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With field coefficients being an essential tool for calculations
in non-equivariant cohomology, one could expect some kind of field co-
afficients td pley an even more significant role in equivariant'boho-
malogy where the homologidal barrier to calculstions is far more fore
‘midable. In a search for the Green functor analog of a xleld, th@
"Green—fields“ of greatest interest should be the analogs of Q and
Z/p. " Since the Burnside ring is the equ;variant analog of the in—
tegers, these fields should be obtained from the "prime ideals" af the
| Burnside ring considered as a Green functor rather than a ring. Finding ‘
& field of fractiona fcr an integral domain which is not a field cum—
plicated the lecation of these “Green fields" and led to a general 1n~
vestigation of Green functors as the Mackey functcr analogs of rings.l
Thus, this project becama, for the analngs of ringQ, a rough draft
_ aquivalent of an undergr&duate text on the basics of rlng theory-gy

‘e introduce Mackey functor analegs of almost every basic contept
in ring theory~~from prime 1deals to nilpotent elements so 1t is diftﬁwi
tult to keep track.of when a word is used in its ordinary semse ‘and,
woen 1t is used in its Maékey'functéf Sehse;  We choss to unﬂarliﬂe
tha Mackey functor terﬁinology. Thus, a Green functor is a ;1@5,\mndﬁ
we hope to locate fields by studying the prime idesls of the Burnaidé~
ring. Does anyone have a better notation? “' 

Section 1 of these notes i1s a baszic 1ntroduction to Mackey tuno—h.
tsrs. e have a new definition for thep——as additive functarﬁ from a
small additive category@--—wh.ich is much cleener thz—m prsviems deﬁ.m :

‘nitions. - In Section 1 we also shaw that the cat#gory of Machay functﬁr*
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has a "tensor‘p;oduct" which we denote U. 1lUsing it%, the multiplication
 for-a ring R can be described as a map |

A $: RO R—>R
of Mackey functbrs.. This description is much easier to work with than ‘
the older "pairings" descrmptiona Section 2 summarizes the fcnmal age
pects of ring ‘theory,: showing that the category of m modules over a ring -
_R is a perfectly respectable abelian category. Ve define such concepts
. as submodules, ideals, and chaln conditions. and introduce ous- definition
of a field--a commutative ring with no nontrivial ideals. -"' B T{;T

Section 3 is devoted to relation betWQen a,;__g R (or a module
M) and its valuea R(b) (or M (b)) at the var:n.ous. objects in@ - We do—
- fine coﬁcepté.iika integral domain and prime ideal which céh:onlyﬁpa:‘
.defihe&‘in terms 6f elements. Ve also'describe the basic cdhnectiﬁné'

_'between rings and rings. In this section, we encounter our first big

 3urpr1se, Even in a field, & non=-zero element may hava more than ana
-multxpllcatlve inverse. ‘ | " ‘ :

- Section 4 summarizas the basic results of induction theory and 1n~
"troduces tvo new 1deas. First, we show that most of classical indueu

':ftion theory is just a seach for units in rings of endomorphisms., 5@o~

. ond, we take advantage of our definition of Mackey functors as additiva
functors from a small addltive category by showing ‘that anothar major
aspect of induction theory is just very simple sheaf theory. “The
tachnlques of sheaf theory promise to yield some nice results here¢;

: In Sectlon 5, we begin a rather technical study of an espacially
wpll behayed class of Mackey functors which includes fields, intagral

Jom ns, uigiglon rinegs and simple moaglgg over any ring. Here téc;
'.ve show that any Galois eytensiun LFl, Fé] can be regarded as a single
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I' eld. Ve aiso show that representation theory sits inside r*ng

theory as the study of modules over cexriain g;g;gg and and integral
domains.. The fields give the wellwbehuved half of representation
theory and the domain§‘give modular representation theory. fote' that,
for us, representation thacry is commutatlveunnot non—commutative—- o
ring theory. _ o
| | Section 6 is devoted to the study of Mackey functors modulo p'..
Here, we compute the prime and primary 1g§__§ of the Burnsxde ring. .
'Another surprlse appears. The Burnside r _;gg is a commutative ﬂoether&_
4an ;;_g, but primary decomposition does not work.. An‘igggl ofhthe f:
. Burnside ring can be decomposad—-auite formallyuuinto irreducible - :
deals, but ‘the irreducible Mg_g;g need not be primary. Only very in-
complete results are available on the irreducible ideals of the Burnu
side ring and these are not included in these notes.‘ The basic messaga;
f'seems to be that the Burnside Iing exprﬁsses the misbehavior of tha 1n¥r
r - teger primes that divide the order of the group in question by the &iﬂ-'
ference between the irreduclble and primary gdeg;s. Thus, one expects
. to have to work a bit to understand the irreduc:.'ble ideals. : ."._"
g ' Saction 7 deals vith integral domaing and ;ig;_g._ We characterize
,rthase ;;ggﬁ in tenms of ordinary ring and field theory. Further, te
“ show that the category of gggglwg over a field has homological diman—

- ghon zero, ‘

| The ring AGZL‘VIGH unfairly d.iscriminates against some perfectly
respectable maximal ideals in the Burnside uﬁﬂg and should be avoidad«
Section 8 introduces tha correct replacamant foxr this fashionable gigg
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and Craig Huneke for innumerable }laelpf'u}, ‘conversations. Moreove.f. -
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sition 7.2' respectively. Also, I would like to thank Jim McClure
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o;dinary gbhomolagy, Regding McClure's notes brought me to aifﬁli
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,atudy'bf the Mackey functors.



1. 4n introduction to Mackey functors

‘ This section contains a brief overview of the approach to Hackey
functors developed in my earlier notes. In this approach, a Mackey
functor is a contravariant additive funétbr from a small additi?é
category® --which I c¢2ll the Durnside catégorymuto the categoryl
Ab of abelian groups. .The'section begins with a desqriptian oftﬂ;‘w
The really new aspect of my approach to Mackey. functors is the intro~
duction of the box product M2l of two -Mackey functors M and N; this
can be characterized as a univeréal object for pairingsrbr‘Mackey 'l
functors in the sense of Dress'(( ), p 195}, The main purpose Df."
this section is to introdhce this box product construction and to ex—
plore its bhasic’ properties. _ _ '
In order to define the categorw'@, we need to establish some
' basic notation. Throughout these notes, we work with Mackey functors
for a fixed flnlte group G. The category 8 is constructed from the
category G of finite G-sets and‘G»maps. The set of G-maps between
finite G—Sets a.and b is denofed <h,b>., For finife C~-sets a and b,
we write axb to inditate'that thére is a map of G-aéts'from a to be
I B and K are subgroups of G with H contained in K (denoted H4K),
then the ndrmalizer of H in Kiis dénoted NKH and fhg Veyl group
NKﬁ/ﬁ' is cailed_%kﬂ. The class of subgroups of K'cohjugate in K
to H is denoted [H]K' If H and L are subgroups of K, then we, write
L‘H]K._ [L]K to indicate that H is conjugate (in X) to a subgroup (not
'necessarily proper) of L. If K is b, then we drop the subscripts_in‘
the above notatian. Note ihat, far.H, Lé=K, theré is a K map from
K/H to K/L if a.nd only if L'H]Kﬁ' [ k. Note also that thé' set or‘K'_A.,
maps of K/H into itself is isomorphic to WM. We denote the K-set
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KE/K by 1 and the G-set G/G by 's . The number of elements in a set X
is denoted IXl. | ' |

In order to describe B, we first intrcducé.a category at, 'I'he'
objects of B and @* are the finite G-sets (usually dénoted by t.'.he
small letters ay by ¢y d, &, uy Vv, W). The maps from a to b in‘B"'.._:_-
have the form - ?1 | : - '

f:a&— ¢ _E.ﬁ, b

where f, : ¢ —> a and fa ¢ —> b are maps in G. The bar on .-
the arrow ( €—— ) and the hat on fl indicate that, :l.nﬁ ’ f 18 con-
| sidered as a map from a to ¢ rather than a map from ¢ to a. Maps ozt‘f

the form £, : ¢ —> b (with ¥, the identity) induce the restriction

2
maps in fémiliar Mackey functors like the representatiloh ring and so _
‘are called restrictions. Thay will often be generié:ally designatsid S
by r. Maps of thel' form a <+ ¢ in 8% ‘correspond to ind_m‘:"ti'on or

transfer maps in the repreéentation ring. ahd are called tfansfers. .
They vill often be des:.gnated by t. Two arrows, £ and 2y determine -
~the same map in B if thera is an isomorphim 8. ¢ —> d in &, making

the dlagram below commute lh G

| Composition in @ is defined using pullbacks as in the diagram
“below for hf. | o
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it is easy to chock that the empty G-set 0 is both an iﬁitial and‘a
“terminal object for @*. 1If we dencte the disjoint union of G-sets a
and b by a + b,-then‘it is easy to sce that the diagram qn‘the left
bvelow defines a one-to-one correspondence between méps'out'of a+ b
ina® and palrs of maps out of a and be Thué, a+ bis the coproduct.
in BF, ulmllarly, the diagram om the right deflnes & correspondence

which gives that a + b is the product of a and b in 8°,

",a > u | .‘u—f—-———'—)_a
I, i
1@4—-—}:/ \f——--——et

Since 8% has a zero object and biproducts, it follows fdrrriélly ((cw),
v 194) that the hom sets of B are abeliaﬁ monoids and that édmposition
is'bilinear. It is easy to Eheck that, ih,fact, the hom ée%s are free
abelian monoids. | |
Ye obtain our categary'@ from.@ by applying the ususdl construc-
tion to turn abelian monoids into abelian groups. Thus, the objects“‘.
‘of 8 are the finite G-sets and the hom sets of B are free abelian /
groups whose slements are formal differences‘of”maps in &%, Clearly
0 remeins the ;eré objedt and a + b remains the'biproduct of a aDd b 
in®, We denote the set of maos in @ from a to b by [a, b]. |
There is an obvious functor from B to its opposite category 8P -
which is the identity on obJects and sends a map

f: a€rt— ¢ —S—>D0

to the map
DI : b€ ¢ > a
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Occuslonaliy, woe will have o pair of funchors F asg G, one cavariant

and one Lontfdvarlant, from 5 into some otber category and a family of

'w.: I'a wwwmm——4> Ga

vhich we will asscrt to be a natural transformation. In any such
statement, an anvllcatlcn of D to either functor to correct the vari—-
ance is 1mp11c1t. | ) |

I1f 2 and b are finite G-sets, then we denote theirlCartesian pPro-
duct by axb, Tpis cannot be the categorical" product of a and b in @ _
since that p;‘.oduct is a + b howe{rer, taking_céftesian rroducts prov'j.dg's‘
a natural pairing of 8 into itself whichAshould be thought of as a ten-
sor product. For any a, b, and ¢ in B, there is a natural isomorphiém,
(1) | [aib, c] % fa,_' Db % ¢
{note the use of D to correct the variance) which implies that Db x ?
is right adjoint to 2X b so that Bis a symmetrlc m0n01dal closnd .
category. Thinking of X as a tensor product and recalling the vector
~ space isomorphism Hom (V,W) = v*s:w should hake-the_adjunptibn above
seer more natural. | | | _ |
| NOW'thatQ:is defined,‘we-define‘a Mackey functor M to be é;contré—
variant additive functor fromﬁlto the category Ab of abelian groups. Ve
denote the category of Mackey funCtors by37, it is clearly an abellaﬁ
_category satisfying the axiom ABS needed for homological algebra.
Using Dressts uescriptlon of Mackey functors (see ( ), it'is fairly
easy to see that thls deflnltlon of Mackey functors agrees w1th the
older dszfinitions (see my earlier notes or ( ) for details).

There is one obvious family of examples of Mackey functqrs-unamely

the representable furctors [?, b] for be@®.
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Definition 1hl' For any be® , the representablé functor.[§,'bJ is
cenoted Ay €M, . The functor Ay = A is called the Burnside rine.

The motivation for calling A the Burnslde ring is that the value
AIG/H) of A at the orbit G/H is. the Burnside ring of H.

By the work of Day {( ")), the symmetric monoidal structure on 8

- induces a symnetric monoidal closed structure on the functor category
7.  That is, for any two Hackey_functprs M and Ny, we have‘a tensor pro-
duct-like construction M @ N. ‘This construction is bommutative and |
associative (up_to natu:al isomor?hisms) and it has unit A. The funce

" for ?9IN nas a right adjoint <N, ?> which we define balow.

Definition 1.2 For any Mackey functor M, and any be @ , let Mb be ﬁhg‘
Mackey functor defined on objects by”'mb(a) = . M{bXxa) (for aeB) and
on maps in the obvious fashion. Note-that, by'the‘adjunctioﬁ isomoﬁ—

phism (1), the two possihle interpretatidns of Ab are equivalent.

Definition.l.ﬁ For any Mackey functor M and Ny the Mackey functor
<M, WD is given on objects by _ '
- <u, wy (b)) = Nat trans { M, Nb ) : for b «® .
That is, the value of <M, N” at b iz the maps in » from M to Ny,
'Anyone interested,in_a predise.definition df M B N should consult
my earlier notes or Day's article'(( )Ye For our'purposes,.it suf—ft'
fices that @ and <€ ; > are adjoint and that M ONis completely -

characterived by the following result.

Provogition 1.4 If L, M, and N are Mackey Iunﬁtors, then there is 8
one-to~-one correspondence between maps = | '

| g: MO N —> L
and pairingé e: (M,N)-é——aiL in the sense of‘ﬁress (¢ ), p195). A



-
pairing is a collection of maps | .
6. : Mb® WD % Ib . for peB
such that‘ iftr:t a~-» bis ‘a restficﬁioh and t :+ b LA4— a is tﬁe
associated transfer, then.' oo . 7 | |
| O R(8y(x Y) = Btxen L ()
o (=(x), - y") = Gb(x. t{y“‘});
| e (x', ry)) ==-9b(t(:§'}. v)
for x & M(b), x'eM(a), ¥y € N(b), 7' € F(a)e
Paaders unfamiliar m.th the relations abcve nay - acuuire some feel for
them by’ thinking about ‘the relauon between restrictiong 1nduct:|.on, S
and multlnllcation in the representatlon ring of G (Tha.s is the clm
- sic example of.-‘ a palrlng of Mackey functors) or by cons:.dering the x-e-"-‘
lation betv een cup proaucts in ordmnary cohemology and the transfer |
map ausoca.ated to a bundle or coverlng s;pace@ ‘ - _
The above characterization of M N is generallv the right one - _'
" to use in construct:.ng a mep M r.:l N —-29- L and it occasionally suffices
'of analyzing the behav:Lor of such a maps - However, 'the following more
sophi.stlcated characterizai::.on is usually easier to use for analyziﬁg
,mans of the :E‘orm LR ——-—> L.. N '
. . Proposition 1.3 I£ M, N and.L' aje. Mackey functors, then a map
| o . 8 Mo N—> L |
- determines and ‘is‘datemined‘_by a femily of maps
| O : Ma @ Nb, -"-*’? Lc |
indexed on the map$ f:c ---%- axb :i.n B g Such that, for maps |
g:a—> a‘,. h:b—> 7' an.d ks et —> ¢y the folleowing diagrams

..conmute



- composite

g . éf ]
Ma @ N b : - ":-j;r Lo
: Tg@h // f
Ma' @ Nb'~ '; - e(gxhj £
Ma ® Nb — £ —> Lo
rLe!

When worklng \-'ith a fixed pairlng e ,' ve danote the mans 9f by ona‘of.:

. the fDllO\Jlng

f

Ma ® Nb - > Le

Ma@)nr‘o c—-}aub Le

The relation betueen the families 9 of the two nropositions iu -

thét the map
9‘-Mb@ﬂh—-—-—-’>_Lb' |
‘of 1.4 is the map BA (i‘rom A: b—> bxb) of 1. 5. The map &f (from
f:c—> a X b) of 1 5 is obta:.ned from the maps of 1 l+ as the :Following
Ma @ 1 ———-aév(axb)@?ﬁ(anb) L paxp) £ e
where Ty : axb—> aand ¥, : a xb —> b are the progectioné.‘l.;'- L
Any reader who is put off by the $trangeness of the d:r.agrams af
Propos:r.tlon 1.5 may rest assured-—-or be’ fairly warnod——that if he c.onm”
tinues to read thJ.s d:!.ligently these dlagrams will become old i‘amiliar- '
-I‘m.nndrse | _ 4 2
We need one more basic result ozi_ﬂ aﬁd < 4 7 —-namely," there-
~ lations smong these two functors, the representable functors A, and )

the funcfors'mb of Definition 1.2
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Lcmﬁa'l;é For any Mackey functor M and any a and b in 8, theﬁe are
natural isomorphisms‘ | | ' ‘
AR H % ‘M..l.:l‘ Aa oM, = - <a, w>
. Aa_"” Ay = Baym
| Ay Ab> = Aax‘e :

Hote that D ﬁust be_esed repeatedly to make sense of the naturality ot
| these isoeorphieﬁe. " Ve will generally think of Mb as Ay O H end

therefore adopt the conventlon that 1t is covariant in b. K

One more formellty is needed to complete our 1ntroduct10n to

| Hackey functors. By the Yoneda lemma, for any hackey functor M and B

1any be@., there is a onemtc-one corresnondence betueen maps ' |
T X a — N |

‘and eleﬁents' X & M(b). As-theQcatege;y‘thedrisﬁs have faﬁéht us, we L

make absolutely no distinction bet\een'the ﬁap'x and the eleﬁent x.A.*-

: Any reader vho forgets thls tr1v1allty wlll freouently flnd.himself lost;
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2. 4n introduction to g;g5§ and moduies

In this section, we dispose of the purely formal asn?cts of ;135 
theory. Pwnn (hitherto Pnowr as Grzen rAnctors) and mocules over
rinrs are, of course, deflned diagraAmatlcally in the usual fashion.
~ The elementary examples of gigg§7~ipcluding_the representable rines,
‘pOWynomiai x;ggg, and endomorphism r*nws—-aie introdiced. e show
that the category of madules over any ring R is’ an ‘abelian categcry
enaoying all the pleasant properties of the category of ordinary
modules over an ordlnary rings Thls sectlon concludes with a discusw
'SLgn of ;raa" and of those concents in ;:gﬁ thnory—-llne chain con-
ditions-~that can be deflned purely in terms of ;ggglg_w1thout any
reference to elements. _ | _ _

Anyone unaccustomed to the d;iagréxnma;[:ic defin.iti‘ons of ri:ngls | _
and modules may find ((éﬁo, p 166-171) relpful in the definitions

below.

»

Definitions 2.1 (a) .ﬂ ng R consists of a Mackey i'unctor R tom

gether u1th maps

ot A= R
o .',.: o _kP__ . RﬂB-——-‘#R
such that the. diagrams below commute : "
- ﬂ 1 1019 .
rarar-¥lugn Am R~Eay RO R M—*Rnﬁ .
~— T
Ra R—34—> R S

- where the unlabeled 1eemorph15ms are those expressing the fact that A

is the wnit for O .. The ring R is r~a:n.d to e commutative if the

QAlagranm
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e
g
o
:’ ‘
jai
L

/9'

commutes where T is the commutativity isomorphism i'or 1% S

/..

(b) A left R-module for a ring R cons:.sts of a Mackey functor M
together vith an actlon map

RO M —> M

| §:
- such, that the dn.agrams below oommute. "3 ﬁl
9 © AENM —ﬂﬂam——+ RO M

RBRUM-——-——) Re M

| =s l%“

Ra M —m>

A right R-module is defined analogously, If R is commutative, them .. .~

the two notions coincide. A submodule N of M is just a subfunctor of L

M closed under the action of B. Note that R is both a left and right = -

module over itself.

(¢) A left ideal of R is ;}ust a submodule of R conszdered as & N

left module over itself. Right ideals are defined sim:.larly. An (two-ni S

sided) jdeal of R is just a subfunctor ofA R which is both a left and a._"
rlght ideal. s | | o . =
(d) Homomorphisms of ring anri modules are just maps of Hackey

- functors making the obvious diagrams commute,

Examples 2,2 ~(a)  The unit isomorphisma A;u A = A and A8 M ¥ M malte{w.f

A into a commutative ring and ény'}:ak:lrey functor M ‘into an 'A'-module,.-
‘The unit map 1R : A —> R for a.ny rins R is a ring homomcrph:.sm 80 .
that R may be thought of as an A—mvebra. '

(b) For any be® , the maps
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Tt Ay A
rf;.bﬁ Ab- b Abﬁf"b "“'“——-—5- fxb :
derived from the isomorphisms of Lemma 1.6 and the maps t 1t b
Cand A : .b xb €+ b make Ay into a commutative _Iﬁ_gg- Imaldgous. maps .
make Mb'an bym ~-module for any Mackey functcr M. Any transfef map
t : a &b induces a ring homomorphism‘ga-e—9'ﬁb'ﬁaking Ab en
alrebra over %a“ _ |

(¢c) If R and S are rings, then so is R cls.under the maps

p¥ana-B—S,pus A S L
Rnstas’éRGRnsasMnus s

In particular, for any b€® and any _r;___g R, Ry 1s a ring and an M

over both Ay and R via the maps

. 150 "
Ay T A, A A—Es A DRER
"RE an RM'Ab"mRERb

‘Also, 1f M is an R-module, then M, is an Ry modul e,
(a) If R is any Ting, then R°’° is the rine conslsting of the |
same Mackey functor R, the same identity ej‘ement. and. the multlplicatibn.':;
.ROP;:; ROP‘E.RQR—%—-:, RQ.R_._;‘?;_; RzﬁOP | .
~=that is, the multiplication of ‘R_in‘ the reverse_‘.'ordere. of coﬁrse,_- :i.f“
R is commutatlve, then the two rings are the same, .Note that R is a
Yert RE E°P-module in the ususl fashion and a two-sided ideal I of R~
is just an R H 8°P submodule of R. ' ST
(e) If R is a commutative ring and be® s ’shen define the poly- . "
,nomwal ring in one variable Xy, OF "rank" b to be the Mackey fun.ctor

.3‘: xbj = n‘o(bn)/z

where Zn acts on R n_by permnting the copies of b in bn., . The identity--'-'
. ) o) ‘ _ s ‘



element is the composite A R > R = R-O.———“%~R Exbj and the multi-
_ : : b ‘
plication is derived from the maps

: P o

Rbm B Rbn (RUR). atm > Risn—!-m'.-'

- If s is an R-algebra, then it is easy to see *that there iz a one~ta- '
" one correspondence bétﬁeeiz elements of 's(b) and ring homomorphism .

R f_‘xb‘] ..,.__} 8. A _few'mi'nutes- *-of play.ing Qith i:he‘ iinages of maps from ,-
Al x ] into A should suffice to convince anyone that polynomial rings
are strange and beautiful neasts full of mystery. | '

(£) If R is a g_:i.“g and M is an R-module, then '(M. M> 15 tha'
.subfunctor of <M, My cons:.st:.ng of R-—module homomorp‘uqms. The Mackey
functors <My M) and {M, M7 are _;z_"_;___z}g_" undexr c:ompc:s:u.tn.on with identity
elements the :i.dent:.ty map 1: M —> M. Note that if R is commutatlve, =
" then <M, M) can be given an R-mgdule structure in the usual fashion.
These endomorphism _1.'.}._.2_. ‘play a central role J.n our presentat:.on of in—
duction theory. - J | | |

(g) I1If C is an abelian group and M is a m.ackéy functor, 1i.:fhaexn_‘we
défine .‘t-:he.Ma-ckey fﬁﬁctux‘clﬂm by (c@aM)(b) = ca Mb for be® , clearly,
if D is an ordinery ring and R is a ring, then D®R is a ring and if
: C is a D-module and M is an \ Remodule, then CeMis a Da R-mdule. -
Thus, one obv:.ous source of _g_:j.__gg_g is to take an ordinary. r:.ng D and '
form D® A.. To descrn.be the . rasult, we 1ntroduce the category D@d&
with objects the fJ.nite G-sets., The set of maps :Erom a to b in DGM-B
" is just D®la, 'b]. With this notation, we have B

._Lem:ﬁa 2.3 1If D is ény ririg,‘ then the following categories are isomore-

phic



a) The category of modulea over . the rin g D@}%

b) The category of contravarlant adchtzve functors from B to
the ‘category of D-modules,- _

¢) The category of contravarlant addttive functors from D@B R
to abelian groups.

The proof of this result is an elementary exercise in manipulating'a-'

belian functor categories, All three views of D® 2 modules havé t.héi._r.

applications, | .
For any xing R, we call the category of left R-mc;dules R--mc:':d éna

the catego'ry of right haﬁodules-'mad—R; One of the main purposes of

thls sect;:.on 15 to show that these two categories enjoy &1l Qf the m.cse

properties one usually associates with ‘the category of modulea over m
ordinary ring. We beg:.n with tensor products. If M and N are nght . :
_and left R-modules respecrc:.valy, then we can define the box product
" O.N over R as the coequa.llzer '
| | MORON _____:__;MCJN —> MOy N
of the two action maps. If R, S, and T are three M and M and K
are an S5~R and an R-T blmodule respectlvely, then M DRN is an -1 |
bimodule and the= usual associat:.vn.ty results hold for thesa t;ensor i
products., If M and N are both left (or r:.ght) R-«modules, then we can
define the Mackey functor (M, N} g OFf R-module maps from M to N as a.
subfunctor of <M, N% Again, the usual bimed ule._ remarks apply to

<M, N}R. We record the basic properties of these' constructions heléw,, o

t".:wely, then there are natural J.somorphi.sms

Ill

(i) ™ ER R'b Mcxb
(11) RpOgr NC = N.bxc
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(iv) <Rb'_mé>R Ny e for all b, ¢ €
(b) £ R, S, and T are rings and B, C, and D are s-R, R-T, and
S-—T b:.modules respect:.vely, then there is a natural 1somorphlsm
Ml
- R.
and <N,N>R have natural R-module’ structures. Further, for R-modules

(e¢) If R is commﬁtative and M and N are R-mc_:dule-s. then M_ N

M, N, and L, there is a na_turjal isomorphism

R (Mog N L)f—“—f homR'(M'('ﬁ L)
Thus, R~-mod is a syrm'netrlc. ;monoidal closed category.
Except for the use of the flatness of A,b { see below) in the proof
of (a), the proofs of these results are-indistinguishable fromlthé
proofs for ord:.nary rlngs and moaules. . -

We turn now to the behavior of lmu.ts and colimits in module
categories. ,.w_e_ have already observed that the_ c:ategory @ of Mackey .
ﬁmctors is an abelian category satlsfylng Grothendleck'.s condition .- :
AES, As in the case of an ord:.nary ring, the functors REB? (or ?I:IR)
and <h ) prov:.de a left and right adjoint respect:.vely to the for-: g
getful functor from R-mod (or mod-R) to );3.' 'I'hus, l:.m:..ts and colimits -
in- R-mod (and‘m‘od—R) are obtalned.by _tak:a.ng the analogov_.s 1:un1ts and o
colimits in 7 and applying the natural R-—module structures. It fol"ows
that R-mod and mod-R are abnl:;.an Categorles satisfying condit:.on AES,
Note that limits in 717, R--mod and mod~R are taken point—m.se._ ~ For ex— '

ample

(T mpa) =TT ma

ie iex



( & M;)a) = ) M, a

ieX - riel
- for any indexed family {Mi} ieT and a¢8 . Alse a sequence
0 —> ' > M 3 M 20 | :

is exact if and only if the éequexxces

0 —> M'a —>pMa—~—3>M'a—>0
are exact .for all aé@ . 'From' this obsexvation, Lemma 1.6 gmd Fropo~
sition 2.4(a), it follows that the functci‘s ra!) Aa' ? l:]R Ra' and
R, O R? are gxapt‘ior all aki@. Thus, the representable functors'
A  are flat in 7’)‘ar‘xd the functors R  are flat in R-mod and ;no.a-R‘.'- As
is always thé case in. a functor catégcry, the representable fuﬂétorg ﬁa
are'projectiva and, as a family‘, théy 'genei:fate'm. Further, if | |

e o= H%GG/H S |

then A, is a projective generator tor}?] Any projec:tive in }? is a
direct summand of a direct sum Qf cop:l.es of A, and so is flat by the
usual argument. slnce R, = Rt’ Al is the . free R-module (left or r:.ght)
: generated by A . it follows that R is projective in R-mod {or mod R) o
for any ae® Al_sc, R‘ is a projective geﬁeratof for R-mod (61.’ m&dl-ft}..‘:
‘Again,. it fc';lll‘.ows formally that any pr rojective in R-mod {ox mod-R)'-.:_ e
ié flat.  Being’ ABS—categories with a projective generatar,, 73?,
R-mod aﬁd mbd-R all have enough injecﬁives. Thus, they are perfect‘iy
i:esPectable categories in which to c'io.homc'aloglcal algebra. In particu- -
- lar, Tor and Ext derived functors eéxist for o, ER' <.” . and ( ?
The only hltch in all of thls is that?ﬁfls known to have 1nf1nite homo« E
log1ca1 da.mensz.or_x.- . We wz.ll dlscuss the homological dimension of R- |

mod in a few special cases in later sections,



Remark 2.5 The good behavior of tensor products noted above suggests

the p0551b111ty of translating into our context the Morita descrlption
of equivalences of module categories in terms of tensor products., How-
ever, since tensor products always commute with the functors ?EJAb,
'any direct translation of Morita theory would be applicable only ta.
equivalences with ﬁhejsame cbmmutativity property; Any work on Mo#ita
theory is further complicated by the fact.that R-mod is‘pot generated
by R, but by R. where ¢ is é?e G/H. In spite of the generator problem,
the usual proofs of the Morxta characterlzatxon of equzvalences appaar
to go thruugh for those equivalences commuting with the functors ?IJAh
Some of our results in later sectmons 1nvolve equlvalences betwaen
" module categories over rings in two d;fferent categorles of Mackey
functors (that is, the ambient group G changes). 1t mxght be prof;t-
able to search for some generalization Qf Morita theory--along the
‘lines of fécent_wofk oh'Morita theory for ﬁunctof categories--which _
would describe these equlvalences ,

Some concepts in ring theory--~like chaxn conditions--can ba ex-
pressed purely in terms of the behavior of the submodules of a given
module;. such concépts translate formally to ring theoxry. 1In partlcu-;

lar, we have the following obvious definitions.

Definition 2.6 (a) A left or right module over a ring R is Noetheriah

(Artlnlan) if evexry non-empty collectlon of submodules has a maximal

(minimal) element. . o
(b} A ring R is left or right Noetherian (Artinian) if it is S

Noetherian (Artinian) as a left or right hgdulg bver itself. -

{(e¢) A module M is simple if it has no non~trivial submodules and_
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is semisimple if it is a direct suﬁ of simple moduiES.

{(d) A ring R is simpie if it has no-nqntrivial (two-sidedi'in
ESEEE and is Semisimple if it is a direct sum qf.simple rings.

(e) A division zing is a non-zero ring with no non-trivial left
‘or right ideals, | ‘

‘(f) A field is a_non?zero‘commptativelgigg_with no nbn-tri¢ia1 -

ideals. | | _ . o
| | (Q) A maximai.suhmédule N of a module M is a submodule strictlj f
contalned in M and not strlctly contalned 1n any other modula. |

"{h) A inaximal left (rlght oxr two-51ded) 1deal is a left (right -
or two-sided) l_gg; which is not the whole ring and whlch is not |
1str1ctly coptalned in any other left (rlght or two~s;ded) ideal that
is not the Qhole'gigga | | - | i 

(i) A left (right or two—sided):ideai T is irreducible iﬂ'when-‘
ever I = PnQ for P and Q left {(right or tWO-—s:.ded) Jge_a;l._g we have " ;;

1 P or I = Q.

Many basic results carry over without change in their Statemenig‘

or proofs. For example, we have
. . . F3 . .

lemma 2.7(a) If N is an R-submodule ofzan_R-mcdule M, then thafe;i#

a one~to-one cbrfeSpondence between R-submodules of M/N and R~sub
modules of M which contain N. B e
{b) If I is an'idéal of_Rg,then R/I is simple if and only if I

 13 maxlmal (as a two-zided ldeal).

{c) If X is an 1deal of R, then R/I is a division fi ng if and.

oniy if ¥ is maximal both as a left and a right ideal.



(d‘) If I is an ideal of a comrnﬁtz—xtive ring R, tﬁen R/I is a ~
field if and only if T is maylmal. | |
(e) Any left (right or two-sided) ideal of a _;hg R other than
the whole ring is contained in a maximal Jef?(f%hPoffwlﬁﬂhi}L_ﬂﬁ‘
(£} If R is a left (or rlght) Noetherzan ring, then any left
{or rlght) ;_g_; of R is a flnlte 1ntersectlon of irreducible left {@r

rlght) 1deals.

Note that the ;_.;L,r_ggg A, for beB are Noetherian because any i&eal
is determ:r.ned by its values at the orbits G/H for HeG and each
fAb(G/H) is a finltely generated free abelian group. Also, if P is a;,g;
. field, then F@ Ay is Artinian for the same reason. Lemma 2. 7(f) augn
gests that it should be possible to classlfy all the ideals of Ahf 'ﬁ#f
we will show in Section 4 » such a classification would be quite usa- |
ful in induction theory. | | .

. ‘Soﬁe results do ndt carry over, For example, if M-is a éimpln: N
left R—module, then M need not be the. quotlent of R by a max:mal ide&l-
The problem is: that M{1) need not be nonzero, What is true is that iﬁ
M (b};to for befl , then M is the quonent of the left R-mndnlﬂ. Rh .uy‘

- a maximal R-submodule, It is not necessary for this submodule
to be a.module over Ry . O J._ | | |

Since simple moduleg.are.unexééctediy campiicated,;it is nd£ ﬁiear
. how the Jacobson ;géigg“ of a E;_g should be defined. Thejannihilé&or 
' 0£ an R-mgdulg M is just the kernel of the action map ‘ B

R —3> <1, M.
It is clearly a two-sided jideal of R. The left Jacobson radical t:»f.‘j."‘v

R could be defined as the intersection of the annihilators of the
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vlmple left R~module or as the 1ntersect10n of the maximal left 1deals.‘
It's not c:lear that chese two possxble def:n.nitlons agree.
Note that the usual operations on ideals-~like INJ, I +J and
1J for ideals I.and J are f@ell»defined_. in p'articular, '.]:J'-is the i~ |
mage of the. map | | | |
Y Ing ——> RER —->R
and I + J is the image of the map |
R U(I@ J’} *ﬁRﬂ(R@R) —> R

if I and J are 1eft ideals or |

ARU(Iﬁ_JJH R —> RO{ROR)ER —> R

.if I and J are two-sided ideals,

Remark 2.8 The Ob'servarit reader may 'havé already noted that the 1smr-

phism A 5 AnwA providés A with a Hopf alg' eﬁra st;':uctux':e.and' the mal:;'é'-
R L N i P

A, —>a {(frem b—> 1)

provide Ab vith a éoalgebra structuré for any b&¢8, 1If b#1, then Ab

is not a Hopf algebra because the un:.t: map does not behave properly

with respect to en.ther the counit or the comult:.pllcatlon { and dually

for the coum.t, um.t and mult;plicat:.on). These structures have ap«-

parently never been J.nvesta.gated-—perhaps because thex'e is no analog of

Propositiomns 1.4 and 1.5 applicable to copairings. WNevertheless, :.t‘

seems feasonable- that an understanding of Hopf algebras  would con- ‘- :

tribute to the understanding of equivariant Hopf spaces.



3. __i_r_l_g_.g,. rings and elements.,

Hav;ng descrlbed the known formal propertles of ziggg and mggglg
categories, we now begln to 1nvest1gate the baslc structure of 1ndi~
V1dua1 Eiggg and modules. Flrst, we 1ntroduce elements into our dis-
cussion, Untlllzxng elements. we deflne such basic concepts as prin-~

cipal ideals, units, zero lelsors . lntegral domains, and pr;ma (and

primary) 1deals. some of the usual bas;c properties--and some surprises-
follow easily from these deflnltlons. To tie rings and modules ta a
more familiar world, we . 1nvest1gate the relations among a ring. R, an

R-module M and their ‘values R(b) and M(b) at the ‘elements b of 6._

.These'relations vield the basic properties of simple modules, division

‘xings, fields;;and integral domains which we will exploit‘in 1ate$.

sgctions,
iIf R is a rin g and M is an R—module, then by the Yoneda lemma, E

we can thlnk of elements o of R (a) and m of M (b} (for a, Beld) us

maps
' A . R T m M ~
a > K T By T
The ccmposite =
| a, %A BAb RAM —5--»:4

'\tells us that the product rm of r and m is an element of M(axb). xn

. partlcular, for elements réER(a} and s(-R(b). the product ra is in

R( axb), This is exactliy the result one nght expect by analogy with

'gradea rings., We call these products “external" to dlstlngumah thql

from the internal products Which are defined later in this secticm-‘

Experience suggegts that one sheuld always work wlth, and think in |

terms of, extermnal (rather than internal) products whenever possable



because they carry more information and are a closer analog to pro-
ducts in ordinary rings than are internal produczts. '

Here we collect a host of element'-deﬁendent definitions.

Definition 3.1 (a) The principal left and two—éided.ide'éls associated
to an element‘ r€ R{b) are the images of the'maps R
roa, -18E,p5r —fug
and B - 1orni | ‘ B
. RaA AR ——="=3 RURAR ——$———>R

respectively. ' _ .

(b} “An element r €R(b) is a'right (left;)"g_n__:i_zz_ if its as'sociat.ied.
left {(right) principal ideal is all of R."‘An eiement re R(b) is a:‘ .
unit if it is both a left and a right unit.

(c) An element r € R{a) is a zero divisor if there is an objéct
be€@ and a non-zero element ..s € R{b) such that rs or sr is“ zero in
R(axb). It is sometimes useful to call this a b-zero divisor: At.hé set

of b in6 for which r is a b-zero divisor tells how badly r mi sbehaves.

Note that we can define annihilators of elements in a module in‘ a.n. :
analogous fashion. | | | _
(@) An element ‘z_'eR(_a)‘ is (exterpally) nilpote;nt it there‘ is
an n>0 such that r" is zero in R{a").
{e) A ﬁon—zéro commutative ring D is an (int_egral) domain if it

has no non-zero zero divisors.

(f) An ideal P of a commutative riﬁg R is pfime if it is not :
all of R and if, when rs is in P(axb) for reR{a) and s €R(b), either
r < P(a) or s € p(b).

“{g)} An iaeal I of a commutative ring R is primary if it is net‘_




all of R and if, whenever rsg ¢ I{azh) for r&ﬁ(a) and 5 %R{b), eithe:
rei(a) or s"e I(bn) for some n >0, |

Except for a few strange t‘wists like 3.2(a) belew, the expacted
" basic Tesults hold for the staﬁdard reasqns;"More results ﬁn_ﬁgigg-

appear in Corollary 3.13.

propositicn 3.2(a) An element x & R(b) is a right unit if and only if

the identity element I, : A ~—> R can be 'wz_'ijtten' as the composite
A —25 ran AeX, par —2 5z |

for some map‘u:: A —>» RD Ab . Such a map cofresp_onds ‘_tro‘ an glemént u.'_,.
of R(b) which may' be thought of as a lef;: inverse for ®. However, 'u-‘l
- need not be',_unique ‘even if x is a unit or even when R is comnutafivé;
Leftlpﬂg_i__{:_:.s_ have an analogous description. | o

('.b') The external product of two left (right or two-s:.ded) units .
is a 1eft (rlght or two—-sxded) unit, — |

(a:) If we R(a) maps to ‘a left (r:.ght or two-sn.ded) unit yeR(b)
'hy‘ any map £ : b —>» a in_ @, then X is é left {right or twc:—s:.ded)
unit. |

(d) a Er}_ii_:!':, is .riot 3 zero divisor.

& : : .
(=) Every non-zero element of a d:.visicm ing is 'a unit Thus, o -

a dlv:.slon ing has no non-zero zero divisors and a field is an ini.e-

gral doma:.n.
{f) 1f P :LS an ideazl in a commutatlva ri ng R, then p is pfiim

if and only J.f R/P is an 1nteg:al‘ domain., Further, P is primary :ii: Co

and only if every zero divisor in‘R/P is 'nilpotent.
Proof Part (a) is just the Yoneda lemma, Part (e) follows triviallir

from (d) and the definitions, Part (f) follows trivially from the -



definitions, Part {¢) follows because any one or two-~sided ideal con-
taining x must contain y. The fdllowing proofs of parts (b) and (d)
are a good‘ illustratilon of an application of (a) and of the proof
techniques peculiar to ;g}m.

Let y&€R(Db) and let 'x‘é R(a) be a fight_ g_r}_;_g with left inverse
ue R(a).' The commuting diagrarh below indicates that y is in tﬁe -‘prin—

cipal left ideal generated by X y€ R{axb)

AGpa =
e

“1 — llRuy Y
/ oat R&R |
RuAuAb-}i—L-) RS RnR o ;
it | \mp
Ra ALy 19x T RER

1f y is also a right unit, then any left ideal containing y must be
'all" of R and Qe have (b}, 1If xy is zero, then s0 is Y since iﬁ-is in
the trivial ideal and we i:xave (d).
The motivation for the diagram is that we want tb say uxy = Ye hut .
this can't be said directly in terms of products because uxy E— R{ aﬁaxb.)
and y € R(D). - AR

Remark 3.3 A word of caution about principal ideals is necessary. - We
say that an R-module M is finitely generated if there exist elements "

x; € Ma for 1<1<n such that the map
1!-'-’(@}:) n |
RG(G)A) Rﬂ{@m}—-—-——-},-m
i=1 i i=1

.. : ' X n : - n .
is surjective. Via the isomorphism ( @ Mai) TM(x ai), we see that
, . i=1 i=1 ‘



e

: n
M is actually guneratod by a szngle element in M{ 3 ai). Thus, any

finitely generated module is, in fact, monogenic ;né any finitely
generated ideal is-principal. Anyone familiarrwithlthe ideal gen~
erated.by x and y in the‘ordiﬁary‘pOIYnomial fing Zx,yl will regardl
this behavior of Eiggé as a biﬁ strange. If we. say that an ldeal is
strictly principal if it is generated by an element in R(G/H} for some.
H-<G, then we obtain a class of prmnczpal 1deals which behave in a
more 1ntu1t1ve fash1on. Slnce tha generator for the category qubﬂ'
is R, where c ‘Hfg G/H, this class of strlctly principal 1deals
'may-bé too small for some purposes; a better class mlght be those
principal ideals generated 5y a single_element of R(cj; '7

The key to understanding integral domains and simple modunles is .

the following definition.

'Defin;tion 3.4 A subgroup H of G is a characteristic ;ubgréup-of:a
Mackey functor'M if the map M —~> Mg (from 1 <+ G/H) is injectiQ&
and M{G/K)= 0 unless [ﬂ]<lkl. A Mackey functor M is said ﬁo ha;e a-
.characterlstxc subgroup if some HS G lS a characterlstzc subgroup of M.

‘The basic properties of character;stxc suhgroups are

. Lemma 3.5 (a} 1f M‘is H-characteristic:. thenM = 0 if and oniy':';.f.
M{c/H) = 0. Thus. if a non-zero Mackey functor M has a character»l
istic subgroup, then that subgroup is un;que up to conjugacy.

(b} A Mackey functor M has a characterlstlc subgroup if and.
only if for every hé63w1th Mb # O, the map M N determlned hy |

1-%*#—-b is 1n3ect1ve.

Proof (a)l For any b€8, G/Hxb breaks up as a sum ZG/Hi of or‘bitﬁ_



with LH ]< !H] and H does not appear among the H unless there iz a -

map G/H —> b, Thus, if M is H-characteristic, then M (k) is ezther

G/H
zero or a direct sum of copies of M(G/H). Since M —» MG/H.iS injeg-
tive.‘it followé that M is zero if M{G/H) is, If H and K are buth
characteristic subgroups for M # 0, then M{G/H) and M(G/K} are both
non-zero and we must have [H] [15

{b) If M is H—characteristic. then M, # 0 only if there is a
map G/H —3 b. For such b, the map M —> Ma/u factors through the
map M —> M, and s0 this secondlmap-rmust be injéctive. on- th'e-".o'tiher_'
hand, assume the maps M —> MEO are injeuﬁive when M(b). # 0. let H be
a smallest (in terms of number of elements) subgroup with M{(G/H) # O
(We can assume M # O since 0 is H-characterlstz.c for every subgroup H).

Suppose M{G/K) # 0. ‘Then M (G/R) = M(G/HKG/K)‘# 0. But then M(G/L}.

G/H
# 0 for some orbit G/L in G/HXG/K. 1If fI—ﬂ_#. K , then we must have

{1] < [H] which is impossible by the minimal nature of [H].

Corollary 3.6 (a) If M is a simple medule over a ring R, then M héa-'l 3
characteristic subgroup.
{b) Simple r:.ngs (which include fields and division r:mg s) have

characteristic subgroups.

Proof {(a) Let M be a simple module. For any be@, the map M — M,
is eithey zero or J,ngective.. If M(b) is not zero, then the map |

M(b) -—--) Mb(b} = M(bhb) is a split 1n3ectz.on {by the map M{hx‘b) —--#

M(b) from a: b —3 DRb) and so is not zero.

(b) A simple ring R is a simple module over R o r°F,



The basic map M -——=> M has an alternate description from which it

follows that integral domains have characteristic subgroups.

Lemma 3.7 Let M be a module over a ring R and‘let 1b & R(b) be the

restriction of IRﬁlR(l).‘ Then the map '
M M

is just (external) multiplication by 1y,-

The proof is just a diagram chase using Proposition 1.5.

Corollary 3.8 (a) If R is a ring such that 1béaR(b) is not a zero

divisor wheneﬁex it is non-zero, then R has a characteristic'subgroup; '
(k) Rings vhose only zero divisors are nilpotent have character-

istic subgroups.. In particulhr, iﬁtegral domains RHave characteristié

subgroups. Also, if P is a prlmary ;gggl in a2 commutative 5;_5 R,

then R/P has a characteristic subgrbup.

The proof of part (a) of this corollary follows from Propos;tlon 3.9(b)
below which gives that R(b) = 0 if and only if 1b 0. ror (b), ngta ‘
that if 1b is not zero, then it is not nilpotant because R{b) i# 2
direct summand of R(bn). |

Corollaries 3.6 and 3.8 should suffice to convince those in-,
terested in Macﬁey functors that Mackey functors with characteristic
éubgroups are important. sBctionls is devoted to a detailed study
of their very pleasant properties. |

We have 3just about‘exhausted‘whatlcan be said (to date} about
Eigg'theory without appealing to ring theory. The following propo-

sition surveys the basic connection between rings and rings. The



proofs are all easy exercises in chasing diagrams of the form intro-

duced in Proposition 1.5,

Proposit;on 3.9 Iet Rbe arxring and M be a left module over R

{a) R(1) is a rlng,and for any be® M(b) is an R(1) module.
The unit of R(1) ;s the element 1 ‘s A —> R. The multlpllcatxonlon-f"
R(1) and the action of R{1) on M{(b) are glven by . |
R(1) @ R(1) —-mJEﬂL»nx1) R(l) ® M(b) LR VNS
Any map f : b —> a in 3 induces an R{(1) module map £ : M{a) —» M(b}.
(b} For any be® , R(b) is a ring and M{b) is a module over R(b);
The unit of R{b) is the resﬁriction 1b of 1R & ﬁ(i). Tﬁe (internal) '
multlpl:catlon on R{b) and the action of R(b) on M(b) are given by |

R(b)@R(b} 2: b —>bxbh, “b""’h*b,mh)..

R(k} -R(b)&M(b)

,(c)' Any restr:ctlon map (or conjugation) r: a —> b-in 6 induces
é riné homomorphism
| r : R(b) ——> R(a)
In particular, the restrlctlon R(1) —> R(Db) is a ring homomorphlsm _
and R(1l) acts on M(b) through this map.' Note that transfers need,ggg.
induce ring honomorphisms! . |
(d) If R is a division ring, then R(1) is a division ring and
for x € R{(1), any inverse . - | S
| t: A = R
(as in Pr0p051t10n 3,2a) is the actual inverse of x and so is unique-“
ly determined. Note that for b # 1, R(b) need not be a division rxng?
ik usually has zero divisors (1n the crdlnary ring sense).
(e} If R is commutative, then so are the R(Db) for'bgﬁ

(£) 1f R 19 an integral domain, then R{(1}) is an 1ntegral domaln
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and if R is a field, thén so is R{1). Again, R{b), for b # 1, can
have zero divisors,
(g) If P< R is a prime (or primary) ideal, then P(l)r:. R(l) is.
a prime (or primary) ideal.
§f R s tommuln hvé‘., Yo
(h),\ an x & R(b) is (externally) nilpotent if, and only J.f, it

is nilpotent when considered as_an element of the or.d:.nary ring R(b).

(i) If x e R(D) is a b-zero divisor in R, then x is a zero

lelsor when con51dered as an element in the ordlnary ring R(b)«

Results like (4), (£f), aqd (i) above begih to-illustrate‘the‘nbé
tational problem of kee-pihg rinqs and rings separate. Certaznly. mat-

ters become confusmng when an element r € R(b) is a unit in the ri g

R and a zero divisor in the ring R{Db).

Remark 3.10 The action of R(1) on M(b) for all b€® can be given a

Mackey functor déscription. For any Mac:key functor M and any be@ .
there is a natural map - o |

M(b)(ﬁ Ab m——— M
which takes m ® £ to f(m)em(a) for m € M(b) and £ & a(a) = [, 5.
For a ring R, this gives a map R(1) ® A —> R which can easily be seen
to be a ring homomorphism. The action of R(l) on M{b} (for any R- |
module M) is via this ring homomorphlsm.

The maps R{1) @ R(b) M R{b) of Proposition 1.5 indﬁce a

mep 7 p:R(1® R—R
for any ring R. This map is a zing homomo:phiém if R is commutative
(or more generally if R(1) is in the center of R). "Also, the map

R= Z ®R —>»R(1) ®R determine'd by 1Re. R(1), is a right inverse

- - - -



for 8., Tt seems likely that this pair of maps will be useful in re-
lating the structure of R(1) and R.
Since R(1) is a ring when R is a ring, the following definition

makes sense.

Definition 3.11 If R is a ring, then the integral characteristic of

R is the characteristic of R(l). The charactlstx.c of R is the kernel

of the unit map A -—> R (which is an J.deal in A}.

* Note that if R is a division ring,' field, or integral domain, then

its integral characteristic is a prime. Also, if P is a primary ideal

in a commutative ring R,,then R/P has a prime power integral charact-

eristic. We will see in Section 6 that‘;fqr division xings, fields,
and domains the characteristic ideal is determined by the integral
characteristic p and the characteristic subgroup H. This __J_.ge_a_]: in A "
is denoted q(H,p). | | | |
The key to understanding units in a _:gl__g is the fo]_lowlng corclvb ‘

lary of Proposition 1,5 which can be used to compute prxnc;pal ideals.‘

Proposition 3.12 If La M S N is a map of Mackey functors and

m € M(b) for be 8, then the map
L, ¥Lo A Mo m—x
is given byl

e |
L(cxb) 22 My 1 (exb) @ M(b) SR T—F exbrb, voip) B3 n(e)

for any c«@Q, Here the first map takes fe L(e b) to f®Pm and the

"last map i8 the transfer C <t cxb determined by the projecﬁion

c*bh —s o,



corollary 3.13 {a) An élement *x € R(DL) is a rig';ht unit if and only

if there is a u €’ R(b) such that. t(u‘x) R & R(1} where usx is

the internal product in R(b) and t : 1 &t— b is the transfer.. The
element u is a left :mverse of x in the sense oi Proposztmn 3. Z(a). |
A dual result applmes‘tp_left g_rg._j_:g_ so u &R{b) is a left inverse of

x if and only if xe R(Db) is a right invez,fsé-of 'u,,

(¢) For any beB, R(b) contains a one-sided unit if and only
if tl‘;e transfer ‘m'ap' R(b) ——> R(1) is surjec#ivg. C .

(ay Tﬁe‘ image of the. maﬁ Rh ST inar;iCéd by b —> 1 is the. ﬁ}«#xii’&:"‘
cipal left (or right) ideal of R generated by 1€ R(B). Thus, R(D)
-contains a one—slded unit if and only "f 1, is a unit.. ' ‘

{e) R(Db) conta:.ns a umLt J.f and cmly if there is an x & R(h)
who\se assoc:ta;.ed principal two-sided :1deal is all of R. ' -

{(£) If #®, v € R{(b) and the 1nte:s':nalrproduct Xey &R{b) is a o
right unit, then y is a right‘gx_x_@_t;._. Also,if xdr is a left 3_1;_!3_1._1;_."-' '
t.hén:;:isaleftsi_l_:g_t;, | : S |

{g) If xz<R(a) and y € R{b)_ an_d the external .pfdduct-xyé- R(‘a.nb}i"-

is a right unit, then so is y and if xy is a left unit, so is H,

Proof (a) »An element x € R{b) is a right unit if and only if 1
is in the left ic’iéal gene:}:ated by ., The c:ond:.t::.on for 1 to ba in -

this J,deal ¢can be seen 1mmed1ately from Pro_pcs:Ltlon 3. 12,

- - . - LR . EEEEE - - . e [



'téf This is a tr1v1al corollary of (a) sznce R(b)-%~R(1) is a
map of R(l) modules.

- (4a) ‘I‘hJ.s follows from Prop051t10n 3.12 by 1nspectzon, '

(e} "If R(b) contains a unit then thelassoglated 1eft_i§g§£
oL 1, € R(b'}_is all of R =0 'i:he two-sided principal ideal‘. must be ail’
of R aléo.- On the other hand, the value at 1 of the, two-51ded 1deal
generated by xé?R(b] is 3ust the image of the map | '

ro R%P(b) —>R © R°P(b) @ R(b) ——» R(b) —E> R(l)
obtained from the action of R U R ? on R, If this prlncibal ideal:
is all of R, then t : R(b) -erR(1) must be surjectlve and the re-l

mainder of (e) follows from (c)e.

(£) It.sufflgegl;olgpqy that xey is in the left ideal generated

]

by y and the right ideal generated by x. The image of x®y under the

map



A
"

. 7 oo |
b T DABb, p(prb) L5 R(B)

At R
R(b) & R(b) =215 R(b*b) € R{b)
can be computed tc‘ be x:y so that Xey is in the left ideal generated

by y; The other result follow-s similarly.
{g) The external pfoduct xy ¢ R{arb) is thé internal product
arb -—-—-‘z a and' frz- : axbh ~—>D ére pro-

-
-

of 171.): and "Isz vhere ¥, |
- jections. The result now follows from (£) and Proposition 3, 2(;:}.



4. Remarks on induction theoxy

Our basic toclé for analyzing_Mackey functors in subsequent
sectionﬁ are induction the&rems. ﬁoughly speaking, an inductign‘
theorem for a Mackey _fun_ctor' M says that there is a b in & such that
511 the values of M are determined by the values Ma.for a=< b in ‘@_.'
The classical induqtion theorems are those which assert that,'for'ﬁ
some ring R, the R-representation ring of any finite group G is
determined by the R;representatidn rings of some class of shall
_subgroups of G. The induction theorems of'interest to ué here a:é'
those applicable‘to‘division Egggg,isimple modules and integral . .
- domains. . -
'This section provides a summéry of the induction-theoretic re; :
sults we need later. 'it'dividés naturélly into two parts. In tha-ff
first, we introduce thé three basic typés of induction tﬁé;réms wé‘: '
employ and describe the relations among them. This material is = “
- drawn from Dress's basic article on induction theorg ( ).  Tha:qn~
ly new resuit in the first part is the‘ahservation‘that-if-dne thinﬁk
in terms of.units iprendcmorphism rings, then one acquires a hqviigw
tuition for the 5§§ic results, The second part of this sectio:'i'ia@';"
devoted Eo;appafeptly new results on the type of induction we é@pl&y-
most often. The key to these results is a new understandiﬁg of .the
relation between Amitsur cuhﬁmology and induetion theory in,ﬁerﬁa‘nt
sheaf theory for abelian functor categ@ries; | | o

The simpliest soft of induction theorem is like the classiéal
theorem which assérts that everf representation'of a finite gruup.Gn

can be obtained by induction from representations of the elementary



subgroups of G. Inm our notation, such a result says that, for some
b in$, the transfer map
M{b] —> M(1)

is surjective. Such a result puts an upper Eoim.d on the size t;f
M(l): howevef, to comp‘letely determine M(1), it is necessafy‘td
specify the kernel of the induction map. More sophistiéated Aversioﬁs. |
éf this type of theorem specify the kernel, but we do not need i:hm
here. o

'~ For our purposes, it is more useful to ha§e M(l) as a éubgroﬁp
of some group than as a guotient group. .Thus, the form of inducti.on': .

theorem we employ most often is the followings:

Definition 4.1 For bef, a Mackey functor M satisfies b-injective

induction if the diagram .
.1

— _—'—t
M be 11“2‘_' M’bxb‘

obtained from the diagram,_u.

1 .
brb ——;—-3 b ——>1

. 2 _

in &, is an equalizer diagram.

Note that this form of induction désc:_ribes the whole of M and not:
just the value M(1). | ‘ '

By examining the decombosition of cxb and cxbxb. (ﬁor éa ) int6
orbits, one can eaéily sea that, if M satisfies b-injective indﬁcﬁioﬂ.
then the value of M at any c in 8@ is determined by the values Ma fo'r:.:---
a<b, We have already noted that for certain Mackey fundtors--such_ )

as division rings, integral domains, and simple modules-~there is

an H< G such that M{G/K) is zero unless [H]<[K]. If such a Mackey



functor satisfied G/H-injective induction, then clearly it would be

almost trivial to compute all of its values, We will see that this

is ékactly what happens for division ri-nqrs. fieldé, and nice integrél
domaing, - '
Unfértunately,' b-’injective induction~~for our 'purposes,_ the most
useful form of induction-%séems almost impossible to pfove directly.'
For this reason, w_e-éxre forced to consider two much stronger foma_..ﬂ

of induction.

Defipition 4.2 (see ( )) TFor beB, a Mackey functor M is h-'-pro--"-.

jective if the transfer map _
My — M

is a split surjection and is b-injective if the .rest_ri-c:tion map

. . " — - ‘ :
is a split injection.

our first ohjective in this sect:.on is to establish Dress' s
basic results relating the types of induction defined above. Note
that, for any _:_:‘_ig_g__ﬁR. the surjectivity of R{b)—> R(1) is équlvalgnt
to the existence ;uf a unit . in R(b). This observation is the keyt.ci

our approach to induction.

%

In order to relate the various types of -inductidzi, ve must firs!.'.
study the r _____g (M, My of endomorphism# of a Mackey fuhctar ﬁ - By .'
Definition 1.3, an element £ in M, M)(b§ for b«f, is just a tiap

£iM —> My Loy, | =
By the adjunctlon between 70 A, and (Ab ?) ‘such an £ may be re-:-"

garded as a map



, | .
£:Maa ¥FoM, > M

For b and ¢ in 8, an element of <M, M) '(b'xc:T"maly be viewed in any

of the following forms:

hi: M =M e

: bec — M

My, > Mg

Mg =™ M

g
o

The f_ollowing b-asic lemma relates these forms, characterizes the ;‘ |
transfer for (ﬁ, ‘M> and describes the composition of maps which 'giv*as'

<M, M) is ring structure.

. Lemmua 4.3 (a) Fbr any map £ : M -—-—;‘rMb. the 'map % - Mb —)-M-‘i's thé

composite
: £, |
| Mp = 2 Mgy 28 |
where the second map comes from the map brb & p—>21inB. o

(b) For any map ‘E: My, —> M, the ‘map‘f : ‘M —— Mb is the .onmp@s}.te
: _ . M > Mpxb My SR
vhere the first map comes from the map"l <4+ b <5 pxb in 8 .
(c) The image of £& <M, M) (b) undexr the transfer map <M, M) "("h)‘

—><M, My (1) is given by either of the following 'composities:l
| B e |
. .

M —> M > M

where the unlabeled maps both come from the projection b --—9- 1 in 8. ‘

() 1If £& <M, MY {b) and ge<M, M {¢), then the external'pro-‘-"

duct fgedM, M) ‘(b'x‘ ¢} is given by either of the following campoéiteéz



._ £
fg:M—ﬂ——)Mc*mb——)' My,
~ ‘ g e
(fg):M.bM: b}-Mb' £ > M,

. The equivalence between b-injectivity and b-projectivity now fol=

lows easily. oot

Proposition 4.4 '(see ( )) For any Mackey functor M and any b&®, the

following are equivalent:

{(a) M is b—projeqtive.

{b} M is b-injective.

(e) <M, M) (b) cc:;ﬁtains a unit for the ring (M, M),
| (a) | M is a direct summand of Mb '
Proof By Lemma 4.3{z), statements (a) and {b) are Just the two ways .

of saying that the identity map 1y ¢ M /™M is in the image_._ of the
transfer {M, M) (b) —> M, M) (1). By Corollary 3.13(c), this _is"
equivalent té_ {c)., Clearly, either (é) or (b} iihplies (4). l';‘o see."_ 7
that (d) implies the others, let £, g&¢{M, M) (b) be. maps r.epreséntirn‘gi'
M as a direct summand of My, via the diagram | | | o
1yt M —g Mb —L5

By Lemma 4, 3( a), (e}, ang (d) above, this compasite is just the.- image
of the :.ntemal product fog: M —> M‘b under the transfer “map -
<M, M) (b) ——-}{M, M> (1). Thus, the internal productfug is a unit |
in <M, M) (b) and we have (c). Note that byheeﬂaﬁary—?;ﬁﬁ{—f—)-heth—

,u‘sle
f and g are,‘un:.ts in M, M) (b).

Dress's basic result on induction theory is"now:thé result of &

- trivial observation about units.
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Corollary 4.5 {see ( }} For any ring R and any befl, the following
are equivalent: | _
(a) Every {left or #ight) R-module M is b-—projective.
(b) R is b-projective. - |

(¢) The transfer‘ map R(b) —> R(1) is surjective,

Proof Clearly, (a) 2 (b) > (c). For {?:)%P (a}, note that (c) a.sl-»‘
serts that there is a unit in R(b). For any R-module M; the im!ag'é' .
of this unit under the acticm map . |

R —_— (M, M)
i.s also a _1:1_11_:2,_1_:_ and so M is b-projective by 'Proposit:i‘.on 4.4.

Note that Propositién 3.2(e) now gives that if F is a field (51' "
division ring) and be@ with F(b) a‘ 0.. ther'} any F-module V is b~pro-
jective., This is the key to oiur‘ characterization o:E: fields and | |
their modules in Sei:i:ion 7. | | ‘

To cnmplete our survey of the basic results of induct:.c:n theory.

_ J.t suffices to show that b—progectiv;ty ;unpl:.es b-lnject:.ve 1nduction.

Proposition 4.6 (see ( ‘)) If the Mackey functor M is b—prcjectiva

for some b in ® , then it satisfxes b-injectlve 1nduction.

Procf Let 9: M.b —.->M be any map representing the restriction m'ap
M -3 M as a split injection.‘ It is easy to see that &: My -‘--)'.M'

and Bb T My My represent ' o
__> My E beb

as a spl:.t equallzer {{cw) , p 145),

- Remark 4.7 Since the purpose of an induction theorem is to reduce

the problem of computing the values of a Méickey functor M to that o'f



computing its values on certaiﬁ‘small subgroups of G,‘it is clearly
desirable to identify the smallest collection of subgrcups for which

M satisfies induction, If by‘induction we mean b-projectivity for
some b, then locating this collection of smallest subgroups translatﬁs‘
into finding the least b in B {least with respect to"‘) foxr which

1

p ° M ——%-MB-ls a unit.in <M, M> (b}. By Propcsltlon 3. 2(c) it su£~
fices to consider those b inf of the form izl G/Hi with the conjuggcyn
classes H, all distinct. Certainly there is at least one minimalu;i
(with respect to< )} such b for which lb is a unit. If b and Bi-are  -
two such, £hen i ; M —QﬁvM is a unitQ—beingﬁthe'exterior pm&- ‘
_ bxb' bxb' L, ‘ o g

duct of lb and 1 . It follows that b = b --otherwise we would have-
bxb'~« b and b bxb' thch yields.a violation of the miﬁimal natune

‘of b. If b is the unlque minimal element of € which is a sum of dis~ 
finct orbits and for which 1, is a unlt in <ﬁ M> (b}, then by Prupo-

sition 2.2(c), M is a-projectlve for a 1n.@ if and only if b« a. :

This min;mal element b is sometimes called the defgcﬁ set orx verteﬁff.
of M.- | | ' _
The real difficulfy which #risea in.working_ﬁith'bminjective
- induction instead of b-projectivity is that there ié no generai - 0
| analog‘cfl!ufollary 4.5 for b-injective induction. In fact, eﬁhn“for',
G = Z/2, 'there is an 1ntegra1 domain satisfying bninjectlve 1nductian!
with modules which do not satlsfy b-injective induct1on. AS & result.
the only way of obtaining modules satxsfylng b—lnjective 1nduction L
{(which are not also b—progective) seems to be to construct them, 'Fof-

tunately, this is easy.



Definition 4.8 For any p¢® and any Mackey functor M, the {zeroc

dimensional) b-Amitsur cohomology, HbM, is the equalizer
B =My T My
T2

Since M —> M, équalizas the pair My _——__—-3 LW it factors

M }Mb
N
HbM.

Note that the assignment of KM to M is 2 functor and % is a natural

uniguely as

transformation, 'There are higher dimensional Amitsur cchomology
groups (see ( )} wh:.ch we will not discuss; hence we wr:.te HhM in- -

stead of the usual HbM’

| Proposi{:ion 4,9 {a) For any_bﬁtﬂ and any Mackei"fuhctor M, the

Mackey functor B, M satisfies b—injec:tive induction.' Thus, H, is a
functor from the .category of Mackey functors to the category"? cf
' Mackey functors satisfy:.ng b-injective 1nduct1cm.

{b) The.ma? 7: M —>HM is universal among maps from M into .
Mackey functors satiéfying B—injecti\re induction. ‘Thus % is an isca-.

morphism if and only if M satisfies b-lnjective induction.

| (¢).- The functor H_ : %7 —» 7, is left adjoint to the 1nc1uaiun'

functor 7}7.b -y }J?

Proof By its definition, % is an isomorphism if and only if M
satisfies b-injective induction, Thus, to prove {(a), it suffices

f.o show that



7+ i iy
is an isomo:phism, This follows from the diagram
> B >, = 2 Mo
7 l? - Ay %7
By, ——> B imM) > (M) ~—‘————3 Hb‘”mb’

N L

Mb—————}(H My, > (M), S

in théh the second and third rows afe cbtained by applying Hy aﬁd__
? 0 Ab.respectively to the-first row.,j The functor Mb is bwprOjectlve : 
sihcg'4a.: b ~—3bxb induces a splitting of the restrlchon map Mb«——-»'
My eh” The 1somorphlsms and xngectlons 1nd1cated above follow fram
~ this and the fact that Hby is a subobject of M.
Since ... S

M > W, —7> il
is an injécfion,j

- SR r—— )
must be an injecti;n. Using the fact that Hb(HbM) -w%'Hb(Mb) equal-
izes the pair Hb(Mb) 3%(%‘(13) and the fact that H M is the -
equalizer of the pair Mb % Mxpe it is easy to check that
i - M EM ———é'Hb(HbM) ’

.‘isAsurjeéﬁive_and’therefore an isomorphiasm, The rest of the proof 13

formal nonsense,

" The crux of the proposition is that we can cancnically cohv&;f .
any Mackey functor into one satisfying b-injective induction. More=
over, this process of producing Mackey functors satisfying bfinjectivu

induction has a host of nice properties., For example, we have



Proposition 4.10:‘(a) ‘The functor H!;; {regarded as a functor from
77}1:.0 Wb or from 771:9' ?) is left exact, In fact, Hb preserves all
limits. - ; |

(b) If Me77;b and N &W “then <N M)G7//’b and the map

<HNM> -—37——> <N,M7

is an :|.somorphlsm.

{c) If we defmne M Ele to be Hb(M oy, then there is a natura.l»

isomorphism
‘hyb{m a,N,L) —’?b(m LW, LY ). | |

for M,N and L& ??(b. ' Thus, 7y, is a symmetric monoidal closed category.
The _um.t for D is HA.

(d) There is a natural map

| o H.bM[] I—LbNm~—-->Hb(MEIN)=MﬂhN

for any Mackey functors M and N. Thus, if R is a ring and M is an .
R~module, " then H R is a ring and Hbﬂ is an HbR-module. The idéntity'::

element and multiplication of Hb!t are

Ao ma —REonn 3
: I-Ile"El HbR ——"'-———) Hb(Rf-" R) Bb? HbR

The action "of H.bR on‘H.bM is gi{ren" by

B

BR O M ——>® (RO M) —2> H M.
(&) aAny Mackey functor which satisfies b-injective induci:i,on'

is a module over,HbA.

Proof Part (a) follows from the fact that limits commute with limits

and the functor ? 01 B,  preserves all limits,



il

For (b)), if M.é: 3-'{?13, then (N,M?é 77£b for any NG”Z because (N,?}
' : .
preserves limits and commutes with ? O .D.s. That the map 7 is an
iSomorphism follows from the chain of isomorphisms
7, (L, <N,My) = 7p(L, <N,MY)
' b= (N, <L,M2)

i

2

T_(H.N, <L,M> )
-’”z’(nbn, {L.M7 )
=L, < N,M> )
=7 (L, < N> )
for any L& . .
For {c), we ha&e :
MmN Ema N,L)
= R(m, <w,1>)
=7, (M, <N,LY) |
for any M,N,L inl? . That HbA is a unit for D follows from (b)
since <ELbA,I~7> = <A, N) = N for N& 7)2 '
For (d), the map 9 comes from %: MO N -—eﬂb(m 1 N) vza ‘the
.chain of adjunctions ‘
Wzm O N, H(Ma M) < (M, <N,E (M @ o)
=, KHN,E (MO ND)
i, <ENE (MO DY)
= 2(HM, {HN,H (MON))) |
| ¥w(mp o BN, B (MO N))
The rest of (d) folloﬁs by iﬁspeétion.' Part- {e) is a spacial casa_of.
(d) since any Mackey functor is an A-module and E M T M if M satisfies
b-inieqtive iﬁduction. It should be noted that (c)} through (e) foiiéﬁ

from (b) by standard results in the theory 'of closed categories,



Kote that the con\.;erselof {e) is false even fc;ru the group G = z/2.

If R is a ;_i_pg.éatisfying b-injective induction, then Proposition
4.10(:1)' suggests an approach to studying an R-moduie M which fails
to satisfy b-injective'inductipn. First, the R-module HM must be
undefstood and the _the; map y': M ~—> H; M must bLe analyzed, If the Vmap
M —> Mb is injéctive, then so is 7 and this procedure has pquéd to
be enlightening. | | |

The right way to understand Propositions 4.l9 al}d 4,10 is to re-
call thaﬁ the category M of Mackey functors is a functor categorﬁr.and
to note that the cc;néi;tion that

M ._......_; My, —3 M

be an equalizer is ti:e sheaf condition for a rather siﬁtple- additiv"e. ‘
topology on 8 . The functor H_ is just the sheafification functof,-_ |
The best _.éou:_:ces fdr additive ‘sheaf thééry seem to be_Papé‘iisc:ﬁ-:(‘- ),

Schubert ( ), and Stenstxdm ( ). From them, we obtain

Proﬁosition 4._11: The category ”?.b is an abelian caﬁegory satisfying
condition ABS5. 'I‘hé functbr I-Ib( Ac), where c = I-EG G/H, is a proje’.-lcti'vél
. generator a{.’id ‘«V]b -ll‘1as enough ‘projectives andr injectives, | | o
It seeﬁts guite likely that much of the work in Stenstrdm { ) an
topologies for ordinary rings could be extended to apply to m;,_.... B
Such an extension should offer considerable insight into Wb and b~ '

injective induction,

Remark 4.12 Regarded as a functor from Wto_ 772, Hy is left exactk,bi:t

not usually right exact., As a result, it has derived functors. These



are easily seen to be the higher dimensional Amitsur cohomology
n : '
groups Hy of Dress ( ). Many of the properties he asserts for

them follow trivially from this observation,

13
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5. H-characteristic and H-determined Mackey functors

From Section 3, recall that H is the characteristic subgroup of
Mackey functor M if the restriction map'M-fe-MG/H is'injective_and
if M{(G/K) is zero unless [H] sﬁ‘g, Kot every Mackey fun;tor hés a
characteristie subgroup; but since fields, division rings, simple
modules ovér any ring, and intégral domains all have char.a‘c:teriatic
subgroups, the class of Mackey functors with characteristic subgroups
is gquite 1mportant in this section. wve iﬁtroduce the machinery needed
to xnvestlgate the structure of these ‘Mackey functors, We also ex~

amine two other closely related classes of Mackey functors.

Definitions 5. 1 Let H4G

{a) A Mackey functnr M is H-bounded if M(G/K) = 0 for [K]z.[ﬁ]
and ~ M(G/H) # 0 if M is non-zero. .
| (b) A Mackey functor M is H-determined if it is H-bounded and

satisfies G/H-injective induction.

Note that H-cha?acteristic.ﬁackey functors are H—bounded; and'H-deﬁar»
mined Mackey functors are H-characteristic, Note also that if Mis !
H-bounded.éhenHG/HM is'H~determined. CIEarly, the zero Mackey func-
tor is H-—bounded_ and H—determihed for any H<LG. A non-zero Madce‘y
functor has a£ least one bounding‘subgroﬁp (since there are only fi-
nitely many subgroups} and may have more than one. A‘nan—zero‘H~ "?
characteristic Mackey funétor has a unique (up to conjugacy) hdundé»
namely,'H.‘ A non-zero Mackey functor need not be determined by a
subgrqpp, but if it is determined, then a determining subgroup iéh

al.so a characteristic subgroup and is therefore unique up €0 conjugacy.



From Coroliaries 3.6 and 4.5, wé obtain that division ggggg and
fields have determining subgroups., Our basic result in this section
is a clas#ification of Mackey functors with determining sﬁbgroﬁpa.

~ For any sﬁbgroup H of G, the set of maps <G/H, G/H) is isomorphic
to the Weyl group wh. | Thus, for any Mackay functor M, M{G/H) has a
WH-actiod, and'evaluaﬁion at G/H gives a forgetful fubctor from the
category of Mackéy functors to the category of ﬁodules over ﬁhe Qfanp .
ring 2[wi#]. Our charécterization of H—deterﬁined Mackey funcﬁofs islrh
that this forgetful functor‘becomes-an equivalénce of éategories wheﬁ.
it is restricted to the full subcategory ofjﬁ'cqnsisﬁinq of H~deter;f:
mined Maékey functors,., Note tha£ if R is a ring, then, by Propo-
sition 3.9(¢), WH‘aCts on R{G/H) by ring autbmorphisms. | '

For any Mackey functor M, the image of the iestricfion map
M(1) —-ma»M(G/H) is contained in the set M(G/H}WH of WH-i;variant'
elements of M{G/H). If'M is H-characteristic, then the map M{1l) —>
M({G/HY is iﬁjecti§e and wé'identify M(1) with its image in M(G/H}WH
In particular, if M is H~determined, then M(1) is exactly M(G/H)

It should be obvious by now that this section is golng to be
littered with WH-actlons. Unfortunately, the natural choices for
these actions are a confused jumble of left and right actions, wéff_
hrlng some order into this chaos, wve adopt the convention that all B
WHuactions are from the left {by acting through inverses when the
natural action is on the right). |

Cuxr basic tool for working with H-bounded Mackey functors is

the following elementary observation zbout finite G-sets.



Lemma 5.2 if BZ4G énd b 13 _é flinite G-set, then there is a one-to-ona
correspondance beﬁwéen c;fbit.s_. in G/H*b iabmdrphic to G/ﬁ and the ég{;-_-'
of maps <&/H, bY. The ‘correspofndepce is g;liren by taking-fe(sﬁr'lﬁ
to the image of the map " L o " .

| ©¢ g/m ALEDy e/mnn -
.'.'_‘From this, ve cabtain | o ' .

N 'corollazy 5 3 If M is an H-b@unded Mackey functor and }ﬁ@ then t‘ho

| M(G/H*b) @-‘-1 ff’, on (o/m) SRR
. e fe.(s/n,b> ;

: is an :.somorphlsm. I‘urther, the effect of the projectmn maps

G/Hxb ---—1--3» c/H and G/H xb --—-—7 b on M is described by the aiagrm

M(G/Hxh) _M.L} - M(G/H) o .'_ -

M( G/H}

Mmo/axp) —2LE) o p M{6/H)

£e {G/H, h}

<

M(b}

The transfeﬁr maps éssociat@d to the pfcjectiozja are déscrj.bi;dq W;Mm

ogous: d:a.agrams.

The bas:.c 1mplicatians of i:his c@rollary for H-—-hcunds& arad Ho

characteristzc Mackey functors are sumarlzeé by the follawingo

.Px-onosition 5,4 (a) an H«bounded Mackey functor M i& H—charaiﬂ'té&-iéﬁi@

- if and only if for every be@ and every nom-zero x in M(b), theraz,s@
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‘resi:r;i.ction- map £ : G/H —% b with £{x) non-zero in M{G/H).

‘ (b) An H-c}?aracteristic, cdmﬁutativé ring R is e;m integral
domain if anci only if for é{;éz-.-y; non-zero pair %,y in R( G/H), there
is a ge WH such that the J.nternal product xo(gy) is non-zero in
R{(G&/AH). 7 _

(e} If ‘R is an integral Jdomain with characteristic subgroup ﬁ.
then R(GH)‘. is an 1ntegra1 domaln and the non-zero elements of

R{ G/I-I)wH are -not zero—d:.v:n.sors in Ro,

(d) an H-—characteristlc ring R ig a division r _______g if and cnly"
if for every non-zero xéR{ G/H) there exist vy, 2 _e r{G/4) such that
t(xey) = t(zex) = ’n" R(1) where t : R(G/H) —> R(1) is the tra:_xsfez‘r‘l'
and the two products are iritern_al. | ' B

(e) If M is H—bounded; then for any b inB, the composite

M(b) --—->~M(1) —E— {6/ |
{vhere t is the transfer and r :.s the restr:r.e:ta.on) is just

(1) re(x) = = £ (x) - ) : for x & M(b}., =
: - f?G <G/8, by D ..

In particular, the composite rt : M(G/H) —— M(G/H) is just.the
trace of the WH-action, ‘Note that vwhen M is H~characteristic, flor-A'

mula (1) actually describes the transfer t : M(b) —> M(1).

é!r&f_ (a) If M is H-bounded, then M is H;chﬁracteristic if and cmly

if the map | A : | . ' i
M(®) ———=—> M(G/H*Db)

is injective for every b in®., Part (a) follows immediately from -

| the.ﬁescription of this map in'rclﬁrbllary 5.3. |

(b) Assume first tﬁat R is an integral domain. _Thén for any -



non-zero X,y ;m R(G/H}, the external prcduct xyf.-R( G/H X G/H) must be

-ncm-zero. It is easy to chec‘k that xy goes to the tuple (x"gﬂgeﬁa

under the :Lsomorphi sm

R(G/Hx G/H) ,’=—f' @ R(G/H)
o gé WH

of c':orollar‘y. 5 3, Now assume that the indicated condxtion on R(@/H}
holds. For any non-zero x¢€ R(a) and yﬁ-R(b) ve must shcxw that the

| product xy& R{a xb} is NON~ZBX0.,. By (a), there exists mapa |
£: _G/H -——> a and ht G/H —>D such that £(x) ~and Bly) are mnfgam.’§"'

o

ey

in R(G/H). The diagram
o R(a) ® R(b) ———-———a R{a xb)
lf@h' : _‘ £xh
' R(G/H) ® R(G/H) --L-» R{G/H x G/H)
commutes by Propos:.tian 1.5 and it suffa.ms to show that the external""
product of f( x) and h(y) is non-e-zero. Th:.s follows by reveraing' thc
first half of our argument .‘ o -
| (c) Part (c) is imediate from ('.b). o . | ' '
‘ (d) If R is a division __'___g“then the required cbn.dition'oﬁﬁ'_;
R{ G/H) holds because it is- just tha assertion that every mn—zero
' element of R{ G/H) is & unit.. Aasume the :x.nd:.cated chdlthD on R{ G/.H}
holds, then for any b&@and any non-zero X in R{b), there is a map ‘-_
f:6/H—D with_ﬁ':i] nq'n-zero in R(G/"H).' But then £({x) is a ;__ug:.:_"g:- :
so x must be by Proposition 3.2(c). _ . o
o {e) AThe map rt : M{b) —» M{G/H) comes from the composite
| G/H ——3 L €—+—Db o

in 6, This composite is t_.fxe, Same as'tha ap
~ . '

’lTi » k'l

G/H «+=— G/HXD

> b.



Part (e) now follows from the characte;iz_ations of ’Fl and ’17'2 in
" Corollary 5.3.

Propogition 5,4 completes our basic remarks about H-bounded
Mackey functors, and we turn now to the problem of constructing a
functor from £ {WH]-modules to Mackey-functors which, in some Bénse, |

undoes the effect of evaluating at G/H.

pDefinition 5.5 If V is a’ zfmﬂ mmodule,' then the Madcey functor
Io/m V is defined on b in € by ' |

Vi{b) =

Co/u | (f; g/ﬁ, By )m

Here, WH acts both on each of the summands V and on the indexing set -
{G/H, b) by precompcsii:;on {(using the fact that WH = <G/H, G/H) )., If
"h is a map in® given by " | ' |
h : .a-é—:]—l— 24 --—E-g—-é‘b

then H : (JG/ V)(h) ——-—9 (7 o/H V}{a).is defined by the diagram

L ‘ |
I = @ v]™ >(f = (Tgpq VIa)
G/H ) 7 !H
£€ <6/H,b? \ere do/m, 2> o
7, | - N
® v 4 > v
ec/a, v»
£ = hl‘t | . | o
where §f is the projection onte the summand indexed by £f: ¢/ —> a,.
. £ i

It is easy to check that JG/ Vis a Mackey functor. Any map j ': U -—}.
Vv of z[WH] -modules induces a map

JG/H J =z JG/H 1§ """“"""}JG/H v



“BO JG/Hlis a functor from the category of Z[WH]-modules to the

category of Mackey functors. Note that the map

@ g: v——eé )wu = (J /HV)(G/H)

induces an :.somorph:.sm between V. and ('JG Ju V)(G/H). ' _ : -

It is easy to check the follow.lng lemma:

Lemma 5.6 For any Ziwil-mduseV 35 /HV is H-detem:.ned.

In fact, the definition of Je /HV on obgects may be recovered

£rom the assumptions‘thai‘: Je /HV is HE-bounded, (J, /HV)(G/H) = v, at_u?

‘the diagram
e/av ? (JG/ )G/H — (JG/ Ve/m </

is an equalizer. The motivatig:n for the definition of Jg /Hv on '.

maps comes from the diagram below in 8.

Remark 5,7 The des'cription- we have given for JG /H is the easiest ém@

to use for provihg that JG /8 is a funéi;or, but it obscures the xeal
simplicity of (‘JG/HV)(I:) for bel . There are two alternate descrip~

tions of JG/H which give a better feel for its value at any b in® ,

For any 6@ and any f : G/H ~—%» b in G, let Wf be the subgroup of

WH which f:uces f as an element of <G/H, b} that is, g&wf if and on].y

if the diagram

- -



commutes ., For any z[WH] -module V and any subgroup W of WH, let
v" be the W-invariant elements of V. oOur first description of

JG/H(b) is

(2) Je/u

V(b) ‘?..‘ ® Vwf | _ for hec
fe {&/H, /uH : ‘

where the sum runs over the orbits of <c/Hy, b> under the action of WH.

‘I‘hzs description is not entxrely natural because the subgroupw dea=-

pends on the choice of £ within its orbits a d:..fferent choice would . .

yield a conjugate subg;‘@up and an isomorphic fixed point moduJ.ie; i‘ll'e. _

lack of naturality in the choices of the £'s makes Ehé description of

the effect of amaph : a —> Db on Ja /HV ‘hﬁrd to describe in terms

- of isomorphisx_n {2 ). One notational trick sBeems very useful here. For
be®, £ : 6/H —> b and vé vwf let v, GJG/ V{bd) be the element wﬁi_e:h

iz v in the place correspbnding to £ and zero else where. Then v.f is

a canonical choice for an inverse image of v& / (G/H) = V‘undef

the map

ff: T V(D) ——> o v( G/H).

Our second alternate description of Jc; /Hv applies directly only.
to J(,/ v(G/K) for [H] £ [K] For any g& G with gnlﬂgc K, let W9 be

the subgroup
(NE N gKg Yy u

of WH, Then there is an 1somorphlsm

o g
-4 : : |7 S
| (JG/HV)(G/K) ® v

[g™*ngl

where the sum runs over a set of- g¢ 6 such that the. subgroups



g-lﬂg 5-}( form a set of reptesentatives of the K—ccnjuéacy classes of
K-subhgroups which are G—oonji:gaté to H. The subgroups w2 depend on |
the choices of the g € G so this isomorphism is not entirely natura&ll
and it is hard to descrilﬁe the effect of amap h : a ---—? b in . on
I VMl The connection between the two defirnitions ‘ij‘s thét the maps
G/H —» G/K in G are in one~to-one correspondence with the K-conju-
gacy classes of Kesubgfoups which are .G-conﬁugat'e to H.
The proofs o‘f both of these alternate_descriptioné are easy

manipulations of the original definition.

* Por any Mackey functor M, M(G/H) is a WH-mbdule and it is
natural to attempt to compare M and J /H(M(G/H)). For any be®, ve
have a map Rb : M{b) —> JG/H(M( G/H))(‘b) def:med by

, A f WH ' :
A, s Mb) —2E50 @ M(c;/m) = 3 . (M(G/H) D).
b ¢ <G/H,by - /8 1B

However, for ah arbitrary M, the maps ‘A hl need ﬁ_ot fit together to

fcirm a mép

| | Az M ——> J. L (M(G/H)) . |
- of Mackey functors. - Conditions for the existence of A as a map of

Mackey functors and the basic properties of A are as follows- "

Lemma 5.8 (a) For any M; a 5ecessary and sufficie'nt. condiﬁion for
the exi.sténc":e of A: M — Ia fI-I(‘M( G[H))_ is ,5;hat the t::;ansfer ﬁtaps
- £ : M(6/K) —> M(G/H) :
are zero for every £ : G/X —> G/H in &  In .particular, if M is G/H
bounded, then A é.xi,éts; '
(b) 1f A exists, then M is H-detemined if and onmly ifd is an’ |

isomorphism,



(e} 1f 1 exists, then it induces a map A HG/H M —>J (M{G/H))

G/H

o’

making the diagram

M -——-—--—-a- JG/H(M( G/H))
Hopft .

commute., The mép 2 is an :.somorphlsm if and only if M is H~-bounded. |

The proofs of (a) and (b) are easy diagram chases, The prodf'of (c)
follows from the observat;on that for any M and any b"-‘ Q (HbM)(b) -"-'-'-!_
S ._-.'”'"
Let /H77( be the fu.ll .subcategory of’iz consa.stlng of 'the Macke:y
functors for which 3 is defa.ned. Our basic technlcal tool. for ana-
lyzing H-characteristic Mackey functors a;nd _o‘ur- classlflcgt:.on of _H-_

- Gdetexmined Mackey functors are given in the following proposition.'

Proposition 5.9 {a) The map ‘
- - A:'m —>3 /H(M(G/H))
~ and the isomorphism '
V(G/H) —-———‘r v

é G/ o T
"of Definition 5.5 are the unit and counit respectively of an adjunc-
tibn .betwéen- tﬁe "ew'.?a'}.ﬁa‘ltién ai:'G/I;i" fs..mc:tdi" -

G/HW—_—} zﬁm] <o modules:
- and

oy ¢ 2lail-modules ——>' /H);?

{b) The two functors above restrict to a natural equivalence

betwean the category of £ [WH]-modules and the category of H—detex-

mined Mackey functors.

C -
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We want to understand riﬁgS'and modules bounded _by H, so ve nheed
to relate pairings of Mackey functors to some sort of ‘_pairings Qf

2 [ WH] ~-modules,

Proposition 5,10 If U, V, and X are ,z[WH] ~modules, then i:he#'e is a

one-to~-one correspondence letween Mackey functor pairings

G/H"

and WH maps
' UGV ——> X

- where WH acts diagonally en U B V.

Proof Given a WH-map 6 :'U® -V —» X, we define a family of maps
Oy 1 JG/ U{b) @ JG/HV('b) -—--5.:‘ G/ P)
sat:.sfy:.ng the conditions of Proposition 1.4 by the dz.agram
(.8 U)WH® e v )WH___L..»( & x )Wﬂ
¢ G/m B ‘e &G/H,p>T . \£"e L6/
1rf..fMT " o . ’ - Trf"

U v — ‘ > X

where "ﬂ" is projection onto the summand corfesponding to £% ., The

exlstence of the requ:i.red palr:mg of Mackey functors follows from
Broposition 1.4, .

Given a map #: J o/uY S JomY —> JG/HX we recover the map ' |
8~- vV -~ X by tak:.ng b = G/H in the descr:ptlon of Nackey func~
tor pairings in Propos:.tmn 1.4,

Remark 5.11 The proposition above can be fancied up considerably (ér.

totally obscured—¥depending on ona's roint of \'rie_x..r) with a little

closed category theory. The real key to its proof is the fact that
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bl
-

.. . @ o, .. . . .
(TgmY o JG/HV)(G/H) is U@ v with the diszgonal WH-action. 1In f‘act,
a fancier version of Proposition 5.10 would assert that if X is a

z [ wH] -module and M and N are Mackey functors in G /Hzg one of which

is H-bounded, then there is a one-to-~one correspondence bhetween pair-

ings . o
| | Mad N —> JG /HK
and & [WH -maps ,
‘ M(G/H) @ N(G/H) -—> X.
o The key to the proof of this is the observation that M I:I'N is
then H-bounded (and so .in G/th) and M B N(G/H) is Just M(G/H) ® N{G/H)
with the diagonal WH—act:Lon. | | |

‘From Proposition 5.10, we obtain a description of H~determined =

xings.

cdrollary 5.12 Jg /8 induces a one-to—one correspcndence (up to i.so-‘.: '
morphlsms) 'between H-detemined ;_;mg and pairs (S, 9 © WH -—-’!r Aut(s))
. where S is an ordinary r:n.ng and & is a representatz.on of WH in the -
group of ring.automorphisms of S. The correspondence pairs oonmu»

tative rings_and commutative rings,

We aenoté the _.i_‘g.‘correéponding té'( ' O ) by Sy and the EJ;__g corres-

_ pond:.ng to the £r1v1al map WH —3% aut (S) by S T
. Of course, for any pair (S 9 - WH '—-3' Aut(s)), the H-determlned

modules, over the :r_:l.__g S5 corr_espond exactly to pairs (V,?_) Wher_e v

is a z[wH -module and | .. . ' |

o Frsev—>v

. i3 a map of Z[wH] -modules, but this description is ra'i:her awkward, 'J.'o :

obtain a better one, we define the ring Sfm to '.be the free S-mog!ule.

generated _by‘ the set WH with multiplication given on generators sqg,



s g' {for s,s;.c:S: g,g'emij by

(sgi(s'g') = (s@(g)(s’))gg'). |
The riﬁg 3f5] has the same S~mcdule'structufe as the group ring s[ws],
but the muléiplication.of sfel incoxporates the action of WH‘qn s
(vhereas the multiplicétion of S[wH] does not); It is easy to see
that s(s] ~modules correspond exactly to the pairs (V,§) abmfé, 50

we have

Propos:zt:.on 5. 13 For any peu.r (5, &: WH -—-'7 Aut(S)), the functor

J restricts to a natural equlvalence between the category of Stﬁﬂ-

G/H
modules and the category of H-determlned Sb-modules.

Examﬁiés 5.14 (a)-LéE F' be a field extension of F with Galoislgroup"

G (hereafter indicated by [F',F; G]). The Weyl group of the trivial"
subgroup fe} iswé,'so the pair (F', 1: G —> G) determines a commu~
tative ring Fy The transfer h L "
Fi(c/sep) = P ——s (5)% = FI(2) B
isujust the trace of the extension [F', (r')%; cl.’ It follows imme&i~‘ 
ately from pfoposition 5.4(d) that F; is a field. | | |
(b) Generalizing (a), if [F!, F*Zf] is a field extension. and
0 WH-—*}ﬂ is a homomorphism, then F‘ is a commutatxve_uiJg It
- follows 1mmedlately from Prop031tlon 5.4(b) that Fj is an 1ntegra1 '
domain. The transfer S o .
LFy (e/H) = F! ——> (é' )H = FB'(l) |
is just the trace of the extension [FﬂiF')”:ﬂﬂ multipli€d by the order
of the kernel of &. Thus, if [kero| is prime to the characteristic
of F', then F/ is a giglg; In Sectioﬁ 7, we show that this is one of

two basic sources of fields., We discuss modules over Fy in Section 7,

{c) For any ring S, there is a xing S{ ; obtained by taking the
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trivial represéntation of wfe}‘= G in the avtomorphism group of S. By
Proposition 5.13, there 'is an.equivalence of categories between the
category Gf s[G]l-modules and the category offe}—determined Sfé}jmodules.
This rathef quaint view bf S-valued representation theory might have
applications because if S is commutative, then so i? Skas{unliﬁe_
's[el), and if S is an 1ntegra1 domain, thensi.kas an integral ddmain‘
This suggests the possiblllty of applylng the techniques of commuta- :
tive -algebra--~in so far'és the& extend to commutative gigggr—td repre—
sentation theory. 'Note that the transfer | |
S1e3(O/fel) —> S;3(1)

is just multzpllcatlon by the.order of G, Thus, if the characteriss

tlc of 5 and the order of G are relatlvely prime, then both S{éiand
altl its modules are feiﬂprojectlve. Further, if F is a field, then -
F e%is a field if and only if the characteristic of P does not divide
the order of G, Thus, the well-behaved part of field-valued repre~
sentation theoxy corresponds‘to'the study of modules over certain |
fields and modular repfesentation theory corresponds to- the study oﬁ

modules over certain integral domains.

Remark 5,15 The functors-JG/H can be used to construdt a curious

natural filtration on Mackey functors. Partition the set of sub~
groups of G into sets Spe Sl' cee s Sy defined inductively by 1etting |
be the set consisting only of the trlvial subgroup {e} and S; (for

1>~1) be the set con81st1ng of those subgroups whlch are not in Ssnq

' el
and vhose proper subgroups are all in Sj' Thus, 51 is the set
: =0 .

'



of cyclic s;ubgroups of prime order, and SZIIis the set of subérmups
which Are not cyclic of prime order, but which have no subgroups other
than cyclic groups of 'prime order., Define a decreasing _fi}.tra?:ion on
any Mackey functor M inductively by My = M and _ |

Mg = ker[ﬁ@ ;{G/H : My & JG/H(Mi((.;/H”]

‘ (:Si lHESi

It is easy . to check that M:i, is in G/ ?pf‘or 'Hési so the required maps

a /u 2re defined. 1In fact, if ve define %. to be the full subcategory
of 7/Z vhose objects are the Mackey functors N with
i1
N{G/K) =0 .. for Ke U S.
) : ‘ jz:l J

then Mi& 7?1 and our‘ pzl:ocedure defines a 's:-;quence of functo;:s.
M= Ry =27, >y~ .. =7, = »>

where n is the integer with S = {c}. These functors are right ad-
joints to the inclusions. - '

(03 3 céurse, applying this filtraf:ion to any chain complex or co-
complex in 70 p?oduces a spgét.;*:‘al sequence, The spectral sequences
N obtained"in this‘walty from the cellular chains and cochzins of a G-space
_(or spectrum) X and.those;- obtainéd' f.r‘-::m a projective 61.' injective

resolution of any Mackey functor are currently under investigation.
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6, Prime and primary ideals revisited

1If 8 is any ring and P is an irreducible two-Zided ideal of S—m
or if 5 is a commutative ring and P is a primary ideal of S--then 5/P
is a EERQ with integral charactéristic pn for some integer n2land
some‘prime p (p=0is possible). For this reason, rings with
characteristic p" merit special inveétigation...ln this section, we
begin such an invéstigation by considering rings R with‘integral char-
acteristic p” and a characteristic subgroup H, This cléss of £§ggg
includes, of coursé, rings of the forﬁ S/P where 5 is commutative and
P isfa primary ideal of's. From this study, we obtain a descriptién-
of the‘prime and primary ideals of the Burnside ring. The techniéueé
employed should be appllcable to the study of the prlme and prlmary'
~ideals of other rings. |

The key to understanding the mod p behavior {(for p # 0) of any'
ring-~-or any.Maékey‘functornwseems to be an un&efstanding'of certain

chains of.subgroups——which ve call thoﬁers~—in our ambient group G,

Definition 6.1 For any H< G and any prime p, H, is the minimal nor=-

mal subgroup Of H with H/gp_a p-group.' Tba group Ep ig a subgroup
.of G correspondingrto a p-Sylow subgroup of Nﬂb/ﬂb-which contains
H/Hp Thus, we have H < Hp I-!p-d H and HP/H is a p-group {(by

K 4 J, we mean that K is a normal supgroup of J). Note that B® i
defined only up to conjugacy in.G; For p =0, we take gg = HF= H
for convenience in stating results. The p—tower associated to H in

G is the collection of subgroups K with [Hp] 2 (x] fj:Hp],

For convenience, we transcribe here (from ﬂ the properties

of Hb, P ang p—towers which we need,



Lemma 6,2 (see { )) {a) Hp iz a characteristic subgroup of H.

(p) 1f [H] € [x], then [Hp‘] 5. [I(p].

(c) 1If EHP“I <[kl < [&®] i:han[Hp] = _[K-p'] '

(d) If R ¥ K and K/H is a p-vgroup,-then[H'P]=[KP]. |

(e} The prime p doeslnct divide the orderof w(ﬁpL but if
H< L < Hp, then the order of WLH ié‘pm for socme mﬁ:l.‘ |

(£f) X£ H, X are subgroups of L. £ G and{hﬁﬁ=ﬁﬁJ,then for any L-

set X,

‘IQ:/H, x7L, = ](L/K, x_)Ll mod p

where‘<x,Y>L is the set of L-maps from the L-set X to the L-set Y.
:The Well-béhaved igggg_with intggral chéracteristic pP seem to

be those which have a bound H and are G/HP-projective. The Sihplest

examples of such rings are given by

Proposition 6.3 If R is a ring with integral characteristic pn_(p # 0)

and characteristic subgroup H, then R is G/Hp—projective.r

Proof By‘Lemma'G.Z(e) and (£), p does not divide I<E/H, G[Hp>l s0
there is an integerm with m f(G/H,‘G/Hp>1_ =1 mod p’. To compute
the tranéfer t(m-lm.-p) & R{(1), we fhink of R(1) as a submodule of

;G/H .
R{G/H} and apply Propcsition 5.4 (e)}. This gives

t{m-1 )y = . 2. F{m-1 . )
G/HP £ e <c/u, c/uP > c/uP -
= S om-£1 . _)
c/uP
‘ = E m‘lG/H . .
= m l<B/H. G/HPPI E 1 mod pn
Thus, m-1 is a2 unit and R is G/Hp;projective.
c/u?

If R has characteristic zero, then we have t(leH) :]WH[{lRE-R(l) s0



the conclusion above need not hold unless: IWH( = 1 or R(1) ié a

rational vector space.

if R is an H-bounded, G/Hp—prajective ring with integral charac-
teristic pn {p # 0}, tﬁen the proper way to study R seems to bé to
doméute the transfer maps out of R(G/k) foxr the subgroups K in .the p~-
toﬁer determined by H. These maps may be hard to-cémputé in R, But

.they are easy to compute 1n HG/HR if we think of HG{HR as JG/H(R(G/H))
and apyly Remark 5.7. If R is Hmcharacterlstlc, then the map 7' R —>

H.,R is injective and the computat1ons in HG/HR are especmally useful,

G/H

Proposition 6.4 (a) Let R be an Hfdetermined ring (which we think of
‘ : b
M

as T (R(G/H)). Let £ : G/H —> G/K be amap in G, v € R(G/H) °,

>

and Ve € R(G/K) (as discussed in Remark,5.7). If h * R{G/K) E—
R{G/L) is the transfer map induced by h : ¢/XK —> G/L in é; then
| B (v >N | ”
ge W, f,'wf
where the sum runs over a set of coset representatlves for th/ Wf

' con51dered as a subgroup of WH/W_. |
(b) IfH=XK<LSNH ve R(G/H) and T: 6/H —> G/K and
1': G/K ——> G/L are thé p?ojecticns,.then - -
| 50 v, ) € pRtG/L)
{c) Let R be a ;;gg with integral characteristié P and charac--‘
teristic subgroup H such that WH acts terlally on R(G/H) dnd let
H < K with iK/H[ p. Then every transfer R{G/H)"—> R(G/K) is zerﬁ.

The proposition above {and other results) suggésts that, for a

ring R with integral characteristic pn and bound H, the behawvior - -of



the transfers out of R( G/k] (foxr K < g® in the prtower determined h
by H) is closely related to the tracn of ‘the WH-action on R( G/u}. if
there are elements in R{G/H) whose trace is a unit in R(G/H], then
R should be G/K-projective for some K < uP, otherwisef elements in_"_-'
'ﬁhé image of these transfers tend to be'nilp_otent. | |
Our objective for the remainder of this section is to show how
the results above can be appl:.ed to detemne the Pr;me and primary
ideals of a ring. If P and Q are pr:.mary ideals of a xing R, then -
we would like to know when” P is oonta:a.ned in Q. - This’is, of eourm.. '
equivalent to knowing whether or not there is a u surjection R/'P
Comauting 13Tk Tha progechios frew R, .
) R/QA The ex1stence of such a map imposes fairly stringent con-

: dxta.ons on the characteristic subgraups and J.ntegral characteristics

- of R/P and R/Q.

Proposition 6.5 Let R and S be {non-zero) rings with characteristie

subgroups H and K and integral characteristics pm and qn (p and q |
prime) respectively. 'I‘he existence of a map R --—-)- S J.mposes the
‘following conditions on H, K, p ' and q :

(1) Eltherp gand n2moxr p=0

(2) If p # 0, then [Hl¢ [ [8P1

(3) If p = g = 0, then [H] = (K]

(4) If p = 0, 4 # O, then either [H] = [x]

or q“l wal and [H] < [K] < [Hq.]

‘Proof Note that J.f R(Db) 7'« 0, then it has characteristic p because
the map R >Ry is injective., We denote the identity elements in

R(b) and S{b) as 1

R.p, 2nd 1g , respectively.
! , ’



(¥

Condition (1)' follows from the existence of a ring map R(1) —> ‘
s{1).
Since 1I.R G/KE R{(G/K) maps to 15 G/KéS(G/K} aqd J‘S,G/K £0, we

must have [H] < [K]for any cholce of p and gq. If p # 0, then'iR 6/uP

is a unit by Proposition 6.3 and so must go to a unit in S, This
forces [K]<[uP]. 1If p = 0, then 1p. g/y transfers to |wH - 1z in
R(}i), so either {werf "1g is zero in g{1) or. 18' G/H is non~zero,., Forx

p=gq =0, this forces [H] = [K]. If p -o, q # 0, and [4] #[x], then

we must have q ’lWHl 80 that WH’ 1 is zero, Slnce 1 /q trans..
R,G/H
fers to ’(G/H, G/Hq)’ and q does not divide I{G/ q71 the
imag}e' 1 of 1. - .is a uru; in s(c/HY) and we have [X]< [Hq_].
s, a/u? R; 6/u9 }

The behavior of the primary ideals of the Burnside ring shows
that, form =1 in the proposition above, the indicated restraints -
are the only general ones imposed by the existence o.f ring map R ~—»S.
If m # 1, then thé existence of ring maps R ~—> S seems to be a .

. rather méssy problem, | | ‘

To obtain a description of the p_rimé and primary ideals of lthe |
Burnside ring, we con_sidef the gi._:}_gg Y 7’pﬁ)H obtained from coro;l.- “
lary 5.12.  The only zero divisors in . (Z /pn)Hlare nilpotent (by
Proposition 5.4) so the kernél of the identity element map A -*-«-b-

{zZ /pn)H is a primary ideal of A, which we call 'q(H,pn}. ‘The ideal
qg(H,p) (for any H £ G} is prime since (Z /p)H is an i.ntegral dcarﬁain.
- These definitions and Propositions 6.3, 6.4 and 6.5 suffice to '

‘describe ‘the prime and pri_mary ideals of 2a.

Theorem 6,6 The ideals q(H,pn) include all of the primary ideals



of the Burnside ring A, 'Fu:ther,

m
q

]

fa) g(H,p") # g(K,q") unless [H] = [k]and p"
{b) The only prime ideals of A are the q(H;p} {p = Q-is-

" allowed). The énly maximal ideals arxe the prime ideals of the form
q{ﬂp,p) for p ¥ O. |

(c) The minimal prime idesls are the q(H,0). i

(@) The prime ideal q(H,p) is contained in the prime ideal q(K,q)
if and only if [#] < [K1< [HY] and either p =0 oxr p = q. '
- {e) 'q{H,pm) < q(H,pn) for m Z.n, | -

(f) The ring A/q(H,pn) is 'the image of A in (-'z/pn)h. if hin |
is a unit in z/pn. then A_/q(H.pn) is isomorphic to (z‘,/p“)ﬂ and is
G/B-projective. . ' '

{(g) If p does not divide either [Hl or IWH! then the iocaliza—‘
tion of A at the prlme ideal q(H,p) is (A/g(H,0}} B z ) wvhere .

( )' is the localization of Z at p. In pa:tic’ulgr.. (A/q(H-,O))@“ Q
is the field of fract;ons of . qu{H Q).
Note that no éomment is made on the relation between q{H,p") and
a(K,p") form > 1 gn& [ml< [K] < [B®]. The relstion between these
two ideals seems to be a fairly hard proklem, Also note tha£ the
localization of A at g(H,p) is not described if q(H,p) does not meetv
the conditions in (g): it is notlclear that the localization exists
fdf such q(H,p). ‘Of course, by the localization of R at é prime
_';_g_g___], P, we mean a ring map % : R —» 5 with G(R—P) contained in
the units of S which is universal among “q_g maps with this property,

The basic source of the problem of obtaining localizations is that



inverses to units need not be unique.,

Proof of 6.6 Let P be a pr:.mary ideal of A and let p and H be the
'integral characteristn.c and characteristic subgroup of A/P. The map

al{G/H) —> A/P(G/H) is aurjective so A/P{G/H) is generated by the
images of the elements | R |
6/n <L /3 —> 1

in a{e/n) = [e/m,1] . We c':an'assumela 4 H, The elements for which
J # H vanish in A/P(G/H) because they factor. through a/p( G/J) vwhich
is zero. 'I'hu.s, a/p{ G/H) has a l:.ngle generator and must be z /p .
Since A?'P(l) sits inside the elements of A/P( G/H) J.nvariant under the
WH-action, A/P(l) must be 1somorphic to A/P(G/H)(v:.a the restr:.ction
map) and A/P(G/H) must be fixed '.by WH. Thus, H mn/P is (% fp )

"by Lemma 5, 8(e). Since the map A/P —» H /HA/P is injective, P must

" be the kernel g{H,p 7y of the inclus:.on of the J.dentity element A -—-} o

G/HA/P = (Z /P )
To establish ,(a), apply Proposition 6;5-tq A/q(H.p‘n) and

a/a(n,q" e . .
For part (b), mote that A/q(H.p (1) conta:.ns 2ero dlvisors un-

less n =1 so the ;nly prime ideal_s are the q(H.P).' No q('H.O) can hc |

maximal since A/Q(H,o)(l) = ¥ which is not a f‘ield. If p ¥ O and B

H# HP; then A/q(H,p) is not 'a field because, by Proposition ‘6.4(3)-,

| 1G/H€ A/q(H,p)(G/H) is not a'g_r_y_i._t_:. | For p # 0, A/q(Hp,p) is G/uP-

projective (by Propositioﬁ 6.3} and is therefore isomorphic to |

(& /P)Hp which is. a field by Proposition 5.4(d). Thus, the g(HP,p)

{ for .p # 0) are maximal and éré the only maximal ideals.



| Of course, the ideal q(H.pn) is oontained. in q(K,qm) if end only .
if there is a map | | B
- a/q(s,p") —> a/a(k,q").
Paxt (c) and the "only if" half of part. (d) follow from thi.s obsewa-"
tion and Proposition 6. 5. To prove the "if"” part of (d4d), it sut'fieeaft _
‘ to show that if P¥ 0 and H< K < H , then q{H,p)c q(K,p). By th. "
'solvahility of p-groups, there is a group J with H4 J < X cuch that’
J/H has ordex: P. By Lemma 5.8 and Proposition 6.4, there is 2 -ep
o A AMQ(H,p) —> J /J(A/q(H.p)(G/J)) | .
and therefore a map
X sasatsp) —> 34,02 /p), (6/a)).
Let V be a direct summand of
| (z/plg (e/3) = © 2/p
| . ge<G/H,c/J>/w8 o
oorreaponding to an orbit of the action of WJ on <G/H,G/I)/WH. M
Jg /3 | (V) is an integral domain by Propositi.on 5, 4(b) and the kerml '
of the :I.dentity element map ' ' '
| ‘ A ——> .:rG 73 (V)
.muat be g{J,p). But this map factora as
A—>MatE,p) —2> 3, (2 /p) W6/ —> 3,0 (V).
Thus, g(H,p) € g(J,P) -and an 1oductive application of this . process
gives gq(H,p) € q(K,p) for H<K <H. ' o L
Part (e) follows from the obvious existence of a _;__g map
(z/p)—-btz/p)tormsn.' | |
For (£), the fa_ct that A/q(H,p") is the image of A in ( z /p ’B'-
. follows from the definition. The rest of {f) follows from the obter-

vation that &(1 ) = wal ‘ in ( 27p" Yoge
6/H. ' (z/pn) ol



Kquc put

er

ror (g), let R be the ring A/CI(HaO)®Z(p); Since p does not

givide iwal , 1G/H 15 a unit in R and R igs G/H-projective, Since P
does not dividel|H|, there is an x in A(G/H)~ q(H,p)(G/H) such that.

the exterior preduct (H,0)x is zero, Thus, g(H,0) must be in the

kernel of any ring map 9’ : A —> S which takes a-g(H,p)(and hence x)

into the units of S. Further, any such map must faétor,as

A GRS 3> s

since q-iAis not in g(H,p)(1) if g 1s an integer prime other than P
Thus, it suffices to show that the image of A- q(H.p) under 8: A —>
R consists of ynits. Since R i8 G/H-projective, it suffices é‘o‘ see
that the image of A(G/H) - g(H,p)(G/H) in R(G/H) consists of units., |
This image is easily seen to consist of eleménts of the form {n/m)@ {x)

where n amd m are suitably chosen integers prime to p.

Remark 6.7 Our description..of the prime ideals of A is somewhat dif-

ferent from the usual description of the prime ideals of the Burnside

ring A(1). To compare the two descriptions, we let =

¢X : AG/K) —> 2z

be the usual map of the Burnside ring of K into integers which is

associated to the subgroup H of K (see ( ), p 203). Let 'EK(Han)-,

be thé primary ideal. of the Burnside ring A(G/X) of K determined by »

the condition . | ‘
@EEOmodpr.l. . P .

It is easy to see that the connection between q(H, p') and the . EK(_H,.pn)

is given by ﬂ
n —
H,p ) (G/K) =
q(H, p o

L3l = (8]

At
© g3, p")



Here; if there are no such J, then the intersection is, by conven-

tion, all of A(G/K).

Remark 6.8 Commutative algebraists will no doubt be disturbed by

the existence of a commutative Noetherian r ring in which there "ia a
finte, non-zero. number of prlme idzals between two pr:.me ;gg_aLg |
(like’ q(H ,p) and q(Hp.p)* this 51tuation cannot occur in ordlnary
ring theory. The resolution of this dlfflculty is that if Py P2C-

P, are prime ideals of A, . then for any G/K, either P (G/K) =

3
P (G/K) or P (GfK) Pyl G/K). Thus, locally--with respect to the

G/K-=A behaves ln.ke an ordz.nary commnutative Noether:.an r:.ng should,

but globally, ita hehavior is more complex. '

. :[n'( ), -Dress describes the relationship betv;een the prim:e .

| ideals of ‘the Burnside ring and the ideals im{ A( a) — a(1)) and
 ker( A(a)'———) a(a)). These results have 1mportant applications to
inductlon theory {like COrollary 2, p 207 of { 1)) and, from them. '_.-
:I.t should be possible to extract descrz.ptions o:E the prime ideals
of the rings A, and H_A for a€@. For this reason, we record there

their general:.zatz.on to results on the Burnside rin g

_promsition 6.9 (a) If > is the kernel of the map A —> A, (for

be @), then Kb < q(H,p) if and only :i.f G/H < b,  Moreover

K = N qm, o)

G/H<Db
{({b) For any b¢8, the ideal (1)< A (which is the imégé of

A, -3 A) is contained in q(H,p) if ana only if G/H'{C b.



{c) For any pair a,b in 8 ‘

- b
. A = K +.(1a)

. if and only if 6/HP X a for every H with G/H< b.

11



7. Integral domains and fields
In this section, we analyze the structure of (integral) domains
and fields. Our first main result is a complete description of the "
H~determined domains D for which D(1) is a field. Any domain is a -

subring of such a domain so the classification problem is reduced

to determining the subdomains of a domain. oOur classification re-

sult is applicable to any field and we employ i't to study modules '.
over fields. In particular, we show‘ that any module ovér a field F
is projective in the category F-mod of F-modules. We also considerr..:
the cfuestion of fields containing a given domain, Since fields of - |
fraé:i:i.ons need not e:eigst, this is an important and curious topic.
Throughout this :?ueétion, by ;:;_gx_g ( and ring) we méan: a ;'::omﬁtative :
ring (or ring). Ce-rtainlf, the analogoﬁs problems of non-commutative
 xings without zero 'divisc_ars and of division .ﬁ-!.’is should be inves- |
. tigated, o | | N '
A nurnber of trace-like funct:.ons are needed for our analys::.s of
. domalns, so we beg:.n by introducing a notion of trace which 1nc1udea

all of them,
Pefinition 7.1 Let w! he a su'bgroup of a finite group W and let N

be a Z[W] -mdule.
W'
~ Por any X& N , we def:.ne trw/w.x by
tr ¥® = P24 ‘
o T ewan
where the sum is indexed on the cosets of W in W. We write trw-

for trﬁ/{e}' Note that trwm.(x') is in N snd that it does not de~

pend on the choice of the coset representati.vés g since W' fixes ¥%.



By CorollgrQ 3.8, any domain haé a characteristic éubgroup H,
énd in this section, ve restrict attention to those domains D with
a fixed characteristic subgroup H., If D is such a domain, then thé
group WH acts on the ring D{G/HT by ring automorphisms. Propoéitibn."
5,4(b) gives the raéher cﬁrious properﬁyiaf this éction which is eqpi;
valent to D being a domain., Our first objective is to describe ex— .
actly what such an action iﬁplies about the ring D(G/HT.

Keeping in mind two non-trlvial examp&es of rlngs With such ae—
tions may make reading vwhat follows easier.- Consider the éuotient
ring z[x,yl/(xy) of the polynomial ring 2[x,y] by the ideal-gen~
erated by the product xy and let EZ/Z act'on.this quotient by pe:-‘-
muting x and y. cbnsidér alsp the ring obtained from this guotient -
by inverting all the non-zero invariant elements: ﬁhis‘fraction fing
‘is‘ isomorphic to the product of the rings 2 (x‘) and Z(y) of ra;g ‘
tional functioms, |

For the moment, we forget about rings: and introduce a lzttle

. ring theory to illuminate the structure of D{G/RH).

Proposition 7.2 Let S ba a commutative ring (with unit) and W be a

finite group which acts on S (not necessarily effectively) by ring

automorphisms in such a way that, for any pair of non-zero elements

x and y in S, there is a g in W with x{gy) # 0. Then | “
(a) The non-zero invariant elements of S are non-zero div;sors.

In particular, s¥ is an 1ntegral domain, |
(b} 5 contains no RON—ZeX0o nilpotent elements.

{c) s can be written as a finite proﬂuctTT 5; ‘of rings Si,such

[}
L3



jthaﬁ the S, afe all isomorphic and no‘si contains a non-trivial idem-

potent, , _ :
(a) 1If W, is the subgroup of W taking S4 to itself, then tha

action of W, o n S, sat;sfles the hypothe51s of this propositlon andf

. . . w‘
the ring 511 of Wq~invariant, elements of 5 is 1somorph1c to S .

(e) Every element in 8, sat:.sfies a rnon:.c polyncm:.al Wlth m—

W,
1 {the same applies to 8 and S l.

efficients in Sl
(£) 1f E"11 = s¥ is a field and K is the kernel of the action’
P . N . . . s . ) ) . w )
of W, on S, , then s, is a normal separable field extension of s,

with Galois group ‘ WI/K.

Proof Part (a) is obvious.

‘For (b), &ssume 'tha£ x & S ié a mn-zero‘ nilpotent eljér‘rnent‘ and
. let kq be the Iafgest integer with 330- # Q.‘ There is a gy € W with {
koig %) # O and thus g4*e. Let k, be the largest integexr with .

k - kg : .
0( glx) ;ﬁ 0; such a kl exists since glx is also nilpotent. ‘Thera, -

exists a g, € W w:n.th x‘k (g:L )kl xk # 0, Again, gz # e, g, and. .
_there is a largest integer. kz w:n.th x' (glx') 1 (g x) 2?0 clearly, th:ls
process can be continued until - we run out of elements in W and thereby
obtain a contradiction, . - '
For (c), assume that S contains a non~trivial idempotent é.. Such
an idempotent cannot be fixed by W since (1 - e)e = 0, Any produet
of the form .' | _ ' _ | _
(1) (gle) (g,e)... (gke) . for k 21, g'iew‘ for 15 14 k
‘is also idempotent, Let_e ' be a'r product of maximal length amoné the

- non-~zero products of the form (1) (By length, we mean the number of -



distinct factors multiplied'ﬁogether). Let W' be thé subgroup of W
£ixing eiz since e' is a ﬁontrivial idempotent, W' # W, The trace
trw/w; e' is an idempotent because, clearly, eithér e' =g.e' or -
"e'{ge') = 0 for any g in W, Being a W-invariant idempotent,

tr W/ e’ must be elther 0 or 1 and it is not 0 because e (tx /W e’ )'f
= e, Thus, we have a product decomp0$1t10n of S by '

s - T | S(ge Y-
gw' e wW/w*

The group W'acts dn.Se'. For any non-zero paxr xe ye in Se .
there is a g & w.withrxe'g(ye ) =0, This g must be in W' since
e;(géﬂ) ='0 otherwise. ' We have shown that the action of W' on Se'
satisfies the'hypﬁthesisiqf this-propﬁsitién. so if Se' contains a . -
nontrivial idempotent,'wé can iterate the decomposition.proceﬁs. Since
W' is strictly smalier than W, only finitely many iterations are poéé
sible and the last possible iteration produceé the reguired decpm-‘
position, Note that the faﬁtors of the decomposition above; and |
thus of our final decomposition, are all isomo:phic because‘ﬁ‘acgs"
ftfanSitively'on the orthogonal idempétents in&ucing.thé decombbéitioﬁ.
‘Fur‘(d), iﬁ suffices to show that, in the notation of thé.proaf'

v F ‘
of (c), (Se')w = SW. The map a —» ae' induces an injection of s¥

. L
into‘(Se‘)wi. Suppose x € (Se')w . Then y = trw/w.(x) is in s¥

L)
and ‘ye' = x. ‘Thus (Se')W = s¥,
For {e)}, let s & 51 and define p(x) by

p(x) = 1T (x - gs)

Cleariy, the coefficients of p(x) are in 511 and p(s) = 0. Nete that

we can replace S, by S and Wy by W to obtain a monic polynomial'with -



‘ coefficients in Sw for any 8 € S,

For (f), it suffices to show that S1 is a field, Then it must_
W

be a normal, separable extenslon of sll with Galois group W /K
Let s_hé a non-zero element of S - From (e) and'tha fact that 311 -
'is_& field, we obtain an equétioﬁ of‘the form
| B (sq(s) - 1) =. 0 o

vhere g(x) is a polynomial with coefficients in Sl1 . Itn=0,
then q (s) is an inverse for s, If n # o, then it must be one. Other—
wise, the element s { sq(s) - 1) would be a non-zero nilpotent in Sy |
| and, by (b), there aré none. Theh we have | . | o

| s2g(sN? = sqis)
80 that sq(s) is an idempotent. The only'idemputents in:sl are Oj_
| and 1, énd if -Bg(ﬁ) =0, then 8 = 0 by;our equation, Thus, ég(é) w‘i

.1 and t;ts) i=s the required inverse,

~

Remark 7.3 The correct wvay to .understand Proposition 7. 2 seems to be

W
to think of Sl as a representation of WJ; over 811 = Sw. The ine-
. duced representation 8 of W over sw has the form’ '
| | 5= o s
# : g@le.w/gl

The S module § can be made into a ring by giving it the product rlng.
structure and it can be shown that W acts on S by ring automorphlsms. |
Pdrther, 5 is isomorphic to 'S by an isomerphism which preserves the ‘

W=actions.

Let R be another ring with a W-action satisfying the conditions
of‘Proposition 7.2 and let 9: R —> S be 2 ring homomorphism which

‘commutes with the W-actions, We wish to compare the decompositions of



R and S given by the proposition, We have »

m n -
R = T Ri ' 5 = i S.i
3 =1 . S H i=1
Let Ui fix Ry and Wl fix Sl_and 1gt Idj}- 1< j'a’m-a“d '}ei} '1 <i ‘_‘n b‘er‘ the

indecomposible idempotents inducing the decompositions. Clearly, 9( 4a 3
is an idempotent in S and therefore a sum of some of the &;. Ve may

as vell assume ‘
Note that n = mk, If g<W fixes e,, then we must have gd, = di by
the orthogonality of the idempotents. Thus, W, < Ul.' Let X and L

be the kernels of the actions of iJl on R, ‘and W, on S, respecti\)ely'

and let Y =y /K and ¥ = .W,/L. We think of J and ¥ as "Galois"
- ' _ 1] : _ oW o : -
groupes of R, over Rll and S, over 511 .

There is a map 91 : Ry—> 8, given by

91(x) =  §(x) e .-

This map is vy equivariant, Using the. induced representations view

of Remark 7.3, it is easy to see that t’:"l,

completely determines R, 8, and & _ .



Remark 7.4 If R is any ring with a W action satisfying the conditions

of Proposition 7, 2,'then R” is an integral domain with a field of
fractions.(R ) =1 R¥  we can invert the non-zero élements of Rw in
R to obtain 8 = (R )] 1R The action of W on R extends €0 an actlon
| of Won S which als& satlsfles the condltlona of Proposition 7. 2.:
Rote that S L (R ) » Because the NoON~ZEeTo elements ofnnﬁ‘are'
not zero diviscrs in R, the*naﬁural map _ o
- b: R—-—}(R)lkﬂs

is injective. This is an important example of the sort of extensi@n
di scussed Sbove. | '

The implications of the results above for a doma;n D should ha
fairly obvious. We use the notation D, (G/H), W,H, K (or X ),
aa(or ] ) and e (oxr e ) to designate the structural data for D(G/H}
- given by Propositxon 7.2. Note that if D is H-determined, then D is
completely determined by the Wy~ module D. (G/H) and if, further ‘nﬂl)
= D(G/H)WH is a field, then computlng D is just an extended exercima
in ordlnary Galois theory. Any domain D wuth characterxstic éunguup _
H inbeds in HG/HD vhich is H-determined. Further, if F is the field.
of fractions of H,D (1), then the domain F L. g, ﬂml) He/u® is H—
determined and field valued at 18 , Thus, it can be completely
analyzéd using Galeis theory, and then we can try t0o recover theA
structure of D via the inclusion | |

D -—-—')HG/HD -y F ®H D(i) HG/HD..

G/H
If D is an H-determined integral domain with D(1) a field,

then it is natural to ask if D is a field. From Proposition S.G(d);



we see that the answer to this guestion depends only on the transfer

map t:D(G/H) —3% D{1); 1If we think of D(1) as the WH~invariant

[ §

elements in D(G/H), then t is just the trace tr_. It is fairly easy
to see that D is a field if and only if there is an elem&nt x in S

‘Dh(G/H) with tr, (x) = 1. This trace is given by the formula . °

trw (x) = lKl pars g trxy, (x) for x6D1(G/H) o
| o, € W/Wy - o S
where the sum runs over the cosets of W, in W/Wi. Since Dl(G/H) is"

W B
a normal, separable extension of D, (G[H} ; ., there is an x in D {Gﬁﬂl

&.'

with tﬁﬂ,(x) = e, %0 that tr (x) = }K] -1, Thus, we have

H
i

Proposition 7.5 If'D is an H—determined'integral domain such that_'

D(1) is a field, then D is a field if and'cnly’if the characteristic
of D{1) does not divide the order of the kernel X of the action of . "

'_WiH on PltG/H)'

1f we find ourselves stuck with an H~determined integral domaiﬁ; 
" D such that D{1) is a field, but b is not a.field then it is rea= e
f:sonahle to consider the ways we mlght imbed it in a field. There aru T
two aistinct operatzons which may be performed on D—-either 1nde— T
pendently or zn,c;ncerterto obtain a field into which D lmbeas. Both{'
of these are best visualized : . EY thinking of - ;f
D(G/H) as the induced WH representation oktained from the W1H,re? : “aE
presentation. Dy {G/H). The first process, which can aiways be ugea-af
to produce a field, is to thihk of Dl(G/H),-not as a-W&H'represeﬁtanl'
tion, but as a representation of some proper subgroup W of Hlﬁ. If

V is the WH-representation induced from the W-representation D, (G/H),



then V can be given a prﬁduct ring structure (as a D(1)-module, it

is just a sum of copies of D, {G/H)}) in such a way that WH acts on V
by ring #utomorphisms.‘ It is easy'to chéck that the ring JG/H(V)_"
is an 1ntegral domain into which D imbeds. Further, é/H(V) is a f
fleld if and only if the order of K AW. is not aivisible by the .
characteristic p of D(1}. Clearly, taklng W to be the trivial sub-7‘
group always produces a field. Note that J /H(V)(l) is D (G/H) wh;ch
could be strictly larger than D, (G/H) = D{1). '

‘ The second approach to convertzng the domain D into a field is
"not'a;ways applicable, ﬂar thls approach, we try tn obtain an ex—"
tension field F of the fieldl Dl(G/H) to which +he action of WiH on
Dl(G/H) can be extended. If such an exfension F exists, then the B
‘kernel K' of the action of ﬁiH on F will bé smaller (unless the e#w

¥ tensidn is purely_inseparable;éin whicﬁ case, it is of no interest);
Iif U‘is the wH—fepfeSentat§an obtainéd from the Wlﬂ repreéentatibn“
F, then JG/H(U) is an integral domain'into which D imbeds; it is a
 field if and only if p does not divide the order of K'.

Of course, these tworpmocesées can be combined to obtain othe:“

integral domains into-which D imbeds and some of these may be fieids;‘

Example 7.6 Let G = Z /2 and consider the domain D = a/qg( fel, 2)

where A is the Burnside}:_i.g_g of Z/2. We \:Jrite_ the & /2 set. 3/z/§'e}‘
as g/2. It is easy to see that D(Z/2) is E£/2 with trivial

| £/2 action.,. oOur two éxtension'processes produce fields F, and P,
‘The field F, produced by the first method has P (2/2) = /26 2/2

with the permutation =£/2 action. The field F2 has, as Pz(z;ﬁz),



the field with four elements with 5/2. acting as the Galois group.
Clearly, Fl # Fz' . :Ft_ is easy to'see that there are no rings in
either field strictly between D and the field., Thus, the domain

D does not have a field of fractions in any obvious sense.

Remark 7.7 The nonexistence of fields of fractions in certain'ca:ses{.

(and, more generally, of localizations) is a.ratherdisappclmim;ing és-; g
pect of the theory of ﬁm. However, it is not clear that this de-
" fect is as Serinus,' 6r even as rezl, as it sg.-éms. There are at léas'ti_
two possible resolutions to this problem which deserve consideration.
' The first possible resolution is that our notation of a p_n_:_r_._t.:_ may
be too simplistic, Consider the fields F, and F, of Example 7.6,.."##
R e F,(2/2) is a generatar. of the field with four éleinents';" th&m
it is both a unit in F, and a unit in the ring éz( 2/2).. ...on the
' othexr hand;_ the element .'(;L,O)‘i‘n : r_-lgz/z) = 2/2 @ Z/2 .is a unit - |

in F; but not a unit in F, (£/2), ‘It may be that the right way to .

1
specify the localization .
@: R —> s R

of a ring R at a ;nultiplicative subset 8 is to speéify

i
'haw- it .;5:5 té ba a uni'.t.'.
~ The second ﬁossible approach is derived from the observation that,
in the polynomial ring D [x.b',l generated by one variable =, at b &Q ’
there is a polynomial Pglx.) € D(=x1 (b) associated to each s & D(b)

vhose "solutions" are the inverses of s in D(b)., If H: D~—3H is



)

i

'-a r.ihg .map and r € R{b) is an inverse for ‘9(8.). then there iz a

-

unigue map _
- b /pglx) —> R |
' which takes xb to r. In partxcular, the figlﬂg F and Fz of Example
. 7.6 are Both quot:.ent rings of the r ___._g Dfx3/27 / p( /2) where
p-(x z /2) is the polynomial in D[xz /2] (£/2) whose "solﬁtiom‘*
would be inverses to 1 /2 in D{?/Z). Thus, the correct way to :
'study locallzationa may ﬁe to 1nvestigate pnlynom;al rings, it aeems_
“likely that the first approach to localizat:,on-by saying hcw some-"
thing ‘15 . to be a unxtn-can be described in terms of the secend hy
" using suitahle polyncsmj als. - ' L [
. Let us assume now that b§ séme-meéns-éfair or foui-—we'ﬁavanﬁﬁé
tained a field Ffﬁith characte?istic-#ub@roup H.. Then F(l) ia car-
_ tainly a field and, belng G/prrojectlve. F is H-determined. Thua,
" Proposition 7.2 applies to describe F completely in terms of data ve
'designate by F (G/H), ‘WiEH, K, A and e, - Our objectn.ve is l:o mldar--.»
- stand the modules over R clearly, if V isan F module, then al ;1
'.'spla.ts cff an F(l}- subspace V (c/n) of the F(l) vector space V(G/'H').
tFurther, 1{@/3) is a vector space over (Gfﬂ) and 1H acts on 'f'f"
.v]_( G/H) in'such a way that the map - o
| / 7,(G/H) ® V,(G/H) — v, (e/m) .
‘-is W,H equn.varlant when Fy (G/H) ® Vv, {(G/H) is glvén the d:.agnnal W -
action. We can define a twisted group rJ.ng 1(6/1-1) E &8 (where 9- ;
W,H —-).nnt‘(;:l( G/H)) gives the ‘action of W,H on FJ_( G/H)) as in . -
Pz‘"‘opo_sition 5.13 and thereby ‘o‘btai.n a complete description of F-

modules, Our principal.objective, for the moment, is to show that



12

e{very F-module is projective in the category F-mod of F-modules. For
. this problem, the twisted group ring view of P-mogd is unnecessarily ,

wmpl icated.

Promsition 7. B If F is a field and V is a module over F, then v 18

projective in the category of F—mdules.

Proof Let @: U —> U’ be a surjection betveen F-modules aﬁ_d'lé{:_
"$: V—> U' be a map of F-modules. We must construct a lifting
1 : v - U 6f 8 so that fa‘r- #. If suffices to construct a map
B 8 ¢ v, (6/H) ——> U, (G/H) - S

of F,{ &/H)~vector spaces which commutes vith the W,H actions and

makes the di agram

| - 3 ’#,v'l(G/H)'
| U, (6/1) —”Té U} (G/H)

:icormute. Clearly. there ias a map f:: V (G/H) — U (G/H) of F:L( G/E)
© vector spaces which makes t‘he diagram comute, and our only prohlm
is to make £ aquivaria.n’t Let u & Fl(G/H} with trﬂ u = 1- suc‘h aﬂu
axista because E‘l( G/H) is a separable normal extension of F (G/H)l
Then define §:V (G/H) — U (G/H) by '
6 (x) - TL 2 g(.uf(g"l'x)') | for xévl(G/H). |
gE%&H : _ ' .

It is easy to check that 6 is a map of Fl(G/H) véctor 5paces_'caﬁmutiné
‘with the WiH mctions and making diagram (_3)‘ commute, Note th.‘lﬁ' |

AR has to make sense because F iz a field.



8. Rings of Interest

 Here, as always, A is the Brunside ring. The rings of ‘inta’ée@t

are
B =. @ H,,.(A/q(H0))
- pise A .
c : {n/qln, O))ﬁ z‘ 1/IWHl‘ | -
[qsc L . ' o

-rne best vay' to thi;uk of these two as as subrings of A @ Q so that
g AcBcccadn . R
"rho ring B is ‘obtained from A by a&diné to A(G/H) the ideml;otehta”
which split A( G/H)8Q for every H<G. The ___g {; is ob:tained f:mm
A by: add:.ng the elements eH/ iWH to A where @, is the idempotent
111 A(i) QQ which corz:esponds to the subgroup H, The ______g C con-
: t.ains B because the 1/|WH] factor generates all the :ldampot.ent,n i.x-n ‘
the A( G/H) ®Q by various transfers and multiplicats.ons. '
The point of B is that it is~-in some aense-the integral
elosure of the r xing A in the & ____g A® 0. A prime jdeal 11fting
theorem which dﬁes for A exactly vhat the standard theorem dcsea "
- for finding the prime ideals of A(l} is a distinct pnss;bility that.
..is beyond the scope of this paper. ) '
C is more important, It should be ussd in place of Amz[lf |G!]
| All the nice theorems about 2 [1/ (6t] ~valued Mac‘key functoxrs can 'be
extended to _:;esults about modules over C, Note’that . S
cc’A® £[1/I6l] ¢ A ® Q. |
The advantage of c is 'that it preserves the maiimal'prime ideals



(8", p) for the 'prirde'é'p. which divide |G} vhereas A ® ez:ﬁ/ mﬂ‘@bli@i#- |
erates them, The maximal primes of hp,p) are perfectly resp«-ctahle
in A mns;.dered &8 & __:L_g and there is no reason to th:mw th@m
 avay, - Another advantage of C is tbat it ahould make gaod aaenm@--
_and be perfectly well behaved--for a mm‘r::act Lie gr@up where g
A& z[.l/ IG[I is ava:.lable only if cme uses tom Dleck’s--a.ppar&arstly
not well understcmd—-suhstitite for EGE'. Certainly, for campacﬁ:
L:le groups, c should Draserve vastly more inf@mation and bemm
mrrespondingly more important ' '
l\!ote that the aurmnands . /H(A;’q(}x ‘0}} ef B are G/H-—determa.n@ﬂ
and so well behaved and computable, ‘I'h@ swmand (A/q( H,0)}® zﬁfﬁm
of C is G/H-pmjective and. along with its moduleas, is utterly weall
hehaved A:I.so, the g____g C has homologlcal dlmensz.on one, in fact.

. t‘he category of mdule«a @ver C is :Lsemorphz.c to the sum .

" 1, 3.:[1/ wm] [wrr] ~modules
- [(#]l<e6

vhere42 [1/ hm%] [WH] is the grcmp riﬁg of WH wiﬂ:.h coef?icienté ih'
- Zﬁ./ lm—ﬂ 'rhe fudge factor 1/[va| is exactly what is needed in -

modules over a group ring te get h@mnlogx,cal dimension one,.
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