analog ot a field, the

"Green-fields" of greatest interest shou.ld be the analogs of ~ a.rld

z!p. Since the Burnside ring is the equivariant ar;alog of the in.-

tegers, these fields should be obtained from the "prime idealsll of' the

Burnside ring considered as a Green functor rather than a ring. Findi~

a field of fractions for an integral domain which is not afield com­

plicated the location of these "Green fields" and led. to a general :1n-'

vestigation of Green functors, as the Mackey' functor analogs of rings~'

Thus! this project became, .for the e.nalags of rings, a r'.:lu.gh d.raf~.

equi.valent of an undergraduate text on the basics of ring theo17'"

\'Ie introduce Mackey functor .ana1ogs of aJ.most every basicconeept

in ring theory--from prime ideals to ni~potent elements so 1tis di!~J

cuI t to keep track of when a word is used in its ordinary sense and.,
~

wilen it is used in .its Mackey functor sense. We choli>il to underline·
>

>' .

the Mackey f'unctorterminology. Thus, a Green functor is a l'ing.,lmd ..

we hope to locate fields by studying the prime ideal§ of the Burnsi..cte

ri.~. Does anyone have a better notation?

Section 1 of these notes is a bastc introducti.on to Mackey func.-::
:. "',

tors. Vie have a new definition for them-as additive functors from a"
. ~, '.

small additive category~--"'hich is much clea.ner than prev:l.ouaderi-.· .,.

nitions. In 'Section 1 we also show that the category of Mackey funct~~s
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has a "tensor product" which we denote o. Using it, the roul t1plication

fo-r-a ring R can be described as a map

9:RCR~R

of Mackey functors. This description is much easier to work with than

the older "pairings" de~cript1on. Sec tion 2 summarizes the formal as­

pects of .r1n& ,theory, showing that the category of mo'dulesover a ring •.

R is a perfec'tly respectable abelian' category. VIe define. such conceptlll. ,~.

as sUbmodules, ideals, and chain condi tiona and introduce OU~· defiD1t1oD

of a field--a 'commutative ring with no nontrivial ~deals. , '

Section 3 i~ devoted to relation between a ring R (or a module.·
. . .

M) and its values Reb) (or M (b» at the various objects in lB". W.ede-,

. fine concepts like integral. domain and prime ideal wh:ich can onlY'b~';
'.' ~

defined in terms of elements. We also describe the basic connections

between rings and rings. In this sectio~, we encounter our"first big
:..

surprise: Even in a field, a non-zero element may have more thaD one

. l1Iultiplicative inverse. , . '...
Section 4 summarizes the basic results of induction theory. and in-

"

traduces two new ideas. First, we ahow that most of classical. indu~','

tion, theory is jus); a seach for units in r:ings of endomorphisms.· SIlIC>­

ond, we take advantage of our definition of Mackey functors as additive

'-functors from a smail additive category by showing that another major'
,

aspect of induction theory is just very simple sheattheory.'.1'he

t~chniques of shear theory promise to yield some nice results here.

In Section 5, we begin a rather technical stUdy or an especially

well-behaved class of Mackey functors which includes .fields, integ.l:'tol

;omains, division rings and simple modules over any I1ng.' Here too~

\';e show that any Galois extension' [rl' F21 can be regarded as a s:it\sle



iield. \','e also show that representation theory sits inside r-; ng

theory as the study or modules over certain fields and and integral

domains. The fields give the ~ell-behaved half of representation

theory and the domains give modular representation theory. Note'that.,

for us, representation tpeory is commutative--not nan-commutative-­

ring theory.

Section 6 is devoted to the study of Mackey functors modulo pn.

Here, we compute the prime and primary ideal§ of the Burnside,tlng.

Another surprise appears. The Burnside ring is a commutative Noethel'­

ian ring, but primary decomposition does not wOrk. An ideal Of the

Burnside .r1ng can be decomposed;..-quite formally--into irreducible

;!.deals, but the :lrreducibleigeiYli need not be primary. Only very in- '

complete results are available on the irreducible ideal§ of the B~

side ring and these' are not included in these notes. The b~s:lc message

seems to be that the Burnside tl.n,g expresses the misbehavior of the in":

teger primes .that divide the order of the group in question by the d1.r..,..
terence between the irreducible and prilUIjU'Y ideiYs. Thlis, one exPects

to have to work a bit to understand the irreducible igeals.

Section 7

these nngs in

deaJ.~s with integraldomai..!l§ and field§•. · We characteriZE!

terms of ordinary ring and field theory. ~the:r'ii'''e,
'.. ' .

. .. '

show that the category of modules over ,:!l field has homological dilllsn-
' ..

Ill1.on zero. ..

The .r1.ng MIZ[1/ IGil unfairly discriminates against some perfec:t1l'

respectable maJdmal ideals in the Burnside ring and should be avoided.·

Section 8 introduces the correct replacement for this fashionable rtJ:1&"

I Vlould l:1.ke to thank Andreas Blass, Zig It'1edoroncz, Melaochster,
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and Craig Huneke for innumerable helpful conversations. M:lreover.

Craig Huneke and Mel Hochster provided parts (b) and (f) of Propo-·

sition 7.2 respectively. Also, I would like to thank Jim McClure

for sharing his notes on computational techniques in'equivariant

ordinary cohomology. Reading McClure's notes brought me to a full

understanding of the ,central importance of the weyl groups in the

study of the Mackey functors.
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1. An introduction to l1ackey funct.ors

This section contains a brief overview of the approach to Mackey

functors developed in my earlier notes. In.this approach, a Mackey

functor is a contravariant additive functor from a small additive

categoryS --which I call the Burnside category--to the category

Ab of abelian groups. The section begins with a description Of 61.
The really new aspect of my approach to Mackey. functors is theintro­

duction of the box product M J:3 N or two Mackey functors M and N; this

can be characterized· as a universal object for pairings of Mackey

functors in the sense of Dress « ), p 195).· The main purpose of

this section is to introduce this box product. construction and to ex-
. '.'plore its basic properties.

In order to define the category~, we need to establish some

basic notation. Throughout these notes,· we work" w:I. th Mackey .. functors

for a fixed finite group G. The category ~ is constructed from the

If H and L are subgroups of K, then we, write

that H is conjugate (in K)·to a SUbgroup (not

H in K is denoted NKR and the ~eyl group

The class of subgroups of K conjugate in K

rfKis G, then we drop the SUbscripts in

...
category G of finite G-sets and G-maps. The set of G-maps between

finite G-sets a and b is denoted <a,b>. For finite G-sets a and b,

we vrri te a 0( b to indicate that there is a map of G-sets from a to b ..

If 11 and K are subgroups of G w:l.th H contained in K (denoted H~ K),

then the normalizer of

NKH/H is called Vi~.

to H is denoted [zUK•

[R] K:5-[L] K to indicate

necessarily proper) of L.

the above notation. Note that, for lit Lc: K, there 1s a K map from

K/H to K/L if and only if Dr] K~· [L] K" Note also that the· set of K

maps' of K/H into itself is isomorphic to '.':0" ~e denote the K-set
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small letters a, b, c, d, s, u, v, w). The maps from a to

have the form f 1
£2

f • a -< I ·c b• ,.
'"where f 1 : c --? . a and f 2: c --,.. b are maps in G. The bar on

the arr01V ( (I ) and the hat on f 1 indicate that, in 0+, t 1 iS con­

sidered as a map from a to c rather than a map·· from c to a. Maps of
. '" .

the form f 2 : c ~ b ("lith f, the identity) induce the restriction

maps in familiar Hackey functors like the representation ring and so

are called restrictions. They will often be generically designated.
·f

by r. Haps of the form a· ++- 9 in 6+ .correspond to induct:i.on or

transfer maps in the representation ring and are called transfers.

They vli.ll often be designated by t. Two arrows, f and g, determine

the same map 1n f3+ if there is an isomorphiSlll 9: c ~ d in a, mak1ng
. ...

the diagram below commu:te 1" &•
. fl. c~· a~9r~b

91 d 92

Composition in S+ is defined using pullbacks as in the diagram

.. below for hf.



'.

-3-

~ ': j s easy to chc'cl\ that the empty G-set a is both· an initial Dlld a

terminal object for e+. If we denote the dir,joint union of C-sets a

and b by a + b, then it is easy to s~e that the diagram on the left

helow defines a one- to-one correspondence betv:een maps out of a' + b

in (\) + and pairs of maps out of a and b•. Thus, a + b is the coproduct

. a+ Similarly, the diagram Olll the right defines a correspondenceJ.n •

which gives that a + b is the product of a and b . 0+::Ln •

(

"r~ /I
)- aa

I i-l-
a + b ~ u + v ~ c

C~iV
~ a + b

1 T/ t
b ( I v V ) b

Since B+ has a zero object and biproducts, it follows formally «cw),

o 194) that the hom sets of (B+ are abelian rnonoids and that composition

is bilinear. It is easy to check that, in fa.ct, the hom sets are· free

abelian rnonoids.

~e obtain our category @ from ~+ by applying the usual construc­

Hon to turn abelian monoids into abelian groups. Thus, the objects

of!B are the finite G-sets and the hom sets or S are free· abelian

groups whose eleme.nts are formal differences of maps in (iJ+. Clearly

o remains the zero object and a + b remains the biproduct of a and b

in (Q. ,'Ie denote the set of maps in @ from a to b by Ca, b].

There is an obvious functor from ca to its oppoai te category BOp
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n.nd Oll!' contri.:ivariant, from ,0 into some other category and e. family of

?J : Fa ._-~> Ga

v:bich \'/e will esscrt to be a natural transformation. In any such

stc.ternent, I1n application of D to eit};er functor to correct the vari-"

ance is implicit.

If a and b are finite G-sets, then we denote their Cartesian pro­

due t by 2. l< b. : This cannot be the categorical product of a and b in a
since that. p~-oduct is a + b~ however, taking cartesian ~roducts provides

a natural pairing of ~ into itself which should be thought of as a ten~

sor product. For any a, b, and c in @ , there is a natural isomorphism.

(1) [a x b, c] [a, Db X c]

(note the use of D to correct the variance) v/hich implies that Db~ ?

is right adjoint to ? l( b so that 63 is a symmetric monoidal closed

category. Thinking of x as a tensor product and recalling the vector

space isomorphism Hom (V,W) - *V ~ Wshould make ·theadjunction above

seem more natural.

Nov: thatli3 is defined, we define a Mackey functor M to be a contra­

variant addi ti ve functor from 41 to the cat.egory Ab of abelial'\ groups. We
- .- - . --

denote the category of Mackey functors by7!l ;it is clearly an abelian

cat.egory satisfying the axiom ABS needed for homological algebra.

Using Dress's description of Mackey functors (see ( )), it is fairly

easy to see that this definition of Mackey functors agrees with the

older definitions (see my earlier notes or ( ) for details).

There is one obvious family of examples of Mackey functors--namely

the represen table functors C?, b] for b f: 61 •
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Defini tionl.l For any bE lB, the representable functor [?, b] is

denoted A
b

elr/.•

The motivation

The functor A1 = A is called the Burnside ring.

for calling A the Burnside rinF, is that the value

A(G/H) of A at the orbit Gin is the aurnside ring of H.

By the work of Day « », the symmetric monoidalstructure on e
induces a symmetricmonoidal closed structure on the functor category

"»j. That is, for any two f.l ack flY functors M and N, we have. a tensor pro­

duct-like construction MeN. This construction is commutati va and

associative (up to natural isomorphisms) and it has unit A. The func­

tor? Cl N nas aright adjoint <N, ?) v;hich Vie define below.

Definition 1.2 For any Mackey functor M, and any bf,B, let ~ be the

Mackey functor defined on objects by·· f'b(a) = ,M(b~a) (for at: in) and

on maps in the obvious fashion. Note that, by the adjunction isomor­

phism (1), the two possibJe interpretations of Ab are equivalent.

Defini tion 1." For any Mackey functor M and N, the Mackey functor

<M, N> is given on objects by

<1-1, N> (b) :: Nat trans ( M, Nb ?for b €CB •

That is, the value of <M, N) at b is the maps in b7from M to N b •· .

Anyone interested in a precise definit:ion of M IJ N should consult

my earlier notes oJ: Day's article « )). .For o~ purposes, it suf- .

fices that 0 and <,) are adjoint and that M (] N is completely

characteri~ed by the following result.

ProTIosition 1.4 If L, M, and N are Mackey functors, then there is a

one-to-one correspondence between maps

and pairings e: (M,N)

9:MON )> L

-~) L in the sense of Dress « ), p 195). ·A
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pairing is a collection of maps

8
b

: Mb /ill Nb -~......;;. Lb for b,;;1B

such that if l' : a ---),. b is a restriction and t : b k-+- a is the

associated transfer, then

for x E: M(b),

r< $-b(x, y» =
t ( e a ( r( x), y' )

t( e a(x', r{y»

x'~M(a), yEiN(b),

(} (r(x) • r(y»
a

'= eb(x, t(y'»

'" . 9 b(t(x' ) I y)

y' e N(a)~

Readers unfamiliar rdxh the relations. above mSY'acquire some feel tor
. . ~

them by' thinking about' the relationbet\"/een restriction, .induction;".: '..

and liIul tiplication in the representation ring of G (This is the cl~''­

sic example of a pairing of Mackey fundal'S) or by considering the re­

lation between cup products in ordinary cohomology and the transfer·

map associated to a bundle or cov'ering space.

The above characterization of 14 lJ' N is generally the right ons

to use in constructing a map MtJ N~ L and it occasionally SUffices .

. of analyzing the behavior of such a map•. However, the following more'

sophisticated characterization is usually easier to use for analyzing,

maps of the form }~O N:---7 L.

Protlosi tion 1, 'i U~ M, N and L are Mackey. functors, then a map

e : M CI ·N --!l>L

. .

determines and is' determined by a femily of maps

~i: Ma' 0 Nb --'" Lc

indexed on the maps f : c --+' a l( b in Q3' ',f?uch ~hat, for maps

g : a ~ a', h :. b --4 b' and k : c' ~ c, the follo\'dng diagrams'

co=ut'e
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0Nb :;>t . .,--r
I g (i} h --

Ma' ~ Nb'~·· e{9x.h) f

Ma@ Nb _--.;__.::.f ,--~)

en ..

Lc

rlhen Vlorking with a fixed pairing e t VIe d.enote the maps 9 fbY one of.· ...

the following

. Ha OS} Nb

The relation between the

that the map

c ~ /ilt.b, Lc

families 9 of the two propos1t:i:0ns is '

9 : Mb 18 Nb --7) Lb

of 1.4 is the map eA (from A: b ~ bXb) of 1.5. The,map'r(:l.'rom>"

f : c~ a )( b) of 1.5 is obtained from the maps 'of 1.4 as the following

. composite
1Y01r " "'(1

Ma~·Nb 1 ,~)M{axb)(g)N(a)\b) ) L{axb) f ) Lc'

where'1f1 : a)(,b ---> a and '11"2 : a xb~ b are the projections. ,.

Any reader who is put off by the strangeness of the diagrams of

Proposi tion 1.5 ,may rest assured:"-or be" fairly vrarned:--that if he co~'

tinues to read this diligently these diagrams vdll become old familiar

, friends.

VIe need one more basic result, on, 0 and < t) --namelyt the re­

lations among these two functors~ the representable functors ~ and

the functors J\ of Definition 1.2.
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Lemma' 1.6 For any Mackey functor M and any a and b in $ , there are •

natural isomorphisms

:- " ..

. ' ..

Note thatD must be used repeatedly to make se~se of the natural1ty of

these isomorphiB!!is. ' VIe w:lll generaliythi'nk: or Mb as Ab ,0 101 ~d
, .

therefore adopt the convention that it is covariant in b. '

One ~~re formality i,s needed. to complete' our introdilction to

Mackey functors. By the Yoneda len~a, for any Mackey functor M and

'any bE. IS , there is a one-to-one correspondence between maps

and elements' x E M(p).

X:~-~llj

As the.catego~y theorists have taught us, we

make absolutely no distinction bet~een the map.x,and the element x.

/.,ny reader who forgets this triviali ty \'Iill frequently find }Jimsel.f lost•
.; :

. ,

", ."
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2. !~!I :~n tro::uction to rinr:saIltl mOdu10fl

In ;'11is section, I'/G dispose of the purely formal [H:;p'~cts of rj.ng

theo)"'j'. R:i.!1f"s (hitherto lmOI'lD as Gra~:1 l'\mctors) and mOGul es over

rinr.s are, of course, defined diagranD~atically in the usual fashion.

The elGmentary examples of rin~s--including.the representable rings,

polynomial rin~s, and endomorphism rin~s--~e introduced. ~e show

that the category of modules over any rinc: R is an 'abelian category.

enjoying all the .pleasant properties of the category of ordinary

modules over an ordin~yring. This section concludes ~~th 8 discu&-.., .

sion of iric1p.~G.and Of those concepts in ring theory--like chain con-··

ditions--that can be defined purely in terms of ideals ~~thout any

reference to elements.

Anyone unaccustomed to the diagrammatic definitions of rings

and modules may find «cw), p 166-171) helpful in the definitions

below.

Derin!hons 2.1 (a) A ring R consists of a. Hackey functor R to­

gether rdth maps

such that the .diagrams

~D'

RQ 1
1
:; >Rl~R

R Cl R --~~~> R.

'R • A ) R•

~. · .R,-I:1 ;It ~R,
", .

beloVl commute
1 1:1 , , 0 ,

AoR R·:tRDR+ ·R'RCA

'~~ l~ .'.~'
~ ~: .

R . .

,,:here the unlabeled isomorphisms are those expressing the fact that A .

is the unit forO •. The ling R is said to be commutative if the

di agraIll
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'-RCIR ~. > RI:lR= ' /'
. ~,/~ "

R

commutes where r is the commutati vi ty isomorphism for 0 •

(b) A left R-module for a rina: R consists of a Mackey functor Ii

together ~~th an action map

1: RDM~ M

such that the diagrams below OOlUlute. 1
R

tJl
RO RoM

' .9 D 1
He M AtlN ) ROM)

'if11Qf l~
R t:I }! )- M M

A right R-module is defined analogously. If R is, commutative, thllln '"
.' .

the two notions coincide. A submodule N of H is just a, subfunctor of: .'

M closed under the action of R. Note that R is both a left and right

modul e over i tsel f. , '

(c) A left ideal of R is jU'st a submodule of Rconsidered as i.'.

left module over itself. Right ideals are defined similarly. An (tw~:

sided) ideal of R is just a subfunctor of R which is both a left and a

right ideal. "

(d) Homomorphisms of rings and modules are just maps of Mackey,

. functors making the obvious diagrams commute.

"

Exa'llul es 2.2 (a) ,The um t isomorphisms A IJA ... A and A 1:1 lot ~ M make' ,

A into a commutative ring and any r.-;ackey functor M'i.nto an 'A"modu:j.~. '

.The umt map 1R : A~ R for any rinr. R is a ring homomorphism. so .

that R may be thought of as an A-al~ebra.

(b) For any b ~ ~ , the maps



't : A ----* Ab.,
N ""Aby,o

Ab I:J R :; R
b

AbOR;Rb

Also, if M is an R-~odule, then Mb is an Rb module.

(0.) If R is any ring, then ROP is the J'1.ng consisting of the

same Hackey functor R, the same identity element and the multiplication.:

'i'
~ ) R Q R

-~that is, the multiplication of R in the reverse order. Of course, if.

R is commutative, then the two rings are the same. Note that R is a

left R I:J ROP-modul~ in the usual fashion' and a two-sided ; deal I of R

is just an R CRap submodule of R.

(e) If R is a c6mmutat:\ve ring and b G. ISS , then define the poly-

. nomial .ring in onevariabl~ XC>. of ."rank" b to be the Mackey functor ...

.' R[xbJ = 20 (\n)/i:n .. .'..'
where Zn acts on R by permuting the copies of b in bn•. The identity'

b n ·
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element is the composite A
lR

--'''-'~ R = R 0 ---7 R Cyo] ,1nd the multi­
b

vlication is derived from the maps
,.,

R 0 R =
bm . b n

If S is an R-algebra, then

(R l:l R). ~+m
D

it is easy to see

R.
b n+m

that there is a one-to-

one correspondence between elements of S(b) and ring homomorphism

R [~J > S. A few ininutesof playing with the iinages of maps from

A[~1 into A should suffice to convince anyone that polynofflial rings

are strange and beautiful beasts full of mYstery.

(f) If R is a ring and M is an I{-module, then (M, M> R is the

subfunctor of (M, M) consisting of R"':'module homomorphism~. The Nackey· ..

functors <M. M> R and(M, M) are rings under composition with identity

elements the identity.map 1: M.~ M. Note that if R is commutative~

then <M, M>R can be given ·an R-niodule structure in the usual fashion.

These endomorphism rings play a central role in our presentation of in­

duction theory.

(9)1f C is an abelian group andM is a Mackey functor, then we

define tne Mackey functor C~M by (C(JlM)(b) = CGlMb for b~G5. clearly,

if D is. an ·ordinary. ring and R is a ring, then D1»R is a ring and if

C is aD-module and M is anR-module, then C<J M is a D<J R-moaule.

Thus, one obvious source of rings is to take an ordinary ring D and.·

form DS A. To describe the result. we introduce the category DS(B

with objects the finite G-sets. The. set of maps from a to ..b in Dl1ll~

is just D\l!lta. b]. With this notation,. we have

Lemma 2.3 If D is any ring, then the folloWing categories are isomor­

phic



T are three rings and M and N .
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a) 'l'he ca.tegory of modules over. the ring: D<Z.l A

b) The category of contravariant ad4itive functors from 12 to
the category of D-modules •.

c) The catego:r;-y of contravariant additive functors from ·D8I6
to abelian groups.

The proof of this result is an elementary exercise in manipUlating a­

belian functor categories. All three views of De A modules have their

applications.

For any ring R, we call the category of left; :It-modules R-mod and

the category of right R....modules·mod-Re One of the main. purposes .of

this section is to show that these two categories enjoy all of the nice

properties one usually associates with the category ofmodulsa over aD

ordinary ring. We begin with tensor products. IfM and N are right

and left R-modules respectively, then we can de~ne the box product

M ClRN over R as the coequalizer

MORON : MCN--»MORN

of the two action maps. If R,· S, and

are an S-R and an R-T bimoduleres~ctively, then MeaN is an S-T·

bimodule and the usual associativity results hold for. these tensor

products. If M an,d N are both left (or right) R-modules, then w.'can

define the Mackey functor <M, N) R of R-module maps from M to N .s a

subfunctor of <M, N>. Again, the usual biWl .."hJe_ remarks apply to

<M, N)R- He record the basic properties of these constructions below_

Proposition 2.4 (a) lfM an N are right and left R-modulesreSpec~

tively, then there are natural isomorphisms



(iii ) "
M 'R'c' .

(v)

,.6 ,,'

(iv)<~, NclR '~ Nbl<C for all b, c ,03

(b) If R, S, and Tare rings and B, C, and Dare S-R, R-T, and

S-T bimodules respectively, then there is a natural isomorphism

hom S-T (BD
R

c, D) ~ homS _R (B, <C,D>T)

(c) If R is commutative and 1'1 and,N are R-modules, then Mt:I,R. N

and <M,N>R have natural R-module·structures. Further, for a-modules

M, N, and L, there is a natural isomorphism

homR (N l:lRN, L) ~ ho~ (1'4, <N, L>R).

Thus, R-mod is a symmetric:monoidal closed category.

Except for the use of the flatness of ~ (see below) in the proof

of (a), the proofs of these results are indistipguishable from the

proofs 'for ordinary rings and modules.

We turn now to the behavior of limits and colimits in module

categories. ;.We have already observed that the category lJj of Mackey"

fUnctors is an abelian category satisfying Grothendieck'scondition

ABS. As in the case of em ordinary ring, the functors REI? (or ?DR)

and <R, ?} provide a left and right adjoint respectively to the for-
"

getful functor from R-mod (or mod-R) to n,. Thus, limits and colimits

in R-mod (andmod-R) are obtained.by taking ~he analogous limits and

colimits in~ and applying the natural R-module structures. It follows·

that R-mod and mod-R are abelian categories satisfying condition AlIS.

Note that limits in~, R-mod and mod-R are taken point-wise. For ex­

ample

(Tf
i ~ !

1·\. )( a)
1 =n

i E I
M.a

1



,'t ;.

( CD Mi ) ( a) = e ~li a
hI ' iE I

for any indexed family fMil i"l and acB. Also a sequence

7

o ",--~) M -~) 0

is exact if and only if the sequences

o -7 HIll. ~ tola '--') M"a~ 0

are exact for all a6(j3. From t.his observation, Lemma 1.6 and Propo-

sition 2.4(a), it follows that the functors

all. are flat in R-mod and mod-a.', As

(:] a? are exact for all a eG.

are flat in ~ and the functors

Thus, the

? a All.' ? J:I a R~ and

representable functors

is always the case in,a functor category, the representable functors Aa
are projective and, as a family, they generateM. Further, if

c = X
HSG G/H ,

then Ac is a projective generator forn?. Any pr9jective in '1' is a

direct summand of a direct sum of copies

usual argument. Since R ~ RO A is thea, a

of Acand so is flat

free R-module (left

by the

or right)

generated by Aa , it follows that Ra is projective in R-mod(or mod R)

for any ad! • 'Also, R is a pro jective generator for R:"'mod (or mOd-a).,
,C '

Again,. it follows formally that any projective in R-mod ,(or mod-R): "

is flat. Being' ABS-categories with, a projectivegenerator. 7lz i ',' ' '

R-mod and mod-R all have enough injectives. Thus, they are perfectly,

respectable categories in which to do homological algebra. In particu­

lar, Tor and Ext derived functors exi:>t for 0, OR' <. >• and <, '>R~ " , ..

The only hitch in all of this is that 1:Il is known to have infinite homo­

logical dimension:. We will discuss the homological dimension of R­

mod in a few special ,cases in later sections.
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Remark 2.5 The good behavior of tensor products noted above suggests

the possibility of translating into our context the Morita description

of equivalences of module categories in terms of tensor products. How-

ever, since tensor products always commute with the functors ? .0 ~,

any direct translation of Morita theory would be applicable only to

equivalences with the same commutativity property. Any work on Morita

theory is further complicated by the fact that R-mod is not generated

by R. but by Rc where c is JiG G/H. In spite of the generator problem.

the usual proofs of ·the Morita characterization of equivalences appear

to go through for those equivalences commuting with the functors ? a ~.

Some of our results in later sections involve equivalences between

module categories over rings in two different categories of Mackey

functors (that is, the ambient group G changes). It.might be profi~­

able to search for some generalization of Morita theory--along the

lines of recent work on Morita theory for functor categories--which

would describe theSe equivalences •

Some concepts in ring theory--like chain condi tions--can be. ex-:.··

pressed purely in terms of. the behavior of the suJ:rnodules of a given

module:. such concepts translate formally to ring theory. Inpartieu-.

lar, we have the following obvious definitions.

Definition 2.6 (a) A left or right module over a ring R is Noetherian

(~rtinian) if every non-empty collection of submodules has a maximal
.."

(minimal) element.

(b) A ring R is left or right Noetherian (Artinian) if it is

Noetherian (Artinian) as a left or right module over itself.

(c) A module M is simple if it has no non-trivial submodules and
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is semisinip)_,? if. it is a direct awn of simple modules.

(d) A ring R is simple if it has roo nontrivial (two-sided) 1­
deals and is semisimple if it is a direct sum of simple rings.-

(e) A division ring is a non-zero ring with no non-trivial lef~

or right ideals.

(f) A field is a non~zero commutative ring with no non-trivial

ideals.

(g) A maximal.subnodule N of a module M is a subnodule strictJ.y

contained in M and not strictly contained in any other submodule•

. (h) A maximal ieft (right or two-sided)·idealis a left (right

or two-sided) ideal which is not the whole ring and which is not

strictly contained in any other left (right ortwo:"sided) ideal that

is not the whole ring.

(i) A left (right or two-sided) ideal I is irreducible i~when­

ever I ... PO Q for P and Q left (right or two-sided) ideals. we have
:'- ,

I ... P or I ... Q. ; ';

Many basic results carry over without change in their statements

or proofs. For· example, ',fe have..
Lemma 2.7(a). liN is anR-subnodule of an R-module M, then there.i.

a one-to-one correspondence between R-submodules of MIN and R-~

modules of M Which containN.

(b) If I is an 'ideal of R; ,then Rilis simple if and only if I

is maximal (as a two-sided ideal).

(c) If I is an ideal of R., then R/I is a division ring if and·.:

only if I is maximal both as a .left and a right ideal.
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(d) ,If I is an ideal of a commutatlve ring R, then R/r is a .

field if and only if I is maximal.

Ce) Any left (right or two-'sided) ideal of a ring R other than

the whole ring is contained in a maximal I",H (""'l-M o/'" t,,,•.·,,,,£·.t) ,.:Ie",l.

(f) If R is a left (or right) Noetherian ring, then any left

(or right) ideal of R is a finite intersection of irreducible left (ar

right) ideals.·

Note that the rings Ab for be Ie. are Noetherian because e.ny ideal.

is determined by its values at the orbits G/H for H~ G and each

"'b( G/H) is. a finitely generated free abelian group. Also, if'1! is a\ _ ,;::.

field, then F@ ~ is Artinian for the same reason. Lemma 2.7(£) ~g-;;....

gests that it should be possible to classify all the ideals of Ab- . !\is •.
we will show in section 4 , such a classification ,would be quite use-

ful in induction theory.

, .-

Some results do not carry over. For example, if M is a silllpl.e '. . .- .

left R-module, then M nee!=! not be the quotient of R by a maxima1 ideal_

The problem is' that M( 1) need not be nonzero. What is true is that if·­

M (b)~O for b~43 , then M is the quotient of the left R-mQdp.l. Rbby

a maximal R-subnodUle. It _is not necessary for this submodule

1::0 be a module over ~.

Since simple ~odule~are unexpectedly complicated, 'it is not c1ear

how· the Jacobson :r;;sdie:al of a ring should be defined. The annihilator·
. '

.. of . an R-module M is just the kernel. of the action map'

".' .

It is clearly a two-sided .ideal of R. The left Jacobson'radical of.

R could be defined as the intersection of the annihilators of the



11

simple left R-module or as the intersection of the maximal left ideals.

It's not clear that these two possible definitions agre~.

Note that the usual operations on ideals--like I~ J, I + J and

IJ for ideals I· and J are ·well-defined. In particular, IJ is the i­

mage of the map

ItlJ

and I + J is the image of the map

Rci(I@J) ·~RQ{RGlR) ~R

if I and J are left ideals or

R t1 (I cr; J) IJ R ~ R 0 (Rill R)t1R ~ R

if I and J are two-sided ideals.

Remark 2.8 The observant reader may have already noted that the i~omor~'"

phism A ~ A i:lA provides A with a Hopf algebra structure and the maps·
A

~ ) ~)<.b ',l(, AnD ~
(from b~ 1)

provide ~ with a coalgebra structure for any·bG,S. If b#i, then "b
is not a Hopf algebra because. the unit map does not behaVe properly

with respect to either the counit or the comultiplication (and dually

for the counit, unit and multiplication). These st~uctures have ap­

parently never been investigated--perhaps because there is no analpg of

Propositioml.4 and 1.5 applicable to copairings. Nevertheless. it .: ,.

seems reasonable that an understanding of Hopf algebras' wouJ.d con­

tribute to the understanding of equivariant aopfspaces.



3.. Rings, rings and el.ements.

Having described the ~nown formal properties of rings and module

categories, we now begin to investigate the basic st~cture of indi­

vidual rings and modules. First, we introduce elements into our dis­

cussion. Untilizing elements, we define such basic concepts as prin-"

cipal ideals, units, zero divisors, integral domains, and prime (and.·

primary) ideals. Some of the usual basic properties--and some surprise5~

follow easily from these definitions. To tie rings and modules to a

more f~iliar world, we investigate the relations among a ring.R, an

R-module M and their values R(b)and M(b) at the" elements boi 6.

These relationS yield the basic properties of simple modules, division

.rings, fields,,' and integral domains which we will exploit in later

sections.

If R is a ring and M is an R-module, then by the Yoneda lemma,

we can think of elements r of R (a). and m of M (b) (for a, b ~(l,) .,3
maps

r ') RAil

The composite

A ;;A 0 A.. rom
Cll\.h a -~J:) .

RllM

,..' .

! .
--'''-?> M

tells us that the product rm ofr and m is an element of M(axb). In·

particular, for elements r e R(a) and s '" R(b), the product rs is in.

R( al<b). This is exactly the result one might expect by analogy wit.h

graded ring:s. We call these products "external" to distinguish them

from the internal prOducts' which are defined later in this section.'

Experience· suggests that one. should always 'Work with, and think in

terms of,· external (rather than internal) products whenever possible
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because they carry more information and are a closer analog to pro­

ducts in ordinary rings than are internal products.

Here we collect a host of element-dependent definitions.

Definition 3.1 (a) The principal left and two-sided ideals associated

to an element rE R(b) are the images

RJ:l~ lor,ROR

of the maps

$' ) R

and
111 rill) R DR !3 R

respectively.

(b) .An element r e R(b) is a right (left) B!!ll if its associated

left (right) principal ideal is all of R. An element r e R(b) is a

unit if it is both a left and a right !mil.

(e) An element r E R(a) is a zero divisor if there is an object

beiS and a non-zero element s E R(b) such that rs or sr is zero in

R(axb). It is sometimes useful to call this a b-~ divisor: the set

of b inlfl for which r is a b-~ divisor tells how badly r misbehaves..

Note that we can define annihilators of elements in a module in an

has no non-zero~ divisors.

(f) An ideal P of a commutative ring R is prime if it is not .

all of R and if. when rs is in P(altb) for rIO-R(a) and is GoR(D}. either

r '" P(a} or s ep(b).

(g) An ideal I of a commutative ring R is primary if it is not



the identity element

,"

all of R and if. whenever r s c;; I ( a><b) for r<i<R( a) and s 0:= R{ b), either

rE-I(a) or snc !(bn ) for some n>O.

Except for a few strange twists like 3.2{a) below, the expected

basic results hold for the standard reasons. More results on units

appear in Corollary 3.13.

Proposition 3. 2{ a) An element :It if: R( b) is a right~ if and only if

I R : A ---+ R can be written as the composite

A-u-=-'~)ltQ~ I D x)RCiR Cf ~R

for some map u: A~ R t:! ~. ' Such a map correspo.nds to an element u
I

of R[b) which may be thought of as a left inverse for x. However, u.

need not be unique even if x is a~ or even when It is commutative~

I,eft units have an analogous description.

(b) The external product of two left (right or two-sided) units

is a left (right or two-sided) unit.

(c) If:lt"" R( a) maps toa left (right or two-sided) unit y"R(b)

by any map f : b ~ a in GJ • then x is a left' (right or two-sided)

" -,

( d)

(e)

A unit is not a zero divisor.
-',: -

Every no~-zero element of a division ring is'a unit. Thus.",":-..
. ~..".

a division ring has no non-zero zero divisors and a field is an int.e­

gral 'domain.

(f) . If P is an ideal in a commutative :dng It. then P is primo ..

if and only if RIp is an integral domain. Further. P is primary i,f

and only if every zero div~ in Rip is nilpotent.

Proof Part (a) 1s just the Yoneda lenma. Part (e) follows trivially

from (d) and the definitions. Part (f) follows trivially from the



definitions. Part (c) follows because anyone or two-sided ideal con-

taining x must contain y. , The following proofs of parts (b) and (d)

are a good illustration of an application of (a) and of the proof

techniques peculiar to rings.

Let y~R(b) and let xER(a) be a right unit with left inverse

uE R(a). The conunuting diagram bela..... indicates that y is in theprin­

cipa1 left idea..! generated by Yo Y IS- R( axb)

~
\
i y

RO

Ii l

AQ~;;;

1~oy
RP R

~:

7
7£ Y is also a right unit, then any left ideal containing y must be

all of R and we have (D). Ifxy is zero, then so is y sinee it is in

the trivial ideal and we have (d)~

The motivation for the diagram is that we want to say uxy =y, but .

thi scan' t be said directly in terms of products because uxy =- R( ll)tAltb)

and y" R(b).

Remark 3.3 A worB. of caution about principal ideals is necessary•. We

say that an R-module M is finitely generated if there exist elements

x ...
1.

Ma. for
.1.

1 ~ i ~ n such that the map
n 1CJ ($ x. )

RO( G> A) .'l.)RO
i=l a i

n
l l!3 M)
i=l

--~~ M

is surjective. Vi a the i somorphi sin
n

(~

i=l

n
( Z . a. ), we see that
i=l .1.
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M is actually 9~nerated by a single element in M( l~

. . i=l
finitely generated module. is, in fact, monogenic and

e.}. Thus, any
J.

any finitely

5
., l ,'"

generated ideal is principal. Anyone familiar with the ideal gen­

erated by x and y in the ordinary polynomial ring Z[x,y] will regard

this behavior of rings as a bit strange. If we say that an Ideal is

strictly principal if it is generated by an element in R(G/H) for BOrne

H 'S G, then we obtain a class of principal ideals which behave in a

more intuitive fashion. Since the generator for the category R-mOd
_.4

where c -H$G GIH, this class of strictly principal ideals

maybe too SnaIl for some purposes: a better class might be those

principal ideals generated by a single element of R(c).

The key to understanding integral domains and simple modules is

the following defirdtion.

Definition 3.4 A subgroup H of G is a characteristic subgroup of a

.Mackey functor M if the map M --? MG/H (from 1"i4- G/R) is injective

and M( G/K)'" 0 unless [l(! ~ [K1. A Mackey functor M is said to have a

characteristic subgroup if some H~ ~ is a characteristic subgroup of M.

The basic properties of characteristic subgroups are

Proof (a) For any b 6 B, G/HlIb breaks up as a sum Z G/H. of orbits
:I.
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with [HJ ~ [J-i] and H does not appear aInong the H. unless there is a -
A 1,

map G/H --7b. Thus, if M is H-characteristic, then MG/H(b) is either

zero or a direct sum of copies of M( G/H). since M~ M
G

/ H is injec­

tive, it follows that M is zero if M{G/H) is. If Hand K are both

characteristic subgroups for M I 0, thenM(G/H) and M(G/K) are both

non-zero and we must have [a] = [K].

{b) If M is H-characteristic, then Mb i 0 only if there is a

map G/H ---;)0 b. For'such b, the map M ---? MG/ H factors tl'..rough the

map M --7 I'\, and so this second map must be injective. On the' other'

hand, assume the maps M~ Mi, are injective wbenM(b) '!: O. Let R be

a smallest (in terms of number of elements) subgroup with M(G/H) ¢ 0

(We can assume M F 0 since 0 is H-characteristic for every subgroup H).

Suppose M(G/K) F O. Then MG/H(G/K) = M(G/HlCG/K) ;' O. - But then M(G/L),

'!' 0 for some orbit G/L in G/H)( G/K. If [a.l *- K , then we must have

[L] <. [H] which is impossible by the minimal nature of [H].

Corollary 3.6 (a) If M is a simple module over a ring R, then M baa .'

characteristic subgroup.

(b) Simple rings (which include fields and division rings) have­
I

characteristic subgroups.

Proof (a) Lf;t M be a simple module. For any b e- 63, the map M~ "b _
is either zero or injective. If M{b) is not zero, then the map

M{b) ~ M:b(b) = M(bl<b) is a split injection (by the map M(bxb) --\IP

M(b) from ~: b --t bKb) and so is not zero.

(b) A simple ring R is a simple module over R a ROP•
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The basic map M --~ Nb has an alternate description f~-om which it

follows that integral domains have characteristic subgrou?s.

Lemma 3.7 Let M be a module over a ring R and let 1b ~ R(b) be the

restriction of f Re R(1). Then the map

1'1 » Mb

is just (external) multiplication by lb'

The proof is just a diagram chase using proposition 1.5.

Corollary 3.8 (a) If R is a ring such that jOb€' R(b) is not a zero

divisor whenever it 1S non-zero, then R has a characteristic subgroup.

(b) Rings whose only~ divisors are nilpotent have character­

istic subgroups. In particular, integral domains nave characteristic'

subgroups. Also, if P is a primary ideal in a commutative ring R,

then R!P has a characteristic subgroup.

The proof of part {a) of this corollary follows from Proposition 3.9(b)

below which gives that R(b) = 0 if and onl?( if lb = O. For (b) , note

that if lb is not zero, then it is not nilpotant because R(b) is a

direct summand of R(bn ).

Corollaries 3.6 and 3.8 should suffice to convince those in­

terested in Mackey functors that Mackey functors with characteristic

subgroups are important. Section 5 is devoted to a detailed st1,1dy

of their very pleasant properties.

We have just about exhausted what can be said (to date) about

ring theory without appealing to ring theory. The following propo­

sition surveys the basic connection between rings and rings. The

..,,"
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proofs are all easy exercises in chasing diagrillTls of the form intro-

duced in Proposition L 5.

ProDOsition 3.9 :Let R be a ring and M be a left module over R.

(a) R(l} is a ring, and for any b~cB,. M(b} is an R(I} module.

The unit of R(I} is the element l R : ~ --7 R. The multiplication on

R(I) and the action of R(l} on M(b} are given by

R(l)@R(l} 1,;';;1"1)R(I} R(l)~M(b} b;;;;1.. b)M(b)

Any map f : b ~ a in 63 induces an R(l} module map f : M(a} --.M(}...).

(b) For any b&~ , R(b} is a ring and M(b} is a module over Rlb).

The unit of R(b) is the restriction 1b of 11\ 6 R(i}. The (internal)

multiplication on R(b} and the action of R(o) onM(b) are given by

R(b} 0 R(b} A: b -:) bl<b) R(b)R(b}@M(b) A: b ~ b"b) M(b).

(c) Any restriction map (or conjugation) r: a' --+bin 6 induce.

a ring homomorphism

r : R(b} --7» R(a)

In particular, the restriction R(i) ~R(b} is a ring homomorphism

and R( i) acts on M(b) through this map. ~ that transfers need ~

induce ring honomorphisms!

(d) If R is a division ring. then R(i) is a division ring and

for x li R( 1 ). any inverse

t:A -"':')o~ R '

(as in proposition 3.la) is the actual inverse of x and so is unique~

ly determined. Note that for b ~ 1, R(b) need not be a division rinqr

it usually has zero divisors (in the ordinary ring sense).

(e) If R is commutative. then so are the R(b) for be::d3 •

(f) If R is an integral ~~. then R(I) is an integral domain
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and if rt is a field, Lhen so is R(l). Again, R(b), for bTl, can

have zero divisors.

(g) Xf peR is a prime (or primary) ideal, then P(l)e-R(i) is

a prime (or primary) ideal •
.If p," IS c..c.." .........H~h .... e.J~

(h) A An x (;. R(b) is (externally) nilpotent if, and only if, it.

is nilpotent when considered as an element of the ordinary ring R(b).

(i) If x e R(b) is a b-~ divisor in R, then x is a zero

divisor when considered as an element in the ordinary ring R(b).

Results like (d), (f), and (i) above begin to -illustrate the no-

I tational problem of keeping rinqs and rings separate. Certainly, mat­

ters become confusing when an element r E R(b) is a unit in the rins

R and a zero divisor in the ring R(b).

Remark 3.10 The action of R(l) on M(b) for all blH3 can be given a

Mackey functor description. For any />lackey functor M and any b e.(9 •

there is a natural map

M(b) 5l."b )M

which takes m \1ll f to f(llI) E. M( a) for m e.' M(b) and f 6 ~(a) = Ca. b].

For a ring R, this gives a map R( 1) (8) A -.:,. R which can easily be seen

to be a ring homomorphism. The action of R(1) on l>i(b) (for any R-

module M) is via this ring homomorphism.

The maps R(I) (i) R(b) :..b~l)<b> R(b) of Proposition 1.5 induce a

map ():R(l)6aR --':>"'R

for any ring R. This map is a ring homomorphism if R is commutative

(or more generally if R(i) is in the. center of R). Also, the map

R ;;: Z @ R~ R(l) @ R determined by lR E: :R(l), is a right inverse
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for (.). It seems likely that this pair of maps will be useful in re-

lating the structure of R(i) and R.

Since R(i) is a ring when R is a ring, the following definition

makes sense.

Definition 3.11 If R is a ring, then the. integral characteristic of

R is the characteristic of R(1). The charactistic of R is the kernel

of the unit map A~ R (which is an ideal in A).

Note that if R is a division ring, field, or integral domain, then

Proposition 3.12 "If L Cl M ----" N is a map of Mackey functors and

m e: M(b) for bE: 8, then the map

~;rLC ~1l:lm~LaM~N

is given by

L(cxb) 1&l m) L(c"b) @ M(b) t ) N(C)

for any 0,,43. Here the first map takes '1,6 L(e b) to )lPm and the

last map is the transfer c~ I

c ><b __ c.

c~b determined by the projection
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"
.11

"

'..

Cor.ollary 3.13 (a) An Hement XE R(b) is a ri9ht unit if zmd only

if there is a u €'R(b) such thatt(u"x) = IE! '" R(l} where ucx is

the internal produ<;:t in R("') ano. t : 1 <: I. b is the transfer. The

element u is a left inverse of x.in the sense of proposition 3.2(a).

A dual result applies' to. left units' so UoSR{b) i's a left inv-er.se of

x if and only if x ... R(b) is a right inverse of u •.

(c) For any bet.a, R(b) contains a one-sided unit if and only:

if the transfer map R(b)'---)o R(l) is surjective. '\'

(d) The im·age of the map 11, ~R induced by b ~ 1 is the· prin­

cipal left (or right) ideal of R generated by 1b G R(b). Thus, R(b)

. cont.ains a one-sided unit if and only j.f l b is a \lnit ...

(e) R(b) contains a unit if.and only if there is an x Q R(b)

whose associated principal two-sided ideal is all of R:

(f) If x, y Ii R(b) and the internal product xcyG-R(b) is a

right unit, tllen y is a right unit. /Uso,if x.y is a left Elll,
then x is a left;unit.

(g) If x<l.R(a) and y EO R(b) and the eXternal product xy6-R(al\l»

is aright unit, then so is y and if J~ is a left unit, so is x.

Proof (a) An element x IS R(b) is a right unit if and only ifl
R

is.in the left ideal generated'Py x. Tpe condition for l
R

to be in·

this ideal can be seen immediately from Proposition 3.12.
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0,

.....

'(c} This is it trivial corollary of (a) since R(b)--...l?R(l) is a
..

map of R(1) modules.

(d) This follows from Proposition 3.12 by inspection.

(e) -IfR(b) contains a unit then the associated left ideal

of l b E R(b) is all of R so the two-sided principal ideal must be a1~,

of R als9. On the other hand, the value at 1 ofthe,~wo-sided ideal

"generated by xoG R(b). is just the' image of the map

Rl:l ROP(b) ,. R 0 ROP(b) Gl R(b) ~ R(b) t) R(1)
.~. ..

obtained from the action of RO ROP onR. If this principalldeal

is all of R, then t.: R(b) ~R(l) must be surjective and the re­

mainder of (e) follows from' (c).

(f) It suffices to show that x·y is in the left idealge~erated
\

by y and the right. ideal generated ~Y x. The image of xiD y under t.he

map

"
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can be computed to be xey so that x'y is in the left ideal generated

by y. The other result follows similarly.

(g) The external product xy E: R( aJlb) is the internal product

of 1J'
l

x and

jections.

1T
2

y where

The result now follows from (f) and Proposition 3.2(c).



1.

4, Remarks on induction theory

Our basic tools for analyzing Mackey functors in subsequent

sections are induction theorems. Roughly speaking, an induction

theorem for a Mackey functor M says that there is a b ine such that
, ,

all the values of M are determined by the values Ma ,for a 0( b in ~.

The classical induction theorems are those which assert that, for

some ring R, the R-representation ring of any finite group G is

determined by the R-representation rings of some class of small

subgroups of G. The induction theorems of interest to us here are

those applicable to division rings, simple modules and integial

, domains.

This section provides a summary of the induction~theoreticre~

sults we need later. It divides naturally into two parts.
. .'.:.:"

In the

first, we introduce the three basic types of induction theorems we

employ and describe the relations among them. This materiaJ., is,

drawn from Dres,s's basic article on induction theory ( ). The on-

ly new result in the first part is the'observation that if one thinks

in terms of units in,~ndomorphism rinqs, then one acquires a new in­

tuition for the b'asic results. The second part of this section' i.:'

devoted fo :apparently new results on the type of induction we employ

most often. The key to these results is a new understanding of, the

relation between Amitsur cohomology and induction theory in terms of

sheaf theory for abelian functor categories.

The simPliest sort of induction theorem is like the classical

theorem which asserts that every representation of a finite grouP,!]·

can be obtained by induction from representations of the element~
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subgroups of G. In our notation, such a result says that,' for some

b in S, the transfer m,,:p

" ,

M(br -~)M(l)

is surjective. Such a result puts an upper Bound on the size of

M(l)~ however, to completely determine M(l), it is necessary to

specify the kernel of the induction map. More sophisticated versions

of this type of fhebrem specify the kernei. but we do not need them

here.

For our purposes '. it is more useful to have M( 1) as a :!ubgroup

of some group than as a quotient group. .Thus, the form of induction

theorem we employ most often is the following:

Definition 4.1 For bE. 61, a Mackey functor M satisfies h-injective

induction if the diagram 1T

M ) ~ ='Ir=~=1~~ ~xb'
obtained from the diagram",.

u 1
bY..b ~ b .,. 1

'1r 2

""in .G, is an equalizer diagram.

Note that this fo'rm of induction describes the whole of M and not

just the value M(l).

By examining the decomPosition of cl'b and cl'bltb. (for (:6 G) into

orbits, one can easily see that, if M satisfies h-injective induction,

then the value of M at any c in 63 is determined by the values Me foi .. '

a 0( b. We have already noted that for certain Mackey functors--such

as division rings, integral domains, and simple modules--there is

an HS G such that M(G!K) is zero unless [H]~ [1<J. If such a Mackey
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functor satisfied Gin-injective induction, then clearly it would be

almost trivial to compute all of its values. We will see that this

is exactly what happens for division rinas, fields, and nice integral

domains.

Unfortunately, bJinjective induction--for our purposes, the most:

useful form of induction--seems almost impossible to prove directly.

For this reason, we are forced to consider two much stronger fo~.·

of induction.

Definition 4.2 (see ( ) ) For bE' 8, a f-lackey functor M is b':'pro­

jective if the transfer map

is a split surje~ion and is b-injective if the restriction map

is a split injection.

Our first objective in this section is to establish Dre~s's

. "

basic results relating the types of induction defined above. Note'

that, for any ring R. the surjectivity of R(b)_ R(l) is equivalem:'

to the existence of a unit .in R(b). This observation is the key to .'

"our approach to induction.

In order to relate the various types of induction, ve must: firSt:

study the. ring <M, M) of endomorphi/Sms of a Mackey functor A.. By.'

Definition 1.3, an element f in (H, M/(b1 for b<olQ. is just .amap
"..~.

By the adjunction between ? 0 ~ and <~. 1'7 , such an f may be re­

garded as a map
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'"f : M CJ 'b;¥ ~ ---7 M.

For b and c in 43, an element of (N, M>(b'J(cj may be viewed in any

of the following forms:

h : M --;lo-~)<.c

I ~

h : M
--? Mb~c

hb,c · ~ > Mc·
hc,b · Mc )~•

The following basic lemma relates these forms, characterizes the

transfer for (1-1, M) and describes the composition of maps which gives

<M, M> is ring structure.

~

Lemma 4.3 (a) For any map f : M -} Mb , the map f : ~ ~ M is the

composite

Mb
where the second map comes

>~)lb ) H
Afrom the map bl< b E I b ----+) 1 in: a .

."

(b) For any map f: Mb ---) H, the map f : H __ ~ is the .composite

l
H ~~)(b b)_~,

where the first map comes from the map "1 <lH- b ~ bllb in 6 •

(c) The image ·of fii: (M, M) (b) under the transfer map (H, H) '('b)

----?><M, M) (l) is given by either of the following composities:

H f)Mb )M

M )~ f)M

where the unlabeled maps both come from. the projection b --+ 1 in G•.
(d) If fG, (H, M> (b) andgt;,-.(M, M? (e), then the exterpal pro­

duct £g'" <M, H) (b'X cj is given by eHher of the .fol10wing composites:
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fg : M
f b

-~4'"" M
7 bilC

"'-'

(fg) : ~)l.e
- -
9b :> M

b
~fO--~> M.

The equivalence between b-injectivity and b-projectivity now fol­

lows easily~

Propos!tion 4.4 (see ( ) ) For any Mackey" functor M and any b~03, t.he

following are equivalent:

(a) M is b-projective.

(b) M is b-injeetive.

(e) (M, M> (b) contains a !!!!ll for the rinq <M. M}.

( d) M is a direct. sUlMland of ~

Proof By Lemma 4.3.(=). statements (a) and tb) are just the t~ ways·

of saying that the identity map 1M : M~M is in the imagE!,' of the :

transfer V-!, M) (b) ) (M, M) (1). By Corollary 3.l3(c). this is·

equivalent to (e). Clearly, either (a) or (b) implies (d). To see

that Cd) implies t.he others, let f, g E, (M. MI (b) be maps representing

the diagram-
f ) M;

and (d) above, this composite is just. the image

sunvnand of ~ via

q) ~

M as a direct

1M,,: M

Ely Lemma 4.3<.a), (e),. ,

of the internal product. fog: M~~ under the transfer map..
<M, M) (b) --? <M. M> (1). '!'hUS, the internal product f.g is a unit
in <M, MI (b) and we have (e). Note that ~. Ce:r:olleu.'} 3.13(f) lle~h •

OPe." s,h)
t: and g are-\~s in <M. M> (b).

Dress's basic result on induction theory is now. the result of ·a

trivial observation about units.
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corollary 4.5 (see ( » For any ring R and any b<!::d3, the fol10lolin9

are equivalent:

(a) Every (left or right) R-roodule M is b-projective.

(b) R is b-projective•

•(0) The transfer map R(b) ~ R(i) is surjective.

, "

Proof Clearly, (a) '9' (b) ~ (c). For (c):o/ (a), note that (a) ••-

serts that there is a ~ in R(b); For any R-module M, the image

of this unit under the action map'-

is also a~ and so M is b-projective by Proposition 4.4.

Note"that Proposition 3.2(e) nolol gives that if F is a field (or

division ring) and b.:85 with F(b) '! O. then any F-module V is b-prq­

jective. This is the key to our characterization o~ £ieids and
"." .'

their modules in Section 7.
'... "

To complete our survey of the basic results of induction theory,

it suffices to show that b-projectivity implies b-injective induction.

Proposition 4.6 (see ( » If the Mackey functor M is b-projective

for some bina , then it satisfies b-injective induction.

Proof Let (): ~ ....,..-7 M be any map representing the restriction map

M. ~.~ 'as a split injection. It. is easy to see that f}: .l\,~ M

and eb : ~lCb ~ ~ represent

M -4-"b ~ ~'bllb

as a split equalizer «Cw) , .p 145).

Remark 4.7 Since the purpose of an induction theorem is to reduce

the problem' of computing the values of a Mackey functor M to that of
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computing its values on ~ertain small subgroups of G, it is clearly

desirable to identify the smallest~olle~tionof subgroups for which

M satisfies induction. If by induction we mean b-projectivity for

7

some b, then locating this collection of smallest subgroups translates

into finding the least b in B (least with respect toOC: ) for which

By,Proposition
n

fices to consider thoSE!! b int? of the form i~l G/Hi with

classes Hi all distinct. certainly there is at least

3. 2( c) it suf-

the conjugacy

one minimal

(wi th respect to -<') such b for which lb is a unit. If band b I are

two such, then 1 : M --.,. M is a unit--beingthe exterior pro-
b-.cb' bl<b'

duct of 1.. and 1 • It follows that b :;;; 1:5 --otherwise we would have
-b b'

bl<b' -< band b 1: bxb' which yields a violation of the minimal nature, '

of b. If b is the unique minimal element of e which is a sum of dis-
.. . .

tinct orbits and for which I b is a unit in (M, M> (b), then by Propo-

sition 3. 2( c), M is a-projective for a in 4J if and only if hoC; a.

This minimal element b is sometimes called the defect set or vertex,

of M.

The real d,ifficulty which arises in working with b-injective

induction ~nstead of b-projectivity is that there is no general

analog of Corollary 4. 5 for b-injec:tive induction. In fact. evitn for.
,

G = .z /2, there is an integral domain satisfying b-injec:tive induction.

with !!!2.dules Which do not satisfy b-injec;tive induction. As a result.

the only way of obtaining modules satisfying b-injective induction

(Which are not also b-projective) seems to be to construct them. For-

tunately, this is easy.
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Definition 4.8 For any b~d3and any Mackey functor M, the (zero

dimensional) b-A,mitsur cohomology~ 'ibM, is the equalizer

ll"l
'ibM ~'Mb'==="4/ Mbl<b

1i 2

Since M --?~ equalizes the pair ~ ====~~ ~'b it factors

uniquely as

Note that the assignment of' Hi:;M to M' is a functor and , is a natural

transformation; There are higher dimensional Amitsur cohomology

groups (see ( » which we will not discuss~ hence we write y in-
, 0

stead of the usual HbM.

Proposition 4.9 (a) For any be{l and any Mackey 'functor M, th~

Mackey functor HbM satisfies b-injective induction. Thus, Hb is a

functor from the category of Mackey functors to the categoryJ.7b of
Mackey functors satisfying b-injective induction.

(b) The ma~ .,,: M .....-l> HbM is universal among maps from Minto ..'

Mackey functors satisfying b-injective induction. ·Thus,,?:is an iso-.

morphism iiand only if M satisfies b-injective induction.

( c) The functor Hb : 'JJt .-.,. ~1> is left adjoint to theinelusion

functor iJ;, ---'7'1q.

Proof By its definition, ->t is an isomorphism if and only:i.f M

satisfies b~injective induction. ThUS, to prove (a), it suffices

to show that



, - 9

is an isomorphism. This follows from the diagram

H '7 ) H: M ( )~ ~·~l'.b

71
b'

1'7 -' <tb,. I '1v
~ ) ~~~M) > ~(~) ~ ~~~Ab)

[ [ I
~ ) (HbM)b c ) (Mb)b

in which the second and third rows are obtained by applying f'b and.

? 0 ~ respectively to the first row•. The functor ~ is b-projecti~

since ~ : b --+bxb induces a splitting of the restriction map·~ ~ .

~xb' The isomorphisms and injections indicated above follow from

this and the fact that ~M is a subobject of ~.

Since . ~.

is an inji;!ction,

'1: ~M ~ ~(f'bM)

must be an injection.. Using the fact that~(~M) ~ ~(~) equal:-

izes the pair ~(,i~) S. ~(~xb) and t:he fact that: '\,M iathe

equalizer of the pair ~ ~ ~Xb' it is easy to check that

'7: '\,M _. ) ~(~M)

is surjective and therefore an isomorphism. The rest of the proof i.

formal nonsense.

The crux of the proposition is that we can canonically convert

any Mackey functor into one satisfying b-injective induction. More­

over. this process of producing Mackey functors satisfying b~injective

induction has a host of nice properties. For example, we have
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Proposition 4.10 (a) The functor I~ (regarded as a functor from

7?'Jto ~b or from '? to bj) is left exact. In fact, Hb preserves all

limits.

(b) If Mt: ?7? band N £, n;, then
,

<HbN,Ml

and the map

is an isomorphism.

(c) If we define M [JbN to be f:i,(M 0 N). then there is a natural

isomorphism

i'l'Jb(NQbN,L) ='rb(M, <N,L) )

for M, Nand L c: J1{ b •. Thus. "lb is a symmetric monoidal closed category.

The unit for 0b is fi,A.

(d) There is a natural map

9: f:i,M 0 fi,N --;> f:i,(M [J NJ = M 0 b N

for any Mackey functors M and N. Thus. if R is a ring and M is an

R-module;· then f:i,R is a ring andH"M is an f:i,.R-module. The identity

element and multiplication of ~R are

" .

The action of f:i,R on f:i,M is given- by

f:i,R a ~M _9_-?)~(R C M) F\,i) Br,M.

(e) Any Mackey functor which satisfies b-injective induction

is a module over ~A.

Proof Part (a) follow$ from the fact that limits commute with limits

and the functor? a lb preserves all limits.
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For (b), if Me: J:1'b' then <N,M7c:J)zb for any Nf-Ilz because <N,?:>

preserves limits and commutes with? a ]lb' That the map 7.... is an

isomorphism follows from the chain of isomorphisms

'tb(L, <N,M» ;;; ??t'(L, <N,M'»

~ 77l(N, <L,M»
;; ~b(HbN, <L,M) )

~ Az(~N, <L,M) )

:;; 1IL(L, <J1,N,M) )

~?J[b(L, (HbN,M) )

for any L <:: Jrb "

For (c), we have

17lb (M Cl bN,L) ;:;; ~(M 0 N,L)

== :!t(M, <N,L'»

== ~(M, <N,L)

for any M,N,L in>J[b' That ~A is a unit for 0b follows from (b)

since <~A, I.) ~ <A, N) ;; N for N Ii: J1I.b"

For (d),the map e comes from ,: M 0 N ---7~(M 0 N) via the

chain of adjunctions

?1z(M 0 N, ~(M Cl N» -;; ~(M, <N,~(M eN» >
~ ";(M, <~N,~(M 0 N)7)

;; '1b(~M, <"bN'!i:b(M 0 N)'»·

;;; 1!t("bM, ~!i:bN,~(MeN»)

-'
== ?It("bM a ~N, '\,(M D N»

The rest of (d) follows by inspection. Part (e) is a special casQ of

(d) since any Mackey functor is an A-module and ~M ~ M if M satisfies

b-injective induction. It should be noted that (c) through ee) follow

from (b) by standard results in the theory of closed categories.
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t~ote t.hat the converse of (c) is fa,lse even for the group G : Z/2.

If R is a ring satisfying b-injective induction, then Proposition

4.10( d) suggests an approach to studying an R-module M which fails

to satisfy b-injective induction. First, the R-module ~M must be

understood and the the. map ~: M~ HbM must De analyzed. If the llIap

M --7 ~ is injective, then so i~ 7 and this procedure has proved t~

be enlightening.

The right way to understand Propositions 4.9 and 4.10 is to re­

call that the category M of Mackey functors is a functor category al'1d

to note that the condition that

"

M

be an equalizer is the sheaf condition for a rather simple additive

topology onS. The functor Hb is just the sheafification functor.

The best sources for additive sheaf theory seem to be Popescu ( ),

Schubert ( ), and Stenstrom ( ). From them, we obtain

Proposition 4.11 The category '{'b is an abelian category satisfying

condition ~5. The functor ~(Ac)' Where c =~ G!H, is a projective

generator and ~b .has enough 'projectives and injectives.

It seems qui'te likely that much of the work in stenstrom ( ,) on',

topologies for ordinary rings could be extended to apply to rings ..

Such an extension should offer considera1;>le, insight into J1
b

and b­

injective induction.

Remark 4.12 Regarded as a functor from 'lI/ to 111, Hb is left exact, but

not usually right exact. Asa result, it has derived functors. These



are easily seen to be the higher dimensional Amitsur cohomology
n .

groups l1> of Dress ( ). Many of the properties he asserts for

them follow trivially from this observation.

. :~'.- ..
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5. H-characteristic and H-dctermined Mackey functors.

From section 3, recall that a is the characteristic sUbgroup of

Mackey functor M if the restriction map M~MG/H is injective .and

if M( G/R) is zero unless [Ii] !o f.J5l. Not every Mackey functor has a

characteristic subgroup: but since fields, division rings, ~impJe

modules over any ring, and integral domains all have characteristic

subgroups. the class of Mackey functors with characteristic subgroups

.i5 quite important. In this section. we introduce the machinery rleeded

to investigate the structure of these Mackey functors. We also ex­

amine two other closely related classes of Mackey functors.

Definitions 5.1 Let a~ G

(a) A Mackey functor M is a-bounded if M( G/R) = 0 for [lQ « fB]

and' M( G/H) '" 0 if M is non-zero.
. :.:~

(b) A Mackey functor M is H-determined if it is H-bounded and

satisfies G!H-injective induction.

Note that a-characteristic Mackey functors are a-bounded, andB-deter­

mined Mackey functors are H-characteristic. Note also that if M is

H-bounded, then HG/aM is H-determined. Clearly, the .zero Mackey fune-:.

tor is H-bounded and H-determined for any a::,> G. A non-zerO Mackey·

functor has at least one bounding subgroup (since there are only fi­

nitely many subgroups) and may have more than one. A non-zero H­

characteristic Mackey functor has a unique (up to conjuqacy) bound-..

namely. H. A non-zero Mackey functor need not be determined by a

subgroup, but if it is determined, then a determining subgroup is

also a characteristic subgroup and is therefore unique up to conjuqlllCY.
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From Corollaries 3.6 and 4.5 , we obtain that division rin~ and

fields have determining subgroups. Our basic result in this section

is a classification of Mackey functors with determining subgroups.

For any subgroup H of G, the set of maps <G/H, G/H> is isomorphic
. I

the Weyl group WH. Thus, for any Mackey functor M, M(G/H) has a

WH-actio~, and evaluation at G/a gives a forgetful functor from the

category of Mackey functors to the category of modules over tlle group

ring Z[wn] • Our characterization of a-determined Mackey functors is

that this forgetful functor becomes an equivalence of categories when

it is restricted to the full subcategory of ?'lconsisting of a-deter-.

mined Mackey functors. Note that if R is a ring, then, by Propo­

sition 3.9(c), l~ acts on R(G/H) by ring automorphisms.

For any Mackey functor M, the image of the restriction map.

M( 1) > M( G/H} is contained in the set M( G/H)WH of WH-i~variant

elements of M( G/H). If M is H-characteristic, then the map M( 1) It

M(G/H] is injective and we identify M(l) with its image in M(G/H)WH.

In particular, if M is H-determined, then M(l) is exactly M(G/H)WH.

It should be obvious by now that this section is going to be.

littered with WH-~ctions. Unfortunately, the natural choices for

these actions are a confused jumble of left and right actions. TO .. :.

bring some order into this chaos, we adopt the convention that all

WH-actions are from the left (by acting through inverses when the

natural action is on the right).

Our basic tool for working with H-bounded Mackey functors is

the following elementary observation about finite G-sets.
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Lemma 5.2 If Ii ~ G and b is a finite G-set, then there is ill one-t.o-one

correspondence between orbits in G/HY.b isomorphic to Gift and the Bet··

of maps <G/H, b). The correspondence is given by taking fE-<S;'s, ~)

to the image of the map

• G/ft (l,f)~ G/Hx b

From this,· we obtain

, ': ".'

'. j •

Corollary 5.3 If M is an a-bounded Millckey functor and b"S.tben;~
:-.' ' .

. map

M(G/H~b)

.
:.:.~

. is an isomorphiBilt•. Further, the effect of the'pr';jection map.··,
'.' ~ .' .... ~ ," . . ....

G/a )<. b 1 ~ GIs and GIft It b .....:..-'2~.~> b' cnM is' described by the dia~"

M(G/Bxb) 61(l,f):> .' $. M(G/S)
"-. . f e<G/HJ b)

"i"- .~
'M(G/a)

... "

M(G/a x. b) (&(l,f) > ~ M(G/H)

. ,~' .' ; <'G/ft,b)

lY.2 ..~ / .G>f
M(b)

The transfer maps associated to the projections are describe4 ~.:l~';".
, ~ ~ " .

ogous diagrams. ,

The basic implications of this corollary for a-bounded ~d.:'i{O·
, '. ~"

characteristic Mackey functors are summarized by t.he fo1lowing=.:,·
'.i'.

:.;.",., .
. ProDOsition 5.4 (a) 1m I-I-bounded Mackey functor M is H-char~c-.d~~ic

if and only if foreveryb~63and every non-zero x in M( b). there :i.'a,
. ,

.' .... ". .....•.



restriction mapf : G/H~b with f(x) non-zero in M(G!H).

(b) An H-characteristic, con'lml1tative ri'ng R is an integr~

domain .i£ and only if for every non-zero pair x, ':y in R( G/H). there·

is a: 96 WH such that· the internal product x o ( gy) is non-zero in

R(G/H).

(c) If R is an integral domain with characteristic: subgroup ·lB,

then R( GH) lm is an integral domain and the non-zero elements of

R( G/H)~ are not zero-divisors in R'o.

(d) An a-characteristic ring R is a division ring if and only

if for every non-zero x4R(G/a) there exist y, z" R(G/H) such that

t(xoy) = t(zox) .. ~6 R(i) where t : R(G/a) ~ R(1) is the transfer

and the two products·' are internal.

(e) If M is a-bounded, then for any b ineB, the composite,

M(b) t ) M(l) r ) M(G/H)

(where t is the transfer and r is the restriction) is just

for x & M(b) •..

--)i'Joi". M( G/H) is just. the

rt(x) =' 'L: ~(x)­
.flO <G/H,b}

In particular, the composite rt : M(G/a)

(1)

trace of the WH-action. ·Note that when M. is a-characteristic, for- .
•

iIIQ1a (1) actual1y describes the tranSfer t: M(b) ----;0> M(l).

Proof ( a) If M is a-bounded, then M is a-characteristic if an'donly·

if the map ....
"ir2M(b} ) M(G/a)< b)

is injective tor every b in 113 • l?art ( a) follows immediately from

the description of this lIIIap in' OCrollary 5.3.

(b) Assume first that R is an integral domaill. Then for any



non-~ero x, y in R( G/H), the external product xy fr R( G/a x G/H) must be
,

non-zero. It. is easy to check that xy goes to the tuple (~·gy)9e-WB'

under the isomorphism
,.

R(G/H ~<?/a),-;;;:' @ R(G/H)
q6WH .

of Corollary 5.3. Now assume that thE!! indicated co~dition on R('G/!I)

holds. For, any non-zero x f!: R( a) and y (i- R(b) we must show that the"

G/H~ b such that f(x) and li(y) are non~zero

product xy E': R( a )t.b)

f: GIR~ a and h:

ianon-zero. By (a)~ there exists maps. ': .. ,. ~.

.,....

_-=1=---7-) R{ a Xb)"if~h
a( G/a)( G/H)

in R( G/H). The diagram

R(a) ® R(b)

l~(Jih '
R( G/H) €lR( G/H) --,=1:....,.)

commutes by Proposition 1.5 and it suffices to shOw that the external

product of f(x) and hey) is non~zero. This follows by reversing t:he

first half of our ar9ument. ,.

(c) .Part (c) ieimmediate from (b).

(d) If R ~s a division ring, then the required conditio.n on '.

R( G/H) holds because it is' just the assertion that. every non-z~" .
, $

element of R( G/H) is ;i~. Assume,the indicated condition on R( G/al

holds, then for any b<!; <P and any non-zero x in R(b), there is a map

f: G/B -~ b with~ nOn-zero in R(G/H). But then f(x) is a E.~

so x must be by Proposition 3.2(c).

(e) The map rt • l~(b) ----7 M( G/H) comes from the composite.•

G/g >1< b

in 63. This composite is the. sarne as the map,..
'il' 11"

G/H <. i 1 G/gxb 2
~ b.
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"Part (e) now follows from the characterizations of '1T 1 and 112 in

Corollary 5.3.

Proposition 5.4 completes our basic remarks about H-boun~ed

Mackey functors, and we turn now to the problem of constructing a

functor f·rom Z LWtil-modules to Mackey' functors which, in some sense,

undoes the effect of evaluating at G/H.

Definition 5.5 If V is a' Z [Wfij -module,' then the Mackey functor

J G/ H V is defined on b in 6by

(Ja/ H V)(b) =( EEl V)WH
fl:: {G/H,b)

Here, WH acts both on each of the summands V and on the indexing set.

<G/H, b) by precomposition

h is a map in~ given by

(using the fact that WH = <G/H, G/H) ).

h
2,)b. ,

If

--)~, (JG/HV)(a) .is defined by the diagram

V)

then n : (JG/HV) (b)

(JG/ H V)(b) - ( tf) V yim __.:..l.h_~~C Ef>. v. \WH = (JG/H vHa)'
fE. <G/H,b) I '-

• I:: ".G/H, a". . . .

11<"
l;!) V

t"<G/H, y">
f' = h j,

1

where 11' is the pro jection onto the summand indexed by f ': G/H ~ a.
f'

It is easy to check that: JG/HV is a Mackey functor. Any map j : U~

V of Z 13m] -modules induces a map
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BO J
G/H

is a functor from the category of Z[WH]-modules to the

category of Mackey functors. Note that the map

. Gl g : V --1e~ V! WH = (JG!HV)( G!R)

induces an isoMorphism between V.and (JG/H V)(G!H).

is an equalizer. The IIIOtivation for the definition of JG/gV on

maps comes from the diagram below in lB.

G/H

1(1,1)

G/H )( y t.
:ya~

G/H I >a{I Jto YTb
f \ n:t .. 2

, • 7
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, '

G/H g >G/H

f~/f
b

commutes. For any Z [WH] -module V and any subgroup W of WH, 'let,

VW be the W-invariant elements of V. Our first description of

( 2)
w

~ (1) vi

f e <G/H,b> /\'1H

for b6C

the map

where the SUlD runs over the orbits of (G/a,b) under ,the action of WH.

This description is not ,entirely natural because the subgroupw
f

, de-,

pends on the choice of f within its orbit: a different choice Woul,d ,

yield a conjugate subgroup and an isomorphic fixed point module. 'l'be
,

lack of naturality in the choices of the f's makes the description of

the effect of a map h : a ~ b on ,JG/aV 'hard to describe in tams

of isomorphism (2 ). One notational trick seems very useful here. For
W

b'" (iJ, f : G/a~ band yE V f, 'let v f G JG/aV(b) be the element: whi,ch

is y in the place corresponding to f and zero else where. Then'v
f

is

a canonical choice for an inverse image of ,v l!: JG/~V( G/a) = V under

~: JG/aV(b) ~ JG/aV(G/a).

Our second alternate 'description of JG/aV applies directly only

to J G/HV( G/K) ,for [aJ :s: [K1. For any 9 G G with 9-lage K, bt we] be

the subgroup

of WH. Then there is an isomorphism

where the SUlD runs over a set of, 9 ~ G such that the, subgroups
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-1 .
9 Hg5K form a set of representatives of the K-conjugacy classes of

K-subgroups which are G-conjugate to H. The subgroups W
g depend on

the choices of the 9 ~ G so this isomorphism.is not entirely natural

and it is hard to describe the effect of a map h : a --7' b in on

JG/HV. The connection between the two definitions is that the maps

G/H --?G/K in Gare in one-to-one correspondence with the K-conju­

gacy classes of K-subgroups which are G-conjugate to H.

The proofs of both of these alternate descriptions are easy

manipulations of the original definition.

',For any Mackey functorM, M( G/H) is a· ·,WH';'m6dule and it is

natural to attempt tC;; compare M ,and JG/H(M(G/H». For any be(\;, we

have a map .:lb : M(b) ~ JG/H{M( G/H» (b) defined by

'),.b : M(b) G f )( E9 M( G/H)\ WH = JG/H(M(G/H) )(b).
\t" <a/H,b) .. ' "

~wever. for an arbitrary M, the ma.ps), b I1eed not fit together to

form a map

of Mackey functors. Conditions for the existence of· ;\ as a map of

Mackey functors and the basic properties of ;:l are as follows: "

Lenma 5. B (a) For any M, a neces.sary and sufficient condition for

the existence of ';\.: M~ JG/H(M( a/H». is ,that the transfer maps
A .
f :M( G/K) ) M( G/H)

are zero for every f : G/K~ G/H in a. In particular, if M is G/H

bounded, then i\ exiSts.

(b) If;l exists, then M is H-determined if' and only if ~ is an'

isomorphism.



(c) If" exists, then it induces a map ~ = HG/H N -+JG/H(M(G/H»

making the diagram

", .' .

commute. The map :l is an isomorphism if and only if M is H-bounded.

The proofs of (a) and (b) are easy diagram chases. The proof of (c)

follows from the observation that ·for any. M and any b \$ 0, (HbM)(b)."

M(b). ~

Let G/H'11(be the full .subcategory of q consisting of the Mackey

functors for which A is defined. Our basic technical tool.'for ana-

lyzing H-characteristic Mackey functors and.our classification of H­

determined MaCkey functors· are given in the following proposition.

and the isomorphism ,...
=

-----~) V
J

of Definition 5.5 are the unit and counit respectively of an adjunc.-

tion between the "evaluation at G!H" functor

~ ---'>' Z 'pui) .. modulesc/a"/ r L"~· ..
and

JG!I~: z[wn1-modules -~. 1n .• G!H"(

(b) The two functors above restrict to a natural equivalence

between the category of Z [WH] -modules and the category of H-deter-

mined Mackey functors.
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We want to understand rings and modules bounded by H, so ve need

to relate pairings of Mackey functors to some sort of pairings of

Z [WH1-modules.

proposition 5.10 If tJ, V, and X are Z[WHJ -modules, then there is a

one-to-one correspondence between MaCkey funCtor p~irings

arid WH maps

U ~ V .. X

. where "rn acts diagonally on U till V.

PrOof Given a WH-map &:. U (jl)·V -+ X, we define a family of maps

&b : JG/HU(b)· ~ JG!HV(b) '> JG~(b)

satisfying the conditions of Proposition 1.4 by the diagram

.., ($ X )WB
f" ~ {G/H, b'>

1"f"
-..,.----------0.+) X

where 11 is projection onto the. sununandcorres};Xlnding to fit. The
f"

existence of the required pairin9 of Mackey functors follows from

~oposition·l.4.

Given a map g.: JG/HU Q JG!HV -4 J G/0, we recover the map

9-: U gJ V --7 X by taking b == G!Hin the description of Mackey func­

tor pairings in Proposition 1.4.

Remark 5.11 The proposition above can be fancied up considerably (or

totally obscured--depending on one's point of view) with a little

closed category theory. The real key to its proof iethe fact that
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(JG/HU C JG!HV)(G/H) is u lEi v with the diagonal WfI-action. In fact,

a fancier version of Proposition 5.10 would aSSert that if X is a

z [WH] -module and M and N are Mackey functors inG/H'lf. one of which

is H-bounded, then there is a one-to-one correspondence between pair-

ings

and Z [mil. -maps.

M( G/H) 0 N( G/H) - )0 x.
The key to the proof of this is the observation. that MaN is

then H-bounde.d (and so .1.n G/J1l) and M a N(G/H) is just M( G/H) iSl N( GIH)

with the diagonal WH-action.

From Propos.j.tion 5.10, we obtain a description of H-determinei:i···

rings.

Corollary 5.12 J G/ a induces.a one-to-one correspondence (up to 1so'"

morphisms) between a-determined rings and pairs (5, e:, WH ,---'> Aut( s» .
, ,

where S is an ordinary ring and & is a representation of WH in the·

group of ring, automorphisms of S. The eorrespondence pairs colllll\'U-'

tative rings, and commutative rings.

. ',"

, "

We denote the ring corresponding to (5, G ) by 56 and the ring corres-
, ~

ponding to the trivial map WH~ Aut (5)' by Sa.

'Of course, for any pair (5, e: WH -? Aut ( 5», 'the a-det~~ined·

modules over the ring Se . correspond exactly to pairs (V,n where V.

is a E[wro -module and

is a map of zJ)ffij -modules, but this description is rather awkward.. To

obtain a better one, we define. the ring st6J'to be the free S-module

generated.by the set WH with multiplication given on generators s9,
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s' g' (for S,S'l5:S; g,g'6Wll) by

(sg}(s'g') = (se(g)(s')}(gg').

The ring 3~J has the same S-module structure as the group ring SLwn].

but the multiplication of SC~ incorporates the action of WH on 5

(whereas' the multiplication of SL WHJ does not). It is easy to see·

that S (9] -modules con;-espond exactly to the pairs (V. i) above, so

we have

tative ring Fi. The transfer

Fi(G!{el) = F' ) (F,)G = pr{l)

is just the trace of the extension [F'. (F' )G~. G]. It follows immedi­

ately from proposition 5.4(d) that Fi is a field.

(b) Generalizing (a), if [F'. Fi bJ is a field extension and

e: WH ~J.j is ~ homomorphism. then Fe is a conunutativering~ .:It;

follows immediately from Proposition .5.4(b) that F~ is an integral

domain. The transfer

F'=. F~ (G!H) ---'>'> (F'l1 = F'(l)e
is just the trace of the extension [F',.(F' )11:111 multiplied by the order

of the kernel of e. Thus. if Ikar &1 is prime to the Characteristic

of F'. then Fe is a field. In section 7. we show that this is one of

two basic sources of fields·, We discuss modules over F9 in Section 7.

(c) For any ring S. there is a. ring SEel obtained by taking the
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trivial representation of Wfe} = G in ±he automorphism group of S. By

Proposition 5.13, there 'is an equivalence of categories between the

category of S(G] -modules and the category of fel-determi,ned 5 Fet -,modules.

This rather quaint view of S-valued representation theory might have

applications because if S is commutative, then so is S[e\(unlike

, S [G] ), and if S is an integral domain, thell S fe} is an integral domain..

This suggests the poss~bility of applying the techniques of oommuta-

tive·algebra--in so far as they extend to commutative rings--to repre-

sentation theory. 'Note that the transfer

sre}(G/fef) --->,SfeJ(l)

if! just multiplication by the ..order of G: Thus, if the characteris~

tic of 5 and the order of G are relatively prime, then both Ste' and

all its modules are fe\-projective. Further. if F is a field. then

F fe\ is a field if and only if the characteristic of F does not 4ivi&!

the order, of G.. Thus, the well-behaved part' of field-valued repre­

sentation theory corresponds to the study of modules over certain

fields and modular representation theory corresponds to the study of

modules over certain integral domains.

Remark 5.15 The functors J G/ H can be used to construct a curiQu$

natural filtration on MaCkey functors. Partition the set of sub­

groups of G into sets So' 51' ••• , Sn defined inductively by letting

So be the set consisting only of the tri:"ial subgroup fel and Si (for

i ~ 1) be the set comdsting of those subgroups which are not in Si_l
i-1

and whose proper sUbgroups are all in V s.. Thus, 51 is the set
j=O )
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of cyclic subgroups of prime order, and S2 is the set of sUbgroups

which are not cyclic of prime order, but which have no subgroups other

than cyclic groups of prime order. Define a decreasing filtration on

any Mackey functor M inductively by M
O

= M and

M. +1 = ker [ ~ AG/H : M~ -4". (;fJ JG/H(Mi (G/a»]
;L H~~ ~ He~ .

It is easy. to check that Mi is in G/ffh; for Hl!iSi so the required maps

~ G/a are defined. In fact, if we define ~ to be the full subcategory

of 7l( whose objects are the Mackey functors N with
i-1

N(G/K) = 0 for KEo U 5
J
•

j=l

then M. C: '0/. an.d our procedure de~ines a sequence of functors.
;L ;L

r;z='O~~1---""~2-~ -.­
where n is the integer with Sn = [Gl. . These functors are. right ad-

joints to the inclusions.

Of course, applying this filtration to any chain complex or co~

compl·ex in '1J produces a spectral sequence. The spectral sequences

obtained in this way from the cellular chains and co'ch-ains of a G-space

(or spectrum) X and those obtained from a projective or injective

resolution of any Mackey functor are currently under investigation.
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6. Prime and primary ~l~ revir:;ited

If S is any ring and P is,an irieducible two-sided ideal of S-­

or if S is a commutative ring and P is a primary idea~ of s--then sip

is a ring with integral charelcteristic pn for some integer n21and

some prime p (p = ° is possible). For this reason, rings with

characteristic pn merit special investigation. In this section, we

begin such an investigation by considering rings R with'integral char­

acteristic pn and a characteristic subgroup H. This class of rinql'

includes, of course, rings of the form sip where S is commutative and

P is:a primary ideal of S. From this study, we obtain a description

of the prime and primary ideals of the Burnside ring. The techniques

employed should be ap~icable to the study of the prime and primary

ideals of other rings.

The key to understanding the mod p behavior, (for p 'F 0) of any

ring--or any Mackey functor--seems to be an understanding'of certain

chains of subgroups--which we call p-towers--in our ambient group G.

Definition 6.1 For any a~'G and any prime p, Hp is the minimal nor­

mal suhgroup of a with HIH a p-group. The group HP is a subgroup, p,

of G corresponding to a p-Sylow subgroup of NBpI'\>' which contains

H/I\>. Thus. we have H ~ If'. 1), <I rf and HPIHp is a p-group (by

K <1 J. we mean that K is a normal subgroup of J). Note that HP is

defined only up to conjugacy in G.

for convenience in stating results.

For p =0, we

The p-tower

take R· =!f' ... H
P

associated to H in

G is the collection of ,subgroups K with [Hp1 ~ [K] -! [HP].

For convenience, we transcribe here (from (

of H' HP and p-towers Which we need.p'

)) the properties
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Lemma 6_ 2 (see ( » (a) Hp is a characteristic subgroup of H.

(b) If [H] '5 [K1. then [Hp"l S [1<pl.

(c) If [n 1 <;. [K) :5 [HPj) then [H] = [Kpl
p p

(d) If I! .q K and K!H is a p-group•. then[Hp]=[J<J.

(e) The prime·p does not divide the· orderof W(HP~ but if

for any L-

!<L/H, X!L 1

H ..: L '5 HP , then the order of W
L

H is pm for some m::;: 1.

( f) If H, K are subgroups of L :5 G and [HpJ = [K"J I then

- /.(L!K, x\ I mod p
set X,

where <X'Y)L is the set of L-maps from the L-set X to the L-set Y.

The well-behaved rings with integral characteristic pn seem to

be those which have a bound H and are G/HP-projective. The simplest

examples of such rings are given by

Pronosition 6.3 If R is a ring with integral characteristic pn (p f 0)

and characteristic subgroup H, then R is G/HP-projective.

Proof By Lemma 6.2(e) and (f), p does not divide !<G/H, G/HP>I so

there is an integer m with m / (G!n, G/HP>I. E; 1 mod pn. To compute

the transfer t(m-l .' ) ~ R{l), we ehinkof R(l) as a submodule of
. ,G/HP

RfG/H) and apply proposition 5.4 (e). This gives

t(m-l )
G/HP

=.. L: f(m-l.)
f E. <G!n, G/nP /, G/HP ..

== Z m o f(l. p)
G/H

== L:. m-1G!H

== m I<G!H, G/HP>I '" 1 mod n
P

is a unit andR is G/HP-projective.Thus. m'l
G!HP

If R has characteristic zero, then we have t( 1 1 ) == ti-ml-l e ~(l) so
GH R
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the conclusion above need not hold unless IWHI = 1 or R(l) is a

rational vector space.

If rt is an a-bounded, G/HP-projective rinq with integral charac­

teristic pn (p F 0), then the proper way to study R seems to be to

compute the transfer maps out of R{G/K) for the subgroups K in.the p­

tower determined by H. These maps rnay be hard to compute in R, but

they are easy to compute in HG/HR if we think ofHG/~ as JG/H{R(G/H»

and apply Remark 5.7. If R is H-characteristic, then the map ,: R~

HG/aR is injective and the computations in aG/~ are especially useful.

Let R be an H-determined ring (which we think of
W

v (;R{G/H)f,

Proposition 6.4 (a)

"as JG/H(:R(G/H». Let f : G/a ~ G/K be a map in G,

"and v f ~ R(G/K) (as discussed in Remark 5.7). If h : R(G/K)
,",'

R(G/L) is the transfer map induced by h : G/K ~ G/L in G, then

'"h (vf ) =, Z {9V'-hf

g" Whf/t-lf

where the sum runs over a set of coset representatives for tf
hf

/ Wt
considered as a subgroup of WH/Wf •

( b ) If H ~ K 4; L "5;

'IT': G/K --7 GIL are the

N.H, ve. R(G/H)WH and 'f(: G/a~ G/Kand
HP

projections, .then

'"11" ( v" ) Eo pR(G!L)

(e) Let R be a ring with integral characteristic p and charae-

teristie subgroup H such that WH acts trivially on R{ GIR) and let.

H < K with IK/HI = p. Then every transfer R(G/H)~~ R(G/K) is zero.

The prop::tsition

ring R with integral

above (and other results) suggests that, for a

. . n .
characterkst~c p and bound H, the behavior·of



the transfers out of R(G/K) (for K < aP in the p-towerdetermined

by H) is closely related to the trace of the WH-action on R(G/H). If

there are elements in R( G/H) whose trace is a unit in R( G/H}, then.,

R should be G/K-projective for some K < HP• Otherwise, elements in'

the image of these transfers tend to be nilpotent.

Our objective for the remainder of this section is to show heV,

the results above can be' applied to determine the prime and primary'

ideals of a ring. If P and Q are primary ideals of a ring R. then

we would like to know when ~P is contained in Q. - 'rbis'is, of course,

equivalent to knowing whether or not there is a ring surjection Rip"
• CD.....~\i... '" ,n.. n..... f'f"DtI"'-'n~ ir..... R. "

-~~ R/Q" The existence of such a map imposes fairly stringent con-

ditions on the characteristic subgroups and integral characteristics

pf RIP and R/Q.

Proposition 6.5 Let Rand 5 be (non-zero) rings with characteristic.­

subgroups Hand K and integral characteristics pm and qn (p and q

prime) respectively. ,The existence of a mapR~ 5 imposes the
m . n

following conditions on fl, K, P , 'and q :

(1 ) Either P," q and n ~ m or p=:O
~

( 2) If p # 0, then [H] ~ [K} ~ [HP ]

( 3) If P .. q .. O. then fa] .. [K}

(4) If P .. 0, ,q r- 0, then either [Ii] => [ K]

or qn I liml and [a] ~ [K] ! [Hq ]

~roof Note that if R(b) +0, then it has characteristic pm because

the map R ---?'~ is injective. We denote the identity elements in

R(b) arid 5(b) as 1R,b, and'15 ,b respectively.

• ·1"
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Condition (1) follows from the existence of a ring map R(I) ---?

S( 1).

Since 1R,G/K6iR(G/K) maps to l S ,G/KC=5(G/K) and l S ,G/K ;<0, we

must have (H] ~ [Klfor any choice of p and q. If P # 0, then'lR,G!HP

is a unit by proposition 6.3 and so must ,90 to a unit in S. This

forces (K] ~ [HPj. If P = 0, then 1R• G/H transfers to IWH/· 1 R' in

R(l), so either IWHI '15 is zero in 5(1) or l S ,G/H is non-zero. For

P = q = O. this fOrces [H] ~ [li.J. If P =0, q 'f 0, and [a] r [I5J. then'

we' must have qn IIWHI so that tWH/' I s is zero. since 1 ,', traris-,
, R, G/aq ,

fers to I<G/H, G/aq>/. l R and q does not divide kG/H, G/aQ7/'the

ima~e lof 1. is a unit' in' S( G/aq ) and ~e have [K] ~ tH~. '
S,G/Hq R;G/aq

The behavior of the primary ideals of the Burnside ring shows

that, for m =1 in the proposition above, the indicated restraints :,

are the only general ones imposed by the existence of ring map R --+5.

If m # 1, then the existence of ring maps R~ 5 seems to be a

rather messy problem.

To oPtaina description of the prime and primary ideals of the

Burnside ring, we consider the rings .

lary 5.12. The only zero divisors in,

(.z 1pl'l)a obtained from Corol-
, n
(2: /p 'H are nilpotent (by

Proposition 5.4) so the kernel of the identity element map A~

,( z /pn)a is a primary ideal of A, which we call 'q(H,pn). '!'be ideal

q(H,p} (for any H ~ G) is prime since (z /p)a is an integral domain.

These definitions and Propositions 6.3, 6.4,and 6.5 suffice to

describe the prime and primary ideals of A.

Theorem 6.6 The ideals q( H, pn) include all of the primary ideals



of the Burnside ring A. Further,

(a) q(H,pn) t q(K,qm) unless [H] == [1<1and pn = qm

(b) The only prime ideals of A are the q(H,p) (p = 0 is

allowed). The only maximal ideals are the prime ideals of the form

q(HP,P) for p ~ O.

(e) The minimal prime ideals are theq(H,O).

(d) The prime ideal q(H,p) is contained in the prime ideal q(K,q)

if. and only if ()iJ ~ [1<1 ~ tHq 1 and either p =0 or p = q.

(e) q(H,pm) c q(H,pn) for m ~ n

(f) The ring A/q(H,pn) is the image of A in (z /pn)H. If Iwf
is a unit in z/pn, then A/g(H,pn) is isomorphic to (Z/pn)H and is

GIlt-project!ve.

(g) If P does not divide either IHI or tWH/, then the localiza-

tion of A at the prime ideal q(H,p) is

z(~)· is the localization of .z at p.

is the fleld of fractions of. A/q( H, 0).

(A/q(H,O» ~ Z(p) where

In partiCUlar, (A/q(H,O»aI) Q

Note that no comment is made on the relation between q(H,pn) and

q( K, pm.) for m > 1 and fH'l ~ [~ ~ [HPJ. '1'herelation between these
•

two ideals seems to be a fairly hard problem. Also note that the

localization of A at q(H,.p) is not described if q(H,p) does not meet.

the conditions in (g): it is not clear that the localization exists

for such q(H,p). Of course, by the localization of R at a prime

ideal P, we mean a ring map e: R --'? 5 with 9(R-P) contained in

the units of S which is universal among ring maps .with this property.

The basic source of the problem of obtaining localizations is that
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inverses to units need not be unique.

Proof of 6.6 Let P be a primary ideal of A and let pn and H be the

integral characteristic and characteristic subgroup of Alp. The map

A(G/H) --+ Alp(G/H) is surjective so Alp(G/H) is generated by the

images of the elements
"-

G/H 0( f, G/J ) 1

in A( G/H) = [GIB,!] • We can assume J '!: H. The elements for Which -

because they factor through Alp( G!J) whichJ ,. Hvanish in A/P( G/H)

is zero. Thus, -A/P( G/H) has a single
. n

generator- and muat be Z /p ._

Since A"/P( 1) aits inside the elements of A/P( G/H) invariant under 1:1Ie

WH-action, Alp(l) must be isomorphic to A/P(G/H)(via the restriction

map) arid A/p( C?/H) must be fixed bY WH. Thus, HG/HA/P is -(I: fpn)H

py Lelll1la 5.8(e). Since the map A/p~ HG~P is injective, P must

be the kernel q(H,pn) of the inclusion of the identity element A~
. n

HG/HA/P'" ( Z. /p )H~

To establish ,(a), a~y Proposition 6.5 to A/q(H,pn) and

A/q( H,qm).

can be

and
No q(H,O)

If p " 0

For part (b), JlOte that A!q(H,pn)(l) contains zero divisors un-_
~

n -1 so the only prime ideals are the q{H,p).l.ess

maximal since A/q( H, 0)( 1) ... .l!: which is not a field.

H '# HP, then A/q(H,p) is not a field because, by Proposition 6.4(c),

lG/HE A/q(H,p)(G/H) is not a~. For p :FO, A/q(HP,p) is G/aP•

pro jective (by Proposition 6. 3) and is therefore isomorphic to '

( .l!: /p) P which is a field by Proposition 5.4(d). Thus, the q(HP;p)
H _

(for p #- 0) are maximal and are the only maximal ideals.
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•

Of course, the ideal q(H,pn) is contained in q(K,qm) if and only

if there is a map

A!q(H,pn) ~ A!q(,'k,qm).

Part (c) and the "only if" half of part (d) follow from this obeena-'

tion and proposition 6.5. '1'0 prove the nif" part of (d), it suffiCles

to show that if p P 0 and H <K ~ aP, then q(H,p)c q(K,P).' By the'
";","

solvability of p-ogroups, there is a .group J with H A J ~ K .such that'

J/H has order p. By Lemma 5.8 and Proposition 6.4, there is a _ap

): A!q(H,p) -7) JG/J(A!q(H,p)(G/J»

aDd"irherefore a map
, ,

X :A!q(H,p.),~ Ja/J«.E /P)H (G/J».

Let V be a direct awnmand of

, ('z/p)H (C/J) ., (f) .& Ip
g6¢/H,G/J>/WR

corresponding to, an orbit of the action' of WJ on <a/H, a/J>/WH. ~

J G/J (V) is an ,integral domain by Proposition ,5.4(b) and the: kernel"

of the identity elemen'tmap

A ) ".GIi:1(V)

must be q(J,p). But this map factors aa
# J.'

A--f'A!q(H,p) ~ Ja/J«Z Ip)H(G/J» ) '!G/J (V).

~u., q(H,p) c: q(J,P) ,and an inductive application of this: proc:iesa

give. q(H,p) C q(K,p) for H'! K S. HP•

Part (e) follows from the obvious existence of a ring map

( Z Ipn)H ~ (I: /pm)H for m ~ n. '

For (f), 'the fact 1:ha't A!q( H, pn) is 'the image of A in (z /pD)t:r,

follows from t:he definition. 'lhe rest of ef) follows from 'f;;be ob_x-

vaUon that t( l G/H ~ = twa I· 1. n in ( Z tpn )H'
( zip )H
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Here, if there are no such J, then the intersection is, by conven-

tion, all of A(G/K).

Remark 6.8 commutative algebraists will no doubt be disturbed by

the existence of a commutative Noetherian ring in which there ·is a

finte, non-zero· number of prime ideals between two prime ideals

(likeq(H ,p)
p

ring theory.

and q(HP,p): this situatipn cannot occur in ordinary

The resolution of this difficulty is that if P c: P . C. ..
1. 2 ..

P3 are prime ideals of Ai • then for any G/K, either P2(G/K) ..

P
1

(G/K) OT P2(G/K) = P3(G/K). Thus, locally--with respect to the

.G/K--A behaves like an ordinary commutative Noetherian ring should,

but globally, its behavior is more complex.

In ( ), . Dress describes the relationship between the prime

ideals of the Burnside ring and the ideals lm( A( a) .~ A( 1» and

ker( A( a) ~ A( a) ). .These results have impOrtant applications to .

induction theory (like COroll ary 2, p 207 of ( » and, from them,

it should be possible to extract descriptions of the prime ideals·

of the rings A and H A for a 6 6. !,'or this reaso.n, we record there- a . a .

their generalization to results on the Burnside rinq•

. Proposition 6.9 (a) If xb
is the kernel of the map A~ "b (for

be~), then xb c. q(H,p) Moreover



( c) For any pair a. b in d3.

A = K
b + (la)

if and only if G/HP 0< a for every H with G/H -< b.

-,',. ,: .

11



7.' Integral domains and fields

In this section, we analyze the structure of (integral) domains

and fields. Our first main result is a complete description of the

H-determined domains 0 for which 0(1) is a field. Any domain is a

subring of such a domain so the classification probl:em is reduced

to determining the ~bdomains of a domain. our classification re~

sult is applicable to any field and we employ it to study modules,

over fields.' In particular, we show that any module over a field P

is projective in' .t.he category F-mod of F-modules. We also consider

the question of fields containing a given domain. Sin~ fields of

fractions need not exist. this is an important and curious topic.

Throughout: this section, by ring (and ring) we mean' a commutative

ring (or ring). Certainly, the analogous problems of non-commutative'

rings without zero "divisors and of division rinqs should be inves­

tigated.

A number of trace~like functions are needed for our analysis of

domains, so we begin by introducing a notion of trace which includes

all of them.

Definition 7.ILet W' be a subgroup of a finite group Wand let N

be a JW.;IJ -module.

=

W'
For any x G N , we define trw/W''lIC. by

~gx
r;ft1'c. W/W I

where the sum is indexed on the .cosets of W' in W. We write trw

for trW/ fe)' Note that trWfiq' (x') is in NW and that it does not de­

pend on the choice of the coset representatives g since W' fixes k.
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By Corollary 3.B, any domain has a characteristic subgroup H,

and in this section, we restrict attention to those domains Dwith

a fixed characteristic subgroup H. If D is such a domain, then the

group WH acts on the ring D( G/Hj by ring automorphisms. proposition.

5.4(b) gives the rather curious property. of t~is action which is equi­

valent to D being a domain. Our first objective is to describe ex­

actly what such an action implies about the ring D(G/HT.

Keeping in mind two non-trivial examples of rings with such a~

tions may make reading what follows easier.- COnsider the quotien~

ring z[x,y]/(xy) of the polynomial ring ZCX;yJ by the ideal-gen­

erated by the product xy: and let 1./2 act on· this quotient by pex:-' .

muting x and y. COnsider also the ring obtained from this quo~ient:.­

by inverting all the non-zero invariant elements: this fraction ring

is isomorphic to the product of the rings Jl, (x) and .z (y) of rB-:

tiona! functions.

For the moment. we forget about rings and introduce a little ­

ring theory to illuminate the structure of D(G/H).

Proposi tion 7.2 Let 5 be a commutative ring (with unit) and W be a

finite group which acts on 5 (not necessarily effectively) by ring

automorphisms in such a way that. for any pair of non-zero elements

x and y in S; there is a 9 in W with x(gy) # O. Then

<.a) The non-zero invariant elements of S are non-zero divisors.

In particular. SW is an integral domain.

.-

( b)

( c)

5 contains no non-zero nilpotent elements.
n

5 can be written as a finite productTr 5. of rings 5
1

.such
. i=l 1.
•
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.that the 5
i

are all isomorphic and no Si contains a non-trivial idem­

potent.

(d) If, Wi is the subgroup of W taking 51 to itself, then ~he

aet:ion of Wi. on 51 . satisfies the hypothesis of this proposltionand·

the rin95~1 of Wrinvariant elements of S:L is i:S~rOOrphic tC;; 'S"'. ",
(e) Every ~lement in ,51 satisfies a monic polynomial with co-' ,

~ ,. W
effieients in 51 (the same applies to 8' and S ).w .

(t) If 8
1

1 - SW is a field and K is the kernel of the action·.
WI

of Wl on 51 ' then s1 is a normal separable field extension of 8 1

with ,Galois group W1IK.

Proof Part (a)· is obY'iou••

nilpotent element and ,

There is a 91 c W with ,

largest integer with

assume that x 6 S is a non-zero
kOlargest integer with x F O.

For (b),

let k O be the
k,

X O( glx) " 0 and thus. 91¢ e. Let k i be the

·10 ( 91~(1 .,. 0: such a k 1 exists since 91x is also nilpotent. There.·'
- k ,k .. -

exists a 9 2 c W with X O{91X) 1 9~ \ "" o. /,9ain, ~2 ~ a, 9.1 and

there is a largest integer k 2 with X O( g1x) 1 (92x) 2"0. Clearly, this

process can be continued Until" ve run out of elements in W and therebY.

obtain a oontradiet:ion.

For (c), assume that S' contains a non-trivial idempotent e. SUch

an idempotent cannot be fixed 'by W since (1- e)e = O. Any prodUct

of the form

(1) (gle ).(g2e ) ••• (~e)

is also idempotent. Let e' be a prodUct

. for k ~ 1, 9. c W for 1 ~ i" ~ k
3. .

of maximal length 8JIlOng the

non-zero products of the form (1) (By length, we ·mean the number of .
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distinct factors multiplied together). Let W' be the subgroup of W

fixing e'; since e' is a nontrivial idempotent, W' f W. The trace

trw/w' e' is an idempotent because, clearly, either e' = 9 e' or

e'(ge') ~ 0 for any gin W. Being a w-invariant idempotent,

trw/W' e' must be either 0 or'l and it is not 0 because' e'(trw/W e')

.. e'. Thus, we have a product decomposition of' 5 by

S ~ Tf S(ge')'
qw'" W/w'

The map a ~ ae' induces an injection of SW

W' WSuppose x ~ (Se') • Thel'l y" trw/ w' (x) is in 5

Thus (Se' )W' .. SW.and 'ye' ..

The group W' acts on Se'. For any non-zero pair X& , ye 'in Se'.

there is a 9 6 W with xe'g(ye') = O. This g must be in W' since

e' (ge',) .,'0 otherwise. 'We have shown that the action of w' on Se'

satisfies the hypothesis of this proposition, so if Se' contains a

nontrivial idempotent, we can iterate the decomposition process. Since

w' is strictly smaller than W, only finitely many iterations are pos­

sible and the last possible iteration produces the required decom­

position. Note that the factors of the decomposition above, and

thus of our final decomposition, are all isomorphic because w acts

transitively on the orthogonal idempotents inducing, the decompOsit.ion.

the notation of the proofFor (d), it suffices to show that, in

W· "w
of (- c), (Se') .. 5 •

into (Se' )It •

Nate thatand p( s) .. O.

For (e), let s 6 Sl and define p( x) by

p(x)" IT (x - ga)
9 4i w:1.

Wi
Clearly, the coefficients of p(x) are in 51

we can replace 51 by Sand w1 by W to obtain a monic polynomi.al with -
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W .
coefficients in S for any s 6 'S.

For (fl, it suffices to show that Sl is a field. Then it must
W

be a normal. separable extension of 51
1

with Galois group,Wl/K.'

Let s be a non-zero element of Sl. From' (e) and the fact that ~~1'
is a field, we obtain an equation of the form

n . ,
s (sq( s") - 1) oo, 0

W
where q(x) is a polynomial. with coefficients in Si.

1
• If'nooO.

then q (s) is an inverse for s. If n F O. then it must be one. other­

wise, the element s (sq(s') - 1) would be anon-zero niipotent in 51

and, by (b), there are none. Then we have

·s2(q(s»2 = sq(s)

so that sq (s) is an idempotent. The only idempotents in 51 ,are 0 .

and 1,. and if ,sq(s) .. 0, then s = 0 by our equation•. Thus, sq(s) ""

1 and q f s) is the required inverse. ., '

Remark 7.3, The correct way to understand Proposition 7. 2 seems to be
W

to think of 51 as a representation of WI over 51
1 .. 5W• The in-

duced representation S of W over SW has the form·

-5, .. 1& 8
1

S gWl G\ W/W1
The SW module '§ can be made into a ring by giving it the product ring.

structure and it can be shown that. W acts on S by ring automorphism••

P'Urther, 5 is isomorphic toS by an isomorphisl'If WhiCh preserves the '

W-actions.

Let R be another ring wit.h a W-action satisfying the conditions

of Proposition 7.2 and let 9: R ---"" S be a ring homomorphism which

commutes with the W-act.ions. We wish to compare the decompositions of
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Rand 5 given by the proposition. We have
m n

R = 1T R' 5 = If 51
j ... 1 ,j i= 1

Let U1 fix Rl ' and Wl fix 51. and let fd j Ii ~ j ~ m' and fe i \ 1 { i ~ ~ :Qe the

indecomposible idempotents inducing the decompositions. Clearly, /?( d
j

>

is an idempotent in S and therefore a sum of some of the Eli. We may

as we1,1 assume

&(d1 ) 2 8 1 + e 2 + .. •• +~.

Note that n ... mk. If 9 E W flxes e l' then we mUst hav,: gd1 ... dl, by

the ortbogonali1:y of the ide",potents. Thus, WI C Ul ~ Let K and L

be the, kernels of the

and let ,~ ... q, II<. a~d
, 1

groups of ~ over R1

actions of U1 on R1 andW1 on 51 respectively

Jf = . t~l/L. We think of )Fand H as "Galois·
w1

and 51 over 51 •



7
"

. '

a W action satisfying the conditions

The action of W on R extends fo an action',

integral domain with a field of

We can invert the non-zero elements of R
W in

any ring with

then R
W is an

If R isRemark 7.4

of proposition 7.2,

fractions (RW)-l RW•
W -La to obtain S ... (a >. -a.

of W on S which also satisfies the conditions of Proposition 7~2.'·. . . . ,. . . . -. .

Note that SW D (RW)-l aW• Because the non-zero el~ents of RWare

not zero divisOrs in a, the natural map

6: 'R~ (RW)-la .. s

is injective. This is an important example of the sort of 'ext:enid~n,

'.l'he implications of the results above for a domain D should be

fairly obvious. We use the notation 0l(G/H),: W1H, K (or KO'" ',',

J.! (or -!Jo~and e
1

(or e~ ') to designate the structural data for D(t:i(H).
given by Proposition 7.2. Note that if 0 is H-determined,then 0 i.

completely determined by ,the WilllOdule 0l(G/H) and if, further, 1:1(1;

= O( G/H) WEI is a field, the~ computing D is just an extended exerci~

inordinaiy Galois theOry. My domairi D with characteristic ~up

H inbeds in HG/HD which is a-determined. Further, if F is the field

of fractions of HG/aO (1', then the domain F ,Cl!) HG/aD( 1) aG/s.» is~.;;.,

determined and field valued at 1 c= til. Thus, it can be completely

analyzed using Galois theory, and then we can try to recover the

structure of 0 via the inclusion

UD

, 0 -~') HG/aD -~) F 0 a D( l' HG/HD•
G/a

is an a-determined integral domain with 0(1) a field,

then it is natural to ask if D is a field. FrQlll Proposition 5.4(d),
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we see that the answer to this question depends only on the transfer

map t:o(G/n) --)oD{l); If we think of 0(1) as the WEi-invariant
•

elements in O(G/H), then t is just the trace trw. It is fairly easy

to see that 0 is a field if and only if there is an element x in

I\(G/H) with t~ (x) = 1. This trace is given by the formula

trw (x) = IK /. z.. g trJ1 (x) for x e 01 (G/H)

9W'1 C w/w1
where the sum runs over the cosets of tql in w/w1 " Since ~ (G/lI) ,is"

, W
1
H

a normal, separable extension of D1 (G/H) ,. there is an x in 0
1

(Gis)

with tr)J (x) =- e
1

so th.attrw (x) = ,IKI·IO" Thus, we have ','

ProPOsition 7.5 If 0 is an a-determined integral domain such that,

0(1) is a field, then D is a field if and only if t~e characteristic'

of o( 1) does not divide the order of the kernel l{ of the action of',

.,
," ..

If we find ours,elves stuck, with, an, a-determined integral domain,

D such that 0(1) is a field, but 0 is not a field, then it is rea-

, sonable to consider the ways we might imbed it in a field~ There az;1l,'

two distinct operations which may be performed on rr-either inde-

pendently or in, concert",,-to obtain a field into which 0 imbeds. Both,

of these are best visualized by thinking of '

D(G/H) as the induced WH representation obtained from the W1Hre-
"' "

presentation, D:L (G/H). The first process, which can always be used

to produce a field, is to think of D1 (G/S), ,not as a W1 H representa­

tion, but as a representation of some proper subgroup ,~ of Wi H. If

V is the \'IH-representation induced from the W-representation D;t ( G/H>.
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then V can be given a product ring structure (as a D{l)-module, it

is just a· sum of copies of D.t. (G/H» in such a way that WH acts on V

'.by ring automorphisms. It is easy to check that the ring JG~{V).

is an integral domain into which D imbeds. Further, Ja/H(V) is a

field if and only if the orderofK A W· is not 'divisible by the

characteristic p C!f D( 1}. Clearly, taking W to be,the trivial sub- .

group always pr,,!duces a field. Note that JG/H(V)( 1) is 0
1

(G/H)W~hich
WIH . .

could be strictly larger than 0l(G/H) = 0(1).

The second approach to converting the c.'Idmain: 0 into a field is

, not' always applicabl.e. For this approach, we try to obtain an ex­

tension field F of the field. 01 (GIH) to which the action of Wl H on,

01 {G/R} can be extended. If such an extension F exists, then the

kernel K' of the action of w1H on F will be smaller (unless the ex­

tension is purely inseparable--in which case, it is of no interest) •.

If U is the tYH-representation obtained from the W1H representation

F,then JG/H(U) is an integral domain into which D imbeds: it is a

field if and only if p does not divide the order of K'.

Of course, these two processes can be combined to obtain other

integral domains into···which D imbeds and some· of these may be fields.

Example 7.6 Let G = .z /2 and consider the domain ° = A/q{ fel, 21

where A is the Burnside ring of 2./2. We write the .z /2 set . Z/2~J

as Z/.2. It is easy to see that D(Z/2) is 2./2 with trivial

Z/2

,'l'he

with

action.. OUr two e~~ension processes produce fields Pl and F
2

field Fi produced by the first method has. F" (l!;/2) = JZ/2 ~ !L12·. 1 ..

the permutation z/2 action. The field F2 has, as F Z(.z /2..),
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the field with four elements with Z/2 acting as the'Galois group•

•
Clearly, F1 -F F2' , It is easy to see that there are no rings in

either field strictly between D and the field. Thus, the domain

,D does not have a field of fractions in any obvious sense.

Re~ark 7.7 The'nonexistence of fields of fractions'in certain cases

(Md, more generally, pf localizations) is a rather, disappointing as­

pect of the theory of rings. However, it is not clear that this de-

fect is as serious, or even as real, as it seems. There are, at least

two possible resolutions to this problem which des6rve consideration.

'The first possible resolution is that. our notation of a unit may

be too simplist.ic. consider the fields F1 and F 2 of Example 7.6.. 'I~

:lC (; F 2 (1l./2) is a generator of the field with four elements; then

it is both a unit in F 2 and a unit in the ring F
2

( Z/2)., .,:On the

other hand, the element (1,0) in. >!l!z/:n =Z/2 SZ/2 :is. aunit,'

in F
1

but not a unit in F1 (.z/2). '!t.may be that the right way to,

specify the localization

of a ring R at a multiplicative subset S is to specify
•

no"", it.J.s to be a unit. '

The second possible approach is derived from the observation that,

in the polynomial ring D ["1>1 generated by one variable ~ at. b I!r () ,

there is a polyJiomial ps( "1» (; D [:lib] (b) associated to each S IE- DCb)

whose "solutions" are the inverses of s in D(b). If 9: D--+ It is
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~

a ring map and r ~ R(b) is an inverse for 9 (a). then there is a
•

unique map

DrxJ /"ps(x) ) R

which takes "b ,to r~ In particular. the fields Fl and F2 of ExMil'i;e

7.6 are l50th quotientdngs ~f the ring' D[x3/21!p(xZ/2>' whe~;' "

'. P;(X
Z

/
2
)' is the poIyno~a1 in.D[xi/21,~.E/2) ~hoa~ "SOl~tion.s·:

. would be inverses to lZ/~ in D(Z/2)..'l'hus. the eorrectway t:o.

st.udy localizations may be to investigate polyno!ftial rings. Xt. lIIeellia

1iJtely that the first approach to locaiizatio~-by saying ..ow:~:

thing "$ , to be a unit··-can be described in t.ezms of the secend by, . -, '

using suitable polynomials.
'.,: .'..-

, '

. Let us assume now that by some me,ans-';":fair or foul--we hava ob-., ....

,,' .

...
'tb~s',

, '

ProPosition 7 .. 2 applies to describe F .eompletely. in terms of data we

tained a field F with characteristic subgroup H... Then F(l). 18 Cer...
. . '-

tainly a field and. being G/H-projective. F is ,a-determined.

•

..
stand the modules over F. Clearly. if V is.an F module. 'then -1 ':,.

splits off all, 'F(l}- subspace V1 (G/s) of the FC.l) vector spaC;;. V(G/B) ..
,'.'" .. ' ..

,Further, V1 (G!H) is a vector space over F~(C/H)and W1 H acts on"'"

V1 ( C/H) in! such 8"ay that the map'

i Fl (G!H) aD V1 (G!H) '> V~(G/H) ...

is W1H equ1variant when F l (G/H) C&\ V1 (G!H) is given the diagonal "lH

action. We can define a twisted group r,ing F1 (G/H) r: a:I (where e:
W1H ..,}·Attt~(P.:l(G/H» gives the action of W1H on F

l
(G/H» as in

Proposition 5.13 and thereby obtain a complete description of F-. ,

modules. Our principal, objective, for the moment, is to show that
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a separable normal extension of

12

every F-module is projective in the category F-mod of F-modules. For

. this problem, the twisted group ring vie., of F-mod is unnecessarily

coml'licated.

Plrot?o.'!lition 7.8 IfF is a field and V ill .·module over F, then·V18

projective in the cat.egory of F-modules.

Proof Let g>: U~ V·, be a surjection between· F-modules and· let

'. t: v --+ V' be a map of F-moc1ules. We must construct a: lifting

i: V.--,. U of & 150 that fe~. 1>. If suffices to construct a map
Ae : Vi (G/H) ---+- U1 (G/H)

.. . ..
of Fl (G!H)-vector spaces which conmutes with the W1H actions and

lAkes the diagram
...

e ....... ~Vl(G/H)... 1.'" '" . .8•.
/::-'"

01( GIn)· l(>,-+ U1(G/H)

"comm~e. Clearly,· there is a map f:: V1 (G/H) ~ Vl(G/H) of. Pl(G/B)

vector spaces whic:b makes the diagram commute, and our only probl....
. ..'

is to make f equivariant. . Let u Eo F1(G/H) .with tr)j. U
I

exists because Fl (G/H>' is
,.

Then define e: V
l

(G/H) ~ Vi (G/H) by

e(x) ... ~. ~ 9(uf(g-lx » for x EV
1

(G/H) •
. g£W

1
H

"-
It is easy to check that e is a map of F1 (G/H) vector spaces. "coi"huting

with the W1H actions and m~ing diagram (3) commute. Note that:

lAlQ has to make sense because F is a field.



The rin~s of interest

(J\!q(H,O» Q z:[~/ 'WHO
'the beet way' to

c ... a
[l!'!i.G

think of these two is as sub~ings ot: A (I 0 810 that.

A C B CC c A8Q

A" where au Is the idempotent

subg~oup H. The ring c con~"

The E.!!9 B is obtained f~om A by adding to A( G/H) the idelllpotents

which split A( G/H)GIQ t:o~ every H~ G. The ring C is obtained front
•\ .

A b}c 'adding the elelllent.s er!IWHI to
..

in A( 1) Cl Q which co~responds to the

tain. B because the 1/IliB! facto~ generat.es all. the idempot:enta in

the A(G/H) QSIQ by various transfers and m~tiplications.

'!'be point·of B· is that it b"-in some sense-the integral

closure of the ring A in the ring A~ O. A prime ideal lifting

theorem which does for A exactly what the standard theorem doe. .

. for findint,l the prime ideals of A( 1) . is a distinct possibi1i1:y that.
·'·,.'f

is beyond the scope of this paper•.
. ,

c is more important. It should be used in place of AIfIZ [1/ IGJ]

All the nice theorems about z [1/1Gll-~a1ued Macltey functo~s can ~:

extended to ~esults about modules over C. Note that
.. '

c Co ~Mll Z [1/ lGI] C A <tIQ.

The advantage of C is t.hat it preserves the maximal prime ideals



". ":

q( 8 10, p) for the ·primes p which divide IGI whereas A GJ ll:[l/ !GlJ oblH;"

erates them. The maY.imal primes g(HP,P) are perfectly ~e2pectable

in A considered as a ring and there is no reason to throw thero .

away·.· Another advantage of c is t.hat it should make goodsense--
..

. and be perfectly well behaved~-for a compact Lie.group where· .. ...;.
. . ;.,

A (jD .z (:I.!IGU is available only if one use I!! tom Died~'s~-apparl:mt:ly

not well understoclI:i--substitite for (Gr. certainiy, for CO!l1pa~ .
. . "

tie grOups.· C should pr\llser.re vastly more information and becoiae' •

·correspondingly more important.

'. Note that. the f!lUl1!l!landa He/H( A/q( H;On of Bare G!a;'determined ..
j '. •

and so well behaved and computable. The summand (A/q(H,O»tJzr~

of C is G/H-projective and, along with its !OOduies, is utterly welJ;:

behaved. )lJ.I5O, the ring C has homological dimension one. In fact,

the category of modulem over C is isomorphic to the sum

® Z[1/ !WHI] [wa] .~dules
(M] ~ G .. . .... .

where'\Z D./ 10m\] [WEi] is the .group ring of iiB with coefficients in

Z (;./Iw-rii).The £udge factor l/lwal .is exactly What: is needed in ..

modules. over a gzpup ring to get homological dimension one.
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