With field coefficients being an essential tool for calculations in non-equivariant cohomology, one could expect some kind of field coefficients to play an even more significant role in equivariant coho m myology where the homological barrier to calculations is far more for minable. In a search for the Green functor analog of a field, the "Green-fialds" of greatest interest should be the analogs of on d 2/p. Since the Burnside ring is the equivariant analog of the integers, these fields should be obtained from the "prime ideals of the Burnside ring considered as a Green functor rather than a ring. Finding a field of fractions for an integral domain which is not a field com is plicate the location of these "Green fields" and led to a general in m vestigation of Green functors as the Mackey functor analogs of rings. Thus, this project became, for the analogs of rings, a rough draft equivalent of an undergraduate text on the basics of ring theory.

We introduce Mackey functor analogs of almost every basic concept in ring theory-nrom prime ideals to nilpotent elements so it is diffing cult to keep track of when a word fa used in its ordinary sense and. wien it is used in its Hickey functor sense. We chose to underline the Mackey functor terminology. Thus, a Green functor is a ring, mad we hope to locate fields by studying the prime ideals of the Burnside sing. Does anyone have a better notation?

Section 1 of these notes is a basic Introduction to Mackey fundtors. We have a new definition for them-as additive functoris from small additive category $B-\ldots$ which is much cleaner than previous dario notions. In Section 1 we also show that the category of Mackey functor
has a "tensor product" which we denote 0 . Jaing it, the multiplication for a ring R can be described as a map

$$
\phi: R \square R \longrightarrow R
$$

of Mackey functors. This description is much easier to worls with than the older "pairings" description. Section 2 summarizes the formal ase pects of ring theory, showing that the category of modules over a ring R is a perfectly respectable abelian category. Ne derine such concapte as submodules, ideals, and chain conditions and introduce oud defimition of a field-a commative ring with no montrivial ideals.

Section 3 is devoted to relation between a ring f (or module M) and its values $R(b)$ (or $M(b)$) at the various objects ind. We demIine concepts like integral domain and prime ideal which can only be defined in terms of elements. He also describe the basic connections between mings and rings. In this section, we encounter our inst big surprise: Even in a field, a non-zero element may have more than one multiplicative inverse.

Section 4 sumarizes the basic results of induction theory. and in troduces two new ideas. First, we show that most of classical induc-i tion theory is just a seach for units in rings of endomorphisms. Stom. ond, we take advantage of our definition of Mackey functors as additive functors from a small additive category by showing that another major aspect of induction theory is just very simple sheaf theory. The中教hniques of sheaf theory promise to yield some nice results here.

In Section 5, we begin a rather techntcal study of an espacially 7ell-behaved class of Mackey functors which includes fields, integex jomains, aivision mings and simple modules over any ring. Here too, te show that any Galojs extenston $\left[F_{1}, F_{2}\right]$ can be regarded as a siagle
field. Ie also show that representation theory sits inside rint theory as the study of modules over certain fields and and integral domains. The fields give the well-behaved half of representation theory and the domains give modular representation theory. Note that, for us, representation theory is comutativemon non-commatativem.. ring theory.

Section 6 is devoted to the study of Mackey functors modulo p^{n}. Rere, we compute the prime and primary ideals of the Burnside ring. Another surprise appears. The Burnside ring is a commutative Noether ion ring, but primary decomposition does not work. An ideal of the Burnside ring can be decomposed-auite formally-into irreducible Ideals, but the irreducible ideals need not be primary. Only very inm complete results are available on the irreducible ideals of the Burnside ring and these are not included in these notes. phe basic message seems to be that the Burnside ring expresses the misbehavior of the integer primes that divide the order of the group in question by the dif: ference between the irreducible and prisary Ideals. Thus, one expects to have to work a bit to understand the irreducible ideals.

Section 7 deals with integral domains and fields. We characterize these rings in terms of ordinary ring and field theory. Furtherge: show that the category of modules over a field has homological dimenadon zero.

The ring $A \otimes \varepsilon[1 /|G|$ unfairly discriminates against some perfectiy respectable maximal ideals in the Burnside ring and should be avoided. Section 8 introduces the correct replacement for this fashionable rigg.

I would like to thank Andreas Blass, Zig Fiedorowicz, Mel Hochsterg
and Craig Huneke for innumerable helpful conversations. Moreover. Craig Huneke and Mel Hochster provided parts (b) and (f) of proposition 7.2 respectively. Also, I would like to thank Jim Mcclure for sharing his notes on computational techniques in equivariant ordinary cohomology. Reading McClure's notes brought me to a full understanding of the central importance of the Weyl groups in the study of the Mackey functors.

1. An introduction to Mackey functors

This section contains a brief overview of the approach to Mackey functors developed in my earlier notes. In this approach, a Mackey functor is a contravariant additive functor from a small additive category $\mathbf{S}^{--w h i c h ~} I$ call the Burnside categorymon the category $A b$ of abelian groups. The section begins with a description of B. The really new aspect of my approach to Nackey functors is the introm duction of the box product MDN of two Mackey functors M and N; this can be characterized as a universal object for pairings of Mackey functors in the sense of Dress ($(1), p$ 195). The main purpose of this section is to introduce this box product. construction and to explore its basic properties.

In order to define the category B, we need to establish some basic notation. Throughout these notes, we work with Mackey functors for a fixed finite group Go The category Q is constructed from the category G of finite $G-s e t s$ and G maps. The set of G maps between finite $G-s e t s a$ and b is denoted $\langle a, b\rangle$. For finite G sets a and b, we write $a<b$ to indicate that there is a map of $G-s e t s$ from a to b If H and K are subgroups of G with H contained in K (denoted $H \leq K$), then the normalizer of H in K is denoted $N_{X} H$ and the Weyl group $N_{K} H / H$ is called $W_{K} H^{H} \quad$ The class of subgroups of K conjugate in K to H is denoted $[H]_{K}$. If H and L are subgroups of K, then we write $[H]_{K} \leq[L]_{K}$ to indicate that H is conjugate (in K) to a subgroup (not secessarily proper) of L. If K is G, then we drop the subscripts in the above notation. Note that, for $H_{g} L \subset K$, there is a K map from K / H to K / L if and only if $[\mathrm{H}]_{\mathrm{K}} \leq[\mathrm{I}]_{\mathrm{K}}$. Note also that the set of K maps of K / H into itself is isomorphic to "K K_{H}. We denote the K-set
K / K by l_{K} and the G set G / G by 1 . The number of elements in a set X is denoted $|x|$.

In order to describe B, we first introduce a category \mathcal{Q}^{+}. The objects of B and G^{+}are the finite G sets (usually denoted by the small letters $a, b, c, d, s, u, v, w)$. The maps from a to b in B^{+} have the form

$$
\mathbf{f}: a \stackrel{\hat{\mathbf{f}}_{1}}{4} \quad \mathrm{c} \xrightarrow{\mathbf{f}_{2}} b
$$

where $f_{1}: c \longrightarrow a$ and $\dot{f}_{2}: c \longrightarrow b$ are maps in \hat{G}. The bar on the arrow $\left(\leftarrow+\right.$) and the hat on \hat{f}_{1} indicate that, in B^{+}, \hat{f}_{1} is considered as a map from a to c rather than a map from c to a. Maps of the form $f_{2}: c \longrightarrow b\left(v i t h \hat{f}_{1}\right.$ the identity) induce the restriction maps in familiar Mackey functors like the representation ring and so are called restrictions. They will often be generically designated by r. Maps of the form a $4 c$ in θ^{+}correspond to induction or transfer maps in the representation ring and are called transfers. They will often be designated by to Two arrows, f and g, determine the same map in \mathcal{B}^{+}if there is an isomorphian $\theta: c \longrightarrow d$ in \hat{G}, making the diagram belov commute in \hat{G}.

Composition in \mathbb{B}^{+}is defined using pullbacks as in the diagram below for hf.

İ is easy to chock that the empty G-set O is both an initial and a terminal object for B^{+}. If we denote the diejoint union of Gets a and b by $a+b$, then it is easy to see that the diagram on the left below defines a one-to-one correspondence between maps out of $a+b$ in B^{+}and pairs of maps out of a and b. Thus, $a+b$ is the coproduct in \mathbb{B}^{+}. Similarly, the diagram on the right defines a correspondence which gives that $a+b$ is the product of a and b in B^{+}.

Since B^{+}has a zero object and biproaucts, it follows formally ($(c w)$, p 194) that the hom sets of \mathbb{B}^{+}are abelian monoids and that composition is bilinear. It is easy to check that, in fact, the hom sets are free abelian monoids.

Y: obtain our category β from B^{+}by applying the usual construction to turn abelian monoids into abelian groups. Thus, the objects of B are the finite G sets and the hom sets of B are free abelian groups whose elements are formal differences of maps in \mathbb{O}^{+}. Clearly 0 remeins the zero object and $a+b$ remains the biproduct of a and b in 8 . We denote the set of maps in B from a to b by $[a, b]$.

There is an obvious functor from B to its opposite category $B^{\circ p}$ which is the identity on objects and sends a map

to the map

Occusionaly, we mily have a pair of functors F anc G one cavariant and on: contravariant, from into some other category and a family of mass

$$
\eta: \mathrm{Fa} \longrightarrow \mathrm{Ga}
$$

which we will assert to be a natural transformation. In any such statement, an application of D to either functor to correct the vari-: ance is implicit.

If a and b are finite $G-s e t s, ~ t h e n ~ w e ~ d e n o t e ~ t h e i r ~ C a r t e s i a n ~ p r o-~$ duct by $2 \times b$. : This cannot be the categorical product of a and b in B since that product is $a+b$; however, taking Cartesian yroducts provides a natural pairing of B into itself which should be thought of as a tensor product. For any a, b, and c in B, there is a natural isomorphism.
$[a \times b, c] \cong[a, D b \times c]$
(note the use of D to correct the variance) which implies that $\mathrm{Db} \times$? is right adjoint to ? $\times b$ so that B is a symmetric monoidal closed category. Thinking of x as a tensor product and recalling the vector space isomorphism Hom $(V, W) \cong V^{*} \otimes$ should make the adjunction above seem more natural.

Now that B is defined, we define a Mackey functor M to be a contravariant additive functor from B to the category $A b$ of abelian groups. We denote the category of Mackey functors by $\overline{7}$; it is clearly an abelian category satisfying the axiom AB5 needed for homological algebra. Using Dress's description of Mackey functors (see ()), it is fairly easy to see that this definition of Mackey functors agrees with the older definitions (see my earlier notes or () for details).

There is one obvious family of examples of Nackey functors-mamely the representable functors $[?, b]$ for $b \in \mathbb{B}$.

Definition 1.1 For any $b \in B$, the representable functor $[?, b]$ is cenoted $A_{b} \in \neq$. The functor $A_{1}=A$ is called the Eurnside ring. The motivation for calling A the Burnside ring is that the value $A(G / H)$ of A at the orbit G / E is the Burnside ring of H.

By the work of Day (()), the symmetric monoidal structure on 8 induces a symmetric monoidal closed structure on the functor category $m_{\text {. The }}$ The for any two Nackey functors M and N we have a tensor pro-duct-like construction $M \square N$. This construction is commutative and associative (up to natural isomorphisms) and it has unit A. The functor ? 口N has a right adjoint $\langle N, ?\rangle$ which we define below.

Definition 1.2. For any Mackey functor M, and any $b \in B$, Let M be the Mackey functor defined on objects by $M_{b}(a)=M(b \times a)(f o r ~ a \in B)$ and on maps in the obvious fashion. Note that, by the adjunction isomor phism (1), the two possible interpretations of A_{b} are equivalent. Definition 1. 3 For any Mackey functor M and N, the Mackey functor $\langle M, N\rangle$ is given on objects by

$$
\langle M, N\rangle(b)=\text { Nat trans }\left(M, N_{b}\right) \quad \text { for } b \in B
$$

That is, the value of $\langle M, N\rangle$ at b is the maps in M from M to N_{b}.
Anyone interested in a precise definition of $M \mathbb{N}$ should consult my earlier notes or Day's article (()). For our purposes, it suf= fices that \square and \langle,$\rangle are adjoint and that M \square N$ is completely characterized by the following result.

Prooosition 1.4 If I, M, and N are Mackey functors, then there is a one-to-one correspondence between maps

$$
\theta: M \square N \longrightarrow L
$$

pairing is a collection of maps

$$
\theta_{\mathrm{b}}: \mathrm{Mb} \otimes \mathrm{Nb} \longrightarrow \mathrm{Lb} \quad \text { for } \mathrm{b} \in \mathbb{Z}
$$

such that if $r: a \rightarrow b$ is a restriction and $t: b \leftrightarrow a$ is the associated transfer, then

$$
\begin{aligned}
& r\left(\theta_{b}(x, y)\right)=\theta_{a}(x(x), r(y)) \\
& t\left(\theta_{a}\left(x(x), y^{\prime}\right)=\theta_{b}\left(x, t\left(y^{\prime}\right)\right)\right. \\
& t\left(\theta_{a}(x, x(y))=\theta_{b}\left(t\left(x^{\prime}\right), y\right)\right.
\end{aligned}
$$

for $x \in M(b), x^{\prime} \in M(a), \quad y \in N(b), y^{\prime} \in \mathbb{N}(a)$:
Peaders unfamiliar with the relations above may acquire some feel for them by thinking about the relation between restriction, induction; and multiplication in the representation ring of G (This is the clagz: sic example of a pairing of Mackey functors) or by considering the relation between cup products in ordinary cohomology and the transfer map associated to a bundle or covering space.

The above characterization of M प is generally the right ons to use in constructing a map Mn N \rightarrow I and it occasionally suffices of analyzing the behavior of such a map. However, the following more sophisticated characterization is usually easier to use for analyzing maps of the form M N W L

Proposition 1. 5 If M, N and L are Mackey functors, then a map

$$
\theta: M \square \mathbb{N} \longrightarrow \mathrm{~L}
$$

determines and is determined by a femily of maps

$$
\theta_{i}: \mathrm{Ma} \otimes \mathrm{Nb} \longrightarrow \mathrm{Lc}
$$

indexed on the maps $\mathrm{f}: \mathrm{c} \longrightarrow \mathrm{a} \times \mathrm{b}$ in B ; such that, for maps $g: a \longrightarrow a^{\prime}, h: b \longrightarrow b^{2}$ and $k: c^{\prime} \longrightarrow c_{2}$ the following diagrams commute

When working with a fixed pairing θ, we denote the maps θ by one of... the following
$\mathrm{Ma} \mathrm{Nb} \longrightarrow \mathrm{Ic}$
Ma $\otimes \mathrm{Nb} \xrightarrow{\mathrm{C} \longrightarrow Q \mathrm{~B}} \mathrm{Lc}$
The relation between the families θ of the two propositions is that the map

$$
\theta: \mathrm{Mb} \mathrm{Nb} \longrightarrow \mathrm{Lb}
$$

of 1.4 is the map θ_{Δ} (from $\Delta: b \longrightarrow b \times b$) of 1.5. The map θ_{f} (from: $f: c \rightarrow a \times b)$ of 1.5 is obtained from the maps of 1.4 as the following composite
$\mathrm{Ma} \otimes \mathrm{Nb} \xrightarrow{\pi_{1} \otimes \pi_{2}} M(a \times b) \otimes N(a \times b) \xrightarrow{\theta} I(a \times b) \xrightarrow{E} L c$ where $\pi_{1}: a \times b \longrightarrow a$ and $\pi_{2}: a \times b \longrightarrow b$ are the projections. Any reader who is put off by the strangeness of the diagrams of Proposition 1.5 may rest assured-or be fairly warned--that if he com tinues to read this diligently these diagrams will become old familiar friends.

We need one more basic result on \square and $\langle\rangle-,n a m e l y$, the r om lations among these two functors, the representable functors A_{b} and the functors M_{b} of Definition I. 2 .

Lemma 1.6 For any Mackey functor M and any a and b in B, there are natural isomorphisms

$$
\begin{aligned}
& A_{a} \square M \cong M \square A_{a} \cong M_{a} \cong\left\langle A_{a} M\right\rangle \\
& \because A_{a} \square A_{b} \cong A_{a \times b} \\
&\left\langle A_{a}, A_{b}\right\rangle \cong A_{a \times b} .
\end{aligned}
$$

Note that D must be used repeatedly to make sense of the naturality of these isomorphisms. We will generally think of M_{b} as A_{b}. I and therefore adopt the convention that it is covariant in b.

One more formality is needed to complete our introduction to Mackey functors. By the Yoneda lemma, for any Mickey functor M and any $b \in \mathbb{B}$, there is a onemo-one correspondence between maps

$$
\mathrm{x}: \mathrm{Ab}_{\mathrm{b}} \longrightarrow \mathrm{M}
$$

and elements $x \in M(b)$. As the category theorists have taught us, we make absolutely no distinction between the map. x and the element x. Any reader who forgets this triviality will frequently find himself lost.
\therefore. In introsuction to rincs and modules
In tinis section, we dispose of the purely formal aspects of rins theory. Rines (hitherto known as Gresn fanctors) and modules over rinfs are, of course, defined diagramatically in the usual fashion. The elementary examples of rings-ancluding the representable rings, polynomial rines, and endomorphism fings-are introduced. ine show that the category of modules over any fine R is an abelian category enjoying all the pleasant properties of the category of ordinary modules over an ordinary ring. This section concludes with a discuse sion of ineals end of those concepts in ring theory--line chain con-ditions-mthat can be defined purely in terms of ideals without any reference to elements.

Anyone unaccustomed to the diagrammatic definitions of rings and modules may find ($(C W), p$ 166-171) helpful in the definitions below.

Definitions 2.1 (a) A ring R consists of a Mackey functor R together with maps

$$
\begin{aligned}
& 1_{R}: A \longrightarrow R \\
& \varphi: R \square R \rightarrow R
\end{aligned}
$$

such that the diagrams below commute

Where the unlabeled isomorphisms are those expressing the fact that A is the unit for \square. The ring R is said to be commutative if the diagram

commutes where τ is the commutativity isomorphism for 0 .
(b) A left R-module for a ring R consists of a Mickey functor M together with an action map
$\wp: R \Delta M \longrightarrow M$
such that the diagrams below commute.

A right R-module is defined analogously. If R is commutative, then the two notions coincide. A submodule N of M is just a subfunctor of M closed under the action of R. Note that R is both a left and right module over itself.
(c) A left ideal of R is just a submodule of R considered as left module over itself. Fight ideals are defined similarly. An (tron sided) ideal of R is just a subfunctor of R which is both a left and a right ideal.
(d) Homomorphisms of rings and modules are just maps of Mackey functor making the obvious diagrams commute.

Examples 2. 2 (a). The unit isomorphisms $A \square A \cong A$ and $A \square M \cong M$ make A into a commutative ring and any lackey functor M into an A-module. The unit $\operatorname{map} 1_{R}: A \rightarrow R$ for any ring R is a ring homomorphism. so that R may be thought of as an A-2laebra.
(b) For any $b \in \mathbb{B}$, the maps

$$
\begin{aligned}
& \\
& t: A \longrightarrow A_{b} \\
& A_{b} a A_{b} \cong A_{b \times b}
\end{aligned}
$$

derived from the isomorphisms of Lemma 1.6 and the maps $t: 1 \ll-b$ and $\widehat{\Delta}: b \times b \leftarrow b$ make A_{b} into a commutative ring. Analogous maps make M_{b} an A_{b}-module for any Mackey functor M. Any transfer map $t: a<t-b$ induces a ring homomorphism $A_{a} \longrightarrow A_{b}$ making A_{b} an alpebra over A_{a}.
(c) If R and S are rings, then so is $R \square S$ under the maps
$A \cong A \square A \xrightarrow{1_{R}{ }^{1} S} R \square S$

In particular, for any $b \in \mathbb{B}$ and any ring R, R_{b} is a ring and an algebra over both A_{b} and R via the maps

$$
\begin{aligned}
& A_{b} \cong A_{b} \square A \xrightarrow{1} A_{b} \square R \cong R_{b} \\
& R \cong A_{b} \square R \cong R_{b}
\end{aligned}
$$

Also, if M is an R -module, then M_{b} is an R_{b} module.
(d) If R is any ring, then $R^{O D}$ is the ring consisting of the same Mackey functor R_{9} the same identity element and the multiplication

$$
R^{\circ P} \square R^{\circ p} \cong R \square R \xrightarrow{\tilde{\sim}} R \square R \xrightarrow{\varrho} R=R^{\circ p}
$$

--that is, the multiplication of B in the reverse order. Of course, if R is commutative, then the two fines are the same. Note that R is a Left $R D R^{o p}$ module in the usual fashion and a twonsided ideal I of R is just an R ロ $R^{\circ p}$ submodule of R.
(e) If R is a commutative ring and $b \in \sqrt{s}$, then define the polynomial ring in one variable x_{b} of "rank" b to be the lackey functor

$$
R\left[x_{b}\right]=0_{n=0}^{\infty}\left(R_{b} n\right) / \Sigma_{n}
$$

where \sum_{n} acts on $R_{b^{n}}$ by permuting the copies of b in b^{n}. The identity
element is the composite $A \xrightarrow{1_{R}} R=R_{D} O \longrightarrow R\left[x_{D}\right]$ and the multiDlication is derived from the maps

If S is an R-algebra, then it is easy to see that there is a one-tom one correspondence between elements of $S(b)$ and ring homomorphism $R\left[x_{0}\right] \longrightarrow$ s. A few minutes of playing with the images of maps from $A\left[x_{0}\right]$ into A should suffice to convince anyone that polynomial rings are strange and beautiful beasts full of mystery.
(f) If R is a ring and M is an R-module, then $\langle M, M\rangle R$ is the subfunctor of $\langle M, M\rangle$ consisting of R-module homomorphisms. The Mackey functors $\left\langle M_{;}, M\right\rangle_{R}$ and $\langle M, M\rangle$ are rings under composition with identity elements the identity map 1: $M \longrightarrow$ M. Note that if R is commutative; then $\langle M, M\rangle_{R}$ can be given an R-module structure in the usual fashion. These endomorphism rings play a central role in our presentation of induction theory.
(g) If C is an abelian group and M is a Mackey functor, then we define the Mackey functor $C \geqslant M$ by $(C \otimes M)(b)=C Q M b$ for $b \in \mathbb{B}$. clearly, if D is an ordinary ring and R is ring, then $D @ R$ is a ring and if C is a D-module and M is an R-module, then $C Q M$ is a $D R$-module. Thus, one obvious source of rings is to take an ordinary ring D and form $D \otimes A$. To describe the result. we introduce the category $D \otimes \Delta$ with objects the finite G-sets. The set of maps from a to in in \mathbb{D} is just $D \otimes[a ; b]$. With this notation, we have

Lemma 2.3 If D is any ringo then the following categories are isomoras phic
a) The category of modules over the ring DAB
b) The category of contravariant additive functors from 0 to the category of D -modules.
c) The category of contravariant additive functors from $D B B$ to abelian groups.

The proof of this result is an elementary exercise in manipulating abelian functor categories. All three views of $D \otimes A$ modules have cheir applications.

For any xing R, we call the category of left R-modules R-mod and the category of right R-modules mod- R. one of the main purposes of this section is to show that these two categories enjoy ill of the nice properties one usually associates with the category of modules over a ordinary ring. We begin with tensor products. If M and N are right. and left R-modules respectively, then we can define the box product $M n_{R} N$ over R as the coequailizer $M \square R O N \longrightarrow M D N \longrightarrow M D_{R} N$
of the two action maps. If R, S, and I are three rings and M and A are an $S-R$ and an $R-T$ bimodule respectively, then $M M_{B} N$ is an $S-T$ bimodyle and the usual associativity results hold for these tensor products. If M and N are both left (or right) R-modules, then we can define the Mackey functor $\langle M, N\rangle_{R}$ of R-module maps from M to N as a subfunctor of $\langle M ; N\rangle$. Again, the usual bimodule remarks apply to $\langle M, N\rangle_{R}$. We record the basic properties of these constructions below. proposition 2.4 (a) If M an \mathbb{N} are right and left R-modules respectively, then there are natural isomorphisms
(i) $M_{c} \square_{R} R_{b} \cong M_{C \times b}$
(ii) $R_{b} \square_{R} N_{c} \cong N_{b x c}$

(v) $M_{c} \square_{R} N_{L}=\left(A \Gamma_{R} N\right)_{c \times b}$
(iv) $\left\langle R_{b}, N_{c}\right\rangle_{R} \cong N_{b \times c}$ for all b, $c \in \in$
(b) If R, S, and T are rings and B, C, and D are $S-R, R-T$, and S-T bimodules respectively, then there is a natural isomorphism
hom $S-T\left(B \square_{R} C, D\right) \approx$ hom $_{S-R}\left(B,\langle C, D\rangle_{T}\right)$
(c) If R is commutative and M and, N are R modules, then $M A_{R} N$ and $\langle M, N\rangle_{R}$ have natural R-module structures. Further, for R-modules M, N, and L, there is a natural isomorphism
$\operatorname{hom}_{R}\left(M \Sigma_{R} \cdot N, L\right) \cong \operatorname{hom}_{R}\left(M,\langle N, L\rangle_{R}\right)$.
Thus, R-mod is a symetric:monoidal closed category.

Except for the use of the flatness of A_{b} (see below) in the proof of (a), the proofs of these results are indistinguishable from the proofs for ordinary rings and modules. "

We turn now to the behavior of limits and colimits in module categories. .We have already observed that the category ${ }^{\text {I }}$ of Mackey finctors is an abelian category satisfying Grothendieck's condition AE5. As in the case of an ordinary ring, the functors $R \mathrm{D}$? (or 3 aR) and $\langle\mathbb{R}, 3\rangle$ provide a left and right adjoint respectively to the form getful functor from R-mod (or mod-R) to h. Thus, limits and colimits in R-mod (and mod-R) are obtained.by taking the analogous limits and colimits in 7 and applying the natural R-module structures. It follows that $R-m o d$ and mod-R are abelian categories satisfying condition Ass. Note that limits in $\bar{\eta}, \mathrm{R}$ mod and mod-R are taken point-wise. For example

$$
\left(\prod_{i \in I} M_{i}\right)(a)=\prod_{i \in I} M_{i} a
$$

$$
\left(\operatorname{lb}_{i \in I} M_{i}\right)(a)=\underset{i \in I}{ } M_{i}^{a}
$$

for any indexed family $\left\{M_{i}\right\}$ ifI and $a \in B$. Also a sequence

$$
0 \longrightarrow M^{-} \longrightarrow M \longrightarrow M^{u} \longrightarrow 0 .
$$

is exact if and only if the sequences

$$
0 \longrightarrow M^{\prime} a \longrightarrow M a \longrightarrow M^{\prime \prime} a \longrightarrow 0
$$

are exact for all $a \in B$. From this obsexvation, Lemma 1.6 and proposition 2.4(a), it follows that the functors $? a_{a} \quad$? $\square_{R} R_{a}$ and $R_{a} \square R^{2}$ are exact for all $a \in \mathbb{B}$. Thus, the representable functors A_{a} are flat in 2η and the functors R_{a} are flat in R-mod and mod-R. As is always the case in a functor category, the representable functors A_{a} are projective and, as a family, they generate M. Further, if

$$
c=\sum_{H \leq G} G / H
$$

then A_{c} is a projective generator for Z_{l}. AnY projective in η is a direct summand of a direct sum of copies of A_{c} and so is flat by the usual argument. Since $R_{a} \cong R A_{a}$ is the free R-module (left or right)
 for any $a \in B$. Also. R_{c} is a projective generator for $R-m o d$ (or mod-R). Again,. it follows formally that any projective in R-mod (or mod-R) is flat. Being $A B 5$-categories with a projective generator, 解; $R-m o d$ and mod-R all have enough injectives. Thus, they are perfect y respectable categories in which to do homological algebra. In particuIar. Tor and Ext derived functors exist for $\square_{, ~} \square_{R^{\prime}}\langle$,$\rangle , and \left\rangle_{\mathbb{R}^{\prime}}\right.$ The only hitch in all of this is that η is known to have infinite homological dimension: We will discuss the homological dimension of R mod in a few special cases in later sections.

Remark 2.5 The good behavior of tensor products noted above suggests the possibility of translating into our cantext the Morita description of equivalences of module categories in terms of tensor products. However, since tensor products always commute with the functors $? \pi A_{b}$, any direct translation of Morita theory would be applicable only to equivalences with the same commutativity property. Any work on Morita theory is further complicated by the fact that R-mod is not generated by R. but by R_{c} where c is $\sum_{H \leq G} G / H$. In spite of the generator problem, the usual proofs of the Morita characterization of equivalences appear to go through for those equivalences commuting with the functors $?{ }^{[} A_{b}$. Some of our results in later sections involve equivalences between module categories over rings in two different categories of Mackey functors (that is, the ambient group G changes). It might be profitable to search for some generalization of Morita theory-along the lines of recent work on Morita theory for functor categories-which would describe these equivalences.

Some concepts in ring theory--like chain conditions-can be expressed purely in terms of the behavior of the submodules of a given module: such concepts translate formally to ring theory. In particulax, we have the following obvious definitions.

Definition 2.6 (a) A left or right module over a ring R is Noetherian (Artinian) if every non-empty collection of submodules has a maximal (minimal) element.
(b) A ring R is left or right Noetherian (Artinian) if it is Noetherian (Artinian) as a left or right module over itself.
(c) A module M is simple if it has no non-trivial subnodules and
is semisjmple if. it is a direct sum of simple modules.
(d) A ring R is simple if it has ro nontrivial (two-sided) ideals and is semisimple if it is a direct sum of simple rings.
(e) A division ring is a non-zero ring with no non-trivial left or right ideals.
(I) A field is a non-zero commutative ring with no non-trivial ideals.
(g) A maximal submodule N of a module M is a submodule strictly contained in M and not strictly contained in any other submodule.
(h) A maximal left (right ox two-sided) ideal is a left (right or two-sided ideal which is not the whole ring and which is not strictly contained in any other left (right or two-sided) ideal that is not the whole ring.
(i) A left (right or two-sided) ideal I is irreducible if whenever $I=P n Q$ for P and Q left (right or two-sided) ideals, we have $I=P$ OI $I=Q$.

Many basic resuits carry over without change in their statemants or proofs. For example, we have

Lemma 2.7(a). If N is an R-submodule of an R-module M, then there is a one-to-one correspondence between R-submodules of M / N and R-sugum modiles of M which contain N.
(b) If I is an ideal of R; then R / I is simple if and only if I.主s maximal (as a twomsided ideal).
(c) If I is an ideal of R; then R / I is a division ring if anid: only if I is maximal both as a left and a right ideal.
(d) If I is an ideal of a comoutative ring R, then R / I is a field if and only if I is maximal.
(e) Any left (xight or two-sided) ideal of a ring R other than the whole ring is contained in a maximal left (right or two.sciled) idenl.
(f) If R is a left (or right) Noetherian ring, then any left (or right) ideal of R is a finite intersection of irreducible left for right ideals.

Note that the rings A_{b} for $b \in B$ are Noetherian because any ideal is determined by its values at the orbits G / H for $H \leq G$ and each $A_{b}(G / H)$ is finitely generated free abelian group. Also, if F is a field, then $F \otimes A_{b}$ is Artinian for the same reason. Lemma 2.7(f) suggests that it should be possible to classify all the ideals of A_{b}, Ais we will show in Section 4 . such a classification would be quite usem ful in induction theory.

Some results do not carry over. For example, if M is a simple left R-module, then M need not be the quotient of R by a maximal ideal. The problem is that $M(1)$ need not be nonzero. What is true is that if M $(b) \neq 0$ for $b \in B$. then M is the quotient of the left R-modula R_{b} w a maximal R-submodule It is not necessaxy for this submodule to be a module over R_{n}.
since simple modules are unexpectedly complicated, it is not clear how the Jacobson radied or a ring should be defined. The annihilator of an R-module M is just the kernel of the action map

$$
\mathbf{R} \longrightarrow\left\langle M_{\theta} M\right\rangle
$$

It is clearly a twomsided ideal of R. The left Jacobson radical of R could be defined as the intersection of the annihilators of the
simple left R-module or as the intersection of the maximal left ideals. It's not clear that these two possible definitions agree.

Note that the usual operations on ideals-like $I \cap J, I+J$ and IJ for ideals I and J are well-defined. In particular, IJ is the image of the map

$$
I \square J \longrightarrow R \square R \xrightarrow{G} R
$$

and $I+J$ is the image of the map

$$
R Q(I \oplus J) \longrightarrow R \square(R \oplus R) \longrightarrow R
$$

if I and J are left ideals or
$R \boxminus(I \Phi J) \square R \longrightarrow R \square(R \oplus R) D R \longrightarrow R$
if I and J are two-sided ideals.
Remark 2.8 The observant reader may have already noted that the isomorphism $A \cong A$ provides A with a Hopf algebra structure and the maps

$$
\begin{aligned}
& \dot{A}_{b} \xrightarrow{\Delta} A_{b x b} \cong A_{b} \square A_{b} \\
& A_{b} \longrightarrow A \quad(\text { from } b \rightarrow \text { 1) }
\end{aligned}
$$

provide A_{b} with a coalgebra structure for $a n y b \in \mathbb{B}$. If $b \neq 1$, then A_{b} is not a Hopf algebra because the unit map does not behave properly with respect to either the counit or the comultiplication (and dually for the counit, unit and multiplication). These structures have parently never been investigated--perhaps because thexe is no analog of Propositions 1.4 and 1.5 applicable to copairings. Nevertheless, it seems reasonable that an understanding of Hopf algebras would contribite to the understanding of equivariant Hopf spaces.
3. Rings, rings and elements.

Having described the known formal properties of rings and module categories, we now begin to investigate the basic structure of individual rings and modules. First, we introduce elements into our dism cussion. Untilizing elements, we define such basic concepts as principal ideals, units, zero divisors, integral domains, and prime (and primary) ideals. Some of the usual basic properties-and some surprisesfollow easily from these definitions. To tie rings and modules to a more familiar world, we investigate the relations among a ring R, an R-module M and their values $R(b)$ and $M(b)$ at the elements b of B. These relations yield the basic properties of simple modules, division rings, fields, and integral domains which we will exploit in later sections.

If R is a ring and M is an R-module, then by the Yoneda lemana we can think of elements r of $R(a)$ and m of $M(b)$ (for $a, b \in Q$) as maps

$$
A_{a} \xrightarrow{I} R \quad M
$$

The composite

tells us that the product mm of r and m is an element of $\mathrm{M}(\mathrm{axb})$. In particular, for elements $I \in R(a)$ and $s \in R(b)$, the product $x s$ is in R(anb). This is exactiy the result one might expect by analogy with graded rings. We call these products "external" to distingrish them from the internal products which are defined later in this section. Experience suggests that one should always work with, and thini in terms of, external (xather than internal) products whenever possirile
because they carry more information and are a closer analog to pro－ ducts in ordinary rings than are internal products．

Here we collect a host of element－dependent definitions．
Definition 3．1（a）The principal left and two－sided ideals associated to an element $r \in R(b)$ are the images of the maps

$$
R ロ A_{b} \xrightarrow{1 ロ I} R \square R \xrightarrow{\varphi} R
$$

and

$$
R \in A_{b} 口 R \xrightarrow{\operatorname{lngal}} R \text { ロRロR } \xrightarrow{f}
$$

respectively．
（b）An element $r \in R(b)$ is a right（left）unit if its associated left（right）principal ideal is all of R ．An element $r \in R(b)$ is a unit if it is both a left and a right unit．
（c）An element $r \in R(a)$ is a zero divisor if there is an object $b \in \mathbb{B}$ and a non－zero element $s \in R(b)$ such that rs or sris zero in $R(a \times b)$ ．It is sometimes useful to call this a b－zero divisor：the set of b in B for which r is a b－zero divisor tells how bady r misbehaves． Note that we can define annihilators of elements in a module in an analogous fashion．
（d）．An element $r \in R(a)$ is（externally）nilpotent if there is an $n>0$ such that r^{n} is zero in $R\left(a^{n}\right)$ ．
（e）A non－zero commutative ring D is an（integral）domain if it has no non－zero zero divisors．
（f）An ideal P of a commutative ring R is prime if it is not all of R and if，when rs is in $P(a \times b)$ for $r \in R(a)$ and $s \in R(b)$ ，either $r \in P(a)$ or $s \in P(b)$ ．
（g）An ideal I of a commutative ring R is primary if it is not
all of R and if, whenever $r \in I(a \times b)$ for $2 \in R(a)$ and $s \in R(b)$, eithex $x \in I(a)$ or $s^{n} \in I\left(b^{n}\right)$ for some $n>0$.

Except for a few strange twists like 3.2(a) below, the expected basic results hold for the standard reasons. More results on units appear in Corollary 3.13.
proposition 3.2(a) An element $x \in R(b)$ is right unit if and only if the identity element $I_{R}: A \longrightarrow R$ can be written as the composite

$$
\mathrm{A} \xrightarrow{u} R \square A_{b} \xrightarrow{1 \Delta x} R \square R \xrightarrow{\varphi} R
$$

for some map $u: A \longrightarrow R D A_{b}$. Such a map corresponds to an element u of $R(b)$ which may be thought of as a left inverse for $\%$ However, u need not be unique even if x is a unit or even when R is commutative. Left units have an analogous description.
(b) The external product of two left (right or two-sided) unitg is a left (right or two-sided) unit.
(c) If $x \in R(a)$ maps to a left (xight or two-sided) unit $y \in \mathbb{R}(b)$ by any map $f: b \longrightarrow a$ in B, then x is a left (right or two-sided) unit.
(d) A unit is not a zero divisor.
(e) Every non-zero element of a division ring is a unit. Thus, a division ring has no non-zero zero divisors and a field is an intem gral domain.
(f). If P is an ideal in a comutative ring R, then p is prime if and only if R / P is an integral domain. Further, p is primaxy if and only if every zero divisor in R / P is nilpotent.

Proof Part (a) is just the Yoneda lemma. Part (e) follows trivially from (d) and the definitions. Part (f) follows trivially from the
definitions. part (c) follows because any one or two-sided ideal containing x must contain Y. The following proofs of paxts (b) and (d) are a good illustration of an application of (a) and of the proof techniques peculiar to rings.

Let $Y \in R(b)$ and let $x \in R(a)$ be a right unit with left inverse $u \in R(a) . \quad T h e c o m m u t i n g$ diagram below indicates that y is in the principal left ideal generated by $x y \in R(a \times b)$

If y is also a right unit, then any left ideal containing y must be all of R and we have (b). If xy is zero, then so is y since it is in the trivial ideal and we have (d):

The motivation for the diagram is that we want to say uxy $=y$, but this can't be said directiy in texms of products because uxy $\in R(a x a x b)$ and $y \in R(b)$.

Remark 3.3 A work of caution about principal ideals is necessary. We say that an R-module M is finitely generated if there exist elements $x_{i} \in M a_{i}$ for $1 \leq i \leq n$ such that the map
is suxjective. via the isomorphism $\left(\underset{i=1}{n} M a_{i}\right) \stackrel{N}{\approx} M\left(\sum_{i=1}^{n} a_{i}\right)$, we see that

Mis actually generated by a single element in $M\left(\underset{i=1}{n} \sum_{i}\right)$. Thus, any finitely generated module is, in fact, monogenic and any finitely generated ideal is principal. Anyone familiar with the ideal generated by x and y in the ordinary polynomial ring $z[x, y]$ will regard this behavior of rings as a bit strange. If we say that an tdeal is strictly principal if it is generated by an element in $R(G / H)$ for some $H \leq G$, then we obtain a class of principal ideals which behave in more intuitive fashion. Since the generator for the category R-mod is R_{C} where $c=\sum_{H \leq G} G / H$, this class of strictly principal ideals may be too small for some purposes; a better class might be those principal ideals generated by a single element of $R(c)$.

The key to understanding integral domains and simple modules is the following definition.

Definition 3.4 A subgroup H of G is a characteristic subgroup of a Mackey functor M if the $\operatorname{map} M \longrightarrow M_{G / H}$ (from $1 \leftarrow G / H$) is injective and $M(G / K)=0$ unless $[H] \leq[K]$. A Mackey functor M is said to have a characteristic subgroup if some $H \leq G$ is a characteristic subgroup of M. The basic properties of characteristic subgroups are

Lemma 3.5 (a) If Mis H-characteristic, then $M=0$ if and only if $M(G / H)=0$. Thus, if a non-zero Mackey functor M has a characteristic subgroup, then that subgroup is unique up to conjugacy.
(b) A Mackey functor M has a characteristic subgroup if and only. if for every $b \in B$ with $M b \neq 0$, the map $M \rightarrow M_{b}$ determined by $1<-$ bis injectivé。

Proof (a) For any $b \in B, G / H \times b$ breaks up as a sum $K G / H_{i}$ of orbits
with $\left[H_{i}\right] \leq[H]$ and H does not appear anong the H_{i} unless there is a map $G / H \longrightarrow b$. Thus, if M is H-characteristic, then $M_{G / H}(b)$ is either zero or a direct sum of copies of $M(G / H)$. since $M \longrightarrow M_{G / H}$ is injective, it follows that M is zero if $M(G / H)$ is. If H and K are both characteristic subgroups for $M \neq 0$, then $M(G / H)$ and $M(G / K)$ are both non-zero and we must have $[H]=[K]$.
(b) If M is H-characteristic, then $M_{b} \neq 0$ only if there is a map $G / H \longrightarrow$ b. For such b, the map $M \longrightarrow M_{G / H}$ factors through the $\operatorname{map} M \longrightarrow M_{b}$ and so this second map must be injective. on the other hand, assume the maps $M \longrightarrow M_{b}$ are injective when $M(b) \neq 0$. Let H be a smallest (in terms of number of elements) subgroup with $M(G / H) \neq 0$ (We can assume $M \neq 0$ since 0 is H-characteristic for every subgroup E). Suppose $M(G / K) \neq 0$. Then $M_{G / H}(G / K)=M(G / H \times G / K) \neq 0$. But then $M(G / L)$ $\neq 0$ for some orbit G / L in $G / H \times G / K$. If $[H]$ 本 K, then we must have $[I]<[H]$ which is impossible by the minimal nature of [H].

Corollary 3.6 (a) If M is a simple module over a ring R, then M has characteristic subgroup.
(b) Simple rings (which include fields and division rings) have characteristic subgroups.

Proof (a) LEi M be a simple module. For any $b \in \mathbb{B}$, the map $M \longrightarrow M_{b}$ is eithex zero or injective. If $M(b)$ is not zero, then the map $M(b) \longrightarrow M_{b}(b)=M(b \times b)$ is a split injection (by the map $M(b \times b) \rightarrow$ $M(b)$ from $\Delta: b \longrightarrow b \times b$) and so is not zero. (b) A simple ring R is a simple module over $R a R^{\circ}$.

The basic map $M \rightarrow M_{b}$ has an alternate description from which it follows that integral domains have characteristic subgroups.

Lemma 3.7 Let M be module over a ring R and let $I_{b} \in R(b)$ be the restriction of $I_{R} \in R(1)$. Then the map

$$
\mathrm{M} \longrightarrow \mathrm{M}_{\mathrm{b}}
$$

is just (external) multiplication by 1_{b}.
The proof is just a diagram chase using Proposition 1.5.

Corollary 3.8 (a) If R is a ring such that $1_{b} \in R(b)$ is not a zero divisor whenever it is non-zero, then R has a characteristic subgroup.
(b) Rings whose only zero divisors are nilpotent have characteristic subgroups. In particular, integral domains have characteristic subgroups. Also, if p is a primary ideal in a commatative ring R, then R/P has a charactexistic subgroup.

The proof of part (a) of this corollary follows from proposition 3.9(b) below which gives that $R(b)=0$ if and only if $1_{b}=0$. For (b), note that if 1_{b} is not zero, then it is not nilpotant because $R(b)$ is a direct summand of $R\left(b^{n}\right)$.

Corollaries 3.6 and 3.8 should suffice to convince those interested in Mackey functors that Mackey functors with characteristic subgroups are important. Section 5 is devoted to a detailed study of their very pleasant properties.

We have just about exhausted what can be said (to date) about ring theory without appealing to ring theory. The following proposition surveys the basic connection between rings and rings. The
proofs are all easy exercises in chasing diagrams of the form introduced in proposition 1.5.

Proposition 3.9 Let R be a ring and M be a left module over $R_{\text {. }}$
(a) $R(1)$ is a ring, and for any $b \in B, M(b)$ is an $R(1)$ module. The unit of $R(1)$ is the element $1_{R}: A \rightarrow R . \quad$ The multiplication on $R(1)$ and the action of $R(1)$ on $M(b)$ axe given by

$$
R(1) \& R(1) \xrightarrow{\simeq} \underset{\sim}{\approx}(1 \times 1)
$$

$$
R(1) \otimes M(b) \xrightarrow{\square \cong 1 \times b} M(b)
$$

Any map $f: b \rightarrow a \operatorname{in} \theta$ induces an $R(1)$ module map $f: M(a) \rightarrow M(b)$.
(b) For any $b \in B, R(b)$ is a ring and $M(b)$ is a module ovex klb). The unit of $R(b)$ is the restriction 1_{b} of $1_{R} \in R(1)$. The (internal) multiplication on $R(b)$ and the action or $R(E)$ on $M(b)$ are given by

(c) Any restriction map (or conjugation) $r: a \rightarrow b$ in B induces a ring homomorphism

$$
I: R(b) \longrightarrow R(a)
$$

In particular, the restriction $R(1) \rightarrow R(b)$ is a ring homomorphisu and $R(1)$ acts on $M(b)$ through this map. Note that transfers need not incuce ring honomorphisms!
(d) If R is a division ring, then $R(1)$ is a division ring and for $x \in R(1)$, any inverse

$$
t: A \longrightarrow R
$$

(as in proposition 3.2a) is the actual inverse of x and so is unique-. ly determined. Note that for $b \neq 1$, $R(b)$ need not be a division ringi it usually has zero divisors (in the ordinary ring sense).
(e) Is R is commutative, then so are the $R(b)$ for $b \in \mathbb{B}$.
(f) If R is an integral domain, then $R(1)$ is an integral domain
and if R is a field, then so is $\mathrm{R}(1)$. Again, $\mathrm{R}(\mathrm{b})$, for $\mathrm{F}=1$, can have zero divisors.
(g) If $p \in R$ is a prime (or primary) ideal, then $P(1) \subset R(1)$ is a prime (or primary) ideal.
(h) If R is commative, then $x \in R(b)$ is (externally) nilpotent if, and only if, it is nilpotent when considered as an element of the ordinary ring $\mathrm{R}(\mathrm{b})$.
(i) If $x \in R(b)$ is a b-zero divisor in R, then x is a zero divisor when considered as an element in the ordinary ring $R(b)$.

Results like (d), (f), and (i) above begin to illustrate the no' tational problem of keeping rinas and rings separate. Certainly, matters become confusing when an element $r \in R(b)$ is a unit in the ring R and a zero divisor in the ring $R(b)$.

Remark 3.10 The action of $R(1)$ on $M(b)$ for $a l l b \in \mathbb{B}$ can be given a Mackey functor description. For any Mackey functor M and $a n y b \in \mathbb{C}$. there is a natural map

$$
M(b) \circlearrowleft A_{b} \longrightarrow M
$$

which takes $m \otimes f$ to $f(m) \in M(a)$ for $m \in M(b)$ and $f \in A_{b}(a)=[a, b]$. For a ring R, this gives a map $R(I) \otimes A \rightarrow R$ which can easily be seen to be a ring homomorphism. The action of $R(2)$ on $M(b)$ (for any $R-$ module M) is via this ring homomorphism.

The maps $R(1) \otimes R(b) \stackrel{b \cong}{\cong} 1 \times b$ (b) of Proposition 1.5 induce a map

$$
\theta: R(1) \otimes R \longrightarrow R
$$

for any ring R. This map is a ring homomorphism if R is commutative (or more generally if $R(1)$ is in the center of R). Also, the map $R \cong Z \otimes R \rightarrow R(1) \otimes R$ determined by $1_{R} \in R(1)$ is a right inverse
for 0 . It seems likely that this pair of maps will be useful in relating the structure of $R(1)$ and R.

Since $R(1)$ is a ring when R is a ring, the following definition makes sense.

Definition 3.11 If R is a ring, then the integral characteristic of R is the characteristic of $R(1)$. The charactistic of R is the kernel of the unit map $A \longrightarrow R$ (which is an ideal in A).

Note that if R is a division ring, field, or integral domain, then its integral characteristic is a prime. Also, if p is a primary ideal in a commutative ring R; then R / P has a prime power integral charactexistic. We will see in Section 6 that for division rings, fields, and domains the characteristic ideal is determined by the integral characteristic p and the characteristic subgroup H. This ideal in A is denoted $q(H, p)$.

The key to understanding units in a ring is the following corollary of proposition 1.5 which can be used to compute principal ideala.

Proposition 3.12 If L a $M \longrightarrow \mathrm{~N}$ is a map of Mackey functors and $m \in M(b)$ for $b \in \mathbb{B}$, then the map

$$
L_{b} \xlongequal{\cong} \square \square A_{b} \xrightarrow{1 \square \mathrm{~m}} \mathrm{~L} \square M \longrightarrow \mathrm{~N}
$$

is given by
$\mathrm{L}(\mathrm{c} \times \mathrm{b}) \xrightarrow{10 \mathrm{~m}} \mathrm{~L}(\mathrm{c} \mathrm{\times b}) \otimes M(b) \xrightarrow{\mathrm{c} \mathrm{\times b} \xrightarrow{\underline{1 \times \Delta}} \mathrm{c} \mathrm{\times b} \times b} N(c \times b) \xrightarrow{t} N(c)$ for any $c \in \mathbb{B}$. Here the first map takes $l \in L(c b)$ to $f Q_{m}$ and the last map is the transfer $c \longleftarrow+\infty$ cxb determined by the projection $c \times b \longrightarrow c$.

Corollary 3.13 (a) An element $x \in R(D)$ is a right unit if and only if there is a $u \in R(b)$ such that $t(u \cdot x)=I_{R} \in R(1)$ where uex is the internal product in $R(b)$ and $t=1 \leftarrow b$ is the transfer. . The element u is a left inverse of x in the sense of Proposition 3. 2 (a). A dual result applies to left units so u eR(b) is a left invexse of x if and only if $x \in R(b)$ is a right inverse of u_{0}.
(c) For any $b \in \beta, R(b)$ contains a one-sided unit if and only: if the transfer map $R(b) \rightarrow R(1)$ is surjective.
(a) The image of the map $R_{b} \rightarrow R$ induced by $b \longrightarrow 1$ is the prinm cipal left (or right) ideal of R generated by $I_{b} \in R(b)$. Thus, $R(b)$ contains a one-sided unit if and only if i_{b} is a unit.
(e) $R(b)$ contains a unit if and only if there is an $x \in R(b)$ whose associated principal twomsided jdeal is all of $R_{\text {: }}$
(f) If $x, y \in R(b)$ and the internal product $x \in y \in R(b)$ is a right unit, then y is a right unit. Also,if xcy is a left unit. then x is a left unit.
(g) If $x \in R(a)$ and $y \in R(b)$ and the external product xy $\in R(a x b)$ is a right unit, then so is y and if xy is a left unit, so is x. proof (a) An element $x \in R(b)$ is a right unit if and only if I_{R} is in the left ideal generated by $\%$. The condition for 1_{R} to be in this ideal can be seen imnediately from proposition 3. 32 .
(c) This is a trivial corollary of (a) since $R(b) \rightarrow R(1)$ is a map of $R(1)$ modules.
(d) This follows from Proposition 3.12 by inspection.
(e) If $R(b)$ contains a unit then the associated left ideal of $1_{b} \in R(b)$ is all of R so the two-sided principal ideal must be ail. of R also. On the other hand, the value at 1 of the two-sided ideal generated by $x \in R(b)$ is just the image of the map
$R 口 R^{\circ p}(b) \longrightarrow R \square R^{\circ p}(b) \otimes R(b) \xrightarrow{\Delta} R(b) \xrightarrow{t} R(1)$
obtained from the action of $R R^{\circ p}$ on R. If this principal ideal. is all of R, then $t: R(b) \longrightarrow R(1)$ must be surjective and the remainder of (e) follows from (c).
(f) It suffices to show that $x \cdot y$ is in the left ideal generated by y and the right ideal generated by x. The image of $x \otimes y$ under the map

$$
R(b) \Delta R(b) \xrightarrow{\hat{\Delta} Q 1} R(b \times b) \otimes R(b) \xrightarrow{b \times b \xrightarrow{1 \times \Delta} b \times b \times b} R(b \times b) \xrightarrow{\hat{\pi_{1}}} R(b)
$$ can be computed to be $x \cdot y$ so that $x \cdot y$ is in the left ideal generated by y. The other result follows similarly.

(g) The external product $x y \in R(a \times b)$ is the internal product of $\pi_{1} \times$ and $\pi_{2} y$ where $\pi_{1}: a \times b \longrightarrow a$ and $\pi_{2}: a \times b \longrightarrow b$ are projections. The result now follows from (f) and Proposition 3.2(c).
4. Remarks on induction theory

Our basic tools for analyzing Mackey functors in subsequent sections are induction theorems. Roughly speaking, an induction theorem for a Mackey functor M says that there is a in such that all the values of M ar'e determined by the values Ma.for $a<b$ in β. The classical induction theorems are those which assert that, for some ring R, the R-representation ring of any finite group G is determined by the R -representation rings of some class of small subgroups of G. The induction theorems of intexest to us here are those applicable to division rings, simple modules and integral domains.

This section provides a summary of the induction-theoretic results we need later. It divides naturally into two parts. In the first, we introduce the three basic types of induction theorems we employ and describe the relations among them. This material is drawn from Dress's basic article on induction theory (). The only new result in the first part is the observation that if one thinks in terms of units in endomorphism rings, then one acquires a new inw tuition for the basic results. The second part of this section is: devoted to apparently new results on the type of induction we employ most often. The key to these results is a new understanding of the relation between Amitsur cohomology and induction theory in terms of sheaf theory for abelian functor categories.

The simpliest sort of induction theorem is like the classieal theorem which asserts that every representation of a finite group G can be obtained by induction from representations of the elementary
subgroups of G. In our notation, such a result says that, for some b in 3 , the transfer map

$$
M(b) \longrightarrow M(1)
$$

is surjective. Such a result puts an upper bound on the size of $M(1)$; however, to completely determine $M(1)$. it is necessary to specify the kernel of the induction map. More sophisticated versions of this type of theorem specify the kernel, but we do not need them here.

For our purposes, it is more useful to have $M(1)$ as a subgroup of some group than as a quotient group. Thus, the form of induction theorem we employ most often is the following:

Definition 4.1 For $b \in \mathbb{B}$, a Mackey functor M satisfies b-injective induction if the diagram

$$
M \longrightarrow M_{b} \xrightarrow[\pi_{2}]{\pi_{1}} M_{b \times b}
$$

obtained from the diagram

in \hat{G}, is an equalizer diagram.
Note that this form of induction describes the whole of M and not just the value $M(1)$.

By examining the decomposition of $c \times b$ and $\mathbf{c x b x b}$ (for $\mathbb{c} \in B$) into orbits, one can easily see that, if m satisfies b-injective induction, then the value of M at any C in B is determined by the values Ma for $a \propto b$. We have already noted that for certain Mackey functors-msuch as division rings, integral domains, and simple modules-there is an $H \leq G$ such that $M(G / K)$ is zero unless $[H] \leq[K]$. If such a Mackey
functor satisfied G/I-injective induction, then clearly it would be almost trivial to compute all of its values. We will see that this is exactly what happens for division rings, fields, and nice integral domains.

Unfortunately, b-injective induction--for our purposes, the most: useful form of induction-seems almost impossible to prove directly. For this reason, we are forced to consider two much stronger forms of induction.

Definition 4.2 (see () For beB, a Mackey functor M is b-projective if the transfer map

$$
M_{b} \longrightarrow M
$$

is a split surjection and is b-injective if the restriction map

$$
M \longrightarrow M_{b} .
$$

is a split injection.
Our first objective in this section is to establish press's basic results relating the types of induction defined above. Note that, for any ring R, the surjectivity of $R(b) \longrightarrow R(1)$ is equivalent to the existence of a unit.in $\mathrm{R}(\mathrm{b})$. This observation is the key to our approach to induction.

In order to relate the various types of induction, we must first study the ring $\langle M$, M> of endomorphisms of a Mackey functor R. By Definition 1.3, an element f in $\langle M, M\rangle(b) f o r b * R$. is just a map

$$
I: M \longrightarrow M_{b}=\left\langle A_{b}, M\right\rangle
$$

By the adjunction between ? $\square A_{b}^{\prime}$ and $\left\langle A_{b}, 7\right\rangle$, such an f may be regarded as a map

$$
\widetilde{f}=M \square A_{b} \cong M_{b} \longrightarrow M .
$$

For b and c in B, an element of $\langle M, M\rangle$ ($b \times c$) may be viewed in any of the following forms:

$$
\begin{aligned}
& h: M \longrightarrow M_{B \times C} \\
& \stackrel{\tilde{h}}{ }=M_{b \times C} \rightarrow M \\
& h_{b, c}: M_{b} \longrightarrow M_{c} \\
& \mathrm{~h}_{\mathrm{c}, \mathrm{~b}}: \mathrm{M}_{\mathrm{c}} \longrightarrow \mathrm{M}_{\mathrm{b}}
\end{aligned}
$$

The following basic lemma relates these forms, characterizes the transfer for $\langle M, M\rangle$ and describes the composition of maps which gives $\langle M, M\rangle$ is ring structure.

Lemma 4.3 (a) For any map $f: M \rightarrow M_{b}$, the map $\tilde{\tilde{r}}: M_{b} \rightarrow M$ is the composite

$$
\mathrm{M}_{\mathrm{b}} \xrightarrow{\mathrm{f}_{\mathrm{b}}} \mathrm{M}_{\mathrm{b} \times \mathrm{b}} \longrightarrow \longrightarrow \mathrm{M}
$$

where the second map comes from tha map $b x b \longleftarrow \stackrel{\hat{A}}{ } b \longrightarrow 1$ in \mathbb{B}.
(b) For any map $\tilde{f}: M_{b} \longrightarrow M$, the $\operatorname{map} f: M \longrightarrow M_{b}$ is the composite

$$
M \longrightarrow M_{b \times b} \xrightarrow{\tilde{f}_{b}} M_{b}
$$

where the first map comes from the map $1 \longleftrightarrow b \xrightarrow{4} \stackrel{b}{ } b$ in B.
(c) The image of $f \in\langle M, M\rangle$ (b) under the transfer map $\langle M, M\rangle$ (b) $\longrightarrow\langle M, M\rangle(1)$ is given by either of the following composities:

$$
\begin{aligned}
& M \longrightarrow \mathrm{I}_{\mathrm{b}} \longrightarrow \mathrm{M} \\
& M \longrightarrow \mathrm{M}_{\mathrm{b}} \xrightarrow{\mathrm{f}} \mathrm{M}
\end{aligned}
$$

where the unl abeled maps both come from the projection $b \rightarrow 1$ in \hat{G}.
(d) If $f \in\langle M, M\rangle(b)$ and $g \in\langle M, M\rangle(c)$, then the external product $f g \leftarrow\langle M, M\rangle(b \times c)$ is given by either of the following composites:

$$
\begin{aligned}
f g & : M \xrightarrow{g} M_{c} \xrightarrow{f_{b}} M_{b \times c} \\
(\tilde{f} g): M_{b \times c} & \xrightarrow{\tilde{g}_{b}} M_{b} \xrightarrow{\tilde{f}} M .
\end{aligned}
$$

The equivalence between b-injectivity and b-projectivity now follows easily.

Proposition 4.4 (see ()) For any Mackey functor M and any b $\in \mathbb{B}$, the following are equivalent:
(a) M is b-projective.
(b) M is b-injective.
(c) $\langle M, M\rangle$ (b) contains a unit for the ring $\langle M, M\rangle$.
(d) M is a direct summand of M_{b}

Proof By Lemma 4.3.($=$), statements (a) and (b) are just the two ways of saying that the identity map $1_{M}: M \longrightarrow M$ is in the image of the transfer $\langle M, M\rangle(b) \longrightarrow\langle M, M\rangle(1)$. By Corollary $3.13(c)$, this is equivalent to (c). Clearly, either (a) or (b) implies (d). To see that (d) implies the others, let $f, g \in\langle M, M\rangle$ (b) be maps representing M as a direct summand of M_{b} via the diagram

$$
1_{M_{i}}: M \xrightarrow{Q} M_{D} \xrightarrow{\tilde{\underline{E}}} M \text { : }
$$

By Lemma 4.3(a), (c), and (d) above, this composite is just the image of the internal product fog $: M \rightarrow M_{b}$ under the transfer map $\langle M, M\rangle(b) \longrightarrow\langle M, M\rangle(1)$. Thus, the internal product f.g is a unit
 f and g arenurisided in $\langle M, M\rangle(b)$.

Dress's basic result on induction theory is now the result of a trivial observation about units.

Corollary 4.5 (see ()) For any ring R and any $b \in B$, the following are equivalent:
(a) Every (left or right) R-module M is b-projective.
(b) R is b-projective.
(c) The transfer ${ }^{\prime}$ map $R(b) \longrightarrow R(1)$ is surjective.

Proof clearly, $(a) \Rightarrow(b) \Rightarrow(c)$. For $(c) \geqslant(a)$, note that (c) asserts that there is a unit in $R(b)$. For any R-module M, the image of this unit under the action map

$$
\mathrm{R} \longrightarrow\langle\mathrm{M}, \mathrm{M}\rangle
$$

is also a unit and so M is b-projective by Proposition 4.4.
Note that Proposition 3.2(e) now gives that if F is a field (or division ring) and $b \in B$ with $F(b) \neq 0$, then any $F-m o d u l e V$ is $b-p r o-$ jective. This is the key to our characterization of fields and their modules in Section 7.

To complete our survey of the basic results of induction theory, it suffices to show that b-projectivity implies b-injective induction.

Proposition 4.6 (see ()) If the Mackey functor M is b-projective for some b in B, then it satisfies b-injective induction.

Proof Let $\theta: M_{B} \longrightarrow M$ be any map representing the restriction map $M \rightarrow M_{b}$ as a split injection. It is easy to see that $\theta: M_{b} \rightarrow M$ and $\theta_{b}: M_{b \times b} \longrightarrow M_{b}$ represent

$$
\mathrm{M} \rightarrow \mathrm{M}_{\mathrm{b}} \longrightarrow \mathrm{M}_{\mathrm{b} \times b}
$$

as a split equalizer ((CW) , p 145).

Remark 4.7 Since the purpose of an induction theorem is to reduce the problem of computing the values of a Mackey functor M to that of
computing its values on certain small subgroups of G, it is clearly desirable to identify the smallest collection of subgroups for which M satisfies induction. If by induction we mean b-projectivity for some b, then locating this collection of smallest subgroups translates into finding the least b in B (least with respect to α) for which $I_{b}: M \longrightarrow M_{b}$ is a unit. in $\langle M, M\rangle(b)$. By. Proposition 3. 2(c) it sufm fices to consider those b in B of the form $\sum_{i=1}^{n} G / H_{i}$ with the conjugacy classes H_{i} all distinct. Certainly there is at least one minimal (with respect to α) such b for which I_{b} is a unit. If b and b^{\prime} are two such, then $1, M \longrightarrow M$, is a unit-being the exterior product of 1_{b} and $1_{b \times b}$. It follows that $b \cong b^{\prime}$--otherwise we woll a have $b \times b^{\prime} \alpha b$ and $b \neq b \times b^{\prime}$ which yields a violation of the minimal nature of b. If b is the unique minimal elenent of B which is a sum of diatinct orbits and for which 1_{b} is a unit in $\langle M, M\rangle$ (b), then by proposition $3.2(c), M$ is $a-p r o j e c t i v e$ for a in B if and only if $b \alpha$ a. This minimal element b is sometimes called the defect set or vertex of M .

The real difficulty which arises in working with b-injective induction instead of b-projectivity is that there is no general analog of Corollary 4.5 for b-injective induction. In fact, even for $G=z / 2$, there is an integral domain satisfying b-injective induction with modules which do not satisfy b-injective induction. As a result. the only way of obtaining modules satisfying b-injective induction (which are not also b-projective) seems to be to construct them. Fortunately, this is easy.

Definition 4.8 For any $b \in \mathcal{B}$ and any Mackey functor M, the (zero dimensional) b-Amitsur cohomology, $\mathrm{H}_{\mathrm{b}} \mathrm{M}$, is the equalizer

$$
H_{b} M \longrightarrow M_{b} \xrightarrow[\pi_{2}]{\pi_{1}} M_{b \times b}
$$

Since $M \longrightarrow M_{b}$ equalizes the pair $M_{b} \longrightarrow M_{b \times b}$ it factors uniquely as

Note that the assignment of $H_{b} M$ to M is a functor and η is a natural transformation. There are higher dimensional Amitsur cohomology groups (see ()) which we will not discuss; hence we write HiM instead of the usual $\mathrm{H}_{\mathrm{b}} \mathrm{M}$.

Proposition 4.9 (a) For any $b \in \mathcal{B}$ and any Mackey functor M, the Mackey functor $H_{b} M$ satisfies $b-i n j e c t i v e ~ i n d u c t i o n . ~ T h u s, ~ H_{b}$ is a functor from the category of Mackey functors to the category η_{b} of Mackey functors satisfying b-injective induction.
(b) The map $7: M \longrightarrow H_{b} M$ is universal among maps from M into Mackey functors satisfying b-injective induction. Thus η is an isomorphism if and only if M satisfies b-injective induction.
(c) The functor $H_{b}: \eta \longrightarrow M_{b}$ is left adjoint to the inclusion functor $\eta_{b} \longrightarrow \eta_{\text {. }}$.

Proof By its definition, η is an isomorphism if and only if M satisfies b-injective induction. Thus, to prove (a), it suffices to show that

$$
\eta: \mathrm{H}_{b} \mathrm{M} \longrightarrow \mathrm{H}_{b}\left(\mathrm{H}_{b} \mathrm{M}\right)
$$

is an isomorphism. This follows from the diagram

in which the second and third rows are obtained by applying f_{b} and ? $\square A_{b}$ respectively to the first row. The functor M_{b} is b-projective since $\Delta: b \longrightarrow b \times b$ induces a splitting of the restriction map M_{b} Maxb The isomorphisms and injections indicated above follow from this and the fact that $H_{b} M$ is a subobject of M_{b}.

Since

$$
\mathrm{H}_{\mathrm{b}} \mathrm{M} \longrightarrow \mathrm{M}_{\mathrm{b}} \xrightarrow{7} \mathrm{H}_{\mathrm{b}}\left(\mathrm{M}_{\mathrm{b}}\right)
$$

is an injection,

$$
\eta: H_{b} M \longrightarrow H_{b}\left(H_{b} M\right)
$$

must be an injection. Using the fact that $H_{b}\left(H_{b} M\right) \longrightarrow H_{b}\left(M_{b}\right)$ equalizes the pair $H_{b}\left(M_{b}\right) \longrightarrow H_{b}\left(M_{b \times b}\right)$ and the fact that $H_{b} M$ is the equalizer of the pair $M_{b} \longrightarrow M_{b \times b}$ it is easy to check that

$$
\eta: H_{b} M \longrightarrow H_{b}\left(H_{b} M\right)
$$

is surjective and therefore an isomorphism. The rest of the proof is formal nonsense.

The crux of the proposition is that we can canonically convert any Mackey functor into one satisfying b-injective induction. Moreover, this process of producing Madkey functors satisfying b-injective induction has a host of nice properties. For example, we have

Proposition 4.10 (a) The functor H_{b} (regarded as a functor from η to M_{b} or from $\eta_{\text {to }} \eta$) is left exact. In fact, H_{b} preserves all limits.
(b) If $M \in \eta_{b}$ and $N \in M$, then $\langle N, M\rangle G M_{b}$ and the map

$$
\left\langle\mathrm{H}_{\mathrm{b}} \mathrm{~N}, \mathrm{M}\right\rangle^{i} \xrightarrow[?]{3^{*}}\langle\mathrm{~N}, \mathrm{M}\rangle
$$

is an isomorphism.
(c) If we define $M \square_{b} N$ to be $H_{b}(M \square N)$ then there is a natural isomorphism

$$
\eta_{b}\left(M a_{b} N, L\right)=\eta_{b}(M,\langle N, L\rangle)
$$

for M, N and $L \in \prod_{b}$. Thus, \prod_{b} is a symmetric monoidal closed category. The unit for \square_{b} is $H_{b} A$.
(d) There is a natural map

$$
\theta: H_{b} M \square H_{b} N \longrightarrow H_{b}(M \square N)=M \square_{b} N
$$

for any Mackey functors M and N. Thus, if R is a ring and M is an R-module; then $H_{b} R$ is a ring and H_{b} is an H_{b} R-module. The identity element and multiplication of $H_{b} R$ are

The action of $H_{b} R$ on $H_{b} M$ is given by

$$
\mathrm{H}_{\mathrm{b}} \mathrm{R} \text { 口 } \mathrm{H}_{\mathrm{b}} \mathrm{M} \xrightarrow{\theta} \mathrm{H}_{\mathrm{b}}(\mathrm{R} \square \mathrm{M}) \xrightarrow{\mathrm{H}_{b} \xi} \mathrm{H}_{\mathrm{b}} \mathrm{M}_{.}
$$

(e) Any Mackey functor which satisfies b-injective induction is a module over $H_{b} A$.

Proof Part (a)follows from the fact that limits commute with limits and the functor ? $\square A_{0}$ preserves all limits.

For (b), if $M \in M_{b}$, then $\langle N, M\rangle \in \mathcal{F}_{b}$ for any $N \in \eta_{\eta}$ because $\langle N, ?\rangle$ preserves limits and commutes with ? $\quad A_{A_{0}}$. That the map γ^{*} is an isomorphism follows from the chain of isomorphisms

$$
\begin{aligned}
\eta_{b}(L,\langle N, M\rangle) & \left.\cong \eta_{(L},\langle N, M\rangle\right) \\
& \cong \eta_{(N,\langle L, M\rangle)} \\
& \cong \eta_{b}\left(H_{b} N,\langle L, M\rangle\right) \\
& \left.\cong \eta_{\left(H_{b} N\right.},\langle L, M\rangle\right) \\
& \cong m_{1}\left(L,\left\langle H_{b} N, M\right\rangle\right) \\
& \cong m_{b}\left(L,\left\langle H_{b} N, M\right\rangle\right)
\end{aligned}
$$

for any $L \in M_{b}$.
For (c), we have

$$
\begin{aligned}
m_{b}\left(M \square_{b} N, L\right) & \cong \eta_{l}(M \square N, L) \\
& =m_{(M,\langle N, L\rangle)} \\
& =m_{b}(M,\langle N, L\rangle)
\end{aligned}
$$

for any M, N, L in \mathcal{M}_{b}. That $H_{b} A$ is a unit for \square_{b} follows from (b) since $\left\langle H_{b} A, N\right\rangle \simeq\langle A, N\rangle \cong N$ for $N \in \prod_{b}$.

For (d), the map θ comes from $\}: M \square N \longrightarrow H_{b}(M D N$) via the chain of adjunctions

$$
\begin{aligned}
& \eta_{(M) \square N, ~}^{\left.H_{b}(M \square N)\right) \cong} \cong\left(M,\left\langle N, H_{b}(M \square N)\right\rangle\right) \\
& \cong m\left(M,\left\langle H_{b} N, H_{b}(M \mathbb{N}\rangle\right)\right. \\
& \cong m_{b}\left(H_{b} M,\left\langle H_{b} N, H_{b}(M \square N)\right\rangle\right) \\
& \approx 3\left(H_{b} M,\left\langle H_{b} N, H_{b}(M a N)\right\rangle\right)
\end{aligned}
$$

The rest of (d) follows by inspection. Part (e) is a special casa of (d) since any Mackey functor is an A module and $H_{b} M \cong M$ if M satisfies b-injective induction. It should be noted that (c) through (e) follow from (b) by standard results in the theory of closed categories.

Note that the converse of (e) is false even for the group $G=z / 2$. If R is a ring satisfying b-injective induction, then proposition 4.10(d) suggests an approach to studying an R-module M which fails to satisfy b-injective induction. First, the R-module $H_{b j} M$ must be understood and the the map $\eta: M \rightarrow H_{b} M$ must be analyzed. If the map $M \longrightarrow M_{b}$ is injective, then so is η and this procedure has proved to be enligntening.

The right way to understand Propositions 4.9 and 4.10 is to rem call that the category M of Mackey functors is a functor category and to note that the condition that

$$
\mathrm{M} \longrightarrow \mathrm{M}_{\mathrm{b}} \longrightarrow \mathrm{M}_{\mathrm{b} \times \mathrm{b}}
$$

be an equalizer is the sheaf condition for a rather simple additive topology on G. The functor H_{b} is just the sheafification functor: The best sources for additive sheaf theory seem to be popescu (). Schubert (), and stenström (). From them, we obtain

Proposition 4.11 The category η_{b} is an abelian category satisfying condition AB5. The functor $H_{b}\left(A_{C}\right)$, where $c=\sum_{H \leq G} G / H$, is a projective generator and y_{b} has enough projectives and injectives.

It seems quite likely that much of the work in Stenström () om topologies for ordinary rings could be extended to apply to rings. Such an extension should offer considerable insight into M_{b} and $b-$ injective induction.

Remark 4.12 Regarded as a functor from η^{7} to η_{l}. H_{b} is left exact but not usually right exact. As a result, it has dexived functors. These
are easily seen to be the higher dimensional Amitsur cohomology groups H_{b}^{n} of Dress (). Many of the properties he asserts for them follow trivially from this observation.
5. H-characteristic and H-actermined Mackey functors

From Section 3, recall that H is the characteristic subgroup of Mackey functor M if the restriction map $M \longrightarrow M_{G / H}$ is injective and if $M(G / K)$ is zero unless $[H] \leq[K]$. Not every Mackey functor has a characteristic subgroup; but since fields, division rings, simpla modules over any ring, and integral domains all have characteristic subgroups, the class of Mackey functors with characteristic subgroups is quite important. In this section, we introduce the machinery reeded to investigate the structure of these Mackey functors: We also examine two other closely related classes of Mackey functors.

Definitions 5.1 Let $\mathrm{H} \leq \mathrm{G}$
(a) A Mackey functor M is H-bounded if $M(G / K)=0$ for $[K]<[H]$ and $M(G / H) \neq 0$ if M is non-zero.
(b) A Mackey functor M is H-determined if it is H-bounded and satisfies $G / H-i n j e c t i v e ~ i n d u c t i o n . ~$

Note that H-characteristic Mackey functors are H-bounded, and H-determ mined Mackey functors are H-characteristic. Note also that if M is H-bounded, then $H_{G / H}{ }^{M}$ is H-determined. Clearly, the zero Mackey func: tor is H-bounded and H-determined for any $H \leq G$. A non-zero Mackey functor has at least one bounding subgroup (since there are only finitely many subgroups) and may have more than one. A non-zero Hcharacteristic Mackey functor has a unique (up to conjugacy) bound-m namely, H. A non-zero Mackey functor need not be determined by a subgroup, but if it is determined, then a determining subgroup is al so a characteristic subgroup and is therefore unique up to conjugacy.

From Corollaries 3.6 and 4.5 , we obtain that division rings and fields have determining subgroups. Our basic result in this section is a classification of Mackey functors with determining subgroups.

For any subgroup H of G, the set of maps $\langle G / H, G / H\rangle$ is isomorphic to the Weyl group WH. 'Thus, for any Mackey functor $M, M(G / H)$ has a wh-action, and evaluation at G / H gives a forgetful functor from the category of Mackey functors to the category of modules over the group ring $z[W]]$. Our characterization of H-determined Mackey functors is that this forgetful functor becomes an equivalence of categories when it is restricted to the full subcategory of η consisting of H-determ : mined Mackey functors. Note that if R is a ring, then, by proposition $3.9(\mathrm{c})$, WH acts on $R(G / H)$ by ring automorphisms.

For any Mackey functor M, the image of the restriction map $M(1) \longrightarrow M(G / H)$ is contained in the set $M(G / H)^{W H}$ of WH-invariant elements of $M(G / H)$. If M is H-characteristic, then the map $M(1) \longrightarrow$ $M\left(G / H J\right.$ is injective and we identify $M(1)$ with its image in $M(G / H)^{W H}$. In particular, if M is H-determined, then $M(1)$ is exactly $M(G / H)^{\mathrm{WH}}$. It should be obvious by now that this section is going to be littered with wh-actions. Unfortunately, the natural choices for these actions are a confused jumble of left and right actions, ab: bring some order into this chaos, we adopt the convention that all WH-actions are from the left (by acting through inverses when the natural action is on the right).

Our basic tool for working with H-bounded Mackey functors is the following elementary observation about finite G-sets.

Lemma 5.2 If $H\{G$ and b is a finite G-set. then there is a one-tomene correspondence between orbits in $G / H \times b$ isomorphic to G / H and the set. of maps $\langle G / H, B\rangle$. The correspondence is given by taking $f \in\langle G / H, b\rangle$ to the image of the map

$$
G / H \xrightarrow{(1, E)} G / H \times b
$$

From this, we obtain
Corollary 5.3 IF M is an H-bounded Mackey functor mad b* © then the map

$$
M(G / H \times b) \xrightarrow{(1, f)} \underset{\sim}{f} \in\langle G / H, b\rangle
$$

is an isomorphim. Further, the eftect of the projection mapis $G / H \times b \xrightarrow{T_{1}} G / H$ and $G / E \times b \xrightarrow{\pi_{2}}$ b on is described by the aiagemed

The transfer maps associdted to the projections are described by ogous diagrams.

The basic implications of this corollary for m-bounded and wos characteristic mackey functors are sumarized by the followimg:

Proposition 5.4 (a) An H-bounded Mackey fuxctor M is H-characemetefe if and only if for every be B and every nor-zexo x in M(b), there ib e
restriction map $E: G / H \longrightarrow b$ with $f(x)$ non-zero in $M(G / H)$.
(b) An H-characteristic, commatative ring R is an integrel domain if and only if for every non-zero pair $x_{0}: y$ in $R(G / H)$, there is a $g \in W H$ such that the internal product $x \circ(g Y)$ is non-zero in R(G/H).
(c) If R is an integral domain with charactexistic subgroup then $R(G H)^{W H}$ is an integral domain and the non-zero elements of $R(G / H)^{H H}$ are not zero-divisors in R.
(d) An H-characteristic ring \mathbb{R} is a division ring if and only if for every non-zero $x \in R(G / H)$ there exist $y, z \in R(G / H)$ such that $t(x \circ y)=t(z \circ x)=1_{R} \in R(1)$ where $t: R(G / H) \longrightarrow R(1)$ is the transfer and the two products are internal.
(e) If M is H-bounded, then for any b in \mathbb{B}, the compasite

$$
M(b) \xrightarrow{t} M(1) \xrightarrow{x} M(G / H)
$$

(where t is the transfex and x is the restriction) is just

$$
\begin{equation*}
r t(x)=\sum_{l \in\langle G / \xi, b\rangle} l(x) \tag{1}
\end{equation*}
$$

for $x \in M(b)$.

In particular, the composite $x t: M(G / H) \longrightarrow M(G / H)$ is just the trace of the Wh-action. Note that when M is H-characteristic, formula (1) actually describes the transfer $t: M(b) \rightarrow M(1)$ e
proof (a) If'M is H-bounded, then is H-characteristic if and only if the map

$$
M(\mathrm{~b}) \xrightarrow{\mathbb{\pi}_{2}} M(\mathrm{G} / \mathrm{H} \times \mathrm{b})
$$

is injective for every b in 0 . Part (a) follows immediately from the description of this map in Corollary 5.3.
(b) Assume first that R is an integral domain. Then for any
non-zero x, y in $R(G / H)$, the extermal product $x y \in R(G / H \times G / H)$ must be non-zero. It is easy to check that $x y$ goes to the tuple ($x \cdot g y$) gew under the isomorphism

$$
R(G / H \times G / H) \cong \bigoplus_{G \in W H} R(G / H)
$$

of corollary 5.3. Now assume that the indicated condition on $R(G / G)$ holds. For any non-zero $x \in R(a)$ and $Y \in R(b)$ we must show that the product $x y \in R(a \times b)$ is non-zero. By (a): there exists maps
$f: G / H \rightarrow a$ and $h: G / H \longrightarrow b$ such that $f(x)$ and $h(y)$ are non-wemo in $R(G / H)$. The diagram

commutes by proposition 1.5 and it suffices to show that the extetnal product of $f(x)$ and $h(y)$ is non-zero. This follows by reversing the first half of our argument.
(c) Part (c) is immediate from (b).
(d) If R is a division ginge then the required condition on R(G/H) holds because it is just the assertion that every non-zero element of $R(G / H)$ is a unit. Assume the indicated condition on $R(G / H)$ holds, then for any $b \in B$ and any non-zero x in $R(b)$, there is a mas 2: $G / H \rightarrow$ b with $H(x)$ non-zero in $R(G / H)$. But then $f(x)$ is a units so x must be by Proposition 3. 2(c).
(e) The map rt: $M(b) \rightarrow M(G / F)$ comes from the composite

$$
G / H \rightarrow 1 \longleftarrow+10
$$

in B. This composite is the same as the map

$$
G / H \stackrel{\hat{\pi}_{1}}{4} G / H \times b \xrightarrow{T_{2}} \mathrm{~b}
$$

Part (e) now follows from the characterizations of \hat{T}_{1} and \boldsymbol{T}_{2} in Corollary 5.3.

Proposition 5.4 completes our basic remarks about H-bounded Mackey functors, and we turn now to the problem of constructing a functor from $z[W H]$-modules to Mackey functor which, in some sense, undoes the effect of evaluating at G / H.

Definition 5.5 If V is a $Z[\mathrm{WH}]$ module, then the Mackey functor $J_{G / H} V$ is defined on b in $B b y$

$$
\left(J_{G / H} v\right)(b)=(\underset{f \in\langle G / H, b\rangle}{\oplus} v)^{W H}
$$

Here, WH acts both on each of the summands V and on the indexing set $\langle G / H, b\rangle$ by precomposition (using the fact that $W H=\langle G / H, G / H\rangle$). If h is a map in B given by
$h: a \stackrel{\hat{h}_{1}}{\xrightarrow{n}}$ y $\xrightarrow{h_{2}} b_{\text {, }}$
then $H:\left(J_{G / H} V\right)(b) \longrightarrow\left(J_{G / H} V\right)(a)$ is defined by the diagram

$$
\begin{aligned}
& l \in\langle G / H, Y\rangle \\
& f^{\prime}=h_{1} t
\end{aligned}
$$

where π, is the projection onto the summand indexed by $f^{\prime}: G / H \longrightarrow$ a. It is easy to check that $J_{G / H} V$ is a Mackey functor. Any map $j: U \rightarrow$ V of $z[\mathrm{HH}]$ modules induces a map

$$
J_{G / H} j: J_{G / H} \mathrm{U} \longrightarrow J_{G / H} V
$$

so $J_{G / H}$ is a functor from the category of $\mathbb{Z}[\mathrm{WH}]$-modules to the category of Mackey functors. Note that the map

$$
\text { (Ag:v } \rightarrow(\underset{G \in W H}{\oplus} v)^{W H}=\left(J_{G / H} V\right)(G / H)
$$

induces an isomorphism between V and $\left(J_{G / H} V\right)(G / H)$.

It is easy to check the following lemma:
Lemma 5.6 For any $\mathbb{Z}[w]$ module $V J_{G / H} V$ is H-determined.
In fact, the definition of $J_{G / H} V$ on objects may be recovered from the assumptions that $J_{G / H} V$ is $H-b o u n d e d_{a}\left(J_{G / H} V\right)(G / H)=V$ and the diagram

$$
s_{G / H} \mathrm{~V} \longrightarrow\left(J_{G / H}{ }^{V}\right)_{G / H} \longrightarrow\left(J_{G / H} V\right)_{G / H} \times G / H
$$

is an equalizer. The motivation for the definition of $J_{G / G} V$ on maps comes from the diagram below in 8 .

Remark 5.7 The description we have given for $J_{G / H}$ is the easiest one to use for proving that $J_{G / H}$ is a functor, but it obscures the real simplicity of $\left(J_{G / H} V\right)(b)$ for $b \in \mathbb{B}$. There are two alternate descriptions of $J_{G / H}$ which give a better feel for its value at any b in B. For any $b \in \mathbb{B}$ and any $f: G / H \longrightarrow b$ in \hat{G}, let W_{f} be the subgroup of WH which fixes f as an element of $\langle G / \mathrm{H}, \mathrm{b}\rangle$: that is, $g \in \mathrm{w}_{\mathrm{f}}$ if and only if the diagram

commutes. For any $Z[W H]$-module V and any subgroup W of $W H$ let. V^{W} be the W-invariant elements of V. Oux first description of $J_{G / H}(b)$ is

for $b \in \mathbb{B}$
where the sum runs over the orbits of $\langle G / H, b\rangle$ under the action of wh. This description is not entirely natural because the subgroup W_{f} depends on the choice of f within its orbit: a different choice would yield a conjugate subgroup and an isomorphic fixed point module. The lack of naturality in the choices of the f's makes the description of the effect of $a \operatorname{map} h: a \longrightarrow b$ on $J_{G / H} V$ hard to describe in terms of isomorphism (2). One notational trick seems very useful here. for $b \in \mathbb{B}, f: G / H \longrightarrow b$ and $v \in v^{W}{ }_{F}$, let $v_{f} \in J_{G / H} V(b)$ be the element which is v in the place corresponding to f and zero else where. Then v_{f} is a canonical choice for an inverse image of $\nabla \in J_{G / H} V(G / H)=V$ under the map

$$
f: J_{G / H} V(b) \longrightarrow J_{G / H} V(G / H)
$$

Our second alternate description of $J_{G / H} V$ applies directly only to $J_{G / H} V(G / K)$ for $[H] \leq[K]$. For any $g \in G$ with $g^{-1} H g \subset K$, let W^{g} be the subgroup

$$
\left(\mathrm{NH} \cap \mathrm{gKg}^{-1}\right) / \mathrm{H}
$$

of WH. Then there is an isomorphism

$$
\begin{aligned}
\left(J_{G / H} V\right)(G / K) & \cong \mathrm{v}^{W^{g}} \\
& {\left[g^{-1} H G\right]_{K} }
\end{aligned}
$$

where the sum runs over a set of $g \in G$ such that the-subgroups
$g^{-1} \mathrm{Hg} \leq \mathrm{K}$ form a set of representatives of the K -conjugacy classes of K-subgroups which are G-conjugate to H. The subgroups W^{g} depend on the choices of the $g \in G$ so this isomorphism is not entirely natural and it is hard to describe the effect of a map $h: a \longrightarrow b$ in on $J_{G / H} V$. The connection between the two definitions is that the maps $\mathrm{G} / \mathrm{H} \longrightarrow \mathrm{G} / \mathrm{K}$ in G are in one-to-one corresponcence with the K -conjugacy classes of K-subgroups which are G-conjugate to H .

The proofs of both of these alternate descriptions are easy manipulations of the original definition.

- For any Mackey functor $M, M(G / H)$ is a WH-module and it is natural to attempt to compare M and $J_{G / H}(M(G / H))$. For any $b \in B$, we have a map $\lambda_{b}: M(b) \rightarrow J_{G / H}(M(G / H))(b)$ defined by

$$
\left.\lambda_{b}=M(b) \xrightarrow{\oplus \mid}\binom{\oplus \in(G \in G, b\rangle}{\in \in\langle G / H}\right)^{W H}=J_{G / H}(M(G / H))(b) .
$$

However, for an arbitrary M, the maps λ_{b} need not fit together to form a map

$$
\lambda: M \longrightarrow J_{G / H}(M(G / H))
$$

of Mackey functors. Conditions for the existence of λ as a map of Mackey functors and the basic properties of λ are as follows: ?

Lemma 5.8 (a) For any M, a necessary and sufficient condition for the existence of $\lambda: M \rightarrow J_{G / H}(M(G / H))$ is that the transfer maps

$$
\widehat{\mathbf{E}}: M(G / K) \longrightarrow M(\dot{G} / H)
$$

are zero for every $f: G / K \longrightarrow G / H$ in \hat{G}. In particular, if M is G / H bounded, then λ exists.
(b) If λ exists, then M is H-determined if and only if λ is an isomorphism.
(c) If λ exists, then it induces a map $\bar{\lambda}=H_{G / H} M \rightarrow J_{G / H}(M(G / H))$ making the diagram

commute. The map $\bar{\lambda}$ is an isomorphism if and only if M is H-bounded. The proofs of (a) and (b) are easy diagram chases. The proof of (c) follows from the observation that for any M and any $b \in \Omega,\left(H_{b} M\right)(b)=$ M(b).

Let G / H be the full subcategory of M consisting of the Mackey functors for which λ is defined. our basic technical tool for analyzing H-characteristic Mackey functors and our classification of hdetermined Mackey functors are given in the following proposition.

Pxoposition 5.9 (a) The map

$$
\lambda: \mathrm{H} \longrightarrow \mathrm{~J}_{\mathrm{G} / \mathrm{H}}(\mathrm{M}(\mathrm{G} / \mathrm{H}))
$$

and the isomorphism

$$
J_{G / H} V(G / H) \cong V
$$

of Definition 5.5 are the unit and counit respectively of an adjunction between the "evaluation at G / H " functor

$$
G / \mathrm{H}^{\mathrm{m}} \longrightarrow \mathrm{z}[\mathrm{WH}] \text { - modules }
$$

and

$$
J_{G / H}: \mathscr{L}[W H]-\text { modules } \longrightarrow \mathrm{G}_{\mathrm{G} / \mathrm{H}} M
$$

(b) The two functors above restrict to a natural equivalence between the category of $z[\mathrm{mi}]-$ modules and the category of H -determined Mackey functors.

We want to understand rings and modules bounded by H , so we need to relate pairings of Mackey functors to some sort of pairings of $z[\mathrm{WH}]$-modules.
proposition 5.10 If $\mathrm{U}, \mathrm{V}_{0}$ and x are $2[\mathrm{WH}]$-modules, then there is a one-to-one correspondence between Mackey funćtor pairings

$$
J_{G / H}^{U 口 ~}{ }^{\mathrm{D}} \mathrm{~J}_{\mathrm{G} / \mathrm{H}} \mathrm{~V} \longrightarrow J_{\mathrm{G} / \mathrm{H}} \mathrm{X}
$$

and wH maps

$$
u \otimes v \longrightarrow x
$$

where WH acts diagonally on $\mathrm{U} \otimes \mathrm{V}$.
proof Given a $\mathrm{WH}-\mathrm{map} \theta:=\mathrm{U} \theta \cdot \mathrm{v} \longrightarrow \mathrm{X}$, we define a family of maps

$$
\theta_{b}: J_{G / H} U(b) \otimes J_{G / H} V(b) \longrightarrow J_{G / H} X(b)
$$

satisfying the conditions of Proposition 1.4 by the diagram
where $\pi_{f^{n}}$ is projection onto the summand corresponding to $\mathrm{f}^{\prime \prime}$. The existence of the required pairing of Mackey functors follows from proposition 1.4.

Given a map $\bar{\theta}: J_{G / H} \cup 口 J_{G / H} V \rightarrow J_{G / H} X$, we recover the map $\theta: U \otimes V \longrightarrow x$ by taking $b=G / H$ in the description of Mackey functor pairings in froposition 1.4.

Remark 5.11 The proposition above can be fancied up considerably (or totally obscured--depending on one's point of view) with a little closed category theory. The real key to its proof is the fact that
$\left(J_{G / H} U \quad J_{G / H} V\right)(G / H)$ is $U(\forall v$ with the diagonal Wfl-action. In fact,
a fancier version of Proposition 5.10 would assert that if X is a $Z[W H]$-module and M and N are Mackey functors in G / H^{2}, one of which is H-bounded, then thexe is a one-to-one correspondence between pairings

$$
M a N \longrightarrow J_{G / H} X
$$

and $z[W H]$-maps

$$
M(G / H) \otimes N(G / H) \longrightarrow X
$$

The key to the proof of this is the observation that M IN is then H-bounded (and so in G / H) and $M \square N(G / H)$ is just $M(G / H)$ ($N(G / H)$ with the diagonal WH-action.

From Proposition 5.10, we obtain a description of H-determined rings.

Corollary 5.12 $J_{G / H}$ induces a one-to-one correspondence (up to isomorphisms) between H-determined rings and pairs (S, $\theta: W H \longrightarrow$ Aut(S)) where s is an ordinary ring and θ is a representation of wh in the group of ring automorphisms of S. The correspondence pairs commutative rings and commutative rings.

We denote the ring corresponding to (S, θ) by S_{θ} and the ring corresponding to the trivial map $W H \rightarrow$ Aut (S) by $\mathrm{s}_{\mathrm{H}}{ }^{-}$
of course, for any pair $(S, \theta: W H \rightarrow A u t(S))$, the H-determined modules over the ring S_{θ} correspond exactly to pairs (v, f) where v is a $\mathbb{Z}[W ⿵]-m o d u l e$ and

$$
\xi: s \otimes v \longrightarrow v
$$

is a map of $z[\mathrm{WH}]$-modules, but this descxiption is rather awkward. To obtain a better one, we define the ring siel to be the free S-module generated by the set WH with multiplication given on generators sg.
$s^{\prime} g^{\prime}\left(\right.$ for $s, s^{\prime} \in S ; g, g^{\prime} \in W H$) by

$$
(s g)\left(s^{\prime} g^{\prime}\right)=\left(s \theta(g)\left(s^{\prime}\right)\right)\left(g g^{\prime}\right)
$$

The ring $s f \theta]$ has the same $s \rightarrow$ module structure as the group ring $s[w]$, but the multiplication of $s[\theta]$ incorporates the action of $W H$ on S (whereas the multiplication of $s[W H]$ does not). It is easy to see that $s[\theta]$-modules correspond exactly to the paixs (V, ξ) above, so we have

Proposition 5.13 Fox any pair (S, $\theta=W H \longrightarrow A u t(S)$), the functor: $J_{G / H}$ restricts to a natural equivalence between the category of $s[G]$. modules and the category of H-determined S_{θ}-modules.

Examples 5.14 (a) Let F^{\prime} be a field extension of F with Galois group G (hereafter indicated by $\left[F^{\prime}, F ; G\right]$). The Weyl group of the trivial subgroup $\{e\}$ is G, so the pair ($F^{\prime}, 1: G \longrightarrow G$) determines a commutative ring F_{1}^{\prime}. The transfer

$$
F_{1}^{\prime}(G /\{e\})=F^{\prime} \longrightarrow\left(F^{\prime}\right)^{G}=F_{1}^{\prime}(1)
$$

is just the trace of the extension $\left[F^{\prime},\left(F^{\prime}\right)^{G} G\right]$. It follows immediately from proposition $5.4(\mathrm{~d})$ that F_{1} is a field.
(b) Generalizing (a), if $\left[F^{\prime}, F ; M\right]$ is a field extension and $\theta: W H \longrightarrow H$ is a homomorphism; then F_{θ}^{\prime} is a commutative ring, It. follows immediately from Proposition 5.4(b) that F_{θ}^{\prime} is an integral domain. The transfer

$$
F_{\theta}^{\prime}(G / H)=F^{\prime} \longrightarrow\left(F^{\prime}\right)^{H}=F_{\theta}^{\prime}(1)
$$

is just the trace of the extension $\left[F^{\prime},\left(F^{\prime}\right)^{X} ; H\right]$ multiplied by the order of the kernel of θ. Thus, if $|k e r \theta|$ is prime to the characteristic of F^{\prime}, then F_{θ}^{\prime} is a field. In Section 7, we show that this is one of two basic sources of fields. We discuss modules over F_{θ} in Section 7.
(c) For any ring s, there is a ring $S_{\{e\}}$ obtained by taking the
trivial representation of $W\left\{e^{\}}=G\right.$ in the automorphism group of S. By proposition 5.13, there is an equivalence of categories between the category of $s[G]$-modules and the category of $\{e\}$-determined $s_{\{e\}}$-modules. This rather quaint view of s-valued representation theory might have applications because if S is commutative, then so is $S_{\text {a }}$ \{ (unlike $S[G]$), and if S is an integral domain, then $S_{\{e\}}$ is an integral domain. This suggests the possibility of applying the techniques of commutative algebra--in so far as they extend to commutative rings-to representation theory. Note that the transfer

$$
s_{\{e\}}(G /\{e\}) \longrightarrow s_{\{e\}}(1)
$$

is just multiplication by the order of G : Thus, if the characteris: tic of s and the order of G are xelatively prime, then both $S_{\left\{e^{j}\right.}$ and all its modules are $\{e\}$-projective. Further, if F is a field, then $F_{\{e\}}$ is a field if and only if the characteristic of F does not divide the order of G. Thus, the well-behaved part of field-valued representation theory corresponds to the study of modules over certain fields and modular representation theory corresponds to the study of modules over certain integral domains.

Remark 5.15 The functors $J_{G / H}$ can be used to construct a curious natural filtration on Mackey functors. Partition the set of subgroups of G into sets $S_{0}, S_{1}, \ldots, S_{n}$ defined inductively by letting s_{0} be the set consisting only of the trivial subgroup $\left\{e^{\}}\right.$and s_{i} (for $i \geq 1$) be the set consisting of those subgroups which are not in s_{i-1} and whose proper subgroups are all in $\bigcup_{j=0}^{i-1} S_{j}$. Thus, S_{1} is the set
of cyclic subgroups of prime order, and S_{2} is the set of subgroups which axe not cyclic of prime order, but which have no subgroups other than cyclic groups of prime order. Define a decreasing filtration on any Mackey functor M inductively by $M_{0}=M$ and

$$
M_{i+1}=\operatorname{ker}\left[\underset{H \in S_{i}}{\oplus} \lambda_{G / H}: M_{i} \longrightarrow \bigoplus_{H \in S_{i}} J_{G / H}\left(M_{i}(G / H)\right)\right]
$$

It is easy to check that M_{i} is in G / H for $H \in S_{i}$ so the required maps $\lambda_{\mathrm{G} / \mathrm{H}}$ are defined. In fact, if we define η_{i} to be the full subcategory of η whose objects are the Mackey functors N with

$$
N(G / K)=0 \quad \text { for } K \in \bigcup_{j=1}^{i-1} S_{j}
$$

then $M_{i} \in{T_{i}}_{i}$ and our procedure defines a sequence of functors.

$$
\eta=\eta_{0} \rightarrow \eta_{1} \rightarrow \eta_{2} \rightarrow \quad \rightarrow \eta_{n}=A b
$$

where n is the integer with $S_{n}=\{G\}$. These functors are right adjoints to the inclusions.
of course, applying this filtration to any chain complex or cocomplex in η produces a spectral sequence. The spectral sequences obtained in this way from the cellular chains and cochains of a g-space (or spectrum) x and those obtained from a projective or injective resolution of any Mackey functor are currently under investigation.
6. Prime and primary ideals revisited

If S is any ring and P is an irreducible two-sided ideal of $s-$ or if S is a commutative ring and F is a primary ideal of $s-$ then s / p is a ring with integral characteristic p^{n} for some integer $n \geq 1$ and some prime p ($p=0$ is possible). For this reason, rings with characteristic p^{n} merit special investigation. In this section, we begin such an investigation by considering rings R withintegral characteristic p^{n} and a characteristic subgroup H . This class of ringe includes, of course, rings of the form S / P where s is commutative and P is a primary ideal of S. From this study, we obtain a description of the prime and primary ideals of the Burnside ring. The techniques employed should be applicable to the study of the prime and primary ideals of other rings.

The key to understanding the mod p behavior (for $p \neq 0$) of any ring--or any Mackey functor--seems to be an understanding of certain chains of subgroups--which we call p-towers-min our ambient group G_{o}

Definition 6.3 For any $H \leq G$ and any prime p, H_{p} is the minimal normal subgroup of H with H / H a p-group. The group H^{P} is a subgroup of G corresponaing to a p-Sylow subgroup of $N H / F_{p}$ which contains $\mathrm{H} / \mathrm{H}_{\mathrm{p}}$. Thus, we have $\mathrm{H} \leq \mathrm{H}^{\mathrm{p}}, \mathrm{H}_{\mathrm{p}} \triangleleft H^{\mathrm{p}}$ and $\mathrm{H}^{\mathrm{p}} / \mathrm{H}_{\mathrm{p}}$ is a p-group (by $K \triangleleft J$, we mean that K is a normal subgroup of J). Note that H^{p} is defined only up to conjugacy in G. For $p=0$, we take $H_{p}=H^{D}=H$ for convenience in stating results. The p-tower associated to H in G is the collection of subgroups K with $\left[H_{p}\right] \leq[K] \leq\left[H^{P}\right]$.

For convenience, we transcribe here (from ()) the properties of $\mathrm{H}_{\mathrm{p}}, \mathrm{H}^{\mathrm{P}}$ and p -towers which we need.

Lemma 6.2 (see ()) (a) H_{p} is a characteristic subgroup of H .
(b) If $[\mathrm{H}] \leq[\mathrm{K}]$, then $\left[\mathrm{H}_{\mathrm{p}}\right] \leq\left[\mathrm{K}_{\mathrm{p}}\right]$.
(c) If $\left[H_{p}\right] \leqslant[K] \leq\left[H^{P}\right]$, then $\left[H_{p}\right]=\left[K_{p}\right]$
(d) If $H \| K$ and K / H is a $p-g r o u p$, then $\left[H_{p}\right]=\left[K_{p}\right]$.
(e) The prime p does not divide the order of $W\left(A^{p}\right)$, but if $H<L \leq H^{p}$, then the order of $W_{L} H$ is p^{m} for some $m \geq 1$.
(f) If H, K are subgroups of $L \leq G$ and $\left[H_{p}\right]=\left[K_{p}\right]$, then for any $L-$ set X,

$$
\left|\langle\dot{L} / \mathrm{H}, \quad \mathrm{x}\rangle_{\mathrm{L}}\right|=\left|\langle L / K, x\rangle_{L}\right| \bmod p
$$

where $\langle X, Y\rangle_{L}$ is the set of L-maps from the $L-s e t X$ to the L-set Y. The well-behaved rings with integral characteristic p^{n} seem to be those which have a bound H and are G / H^{P}-projective. The simplest examples of such rings are given by
proposition 6.3 If R is a ring with integral characteristic $p^{n}(p \neq 0)$ and characteristic subgroup H, then R is G / H^{P}-projective. proof By Lemma 6.2(e) and (f), p does not divide $\left|\left\langle G / H, G / H^{P}\right\rangle\right|$ so there is an integer m with $m\left|\left\langle G / A, G / H^{p}\right\rangle\right| \equiv 1 \bmod p^{n}$. To compute the transfer $t(m \cdot 1 ; R(1) \in$, we think of $R(1)$ as a submodule of R(G/H) and apply Proposition 5.4 (e). This gives

$$
\begin{aligned}
t\left(m \cdot 1_{G / H} p\right) & \left.=\ddot{f \in\langle G / H, G / H} p^{f(m \cdot 1} \sum_{G / H^{p}}\right) \\
& =\sum_{m} m \cdot f\left(1_{G / H^{p}}\right) \\
& =\sum m \cdot 1_{G / H} \\
& =m\left|\left\langle G / H, G / H^{p}\right\rangle\right| \equiv 1 \text { mod } p^{n}
\end{aligned}
$$

Thus, $m \cdot 1_{G / H^{p}}$ is a unit and R is G / H^{p}-projective.
If R has characteristic zero, then we have $t\left(1_{G / R}\right)=|W H| \cdot 1_{R} \in R(1)$ so
the conclusion above need not hold unless $|W H|=1$ or $R(1)$ is a rational vector space.

If R is an H-bounded, G / H^{P}-projective ring with integral characteristic $p^{n}(p \neq 0)$, then the proper way to study R seems to be to compute the transfer maps out of $R(G / K)$ for the subgroups k in the $p-$ tower determined by H. These maps may be hard to compute in R, but they are easy to compute in $H_{G / H} R$ if we think of $H_{G / H} R$ as $J_{G / H}(R(G / H))$ and apply Remark 5.7. If R is H-characteristic, then the map $\eta: R \longrightarrow$ $\dot{H}_{G / H}$ is injective and the computations in $H_{G / H} R$ are especially useful.

Proposition 6.4 (a) Let R be an H-determined ring (which we think of as $J_{G / H}(R(G / H))$. Let $f: G / H \longrightarrow G / K$ be a map in $\hat{G}, v \in R(G / H)^{W_{f}}$, .. and $v_{f} \in R(G / K)$ (as discussed in Remark 5.7). If $\hat{h}: R(G / K) \longrightarrow$ $R(G / L)$ is the transfer map induced by $h: G / K \longrightarrow G / L$ in \hat{G}, then

$$
\hat{h}\left(v_{f}\right)=\sum_{g \in W_{h f} H_{f}^{\prime}}(g v)_{-h f}
$$

where the sum runs over a set of coset representatives for $W_{h f} / W_{\mathbf{r}}$ considered as a subgroup of $\mathrm{WH} / \mathrm{W}_{f^{\prime}}$
(b) If $H \leq K<L \leq N . D^{H}, V \in R(G / H)^{W H}$ and $\pi: G / H \longrightarrow G / K$ and $T^{\prime}: G / K \longrightarrow G / L$ are the projections, then

$$
\hat{\pi}^{\prime}\left(v_{\tau}\right) \in \operatorname{pR}(G / L)
$$

(c) Let R be a ring with integral characteristic p and characteristic subgroup H such that $W H$ acts trivially on $R(G / H)$ and let $H<K$ with $|K / H|=$ p. Then every transfer $R(G / H) \rightarrow R(G / K)$ is zero.

The proposition above (and other results) suggests that, for a ring R with integral characteristic p^{n} and bound H, the behavior of
the transfers out of $R(G / K)$ (for $K<H^{p}$ in the p-tower determined by H) is closely related to the trace of the wH-action on $R(G / H)$. If there are elements in $R(G / H)$ whose trace is a unit in $R(G / H)$, then R should be G / K-projective for some $K<H^{P}$. Otherwise, elements in the image of these transfers tend to be nilpotent.

Our objective for the remainder of this section is to show how the results above can be applied to determine the prime and primary ideals of a ring. If p and Q are primary ideals of a ring R, then we would like to know when'P is contained in Q. This"is, of course, equivalent to knowing whether or not there is a ring surjection R / p Commuting with the projections from R.
$\longrightarrow R / Q_{\Lambda}^{\text {Commuting }}$ The existence of such a map imposes fairly stringent conditions on the characteristic subgroups and integral characteristics of R / P and R / Q.

Proposition 6.5 Let R and S be (non-zero) rings with characteristic: subgroups H and K and integral characteristics p^{m} and $q^{n}(p$ and q prime) respectively. The existence of a map $R \longrightarrow S$ imposes the following conditions on $\mathrm{H}, \mathrm{K}, \mathrm{p}^{\mathrm{m}}$, and q^{n} :
(1) Either $p=q$ and $n \geq m$ or $p=0$
(2) If $p \neq 0$, then $[H] \leq[\mathrm{K}] \leq\left[\mathrm{H}^{\mathrm{P}}\right]$
(3) If $p=q=0$, then $[H]=[K]$
(4) If $p=0, q \neq 0$, then either $[H] \Rightarrow[K]$ or $q^{n}| | W H \mid$ and $[H] \leq[K] \leq\left[\mathrm{H}^{q}\right]$

Proof Note that if $R(b) \neq 0$, then it has characteristic p^{m} becaume the map $R \rightarrow R_{b}$ is injective. We denote the identity elements in $R(b)$ and $s(b)$ as $1_{R, b}$, and $1_{S, b}$ respectively.

Condition (1) follows from the existence of a ring map $R(1) \rightarrow$ S(1).

Since $1_{R, G / K} \in R(G / K)$ maps to $1_{S, G / K} \in S(G / K)$ and $1_{S, G / K} \neq 0$, we must have $[H] \leq[K]$ for any choice of p and q. If $p \neq 0$, then $1_{R, G / H} p$ is a unit by Proposition 6.3 and so must go to a unit in S. This forces $[K] \leq\left[H^{P}\right]$. If $p=0$, then $1_{R, G / H}$ transfers to $\mid W H / \cdot 1_{R}$ in $R(1)$, so either $|W H| \cdot 1_{S}$ is zero in $S(1)$ or. $I_{S, G / h}$ is non-zero. For $p=q=0$, this forces $[\mathrm{H}]=[\mathrm{K}]$. If $\mathrm{p}=0, \mathrm{q} \neq 0$, and $[\mathrm{H}] \neq[\mathrm{k}]$, then we must have $q^{n}| | W H \mid$ so that $|W H| \cdot 1_{S}$ is zero. since 1 R,G/Hq trans-. fers to $\left|\left\langle G / H, G / H^{q}\right\rangle\right|-1_{R}$ and q does not divide $\left|\left\langle G / H, G / H^{q}\right\rangle\right|$, the image $1_{S, G / H^{q}}$ of $1_{R ; G / H} q^{\text {is a unit } i n} S\left(G / H^{q}\right)$ and we have $[X] \leq\left[H^{q}\right]$.

The behavior of the primary ideals of the Burnside ring shows that, for $m=1$ in the proposition above, the indicated restraints are the only general ones imposed by the existence of ring map $R \longrightarrow S$. If $m \neq 1$, then the existence of ring maps $R \longrightarrow S$ seems to be a. rather messy problem.

To obtain description of the prime and primary ideals of the Burnside ring, we consider the rings . $\left(2 / p^{n}\right)_{H}$ obtained from corollary 5.12. The only zero divisors in $\left(2 / p^{n}\right)_{H}$ are nilpotent (by Proposition 5.4) so the kernel of the identity element map $A \rightarrow$ $\left(z / p^{n}\right)_{H}$ is a primary ideal of A, which we call $q\left(H, p^{n}\right)$. The ideal $q(H, p)$ (for any $H \leq G$) is prime since $(\mathbb{Z} / \mathrm{p})_{H}$ is an integral domain. These definitions and Propositions 6.3, 6.4 and 6.5 suffice to describe the prime and primary ideals of A.

Theorem 6.6 The ideals $q\left(H, p^{n}\right)$ include all of the primary ideals
of the Burnside ring A. Further,
(a) $q\left(H, p^{n}\right) \neq q\left(K, q^{m}\right)$ unless $[H]=[K]$ and $p^{n}=q^{m}$
(b) The only prime ideals of A are the $q(H, p) \quad(p=0$ is allowed). The only maximal ideals axe the prime ideals of the form $q\left(H^{p}, p\right)$ for $p \neq 0$.
(c) The minimal prime ideals are the $q(H, O)$.
(d) The prime ideal $q(H, p)$ is contained in the prime ideal $q(K, q)$ if and only if $[\mathrm{H}] \leqslant[\mathrm{K}] \leqslant\left[\mathrm{H}^{q}\right]$ and either $p=0$ or $p=q$. $-\quad(e) \quad q\left(H, p^{m}\right) \subset q\left(H, p^{n}\right)$ for $m \geq n$
(f) The ring $A / q\left(H, p^{n}\right)$ is the image of A in $\left(z / p^{n}\right)_{H}$. If $|W H|$ is a unit in z / p^{n}, then $A / q\left(H, p^{n}\right)$ is isomorphic to $\left(z / p^{n}\right)_{H}$ and is G/H-projective.
(g) If p does not divide either $|H|$ or |WH|, then the localization of A at the prime ideal $q(H, p)$ is $(A / q(H, O))\left(B \mathcal{E}_{(p)}\right.$ where $Z_{(p)}$ is the localization of Z at p. In particular, $(A / q(H, O)) \otimes Q$ is the field of fractions of $A / G(H, O)$.

Note that no coment is made on the relation between $q\left(H, p^{n}\right)$ and $q\left(K, p^{m}\right)$ for $m>1$ and $[H] \leq[K] \leq[H P]$. The relation between these two ideals seems to be a fairly hard problem. Also note that the localization of A at $q(H, p)$ is not described if $q(H, p)$ does not meet the conditions in (g): it is not clear that the localization exists for such $q\left(H_{p} p\right)$. Of course, by the localization of R at a prime ideal P, we mean a ring map $\theta: R \longrightarrow S$ with $\theta(R-P)$ contained in the units of S which is universal among ring maps with this property. The basic source of the problem of obtaining localizations is that
inverses to units need not be unique.
Proof of 6.6 Let P be a primary ideal of A and let p^{n} and H be the integral characteristic and characteristic subgroup of A / P. The map $A(G / H) \longrightarrow A / P(G / H)$ is surjective so $A / P(G / H)$ is generated by the images of the elements

$$
G / H \stackrel{\hat{\mathbf{f}}_{+}}{\longleftrightarrow} \mathbf{G} / \boldsymbol{J} \longrightarrow 1
$$

in $A(G / H)=[G / G, 1]$. We can assume $J \leq H$. The elements for which $J \neq H$ vanish in $A / P(G / H)$ because they factor through $A / P(G / J)$ which is zero. Thus, $A / P(G / H)$ has a single generator and must be \dot{Z} / p^{n}. Since $A / P(1)$ sits inside tine elements of $A / P(G / H)$ invariant under the WH-action, $A / P(1)$ must be isomorphic to $A / P(G / H)$ (via the restriction map) and $A / P(G / H)$ must be fixed by WH. Thus, $H_{G / H} A / P$ is $\left(\Sigma / p^{n}\right)_{H}$ by Lemma $5.8(e)$. Since the map $A / P \longrightarrow H_{G / H} A / P$ is injective, P must be the kernel $q\left(H, p^{n}\right)$ of the inclusion of the identity element $A \longrightarrow$ $H_{G / H} A / P=\left(z / p^{n}\right)_{H}$:

To establish (a), apply proposition 6.5 to $A / q\left(H, p^{n}\right)$ and $A / q\left(H, q^{m}\right)$.

For part (b), mote that $A / q\left(H, p^{n}\right)(1)$ contains zero divisors unless $n=1$ so the only prime ideals are the $q(H, p)$. No $q(H, O)$ can be maximal since $A / q(H, O)(1)=2$ which is not a field. If $p \neq 0$ and $H \neq H^{p}$, then $A / q(H, p)$ is not a field because, by Proposition 6.4(c), $1_{G / H} \in A / G(H, p)(G / H)$ is not a unit. for $p \neq 0, A / G\left(H^{p}, p\right)$ is G / H^{p} projective (by Proposition 6.3) and is therefore isomorphic to $(z / p)_{H^{p}}$ which is a field by proposition $5.4(d)$. Thus, the $g\left(H^{p} ; p\right)$ (for $p \neq 0$) are maximal and are the only maximal ideals.

Of course, the ideal $q\left(H, p^{n}\right)$ is contained in $q\left(K, q^{m}\right)$ if and only if there is a map

$$
A / q\left(H, p^{n}\right) \longrightarrow A / q\left(k, q^{m}\right)
$$

Part (c) and the "only if" half of part. (d) fiollow from this observation and Proposition 6.5. To prove the "if" part of (d). it suffices to show that if $p \neq 0$ and $H<K \leq H^{p}$, then $q(H, p) \in q(K, p)$. By the solvability of p-groups, there is a group J with $H A J \leq K$ such thatt J/H has order p. By Lemma 5.8 and Proposition 6.4, there is a map

$$
\lambda: A / q(H, p) \longrightarrow J_{G / J}(A / q(H, p)(G / J))
$$

and therefore a map

$$
\lambda^{\prime}: A / q(H, p) \longrightarrow J_{G / J}\left((\Sigma / p)_{H}(G / J)\right)
$$

Let V be a direct aumand of

$$
(\cdot Z / p)_{H}(G / J)=\underset{G \in\langle G / H, G / J\rangle / W H}{ }
$$

corresponding to an orbit of the action of WJ on $\langle G / H, G / J\rangle / W H$. Then $J_{G / J}(V)$ is an integral domain by proposition $5.4(b)$ and the kernel of the identity element map

$$
A \longrightarrow J_{G / J}(V)
$$

must be $q(J, p)$. But this map factors as

$$
A \longrightarrow A / G(E, p) \xrightarrow{\lambda^{\prime}} J_{G / J}\left((Z / p)_{H}(G / J)\right) \longrightarrow J_{G / J}(V)
$$

Thus, $q(H, p) \subset q(J, P)$ and an inductive application of this: process gives $g(H, p) \subset q(K, p)$ for $H \leq K \leq H^{P}$.
part (e) follows from the obvious existence of a ring map $\left(\mathrm{E} / \mathrm{p}^{\mathrm{n}}\right)_{\mathrm{H}} \rightarrow\left(2 / \mathrm{p}^{\mathrm{m}}\right)_{\mathrm{H}}$ for $\mathrm{m} \leq \mathrm{n}$ 。

For (f), the fact that $A / q\left(H, p^{n}\right)$ is the image of A in $\left(z / p^{n}\right)^{t}$ follows from the definition. The rest of (f) follows from the observation that $t\left(1_{G / F i}\right)=\left(W H \mid \cdot 1,\left(z / p^{n}\right)_{H} \ln \left(2 / p^{n}\right)_{H}\right.$

For (g), let R be the ring $A / q(H, 0) \otimes Z(p)$; Since p does not divide $|W H|, 1_{G / H}$ is a unit in R and R is G / H-projective. Since p does not divide $|H|$, there is an x in $A(G / H)-q(H, p)(G / H)$ such that the exterior product $q(H, O) x$ is zero. Thus, $q(H, O)$ must be in the kernel of any ring map $\varphi: A \longrightarrow S$ which takes $A-q(H, p)(a n d$ hence x) into the units of S. Further, any such map must factor as

$$
A \xrightarrow{\theta} R \longrightarrow S
$$

since $q \cdot I_{A}$ is not in $g(H, p)(1)$ if q is an integer prime other than p. Thus, it suffices to show that the image of $A-q(H, p)$ under $\theta: A \longrightarrow$ R consists of units. Since R is $G /$ H-projective, it suffices to see that the image of $A(G / H)-G(H, p)(G / H)$ in $R(G / H)$ consists of unite This image is easily seen to consist of elements of the form $(n / m) \theta(x)$ Where n amd m are suitably chosen integers prime to p.

Remark 6.7 Our description of the prime ideals of A is somewhat diffferment from the usual description of the prime ideals of the Burnside ring $A(1)$. To compare the two descriptions, we let.

$$
\varphi_{H}^{K}: A(G / K) \longrightarrow z
$$

be the usual map of the Burnside ring of K into integers which is associated to the subgroup H of $K\left(\right.$ see (), p 203). Let $\cdot \tilde{q}_{K}\left(H, p^{n}\right)$ be the primary ideal of the Burnside ring $A(G / K)$ of K determined by the condition

$$
\varphi_{\mathrm{H}}^{\mathrm{K}} \equiv 0 \bmod p^{n}
$$

It is easy to see that the connection between $q\left(H, p^{n}\right)$ and the $\cdot \tilde{G}_{K}\left(H, p^{n}\right)$ is given by

$$
q\left(H, p^{n}\right)(G / K)=\bigcap_{\substack{J \leq K \\[J]=[H]}}^{\tilde{q}_{K}\left(J, p^{n}\right)}
$$

Here, if there are no such J, then the intersection is, by convention, all of $A(G / K)$.

Remark 6.8 Commutative algebraists will no doubt be disturbed by the existence of a commutative Noetherian ring in which there is a finte, non-zero number of prime ideals between two prime ideals (like $q\left(H_{p}, p\right)$ and $q\left(H^{p}, p\right)$: this situation cannot occur in ordinary ring theory. The resolution of this difficulty is that if $P_{1} \subset P_{2} C$ P_{3} are prime ideals of A_{i}, then for any G / K, either $P_{2}(G / K)=$ $P_{1}(G / K)$ or $P_{2}(G / K)=P_{3}(G / K)$. Thus, locally--with respect to the G/x-A behaves like an ordinary commutative Noetherian ring should, but globally, its behavior is more complex.

In (), Dress describes the relationship between the prime ideals of the Burnside ring and the ideals im(A(a) $\rightarrow A(1))$ and $\operatorname{ker}(A(a) \longrightarrow A(a))$. These results have important applications to induction theory (like Corollary 2, p 207 of () and, from them, it should be possible to extract descriptions of the prime ideals of the rings A_{a} and $H_{a} A$ for $a \in B$. For this reason, we record there their generalization to results on the Burnside ring.

Proposition 6.9 (a) If K^{b} is the kernel of the map $A \rightarrow A_{b}$ (for $b \in(B)$. then $K^{b}<q(H, p)$ if and only if $G / H_{p} \propto b$. Moreover

$$
\mathbb{K}^{b}=\bigcap_{G / H \times b} G(H, O)
$$

(b) For any $b \in 8$, the ideal $\left(1_{b}\right) \subset A$ (which is the image of $\left.A_{b} \rightarrow A\right)$ is contained in $g(H, p)$ if and only if $G / H \nless b$.
(c) For any pair a, b in B.

$$
A=k^{b}+\left(1_{a}\right)
$$

if and only if $G / H P$ a for every H with $G / H<b$.
7. Integral domains and fields

In this section, we analyze the structure of (integral) domains and fields. Our first main result is a complete description of the H-determined domains D for which $D(1)$ is a field. Any domain is a subring of such a domain so the classification problem is reduced to determining the subdomains of a domain. Our classification result is applicable to any field and we employ it to study modules over fields. In particulax, we show that any module over a field F is projective in the category F-mod of F-modules. We also consider the question of fields containing a given domain. Since fields of fractions need not exist, this is an important and curious topic.

Throughout this section, by ring (andring) we mean a comutative ring (or ring). Certainly, the analogous problems of non-commutative rings without zero divisors and of division rings should be invesw tigated.

A number of trace-like functions are needed for our analysis of domains, so we begin by introducing a notion of trace which includes all of them.

Definition 7.1 Let W^{\prime} be a subgroup of a finite group W and let N be a $\quad[W]$ module.

For any $x \in N^{W \prime}$, we define $t x_{W / W}$ ix by

$$
t r_{W / W} \cdot x=\sum_{g^{\prime} W^{\prime} \in W / W^{\prime}}
$$

where the sum is indexed on the cosets of H^{\prime} in W. We write $t x_{W}$ for $t r_{W /\{e\}}$ Note that $t r_{W / W},(x)$ is in $N W$ and that $i t$ does not depend on the choice of the coset representatives g since W^{\prime} fixes k.

By Corollary 3.8, any domain has a characteristic subgroup H, and in this section, we restrict attention to those domains D with a fixed characteristic subgroup H. If D is such a domain, then the group WH acts on the ring $D(G / H)$ by ring automorphisms. proposition 5.4(b) gives the rather curious property of this action which is equivalent to D being a domain. Oux first objective is to describe exactly what such an action implies about the ring $D(G / H \geqslant$.

Keeping in mind two non-trivial examples of rings with such actions may make reading what follows easier. Consider the quotient ring $z[x, y] /(x y)$ of the polynomial ring $z[x, y]$ by the ideal generated by the product $x y$ and let $z / 2$ act on this quotient by permuting x and Y. Consider also the ring obtained from this quotient by inverting all the non-zero invariant elements; this fraction ring is isomorphic to the product of the rings $\mathcal{Z}(x)$ and $Z(y)$ of rational functions.

For the moment, we forget about rings and introduce a little ring theory to illuminate the structure of $\mathrm{D}(\mathrm{G} / \mathrm{H})$.

Proposition 7.2 Let s be a commutative ring (with unit) and w be a finite group which acts on S (not necessarily effectively) by ring automorphisms in such a way that, for any pair of non-zero elements x and y in s; there is a g in with $x(g y) \neq 0$. Then
(a) The non-zero invariant elements of S are non-zero divisors. In particular. S^{W} is an integral domain.
(b) S contains no non-zero nilpotent elements.
(c) S can be written as a finite product $\prod_{i=1}^{n} s_{i}$ of rings s_{i} such
that the s_{i} are all isomorphic and no s_{i} contains a non-trivial idempotent.
(d) If W_{1} is the subgroup of W taking S_{1} to itself, then the action of W_{1} on S_{1} satigfies the hypothesis of this proposition and the ring $S_{1} W_{1}$ of W_{1}-invariant elements of S_{1} is isomorphic to $s w$.
(e) Every element in s_{1} satisfies a monic polynomial with $00-$ efficients in $\mathrm{S}_{1} \mathrm{Ki}_{1}$ (the same applies to S and s^{W}).
(f) If $S_{1}^{K_{1}}=s^{W}$ is a field and K is the kernel of the action of W_{1} on s_{1}, then S_{1} is a normal separable field extension of s_{1} with Galois group w_{1} / K.

Proof Paxt (a) is obvious.
For (b), assume that $x \in S$ is a non-zero nilpotent element and let k_{0} be the largest integer with $x_{0} \neq 0$. There is a $g_{1} \in \mathrm{w}$ wh $x^{k}{ }^{k}\left(g_{1} x\right) \neq 0$ and thus $g_{1} \neq e$. Let k_{1} be the largest integer with $x^{k^{\circ}}{ }_{\left(g_{1} x\right)}{ }^{1} \neq 0$ such a k_{1} exists since $g_{1} x$ is also nilpotent. There exists a $g_{2} \in W$ with $x^{k_{0}^{\prime}}\left(g_{1} x\right)^{k_{1}} g_{2} x_{k_{0}} \neq 0$. Again, $g_{2} \neq k_{1} g_{1}$ and there is a largest integer k_{2} with $x^{k_{0}}\left(g_{1} x\right)^{k_{1}}\left(g_{2} x\right)^{k_{2}^{2}} \neq$ clearly, this process can be continued until we run out of elements in W and thereby obtain a contradiction.

For (c), assume that s contains a non-trivial idempotent e. Such an idempotent cannot be fixed by W since ($1-e$) e $=0$. Any product of the form

$$
\begin{equation*}
\left(g_{1} e\right)\left(g_{2} e\right) \ldots\left(g_{k} e\right) \tag{1}
\end{equation*}
$$

for $k \geq 1, g_{i} \in W$ for $1 \leq i \leq k$ is also idempotent. Let e^{\prime} be a product of maximal length aroong the non-zero products of the form (1) (By length, we mean the number of
distinct factors multiplied together). Let W ' be the subgroup of W fixing e': since e^{\prime} is a nontrivial idempotent, $W^{\prime} \neq W_{\text {. }}$ The trace $t r_{w / W}, e^{\prime}$ is an idempotent because, clearly, either $e^{\prime}=g e^{\prime}$ or $e^{\prime}\left(g e^{\prime}\right)=0$ for any g in W. Being a W-invariant idempotent, $t r_{W / W} e^{\prime}$ must be either 0 or λ and it is not 0 because $e^{\prime}\left(t x_{W / W} e^{\prime}\right)$ $=e^{\prime}$. Thus, we have a product decomposition of s by

$$
s=\prod_{g W^{\prime} \in W / W^{\prime}} S\left(g e^{\prime}\right)
$$

The group w'acts on $5 e^{\prime}$. For any non-zero pair re' ye' in Se'. there is a $g \in W$ with $x e^{\prime} g\left(y e^{\prime}\right)=0$. This g must be in W^{\prime} since $e^{\prime}(g e ')=0$ otherwise. We have shown that the action of W^{\prime} on S^{\prime} satisfies the hypothesis of this proposition, so if Se' contains a nontrivial idempotent, we can iterate the decomposition process, since W' is strictly smaller than W, only finitely many iterations are possible and the last possible iteration produces the required decomposition. Note that the factors of the decomposition above, and thus of our final decomposition, are all isomorphic because w acts transitively on the orthogonal idempotents inducing.the decomposition. For (d), it suffices to show that, in the notation of the proof of (c), $\left(S e^{\prime}\right)^{W^{\prime}}=s^{W}$. The map $a \longrightarrow a e^{\prime}$ induces an injection of s^{W} into $\left(S e^{\prime}\right)^{W^{\prime}}$, Suppose $x \in\left(S e^{\prime}\right)^{W \prime}$. Then $y=t x_{W / W^{\prime}}(x)$ is in s^{W} and $y e^{\prime}=x$. Thus $\left(S e^{\prime}\right)^{W^{\prime}}=s^{W}$.

For (e), let $s \in s_{1}$ and define $p(x)$ by

$$
p(x)=\prod_{g \in W_{1}}(x-g s)
$$

Clearly, the coefficients of $p(x)$ are in s_{1} and $p(s)=0$. Note that we can replace S_{1} by S and W_{1} by w to obtain a monic polynomial with -
coefficients in S^{W} for any $s \in S$.
For (f), it suffices to show that S_{1} is a field. Then it must be a normal, separable extension of $S_{1}{ }_{1}$ with Galois group $W_{1} / K_{\text {a }}$. Let s be a non-zero element of S_{1}. From (e) and the fact that $S_{1}{ }_{1}$. is a field, we obtain an equation of the form

$$
s^{n}(s q(s)-1)=0
$$

where $q(x)$ is a polynomial with coefficients in $\mathcal{S}_{1}^{\mathrm{K}_{1}}$, If $n=0$, then $q(s)$ is an inverse for s. If $n \neq 0$, then it must be one. Otherwise, the element $s\left(s q\left(s^{\circ}\right)-1\right)$ would be a non-zero nilpotent in s_{1} and, by (b), there are none. Then we have

$$
s^{2}(q(s))^{2}=s q(s)
$$

so that $s q(s)$ is an idempotent. The only idempotents in S_{1} are 0 and 1, and if $s q(s)=0$, then $s=0$ by our equation. Thus, $s q(s)=$ 1 and $9(s)$ is the required inverse.

Remark 7.3. The correct way to understand proposition 7.2 seems to be to think of S_{1} as a representation of W_{i} over $S_{1} W_{1}=s{ }^{W}$. The incuced representation \bar{S} of W over S^{W} has the form

$$
\quad \bar{s}=\mathrm{gW}_{1} \oplus W / \mathrm{g}_{1}
$$

The S^{W} module s can be made into a ring by giving it the product ring. structure and it can be shown that W acts on \bar{S} by ring automorphisms. Frirther, \bar{s} is isomorphic to s by an isomorphism which preserves the W-actions.

Lat R be another ring with a w-action satisfying the conditions of Proposition 7.2 and let $\theta: R \longrightarrow S$ be a ring homomorphism which comutes with the W-actions. We wish to compare the decompositions of
R and S given by the proposition. We have

$$
R=\prod_{j=1}^{m} R_{j} \quad S=\prod_{i=1}^{n} s_{i}
$$

Let $U_{1} f i x R_{1}$ and W_{1} fix s_{1} and let $\left\{_{d_{j}}\right\}$. $1 \leq j \leq m$ and $\left\{e_{j}\right\}_{1 \leq i \leq n}$ be the indecomposible idempotents inducing the decompositions. clearly, $e\left(a_{j}\right)$ is an idempotent in s and therefore a sum of some of the e_{i}. We may as well assume

$$
G\left(d_{1}\right)=e_{1}+e_{2}+\ldots+e_{k}
$$

Note that $n=m k$. If $g \in W f i x e s e_{i}$, then we must have $g d_{1}=d_{1}$ by the orthogonality of the idempotents. Thus, $W_{1} \subset U_{1}$. Let K and I be the kernels of the actions of U_{1} on R_{1} and w_{1} on S_{1} respectively and let $\mathcal{H}=4 / K$ and $H=W_{1} / L$. We think of \mathcal{H} and \mathcal{H} as "Galois" groups of R_{1} over $R_{1}^{U_{1}}$ and S_{1} over $S_{1}{ }_{1}$.

There is a map $0_{1}: R_{1} \longrightarrow S_{1}$ given by

$$
\theta_{1}(x)=\theta(x) e_{1}
$$

This map is W_{1} equivariant. Using the induced representations view of Remark 7.3, it is easy to see that C_{1}, completely determines R, S, and Θ.

Remark 7.4 If R is any ring with a W action satisfying the conditions of Proposition 7.2 , then R^{W} is an integral domein with a field of fractions $\left(R^{W}\right)^{-1} R^{W}$. We can invert the non-zero elements of R^{W} in R to obtain $s=\left(R^{W}\right)^{-1} R$. The action of N on R extends to an action: of W on S which also satisfies the conditions of proposition 7.2 2. Note that $S^{W}\left(R^{W}\right)^{-1} R^{W}$. Because the non-zexo elements of R^{W} are not zero divisors in R, the natural map

$$
\dot{\theta}: \mathrm{R} \rightarrow\left(R^{W}\right)^{-1} \mathrm{R}=B^{\prime}
$$

is injective. This is an important example of the sort of extension discussed above.

The implications of the results above for a domain D should be fairly obvious. We use the notation $D_{1}(G / E), W_{1} H, K$ (or $\left.K_{D}\right)_{\text {. }}$ $J\left(o r J_{D}\right)$ and $e_{1}\left(o r e_{1}\right)$ to designate the structural data for $D(G / H)$ given by proposition 7.2. Note that if D is f-determined, then D is completely cetermined by the W_{1}-module $D_{1}(G / H)$ and if, further, $D(1)$ $=D(G / H)^{\text {WH }}$ is a field, then computing D is just an extended exercisa in ordinary Galois theory. Ary domain D with characteristic oubmoup H inbeds in $H_{G / H} D$ which is H-determined. Fuxther, if F is the field of fractions of $H_{G / H} D(1)$. then the domain $F \otimes_{H / H} D(1){ }^{H_{G / H} D}$ is in . determined and field valued at $1 \in B$. Thus, it can be completely analyzed using Galois theory, and then we can try to recover the structure of D via the inclusion

$$
\left.D \longrightarrow H_{G / H} D \longrightarrow F \otimes_{G / H^{D}} D\right)_{G / H}{ }^{D^{\prime}}
$$

If D is an H-detemined integral comain with $D(1)$ a field, then it is natural to ask if D is a field. From proposition 5. M(d).
we see that the answer to this question depends only on the transfer $\operatorname{map} t: D(G / H) \rightarrow D(1) ;$ If we think of $D(1)$ as the wri-invaziant elements in $D(G / H)$, then t is just the trace $t x_{W}$ It is fairly easy to see that D is a field in and only if there is an element x in $D_{1}(G / H)$ with $t r_{W}(x)=1$. This trace is given by the formula $t x_{W}(x)=|x|, \sum \quad g \operatorname{tr}_{g}(x) \quad$ for $x \in D_{1}(G / H\rangle$ $\operatorname{gin}_{1} \in W / W_{1}$
where the sum runs over the cosets of W_{1} in W / W_{1}. since $D_{1}(G / H)$ is a normal, separable extension of $D_{1}(G / H)^{1}$. there is an x in $D_{1}(G / B)$ with $\operatorname{tr}_{g}(x)=e_{1}$ so that $t r_{W}(x)=|K|-1_{D}$. Thus, we have
proposition 7.5 If D is an H-deternined integral domain such that $D(1)$ is a field, then D is a field if and only if the characteristic of $D(1)$ does not divide the order of the kernel K of the action of $W_{1} H$ on $D_{1}(G / H)$.

If we find ourselves stuck with an H-determined integral domain: D such that $D(1)$ is a field, but D is not a field, then it is ream sonable to consider the ways we might imbed it in a field. There ara two distinct operations which may be performed on D-either independently or in concertme obtain a field into which D imbeds. Both of these are best visualized by thinking of $D(G / H)$ as the induced WH representation obtained from the $W_{1} H$ representation. $D_{1}(G / H)$. The first process, which can always be used to produce a field, is to think of $D_{1}(G / H)$, not as a $W_{1} H$ representation; but as a representation of some proper subgroup w of $H_{1} H$. If V is the $W H$-representation induced from the w-representation $n_{1}(G / H)$.
then V can be given a product ring structure (as a $D(1)$-module, it is just a sum of copies of $\left.D_{1}(G / H)\right)$ in such a way that wh acts on v by ring automorphisms. It is easy to chedk that the ring $J_{G / H}(V)$ is an integral domain into which D imbeds. Further, $J_{G / H}(V)$ is a
 charactexistic p of $D(1)$. clearly, taking W to be the trivial subgroup always produces a field. Note that $J_{G / H}(V)(1)$ is $D_{1}(G / H)$ which could be strictly larger than $D_{1}(G / H)^{H_{1}}=(1)$.

The second approach to converting the domain D into a field $3 s$ not always applicable. For this appzoach, we try to obtain an extension field F of the field $D_{1}(G / H)$ to which the action of $W_{1} H$ on $D_{1}(G / H)$ can be extended. If such an extension F exists, then the kernel K '. of the action of $W_{1} H$ on F will be smaller (unless the extension is purely, inseparable-m which case, it is of no interestl. If U is the WH-representation obtained from the $W_{1} H$ representation F, then $J_{G / H}(U)$ is an integral domain into which D imbeds; it is a field if and only if p does not divide the order of X^{\prime}.

Of course, these two processes can be combined to obtain other integral domains into which D imbeds and some of these may be fields.

Example 7.6 Let $G=Z / 2$ and consider the domain $D=A / q(\{e\}, 2)$ where A is the Burnside ring of $2 / 2$. We wxite the $\underline{Z} / 2 \mathrm{set} \mathrm{z} / 2 / \mathrm{se}$, as e/.2. It is easy to see that $D(z / 2)$ is $z / 2$ with trivial $E / 2$ action. Our two extension processes produce fields F_{1} and F_{2} The field F_{1} produced by the fixst method has . $F_{1}(z / 2)=2 / 2 \theta \pi / 2$ with the permutation $\mathbb{Z} / 2$ action. The field F_{2} has, as $F_{2}(z / 2)$.
the field with four elements with $E / 2$ acting as the Galois group. Clearly, $F_{1} \neq F_{2}$. It is easy to see that there are no rings in either field strictly between D and the field. Thus, the domain D does not have a field of fractions in any obvious sense.

Renark 7.7 The nonexistence of fields of fractions in certain cases (and, more generally, of localizations) is a rather disappointing ispect of the theory of rings. However, it is not clear that this defect is as serious, or even as real, as it seems. There are at least two possible resolutions to this problem which deserve consideration. The first possible resolution is that our notation of a unit may be too simplistic. Consider the fields F_{1} and F_{2} of Example 7.6.. If $x \in F_{2}(g / 2)$ is a generator of the field with four elements, then it is both a unit in F_{2} and a unit in the ring $F_{2}(z / 2) \ldots$ on the other hand, the element $(1,0)$ in $F_{1}(z / 2)=z / 2 \oplus z / 2$ is a unit: in F_{1} but not a unit in $F_{1}(2 / 2)$. It may be that the right way to specify the localization

$$
\theta: R \longrightarrow s^{-1} R
$$

of a ring R at a multiplicative subset S is to specify
how it is to be a unit.
The second possible approach is derived from the observation that, in the polynomial ring $D\left[x_{b}\right]$ generated by one variable x_{b} at $b s \in$, there is a polynomial $p_{s}\left(x_{b}\right) \in D\left[y_{f}\right]$ (b) associated to each $s \in D(b)$ whose "solutions" are the inverses of s in $D(b)$. If $\theta: D \longrightarrow \mathbb{R}$ is
a ring map and $r \in R(b)$ is an inverse for $\theta(s)$, then there is a unique map

$$
D\left[x_{D}\right] / P_{s}(x) \longrightarrow R
$$

which takes x_{b} to r : In particular, the fields F_{1} and F_{2} of Exampie 7.6 are 5oth quotient xings of the ring $p\left[x_{g / 2}\right] / p\left(x_{z / 2}\right)$ where pi($x_{z / 2}$) is the polynomial in $D\left[x_{z / 2}\right](\Sigma / 2)$ whose "solutions": would be inverses to $I_{g / 2}$ in $D(2 / 2)$. Thus, the correct way so study localizations may be to investigate polynomial rings. It seems likely that the first approach to locailzation-by saying fow somes thing is to be a unit-- can be described in terms of the second by using suitable polynomials.

Let us assume now that by some meansmifair or foul-we have oftained a field F with characteristic subgroup F. Then $F(1)$ is certainly a field and, being G/H-projective, F is H-determined. ghus, Proposition 7.2 applies to describe F completely in terms of data wo designate by $F_{1}(G / H), W_{1} H, K, \mathcal{H}$ and e_{1}. Our objective is to undorstand the modules over F. Clearly, if V is an module, then ${ }_{1}$ splits off an $F(1)$ - subspace $V_{1}(G / H)$ of the $F(1)$ vector space $V(C / R)$. Further, $V_{1}(G / H)$ is a vector space over $F_{1}(G / H)$ and $W_{1} H$ acts on $V_{1}(G / H)$ in! such a way that the map

$$
i \quad F_{1}(G / H) \otimes V_{1}(G / H) \longrightarrow V_{1}(G / H)
$$

is $W_{1} H$ equivaxiant when $F_{1}(G / H) V_{1}(G / H)$ is given the diagonal $W_{1} H$ action. We can define a twisted group ring $F_{1}(G / H)$ [E (where e: $W_{1} H \rightarrow \operatorname{Aut}\left(F_{1}(G / K)\right)$ gives the action of $W_{1} H$ on $F_{1}(G / H)$ as in proposition 5.13 and thereby obtain a complete description of F modules. Our principal. objective, for the moment, is to show that
every Frmodule is projective in the category F-mod of F-modules. For this problem, the twisted group ring view of F -mod is unnecessarily complicated.
proposition 7.8 If is a field and V is module over F, then V is projective in the caregory of F-modules.

Froof Let $\varphi: U \rightarrow U^{\prime}$ be a surjection between E-modules and let 8: $V \rightarrow v^{\prime}$ be $a \operatorname{mof}$ of modules. We must construct a lifting $\hat{\theta}: V \rightarrow \mathbf{U}$ of θ so that $\hat{\theta}=\hat{\theta}$. If suffices to construct a map $\hat{\theta}: V_{1}(G / H) \longrightarrow U_{1}(G / H)$
of $F_{1}(G / H)$-vector spaces which commutes with the $H_{1} H$ actions and niakes the diagram

commute. clearly, there is a map $f: V_{1}(G / H) \longrightarrow U_{1}(G / H)$ of $F_{1}(G / K i)$ vector spaces which makes the diagram commete, and our only problem. is to make f equivariant. Let $u \in F_{1}(G / H)$ with $t x, u=1$; such a u exists because $F_{1}(G / H)$ is a separable normal extension of $F_{1}(G / H)^{1}{ }^{\prime}$ Then define $\hat{\theta}: V_{1}(G / H) \rightarrow U_{1}(G / H)$ by

$$
\hat{\theta}(x)=\frac{1}{|K|} \cdot \sum_{g \in W_{1}} g\left(u f\left(g^{-1} x\right)\right) \quad \text { Eor } x \in V_{1}(G / H)
$$

It is easy to check that $\hat{\theta}$ is a map of $F_{1}(G / H)$ vector spaces commating with the $W_{1} H$ ections and making diagram (3) commute. Note thet 1/fk has to make sense because F is a field.
8. Rings of Interest

Here, as always, A is the Brunside ring. The rings of intereat are

$$
\begin{aligned}
& B=\stackrel{\oplus}{[H] \leq G} H_{G / H}(A / G(H, O)) \\
& C=H_{[H E G}^{+}(A / q(H, O)) \otimes[1 / / W H 1]
\end{aligned}
$$

The best way to think of these two is as subrings of A a 0 so that
$A \subset B C C \subset A B$
The ring B is obtained from A by adding to $A(G / H)$ the idempotents which split $A(G / H) Q$ for every $H \leq G$. The ring C is obtained from A by adding the elements $e_{H} /|W H|$ to A where e_{H} is the idempotent in $A(1) \oplus Q$ which corresponds to the subgroup H. The ring C contains B because the $1 / / \mathrm{WH} \mid$ factor generates all the idempotent in the $A(G / H) \otimes Q$ by various transfers and multiplications.

The point of B is that it is-in some sense-the integral closure of the ring A in the ring $A \otimes Q$. A prime ideal lifting. theorem which does for A exactly what the standard theorem does for finding the prime ideals of $A(1)$ is a distinct possibility that is beyond the scope of this paper.
C is more important. It should be used in place of $A \otimes z[1 /|G|]$ All the nice theorems about $z[1 /|G|]$-valued Mackey functors can be extended to results about modules over C. Note that

$$
C \subset A \otimes \mathbb{A}[1 /|G|] \subset A \otimes Q .
$$

The advantage of C is that it preserves the maximal prime ideals
$q\left(H^{P}, p\right)$ for the primes p which divide $|G|$ whereas $A \otimes z[1 / \operatorname{lod}]$ oblita erates them. The maximal primes $G\left(H^{p}, p\right)$ are perfectly respectable in A considered as a ring and there is no reason to throw them away. Another aivantage of C is that it should moke good sensemand be perfectly well behaved--Eor a compact tie group where A $x[1 / \mid G 1]$ is available only if one usea tom Dieck's-apparentiy not well understood-substitite for fc|. Certainly, for compact Lie groups, C whould preserfe vastly more information and becone. correspondingly more inaportant.

Note that the sumanda ${ }_{G / H}(A / q(H ; O)$ of B are G / H-determined and so well behaved and computable. The summand $(A / G(H, O))$ (1) $Z[y / n s]$ of C is G / H-projective and, long with its modules, is utterly well. behaved. Nlso, the ring c has homological dimension one. In fact. the category of modules over C is isomorphic to the sum

$$
[\mathrm{H}] \leqslant \mathrm{G}
$$

wheresz [1/|wti] [wH] is the group ring of wh with coefficients in $\mathrm{z}[1 / \mathrm{WFH}]$. The fudge factor $1 / \mathrm{WH} \mid$ is exactly what is needed in modules over a group ring to get homological dimension one.

Referencen to the Thory of Ereax. Functors
$3 \operatorname{arsin}$ L: Gaumae Lewis, Jr.

1. Dress, A. Contributeons to the Revry of endaced representedion. Springar LNM 342 (Algebraick-72eong \mathbb{Z}), 1923 This is the busic source in Mackey functors that I used.
2. torn Dreck, 7: Trans formatran Groups of Representation. Reong Springen 6.NM 766,1979

Thus is a good basic sounces on Mackey fumatons amal There applecaturs x ypology
3. Lindmen, Harald. A reraark on muckey Functors. Maniscupta Math 18(1976) p 233-278 1st referarien on the category I call B.

+ Dary, 13. On Ciosed Categouno of Functors. In Reposis ap The Mrdwest Categony Semunan, Springe LNM/37, p1-38.

Thes is the basic sounve for the defenctions of D and $<, \geqslant$.
Applications to topoligey
5. Bridon,G.E. Equevanian cohomology Teores Springen LNo 34, 196?
5. Lents, Mny, McClure Ordinary $P O(G)$-gnaded cohomolgy Bulletin An 4 S (1951) 208-212
H new treatiment of equevencis ordentang colnomology
7. term Dieck (above).

Ecooping Resny Ryfunencs
8. Mitchee, B. Kings with several Dijects. Advances in moth 8 ('1972) pI -161. The reght way to Renk aboust fincton form P to ablean groupo.

Press Pune al applied mati seives, 1965 refesence on abetuen categoris
10. Popescu, N. Abelcan Categorie watz Appluatcoino to

Ringo a Modules. LNS monograghs enirs
Accidemer press 197J
refenence on abelicen categovior
11. Schubent, Categorieo. Spungen, 1972.
refenence on abelean cotegories
12 Machare, Categones for the Wonki, Matkematician Springe Graduate texts in Math \#5
called [CW] in note. My basis nefenence fon cateqory Twony en the nofe.

