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Chapter 0

Introduction

Let X,Y < CP? be smooth algebraic curves of degrees m and n in the complex projective
plane CP?. If X and Y meet transversely, then the classical theorem of Bezout (see for
example [71]) asserts that the intersection X NY has precisely mn points. This statement has
a natural formulation in the language of cohomology. The curves X and Y have fundamental
classes [X], [Y] € H*(CP?; Z). If C and C’ meet transversely, then we have the formula

[XTo[Y]=[XnY],

where the fundamental class [X n Y] e HY(CP?;Z) ~ Z of the intersection X nY simply
counts the number of points where X and Y meet. Of course, this should not be surprising:
the cup product on cohomology classes is defined so as to encode the operation of intersection.
However, it would be a mistake to regard the equation [X] u [Y] = [X n Y] as obvious,
because it is not always true. For example, if the curves X and Y meet nontransversely (but
still in a finite number of points), then we always have a strict inequality

[X]U[Y]>[X Y]

if the right hand side is again interpreted as counting the number of points in the set-theoretic
intersection of X and Y.

If we want a formula which is valid for non-transverse intersections, then we must alter
the definition of [X n Y] so that it counts each intersection point with the appropriate
multiplicity. In the situation described above, the multiplicity of an intersection point
p € X NnY can be defined as the dimension of the tensor product

Oxp Qe Oyp.

CP2p

as a vector space over the complex numbers. This tensor product has a natural algebro-
geometric interpretation: it is the local ring of the scheme-theoretic intersection X X op2 Y

5



6 CHAPTER 0. INTRODUCTION

at the point p. Consequently, the equation [X] U [Y] = [X n Y] remains valid if the right
hand side is properly interpreted: we must define the fundamental class of the intersection
[X nY] in a way which takes into account the structure of X nY = X xop2 Y as a scheme.

In more complicated situations, the appropriate intersection multiplicities cannot always
be determined from the scheme-theoretic intersection alone. Suppose that X and Y are
singular subvarieties of a smooth algebraic variety Z having complementary dimension and
intersecting in a finite number of points. In this case, the appropriate intersection multiplicity
at a point pe X nY is not always given by the complex dimension of the local ring

Oxnyp=0xp®p,,Ovp-

The reason for this is easy to understand from the point of view of homological algebra.
Since the tensor product functor ®g, , is not exact, it does not have good properties
when considered alone. According to Serre’s intersection formula, the correct intersection
multiplicity is instead the Euler characteristic

Z(—l)m dimc TorZZ’P(@’Xp, ﬁym).

This Euler characteristic contains the dimension of the local ring of the scheme-theoretic
intersection as its leading term, but also higher-order corrections. We refer the reader to
[188] for further discussion of this formula for the intersection multiplicity.

If we would like the equation [X] u [Y] = [X n Y] to remain valid in the more
complicated situations described above, then we need to interpret the right hand side in a
more sophisticated way. It is not enough to contemplate the intersection X nY as a set or
even as a scheme: we need to to remember all of the Tor-groups Torzz’p (Oxp, Oyyp), rather
than simply the tensor product Ox~y, = Oxp®g,, Oyp = Torgz’p(ﬁx,p, Oyp).

Let us begin by recalling how these invariants are defined. Suppose that R is a commu-
tative ring and that we are given R-modules A and B. We can then choose a projective
resolution of A as an R-module: that is, an exact sequence of R-modules

>4 P L P A50

where each Py, is projective. By definition, the groups Torffl (A, B) are given by the homology
groups of the chain complex

'—’P2®RBLP1®RBd—’PO®RBa

whose differential d’ is given by tensoring d with the identity map idg.

In the situation of interest to us, A and B are not simply R-modules: they are commu-
tative algebras over R. In this case, one can arrange that resolution (Py,d) is compatible
with the algebra structure on A in the following sense:



(i) There exist multiplication maps P,, ®g P, — P,,+n which endow the direct sum
(‘ano P,, with the structure of a graded ring which is commutative in the graded sense:
that is, we have zy = (—1)""yx for © € P,,, y € P,.

(14) The differential d : P, — Py_1 satisfies the (graded) Leibniz rule d(zy) = (dx)y +
(=1)mx(dy) for x € Pp,.

(731) The surjection Py — A is a ring homomorphism.

Properties (i) and (i7) can be summarized by saying that (P, d) is a commutative differential
graded algebra over R. If B is any commutative R-algebra, then the tensor product complex

> PRrBYL P @rBL Py@R B

inherits the structure of a commutative differential graded algebra over R (or even over B).
We will denote this differential graded algebra by A ®ﬁ B and refer to it as the derived
tensor product of A and B over R.

Warning 0.0.0.1. The definition of A ®IL% B depends on a choice of projective resolution of
A by a differential graded algebra (P, d). However, the resulting commutative differential
graded algebra turns out to be independent of (Py, d) up to quasi-isomorphism. In particular,
the homology groups of A ®f€ B are independent of the resolution chosen: these are simply
the Tor-groups Tor?(A, B).

Let R be a commutative ring. Then every commutative R-algebra R’ can be regarded as
a commutative differential graded R-algebra by identifying it with a chain complex which is
concentrated in degree zero. We can therefore think of a commutative differential graded
algebra as a generalized of ordinary commutative rings. In particular, the derived tensor
product A ®IL% B bundles the information contained in the Tor-groups Tor,lf(A, B) together
into a single package which behaves, in some sense, like a commutative ring. The central
idea of this book is that this heuristic can be taken seriously: objects like commutative
differential graded algebras are, for many purposes, just as good as commutative rings and
can be used equally well as the basic building blocks of algebraic geometry.

To fix ideas, let us introduce the a preliminary definition:

Definition 0.0.0.2. Let X be a topological space and let & x be a sheaf of commutative
differential graded C-algebras on X. For each integer n, we let H, (0 x) denote sheaf of
vector spaces given by the nth homology of @x, so that Ho(€0'x) is a sheaf of commutative
rings on X and each H,(Ox) is a sheaf of Hy(&0 x)-modules. We will say that (X, 0x) is a
differential graded C-scheme if the following conditions are satisfied:

(a) The pair (X,Ho(0x)) is a scheme.
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(b) Each H,,(0x) is a quasi-coherent sheaf on the scheme (X, Ho(0x)).
(¢) The sheaves H,, (€ x) vanish for n < 0.

Warning 0.0.0.3. The notion of differential graded scheme has been studied by many
authors (see [121], [41], [42], [19], [20]) using definitions which are different from (but closely

related to) Definition [0.0.0.2

Warning 0.0.0.4. Definition [0.0.0.2] captures the spirit of the kinds of objects that we
will be studying in this book, at least when work over the field C. However, it does not
really capture the spirit of how we will work with them. If (X, O'x) is a differential graded
C-scheme, then one should think of the structure sheaf &'x as something that is well-defined
only up to quasi-isomorphism, rather than “on the nose.” This idea needs to be incorporated
systematically into every aspect of the theory, beginning with the notion of morphism
between differential graded C-scheme.

The theory of differential graded C-schemes has the following features:

e Every ordinary C-scheme (X, 0x) can be regarded as a differential graded C-scheme:
we can simply regard the structure sheaf 0x as a sheaf of commutative differential
graded algebras which is concentrated in degree zero.

e Every differential graded C-scheme (X, 0x) determines a C-scheme (X,Hy(0x)),
which we will refer to as the underlying scheme of (X, Ox).

o If (X,0x) is a differential graded C-scheme, then the difference between (X, 0'x)
and its underlying scheme (X, H(€x)) is measured by the quasi-coherent sheaves
{H,,(€ x)}n>0: if these sheaves vanish, then one should regard (X, 'x) and (X, Ho(Ox))

as equivalent data (see Warning (0.0.0.4]).

e The theory of differential graded C-schemes has a good notion of fiber product.
However, the inclusion of ordinary C-schemes into differential graded C-schemes does
not preserve fiber products. In the setting affine schemes, the usual fiber product
Spec A X gpec g Spec B is given by the spectrum of the tensor product A®g B. However,
the same fiber product in the setting of differential graded C-schemes can be described
as the spectrum (in a sense we will define later) of the derived tensor product A ®1L;i B.

Recall that a scheme (X, Ox) is said to be reduced if the structure sheaf &'x has no
nonzero nilpotent sections. The relationship between differential graded C-schemes and
ordinary C-schemes is analogous to the relationship between schemes and reduced schemes.
Every scheme (X, €x) determines a reduced scheme (X, 6'¢%), where 6% is the quotient of

the structure sheaf &'x by the ideal sheaf of locally nilpotent sections. However, the passage



from (X, Ox) to (X, 0% loses information. Moreover, the lost information could be useful
even if one is primarily interested in smooth algebraic varieties: recall that if X,Y < CP?
are smooth algebraic curves, then the (possibly non-reduced) scheme-theoretic intersection
X xcp2 Y retains information about the multiplicity of each point p € X n'Y, but this

information is lost by passing to the reduced scheme (X x gp2 Y)™? (

which remembers only
the set-theoretic intersection of X and Y).

The situation for differential graded C-schemes is similar: if X and Y are (possibly
singular) subvarieties of a smooth algebraic variety Z which have complementary dimension
and meet in a finite number of points, then Serre’s formula for the intersection multiplicity
of X and Y at a point p can be written ) (—1)" dimc H,,(0'x~y)p, where O x~y denotes
structure sheaf of the fiber product X xz Y in the setting of differential graded C-schemes.
By passing to the underlying scheme of this fiber product X xz Y, we lose information

about all but the leading term of Serre’s formula.

Remark 0.0.0.5. To get a feeling for the sort of information which is encoded by the
fiber product X xz Y in the setting of differential graded C-schemes, it is instructive to
consider the case where Z = Spec R is an affine scheme and X = Spec R/I, Y = Spec R/J
are closed subschemes given by the vanishing loci of ideals I,JJ < R. In this case, the
usual (scheme-theoretic) intersection of X and Y is the affine scheme Spec R/(I + J). The
difference between X x Y and this scheme-theoretic intersection is controlled by the groups
{H,(R/I ®% R/J) = Tor®(R/I, R/J)}n=0. The group Torf(R/I, R/J) can be described
concretely as the quotient (I nJ)/IJ. Any element f € R which belongs to the intersection
I nJ can be viewed as a regular function on Z which vanishes on both of the closed
subschemes X and Y. Heuristically, such a function f might be said to vanish on the
intersection X n'Y for two reasons, and we have f ¢ IJ if these reasons are “different” in
some essential way. Consequently, the quotient Tor(R/I, R/.J) = (I n J)/I.J is a measure
of the redundancy of the equations defining the subschemes X and Y. Forming the fiber
product X Xz Y in differential graded C-schemes retains information about this sort of
redundancy: it remembers not only which functions vanish on the intersection of X and Y,
but also why they vanish.

If X and Y are smooth subvarieties of a smooth complex algebraic variety Z, then some
simplifications occur. As long as the intersection X n Y has the “expected” dimension
dim X + dimY — dim Z, the Tor-groups Torf #?(0x p, Oy,p) automatically vanish for each
p € X nY. This means that the fiber product X Xz Y in the setting of differential graded
C-schemes agrees with the usual scheme-theoretic intersection, so the theory of differential
graded schemes has nothing new to tell us. However, the theory can be quite useful in the
case where the intersection X nY does not have the expected dimension. We will say that
a differential graded C-scheme (W, Ow ) is quasi-smooth if it is locally of the form X x Y,
where X and Y are smooth subvarieties of a smooth complex algebraic variety Z. Then:
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e Every quasi-smooth differential graded C-scheme (W, Oy ) has a well-defined virtual
dimension vdim,, (W) € Z at each point w € W, which is a locally constant as a
function of w.

The integer vdim,, (W) can be thought of as the “expected dimension of W.” When
W is given as a fiber product X xz Y as above, its virtual dimension is given by
the formula vdim,, (W) = dim,,(X) + dim,,(Y) — dim,,(Z). Roughly speaking, the
virtual dimension can be described as “the number of variables minus the number of
equations.”

If (W, Ow) is quasi-smooth, then we always have vdim,, (W) < dim,, (W), with equality
if and only if (W, Ow) is an ordinary C-scheme in a neighborhood of w. Beware
that unlike the actual dimension dim,, (W), the virtual dimension vdim,, (7' can be
negative.

Let (W, Ow) be a quasi-smooth differential graded C-scheme of virtual dimension
d and let W(C) denote the set of closed points of W, equipped with the complex-
analytic topology. If the space W(C) is compact, then there is a canonical element
[W] € Hog(W(C); Z) called the virtual fundamental class of (W, 0w ) (this element
can also be defined when W is not compact, in which case it lies in the Borel-Moore
homology of W(C)). In the special case where W is a smooth ordinary C-scheme,
the space W(C) is a compact complex manifold of dimension d and [W] is its usual
fundamental class.

e Let Z be a smooth projective variety of dimension n over the complex numbers. Given
a quasi-smooth differential graded C-scheme X of virtual dimension d and a map
X < Z which is a closed embedding at the level of topological spaces, let us abuse
notation by identifying the virtual fundamental class [X] € Hyy(X(C);Z) with its
image under the canonical map

Hyq(X(C); Z) — Hoq(Z(C); Z) ~ H* 2% (Z(C); Z),

where the isomorphism is provided by Poincare duality (note that when X is a smooth
subvariety of Z, this recovers the usual interpretation of [X] as an element in the
cohomology ring H*(Z(C);Z)). Then the equation [X] u [Y] = [X n Y] holds in
complete generality, provided that we interpret X n'Y as the fiber product X xz Y in
the setting of differential graded C-schemes.

Example 0.0.0.6. Consider the easiest case of Bezout’s theorem, where we are given a
pair of lines L, L’ € CP? in the complex projective plane CP2. The lines L and L' always
intersect transversely in exactly one point, except in the trivial case where the lines L and



0.1. WHY SPECTRAL ALGEBRAIC GEOMETRY?

L’ are the same. In this degenerate case, the equation [L] u [L'] = [L n L'] seems to fail

dramatically, because the naive intersection L n L’ (formed either in the set-theoretic or

scheme-theoretic sense) does not even have the right dimension. However, the fiber product

(W, Ow) = L xcp2 L' in the differential graded setting is not equivalent to L as a differential

graded C-scheme: the homology sheaf H; (O ) is a line bundle of degree —1 on W. This

allows us to extract some useful information:

e The virtual dimension of W is 0, which differs from the dimension of the its underlying

classical scheme L.

e As a topological space, W(C) is a 2-sphere. However, in addition to its usual funda-
mental class in Ho(W(C); Z), the space W(C) also has a virtual fundamental class
[W] e Hy(W(C);Z) ~ Z. One can show that this virtual fundamental class is given

by the formula [W] = deg(Ho(Ow)) — deg(Hi1(Ow)) = 1.

More informally, the structure sheaf Oy “knows” both that W is expected to be zero-

dimensional and that it is expected to consist of exactly one point.
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0.1 Why Spectral Algebraic Geometry?

Our goal in this book is to study algebro-geometric objects like the differential graded

C-schemes of Definition [0.0.0.2] However, this merits a warning: in the setting of Definition
0.0.0.2] we could replace C by an arbitrary field &, but the resulting theory is not well-
behaved if x is of positive characteristic. To get a sensible theory in positive and mixed
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characteristic, we will replace the theory of differential graded commutative algebras by
the more sophisticated theory of E-rings (for the reader who is not familiar with the
theory of Eq-rings, we will give a brief review below; for the moment, it is enough to know
that they are mathematical objects that are equivalent to commutative differential graded
algebras when working over a field of characteristic zero, but better behaved in general).
Among our basic objects of study in this book are spectral schemes: pairs (X, 0 x) where
X is a topological space and Ox is a sheaf of E5-rings on X which satisfies analogues of
the hypotheses which appear in Definition Every spectral scheme (X, 0'x) has an
underlying scheme which we will denote by (X, 7y Ox).
A reader wanting to get a sense of the subject might ask the following:

(Q) What is the difference between spectral algebraic geometry and classical algebraic
geometry? For example, what is the difference between a spectral scheme (X, Ox)
and its underlying scheme (X, m Ox)?

A more skeptical reader might put the question in a more pointed way:

(Q") What use is the theory of spectral algebraic geometry? What can one do with a
spectral scheme (X, 0x) that cannot already be done with the underlying scheme
(Xa 0 ﬁX)?

One answer to these questions was already sketched in the introduction: the language of
spectral algebraic geometry provides a natural framework in which to understand issues of
excess intersection and the theory of virtual fundamental classes. However, let us offer three
more:

(A1) The difference between spectral algebraic geometry and classical algebraic geometry
lies in the nature of the structure sheaves considered: the structure sheaf of a spectral
scheme (X, O x) is a sheaf of Eo-rings, while the structure sheaf of an ordinary scheme
is a sheaf of commutative rings. Structured ring spectra (such as E,-rings) are
ubiquitous in the study of stable homotopy theory and its applications. The language
of spectral algebraic geometry provides a novel way of thinking about these objects,
just as the language of classical algebraic geometry supplies geometric insights which
are valuable in the study of commutative algebra.

(A2) The difference between spectral algebraic geometry and classical algebraic geometry
is analogous to the difference between triangulated categories and abelian categories.
To every spectral scheme (X, Ox), one can assign a triangulated category hQCoh(X)
whose objects we will refer to as quasi-coherent sheaves on X (this triangulated category
arises as the homotopy category of a more fundamental invariant QCoh(X ), which is
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a stable co-category rather than a triangulated category). The triangulated category
hQCoh(X) contains, as a full subcategory, the abelian category A of quasi-coherent
sheaves on the underlying scheme (X, 7y 0x). Roughly speaking, the difference
between the spectral scheme (X, 0 x) and the ordinary scheme (X, my ' x) is measured
by the failure of hQCoh(X) to be the derived category of A. In some situations, this
failure is a feature rather than a bug: the triangulated category hQCoh(X) may be
better suited to a particular application.

(A3) The difference between spectral algebraic geometry and classical algebraic geometry
can be understood in terms of deformation theory. One can think of a spectral
scheme (X, Ox) as given by an ordinary scheme Xy = (X, 7y Ox) together with an
“obstruction theory” for Xy (of a somewhat elaborate type). In many cases, this
obstruction theory is more natural and easier to work with than the obstruction theory
which is intrinsic to Xy itself.

We now briefly expand on each of these answers (we will discuss each one in much greater
detail in the body of the text; (A2) and (A3) are, in some sense, the main themes of Parts
and ?7, respectively).

0.1.1 Homotopy Theory and E,-Rings

Algebraic topology can be described as the study of topological spaces by means of
algebraic invariants. One of the main goals of the algebraic topologist is to answer questions

of the following general form:

Question 0.1.1.1. Let X be an interesting topological space (perhaps a classifying space,
a sphere, an Eilenberg-MacLane space, a compact Lie group, ...) and let E be an algebraic
invariant of spaces (such as homology, cohomology, K-theory, stable or unstable homotopy,

...). What is E(X)?

Before attempting to answer a question of this kind, we would first need to decide what
sort of answer we are looking for. For example, suppose that we are given a topological
space X and asked to compute the cohomology groups H* (X; k) with coefficients in a field «.
These cohomology groups form a graded vector space over k, so one could interpret Question

0111 as follows:
(a) Give a basis for the cohomology H*(X; k) as a vector space over k.

The invariants which arise in algebraic topology often have a very rich structure: for
example, the cohomology H*(X; k) is not just a graded vector space over k, it is a graded
algebra over k. Consequently, one can formulate Question [0.1.1.1] differently:
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(b) Give a presentation of the ring H*(X; k) by generators and relations.

Remark 0.1.1.2. Problems (a) and (b) are not really the same. For example, it is possible
to solve problem (a) without having any idea what the multiplication on H*(X; k) looks
like. Conversely, the task of extracting a vector space basis from a presentation of H*(X; k)
by generators and relations is nontrivial (but is at least a purely algebraic problem).

If the field & is of characteristic 2 (or if the cohomology of X is concentrated in even
degrees) then the cohomology ring H*(X; k) is commutative. In this case, we can reformulate
(b) using the language of algebraic geometry:

(¢) Describe the affine scheme Spec H*(X; k) (for example, by specifying its functor of
points).

The paradigm of (¢) has turned out to be a surprisingly useful way of thinking about
Question [0.1.1.1} ideas from algebraic geometry can be a powerful tool for organizing and
understanding the results of many calculations in algebraic topology.

Example 0.1.1.3 (The Dual Steenrod Algebra). Let A" denote the dual Steenrod algebra:
that is, the graded ring given by the direct limit

AY = ling B, (K (F3, n); F)

Then A" is a graded Hopf algebra which is of central importance in algebraic topology by
virtue of the fact that it controls the co-operations on Fo-homology: for every topological
space (or spectrum) X, the homology H,(X;F3) has the structure of a comodule over A".

The structure of A has a simple description (due to Milnor; see [I52]): as an algebra, it
is isomorphic to a polynomial ring Fs[(1, (2, (3, .. .], where each variable (,, is homogeneous
of degree 2" — 1 and the comultiplication A : 4Y — AY ®r, A" is given by the formula

AlG) =10G+0OG 1 +e®G o+ + G ®F  +GoL

Let G = Spec AY denote the associated affine scheme. For any commutative Fa-algebra
R, we can identify the set G(R) of R-valued points of G with the subset of R[[t]] consisting
of those formal power series having the form ¢ + (1t? 4 (ot* + (3t8 + - - - ; equivalently, we
can describe G(R) as the subset of R[[t]] consisting of those power series f(t) satisfying the
conditions

f)=t modt*  ft+t)=f(t)+ f(t).

This supplies a conceptual way of thinking about co-operations on Fo-homology: for any
space X, we can regard the vector space H,(X;F3) as an algebraic representation of the
group scheme G (in fact, by taking into account the grading of H,(X;F5), we can regard it
as a representation of the larger group scheme G* parametrizing all power series f satisfying
ft+t) = f(t)+ f(¥') which are invertible under composition).
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Example 0.1.1.4 (Complex Bordism and Formal Group Laws). For each n > 0, let MU,
denote the group of bordism classes of stably almost-complex manifolds of dimension n. The
direct sum MU, = @ MU, is a commutative ring, called the complex bordism ring. The
structure of this ring was determined by Milnor ([I53]): it is isomorphic to a polynomial ring
Z|x1,x9,x3,...] where each variable z; is homogeneous of degree 2i. This result was refined
by Quillen, who showed that there is a canonical isomorphism of MU, with the Lazard
ring L classifying 1-dimensional formal group laws ([169]). In other words, if X denotes the
affine scheme Spec MU, then for any commutative ring R we can identify the set X (R)
of R-valued points of X with the set of power series f(u,v) € R[[u,v]] which satisfy the
identities

f(u,()) =u f(u,v) =f(v,u) f(uvf(v7w)> :f(f(u7v)>w)'

Quillen’s theorem is the starting point for the subject of chromatic homotopy theory, which
has revealed a surprisingly tight connection between the study of cohomology theories and
the study of formal groups and their arithmetic properties.

Examples [0.1.1.3|and [0.1.1.4] are concerned with algebraic structures that one sees at

the level of homology and homotopy, respectively. For many applications, it is important to
understand algebraic structures at a more primitive level: for example, at the level of chain
complexes before passing to homology. To take a simple example, for any topological space M
and any commutative ring R, the cohomology groups H*(M; R) form a graded-commutative
ring. However, when M is a smooth manifold and R = R is the field of real numbers, then
H*(M; R) can be described as the cohomology of the de Rham complex

0, %0, %02 ...

One of the many convenient features of this description is it makes the graded-commutative
ring structure on H*(M; R) visible at the level of cochains: the de Rham complex (2}, d)
itself is a commutative differential graded algebra. Motivated by this observation, Sullivan
introduced a construction which associates to an arbitrary topological space X a “polynomial
de Rham complex” Cji (X; Q), given by a mixture of singular and de Rham complexes. This
construction is naturally quasi-isomorphic to the usual singular cochain complex C*(X; Q)
but has the virtue of admitting a ring structure which is commutative at the level of cochains:
Cir(X; Q) is a commutative differential graded algebra over Q. The result is a powerful
algebraic invariant of X. For example, one has the following result:

Theorem 0.1.1.5 (Sullivan). Let X be a simply connected topological space whose rational
cohomology groups H"(X; Q) are finite-dimensional for every n. Then the rational homotopy
type of X can be recovered from its polynomial de Rham complex Cig(X; Q). More precisely,
if we let Xq denote the space of maps from Cir(X; Q) into Q (in the homotopy theory of
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commutative differential graded algebras over Q), then there is a canonical map X — Xq
which is an isomorphism on rational cohomology.

We refer to [?] for a more precise formulation and proof of Theorem [0.1.1.5| (we will
discuss a version of Theorem |0.1.1.5/in §77).

Remark 0.1.1.6. It follows from Theorem that the ring structure on the polynomial
de Rham complex Cj, (X; Q) contains much more information than the ring structure on
its homology H*(X; Q). It is easy to give examples of finite CW complexes X and Y for
which the cohomology rings H*(X; Q) and H*(Y; Q) are isomorphic, but much harder to
give examples in which the polynomial de Rham complexes Cj (X;Q) and Cii (Y; Q) are
quasi-isomorphic: if X and Y are simply connected, this can happen only if there exist maps
of spaces X — Z < Y which induce isomorphisms on rational cohomology (in this case, we
say that X and Y are rationally homotopy equivalent).

Remark 0.1.1.7. The language of differential graded schemes suggests the possibility of
formulating Theorem [0.1.1.5] in an algebro-geometric way. Let X be a topological space and
let Cig(X;Q) be its polynomial de Rham complex. One might try to form some sort of
spectrum X = Spec Cjr (X; Q) in the setting of differential graded Q-schemes, so that the
space Xq appealf\ing in Theorem can be interpreted as a space of Q-valued points of
X. The object X can be regarded as an algebro-geometric incarnation of the topological
space X (in the terminology of [209], it is the schematization of X).

The geometric object X does not quite fit into the framework of differential graded
schemes introduced in Definition because commutative differential graded algebra
Cir(X; Q) usually has nonzero homology in negative degrees (or, equivalently, nonzero
cohomology in positive degrees). However, it is an example of a different sort of algebro-
geometric object (a coaffine stack) which we will study in Chapter @

To define the polynomial de Rham complex Cji (X;Q), it is necessary to work over
Q: if k is a field of positive characteristic, then there is no canonical way to choose quasi-
isomorphism of the singular cochain complex C*(X;k) with a commutative differential
graded algebra over k. However, this should be regarded as a defect not of C*(X; k), but of
the notion of commutative differential graded algebra. The cochain complex C*(X; k) is an
example of an Ey-algebra over k: it can be equipped with a multiplication law

m: C*(X;k) @ C*(X; k) —» C*(X; k)

which is “commutative and associative up to coherent homotopy”: in other words, it
satisfies every reasonable demand that can be formulated in a homotopy-invariant way
(for example, m need not be commutative, but it is commutative up to a chain homotopy
h:C*(X; k) ®x C*(X; k) — C* Y X; k).
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Remark 0.1.1.8. Any commutative differential graded algebra (A, d) over a field x deter-
mines an E,-algebra over x: a multiplication law which is commutative and associative “on
the nose” is, in particular, commutative and associative up to coherent homotopy. If the field
k has characteristic zero, then every Eq-algebra arises in this way, up to quasi-isomorphism.
Over fields of positive characteristic, this is not true: there exists Ey-algebras which are
not quasi-isomorphic to commutative differential graded algebras. For example, if A is
an Eq-algebra over the field Fy, then the homology groups of A (regarded as a cochain
complex over Fy) can be equipped with Steenrod operations Sq™ : H*(A) — H**™(A)). If A
is obtained from a commutative differential graded algebra over F3, then these operations
automatically vanish for = # n. However, in the case A = C*(X;F,), they are usually
nontrivial (and are a useful and important tool for studying the Fa-cohomology of X).

Let X be a topological space. Just as the polynomial de Rham complex Cig (X;Q)
is a much more powerful invariant than the rational cohomology ring H*(X; Q) (Remark
, the structure of the cochain complex C*(X;F),) as an Ey-algebra is a much more
powerful invariant than the Fp-cohomology ring H*(X;F),). For example, the Eq-structure
on C*(X;F,) determines not only the ring structure on H*(X;F,), but also the behavior
of Steenrod operations. In fact, from the Ey-structure on C*(X;F)) one can recover the
entire p-adic homotopy type of X, thanks to the following analogue of Theorem [0.1.1.5

Theorem 0.1.1.9 (Mandell). Let X be a simply connected space whose cohomology groups
H"(X;Fp) are finite for every n, and let X, denote the space of Ex-algebra morphisms from
C*(X;F,) to F), (here F,, denotes an algebraic closure of F},). Then there is a canonical
map X — X which induces an isomorphism on Fj,-cohomology.

Remark 0.1.1.10. In the situation of Theorem@ the space X} is a p-adic completion
of X. This implies, for example, that each homotopy group 7, X, an be identified with the
p-adic completion of m, X.

Remark 0.1.1.11. As with Theorem [0.1.1.5] it may be useful to think of Theorem [0.1.1.9
in algebro-geometric terms. If we view C*(X;F,) as a generalized commutative ring and
form some /lfind of spectrum X=c* (X; F"\p), then we can view the p-adic completion X' as
the space X (F,) of F,-valued points of X. The geometric perspective is a bit more useful
here than in the rational case, because one can give an analogous description of the space
X (R) for any commutative F,-algebra R: it can be identified with the space of maps from
the étale homotopy type of Spec R into X;*. For more details, we refer the reader to Part

19:(

If A is an Ey-algebra over a field x, then the multiplication on A (which is commutative
up to homotopy) endows the homology H,(A) with the structure of a graded-commutative
ring. Many of the graded-commutative rings which arise naturally in algebraic topology
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(such as the cohomology rings of spaces) can be obtained in this way. However, there are
many examples which are similar in spirit to which the formalism of chain complexes does
not quite apply. For example, for each n = 0 let MSQO,, denote the collection of bordism
classes of closed oriented n-dimensional smooth manifolds. The collection {MSO,, },>¢ forms
a graded-commutative ring, where addition is given by the formation of disjoint unions and
multiplication is given by the formation of Cartesian products. Heuristically, one can think
of this graded ring as given by the homology of a “chain complex”

2 2 2 2
= Q3 > Qe = Q) = Q

where 2, denotes the “collection” of compact oriented n-manifolds with boundary, and ¢ is
given by forming the boundary. We have addition and multiplication operations

[T: 9 x—>2 ] x Q%= Qin

which are commutative and associative up to diffeomorphism. For many applications, it is
important that we do not define ,, to simply be the set of diffeomorphism classes of compact
oriented n-manifolds with boundary: passing to diffeomorphism classes loses important
information about the behavior of addition and multiplication (for example, the natural
action of the symmetric group Yo on the manifolds M 11 M and M x M). One can retain
this information by regarding oriented bordism as an example of a more sophisticated object
which we will refer to as an Ey-ring. We will give an informal review of the theory of
Eq-rings in (for a more detailed and precise account, see [I39]). Let us summarize
some of the features of this theory which are relevant to the present discussion:

e Every Eo,-ring A has an underlying cohomology theory X — A*(X). Roughly speaking,
one can think of an E,-ring A as a cohomology theory equipped with a multiplicative
structure which is commutative not only at the level of cohomology classes, but also at
the level of representatives for cohomology classes (at least up to coherent homotopy).

e If Ais an Ey-ring and n € Z is an integer, then we denote the cohomology group
A7"(%) by m, A and refer to it as the nth homotopy group of A. The direct sum
P, .cz ™A has the structure of a graded-commutative ring. In particular, mpA is a
commutative ring and each m, A has the structure of a module over myA.

e Every commutative ring R can be regarded as an Eg-ring: the corresponding coho-
mology theory is ordinary cohomology with coefficients in R. The E-rings A which
arise in this way are characterized by the fact that the homotopy groups 7, A vanish
for n # 0.

o If R is an Eq,-ring, we define an Eq,-algebra over R to be an Eq-ring A equipped with a
morphism of Ey-rings R — A. When R is an ordinary commutative ring, this reduces
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to the notion described informally earlier: one can identify A with a chain complex of
R-modules equipped with a multiplication which is commutative and associative up to
coherent homotopy. Under this identification, the homotopy groups of A (regarded
as an abstract Ey-ring) correspond to the homology groups of the associated chain
complex.

There are many important examples of E,-rings A which do not arise as E-algebras
over any commutative ring R.

Example 0.1.1.12 (Complex K-Theory). Let X be a finite CW complex. We define K°(X)
to be the Grothendieck group of the commutative monoid

{ Complex vector bundles on X }/ isomorphism .

We refer to K°(X) as the complex K-theory of X. It is a commutative ring whose addition
and multiplication arise from the operation of direct sum and tensor product on complex
vector bundles, respectively.

One can extend the construction X — K°(X) to define invariants K"(X) for any integer
n and any topological space X. These invariants determine a cohomology theory which we
refer to as complex K-theory. This cohomology theory is represented by an E.-ring roughly
speaking, the E-structure reflects the fact that multiplication of K-theory classes can be
arises concretely for the formation of tensor products of complex vector bundles, which is
commutative and associative up to canonical isomorphism. Complex K-theory does not
admit the structure of an Ey-algebra over any commutative ring R.

Example 0.1.1.13 (Complex Bordism). The complex bordism groups {MU,},>¢ of Ex-
ample [0.1.1.4] can be identified with the homotopy groups of an E,-ring MU, called the
complex bordism spectrum. In this case, the E-structure reflects the fact the fact that the
formation of Cartesian products of (stably almost) complex manifolds is commutative up to
isomorphism. As in Example MU is not an Ey-algebra over any commutative ring
R.

Example 0.1.1.14 (The Dual Steenrod Algebra). The dual Steenrod algebra A" of Example
0.1.1.3] can be defined by the formula

.Av = W*(FQ AN Fg),

where Fo A F9 denotes the Ey-ring given by a coproduct of two copies of the ordinary
commutative ring Fo. This Ey-ring does arise as an E,-algebra over Fo, but in two different
ways. In some situations, one might not want to choose between these (for example, if one
wants to study the action of the symmetric group Yo on Fo A Fy given by permuting the
factors), in which case it is better to view Fo A Fy as an abstract Eq-ring.
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We can summarize the preceding discussion as follows:

(1) Many calculations in algebraic topology yield commutative (or graded-commutative)
rings R. In these cases, it is sometimes easier to think about the affine scheme Spec R
(see Examples|0.1.1.3|and [0.1.1.4]).

(1) Many of the graded-commutative rings which arise in algebraic topology can be
described as w4 A for some Eq-ring A. Passage from A to 7. A loses a lot of potentially

useful information (see Theorems |0.1.1.5{and [0.1.1.9).

The theory of spectral algebraic geometry developed in this book can be described by
the rough heuristic

Spectral algebraic geometry = Algebraic Geometry + Eg-Rings.

One of the aims of this theory is to provide a setting which we can make use of insights ()
and (i7) simultaneously: given an E-ring A, we might wish to contemplate the spectrum of
A itself (regarded as a kind of generalized affine scheme), rather than the spectrum of some
ordinary commutative ring extracted from A (such as mpA or m. A).

At this point, the reader might reasonably object that all of the schemes considered
in this section are affine. If we are interested only in affine schemes, then the language
of algebraic geometry is superfluous: the datum of an affine scheme is equivalent to the
datum of a commutative ring, and the datum of an affine spectral scheme is equivalent to
the datum of a (connective) Eq-ring. However, there are also non-affine algebro-geometric
objects which are relevant to algebraic topology. This is particularly true in the study of
chromatic homotopy theory, where many non-affine objects arise naturally as parameter
spaces for families of formal groups.

Example 0.1.1.15 (Elliptic Cohomology). Let M; ; denote the moduli stack of elliptic
curves. It follows from the work of Goerss, Hopkins, and Miller that there an essentially
unique sheaf 6" of Ey-rings on (the étale site of) Mj ; with the following features:

(¥) Let U = Spec R be an affine scheme, let n : U — M ; be an étale map which classifies
an elliptic curve E over R, and set A = 0% (U). Then there is a canonical isomorphism
of commutative rings mgA ~ R and a canonical isomorphism of the formal R-scheme
Spf A°(CP®) with the formal completion of E (compatible with the group structure on
E). Moreover, the homotopy groups 7, A vanish when 7 is odd, and the multiplication
maps mA Qg A ~ m,10A are isomorphisms for all n.

Passing to global sections, the sheaf 0" determines an E,-ring TMF called the spectrum
of topological modular forms. The resulting cohomology theory manifests a rich interplay
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between ideas from algebraic topology, the arithmetic of modular forms, and mathematical
physics.

The sheaf &7 has a natural interpretation in the language of spectral algebraic geometry.
In the terminology of Part [I, the pair (Mj 1, 0") is an example of a nonconnective spectral
Deligne-Mumford stack, whose underlying classical Deligne-Mumford stack is the usual
moduli stack of elliptic curves. Moreover, the pair (M1, 0") can itself be interpreted as a
moduli stack: it classifies elliptic curves (defined over Eq-rings) which are equipped with an
additional datum called an orientation (for an informal summary, we refer the reader to
[140]). To make sense of this picture, it is important to have a theory of spectral algebraic
geometry which includes non-affine objects: elliptic curves are not affine, and the moduli
stack of elliptic curves is not even a scheme.

0.1.2 Derived Categories

Suppose that we are given some category C that we wish to understand (for example,
the category of complex representations of a finite group G). One basic strategy is to first
find some select some particularly simple objects {C; € C},ex (for example, the collection of
irreducible representations of the group GG) and hope that an arbitrary object C' € C can
be expressed as a combination or superposition of the objects {Cy},ex. In many cases of
interest, the “simple” objects {C,} admit an algebraic classification, meaning that they are
parametrized by the points of some algebro-geometric object X.

Example 0.1.2.1. Let G be a finite flat commutative group scheme over a field x. Then
the one-dimensional (algebraic) representations of G can be identified with maps from G to
the multiplicative group G,,, which we can identify with the x-valued points of the Cartier
dual group scheme GV. In this case, the category Rep(G) of algebraic representations of G
can be identified with the category of quasi-coherent sheaves on GV. In concrete terms, if
we write G = Spec H for some finite-dimensional Hopf algebra H over x, then GV is the
spectrum of the dual Hopf algebra H"Y, and the desired equivalence is given by

{ Quasi-coherent sheaves on GV } ~ { H"-modules }
~ { H-comodules }
{ Representations of G }.

12

For every k-valued point ¢ : Speck — GV, this equivalence carries the skyscraper sheaf
1« (regarded as a quasi-coherent sheaf on GV) to the one-dimensional representation of G
classified by .

In Example|0.1.2.1} the identification of representations of G with quasi-coherent sheaves
GV holds at the level of abelian categories. However, there are many examples in which one
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can apply essentially the same paradigm, but it only provides an equivalence at the level
of derived categories. Recall that for any abelian A, the derived category D(A) is obtained
from the category K (.A) of chain complexes with values in A by formally adjoining inverses
to all quasi-isomorphisms (see [?]). If A is the abelian category of quasi-coherent sheaves on
a scheme X, we will denote D(A) simply by D(X) and refer to it as the derived category of
X.

Example 0.1.2.2 (The Fourier-Mukai Transform). Let E be an elliptic curve defined over
the field C of complex numbers. For every (closed) point x € E, let &/(x) denote the line
bundle on E whose section are regular away from x and permitted to have a simple pole at
the point z. If we fix a base point e € E, then the construction

T Oz —e) = 0(x) R 0(e)™?

determines a bijection from the set of (closed) points of F to the set of isomorphism classes
of line bundles of degree zero on E. The line bundles {€(z — e)},cr are the fibers of a line
bundle P on E x E corresponding to the Cartier divisor A — ({e} x E) — (E x {e}), where
A is the image of the diagonal map F — E x E. If we let mg, 7 : E X E — E denote the
projection maps, then the construction .# — 71, (P @7 .-#) determines a functor from the
abelian category of quasi-coherent sheaves on F to itself, which carries the skyscraper sheaf
at a closed point = € F to the line bundle &(xz — €). At the level of abelian categories, this
functor is poorly behaved: it is neither exact nor faithful (for example, it annihilates any line
bundle of degree < 0 on E). However, if we work instead at the level of derived categories,
then the analogous construction . +— R, (P ®n§ %) determines an equivalence from the
category D(FE) to itself. Moreover, an analogous statement holds if we replace E by an
abelian scheme over any commutative ring A (see [I58]).

The derived category D(X) of a scheme X is a fundamental invariant of X. In many
cases it is even a complete invariant: if X is a smooth projective variety over a field &
whose canonical bundle is either ample or anti-ample, then a celebrated result of Bondal

and Orlov asserts that X is determined (up to isomorphism in the category of schemes) by

b
coh

cohomology; see [163]. One of the main objects of study in this book is an extension of the

the full subcategory DY, (X) < D(X) spanned by chain complexes with bounded coherent

construction X — D(X) to the case where X is a spectral scheme. The main features of
this extension can be summarized as follows:

e To every spectral scheme (X, O x), we will associate a triangulated category hQCoh(X).

e If (X, Ox) is an ordinary scheme which is quasi-compact and separated, then hQCoh(X)
can be identified with the derived category D(X) (see Corollary [10.3.4.13]).
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e For a general spectral scheme (X, 0x), we can think of hQCoh(X) informally as the
“derived category of X.” However, this heuristic has the potential to cause confusion:
in general, the triangulated category hQCoh(X) need not be equivalent to the derived
category of any abelian category (however, it does arise as the homotopy category of a
stable co-category QCoh(X), which is our actual object of interest).

e Let (X, O0x) be a spectral scheme and let A denote the abelian category of quasi-
coherent sheaves on the underlying ordinary scheme Xy = (X,mp €x). Then the
triangulated category hQCoh(X) contains the abelian category A as a full subcategory.
Moreover, the inclusion A — hQCoh(X) extends to a triangulated functor D(Xy) —
hQCoh(X). Assuming that X is quasi-compact and separated, this functor is an
equivalence if and only if (X, @'x) is an ordinary scheme (see Corollary [10.3.4.12)).

e Let X be a scheme and let A be the abelian category of quasi-coherent sheaves on
Xo. Then the construction

{ spectral schemes with underlying ordinary scheme X }

|

{ triangulated categories containing A4 }

X +— hQCoh(X)

is not too far from being an equivalence (see Corollary [9.6.0.2)). In other words, we
have a rough heuristic

Spectral algebraic geometry = Algebraic Geometry + Triangulated Categories.

Extending the theory of derived categories to the setting of spectral schemes is not an
empty theoretical exercise: it is often necessary when we wish to extend the paradigm of
Examples [0.1.2.7] and [0.1.2.2] to more complicated situations. Given a triangulated category
C and a family of objects {Cy}.ex, parametrized (in some sense) by a scheme Xy, there

is often a canonical way to realize Xy as the underlying ordinary scheme of a spectral
scheme X in such a way that the construction « — C, extends to a triangulated equivalence
hQCoh(X) — C.

Example 0.1.2.3. Let G be a semisimple algebraic group defined over a field « of character-
istic p > 0, let g be its Lie algebra, and let Uy(g) denote the restricted universal enveloping
algebra of g. Let X denote the flag variety parametrizing choices of Borel subgroup B < G,
let X denote the pullback of X along the Frobenius map ¢ : Spec k — Spec &, and let
Pgeom : X — X (1) denote the geometric Frobenius map associated to X. For each x-valued
point z € XM (k), we can write the scheme-theoretic fiber Pgeom iz} as the spectrum Spec A,
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where A, is a finite-dimensional k-algebra. The action of G on X determines an action
of the restricted universal enveloping algebra Uy(g) on A,, and the construction z — A,
extends to a functor of derived categories T : D(X(1) — D(Uy(g)). The functor T is far
from being an equivalence. However, if the prime number p is sufficiently large (with respect
to the Dynkin diagram of G), then the functor T' can be factored as a composition

D(X®) = hQCoh(X) =5 1QCoh(Y ) L5 D(A)
with the following features:

e The functor 7" is a fully faithful embedding whose essential image is a direct summand
(a “block”) of the derived category D(A).

e The spectral scheme Y (! is the Frobenius pullback of the (spectral) fiber product
Y =g x4 {0}, where g € X Xgpeck g is the closed subscheme whose r-valued points
are pairs (z,v) € X (k) x g satisfying v € b, (here we abuse notation by identifying g
with the affine scheme Spec Sym? gV).

e The triangulated functor 7, : hQCoh(X (1)) — hQCoh(Y ) is induced by pushfor-
ward along a map of spectral schemes 7 : X(!) — Y1) which exhibits X(!) as the
ordinary scheme underlying Y ().

We refer the reader to [I74] and [?] for more details.

Another motivation for the theory of spectral algebraic geometry is that the triangulated
categories which appear have better formal properties than their classical counterparts.

Example 0.1.2.4. Suppose we are given a pullback diagram o :

x - x

I

(N v

of quasi-compact separated schemes. To the morphisms f and f’ we can associate (derived)
pushforward functors

Rf.:D(X) = D(Y)  RfL: D(X) - DY),
to the morphisms g and ¢’ we can associate (derived) pullback functors
Lg* : DY) — DY) Lg™ : D(X) - D(X"),

and there is an associated Beck-Chevalley transformation « : Lg* o Rfy — Rf, o Lg’*. This
natural transformation is an equivalence if either f or ¢ is flat, but not in general. One can
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be more precise: the morphism « is an equivalence precisely when the diagram o is also a
pullback square in the setting of spectral schemes.
The situation in spectral algebraic geometry is simpler: for any pullback diagram o :

X 4.x

I

y' .y

of quasi-compact separated spectral schemes, the associated diagram of triangulated cate-
gories

hQCoh(X') <— hQCoh(X)

E B
*

hQCoh(Y”) <— hQCoh(Y)
commutes up to canonical isomorphism (see Proposition [2.5.4.5)).

Example [0.1.2:4] illustrates another general point: in classical algebraic geometry, the
role of flatness hypotheses is often to guarantee that fiber products of ordinary schemes
agree with the analogous fiber products in the setting of spectral schemes. If one extends
the vocabulary of algebraic geometry to include spectral schemes, then flatness hypotheses
are often superfluous (or can be substantially weakened).

Example 0.1.2.5 (Proper Descent). Let f : X — S be a morphism of schemes which is
quasi-compact and faithfully flat. Then f is of effective descent for quasi-coherent sheaves.
More precisely, the abelian category Ag of quasi-coherent sheaves on S can be identified
with the (homotopy) inverse limit lim Ax,, where X, denotes the simplicial scheme obtained
from f (so that X,, = X xg X xg--- xg X is the (n + 1)-fold fiber product of X over S)
and Ax, denotes the associated cosimplicial abelian category.

In the setting of spectral algebraic geometry, one can formulate and prove variants of this
assumption without a flatness hypothesis. For example, if f : X — S is a map of Noetherian
schemes which is proper, surjective, and of finite presentation and X, is defined as above,
then there is an associated equivalence QCoh(S) — lim QCoh(X,) of stable oo-categories
(see Theorem . One can even relax the hypothesis that f is surjective: in general,
the inverse limit lim QCoh(X,) can be identified with QCoh(§ ), where S denotes the formal
completion of S along the image of f. For example, suppose that S is a Noetherian scheme
and let 7 : {s} < S be the inclusion of a closed point s € S (regarded as a reduced closed
subscheme of S). Then, for any quasi-coherent sheaf .% on S, the restriction of % to the
formal completion S can be recovered from the fiber n* %, together with “derived descent
data” whose specification involves the iterated fiber products X, = {s} xg {s} xg--- xg {s}.



26 CHAPTER 0. INTRODUCTION

Of course, it is essential here that these iterated fiber product are formed in the setting of
spectral schemes (and therefore depend on the local structure of S near the point s, not
only on the residue field of S at s).

0.1.3 Deformation Theory

Let Xy be a smooth algebraic variety over the field C of complex numbers. One of the
central aims of deformation theory is to understand the algebraic varieties which are “close
to Xo” in some sense. For example, suppose that Xy appears as the fiber of a morphism
of schemes f : X — S at some point s € S (having residue field C). One might hope that
there is a close relationship between properties of the fiber Xy and properties of other fibers
Xy¢ = X xg{s'}, or of the scheme X itself. To guarantee this, one typically needs to make
global assumptions about the morphism f (for example, that it is flat or proper) and also
about base scheme S. For example, if 5,5’ € S are points belonging to different connected
components of S, then there is no reason to expect any relationship between the fibers
Xo =X xg{s} and Xy = X xg {s'}. One way to avoid this concern is to restrict attention
to the case where the scheme S has only one point: for example, the case where S = Spec R
for some local Artinian ring R. This leads to the subject of formal deformation theory: the
study of algebraic varieties which are, in some sense, “infinitesimally close” to Xj.

Let us begin by considering the simplest nontrivial case: let S denote the spectrum of
the ring C[e]/(e?) (sometimes referred to as the ring of dual numbers). If Xy is an algebraic
variety over C, then a first order deformation of Xg is pullback diagram of schemes

Xo X
| |
Spec C — Spec C[€]/(€?),

where the vertical maps are flat. The following proposition summarizes some standard facts
about first-order deformations:

Proposition 0.1.3.1. Let Xy be a smooth algebraic variety over C. Then:
(a) For every first-order deformation X of Xy, there is a canonical bijection
{ Automorphisms of X that restrict to the identity on Xo } ~ H°(Xo; Tx,).
Here Tx, denotes the tangent bundle of the smooth variety X.
(b) There is a canonical bijection

{ Isomorphism classes of first-order deformations of Xo } ~ H'(Xo; T, ).
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Many of the central ideas of spectral algebraic geometry originated from the desire
to extend Proposition to the case where X is not smooth. To understand the
issues involved, let us begin by how the tangent bundle is defined in the special case where
Xo = Spec B is an affine algebraic variety over C. Recall that to any homomorphism of
commutative rings ¢ : A — B, one can introduce a B-module {2g,4 called the module of
Kahler differentials of B relative to A: it is generated as an B-module by symbols {db}pcp
which are subject only to the relations

db+b)=db+dy  ddY) =bdt +bdb  de(a) = 0.

In the special case where B is a smooth A-algebra, the B-module Qg is locally free of
finite rank. In particular, if Xg = Spec B is smooth affine algebraic variety over C, then
the B-module {2p, ¢ is locally free of finite rank, and therefore corresponds to an algebraic
vector bundle T )*(0 on Xo whose dual is (by definition) the tangent bundle T'x,.

To a pair of ring homomorphisms ¢ : A — B and ¢ : B — C, one can associate a short
exact sequence of Kéhler differentials

C®pQpa— Qo/a — Qeyp — 0. (1)

This sequence is generally not exact on the left unless the ring homomorphism % is smooth.
To remedy this defect, André and Quillen (independently) introduced the theory known as
André-Quillen homology (generalizing earlier work of Lichtenbaum and Schlessinger), which
has the following features:

e To every homomorphism of commutative rings ¢ : A — B and every B-module M,
one associates a sequence of B-modules {D,,(B/A; M)},>0, called the André-Quillen
homology groups of B relative to A with coefficients in M.

e The theory of André-Quillen homology generalizes the theory of Kéhler differentials:
for every homomorphism of commutative rings ¢ : A — B and every B-module M,
there is a canonical isomorphism Do(B/A; M) ~ M ®p Qp) 4.

e If p: A — B is a smooth homomorphism of commutative rings, then the André-Quillen
homology groups D,,(B/A; M) vanish for n > 0 and any B-module M.

e To every composable pair of commutative ring homomorphisms ¢ : A — B and
¥ : B — C and every C-module M, one can associate a long exact sequence

= Dpy1(C/B; M) — Dy (B/A; M) — Dn(C/A; M) — Dp(C/B; M) — -+ -,

extending the short exact sequence in the special case M = C.



28 CHAPTER 0. INTRODUCTION

The André-Quillen homology groups D, (B/A; M) are obtained from a more fundamental
invariant Laé% 1 called the cotangent complex of B over A, a chain complex of (projective)
B-modules which determines André-Quillen homology via the formula D.(B/A; M) =
H.(M ®p L;}% )~ This invariant was generalized in the work of Illusie (see [?] and [100]),
which associates to every morphism f : X — S of schemes an object Lf;ég/s of the derived

category D(X), specializing to the chain complex Lg% ', in the case where X = Spec B and
S = Spec A are affine. With this generalization, Proposition [0.1.3.1] extends as follows:

Proposition 0.1.3.2. Let X be an algebraic variety over C (not necessarily smooth).
Then:

(a) For every first-order deformation X of Xy, there is a canonical bijection

{ Automorphisms of X restricting to the identity on X} ~ EXt%(Xo)(Lié%specC? Ox).

(b) There is a canonical bijection

{Isomorphism classes of first-order deformations of Xo} ~ Extb(xo)(Lf;ég/ Spec G Ox).

Illusie’s work on the cotangent complex was an important precursor to the theory of
spectral algebraic geometry developed in this book. To understand this point, let us begin
by recalling that the module of Kéhler differentials {2p,4 can be characterized by a universal
property: for any B-module M, there is a canonical bijection

{ B-module homomorphisms Qg4 — M}

|

{ A-algebra sections of the projection map B&® M — B }
which carries a map A : Q0,4 — M to the A-algebra homomorphism sy : B — B® M
given by s)(b) = b+ A(db). The entire cotangent complex Lg? 4 can be characterized by an
analogous universal property. To simplify the discussion, let us assume that A and B are
Q-algebras; in this case, we will denote the cotangent complex L;}% 4 simply by Lp 4 (see
Remark [0.1.3.7| below). If M is a chain complex of B-modules, then the direct sum B & M

can be regarded as an Ey-algebra over B, with homotopy groups given by
B®Hy(M) ifx=0

rBaM) ={°® o(M) .

H.(M) if = #0.

We then have a canonical bijection

{ Maps from Lp/4 into M in the derived category D(B) }

le

{Homotopy classes of sections of the projection q : B&® M — B}
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where we interpret ¢ as a map of Eq-algebras over A. Note that Lp, 4 is characterized by
this universal property: that is, we can define Lp, 4 to be an object which corepresents the
functor

M — {Homotopy classes of sections of the projection ¢ : B&® M — B}.

This supplies a definition of Lp,4 which makes sense for any morphism of Ey,-rings ¢ : A — B.
This leads to the theory of topological André-Quillen homology (see [145], [15], [16]). Like
the theory of ordinary André-Quillen homology, it can be “relativized” to non-affine settings:
to every morphism of spectral schemes f : X — S, one can associate an object Lx/g
of the triangulated category hQCoh(X) called the relative cotangent complex of f. The
construction (f : X — S) + Lx/g has the following features:

(1) Suppose that X and S are ordinary schemes over Spec Q. Then the relative cotangent
complex Ly /g (in the setting of spectral schemes) agrees with the cotangent complex

L?ég/s of Mlusie (for the case of positive and mixed characteristic, see Remark [0.1.3.7]
below).

(2) Let f:(X,0x) — (S, 0g) be a morphism of spectral schemes, let Xo = (X, 1 Ox)
and Sy = (S, 7 Og) be their underlying ordinary schemes, and let A be the abelian
category of quasi-coherent sheaves on Xy. Then the “degree zero” part of Ly g agrees,
as an object of A, with the sheaf of Kéhler differentials 2x, /g, of the underlying map
Jo: Xo — So.

One of the advantages of working in the setting of spectral algebraic geometry is that there
is a much larger class of geometric objects for which the cotangent complex is well-behaved:

(i) If X is a spectral C-scheme of finite presentation, then the cotangent complex
Lx/specc € QCoh(X) is perfect: that is, it is dualizable as an object of QCoh(X).

(77) If X is an ordinary C-scheme of finite presentation, then the cotangent complex
Lx/specc is a perfect complex if and only if X is a local complete intersection (see

[7])-

To reconcile (i) and (i), we remark that if X is an ordinary scheme, then the assumption
that X is of finite presentation as a C-scheme does not imply that it is of finite presentation
as a spectral C-scheme. However, the converse does hold: more generally, if (X, 0x) is a
spectral scheme of finite presentation over C (as a spectral scheme), then the underlying
ordinary scheme Xy = (X, my Ox) is of finite presentation over C (as a scheme). In this
case, the cotangent complex Lx/gpecc is often a much more natural and useful object than

LXO/ Spec C-
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Example 0.1.3.3 (Quot Schemes). Let X be a projective algebraic variety over C and let
Z be a quasi-coherent sheaf on X. For every commutative C-algebra R, let X denote the
fiber product X xgpecc Spec R and let .# g denote the pullback of .# to Xr. We let F/(R)
denote the collection of isomorphism classes of exact sequences

0> F - Fp—F" -0

in the abelian category of quasi-coherent sheaves on Xp for which .#” is flat over R. The
construction R — F(R) is representable by a C-scheme Quot (see [?]). Given a C-valued
point n € F(C) classifying an exact sequence

0> -7 —>7F" -0,

the Zariski cotangent space of Quot at the point 7 is the dual of the vector space Hom 4 (%', #"),
where A is the abelian category of quasi-coherent sheaves on X. This vector space can be
described as the Oth homology of the cotangent fiber n* Lquot /spec c- However, the scheme
Quot is usually highly singular, so the entire cotangent fiber n* Lqyot /spec ¢ can be difficult
to describe.

The situation is better if we work in the setting of spectral algebraic geometry. The
definitions of Xpr, .# g, and F(R) make sense more generally when R is an E,-algebra over
C, and the resulting functor on E.-rings is representable by a spectral scheme Quot™ having
Quot is its underlying scheme (this object was introduced in [41]). The structure of the
cotangent complex L4+ /Spec C has an immediate description in terms of the functor F
(on Ecc-algebras). For example, if n € F(C) is as above, then the complex 7* L1+ /specc
is dual to RHom (%', .#”): in particular, the nth homology group of 0" L Quot+ /SpecC CaN
be identified with the C-linear dual of Ext’y (%', Z").

Example illustrates a general phenomenon: if Z; is a scheme representing which
represents a functor F' on the category of commutative rings, there is often a natural way to
extend the definition of F(R) to the case where R is an Eo-ring in such a way that extended
functor is representable by a spectral scheme Z. Roughly speaking, we can think of the
specification of Z as given by “equipping Zy with a deformation theory” (we will make this
idea precise in Part 77; see Theorem , according to the rough heuristic

Spectral algebraic geometry = Algebraic Geometry + Deformation Theory.

From the above perspective, the subject of this book is a natural outgrowth of deformation
theory, which allows us to think about invariants like the cotangent complex in a more
flexible and general setting. However, the ideas of spectral algebraic geometry lead to new
and useful ways to think about deformation-theoretic questions even for smooth algebraic
varieties. For example, consider the following variant of Proposition
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Proposition 0.1.3.4. Let Xy be a smooth algebraic variety over C. Then there is a
canonical “obstruction class map”

p: { First order deformations of Xo } — H?*(Xo; Tx,)

with the following property: if X is a first-order deformation of Xq, then the obstruction class
p(X) € H*(X¢; Tx,) vanishes if and only if X can be extended to a second-order deformation
of Xo: that is, if and only if there exists a pullback square of schemes

|
Spec C[e]/(¢*) — Spec Cle]/(€?)

in which the vertical maps are flat.

Proposition is very useful: it allows us to convert an a priori nonlinear problem
(deforming an algebraic variety) into a linear one (checking that a certain cohomology class
vanishes). This linear problem is often difficult, but in some cases it is trivial: for example,
if Xg is a smooth curve, then HQ(XO;TXO) ~ (, so Proposition implies that any
first-order deformation can be extended to a second-order deformation.

One might object that Proposition is not as satisfying as Proposition
Note that Proposition provides concrete geometric interpretations for the cohomology
groups H%(X¢; Tx,) and H'(Xg;Tx,). Proposition tells us that the cohomology
group H?(X; Tx,) is related to the problem of extending first-order deformations of Xy to
second-order deformations, but it does not tell us what a general element of H?(X¢; T, )
1s. The language of spectral algebraic geometry provides a remedy for this situation. More
precisely, it allows us to formulate a generalization of Proposition which supplies
a geometric interpretation for all of the cohomology groups H"(Xg;Tx,) and which has
Proposition as a consequence.

Fix a smooth C-scheme X as in Proposition [0.1.3.4] For every commutative C-algebra
R equipped with an augmentation p : R — C, let us define a deformation of Xy over R to
be a flat R-scheme Xp together with an isomorphism X ~ Spec C Xgpec RXr. The theory
of spectral algebraic geometry allows us to consider a more general notion of deformation: if
R is an E-algebra over C (still equipped with an augmentation p : R — C), then we can
contemplate spectral schemes X equipped with a flat map Xr — Spec R and an equivalence
Xo =~ Spec C xgpec rRX R (if R is an ordinary commutative ring, this reduces to the previous
definition: the flatness of X over Spec R guarantees that Xp is an ordinary scheme). We
then have the following generalization of Proposition which we will discuss in Part

(see Proposition [19.4.3.1] and Corollary (19.4.3.3)):
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Proposition 0.1.3.5. Let Xy be a smooth algebraic variety over the field C of complex
numbers and let R denote the direct sum C@®M, where M is the chain complex of complex
vector spaces which is concentrated in degree n = 0 and is isomorphic to C in degree n. Let
us regard R as an Eq-algebra over C. Then:

(a) If Xg is any deformation of Xy over R, then there is a canonical bijection

{Automorphisms of Xg that are the identity on Xo}/homotopy ~ H"(Xo; Tx,).

(b) There is a canonical bijection

{ Deformations of Xo over R}/homotopy equivalence ~ H" 1 (Xo; Tx,).

Remark 0.1.3.6. In the special case n = 0, the Ey-ring R = CAM can be identified with
the ordinary ring of dual numbers C[e]/(¢?), and Proposition reduces to Proposition
Proposition implies that all of the cohomology groups H™(Xq;Tx,) arise
naturally when studying deformations of Xy over “shifted” versions of the ring of dual
numbers.

To relate Propositions [0.1.3.4/ and [0.1.3.5] we note that the C[e]/(¢?) can be regarded as
a an extension of C[e]/(€?) by the square-zero ideal (¢?) ~ C. This implies that there is a

pullback diagram of E.-algebras
Clel/(€) —=C

| L

Clel/(¢) L— R,

where R is defined as in Proposition [0.1.3.5] in the special case n = 1. We can interpret this
pullback square geometrically as supplying a pushout diagram of affine spectral schemes

Spec C[e]/(e3) =<—— Spec C

| |

Spec C[e]/(e?) <—— Spec R.

It follows that if X is a first-order deformation of Xg, then X extends to a second-order
deformation if and only if the fiber product Xp = X Xgpecce/(e2) SPec R is a trivial
deformation of Xy over R (that is, if and only if it is equivalent to Xo Xgpecc Spec R).
This is equivalent to the vanishing of a certain element p(X) € H?(Xo; T, ), where p is the
“obstruction map” given by the composition

{ Deformations of Xg over C[e]/(¢?) } — { Deformations of Xg over R}
~ I‘I2 (Xo; TXO)-



0.2. PREREQUISITES 33

where the first map is given by extension of scalars along ¢ and the second follows from the
identification of Proposition [0.1.3.5

Remark 0.1.3.7. Let ¢ : A — B be a homomorphism of commutative rings, which we can
also regard as a morphism of Eg-rings. In general, the algebraic André-Quillen homology
of ¢ (denoted by L;}% , in the above discussion and throughout this book) is different from
the topological André-Quillen homology of ¢ (denoted by Lg,4 in the above discussion
and throughout this book), though they are rationally equivalent (and therefore coincide
whenever B is a Q-algebra). The deformation theory of spectral schemes is controlled by
topological André-Quillen homology. For applications in positive and mixed characteristic,
it is often more appropriate to use the theory of derived algebraic geometry, in which
deformations are controlled by algebraic André-Quillen homology. We will give a detailed
exposition of derived algebraic geometry and its relationship to spectral algebraic geometry

in Part [VI1l

0.2 Prerequisites

Throughout this book, we will make extensive use of the language of co-categories
developed in [I38] and [I39]. The reader will also need some familiarity with stable homotopy
theory and the theory of structured ring spectra, which are developed from the co-categorical
perspective in [I39] (for a different approach to the same material, see [60]). For the reader’s
convenience, we include a brief (and incomplete) expository account of some of the relevant
material below. For a more detailed account (which includes precise definitions and proofs),
we refer the reader to [I38] and [I39]. Since we will need to refer to these texts frequently in
this book, we adopt the following conventions:

(HTT) We will indicate references to [I38] using the letters HTT.
(HA) We will indicate references to [139] using the letters HA.

For example, Theorem HTT.6.1.0.6 refers to Theorem 6.1.0.6 of [I38].

The other main prerequisite for reading this book is some familiarity with classical
algebraic geometry. To some extent, this is logically unnecessary: the theory of spectral
algebraic geometry is developed “from scratch” in this book, and most of our references to
the classical theory are purely for motivation. Moreover, we have made an effort to keep this
book as self-contained as possible as far as algebraic geometry and commutative algebra are
concerned: we have generally opted to include proofs of standard results (particularly in
cases where the use of “derived” methods can shed some additional light) except in a few
cases which would take us too far afield. Nevertheless, a reader who is not familiar with the
classical theory of schemes will almost surely find this book impenetrable (if he or she has
even made it this far).
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0.2.1 Homotopy Theory and Simplicial Sets

For every integer n > 0, let |A”| denote the topological n-simplex, given by
’An’ = {(x()a"-vwn)ERg—gl txo+ 1+ = 1}

If X is a topological space, we let Sing,, (X) denote the set of continuous maps from |A"|
into X. These sets play a role in defining many important invariants of X: for example, the
singular homology groups of X are obtained from the chain complex of free abelian groups

. — Z[Sing, X| L=ttd, 7iging, X %=%, Z[Sing, X]
where each dj, : Sing,, X — Sing,,_; X is the map which assigns to a simplex the face opposite
its kth vertex. To describe the structure given by the sets {Sing,,(X)},>0 and the face maps
dj, in a more systematic way, it will be useful to introduce a bit of terminology.

Definition 0.2.1.1. For each integer n > 0, we let [n] denote the finite linearly ordered set
{0 <1< ---<n}. We define a category A as follows:

e The objects of A are sets of the form [n] for n > 0.
e A morphism from [m] to [n] in A consists of a nondecreasing function « : [m] — [n].

We will refer to A as the category of combinatorial simplices. A simplicial set is a functor
Se : AP — Set, where Set denotes the category of sets. In this case, we will denote the
value of S, on the object [n] € A by S, and refer to it as the set of n-simplices of S. We
let Seta denote the category Fun(A°P, Set) of simplicial sets.

For each n > 0, it is useful to think of the set [n] = {0 <1 < --- < n} as the set of
vertices of the topological n-simplex |A"|. Every map of sets « : [m] — [n] extends uniquely
to a linear map p : |A™| — |A"|, given in coordinates by the construction

(o, -y Tm) — ( Z Tiye .o Z x;).
a(i)=0 a(i)=n

If X is a topological space, then composition with p determines a map Sing,, X — Sing,,, X.
In particular, we can regard the construction ([n] € A) — (Sing,, X € Set) as a simplicial
set. We refer to this simplicial set as the singular simplicial set of X and denote it by
Sing, X.

The construction X — Sing, X determines a functor Sing, from the category Top of
topological spaces to the category Seta of simplicial sets. This functor admits a left adjoint

Seta — Top

Su > |S.]
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which we refer to as geometric realization. If X is a topological space which has the homotopy
type of a CW complex, then the counit map | Sing, X| — X is a homotopy equivalence (the
assumption that X has the homotopy type of a CW complex is necessary here: for any
simplicial set So, the geometric realization |S,| is a CW complex). Consequently, from the
perspective of homotopy theory, no information is lost by discarding the original space X
in favor of the simplicial set Sing, X (see Remark below). In fact, it is possible to
develop the theory of algebraic topology in entirely combinatorial terms, using simplicial
sets as surrogates for topological spaces. Moreover, this approach has many advantages:

e Many of the most important algebraic invariants of a topological space X (such as
homotopy groups, homology, and cohomology) are obtained by studying maps from
n-simplices (and their boundaries) into X. Consequently, these invariants can be
extracted more directly from the singular simplicial set Sing, X itself.

e Working with simplicial sets rather than topological spaces avoids many of the techni-
calities and pathologies of point-set topology.

e When applying homotopy-theoretic methods to areas of mathematics outside of topol-
ogy (a major theme of this book), the association between homotopy theory and
topological spaces can be an unnecessary distraction.

We will assume throughout this book that the reader is familiar with the homotopy
theory of simplicial sets. We devote the remainder of this section to giving a quick review of
some basic definitions and notations; for a more thorough introduction, we refer the reader
to the texts [81] and [I51].

Notation 0.2.1.2. For each n = 0, we let A" € Setp = Fun(A°P, Set) denote the simplicial
set which is represented by the object [n] € A, so that the m-simplices of A™ are given by
nondecreasing maps [m] — [n]. We will refer to A™ as the standard n-simplex. For any
simplicial set S., Yoneda’s lemma provides a canonical bijection S,, ~ Homge, (A", S,).
We will often abuse notation by using this bijection to identify elements of S, with the
corresponding maps o : A™ — S, referring to either datum as an n-simplex of S,.

We let 0 A™ denote the simplicial subset of A™ whose m-simplices are nondecreasing
maps « : [m] — [n] which are not surjective. For 0 < i < n, we let A denote the simplicial
subset of 0 A™ ¢ A™ whose m-simplices are nondecreasing maps « : [m] — [n] having the
property that a([m]) u {i} < [n]. We will refer to 0 A™ as the boundary of A™ and to Al as
the ith horn of A™.

If S, is a simplicial set, we will refer to the element of Sy as the wertices of S and
the elements of S; as the edges of S. Each vertex v € Sy can be identified with a map
AY — S,. We will generally abuse notation by denoting the domain of this map by {v}.
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Taking S, to be the standard n-simplex, we see that each element 0 < i < n determines a
map {i} ~ A% - A" which we will refer to as the ith vertex of A™.

Remark 0.2.1.3. For each n > 0, the geometric realization of the standard n-simplex
A™ e Seta can be identified with the topological n-simplex

’An’:{(x()a'--vxn)eRnJrlIxo-f—xl—i----—i—g;n:l}.

Under this identification, the geometric realization of d A™ corresponds to the subset of
|A"| consisting of those n-tuples (zo,...,z,) for which at least one coordinate x; vanishes.
The i¢th horn A} corresponds to the subset of |A™| consisting of those tuples (zo,...,zn)
satisfying z; = 0 for some j # i. More informally: | 0 A"| is obtained from the topological
n-simplex |A™| by deleting its interior, while |[A?| is obtained from |A”"| by deleting its
interior together with the face opposite the ith vertex.

Definition 0.2.1.4. Let S, be a simplicial set. We will say that S, is a Kan complex
if, for every pair of integers 0 < ¢ < n, every map og : A} — S, can be extended to an
n-simplex o : A™ — §,. We let Kan denote the full subcategory of Seta spanned by the
Kan complexes; we will refer to Kan as the category of Kan complezes.

Let S, and T, be simplicial sets. Given a pair of maps f,g : Se — T, a simplicial
homotopy from f to g is a map of simplicial sets h : S, x A — T, such that hls,xq0y = f
and hlg, 1y = g. We will say that f and g are simplicially homotopic if there exists a
simplicial homotopy from f to g. If T, is a Kan complex, then this is an equivalence relation.
We let hKan denote the category whose objects are Kan complexes, where the morphisms
from S, to T, in h/Can are the simplicial homotopy classes of maps from S, to T,. We will
refer to h/Can as the homotopy category of Kan complexes.

Remark 0.2.1.5. The homotopy category of Kan complexes is equivalent to the homotopy
category of CW complexes. More precisely, one can prove the following:

e For every topological space X, the singular simplicial set Sing, X is a Kan complex
(this follows from the observation that each horn |A}| is a retract of the corresponding
n-simplex |A”[; see Remark [0.2.1.3). Moreover, if f,g: X — Y are homotopic maps
between topological spaces X and Y, then the induced maps Sing,(f),Sing,(g) :
Sing,(X) — Sing,(Y") are simplicially homotopic. Consequently, construction X —
Sing, X determines a functor h7op — h/an, where h7 op is the homotopy category
of topological spaces.

e For every simplicial set S,, the geometric realization |Se| is a CW complex. Moreover,
if f,g:Se — T, are maps of simplicial sets which are simplicially homotopic, then the
induced maps of topological spaces |f|,|g| : |Se| — |Te| are homotopic. Consequently,
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the construction S, — |S,| determines a functor hKan — h7op®W, where h7Top®W
denotes the homotopy category of CW complexes.

e For any CW complex X, the counit map v : | Sing, X| — X is a homotopy equivalence.
For any Kan complex S,, the unit map S, — Sing, |Se| is a simplicial homotopy
equivalence. Consequently, the functors

Il

h7Top®W <S:> h/Can
mge

are mutually inverse equivalences of categories.

Remark 0.2.1.6. From a spectral scheme (X, @ x), one can extract topological spaces of
two very different types:

(a) The underlying topological space X. This space will typically be non-Hausdorff and
therefore very far from the type of spaces which are usually studied in algebraic
topology. Consequently, we will not be interested in the homotopy type of such a
space: it is primarily a device that allows us to talk about sheaves.

(b) The underlying spaces of the Eq,-rings &' x (U). These spaces should really be regarded
as only well-defined up to homotopy equivalence: in other words, all that we care
about is their homotopy type. For example, we would never want to consider sheaves
on such a space (other than locally constant sheaves), because the notion of sheaf is
not homotopy invariant.

To distinguish between these possibilities, we will usually regard objects of type (b) as Kan
complexes rather than as topological spaces. Unless otherwise specified, we use the term
“space” to refer to a Kan complex. When we wish to refer to a set equipped with a topology,
we will use the term “topological space.”

0.2.2 Higher Category Theory

For a reader trained in classical algebraic geometry, the most exotic feature of spectral
algebraic geometry is likely to be that all of its basic objects come equipped with an “internal”
homotopy theory. To fix ideas, let us introduce a bit of terminology:

Definition 0.2.2.1. Let C be a category. For every pair of objects X, Y € C, let Map,(X,Y)
denote the set of morphisms from X to Y. We will say that C is a topological category if each
of the sets Map(X,Y) has been equipped with a topology for which the composition maps

MapC(Y7 Z) X MapC(X7 Y) - MapC(X7 Z)

are continuous (for every triple of objects X,Y, Z € C).
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The collection of spectral schemes (and other more general geometric objects that we
study in this book) can be organized into a topological category SpSch. In particular, if
X and Y are spectral schemes, then there is a notion of a homotopy from a morphism
f X — Y to another morphism g : X — Y: namely, a path in the topological space
Mapspsch(X ,Y). Consequently, there is an associated notion of homotopy equivalence: we
say that spectral schemes X and Y are equivalent if there exist morphisms f: X — Y and
g Y — X such that f o g is homotopic to the identity map idy and g o f is homotopic to
the identity map idx.

Warning 0.2.2.2. Let X be a spectral scheme over the field C of complex numbers. Then
we can associate to X its set X(C) of C-valued points (which is the same as the set of
C-valued points of the underlying ordinary scheme of X). The set X(C) inherits the
structure of a topological space (from the usual topology on C), which we will refer to as
the complex-analytic topology. This topology is completely unrelated to the structure of
SpSch as a topological category. If f,g: X — Y are homotopic morphisms between spectral
schemes over C, then they induce the same map at the level of underlying schemes, so that
the induced maps X (C) — Y (C) are the same. In particular, if f: X — Y is an equivalence
of spectral schemes over C, then the induced map on C-valued points X(C) — Y (C) is
a homeomorphism (not merely a homotopy equivalence). In more informal terms: the
“internal” homotopy theory of a spectral scheme X is a purely infinitesimal datum, and
is invisible to all classical invariants of X (like the space X (C) with its complex-analytic
topology, or the underlying topological space of X with its Zariski topology).

The notion of homotopy plays a central role in the theory in the theory of spectral
algebraic geometry: all meaningful properties of spectral schemes are invariant under
equivalence, and all meaningful properties of morphisms between spectral schemes are
invariant under homotopy. This motivates the following definition:

Definition 0.2.2.3. Let C be a topological category. The homotopy category hC is defined
as follows:

e The objects of hC are the objects of C.

e For every pair of objects X,Y € hC, the set Homye(X,Y) of morphisms from X to Y
in hC is the set of path components mo Map(X,Y') of morphisms from X to Y in C.

e For every triple of objects X,Y,Z € C, the composition law o : Homye(Y, Z) x
Homype(X,Y) — Homype (X, Z) is the unique map for which the diagram

Map¢ (Y, Z) x Mapg(X,Y) —— Map(X, Z)

| |

Homye (Y, Z) x Hompe(X,Y) —— Homye (X, Z)



0.2. PREREQUISITES 39

commutes.

By definition, two morphisms of spectral schemes f,g : X — Y are homotopic if and
only if they induce the same morphism in the homotopy category hSpSch, and a morphism
f : X — Y is an equivalence if and only if it induces an isomorphism in hSpSch. Consequently,
one way to enforce the philosophy that all constructions should be homotopy invariant is
to restrict attention to constructions which can be described entirely in terms of hSpSch.
However, this turns out to be too restrictive:

Example 0.2.2.4. Let C be a topological category. By definition, commutative diagrams
in the homotopy category hC correspond to diagrams in C which commute up to homotopy.
For example, a diagram

X/L)X

n

Y —=Y

in hC is specified by giving maps f, ?l,g, and g’ (well-defined up to homotopy) for which
there exists a path « joining §071 to fog in the topological space Mapg(X’,Y). In practice,
we are often interested not only in knowing that « exists, but in specifying a particular
choice of a. A choice of homotopy is not something that can be described in terms of the
homotopy category hC alone.

Example 0.2.2.5. Let fy: Xg — X and f1 : X7 — X be morphisms of spectral schemes.
To the pair (fo, f1), one can canonically associate a new spectral scheme which we will
denote by Xg xx X1 and refer to as the fiber product of Xy with X1 over X. However,
this object is usually not a fiber product of Xy with X; over X in the homotopy category
hSpSch. In the language of topological categories, it is a homotopy fiber product, which can
be characterized as follows: there is a diagram of spectral schemes

Po
Xo1 — Xo

ipl lfo
f1

X1 —X

and a path a from fo o pg to f1 o p1 in the topological space Mapg,s.n(Xo1, X) which
enjoys the following universal property: for every spectral scheme Y, the induced map from
Mapgpsen (Y, Xo1) to the fiber product

MapSpSch (Y7 XO) X Mapspsch (Y,X) MapSpSch (Y7 X) [0’1] X Mapspsch (Y,X) MapSpSch (Y7 Xl)

is a (weak) homotopy equivalence. In other words, the datum of a morphism from Y to X¢;
is equivalent to the data of a pair of morphisms gg : Y — Xy and g1 : Y — X together with
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a homotopy 5 from gg o fo to g1 o fi. In general, different choices for the homotopy 3 give
rise to different morphisms Y — Xp; (even up to homotopy). Consequently, Xo; is usually
not a fiber product of Xy with X; over X in the homotopy category hSpSch (such a fiber
product usually does not exist). It enjoys an analogous universal property, but one which
cannot be formulated in terms of the homotopy category hSpSch alone.

Examples [0.2.2.4] and [0.2.2.5] illustrate that passage from a topological category C to its
homotopy category hC loses essential information about diagrams even of very simple shape

(indexed by a square). For more complicated diagrams, the situation is worse. To fix ideas,
let us suppose that we are given some index category J and a functor F': J — hC, which
we interpret as a commutative diagram in hC. In practice, this is often not good enough:
many basic constructions require that we promote F to a homotopy coherent diagram F in
C. This involves supplying the following sort of data:

(D1) For every morphism v: X — Y in J, a choice of point F(v) € Mapg(F(X), F(Y)) be-
longing to the path component F'(v) € Homye(F(X), F(Y)) = mo Map. (F(X), F(Y)).

(D2) For every composable pair of morphisms X % Y > Z in C, a choice of path
p + [0,1] = Mape (FI(X), F(Z))

which begins at the point F(w ov) and ends at the point F'(w) o F(v). Note that such
a path always exist, since

F(wowv) = F(w)o F(v) €e Homypc(F(X), F(Z)) = mo Mapg(X, Z).
(D3) For every triple of composable morphisms
wWLX5Y S Z,

a continuous map of topological spaces [0, 1]> — Map.(W, Z) whose restriction to the
boundary of the square [0,1]? is as indicated in the diagram

F(wowvou) oo F(w)o F(vou)
lawov,u F(w)oawul
— — awwoF(u) — — —
F(wow)o F(u) F(w) o F(v) o F(u).

Beware that the existence of such a map might depend on the choices made in (D3).

(D;) An analogous datum for every n-tuple of composable morphisms

u u Un—1 u
Xo— X1 5 — X, 1 5 X,

taking the form of a map of topological spaces [0,1]""! — Map.(Xo, X,,) whose
restriction to the boundary 0[0,1]""! is determined by the data (D,,) for m < n.



0.2. PREREQUISITES 41

To give a precise and succinct formulation of (D,,), it is useful to introduce a bit of
terminology.

Construction 0.2.2.6. Let n > 0 be an integer and let [n] denote the linearly ordered set
{0 <1<...<n}. We define a topological category T, as follows:

e The objects of T, are the elements of [n].
e Given a pair of objects i, j € T, the space of maps from i to j is given by
%) if i > j

Mapn (i’j) = {{f c [O, 1]{1',141,.‘.,]‘} . f(i) — f(j) = 1} if ¢ < j.

e For 0 < i < j <k < n, the composition law

o Maan (.]7 k) X Maan (lvj) - Maan (7’5 k)
is given by the formula (f o g)(¢t) = {

If C is a topological category, we let N(C),, denote the collection of all functors F': T, — C
which are continuous (meaning that the induced map Map (i,5) — Mape(F (i), F'(5)) is
continuous for 4, j € [n].

Example 0.2.2.7. Let C be a topological category. Then:
e An element of N(C)g is given by an object X of C.
e An element of N(C); is given by a morphism f: X — Y in C.

e An clement of N(C)g is given by a (non-commuting) diagram

VN

in C together with a path a from h to g o f (which “witnesses” that the diagram

X A

commutes up to homotopy).

Remark 0.2.2.8. For each n > 0, the topological category T, appearing in Construction
can be regarded as a “thickened version” of the partially ordered set [n] = {0 <
1 < .-+ < n} (regarded as a category): each of the nonempty mapping spaces in T, is
contractible, and the homotopy category of T, can be identified with [n].
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Construction 0.2.2.9 (Homotopy Coherent Nerve: [45], [44]). Let m,n = 0 be integers
and suppose we are given a nondecreasing map p : [m] — [n]. Then we can extend p to a
(continuous) functor 7, — 7T, which is given on morphisms by the construction

(f € Mapr, (i, 7)) — (p(f) € Mapr, (p(i), p(4)))

p(f)(t) = sup({0} v {£ (1)} ,)=)-
If C is a topological category, then composition with p induces a map N(C), — N(C),.
Using this construction, we can regard the construction [n] — N(C),, as a simplicial set. We
will denote this simplicial set by N(C). and refer to it as the homotopy coherent nerve of C.

Example 0.2.2.10. Let C be any category. Then we can regard C as a topological category
by equipping each of the morphism sets Home¢ (X, Y') with the discrete topology. In this case,
we will refer to the homotopy coherent nerve N(C), simply as the nerve of C. Unwinding
the definitions, we see that for each n > 0, the set N(C),, can be identified with the set of all
diagrams

Xohx Bx, - Ing,

consisting of n-tuples of composable morphisms in C.

Using Construction [0.2.2.9] one can formulate the notion of a homotopy coherent diagram
in a very simple way:

Definition 0.2.2.11. Let 7 and C be topological categories. A homotopy coherent diagram
in C indezxed by J is a map of simplicial sets N(7)e — N(C)a.

Remark 0.2.2.12. When J is an ordinary category (regarded as a topological category
with the discrete topology), Definition supplies a precise formulation of the incom-
plete definition sketched earlier (note that Definition incorporates some additional
requirements regarding identity morphisms that we did not mention earlier: for example,
a homotopy coherent diagram should send each identity morphism in J to an identity
morphism in C).

Definition [0.2.2.17] illustrates a general phenomenon. Working with a topological cate-
gory C in a homotopy-invariant way often requires us to introduce definitions which seem
complicated because they involve a bottomless hierarchy of coherences (conditions which
hold up to homotopy, which must be specified and which must satisfy further conditions, but
only up to homotopy, which must also be specified, and so forth). However, these definitions
can often be expressed in a simple and efficient way in terms of the homotopy coherent
nerve N(C)., using the language of simplicial sets. For many purposes, it is convenient to
discard the topological category C and work directly with the simplicial set N(C). It turns
out that passage to the homotopy coherent nerve does not lose any essential information.
For ordinary categories, it does not lose any information:
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Example 0.2.2.13. Let C be an ordinary category. Then C can be recovered (up to
canonical isomorphism) from its nerve N(C).. For example, the objects of C are just the
0-simplices of N(C)., and the morphisms of C are just the 1-simplices of N(C).. Given a pair

of composable morphisms X Ly% zimce , the composition g o f is the unique morphism
h: X — Z for which there exists a 2-simplex in N(C) whose boundary is given by

N

Elaborating on Example [0.2.2.13] one can prove the following:

X Z.

Proposition 0.2.2.14. The construction C — N(C)e determines a fully faithful embedding
from the category Cat of small categories to the category Seta of simplicial sets. The essential
image of this embedding consists of those simplicial sets So with the following property:

(%) For every pair of integers 0 < i < n and every map oo : A} — S,, there is a unique
map o : A" — S, extending og.

Remark 0.2.2.15. In the special case i = 1 and n = 2, condition (%) of Proposition [0.2.2.14]
corresponds to the assertion that every composable pair of morphisms f : X — Y and
g : Y — Z uniquely determine a commutative diagram

N

X h Z.

Note that condition (*) of Proposition bears a striking resemblance to the
definition of a Kan complex (Deﬁnition. However, there are two important differences:
in the definition of a Kan complex, one requires that horns oy : A} — S, can be extended to
simplices o : A" — S, whenever 0 < i < n, not only for the “inner” horns where 0 < i < n.
On the other hand, the definition of a Kan complex only requires the existence of o, not
its uniqueness. Neither of these conditions implies the other: the nerve of a category C is
not a Kan complex if there are non-invertible morphisms in C, and the singular complex of
a topological space X is not the nerve of a category if there are nonconstant paths in X.
However, these definitions admit a common generalization:

Definition 0.2.2.16. Let S, be a simplicial set. We will say that S, is an oo-category if it
satisfies the following condition:

(x) For every pair of integers 0 < i < n and every map og : A} — S,, there exists a map
o: A" — S, extending og.
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Definition [0.2.2.16] was introduced originally by Boardman and Vogt in their work on
homotopy invariant algebraic structures (see [?]). They referred to condition () as the
weak Kan condition and to simplicial sets Se satisfying (%) as weak Kan complexes. The
theory was developed more extensively by Joyal, who refers to simplicial sets satisfying (x)
as quasicategories (see, for example, [106], [107], and [108§]).

Example 0.2.2.17. Every Kan complex is an co-category. In particular, if X is a topological
space, then the singular simplicial set Sing, X is an co-category. More informally, this means
any topological space X can be regarded as an co-category (by passing to its singular
simplicial set), so that the theory of co-categories subsumes the classical homotopy theory of
spaces.

Example 0.2.2.18. For every ordinary category C, the nerve N(C), is an oo-category. More
informally, this means that any category C can be regarded as an oo-category (by passing
to its nerve). By virtue of Proposition , this involves no loss of information. We
will sometimes abuse terminology by not distinguishing between a category C and the
corresponding oo-category N(C)s,.

We will make extensive use of the theory of co-categories in this book. For the reader’s
convenience, we include a brief account of some of the most important definitions and
notations; for a much more extensive discussion (which includes proofs of all of the assertions
made in this section), we refer the reader to [138].

Notation 0.2.2.19. We will typically denote co-categories by caligraphic letters like C and
D, emphasizing the perspective that an co-category is a kind of generalized category. If C is
an oo-category, we will refer to the O-simplices of C as objects and to the 1-morphisms of C as
morphisms. If e : A' — C is a 1-simplex of C, then X = e|{0} and Y = e|{1} are 0-simplices
of C, and we will say that e is a morphism from X to Y and write e : X — Y. For every
object X € C, we let idx denote the 1-simplex of C given by the composition A' — A X
Then idx is a morphism from X to itself, which we will refer to as the identity morphism.

If C is an oco-category, then one can associate to every pair of objects X,Y € C a space
of map Map.(X,Y), which we will regard as a Kan complex. In fact, there are several
natural constructions of this space which yield homotopy equivalent (but nonisomorphic)
results. Perhaps the easiest is this: one can define Map,(X,Y') as the Kan complex whose
n-simplices are maps A" x Al to C which carry A™ x {0} to the vertex X and A" x {1} to
the vertex Y. By definition, a vertex of Map,(X,Y) is a morphism f: X — Y in C. We
wil say that two morphisms f,g : X — Y are homotopic if the belong to the same path
component of Map(X,Y).
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Let o be a 2-simplex in an co-category C whose boundary is given as follows:

N

X 4.

In this case, we will say that o exhibits h as a composition of g with f and write h = g o f.
This is an abuse of notation: neither the 2-simplex ¢ nor the morphism h are uniquely
determined by f and g. However, one can show that h is determined uniquely up to homotopy
(and that the homotopy class of h depends only on the homotopy classes of f and g).

To every oco-category C one can associate an ordinary category hC, called the homotopy
category of C. The objects of hC are the objects of C, and a morphism from X to Y in hC is
a homotopy class of morphisms from X to Y in C. There is a canonical map of simplicial
sets C — N(hC),, and the homotopy category hC is universal with respect to this property.
We will say that a morphism in C is an equivalence if its image in hC is an isomorphism. We
say that two objects X,Y € C are equivalent if there exists an equivalence from X to Y.

If C and D are oo-categories, then a functor from C to D is a map of simplicial sets
F :C — D. For every pair of simplicial sets C and D, we let Fun(C, D) denote the simplicial
set parametrizing maps from C to D: that is, Fun(C, D) is characterized by the existence of
a canonical bijection Homges , (S, Fun(C, D)) ~ Homget, (S x C, D). If D is an oo-category,
then Fun(C, D) is also an oo-category. If C and D are both co-categories, then we will refer
to Fun(C, D) as the oo-category of functors from C to D.

Let F : C — D be a functor of co-categories. We say that I is an equivalence of
o0-categories if there exists a functor G : D — C such that G o F' is equivalent to id¢ in the
oo-category Fun(C,C) and F o G is equivalent to idp in the co-category Fun(D, D). In this
case, the functor G is also an equivalence of co-categories, and we will say that the functors
F and G are mutually inverse.

The construction of homotopy coherent nerves establishes a close connection between
the theory of co-categories and the theory of topological categories. One can show that the
construction C — N(C) admits a left adjoint S, — | €(S.)| (modulo a slight technicality: one
needs to adjust Definition [0.2.2.1] to work in the setting of compactly generated topological
spaces, rather than arbitrary topological spaces). Moreover, one has the following:

(1) For every co-category D, the unit map D — N(| €(D)|) is an equivalence of co-categories.

(1) For any topological category C, the counit map v : | €(C)| — C is a weak equivalence
of topological categories. More precisely, it is bijective on objects, and for each pair of
maps X, Y € C the induced map

vxy : Map|¢(c)|(X,Y) — Mape(X,Y)
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is a weak homotopy equivalence (that is, it induces isomorphisms on all homotopy
groups). If Map.(X,Y’) has the homotopy type of a CW complex, then vxy is a
homotopy equivalence.

Assertions (i) and (i) imply that the notions of topological category and co-category
are, in some sense, equivalent. However, the latter theory is often much simpler to work
with in practice. For example, if C and D are co-categories, then the oo-category Fun(C, D)
of functors from C to D is very easy to define, but the corresponding construction in the
setting of topological categories is much more involved.

We close this section by mentioning some of the most important examples of co-categories:

Example 0.2.2.20. The collection of all Kan complexes can be organized into an co-category,
which we will denote by S and refer to as the co-category of spaces. It is obtained by applying
a variant of Construction to the category Kan of Kan complexes (which is enriched
in simplicial sets). In low degrees, it can be described explicitly as follows:

e A O-simplex of S is a Kan complex X.

e A l-simplex of § is a map of simplicial sets f : X — Y, where X and Y are Kan
complexes.

e A 2-simplex of S is given by a (non-commuting) diagram of Kan complexes

Y
N
X h A

together with a simplicial homotopy from A to g o f.

One can obtain an equivalent (but nonisomorphic) co-category by applying the homotopy
coherent nerve to the (topological) category Top®WV of CW complexes.

Example 0.2.2.21. The collection of all (small) co-categories can be organized into an
co-category, which we will denote by Caty and refer to as the co-category of co-categories.
In low degrees, it can be described explicitly as follows:

e A O-simplex of Caty, is an oco-category C.
e A 1-simplex of Cat, is a functor of co-categories F' : C — D.

e A 2-simplex of Caty, is given by a (non-commuting) diagram of co-categories

D
7\
C a £

together with an equivalence u : H — G o F' in the oo-category Fun(C, £).
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0.2.3 Stable Homotopy Theory and Structured Ring Spectra

Let X and Y be finite CW complexes equipped with base points z € X and y € Y.
One of the primary aims of algebraic topology is to describe the set [X, Y] of homotopy
classes of pointed maps from X to Y. This is generally quite difficult, even in the case
where X and Y are relatively simple spaces (such as spheres). A more reasonable (but still
difficult) problem is to determine the set [X, Y], of stable homotopy classes of maps from X
to Y, which is defined as the direct limit lim[¥" X, ¥"Y]; here ¥" X and ¥"Y denote the
n-fold suspensions of X and Y, respectively. To study these invariants systematically, it is
convenient to introduce the following definition:

Definition 0.2.3.1. The Spanier- Whitehead category SV is defined as follows:

e An object of the category SW cousists of a pair (X, m), where X is a pointed finite
CW complex and m € Z is an integer.

e Given a pair of objects (X, m), (Y,n) € SW, the set of morphisms from (X, m) to (Y, n)
is given by the direct limit l'i)nk[EmJ”kX, Y7 +EY] (note that the set [X X, ¥nthy]
is well-defined as soon as m + k and n + k are both nonnegative).

Given a pointed finite CW complex X and an integer m € Z, one should think of the
object (X, m) € SW as playing the role of the suspension ¥"*X. Note that m is allowed to
be negative: the Spanier-Whitehead category enlarges the homotopy category of pointed
finite CW complexes by allowing “formal desuspensions.”

Example 0.2.3.2. For each integer n € Z, we let S™ denote the object of the Spanier-
Whitehead category given by (S, n), where S° is the 0-sphere. We will refer to S™ as the
n-sphere. Note that for n > 0, the object S™ can be identified with the pair (S™,0).

Remark 0.2.3.3. Let X and Y be pointed finite CW complexes, and let us abuse notation
by identifying X and Y with the objects (X, 0), (Y,0) € SW. Then we have Homgyy(X,Y)
is the set [X,Y]s of stable homotopy classes of maps from X to Y.

Remark 0.2.3.4. For any pair of objects (X, m), (Y,n) e SW, it follows from the Freuden-
thal suspension theorem that the diagram of sets {[£™"* X, ©"**Y]} is eventually constant:
that is, the natural map

[Em+kX, Zn+kY] N [Em+k+1X, En+k+1Y]
is bijective for k » 0.

Let H denote the category whose objects are pointed finite CW complexes and whose
morphisms are homotopy classes of pointed maps. Then the construction X — XX
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determines a functor ¥ from the category H to itself. Unwinding the definitions, the
Spanier-Whitehead category can be described as the direct limit of the sequence of categories

o HBSEHBSHDSHDSH

The category H arises naturally as the homotopy category of an co-category: namely,
the oco-category SE” whose objects are pointed Kan complexes X for which the geometric
realization |X| has the homotopy type of a finite CW complex. Moreover, the suspension
functor ¥ : H — H is obtained from a functor from S to itself, which we will also denote
by 3. It follows that the Spanier-Whitehead category SW can also be described as the
homotopy category of an co-category: namely, the direct limit of the sequence

Y P Y Y
oo Slin =, gfin 2, gfin 2, gfin =, gfin

We will denote this direct limit by Sp'™ and refer to it as the oo-category of finite spectra.

The set [X, Y] of stable homotopy classes of maps from X to Y is generally easier to
compute than the set [X,Y]. This is in part because the problem is more structured: for
example, the set [X,Y]s has the structure of an abelian group. In fact, one can say much
more: the Spanier-Whitehead category SW is an example of a triangulated category in the
sense of Verdier (see [?]). The next definition axiomatizes those features of the co-category
Sp'™ that are responsible for this phenomenon:

Definition 0.2.3.5. Let C be an oco-category. We will say that C is stable if it satisfies the
following axioms:

(a) The co-category C admits finite colimits.

(b) The co-category C has an object which is both initial and final (we will refer to such
an object as a zero object of C and denote it by 0 € C).

(¢) The suspension functor ¥ : C — C (given by the formula ¥X = 0lix 0) is an equivalence
of oco-categories.

Example 0.2.3.6. The oo-category Si* satisfies axioms (a) and (b) of Definition
axiom (b) follows from the fact that we are working with pointed spaces (so that the one-point
space is both initial and final), and axiom (a) follows from from the observation that the
pointed finite spaces are precisely those that can be built from the O-sphere S° by means of
finite colimits. However, the co-category Sgn does not satisfy (¢): for example, the 0-sphere
S9 cannot be obtained as the suspension of another space. The oo-category Spi™ of finite
spectra can be regarded as remedy for the fact that ST does not satisfy (c): it satisfies
property (¢) by construction, and inherits properties (a) and (b) from S". Consequently,
Sp'™ is a stable co-category.
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Remark 0.2.3.7. If C is a stable co-category, then its homotopy category hC inherits the
structure of a triangulated category. Moreover, essentially all of the triangulated categories
which arise naturally can be described as the homotopy category of a stable co-category.

Remark 0.2.3.8. Suppose we are given a commutative diagram o :

X ——Y

L

W——2Z7
in a stable oo-category C. Then o is a pullback square if and only if it is a pushout square.

Remark 0.2.3.9. Let C be an oo-category with a zero object 0, and suppose we are given a

commutative diagram o :
f

X ——Y
l ]
0——=Z7

in C. If o is a pullback square, we abuse terminology by saying that the diagram
xLysz

is a fiber sequence (here we are implicitly referring to the entire diagram o, which we can think
of as supplying the morphisms f and ¢ together with a nullhomotopy of the composition
go f). Similarly, if o is a pushout square, then we abuse terminology by saying that the
diagram

xLysyz
is a cofiber sequence. If the co-category C is stable, then the fiber sequence and cofiber

sequences in C are the same.

For many purposes, the co-category Sp™™ of finite spectra is too small: it admits finite
limits and colimits, but does not admit many other categorical constructions such as infinite
products. One can remedy this by passing to a larger oo-category.

Construction 0.2.3.10. Let C be a small co-category. Then one can form a new co-category
Ind(C), called the oo-category of Ind-objects of C. This co-category admits two closely related
descriptions:

(a) It is obtained from C by formally adjoining filtered colimits. In particular, every object
of Ind(C) can be written as the colimit lim Cy, of some filtered diagram {C,} in C, and
the mapping spaces in Ind(C) can be described informally by the formula

Mapr,qg(c) (im Co, lim D) = lim lim Mape (Co, D).
a B
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(b) If C admits finite colimits, then Ind(C) can be described as the full subcategory of
Fun(C°P,S) spanned by those functors which preserve finite limits.

We let Sp denote the co-category Ind(Spﬁn). We will refer to Sp as the co-category of
spectra. A spectrum is an object of the co-category Sp.

Remark 0.2.3.11. If C is a stable co-category, then the oo-category Ind(C) is also stable.
In particular, the co-category Sp is stable, so the homotopy category hC is triangulated.

Definition 0.2.3.12. For each n € Z, let S™ € CW be defined as in Example and
regard S™ as an object of the oo-category Sp. In the special case n = 0, we will denote S™
simply by S and refer to it as the sphere spectrum.

Let F be an arbitrary spectrum and let n € Z be an integer. Since the homotopy category
hSp is additive, the set Homyg,(S”, E) = mo Mapg,(S™, E) has the structure of an abelian
group. We will denote this group by m, F and refer to it as the nth homotopy group of E.
We say that a spectrum FE is connective if the homotopy groups 7, F vanish for n < 0. We
let Sp™ denote the full subcategory of Sp spanned by the connective spectra.

There are many different ways of looking at the notion of a spectrum (most of which lead
to alternative definitions of the co-category Sp). Let us summarize a few of the most useful:

Spectra are infinite loop spaces: Let E be a spectrum. For each integer n € Z, we let
Q*7"E denote the mapping space Mapg,(S™", ). We refer to Q" "FE as the nth
space of E. Note that each Q®°~"E can be identified with the loop space of Q® "1 E.
Consequently, the construction E +— {Q®* " FE},cz determines a functor from the
oo-category Sp to the inverse limit of the tower of co-categories

LA S LA LA LA LA
One can show that this functor is an equivalence of co-categories. In other words, the
data of a spectrum FE is equivalent to the data of an infinite loop space: that is, a

sequence of pointed spaces {E(n)}nez which are equipped with homotopy equivalences
E(n) ~QFE(n+1).

Spectra are cohomology theories: Let E be a spectrum. For every space X, let E™(X)
denote the set mo Mapg(X, Q""" FE) of homotopy classes of (unpointed) maps from X
into the nth space of E. We will refer to E™(X) as the nth cohomology group of X with
coefficients in E. One can show that the construction X — {E™(X)}nez (which extends
in a canonical way to an invariant of pairs of spaces A € X)) is a generalized cohomology
theory: that is, it satisfies all of the Eilenberg-Steenrod axioms characterizing singular
cohomology, with the exception of the dimension axiom. Moreover, the converse is true
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as well: according to the Brown representability theorem, every generalized cohomology
theory arises in this way. More precisely, this construction yields a bijection

{ Spectra }/ equivalence ~ { Cohomology theories }/ isomorphism .

Spectra are generalized abelian groups: Let E be a spectrum. Then the Oth space
Q%FE is an example of an Eq-space: that is, it can be equipped with an addition law

+:QPE x Q°E - Q¥E

which is unital, commutative, and associative up to coherent homotopy. Moreover,
the construction E — Q®FE restricts to an equivalence from the co-category Sp“™ of
connective spectra to the oo-category CAlgsP(S) of grouplike Eq-spaces (an Ey-space
A is said to be grouplike if the addition on A exhibits the set of connected components
moA as an abelian group).

Spectra are the universal stable co-category: The co-category Sp is stable, admits
small colimits, and contains a distinguished object S (the sphere spectrum). Moreover,
it is universal with respect to these properties: if C is any stable co-category which
admits small colimits and LFun(Sp,C) denotes the full subcategory of Fun(Sp,C)
spanned by those functors which preserve small colimits, then the construction F' —
F(S) induces an equivalence of co-categories e : LFun(Sp,C) — C. In particular, for
each object C € C, there is an essentially unique functor F' : Sp — C which preserves
small colimits and satisfies F'(S) = C.

Let X be a spectrum. We will say that X is discrete if the homotopy groups m, X
vanish for n # 0. In this case, X is determined (up to canonical equivalence) by the abelian
group m9X. More precisely, the construction X — mpX induces an equivalence from the full
subcategory SpY < Sp spanned by the discrete spectra to the ordinary category of abelian
groups (which we can regard as an co-category by taking its nerve). We can use an inverse
of this equivalence to identify the category of abelian groups with the full subcategory
SpY¥ < Sp. If A is an abelian group, then the image of A under this identification is called
the Eilenberg-MacLane spectrum of A. As an infinite loop space, it is given by the sequence
{K(A,n)}; here K(A,n) denotes the Eilenberg-MacLane space characterized by the formula

A ifx=n

0 otherwise.

K (A, n) = {

The corresponding cohomology theory is ordinary cohomology with coefficients in A.
Throughout this book, we will will often abuse notation by identifying an abelian group A
with its corresponding Eilenberg-MacLane spectrum.
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It follows from the universal property of the co-category Sp that there is an essentially
unique functor ® : Sp x Sp — Sp which preserves small colimits separately in each variable
and satisfies S ® S = 5. We will refer to this functor as the smash product. Using the
universal property of the co-category Sp, one can show that the smash product functor
endows Sp with the structure of a symmetric monoidal co-category: that is, the functor ® is
commutative, associative, and unital up to coherent homotopy.

Definition 0.2.3.13. For any symmetric monoidal co-category C, we let CAlg(C) denote the
oo-category of commutative algebra objects of C. Roughly speaking, an object of CAlg(C)
is given by an object A € C equipped with a multiplication m : A ® A — A which is
commutative, associative, and unital up to coherent homotopy. In the special case where C
is the oo-category of spectra (equipped with the symmetric monoidal structure given by the
smash product), we will denote CAlg(C) simply by CAlg. We will refer to the objects of
CAlg as Ey-rings and to the oo-category C as the co-category of Eq-1ings.

Remark 0.2.3.14. Let E be a spectrum, so that E determines a cohomology theory which
assigns to each space X a graded abelian group E*(X). If E is an Ey-ring, then the
associated cohomology theory is multiplicative: that is, it assigns to each space X a graded
ring E*(X) which is commutative in the graded sense (meaning that xy = (—1)""yz for
x € E™(X) and y € E"(X)). However, the converse fails dramatically: there are many
examples of multiplicative cohomology theories which cannot be represented by Eq-rings.
Roughly speaking, one expects a cohomology theory E* to be represented by an Eq-ring if it
is can be equipped with a multiplicative structure for which commutativity and associativity
can be seen (at least up to coherent homotopy) at the level of cochains, rather than merely
at the level of cohomology.

Let E be an E,-ring. Then the collection of homotopy groups m.F = E~*({z}) has
the structure of a graded-commutative ring. In particular, moF is a commutative ring and
each m,F can be regarded as a module over moF. We will say that E is connective if it
is connective when regarded as a spectrum (that is, the homotopy groups m, E vanish for
n < 0) and we will say that E is discrete if it is discrete when regarded as a spectrum (that
is, the homotopy groups 7, E vanish for n # 0). We let CAlg®™" denote the full subcategory
of CAlg spanned by the connective Eo-rings, and we let CAlg® denote the full subcategory
of CAlg spanned by the discrete Ey-rings.

Remark 0.2.3.15. The construction A — QA induces an equivalence from the oco-category
of connective spectra to the co-category of grouplike Ey-spaces. We can phrase this more
informally as follows: giving a connective spectrum is equivalent to giving a space X which
behaves like an abelian group up to coherent homotopy. This heuristic can be extended
to Exp-rings: a connective Eo-ring A can be thought of as a space X which behaves like a
commutative ring up to coherent homotopy.
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Remark 0.2.3.16. The construction A — myA determines an equivalence from the oo-
category CAlgo to the ordinary category of commutative rings (regarded as an oo-category
via its nerve). We will generally abuse notation by using this equivalence to identify CAlg@
with the category of commutative rings, so that every commutative ring R is regarded as an
Ex-ring. In terms of the heuristic of Remark this corresponds to regarding R as a
space equipped with the discrete topology.

By virtue of Remark we can regard the theory of E,-rings as a generalization of
classical commutative algebra. Moreover, it is a robust generalization: all of the basic results,
constructions, and ideas that are needed to set up the foundations of classical algebraic
geometry have analogues in the setting of E.,-rings, which we will make use of throughout
this book.

0.3 Overview

This book is divided into nine parts, each of which is devoted to exploring some facet of
the relationship between algebraic geometry and structured ring spectra. Our first goal is to
establish foundations for the subject. We begin in Part[[| by introducing “spectral” versions of
various algebro-geometric objects (such as schemes, algebraic spaces, and Deligne-Mumford
stacks) and studying how these objects are related to their classical counterparts. We
also explain how to associate to every spectral scheme X (or, more generally, any spectral
Deligne-Mumford stack) a stable co-category QCoh(X) of quasi-coherent sheaves on X,
which is closely related to the abelian categories of quasi-coherent sheaves which appear in
classical algebraic geometry.

Part [T is concerned with proper morphisms in the setting of spectral algebraic geometry.
In some sense, there is very little to say here: a morphism f : (X,0x) — (Y,0y) of
spectral schemes is proper if and only if the underlying morphism of ordinary schemes
fo: (X,mOx) — (Y, mo Oy) is proper. However, some aspects of the theory work more
smoothly in the spectral setting. For example, many important foundational results about
proper morphisms between Noetherian schemes (for example, the direct image theorem,
the theorem on formal functions, the Grothendieck existence theorem, and Grothendieck’s
formal GAGA principle) admit generalizations to the setting of spectral algebraic geometry

which do not require any Noetherian assumptions (see Theorem Lemma
Theorem and Corollary .

The subject of Part [[T]] is the following general question: to what extent can an algebro-
geometric object X can be recovered from the stable co-category QCoh(X)? We address
this question by proving several “Tannaka reconstruction” type results which assert that, in
many circumstances, we can recover X as a kind of “spectrum” of QCoh(X) (much like an
affine scheme (Y, Oy ) can be recovered as the spectrum of its coordinate ring I'(Y; Oy )). We
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also show that there is a close relationship between stable co-categories C equipped with an
action of QCoh(X) and sheaves of stable co-categories on X (categorifying the relationship
between quasi-coherent sheaves on an affine scheme (Y, 0y ) and modules over the coordinate
ring T'(Y; Oy ).

A standard heuristic principle of deformation theory asserts that over a field k of
characteristic zero, one can describe a formal neighborhood of any algebro-geometric object
X near a point € X in terms of a differential graded Lie algebra. In Part [[V] we
will formulate this principle precisely by introducing an co-category Moduli, of formal
moduli problems over k and constructing an equivalence of Moduli, with an co-category of
differential graded Lie algebras over k. We also study variants of this principle in the setting
of noncommutative geometry (which are valid in any characteristic). Part is mostly
independent of the first three parts (they are relevant mainly because they provide examples
of formal moduli problems which can be analyzed using the formalism of Part .

In Part ?? we study representability problems in the setting of spectral algebraic geometry.
Suppose we are given a functor h : CAlg™ — S, where CAlg®™ denotes the co-category of
connective Ey-rings and S denotes the oo-category of spaces. We might then ask if there
exists a spectral scheme X (or some other sort of algebro-geometric object) which represents
the functor h, in the sense that there exist homotopy equivalences h(A) ~ Map(Spec A, X)
depending functorially on A (such an X is uniquely determined up to equivalence, as we will
see in Part . In the setting of classical algebraic geometry, this sort of question can often
be addressed using Artin’s representability theorem, which gives necessary and sufficient
conditions for a functor to be representable by an algebraic stack which is locally of finite
presentation over a (sufficiently nice) commutative ring R. The main goal of Part ?? is to
formulate and prove an analogous statement in the spectral setting.

The basic objects of study in classical and spectral algebraic geometry can be described
in a very similar way: they are given by pairs (X, 0x), where X is a topological space (or
some variant thereof: in the theory of Deligne-Mumford stacks, it is convenient to allow X
to be a topos; when studying higher Deligne-Mumford stacks, it is convenient to allow X
to be an co-topos) and Ox is a “structure sheaf” on X. The difference between classical
and spectral algebraic geometry lies in what sort of sheaf &'x is: in the classical case, Ox
is a sheaf of commutative rings; in the spectral case, it is a sheaf of Eq,-rings. In Part [VI]
we introduce general formalism of “co-topoi with structure sheaves” which is intended to
capture the spirit of these types of definitions in a broad degree of generality. Part [V]]
does not depend on any of the earlier parts of this book (logically, it could precede Part
[} however, most readers will probably find it easier to digest the theory of CAlg-valued
sheaves than the general sheaf theory of Part .

In Part [VII, we study several variants of spectral algebraic geometry:

e derived differential topology, whose basic objects (derived manifolds) are analogous
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to smooth manifolds in the same way that spectral schemes are analogous to smooth
algebraic varieties.

e derived complex analytic geometry, whose basic objects (derived complezr-analytic
spaces) are analogous to complex-analytic manifolds in the same way that spectral
schemes are analogous to smooth algebraic varieties.

e derived algebraic geometry, a variant of spectral algebraic geometry which uses simplicial
commutative rings in place of Ey-rings. The resulting theory is equivalent to spectral
algebraic geometry in characteristic zero, but is quite different (and more closely
connected to classical algebraic geometry) in positive and mixed characteristic.

Each of these variants can be regarded as an instance of the general paradigm of Part [V
However, we give an exposition in each instance which can be read independently, referring
occasionally to the formalism of Part [V for the verification of some routine details.

The term “derived algebraic geometry” is meant to evoke an analogy with the theory of
derived categories, which perhaps merits some explanation. To fix ideas, suppose that we
are given a commutative ring A and an A-module M. Then:

e The construction N — Hom (M, N) determines a functor from the category of A-
modules to itself which is left exact but generally not right exact. In order to account
for the failure of right exactness, it is often useful to consider the right derived functors
[N > Exth (M, N) 0.

e The construction N — M ®4 N determines a functor from the category of A-modules
to itself which is right exact but generally not left exact. In order to account for
the failure of left exactness, it is often useful to consider the left derived functors
{N > Toria (M, N)}n>0.

To study either of these derived functors, it is useful to consider the derived category D(A)
which obtained from the category of chain complexes of A-modules by formally inverting
all quasi-isomorphisms. Let D(A)so denote the subcategory of D(A) consisting of those
chain complexes whose homology groups are concentrated in nonnegative degrees, and define
D(A)<o similarly. One can then consider total derived functors

RHom 4(M,e): D(A)<o > D(A)<g M ®} e : D(A)0 — D(A)x0

which, when restricted to an ordinary A-module N (regarded as chain complexes concentrated
in degree zero), yield chain complexes whose (co)homology groups recover the invariants
Ext’i (M, N) and Tor'y (M, N), respectively.

The relationship between the theory of derived schemes and the classical theory of
schemes is somewhat analogous to the relationship between the derived category D(A)<o
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and the abelian category of A-modules. The oo-category of derived schemes can be regarded
as an enlargement of the category of schemes, and certain left exact constructions on schemes
(such as the formation of fiber products) admit refinements in the setting of derived schemes
in a way that retains additional (and often useful) information. The theory of algebraic
stacks provides another enlargement of the category of schemes which is quite different, but
in some sense formally dual. The 2-category of algebraic stacks is an enlargement of the
category of schemes in which one has improved versions of certain right exact constructions,
such as the formation of quotients by group actions (such quotients sometimes do not exist
in the category of schemes, and when they do exist they are often badly behaved). In this
respect, the relationship between the theory of algebraic stacks and the theory of schemes
is somewhat analogous to the relationship between the derived category D(A)so and the
abelian category of A-modules (to make the analogy stronger, one can further enlarge the
category of schemes by considering algebraic n-stacks for n > 1).

In Part [VITI] we will discuss the theory of derived stacks, an extension of classical algebraic
geometry which provides a common generalization of the theory of derived schemes and the
theory of (higher) algebraic stacks (in much the same way that the full derived category D(A)
contains both D(A)<p and D(A)s( as full subcategories). Many important foundational
results concerning ordinary algebraic stacks can be extended to the setting of derived stacks.
In particular, we will prove a version of Artin’s representability theorem, which establishes
necessary and sufficient conditions for a functor to be representable by a derived stack
(Theorem ??) and which can be used to produce many examples of geometric objects which
fit into the framework of this book.

In [170], Quillen showed that the homotopy theory of simply connected spaces whose
homotopy groups are rational vector spaces is equivalent to the theory of connected differential
graded Lie algebras over Q. Quillen’s work provided an early clue to the significance of
differential graded Lie algebras, and partially inspired the study of their applications to
deformation theory. In Part [[X] we will reverse this logic, explaining how Quillen’s result
is related to (and can be deduced from) the theory developed in Part We also discuss
Mandell’s p-adic analogue of rational homotopy theory and describe a natural extension
which makes use of algebro-geometric ideas. Part [[X]is primarily self-contained, and can be
read independently of the rest of this book.

This book includes several appendices discussing background material needed in the body
of the text. In Appendix [A] we review of the theory of Grothendieck sites and sheaves in
the setting of higher category theory, introduce the notion of a coherent co-topos (and prove
an oo-categorical analogue of Deligne’s completeness theorem: for every coherent co-topos
X, the hypercompletion X™P has enough points). In Appendix [B| we discuss several specific
examples of Grothendieck topologies which arise in spectral algebraic geometry (such as the
Nisnevich and étale topologies associated to a commutative ring) and their relationship to
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one another, reviewing some of the requisite commutative algebra along the way. Appendix
[C] introduces the theory of prestable co-categories, a generalization of the notion of stable
oo-category which will play an important role in Part [[TI} In Appendix [D] we study the
notion of an R-linear (pre)stable co-category, where R is a ring spectrum, and combine
the results of Appendices [B| and |C| to prove several descent theorems (both for objects
of R-linear co-categories and for R-linear co-categories themselves). Finally, Appendix
contains an exposition of profinite homotopy theory, which is needed for the discussion of
p-adic homotopy theory in Part [X]

0.4 What is not in this book?

Even in a book as long as this, we could not hope to give a comprehensive account of
the various ways in which homotopy theoretic ideas have influenced algebraic geometry. In
this section, we present an (incomplete) list of ideas which are thematically related to the
subject of spectral algebraic geometry, but which will not make an appearance in this book
(at least in its present form).

Virtual fundamental classes: One of the primary motivations for developing the lan-
guage of spectral algebraic geometry is to provide a natural setting for the theory of
virtual fundamental classes described in the introduction. In this book, we will discuss
some of the relevant formal ingredients (we discuss quasi-smoothness in §7?7 and virtual
dimension in §77). However, we will not discuss virtual fundamental classes (or the
cohomological framework in which they naturally reside) here. The subject has been
treated in the literature from a variety of perspectives: see, for example, [120], [1§],
[131], and [191].

Elliptic cohomology: The theory of spectral algebraic geometry plays a central role in
understanding the moduli-theoretic interpretation of the theory of topological modular
forms (see Example and other related constructions in the setting of chromatic
homotopy theory. We will discuss these applications in a sequel to this book. For an
informal outline in the case of elliptic cohomology we refer the reader to [I40]; see also
[21] for a discussion of the more general theory of topological automorphic forms.

Higher stacks outside of derived algebraic geometry: Part [VII]] of this book is de-
voted to the theory of higher algebraic stacks in the setting of derived algebraic
geometry. One can develop an analogous theory in any setting where one has a good
notion of smooth morphism, including the theory of spectral algebraic geometry (using
the notion of differential smoothness that we discuss in . However, we will not

consider such objects in this book. A general framework which incorporates the theory
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of derived algebraic stacks and many other variants has been developed by Toén and
Vezzosi; see [214].

Separated Deligne-Mumford stacks: Throughout this book, we will say an algebro-
geometric object X is separated if the diagonal map ¢ : X — X x X is a closed
immersion. This convention means that X is forbidden to exhibit any “stacky” behavior:
an algebraic stack for which ¢ is a closed immersion is automatically an algebraic space.
Many basic results about separated (spectral) algebraic spaces can be generalized
to larger classes of (spectral) Deligne-Mumford stacks. We generally ignore such
generalizations, except in cases where they require no additional effort to prove.

Global deformation theory: Let X be an algebro-geometric object (such as a scheme or
a spectral scheme) defined over the field C of complex numbers. In Part of this book,
we study the formal completion of X at a C-valued point x € X(C) and show that it
is determined by a differential graded Lie algebra. One could ask for something more
ambitious: suppose we are given instead an arbitrary closed embedding ¢ : Xg — X:
how can one describe the formal completion of X along the image of ¢ in a manner
that is completely intrinsic to X¢? We refer the reader to [77] for an approach this
problem, using a theory of “derived” Lie algebroids.

Ind-Coherent Sheaves and Grothendieck Duality: Let f : X — Y a morphism be-
tween schemes of finite type over a field. To f, one can associate an exceptional
inverse image functor f': D¥(Y) — D% (X) which is a right adjoint to the (derived)
pushforward f, in the case where f is proper, and is left adjoint to f, in the case where
f is étale. Here DT (X) and D*(Y') denote the (cohomologically) “bounded below”
derived categories of X and Y, respectively. The theory of Grothendieck duality can
be generalized to the setting of spectral algebraic geometry. However, the assumption
that objects be “cohomologically bounded below” objects is particularly annoying in
the spectral setting (for example, it need not be satisfied by the structure sheaves of X
and Y). To eliminate this assumption (and achieve a more robust theory), one needs
to replace the stable oo-category QCoh(X) of quasi-coherent sheaves studied in this
book by the closely related co-category Ind(Coh(X)) of Ind-coherent sheaves on X.
For a discussion these issues (over fields of characteristic zero) we refer the reader to
[76].

Shifted symplectic structures: One feature of spectral algebraic geometry that distin-
guishes it from classical algebraic geometry is that finiteness conditions on spectral
schemes are more strongly reflected in their deformation theory. For example, if X is
a spectral scheme of finite presentation over C, then the cotangent complex Ly /gpecc
is perfect: that is, it is a dualizable object of QCoh(X) (the analogous statement
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for ordinary C-schemes holds only when X is a local complete intersection). There
are some cases in which the cotangent complex L/ gpec ¢ 18 not only dualizable, but
self-dual (up to a shift). An antisymmetric identification of Ly, gpecc With its shifted
dual X" L5 /Spec G CAIL be viewed as a kind of “shifted 2-form on X.” When this 2-form
is closed (in a suitable sense), we say that X has a n-shifted symplectic structure. The
theory of shifted symplectic structures is still in its infancy (at the time of this writing),
but seems to capture an essential feature which is common to many interesting moduli
spaces (once they have been appropriately “derived”). For more details, see [164], [37],
[166], [34].

0.5 Notation and Terminology

We will assume general familiarity with the terminology of [I38] and [I39]. For the
reader’s convenience, we now review some cases in which the conventions of this book differ
from those [I3§], [139], or the established mathematical literature.

e We will generally not distinguish between a category C and its nerve N(C). In particular,
we regard every category C as an co-category.

e We will generally abuse terminology by not distinguishing between an abelian group
M and the associated Eilenberg-MacLane spectrum: that is, we view the ordinary
category of abelian groups as a full subcategory of the co-category Sp of spectra.
Similarly, we regard the ordinary category of commutative rings as a full subcategory
of the co-category CAlg of Ey-rings.

e Let A be an Ey-ring. We will refer to A-module spectra simply as A-modules. The
collection of A-modules can be organized into a stable co-category which we will
denote by Mod4 and refer to as the co-category of A-modules. This convention has
an unfortunate feature: when A is an ordinary commutative ring, it does not reduce
to the usual notion of A-module. In this case, Mody4 is not the abelian category of
A-modules but is closely related to it: the homotopy category hMod 4 is equivalent
to the derived category D(A). Unless otherwise specified, the term “A-module” will
be used to refer to an object of Mod 4, even when A is an ordinary commutative ring.
When we wish to consider an A-module M in the usual sense, we will say that M is a
discrete A-module or an ordinary A-module.

e Let A be a commutative ring and let M € Mod 4 be an A-module. Using the equivalence
of categories hMody ~ D(A), we can identify M with a chain complex of A-modules.
This identification has the potential to lead to confusion: beware that the homotopy
groups of M (if we regard M as a spectrum) correspond to the homology groups of
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M (if we regard M as a chain complex). We will usually denote these groups by
{mnM }nez and refer to them as the homotopy groups of M: that is, we favor the
perspective that M is a spectrum with an action of A, rather than a chain complex.

Unless otherwise specified, all algebraic constructions we consider in this book should
be understood in the “derived” sense. For example, if we are given discrete modules
M and N over a commutative ring A, then the tensor product M ®4 N denotes the
derived tensor product M ®ﬁ N. This may not be a discrete A-module: its homotopy
groups are given by m,(M ®4 N) ~ Tor’(M,N). When we wish to consider the
usual tensor product of M with N over A, we will denote it by Torj (M, N) or by
T o(M ®a N )

If M and N are spectra, we will denote the smash product of M with N by M ® N,
rather than M A N. More generally, if M and N are modules over an Eq-ring A,
then we will denote the smash product of M with N over A by M ®4 N, rather than
M A 4 N. Note that when A is an ordinary commutative ring and the modules M and
N are discrete, this agrees with the preceding convention.

If C is a triangulated category (such as the homotopy category of a stable co-category),
we will denote the shift functor on C by X — ¥X, rather than X — X[1].

If C and D are co-categories which admit finite limits, we let Fun'®™(C, D) denote the
full subcategory of Fun(C, D) spanned by those functor which are left exact: that is,
those functors which preserve finite limits. If instead C and D admits finite colimits, we
let Fun™*(C, D) = Fun'®*(C°P, D°P)°P denote the full subcategory of Fun(C, D) spanned
by the right exact functors: that is, those functors which preserve finite colimits.

If C is an co-category, we let C~ denote the largest Kan complex contained in C: that
is, the co-category obtained from C by discarding all non-invertible morphisms.

We will say that a functor f : C — D between oco-categories is left cofinal if, for every
object D € D, the oo-category C xp Dp, is weakly contractible (this differs from the
convention of [I38], which refers to a functor with this property simply as cofinal;
see Theorem HTT.4.1.3.1). We will say that f is right cofinal if the induced map
C°? — D is left cofinal, so that f is right cofinal if and only if the oo-category
C xp D/p is weakly contractible for each D € D.

We let Top denote the category whose objects are topological spaces X, with maps
given by continuous functions f : X — Y. We let co7 op denote the co-category whose
objects are co-topoi X' (in the sense of [I38]) and whose morphisms are geometric
morphisms f, : X — Y (that is, functors which admit a left adjoint f* which preserves
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finite limits). This notation is intended to suggest that c07op be viewed as an
enlargement of 7op (which is roughly correct; see §1.5)).

e If X is an oo-topos, we will say that a collection of objects {U, € X'} is a covering of
X if the coproduct 11U, is 0-connective: that is, if the map 11U, — 1 is an effective
epimorphism, where 1 denotes a final object of X.

e If C is an oo-category, we will often write C¥ to denote some full subcategory of C
which forms an ordinary category. We will mainly use this notation in the following
three (closely related) cases:

— If X is an oo-topos, then we let XY denote the full subcategory of X spanned by
the discrete objects of X'. This is an ordinary Grothendieck topos, which we will
refer to as the underlying topos of X.

— If C is a stable oo-category equipped with a t-structure (C>o,C<p), then we let
C" denote the intersection C>o N C<o. This is an abelian category, which we refer
to as the heart of C.

— If R is an Eq-ring, we let CAlgp denote the co-category of E.-algebras over
R. When R is connective, we let CAlgg denote the full subcategory of CAlgp
spanned by the discrete objects, so that CAlgg can be identified with the ordinary
category of commutative rings A equipped with a ring homomorphism mgR — A.

e If C is an essentially small co-category, we let Ind(C) denote the oco-category of Ind-
objects of C introduced in §HTT.5.3.5. We will generally regard Ind(C) as a full
subcategory of the oo-category Fun(C°P,S) by identifying each Ind-object of C with
the functor that it represents on C. Note that the Yoneda embedding j : C —
Fun(C°,S) factors through the full subcategory Ind(C) < Fun(C°?,S). By slight
abuse of terminology, we will refer to the induced map j : C — Ind(C) also as the
Yoneda embedding.

e If C is an essentially small co-category, we let Pro(C) denote the co-category Ind(C°P)°P.
We will refer to Pro(C) as the co-category of Pro-objects of C. We will view Pro(C) as
a full subcategory of Fun(C,S)°P. As in the case of Ind-objects, there is a canonical
map C — Pro(C) which we will (by slight abuse of terminology) refer to as the Yoneda
embedding.

e Let R be a commutative ring. In classical algebraic geometry, the notation Spec R is
often used to refer to several different (but closely related) mathematical objects:

(i) The topological space X whose points are prime ideals p © R, equipped with the
Zariski topology having a basis consisting of open sets of the form Uy = {p < R :

[ é&p}.
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(77) The affine scheme (X, Ox), where X is the topological space defined above and
O'x is the sheaf of commutative rings given on basic open sets by the formula
Ox(Uy) = R[]

(747) The functor { commutative rings } — { sets } repesented by the affine scheme
(X, Ox), which assigns to each commutative ring A the set Hom (R, A) of ring
homomorphisms from R to A.

Note that (i7) and (iii) are equivalent data, and we will often abuse terminology by
not distinguishing between them. To avoid confusing (i) and (i), we denote the affine
scheme (X, Ox) by Spec R and its underlying topological space X by | Spec R|. More
generally, we sometimes use the notation |Y'| to denote the “underlying topological
space” of some geometric object Y (such as a scheme, algebraic space, or some variant
thereof).
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Our goal in Part[[] is to set up foundations for the theory of spectral algebraic geometry
that we will develop in this book. We begin in Chapter [I| by introducing the central
definitions. After a brief review of Grothendieck’s theory of schemes, we describe two
of its extensions: the theory of spectral schemes (obtained from the classical theory by
replacing ordinary commutative rings by E-rings) and the theory of Deligne-Mumford
stacks (obtained from the classical theory by replacing the Zariski topology with the étale
topology). These extensions admit a common generalization: the theory of spectral Deligne-
Mumford stacks, which are our principal objects of interest in this book. By definition, a
spectral Deligne-Mumford stack X is a pair (X, Oy ), where X’ is an co-topos (in the sense
of [I38]) and Oy is a sheaf of Ey-rings on X, which is required to satisfy a certain local
condition (namely, we require that the pair (X, &x) can be described locally as the étale
spectrum of a connective Ey-ring: see Definition . The resulting theory has the
following features:

e The collection of spectral Deligne-Mumford stacks can be organized into an co-category
SpDM, which we will refer to as the co-category of spectral Deligne-Mumford stacks.

e The oo-category SpDM of spectral Deligne-Mumford stacks contains the 2-category
DM of ordinary Deligne-Mumford stacks as a full subcategory (see Remark [1.4.8.3)).
In particular, it contains the ordinary category Sch of schemes as a full subcategory.

e To every spectral Deligne-Mumford stack X = (X, & x), one can associate an ordinary
Deligne-Mumford stack (X%, m @ x), which we all the underlying Deligne-Mumford
stack of X (Remark . This construction determines a forgetful functor SpDM —
DM, which is left homotopy inverse to the inclusion DM < SpDM).

In Chapter [2, we study quasi-coherent sheaves in spectral algebraic geometry. To each
spectral Deligne-Mumford stack X = (X, Ox), we associate a stable co-category QCoh(X)
whose objects we will refer to as quasi-coherent sheaves (Definition [2.2.2.1)). The stable
oo-category QCoh(X) comes equipped with a t-structure whose heart QCoh(X)¥ can be
identified with the abelian category of quasi-coherent sheaves on the ordinary Deligne-
Mumford stack (X", 7y @). In some sense, the distinction between QCoh(X) and its heart
QCOh(X)Qy measures the difference between classical and spectral algebraic geometry: when
X arises from a “classical” geometric object (like a quasi-compact separated scheme), the
stable co-category QCoh(X) can be obtained from the abelian category QCoh(X)" by passing
to the derived oco-category of §?7 (see Proposition 7?7, or Corollary ?? for a closely related
assertion).

Let X be a scheme. If R is a commutative ring, then we define an R-valued point of
X to be a map of schemes Spét R — X. The collection of R-valued points of X forms
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a set X(R) = Homge, (Spec R, X), and the construction R — X (R) determines a functor
from the category of commutative rings to the category of sets. The situation in spectral
algebraic geometry is analogous. To every connective Ey-ring R, one can associate a spectral
Deligne-Mumford stack Spét R which we call the étale spectrum of R (in the case where R
is an ordinary commutative ring, this is simply the image of the affine scheme Spec R under
the fully faithful embedding ¢ : Sch — SpDM). If X is a spectral Deligne-Mumford stack,
then we define an R-valued point of X to be a morphism of spectral Deligne-Mumford stacks
Spét R — X. However, there is a vital difference between classical and spectral algebraic
geometry: the collection of spectral Deligne-Mumford stacks forms an co-category, rather
than an ordinary category. Consequently, the collection of R-valued points of a spectral
Deligne-Mumford stack X forms a space Mapg,py (Spét R, X), rather than a set. In Chapter
we will study the situation where the mapping space Mapg,py(Spét R, X) is discrete
whenever R is an ordinary commutative ring; in this case, we say that X is a spectral algebraic
space. Roughly speaking, this condition means that X is forbidden to exhibit any “stacky”
behavior (beware, however, that the space MapSpDM(Spét R, X) will usually have a nontrivial
homotopy type if R is not discrete, even if X arises from an ordinary scheme).

Remark 0.6.0.1. Our theory of spectral algebraic geometry is closely related to the theory of
homotopical algebraic geometry introduced by Toén and Vezzosi, and the material presented
here has substantial overlap with their work (see [202], [213], [214], and [2I5]). The primary
difference in our exposition is that we stick closely to the classical view of scheme as a
kind of ringed space, while Toén and Vezzosi put more emphasis on the “functor of points”
philosophy described above.



Chapter 1

Schemes and Deligne-Mumford
Stacks

In this section, we will introduce the basic objects of study in this book: spectral Deligne-

Mumford stacks. The collection of spectral Deligne-Mumford stacks can be organized into an

oo-category SpDM, which contains the usual category of schemes as a full subcategory. Recall

that a scheme is defined to be a topological space X together with a sheaf of commutative

rings € on X for which the pair (X, &) is isomorphic, locally on X, to the spectrum Spec R

of a commutative ring R. Our definition of spectral Deligne-Mumford stack is similar in

spirit, but differs in three significant ways:

(a)

Rather than working with sheaves of ordinary commutative rings, we work with sheaves
taking values in the larger co-category CAlg of E,-rings (see §HA.7 for an introduction
to the theory of Eq-rings, and Definition [1.3.1.4] for the definition of a CAlg-valued
sheaf).

In place of a topological space X, we consider an arbitrary co-topos X'. This affords us
a great deal of flexibility in forming certain categorical constructions, like quotients by
group actions, which can be useful for some applications (such as studying the moduli
of objects which admit nontrivial symmetries).

Rather than requiring (X, &) to be locally equivalent to an affine model of the form
Spec R, where R is a commutative ring, we consider instead models of the form Spét A,
where A is an Eq-ring and Spét A is its étale spectrum (see Definitions and
[1.4.2.5). In other words, we will consistently work locally with respect to the étale
topology, rather than the Zariski topology.

The ideas required to carry out modification (a) are logically independent from those

required to carry out modifications (b) and (c), so we will first discuss them separately from
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one another. We will begin in by considering (a) alone. This leads us to the notion of
a spectral scheme: that is, a topological space X equipped with a sheaf of Ey-rings & for
which (X, @) is locally equivalent to Spec A, where A is a connective Eq,-ring (see Definition
and Corollary . We will show that the collection of spectral schemes can be
organized into an co-category SpSch, which contains the usual category of schemes as a full
subcategory (Proposition .

In we will discuss a completely different enlargement of the category of schemes: the
2-category of Deligne-Mumford stacks. We will view Deligne-Mumford stacks as ringed topoi
(X, Ox), which are locally equivalent to the étale spectrum of an affine scheme (Definition
T2.41).

To adapt the notion of Deligne-Mumford stack to the setting of spectral algebraic
geometry, we will need a theory of sheaves of Eq-rings on topoi (or, more generally, on
oo-topoi). In we will show how to associate to every co-topos X another co-category
Shvg, (X), whose objects are sheaves of spectra on X (or, equivalently, spectrum objects of
X). The oo-category Shvg, (X&) is symmetric monoidal, and the commutative algebra objects
of Shvg,(X) form an co-category Shvcaig(X). We will refer to the objects of Shvaaie (&) as
sheaves of Eq,-rings on X. We then define a spectrally ringed co-topos to be a pair (X, Ox),
where X is an oo-topos and Oy is a sheaf of E,-rings on X.

In §1.4] we will introduce the notion of a spectral Deligne-Mumford stack: that is, a
spectrally ringed co-topos (X, & x) which is locally equivalent to the étale spectrum of a
(connective) Ey-ring. The collection of spectral Deligne-Mumford stacks can be organized
into an co-category SpDM, which we show to be an enlargement of the usual 2-category of
Deligne-Mumford stacks (Remark [1.4.8.3).

In this book, we adopt the point of view that a Deligne-Mumford stack is a ringed topos
(X, O x) satisfying certain local assumptions. Another perspective (which is more common
in the literature) is to view a Deligne-Mumford stack as a groupoid-valued functor on the
category of commutative rings (or a certain type of fibered category). We will establish the
equivalence of these perspectives in (see Theorem . In we will describe
a similar approach to the theory of spectral Deligne-Mumford stack. To every spectral
Deligne-Mumford stack (or spectral scheme) X, one can assign a S-valued functor hy on
the co-category S of Eq-rings. We will show that the construction X — hx is fully faithful
(Proposition . Combining this fact with some elementary observations about the
relationship between topological spaces and co-topoi (which we review in , we show
that the oo-category of spectral schemes can be identified with a full subcategory of the
oo-category of spectral Deligne-Mumford stacks. For this reason, we will primarily focus our
attention on spectral Deligne-Mumford stacks throughout the rest of this book.

Contents
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1.1 Spectral Schemes

1.1.1 Review of Scheme Theory

Our primary objective in this book is to develop the theory of spectral algebraic geometry:
a variant of algebraic geometry which uses structured ring spectra in the place of ordinary
commutative rings. Before we begin this undertaking, it will be helpful to review some of
the foundational definitions of the classical theory.

Definition 1.1.1.1. A ringed space is a pair (X, Ox ), where X is a topological space and
O'x is a sheaf of commutative rings on X. In this case, we will say that &'x is the structure
sheaf of X. We will regard the collection of all ringed spaces as the objects of a category
T0Pc@: Where a morphism from (X, Ox) to (Y, Oy) in Topgy,e consists of a pair (7, ¢),
where m: X — Y is a continuous map of topological spaces and ¢ : Oy — m, Ox is a map
between sheaves of commutative rings on Y.

Example 1.1.1.2. Let R be a commutative ring. We let | Spec R| denote the set of all
prime ideals of R. For every ideal I < R, we set V7 = {p € | Spec R| : I < p}, and refer to V7
as the vanishing locus of I. We will regard | Spec R| as a topological space, where a subset
of | Spec R| is closed if and only if it has the form V; for some ideal I < R. We will refer to
the resulting topology on | Spec R| as the Zariski topology.

For each element z € R, let U, = {p € |Spec R| : x ¢ p} denote the complement of the
vanishing locus of the principal ideal (z). We will say that an open set U < |Spec R| is
elementary if it has the form U,, for some element x € R. The collection of elementary open
sets forms a basis for the topology of | Spec R|.

The structure sheaf of | Spec R| is a sheaf of commutative rings ¢ on | Spec R| with the
following properties:
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(a) There is a ring homomorphism ¢ : R — I'(| Spec R|; &) = O(] Spec R|).

(b) For each element x € R, the composite map R LA O(|Spec R|) — €(U,) carries z to
an invertible element of &' (U,), and induces an isomorphism of commutative rings
R[z~!] ~ 0(U,). In particular, the map « itself is an isomorphism.

Since the open sets U, form a basis for the topology of R, property (b) determines the
structure sheaf ¢ up to unique isomorphism, once the map « : R — &(| Spec R|) has been
fixed (for the existence of €, see Example [1.1.4.7| below).

Remark 1.1.1.3. It is customary to abuse notation by identifying the spectrum Spec R
of a commutative ring R with its underlying topological space | Spec R|. However, we will
avoid this abuse of notation for the time being.

Definition 1.1.1.4. Let (X, Ox) be a ringed space. For every open subset U € X, we let
Ox |u denote the restriction of €'x to open subsets of U (which we regard as a sheaf of
commutative rings on U). Then (X, Ox |v) is itself a locally ringed space.

We say that (X, Ox) is a scheme if, for every point = € X, there exists an open subset
U < X containing x such that (U, Ox |y) is isomorphic to Spec R for some commutative
ring R (in the category of ringed spaces). We say that a scheme (X, Ox) is affine if it is
isomorphic (in the category Topc Alg® of ringed spaces) to Spec R, for some commutative
ring R.

1.1.2 Spectrally Ringed Spaces

Our goal in this section is to introduce an co-categorical generalization of the theory of
schemes, which we will refer to as the theory of spectral schemes. For this, we will need
to work with topological spaces equipped with a sheaf of E,-rings, rather than a sheaf of
ordinary commutative rings.

Definition 1.1.2.1. Let X be a topological space and let U(X) denote the partially ordered
set of all open subsets of X (which we will regard as a category). For any co-category C, a
C-valued presheaf on X is a functor % : U(X)°? — C. We will say that a C-valued presheaf
Z is a sheaf if it satisfies the following condition:

e Let {U,} be a collection of open subsets of X having union U, and let U’ = {V e U(X) :
(Ja)[V < U,]}. Then the functor .# exhibits .# (U) as a limit of the diagram % |;yop

(in other words, .# induces an equivalence .#(U) ~ lim ,_ , % (V) in the co-category
C).

We let Shve(X) denote the full subcategory of Fun(U(X)°P, C) spanned by those functors
which are C-valued sheaves on X..



1.1. SPECTRAL SCHEMES 71

Construction 1.1.2.2. Let C be an oo-category, and let m: X — Y be a continuous map
of topological spaces. Let .# : U(X)°® — C be a C-valued presheaf on X. Then we can
define another C-valued presheaf (my %) : U(Y )P — C, given on objects by the formula
(me F)(U) = F(n71U). If F is a C-valued sheaf on X, then 7, .7 is a C-valued sheaf on
Y. Moreover, the construction .7 — m, .# determines a functor my : Shve(X) — Shve(Y),
given by precomposition with the map of partially ordered sets 7~ : U(Y) — U(X). We
will refer to 7, as the pushforward functor associated to .

We can regard the construction X — Shve(X)°P as a functor from the category Top of
topological spaces to the category of simplicial sets, which carries a continuous map map
m: X — Y to the pushforward functor 7, : Shve (X )P — Shve(Y)°P. We let Tope denote
the relative nerve of this functor, in the sense of Definition HTT.3.2.5.2. Then T op, is an
co-category equipped with a coCartesian fibration 7Top, — T op, having the property that
each fiber Tope X7op{X} is canonically isomorphic to the co-category Shve(X)P.

Remark 1.1.2.3. Let C be an oo-category. Then the objects of Top, are given by pairs
(X, Ox), where X is a topological space and O'x is a C-valued sheaf on X. A morphism
from (X, Ox) to (Y, Oy) in Tope is given by a pair (7, ), where 7 : X — Y is a continuous
map of topological spaces and « : Oy — 7, O x is a morphism in the oo-category Shve(Y).

Example 1.1.2.4. Let CAlg" denote the category of commutative rings (regarded as an
oo-category). Then Top Alg® 18 equivalent to the category of ringed spaces.

Definition 1.1.2.5. Let CAlg denote the co-category of Ey-rings. A spectrally ringed space
is a pair (X, Ox), where X is a topological space and x is a CAlg-valued sheaf on X. In
this case, we will refer to Ox as the structure sheaf of X. We will refer to Topgyyg as the
-category of spectrally ringed spaces.

Notation 1.1.2.6. Let X be a topological space, and let .# be a sheaf on X with values
in the oo-category Sp of spectra. For each integer n, the construction U — m,(Z(U))
determines a presheaf of abelian groups on X. We let m, .% denote the sheafification of this
presheaf. If Ox is a sheaf of Ey-rings on X, then my O'x is a sheaf of commutative rings on
X, and each m, Ox can be regarded as a sheaf of my & x-modules on X.

The construction (X, 0x) — (X,m9Ox) determines a functor from the oco-category
Topcale of spectrally ringed spaces to the category of ringed spaces. We will refer to
(X, mo Ox) as the underlying ringed space of (X, Ox).

Warning 1.1.2.7. Let (X, Ox) be a spectrally ringed space. For every integer n and every
open set U € X, there is a canonical map of abelian groups

T (Ox(U)) — (m Ox)(U),

which is generally not an isomorphism.



72 CHAPTER 1. SCHEMES AND DELIGNE-MUMFORD STACKS

We are now ready to introduce our main objects of interest.

Definition 1.1.2.8. A spectral scheme is a spectrally ringed space (X, @' x) which satisfies
the following conditions:

(1) The underlying ringed space (X, my Ox) is a scheme.

(2) Each of the sheaves 7, € x is quasi-coherent (when viewed as a sheaf of my & x-modules
on X).

(3) Let U be an open subset of X for which the scheme (U, (79 O'x)|y) is affine. Then, for
each integer n, the canonical map m,(0x (U)) — (7, Ox)(U) is an isomorphism.

(4) The sheaves 7, € x vanish when n < 0.

Variant 1.1.2.9. We will say that a spectrally ringed space (X, Ox) is a nonconnective
spectral scheme if it satisfies conditions (1), (2), and (3) of Definition |1.1.2.8

Remark 1.1.2.10. If (X, 0x) is a nonconnective spectral scheme, then the ringed space
(X, m Ox) is a scheme. We will refer to (X, my Ox) as the underlying scheme of (X, Ox).

1.1.3 Digression: Hypercompleteness

We next show that condition (3) of Definition [1.1.2.8/ admits an alternate formulation,
and is automatically satisfied in many cases of interest (see Corollary |1.1.3.6)).

Definition 1.1.3.1. Let .% be a spectrum-valued sheaf on a topological space X. We will
say that % is hypercomplete if the functor U — Q% .%(U) determines a hypercomplete
object of the co-topos Shvs(X) (see SHTT.6.5.2).

Remark 1.1.3.2. Let X be a topological space. Then the collection of hypercomplete
objects of Shvg,(X) is closed under small limits and under suspensions (see Proposition
1.3.3.3)). Moreover, the condition that an object .# € Shvg,(X) be hypercomplete can be

tested locally on X (Corollary |1.3.3.8]).

Remark 1.1.3.3. Let v : % — %’ be a morphism of hypercomplete spectrum-valued
sheaves on a topological space X. Then u is an equivalence if and only if it induces an
isomorphism 7, . % — m, %’ (in the category of sheaves of abelian groups) for every integer
n. The “only if” direction is obvious. To prove the converse, it suffices to show that the map
up : QP (X" F) - QF(X".F') is an equivalence in the owo-topos Shvg(X) for every integer
n. This is clear, since u, is a morphism between hypercomplete objects of Shvs(X) which
induces an isomorphism on homotopy sheaves.

Proposition 1.1.3.4. Let (X, 0x) be a spectrally ringed space satisfying the following
conditions:
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(1) The underlying ringed space (X, 79 Ox) is a scheme.

(2) FEach of the sheaves m, O'x is quasi-coherent (when viewed as a sheaf of my O x -modules
on X ).

(3") The structure sheaf Ox is hypercomplete.
Then (X, Ox) is a nonconnective spectral scheme.

Proof. For each integer n, let 7<, Ox denote the n-truncation of &'x with respect to the
natural t-structure on the oo-category Shvg,(X) (see Proposition [1.3.2.7). We then have
fiber sequences

X' Ox) > T<n Ox — T<n—1 Ox,

where we abuse notation by identifying the sheaf of abelian groups m, €'x with the cor-
responding object in the heart of Shvg,(X). Passing to global sections and extracting
homotopy groups, we obtain a long exact sequence

H"™"™(U; (M Ox) ) = Tm(7<n Ox)(U) = Tin(t<n-1 Ox(U)) — B (U (m0 %))

for each open subset U < X. Assumption (2) implies that the cohomology groups
HY(U; (7, Ox)|v) vanish whenever U is affine and i > 0. Moreover, for an open subset
U < X, the spectra (1<, Ox)(U) and (1<,,—1 Ox)(U) are n-truncated and (n — 1)-truncated,
respectively. It follows that if U is affine, our long exact sequence degenerates to supply
isomorphisms
0 ifm>n
Tm(T<n Ox)(U) =~ < (7, Ox)(U) ifm=n
(T<n—10x)(U) it m <n.

Set O’y = im 7<, Ox € Shvsp(X). We have an evident map u : Ox — O, and the
above calculation shows that this map induces an equivalence (1, O x)(U) — m,(0'x (U))
for every affine open subset U < X. In particular, u induces an isomorphism of sheaves
7 Ox — m, O for every integer n. The S-valued sheaf Q® &'y is hypercomplete by
construction, and the S-valued sheaf Q% &'x is hypercomplete by virtue of assumption (3').
It follows that the map w is an equivalence, so that (m, Ox)(U) ~ m,(0 x (U)) for each affine
open subset U < X. That is, (X, Ox) satisfies condition (3) of Definition and is
therefore a nonconnective spectral scheme. ]

Remark 1.1.3.5. The converse of Proposition [1.1.3.4] is also true: if (X, 0x) is a non-
connective spectral scheme, then the structure sheaf ¢x is hypercomplete (see Corollary

1.1.6.2).
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Corollary 1.1.3.6. Let (X,0x) be a spectrally ringed space, and suppose that X is a
Noetherian topological space of finite Krull dimension. Then (X, Ox) is a nonconnective
spectral scheme if and only if (X, 79 Ox) is a scheme and each homotopy group 7, Ox is a
quasi-coherent sheaf on (X, 79 Ox).

Proof. If X is a Noetherian topological space of finite Krull dimension, then the co-topos
Shvg(X) has finite homotopy dimension, so that every object of Shvg(X) is hypercomplete
(see SHTT.7.2.4; we will prove a generalization of this statement in . The desired result
now follows from Proposition O

Remark 1.1.3.7. Let (X, 0x) be a spectrally ringed oo-topos which satisfies conditions
(1) and (2) of Definition [I.1.2.8] Then we can obtain a nonconnective spectral scheme by
replacing the sheaf &'x with its hypercompletion. This replacement does not change the
underlying scheme (X, 7y O'x) or any of the quasi-coherent sheaves m, Ox.

1.1.4 The Spectrum of an E,-Ring

Our next goal is to produce some examples of spectral schemes.

Definition 1.1.4.1. Let A be an Eq,-ring. We let | Spec A| denote the Zariski spectrum of
the underlying commutative ring R = mgpA. We will say that an open subset U < | Spec A
is affine if it is affine when regarded as an open subset of the affine scheme Spec R.

Let A be an Ey-ring. We wish to construct a CAlg-valued sheaf on the topological space
| Spec A|, analogous to the structure sheaf on the spectrum of an ordinary commutative ring.
First, we review the theory of localizations in the setting of E-rings.

Remark 1.1.4.2. Let f: A — B be a map of Ey-rings, and let a € mpA. We will say
that f exhibits B as a localization of A by a € mpA if the map f is étale and f induces
an isomorphism of commutative rings (mpA)[a~!] ~ mpB. In this case, we will denote B
by Ala=']. Theorem HA.7.5.0.6 guarantees that A[a~!] exists and is well-defined up to
equivalence (in fact, up to a contractible space of choices). The localization map A — A[a™!]
can be characterized by either of the following conditions (see Corollary HA.7.5.4.6 ):

(1) The map A — A[a~'] induces an isomorphism of graded rings (74 A)[a~!] — 7 A[a""].

(2) For every Ey-ring B, the induced map Mapcaie(A[a™'], B) — Mapgae (A, B) restricts
to a homotopy equivalence of Mapga, (A[a™'], B) with the summand of Mapga, (A, B)
spanned by those maps A — B which carry a € mgA to an invertible element of myB.

Proposition 1.1.4.3. Let A be an Ey-ring and let R = mgA be its underlying commutative
ring. Then there exists a CAlg-valued sheaf & on the topological space |Spec Al and a
morphism ¢ : A — O(|Spec A|) of Eq-rings which satisfies the following conditions:
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(a) For every element x € R defining an elementary open subset U, = {p € |Spec A| : = ¢ p},

the composite map A 4 O(|Spec A|) — O(U;) induces an equivalence of Eq-rings
Az ~ 0(U,).

(b) The canonical map
R =myA % m0(0(| Spec A|)) — (m O)(] Spec A|)
induces an isomorphism of mg O with the structure sheaf of the affine scheme Spec R.

(¢) The pair (|Spec A|, ©) is a nonconnective spectral scheme. If A is connective, then

(|Spec A, O) is a spectral scheme.
We will deduce the existence of the sheaf ¢ from the following general principle:

Proposition 1.1.4.4. Let X be a topological space, let C be an oo-category which admits
small limits, and let U, denote a collection of open subsets of X satisfying the following

conditions:

(1) The sets belonging to U, form a basis for the topology of X. That is, for every point
x € X and every open set U containing x, there exists an open set V € U, such that
zeVcU.

(13) For every pair of open sets U,V € U, the intersection U n'V belongs to U..
(tit) Fach of the open sets U € U, 1is quasi-compact.

Then a functor F : U(X)°? — C is a C-valued sheaf on X if and only if the following
conditions are satisfied:

(1) The functor F is a right Kan extension of F |yop.

(2) Let Uy,Us,...,U, € Ue be a finite collection of open sets whose union U = | JU;
also belongs to U. For each S < {1,...,n}, let Ug = (,eg Ui. Then F induces an

equivalence F (U) — Lir_n@#q F (Us), where the limit is taken over the partially ordered

set of all nonempty subsets S < {1,...,n}.
Corollary 1.1.4.5. Under the hypotheses of Proposition[I.1.4.4), the restriction map
Shve(X) — Fun(UgP,C)

is a fully faithful embedding, whose essential image is the collection of those functors U¥ — C

which satisfy condition (2) of Proposition|1.1.4.4).
Proof. Combine Propositions[1.1.4.4] and HTT.4.3.2.15. O
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Before proving Proposition let us describe some of its applications.

Example 1.1.4.6. Let X be a topological space and let U, be a collection of open subsets
of X satisfying conditions (i), (i7), and (éi7) of Proposition Applying Proposition
in the special case C = S, we obtain an equivalence of co-topoi Shv(X) ~ Shv(U,),
where we regard U, as equipped with the Grothendieck topology given by those sieves
{Uq <€ U} for which U = | U,.

Example 1.1.4.7. Let R be a commutative ring, let X = |Spec R|, let U, denote the
collection of all elementary open subsets of X, and let C be the category of commutative
rings. Using Corollary we see that the structure sheaf & of the affine scheme Spec R
is essentially unique, and its existence reduces to the following basic assertion of commutative
algebra: if x1,...,x, is a collection of elements of R which generate the unit ideal in R,
then we have an equalizer diagram

R—— ngz‘gn R[JU;l] — H1<i<j<n R[I;lv x;l]

in the category of commutative rings.

Proof of Proposition[I.1.7.3 Let X = |Spec A|, let U. denote the collection of open affine
subsets of X, and let € denote the structure sheaf of the affine scheme Spec R. For every
affine open subset U < X, the commutative ring &(U) is étale as an R-algebra. Let
O, denote the restriction of the sheaf & to the partially ordered set U, so that we can
regard O, as a functor from U to the category of étale R-algebras. Applying Theorem
HA.7.5.0.6, we see that there is an essentially unique functor &, : UP — CAlg, such that
O.(U) =19 O.(U), and each of the A-algebras &.(U) is flat over A.

Let 0 : U(X)°P — CAlg be a right Kan extension of the functor &.. We claim that & is
a CAlg-valued sheaf on X. To prove this, it will suffice to show that the functor & satisfies
condition (2) of Proposition Let Uy,...,U, be a collection of open affine subsets
of X whose union U = J,;,, Ui is also open. For each S < {1,...,n}, let Us denote the
intersection [),.q Ui;. We wish to show that the canonical map

w: O(U) - lim 6(Us)
S#J

is an equivalence.
Since the open sets U; form an affine open covering of U, the map 0(U) — [],<,;<,, (Us)

is faithfully flat. It follows that [ [, <, €'(U;) is faithfully flat over &'(U). Consequently, to
prove that p is an equivalence, it will suffice to show that p induces an equivalence

pi s OU;) — O(Ui) @y lim 0(Us),
S+
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for 1 < i < n. The operation M — O(U;) Q) M is an exact functor between stable
oo-categories, and therefore preserves finite limits. Consequently, we may identify u; with
the canonical map

O(U;) — lim (O(U;) ®gvy O(Us)) ~ lim O(Usygiy)-
S#J S#J

Note that the functor S +— O(Ug ;) is a right Kan extension of its restriction to the
partially ordered set P = {S < {1,...,n} : i € S}, so that y; is equivalent to the map
O(U;) — lim sep O (Ug). This map is an equivalence, since the partially ordered set P
contains {i} as a least element. This completes the proof of (a).

By construction, the functor U — m(€(U)) determines a presheaf of commutative rings
on | Spec A| which agrees with & on every affine open subset of | Spec A|. Since the affine
open subsets of | Spec A| form a basis for the topology of | Spec A|, we obtain an isomorphism
O ~ 7y O of sheaves of commutative rings on | Spec A|. This proves (b).

We now prove (c¢). Let m be an integer, and let M = m,, A. Then we can regard M as
a (discrete) R-module. Let .# be the associated quasi-coherent sheaf on the affine scheme

Spec R, so that .7 (U) ~ 0(U) ®g M for every affine open subset U < | Spec A|. Since 0'(U)
is flat over A, we obtain isomorphisms

F(M)~OU)Qr M ~790U) Qrya TmA ~ 7y OU),

depending functorially on U € U,. Since U, forms a basis for the topology of | Spec A4, it
follows that the sheaf ,, & is isomorphic to .7 (as a sheaf of &-modules), and is therefore
quasi-coherent. Condition (3) of Definition follows immediately from our construction,
so that (| Spec A|, @) is a nonconnective spectral scheme. If A is connective, then the above
calculation gives m,, € ~.% ~ 0 for m < 0, so that (| Spec A|, @) is a spectral scheme. [

Definition 1.1.4.8. Let A be an Eq-ring, and let & be the sheaf of E-rings on | Spec A|
constructed in the proof of Proposition We will refer to & as the structure sheaf
of |Spec A|. The pair (| Spec A, 0) is a spectrally ringed space, which we will denote by
Spec A and refer to as the spectrum of A. We will say that a nonconnective spectral scheme
(X, Ox) is affine if it is equivalent to Spec A for some Eq-ring A.

Warning 1.1.4.9. Let R be a commutative ring. Then we can regard R as a discrete
E-ring. In this case, the notation introduced in Definition is potentially ambiguous:
we write Spec R to denote both the affine scheme (| Spec R|, 0y) of Example and the
spectral scheme (| Spec R|, &) of Proposition These two objects are not quite the
same: O is a sheaf of commutative rings on X = | Spec R|, while & is a sheaf of E-rings on
X. However, they are interchangeable data: the sheaf of commutative rings &y isomorphic
to mp O, and the sheaf of Eq,-rings & can be recovered as the sheafification of & (regarded as
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a presheaf of Eq,-rings on X). Moreover, we have an equivalence 0y (U) ~ 0(U) whenever U
is an affine subset of X, which extends to an isomorphism &4(U) ~ mo (U) for every open
subset U < X. However, the Eq,-rings €/(U) are generally not discrete: we have canonical
isomorphisms

m_n OU) ~H"(U; Oy |v).

Proof of Proposition[I.1.4.4. Suppose first that .% is a C-valued sheaf on X. Let {Ua}aeca
be any collection of open subsets of X, and set U = | J,, Ua, and let U’ denote the subset
of U(X) given by those open sets V which are contained in U, for some o € A. Let P(A)
denote the partially ordered set of all nonempty finite subsets of A. For each S € P(A), we
set Us = [),eg Ua- The construction S +— Ug determines a right cofinal map P(A) — U'P.
Invoking our hypothesis that .# is a sheaf, we deduce that the canonical maps

F(U) — lim F(V) - lim F(Us)
veu' SeP(A)

are equivalences in the co-category C. This immediately implies condition (2).
To verify condition (1), we must show that for any open subset U € X, the canonical
map

Y

(U) - lim  F(V)

4

Vele nUU)
is an equivalence. Since U, forms a basis for the topology of X, we can write U = U«,e 14Uy
where each v belongs to U.. Let U’ be defined as above, so that we have a commutative
diagram

y(U) liLnVeZ/{e nUU) ﬁ(V)

| |

limy oy (V) ——limy, o,y F V).

The left vertical map is an equivalence by virtue of our assumption that .% is a C-valued
sheaf. Similarly, the assumption that .7 is a sheaf implies that the functor 7 |, ~u(u)or
is a right Kan extension of .7 |, ~y)er, which shows that the right vertical map is also
an equivalence. We are therefore reduced to proving that the bottom horizontal map an
equivalence. For this, it suffices to show that the inclusion of simplicial sets U, "U’ — U’ is
left cofinal. This is equivalent to the assertion that for each V € U, the partially ordered
set T = {W eU.nU": V < W} has weakly contractible nerve. This is clear, since T is
nonempty and closed under finite intersections.

Now suppose that .Z# satisfies conditions (1) and (2); we will show that .# is a C-valued
sheaf on X. Fix an open set U € X and an open covering {U,},ea of U. Let U’ be as above;

we wish to show that the canonical map #(U) — lim ,_, # (V) is an equivalence in C.
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Since .7 satisfies condition (1), the functor .7 [;or is a right Kan extension of 7 |, 4 yyor-
It will therefore suffice to show that the composite map

FWU) - lm F(V) > lm  F(V)
Vel Velde U’
is an equivalence. Since assumption (1) supplies an equivalence # (U) ~ lim ) F(V),
it will suffice to show that F |, ~u())er is a right Kan extension of .7 [, ~q)°P. For this,
let us fix an open set V € U, with V < U; we wish to show that the map

0. F(V)—>  lm  FW)
Welde nU' WSV

is an equivalence.

It follows from assumption (7i7) that V' is quasi-compact, so we can write V' as a finite
union Vi U --- U V,, where each V; belongs to U’ nl,. Let U” denote the collection of all
open subsets of X which belong to U, and are contained in one of the open sets V;. We will

prove:
(*) The functor & [y, ~y(v))er is a right Kan extension of & |ymop.
Assuming (), the map @ fits into a commutative diagram

i .
o) Mmoo AU WSV ow)

o~

lim o)

~—Vveu”

where the vertical maps are equivalences, so that 6 is an equivalence. To prove (*), we must
show that for every open set W € U, with W < V', the canonical map

o: F(W)— lm  FW)
W/'cW,W'eld”

is an equivalence. Let @) denote the partially ordered set of all nonempty subsets of {1, ..., n}.
For each subset S < {1,...,n}, let Wg denote the intersection W n (),.g V. Since the
construction S — Wy induces a right cofinal functor S — U(W) nU”, we can identify ¢
with the map
F (W) — lim .7 (W),
@#S

which is an equivalence by virtue of assumption (2). O
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1.1.5 The Universal Property of Spec A

If R is a commutative ring, then the affine scheme Spec R can be characterized by a
universal mapping property. To formulate it, we need to work in the setting of locally ringed
spaces.

Definition 1.1.5.1. Let X be a topological space and let &x be a sheaf of commutative
rings on X. We say that O'x is local if, for every point x € X, the stalk my O'x . is a local
ring (we will give a quick review of the theory of local rings in . We say that a ringed
space (X, Ox) is locally ringed if O'x is local.

The collection of locally ringed spaces can be organized into a category T op 2% where

1

(cj)AlgO’
a map of locally ringed spaces (X, Ox) — (Y, Oy) is given by a continuous map 7 : X — Y
together with a map of sheaves 0y — w, Ox satisfying the following locality condition:
for every point z € X, the induced ring homomorphism Oy f(,) — Ox . is local (that is, it

carries noninvertible elements of Oy, ¢(,) to noninvertible elements of & X.z)-

Example 1.1.5.2. Every scheme (X, 0x) is a locally ringed space. To prove this, we
may work locally on X and thereby reduce to the case where (X, &'x) = Spec R for some
commutative ring R. In this case, the stalk of the structure sheaf &'x at a point p € | Spec R)|
can be identified with the local ring R,.

Definition [1.1.5.1] has an obvious generalization to the setting of CAlg-valued sheaves:

Definition 1.1.5.3. Let (X, Ox) be a spectrally ringed space. We will say that (X, Ox) is
a locally spectrally ringed space if the underlying ringed space (X, 7y Ox) is locally ringed.
We let Topl&ilg denote the subcategory of Topgy), whose objects are locally spectrally
ringed spaces (X, O x), and whose morphisms are maps (X, 0x) — (Y, Oy) for which the
underlying map (X, m Ox) — (Y, mp Oy) is morphism in the category of locally ringed
spaces.

Every spectral scheme (X, Ox) is a locally spectrally ringed space. This allows us to
organize the collection of spectral schemes into an co-category:

Definition 1.1.5.4. Let (X,0x) and (Y, 0y) be nonconnective spectral schemes. A
morphism of nonconnective spectral schemes from (X, 0x) to (Y, Oy) is a map (X,O0x) —
(Y, Oy) in the category Topl&ilg of locally spectrally ringed spaces. In other words, a
morphism from (X,0x) to (Y,Oy) consists of a pair (f,«), where f : X — Y is a
continuous map of topological spaces and a : Oy — fi Ox is a morphism in Shvgai(Y)
which induces a local homomorphism of commutative rings (7o Oy ) ¢(z) — (M0 O x ). for each
re X.

Let SpSch™ denote the subcategory of Topcaj, Whose objects are nonconnective spectral

schemes and whose morphisms are morphisms of nonconnective spectral schemes. Let
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SpSch denote the full subcategory of SpSch™ spanned by the spectral schemes. We will
refer to SpSch as the co-category of spectral schemes, and to SpSch™ as the co-category of
nonconnective spectral schemes.

If (X, 0x) is a locally ringed space and R is a commutative ring, then there is a canonical
bijection

Hom loc
TOPCAlgO

((X, 0x),Spec R) ~ Homg 0 (R, Ox(X)).
In the setting of spectral algebraic geometry, we have an analogous statement:

Proposition 1.1.5.5. Let (X, Ox) be a locally spectrally ringed space, let A be an Eq,-ring,
and write Spec(A) = (| Spec A|, 0). Then composition with the canonical map ¢ : A —
O(| Spec A|) induces a homotopy equivalence

MapToplg;;lg ((X, Ox),Spec A) — Mapgaiy (4, Ox (X))

Proof. Let ¢ : A — O x(X) be a morphism of Eq-rings; we wish to show that the homotopy
fiber

Z = Mapropee (X, Ox),5pec A) Xnapg y ,(4.0x(x)) {0}

is contractible. Let R denote the commutative ring moR. For each point x € X, let x(x)
denote the residue field of the local ring (79 &' x )., so that ¢ determines a ring homomorphism
R — k(x) whose kernel is a prime ideal p, € R. Let f : X — |Spec A| be the map given
by f(x) = p,. We first claim that f is continuous. To prove this, it will suffice to show
that for every element r € R, the set U = {x € X : r ¢ p,} is an open subset of X. Suppose
that = € U, so that ¢ carries r to an invertible element of the local ring (w9 Ox),. Let
s € (mo Ox), denote the multiplicative inverse of this element. Then there exists an open
set V' € X containing = and an element 5 € mo(0x(V)) lifting s. Shrinking V' if necessary,
we may suppose that § is a multiplicative inverse of the image of r under the composite
map R LA 0 Ox(X) — w9 Ox (V). This implies that V' < U, so that U contains an open
neighborhood of z.

Suppose we are given a map of spectrally ringed spaces from (X, Ox) to Spec A, given
by a map of topological spaces g : X — | Spec A| and a morphism v : & — g, Ox. For each
r € X, the composite map R — m Ox(X) — (m Ox ). — k() factors through Ry, so
that f(z) < g(x) (as prime ideals of the commutative ring R). Moreover, (g, ) is a morphism
of locally spectrally ringed spaces if and only if equality holds for each z € X. We may
therefore identify Z with the homotopy fiber of the map Mapshy e, (] spec AN (0 95 Ox) —
Mapgaie (A, O x (X)) over the point ¢.

Let U, denote the collection of all elementary open subsets of |Spec A| and define
C = Fun(UP,CAlg). It follows from Corollary that the restriction functor 7' :
Shvcaig(| Spec A|) — C is a fully faithful embedding. We may therefore identify Z with the
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homotopy fiber of the map Map¢(T' 0, Tgx« Ox) — Mapgae(4, Ox (X)) over the point ¢.
Let CAlgg denote the category of commutative R-algebras. Since &(U) is a localization of
A for each U € U, we can use Theorem HA.7.5.4.2 to identify Z with the set of maps

HomFun(ugp,cAlgg) (moT O, 70T gs Ox).

For each element r € R, let U, denote the elementary open subset {p € | Spec A| : r ¢ p} <
| Spec A|, so that my 0(U,) ~ R[r~!]. Consequently, to prove that Z is contractible, it will
suffice to show that for each r € R, the image of r is invertible in the commutative ring
mo(gx Ox)(Ur).

Let ¢(r) denote the image of r under the map R — 7y O x(X), so that multiplication by
r induces a map m, from O to itself (as a Sp-valued sheaf on X). Let U = ¢~ 'U,. For
each point x € U, the image of r in the local ring (my Ox), is invertible. We may therefore
choose an open set V' € X containing x such that the image of r in 7y & x (V') is invertible,
so that m, induces an equivalence from O'x |y to itself. It follows that fib(m,) vanishes on
U, so that multiplication by r induces an isomorphism from my & x (U) to itself. It follows
that the image of r in my(g« O'x)(U,) is invertible, as desired. O

Remark 1.1.5.6. The global sections functor (X, 0x) — 0 x(X) determines a forgetful
functor Topl&ilg — CAlg®. It follows from Proposition that this functor admits a
right adjoint, given on objects by A — Spec A. In particular, the spectrally ringed space
Spec A depends functorially on A.

Remark 1.1.5.7. Let A and B be Ey-rings. Using the universal property of Spec B, we
obtain a homotopy equivalence MapTOp&cUg(Spec A, Spec B) ~ Mapc,(B, O(| Spec Al)),
where & denotes the structure sheaf of Spec A. Under this homotopy equivalence, the
canonical map Mapg (B, 4) — MapToplé)Xlg(Spec A, Spec B) is given by composition with

the equivalence o : A — (| Spec A|) appearing in Proposition [1.1.4.3] It follows that the
functor Spec : CAlg®® — SpSch®® is fully faithful.

1.1.6 Characterization of Affine Spectral Schemes

Let (X, 0x) be a locally spectrally ringed space. Proposition [1.1.5.5| asserts that every
map of Eq-rings o : A — O x(X) induces a map f : (X, Ox) — Spec A in the co-category
Toplé’f“g. Our next result gives a criterion for this map to be an equivalence:

Proposition 1.1.6.1. Let (X, Ox) be a locally spectrally ringed space, let A be an Eq-ring,
and let f : (X,0x) — Spec A be a morphism of locally spectrally ringed spaces. Assume
that:

(a) The map f induces an equivalence of Exy-rings a: A — Ox(X).
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(b) The underlying ringed space (X, 7o Ox) is an affine scheme.
(¢) For each integer n, the sheaf m, Ox is quasi-coherent.
Then the following conditions are equivalent:
(1) The map f is an equivalence.
(2) The sheaf Ox is hypercomplete.
(3) The spectrally ringed space (X, Ox) is a nonconnective spectral scheme.

Corollary 1.1.6.2. Let (X, Ox) be a spectrally ringed space. Suppose that the ringed space
(X, m0 Ox) is a scheme, and that m, Ox is a quasi-coherent sheaf of (mo O x)-modules on X
for every integer n. The following conditions are equivalent:

(1) The structure sheaf Ox is hypercomplete.
(2) The pair (X, Ox) is a nonconnective spectral scheme.

(3) For each point x € X, there exists an open set U < X containing x such that the
spectrally ringed space (U, Ox |v) is an affine nonconnective spectral scheme (that is,
there exists an equivalence (U, Ox |y) ~ Spec A for some Eyy-1ing A).

Proof. The implication (1) = (2) follows from Proposition We next show that
(2) = (3). Assume that (X, Ox) is a nonconnective spectral scheme, and let € X. Since
the ringed space (X, 7 Ox) is a scheme, we can choose an open subset U € X containing
X such that (U, (mo Ox)|v) is an affine scheme. Set A = & x(U), so that Proposition [1.1.5.5]
supplies a map of locally spectrally ringed spaces f : (U, Ox |r) — Spec A. Using condition
(1) and Proposition we conclude that f is an equivalence.

We now complete the proof by showing that (3) = (1). The assertion that Ox is
hypercomplete can be tested locally on X (see Corollary . Using (3), we are reduced
to proving that &'x is hypercomplete in the special case where (X, &x) ~ Spec A for some
Es-ring A, which follows from Proposition O

Corollary 1.1.6.3. Let (X, Ox) be a nonconnective spectral scheme. Then (X, Ox) is
affine if and only if the underlying scheme (X, my Ox) is affine.

Corollary 1.1.6.4. Let (X, Ox) be a spectrally ringed space. Then the condition that X is
a nonconnective spectral scheme can be tested locally on X. That is, if each point x € X has
an open neighborhood U < X such that (U, Ox |v) is a nonconnective spectral scheme, then
(X, Ox) is a nonconnective spectral scheme.
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Proof of Proposition[I.1.6.1. Let & denote the structure sheaf of the nonconnective spectral
scheme Spec A. To prove that (1) implies (2), it will suffice to show that & is hypercomplete.
We will prove this by exhibiting ¢ as an inverse limit lim | Oy, where each 0y, is a sheaf of
spectra on | Spec A| taking values in the full subcategory Sp,, < Sp of n-truncated spectra.

Let 7>0A denote the connective cover of A, and let ¢’ denote the structure sheaf of
Spec(1=0A) (which we also regard as a sheaf of E-rings on the topological space | Spec A|).
Let U, denote the collection of all affine open subsets of X, and define functors .7, : U¥ — Sp
by the formula .7, (U) = 1<, O(U). We claim that each .#

n

satisfies hypothesis (2) of
Proposition To prove this, it suffices to observe that we have a canonical equivalence
Fo(U) ~ (T<nd) ®ropa 0'(U), and that the N — (7<pA) ®r.oa4 N commutes with finite
limits. Let %, : U(]Spec A|)°? — Sp be a right Kan extension of .%,, so that .%, is a
Sp-valued sheaf on | Spec A| (by Proposition . By construction, we have a canonical
map 0 — lir_nn F n, which is an equivalence when evaluated on each affine open subset of X
and therefore an equivalence (since the functors ¢ and Lgln &, are right Kan extensions of
their restrictions to U2P, by Proposition . By construction, the spectrum %, (U) is
n-truncated for any affine open subset U € X. Since the collection of n-truncated spectra is
closed under small limits, it follows that .#,,(U) is n-truncated for all U € X, so that %,
is an n-truncated object of Shvg, (] Spec A]). This completes the proof of the implication
(1) = (2).

The implication (2) = (3) follows from Proposition We will complete the
proof by showing that (3) = (1). Suppose that (X, 0x) is a nonconnective spectral
scheme. Using (b), we can write (X, 79 0x) ~ Spec R for some commutative ring R. For
each integer n, set M,, = 7, Ox. It follows from (c) that M,, is a quasi-coherent sheaf
on the scheme (X, my 0 x). We may therefore choose a discrete R-module M,, such that
M, (U) = (79 Ox)(U) ®g M, for each affine open subset U < X. Using (2), we deduce that
the canonical map m,(0x(U)) — M, (U) is an isomorphism whenever U is affine. Using
(a), we obtain isomorphisms

WA~ T, Ox(X)~M,.

Taking n = 0, we conclude that the canonical map mpA — R is an isomorphism, so that
f induces a homeomorphism X — |Spec R|. Let & denote the structure sheaf of Spec A;
let us abuse notation by identifying & with a CAlg-valued sheaf on X. To complete
the proof, it will suffice to show that f induces an equivalence & — O'x in Shvcaig(X).
Using Corollary we are reduced to proving that the map 0(U) — Ox(U) is an
equivalence for each open subset U € X. Equivalently, we must show that each of the maps
Oy, : 0 O(U) — 7, Ox(U) is an isomorphism. This is clear, since 6, fits into a commutative
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diagram
(m0 Ox)(U) ®r My,
Wnﬁ(U) ﬂ'nﬁx(U).
where the vertical maps are isomorphisms. O

1.1.7 Truncations of Spectral Schemes

The difference between an Eo,-ring A and the ordinary commutative ring my A is controlled
by the remaining homotopy groups {m,A},o: if these vanish, then the data of A and mpA
are interchangeable. We now make some analogous remarks for sheaves of Eq-rings.

Definition 1.1.7.1. Let X be a topological space and let &' x be a sheaf of E,-rings on X.
We will say that & x is connective if the sheaves m, 0 x vanish for n < 0. We let Shv(y,(X)
denote the full subcategory of Shvcalg(X) spanned by the connective sheaves of Ex-rings
on X.

If Ox is a sheaf of Ey-rings on X and n is an integer, then we will say that O'x
is n-truncated if the Eo-ring O x(U) is n-truncated, for every open subset U < X. We
let Shvcalg(X)S" denote the full subcategory of Shvy,(X) spanned by the n-truncated
sheaves of Eq-rings on X, and Shviy (X)S" the intersection Shvgiy, (X) N Shvoalg(X)S".

Warning 1.1.7.2. Let &x be a sheaf of E,-rings on a topological space X. The condition
that O'x is connective does not imply that the Eo-rings & x(U) are connective for U < X.
Nevertheless, there is an equivalence of oo-categories p : Shvzy, (X) — Shvealgen (X), given

on objects by the formula (p 0)(U) = 150(0(U)); see Proposition

Remark 1.1.7.3. Let (X, Ox) be a nonconnective spectral scheme. Then (X, 0x) is a
spectral scheme if and only if the structure sheaf 0'x is connective.

Remark 1.1.7.4. Let (X, Ox) be a spectrally ringed space. If &x is n-truncated for some
integer n, then the sheaves m,, O'x are trivial for m > n. The converse holds provided that
O x is hypercomplete. In particular, if (X, 0'x) is a nonconnective spectral scheme, then
O'x is n-truncated if and only if 7, Ox ~ 0 for m > n.

Our next goal is to describe the relationship between the co-category SpSch of spectral
schemes and the larger oo-category SpSch™ of nonconnective spectral schemes. For this, we
will need a few general remarks about CAlg-valued sheaves on topological space. We will
defer the proofs until where we will give a more systematic treatment of spectrum-valued
sheaves.

Fix a topological space X. Then:
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(T'1) The inclusion functor Shvy, (X) < Shvealg(X) admits a right adjoint, which we will
denote by O x +— 70 O'x (see Remark. Moreover, amap « : 0x — O induces
an equivalence 79 Ox — T=o O’y if and only if a induces an equivalence of CAlg®™-
valued sheaves on X (that is, if and only if the induced map 70 Ox (U) — 750 O'x (U)
is an equivalence, for each open set U € X; see Proposition . In particular,
the canonical map 7>9 Ox — Ox induces isomorphisms 7,,(7>0 Ox) — my Ox for
m = 0.

(T2) For each n > 0, the inclusion functor Shviiy,(X)S" — Shviy,(X) admits a left
adjoint, which we will denote by &'x — 7<, Ox. Moreover, for every connective CAlg-
valued sheaf &'x on X, the canonical map 7, Ox — 7, (7<n Ox) is an isomorphism

for m < n (see Remark |1.3.5.6)).

(T'3) The construction & x — o O x induces an equivalence of the co-category Shvy, (X )sO
with the ordinary category of sheaves of commutative rings on X (see Remark [1.3.5.6]).

Proposition 1.1.7.5. Let (X,0x) be a nonconnective spectral scheme, and let 7>9 Ox
denote a connective cover of Ox in the c-category Shvoaig(X). Then (X, 750 Ox) is a
spectral scheme. Moreover, it has the following universal property: for every spectrally ringed
oo-topos (Y, Oy) where Oy is connective, the canonical map

0 : Maprop,, (X, 7<0 Ox), (Y, Oy)) — Mapr,, ., (X, Ox), (Y, Oy))

is a homotopy equivalence. If (Y, Oy) is locally spectrally ringed, then the map 0 restricts to
a homotopy equivalence

Ma‘pToplcoglg ((X) TSO ﬁX)? (Y7 ﬁY)) - Ma‘p']—oplcoglg ((X’ ﬁX)? (K ﬁY))

Corollary 1.1.7.6. The inclusion functor SpSch < SpSch™ admits a left adjoint, given by
(X7 ﬁX) — (Xa T=0 ﬁx)

Proof of Proposition[I.1.7.5. Let (X,0x) be an arbitrary spectrally ringed space, and
let (Y,Oy) be a spectrally ringed space where Oy is connective. The canonical map
T>0 Ox — Ox is an equivalence after applying the functor Q% : Shvgaie(X) — Shvs(X).
It follows that the canonical map « : fx(7>0 Ox) — f« Ox is an equivalence after applying
the functor Q% : Shvcal(Y) — Shvs(Y). In particular, a induces an equivalence of
connective covers, so that composition with a induces a homotopy equivalence

MapShVCAlg(Y) (ﬁy’ f* (TZO ﬁx)) - Ma‘pShVCAlg(Y) (ﬁY7 f* ﬁX) :
Passing to the disjoint union over all continuous maps f : X — Y, we conclude that the map

0: Map’TopCAlg((Xv >0 O0x), (Y, Oy)) — MapTopCAlg((Xv Ox), (Y, 0y)).
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If 0x and Oy are local, then 7 O'x is also local (since we have an isomorphism (79 O x) —
o Ox ), and it follows immediately from the definitions that € restricts to a homotopy equiv-
alence

Mapopiee (X, 720 Ox), (Y, Oy)) — Mapropee (X, Ox), (Y, O)).

To complete the proof, it will suffice to show that if (X, &'x) is a nonconnective spectral
scheme, then (X, 750 0x) is a spectral scheme. This assertion can be tested locally on
X: we may therefore assume without loss of generality that (X, &x) = Spec A for some
Ex-ring A. Let B = 7>9A. Then Spec B is a spectral scheme, so the canonical map
(X, 0x) — Spec B factors as a composition (X, Ox) — (X, 7>0 Ox) LA Spec B. The natural
map B — A induces an isomorphism of commutative rings and therefore a homeomorphism
f : |Spec A| — |Spec B|. Let &' denote the structure sheaf of Spec B; we wish to show
that ¢ induces a map ¢’ — f, O0'x which exhibits ¢” as a connective cover of f €x. Since
B is connective, ¢’ is connective (Proposition ; by virtue of (T'1), it will suffice
to show that the map ¢’ — f, Ox induces an equivalence of CAlg®-valued sheaves on
X (after composing pointwise with the truncation functor 7o : CAlg — CAlg®™). Using
Proposition we are reduced to showing that the map 7= 0'(U) — 70 Ox (f~1U) is
an equivalence for every elementary open subset U < |Spec B|. In other words, we must
show that the map 7=9B[a"!] — T=0A4[a"!] is an equivalence for each a € myA, which is
clear. O

Remark 1.1.7.7. The proof of Proposition shows that if (X,0x) is an affine
nonconnective spectral scheme, then the associated spectral scheme (X, 7> Ox) is the
spectrum of a connective Ey-ring. In particular, if A is an Ey-ring and Spec A is a spectral
scheme, then A must be connective.

Definition 1.1.7.8. Let (X, Ox) be a spectral scheme, and let n > 0 be an integer. We
will say that (X, Ox) is n-truncated if the structure sheaf & x is n-truncated (when regarded
as a connective CAlg-valued sheaf on X). We let SpSch<" denote the full subcategory of
SpSch spanned by the n-truncated spectral schemes.

Example 1.1.7.9. Let A be a connective Eo-ring and write Spec A = (X, Ox). For every
elementary open subset U € X, the Eo,-ring € x (U) has the form A[a™!] for some a € mA.
It follows that if A is n-truncated, then & x(U) is n-truncated for each elementary open
subset U € X (and therefore for every open subset U < X by virtue of Proposition ,
so that (X, Ox) is an n-truncated spectral scheme. Conversely, if (X, 0'x) is an n-truncated
spectral scheme, then A ~ 0 x(X) is an n-truncated connective Eq-ring.

Proposition 1.1.7.10. Let (X, Ox) be a spectral scheme. For each n = 0, the truncation
(X, T<n Ox) is also a spectral scheme. Moreover, it has the following universal property: for
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every spectrally ringed space (Y, Oy) for which Oy is n-truncated, the canonical map

0: Ma’pTopCAlg((Yv Oy), (X, 7<n Ox)) — MapTopCAlg((K Oy),(X,0x))

is a homotopy equivalence. Moreover, if (Y, Oy) is locally spectrally ringed, then 0 restricts
to a homotopy equivalence

Ma‘p']—oplcoglg ((Y7 ﬁY)’ (X7 TSTL ﬁX)) - Ma‘p']—oplccglg ((Y7 ﬁY)’ (X7 ﬁX))'

Corollary 1.1.7.11. For each integer n > 0, the inclusion SpSchS"™ < SpSch admits a
right adjoint, given on objects by (X, Ox) — (X, 7<n Ox).

Proof of Proposition[1.1.7.10, Suppose first that (X, O x) and (Y, Oy) are arbitrary spec-
trally ringed space for which 0 'x is connective and Oy is n-truncated. For every continuous
map f:Y — X, we have a commutative diagram

Mapsty e, (x) (T<n Ox, T20f5 Oy) —= Mapgpye,,, () (O x, T>0f5 O)

i |

Ma’pShVCAlg(X) (Tgn ﬁX: f* ﬁy) MapShVCAlg(X) (ﬁX? f* ﬁy) :

Here the vertical maps are homotopy equivalences since &' x and 7<, O x are connective, and
the universal property of 7«, €' x guarantees that the upper horizontal map is a homotopy
equivalence. It follows that the lower horizontal map is a homotopy equivalence. Passing to
a disjoint union over all continuous maps f : Y — X, we conclude that the map

0 : MapTopCAlg((Yv ﬁY)a (X7 T<n ﬁX)) - MapTopCAlg((K ﬁY)a (Xa ﬁX))

is a homotopy equivalence, from which we immediately deduce that @ restricts to a homotopy

equivalence
MapTOPICO[C\lg ((Ya ﬁY)a (Xa T<n ﬁX)) - MapTOplcoglg (<Y7 ﬁY)a (X7 ﬁX))

We now complete the proof by showing that if (X, 0x) is a spectral scheme, then
(X,7<n Ox) is a spectral scheme. The assertion The assertion is local on X. We may
therefore assume without loss of generality that (X, &' x) is affine, hence of the form Spec A
for some E-ring A. It follows from Remark that A is connective. Let B = 1<, A.
Then Spec B is an n-truncated spectral scheme (Example , so the canonical map
Spec B — Spec A ~ (X, Ox) factors as a composition

Spec B LA (X, 7<n Ox) — (X, O0x).
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To complete the proof, it will suffice to show that ¢ is an equivalence. We will prove this by
showing that for every locally spectrally ringed space (Y, Oy) where Oy is connective and
n-truncated, the horizontal map in the diagram

MapTOpl&ilg((K Oy),Spec B) MapTOploc (Y, O0y),(X,7<n Ox))

\ /

Ma:pToploc ((Y ﬁy _X ﬁX

is a homotopy equivalence. Here the right vertical map is a homotopy equivalence by the
first part of the proof, and we can use Proposition [1.1.5.5] to identify the left horizontal map
with the map 1) appearing in the diagram

MapCAlg<B7 m>0(0y (Y))) L MapCAlg(Av m20(0y (Y)))

l w l

Mapcaig (B, Oy (Y)) Mapcaig (4, Oy (Y))

Here the universal property of B ensures that ¢’ is a homotopy equivalence (since 7>g Oy (Y)
is n-truncated), and the vertical maps are homotopy equivalences because A and B are
connective. O

1.1.8 Comparing Spectral Schemes with Schemes

We now consider the relationship between our theory of spectral schemes and the classical
theory of schemes.

Proposition 1.1.8.1. Let (X,0x) and (Y, Oy) be spectrally ringed spaces. Suppose that
Ox is 0-truncated and Oy 1is connective. Then the canonical map

MapTOPCAlg((Xa ﬁX)v (Y7 ﬁY)) - HOHI((X, 0 ﬁX)? (Yv, o ﬁY))

is a homotopy equivalence, where right hand side denotes the (discrete) set of morphisms
from (X, m9 Ox) to (Y, w9 Oy) in the category of ringed spaces.

Proof. Let C denote the category of sheaves of commutative rings on Y. Fix a continuous
map f: X — Y; we wish to show that the map

Mapshy ey, (v) Oy, [« Ox) — Home(mo Oy, fumo Ox).

Since Ox is O-truncated, the presheaf of commutative rings U — 7mo(0'x (U)) is a sheaf, so
that the canonical map mo(Ox (U)) — (m9 Ox)(U) is an isomorphism for every open subset
U < X. For each open subset V' € Y, we the canonical map

70((f« Ox)(V)) = mo(Ox (fT'V)) = (w0 Ox)(f V) = (fa(m0 Ox))(V)
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is an isomorphism. It will therefore suffice to show that the canonical map
0 : MapShVCAlg(y)(ﬁy, o/ ) — Home (mg Oy, mo o)

is a homotopy equivalence, where o = f, Ox. In fact, we will prove more generally
that the map 6, is an equivalence whenever &/ is a O-truncated object of Shvcaig(Y).
Since Oy is connective, we can use (7'1) to replace </ by its connective cover 7o/ and
thereby reduce to the case where o/ is connective. We can then use (72) to identify the
mapping space Mapgpy,,,(v)(Oy, &) with Mapgyy,,, (v)(7<0 Oy, &), which is equivalent
to Homc<7r0 ﬁy,ﬂoﬂ) by (T3). ]

Corollary 1.1.8.2. Let C denote the full subcategory of Topcals spanned by those spectrally
ringed spaces (X, Ox) where Ox is connective and 0-truncated. Then the construction
(X,0x) — (X, 7m0 Ox) induces an equivalence from C to the category of ringed spaces.

Proof. 1t follows from Proposition that the construction (X, 0x) — (X, m Ox) is
fully faithful when restricted to spectrally ringed spaces (X, &' x) for which € x is connective
and O-truncated. To verify the essential surjectivity, it will suffice to show that for every
topological space X and every sheaf of commutative rings & on X, there exists a connective
O-truncated object 0'x € Shvcalg(X) such that &7 is isomorphic to mg @x. This follows
from assertion (7°3). O

Corollary 1.1.8.3. Let C'°¢ denote the full subcategory of Topl&ilg spanned by those locally
spectrally ringed spaces (X, Ox) where Ox is connective and O-truncated. Then the con-
struction (X, Ox) — (X, m Ox) induces an equivalence from C'°° to the ordinary category
of locally ringed spaces.

Let Sch denote the category of schemes.. Passage to the underlying scheme determines a
functor from SpSch™® — Sch, given on objects by (X, 0x) — (X, m Ox).

Proposition 1.1.8.4. The construction (X, 0x) — (X, Ox) induces an equivalence of
0-categories SpSch<’ — Sch.

Proof. Corollary implies that the functor (X, 0x) — (X, 7 Ox) is fully faithful
when restricted to SpSch<". Moreover, it implies that for every scheme (X,0), we can
write 0 = my Ox for some object 0x € Shvcaig(X) which is connective and O-truncated.
To complete the proof, it will suffice to show that (X, 0x) is a spectral scheme. Since
O x is connective, it will suffice to show that (X, &x is a nonconnective spectral scheme.
We will prove this by verifying the hypotheses of Proposition The ringed space
(X,mOx) ~ (X, 0) is a scheme by construction. The sheaves 7, O x either vanish (if
n # 0) or are isomorphic to & (if n = 0), and are therefore quasi-coherent. Finally, the
assumption that &'x is O-truncated immediately implies that x is hypercomplete. O
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Remark 1.1.8.5. We can regard a homotopy inverse to the equivalence SpSch<° — Sch as
supplying a fully faithful functor Sch — SpSch. In other words, we can identify the category
of schemes with a full subcategory of the co-category of spectral schemes: namely, the full
subcategory spanned by the O-truncated spectral schemes.

1.2 Deligne-Mumford Stacks

Let E be an elliptic curve over the field C of complex numbers. Then F is classified
up to isomorphism by its j-invariant j(E) € C. The theory of the j-invariant supplies a
complete classification of elliptic curves over C: two elliptic curves F and E’ are isomorphic
if and only if j(E) = j(E’), and every complex number arises as the j-invariant of some
curve over C.

If we wish to classify families of elliptic curves, the situation becomes more complicated.
Suppose that X is an algebraic variety over C and that F is a family of elliptic curves over
X (in other words, we have a proper smooth morphism 7 : E — X equipped with a section,
whose fibers are elliptic curves). For each point x € X(C), let E, denote the fiber product
Spec C x x E, so that E, is an elliptic curve over C. The construction x — j(E,) is a regular
function on X, which we can view as a map of algebraic varieties jp : X — A'. However,
the function jg does not determine ' up to isomorphism in general.

Example 1.2.0.1. Let E be an elliptic curve over C, let X be an algebraic variety over C
equipped with a fixed-point free involution o, and let X denote the quotient of X by the
action of 0. Then o determines involutions o, and o_ on the product X XspecC F, given
on C-points by the formulae

o+(%,y) = (U(‘%)vy) U—(‘%7y) = (0(‘%)7 _y)'

Let E, denote the quotient of X Xspec c &2 by the action of the involution o, and define F_
similarly. We have obvious projection maps 7+ : E+ — X, each fiber of which is isomorphic
to the original elliptic curve E. It follows that F; and F_ determine the same j-invariant

X > {j(E)} — Al

However, £, and E_ are never isomorphic as elliptic curves over X unless the variety X is
disconnected.

It follows from Example that there can be no fine moduli space of elliptic curves:
that is, there cannot exist a scheme M such that elliptic curves over an arbitrary scheme
X are classified up isomorphism by maps from X into M. In fact, this phenomenon is
ubiquitous: a similar problem arises whenever we wish to classify objects which admit
nontrivial symmetries. To address this issue, Deligne and Mumford introduced a new type
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of algebro-geometric object which now bears their names: the Deligne-Mumford stack. The
collection of Deligne-Mumford stacks can be organized into a 2-category DM, which contains
the usual category of schemes as a full subcategory. Moreover, it also contains more exotic
objects such as the moduli stack of elliptic curves M 1, which has the property that for
any scheme X, the category Hompy (X, M 1) can be identified with the category of elliptic
curves 7 : ' — X (with morphisms given by isomorphisms of elliptic curves).

Our goal in this section is to give a brief overview of the classical theory of Deligne-
Mumford stacks. In we will explain how the ideas presented here can be generalized to
the setting of spectral algebraic geometry and thereby obtain a notion of spectral Deligne-
Mumford stack (Definition , which will play a central role throughout this book.

Remark 1.2.0.2. For a detailed introduction to the theory of algebraic stacks, we refer the
reader to [129].

Warning 1.2.0.3. Our presentation of the theory of Deligne-Mumford stacks differs from
the presentation given in [129] (and most others in the literature) in two major respects:

(i) We will define a Deligne-Mumford stack to be a ringed topos (X, O x) satisfying a
“local affineness” condition which parallels the usual definition of a scheme (Definition
. The equivalence of this perspective with the “functor-of-points” approach will
be established at the end of this section (Theorem [1.2.5.9).

(77) We do not include any separatedness hypotheses in our definition of Deligne-Mumford
stack (so that we allow, for example, classifying stacks for infinite discrete groups).

Roughly speaking, the definition of a Deligne-Mumford stacks is obtained by modifying
the definition of a scheme (X, Ox) in two ways:

(a) In place of the topological space X, we allow an arbitrary Grothendieck topos X.

(b) In place of the requirement that (X, &x) be locally isomorphic to the spectrum of a
commutative ring, we require that (X, & x) be locally equivalent to Spét A, where A
is an Eq-ring and Spét A denotes its spectrum with respect to the étale topology (see

Construction [1.2.3.3)).
1.2.1 Local Rings in a Topos

We begin by reviewing the theory of locally ringed topoi.

Definition 1.2.1.1. A ringed topos consists of a pair (X, Oy), where X is a Grothendieck
topos and Oy is a commutative ring object of X'. Given a pair of ringed topoi (X, & y) and
(Y, Oy), we define a category Mapi7op,,,, o (X,0x), (Y, 0y)) as follows:

g
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e The objects of Homy7op, o (X,0x),(Y,0y)) are pairs (fs,a), where f, : X = Y
is a geometric morphism of topoi (in other words, fy is a functor which admits a
left adjoint f* which preserves finite limits) and o : 0y — fi Ox is a morphism of
commutative ring objects of ).

e A morphism from (f,,«) to (f;,a’) in Homy7op, o ((X,0x),(Y,0y)) is a natural
transformation of functors 3 : f; — fi for which the diagram

/
f* ﬁ/\.’
comimutes.

We will regard the collection of all ringed topoi as a (strict) 2-category 17 op Alg?> With the
categories of morphisms defined above and the evident composition law.

Example 1.2.1.2. Let X be a topological space and let &x be a sheaf of commutative
rings on X. Then we can regard &'x as a commutative ring object of the topos Shvget(X)
of set-valued sheaves on X. The pair (Shvset(X), Ox) is a ringed topos.

Notation 1.2.1.3. Let (X, 0x) be a ringed topos, and let U € X be an object. We let
O x |y denote the product U x €y, which we view as a commutative ring object of the

topos X' ;. Then (X 7, Ox |v) is another ringed topos, equipped with an evident morphism
(X, Oxv) — (X,0x%).

We now review what it means for a commutative ring object of a topos X to be local.
Let R be a commutative ring. For every element r € R, we let (r) denote the principal
ideal generated by r. If r is not a unit, then (r) # R, so (by Zorn’s lemma) (r) is contained
in a maximal ideal m < R. We say that R is local if it contains a unique maximal ideal
mp. In this case, the above reasoning shows that mp can be described as the collection of
non-invertible elements of R. The ring R is local if and only if the collection of non-units
R — R* forms an ideal in R. Since R — R* is clearly closed under multiplication by elements
of R, this is equivalent to the requirement that R — R* is an additive subgroup of R. That
is, R is local if and only if the following pair of conditions is satisfied:

(a) The element 0 belongs to R— R*. In other words, 0 is not a unit in R: this is equivalent
to the requirement that 0 # 1 in R.

(b) If r,” € R— R*, then r + 1’ € R— R*. Equivalently, if » + 7’ is a unit, then either r or

r’ is a unit. This is equivalent to the following apparently weaker condition: if s € R,

then either s or 1 — s is a unit in R (to see this, take s = 747> S0 that s is invertible if

and only if r is invertible and 1 — s ~ is invertible if and only if 7/ is invertible).

r—4r!
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If R and R’ are local commutative rings, then we say that a ring homomorphism
f: R — R'is local if it carries mpg into mp/: that is, if an element x € R is invertible if and
only if its image f(z) € R’ is invertible.

All of these notions admit generalizations to the setting of commutative ring objects of
an arbitrary Grothendieck topos:

Definition 1.2.1.4. Let X be a topos with final object 1, and let & be a commutative ring
object of X. Let & denote the group object of X given by the units of &, so that we have
a pullback diagram

O —>Ox 0O
11— ~ ¢

where m denotes the multiplication on &,
We will say that & is local if the following conditions are satisfied:

(a) The sheaf Oy is locally nontrivial. That is, if 0 : 1 — ¢ denotes the zero section of &,
then the fiber product 1 x4 ¢ is an initial object of X.

(b) Let e: 0" < € denote the inclusion map. Then the maps e and 1 — e determine an
effective epimorphism 0> 110> — € in the topos X.

If o : © — 0’ is a map between commutative ring objects of X, then we say that « is

local if the diagram
ﬁx ﬁlx

|

O ——0'

is a pullback square in X.
We let 1Top1é)/‘;lg@ denote the subcategory of 17 op Alg? whose objects are ringed topoi
(X, 0 x) where Oy is local, and whose morphisms maps (fs,«) : (X,0x) — (Y, Oy) for
loc

which « classifies a local map f* 0y — 0 x. We will refer to 1Topg Alg® 35 the 2-category
of locally ringed topoi.

Example 1.2.1.5. Let (X,0x) be a ringed space. Then Ox is local (in the sense of
Definition if and only if (X, Ox) is a locally ringed space (in the sense of Definition
: that is, if and only if each stalk Ox , is a local ring. Moreover, if (X, 0x) and
(Y, Oy) are locally ringed spaces, then a map of ringed spaces (X,0x) — (Y,0y) is a
map of locally ringed spaces (in the sense of Definition if and only if the induced
map of ringed topoi (Shvset(X), Ox) — (Shvset(Y), Oy ) is local (in the sense of Definition

1.2.1.4).
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Remark 1.2.1.6. Let & be a commutative ring object of a topos X, and let U =1 x5 0
be the fiber product appearing in condition (a) of Definition Then U is a subobject
of the final object 1 € X and is maximal among those subobjects V' < 1 for which the
restriction @ |y is trivial. If f, : ) — X is a geometric morphism of topoi, then:

1) The pullback f* & is trivial (as a commutative ring object of ))) if and only if the
J Yy
geometric morphism f, factors through the open immersion of topoi X,y — X
determined by U.

(i7) The pullback f* & satisfies condition (a) of Definition (1.2.1.4]if and only if the geometric
morphism f, factors through the closed subtopos of X complementary to U.

Remark 1.2.1.7. Let X be a topos and suppose we are given a commutative diagram
ﬁ,
% X
¥

of commutative ring objects of X'. Then:

ﬁ ﬁ”

(a) If a and B are local, then + is local.
(b) If B8 and v are local, then « is local.
(¢) If @ and ~y are local and « is an effective epimorphism, then 3 is local.

Proposition 1.2.1.8. Let X be a topos and let o : O — O’ be a morphism between
commutative Ting objects of X. Then:

(1) If 0" is local and « is local, then O is local.

(2) If O is local and « is an effective epimorphism, then the following conditions are
equivalent:

(a) The commutative ring object &' is local.
b) The commutative ring object O’ satisfies condition (a) of Definition |1.2.1.4}

(
(¢) The morphism « is local.

Proof. Consider first the commutative diagram o :

o*No* —= 0" uo’™

b

o = !
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where the vertical maps are defined as condition (b) of Definition If « is local, then
o is a pullback square. If, in addition, the commutative ring object ¢’ is local, then v’ is an
effective epimorphism. It follows that v is also an effective epimorphism. Since 1 x 4 0% is
an initial object of X, the existence of a morphism

1xp 0 > 1x450%

shows that 1 x s ¢ is also initial in X'. This completest the proof of (1).

To prove (2), assume that & is local and that « is an effective epimorphism. The
implication (a) = (b) is trivial, and the implication (b) = (a) follows by inspecting the
commutative diagram o (if v and « are effective epimorphisms, it follows that v’ is an
effective epmorphism as well). We next prove that (¢) = (b). Assume that « is local. Then
the induced map

B:lxp 0% —>1x450"

is a pullback of o, and therefore an effective epimorphism. Our assumption that & is local
guarantees that the domain of § is an initial object of X'. It follows that the codomain of £
is also an initial object of X, so that assertion (b) is satisfied.

We now complete the proof by showing that (b) implies (¢). Fix an object X € X and a
morphism f : X — ¢, which we regard as an element of the commutative ring Homy (X, ).
Let ay : Homy (X, &) — Homy (X, 0') be the homomorphism of commutative rings deter-
mined by a. We wish to show that if a.x (f) is invertible, then f is invertible. Let g : X — &’
be a multiplicative inverse of ax(f) in the commutative ring Homy (X, &’). Since « is an
effective epimorphism, we can (after passing to a covering of X) assume without loss of
generality that § = ax(g) for some g : X — &. Since 0 is local, we can (after passing to a
further covering of X) assume that either fg or 1 — fg is invertible in the commutative ring
Homy (X, ). In the first case, we conclude that f is invertible as desired. In the second
case, it follows that ax (1 — fg) = 0 is invertible in the commutative ring Homx (X, &”), so
that condition (b) guarantees that X is an initial object of X. In this case, Homy (X, 0) is
the zero ring (so that f is tautologically invertible). O

1.2.2 Strictly Henselian Rings in a Topos

To develop the theory of Deligne-Mumford stacks, we will need to work with ringed
topoi satisfying stronger locality requirements, related to the étale topology rather than the
Zariski topology.

Notation 1.2.2.1. Let X be a topos, let Oy be a commutative ring object of X, and
let CAlgO denote the category of commutative rings. For every commutative ring R, let
Solr(0 x) denote an object of X having the following universal property: for every object
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U € X, there is a canonical bijection
Homx (U, Solg(Ox)) ~ Homgy,o (R, Homx (U, Ox)).

Remark 1.2.2.2. Let f : (X,0x) — (Y, Cy) be a map of ringed topoi and let R be a
commutative ring. Then we have a canonical map f* Solr(€y) — Solg(Ox) in the topos
X, which is an isomorphism if Oy ~ f* 0y and R is finitely generated as a commutative

ring.

Example 1.2.2.3. Let (X, Oy) be as in Notation [1.2.2.1|and let R be the zero ring. Then
Solr(COx) can be identified with the fiber product U = 1 x4, €% in Remark [1.2.1.6] In
particular, if &y is local, then Solr(€x) is an initial object of X.

Example 1.2.2.4. Let (X, Oy) be as in Notation and let R be a commutative ring
which factors as a Cartesian product Ry x R;. The projection maps Ry «— R — R; induce
morphisms

SOIRO(ﬁ)(> — SOIR(ﬁx) <« SOlRl(ﬁx).

Unwinding the definitions, we have

SOlRi(ﬁX) X Solr(Ox) SOle(ﬁX) =~ SOIRi@RRj(ﬁX)

SOIRi(ﬁx) if 4 :j
Solg(Ox)  ifi#3j.

In particular, if €y satisfies condition (a) of Definition [1.2.1.4] then the Solg,(0x) are
disjoint subobjects of Solr(f x), so we have a monomorphism

Solg, (O x) U Solg, (Ox) — Solr(Ox).

If O x satisfies condition (b) of Definition [1.2.1.4] then this map is an epimorphism. Conse-
quently, if &y is local, then the construction R +— Solr(Ox) carries finite products in the
category of commutative rings to finite coproducts in the topos X.

Definition 1.2.2.5. Let X be a topos and let &y be a commutative ring object of X. We
will say that &'y is strictly Henselian if the following condition is satisfied:

(%) For every commutative ring R and every finite collection of étale maps R — R, which
induce a faithfully flat map R — [ ], Ra, the induced map

HSOlRa(ﬁX) i SO]R(ﬁx)

is an effective epimorphism.
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We let 17‘0p§5§i‘g v denote the full subcategory of lToplé’Zlg@ spanned by those ringed topoi

(X, O x) where Oy is strictly Henselian.
Remark 1.2.2.6. In the situation of Definition [1.2.2.5] it suffices to verify condition (%) in

the case where the commutative ring R is finitely generated (this follows immediately from
the structure theory of étale ring homomorphisms; see Proposition [B.1.1.1)).

Remark 1.2.2.7. Let f, : X — ) be a geometric morphism of topoi, and let &y be a
commutative ring object of V. If &y is strictly Henselian, then f* &'y is a strictly Henselian
commutative ring object of X. This follows immediately from Remarks [1.2.2.2] and [1.2.2.6]

Example 1.2.2.8. Let X = Set be the category of sets, and let &'y be a commutative
ring object of X, which we can identify with a commutative ring A. For every finitely
generated commutative ring R, we can identify Solr(&0 y) with the set Hom(R, A) of ring
homomorphisms from R to A. Applying Corollary we deduce that Oy is strictly
Henselian (in the sense of Definition if and only if the commutative ring A is strictly
Henselian (in the sense of Definition [B.3.5.1]).

Remark 1.2.2.9. Let X be a topos, and let &'y be a commutative ring object of X. If Oy
is strictly Henselian, then &'y is local. Conversely, if &'y is local, then (by virtue of Example
it is strictly Henselian if and only if it satisfies the following a priori weaker version
of condition (*):

(") For every commutative ring R and every faithfully flat étale map R — R’, the induced
map Solg/ (O x) — Solg(Ox) is an effective epimorphism in the topos X.

Remark 1.2.2.10. Let X be a topos, and suppose that X has enough points. If Oy is
a commutative ring object of X', then Oy is strictly Henselian if and only if, for each
point x* : X — Set of X, the pullback x* &y is a strictly Henselian commutative ring. In
particular, if X is a topological space and Ox is a sheaf of commutative rings on X, then
Ox is strictly Henselian (as a commutative ring object of the topos Shvse (X)) if and only
if each stalk O'x , is a strictly Henselian ring.

Example 1.2.2.11. Let (X, Ox) be a complex analytic space. Then &'x is strictly Henselian
(when viewed as a commutative ring object of the topos Shvget(X)).

Proposition 1.2.2.12. Let f : (X,0x) — (), Oy) be a morphism of locally ringed topoi
and let v: A — B be an étale morphism of commutative rings. If Oy is strictly Henselian

and Oy 1is local, then the induced diagram o :

f* SOIB(ﬁy) —_— SOIB(ﬁx)

l |

f* SOIA(ﬁy) I SOIA(ﬁX)
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1s a pullback square in the topos X .
Proof. Using Proposition we can choose a pushout diagram

A04>A

By——=B

in the category of commutative rings, where vy is étale and Ay is finitely generated (so that
By is also finitely generated). In this case, o fits into a commutative diagram

f*Solp(0y) — Solp(6x) — Solp, (O x)

i | |

f*Sola(Oy) — Sola(Ox) — Sola, (O x)

where the square on the right is a pullback. It will therefore suffice to show that the outer
rectangle in the diagram

f*Solp(0y) — f* Solp, (Oy) — Solp, (O x)

| | |

f*Solu(Oy) — f*Soly, (Oy) — Sola,(Ox)

is a pullback square. Since the square on the left is a pullback, we are reduced to showing
that the square on the right is a pullback. Using Remark [I.2.2.2] we can rewrite this diagram
as

SO]BO (f* ﬁy) — SOIBO(ﬁx)

| |

SO]AO (f* ﬁy) _— SOIAO(ﬁx).

Replacing v by vg and Oy by f* 0y, we are reduced to proving Proposition in the
special case where X =) (and f, is the identity map).

For each point = € | Spec A|, let k() denote the residue field of A at = and let d(z) =
dim,, () (k(7) ®a B). Note that there exists an integer n > 0 such that d(z) < n for each
x € | Spec A|. Our proof will proceed by induction on n. Note that if n = 0, then B ~ A[0!]
and the desired result follows from our assumption that f is local. We now treat the case
n = 0. The ring homomorphism v induces a map of Zariski spectra u : | Spec B| — | Spec A|.
Let U < | Spec A| be the image of u, so that U is quasi-compact and open (Corollary [B.2.2.5).
Write U = (J;<;<,, | Spec A[1]| for some elements ay,...,a, € A. Since U contains the

%



100 CHAPTER 1. SCHEMES AND DELIGNE-MUMFORD STACKS

image of | Spec B|, the elements v(a;) generate the unit ideal in B. Since Oy is local, it
follows that the map

[ Solspa)-1(0x) = Solp(Ox)

1<i<n
is an effective epimorphism in X. It will therefore suffice to show that each of the induced
maps

0; : Solg(Oy) X sol5(0x SOLBf(a;)-11(Ox) = S0la(Oy) Xso1,(0x) SOLB[f(a;)-11(O %)

is an isomorphism. We have a commutative diagram

Solg[p(a;)-11(0y) Solp(0y) X solz(6x) SOlB[f(a)-11(Ox)

0] lei

SoLyge 11 (0y) Xs01, 1 (0x) SOLBLs(an)1](€x) ——> S0la(0y) Xso14(0x) SOlp(f(a)-11 (O ),

where the horizontal maps are isomorphisms by virtue of our assumption that the map
Oy — Oy islocal. It will therefore suffice to show that each of the maps 6} is an isomorphism.
Replacing A by A[a; '] and B by B[f(a;)™!], we are reduced to the case where the map
u : | Spec B| — | Spec A] is surjective. In this case, B is étale and faithfully flat over A. Since
Oy is strictly Henselian, the map Solg(€y) — Sola(Oy) is an effective epimorphism. We
are therefore reduced to proving that the pullback map

Solp(Oy) X sol,(0y) Solp(Oy) % Solp(0y) X Solx(6y) (S0lA(Oy) Xso1,(6) SOlB(Ox))
~  Solp(Oy) Xsolp(0x) (SOIB(Ox) X s01,4(0x) SOlB(Ox))

is an isomorphism. We may therefore replace v by the induced map B — B ®4 B, and
thereby reduce to proving Proposition [1.2.2.12] in the special case where v admits a left
inverse B — A. Set C = B®y B, so that ¢ can be identified with the canonical map

Solg(Oy) — Solp(Oy) Xsoip(0) Solc(Ox).

Our assumption that v is étale guarantees that C factors as a direct product B x C’ in the
category CAlgg. Since both 0y and Oy is local, we can factor 1) as a direct product of
maps

wo : SO]B(ﬁy) — SOIB(ﬁy) XSolg(ﬁX) SOIB(ﬁ)()
Y1 : Soler(Oy) — Solp(Oy) Xso15(0) Soler(Ox).

Here the map g is obviously an equivalence, and the map 17 is an equivalence by virtue of
our inductive hypothesis (note that dim,,)(x(z) ®p C") = dim, ;) (k(z) ®p C) — 1 < n for
each z € | Spec B|). O
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Remark 1.2.2.13. In the statement of Proposition we do not need the full strength
of our assumption that &y is local: for example, if X has enough points, it is enough to
assume that each stalk @y, has the property that the Zariski spectrum |Spec Oy ;| is
connected.

Proposition 1.2.2.14. Let X be a topos and let o : 0 — 0" be an effective epimorphism
between local commutative ring objects of X. If O is strictly Henselian, then O’ is strictly
Henselian.

Proof. By virtue of Remark it will suffice to show that for every faithfully flat étale
morphism ¢ : A — B of commutative rings, the induced map p : Solg(0") — Sols(£") is an
effective epimorphism in X. Using the structure theory of étale morphisms (see Proposition

B.1.1.3) we can choose a pushout diagram of commutative rings

A0*>A

.

By——B

where ¢q is étale and Ay ~ Z[z1,...,x,] is a polynomial ring over Z. Let U < |Spec Ay
denote the (open) image of the map |Spec By| — |Spec Ag| and choose elements {f; €
Ao}i<icm such that U = (J;<;<,, | Spec Ao[f; ']|. Then the images of f; in A generate the
unit ideal. Since ¢ is local, the bottom horizontal map in the diagram

[hicicm Solpgs-1 (0') — Solp(0")

3

i p

[i<i<m SolA[fiq] (0") —— Sol4(0")

is an effective epimorphism. Consequently, to show that p is an effective epimorphism, it will
suffice to show that each of the induced maps SOIB[f‘—I](ﬁ/) — SolA[ff1](ﬁ') is an effective
epimorphism. Using the existence of a pullback square

7

| |

—1
0 fl

we can replace A by Ag[f; '] (note that the map Ag[f; 1] — Bo[f; '] is faithfully flat because
| Spec Ag[f; ]| is contained in UT).
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Consider the diagram

Solp(6) —L= Sol,(60) —= Sola, (0)

l | ]

Solp(0") —2= Solx(0") — Solx, (6).

Since Ay is isomorphic to the polynomial ring Z[z1,. .., x,], we can identify v with the map
a1 0" — 0. Our assumption that « is an effective epimorphism now guarantees that v
is an effetive epimorphism. Since « is local, the right square in this diagram is a pullback,
so that u is also an effective epimorphism. Our assumption that & is strictly Henselian
guarantees that p is an effective epimorphism. It now follows by inspection of the above
diagram that p is an effective epimorphism as desired. O

1.2.3 The Etale Spectrum of a Commutative Ring

Let R be a commutative ring and let Spec R = (X, Ox) be the associated affine scheme.
Then we can regard Ox as a commutative ring object of the topos Shvget(X). This
commutative ring object is local, but is usually not strictly Henselian. To remedy this, one
can replace the Zariski spectrum Spec R by a slightly more sophisticated object, which we
will refer to as the étale spectrum of R.

Definition 1.2.3.1 (The Etale Topos of a Commutative Ring). Let R be a commutative
ring. We let CAlgg denote the category of commutative R-algebras, and CAlg%t the full
subcategory of CAlgp spanned by the étale R-algebras. The (opposite of) the co-category
CAlgé}t@t is equipped with a Grothendieck topology, where a family of maps {A — A, } generates
a covering sieve if and only if there exists some finite collection of indices ay, ao, ..., ay,
such that the map A — [, ., Aa, is faithfully flat (this is an immediate consequence of
Proposition . We will refer to this Grothendieck topology as the étale topology.

We let Shvse (CAlg®t) denote the full subcategory of Fun(CAlg%, Set) spanned by those
functors which are sheaves with respect to the étale topology. We will refer to Shvse; (CAlg$)
as the étale topos of R.

Proposition 1.2.3.2. Let R be a commutative ring, and let O : CAlglé;ét — Set be the
forgetful functor (which assigns to each étale R-algebra A its underlying set). Then O is a
sheaf for the étale topology, and can therefore be identified with a commutative ring object of
the topos Shvset(CAlgf%). Moreover, O is strictly Henselian.

Proof. The assertion that & is an étale sheaf is equivalent to the assertion that for every
étale R-algebra R’ and every faithfully flat étale map R’ — R”, the diagram

Rl s R// :)) R// ®R/ R//
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is an equalizer in the category of sets (see Proposition . We now show that & is
strictly Henselian. Suppose we are given a commutative ring A and a faithfully flat étale map
A — [T <i<n Ai- We wish to show that the induced map 0 : [ [,,,, Sola, (&) — Sola(0)
is an epimorphism in the topos Sthet(CAlg%). To prove this, suppose we are given an
étale R-algebra R’ and a point n € Sols(0)(R’), which we can identify with an algebra
homomorphism A — R’. For 1 <i < n, let R, = A; ®4 R, and let 7; denote the image
of n in Sola(O)(R;). Then [, _,., R; is faithfully flat and étale over R, and is therefore
generates a covering sieve on the object R’ € (CAIg%)Op. Moreover, each of the points 7;
can be lifted to a point 7; € Soly,(0)(R}), so that 0 is an epimorphism as desired. O

Definition 1.2.3.3. Let R be a commutative ring, and let & be as in Proposition [1.2.3.2
We will denote the ringed topos (Shvse(CAlgS), @) by Spét R, and refer to it as the étale
spectrum of the commutative ring R.

If (X, O x) is a ringed topos, we let I'(X'; & ) denote the commutative ring Homy (1, O x),
where 1 denotes a final object of X'. We will refer to the construction (X, 0x) — I'(X; O x)
as the global sections functor..

Proposition 1.2.3.4. Let (X, 0x) be a ringed topos for which Oy is strictly Henselian,
and let R be a commutative ring. Then the global sections functor induces an equivalence of
categories

Map, 7opztien (X, Ox),Spét R) — Homy .0 (R, T(X; Ox))

(where the set on the right hand side is interpreted as a discrete category, having only identity
morphisms).

Corollary 1.2.3.5. The global sections functor

1Topglen, — (CAlg?)P

(X, 0x) > T'(X;0x)
admits a right adjoint, given on objects by R — Spét R.

Remark 1.2.3.6. If R is a commutative ring and Spét R = (X, O x), then the unit map
R — T'(X;0x) is an equivalence. It follows that the construction R — Spét R determines

a fully faithful functor from (the opposite of) the category of commutative rings to the

sHen

2-category 17'opC Alg®

In particular, we can regard the construction R — Spét R as a contravariant functor

sHen ——

from the category of commutative rings to the 2-category 1’7’0pC Alg® S 1T opc Alg®-
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Remark 1.2.3.7. Let R be a commutative ring, and let (X, 0 x) denote the étale spectrum
Spét R. For every étale R-algebra A, let h? : CAlgj’?{@t — Set denote the functor corepresented
by A, which we regard as an object of the topos X. Then there is a canonical equivalence of
ringed topoi

QXVhA,éfx’hA)iz Spét A

This can be deduced either from the universal properties of Spét R and Spét A (Proposition
1.2.3.4)), or directly from the construction of the étale spectra.

Proof of Proposition [1.2.53.]]. Fix a ring homomorphism ¢ : R — I'(X’; Oy ), and let C denote
the fiber product

MaplTopiif’;;@ ((X,0x),Spét R) X fom RI(X:0)) 19}

CA@U(
We will show that the category C is trivial (that is, it is equivalent to the category having a
single object and a single morphism).

Write Spét R = (), 0y). Let 1x and 1y denote final objects of the topoi X and Y,
respectively. For every étale R-algebra A, let hd e ) < Fun(CAlg%, Set) denote the functor
corepresented by A, so that h? fits into a pullback diagram o 4:

hA ——= Solx(Oy)

.

1y — SO]R(ﬁy).
We also define an object X 4 € X so that we have a pullback diagram 74 :

XA *>301A(ﬁ/\/)

]

1X HSOIR(ﬁx),

where the bottom horizontal map is determined by the ring homomorphism ¢ : R —
Homy(1ly, Ox).

Let f = (f«, ) be a map of ringed topoi from (X, 0x) to (Y, Oy) which induces the
ring homomorphism ¢ upon passage to global sections. For every étale R-algebra A, the map
a determines a natural transformation of diagrams f*o4 — 74, which gives in particular
amap vya: f*h* — Xa. If (fs,a) belongs to C, then the maps vy 4 are isomorphisms
(Proposition [1.2.2.12). In particular, if we are given two objects (f«, ) and (f},’) in C,
then for each A € CAlg®t there is a unique isomorphism 64 : f*h* ~ f*h4 for which the
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diagram
0a

f* hA f/* hA

% VV

X4

commutes. In particular, for each X € X', we have bijections

(fiX)(4) ~ Homy(n", fiX)
o HomX(f’*hA X)
~ Homy(f*n?, X)
~ Homy(h?, f. X)

(
~ ([ X)(

These bijections depend functorially on X and A, and therefore supply an isomorphism ~

A).

between the functors f} and f,. We claim that v is the unique morphism from (fi, ) to
(fr,') in the category C. Uniqueness is clear from the definition. To prove that v is a
morphism in C, let us abuse notation by identifying v with the adjoint natural transformation
f* — f*; we must show that the diagram

fr oy —"2 7 0y

N

Ox

commutes. Writing &y as a colimit of representable functors, we are reduced to proving
that for each map h — €y in the topos ) (classified by an element a € A), the diagram

f*hA 'Y(hA) f/*hA
[*0y 0y

N

commutes. This is because the vertical compositions can be identified (using the maps v 4
and vy 4) with the composite map X4 < Sola(Ox) > Ox.

It follows from the above argument that for every pair of objects C,C’ € C, the set
Home (C, C") contains a unique element (which is also an isomorphism in C). To complete
the proof, it will suffice to show that the category C is nonempty. To this end, we define
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a functor f, : X — Fun(CAlg%,Set) by the formula f,.(X)(A) = Homx (X4, X). The
assumption that &y is strictly Henselian implies that f, factors through the full subcategory
Yy c Fun(CAlg%,Set). We claim that f, is a geometric morphism of topoi: that is,
it admits a left adjoint f* which commutes with finite limits. The existence of a left
adjoint f* follows from the adjoint functor theorem (since f, is an accessible functor which
preserves small limits). By construction, we have a canonical isomorphism f*hA ~ X4
for each A € CAIg%. To prove that f* preserves finite limits, it suffices to show that the
construction A — f*h4 ~ X, carries finite colimits in CAlg$ to finite limits in X (see
Lemma HTT.6.4.5.6 ), which follows immediately from the construction.

Unwinding the definitions, we obtain for each A € CAlg‘l.é%t a canonical ring homomorphism

A — Homy (Soly(Ox),Ox) — Homy (X4, Ox) = (f« Ox)(A).

These ring homomorphisms depend functorially on R, and therefore give rise to a homo-
morphism « : Oy — f, Ox of commutative ring objects of J. We may therefore regard
(f«, ) as a map of ringed topoi from (X, O x) to Spét R. It is clear from the construction
that the induced ring homomorphism R ~ I'(}; 0y) — I'(X; O x) coincides with ¢. To
complete the proof that (f,«) is an object of the category C, it will suffice to show that the
underlying map f* 0y — Oy is local. To prove this, fix an object X € X and an element
¢ of the commutative ring Homy (X, f* 0y); we wish to show that if the image of ¢ in
Homy (X, Oy) is invertible, then ( is invertible. This assertion can be tested locally on X:
we may therefore assume that the map ¢ factors as a composition

X8 Xa =t B8 g oy,

for some étale R-algebra A. In this case, we can identify (; with an element a € A and
(o with a map of R-algebras ¢x : A — Homy (X, Oy), in which case the image of { in
Homuy (X, O x) can be identified with ¢x (7). If this element of Homy (X, O x) is invertible,
then ¢x extends to an R-algebra homomorphism ¢y : A[a™!] — Homy (X, Ox). In this
case, (o factors through the subobject X 4j,-1) & X4. We are therefore reduced to proving

*
that the composite map Xyp,-1] — Xa ~ f*hA EMSN f* 0y determines an invertible
element 7 of the commutative ring

Homy (X aa-1), f* Oy) ~ Homy (W1, £, f* 0y) ~ (fu* Oy)(Ala™")).
This is clear, since T is the image of r under the composite map

A — Ala™"] = 0y(Ala™"]) — (fuf* Oy)(Ala™')).
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1.2.4 Deligne-Mumford Stacks as Ringed Topoi

By definition, a scheme is a ringed space (X, O x) which is locally isomorphic to the
Zariski spectrum Spec R of a commutative ring R. We now consider an analogous definition,
replacing the Zariski spectrum Spec R by the étale spectrum Spét R of Definition [1.2.3.3

Definition 1.2.4.1. Let (X, O x) be a ringed topos. We will say that (X, Ox) is a Deligne-
Mumford stack if there exists a collection of objects U, € X satisfying the following conditions:

(1) The objects U, cover X. That is, the natural map 11,U, — 1 is an epimorphism in X,
where 1 denotes the final object of X.

2) For each index «, the ringed topos (X, ,Ox |y, ) is equivalent (in the 2-category
/Ua o
1T op AlgO) to a ringed topos of the form Spét R, where R, is a commutative ring.

Note that conditions (1) and (2) imply that &y is strictly Henselian. We let DM denote the

sHen

CAlg® spanned by those ringed topoi (X, 0 y) which are Deligne-

full subcategory of 17 op
Mumford stacks.

Definition 1.2.4.2. Let (X, O x) be a Deligne-Mumford stack. We will say that (X, 0y) is
affine if it is equivalent to Spét R for some commutative ring R. We will say that an object
U € X is affine if the ringed topos (X 7, Ox |v) is affine.

Remark 1.2.4.3. Let (X, Ox) be a Deligne-Mumford stack. Then X is generated by affine
objects. That is, for every object X € X, there exists an effective epimorphism 11U, — X,
where each U, is affine. This assertion can be tested locally on X': we may therefore assume
without loss of generality that (X, Oy) is affine, in which case the desired result follows

from Remark [.2.3.71

Remark 1.2.4.4. Let (X, 0x) be a ringed topos. Then (X, Oy) is a Deligne-Mumford
stack if and only if, for each object X € X, there exists an effective epimorphism 11U, — X
where each of the ringed topoi (X y,,Ox |v,) is an affine Deligne-Mumford stack. The
“only if” direction follows immediately from the definition, and the “if” direction follows from

Remark 1.2.4.3]

Remark 1.2.4.5. Let (X, Ox) be a ringed topos. The condition that (X, &'x) be a Deligne-
Mumford stack can be tested locally on X'. More precisely:

(i) If (X, Ox) is a Deligne-Mumford stack, then any ringed topos of the form (X 7, Ox |v/)
is a Deligne-Mumford stack.

(74) If the topos X admits a covering by objects U, such that each of the ringed topoi
(X,u.,Ox |u,) is a Deligne-Mumford stack, then (X', Ox) is a Deligne-Mumford stack.
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Both of these assertions follow immediately from the characterization of Deligne-Mumford
stacks supplied by Remark

Proposition 1.2.4.6. Let X = (X, Ox) be a Deligne-Mumford stack. Then the collection
of affine objects of X is closed under fiber products.

Proof. For each object U € X, let Xy denote the Deligne-Mumford stack (X 7, Ox |v). The
functor R — Spét R determines a fully faithful embedding (CAng)Op — DM which preserves
small limits (since it is a right adjoint), so that its essential image is closed under small
limits. The desired result now follows from the observation that the construction U +— Xy,
determines a functor from X to DM which preserves fiber products. O

Proposition 1.2.4.7. Let (X, O x) and (Y, Oy) be ringed topoi. If Oy is strictly Henselian
and (Y, Oy) is a Deligne-Mumford stack, then the category MapTOpchnv (X,0x),(Y,0y))
CAlg

s a groupoid.

Proof. Let (fy, ) and (fL, ) be maps from (X, Oy) to (Y, Oy) in 17'opsclfgé@, and let v be a
morphism from (fx, @) to (fi,a’). Let us identify v with a natural transformation from f* to
f"*. We wish to prove that v is an isomorphism. Fix a covering of Y by objects {Us}ger such
that each (Y, Oy lu,) is equivalent to Spét Rg for some commutative ring Rg. Then the
objects f™*Ug cover the topos X. The assertion that + is an isomorphism can be tested locally
on X; we may therefore replace (X, Ox) by ringed topoi of the form (Xp«y,, Ox [ f+u,)
and thereby reduce to the case where there exists a map w: 1y — f*Ug in the topos X, for
some index (. In this case, the map u (and the induced map v’ : 1x — f*Ug) determine
factorizations of f and f’ through the ringed topos () JUs: Oy lu;). We may therefore reduce
to the case where (), 0y) ~ Spét Rg is affine, in which case the desired result follows from

Proposition |1.2.3.4 O

Corollary 1.2.4.8. The 2-category DM of Deligne-Mumford stacks is a (2,1)-category. In
other words, every 2-morphism in DM 1is invertible.

Remark 1.2.4.9. Let C denote the simplicial category whose objects are Deligne-Mumford
stacks (X, O x), with morphism spaces given by

MapC((Xa ﬁX)? (y7 ﬁy)) = N(MapDM((Xa ﬁX)a (y? ﬁ)’)))

It follows from Corollary that C is a fibrant simplicial category, so that its homotopy
coherent nerve N(C) is an co-category. We will denote this co-category by N(DM), and refer
to it as the oo-category of Deligne-Mumford stacks.
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1.2.5 Deligne-Mumford Stacks as Functors

We now compare Definition [I.2.4.T] with the more traditional “functor-of-points” approach
to the theory of Deligne-Mumford stacks.

Notation 1.2.5.1. Let 7<; S denote the co-category of 1-truncated spaces (in other words,

the co-category of groupoids). Let X = (X, O x) be a Deligne-Mumford stack. We define

a functor hy : CAlg” — 7<; S by the formula hyx(R) = MaplTOpsHeno (Spét R, X). We will
CAlg

refer to hy as the functor of points of X.

Proposition 1.2.5.2. The construction X — hyx determines a fully faithful embedding of
w0-categories N(DM) — Fun(CAlg”, 7«1 S).

Proof of Proposition[1.2.5.9. Let X and Y be Deligne-Mumford stacks. Write X = (X, Ox).
For each object U € X, set Xy = (X7, Ox |v) and consider the canonical map

Ou : Mapy ) Xv,Y) — NIapFun(CALg(?77-<1 5)(hXU7 hy).

Let us say that an object U € X is good if 0y is a homotopy equivalence. We wish to show
that the final object of X is good. In fact, we will show that every object of X is good. The
proof proceeds in several steps:

(i) The construction U — 6y carries coproducts in X to products. Consequently, the
collection of good objects of X is closed under small coproducts.

(74) Suppose that f: Uy — X is an effective epimorphism of X', and let U, denote its Cech
nerve. Then 6y can be identified with the totalization of the cosimplicial object 0, in
Fun(A'!,S). Consequently, if each of the objects U,, is good, then X is good.

(7i7) Every affine object of X is good (this follows from Yoneda’s lemma).

(iv) Let f: X — Y be a monomorphism in X. If Y is affine, then X is good. To prove
this, choose an effective epimorphism ¢ : Uy — X, where Up is a coproduct of affine
objects U, (see Remark [1.2.4.3). Let U, be the Cech nerve of g. By virtue of (i), it
will suffice to show that each U, is good. Using (i), we are reduced to showing that
each fiber product Uy, xx -+ xx U,,, is good. Since f is a monomorphism, we have
an equivalence

Unog Xx - xx Uy, 2 Uyy Xy - xy Uq,, .

It follows from Proposition that this object is affine, so that the desired result
follows from (iii).
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(v) Let f: X — Y be an arbitrary morphism in X. If Y is affine, then X is good. To
prove this, choose an effective epimorphism ¢ : Uy — X, where Uy is a coproduct of
affine objects U, (see Remark . Let U, be the Cech nerve of g. By virtue of
(i), it will suffice to show that each U, is good. Using (i), we are reduced to showing
that each fiber product Uy, X x « -+ X x U,,, is good. This follows from (iv), since there
exists a monomorphism

Uayg Xx - Xx Uy, = Uqyy Xy -+ Xy Uy,
whose codomain is affine by virtue of Proposition [1.2.4.6

(vi) Every object X € X is good. To prove this, choose an effective epimorphism g : Uy — X,
where Uj is a coproduct of affine objects U, (see Remark . Let U, be the
Cech nerve of g. By virtue of (i), it will suffice to show that each Uy, is good. Using
(1), we are reduced to showing that each fiber product Uy, Xx -+ Xx U,,, is good.
This follows from (v), since the projection map Uy, X x -+ X x Uy,, — U,, has affine
codomain.

O]

For the remainder of this section, we will abuse notation by not distinguishing between
a Deligne-Mumford stack and its image under the fully faithful embedding of Proposition
(in other words, we will identify a Deligne-Mumford stack X = (X, 0 x) with the
functor hx).

Definition 1.2.5.3. Let R be a commutative ring and write Spét R = (X, O x). For each
object U € X = Shvsei(CAlg®), we let Spét;; R denote the ringed topos (X,u, Ox|u). Then
Spét; R is a Deligne-Mumford stack equipped with a canonical map Spétyy R — Spét R.

If f: X — Y is an arbitrary morphism in Fun(CAlg",7<; S), we will say that f is
representable and étale if, for every commutative ring R and every point n € Y (R), the fiber
product Spét R xy X is equivalent to Spét;;(R), for some object U € Shvse; (CAlgH).

Remark 1.2.5.4. In the situation of Definition [1.2.5.3] a map f : X — Y is representable
and étale if and only if, for each point € Y (R), the fiber product Spét Rxy X is representable
by an algebraic space which is étale over Spét R. The veracity of this assertion requires that
we adopt a slightly more general definition of algebraic space than the one given in [117].
Suppose that X = Spéty;(R) for some sheaf U € Shvse(CAlgd). Choosing a set of
sections 1, € U(R,) which generate U, we obtain an effective epimorphism 11Spét R, — X
in the category of étale sheaves on (the opposite of) the category CAlg%. However, the
maps v, : Spét Ry — X need not be relatively representable by schemes. Nevertheless, the
maps v, are relatively representable in the special case where there exists a monomorphism
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X < Spét A, for some étale R-algebra A. In this case, each fiber product Spét B x x Spét R,
can be identified with the functor corepresented by B ®4 R,.

In the general case, each fiber product X, g = Spét R, x x Spét Rg is again étale over
Spét R (in the sense of Definition , and admits a monomorphism

Xa,p = Spét Ry Xsper r Spét Rg ~ Spét(Ry ®r Rﬂ)‘

It follows that each X, g is a representable by an algebraic space in the sense of [I17], so
that the maps v, : Spét R, — X are relatively representable by algebraic spaces.

Remark 1.2.5.5. Let Y = (Y, Oy) be a Deligne-Mumford stack, and suppose we are given
a morphism f : X — Y in Fun(CAlg”,7<; S). Assume further that X is a sheaf for the
étale topology. Then the following conditions are equivalent:

(1) The functor X is equivalent (as an object of the oo-category Fun(CAlg", 7<; S) /v) to
a Deligne-Mumford stack of the form (Y7, Oy [v) for some object U € V.

(2) The map f is representable and étale (in the sense of Definition [1.2.5.3)).

The implication (1) = (2) follows immediately from the definitions. The converse follows by
using (2) to construct the object U € ) locally, and then invoking the assumption that X is
an étale sheaf.

Remark 1.2.5.6. Let f : X — Y be a morphism in Fun(CAlg", 7<; ), and suppose that
both X and Y are sheaves for the étale topology. Then f is étale and representable if and
only if, for every Deligne-Mumford stack Z = (£, 0'z) equipped with a map Z — Y, the
fiber product Z xy X is equivalent to to (Z,,0z|v) for some object U € Z. The “if”
direction is obvious, and the converse follows from Remark It follows from this
characterization that the collection of representable étale morphisms (between étale sheaves)
is closed under composition.

Proposition 1.2.5.7. Let ¢ : A —> B be a homomorphism of commutative rings. The
following conditions are equivalent:

(1) The ring homomorphism ¢ is étale (see §B.1).

(2) The induced map of Deligne-Mumford stacks Spét B — Spét A is representable and
étale (here we abuse terminology by identifying Spét A and Spét B with the functors
they represent).

In other words, if A is a commutative ring, then an object U € Shvse(CAlg®) is affine
if and only if U is corepresentable by an étale A-algebra B.
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Proof. The implication (1) = (2) follows immediately from the construction of Spét B.
Conversely, suppose that (2) is satisfied. Write Spét A = (X,0x), so that Spét B ~
(X, Ox |y) for some object U € X. For each étale A-algebra A’, let hA" € X denote the
functor corepresented by A’. The objects A generate the topos A under colimits. We
may therefore choose a collection of étale A-algebras {A,}aer and an effective epimorphism
Laerhde — U in X. Under the identification of X Ju with Shvset(CAlgéBt), we can identify
each h'> with an object V,, € Shvset(CAlgéé“). These objects cover the topos S hVSet(CAIg%).
We may therefore choose a finite collection of indices aq,as,...,a, and a faithfully flat
étale map B — [ [, <<, Bi such that each Vi, (B;) is nonempty. Set A" =[], <, Aa; and
B’ =[] B;, so that we morphisms of Deligne-Mumford stacks

Spét B' — Spét A’ — Spét B — Spét A,

induced by a sequence of ring homomorphisms A % B A - B Tt follows that B’ is a
retract of A’ ®p B’ in the category of A-algebras. Since B’ is étale over B and A’ is étale
over A, A’ ®p B’ is étale over A, so that B’ is étale over A. Since the map B — B’ is étale
and faithfully flat, we conclude that B is also étale over A (see Proposition |B.1.4.1]). O

Definition 1.2.5.8. Let f, : X, — Y be a collection of representable étale morphisms
in the oo-category Fun(CAlg”,7<1 S). We will say that the set {fo} is jointly surjective
if, for every commutative ring R and every point n € Y(R), if we write Spét R xy X, as
Spéty;, R for some U, € Shvset(CAlg%), then the objects U, comprise a covering of the
topos Shvse; (CAlgS).

We will say that a single representable étale morphism f : X — Y is surjective if the set
{f} is jointly surjective.

Remark [1.2.5.5] admits the following converse:

Theorem 1.2.5.9. Let X : CAlg” — S<1 be a functor. The following conditions are
equivalent:

(1) The functor X is (representable by) a Deligne-Mumford stack.

(2) The functor X is a sheaf for the étale topology, and there exists a jointly surjective col-
lection of representable étale morphisms fo : Uy — X, where each U, is (representable
by) an affine Deligne-Mumford stack Spét R,,.

(3) The functor X is a sheaf for the étale topology, and there exists a jointly surjective col-
lection of representable étale morphisms fo : Uy — X, where each U, is (representable
by) a Deligne-Mumford stack.

(4) The functor X is a sheaf for the étale topology, and there exists a representable étale
surjection f : Uy — X, where Uy is (representable by) a Deligne-Mumford stack.
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Example 1.2.5.10. Let X : CAlg¥ — Set be a functor which is representable by a
scheme. Then X satisfies condition (2) of Theorem (in fact, we can take the maps
Ugq : Spec Ry, — X to be any open covering of X by affine schemes). Theorem implies
that the essential image of the functor N(DM) — Fun(CAlg”, 7<; S) includes all functors
which are representable by schemes. We therefore obtain a fully faithful embedding from
the category Sch of schemes to the 2-category DM of Deligne-Mumford stacks, given on
affine schemes by Spec R — Spét R. Note that this embedding is not given by the formula
(X, O0x) — (Shvset(X), Ox), because the structure sheaf of a scheme is usually not strictly
Henselian. Instead, the Deligne-Mumford stack associated to a scheme (X, 0x) can be
viewed as the classifying topos for strict Henselizations of Ox: see for more details).

Proof of Theorem[1.2.5.9. Let X : CAlg¥ — 7<; S be the functor represented by a Deligne-
Mumford stack (X, O y). Fix a commutative ring A and write Spét A = (), Oy). For every
étale A-algebra A’ let h" € Shvge (CAlgS) denote the functor corepresented by A’. Then
the restriction of X to CAlgfgt is given by the formula

X(A/) = MapDM((y/hA’7 ﬁy |hA’)7 (X7 ﬁX)7

from which it follows easily that the restriction of X to CAlgéAf is an étale sheaf. It follows
that X is a sheaf for the étale topology, so that the implication (1) = (2) follows immediately
from the definition of Deligne-Mumford stack.

The implication (2) = (3) is trivial, and the implication (3) = (4) follows by taking
Up to be the coproduct of the U, (in the 2-category of Deligne-Mumford stacks). We will
complete the proof by showing that (4) = (1). Let Uy be a functor which is representable by
a Deligne-Mumford stack (Uo, Oy, ), let f: Uy — X be a representable étale surjection, and
let U, be the Cech nerve of f (formed in the oo-category Fun(CAlg”, 7<; S)). Since f is an
effective epimorphism of étale sheaves, we can identify X with the geometric realization of U,
in the co-category of 7<; S-valued étale sheaves on CAlg". Each U, admits a representable
étale map to Uy, and is therefore representable by a Deligne-Mumford stack (U, Ouy,,)-
We can view U, as a simplicial object in the 2-category of Grothendieck topoi; let X
denote its geometric realization (so that the objects of X' can be identified with sequences
{Xm € U }m=0 which are compatible with one another under pullback). Since each of the
maps U, — U, is étale, the collection of structure sheaves {0y, }m>0 can be identified with
a commutative ring object Oy € X.

For each integer m, the inclusion [m] < [m+1] determines a representable étale surjection
map U,,11 — Uy, We may therefore choose an object V;,, € U,,, and an equivalence

Um+1, Ott i) = Uy Oty |Vi)-

The objects V,,, are compatible under pullback, and therefore determine an object V' of the
topos X. Since each V;,, covers the final object of U,,, the object V' covers the final object of
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X. Moreover, we can identify (X, Oy |v) with the geometric realization of the simplicial
ringed topos

Uapves Oud V) =~ Uet1, Ou,y),
which is equivalent to (Uop, Oy, ). It follows from Remark that (X, Ox) is a Deligne-
Mumford stack. Let X’ : CAlg¥ — 7<; S denote the functor represented by (X, Ox). Let
f': Uy — X' be the canonical map. The natural isomorphism f*V ~ Vj shows that U, is

the Cech nerve of the map f/, so that f’ factors as a composition
Uo LU ~x % X/,

where g is a monomorphism. To complete the proof, it will suffice to show that f’ is an
epimorphism of étale sheaves. This follows from the observation that V covers the final
object of the topos X. O

1.2.6 Quasi-Coherent Sheaves on a Deligne-Mumford Stack

We close this section with a brief discussion of quasi-coherent sheaves on a Deligne-
Mumford stack, which will play a role in

Definition 1.2.6.1. Let (X,0x) be a Deligne-Mumford stack, and let .# be a Ox-
module object of X. For each object U € X', we let & x(U) denote the commutative ring
Homuy (U, Ox), and .#(U) the module Homy (U,.%). We will say that .Z is quasi-coherent

if the following condition is satisfied:
(*) For every morphism U — V between affine object of X, the induced map
Ox(U)®g vy F(V)— F(U)
is an isomorphism of modules over the commutative ring &' x(U).

Example 1.2.6.2. Let A be a commutative ring and let write Spét A = (Shvse (CAlgS), 0).
Proposition implies that a @-module .Z in Shvse (CAlg%) is quasi-coherent if and
only if, for every morphism B — C of étale A-algebras, the induced map C®p.# (B) — % (C)
is an equivalence. In other words, .# is quasi-coherent if and only if there exists a (discrete)
A-module M for which .Z is given by the formula .#(B) = B®4 M. Conversely, for any
discrete A-module M, the theory of faithfully flat descent implies that the construction
B — B®a M determines a sheaf for the étale topology on CAlgi{. We summarize the
situation as follows: the category of quasi-coherent sheaves on Spét A is equivalent to the
category of (discrete) A-modules.

Proposition 1.2.6.3. Let (X, Ox) be a Deligne-Mumford stack, and let F be a O x-module
object of X. The condition that F be quasi-coherent can be tested locally on X. More
precisely, if there exists a covering of X by objects U, such that each restriction .F |y, is a
quasi-coherent sheaf on (X y7,, Ox |u,), then F is quasi-coherent.
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Proof. Let f:V — W be a morphism between affine objects of X'; we wish to show that
the induced map Ox(V) Qg w) F (W) — F(V) is an isomorphism. Replacing X' by
(X w, Ox lw), we may assume that (X, Ox) = Spét A for some commutative ring A. Let
us identify X' with Shvge (CAlg®), so that we can view .Z as a functor from CAlg® to the
category of sets. To prove that .# is quasi-coherent, it will suffice to show that for every
étale A-algebra B, the natural map B®y % (A) — .Z(B) is an isomorphism (see Example
1263,

We may assume without loss of generality that each U, is affine and therefore associated
to some étale A-algebra A,. Since the objects U, cover X, we may choose a finite set of
indices a1, . .., oy, for which the product [ [, ;¢,, Aq, is faithfully flat over A. Our assumption
on .% guarantees that for any morphism of étale A-algebras C' — €, if C admits the structure
of an A,-algebra for some index «, then the induced map C' ®¢ % (C) — F(C’) is an
isomorphism.

For any étale A-algebra B, the hypothesis that % is an étale sheaf (and the flatness of
B as an A-module) supplies a commutative diagram of short exact sequences

0—=B®aF(A) — H1<i<n B®a th(Aai) - 1—[1@,]‘@ B®a ﬁ(Aai ®a Aaj)

T -

Since #’ and 0" are isomorphisms, we conclude that 6 is also an isomorphism. ]

1.3 Sheaves of Spectra

In we introduced the notion of a spectrally ringed space: that is, a pair (X, Ox)
where X is a topological space and Ox is a sheaf of Ey-rings on X. The language of
spectrally ringed spaces is adequate for describing many of the algebro-geometric objects
which we are interested in studying (such as the spectral schemes of Definition .
However, to accommodate more exotic objects (such as the spectral Deligne-Mumford stacks
of , it will be useful to work with a more general notion of CAlg-valued sheaf. In this
section, we will study pairs (X, 0 x) where X is an co-topos and Oy is a sheaf of Eq,-rings
on X.

1.3.1 Sheaves on co-Topoi

Let C be an oo-category. In §I.1 we introduced the notion of a C-valued sheaf on a
topological space X (Definition [1.1.2.1)). This definition can be generalized to an arbitrary
Grothendieck site:
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Definition 1.3.1.1. Let 7 be an essentially small co-category. Recall that a Grothendieck
topology on T is a Grothendieck topology on the homotopy category h7, in the sense of
classical category theory (see §HTT.6.2.2 for a detailed discussion). Let C be an arbitrary
oo-category. We will say that a functor & : TP — C is a C-valued sheaf on T if the following
condition is satisfied: for every object U € T and every covering sieve T{/)U < Ty, the
composite map

(T0p)™ < (Ty)™ =T % ¢

is a colimit diagram in C°?. We let Shv¢(7T) denote the full subcategory of Fun(7°P,C)
spanned by the C-valued sheaves on T.

More informally, a functor & : T°° — C is a C-valued sheaf if, for every object U € T
and every covering sieve T?U of U, the canonical map

o) — lin o)
VET?U

is an equivalence in C.

Example 1.3.1.2. Let X be a topological space, let C be an co-category, and let Shve(X) be
the co-category of C-valued sheaves on X (Definition[I.1.2.1)). Then Shve(X) = Shve(U(X)),
where U(X) is the partially ordered set of all open subsets of X, which is endowed with
the usual Grothendieck topology (so that a collection of inclusions {U, € U} generates a
covering sieve on U if and only if U = | JU,).

Example 1.3.1.3. Let 7 be a small co-category equipped with a Grothendieck topology
and let S denote the co-category of spaces. Then we will denote the co-category Shvs(7)
simply by Shv(7) and refer to it as the oo-category of sheaves on T. The co-category
Shv(T) is an accessible left-exact localization of the presheaf co-category Fun(7°P,S), and
is therefore an co-topos (see §HTT.6.2).

In the situation of Definition the co-category Shve(T) does not depend on the
exact details of the Grothendieck site 7 it depends only on the associated co-topos Shv(T).
To see this, it will be convenient to introduce a site-independent version of Definition
(which also makes sense for co-topoi which do not arise as sheaves on a Grothendieck site).

Definition 1.3.1.4. Let X be an oo-topos and let C be an arbitrary co-category. A C-valued
sheaf on X is a functor X°® — C which preserves small limits. We let Shv¢(X) denote the
full subcategory of Fun(X°P,C) spanned by the C-valued sheaves on X'.

Warning 1.3.1.5. Let X be an co-topos, and let C be an arbitrary co-category. Then the
oo-category Shve (&) introduced in Definition [1.3.1.4] generally does not coincide with the
oo-category C-valued sheaves with respect to a Grothendieck topology on X' (for example,
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the canonical topology on &'). Consequently, the conventions of Definition [1.3.1.4]and [1.3.1.1]

conflict with one another. However, there should be little danger of confusion: for example,
an oo-topos X is never essentially small as an co-category, unless X is a contractible Kan

complex.

Remark 1.3.1.6. Let C be a presentable oo-category and X an co-topos. Then the oo-
category Shve(X) can be identified with the tensor product C® & introduced in §HA.4.8.1.
In particular, Shve(X) is a presentable co-category.

We now show that Definitions [1.3.1.1] and [1.3.1.4] are compatible with one another, at
least when the co-category C admits small limits. For any co-category T, we let P(T) denote
the oo-category Fun(7°P,S) of S-valued presheaves on 7, and j : T — P(T) the Yoneda
embedding.

Proposition 1.3.1.7. Let T be a small co-category equipped with a Grothendieck topology.
Let j: T — P(T) denote the Yoneda embedding and L : P(T) — Shv(T) a left adjoint to
the inclusion. Let C be an arbitrary co-category which admits small limits. Then composition
with L o j induces an equivalence of co-categories Shve(Shv(T)) — Shve(T).

Corollary 1.3.1.8. Let X be a topological space and let C be an oo-category which ad-
mits small limits. Then there is a canonical equivalence of oo-categories Shve(X) ~

Shve(Shv(X)), where the left hand side is given by Definition[1.1.2.1] and the right hand
side by Definition[1.3.1.7)

Proof of Proposition[1.3.1.7. According to Theorem HTT.5.1.5.6, composition with j in-
duces an equivalence of co-categories Fung(P(7)°P,C) — Fun(7°P,C), where Funy(P(7)°P,C)
denotes the full subcategory of Fun(P(7)°P,C) spanned by those functors which preserve
small limits. According to Proposition HTT.5.5.4.20, composition with L induces a fully
faithful embedding Shve(Shv (7)) — Fung(P(7)°P,C). The essential image of this embed-
ding consists of those limit-preserving functors F' : P(7)°? — C such that, for every X € T
and every covering sieve 7’(/] < T /x, the induced map F(jX) — F(Y) is an equivalence in
C, where Y is the subobject of j X corresponding to the sieve T?X. Unwinding the definitions,
this translates into the condition that the composition

(TH)" < (Tx)" =T 5peT) £ cor
is a colimit diagram. It follows that the composition
Shve(Shv(T)) — Fung(P(T),C) — Fun(T°,C)

is fully faithful, and its essential image is the full subcategory Shve(7T). O
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1.3.2 Sheaves of Spectra

In this book, are primarily interested in C-valued sheaves when C = Sp is the co-category
of spectra.

Definition 1.3.2.1. Let X be an co-topos. A sheaf of spectra on X is a sheaf on X' with
values in the co-category Sp of spectra. We let Shvg,(X') denote the full subcategory of
Fun(X°P, Sp) spanned by the sheaves of spectra on X

Remark 1.3.2.2. Let X’ be an oo-topos and let Shvg(X') denote the full subcategory of
Fun(X°P,S) spanned by those functors which preserve small limits. Recall that the oo-
category Sp of spectra can be defined as the full subcategory of Fun(Sf*,S) spanned by
those functors E : Si* — S which are reduced and excisive; here SI* denotes the oo-category
of pointed finite spaces (Definition HA.1.4.3.1). We therefore obtain an isomorphism
of Shvg,(X) with the full subcategory of Fun(Si", Shvg(X)) spanned by those functors
which are reduced and excisive. Since the Yoneda embedding induces an equivalence
of oo-categories X — Shvg(&X') (Proposition HTT.5.5.2.2), we obtain an equivalence of
Shvg, (X) with the co-category Sp(X') of spectrum objects of X' (see Definition HA.1.4.2.8).
In particular, Shvg,(X') is a presentable stable co-category. Moreover, we have a forgetful
functor Q% : Shvg,(X) — X, which is obtained by pointwise composition with the forgetful
functor Q* : Sp — S (together with the identification X ~ Shvg(X)).

Notation 1.3.2.3. Let X be an co-topos and let XY = 7o9 X denote its underlying topos.
Composing the forgetful functor functor Shvg,(X) — Shvg(X) ~ X with the truncation
functor 7¢¢ : X - X . we obtain a functor m : Shvgy(X) —» X “. More generally, for any
integer n, we let 7, : Shvg,(X) — 7<o X denote the composition of the functor my with
the shift functor Q" : Shvg,(X) — Shvg,(X). Note that m, can also be described as the
composition

Mods, (X) L Modg, (X) — Shvs, (X) ~ Xy ™ 720 X .

It follows that 7, can be regarded as a functor from Shvg,(X) to the category of abelian
groups objects of XV,

Example 1.3.2.4. In the situation of Notation suppose that X = Shv(X) for some
topological space X, and let .# be an object of Shvg,(Shv(X)) ~ Shvg,(X). For each
integer n, we can identify m, % with the sheaf of abelian groups on X given by sheafifying
the presheaf U — 7, (Z(U)).

Definition 1.3.2.5. For every integer n, the functor Q=" : Sp — S induces a functor
Shvgy(X) — Shvs(X) ~ X, which we will also denote by Q*~". We will say that an object
F € Shvg,(X) is n-truncated if Q©1" F is a discrete object of X. We will say that a sheaf
of spectra .# € Shvg,(X) is n-connective if the homotopy groups 7, .# vanish for m < n.
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We will say that M is connective if it is 0-connective (equivalently, M is connective if the
object Q™™ .F € X is m-connective for every integer m). We let Shvg,(&X)s, denote the
the full subcategory of Shvg,(X') spanned by the n-connective objects, and Shvs,(X)<, the
full subcategory of Shvg,(X') spanned by the n-truncated objects. In the special case n = 0,
we will denote Shvgp(X)=0 by Shvg, (X)".

Remark 1.3.2.6. Let X be an co-topos and let .# be a sheaf of spectra on X'. Then .7 is
n-truncated if and only if, for every object U € X, the spectrum .Z (U) is n-truncated.

The classes of O-truncated and 0-connective spectrum-valued sheaves determine a t-

structure:

Proposition 1.3.2.7. Let X be an co-topos.

(1) The full subcategories (Shvgp(X)>0, Shvep(X)<o) determine a t-structure on Shvg, (X).

(2) The t-structure on Shvgp(X) is compatible with filtered colimits (that is, the full
subcategory Shvg,(X)<o S Shvgp(X) is closed under filtered colimits).

(3) The t-structure on Shvsy(X) is right complete.

(4) The functor my of Notation determines an equivalence of categories from the
heart of Shvs,(X) to the category of abelian group objects of XY,

Proof. 1t follows from Proposition HA.1.4.3.4 that Shvg,(&X) admits a t-structure given
by the pair (C, Shvg,(X)<o), where C is the collection of objects .# € Shvg,(X') for which
the mapping space Mapgspyg, () (F,Q(9)) is contractible for every coconnective object
F € Shvgy(X)<o. Fix F € Shvgy(X); using Remark we can identify .# with a
sequence of pointed objects .7 (n) € X, and equivalences v, : F(n) ~ Q.7 (n + 1). Set
F'(n) = T<n—1Z (n); the equivalences v, induce equivalences 7/, : Z'(n) ~ Q.#'(n + 1), so
we can regard {Z'(n)} as an object F' € Shvg,(X). We have a canonical map .# — .Z#'. If
¢ is a coconnective object of Shvg,(X)<o, then we have

0

MaDsive, (v)(F, Q%) = limMapy, (F(n), 077" )
lim Mapy, (' (n), Q""" 9)

Mapgpyg, (1) (F 9).

12

0

On the other hand, Q~!'M’ is a O-truncated object of Shvg,(X). It follows that .# € C if
and only if .#’ ~ 0. This is equivalent to the requirement that each F'(n) ~ 7<,,_1 .Z (n) is
a final object of X4: that is, the requirement that each .#'(n) is n-connective. This proves
that C = Shvg,(X)>0 so that assertion (1) holds.
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We observe that the loop functor Q : X', — X, preserves filtered colimits (Example
HTT.7.3.4.7), so that Q©! : Shvg,(X) — X, preserves filtered colimits for each n. It
follows that the homotopy fiber of Q%1 (over the zero object * € X) is closed under filtered
colimits, so that (2) is satisfied. It follows easily that Shvg,(X)<o is stable under countable
coproducts. Any object .# € (), Shvg,(X)<—p has the property that Q"% e X, is
final for each n, so that M is a zero object of Shvg,(X). Assertion (3) now follows from
Proposition HA.1.2.1.19.

Let us identify Shvgp,(&') with the homotopy inverse limit of the tower of co-categories

Q Q
'_’X*_*)X*_*’ E

Under this identification, the heart Shvg,(X)¥ < Shvg,(X) corresponds to the homotopy
inverse limit of the tower

Co EM(X) B EM(X) B EM(X) = X7,

where EM,,(X) € X, denotes the full subcategory spanned by the Eilenberg-MacLane
objects (that is, objects which are both n-truncated and n-connective; see Definition
HTT.7.2.2.1). Assertion (4) follows from the observation that EM, (X) is equivalent
to the category of abelian group objects of the underlying topos of X’ for n > 2 (Proposition
HTT.7.2.2.12). O

Remark 1.3.2.8. Let g* : X — ) be a geometric morphism of co-topoi (that is, a functor
which preserves small colimits and finite limits). Then ¢g* is left exact, and therefore induces
a functor Shvg,(X') ~ Sp(X) — Sp(Y) ~ Shvg,(Y). We will abuse notation by denoting this
functor also by g*. It is a left adjoint to the pushforward functor g, : Shvg,(Y) — Shvg, (&),
given by pointwise composition with ¢* : X — ).

Since the functor g* : X — ) preserves n-truncated objects and n-connective objects for
every integer n, we conclude that the functor ¢* : Shvg, (X)) — Shvg,()) is t-exact: that is,
it carries Shvgy(X)sy into Shvg,(Y)=n and Shvg, (X)<, into Shve, (V) <n. It follows that
gx 18 left t-exact: that is, g« Shvgy(Y)<n S Shvgp(X)<pn. The functor g, is usually not right
t-exact.

1.3.3 o0-Connective Sheaves of Spectra

The t-structure on Shvgy (&) is not left complete in general. For example, there may
exist nonzero objects .# € Shvg,(X') whose homotopy groups 7, .# vanish for all integers n.

Definition 1.3.3.1. Let X be an co-topos and let .%# € Shvg,(X) be a sheaf of spectra on
X. We will say that .% is co-connective if it is n-connective for every integer n. In other
words, .# is co-connective if 7, % ~ 0 for every integer n.
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Remark 1.3.3.2. Let X be an oo-topos and let X™P < X be the full subcategory spanned
by the hypercomplete objects. Then the inclusion map f, : X™P — X is a geometric
morphism of oo-topoi, which admits a left exact left adjoint f* : X — X™P. Applying
Remark we obtain a pair of adjoint functors

f*
Sthp(X)f:Sthp(thp).
*
Note that an object .# € Shvg,(X) is oo-connective if and only if f*.# ~ 0. Since the
inclusion X™P < X is fully faithful, the functor fi : Shvs,(X™P) — Shvg,(X) is also fully
faithful.

Proposition 1.3.3.3. Let X be an o0-topos and let F € Shvg,(X). The following conditions
are equivalent:

(1) The object Q* F € X is hypercomplete.

(2) The sheaf of spectra F belongs to the essential image of the fully faithful embedding
Shvg, (XMP) — Shvg, (X).

(3) For every oo-connective object & € Shvsp(X), the mapping space Mapgyy (1) (¥, -F)
is contractible.

(4) For every oo-connective object 4 € Shvgy(X), every map u : 9 — F is nullhomotopic.

Proof. We first show that (1) and (2) are equivalent. The implication (2) = (1) is imme-
diate. Conversely, suppose that % satisfies condition (1). To show that .# belongs to the
essential image of the fully faithful embedding, it will suffice to show that Q" % € X is
hypercomplete for each n = 0. Proceeding by induction on n, we are reduced to proving
that Q®~1.% is hypercomplete. We have a fiber sequence

0T S T QO (S (10 F)).

Since m_; Z is a discrete object of X (and therefore hypercomplete), we are reduced to
proving that the object U = Q%®(X2?(1>09.%)) € X is hypercomplete. Let U’ denote its
hypercomplete; we wish to show that the map U — U’ is an equivalence in X. Since U
and U’ are 2-connective pointed objects of X, it will suffice to show that the induced map
02U — Q2U' is an equivalence. Since the formation of hypercompletions is left exact, we
can identify Q2U’ with the hypercompletion of Q?U. We are therefore reduced to proving
that Q2U ~ Q% .F is hypercomplete, which follows from assumption (1).

The implication (2) = (3) follows from Remark and the implication (3) = (4) is
immediate. We will complete the proof by showing that (4) = (2). Suppose that .# satisfies
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condition (4), and consider the adjoint functors

*

!
Shvsp(X)?Shvsp(thp).
*

appearing in Remark To prove (2), it will suffice to show that the unit map
u: F — fof* F is an equivalence. Since the functor f, is fully faithful, the pullback f*u is
an equivalence. Since f* is an exact functor, we conclude that f*fib(u) ~ 0: that is, the
fiber fib(u) is co-connective. Using (4), we deduce that the canonical map fib(u) — .Z is
nullhomotopic. It follows that cofib(u) is a retract of fi f*.% in the co-category Shvg,(X). In
particular, Q®~"(cofib(u)) is a retract of the hypercomplete object Q©~"(f, f* %) for every
integer n, and is therefore hypercomplete. Since the homotopy groups of Q%" (cofib(u))
vanish, we conclude that Q®~"(cofib(u)) is a final object of X. It follows that cofib(u) ~ 0,
so that u is an equivalence as desired. ]

Definition 1.3.3.4. Let X be an co-topos. We will say that an object .# € Shvg,(X) is
hypercomplete if it satisfies the equivalent conditions of Proposition [I.3.3.3]

Remark 1.3.3.5. Let X' be an oo-topos. Then the full subcategories of Shvgy(&X') spanned
by the co-connective and hypercomplete objects determine a t-structure on Shvgp(X') (with
trivial heart). In particular, every object .# € Shvg,(X) fits into an essentially unique fiber
sequence .’ — % — F" where .#’ is oo-connective and .%#” is hypercomplete.

The condition of hypercompleteness can be tested locally:

Proposition 1.3.3.6. Let X be an cwo-topos. The property that an object X € X is hyper-
complete can be tested locally on X. In other words, if there exists a collection of objects
{Uy € X} such that 11,U,, is 0-connective and each product X x U, is a hypercomplete object
of the co-topos X, , then X is hypercomplete.

Proof. Let U = Uy, so that X xU is a hypercomplete object of the co-topos X 7 ~ I, X,
Let U, be the simplicial object of X given by the Cech nerve of the effective epimorphism
U — 1, where 1 denotes a final object of X.

Let f:Y — Z be an co-connected morphism in X’; we wish to prove that the induced
map a : Mapy(Z, X) — Mapy (Y, X) is a homotopy equivalence. We can obtain « as the
totalization of a map of cosimplicial spaces

a® : Mapy(Z x Us, X) — Mapy (Y x U, X).

It will therefore suffice to show that each ' is an equivalence. Replacing Y by Y x U,, and Z
by Z x U,, we can reduce to the case where o = 0. In this case, ag can be identified with the
map Mapy (ZxU,XxU) — Mapy (Y x U, X x U). This map is an equivalence because
X x U is a hypercomplete object of X7, and the map Z x U — Y x U is oo-connected. [
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Corollary 1.3.3.7. Let X be an oo-topos, and let .F € Shvg,(X). If there exists a 0-
connective object IU,, in X such that each pullback u} F € Shvsy(X ) is hypercomplete
(where g : Xy, — & denotes the étale geometric morphism determined by Uy), then F is
hypercomplete.

Corollary 1.3.3.8. Let X be a topological space and let F € Shvg,(X). If there exists
an open covering U, of X such that each restriction F |y, is hypercomplete, then F is
hypercomplete.

Under some mild hypotheses on X, one can show that the t-structure on Shvg,(X) is
left complete.

Definition 1.3.3.9. Let X be an oo-topos, and let n > 0 be an integer. We will say that X
is locally of cohomological dimension < n if there exists a collection of objects {U,} of X
which generate & under small colimits, such that each of the co-topoi &, has cohomological
dimension < n (see Definition HTT.7.2.2.18).

Proposition 1.3.3.10. Let X be an oo-topos and let n = 2 be an integer. The following
conditions are equivalent:

(1) The oo-topos X is locally of homotopy dimension < n (see Definition HTT.7.2.1.8 ).
(2) The oo-topos X is hypercomplete and locally of cohomological dimension < n.

If these conditions are satisfied and U is an object of X, then X ;7 is of homotopy dimension
< n if and only if it is of cohomological dimension < n.

Proof. Let U be an object of X. If Xy is of homotopy dimension < n, then X is of
cohomological dimension < n (Corollary HTT.7.2.2.30). It follows that if X is locally of
homotopy dimension < n, then X is locally of cohomological dimension < n. The implication
(1) = (2) now follows from Corollary HTT.7.2.1.12. For the converse, suppose that (2) is
satisfied. We will complete the proof by showing that for each object U € X, if X iy has
cohomological dimension < n, then X is of homotopy dimension < n. Replacing X by
X 7, we are reduced to the problem of showing that X has homotopy dimension < n.

Let 1 denote the final object of X, and let .% € X be n-connective. We wish to prove
that the mapping space Mapy(1,.#) is nonempty. We begin by constructing a compatible
sequence of maps ¢, : 1 — 7<% . The construction proceeds by induction on m, the
case m < n being trivial. If m > n and ¢,,_1 has already been constructed then the fiber
product 1 x,_ | 7 T<m;, & is an m-gerbe in X'. Our assumption that X has cohomological
dimension < n < m guarantees that this gerbe is automatically trivial, so that ¢, lifts to
a map ¢p,. Together, the maps {¢,,}m=0 determine a map ¢ : 1 — ;f, where Z denotes
the limit mm T<m F. To complete the proof, it will suffice to show that the canonical
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map 0 : ¥ — 7 is an equivalence. Because X is hypercomplete, this is equivalent to the
assertion that 6 induces an equivalence 0, : T<m F — T<m % for each m > 0. Note that 6,,
is a right homotopy inverse to the canonical map

. T T ~ T
")/.Tgm/ —>T<m(7'<m/) —Tgmef’ .

It will therefore suffice to prove that v is an equivalence: that is, the projection 7 : 7 —
T<m - exhibits 7<,, # as an m-truncation of .#. In fact, we claim that the map 7 is
(m + 1)-connective.

The map ~ factors as a composition 72 T<min F 7, T<m F. Because 7" is (m + 1)-
connective, we are reduced to showing that 7 is (m + 1)-connective. To prove this, it will
suffice to show that X is generated under small colimits by objects V' for which the map

Mapy (V, #) — Mapx (V, T<min F)

is (m + 1)-connective. In fact, we claim that this condition holds whenever X', has
cohomological dimension < n. To prove this, it suffices to show that each of the maps
¥ Mapy(V, T<tr14n %) — Mapy(V, T<t4n %) is (t + 1)-connective. Choose a point 7 €
Mapy (V. T<tin F) and let V =V x,_,. 7 T<t414n F, so that the homotopy fiber of ¢ over
the point 7) can be identified with Map, (V,V). By construction, V is an (t + 1 4+ n)-gerbe
in X banded by some abelian group object & of X ;. Since X, has cohomological
dimension < n, the cohomology group H!"27(X Jv;-F) vanishes, so that V is a trivial gerbe.
We therefore obtain isomorphisms

mjMapy,, (V, V) = HF (X s o).

Since X has cohomological dimension < n, this group vanishes for j < ¢, so that
Map y /V(V7 V) is (t + 1)-connective as desired. 0

Corollary 1.3.3.11. Let X be an oo-topos. Assume that X is hypercomplete and locally of
cohomological dimension < n, for some integer n. Then the t-structure on Shvg,(X) is left
complete.

Proof. Without loss of generality, we may assume that n > 2. According to Proposition
X is locally of homotopy dimension < 2. It follows from Proposition HTT.7.2.1.10
that X’ is Postnikov complete (in the sense of Definition . From this we immediately
deduce that Shvg,(&X)>0 is Postnikov complete, so that Shvg,(X) is left complete. O

1.3.4 Sheafification and Tensor Products

Our next objective is to describe a symmetric monoidal structure on the co-category
Shvg, (X). Roughly speaking, this symmetric monoidal structure is given by levelwise smash
product, followed by sheafification. We begin by discussing the latter procedure.
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Remark 1.3.4.1. Let D and C be small co-categories, and assume that D admits finite
colimits. Composition with the Yoneda embeddings D — P (D) and C — Ind(C) yields
functors

Fun®(P(DP), P(CP)) — FunleX(DOP,P(COP)) ~ Fun(C, Ind(D)) « Fun’(Ind(C), Ind(D)).

Here Fun™*(P(D°P), P(C°P)) denotes the full subcategory of Fun(P(D°P), P(C°P)) spanned
by those functors which preserve small colimits and finite limits, Fun'®*(D°P, P(C°P)) the full
subcategory of Fun(D°P, P(C°P)) spanned by those functors which preserve finite limits, and
Fun/(Ind(C), Ind(D)) the full subcategory of Fun(Ind(C),Ind(D)) spanned by those functors
which preserve filtered colimits. Each of these functors is an equivalence of co-categories (see
Propositions HTT.6.1.5.2 and HTT.5.3.5.10 ; the middle equivalence is an isomorphism of
simplicial sets obtained by identifying both sides with a full subcategory of Fun(D x C,S)).

Assume that both C and D admit finite colimits, so that Ind(C) and Ind(D) are compactly
generated presentable co-categories. The presheaf co-categories P(C°P) and P(D°P) are
classifying co-topoi for Ind(C)-valued and Ind(D)-valued sheaves, respectively. The above
argument shows that every geometric morphism between classifying co-topoi arises from
a functor Ind(C) — Ind(D) which preserves filtered colimits. Put more informally, every
natural operation which takes Ind(C)-valued sheaves and produces Ind(D)-valued sheaves is
determined by a functor Ind(C) — Ind(D) which preserves filtered colimits.

Suppose now that we are given oco-categories C and D which admit finite colimits, and
let f: Ind(C) — Ind(D) be a functor which preserves filtered colimits. Remark
guarantees the existence of an induced functor ¢ : Shvy,gc)(X) — Shvyygp)(X) for an
arbitrary co-topos X', which depends functorially on X. In the special case where X = P(U)
is an co-category of presheaves on some small co-category U, we can write down the functor
0 very explicitly: it fits into a homotopy commutative diagram

ShVInd(C) (X) ShVInd(C) (X)

| |

Fun(U°, Ind(C)) —/> Fun(u°?, Ind(D)),

where the vertical maps are equivalences of co-categories given by composition with the
Yoneda embedding & — P(U). More generally, if we assume only that we are given a
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geometric morphism P(U) — X, then we obtain a larger (homotopy commutative) diagram

ShVInd(C) (X) ShVInd(D )

| |

Shviug(cy(P(U)) — Shvug(p) (P(U))

| i

Fun(U°P,Ind(C)) ), Fun (U°P,Ind(D)).

The existence of this diagram immediately implies the following result:

Lemma 1.3.4.2. Let U be a small oo-category and suppose we are given a geometric
morphism of co-topoi g* : P(U) — X. Let C be a small co-category which admits finite
colimits, and let Te denote the functor Fun(U°P,Ind(C)) ~ Shvipqey(P(U)) — Shvinge)(X)
induced by g*. Let D be another small co-category which admits finite colimits, and define
Tp similarly. Suppose that f :Ind(C) — Ind(D) is a functor which preserves small filtered
colimits. Then if a« : F — ¥4 is a morphism in Fun(U°P,Ind(C)) such that T¢(a) is an
equivalence, then the induced map o' : (f o F) — (f 0 9) also has the property that Tp(a)
s an equivalence.

Lemma 1.3.4.3. Let X be an oo-topos and C a presentable co-category. Then the inclusion
i: Shve(X) € Fun(X°P,C) admits a left adjoint L.

Proof. The proof does not really require that X is an co-topos, only that X' is a presentable
oo-category. Under this assumption, we may suppose without loss of generality that X =
Ind,(Xg), where & is a regular cardinal and X is a small co-category which admits x-small
colimits. Then i is equivalent to the composition

Shve(X) %8 Fun' (X, C) € Fun(X, ) & Fun(x», ¢),

where Fun/(Xg", C) is the full subcategory of Fun(X{",C) spanned by those functors which
preserve k-small limits, G¢ is the functor given by restriction along the Yoneda embedding
Jj: Xo — X, and G} is given by right Kan extension along j. The functor G¢ is an
equivalence of co-categories (Proposition HT'T.5.5.1.9 ), and the functor G} admits a left
adjoint (given by composition with j). Consequently, it suffices to show that the inclusion i’
admits a left adjoint. This follows immediately from Lemmas HTT.5.5.4.17, HTT.5.5.4.18 ,
and HTT.5.5.4.19. O

Lemma 1.3.4.4. Let X be an co-topos, and let f : C — D be a functor between compactly
generated presentable co-categories. Assume that f preserves small filtered colimits. Let L :
Fun(X°P,C) — Shve(X) and Lp : Fun(X°P, D) — Shvp(X) be left adjoints to the inclusion
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functors. Then composition with f determines a functor F : Fun(X°P,C) — Fun(X°P, D)

which carries Le-equivalences to Lp-equivalences.

Remark 1.3.4.5. In the situation of Lemma the functor F' descends to a functor
Shve(X) — Shvp(X), given by the composition Lp o F. This is simply another description
of the construction arising from Remark

Proof. We use notation as in the proof of Lemma [1.3.4.3] For x sufficiently large, the
full subcategory Xy € X is stable under limits, so that (by Proposition HTT.6.1.5.2) we
have a geometric morphism g* : P(Xy) — X. Then the functor L¢ can be realized as the
composition of the restriction functor r¢ : Fun(X°P,C) — Fun(X",C) with the functor
Te : Fun(XgP,C) ~ Shve(P(Xo)) — Shve(X) induced by g*, and we can similarly write
Lp = Tporp. If ais a morphism in the co-category Fun(X°P, C) such that L¢ (o) = Te(re(a))
is an equivalence, then Lemma(l.3.4.2|shows that Lp(F(a)) = Tp(rp(Fa)) is an equivalence,
as required. ]

We will regard the oco-category Sp of spectra as endowed with the smash product
monoidal structure defined in §HA.4.8.2. This symmetric monoidal structure induces a
symmetric monoidal structure on the oo-category Fun(K,Sp), for any simplicial set K
(Remark HA.2.1.3.4); we will refer to this symmetric monoidal structure as the pointwise
smash product monoidal structure.

Proposition 1.3.4.6. Let X' be an co-topos, and let L : Fun(X°P, Sp) — Shvg,(X) be a left
adjoint to the inclusion. Then L is compatible with the pointwise smash product monoidal
structure, in the sense of Definition HA.2.2.1.6: that is, if f : F — F' is an L-equivalence
in Fun(X°P,Sp) and ¥ € Fun(X°P,Sp), then the induced map F QY — F' @Y is also
an L-equivalence in Fun(X°P,Sp). Consequently, the co-category Shvg,(X) inherits the
structure of a symmetric monoidal c0-category, with respect to which L is a symmetric
monoidal functor (Proposition HA.2.2.1.9).

Proof. Apply Lemma [1.3:4.4] to the tensor product functor ® : Sp x Sp — Sp. O

We will henceforth regard the oo-category Shvg,(X') as endowed with the symmetric
monoidal structure of Proposition [1.3.4.6] for any co-topos X. We will abuse terminology by
referring to this symmetric monoidal structure as the smash product symmetric monoidal
structure.

Proposition 1.3.4.7. Let X be an o-topos, and let L : Fun(X°P, Sp) — Shvg,(X) be a
left adjoint to the inclusion. Regard Fun(X°P,Sp) as endowed with the t-structure induced
by the natural t-structure on Sp. Then:

(1) The functor L is t-exact: that is, L carries Fun(X°P,Sp>q) into Shvs,(X)=o and
Fun(X°P,Spq) into Shvs,(X)<o.
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(2) The smash product symmetric monoidal structure on Shvgy(X) is compatible with the
t-structure on Shvgy(X). In other words, the full subcategory Shvgy, (X)™ < Shvg, (X)
contains the unit object and is stable under tensor products.

Proof. The construction of Lemma shows that (for sufficiently large k) we can
factor L as the composition of a restriction functor Fun(X°P,Sp) — Fun(X",Sp) with
the functor Fun(XgP, Sp) ~ Shvg, (P (X)) — Shvg,(X) induced by a geometric morphism
g* : P(Xo) — X. Assertion (1) now follows from Remark To prove (2), we show
that if we are given a finite collection of connective objects {.%;}1<i<n of Shvg,(X), then
the tensor product #1®---® .%, is connective. Choose fiber sequences % ; - F; > F ;’
in Fun(X°P, Sp), where .#; € Fun(X°?, Sps() and #; € Fun(X°?,Sp._,). It follows from
(1) that L.Z} € Shvg,(X)s0 and L.#; € Shvg,(X)<_1. We have fiber sequences

LF, > LF LT

in Shvgp(&X). Since L .#; ~ .#; is connective, we deduce that the map LF, > LF, ~F,;
is an equivalence for every index i. Using Proposition we deduce that the tensor
product #1 ®- - -®.%#,, in the co-category Shvg,(X') can be written as L(Z|® -®%.). By
virtue of (1), it will suffice to show that .| ® - - -®.%", is a connective object of Fun(X°P, Sp),
which follows because the smash product monoidal structure on Sp is compatible with its
t-structure (Lemma HA.7.1.1.7). O

1.3.5 Sheaves of E-Rings
We now study sheaves with values in the co-category CAlg of E-rings.

Remark 1.3.5.1. The forgetful functor CAlg = CAlg(Sp) — Sp is conservative and
preserves small limits (see Lemma HA.3.2.2.6 and Corollary HA.3.2.2.5). It follows that for
any oo-topos X, we have a canonical equivalence of co-categories (even an isomorphism of

simplicial sets) Shvcalg(X) ~ CAlg(Shvgp(&X)).

Remark 1.3.5.2. Let X be an oo-topos and & : X°® — CAlg a sheaf of Ey-rings on X.
Composing with the forgetful functor CAlg — Sp, we obtain a sheaf of spectra on X’; we
will generally abuse notation by denoting this sheaf of spectra also by &. In particular, we
can define homotopy groups m, & as in Notation These homotopy groups have a bit
more structure in this case: mg & is a commutative ring object in the underlying topos of X,
while each 7, & has the structure of a my &-module.

Definition 1.3.5.3. Let X be an co-topos. We will say that a sheaf & of Ey-rings on X
is connective if it is connective when regarded as a sheaf of spectra on X: that is, if the
homotopy groups m, ¢ vanish for n < 0. We let Shvgaig (X)) denote the full subcategory
of Shvcale(X) spanned by the connective sheaves of E-rings on X.
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Remark 1.3.5.4. Let X be an oo-topos. Combining Proposition with Remark
HA.2.2.1.5, we deduce that the inclusion Shvcalg(X)™ — Shvcale(X) admits a right
adjoint. In other words, if & is an arbitrary sheaf of E,-rings on X, then we can find a
connective sheaf of Ey-rings ¢’ equipped with a map a : ¢/ — € having the following
universal property: for every object &/ € Shvcalg(X)®", composition with a induces a
homotopy equivalence

Mapshy ey, (1) (A ') — Mapspy ey, (1) (A5 O).

In this case, we will say that ¢’ is a connective cover of O, or that o exhibits 0’ as a
connective cover of €. Moreover, the map « exhibits ¢’ as a connective cover of ¢ in the
oo-category Shvg,(X); in particular, it induces isomorphisms

e Tm O ifm>=0
T O ~
0 if m < 0.

We will generally denote the connective cover of & by 1>¢ 0.

Definition 1.3.5.5. Let X be an co-topos, let & be a connective sheaf of Eg-rings on X,
and let n = 0 be an integer. We will say that & is n-truncated if the underlying spectrum-
valued sheaf of & is n-truncated. We will say that & is discrete if it is O-truncated. We
let Shvcalg(X)S, denote the full subcategory of Shvcalg(X)®™ spanned by the n-truncated
objects of Shvgajg (X)".

Remark 1.3.5.6. Let X be an oo-topos and let n = 0 be an integer. Then we can
identify Shvcaig(X)S, with the oo-category of commutative algebra objects of the symmetric
monoidal oo-category Shvg, (X)Z;,. In particular, when n = 0, we can identify Shvcaig(X)S,
with the ordinary category of commutative ring objects of the underlying topos of X (see
Proposition [1.3.2.7]).

Combining Proposition [[.3.4.7 with Proposition HA.2.2.1.9, we deduce that the inclusion
functor

n n

Shvoalg (X)L, — Shveag(X)S,

admits a left adjoint. In other words, if ¢ is an arbitrary connective sheaf of Ey-rings on
X, then we can find an n-truncated connective sheaf of E-rings ¢’ equipped with a map
« : 0 — 0’ having the following universal property: for every object &/ € Shvcalg(X)Z,,
composition with a induces a homotopy equivalence

Map shyop, () (07 &) = Mapgpyg,, (1) (05 7).

In this case, we will say that ¢ is an n-truncation of O, or that o ezhibits 0’ as an n-
truncation of €. Moreover, the map « exhibits &’ as an n-truncation of & in the oo-category
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Shvg,(X); in particular, it induces isomorphisms

, T O HUm<n
T, O =~
0 if m > n.

We will generally denote the n-truncation of & by 7<,, 0.

Let X be an oo-topos and let % be a spectrum-valued sheaf on X. The condition
that .# be connective does not guarantee that .#(U) is connective for each object U € X.
Nevertheless, there is a close relationship between connective Sp-valued sheaves on X and
Sp“-valued sheaves on X:

Proposition 1.3.5.7. Let X be an oo-topos. Then composition with the truncation functor
T=0 : Sp — Sp™ induces an equivalence of co-categories Shvgy(X)™ — Shvgpen (X).

We will deduce Proposition from the following more general principle:

Proposition 1.3.5.8. Let C be a compactly generated presentable co-category. Let Co < C
be a full subcategory which is closed under the formation of colimits and which is generated
under small colimits by compact objects of C. Let X be an co-topos. Then:

1) The oo-category Cy is presentable and compactly generated.
2) The inclusion Co < C admits a right adjoint g which commutes with filtered colimits.

3) Composition with g determines a functor G : Shve(X') — Shve, (X).

(
(
(
(4) The functor G admits a fully faithful left adjoint F'.

Remark 1.3.5.9. In the situation of Proposition an object .# € Shve(X) belongs
to the essential image of the full faithful embedding Shve,(X) — Shve(X) if and only if
the canonical map G(.%) — .Z is an L-equivalence in Fun(X°P,C), where L denotes a left
adjoint to the inclusion Shve(X) — Fun(X°P,C).

Proof of Proposition[I.5.5.7. Let Sp™ denote the full subcategory of Sp spanned by the
connective spectra. Then Sp® is stable under small colimits in Sp, and is generated
under small colimits by the sphere spectrum S € Sp™ (which is a compact object of the
oo-category Sp). Consequently, Proposition supplies a fully faithful embedding
F : Shvgpen (X)) — Shvgy, (&) for every oo-topos X, which is right homotopy inverse to the
functor Shvg,(X) — Shvgpen (X) given by composition with 7>g : Sp — Sp“™. To complete
the proof, it will suffice to show that Shvg,(X)" is the essential image of the functor F.
Let .# € Shvgp (&), so that we have a fiber sequence 7>q .# LAy 2R T<—1-Z in the co-
category Fun(X°P,Sp). Let L : Fun(X°P, Sp) — Shvg,(X) be a left adjoint to the inclusion.
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According to Remark [1.3.5.9] the object % belongs to the essential image of F' if and only if
L(¢) is an equivalence. Since the functor L is t-exact, this is equivalent to the requirement
that .7 € Shvg, (X)". O

Many variations on Proposition are possible:

Proposition 1.3.5.10. Let X be an co-topos. Then composition with the functor 1> :
CAlg — CAIlg™ induces an equivalence of w-categories Shvgaig(X)™ — Shvcajgen (X).

It is possible to deduce Proposition [I.3.5.10] from the fact the the equivalence of Propo-
sition [1.3.5.7| respects the symmetric monoidal structures on Shvg,(X)" and Shvgpen (X).

However, we will give an alternate argument which appeals to Proposition [1.3.5.§]

Proof of Proposition[1.3.5.10. The oo-category CAlg™ is a colocalization of CAlg, which is
generated under small colimits by the compact object Sym*(S), where S denotes the sphere
spectrum and Sym* : Sp — CAlg denotes a left adjoint to the forgetful functor. Proposition
gives a fully faithful embedding F' : Shvgajgen (X) — Shvae(X) for every oo-topos
X, which is right homotopy inverse to the functor Shvcalg(X) — Shvoaigen (X) given by
composition with the functor 7~ CAlg — CAlg. To complete the proof, it will suffice to
show that the essential image of F' coincides with Shvcajg(X)".

Let 0 € Shvcalg(X) be a sheaf of E-rings on X, and let 759 & € Fun(X°P, CAlg)
be the presheaf of E-rings obtained by pointwise passage to the connective cover. Let
0" € Shvcalg(X) be a sheafification of the presheaf 7o €, so that the evident map 759 0 — €
induces a map of sheaves o : 0 — €. According to Remark the sheaf & belongs
to the essential image of F' if and only if « is an equivalence. Let u : CAlg — Sp denote
the forgetful functor. Since u preserves small limits, composition with u induces a forgetful
functor U : Shvgalg(X) — Shvgp(X). Since w is conservative, the functor U is also
conservative, so that « is an equivalence if and only if U(a) is an equivalence. Since
u preserves filtered colimits, Lemma implies that U(¢") can be identified with a
sheafification of o 7509 0 ~ 7>¢(u o ). The proof of Proposition guarantees that
U(«) is an equivalence if and only if U (&) is connective as a sheaf of spectra: that is, if and
only if & belongs to Shvcaig(X)™. O

Proof of Proposition[1.3.5.8 Since Cy is stable under small colimits in C, the inclusion
1 : Co € C preserves small colimits so that ¢ admits a right adjoint g : C — Cg by Corollary
HTT.5.5.2.9. Let D < Cq be the full subcategory spanned by those objects of Cy which are
compact in C. Any such object is automatically compact in Cg, so we have a fully faithful
embedding ¢ : Ind(D) — Cy (Proposition HTT.5.3.5.11). Since Cy is generated under small
colimits by objects of D, we deduce that ¢ is an equivalence of co-categories; this proves (1).
Moreover, it shows that the collection of compact objects in Cq is an idempotent completion
of D; since D is already idempotent complete, we deduce that every compact object of Cy is
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also compact in C. Assertion (2) now follows from Proposition HTT.5.5.7.2. Assertion (3)
is obvious (since g preserves small limits; see Proposition HTT.5.2.3.5).

Let L : Fun(X°P,C) — Shv¢(X) be a left adjoint to the inclusion, and define Lg similarly.
We observe that G is equivalent to the composition

Shv(C) < Fun(X°?,C) % Fun(X°P,Co) 28 Shve, (X),

where G’ is given by composition with g. It follows that G admits a left adjoint F', which
can be described as the composition

Shv(C) & Fun(X°P,C) 2 Fun(X°P,Co) 2 Shve, (X).

To complete the proof, it suffices to show that F' is fully faithful. In other words, we wish to
show that for every object .# € Shv¢,(X), the unit map .# — (G o F)(.%) is an equivalence.
In other words, we wish to show that the map « : # — L.% becomes an equivalence
after applying the functor G'. Since G'(F) ~ .% and G'(L %) belong to Shve,(X), this is
equivalent to the requirement that G’ («) is an Lg-equivalence in the oo-category Fun(X°P, Cy).
This follows from (3) and Lemma since « is an L-equivalence in Fun(X°P,C). O

1.4 Spectral Deligne-Mumford Stacks

In §1.1} and we introduced two different generalizations of the notion of scheme:
the notion of spectral scheme (Definition [1.1.2.8)) and the notion of Deligne-Mumford stack
(Definition [1.2.4.1]). These two generalizations serve rather different purposes:

e The oo-category SpSch of spectral schemes can viewed roughly as a “left-derived”
version of the category of schemes. More precisely, though the category Sch and the
oo-category SpSch both admit fiber products, the inclusion Sch < SpSch does not
preserve fiber products. If f : X — Y and f’ : X’ — Y are morphisms of schemes,
then we can form a fiber product (Z,0z) of X and X’ over Y in the co-category
SpSch, whose underlying ordinary scheme (Z, 7y 0z) is the fiber product X xy X’ in
the category of schemes. However, the structure sheaf &'z need not be 0-truncated, so
that (Z, 0'z) need not be an ordinary scheme. This is not a bug, but a feature: the
sheaves m, 07 carry useful geometric information which can detect (and help correct
for) the failure of the maps f and f’ to be transversal with respect to one another.

e The collection of Deligne-Mumford stacks is organized into a 2-category DM which
can be regarded as a “right-derived” enlargement of the category of schemes. More
precisely, there is a fully faithful embedding Sch — C which is not compatible with
certain very basic colimit constructions, such as passage to quotients under the action
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of a finite group. If X is a scheme equipped with an action of a finite group G, then
one can consider either the quotient X /G in the category of schemes (which exists
under mild hypotheses on X), or the stack-theoretic quotient X //G in the 2-category
C. The usual quotient X /G can be recovered as the “coarse moduli space” of the
Deligne-Mumford stack X//G, but they are generally not the same unless G acts
freely on X. Once again, this should be regarded as a feature rather than a bug:
the stack-theoretic quotient X//G carries useful geometric information about the
subgroups of G which stabilize points of X; this information is forgotten when passing
to the usual quotient X /G.

For some purposes, it is useful to enlarge the category of schemes simultaneously in

both of these directions. To accomplish this, we will introduce the notion of a spectral
Deligne-Mumford stack (Definition [1.4.4.2]). Roughly speaking, the definition of a spectral
Deligne-Mumford stacks is obtained by modifying the definition of a scheme (X, 0x) in

three different ways:

(4)

For every topological space X, the co-category Shv(X) of sheaves of spaces on X is
an oo-topos. Moreover, if the topological space X is sober (that is, if every irreducible
closed subset of X has a unique generic point), then we can recover X from Shv(X):
the points x € X can be identified with isomorphism classes of geometric morphisms
xz* : Shv(X) — S, and open subsets of X can be identified with subobjects of the
unit object 1 € Shv(X). In other words, the space X and the co-topos Shv(X) are
interchangable: either one canonically determines the other. The situation described
above can be summarized by saying that we can regard the theory of co-topoi as a
generalization of the classical theory of topological spaces (more precisely, of the theory
of sober topological spaces). For this reason, we opt to dispense with topological spaces
altogether and work instead with a general co-topos X.

In place of the sheaf &'x of commutative rings on X, we consider an arbitrary sheaf
Oy of Ex-rings on X.

In place of the requirement that (X, &x) be locally isomorphic to the spectrum of a
commutative ring, we require that (X, & x) be locally equivalent to Spét A, where A
is an Eq-ring and Spét A denotes its spectrum with respect to the étale topology (see

Proposition [1.4.2.4]).

1.4.1 Spectrally Ringed oo-Topoi

We begin with a discussion of CAlg-valued rings on co-topoi.

Definition 1.4.1.1. A spectrally ringed co-topos is a pair (X, &), where X is an co-topos
and 0 € Shvcag(X) is a sheaf of Ex-rings on X
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Remark 1.4.1.2. Let X = (X, 0) be a spectrally ringed oo-topos. We will often refer to &
as the structure sheaf of X. We will often denote the structure sheaf & by &'y or Ox (the
latter notation is convenient when we wish to distinguish between spectrally ringed co-topoi
having the same underlying oo-topos).

Construction 1.4.1.3. Precomposition with a geometric morphism of co-topoi f* : X — Y
induces a pushforward functor fi : Shvoal(X) — Shvcoale(Y). We may therefore view
the construction & — Shvcalg(X)°P as determining a functor Shveaye : 07 op — @w,
where 0T op denotes the co-category of co-topoi. This functor classifies a coCartesian
fibration c0Topcaj, — 00T op. More informally, the objects of 00T opcy), are spectrally
ringed oo-topoi (X, 0 x), and a morphism from (X, Ox) to (), Oy) in 0T opcp s given by
a pair (f*,¢), where f, : X — ) is a geometric morphism of co-topoi and ¢ : Oy — f. Ox
is a morphism of sheaves of Eq-rings on V. We will refer to 007 opcajg as the co-category of
spectrally ringed oo-topoi.

Remark 1.4.1.4. Let X be an oo-topos and let XV denote the underlying topos of X. For
any sheaf of Eo-rings €x on X, we can regard my Oy as a commutative ring object of X7.
We will refer to (X, m9 Ox) as the underlying ringed topos of (X, ). The construction

(X,0x) — (XY, 79 Ox)

determines a functor from the homotopy 2-category of ©0T 0pcj, to the 2-category 17 op Alg®
of ringed topoi.

Remark 1.4.1.5. Let (X, 0x) be a ringed topos, and let Shvs(X) denote the 1-localic
oo-topos associated to X' (see §HTT.6.4.5). Remark supplies an equivalence from
the category of commutative ring objects of X to the oco-category of connective O-truncated
sheaves of E-rings on Shvg(X). We let & denote the image of ¢y under this equivalence.
Then (Shvg(X), 0) is a spectrally ringed oco-topos. Moreover, the construction (X, Ox) —
(Shvs(X), 0) determines a fully faithful embedding from the co-category of ringed topoi
(obtained from the 2-category 17 op Alg® Dy discarding noninvertible 2-morphisms) to the
oo-category 00T opcaje Of spectrally ringed oo-topoi. The essential image of this fully faithful
embedding consists of those spectrally ringed oo-topoi (), €y) where Y is 1-localic and the
structure sheaf €'y is connective and O-truncated.

Remark 1.4.1.6. For every topological space X, Example supplies an equivalence
of oo-categories Shvoale(Shvs(X)) — Shvealg(X), which depends functorially on X. It
follows that there is a commutative diagram of co-categories

@
Topcalg — 0T 0Pcalg

|,

Top o7 op,
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where ¢ : Top — oo op is the functor which carries a topological space X to its associated
oo-topos Shvg(X).

1.4.2 The Etale Spectrum of an E,-Ring

In we constructed the étale spectrum Spét R of a commutative ring R (Definition
1.2.2.5)). We now introduce an analogous construction in the setting of K -rings.

Definition 1.4.2.1. Let X be an oo-topos and let &y be a sheaf of £y -rings on X'. We
will say that &'y is local if mg O x is local, when regarded as a commutative ring object of
the topos XV (see Definition . We will say that Oy is strictly Henselian if mg O x is
strictly Henselian, in the sense of Definition [1.2.2.5

If f: 0 — ¢’ is a morphism of CAlg-valued sheaves on X, we will say that f is local if
it induces a local morphism 7wy & — my &' of commutative ring objects of the topos X7, in
the sense of Definition [L2.1.41

We let oo’Topl&ilg denote the subcategory of 00T opcy)e Whose objects are spectrally
ringed co-topoi (X, @ x) for which &'y is local, and whose morphisms are maps f : (X, 0x) —
(Y, 0y) for which the associated map f* 0y — Oy is a local morphism of CAlg-valued
sheaves on X'. We let OOTop%Ifffé denote the full subcategory of ooTopI&'ilg spanned by those
pairs (X, O x) where Oy is strictly Henselian. We will say that a spectrally ringed co-topos
(X, Ox) is local if it belongs to ooTopl&ilg, and strictly Henselian if it belongs to ooTop%Pfffé.
Remark 1.4.2.2. Let (X, 0x) be a spectrally ringed space. If O is strictly Henselian
(when regarded as a CAlg-valued sheaf on the oo-topos Shvs(X)), then 'x is local (in the
sense of Definition [1.1.5.3]).

The equivalence of oo-categories CAlg® ~ 0T opoale XoTopiS} determines a fully
faithful embedding CAlg® < 0T opcaje, Which carries each Eo-ring A to the spectrally
ringed co-topos (S, 0 4) where 0 4 € Shvcaig(S) is characterized by existence of an equiv-
alence 0 4(x) ~ A. This embedding admits a left adjoint, which carries a pair (X, Oy)
to the Eo-ring 0 x(1), where 1 is a final object of X. We will denote this left adjoint by
(X,0x) — T'(X;Ox), and refer to it as the global sections functor.

We will need the following analogue of Remark

Proposition 1.4.2.3. The global sections functor
ooTop%Ik}f}g — CAlg®™®
(X,0x) > T(X;O0x)

sHen

admits a right adjoint Spét : CAlg™ — 0T opgal,-
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Proposition [1.4.2.3| asserts that for every Eo-ring R, there exists a strictly Henselian
spectrally ringed co-topos (X, @ x) and amap 6 : R — ['(X; 0 x) with the following universal
property: for every strictly Henselian spectrally ringed co-topos (), €y ), composition with
f induces a homotopy equivalence

MapooTopsC}flz((yv O0y), (X, 0x)) — MapCAlg(Rv L(; 0y)).

The spectrally ringed co-topos (X, € y) is uniquely determined up to equivalence and depends
functorially on R. A more explicit description of (X, & x) is given by the following:

Proposition 1.4.2.4. Let R be an Ey-ring, and let O : CAlgIépf — CAlg denote the forgetful
functor. Then:

(1) The functor O is a sheaf with respect to the étale topology of Notation ?7.

2) When regarded as a sheaf of Ew-rings on the co-topos Shv'y¥ (see Proposition|1.3.1.7),
R
the sheaf O is strictly Henselian.

By construction, we have a canonical equivalence
a:T(Shvé; 0) ~ O(R) = R.

(3) Let (X,0x) be an arbitrary object of ooTop%Iff}o,. Then composition with o induces a
homotopy equivalence

Mapoo"l’op"gfflz ((Xa ﬁé’()v (ShV?pf, ﬁ)) - MapCAlg(Rv F(Xa ﬁX))

We postpone the proof for the moment.

Definition 1.4.2.5. Let R be an E,-ring. We let Spét R denote the spectrally ringed
co-topos (Shv%, 0) appearing in Proposition [1.4.2.4, We will refer to Spét R as the étale
spectrum of R.

Warning 1.4.2.6. Let R be a commutative ring. We now have two definitions for the étale
spectrum of R:

(a) We can regard R as an ordinary commutative ring, and consider the ringed topos
(Shvset (CAlgH), Op) introduced in Definition [1.2.3.3

(b) We can regard R as a discrete E-ring, and consider the spectrally ringed co-topos

(Shv¥t, 0) of Definition [1.4.2.5

However, there should be little risk of confusion: these two mathematical objects are essen-
tially identical with one another. More precisely, the spectrally ringed co-topos (Shv‘%, 0) is

the image of (Shvset(CAlgS), Op) under the fully faithful embedding described in Remark
77?.
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Remark 1.4.2.7. It follows from the third assertion of Proposition [1.4.2.4] that the con-
struction R — Spét R can be regarded as a right adjoint to the global sections functor
T: oo’TopSCIffffg — CAlg®P; in particular, the étale spectrum Spét R depends functorially on
R.

1.4.3 Solution Sheaves

We now introduce some terminology which will be useful for the proof of Proposition

424

Notation 1.4.3.1. Let (X, Ox) be a spectrally ringed oo-topos. For each Ey-ring R, the
construction (U € &X) = Mapcp (R, Ox(U)) determines a S-valued sheaf on X'. We let
Solr(O x) denote an object of X which represents this functor.

Example 1.4.3.2. Let R = Sym*(S™) denote the free Eo-ring on a single generator in
degree n. If Oy is a sheaf of E,-rings on an oo-topos X, then there is a canonical equivalence
Solg(Ox) ~ Q®*" Oy in the cwo-topos X.

Remark 1.4.3.3 (Functoriality in R). Let X be an oo-topos and let &y be a sheaf of
E-rings on X. Then the construction R +— Solp(Oy) is contravariantly functorial in R.
Moreover, it carries colimits (in the co-category CAlg of Eq-rings) to limits (in the co-topos
X).

Remark 1.4.3.4 (Functoriality in 0'y). Let X be an co-topos and let R be an Eq-ring.
Then the construction &y — Solg(€x) determines a functor Shvcalg(X) — Shv(X) which
preserves small limits.

Remark 1.4.3.5 (Functoriality in X'). Let f, : X — ) be a geometric morphism of co-topoi
and let R be an Ey-ring. Then the diagram

Sol
Shvealg(X) "X
J/f* Jx
Solgr
Shveaie(Y) Yy

commutes (up to canonical equivalence).

Remark 1.4.3.6. In the situation of Notation [1.4.3.1] suppose that R is connective. Then
for any object Oy € Shvcalg(X), the canonical map Solg(7=0 Ox) — Solr(Ox) is an
equivalence in X.

It follows from Remark [1.4.3.5| that for any geometric morphism of co-topoi fi : X — Y
and any Ey-ring R, there is a canonical natural transformation of functors f* Solg — Solg f*
from Shvcaig(Y) to Shvoae(X).
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Lemma 1.4.3.7. Let R be a compact object of CAlg. Then, for any geometric morphism of
00-topoi fx : X — Y and any sheaf Oy of By -rings on Y, the canonical map f* Solr(Oy) —
Solgr(f* Oy) is an equivalence in X .

Proof. Let C < CAlgp be the full subcategory spanned by those objects R for which the
natural map f* Solg — Solg f* is an equivalence of functors from Shvcaig()) to X'. Then C
is closed under retracts, and it follows from Remark (together with the left exactness
of f*) that C is closed under finite colimits in CAlgg. To prove that C contains all compact

objects of CAlgp, it will suffice to show that it contains all free algebras of the form Sym*(S™),
which follows from Example O

Lemma 1.4.3.8. Let f: A — B be an étale morphism between connective Eq-rings, and
let Ox be a connective sheaf of Eo-1rings on an co-topos X. Then the diagram

SOIB(ﬁ)() —— SOIB(T(() ﬁ){)
SOIA(ﬁx) —— 801,4(71'0 ﬁ){)
is a pullback square in X.
Proof. Using Proposition [B.1.1.3] we can choose a pushout diagram
Ag——A

ifo lf

Bo ——B
in CAlg, where fj is étale and the E -rings Ag and By are compact and connective. Using
Remark [T.4.3.3] we can replace f by fo and thereby reduce to the case where A and B are
compact. Because X is an co-topos, we can choose a small co-category C and a geometric

morphism ¢, : X — P(C) which exhibits X" as a left exact localization of P(C). We then
have equivalences

Ox ~ ¢*(T200% Ox) o Ox ~ ¢*(Tods Ox).

Using Lemma [1.4.3.7, we can replace Oy by 7s0(¢+« Ox) and thereby reduce to the case
where X = P(C) is an co-category of presheaves. In this case, we are reduced to proving
that for every object C' € C, the diagram of mapping spaces

Mapgaig(B, Ox(C)) — Mapcaie (B, 0 O x(C))

l |

Mapgalg (A4, Ox(C)) —— Mapcaie (A, m0 Ox(C))

is a pullback square, which follows from Theorem HA.7.5.4.2. ]
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Lemma 1.4.3.9. (a) Let (X,0x) be a spectrally ringed co-topos. Then Oy is strictly
Henselian if and only if, for every Ex-ring A and every faithfully flat étale morphism
A — [T <i<n Ai, the induced map

[ Sola,(6x) — Sola(Ox)

1<i<n

is an effective epimorphism in X.

(b) Let f:(X,0x) — (¥, 0y) be a morphism of spectrally ringed co-topoi, where € x and
Oy are strictly Henselian. Then f is a morphism in ooTopSCIK’{é if and only if, for

every étale morphism of Eo-rings A — B, the associated diagram

f* SO]B(ﬁy) HSOIB(ﬁx)

l |

F* Soly(0y) —= Sola(Ox).

Proof. We first prove the “only if” direction of (a). Assume that 0y is strictly Henselian
and that we are given a collection of étale morphisms {A — A;}1<;<, for which the induced
map A — [ ], <, Ai is faithfully flat. We wish to prove that the induced map

[ Sola,(6x) > Sola(Ox)

1<i<n

is an effective epimorphism. Note that each of the maps A — A; is flat, and therefore fits
into a pushout square of Ey-rings

T>0A —— T>04;

|

A A;.

Using Remark [1.4.3.3] we obtain a pullback diagram

H1<i<n Soly, (Ox) Sola(Ox)

| |

Hlsisn 801720141' (ﬁX) - SOszoA(ﬁX)'

Consequently, to prove the the upper horizontal map in this diagram is an effective epimor-
phism, it will suffice to show that the lower horizontal map is an effective epimorphism. We
may therefore replace A by 7>9A (and each A; with 7>9A;) and thereby reduce to the case
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where A is connective. In this case, there is no loss of generality in assuming that &'y is
connective (Remark [1.4.3.6). Lemma [1.4.3.8 now supplies a pullback diagram

Ulgign Sola, (O x) Sola(Ox)

| |

H1<i<n SOlAi (7{-0 ﬁ/\’) - SO]A(WO ﬁX),

where the bottom horizontal map is an effective epimorphism (between discrete objects of
X) by virtue of our assumption that mo &y is strictly Henselian.

We now prove the “if” direction of (a). Assume that &'y has the property described
by (a); we wish to show that for every commutative ring R and every finite collection of
étale morphisms {R — R;}1<i<n for which the induced map R — [ [ R; is faithfully flat, the
induced map 11Solg, (19 O x) — Solr(mp O x) is an effective epimorphism (between discrete
objects of X). Writing R as a direct limit of its finitely generated subrings, we may assume
without loss of generality that R is finitely generated: that is, there exists a surjection
of commutative rings P — R, where P is a polynomial ring over Z. Using the structure
theory of étale morphisms of commutative rings (see Proposition , we can lift each
R; to an étale P-algebra P;. Let U < Spec P be the union of the images of the maps
Spec P, — Spec P. Since étale morphisms have open images, the set U is open with respect
to the Zariski topology. It is clearly quasi-compact, so we can choose a collection of elements
t1,...,t, € P for which U is covered by the open subsets Spec P[t;l] C Spec P. Because
the map R — [ [ R; is faithfully flat, the map Spec R — Spec P factors through U. We may
therefore choose coefficients ¢; € R for which the sum ¢1t; + --- + ¢ty = 1 in R; here we
abuse notation by identifying each ¢; with its image in R. Using the surjectivity of the map
P — R, we can lift each ¢; to an element ¢; € P. Let u = cit1 + - - - + cxty. Then the map
Plu™'] — JT Pi[u~!] is faithfully flat and the map P — R factors through P[u~']. We may
therefore replace R by P[u~!] and thereby reduce to the case where the commutative ring
R has the form Z[z1, ..., z,][u"!] for some u € Z[z1, ..., Tm].

Let R denote the Ey-ring given by S{z1,...,zn}[u"!], so that R = mpR. Since the
composite map

[] Solg (0x) B Solg(Ox) & Solg(my Ox) = Solg(mo Ox)

1<i<n

factors through II1<;<, Solg, (7o Ox), it will suffice to show that p and p’ are effective
epimorphisms. The map p is an effective epimorphism by virtue of our assumption that & y
satisfies the condition described in (a). The map p’ is an effective epimorphism because it is
a pullback of the mth power of the effective epimorphism Q% &y — mg &' x. This completes
the proof of (a).
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We now prove (b). Suppose first that f is a morphism in ooTop%Ifffé; we wish to show
that if ¢ : A — B is an étale morphism of Ey-rings, then the diagram

f*Solp(0y) —— Solp(Ox)

| |

f*Sola(Oy) — Sola(Ox)

is a pullback square in X. As in the first part of the proof, it will suffice to prove this in the
special case where A and B are connective. Remark then allows us to replace 0y
and Oy by their connective covers, and thereby reduce to the case where they are connective
as well. In this case, we have a commutative diagram

f* SO]B(ﬁy) HSOlB(ﬁx) HSOlB(ﬂ'O ﬁ;\{)

| | |

F* Solg(6y) —= Sol4 (O ) —= Sola(mo Ox)

where the right square is a pullback by Lemma It will therefore suffice to show that
the outer rectangle is a pullback. This rectangle also appears in the commutative diagram

f* SO]B(ﬁy) I f* SOIB(W() ﬁy) 4>SOIB(7T0 ﬁ)()

l | |

f* SOIA(ﬁy) I f* SOIA(W() ﬁy) 4>801A(7T0 ﬁ){)

where the left square is a pullback (Lemma. We are then reduced to showing that the
right square is a pullback diagram (of discrete objects of X'), which follows from Proposition
2212

For the converse, suppose that f satisfies the condition described in (b); we claim that
induced map f* 0y — Oy is local. Fix an object X € X and a map e : X — mof* Oy,
and let € denote the composite map X 5> mf* 0y — 7y Ox. We must show that if € is
invertible when regarded as an element of the commutative ring mo Map y (X, 79 O x), then e
is invertible when regarded as an element of the commutative ring mo Map (X, mo f* Oy).
This assertion is local X: we may therefore assume without loss of generality that e factors
through a map X — f* 0'y. In this case, the desired result follows by inspecting the diagram

f* SO]B(ﬁy) E—— SOlB(ﬁx) E—— SOlB(ﬂ'O ﬁ){)

l | l

f* SOIA(ﬁy) 4>SO]A<ﬁ,Y) 4>SO]A<7T0 ﬁ){)

in the special case A = S{z} and B = S{x}[x!]; here the left square is a pullback by virtue
of our hypothesis on f and the right square is a pullback by virtue of Lemma [1.4.3.8, [
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Proof of Proposition[1.4.2.4} Let R be an Ey-ring and let ¢ : CAlg$t — CAlg be the
forgetful functor. It follows from Theoremthat 0 is a CAlg-valued sheaf (with respect
to the étale topology on CAlg%). Note that my & can be identified with the sheafification of
the presheaf of commutative rings given by the composite map CAlg% ™9 CAlgY, which is
the structure sheaf of the Deligne-Mumford stack Spét R. It follows from Proposition
that mg @ is strictly Henselian, so that the sheaf & is strictly Henselian.

Let X be an arbitrary oo-topos and let &'y be a strictly Henselian CAlg-valued sheaf
on X. The construction A — Sol(0x) determines a functor Sol.(€x) : CAlght — X°P,
Applying Proposition HTT.6.1.5.2, we can identify the mapping space Map,, 1, (X, Shv%t)
with the full subcategory of Fun(CAlg®, X)> spanned by those functors x : (CAlg®)P — X
which satisfy the following conditions:

() The functor x preserves finite limits.

(i) For every faithfully flat étale morphism A — [, 4; in CAlg%, the induced map
11x(A4;) — x(A) is an effective epimorphism in the co-topos X.

If y is a functor satisfying these conditions and fy : X — Shv$} is the associated geometric
morphism, then we can identify the direct image f, Oy with the CAlg-valued sheaf on
CA]g% given by CAlgj".,@t X, yop 2%, CAlg. We may therefore identify the mapping space
MapSthAlg(Shv%)(ﬁa f« O x) with the mapping space MapFun((CAlg%)op,X) (x,Sole(Ox)).

Let 1y denote a final object of X. Fix a morphism of E,-rings ¢ : R — I'(X; Ox),
which we can identify with a map 1y — Solr(€x). For each object A € CAlg%, let
Sol% (0 x) denote the fiber product 1y X Solr (0x) SOlA(Ox), and regard the construction
A — Sol%(Ox) as a functor Sol? : (CAlg®)°P — X. The above analysis shows that the
homotopy fiber of the canonical map

0 : MapooTopCAlg((X, Ox),Spét R) — Fun((CAlg%)°P, X)~ x Mapca (R, T'(X, Ox))

over the pair (x, ¢) can be identified with the mapping space MapFun((C Algétyor x) (x, Sold(Ox)).
It follows from Lemma [1.4.3.9] that this identification carries the homotopy fiber of the
restriction

Mapy,7open (X, Ox), Spét R) — Fun((CAlg)P, X)> x Mapca (R, T(X, Ox))

to the subspace of Mapgy, (¢ Algét)op, ;\,/)(X’ Sol?(0 y)) spanned by the equivalences. It follows
that the fiber product

Mapropen (X, Ox), SPEE R) Xnapey,, (RO(X.02)) {0}

is either empty or contractible. We will complete the proof by explicitly constructing a
point of this fiber product, given by a morphism of ringed co-topoi (X, & x) — Spét R. Let
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X : (CAIgS)°P — X be the functor A — Sol% (@ ). The construction A — Sol(€x) carries
colimits in CAlg to limits in X'. It follows that the functor Sol.(& x) preserves pullbacks, so
that Sol(€x) also preserves pullbacks. By construction, the functor Sol(&y) carries R to
a final object of X, so that Sol?(&x) preserves finite limits. Since 0y is strictly Henselian,
Lemma implies that the functor y = Sol(&x) satisfies condition (ii) above, and
therefore determines a geometric morphism of co-topoi fy : X — Shv%. The preceding
analysis shows that the projection map Sold(€y) — Sol.(€x) determines a morphism of
CAlg-valued sheaves a: @ — f, Ox, so that we can regard f = (fx, @) as a morphism of
spectrally ringed topoi from (X, 0 x) into Spét A. We will complete the proof by showing
that f is a morphism in the co-category ooTop?Effé. To this end, fix an object U € X and
an element x € mo Map (U, f*(mp €')) whose image in 7wy Map (U, g O x) is invertible; we
wish to show that x is invertible. For each object A € CAlg%, let K4 e Shv% denote the
sheaf corepresented by B. Since the objects h** generate Shv'léqt under small colimits, we
can therefore choose an effective epimorphism 11h4e — 7 ¢, which induces an effective
epimorphism [ [ f*h4« — f*my €. Working locally on U, we may assume that the map
z: U — f*my O factors as a composition U 9, f*hA 1, f*mg O, where ) : U — f*hA ~
Sol% (O x) classifies an R-algebra morphism ¢ : A — @y (U), and y : h* — 7 € is a map of
discrete objects of Shvjé.,@t which we can identify with an element of the commutative ring
7o O(A) = mpA. Applying ¢ to y, we obtain an element ¢(y) € mo(O+(U)) whose image
in Mapy (U, Ox) is an equivalence. It follows that multiplication by ¢(y) induces an
equivalence from Oy |y to itself, so that ¢(y) is invertible in @y |y. Consequently, the
map v admits an (essentially unique) lift to a map ¢ : U — Solg[y,l](ﬁ;() o~ f*hA[y_l], SO

that = factors as a composition U 2, f *p ALy~ Iy, f*mo O, and is therefore invertible, as
desired. ]
1.4.4 Spectral Deligne-Mumford Stacks

We are now ready to introduce the main objects of study in this book.

Notation 1.4.4.1. Let X be an co-topos, let C be an arbitrary co-category, and let & x be
a C-valued sheaf on X. For each object U € X, we let Oy |y denote the composite functor

()7 — X S,

so that Oy |y is a C-valued sheaf on the co-topos Xy. We will refer to Ox |u as the
restriction of Oy to U.

Definition 1.4.4.2. A nonconnective spectral Deligne-Mumford stack is a spectrally ringed
oo-topos X = (X, O x) for which there exists a collection of objects U, € X satisfying the
following conditions:
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(i) The objects U, cover X. That is, the coproduct 11,U, is 0-connective.

(13) For each index «, there exists an Eq-ring A, and an equivalence of spectrally ringed
oo-topoi (X, , Ox |u,) =~ Spét Aq.

We let SpDM" denote the full subcategory of ooTop%P}flré spanned by the nonconnective
spectral Deligne-Mumford stacks.

A spectral Deligne-Mumford stack is a nonconnective spectral Deligne-Mumford stack
(X, O x) for which the structure sheaf &y is connective. We let SpDM denote the full
subcategory of SpDM" spanned by the spectral Deligne-Mumford stacks.

Remark 1.4.4.3. Let A be an Ey-ring, and let & be the sheaf of Ey-rings on Shv‘fzf given
in Proposition [[.4.2:4] If A is connective, then any étale A-algebra is also connective. It
follows that & is a connective sheaf of Ey-rings on Shv‘if, so that Spét A is a spectral
Deligne-Mumford stack.

Remark 1.4.4.4. Let f: X — Y be an étale morphism of spectrally ringed co-topoi. If Y
is a (nonconnective) spectral Deligne-Mumford stack, then so is X. The converse holds if f
is an étale surjection.

1.4.5 Connective Covers

Our next goal is to compare the theory of spectral Deligne-Mumford stacks with the
more general theory of nonconnective spectral Deligne-Mumford stacks. To this end, we
start by establishing an analogue of Proposition [1.1.7.5

Proposition 1.4.5.1. Let (X,0x) be a nonconnective spectral Deligne-Mumford stack.
Then (X,7s0Cx) is a spectral Deligne-Mumford stack. Moreover, it has the following
sHen

universal property: for every object (), Oy) € 0T opEAlgs if Oy is connective, then the
canonical map

MapooTOp%Ifﬁré((Xa T>0 ﬁé\f)v (yv ﬁy)) - MapooTop%kaé((Xa ﬁX)? (y7 ﬁy))
1s a homotopy equivalence.

Corollary 1.4.5.2. The inclusion functor SpDM <« SpDM"® admits a left adjoint, given
on objects by (X,0x) — (X, 750 Ox).

Proof of Proposition|[I.7.5.1. Let (¥,0y) be an arbitrary spectrally ringed oo-topos for
which 0y is connective. For every geometric morphism f, : X — ), the pullback f* &y is
also connective so that the natural map

Map spy e, (1) (f* Op: 20 Ox) = Mapspye,, (1) (f* O, Ox)
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is a homotopy equivalence. It follows that the homotopy fibers of the vertical maps in the
diagram

MapooTopCAlg((Xv >0 Ox), (Y, ﬁy)) MapooTopCAlg((Xv Ox), (Y, ﬁ)’))

\ /

Mapoo’Top(Xv y)

are homotopy equivalent to one another, so that 6 is a homotopy equivalence. If 7y is
strictly Henselian, then 0 restricts to a homotopy equivalence

MapooTopbg}flré((Xa T>0 ﬁX)a (ya ﬁy)) - MapOOTop%I}flré((X’ ﬁX)? (y7 ﬁy))

(since my(7=0 O x) is isomorphic to my Ox).

To complete the proof, it will suffice to show that if (X, 0'x) is a nonconnective spectral
Deligne-Mumford stack, then (X', 70 @ x) is a spectral Deligne-Mumford stack. The assertion
is local on X'. We may therefore assume without loss of generality that (X, & x) has the form
Spét A for some Eq-ring A. Let B = 759A. Then Spét B is a spectral Deligne-Mumford
stack (Remark , so the canonical map (X, 0x) — Spét B factors as a composition

(X,0%) 5 (X, 720 Ox) 5 Spét B.

To complete the proof, it will suffice to show that v is an equivalence. Using the explicit
description of the functor Spét supplied by Proposition [1.4.:2.4] we can identify both X and
the underlying co-topos of Spét B with Shvif. The structure sheaf & of Spét B is given by
O(A") = 150A’, from which it immediately follows that & is a connective cover of &y (so
that 1 is an equivalence). O

Corollary 1.4.5.3. Let A be an Eq-ring. If Spét A is a spectral Deligne-Mumford stack,
then A is connective.

Proof. Write Spét A = (X, O x). The proof of Proposition [1.4.5.1| shows that (X, 70 Ox) ~
Spét(7=0A). Passing to global sections, we deduce that the canonical map 7504 =~
D(X;7>0O0x) —> T'(X; Ox) ~ A is an equivalence, so that A is connective. O

1.4.6 Truncated Spectral Deligne-Mumford Stacks

We now study the formation of Postnikov towers in the setting of spectral Deligne-
Mumford stacks.

Definition 1.4.6.1. Let X = (X, O x) be a spectral Deligne-Mumford stack, and let n > 0
be an integer. We will say that X is n-truncated if €y is n-truncated when regarded as a
sheaf of spectra on X. We let SpDMS" denote the full subcategory of SpDM spanned by
the n-truncated spectral Deligne-Mumford stacks.
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Example 1.4.6.2. Let A be an E,-ring. Then A can be recovered as the Ey-ring of
global sections of the structure sheaf of Spét A. Consequently, if Spét A is an n-truncated
spectral Deligne-Mumford stack, then A is connective (see Corollary and n-truncated.
Conversely, if A is connective and n-truncated, then the explicit description of Spét A given
by Proposition shows that Spét A is an n-truncated spectral Deligne-Mumford stack.

Proposition 1.4.6.3. Let (X, Ox) be a spectral Deligne-Mumford stack. For each n =0,

the truncation (X,T<n, Ox is also a spectral Deligne-Mumford stack. Moreover, it has the

following universal property: for every object (), Oy) € ooTopSCIfffé, if Oy is connective and

n-truncated, then the canonical map
Maprop%}IIﬁ’é((y7 ﬁy)a (Xa T<n ﬁX)) - Mapoo']’opscliclré((y, ﬁy), (X, ﬁk‘))
is a homotopy equivalence.

Corollary 1.4.6.4. For each integer n = 0, the inclusion SpDMS" < SpDM admits a
right adjoint, given on objects by (X,O0x) — (X, 7<n Ox).

Notation 1.4.6.5. If X = (X, Oy) is a spectral Deligne-Mumford stack and n > 0 is an
integer, we let 7<, X denote the spectral Deligne-Mumford stack given by (X, 7<, Ox). We
will refer to 7, X as the n-truncation of X

Proof of Proposition|[1.4.6.3 Let (Y, 0y) be an arbitrary spectrally ringed oo-topos for
which €y is n-truncated. For every geometric morphism f, :  — X, the pushforward
f« Oy is also n-truncated. We therefore have a commutative diagram

Map iy, () (T<n Ox, T20f5 Op) —= Mabshye 0, (1) (O 2, T>0f5 Oy)

| |

MapShVCAlg(X) (Tgn ﬁX’ f* ﬁy) Ma’psthAlg(X) (ﬁX’ f* ﬁy)

where the vertical maps are homotopy equivalences (since &'y is connective) and the upper
horizontal map is a homotopy equivalence (since 7>q fx O’y is connective and n-truncated). It
follows that the lower horizontal map is also an equivalence. Allowing f to vary, we deduce
that the homotopy fibers of the vertical maps in the diagram

MapooTopCAlg((yv ﬁy), (X, T<n ﬁX)) MapOOTopCAlg((y7 ﬁ)’)? (Xv ﬁX))

\/

MapooTop(yv X)

are homotopy equivalent to one another, so that 6 is a homotopy equivalence. If 0y is
strictly Henselian, then 6 restricts to a homotopy equivalence

MapooTopScIffé((y’ ﬁy), (X’ T<n ﬁ/y)) - MapooTopscfkfé((ya ﬁy)? (‘X’ ﬁX))
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(since mo(T<pn, O x) is isomorphic to my O x).

To complete the proof, it will suffice to show that if (X, 0y) is a spectral Deligne-
Mumford stack, then (X, 7<, Ox) is also a spectral Deligne-Mumford stack. The assertion
is local on X. We may therefore assume without loss of generality that (X, 0y) has the
form Spét A for some Eo-ring A. It follows from Corollary that A is connective.
Let B = 7<, A. Then Spét B is an n-truncated spectral Deligne-Mumford stack (Example
, so the canonical map Spét B — Spét A ~ (X, O x) factors as a composition

Spét B S (X, 7<p Ox) — (X, 0x).

To complete the proof, it will suffice to show that ¢ is an equivalence. Using the explicit
description of the functor Spét supplied by Proposition [1.4.2.4] and Theorem HA.7.5.0.6,
we can identify both X and the underlying co-topos of Spét B with Shvfif. Under this
identification structure sheaf & of Spét B corresponds to the functor CAlgéAf given by
O(A") = 1<, A, from which we immediately deduce that ¢ is an equivalence. O

1.4.7 Affine Spectral Deligne-Mumford Stacks

Let X = (X, O x) be a nonconnective spectral Deligne-Mumford stack. We will say that
X is affine it is equivalent to Spét A, for some E.-ring A.

Remark 1.4.7.1. Arguing as in Remark [I.1.5.7] we see that the construction A — Spét A
determines a fully faithful embedding Spét : CAlg®® — SpDM"¢, whose essential image is the
full subcategory of SpDM"¢ spanned by the affine nonconnective spectral Deligne-Mumford
stacks.

Our main goal is to establish the following characterization of affine spectral Deligne-
Mumford stacks:

Proposition 1.4.7.2. Let (X, Ox) be a spectrally ringed co-topos which satisfies the follow-
ing conditions:

(a) Let X° denote the underlying topos of X. Then the ringed topos (X, 79 Ox) is
equivalent to Spét R for some commutative ring R.

(b) The o-topos X is 1-localic (that is, the natural geometric morphism X — Shvg(X") ~
Shvét is an equivalence).

(c) For each integer n, the (my Ox)-module 7, Ox is quasi-coherent (in the sense of

Definition [1.2.6.1).

(d) The sheaf Oy is hypercomplete.



148 CHAPTER 1. SCHEMES AND DELIGNE-MUMFORD STACKS

Then (X, 0 x) is equivalent to Spét A, for some By -ring A.

Corollary 1.4.7.3. Let (X, 0 x) be a nonconnective spectral Deligne-Mumford stack. Then
(X, Ox) is affine if and only if the O-truncated spectral Deligne-Mumford stack (X, mo O x)
1s affine.

Corollary 1.4.7.4. Suppose we are given a commutative diagram of spectral Deligne-

Mumford stacks
f

N,

and suppose that the underlying map X xz7<0 Z — Y Xz7<0 Z is an equivalence. Then f is

X Y

an equivalence.

Proof. The assertion is local on Y; we may therefore assume without loss of generality
that Y = Spét A and Z ~ Spét R are affine. Our assumption guarantees that f induces an
equivalence of O-truncations, so that 7<o X is affine. Applying Corollary [[.4.7.3] we deduce
that X ~ Spét B is affine. Let K denote the cofiber of the map A — B (formed in the
oo-category Modpg). We wish to prove that K ~ 0. Assume otherwise. Since K is connective,
there exists a smallest integer n such that 7, K is nontrivial. In this case, we have

K ~ TOI‘gOR(FQR,WnK) ~ 7 (moR®p K) ~ m, cofib(myR®r A — myR ®gr B) ~ 0,
and obtain a contradiction. O

The proof of Proposition [1.4.7.2] will require some preliminaries.

Lemma 1.4.7.5. Let X be an co-topos and let n = —1 be an integer. Suppose we are given
a collection of morphisms fo : Uy — X in X with the following properties:

(1) Each of the morphisms fo is (n — 1)-truncated.

(13) Each of the objects Uy is n-truncated.
(#i1) The induced map f :1U,U, — X is an effective epimorphism in X .
Then X is n-truncated.

Proof. Without loss of generality, we may assume that X is given as a left exact localization
of P(C) = Fun(C°,S), for some small co-category C. Let L : P(C) — X be a left adjoint to
the inclusion. For each object C' € C, let X'(C) < X (C) denote the union of those connected
components which meet the image of one of the maps U, (C) — X (C), so that we have an
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effective epimorphism [’ : 11,U, — X' in the co-topos P(C). It follows from (iii) that the
functor L carries X’ to X. Since L is left exact, it will suffice to prove that X’ is n-truncated.
We may therefore replace X by X', and thereby reduce to the case where X = P(C) is an
oo-category of presheaves. Working objectwise, we may reduce to the case where C ~ A%, so
that X is the co-category S of spaces.

If n = —1, then either X is empty or one of the maps h, is an equivalence; in either
case, we immediately conclude that X is (—1)-truncated. Suppose that n > 0. We wish
to prove that m,, (X, z) ~) for each integer m > n and each base point x € X. Using (7i7),
we may assume that x = f, (%) for some point T € U,. In this case, condition (i) implies
that the map 7, (Uy,T) — mpn(X, x) is an isomorphism, and condition (i7) implies that
Tm(Ua, T) =~ 0. O

Remark 1.4.7.6. In the situation of Lemma [1.4.7.5] we can replace (i) by the following
apparently weaker condition:

(#4') The map f, factors as a composition U, — V,, — X, where V,, is n-truncated.

Indeed, if this condition is satisfied, then U, can be realized as a retract of Uy, x x V,. If
fo satisfies condition (i), then the projection map U, xx Vo — V4, is (n — 1)-truncated.
Since V,, is n-truncated, we conclude that U, X x V,, is n-truncated, and therefore U, is
n-truncated.

Lemma 1.4.7.7. Let X be an co-topos containing an object X and let n = 0 be an integer.
Then:

(1) If the oo-topos X is (n+1)-localic and X /x is n-localic, then the object X is n-truncated.
(2) If the co-topos X is n-localic and X is n-truncated, then the c0-topos X x is n-localic.

(3) If the oo-topos X /x is (n + 1)-localic and the object X is both n-truncated and 0-
connective, then X is (n + 1)-localic.

Proof. We first prove (1). If X is (n+ 1)-localic, then we can choose an effective epimorphism
1V, — X where each V, is an n-truncated object of X. If Xy is n-localic, then we can
choose effective epimorphisms 11U, g3 — V,,, where each U, g is an (n — 1)-truncated object
of X/x. Applying Remark @ we conclude that X is n-truncated.

We now prove (2). If X' is n-localic, then we can write X as a topological localization of
P(C), for some small n-category C (see the proof of Proposition HTT.6.4.5.7). Let us identify
X with the corresponding subcategory of P(C). Then X, x is a topological localization of
P(C)/x- According to Proposition HTT.6.4.5.9, it will suffice to show that the co-topos
P(CZ/ x is n-localic. The presheaf X : C°? — S classifies a right fibration of co-categories
f : C — C. Since X is n-truncated, the fibers of § are n-truncated Kan complexes, so
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that C is also an n-category. We complete the proof by observing that there is a canonical
equivalence of co-categories P(C)/x ~ P(C).

We now prove (3). Suppose that X is n-truncated and O-connective and that X' x is
(n + 1)-localic. Let f. : X — Y be a geometric morphism which exhibits ) as an (n + 1)-
localic reflection of X. Then the associated pullback functor f* restricts to an equivalence
T<n Y — T<n X. In particular, we can assume without loss of generality that X = f*Y
for some n-truncated object Y € V. By construction, the pullback functor f* induces an
equivalence of co-categories (7<n V)y — (7<n X)/x. Restricting to n-truncated objects on
both sides, we see that f* induces an equivalence of co-categories T<,(Yy) — T<n (X /x)-
It follows from (2) that Yy is (n + 1)-localic and the co-topos X, x is (n + 1)-localic by
assumption, so that f* induces an equivalence Yy — X x.

We will show that the counit map v : f*f, — idy is an equivalence (that the unit map
w:idy — fif* is an equivalence can be proven by the same argument). Let X’ be an object
of X; we wish to show that the natural map vy : f*f X’ — X' is an equivalence. Since X
is O-connective, it will suffice to show that

vxr X idx s (fffeX) x X - X' x X
is an equivalence. Unwinding the definitions, we see that this map factors as a composition
(f feX) x X~ f*(fuX' xY)

~  frf(X x X)
- X' x X,

where the last map is an equivalence by virtue of our assumption that f* and f, induce
mutually inverse equivalences between V )y and X /x. O

Proof of Proposition[1.7.7.3. We proceed as in the proof of Proposition For each
integer n, we have a fiber sequence of spectrum-valued sheaves

Y'N1pOx) > T<n Ox — T<n—1 Ox,

where we abuse notation by identifying the sheaf of abelian groups m, &x with the cor-
responding object in the heart of Shvg,(X). Passing to global sections and extracting
homotopy groups, we obtain a long exact sequence

H" "X )17 (T Ox)|U) = To(T<n Ox)(U) = Ton(T<n—1 Ox(U)) — H* "X i3 (m O ) |0)

for each object U € X. Using assumptions (a), (b), and (c), we see that the groups
Hi(X/U; (7n Ox)|v) vanish if U € X" is affine and i > 0 (see §HTT.7.2.2 for a discussion
of the cohomology of an co-topos, Remark HTT.7.2.2.17 for a comparison with the usual
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theory of sheaf cohomology, and for a closely related discussion). Since (1<, Ox)(U)
and (7<p—1 Ox)(U) are n-truncated and (n — 1)-truncated, respectively, we conclude that
our long exact sequence degenerates to give isomorphisms

0 ifm>n
Tm(T<n Ox)(U) =~ < (7, Ox)(U) ifm=n
(T<n-10x)(U) if m <n.

when U € X7 is affine.

Set 0"y = im 7<, Ox € Shvsp(X). We have an evident map u: Ox — 0", and the
above calculation shows that this map induces an equivalence (7, Ox)(U) — m,(0"%(U))
for every affine object U € X “. In particular, v induces an isomorphism of sheaves 7, Oy —
7n, Oy for every integer n. Since 0"y is hypercomplete by construction, condition (d) implies
that u is an equivalence. It follows that the canonical map m,(Ox(U)) — (m, Ox)(U) is an
isomorphism for each affine object U € X¥.

Set A =T'(X;Ox). Then Proposition supplies a map of spectrally ringed co-topoi
f:(X,0x) — Spét A. Condition (a) implies that the final object of X is affine, so that the
canonical map m,A — T'(XY; 7, O) is an isomorphism for every integer n. In particular,
moA can be identified with the ring of global sections of my & x, so that (a) supplies an
equivalence XV ~ Shvset(CAlng% 4). Combining this observation with (b), we deduce that f
induces an equivalence of the underlying oo-topoi. Then f supplies a morphism of structure
sheaves o : 0 — f, Ox; we wish to show that this map is an equivalence. Since Shvfi‘t is
generated under small colimits by corepresentable functors h?, we are reduced to proving
that o induces an equivalence

B~ 0(h") - Ox(f*h")

for each object B € CAlgif. We will prove that for each integer n, the map n,B —
7, Ox(f*hP) is an isomorphism of abelian groups. Since f*h? is an affine object of X 9,
we can identify m, &y (f*hP) with the abelian group Hom vo(f *WB, 1, Ox). Assumption
(b) implies that m, Oy is a quasi-coherent sheaf on the affine Deligne-Mumford stack
(XY, m Ox), so that we can identify Hom o (f*h5, m, O ) with

70B Quroa T(XY, 700 Ox) ~ 1B @roa TnA ~ m, B.

O]

We close this section with a remark about affine “opens” in an arbitrary spectral
Deligne-Mumford stack.
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Definition 1.4.7.8. Let (X, Ox) be a nonconnective spectral Deligne-Mumford stack. We
will say that an object U € X is affine if the nonconnective spectral Deligne-Mumford stack
(X, Ox |v) is affine.

Proposition 1.4.7.9. Let (X, 0x) be an nonconnective spectral Deligne-Mumford stack,
and let Xy be the full subcategory of X spanned by the affine objects. Then X is generated
by Xo under small colimits (in other words, X is the smallest full subcategory of itself which
contains Xo and is closed under small colimits).

Proof. Let X' < X be a full subcategory containing Xy and closed under small colimits. We
wish to prove that X’ contains every object X € X. We first prove this under the additional
assumption that there exists a morphism X — Y, where Y € X is affine. In this case, we can
replace (X, Ox) by (X )y, Ox |y), and thereby reduce to the case where (X, 0x) ~ Spét R
is affine. In this case, we can identify X with Shv%. It follows that X is generated under
small colimits by corepresentable functors A% (where A ranges over étale R-algebras), each
of which is affine.

We now treat the general case. Let 1 denote the final object of X. Choose an effective
epimorphism U = 11,U, — 1, where each U, is affine. Let U, be the Cech nerve of the
map U — 1, so that |U,| ~ 1. Then X is the geometric realization of the simplicial object
| X x U,|. Tt will therefore suffice to show that each of the objects X x U, belongs to Xx”.
Note that there exists a map U,, — U, so that we can write X x U, as a coproduct of objects
of the form X x U, xy U,. We conclude by observing that each of these objects admits a
morphism to the affine object U, € X, and therefore belongs to X’ by the first part of the
proof. ]

1.4.8 A Recognition Criterion for Spectral Deligne-Mumford Stacks

We now give a concrete characterization of the class of spectral Deligne-Mumford stacks
which is more in the spirit of Definition [1.1.2.8

Theorem 1.4.8.1. Let (X, 0 x) be a spectrally ringed co-topos, and let XY denote underlying
topos of X. Then (X, Ox) is a nonconnective spectral Deligne-Mumford stack if and only if
the following conditions are satisfied:

(1) The ringed topos (X°,mo Ox) is a Deligne-Mumford stack, in the sense of Definition
[L.2.4.1,
(2) The canonical geometric morphism ¢y : X — Shvs(XY) (which exhibits Shvs(X™) as

a 1-localic reflection of X ) is étale.

(3) For each integer n, the homotopy group m, O x is a quasi-coherent sheaf on (X%, 79 Ox),

in the sense of Definition[1.2.6.1].
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(4) The structure sheaf O x is hypercomplete (see Definition|1.3.5.4)).

Remark 1.4.8.2. Let (X, O x) be a nonconnective spectral Deligne-Mumford stack. Then
Theorem ?7 implies that the ringed topos (X O 10 x) is a Deligne-Mumford stack. We will
refer to (XY, my Ox) as the underlying Deligne-Mumford stack of (X, 0x).

Remark 1.4.8.3. Let (X, O y) be a ringed topos, and let (Shvg(X'), &) be the associated
spectrally ringed co-topos (see Remark [1.4.1.5)). Then the co-topos Shvs(X) is 1-localic, the
groups 7, ¢ vanish for n # 0, and & is hypercomplete (since it is O-truncated). Consequently,
the spectrally ringed co-topos (Shvg(X), ) automatically satisfies conditions (2), (3), and
(4) of Theorem It follows that (Shvs(X), ) is a spectral Deligne-Mumford stack if
and only if (X, Oy) is a Deligne-Mumford stack. In particular, the construction

(X, 0x) — (Shvs(X), 0)

determines a fully faithful embedding DM — SpDM, whose essential image consists of those
spectral Deligne-Mumford stacks (X, 0y) for which the co-topos X' is 1-localic and the
structure sheaf &'y is O-truncated.

Remark 1.4.8.4. Let (X, 0x) be an arbitrary spectral Deligne-Mumford stack, let (XY, mo O x)
be its underlying Deligne-Mumford stack, and let (), &'y) be the spectral Deligne-Mumford
stack associated to (XY, my Ox) (Remark [1.4.8.3). Then we have a canonical diagram of
spectral Deligne-Mumford stacks

(X,6x) & (X,706x) L (9, 0y).

Here the map f is étale (by Theorem [1.4.8.1)), and the map ¢ exhibits (X, Oy) as an
“infinitesimal thickening” of (X, 7y O x).

Remark 1.4.8.5. If (X, Ox) is a O-truncated spectral Deligne-Mumford stack, then Remark

1.4.8.4] supplies an étale map (X, 0x) — (Y, Oy), where (), Oy) is a O-truncated, 1-localic
spectral Deligne-Mumford stack.

Proof of Theorem[1.].8.1. Suppose first that (X, Oy) is a nonconnective spectral Deligne-
Mumford stack. Assertion (2) follows from Theorem ??. Choose a covering of X' by
objects U, for which each of the spectrally ringed oo-topoi (X, Ox |v,) has the form
Spét R, for some E,-ring R,. Using (2), we see that each of the geometric morphisms
bax + Xy, — Shvs(X") is étale, so that we can choose equivalences Xy, ~ Sth(Xo)/Va
for some objects V,, € Shvg(X O) V- The underlying co-topos of Spét R, is 1-localic by
construction, so that each V, is 1-truncated by virtue of Lemma Since Shvg(X Q?) is
1-localic, it is generated (under small colimits) by discrete objects. In particular, we can
choose effective epimorphisms g, : V. — Vi, where each V is a discrete object of Shvs(XY).
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Since V,, is 1-truncated, we see that each of the maps u, : V. — V, is O-truncated. We
therefore have an equivalence

Shvs(XY) s ~ (Shviy ) .,

for some discrete objects W, in Shvga. Let & denote the structure sheaf of Spét R,, so
that we obtain equivalences of ringed topoi

(Shvset (CAlgH) w.,. (w0 O)|w.,) = (Xopvr, (0 Ox) )

Since (Shvset(CAlgh), mo &) ~ Spét(moR) is a Deligne-Mumford stack, it follows from
Remark that (X", 71y O) is also a Deligne-Mumford stack. This completes the
proof of (1). Moreover, the above argument shows that we have a canonical isomorphism
of sheaves (7, Ox)|v: ~ F |w,, where .7 denotes the quasi-coherent sheaf on Spét(moR)
associated to the moR-module 7, R (see Example [1.2.6.2)). Assertion (3) now follows from
Proposition To prove (4), we may work locally on X (by virtue of Proposition
and thereby reduce to the case where (X, 0x) = Spét A for some E-ring A. We
may further assume that A is connective. In this case, &'y can be written as the inverse
limit of the structure sheaves of the spectral Deligne-Mumford stacks Spét(7<,A), each of
which is truncated and therefore hypercomplete.

Now suppose that conditions (1) through (4) are satisfied; we wish to prove that (X, O'y) is
a nonconnective spectral Deligne-Mumford stack. Using (2), we can write X = Shvg(X") /X
for some object X € Shvg(X"). Using (1), we can choose an effective epimorphism 11U, — X
in Shvs(X"), where each U, is an affine object of X¥. Then each U, can be identified with
an object V, € . To complete the proof, it will suffice to show that each (X, Ox [v,)
has the form Spét A, for some Ey-ring A. This follows from Proposition [[.4.7.2] O

1.4.9 Postnikov Towers of Spectral Deligne-Mumford Stacks

Let X = (X, 0x) be a spectral Deligne-Mumford stack. In §1.4.6, we saw that each
truncation 7<, X = (X, 7<, Ox) is also a spectral Deligne-Mumford stack. We now show
that X is determined by the collection of truncations {7<y X}n>0.

Proposition 1.4.9.1. The co-category SpDM is a homotopy limit of the tower
. — SpDM=? =2, spDM<? =4 SpDM S =2 SpDMSC.

Proof. Let G denote the evident functor SpDM — Lir_nSpDMsn. We first claim that G is
fully faithful. Unwinding the definitions, we must show that if X = (X, Ox) and Y = (), Oy)
are spectral Deligne-Mumford stacks, then the canonical map

0 : Mapg,py(X,Y) — lim Mapg,py (X, 7<n Ox),Y)



1.4. SPECTRAL DELIGNE-MUMFORD STACKS 155

is a homotopy equivalence. Let K = Fun®(), X')™ denote the space of geometric morphisms
from the underlying co-topos of X to the underlying co-topos of Y. We will show that 6
induces a homotopy equivalence after passing to the homotopy fiber over any point of K,
corresponding to a geometric morphism f* : Y — X. In this case, we wish to show that the
canonical map

o MapSthAlg(X)(f* 0y, 0x) — liLnMaPSthAlg(X)(f* Oy, T<n Ox)

induces a homotopy equivalence on the summands corresponding to local maps between
strictly Henselian sheaves of E-rings on X. This follows from the following pair of assertions:

(a) The map ¢ is a homotopy equivalence. In fact, the canonical map 0y — lim7<, Ox
is an equivalence of sheaves of Ey-rings on X: this follows from the proof of Theorem

L4381

(b) A map f* 0y — Oy is local if and only if each of the induced maps f* Oy — 7<, Ox
is local. Both conditions are equivalent to the assertion that the underlying map

o f* Oy — my Oy

is local (Definition |1.4.2.1)).

It remains to prove that G is essentially surjective. Suppose we are given an object of
lir_nn SpDMS", given by a sequence of spectral Deligne-Mumford stacks

(Xo,0p) — (X1,01) > (X2,03) — ---

with the following property: each of the maps (X;, 0;) — (X;11, Oi4+1) induces an equivalence
(Xi,0;) ~ 17<i(Xiy1,0;41). It follows that the sequence of co-topoi Xy — X1 — --- is
equivalent to the constant sequence taking the value X = Xy. To complete the proof, it will
suffice to verify the following:

(c) The spectrally ringed oo-topos X = (&, lim &,) is a spectral Deligne-Mumford stack.

(d) For every integer n, the canonical map (X, €,,) — X induces an equivalence (X, 0),) —
T<n X.

Both of these assertions are local on X. We may therefore assume without loss of
generality that (X, 0p) is affine. It follows that each pair (X, &},) is affine (Corollary [L.4.7.3)),
so that the sequence of spectral Deligne-Mumford stacks above is determined by a tower of
connective Eq-rings

c Ay — Ay — Ag

which induces equivalences 7<,An+1 — A, for each n > 0. Since the co-category CAlg®™
is Postnikov complete (see Definition and Proposition HA.7.1.3.19 ), we can the
limit A = Liﬂln A, is a connective Eqo-ring with A, ~ 7<, A for every integer n. A simple
calculation now shows that X ~ Spét A, from which assertions (¢) and (d) follow easily. [
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1.4.10 Etale Morphisms of Spectral Deligne-Mumford Stacks

In the setting of spectral Deligne-Mumford stacks, there are two a priori different notions
of étale morphism f : (X, 0x) — (), Oy) that one could consider: one could require that
f is étale as a morphism of spectrally ringed co-topoi (see Definition below), or
one could require that f is obtained locally by applying the spectrum functor Spét to an
étale morphism of E,-rings. Our next goal is to show that these definitions are equivalent

(Corollary [1.4.10.3)).

Definition 1.4.10.1. Let f : (X,0x) — (Y,0y) be a morphism of spectrally ringed
oo-topoi. We will say that f is étale if the following conditions are satisfied:

(a) The underlying geometric morphism f, : X — ) is étale: that is, it induces an
equivalence X' ~ Y ; for some object U € Y (see §HTT.6.3.5).

(b) The induced map f* 0y — Oy is an equivalence of sheaves of Eq-rings on X.

We will say that f is an étale surjection if, in addition, the object U € ) appearing in
(a) is O-connective.

Theorem 1.4.10.2. Let ¢ : A — B be a map of Ey-rings. Then ¢ is étale if and only if
the induced map Spét B — Spét A is an étale morphism of nonconnective spectral Deligne-
Mumford stacks.

Corollary 1.4.10.3. Let f : X — Y be a map between nonconnective spectral Deligne-
Mumford stacks. The following conditions are equivalent:

(i) The map f is étale.
(i) For every commutative diagram

Spét B—— X

b

Spét A ——=Y

in which the horizontal maps are étale, the underlying map of Ex-rings A — B is

étale.

Proof of Theorem [1.4.10.3. We proceed as in the proof of Proposition The im-
plication (1) = (2) follows immediately from the construction of Spét B (see Definition
[1.2.3.3). Conversely, suppose that (2) is satisfied. Write Spét A = (X, %), so that
Spét B ~ (X 7, O x |u) for some object U € X'. Choose an effective epimorphism 11;¢;V; — U,
where each V; € X is the functor corepresented by an étale A-algebra A;. We can identify
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each V; with an object of the co-topos X ;7 ~ Shv®. We may therefore choose an effective
epimorphism ;e ;W; — U, where each W; is corepresented by an étale B-algebra Bj, and
each of the maps W; — U factors through V,;) for some map a : J — I. Without loss of
generality, we may assume that the set J is finite. Replacing I by J and « by the identity
map, we can assume that I is finite as well. Set V' = L;e;V; and W = LW, so that V is
corepresented by an étale A-algebra A’ (when regarded as an object of Shvfif), and W is
corepresented by an étale B-algebra B’ (when regarded as an object of ShV%. We therefore
have maps of spectral Deligne-Mumford stacks

Spét B" — Spét A’ — Spét B — Spét A.
Applying Remark [[.4.7.1] we obtain maps of Ey-rings
A—-B—>A - B.

It follows that B’ is a retract of A’ ® g B’ in the co-category category of A-algebras. Since
B’ is étale over B and A’ is étale over A, the algebra A’ ® g B’ is étale over A, so that B’ is
étale over A (Remark ?7). Since the map B — B’ is étale and faithfully flat, we conclude
that B is also étale over A (Proposition . O

1.4.11 Limits of Spectral Deligne-Mumford Stacks

We close this section with a few remarks about the formation of limits in the co-category
SpDM of spectral Deligne-Mumford stacks.

Proposition 1.4.11.1. (1) The co-category SpDM"™ of nonconnective spectral Deligne-

Mumford stacks admits finite limits, and the inclusion functor SpDM"™® — oOTopSCkaé

preserves finite limits.

(2) Suppose we are given a pullback diagram of nonconnective spectral Deligne-Mumford
stacks
X ——=X

J{fb' l@s
Y —=Y.
If ¢ is étale, so is ¢'.

(3) The functor Spét : CAlg®® — SpDM"¢ preserves finite products. That is, if R is an
Ex-ring and A, B € CAlgp, then the canonical map

Spét(A®r B) — (Spét A) X Spét R (Spét B)

is an equivalence.
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(4) Suppose we are given a pullback diagram of nonconnective spectral Deligne-Mumford
stacks
X ——=X

PR
Y —=Y.

If X, Y, and Y' are spectral Deligne-Mumford stacks, then X' is a spectral Deligne-
Mumford stack.

Proof. Assertion (1) is a special case of Proposition ?? (see Remark ??7), which we will prove
in Part Assertion (2) follows from Remark Assertion (3) follows because the
functor Spét is right adjoint to the global sections functor. To prove (4), we can use (2) to
reduce to the case where X, Y, and Y’ are affine. In this case, the desired result follows from
(3). O

Corollary 1.4.11.2. The oo-category SpDM" of nonconnective spectral Deligne-Mumford
stacks is idempotent complete.

Proof. The co-category ooTop%Ifffﬁg admits filtered limits (this is a special case of Proposition

21.4.3.2) but is also easy to verify directly) and is therefore idempotent complete. Con-
sequently, it will suffice to show that the co-category SpDM" is closed under retracts in

ooTopSCIfffé. Suppose we are given a commutative diagram

| Y,0y)
TN
(X, O0x) (X, O0x)

(
id

in ooTopSCP}flz, where (), Oy) is a nonconnective spectral Deligne-Mumford stack; we wish

to show that (X, O y) is also a nonconnective spectral Deligne-Mumford stack. We will show
that (X, 0 x) satisfies the criteria of Theorem [1.4.8.1

(1) Let X¥ and Y denote the topoi of discrete objects of X and ), respectively. Then

the ringed topos (XY, my O ) is a retract of (¥, my Oy) in the 2-category lTopg}flré@.
Theorem implies that (¥, my @y) is a Deligne-Mumford stack. Since the
2-category of Deligne-Mumford stacks admits finite limits, it is idempotent complete;

it follows that (X%, 1 O ) is also a Deligne-Mumford stack.

(2) We have a commutative diagram of co-topoi

X y X

| | |

Shvg(XY) — Shvs (YY) — Shvs(XY).
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It follows from Theorem that the middle vertical map is étale. Consequently,
the fiber product Z = Y x g, (19) Shvs(XY) (formed in the co-category coTop of
co-topoi) is étale over Shvs(XY). Since X is a retract of Z in 0T 0D shyg (@) it
follows that the geometric morphism X — Shvg(X'") is also étale.

(3) Let j: (XY, 7m0 Ox) — (Y, 7m0 Oy) be the map of Deligne-Mumford stacks determined
by i, and let j* denote the associated pullback functor on quasi-coherent sheaves.
Theorem implies that m, Oy is quasi-coherent (when regarded as an object of
the abelian category of my @'y-modules in V), so that j*m, €y is a quasi-coherent
sheaf on (XY, 1 0 x). The homotopy group m, Oy is a retract and therefore a direct
summand of j*m, 0y, and therefore also quasi-coherent.

(4) Theorem implies that &'y is hypercomplete (when regarded as a sheaf of spectra
on })), so that r, Oy is hypercomplete (when regarded as a sheaf of spectra on X).
Since Oy is a retract (and therefore a direct summand, when regarded as a sheaf of
spectra) of the direct image r, Oy, it is also hypercomplete.

O]

1.5 Digression: Topological Spaces and co-Topoi

To every topological space X, one can associate an oo-topos Shv(X) = Shvg(X) of
S-valued sheaves on X. In this section, we will review a closely related construction, which
assigns to each co-topos X an underlying topological space | X' |. These ideas will play an
important role when we discuss the relationship between spectral schemes and spectral
Deligne-Mumford stacks in

1.5.1 Locales

We begin with a brief review of “pointless” topology. For a more detailed discussion, we
refer the reader to [105].

Definition 1.5.1.1. Let A be a partially ordered set. We say that A is a locale if it satisfies
the following pair of conditions:

(1) Every subset S < A has a least upper bound \/ S € A.

Note that condition (1) implies that every subset S © A also has a greatest lower bound
/A S € A (namely, the least upper bound of the set T'= {U € A : (VV € S)U < V}). In
particular, every pair of elements U,V € A have a greatest lower bound U A V.

(2) For every subset {U,} < A and every element V' € A, we have (\/ Uy) AV = \/ (U, A V).
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Remark 1.5.1.2. In the situation of Definition [1.5.1.1) we can replace (2) by the following
apparently weaker condition:

(2) For every subset {U,} < A and every element V € A, we have
NV Ua) AV <\/(Ua A V).

The reverse inequality is automatic.

Remark 1.5.1.3. Let A be a locale. Then A is a distributive lattice (see Proposition
A.1.4.4): that is, it satisfies a distributive law

(A\NU)vV=ANUVV)
UeS UeS
whenever S is a finite subset of A.

Example 1.5.1.4. Let X be a topological space, and let U(X) denote the collection of all
open subsets of X. Then U(X) is a locale (when regarded as partially ordered by inclusion).

Definition 1.5.1.5. Let A and A’ be locales. A morphism of locales from A to A’ is a
functor f*: A’ — A satisfying the following conditions:

(1) The function f* preserves joins. That is, for every subset S < A, we have f*(\/ S) =
V(f*S).

(2) The function f* preserves finite meets. That is, for every finite subset S < A’, we have
F*INS) = A(F*9).

The collection of locale morphisms is closed under composition. We may therefore organize
the collection of locales into a category, which we will denote by Loc.

Example 1.5.1.6. Let f : X — Y be a continuous map of topological spaces. Then f
induces a morphism of locales U(X) — U(Y'), which carries an open subset U € Y to its
inverse image f~'U < X. We may therefore regard the construction X — /(X) as a functor
from the category 7 op of topological spaces to the category Loc of locales.

1.5.2 Points of a Locale

The functor described in Example [[.5.1.6] admits a left adjoint. To describe it, we need
to introduce a bit more terminology.

Definition 1.5.2.1. Let A be a locale. We will say that an object U € A is indecomposable
if, whenever U = A S for some finite subset S < A, we have U € S.

We let |A| denote the set of all indecomposable elements of A. For each element U € A,
we let |A]y denote the subset {V € |A| : U € V}.
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Proposition 1.5.2.2. Let A be a locale. Then the set |A| of indecomposable elements of A
has the structure of a topological space, whose open sets are those of the form |A|y. Moreover,
the construction U — |A|y determines a morphism of locales v* : U(|A]) — A.

Proof. We claim the following:

(1) For every subset S < A, we have

Alys = | Al
UeS

(2) For every finite subset S € A, we have

Alps = () IAlu-
UeS

It follows from (1) that the collection of subsets of |A| which have the form |A|y is closed
under unions, and from (2) that the same collection is closed under finite intersections.
Moreover, (1) and (2) immediately imply that v* is a morphism of locales.

Assertion (1) is an immediate consequence of the definitions: we have \/ S € V if and
only if U € V for some U € S. To prove (2), we must show that if S € A is finite and V is
indecomposable, then A S € V if and only if U € V for all U in S. The “only if” direction is
clear (and does not require the assumption that V' is indecomposable). Conversely, suppose
that U £ V foral U in S. Then V £ U v V for all U € S. Since V is indecomposable, we
conclude that A .q(U v V) # V. Applying Remark we can rewrite the left hand
side as (AS) v V, so that A S« V. O

Proposition 1.5.2.3. Let A be a locale and let X be a topological space. Then composition
with the locale morphism v* : U(|A|) — A of Proposition induces a bijection

6 : Hom7op (X, |A]) » Hompoc (U(X), A).

Proof. We first show that 6 is injective. Suppose that f,g: X — |A| are continuous maps of
topological spaces with f # g. Then there exists a point x € X such that f(z) # g(z). Let
us regard f(z) and g(x) as indecomposable elements of A. Without loss of generality we
may assume that f(z) € g(x). We then ahve

@) el 9(@) ¢ [A]p@)-

It follows that f~!|Al ¢y # g7 Al (), so that 8(f) # 6(g).

We now prove that 6 is surjective. Suppose we are given a morphism of locales from U (X)
to A, given by a map f* : A - U(X). For each point z € X, let S, ={U e A:x ¢ f*U}.
Since f* preserves infinite joins, S, contains a largest element U, = \/ S;. We claim that
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U, is indecomposable. For suppose that U, = AT, where T < A is finite. We then have
[*(Uz) = Nyer f5(V). Since = ¢ f*(U,), it follows that = ¢ f*(V') for some V € T. Then
Ve S, sothat V =U,.

Let f : X — |A| be the map given by f(x) = U,. For each point € X and each element
V e A, we have

x € f_1|A|V U, €|Aly
VU,
Vs,

x e f*(V).

I

It follows that for V € A, the inverse image f~!|A|y coincides with the open set f*(V) < X,

so that f is a continuous map. Moreover, our calculation immediately implies that 6(f) =
f*. O

Corollary 1.5.2.4. The functor X — U(X) admits a left adjoint, given on objects by the
formula A — |A|. In particular, the topological space |A| depends functorially on the locale

A.

Definition 1.5.2.5. Let A be a locale. We will say that A is spatial if the counit map
v* : U(JA]) — A is an isomorphism of locales.

Remark 1.5.2.6. Let A be a locale. By definition, every open subset of |A| has the form
|A|rr, for some element U € A. Consequently, the counit map v* : U(JA|) — A is automatically
surjective (when regarded as a map of sets from A to U(|A])). The condition that A is spatial
is equivalent to the condition that v* is surjective: that is, that |A|y # |[A|y for U # V.

Corollary 1.5.2.7. The construction A — |A| determines a fully faithful embedding

spa

Loc™®* — Top, where Loc®®?® denotes the full subcategory of Loc spanned by the spatial

locales.

Remark 1.5.2.8. Let X be a topological space. Then the locale U(X) is automatically
spatial: an open subset U € U(X) can be recovered as the inverse image of |U(X)|y under
the unit map X — |U(X)|. Consequently, if |U(X)|y = |U(X)|v, then U = V.

It follows that the construction A — U(|A|) determines a right adjoint to the inclusion

a

functor Loc®®® — Loc. In particular, the category of spatial locales is a colocalization of the

category of locales.

1.5.3 Sober Topological Spaces

Our next goal is to describe the essential image of the embedding Loc®* < Top.
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Definition 1.5.3.1. Let X be a topological space. A closed subset K < X is said to be
irreducible if it is nonempty and cannot be written as a union K_ u K, of proper closed
subsets K_, Ky < K. A point x € K is said to be a generic point of K if K is the closure of
{z}. The space X is said to be sober if every irreducible closed subset of X has a unique
generic point.

Remark 1.5.3.2. Let X be a topological space. For every point x € X, the closure of the
set {z} is irreducible.

Example 1.5.3.3. Every Hausdorff topological space X is sober (the only irreducible closed
subsets of X are singletons).

Proposition 1.5.3.4. Let A be a locale. Then the topological space |A| is sober.

Proof. Let U be an indecomposable element of A. For each V € A, we have U ¢ |A]y if and
only if V < U. In particular, |A|y is the largest open subset of |A| which does not contain
U, and is therefore the complement of the closure {U}. If U’ is another indecomposable
element of A having the same closure in |A|, then for each V' € A we have

Ué¢ ANy < U ¢|Aly,

so that V < U <« V < U’ and therefore U = U’.

Let K be an irreducible closed subset of |A|. The above argument shows that K has at
most one generic point. We will complete the proof by showing that there exists a generic
point of K. Set S = {U € A: K = |A| — |A|y}. Since K is closed, the set S is nonempty. It
follows that S contains a largest element U. We will complete the proof by showing that U
is indecomposable, so that K = |A| — |A|y is the closure of U.

Suppose that T'is a finite subset of A satisfying U = A\, V. We wish to show that U € T'.
Suppose otherwise: then, by the maximality of U, each of the open sets |A|y has nontrivial
intersection with K. Since K is irreducible, it follows that the intersection (), op |A]y has
nontrivial intersection with K, contradicting our assumption that |[A|y N K = (. O

Proposition 1.5.3.5. Let X be a topological space. The following conditions are equivalent:
(1) The topological space X is sober.
(2) The unit map v : X — |U(X)| is a homeomorphism.

Proof of Proposition[1.5.5.5. The implication (2) = (1) follows immediately from Proposi-
tion For the converse, suppose that (1) is satisfied. Note that an open set U € U(X)
is indecomposable if and only if the complement X — U is irreducible. Consequently, we can
identify |U(X)| with the collection of irreducible closed subsets of X. Under this identifica-
tion, the map wu carries a point z € X to the closure of {z}. The assumption that X is sober
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implies that the map w is bijective. To complete the proof that u is a homeomorphism, it
will suffice to note that every open subset U € X is the inverse image (under the map u) of
the open subset |U(X)|y < U(X). O

Remark 1.5.3.6. Combining Propositions([1.5.3.4]and [1.5.3.5], we conclude that the category
Top*™P of sober topological spaces is a localization of the category Top of all topological
spaces. The inclusion Top*® <> Top admits a left adjoint, given by X — |U(X)|. We refer
to the topological space |U(X)| as the soberification of X. The points of |U(X)| can be
identified with irreducible closed subsets of X.

The above arguments show that the adjoint functors

u
Top=——=Loc

sob

restrict to an equivalence between the category 7T op®°” of sober topological spaces and the

spa

category Loc™? of spatial locales. Top*°® ~ Loc®P?

Algebraic geometry furnishes plenty of examples of sober topological spaces.
Proposition 1.5.3.7. Let X be a topological space. Then:
(a) If X is sober, then any open subset U < X is sober.
(b) If X can be written as a union of sober open subsets Uy, then X is sober.

Proof. We first prove (a). Let K < U be an irreducible closed subset of U, and let K be its
closure in X. We first claim that K is irreducible. Suppose otherwise: then we can write
K = K_ u K, for some proper closed subsets K_, K, < K. In this case, we also have
K=UnK_)u (UnK,). The irreducibility of K then implies that K = U n K_ or
K =U n K. Since K is dense in K, this contradicts our assumption that either K_ and
K, are proper subsets of K.

If X is irreducible, we conclude that K has a unique generic point x € X. Then x belongs
to the nonempty open subset U n K = K of K, and therefore belongs to U. It follows that
x is a generic point of K in U. We claim that this generic point is unique. To see this,
suppose that y is any other generic point of K in U. Then y € K < K, so that the closure
of {y} in X is contained in K. However, the closure of {y} in X contains K and therefore
contains K. It follows that v is a generic point of K in X, so that y = & by virtue of our
assumption that X is sober. This completes the proof of (a).

We now prove (b). Suppose that X admits a covering by sober open subsets {Uq}acAa-
Let K € X be an irreducible closed subset. Then K is nonempty, so that the intersection
K, = U, n K is nonempty for some « € A. Then we can write K = K, u (K n (X — U,)).
Using the irreducibility of K, we deduce that K = K,: that is, K, is dense in K. We now
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claim that K, is an irreducible closed subset of U,. To see this, suppose that K, = K_ UK,
for some closed subsets K_, K, < K,. Then K = K_ u K, so that the irreducibility of
K implies that K = K_ or K,. Since K_ and K, are closed in U,, we conclude that
K, =U, n K is equal to either K_ or K.

Since U, is irreducible, the set K, has a unique generic point x € U,. Then the closure
of {z} in X is given by K, = K, so that z is a generic point of K. Let y be any other
generic point of K. Then y is contained in the nonempty open subset K, < K, so that
y € U,. It follows that y is a generic point of K, in U,, so that y = x by virtue of our
assumption that U, is sober. This completes the proof of (b). O

Corollary 1.5.3.8. Let (X, Ox) be a nonconnective spectral scheme. Then the topological
space X 1is sober.

Proof. Using Proposition and Corollary we can reduce to the case where
(X, Ox) ~ Spec A for some connective Ey-ring A, so that X is homeomorphic to | Spec R)|
for R = mgA. In this case, every closed set K € X can be realized as the vanishing locus of
a radical ideal I € R. Moreover, K is irreducible if and only if [ is a prime ideal, in which
case I is the unique generic point of K (when regarded as an element of | Spec R). O

1.5.4 Locales Associated to co-Topoi
We now discuss another class of examples of locales:

Definition 1.5.4.1. Let X be an oo-topos. We let Sub(X) denote the collection of equiva-
lence classes of (—1)-truncated objects of X'. For each (—1)-truncated object U € X, we let
[U] € Sub(X) denote the equivalence class of U. We regard Sub(X') as a partially ordered
set, with [U] < [V] if there exists a morphism from U to V' in the oo-topos X. Then Sub(X)
is a locale, which we refer to as the underlying locale of X (see §HTT.6.4.2).

Remark 1.5.4.2. The construction X — Sub(X’) determines a functor Sub : 07 op — Loc.
This is a localization functor: that is, it admits a fully faithful right adjoint ¢ : Loc < 007 op,
whose essential image is spanned by the 0-localic co-topoi (see §HTT.6.4.5.

Definition 1.5.4.3. Let X be an co-topos. We let | X' | denote the underlying topological
space | Sub(X)| of the locale Sub(X'). We will say that X is spatial if the locale Sub(X) is
spatial.

Example 1.5.4.4. Let X be a topological space, and let Shv(X) denote the co-topos of
S-valued sheaves on X. Then we can identify Sub(Shv (X)) with the locale U (X) of open
subsets of X. It follows that the topological space | Shv(X)| can be identified with the
soberification of X. In particular, there is a canonical map X — |Shv(X)|, which is a
homeomorphism if and only if X is sober.
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Example 1.5.4.5. Let X be an co-topos. Every geometric morphism f, : § — X induces a
continuous map | S| — | X |, which we can identify with a point n; of the topological space
| X|. Let U be a (—1)-truncated object of X. Then for each point f, : S — X, the space
f*U is either empty or contractible, depending on whether or not 7y belongs to | X' |y If V
is another (—1)-truncated object of X’ satisfying | X |y, it follows that the canonical maps

U < f2U x V) = f5(V)

are homotopy equivalences. If the oo-topos X has enough points (see §A.4), we conclude
that the projection maps U < U x V' — V are equivalences, so that [U] = [V'] € Sub(X). It
follows that every oo-topos with enough points is spatial.

Proposition 1.5.4.6. Let R be an Ey-ring. Then the co-topos Shvf;f is spatial. Moreover,
there is a canonical homeomorphism | Shvél| ~ | Spec R).

Proof. Let X = |Spec R|, and let U(X) be the collection of all open subsets of X. Let
C = (CAIg#)°P denote the opposite of the co-category of étale R-algebras, so that Shv¥l is
the full subcategory of Fun(C°P,S) spanned by the étale sheaves. It follows that Sub(Shv$})
can be identified with the partially ordered set P of sieves C(°) < C which are saturated in
the following sense: if A is an étale R-algebra, and there exists an étale covering {A — A;}
for which each A; belongs to C(), then A belongs to C(¥).

For each open set U € X, let A(U) denote the full subcategory of C spanned by those
objects A for which the map |Spec A| — | Spec R| factors through U. We will complete the
proof by showing that the construction U +— A(U) determines an isomorphism of partially
ordered sets A : U(X) — P.

For each element a € moR, let U, = {p € |Spec R| : a ¢ p}. We first claim that if U and
V are open subsets of X such that A(U) € A(V'), then U < V. Since U is the union of basic
open sets of the form U,, we may assume that U = U, for some a € mgR. Then R[a"!] €
A(U) € A(V), so that V contains the image of the map |Spec R[a™!]| — |SpecR| = X
(which coincides with U).

The above argument shows that A is an isomorphism of #/(X') onto a partially ordered
subset of P. To complete the proof, it will suffice to show that X is surjective. To this end,
choose a saturated sieve C(9) < C; we wish to show that C(9) lies in the image of A. For
every étale R-algebra A, let U4 denote the image of the map |Spec A| — | Spec R|; this is
an open subset of X (Corollary . Let U be the smallest open subset of X which
contains Uy for each A € C(©), By construction, we have 0 < A(U). To complete the proof,
it suffices to show that this inclusion is an equality. That is, we must show that if A is an
étale R-algebra such that the image of the map 6 : | Spec A| — | Spec R| = X is contained in
U, then AeC ), Since the image of 0 is quasi-compact, it is contained in a finite union of
Ui<i<n UB;, where each B; € ), 1t follows that the map A — [[i<i<n(Bi ®r A) is étale
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and faithfully flat. Since C(¥) is a saturated sieve containing each B;, it must also contain
A. O

Remark 1.5.4.7. Let ¢ : Top — o7 op be the functor of Remark which carries a
topological space X to the co-topos Shv(X). Then ¢ factors as a composition

Top % Loc % 0T op,

where ¢ is the fully faithful embedding of Remark and U is the functor of Example
1.5.1.6[ It follows that ¢ is fully faithful when restricted to sober topological spaces (Remark

1.5.3.6). Consequently, the functor ¢ : Topg Alg — 0T opoale of Remark |1.4.1.6]is fully
faithful when restricted to spectrally ringed spaces (X, 0x) for which X is sober. In

particular, ¢ is fully faithful when restricted to nonconnective spectral schemes (Corollary

559,

1.6 The Functor of Points

In classical algebraic geometry, we can often describe algebraic varieties (or schemes)
as solutions to moduli problems. For example, the n-dimensional projective space P"
can be characterized as follows: it is universal among schemes over which there is a line
bundle £ generated by (n + 1) global sections. In particular, for any commutative ring
A, the set Hom(Spec A, P™) can be identified with the set of isomorphism classes of pairs
(L,n : A"l — L) where L is an invertible A-module and 7 is a surjective A-module
homomorphism (such a pair is determined up to unique isomorphism by the submodule
ker(n) < A™1).

More generally, any scheme X determines a covariant functor hx from commutative
rings to sets, given by the formula hx(A) = Hom(Spec A, X). We refer to hx(A) as the set
of A-valued points of X, and to hx as the functor of points of X. This functor determines X
up to canonical isomorphism. More precisely, the construction X — hx determines a fully
faithful embedding from the category of schemes to the presheaf category Fun(CAlgo, Set).
Consequently, it is possible to think of schemes as objects of Fun(CAng?, Set), rather than
the category of locally ringed spaces. This point of view is often valuable: it is sometimes
easier to describe the functor represented by a scheme X than it is to provide an explicit
construction of X as a locally ringed space. Moreover, the “functor of points” perspective
becomes essential when we wish to study more general algebro-geometric objects such as
algebraic stacks.

1.6.1 The Case of a Spectrally Ringed Space

We begin by associating a functor to each spectrally ringed space.



168 CHAPTER 1. SCHEMES AND DELIGNE-MUMFORD STACKS

Definition 1.6.1.1. Let (X, Ox) be a locally spectrally ringed space. We define a functor
h : CAlg — S by the formula

B (R) = Maprgee (Spec R, (X, Ox)),

where Topl&ilg denotes the co-category of locally spectrally ringed spaces (see Definition

1.1.5.3). We let hx denote the restriction of h% to the full subcategory CAlg™ < CAlg
spanned by the connective Ey-rings. We will refer to both hx and A as the functor of
points of (X, Ox).

Warning 1.6.1.2. The notation of Definition [1.6.1.1] is abusive: if (X, Ox) is a locally
spectrally ringed co-topos, then the functors A5 and hx depend on the structure sheaf O'x,
and not only on the underlying topological space X.

1.6.2 Flat Descent

Our first main result in this section can be stated as follows:

Theorem 1.6.2.1. Let (X,0x) be a locally spectrally ringed space. Then the functor
h5 : CAlg — S is a hypercomplete sheaf with respect to the fpgc topology of Proposition

[B.6.1.3

Since the construction Spec : CAlg®® — Topl&ilg is fully faithful (Remark , the
functor A — hg7,. 4 coincides with the Yoneda embedding CAlg® — Fun(CAlg, S). We
may therefore view Theorem (which asserts that the fpqc topology on CAlg®P is
subcanonical) as a special case of Theorem This observation does not supply a new
proof of Theorem because Theorem is one of the main ingredients in our
proof of Theorem The other main ingredient is the compatibility of the Zariski
topology with flat descent, which can be formulated more precisely as follows:

Proposition 1.6.2.2. For every Eqy-ring A, let U(A) be the collection set of open subsets
of the topological space | Spec A|. Then A — U(A) determines a functor U : CAlg — Set.
This functor is a sheaf (of sets) with respect to the fpqc topology on CAlg®P.

Remark 1.6.2.3. The sheaf U : CAlg — Set of Proposition [I.6.2.2] can be regarded as
a discrete object in the oo-category of S-valued sheaves on CAlg®P. Consequently, it is

automatically hypercomplete.

Proof of Proposition[1.6.2.3. We will show that the functor & : CAlg — Set satisfies condi-
tions (1) and (2) of Proposition To verify (1), we must show that for every finite
collection of Ey-rings {4;}1<i<n, the map U([ [ A;) — [[U(A;) is bijective. This follows
from the observation that there is a canonical homeomorphism | Spec(] [; A;)| ~ 1I;| Spec A4,]|.
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We now prove (2). Let f: A — B be a faithfully flat morphism of E,-rings; we wish to
prove that

is an equalizer diagram in the category of sets. We can divide this assertion into two parts:

(a) The map U(A) — U(B) is injective. To prove this, we must show that an open
subset U < |Spec A| is determined by its inverse image in |Spec B|. This is clear,
since the assumption that A — B is faithfully flat guarantees the induced map
| Spec B| — | Spec 4| is surjective.

(b) Let ¢o,¢1 : | Spec B®a B| — | Spec B| be the two projection maps. We claim that if
7 < | Spec B is a closed subset with qﬁalZ = qbl_lZ, then Z = ¢~V for some closed
subset V' < |Spec B|. Choose an ideal I < myB such that Z = {p < m¢B : I < p},
and let J = f71I < mpA. Set V = {q < mpA : J < q}. Then ¢V = {p < 7B :
f(J)moB < p}. To prove that ¢~V = Z, it suffices to show that f(J)myB and I
have the same nilradical. Let R denote the commutative ring moA/J and R’ the
commutative ring moB/JmoB, and let I’ denote the image of I in R'. Then R — R’ is
faithfully flat and the composite map R — R’ — R’/I’ is injective; we wish to prove
that every element x € I’ is nilpotent. Since ¢ lz = qbl_lZ , we deduce that the ideals
I’ ®r R and R’ ®g I’ have the same radical in R’ ® g R’. Consequently, since z ® 1
belongs to I’ ®r R, some power " ® 1 belongs to R’ ®g I’. It follows that the image
of 2™ vanishes in R’ ®p R'/I'. Since R’ is flat over R, the injection R — R//I’ induces
an injection R' — R’ ®pr R'/I'. Tt follows that ™ = 0 in R/, as desired.

O]

Proposition 1.6.2.4. (1) The functor Spec : CAlg®® — Topléj[ilg preserves finite coprod-
ucts.

(2) Let R be an Eq-ring, and let R® be a cosemisimplicial Bo,-ring which is a hypercovering
of R with respect to the fpgc topology (see Definition|A.5.7.1). Then Spec R is a colimit
of the diagram {Spec R*} in ’Toplé)jilg.

Proof. Let Topca, denote the co-category of spectrally ringed spaces (Definition |1.1.2.5)
and let Top denote the ordinary category of topological spaces and continuous maps, so
that we have forgetful functors

TopShig <> Topcalg — Top.
We will deduce assertion (1) from the following three claims:

(1') The functor g o j o Spec : CAlg®® — Top preserves finite coproducts.
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(1”) The functor j o Spec : CAlg®® — Topc Alg carries finite coproducts to g-coproducts.
(1”) The functor Spec : CAlg®? — Toplé’,ilg carries finite coproducts to j-coproducts.

To prove these claims, let {R;}1<i<n be a finite collection of Ey-rings having product
R. Let X; = |Spec R;| and let X = |Spec R|, so that we can write SpecR; = (X;, Ox,)
and Spec R = (X, Ox). For each index i, let ¢; : X; — X denote the map induced by
the projection R — R;. Assertion (1) was established as part of Proposition By
virtue of Proposition HTT.4.3.1.9 , assertion (1”) is equivalent to the requirement that the
canonical map Ox — [[,(¢i)« Ox, is an equivalence of CAlg-valued X. Note that X has a
basis of open sets of the form Uy = {p < moR : f ¢ p}, where f = (f1,..., fn) ranges over
the elements of mgR ~ moR1 X - -+ X mgR,,. Since this basis is stable under finite intersections,
it suffices to observe that the canonical map

RIf = 0xUp) = ([ [(00)« Ox)(Us) = [ [ Ox,(Up xx Xi) = [ [ Ril £

is an equivalence of Eg-rings.

Unwinding the definitions, we can formulate assertion (1”) as follows: a morphism
g:(X,0x) — (Y,0y) in Topcay, belongs to Toplé’/ilg if and only if, for 1 < i < n, the
induced map g; : (X;, Ox,) — (Y, Oy) belongs to Toplcof\lg. This follows immediately from
the definitions, since O'x, can be identified with the restriction Ox |x,.

We now prove (2). Let R®* : A, — CAlgg be an fpqc hypercovering of R = R~ 'in
the oo-category CAlg®. Reasoning as above, we are reduced to proving the following three
assertions:

(2") The composition g o j o SpecoR?* is a colimit diagram in the co-category Top.

(2") The composition j o SpecoR* is a g-colimit diagram in the oo-category 7opcag-

(2") The composition SpecoR® is a j-colimit diagram in the co-category Toplé)glg.
By virtue of (1') and Proposition [A.5.7.2] assertion (2') is equivalent to the requirement
that the functor
qo joSpec: CAlg — Top®

is a hypercomplete sheaf with respect to the fpqc topology. Because 7 op is an ordinary
category, it will suffice to show that q o j o Spec is a sheaf with respect to the fpqc topology,
which follows from Proposition We now prove (2”). Let X = |Spec R|, so that we
can write Spec R = (X, Ox). For every nonnegative integer n let X,, = | Spec R"| and write
Spec R" = (X,,0x,). Let F™" denote the pushforward of Ox, along the canonical map
X, — X. Then .#* is a cosemisimplicial object in the co-category Shvcaig(X). By virtue of
Proposition HTT.4.3.1.9, condition 23") is equivalent to the requirement that the canonical
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map « : Ox — lim.#* is an equivalence. We note that X has a basis of open sets of the
form Uy = {p = moR~! : f ¢ p}. Since this collection is stable under finite intersection, to
prove that « is an equivalence it suffices to show that « induces an equivalence of Eq-rings
Ox(Us) — lim F*(Uy), for each f € moR. Replacing R* by R°*[f~'], we can reduce to the
case where Uy = X. In this case, we need to show that the map

R~ 0(X) - lim #°(X) ~ lim O, (X,) ~ lim R*

is an equivalence of Eq,-rings, which follows from Theorem [D.6.3.5

It remains to prove (2”). Unwinding the definitions, we must show that if (Y, Oy) is
an object of Toplé’filg, then a map ¢ : Spec R — (Y, Oy) in Topcyye belongs to Topl(‘leg if
and only if the induced map ¢ : (Y, &y) — Spec R? belongs to Topl&ilg. Let f: X -»Y
be the map of topological spaces underlying ¢, and set &' = f* Oy € Shvoale(X). Let
g : X9 — X denote the projection map. We are then reduced to proving the following: a
morphism of sheaves of rings a : 79 Ox — m 0 is local if and only if the composite map
g*mo 0 > g*my O x — my Ox, is a local map (between sheaves of local rings on X;). This
follows immediately from the observation that the map g : X9 — X is surjective (since the
underlying map of commutative rings moR — mo R’ is assumed to be faithfully flat). O

Proof of Theorem[1.6.2.1. Combine Proposition with Proposition O

1.6.3 The Functor of Points of a Spectral Scheme

We now use Theorem [1.6.2.1] to investigate the functor of points of a (possibly noncon-
nective) spectral scheme.

Proposition 1.6.3.1. Let Shvg,ge € Fun(CAlg, S) and Shvi, . < Fun(CAlg™, S) denote
the full subcategories spanned by those functors which are sheaves for the fpgc topology. Let
(X, Ox) be a spectrally ringed space. For each open set U < X, let us regard (U, Ox |u) as

a spectrally ringed space which represents functors hif € Shvgyqe and hy € Shvgy .. Then:
(1) The construction U — hif determines a Shv?gqc—valued sheaf on X.

2) The construction U — hy determines a (Shv{y: )°P-valued sheaf on X.
fpqc

Proof. We will prove (1); the proof of (2) is similar. Let {U,} be a collection of open subsets
of X, let U = | JU,, and let U be the collection of open subsets of X which are contained in
some U,. We wish to prove that hff is a colimit of the diagram {h{f}ve¢y in the co-category
Shvepge. Let Y < Fun(CAlg, S ) denote the full subcategory spanned by those functors which
are sheaves with respect to the fpqc topology. Then ) is an co-topos (in a larger universe),
and Shvg,qc is a full subcategory of Y. It will therefore suffice to show that hjf is a colimit

of the diagram {hjf}yey in the co-category V.
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Let j : CAlg®® — Fun(CAlg,g') denote the Yoneda embedding. Then j factors through
Y (Theorem |D.6.3.5)), and sheaves of the form j(R) generate ) under colimits. It will
therefore suffice to show that for every map ¢ : j(R) — h{f, the canonical map

lim (j(R) xppe hy’) — j(R)
Veu
is an equivalence in ). Note that ¢ determines a continuous map of topological spaces
f:[Spec R| — U, and that j(R) x e hif can be identified with the subfunctor jv (R) < j(R)
which carries an Eq-ring A to the summand of Mapg (R, A) spanned by those maps R — A
for which the induced map of topological spaces | Spec A| — | Spec R| factors through f~(V).
Let O cy /i(r) denote the sieve generated by the collection of morphisms {jy (R) —
J(R)}veu. Then the construction V' — ji(R) determines a left cofinal map from U into
vey Jv (R), it will suffice to show that C ©) g
a covering sieve with respect to the canonical topology on Y (see §HTT.6.2.4). Because

¢©). Consequently, to prove that J(R) ~ lim

the open sets U, cover U, we can choose elements {a; € moR}1<;<, which generate the unit
ideal, such that each of the maps | Spec R[a; !]| — | Spec R| factors through some f~1U,,.
Then the sieve C(9) contains the maps j(R[a; ']) — j(R), and is therefore a covering sieve
since the map R — [ R[a; '] is faithfully flat. O

Remark 1.6.3.2. In the statement and proof of Proposition [1.6.3.1] we can replace the
fpqc topology with the Zariski topology.

Corollary 1.6.3.3. (1) The construction (X, Ox) — h% determines a fully faithful em-
bedding SpSch™® — Fun(CAlg, S).

(2) The construction (X,0x) — hx determines a fully faithful embedding SpSch —
Fun(CAlg™, S).

Proof. We will prove (1); the proof of (2) is similar. Let (X, &x) and (Y, Oy) be nonconnec-
tive spectral schemes. For each open set U € X, let us regard (U, O'x |y7) as a nonconnective
spectral scheme, which represents a functor hff : CAlg — S. Let us say that an open subset
U < X is good if the canonical map

0 Mapr oy (U, O 1), (Y 0v)) = Mabp (e (bR, 159)

is an equivalence. We will complete the proof by showing that every open subset of X is
good. The main step is the following;:

(¥) Let U be an open subset of X which is given as a union | J .4 Ua, and suppose that
each finite intersection Uy, N --- N Uy, is good. Then U is good.
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Assertion (x) follows immediately from Theorem [1.6.2.1| and Proposition [1.6.3.1, which
implies that 6 can be obtained as a limit of maps of the form 8y where V has the form
Ua, 0N Uy,

We now complete the argument as follows:

(a) Every affine open subset U < X is good (this follows immediately from the definitions).

(b) Let U < X be an open set which is contained in an affine open set V. Then we can
write U as a union of affine open sets {U,}. Since the collection of affine open subsets
of V is closed under finite intersections, it follows from (a) that every finite intersection
Uag, 0 -+ N Uy, is good. Invoking (*), we conclude that U is good.

(¢) Let U < X be an arbitrary open set, and write U as a union of affine open subsets
Uay. Then each intersection Uy, M ---U,,, is contained in U,,, and therefore good (by
virtue of (b)). Applying (*), we deduce that U is good.

1.6.4 The Functor of Points of a Spectrally Ringed co-Topos

We now introduce a variant of Definition [1.6.1.1] which is designed to accommodate
spectral Deligne-Mumford stacks as well as spectral schemes.

Definition 1.6.4.1. Let X = (X, 0x) be a locally spectrally ringed co-topos. For every
Ey-ring R, we let hi°(R) denote the mapping space 1\/Iapoo7—opgf\1 (Spét R, X). Then the
g

construction R — hy°(R) determines a functor h§® : CAlg — S. We let hx denote the
restriction of hy® to the full subcategory CAlg®™ < CAlg spanned by the connective E-rings.
We refer to both hy® and hx as the functor of points of the spectrally ringed co-topos X.

We have the following analogue of Corollary [1.6.3.3}

Proposition 1.6.4.2. (1) Let X be a nonconnective spectral Deligne-Mumford stack.
Then, for every Ex-ring R, the space h%*(R) = MapooToplgzl (Spét R, X) is essentially

small. ¢

(2) The construction X — hy° determines a fully faithful embedding SpDM"® — Fun(CAlg, S).
(3) The construction X — hy determines a fully faithful embedding SpDM — Fun(CAlg™,S).

Proof. This is a special case of Theorem ??, which we will prove in Part [VI, See Remarks
?? and ??. (See also Theorem [8.1.5.1| for a generalization of (1) and (3)). O
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1.6.5 The Spatial Case

We have now given introduced a “functor of points” in two different contexts: locally
spectrally ringed spaces (Definition ?7), and locally spectrally ringed co-topoi (Definition
1.6.4.1). These two definitions are not identical, but we will show that they are closely

related to one another (Remark [1.6.5.13)).

Construction 1.6.5.1. Let X’ be a spatial co-topos. Then the construction U — | X |7
determines an equivalence from the full subcategory 7<_1 X of (—1)-truncated objects of X
to the partially ordered set U(| X' |) of open subsets of | X' |.

Let C be an co-category, and let & € Shve(X) be a C-valued sheaf on X'. We let &°P*
denote the composite functor

U X)P = (Te X)P — xP S .

Proposition 1.6.5.2. Let X be a spatial oco-topos, let C be an co-category, and let O :
X — C be a C-valued sheaf on X. Then 0P : U(| X |)°P — C is a C-valued sheaf on the
topological space | X |.

Proof. Let {U,} be a collection of open subsets of | X' | with union U, and let U be the
collection of open subsets of | X' | which are contained in some U,. We wish to show that
the functor 0°P* exhibits 0°P*(U) as a limit of the diagram {&°*(V)}yey.

Let us abuse notation by identifying open subsets of | X' | with (—1)-truncated objects
of X, so that we are required to prove that & exhibits (U) as a limit of the diagram
{O(V)}veu. Since O is a sheaf, it will suffice to show that the canonical map lim ,_ V — U
is an equivalence in the co-topos X'. Since the U, cover U, this is equivalent to the assertion
that each of the induced maps U, X (h—I>nVeu V) — U, is an equivalence in X. Since colimits
are universal in X', we can rewrite the domain of this map as a colimit li_r)nVGM(Ua xy V).
Let U, denote the subset of U consisting of those open sets which are contained in U,. Since
the functor V' — U, xy V is a left Kan extension of its restriction to U, we are reduced to
proving that the canonical map 6 : h—n}\/eua(Ua xy V) — U, is an equivalence. Because U,
contains U, as a final object, we can identify # with the projection map U, Xy Uy — Uy,
which is an equivalence because the map U, — U is (—1)-truncated. O

Remark 1.6.5.3. Let X’ be an oo-topos. If X is spatial, then we can identify Shv(| X' |)
with the 0-localic reflection of X, so that we have an evident geometric morphism of co-topoi
fe: X = Shv(|X|). If C is an co-category which admits small limits and & € Shve(X),
then 0®P?* can be identified with the pushforward f, & under the equivalence of co-categories

Shve(Shv(| X |)) ~ Shvy (] X |) of Proposition [1.3.1.7

Remark 1.6.5.4. Let X be an oo-topos. There is an evident map from the locale of open
subsets of | X'| to the locale Sub(&X’), which is an equivalence if and only if X is spatial.
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Passing to the associated co-topoi, we obtain a commutative diagram of geometric morphisms
x5 g & Shy(| X)),

where f, exhibits X as a 0-localic reflection of X, and g, is an equivalence if and only if X
is spatial. In good cases, we can associate to each sheaf & on the co-topos A another sheaf
O°P* on | X' |, given by ¢g* fx €. However, unless X is spatial, there is no obvious description
of the sections of &°P* over an open subset U < | X |.

Remark 1.6.5.5. Let X be a topological space and let C be an co-category. Then the
canonical map € : X — | Shv(X)| induces an isomorphism from the lattice of open subsets
of |Shv(X)| to the lattice of open subsets of X, so that the pushforward functor e, :
Shve(X) — Shve(| Shv(X)|) is an isomorphism of simplicial sets. Suppose that C admits
small limits. Then the pushforward functor €, can be identified with the composition of
the equivalence Shve(X) ~ Shve(Shv(X)) of Proposition and the functor & — 0°P*
of Construction In particular, we see that the construction ¢ — 0®°P? induces an
equivalence of co-categories Shve(Shv(X)) — Shve(| Shv(X))).

Definition 1.6.5.6. Let X = (X, Ox) be a spectrally ringed oo-topos. We will say that X
is spatial if the co-topos X is spatial (Definition [1.5.4.3]). In this case, we let X*** denote the
spectrally ringed space (| X |, 0%").

Example 1.6.5.7. Let R be an Ey-ring. Then Spét R is spatial, and Proposition
supplies a canonical homeomorphism | Shvet | ~ | Spec R|. Under this equivalence, an open
set U, = {p € |Spec R| : a ¢ p} corresponds to the sheaf h®%™'] € Shv$l corepresented by
R[a~']. Let 0 denote the structure sheaf of Spét R, so that &°P* is given on basic open
sets by the formula 0°**(U,) = R[a!], and therefore coincides with the structure sheaf of
Spec R (see the proof of Proposition [1.1.4.3). Consequently, we obtain an equivalence of
spectrally ringed spaces (Spét R)*P* ~ Spec R, which depends functorially on R.

Proposition 1.6.5.8. Let X be a spatial co-topos and let X = | X | denote its underlying

topological space. If O € Shvcag(X) is local (in the sense of Definition |1.4.2.1), then
(X, O0°P%) is a locally spectrally ringed space. The converse holds if X is 0-localic.

Proof. Suppose that & € Shvcaig(X) is local; we wish to prove that ¢°P* is local. To
prove this, fix an open set U € X and a collection of elements {f; € (mo 0°**)(U)}1<i<n
satisfying >, ;<, fi = 1. We wish to prove that we can write U as a union of open sets
{U;}1<i<n, such that the image of f; is invertible in (w9 0*P?)(U;). The assertion is local
on U; we may therefore assume without loss of generality that each f; can be lifted to a
section f; € mo(O*P*(U)), and that these sections satisfy Y, _, ., f; = 1 € m(*P*(U)). Let
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us identify U with a (—1)-truncated object of X, so that each f; determines a morphism
U — my O in the topos of discrete objects of X. Form pullback diagrams

U; U

L

(mg O) ——=mo 0.

Then each of the maps U; — U is (—1)-truncated, so that we can identify each U; with
an open subset of X. The assumption that my & is local guarantees that the U; form a
covering of X. Replacing X by one of the X ;;,, we may assume that X = U; for some 1.
In this case, the image of f; in (7o €)(X) is invertible. Refining our covering if necessary,
we may suppose that f; is invertible in 7o(0(X)) ~ 7o(0*P*(X)), so that f; is invertible in
(mo O°P*)(X).

Now suppose that X is 0-localic and that (X, 0°P?) is locally ringed; we will show that
O is local. For this, it will suffice to show that for any discrete object Y € X and any
finite collection of sections {g; € (mo O)(Y)} satisfying > g; = 1 € (mp 0)(Y'), we can choose
an effective epimorphism 11Y; — Y such that each g; is invertible when restricted to Y;.
The assertion is local on Y. Using the assumption that X is O-localic, we can assume that
Y is (—1)-truncated and that each g; can be lifted to a section g; € mo(€(Y)) satisfying
>.g; =1€m(0(Y)). In this case, we can identify ¥ with an open subset of X, and each g;
determines an element of (my 0°P*)(Y"). Using the assumption that &°P* is local, we conclude
that Y can be written as a union of open subsets U;, such that each g; has invertible image
in (mg 0°P*)(U;). Working locally on Y, we may assume that Y is equal to some U;, and that
g; has invertible image in mo(0"*(U;)) = mo(€'(U;)). It then follows that g; is invertible. [

We will also need a variant of Proposition [1.6.5.8] for morphisms of spectrally ringed
oo-topoi:

Proposition 1.6.5.9. Let ¢ : (X,0x) — (Y, Oy) be a morphism of spectrally ringed co-
topoi. Assume that X and Y are spatial, and that Ox and Oy are local. If f is local, then
the induced map (| X |, %) — (| V|, ﬁiﬁ)a) is a morphism of locally spectrally ringed spaces.
The converse holds if Y is 0-localic.

Proof. Let X = |X| and Y = ||, so that ¢ induces a continuous map of topological
spaces f : X — Y. Suppose first that the underlying map «a : ¢* 0y — Oy is local. We
wish to show that for each point z € X, the induced map (mo O3") f(z) — (10 OF")s is a
local homomorphism of local commutative rings. Fix an element u € (7o ﬁ’gﬁ’a) f(x) Whose
image in (mo OF"), is invertible. Choose an open subset V' < Y containing f(z) and an
element @ € 7o (03 (V)) ~ mo(Oy(V)) lifting u. Then there exists an open set U < 1v)

containing x such that the image of @ in mo(O% " (U)) ~ mo(Ox(U)) is invertible. Since « is
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local, we conclude that there exists a subset V' € V containing f(x) such that the image of
@ in w9 (03" (V")) ~ mo(Oy (V")) is invertible, which immediately implies that u is invertible.

For the converse, assume that X is 0-localic and that that ¢ induces a morphism
PP (X, O%") — (Y, 05") of locally spectrally ringed spaces; we wish to prove that « is
local. Equivalently, we wish to show that the diagram

¢*(mo Oy)* —— (m0 Ox)™

| |

P*mo Oy w0 O 5

is a pullback square of discrete objects of X. We prove more generally that for every
object V € Y equipped with a map u: V — my Oy, if we let V> denote the fiber product
V X6y (Mo Oy)*, then the diagram

¢*V>< . (7T0 ﬁX)X

L

*V T Ox

is a pullback square in X. This assertion can be tested locally on V. Using our assumption
that ) is O-localic, we may reduce to the case where V is (—1)-truncated (so that V* is
also (—1)-truncated) and where u lifts to an element u € mo(0y(V')). Let U denote the
fiber product ¢*V X, ¢, (mo Ox)*, so that U is a (—1)-truncated object of X (which we
can identify with an open subset of X). We have an inclusion f~}(V*) € U, and we wish
to show that this inclusion is an equality. For this, it suffices to show that every point
x €U < X is contained in f~'V*. Note that if 2 € U, then the image of @ is invertible in
the commutative ring (mo 0%"),. Since ¢*? is local, we conclude that the image of u in
(M0 OF) f(z) is invertible, so that f(x) € V* as desired. O

Let X = (X,0x) be a spatial locally spectrally ringed co-topos, and write X% =
(| X |, 0%"). By functoriality (and Example [1.6.5.7), we obtain a canonical map

WY (R) = 1\/Iapoo7-op1coZlg (Spét R, X)
— MapTopl&ilg ((Spét R)®P®, X®P%)
~ MapTOPlc‘filg (Spec R, X®P%)
= iy |(R),

depending functorially on R. Here the domain is given by Definition [1.6.4.1] and the
codomain by Definition ?77.
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Theorem 1.6.5.10. Let X = (X, Ox) be a spatial locally spectrally ringed co-topos. If X is
0-localic, then the above construction induces an equivalence of functors hy® — h|n§(| from

CAlg to S.
Theorem [1.6.5.10] is an immediate consequence of the following more general assertion:

Proposition 1.6.5.11. Let X = (X,0x) and Y = (), Oy) be locally spectrally ringed
oo-topoi. Suppose that X and Y are spatial and that Y is 0-localic. Then the canonical map

MapOOTopgglg (X, Y) — MapTOplco&g ()(Spab7 YSpa)
1s a homotopy equivalence.

Corollary 1.6.5.12. Let c0Topcy, denote the full subcategory of 0T opcale spanned by
those spectrally ringed co-topoi (X, O x) where X is spatial and 0-localic. Then the construc-
tion X — X induces a fully faithful embedding 0T opial, — TOPcalg, whose essential
image consists of those spectrally ringed spaces (X, Ox) for which X is sober.

Proof. The full faithfulness follows from Proposition [I.6.5.11} For the essential surjectivity,
we note that if X is sober, then we have X ~ | Shv(X)| (Example [1.5.4.4]), in which case
the desired result follows from Remark [1.6.5.5| and Proposition [1.6.5.8 0

Remark 1.6.5.13. Let (X, Ox) be a locally spectrally ringed space. If X is sober, then
Corollary implies that we can write (X, Ox) = X°P?, where X is a locally spectrally
ringed co-topos which is spatial and 0-localic (moreover, X is unique up to a contractible
space of choices). It follows from Theorem that the functor of points A% of
(X, Ox) is equivalent to the functor of points h%® of X. Restricting to the full subcategory
CAlg™ < CAlg, we obtain also an equivalence hyx ~ hx. It follows that we can regard
Definition as a special case of Definition (at least if we restrict our attention
to locally spectrally ringed spaces (X, @x) for which X is sober).

Proof of Proposition[1.6.5.11. We have a commutative diagram of spaces

0
Mameoplé)Xlg (X7 Y) E—— MapTOPI((j’f\]g (Xspa7 YSpa)

l i

0
Map.7op(X, V) ———= Homrop(| X |, | V).

To prove that 6 is a homotopy equivalence, it will suffice to show that 6y is a homotopy
equivalence, and that 6 induces a homotopy equivalence after passing to vertical homotopy
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fibers over any chosen point ¢. € Mapy,7,(X,)). To prove the latter claim, we first note
that since ) is O-localic, Remark [1.6.5.5| supplies a homotopy equivalence

MapSthAlg(y)(ﬁyaéf)* Ox) ~ MapSthAlgﬂyD(ﬁiﬁ)av(qs* Ox)™*)
>~ MaDgiyea,(v) (0% 5 fx OF);

where f:| X | — | )| denotes the continuous map of topological spaces determined by the
geometric morphism ¢,. It now suffices to observe that a map of spectrally ringed co-topoi
(X,0x) — (), Oy) is local if and only if the induced map of spectrally ringed spaces is
local, by virtue of Proposition

To complete the proof, it suffices to show that 6y is an equivalence. Note that 6y factors
as a composition

Map g, 7o, (X, V) % Hom(sub(x), Sub(y)) % Homop (| X |, [ V1),

where the middle term is the set of maps from Sub(X') to Sub()) in the category of 0-topoi
(see HTT.6.4.2). Our assumption that ) is 0-localic guarantees that 6], is a homotopy
equivalence, and our assumption that X and ) are spatial guarantees that 6 is bijective

(see Remark [1.5.3.6)). O

1.6.6 Comparison of Zariski and Etale Topologies

Our next goal is to show that there is a fully faithful embedding from the co-category
SpSch™ of nonconnective spectral schemes to the co-category SpDM"™ of nonconnective
spectral Deligne-Mumford stacks. In terms of the functor of points, this embedding is the
identity: we will show that for any (nonconnective) spectral scheme X, the functor hx
represented by X is also representable by a spectral Deligne-Mumford stack (Corollary

653,

Remark 1.6.6.1. Let X = (X, Ox) be a nonconnective spectral Deligne-Mumford stack.
Then the co-topos X is spatial, so that the spectrally ringed space X = (| X' |, 6%°) is
well-defined. To prove this, it suffices to show that the hypercompletion X™P is spatial,
which follows from Corollary ?? and Example [[.5.4.5]

Theorem 1.6.6.2. Let (X, 0x) be a nonconnective spectral scheme. Then there exists a
nonconnective spectral Deligne-Mumford stack X and an equivalence of spectrally ringed
spaces « : XP* ~ (X, O x) with the following universal property: for every spectrally ringed
oo-topos Y = (), Oy) for which Y is spatial and O is strictly Henselian, composition with
a induces a homotopy equivalence

MapOOTOP%HAe{é (Y, X) — MapTOplC?X]g (Yspa, (X, ﬁ)X))
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Corollary 1.6.6.3. Let SpSch’™ < Fun(CAlg, S) be the essential image of the fully faith-
ful embedding h™° : SpSch™ «— Fun(CAlg,S) introduced in Definition and let
SpDM'™ < Fun(CAlg,S) be the essential image of the fully faithful embedding h"° :
SpSch™ < Fun(CAlg, S) of Definition . Then SpSch’™ < SpDM'"¢.

Proof. Let (X, Ox) be a nonconnective spectral scheme representing a functor % : CAlg —
S, and let X € SpDM" be as in Theorem [1.6.6.2 so that X represents a functor hy® :
CAlg — S. Taking Y = Spét R in the statement of Theorem [1.6.6.2], we conclude that the
canonical map hy°(R) — h5(R) is a homotopy equivalence. It follows that the functor A%
is representable by X, and therefore belongs to SpDM’"°. O

We now turn to the proof of Theorem [1.6.6.2l The main ingredient is the following
general fact, which we will establish in Part (see Theorem ?7):

Proposition 1.6.6.4. The inclusion functor ooTopSCI}ffé — ooToplé’/ilg admits a right adjoint

°t . 1 H
Specy,, ooTop&ilg — 0T opg Aell}g.

Proof of Theorem [1.6.6.3. Let (X, 0x) be a nonconnective spectral scheme. Then X is

sober (Corollary [1.5.3.8)), so Corollary [1.6.5.12] allows us to write (X, Ox) ~ Y*P* where
X' = (Shv(X), 0) is a locally spectrally ringed oo-topos. Let X = Specst X', so that

Zar

X = (X, Oy) is a spectrally ringed co-topos for which &y is locally ringed. We have evident

loc

map p: X — X" in 00T opQ Alg- We will complete the proof by verifying the following:

(1) The spectrally ringed oo-topos X is a nonconnective spectral Deligne-Mumford stack.
In particular, X is spatial.

(2) The canonical map X — Y induces an equivalence of spectrally ringed spaces « :
Xspa ~ X/spa ~ (X, ﬁX)

(3) For every spectrally ringed co-topos Y = (Y, 0y) for which Y is spatial and Oy is
strictly Henselian, composition with « induces a homotopy equivalence

MapooTop%‘ff{é (Y,X) - MapTOPlcoXlg (Y*P2 (X, Ox)).

Note that, by virtue of Proposition ??, assertion (3) is equivalent to the requirement that

. N . .
the canonical map MapooTopscffﬁng (Y, X) — Mapoofopgglg (Y, X") is a homotopy equivalence,
which follows immediately from the construction of X.

Let fy : X — Shv(X) be the geometric morphism underlying p. For each open subset
U c X, we let f*U denote the corresponding (—1)-truncated object of X. It follows
immediately from the definitions that we can identify X« = (X pxr7, Ox |pxy) with the

ét
Zar

relative spectrum Specy, .(Shv(U), & |7). Consequently, to prove assertions (1) and (2), we

can work locally on X and thereby reduce to the case where (X, 0'x) = Spec R is affine.
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In this case, the universal properties of Spec R and Spét R (see Propositions [1.1.5.5] and
1.4.2.4)) supply an equivalence Spec‘%ta]r X' ~ Spét R. It follows that X is an affine spectral
Deligne-Mumford stack, which proves (1). Assertion (2) follows from Example|1.6.5.7 O

Remark 1.6.6.5. The proof of Theorem shows that the fully faithful embedding
¢ : SpSch™ — SpDM™ carries SpSch into SpDM. Moreover, if (X, 0'x) is an n-truncated
spectral scheme, then (X, 0x) is an n-truncated spectral Deligne-Mumford stack. In
particular, we obtain a fully faithful embedding from the co-category of O-truncated spectral
schemes into the oo-category of O-truncated Deligne-Mumford stacks. This can be identified
with the usual embedding of the category of schemes into the 2-category of Deligne-Mumford
stacks, using the fully faithful embeddings of Proposition [[.1.8.4] and Remark [I.4.8:3]

1.6.7 Schematic Spectral Deligne-Mumford Stacks

It follows from Corollary [I.6.6.3] that there is a fully faithful embedding of co-categories

¢ : SpSch™® — SpDM"¢| which carries each nonconnective spectral scheme (X, 0x) to a

nonconnective spectral Deligne-Mumford stack X satisfying hy® ~ h5. We will say that a

nonconnective spectral Deligne-Mumford stack X is schematic if it belongs to the essential
image of this fully faithful embedding.

Remark 1.6.7.1. It is often convenient to abuse notation and identify SpSch™ with
its essential image under the functor ¢: in other words, to not distinguish between a
nonconnective spectral scheme and the associated schematic nonconnective spectral Deligne-
Mumford stack.

We next give a characterization of the class of schematic spectral Deligne-Mumford
stacks. For this, we need to introduce a bit of terminology.

Definition 1.6.7.2. Suppose that j: U - X = (X, O y) is a map of nonconnective spectral
Deligne-Mumford stacks. We will say that j is an open immersion if it factors as a composition

UL (X, 0xlv) & (X, 00)

where j' is an equivalence and j” is the étale morphism associated to a (—1)-truncated object
U € X. In this case, we will also say that U is an open substack of X.

Proposition 1.6.7.3. Let X = (X, Ox) be a nonconnective spectral Deligne-Mumford stack.
The following conditions are equivalent:

(1) There exists a collection of open immersions {jo : Uy — X} which are mutually
surjective (that is, each Uy has the form (X y,,Ox |u,), and the coproduct U, is a
0-connective object of X ), where each U, is affine.
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(2) The spectrally ringed space (X, Ox) ~ XP* is a nonconnective spectral scheme, and
the identity map id : X°P* ~ (X, Ox) satisfies the requirements of Theorem|1.6.6.2,

(3) The nonconnective spectral Deligne-Mumford stack X is schematic.

Proof. The equivalence of (2) and (3) is a tautology. Let us abuse notation by identifying
(—1)-truncated objects of X with open subsets of the topological space X. If (2) is satisfied,
then X admits a covering by (—1)-truncated objects U, such that each (U,, Ox |y,) is
an affine nonconnective spectral scheme Spec R,. Arguing as in the proof of Theorem
we conclude that (X, ,Ox |v,) is equivalent to the affine nonconnective spectral
Deligne-Mumford stack Spét R, so that (1) is satisfied.

We complete the proof by showing that (1) = (2). Note that assertion (2) can be tested
locally on the topological space X. We are therefore free to replace X by an open substack
and thereby to reduce to the case where X = Spét R is affine, in which case the desired result

follows from Example ]

Corollary 1.6.7.4. Let X = (X, Ox) be a nonconnective spectral Deligne-Mumford stack.
Then X is schematic if and only if the O-truncated spectral Deligne-Mumford stack (X, 7y O x)
is schematic.

Proof. This follows from Proposition[1.6.7.3] since a nonconnective spectral Deligne-Mumford
stack (U, Oy) is affine if and only if (U, mp Oyy) is affine (see Corollary [1.4.7.3]). O

According to Proposition the oo-category SpDM"™ of nonconnective spectal
Deligne-Mumford stacks admits finite limits. One can use the same reasoning to prove that
the oo-category SpSch™ of nonconnective spectral schemes admits finite limits. However,
the details are somewhat tedious; instead, we can deduce the statement about schemes
from Proposition [1.4.11.1] using the characterization of schematic spectral Deligne-Mumford
stacks supplied by Proposition

Corollary 1.6.7.5. Let C denote the full subcategory of SpDM" spanned by the schematic
nonconnective spectral Deligne-Mumford stacks. Then C is closed under finite limits in

SpDM"™ (which exist by virtue of Proposition|1.4.11.1).

Proof. The final object Spét .S € SpDM"¢ is affine, and therefore schematic. To complete the
proof, it will suffice to show that for every pullback diagram

X ——=X
Y —=Y

in SpDM™, if X, Y, and Y’ are schematic, then X’ is also schematic. Write Y = (Y, 0y),
write X' = (X, 0 ), and let f* : Y — X’ be the underlying geometric morphism of co-topoi.
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Using Proposition we see that ) admits a covering by affine (—1)-truncated objects
U,. Note that each pullback f*U, is a (—1)-truncated object of X’. Using the criterion of
Proposition we see that to prove that X' is schematic, it will suffice to show that
each (X’/f*Ua, O x' | p+u,,) is schematic. We may therefore replace Y by (V,u,,, Oy |u, ), and
thereby reduce to the case where Y ~ Spét A is affine. Using a similar argument, we can
reduce to the case where X ~ Spét B and Y’ ~ Spét A’ are affine. In this case, we conclude
that X' ~ (Spét A") xspet 4 Spét B ~ Spét(A’ ®4 B) is affine, and therefore schematic. [

Corollary 1.6.7.6. The co-category SpSch™ of nonconnective spectral schemes admits finite
limits.

1.6.8 Spectral Deligne-Mumford n-Stacks

Recall that a spectral Deligne-Mumford stack X = (X, 0x) is said to be n-localic if
the underlying oo-topos X is n-localic (Definition ?7?). We now show that for n > 0, this
condition can be formulated directly in terms of the functor hy represented by X.

Definition 1.6.8.1. Let n = 0. A spectral Deligne-Mumford n-stack is a spectral Deligne-
Mumford stack X with the following property: for every commutative ring R, the mapping
space MapSpDM(Spét R, X) is n-truncated. A spectral algebraic space is a spectral Deligne-
Mumford 0-stack.

Example 1.6.8.2. For every connective Ey-ring A, the étale spectrum Spét A is a spectral
algebraic space.

Remark 1.6.8.3. Let X = (X, O x) be a spectral Deligne-Mumford stack. The condition
that X be a spectral Deligne-Mumford n-stack depends only on the underlying 0-truncated
spectral Deligne-Mumford stack (X, 7 Ox).

Remark 1.6.8.4. Suppose we are given a pullback diagram of spectral Deligne-Mumford
stacks
X' ——=X

-

Y —=Y.
Assume that X and Y’ are spectral Deligne-Mumford n-stacks for some n > 0, and that Y is
a spectral Deligne-Mumford (n + 1)-stack. Then X' is a spectral Deligne-Mumford n-stack.

In particular, if Y’ and Y are affine and X is a spectral Deligne-Mumford n-stack, then X' is
a spectral Deligne-Mumford n-stack.

Proposition 1.6.8.5. Let X = (X, Ox) be a spectral Deligne-Mumford stack, and let n > 1
be an integer. Then X is n-localic if and only if it is a spectral Deligne-Mumford n-stack.
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Proposition [1.6.8.5] does not hold when n = 0. For example, if X = Spét A is affine, then
X is a spectral algebraic space (Example [1.6.8.2)), but is usually not 0-localic. However, we
do have the following:

Corollary 1.6.8.6. Let X be a spectral algebraic space. Then X is 1-localic.

The proof of Proposition [1.6.8.5] depends on a few general observations about n-localic
oo-topoi.

Lemma 1.6.8.7. Let X and Y be co-topoi, and suppose that X is n-localic for some n = 0.
Let Fun*(X,Y) denote the full subcategory of Fun(X,Y) spanned by the geometric morphisms
f*: X > Y. Then Fun*(X,)) is equivalent to an n-category.

Proof. Let 7<n,—1 X and 7<,—1 Y denote the underlying n-topoi of X and Y. Since & is
n-localic, we can identify Fun*(X,)) with the full subcategory of Fun(r<,—1 X, 7<p—1))
spanned by those functors which preserve small colimits and finite limits. The desired result
now follows from the observation that 7<,_1 ) is equivalent to an n-category. ]

Lemma 1.6.8.8. Let X = (X, 0x) and Y = (Y, Oy) be spectral Deligne-Mumford stacks.
Assume that Oy is n-truncated, and that X is n-localic. Then the mapping space Mapg,pn (Y, X)
is n-truncated.

Proof. There is an evident forgetful functor 6 : Mapg,py (Y, X) — Fun*(X,Y)™, where the
codomain of # is n-truncated by Lemma It will therefore suffice to show that the
homotopy fiber of 8 over every geometric morphism f* : X — ) is n-truncated. Unwinding
the definitions, we see that this fiber can be identified with a summand of the mapping
space Mapgy,,, Alg(y)( f* Ox,0y), which is n-truncated by virtue of our assumption that &'y
is n-truncated. O

Remark 1.6.8.9. Using exactly same argument, we can deduce an analogous result for
spectral schemes. In particular, every spectral scheme represents a functor which carries
discrete Eq-rings to discrete spaces, so that every schematic spectral Deligne-Mumford stack
is a spectral algebraic space.

Proof of Proposition[I.6.8.5 The implication (1) = (2) follows from Lemma As-
sume now that (2) is satisfied. Replacing & x by mg O x, we may assume that &y is discrete.
It follows from Theorem that there exists a 1-localic spectral Deligne-Mumford
stack Y = (), 0y) and a 2-connective object U € ) such that X ~ (¥, 0y|v). To
prove that X is n-localic, it will suffice to show that the object U is n-truncated (Lemma
. Let Yo be the full subcategory of ) spanned by those objects Y € ) such that
Mapy(Y, U) is n-truncated. We wish to show that )y = ). Since )y is closed under
small colimits in Y, it will suffice to show that )y contains every object Y for which
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(Vyy, Oy ly) ~ Spét R is affine (note that in this case, R is automatically discrete). We now
observe that Map,,(Y,U) can be identified with the homotopy fiber of the forgetful map
Mapg,pam (Spét R, X) — Mapg,p\i(Spét R, Y). Here Mapg,ny(Spét R, X) is n-truncated by
assumption (2), and Mapg,py(Spét R,Y) is 1-truncated by Lemma so that the
homotopy fiber is also n-truncated. O



Chapter 2

Quasi-Coherent Sheaves

To every spectral Deligne-Mumford stack X = (X, O y), one can associate a theory of
quasi-coherent sheaves on X. The collection of quasi-coherent sheaves on X can be organized
into a stable co-category which we will denote by QCoh(X). The oo-category QCoh(X) is
our principal object of study in this section.

We begin in a more general setting. Let (X', &) be an arbitrary spectrally ringed co-topos.
In we will introduce a stable co-category Mod,, whose objects are &-module objects in
the oo-category Sp(X') ~ Shvgp (&) of sheaves of spectra on X'. Our main result (Corollary
implies that if & is discrete and X is 1-localic (for example, if (X, &) is an ordinary
Deligne-Mumford stack: see Proposition ?7), then Modg contains the (bounded below)
derived oo-category D(A) <o as a full subcategory, where A is the abelian category of discrete
sheaves of &-modules on X.

Suppose now that X = (X, &) is a spectral Deligne-Mumford stack. In we will
introduce a full subcategory QCoh(X) € Mody, which we call the oo-category of quasi-
coherent sheaves on X. It is uniquely characterized by the following properties:

(a) Let # € Modg be a sheaf of -modules on X'. Then the condition that % be quasi-
coherent is of a local nature on X. In particular, .% is quasi-coherent if and only if],

for every affine U € X, the restriction .% |y is a quasi-coherent sheaf on the spectral
Deligne-Mumford stack (X 7, 0 |y) (Remark [2.2.2.3).

(b) Suppose that X = Spét A is affine. Then the global sections functor I : Modgs — Mod 4
admits a fully faithful left adjoint, whose essential image is the full subcategory
QCoh(X) € Mody (Proposition [2.2.3.3)).

We will see that the collection of quasi-coherent sheaves admits several other characterizations

(see Definition [2.2.2.1] Proposition [2.2.4.3] and Proposition [2.2.6.1]).

In many situations, we will need to understand the global sections functor (# €
QCoh(X)) — I'(X;.%) in the case where X is not affine. To ensure that this construction

186
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has reasonable behavior, one generally needs to make some assumptions about X. In
we discuss a hierarchy of “compactness” conditions on X (analogous to quasi-compactness
and quasi-separatedness in the setting of classical algebraic geometry) which are relevant for
this purpose.

If X = (X, Ox) is an affine spectral Deligne-Mumford stack, then the global sections
functor .# — T'(X;.#) induces an equivalence from the co-category QCoh(X) to the co-
category Modp(x.¢,) of modules over the Eq-ring I'(X; Ox). In §2.4] we will show that
this is true more generally under the assumption that X is quasi-affine: that is, if X is
quasi-compact and admits an open immersion into an affine spectral Deligne-Mumford stack
(Proposition . In other words, if we work at the level of stable co-categories and
E-rings (rather than abelian categories and ordinary commutative rings), then quasi-affine
spectral Deligne-Mumford stacks behave to a large extent as if they are affine. As another
illustration of this philosophy, we show that if X = (X, 0x) is quasi-affine, then its functor
of points hy is corepresented by the (possibly nonconnective) Eq-ring I'(X'; & x) (Corollary
. In particular, the construction X — I'(X; O x) determines a fully faithful embedding
from (the opposite of) the co-category of quasi-affine spectral Deligne-Mumford stacks to
the oo-category of Eq-rings. In we give a description of the image of this fully faithful
embedding, following work of Bhatt and Halpern-Leistner ([27]).

Let f:(X,0x) — (¥, Oy) be a map of spectrally ringed co-topoi. Then f determines a
pair of adjoint functors

*
Modﬁy?ModﬁX .

IfX=(X,0x)and Y = (), 0y) are spectral Deligne-Mumford stacks, then the pullback
functor f* carries quasi-coherent sheaves on Y to quasi-coherent sheaves on X. In
we will study conditions on f which guarantee that the pushforward f, also preserves
quasi-coherence. In particular, we will show that f, preserves coherence when the morphism
f is quasi-affine (Corollary . We will deduce this from a more general statement
(Proposition which we will apply in Chapter |3| to prove analogous results in the
setting of quasi-compact, quasi-separated spectral algebraic spaces.

The theory of quasi-coherent sheaves on spectral Deligne-Mumford stacks can be regarded
as a global analogue of the theory of modules over E-rings. In particular, if P is any
property of modules which can be tested locally with respect to the étale topology (see
Definition , then it makes sense to ask if a quasi-coherent sheaf has the property P.
In we will study a number of properties which can be defined in this way. Many of these
properties involve finiteness conditions on modules over Ey-rings, which we study in detail
in A particularly important example is the property of invertibility: a quasi-coherent
sheaf .# on a spectral Deligne-Mumford stack (X, @ y) is said to be invertible if there exists
another quasi-coherent sheaf .7 “lsuch that Z.F '~ 0@ x. The collection of (equivalence
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classes of) invertible quasi-coherent sheaves can be organized into an abelian group Pic(X),
the extended Picard group of X, which we will study in
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2.1 Sheaves on a Spectrally Ringed co-Topos

Let X be a topological space and let & be a sheaf of commutative rings on X. A
sheaf of O-modules is a sheaf of abelian groups .# on X such that .#(U) is equipped with
the structure of a module over the commutative ring &'(U) for every open subset U € X,
depending functorially on U. Our goal in this section is to introduce an co-categorical
analogue of the theory of sheaves of modules. We will replace the topological space X with
an arbitrary co-topos X, and & by an arbitrary sheaf of Eg-rings on X.

Definition 2.1.0.1. Let X be an co-topos and let € € Shvcalg(X) be a sheaf of Ey-rings
on X. Recall that & can be identified with a commutative algebra object of the symmetric
monoidal co-category Shvg,(X') of sheaves of spectra on X' (see §77). We let Mod, denote
the co-category Modg(Shvg, (X)) of 0-module objects of Shvg,(X). Then Mods can be
regarded as a symmetric monoidal oco-category with respect to the relative tensor product
®¢ (see §HA.3.4.4). We will refer to the objects of Mody as sheaves of €-modules on X, or
sometimes just as &-modules.
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Warning 2.1.0.2. Let X be a topological space and let & be a sheaf of commutative rings
on X. Then we can identify ¢ with a sheaf of E-rings on the co-topos Shv(X). In this
case, Definition does not recover the classical theory of sheaves of &-modules on X,
because we allow ourselves to consider sheaves of spectra rather than sheaves of abelian
groups. However, we will prove below that the co-category Mod is stable and equipped with
a natural t-structure (Proposition . The classical theory of sheaves of &-modules can
be recovered by taking the heart Modg of the oo-category Mods. Moreover, the co-category
Mody is closely related to the derived oco-category of its heart (see Corollary .

The next proposition summarizes some of the basic formal properties of Definition 77:
Proposition 2.1.0.3. Let X be an co-topos and O a sheaf of Eg-rings on X. Then:
(1) The oo-category Modg is stable.

(2) The co-category Modg is presentable and the tensor product ®s : Modg x Modg —
Modg preserves small colimits separately in each variable.

(3) The forgetful functor 6 : Mody — Shvgy(X) is conservative and preserves small limits
and colimits.

Proof. Assertion (1) follows from Proposition HA.7.1.1.4 , assertion (2) follows from Theorem
HA.3.4.4.2, and assertion (3) follows from Corollaries HA.3.4.3.2 and HA.3.4.4.6. O

Notation 2.1.0.4. Let (X, 0) be a spectrally ringed co-topos, and suppose we are given
objects Z,.Z#' € Modg. For every integer n, we let Ext, (%, .#’) denote the abelian group
Extyioa, (7, Z') of homotopy classes of maps from .# to ¥".%’ in Mod.

Remark 2.1.0.5. Let (X, ) be a spectrally ringed oo-topos. Then the construction
(U € X) + Modg|, determines a functor from X°P into the co-category Catoy, oOf (not
necessarily small) oo-categories. Moreover, this functor preserves small limits.

To see this, consider the coCartesian fibration p : Fun(A!, X) — Fun({1},&X) ~ X
given by evaluation at {1} < A'. This coCartesian fibration is classified by a functor
x : X — PrY, which assigns to each object U € X the co-topos X/V. We claim that this
functor preserves small colimits. To prove this, it suffices to show that the opposite functor
x @ XP — PrlP ~ PrR preserves small limits; this functor classifies p as a Cartesian
fibration, and is a limit diagram by virtue of Theorems HTT.6.1.3.9 and HTT.5.5.3.18
together Proposition HTT.5.5.3.13. For any presentable co-category C, we obtain a new
functor given by the composition

x5 b 5 prk
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which assigns to each object U € X the co-category Shve(X/V) (see Remark [1.3.1.6). The
same reasoning yields a limit-preserving functor X — Prl® ~ PrR which, by virtue of
Theorem HTT.5.5.3.18, gives a limit-preserving functor x[C] : X°P — ga\too.

The evident forgetful functor Mod — CAlg determines a natural transformation of
functors x[Mod] — x[CAlg] from X°P to Cato. Every sheaf & of E-rings on X' determines
a natural transformation * — y[CAlg], where = denotes the constant functor X — Catop,
taking the value A°. Forming a pullback diagram

¢ — x[Mod]

|

x — y[CAlg],

we obtain a new limit-preserving functor ¢ : XP — aoo. Unwinding the definitions, we
see that ¢ assigns to each object U € X' the oo-category Modg |, and to every morphism
f:U — V in X the associated pullback functor f*: Mod,|, — Modg),. Since x[CAlg]
and x[Mod] preserve small limits, so does ¢.

2.1.1 The t-Structure on Mody

Let X be an co-topos and let & be a sheaf of Eo-rings on X'. We will say that a &-module
F is connective if it is connective when viewed as a sheaf of spectra on X: that is, if the
homotopy sheaves m,.%# vanish for n < 0. We let Mody' denote the full subcategory of
Mods spanned by the connective &-modules. This notion is primarily useful in the case
where the sheaf & is itself connective.

Proposition 2.1.1.1. Let X be an oo-topos and let & be a connective sheaf of Eo-rings on
X. Then:

(a) The cw-category Modg admits a t-structure (Modg', (Modg)<o), where (Modg)<o is
the inverse image of Shv(Sp)<o under the forgetful functor  : Mods — Shvg,(X).

(b) The t-structure on (Mody', (Modg)<o) is compatible with the symmetric monoidal
structure on Modg. In other words, the full subcategory (Mod%' < Modg contains the
unit object of Modg and is closed under the relative tensor product 4.

(¢) The t-structure (Mody', (Modg)<o) is right complete and compatible with filtered
colimits (in other words, the full subcategory (Modg)<o is stable under filtered colimits
m Modﬁ).

Proof. We first prove (a). It follows immediately from the definitions that the full subcategory
Mod%' < Mody is closed under small colimits and extensions. Using Proposition HA.1.4.4.11,
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we deduce the existence of an accessible t-structure ((Mod%', Mod/;) on Modg. To complete
the proof, it will suffice to show that Mod);, = (Modg)<o. Suppose first that .# € Mod/,.
Then the mapping space Mapy,q, (¥, %) is discrete for every object 4 € (Modg)>o. In
particular, for every connective sheaf of spectra M e Shvg,(X)s0, the mapping space
Mapytod, (M ® O, F) ~ Mapgyyg, (1) (M, 0(F)) is discrete, so that 0(.F) € Shvgy(X)<o
and therefore .# € (Modg)<o-

Conversely, suppose that .# € (Modg)<o. We wish to prove that % € Mod);. Let
C denote the full subcategory of Modys spanned by those objects ¢ € Mody for which
the mapping space Mapyi,q ﬁ(% ,-F) is discrete. We wish to prove that C contains Mod$'.
Condition (3) shows that 6 induces a functor Mody' — Shvg,(X)>o which is conservative
and preserves small colimits; moreover, this functor has a left adjoint F', given informally by
the formula F(M) ~ ¢ ® M. Using Proposition HA.4.7.3.14, we conclude that Modg' is
generated under geometric realizations by the essential image of F'. Since C is stable under
colimits, it will suffice to show that C contains the essential image of F'. Unwinding the
definitions, we are reduced to proving that the mapping space

Mapyod,, (F(M), F) ~ Mapgpyg (1) (M, 0(F))

is discrete for every connective sheaf of spectra M on X, which is equivalent to our assumption
that 6(.%) € Shvgp(X)<o. This completes the proof of (a).

We now prove (b). The unit object of Mody is the sheaf & (regarded as a module
over itself), which is connective by assumption. We claim that for every pair of objects
F,9 € Mod$', the relative tensor product . % ®¢ ¥ is also connective. Note that, as a sheaf
of spectra, the relative tensor prouct .% ®¢ ¥ can be identified with the geometric realization
of a simplicial object whose entires are iterated tensor products F Q O®---® O QY. Since
F,%9, and O are connective, the above tensor product is connective (Proposition ;
because Modgp,(X)>0 is closed under colimits we conclude that .# ®¢ ¥ is connective.

We now prove (c). Since the forgetful functor 6 : Mody — Shvg,(X') preserves filtered
colimits (Proposition and the full subcategory Shvg,(X)<o S Shvg, (&) is closed
under filtered colimits (Proposition [1.3.2.7), it follows that the full subcategory (Modg)<o
Modg is closed under filtered colimits. By virtue of Proposition HA.1.2.1.19, to show
that the t-structure (Mod%', (Modg)<o) is right-complete, it is sufficient to show that it is
right-separated: that is, that the intersection

ﬂ(MOdﬁ)é—n ~ 0! (ﬂ Shvgp(X)<—n)

contains only zero objects of Mod. This follows from the conservativity of the functor 6,
since the intersection () Shvgp(X)<—n contains only zero objects of Shvgy,(X) (Proposition

529, 0
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Warning 2.1.1.2. The t-structure of Proposition [2.1.1.1]is generally not left complete or
even left separated. However, it is left complete (left separated) whenever the t-structure
(Modsgp (X)=0, Modgp (X) <o) is left complete (left separated). For example, if X is hyper-
complete, then Mod is left separated; if Postnikov towers in X are convergent, then Modg
is left complete.

2.1.2 The Derived co-Category of Modg

Let X be an oo-topos and let & be a connective sheaf of Ex-rings on X. We let
Modg < Modg denote the heart of the t-structure described in Proposition [2.1.1.1f (that is,
the intersection Mody' n(Modg)<o)-

Remark 2.1.2.1. Unwinding the definitions, we can identify 7y & as a commutative ring
object in the underlying topos XV, and Modg with the abelian category of (mp €')-module
objects of XY,

According to Remark HA.1.3.5.23 | the inclusion ¢ : Modg — Mody admits an essentially
unique extension to a t-exact functor D(Modg)@o — Modg, where D(Modg)«;o denotes
the derived oo-category of Modz (see §HA.1.3.2). If the oo-topos X is hypercomplete,

then the t-structure on Mody is left separated (Warning [2.1.1.2), so Theorem |C.5.4.9
implies that ¢ admits an essentially unique extension to a colimit-preserving t-exact functor

p: D(Mody)) — Mody.

Theorem 2.1.2.2. Let (X, 0) be a spectrally ringed co-topos satisfying the following condi-
tions:

(a) The structure sheaf O is discrete.

(b) For each object X € X, there exists an effective epimorphism U — X where U is a
discrete object of X.

(¢) The co-topos X is hypercomplete.

Then the functor p : D(Modg) — Modg supplied by Theorem is an equivalence of
o0-categories.

Before giving the proof of Theorem [2.1.2.2] let us note some of its consequences.

Corollary 2.1.2.3. Let (X, 0) be a spectrally ringed co-topos satisfying the following con-
ditions:

(a) The structure sheaf O is discrete.

(b) For each object X € X, there exists an effective epimorphism U — X where U is a
discrete object of X.
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Then the inclusion Modg — Modg extends to a fully faithful embedding ¢ : D(Modg) —
Modg, whose essential image is the full subcategory of hypercomplete O-module objects of
Shvg,(X).

Proof. Let f*: X — X™P be a left adjoint to the inclusion. Then the spectrally ringed oo-
topos (X hyp ¢ ) satisfies the hypotheses of Theorem [2.1.2.2] so that we have an equivalence

of co-categories
D(Mody)) ~ D(ModY, ) =~ Mod s+ 5(Shve, (X™P)).
We now define ¢ to be the composition of this equivalence with the pushforward functor
fi : Mod  6(Shvgy (X™P)) — Modg(Shvs, (X)) = Mod,

(which is a fully faithful embedding whose essential image is spanned by the hypercomplete
O-module objects of Shvgy(X)). O

Corollary 2.1.2.4. Let (X, 0) be a spectrally ringed co-topos satisfying the following con-
ditions:

(a) The structure sheaf O is discrete.

(b) For each object X € X, there exists an effective epimorphism U — X where U is a
discrete object of X .

Then the functor . : D(Modg)@o — Modg supplied by Remark HA.1.3.5.23 is a fully faithful
embedding, whose essential image is the union | J,,~o(Modg)<n.

We begin by proving Theorem [2.1.2.2]in the special case where X is a presheaf co-topos.

Proposition 2.1.2.5. Let C be a category, let ¢ € Fun(C?,CAlg") be a presheaf of
commutative rings on C, and let Modgs = Modg(Fun(C°P,Sp)) be the co-category of O-
modules on the hypercomplete co-topos Fun(C°?, S). Then the canonical map p : D(Modg) —
Modg (supplied by Corollary ?7?) is an equivalence of c0-categories.

Proof. For each object C € C, let hg : C°®® — Set © S be the functor represented by C
(given on objects by the formula he(D) = Home(D, C)) and let .# ¢ € Modg be the tensor
product & @Y (h¢), given on objects by the formula ¢ (D) ~ @,.p_,c 0(D). Note that
Z ¢ belongs to the heart of Mod.

For any object ¢4 € Modg, we have a canonical homotopy equivalence

Mapyioa, (F,9) = Mappyycer gp)(Z5he, Y)

Mappun(copﬁ) (hc, Q% g)
~ QPY(0).

12
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Note that if ¢ € (Modg)>1, then we have mo Mapyjq, (F ¢, ¥) ~ 0: that is, F ¢ is a projec-
tive object of the co-category Mody', and in particular is a projective object of the abelian
category Modg. For an arbitrary object 4 € Modg, the induced map @nem%(C) Fo—Yis
an epimorphism on 7g. It follows that the abelian category Modg has enough projective ob-
jects, so that the derived oco-category D(Modg) is left complete (see Proposition HA.1.3.5.24 ).
The presheaf co-topos Fun(C°P, S) is Postnikov complete (in the sense of Definition ,
the t-structure on Mod is also left complete (Warning . Consequently, to show that
the functor p is an equivalence of co-categories, it will suffice to show that the underlying

map

p<o : D(Mod}) <o — (Modg) <0

is an equivalence of co-categories. Using the dual of Proposition HA.1.3.3.7, we are reduced
to proving the following:

() For every pair of objects 4,4’ € Modg, there exists an epimorphism 0 : % — ¢ in
Modz for which the groups Ext}(%,%") vanish for n > 0.

This is clear: we can take 6 to be the epimorphism @, c. ¢ ) #(C) — ¢ described
above. O

The proof of Theorem will require a brief digression. Let X be an co-topos and &
a connective sheaf of Ey-rings on X'. Then for every object X € X, we let &'|x denote the
composition of & with the forgetful functor 7 : X' /x — &, so that &'| x is a sheaf of Eq-rings
on the co-topos X'/x. Composition with 7 determines a pullback functor Modg — Modg | ,
which we will denote by 7*. The functor 7* preserves small limits and colimits, and therefore
admits a left adjoint m : Mod, |, — Modg (Corollary HTT.5.5.2.9).

Lemma 2.1.2.6. Let X be an oo-topos, O a connective sheaf of Eg-rings on X, and X a
discrete object of X. Then the functor m : Mody |, — Modg is t-exact (with respect to the
t-structures introduced in Proposition|2.1.1.1)).

Proof. The functor m is obviously right t-exact (since it is the left adjoint of the t-exact
pullback functor 7* : Modgy — Modg), ). It will therefore suffice to show that m is left
t-exact: that is, that m carries (Modﬁ|x)<o to (Modg)<o-

Without loss of generality, we may assume that X' is an accessible left-exact localization
of a presheaf oo-category P(C) = Fun(C°P, S) for some small co-category C; we will identify X
with the corresponding discrete object of P(C). Then & can be obtained as the pullback of a
connective sheaf of Eo-rings ¢’ € Shvcaig(P(C)) ~ Fun(C°P, CAlg). We have a commutative
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diagram of co-categories

Mod|, ——> Mod,

1 K

Mody |, ——= Mody,

where the vertical maps are given by pullback along the geometric morphisms

(and are therefore t-exact). For any object F € (Modg|,)<o, there exists an object
Z' € (Mod |X)<0 such that .# ~ ¢* .Z’: for example, we can take .#’ to be the pushforward
g« F. Since the functor f* is t-exact, to prove that m .% € (Modg)<o, it will suffice to
show that 7. %' € (Modg)<o. In other words, we wish to show that for every object
C € C, the 0'(C)-module spectrum (7{.#")(C) belongs to Spy. Since X is discrete, we
may assume without loss of generality that X is a Set-valued functor on C°?. Note that
(m.7")(C) can be written as a coproduct e x(cy-#'(Cy) where Cy € P(C),x denotes map
j(C) — X representing n € X(C), where j : C — P(C) is the Yoneda embedding. Since
F' € (Mody |, )<o0, each of the spectra F'(Cy) € (Sp)<o, so that (m #')(C) € Spgy as
desired. O

Proposition 2.1.2.7. Let (X, 0) be a spectrally ringed co-topos and let n = 0 be an integer.
Suppose that the following conditions are satisfied:

(a) For every object X € X, there exists an effective epimorphism U — X where U is a
discrete object of X.

(b) The structure sheaf O is connective and n-truncated.
Then the oo-category Mod$' is n-complicial (see Definition|C.5.3.1)).

Proof. Using (a) and the presentability of X', we can choose a collection of discrete objects
{Us} of X with the following property: for every object X € X, there exists an effective
epimorphism X — X, where X can be written as a coproduct of objects belonging to {U,}.
For each index «a, let g : ModeQ — Modg denote the functor of Lemma and set
Oq = a1(0|yy,). Since each U, is discrete, Lemma (and assumption (b)) imply that
each 0 is an n-truncated object of Mody'.

Let # be an object of Mody. Unwinding the definitions, we see that each element
n € moF (Uy) determines a homotopy class of maps f, : 0o — .F in the co-category Modg.
Amalgamating these maps as « and 7 vary, we obtain a map f : ®nevro F(Ua) Of — F.
By construction, the morphism f induces an epimorphism on 7y and the domain of f is
n-truncated. Allowing .# to vary, we conclude that Mod%' is n-complicial. O
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Proof of Theorem [2.1.2.3. Let (X, 0) be a spectrally ringed co-topos. It follows from Theo-
rem that the inclusion Modg — Mod§' admits an essentially unique extension to a
functor A : D(Modeo — Mod%' which preserves small colimits and finite limits. Suppose
that & is discrete and that for every object X € X, there exists an effective epimorphism
U — X where U is discrete. Applying Proposition [2.1.2.7] we deduce that the co-category
Mod% is O-complicial (in the sense of Definition [C.5.3.1)). If the co-topos X is hypercomplete,
then Mody' is also separated (in the sense of Definition |[C.1.2.12). Since D(Mod(g;);o is also

0-complicial (Proposition |C.5.3.2)) and separated, Proposition [C.5.4.5| implies that A is an
equivalence of co-categories. Passing to stabilizations, we obtain a t-exact equivalence

D(A) ~ Sp(D(A)=0) = Sp(Modg') ~ Mody .
]

We close this section by proving a variant of Theorem [2.1.2.2] for morphisms between
spectrally ringed oco-topoi.

Theorem 2.1.2.8. Let f: (X,0x) — (Y, Oy) be a morphism of spectrally ringed co-topoi
which satisfy conditions (a) and (b) of Corollary|2.1.2.4| and let fy - Modgx — Modgy be
the functor of abelian categories given at the level of objects by the formula fy F = no(fs F).
Then the pushforward functor

D(Mod§ ) <o ~ | JModg,)<n 25 | JModsy )<n ~ D(Mod ) <o

n n

is a right derived functor of fY (see Exzample HA.1.3.3.4 ).

Proof. Let % be an injective object of the abelian category Modg,x. We wish to show
that the pushforward fi % belongs to the heart of Modg,,. Fix an object Y € J and an
element z € m,((f«-#)(Y)); we wish to prove that if n # 0, then we can choose an effective
epimorphism Y’ — Y such that the image of x vanishes in m,((f« #)(Y”')). In fact, we
will prove something stronger: the group 7, ((f«-#)(Y")) vanishes whenever Y is a discrete
object of Y (note that there exists an effective epimorphism Y’ — Y with Y’ discrete by
virtue of our assumption that ) satisfies condition (b) of Corollary . Set X = f*Y’;
we wish to prove that 7, % (X) € X vanishes. Let m : Modg, |, — Modg, be as Lemma
2.1.2.6, Since X = f*Y”’ is discrete, the functor m is t-exact. It follows that m(Ox |x)
belongs to Modzx. Using Corollary and the injectivity of .%, we obtain

T F(X) ~ EXtK/Izdﬁxlx(ﬁX |X,§|X) ~ EXtK/IZd@X(m Oxl|x,F)~0.
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2.2 Quasi-Coherent Sheaves on Spectral Deligne-Mumford
Stacks

Let (X, Ox) be a scheme. Recall that a (discrete) sheaf .# of € x-modules on X is said
to be quasi-coherent if it satisfies the following condition:

(%) For every pair of affine open subsets U € V < X, the canonical map
Ox(U)®gy vy F(V)— F(U)
is an isomorphism.

The theory of quasi-coherent sheaves plays an essential role in classical algebraic geometry.
Our goal in this section is to introduce an analogous theory in the setting of spectral algebraic
geometry.

Let X = (X, Ox) be a spectrally ringed oo-topos. In we defined a stable co-category
Mods, whose objects are sheaves of &' y-module spectra on X'. In the special case where
X is a nonconnective spectral Deligne-Mumford stack, we will define a full subcategory
QCoh(X) < Modg,,, which we will refer to as the oo-category of quasi-coherent sheaves on
X. The condition that a sheaf .# € Mody, is quasi-coherent can be expressed in several
different ways:

(a) The triple (X, Ox,.%) is locally equivalent to the spectrum (in the sense of Corollary
2.2.1.5|below) of a pair (A, M), where A is an Ey-ring and M is an A-module spectrum.

(b) The sheaf .# satisfies the analogue of condition () above: for any morphism U — V
between affine objects of &', the induced map Ox(U) Qg (v) F# (V) — F(U) is an
equivalence.

(c) Each homotopy group m, .7 is a quasi-coherent sheaf over the underlying ordinary
Deligne-Mumford stack (XY, my Ox), and the sheaf .% is hypercomplete.

We will adopt characterization (a) as our definition of quasi-coherent sheaf, and prove

its equivalence with (b) and (c) later in this section (Propositions [2.2.4.3| and [2.2.6.1]

respectively).

2.2.1 The Etale Spectrum of a Module

Let (X, 0) be a spectrally ringed co-topos and let .# € Modg be a ¢-module object of
Shvg,(X). Then we can view the pair (€, .%) as a single sheaf on X"
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Notation 2.2.1.1. Let Mod = Mod(Sp) denote the co-category of pairs (A, M), where A
is an Eg-ring and M is an A-module spectrum. We let 007 opy;,q denote the oo-category
whose objects are co-topoi X' together with a Mod-valued sheaf on X. More precisely, we let
00T opy1oq denote an co-category equipped with a coCartesian fibration 007 opyoq — 07 0p,
which is classified by the functor

ooTop — @oo

X — Shvpiea(X)°P.
We can describe the oo-category 007 opy,q more informally as follows:

e The objects of c0T opy.q are triples (X, €,.%), where X is an co-topos, € is a sheaf
of Eo-rings on X, and % is a sheaf of &-module spectra on X.

e A morphism from (X, 0,. %) to (X', 0',F") in 0T opyjq consists of a triple (¢x, @, 3),
where ¢, : X — X' is a geometric morphism of oo-topoi, o : @' — ¢y O is a morphism
of CAlg-valued sheaves, and 3 : #' — ¢, .Z is a morphism of ¢’-modules.

Notation 2.2.1.2. We can identify the fiber product c07 opyioq X Top.,{S} with the oco-
category Shvyed(S)°P ~ Mod®?. The induced functor Mod°? — 0T opyq admits a left
adjoint, given on objects by (X, 0,.%) — (I'(X; 0),I'(X;.%)). We will refer to this left
adjoint as the global sections functor, and denote it by I' : 0T opyroq — Mod®P.

Notation 2.2.1.3. There is an evident forgetful functor 00T opyroq — %07 0Pcalg; given on
objects by (X, 0,.F) — (X, 0). We let 0T opiie® denote the fiber product

sHen
0T 0PMod X wTopeay, ©7 OPCAlg

sHen

so that coTop}iisy is a subcategory of 0T opy;,q Whose objects are triples (X, 0, .%) for
which the sheaf & is strictly Henselian.

Proposition 2.2.1.4. Let A be an E-ring and let M be an A-module. Let
p: CAlg¥ — Mod
denote the functor given on objects by B — (B, B®4 M). Then:

(1) The functor p is a sheaf with respect to the étale topology on CAlgﬁf, and can therefore
be identified with a Mod-valued sheaf (0,.F) on the w-topos Shv (see Proposition

317,

(2) The sheaf of B -rings O is strictly Henselian, so that we can view (S, 0, F) as

an object of 0T opsiey.
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12

(3) Let T : 0T opyroq — Mod®P be the global sections functor, so that T'(Shv¥, 0,.F)
(A, M). For every object X € ooTopf\?oeél, the canonical map

0 : Mapoo’]'opf\}[{jé‘ (X7 (Shv.it: ﬁa g)) - Ma‘pMod((A7 M)7 F(X))
is a homotopy equivalence.

Proof of Proposition[2.2.1.7 Assertion (1) follows from Theorems[D.6.3.5and ??. Assertion
(2) from Proposition ??. To prove (3), write X = (X, O, .# x) and observe that we have a

commutative diagram

é [4
MapOOTOpf\}I{fé‘ <X7 (ShV?L ﬁv 3'5)) - MapMod(<Av M), F(X))

|

é 0
Mapoo']’op%lk’fé((xa ﬁX)? (ShVAta ﬁ)) — MapCAlg(A’ P(X7 ﬁ))

where the map 6y is a homotopy equivalence by virtue of Proposition Consequently,
in order to prove that 6 is a homotopy equivalence, it will suffice to show that it induces a
homotopy equivalence after taking the homotopy fibers of the vertical maps over a point
corresponding to a map of spectrally ringed co-topoi n: (X, 0x) — (Shvif, 0). Unwinding
the definitions, we are reduced to proving that the formation of global sections induces a
homotopy equivalence

¢M : MapModg(ﬁvn* fx) HMapModA(M’F(X;gX))'

Let us say that an A-module M is good if the map ¢y is a homotopy equivalence for every
choice of sheaf .# y € Modg,. We wish to show that every A-module M is good. The
collection of good A-modules span a stable subcategory of Mod 4 which is closed under
colimits. Consequently, we can reduce to the case M = A, in which case .% is equivalent to
the structure sheaf of Spét A and the desired result is obvious. O

Corollary 2.2.1.5. Let TS . ooTopsied — Mod®P denote the restriction of the global
sections functor T : o0Topyjoq — Mod®P to the subcategory coT opiich € 0T opyoq- Then

sHen admits a right adjoint

Spétytoq : Mod®P — ooTopihen.
Remark 2.2.1.6. Given an Ey-ring A and an A-module M, the object Spéty.q(A, M) can
be described explicitly using the construction of Proposition [2.2.1.4] In particular, we see
that the underlying spectrally ringed co-topos of Spéty;,q(A, M) can be identified with the
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étale spectrum Spét A. It follows that the diagram of co-categories
ooTopf\}[{(fél ——> Mod°P
ooTopSCIfffé —— CAlg®?
is right adjointable, so that the diagram
Spét
Mod°P pe ModooTopi}[{Oeél
.
CAlg™ 2% coTopgh

commutes up to canonical homotopy.

2.2.2 Quasi-Coherence

We are now ready to introduce our main objects of interest.

Definition 2.2.2.1. Let X = (X, &) be a nonconnective spectral Deligne-Mumford stack
and let % be a sheaf of &-modules on X'. We will say that .% is quasi-coherent if there exists
a collection of objects U, € X which cover X' (that is, the map 11,U, — 1 is an effective
epimorphism) satisfying the following condition:

(%) For each «, there exists an Eq,-ring A,, an A,-module M, and an equivalence

(X100 O U0 F |Us) = SPEt\1d(Aay Ma)

in the oco-category coT opiicy.

We let QCoh(X) denote the full subcategory of Mods spanned by the quasi-coherent sheaves
of #-modules on X.

Remark 2.2.2.2. The existence of a covering {U,} satisfying condition (*) guarantees that
(X, 0) is a nonconnective spectral Deligne-Mumford stack.

Remark 2.2.2.3. Let X = (X, &) be a nonconnective spectral Deligne-Mumford stack, and
let . be a sheaf of &-modules on X. The condition that .% be quasi-coherent is local on X.
In other words:

e For every morphism U — V in &, if |y is a quasi-coherent sheaf on (X, 0 |v),
then .7 |y is a quasi-coherent sheaf on (X, O |v).

e Conversely, if we are given an effective epimorphism 11,U, — V and each restriction
Z |u, is a quasi-coherent sheaf on (X i, 0 |y, ), then F |y is a quasi-coherent sheaf
on (X/V7 o ’V)
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2.2.3 The Affine Case

Our next goal is to describe quasi-coherent sheaves over affine spectral Deligne-Mumford
stacks. We begin with a few general remarks.

Lemma 2.2.3.1. Let A be an Eq-ring, let M be an A-module, and set (X,0,%) =
Spétyioq(A, M). Let U € X be affine. Then the canonical map O(U)®a M — F(U) is an

equivalence.

Proof. Since U is affine, Theorem [1.4.10.2 implies that U € X ~ Shv‘zt can be identified
with the functor corepresented by an étale A-algebra B. In this case, the desired result
follows immediately from the construction of (X, &, %) supplied by Proposition [2.2.1.4 [

Lemma 2.2.3.2. Let (X, 0) ~ Spét A be an affine nonconnective spectral Deligne-Mumford
stack. Let F be a quasi-coherent O'-module and let M = T'(X;.F) be the global sections of .7,
regarded as an A ~ I'(X; 0)-module. Then the canonical map (X, 0,.F) — Spétyioq(A, M)

is an equivalence (in the co-category OOTopi}[{(fél .

Proof. Using Proposition we can identify A with the co-category Shvf}. Since %
is quasi-coherent, there exists a collection of objects U, € X covering X for which each
(X0, O lUa, Z |u,) has the form Spétyyoq(Aa, My) for some object (Aq, My) € Mod. In
particular, (X, 0 |u,) ~ Spét(A,) is an affine nonconnective spectral Deligne-Mumford
stack, so that A, is an étale A-algebra by Theorem Without loss of generality, we
may assume that the set of indices « is finite. Let B =[] B, so that Spét B ~ (X 17, 0 |v)
for U = 11,U,. We now observe that (X7, O |u, F |u) ~ Spétygeq(B, N) where B =[] Aq
and N =[] M,.

Let us abuse notation by identifying the pair (&,.#) with the underlying functor
CAlg§ — Mod. Using Lemma we deduce that the canonical map .#(R) ®r
R — Z(R') is an equivalence whenever R — R’ is a morphism in CAlg% for which the
étale map A — R factors through B. Let B*® be the Cech nerve of the faithfully flat
morphism A — B. Since # is a sheaf, we have M = #(A) = lim #(B*). The proof of
Theorem shows that the canonical map M ®4 B — % (B) is an equivalence, so that
M ®a R — Z(R) is an equivalence for any étale map A — R which factors through B. Let
Spétyoq (A, M) ~ (X, 0, F'), so that the map M — .#(A) induces a morphism of sheaves
of O-modules .#' — %. Using Lemma , we deduce that o induces an equivalence
Z'(R) — Z(R) whenever A — R is an étale map which factors through B. Since .#’ and
Z are sheaves, they are determined by their restriction to the sieve generated by B, so that
« is an equivalence as desired. O

Proposition 2.2.3.3. Let X = (X, 0) ~ Spét A be an affine nonconnective spectral Deligne-
Mumford stack. Then the global sections functor T'(X;e) : Modgs — Moda admits a fully
faithful left adjoint, whose essential image is the full subcategory QCoh(X) <€ Mod.
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Proof. Let F' : Mods — Modys denote the functor given on objects by by the formula
Spétyioq(A, M) ~ (X, 0, F(M)). Unwinding the definitions, we deduce immediately that F’
is a left adjoint to I'(X; e). It is clear that F' carries A-modules to quasi-coherent ¢-modules.
Conversely, Lemma implies that every quasi-coherent &-module belongs to the
essential image of F'. To prove that F' is fully faithful, it suffices to show that for every
A-module M, the unit map M — I'(X; F(M)) is an equivalence, which is a special case of

Lemma 2.2.3.11 O

2.2.4 The General Case

We now use Proposition [2.2.3.3] together with the fact that quasi-coherence can be
tested locally to establish some pleasant features of quasi-coherent sheaves on arbitrary
nonconnective spectral Deligne-Mumford stacks.

Proposition 2.2.4.1. Let X = (X, 0) be a nonconnective spectral Deligne-Mumford stack.
Then:

(1) The oo-category QCoh(X) is closed under small colimits in Mod.
(2) The co-category QCoh(X) is stable.
(3) The oo-category QCoh(X) is presentable.

Proof. We first prove (1). Suppose we are given a small diagram {.%,} of quasi-coherent
O-modules, having a colimit .# € Mod,. We wish to prove that % is quasi-coherent. The
assertion is local on X: it therefore suffices to show that .7 |y ~ h_r)n F o U is a quasi-coherent
sheaf on X ;; whenever (X, 0'|y) is affine. Replacing & by X7, we may assume that
(X, 0) is affine. In this case, the desired result follows from Proposition Using
exactly the same argument, we deduce that QCoh(X) is closed under shifts in the stable
oo-category Modg. Assertion (2) now follows from Lemma HA.1.1.3.3.

To prove (3), we let Xy € X denote the full subcategory spanned by those objects
U for which the oo-category QCoh(Xy) is presentable. We wish to prove that Xy = X.
According to Remark m the construction U ~ Mod, |, defines a limit-preserving
functor y gz : X°P — Ea\too. This functor is classified by a Cartesian fibration p : X — X. Let
X denote the full subcategory of X spanned by those objects X which correspond to quasi-

coherent sheaves on X'/, ). Remark|2.2.2.3 guarantees that p|2~( "is also a Cartesian fibration,

which is classified by another functor x/, : P — ga\too (given informally by U — QCoh(Xy)).
Since the condition of quasi-coherence is local (Remark , Proposition HTT.3.3.3.1
shows that x/; is again a limit diagram. The functor x/; evidently factors through the
subcategory aa\t;O c (?ZROO spanned by those co-categories which admit small colimits and
those functors which preserve small colimits. The oo-category Prl of presentable co-categories
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can be identified with a full subcategory of aa\t;o, so that XgP = () ~* Prl. Since Xl
preserves small limits, it follows from Proposition HTT.5.5.3.13 that X is stable under
small colimits in X'. It will therefore suffice to show that Xy contains every object U € X
such that (X, 0 |y) is affine, which follows immediately from Proposition O

Proposition 2.2.4.2. Let X = (X, 0) be a nonconnective spectral Deligne-Mumford stack.
Then the full subcategory QCoh(X) € Modg contains the unit object € and is stable under
tensor products, and therefore inherits a symmetric monoidal structure from the symmetric
monoidal structure on Modg (see Proposition HA.2.2.1.1 ).

Proof. The assertion is local, so we may assume that X = Spét A is an affine nonconnective
spectral Deligne-Mumford stack. Let F' : Mods — Modg be the functor described in
Proposition so that the essential image of F' is the full subcategory QCoh(X) € Mod.
Then F'(A) ~ 0, so that 0 is quasi-coherent. To show that QCoh(X) is stable under tensor
products, it suffices to show that F(M) ®s F(N) is quasi-coherent, for every pair of A-
modules M, N € Mody4.

Let us identify the co-topos X with Shv§} < Fun(CAlg%,S). For any sheaf of ¢-modules
F, we can identify the pair (€,.%) with a Mod-valued sheaf CAlgé% — Mod. Using the
construction supplied by Proposition we see that F'(M) and F(N) are given by the
formulas

F(M)(B)=M®aB F(N)(B) = N®a B.
It follows that F'(M)®s F(N) is the sheafification of the presheaf
B — F(M)(B) ®ﬁ(B) F(N)(B) ~ (M@A B) (9] (N@A B) ~ (M@A N) ®a B.

According to Proposition this presheaf is already a sheaf which we will denote
by %. We have .#(A) ~ M ®4 N so the above formula shows that the canonical map
F(A)®a B — Z(B) is an equivalence for every étale A-algebra B; in other words, the
counit map F(I'(X;.7)) — .Z is an equivalence, so that .# belongs to the essential image
QCoh(X) <€ Modg of the functor F'. O

Our next result can be regarded as a non-affine analogue of Proposition [2.2.3.3

Proposition 2.2.4.3. Let (X, 0) be a nonconnective spectral Deligne-Mumford stack and
let F be a sheaf of O-modules on X. The following conditions are equivalent:

(1) The sheaf .7 is quasi-coherent.

(2) Let f:U —V be a morphism in X such that (X y, O |v) and (X, O |v) are affine.
Then the canonical map F (V) ®g vy O(U) — F(U) is an equivalence.
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Proof. Assume first that (1) is satisfied. To prove (2), we are free to replace X' by X', and
thereby reduce to the case where (X, 0) is affine. It follows that (X, 0,.%) ~ Spéty;,q(A, M)
for some (A, M) € Mod (Lemma [2.2.3.2)), so that assertion (2) follows from Lemma

Now suppose that (2) is satisfied; we wish to prove that % is quasi-coherent. The
assertion is local on X': we may therefore assume without loss of generality that (X, &) is an
affine nonconnective spectral Deligne-Mumford stack Spét A. Let M = T'(X;.%#), regarded
as an A ~ I'(X; 0)-module. Then the identity map M — T'(X;.%#) induces a morphism
(X,0,.F) — Spétyoa(A, M) ~ (X,0,.F') in the co-category coT opiict. To complete the
proof, it will suffice to show that this map induces an equivalence of spectrum-valued sheaves
7' — F. Since X is generated under small colimits by the full subcategory Xy < X spanned
by those objects U € X for which (X 7, € |v) is affine (Lemma ?7), it will suffice to show
that #'(U) — #(U) is an equivalence when U is affine. This follows from the observation
that we have a commutative diagram

M®Aﬁ

/\)

where ¢ is an equivalence by Lemma [2.2.3.1] and ¢ is an equivalence by assumption (2). [

2.2.5 Truncations of Quasi-Coherent Sheaves

We now restrict our attention to the case of spectral Deligne-Mumford stacks X = (X, 0):
that is, we assume that the structure sheaf & is connective. In this case, the co-category
QCoh(X) inherits a t-structure.

Lemma 2.2.5.1. Let A be a connective Eqo-ring, let Spét A = (X, 0), and let F : Mody —
Modg be the fully faithful embedding of Proposition[2.2.3.3. Then F is t-exact.

Proof. The functor F is left adjoint to the global sections functor .# — I'(X;.%), which is
obviously left t-exact. It follows formally that F' is right t-exact. To complete the proof, we
will show that F' is left t-exact: that is, if M € (Mody4)<o, then F(M) e (Modg)<o. Let Xg
be the full subcategory of X spanned by those objects U € X such that F'(M)(U) € Sp-
We wish to prove that Xy = X'. Since .# is a sheaf and the full subcategory Sp., S Sp
is stable under limits, we deduce that X is stable under colimits in X. It will therefore
suffice to show that X contains all objects U € X such that (X, 0'|U) is an affine
spectral Deligne-Mumford stack Spét B (Lemma ?7). We have a canonical equivalence
F(M)(U) ~ M ®4 B. The desired result now follows from Theorem HA.7.2.2.15, since
Theorem guarantees that B is étale (and in particular flat) over A. O
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Proposition 2.2.5.2. Let X = (X, 0) be a spectral Deligne-Mumford stack. Then the full
subcategory QCoh(X) € Modg is compatible with the t-structure of Proposition .
More precisely, if # € Modg is quasi-coherent, then the truncations T, F and 1<, F
are quasi-coherent, for every integer n. Consequently, the full subcategories QCoh(X)sg =
QCoh(X) n (Modg)so and QCoh(X)<o = QCoh(X) n (Modg)<o determine a t-structure on
the co-category QCoh(X).

Proof. Replacing .% by its translates if necessary, it will suffice to show that if .% is quasi-
coherent, then 7>9.% and 7<_1.% are quasi-coherent. This assertion is local on X; we
may therefore assume that (X, &) ~ Spét A is an affine spectral Deligne-Mumford stack
(where A is a connective Ey-ring). Let F' : Modg — Modg be the functor described in
Proposition Since % is quasi-coherent, we may assume without loss of generality
that .# = F(M) for some A-module M. Since A is connective, there is a fiber sequence

M/—)M—>M”

where M’ is a connective A-module and M” € (Mod)<—1. Applying the exact functor F,
we obtain a fiber sequence
F(M/) - F — F(M”)

in Modg. Lemma [2.2.5.1] guarantees that F(M’) € (Modg)so and F(M") € (Modg)<—1.
We therefore obtain identifications F'(M') ~ 759 .% and F(M") ~ 7<_1 .# which proves that
Ts0 % and T<_1 ¥ are quasi-coherent. O

Notation 2.2.5.3. If X = (X, 0) is a spectral Deligne-Mumford stack, we let QCoh(X)"
denote the full subcategory QCoh(X)>9 € QCoh(X) defined in Proposition [2.2.5.2, We will
say that a quasi-coherent sheaf .7 is connective if it belongs to QCoh(X)c".

The basic properties of the t-structure on QCoh(X) can be summarized as follows:
Proposition 2.2.5.4. Let X = (X, 0) be a spectral Deligne-Mumford stack. Then:
(1) The t-structure on QCoh(X) is accessible (see Definition HA.1.4.4.12).

(2) The t-structure on QCoh(X) is compatible with filtered colimits: that is, the full
subcategory QCoh(X)<q is closed under filtered colimits.

(3) The t-structure on QCoh(X) is both right and left complete.

Proof. Assertion (1) is equivalent to the statement that QCoh(X)™ is presentable (Propo-
sition HA.1.4.4.13). This follows from Proposition HTT.5.5.3.12, since QCoh(X)*" can
be identified with the fiber product QCoh(X) Xniod, Modg'. Assertion (2) follows from

Proposition [2.2.4.1] together with the corresponding result for Mods (Proposition [2.1.1.1)).
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We now prove (3). Since Mod is right-complete (Proposition , we deduce that
M,, QCoh(X)<—n < ,,(Modg)<—n contains only zero objects. Combining this observation
with (2), we deduce that QCoh(X) is right-complete (see Proposition HA.1.2.1.19).

The proof that QCoh(X) is left-complete requires a bit more effort (note that Modg
need not be left complete). Consider the full subcategory Xy € X spanned by those objects
U € X for which the t-structure on QCoh(X /U) is left-complete. To complete the proof, it
will suffice to show that Xy = X. Using Proposition 2.2.3.3] Lemma[2.2.5.1] and Proposition
HA.7.1.1.13, we deduce that X contains every affine object U € X. It will therefore suffice
to show that Xy is closed under small colimits in X (Lemma ?7?). Since the conditions of
being quasi-coherent and n-truncated are local, the proof of Proposition shows that
the constructions

U~ QCoh(Xy) U QCoh(Xy)<n

determine limit-preserving functors X°? — C/aEOO. If {U,} is a diagram in X having a colimit
U € X, we have a commutative diagram

QCoh(Xy) lim QCoh(Xy,)

ie

LiLnn QCoh(Xy)<n — lll_nn o QCoh(Xy, ) <n-

where the vertical maps are equivalences. If each U, belongs to Xy, then the right vertical
map is also an equivalence, so the left vertical map is an equivalence as well and U € Xy as

desired. O

2.2.6 Discrete Quasi-Coherent Sheaves

Let X = (X, 0) be a spectral Deligne-Mumford stack. The truncation map ¢ — my &
induces an equivalence of abelian categories ModfO o~ Modg. Using the criterion for
quasi-coherence supplied by Proposition [2.2.4.3] we see that this equivalence respects the
property of quasi-coherence: that is, we have an equivalence of abelian categories

QCoh(X, 7 6)¥ ~ QCoh(X).

(for a more general assertion of this nature, see Corollary .

Let X" be the underlying topos of X, so that we can identify my & with a commutative ring
object of X¥. Then we can identify Modg with the abelian category of my &-module objects
of X¥. Under this identification, the full subcategory QCoh(X)” ~ QCoh(X,my €)% <
MOdS0 ¢ corresponds to the abelian category of quasi-coherent sheaves on the ordinary
Deligne-Mumford stack (X%, o &), in the sense of Deﬁnition (this follows immediately
from the characterization of Proposition .

In the non-discrete case, there is a similar characterization of quasi-coherence:
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Proposition 2.2.6.1. Let X = (X, 0) be a nonconnective spectral Deligne-Mumford stack
and let & be a sheaf of O-modules on X. Then F is quasi-coherent if and only if it satisfies
the following conditions:

(1) For every integer n, the homotopy sheaf m, F is quasi-coherent (in the sense of
Definition |1.2.6.1) when viewed as a my O-module object of the underlying topos X .

(2) The object Q* F € Shvs(X) ~ X is hypercomplete.

Corollary 2.2.6.2. Let X = (X, 0) be a spectral Deligne-Mumford stack. Assume that X
1s 1-localic and that the structure sheaf O is discrete. Then there is a canonical equivalence
of co-categories QCoh(X) ~ D(Modg)qc, where D(ModZ)qC denotes the full subcategory of
the derived co-category D(Modg) spanned by those chain complexes of O-module objects of
XY whose homologies are quasi-coherent (in the sense of Definition .

Proof. Combine Proposition [2.2.6.1] with Corollary 2.1.2.3] O

Remark 2.2.6.3. Under some slightly stronger hypotheses, one can show that the oo-
category QCoh(X) is equivalent to the derived oo-category of its heart: see Corollary
I0.3.4.T13

Proof of Proposition|2.2.6.1. Replacing ¢ by its connective cover if necessary, we may
assume that & is connective. If # is quasi-coherent, then Proposition implies that
each homotopy group m, % is quasi-coherent as a &-module. To prove that (2) is satisfied,
it suffices to work locally on X; we may therefore assume that (X, &) ~ Spét A for some
connective Eo-ring A. Let F' be the functor of Proposition so that .# ~ F(M) for
some A-module M. Let us identify the pair (€,.%) with the sheaf CAlg& — Mod given by
B+ (B,B® M). We note that for each B € CAlg%, we have

F(M)(B) ~ B®a M ~1lim7<,(B®a M) ~1lim B®a (7<,M) ~ lim F (1<, M)(B).

It follows that 7 ~ F(M) =~ lim F'(r<, M) is a limit of truncated objects of Mods (Lemma
, so that Q% .% is a limit of truncated objects of X and therefore hypercomplete.

Now suppose that % € Mod satisfies conditions (1) and (2). We wish to prove that %
is quasi-coherent. Note that .7 ~ lim 7>_,, 7 by Proposition Since the collection of
quasi-coherent sheaves is closed under colimits in Mod, it suffices to prove that each 7> _,, #
is quasi-coherent. Replacing .# by X" (7>_,, %), we may assume that .% is connective. Since
the condition of being quasi-coherent is local on X, we may suppose that (X, &) ~ Spét A
is an affine spectral Deligne-Mumford stack, where A is a connective Eq-ring; let C and
F : Mod4 — Modg be defined as above.

We now argue by induction on m that each truncation 7¢,, % is quasi-coherent. For
m < 0, this is obvious. If m = 0, it follows from the existence of a fiber sequence

Tem 1 F — Tem F — X" (10 F).
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Using Proposition we may suppose that the tower {7<,, #} is obtained from a
tower of A-modules {M,,}>0. Using Lemma we deduce that for m < m’, the
map M,,, — M,, exhibits M, as an m-truncation 7<,,, M,,. Since Mod 4 is left complete
(Proposition HA.7.1.1.13 ), the A-module M =~ lim My, has the property that 7<,, M ~ M,,
for every integer m. For every flat A-algebra B, we also obtain an equivalence 7<,,(M®4B) ~
M, ®a B, so that M ®4 B ~ lim(M,, ®4 B). It follows that F(M) ~ lglm F(M,,) ~
lim 7<mm # in the co-category Modg. In particular, we obtain a map « : # — F(M). To
prove that .# is quasi-coherent, it will suffice to show that « is an equivalence. Since .#
and F(M) are both connective, this is equivalent to the requirement that a induces an
equivalence Q°.% — QPF (M) in Shvg(X) ~ X. Since Q% is hypercomplete (by (2)) and
QPF(M) ~ lim Q* F(My,) is hypercomplete (since it is an inverse limit of truncated objects
of X), it will suffice to show that the map Q% («) : Q*.F — Q®PF (M) is co-connective.
This is clear, since for every integer m > 0, the truncation 7<,,Q2%(«) is homotopic to the
composition of equivalences

T<mQP F ~ QF (1< F) ~ QPF (M) ~ QPF (1<mM) ~ QF7<n F(M) ~ 7<, QC F(M).

O]

2.3 Compactness Hypotheses on Spectral Deligne-Mumford
Stacks

Let (X, 0x) be a scheme. Recall that X is said to be quasi-compact if every open
covering of X has a finite subcovering, and quasi-separated if the collection of quasi-compact
open subsets of X is closed under pairwise intersections. In this section, we will study
analogous conditions in the setting of spectral Deligne-Mumford stacks.

2.3.1 Quasi-Compactness (Absolute Case)

Throughout this section, we will assume that the reader is familiar with the theory of
coherent oo-topoi developed in §A.2| (see Definition [A.2.0.12]).

Definition 2.3.1.1. Let X = (X, O x) be a nonconnective spectral Deligne-Mumford stack
and let n > 0 be an integer. We will say that X is n-quasi-compact if the co-topos X is
n-coherent (see . We will say that X is quasi-compact if it is 0-quasi-compact. We will
say that X is oo-quasi-compact if it is n-quasi-compact for every integer n.

Proposition 2.3.1.2. Let A be an Ey-ring. Then the nonconnective spectral Deligne-
Mumford stack Spét A is co-quasi-compact.

Proof. Combine Propositions [A.3.1.3] and [1.4.2.4] O
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Corollary 2.3.1.3. Let (X, 0 x) be a nonconnective spectral Deligne-Mumford stack. Then
the co-topos X is locally coherent (see Definition .

Corollary 2.3.1.4. Let (X, 0 x) be a nonconnective spectral Deligne-Mumford stack. Then
the hypercompletion X™P has enough points.

Proof. Combine Corollary 2.3.1.3] with Theorem O

2.3.2 Quasi-Compactness (Relative Case)

Recall that if (X, O y) is a nonconnective spectral Deligne-Mumford stack, then we say
an object U € X is affine if the nonconnective spectral Deligne-Mumford stack (X i, Ox 1)
is affine.

Proposition 2.3.2.1. Let f: (X, 0x) — (), Oy) be a morphism of nonconnective spectral
Deligne-Mumford stacks. Let n = 0 be an integer. The following conditions are equivalent:

(1) For every n-coherent object U € Y, the pullback f*U is n-coherent.
(2) For every affine object U € Y, the pullback f*U is an n-coherent object of X.
(3) There exists a full subcategory Yo < Y with the following properties:

(a) FEach object U € Yy is n-coherent.
(b) For each U € Yy, the pullback f*(U) is n-coherent.

(c) For each object Y € Y, there exists an effective epimorphism 11Y; — Y, where
each Y; € Y.

Moreover, if n > 0, then these conditions imply:

(4) For every relatively (n — 1)-coherent morphism w : U — Y in Y, the pullback f*(u) is
a relatively (n — 1)-coherent morphism in X.

Definition 2.3.2.2. Let f: (X,0x) — (), Oy) be a morphism of nonconnective spectral
Deligne-Mumford stacks. We will say that f is n-quasi-compact if it satisfies the equivalent
conditions of Proposition 2.3.2.1] We will say that f is quasi-compact if it is O-quasi-compact,
and oo-quasi-compact if it is n-quasi-compact for every integer n = 0.

Proof of Proposition [2.3.2.1. We proceed by induction on n. The implication (1) = (2) is
immediately from Proposition To see that (2) = (3), we take Yy to be the collection
of all objects U € Y such that (i, Oy |v) is affine. We next show that (3) = (4) if n > 0.
Let w: U — Y be an (n — 1)-coherent morphism in ); we wish to show that f*(u) is a
relatively (n — 1)-coherent morphism in X'. Choose an effective epimorphism 1L;c;Y; — Y,
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where each Y; € V. Using Corollary we are reduced to proving that the induced map
F*(U xy 1ie1Y;) — f*(erY;) is relatively (n — 1)-coherent. We may therefore replace Y by
some Y; and thereby reduce to the case where Y is n-coherent. Then U is (n — 1)-coherent.
Using (2) together with the inductive hypothesis, we deduce that f*Y is n-coherent and
that f*U is (n — 1)-coherent, so that f*(u) is relatively (n — 1)-coherent as desired.

We now prove that (3) implies (1). Fix an n-coherent object U € ); we wish to prove
that f*(U) is an n-coherent object of X'. Choose an effective epimorphism 1L;c;U; — U
where each U; € ). Since U is quasi-compact, we may assume without loss of generality
that I is finite. Using (2) and Remark we conclude that 11f*(U;) is an n-coherent
object of X. Moreover, the map 11f*(U;) — f*(U) is an effective epimorphism which is
(n — 1)-coherent if n > 0 (by virtue of (4)). Using Proposition we conclude that f*U
is n-coherent as desired. d

Remark 2.3.2.3. Let f: (X,0x) — (), Oy) be a morphism of nonconnective spectral
Deligne-Mumford stacks and let n > 0 be an integer. Suppose that f is n-quasi-compact.
Then:

(a) The pullback functor f* carries compact objects of 7<,—1 ) to compact objects of
T<n—1X.

(b) The pushforward functor fy : 7<p—1 X — T<n—1 Y commutes with filtered colimits.

Assertion (a) follows from Proposition [2.3.2.1) and Remark [A.2.3.3] and assertion (b) follows
from (a) and Proposition HTT.5.5.7.2.

Example 2.3.2.4. Let f : X — Y be a map between affine nonconnective spectral Deligne-
Mumford stacks. Then f is co-quasi-compact; this follows immediately from Proposition
2.0.1.2

Remark 2.3.2.5. Let f : X — Y be a map of nonconnective spectral Deligne-Mumford
stacks and let 0 < n < o0. The following conditions are equivalent:

(1) The map f is n-coherent.
(2) For every étale morphism Spét A — Y, the fiber product Spét A xy X is n-coherent.

Proposition 2.3.2.6. Let X be a quasi-compact nonconnective spectral Deligne-Mumford
stack, and let n > 0. The following conditions on X are equivalent:

(1) For every pair of maps Spét A — X <« Spét B, the fiber product Spec A xx Spét B is
(n — 1)-coherent.

(2) Every map f:Spét A — X is (n — 1)-coherent.
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(3) For every pair of maps Spét A — X <& Spét B where u is étale, the fiber product
Spét A xx Spét B is (n — 1)-coherent.

(4) Every étale map f : Spét A — X is (n — 1)-coherent.

(5) For every pair of étale maps Spét A — X <« Spét B, the fiber product Spét A xx Spét B
is (n — 1)-coherent.

(6) The nonconnective spectral Deligne-Mumford stack X is n-coherent.

Proof. The equivalences (1) < (2) and (3) < (4) are obvious. The equivalences (2) < (3)
and (4) < (5) follow from Remark [2.3.2.5, and the equivalence (5) < (6) follows from

Corollary [A.2.1.4] O

Proposition 2.3.2.7. Let X be a spectral Deligne-Mumford n-stack. If X is (n + 1)-quasi-
compact, then X is c0-quasi-compact.

Proof. 1t will suffice to show that if X is (n + 1)-quasi-compact, then it is also (n + 2)-
quasi-compact. We proceed by induction on n. The case n = 0 will be established in
(Proposition 3.4.1.2)). Assume that n > 0. To prove that X is (n + 2)-quasi-compact, it will
suffice to show that for every pullback diagram

Y Spét A
Spét B X,

the spectral Deligne-Mumford stack Y is (n + 1)-quasi-compact (Proposition [2.3.2.6)). This
follows from the inductive hypothesis, since Y is a spectral Deligne-Mumford (n — 1)-stack

(Remark [1.6.8.4)). O

2.3.3 Pullbacks of Quasi-Compact Morphisms

Our next result describes the behavior of n-quasi-compact morphisms with respect to
base change:

Proposition 2.3.3.1. Suppose we are given a pullback diagram of nonconnective spectral
Deligne-Mumford stacks

X' L X

if’ lf

Y Iy,
and let 0 < n < o0. If f is n-quasi-compact, then f' is n-quasi-compact. The converse holds
if g is quasi-compact and surjective (see Definition .
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We begin by establishing the first half of Proposition [2.3.3.1

Lemma 2.3.3.2. Suppose we are given a pullback diagram o :

(X, 6) L= (W, 0y)

ook
(X, 0x) ——= (Y, 0y)

of monconnective spectral Deligne-Mumford stacks. If f is n-quasi-compact, then f' is
n-quasi-compact.

Proof. Let Y{ be the full subcategory of )’ spanned by those objects Y’ € V' with the
following properties:

(i) The pair (y;y,, Oy |y+) is affine.
(44) There exists an object Y € Y and a map Y’ — ¢*Y, where (J)y, Oy |y) is affine.
This subcategory satisfies requirements (a), (b), and (¢) of Proposition|2.3.2.1} it will therefore

suffice to show that f"*Y is an n-coherent object of X”.

Replacing o by the diagram

fl
(X,/f/*YH Oyt |preyr) — (y;Y/a Oyrlyr)

l lg

f
(X gy, Ox | pry) ——= Vv, Oy ly),

we can reduce to the case where (), 0y) and ()', 0y) are affine. Since f is n-quasi-compact,
the oo-topos X is n-coherent; we wish to prove that X’ is nm-coherent. To prove this, it
suffices to show that the map ¢’ is n-quasi-compact. This assertion is local on X; we may
therefore assume that (X, Oy) is affine. Since o is a pullback diagram, we conclude that
(X', 0 ) is affine and the desired result follows from Example O

Corollary 2.3.3.3. Let f: (X,0x) — (Y, Oy) be a map of nonconnective spectral Deligne-
Mumford stacks. Assume that (Y, Oy) is affine. Then f is n-quasi-compact if and only if
(X, Ox) is n-quasi-compact.

Proof. The “only if” direction is obvious (and requires only that (), &'y) be n-quasi-compact).
Conversely, suppose that (X, Ox) is affine. Let U € ) be such that (Y7, Oy [v) is affine.
We wish to prove that f*U is an n-coherent object of X. We have a pullback diagram

(X psv, Ox | prv) —= Vv, Oy |v)

lg ’

(Xa ﬁX) (y,ﬁy)
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The map ¢’ is n-quasi-compact by Example [2.3.2.4] so that Lemma [2.3.3.2| guarantees that g
is n-quasi-compact. Since the final object 1 € X' is n-coherent, we conclude that ¢*1 € X /U

is m-coherent: that is, f*U is an n-coherent object of X. O

Proof of Proposition[2.3.3.1. The first assertion follows from Proposition To prove
the second, we may assume without loss of generality that Y = Spét A is affine. If the map
g :Y' — Y is quasi-compact, then it follows that Y’ is also quasi-compact. We may therefore
choose an étale surjection Spét B — Y’. Replacing Y’ by Spét B, we may assume that Y’ is
also affine.

Write X = (X, Ox) and X' = (X’, 0 /). Our assumption that f’ is n-quasi-compact is
equivalent to the assumption that X’ is n-coherent, and we wish to prove that X is also
n-coherent (Corollary . We claim more generally that if X € X’ is an object such that
g*X € X' is m-coherent, then X is m-coherent. The proof proceeds by induction on m. We
begin with the case m = 0. Suppose that we are given an effective epimorphism 1I;c;U; — X
in the oo-topos X. Then the induced map Lc;¢"*U; — ¢"*X is an effective epimorphism
in X'. If ¢"* X is quasi-compact, then we can choose a finite subset Iy < I such that the
induced map I, g"*U; — ¢"* X is an effective epimorphism. Since the map ¢’ is surjective,
it follows that the map Ilic;,U; — X is also an effective epimorphism.

We now treat the case m > 0. According to Corollary [A:2.1.4] it will suffice to show that
if we are given affine objects U, V' € X' /x, then the fiber product U x x V' is (m — 1)-coherent.
By the inductive hypothesis, it suffices to show that ¢"*(U xx V) ~ ¢"*U xgxx ¢"*V is
(m — 1)-coherent. This follows from the m-coherence of ¢"* X, since f*U and f*V are
affine. O

2.3.4 The Schematic Case
We now discuss the relationship of Definition with classical scheme theory.
Lemma 2.3.4.1. Let X be a topological space. The following conditions are equivalent:
(1) The co-topos Shv(X) is coherent.
(2) The oo-topos Shv(X) is 1-coherent.

(3) The collection of quasi-compact open subsets of X is closed under finite intersections
and forms a basis for the topology of X.

Proof. The implication (1) = (2) is obvious. We prove that (2) = (3). For each U < X, let
Xv € Shv(X) be the sheaf given by the formula

A ifVcU

& otherwise.

xu(V) = {
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We note that xy is a quasi-compact object of X if and only if U is quasi-compact as a
topological space. If Shv(X) is 1-coherent, then the collection of quasi-compact objects of
Shv(X) are closed under products. Since the construction U — xp carries finite intersections
to finite products, we conclude that the collection of quasi-compact open subsets of X is
closed under finite intersections. We claim that the quasi-compact open subsets form a
basis for the topology of X. To prove this, choose an arbitrary open subset U < X. Since
Shv(X) is 1-coherent, there exists an effective epimorphism 6 : 11.%; — xy, where each .7;
is a quasi-compact object of Shv(X). For each index i, we have 7<_; .#; ~ xy, for some
open set U; € X. It follows that § induces an effective epimorphism 1I;xy;, — Xxv, so that
U = |JU;. We claim that each U; is quasi-compact: equivalently, each of the sheaves xy, is
a quasi-compact object of Shv(X). This follows from the observation that we have effective
epimorphisms .%; — xy,.

We now complete the proof by showing that (3) implies (1). Assume that X is a coherent
topological space. Let C € Shv(X) be the full subcategory spanned by objects of the form
Xu, where U is a quasi-compact open subset of X. Since the quasi-compact open subsets
of X form a basis for the topology of X, the oo-category C generates Shv(X) under small
colimits. It will therefore suffice to show that C consists of coherent objects of Shv(X).
We prove by induction on n that the objects of C are n-coherent. The case n = 0 is clear.
Assume that the objects of C are known to be n-coherent for n > 0. We wish to prove that if
U < X is a quasi-compact open subset, then yy is (n + 1)-coherent. According to Corollary
it will suffice to show that for every pair of objects xv, xv+ € C, every fiber product
XV Xy Xv is n-coherent. Unwinding the definitions, this is equivalent to the statement
that V' n V' is quasi-compact, which follows from our assumption that the quasi-compact
open subsets of X are closed under finite intersections. O

Proposition 2.3.4.2. Let (X, Ox) be a spectral scheme and let (X, O x) = Specd, (X, Ox)
be the associated schematic spectral Deligne- Mumford stack. Then:

(1) The spectral Deligne-Mumford stack (X,0x) is quasi-compact if and only if the
topological space X is quasi-compact.

(2) For 1< n < oo, the spectral Deligne-Mumford stack (X, O x) is n-quasi-compact if and
only if X is quasi-compact and quasi-separated.

Proof. Assertion (1) and the “only if” direction of (2) follow immediately from Lemma ?7.
To prove the converse, we prove by induction on n > 0 that if X is quasi-compact and
quasi-separated, then X is n-coherent. To carry out the inductive step, it will suffice to
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show that for every pullback diagram

Lk

Spét B —s (X, 0y),

the spectral Deligne-Mumford stack (Y, &'y) is (n — 1)-quasi-compact (Proposition [2.3.2.6)).
By virtue of Corollary 7?7, the maps v and v are induced by maps of spectral schemes
up : Spec A — (X, 0x) and vy : Spec B — (X, Ox). It follows that we can write (Y, Oy) ~
Specs (Y, Oy), where (Y, Oy) denotes the fiber product Spec A X (x,0x) Spec B in the
oo-category of spectral schemes. We then have a pullback diagram of ordinary schemes

(Y, m Oy ) — SpecmA

| |

Spec moB —— (X, m9 Ox).

Since X is quasi-compact and quasi-separated, Y is also quasi-compact and quasi-separated.
Applying the inductive hypothesis (or part (1), if n = 1), we conclude that (), Oy) is
(n — 1)-quasi-compact as desired. O

2.3.5 Transitivity Properties of Quasi-Compactness

We now discuss the closure of n-quasi-compact morphisms under composition.

Proposition 2.3.5.1. Let f : X = Y be a morphism of nonconnective spectral Deligne-
Mumford stacks and let 0 < n < oo. Then:

(1) IfY is n-quasi-compact and f is n-quasi-compact, then X is n-quasi-compact.
(2) If X is n-quasi-compact and Y is (n + 1)-quasi-compact, then f is n-quasi-compact.

Proof. We proceed by induction on n. We begin with assertion (1). Assume that f and Y
are n-quasi-compact; we wish to prove that X is n-quasi-compact. Choose an étale surjection
Spét R — Y. Then the fiber product X' = Spét R xy X is n-coherent. We have an étale
surjection X' — X, so that X is quasi-compact. This completes the proof when n = 0.
Assume now that n > 0. By virtue of Proposition it will suffice to show that every
map Spét A — X is (n — 1)-quasi-compact. Using Proposition , we are reduced to
showing that the induced map

u: Spét R xy Spét A — X’
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is (n — 1)-quasi-compact. Since X' is n-quasi-compact and Spét R xvy Spét A is (n — 1)-
quasi-compact (using Proposition and the n-quasi-compact of Y), the (n — 1)-quasi-
compactness of u follows from the inductive hypothesis.

We now prove (2). Assume that X is n-quasi-compact and that Y is (n+ 1)-quasi-compact.
We wish to show that for every map Spét R — Y, the fiber product X’ = Spét R xvy X is
n-quasi-compact. By (1), it will suffice to show that the projection map X’ — X is n-quasi-
compact. This follows from Proposition[2.3.3.1] since the map Spét R — Y is n-quasi-compact

by Corollary 2:3:2:4 O

Corollary 2.3.5.2. Suppose we are given maps f : X =Y and g: Y — Z of nonconnective
spectral Deligne-Mumford stacks. Then:

(i) If f and g are n-quasi-compact, then g o f is n-quasi-compact.
(13) If g is (n + 1)-quasi-compact and g o f is n-quasi-compact, then f is n-quasi-compact.

Corollary 2.3.5.3. Let Z be a quasi-compact nonconnective spectral Deligne-Mumford stack
and let n = 0. Then Z is (n + 1)-quasi-compact if and only if the following condition is
satisfied: for every pair of maps X — Z «— Y where X and Y are n-quasi-compact, the fiber
product X xz Y is n-quasi-compact.

Proof. The “if” direction follows immediately from Proposition (take X and Y to be
affine). Conversely, suppose that Z is (n + 1)-quasi-compact. If X is n-quasi-compact, then
the map X — Z is n-quasi-compact. It follows from Proposition [2.3.3.1] that the projection
map X xzY — Y is n-quasi-compact. Since Y is also n-quasi-compact, Proposition
implies that X xzY is n-quasi-compact. O

Corollary 2.3.5.4. The collection of oo-quasi-compact nonconnective spectral Deligne-
Mumford stacks is closed under the formation of fiber products.

2.4 Quasi-Affine Spectral Deligne-Mumford Stacks

Recall that a scheme X is said to be quasi-affine if it is quasi-compact and there exists
an open immersion j : X < Y, where Y is an affine scheme. In this section, we will study
the analogous condition in the setting of spectral Deligne-Mumford stacks. Our main results
are that quasi-affine spectral Deligne-Mumford stacks behave, in many respects, as if they
were affine:

(a) If X = (X,0y) is a quasi-affine spectral Deligne-Mumford stack, then X can be
functorially recovered from the Eq-ring T'(X; &' x) of global sections of its structure

sheaf (Corollary [2.4.2.2)).
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(b) If (X, Ox) is a quasi-affine spectral Deligne-Mumford stack and .# is a quasi-coherent
sheaf on X, then % can be functorially recovered from its spectrum of global sections
['(X; 7), regarded as a module over the Eo-ring I'(X'; @ x) (Proposition [2.4.1.4)).

2.4.1 The Nonconnective Case

We with a study of quasi-affine objects in the setting of nonconnective spectral Deligne-
Mumford stacks.

Definition 2.4.1.1. Let X be a nonconnective spectral Deligne-Mumford stack. We say that
X is quast-affine if X is quasi-compact and there exists an open immersion j : X <— Spét R

for some E-ring R (see Definition |1.6.7.2)).

Remark 2.4.1.2. Let X be a nonconnective spectral Deligne-Mumford stack. If X is
quasi-affine, then it is schematic.

Suppose that X is a quasi-affine nonconnective spectral Deligne-Mumford stack. Then
there exists an open immersion j : X — X', where X’ is affine. The following pair of results
asserts that there is a canonical choice of X', for which the oo-categories QCoh(X) and
QCoh(X') are equivalent.

Proposition 2.4.1.3. Let X = (X, Ox) be a quasi-compact nonconnective spectral Deligne-
Mumford stack. The following conditions are equivalent:

(1) The nonconnective spectral Deligne-Mumford stack X is quasi-affine.
(2) The canonical map X — Spét T'(X; O x) is an open immersion.

Proposition 2.4.1.4. Let X = (X, 0 x) be a quasi-affine nonconnective spectral Deligne-
Mumford stack. The global sections functor F +— T'(X;.%) induces an equivalence of
o-categories e : QCoh(X) — Modp(x.¢ -

The proofs of Propositions [2.4.1.3] and [2.4.1.4] depend on the following technical result:

Proposition 2.4.1.5. Let X be a quasi-compact nonconnective spectral Deligne-Mumford
stack and let 7 : X — Spét R be an open immersion. Then:

(1) The global sections functor I : QCoh(X) — Modr commutes with small colimits.

(2) Suppose that R is connective. Then there exists an integer n such that T'(QCoh(X)sg) S
(MOdR)>_n.
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(3) Suppose we are given a pullback diagram of nonconnective spectral Deligne-Mumford
stacks

X' —L = Spét R/

-

X —L~ Spét R.

Then the associated diagram of co-categories

Modg — > QCoh(X)

.

Modz 2 QCoh(X’)
is right adjointable.

Corollary 2.4.1.6. Let X = (X, 0x) be a quasi-compact nonconnective spectral Deligne-
Mumford stack and let j : X — Spét R be an open immersion. Then the global sections
functor T : QCoh(X) — Modg is fully faithful.

Proof. Let j* : Modr — QCoh(X) denote a left adjoint to I' and let .# € QCoh(X); we will
show that the counit map j*I'(X;.%#) — .Z is an equivalence. The open immersion j is
determined by an open subset U < |Spec R|. Write U as a union | J,;,, Ui, where each U;
is the open subset given by | Spec R[l‘i_l]| for some x; € mgR. For 1 <i < n,let g; : U; - X
be the open immersion determined by the inclusion U; € U. It will therefore suffice to show
that each of the induced maps 6; : (j 0 g;)*I'(X;.%) — ¢ T'(X;.%) is an equivalence. This
follows immediately from Proposition since the projection map U; xgper g X — Uj is
an equivalence. O

Proof of Proposition[2.4.1.3. The implication (2) = (1) is obvious. We will show that
(1) = (2). Assume therefore that there exists an open immersion j : X — Spét R. Set
A =T(X;0x), so that j determines a map of E,-rings ¢ : R — A. Then X xgp¢ g Spét A
is an open substack of Spét A. We will complete the proof by showing that the projection
map p : X xXgpet g Spét A — X is an equivalence. The map j determines an open subset U of
the Zariski spectrum | Spec R|. Since X is quasi-compact, this open subset can be written as
a union (J; ¢;<, | Spec R[z; ']| for some elements x; € moR. To show that p is an equivalence,
it will suffice to show that each of the induced projection maps

p; : Spét R[xi_l] Xgpet R Opét A — Spét R[a:i_l]

is an equivalence.
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Let x = x;. We wish to prove that the map 6 : R[z~!] — R[z7']®g A is an equivalence of
E-rings. Let ¢’ denote the structure sheaf of Spét R. For every open subset V < | Spec R|,
let Vo denote the intersection of V with the open set | Spec R[z~1]|, and let fi, denote the
canonical map R[z~ | ®gr 0’ (V) — 0’ (V). We note that fy is left inverse to 0. It will
therefore suffice to show that fy is an equivalence, which is a special case of Proposition
2.4.1.9] O

Proof of Proposition|[2.4.1.7 Let X = (X,0x) be a quasi-affine nonconnective spectral
Deligne-Mumford stack. Proposition implies that the map j : X — Spét I'(X; Ox) is
an open immersion, so that the global sections functor I' : QCoh(X) — Modr(x,¢ ) is fully
faithful by Corollary Consequently, to prove that I' is an equivalence of co-categories,
it will suffice to show that the unit map up; : M — T'(X; 7% M) is an equivalence for every
A-module M. Since I' commutes with small colimits (Proposition , the collection
of those A-modules M for which u)s is an equivalence is closed under small colimits. It
will therefore suffice to show that wu,; is an equivalence in the case where M has the form
Y"T(X; O x), for some integer n. We may easily reduce to the case n = 0, in which case the
desired result is a tautology. O

Proof of Proposition|2.4.1.5. The open immersion j is determined by an open subset U <
| Spec R|. For every open subset V < U, let I'y : QCoh(X) — Modpg be the functor given
by evaluation at V' (which we can identify with a (—1)-truncated object of the underlying
oo-topos X of X). Given a pair of open sets V', V" < U, we obtain a pullback diagram of
functors o

FV/ UV// FV//

.

Fvl — Fvlmvu .

To prove (1), it will suffice to show that for every quasi-compact open subset V < U, the
functor I'yy commutes with filtered colimits. Since V' is quasi-compact, we can write V as a
union  J; .;<,, Vi where each V; < |Spec R| is given by | Spec R[z; ]| for some z; € moR. We
proceed by induction on n. If n = 0, then V is empty and the result is obvious. If n > 0,
we let V' =Vj and V" =, _,,, Vi so that V' = V' U V", The inductive hypothesis implies
that T'y» and 'y commute with filtered colimits. Using the pullback diagram o, we are
reduced to proving that I'y commutes with filtered colimits. This is clear, since I'y» is given
by the composition

QCoh(X) — QCoh(Spét R[z']) ~ Mod p(,—1) — Modp.

We now prove (2). Assume that R is connective. We will show that if V' < U is an open
subset which can be written as a union | J; .;,, Vi, where each V; is of the form | Spec R[z; '],
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then T'y carries QCoh(X)so to (Modg)=1—n. We proceed by induction on n. In the case
n =0, V = & and there is nothing to prove. Assume therefore that n > 0 and define
subsets V', V" < V as above. If M € QCoh(X)xg, then the pullback diagram o gives a fiber
sequence

Ly (M) — I'yi(M) @ Lyr (M) — Lyrqyn (M)

and therefore an exact sequence of abelian groups
7Tm+1rvlm\///(M) — erv(M) i FmFV/(M) (—B WmFV//(M).
The functor I'y- is given by the composition

QCoh(X) — QCol(Spét R[z7 ']) ~ Mod g, 1) — Modg

J:fl
and is therefore t-exact. Using the inductive hypothesis, we deduce that if m < —n, then
Tmt1Dviavr (M) ~ w0 Dy (M) ~ 0,

from which it follows that 7, I'y (M) ~ 0.

We now prove (3). Let 7 : | Spec R'| — | Spec R| be the continuous map of topological
spaces induced by the map of Ey-rings R — R'. For every open set V < U, let I' 1y :
QCoh(X") — Mod g be defined as above. Let us say that an open subset V < U is good if
the canonical map R’ ®p Ty — ' -1y, is an equivalence of functors from QCoh(X) to Modgr.
Note that if V', V” < U, then the canonical map

Fﬂfl(vluvll) - Pﬂfl(V’) XFﬂ'_l(V/mV”) wal(V”)

is an equivalence. It follows that if V/, V” and V' n V" are good, then V' U V" is good.
We will prove that every quasi-compact open subset V' < U is good. Write V' = [ J; <i<n Vi
as above; we proceed by induction on n. When n = 0, V = ¢J and there is nothing to
prove. If n > 0, we define V', V" < V as above, so that V" and V' n V" are good by the
inductive hypothesis. We may therefore replace V' by V'’ and thereby reduce to the case
Xy = Spét R[z1 '], in which case the desired result follows from Lemma O

2.4.2 The Connective Case

Let X = (X, O x) be a quasi-affine spectral Deligne-Mumford stack and let A = T'(X; O x).
Then the canonical map j : X — Spét A is an open immersion (Proposition [2.4.1.3). However,
A is usually not connective:

Proposition 2.4.2.1. Let X = (X, Ox) be a quasi-affine spectral Deligne-Mumford stack.
If A=T(X;0x) is connective, then X is affine.
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Proof. The open immersion j : X < Spét A of Proposition determines a quasi-
compact open subset U € | Spec A|, consisting of those prime ideals which fail to contain
some finitely generated ideal I = (z1,...,z,) € mpA. Let M = (m9A)/I, which we regard
as a discrete A-module. Then M[xz; '] ~ 0 for 1 <i < n, so that M is annihilated by the

*

pullback functor Mod 4 ~ QCoh(Spét A) 2> QCoh(X). Proposition [2.4.1.4| implies that the
pullback functor j* is an equivalence of co-categories, so that M ~ 0. It follows that I is the

unit ideal in my A, so that j is an equivalence. ]

Corollary 2.4.2.2. Let X = (X,0x) be a quasi-affine nonconnective spectral Deligne-
Mumford stack, let A = T'(X;0x), and let j : X — Spét A be the open immersion of
Proposition[2.4.1.3. For every spectral Deligne-Mumford stack Y, composition with j induces
a homotopy equivalence

0 : MapSpDMnc (Y, X) — MapSpDMnc (Y, Spét A)

Proof. The assertion is local on Y; we may therefore assume that Y is affine, so that
Y ~ Spét R for some connective Eq-ring R. Since j is an open immersion, the map 6 exhibits
Mapg,pa (Y, X) as a summand of Mapg, (Y, Spét A). It will therefore suffice to show that
every map f : Spét R — Spét A factors through j. Form a pullback diagram

(X', 0 ) > Spét R

L

X Spét A

so that j' is an open immersion. Since A ~ T'(X; 0x), Proposition [2.4.1.5 implies that
the induced map R — I'(X’; O ») is an equivalence. Since R is connective, it follows from

Proposition [2.4.2.1| that j’ is an equivalence. O

In spite of Proposition [2.4.2.1] every quasi-affine spectral Deligne-Mumford stack admits
an open immersion into the spectrum of a connective Ey-ring;:

Proposition 2.4.2.3. Let X = (X, Ox) be a spectral Deligne-Mumford stack. The following
conditions are equivalent:

(1) There exists a connective Eoy-ring R and an open immersion j : X — Spét R.
(2) The spectral Deligne-Mumford stack X is quasi-affine.

(3) The discrete spectral Deligne-Mumford stack (X, 7o Ox) is quasi-affine.
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Proof. The implication (1) = (2) is obvious. To prove (2) = (3), we note that if j : X —
Spét R is an open immersion, then j induces an open immersion (X, 7y Ox) — Spét(moR).

It remains to prove that (3) = (1). For each i = 0, we let R; denote the Ey-ring
D(X;7<; Ox), and let R =I'(X; Ox) ~ lim, R;. Applying Proposition to the quasi-
affine spectral Deligne-Mumford stack (X, 7y O x), we deduce that there exists an integer
n such that I'(X; .#) € Sp._,, whenever .# belongs to the heart of QCoh(X). The fiber
sequence

X" Ox) = T<m Ox — T<m—1Ox

yields a fiber sequence of spectra
ST X7t Ox) > Ry, — Ry

so that the map m;R,;, — m;R;,—1 is an isomorphism for m > n + 4. It follows that each of
the maps m; R — m; R, 1; is an isomorphism.

Since condition (3) is satisfied, Proposition implies that the canonical map
Jo: (X, mp Ox) — Spét Ry is an open immersion, corresponding to some quasi-compact open
subset U < | Spec Ry|. For each x € myRy, let U, = {p € | Spec Ro| : = ¢ p}. We next prove
the following:

(#) Let x be an element of myRy such that U, < U. Then there exists an integer m > 0
such that =™ can be lifted to an element of myR.

For every pair of integers i < i, let ¢y ; : Ry — moR; be the canonical map. To prove
(%), we show that for each i > 0, some positive power ™ of z lies in the image of the map
¢i0 : moR; — moRy. Since moR ~ moR,, (*) will follow if we prove this in the case i = n. We
proceed by induction on i, the case ¢ = 0 being trivial. Assume therefore that there exists an
integer m > 0 such that 2™ = ¢; o(y) for some y € moR;. We will prove that some positive
power of y lies in the image of the map ¢;11,;. Using Theorem HA.7.4.1.26, we deduce
that 7<;11 Oy is a square-zero extension of 7¢; & x by the module Ei+1('ﬂ'i+1 Ox). Tt follows
that R;y1 is a square-zero extension of R; by the module I'(X; X171 Ox). In particular,
the image of the map ¢;11; is the kernel of a derivation d : moR; — m_;—oI'(X;mi11 Ox).
We wish to prove that d(ym/) = 0 for some m’ > 0. Since d is a derivation, we have
dy™) = m'y™ ~'dy. It will therefore suffice to show that dy € m_;_oD(X; 711 Ox) is
annihilated by some power of y. Note that I'(X; m;+1 O x) has the structure of a module
over Ry. Moreover, Corollary implies that jgI'(X; w41 Ox) is equivalent to w11 Ox,
which a discrete sheaf of spectra on X. Since U, € U, we deduce that T'(X; 741 Ox)[z7!] is
discrete. Since i + 2 # 0, it follows that every element of w_;_oI'(X;7;+1 O x) is annihilated
by a power of x, and therefore by a power of y. This completes the proof of ().

Write U as a union of open sets | J;<;<,, Uz, for some elements x; € moRo. Using (%), we
may assume without loss of generality that each x; is the image of some element y; € moR.
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For 1 <i < n, let V; denote the open subset {p € |Spec R| : y; ¢ p}, and let V = J,;,, Vi-
Let V denote the open substack of Spét R corresponding to V, and for 1 < i < n let V;
denote the open substack of V corresponding to V;. Since V is the inverse image of U in
| Spec R|, the canonical map j : X — Spét R factors through V. We claim that j induces
an equivalence X — V. To prove this, it suffices to show that each of the induced maps
X xyV; — V; is an equivalence. By virtue of Proposition [2.4.1.5] this is equivalent to the
assertion that X x is affine. This follows from Remark 7?7, since the O-truncation of X xy V;
is given by Spét Ro[xz;']. O

2.4.3 Descent

Let X be a quasi-affine spectral Deligne-Mumford stack. Combining Corollary [2.4.2.2] with
Theorem we deduce that the functor R — Mapg,py(Spét R, X) is a hypercomplete
sheaf with respect to the flat topology on CAlg™. In fact, we have the following stronger
assertion:

Proposition 2.4.3.1. Let X be quasi-affine nonconnective spectral Deligne-Mumford stack,
and let hx = hy>*" denote the functor of points of X (see Definition 7?). Then hy is a
hypercomplete sheaf with respect to the flat topology on CAlg.

Proof. Choose an open immersion j : X < Spét A, for some Ey-ring A. It follows from
Theorem [D.6.3.5 that the functor

R— MapSpDMnc (Spét R, Spét A) o~ MapCAlg (A, R)

is a hypercomplete sheaf with respect to the flat topology on CAlg. According to Lemma
it will suffice to show that for every map 7 : Spét R — Spét A, the fiber product
X' =X Xspét A Opét R represents a hypercomplete sheaf with respect to the flat topology
on CAlgp. We can identify X’ with an open substack of Spét R, classified by an open set
U < | Spec R|. Unwinding the definitions, we are reduced to showing that if ¢ : B — B’
is a faithfully flat morphism in CAlgy such that the map |Spec B'| — |Spec R| factors
through U, then |Spec B| — | Spec R| also factors through U. This is clear, since the map
| Spec B’| — | Spec B| is a surjection. O

In fact, we can prove an even stronger version of Proposition For every Eq-ring R,
let SpDM's denote the co-category SpDM;lgpét r of nonconnective spectral Deligne-Mumford
stacks X equipped with a map f : X — Spét R. Let QAff}y denote the full subcategory of
SpDM} spanned by those maps f : X — Spét R where X is quasi-affine. If R is connective,
we let QAff denote the full subcategory of QAffy spanned by those morphisms where X is
a spectral Deligne-Mumford stack.
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Proposition 2.4.3.2 (Effective Descent for Quasi-Affine Morphisms). The functor R —
QAT , is a hypercomplete sheaf (with values in Caty, ) with respect to the flat topology on

CAlg. The functor R — QAftp is a hypercomplete sheaf with respect to the flat topology on
CAlg™.

Proof. For every Ey,-ring R, let Aff'y denote the full subcategory of SpDMp% spanned
by those morphisms f : X — Spét R where X is an affine nonconnective spectral Deligne-
Mumford stack. We have an equivalence of oo-categories (Aff)°P ~ CAlg}. Using Corollary
we deduce that the functor R — Affy is a hypercomplete sheaf with respect to the
flat topology.

For every Ey-ring R, let Y (R) denote the full subcategory of Fun(Al, SpDMY¥) spanned
by those morphisms f : U — X, where U is affine and f is an open immersion. Let us regard
Y as a functor CAlg — 5a\t@. We claim that Y is a hypercomplete sheaf with respect to
the flat topology. Evaluation at {1} € A! determines a map Y (R) — Aff%, depending
functorially on R. Using Lemma [D.4:3.2] we are reduced to verifying the following assertion:

(%) Let R be an E-ring, let f : Spét A — Spét R be a map of affine spectral Deligne-
Mumford stacks, and let F' : CAlgp — C/zau\tOO be the functor which assigns to each
R-algebra R’ the co-category of open substacks of Spét R’ xgps; r Spét A. Then F is a
hypercomplete sheaf with respect to the flat topology.

This follows easily from Proposition [1.6.2.2]

For every Eqo-ring R, let Y’(R) denote the full subcategory of Y (R) spanned by those
morphisms f : U — X where U is quasi-compact. Let us regard Y’ as a functor CAlg — C/éEOO.
We claim that Y’ is a hypercomplete sheaf with respect to the flat topology. Since Y is a
sheaf with respect to the flat topology, we may use Lemma [D.4.3.2] to reduce to proving the
following concrete assertion:

(+') Let f : A —> A’ be a faithfully flat map of Ey-rings, and let U < | Spec A| be an
open subset. If the inverse image of U in |Spec A’| is quasi-compact, then U is
quasi-compact.

This is clear, since the map | Spec A’| — | Spec A| is surjective.

For every E,-ring R, let Y”(R) denote the full subcategory of Y’(R) spanned by those
morphisms f : (U, Oy) — Spét A which induce an equivalence of Ey-rings A — I'(U; Oy).
Let us regard Y” as a functor CAlg — Cato,. We claim that Y is a hypercomplete sheaf
with respect to the flat topology. This follows easily from Lemma and Corollary
2.0.4.0

Evaluation at {0} € A! induces a functor ¢ : Y”(R) — QAffY, depending functorially
on R. Proposition [2.4.1.3|implies that each of these functors is an equivalence of co-categories.
It follows that R — QAffy is a hypercomplete sheaf with respect to the flat topology on



226 CHAPTER 2. QUASI-COHERENT SHEAVES

CAlg. To prove that the functor R — QAffy is a hypercomplete sheaf with respect to the
flat topology on CAlg®, we invoke Lemma [D.4.3.2] to reduce to the following assertion:

(") Suppose we are given a map of nonconnective spectral Deligne-Mumford stacks U —
Spét R. Assume that R is connective and that there exists a faithfully flat morphism
R — R’ such that the fiber product U xgpet r Spét R’ is a spectral Deligne-Mumford
stack. Then U is a spectral Deligne-Mumford stack (that is, its structure sheaf is
connective).

This follows immediately from Example [2.8.3.8 O

2.4.4 Affine and Quasi-Affine Morphisms

We conclude this section by introducing a relative version of the notion of a quasi-affine
spectral Deligne-Mumford stack.

Definition 2.4.4.1. Let f : X — Y be a map of nonconnective spectral Deligne-Mumford
stacks. We will say that f is affine if, for every map Spét R — Y, the fiber product
X xy Spét R is affine. We will say that f is quasi-affine if, for every map Spét R — Y, the
fiber product X xy Spét R is quasi-affine.

Remark 2.4.4.2. Let f: (X,0x) — (¥, Oy) be a morphism of spectral Deligne-Mumford
stacks. Then f is affine (quasi-affine) if and only if the underlying map of 0-truncated spectral
Deligne-Mumford stacks (X,my Ox) — (Y, 7o Oy) is affine (quasi-affine); see Corollary

1.4.7.3| (Proposition [2.4.2.3]).

The following assertions regarding affine and quasi-affine morphisms follow immediately
from the definition:

Proposition 2.4.4.3. (1) Any equivalence of nonconnective spectral Deligne-Mumford
stacks is affine. Any affine morphism is quasi-affine.

(2) Let f: X — Y be a map of nonconnective spectral Deligne-Mumford stacks, and suppose
that Y is affine. Then f is affine (quasi-affine) if and only if X is affine (quasi-affine).

(3) Suppose we are given a pullback diagram of nonconnective spectral Deligne-Mumford
stacks

X ——=X

;)

Y —Y.
If f is affine (quasi-affine), then f' is affine (quasi-affine).
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2.5 Pullbacks and Pushforwards of Quasi-Coherent Sheaves

Let f: (),0y) — (X,0x) be a map of spectrally ringed co-topoi. Combining the
pushforward functor fi : Shvgy(Y) — Shvg,(X) with restriction of scalars along the
underlying map Ox — fi Oy of CAlg-valued sheaves on X', we obtain a pushforward functor
J« : Modg,, — Modg, . This functor admits a left adjoint Modg, — Modg,, which we will
generally denote by f*.

Warning 2.5.0.1. Any geometric morphism of co-topoi fx : V — X induces a pullback
functor f§, : Shvgy(X) — Shvg,(X) on spectrum-valued sheaves. If f, is promoted to
a morphism of spectrally ringed oo-topoi (), Oy) — (X, Ox), then the pullback functor
[* : Modg, — Modg,, is usually not compatible with fg . That is, the diagram of
co-categories o :

f*
Modg, —— Modg,,

e

fsp
Shvgy(X) —2> Shvg, (V)

generally does not commute. Instead we have a commutative diagram

Modﬁy i> Modg

| l

Shvy (V) —L5> Shvgy (),
which is left adjointable if and only if the morphism f exhibits ¢’y as the pullback of & ».

Proposition 2.5.0.2. Let f: (V,0y) — (X,0x) be a morphism of nonconnective spectral
Deligne-Mumford stacks. Then the pullback functor f*: Modg, — Modg,, carries quasi-
coherent sheaves on X to quasi-coherent sheaves on ).

Proof. The assertion is local on X and Y. We may therefore assume that both (X, 0 y)
and (), 0y) are affine, in which case the desired result follows immediately from the
characterization of quasi-coherent sheaves given by Proposition [2.2.3.3 O

Our goal in this section is to study conditions which guarantee that a pushforward
functor f, preserves quasi-coherence.
2.5.1 The Affine Case

We begin by proving Proposition [2.5.0.2]in the case where the morphism f:Y — X is
affine, in the sense of Definition [2.4.4.1



228 CHAPTER 2. QUASI-COHERENT SHEAVES

Proposition 2.5.1.1. Let f : Y — X be an affine morphism of nonconnective spectral
Deligne-Mumford stacks. Then:

(1) The direct image functor fi : Modg, — Modg, carries quasi-coherent sheaves on Y
to quasi-coherent sheaves on X.

(2) The functor fi : QCoh(Y) — QCoh(X) preserves small colimits.

(3) If Y and X are spectral Deligne-Mumford stacks, then the functor fy is t-exact.

Proof. The assertion is local on X, so we may assume without loss of generality that
X = Spét A is affine. In this case, the affineness of f guarantees that Y = Spét B is also
affine. Let .# € QCoh(Y) be the quasi-coherent sheaf associated to some B-module M,
and let .#’ € QCoh(X) denote the quasi-coherent sheaf associated to the image of M under
the forgetful functor Modg — Mody. The counit map B ®4 M — M determines a map
f* 7' — Z, which is adjoint to a map of @y-modules .#’ — f,..#. We claim that this map
is an equivalence. For this, we must show that u : F'(U) — (f« Z)(U) ~ Z(f*U) is an
equivalence of spectra for each object U € X'; here X denotes the underlying co-topos of
X. The collection of those objects U which satisfy this condition is stable under colimits.
We may therefore assume that U is representable by an étale A-algebra A’. In this case, u
can be identified with the canonical equivalence M ®4 A’ ~ M ®p (B®4 A’). This proves
(1), and shows that the induced map fi : QCoh(Y) — QCoh(X) can be identified with
the forgetful functor Modp — Mod 4. Assertions (2) and (3) follow immediately from this
identification. O

We can use Proposition 2.5.1.1] to classify affine morphisms of spectral Deligne-Mumford
stacks. Let X be a spectral Deligne-Mumford stack and let Affx denote the full subcategory
of SpDM,x spanned by the affine morphisms f : Y — X. It follows from Proposition ?? that
the construction

(f Y = X) — (f O € CAlg(QCoh(X)™))
determines a functor A : Aff§” — CAlg(QCoh(X)™).

Proposition 2.5.1.2. Let X be a spectral Deligne-Mumford stack. Then the functor X :
AP — CAlg(QCoh(X)™) described above is an equivalence of c0-categories.

Proof. The assertion is local on X. We may therefore reduce to the case where X = Spét A
is affine, in which case A is a homotopy inverse to the evident equivalence

CAlg(QCoh(X)™) =~  CAlg(Mod<)
~  CAlg}

Spét
I AﬁSpétA .
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Construction 2.5.1.3. [The Relative Spectrum] Let X be a spectral Deligne-Mumford
stack. We let
Spéty : CAlg(QCoh(X)™) — Al < SpDM(/)I;(

denote a homotopy inverse to the equivalence A of Proposition [2.5.1.2] Given an object
o/ € CAlg(QCoh(X)"), we will refer to Spéty (/) as the spectrum of < relative to X.

Example 2.5.1.4. For any spectral Deligne-Mumford stack X, we have a canonical equiva-
lence Spéty Ox ~ X.

Example 2.5.1.5. Let X = Spét A be an affine spectral Deligne-Mumford stack. Then the
relative spectrum functor Spéty can be identified with the functor

CAlg(QCoh(X)™) ~ CAlgY 2% SpDM7 . 4

appearing in the proof of Proposition [2.5.1.2

2.5.2 Excision Squares

Let X be an oo-topos, and let U € X be a (—1)-truncated object. We let X' /U denote
the full subcategory of X spanned by those objects X € X for which the projection map
X x U — U is an equivalence. Then X' /U is itself an oo-topos, and the inclusion functor
ix : X /U — X is a geometric morphism of co-topoi. Recall that a geometric morphism
f« 1Y — X is a closed immersion if it factors as a composition

Y& XU,

where U is a (—1)-truncated object of X and g, is an equivalence. For a more thorough
discussion, we refer the reader to §HTT.7.3.2.

Proposition 2.5.2.1. Let X be an co-topos and suppose we are given a diagram o :

L,

V——V
in X. The following conditions are equivalent:

(1) The diagram o is both a pushout square and a pullback square, and the map f' is
(—1)-truncated.

(2) The diagram o is a pushout square and the map f is (—1)-truncated.
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(3) The diagram o is a pullback square, f' is (—1)-truncated, and if we let i* : Xy —
Xy [V denote the corresponding closed immersion, then *U’ is a final object of
Xy V.

Proof. The equivalence of (1) and (3) is a matter of unwinding definitions, and the implication
(1) = (2) is obvious. We will show that (2) = (1). Since X" is an co-topos, there exists a
fully faithful geometric morphism i, : X — P(C), for some small co-category C. Form a
pushout diagram 7 :

iU — 1, U’

L,

iV LW

in P(C). Then o ~ i*(7). It will therefore suffice to show that 7 is a pullback diagram and
that ¢’ is (—1)-truncated. In other words, we may replace X by P(C) and thereby reduce to
the case where X is an oco-category of presheaves. Working pointwise, we can reduce to the
case X = S. In this case, the condition that f is (—1)-truncated guarantees that U’ ~ U11X
for some space X, in which case V' ~ V 11 X and the result is obvious. O

Definition 2.5.2.2. We will say that a diagram

U——=U

L

V—sV

in an oo-topos X is an excision square if it satisfies the equivalent conditions of Proposition

2521

Variant 2.5.2.3. Suppose we are given a commutative diagram o :

U——sVU

L

V—V

of spectrally ringed oco-topoi. We will say that o is an excision square if it is equivalent to a
diagram of the form

(X, Ox|v) —= (X )y, Ox u7)

l |

(X/V7 Ox|v)— (X/V’v Ox|v)
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for some spectrally ringed co-topos (X, 0 x) and some excision square

U——=U

L

V—V/

in X. In this case, we may assume without loss of generality that V' is a final object of X
(otherwise, we can replace X' by & ).

2.5.3 Scallop Decompositions

Let X be a quasi-compact quasi-separated scheme. Then we can choose a finite collection
of affine open subsets Uy, ..., U, € X which cover X. Many basic results in the theory of
schemes can be proven by considering the filtration of X by open subschemes

gcUicUuvlUcUivlUyulUsgc---clUhu---ulU, =X.

We now introduce an analogous device for analyzing (spectral) algebraic spaces which are
not schematic.

Definition 2.5.3.1. Let (X, 0x) be a nonconnective spectral Deligne-Mumford stack. A
scallop decomposition of X consists of a sequence of (—1)-truncated morphisms

Uy—-U — - —U,
in X satisfying the following conditions:
(a) The object Uy € X is initial and the object U, € X is final.
(b) For 1 < i < n, there exists an excision square

V—X

L

Ui-1—U;
where X is affine and V' is quasi-compact.
In this case, we will refer to n as the length of the scallop decomposition.

Remark 2.5.3.2. In the situation of Definition[2.5.3.1} each of the objects U; in X determines
an open substack U; = (X1, O x |y;) of X. In this case, we will also refer to the sequence of
open immersions

g~Uyg—---—>U,~X

as a scallop decomposition of X.
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Example 2.5.3.3. Let X be a quasi-affine nonconnective spectral Deligne-Mumford stack.
Then X admits a scallop decomposition.

Remark 2.5.3.4. We will show later that a spectral Deligne-Mumford stack admits a
scallop decomposition if and only if it is a quasi-compact, quasi-separated spectral algebraic

space (Theorem [3.4.2.1)).

Before stating our next result, we need to introduce a bit of terminology. Let (X, & x) be
a nonconnective spectral Deligne-Mumford stack. We say that an object U € X' is semiaffine
if it is quasi-compact and there exists a (—1)-truncated map U — X in X', where X is affine.
We will say that a morphism f: U — V in X is semiaffine if the fiber product U xy X is
semiaffine, whenever X € X is affine.

Proposition 2.5.3.5. Let (X,0x) be a nonconnective spectral Deligne-Mumford stack
which admits a scallop decomposition. Suppose that C = X is a full subcategory satisfying
the following conditions:

(0) The oo-category C is closed under equivalence in X .
(1) Initial objects of X belong to C.

(2) If we are given an excision square

U——=U'

L

V—sV
of semiaffine morphisms in X where U’ is affine and U,V € C, then V' € C.
Then C contains the final objects of X .

Corollary 2.5.3.6. Let X = (X, Ox) be a nonconnective spectral Deligne-Mumford stack
which admits a scallop decomposition. Suppose that C = X is a full subcategory which
contains all affine objects of X and is closed under pushouts. Then C contains the final
object of X.

Proof of Proposition [2.5.53.5, It follows immediately from (1) and (2) that every affine object
of & belongs to C. We next show that if U € X' is semiaffine, then U € C. Choose a (—1)-
truncated map j : U — X where X is affine, so that (X ,x, Ox |X) ~ Spét R. Then we can
identify U with an open subset of the topological space |Spec R|. Since U is quasi-compact,
we can write U as a finite union | J,,,, | Spec R[z; ]| for some elements z; € moR. Choose
n as small as possible. We proceed by induction on n. If n = 0, then U is an initial
object of X and therefore U € C by virtue of (1). Assume therefore that n > 0. Let
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Uo = U <i<n | Spec R[z; 1], let Uy = |Spec R[x,;']|, and let Up; = Uy n Uy. We identify U,
Ui, and Uy, with (—1)-truncated objects of X', so that we have an excision square

Upp —=Un
Ug——U.
Since Uyi, Uy € C be the inductive hypothesis and U, is affine, we deduce that U € C by (2).
Choose a scallop decomposition

Up—-U — - —U,

for X. We prove by induction on i that each U; belongs to C. When ¢ = 0, this follows from
(1). Taking ¢ = n we will obtain the result. To carry out the inductive step, suppose that
U; € C. Choose an excision square

V—sX

|

Ui—=U;+1

where X is affine and V' is quasi-compact. The map V' — X is (—1)-truncated, so that V is
semiaffine and therefore V € C. It follows from (2) that U, € C, as desired. O]

2.5.4 Pushforwards of Quasi-Coherent Sheaves

We next introduce a hypothesis on morphisms f : X — Y which will guarantee that the
pushforward f, preserves quasi-coherence (Proposition [2.5.4.3]).

Definition 2.5.4.1. Let f : X — Y be a morphism of nonconnective spectral Deligne-
Mumford stacks. We will say that f is relatively scalloped if, for every map Spét R — Y, the
fiber product X xy Spét R admits a scallop decomposition.

Example 2.5.4.2. Every quasi-affine morphism is relatively scalloped (see Example [2.5.3.3]).

Proposition 2.5.4.3. Let f : X = (X,0x) — (V,0y) = Y be a relatively scalloped
map of nonconnective spectral Deligne-Mumford stacks. Then the pushforward functor
J« : Modg, — Modg,, carries quasi-coherent sheaves to quasi-coherent sheaves. Moreover,
the induced functor fy : QCoh(X) — QCoh(Y) commutes with small colimits.

Proof. The assertion is local on Y; we may therefore assume without loss of generality
that Y = Spét R is affine. For each object U € X, let I'y : Modg, — Modg,, denote the
composite functor

Modg, — Modg,, ‘U(ShVSp(X/U)) — MOdﬁy .
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Let us say that U is good if T'yy restricts to a colimit-preserving functor from QCoh(X) into
QCoh(Y). The construction U — I'y carries pushout square to pullback squares. It follows
that the collection of good objects of X is stable under finite colimits. Since every affine
object of X is good (Proposition and X admits a scallop decomposition, Corollary
implies that the final object of X is good. O

In the situation of Proposition 2.5.4.3] we can also bound the cohomological amplitude
of the pushforward functor f,:

Proposition 2.5.4.4. Let f : X = (X,0x) — (Y, 0y) =Y be a relatively scalloped map of
spectral Deligne-Mumford stacks. Assume that Y is quasi-compact. Then there exists an
integer n such that the pushforward functor fi : QCoh(X) — QCoh(Y) carries QCoh(X)xg
into QCoh(Y)s_p.

Proof. Since Y is quasi-compact, we can choose an étale surjection Spét R — Y for some
connective Eo-ring R. Replacing Y by Spét R, we may assume that Y is affine so that X
admits a scallop decomposition. We define the class of good objects U € X as in the proof of
Proposition For every good object U € X, let T'yy : QCoh(X) — QCoh(Y) be defined
as in the proof of Proposition Let us say that U is n-good if I'y/(QCoh(X)=g) <
QCoh(Y)>_,. Note that if we are given a pushout diagram

U——=U'
V—V
in X, then we have a fiber sequence of functors
I'y@®Ty - Ty — X1y,

It follows that if U’ and V are n-good and U is (n — 1)-good, then V' is also n-good. Let us
say that a good object U € X is very good if it n-good for some integer n > 0. It follows
that the collection of very good objects of X' is closed under pushouts. Any affine object
of X is 0-good, and therefore very good. Using Corollary we deduce that the final
object of X is very good, which implies the desired result. O

The formation of pushforwards along a relatively scalloped morphism is compatible with
base change:

Proposition 2.5.4.5. Suppose we are given a pullback diagram of nonconnective spectral
Deligne-Mumford stacks

X4 ox

b

Y 2oy
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where f (and therefore f') is relatively scalloped. Then the diagram of co-categories

QCoh(Y) — = QCoh(X)

Lo

QCoh(Y’) —— QCoh(X)

is right adjointable. In other words, for every object F € QCoh(X), the canonical map
N g fo F — fLg™ F is an equivalence in QCoh(Y’).

Proof. The assertion is local on Y = (Y, Oy) and Y' = (', 0yy); we may therefore assume
that Y = Spét R and Y’ = Spét R’ are affine. Write X = (X, Ox) and X' = (X', 0 ). Let
U € X be an object and U’ = ¢'*U its pullback to X'. Define functors I'y; : Modg, — Modg,,
and I'yr : Modg,, — Modg, as in the proof of Proposition @ Let us say that U € X
is good if the canonical map Ay : ¢*I'y(F) — Ty (f* F) is an equivalence of @yy-modules.
Since the construction U — Ay carries finite colimits to finite limits, the collection of good
objects of X is closed under finite colimits. We wish to prove that the final object of X
is good. Since X admits a scallop decomposition, it will suffice to show that every affine
object of X is good (Corollary . We may therefore reduce to the case where X' (and
therefore also X”) are affine, in which case the desired assertion is a special case of Lemma
1D.3.5.6i O

Corollary 2.5.4.6. Let f: X — Y be a quasi-affine map of nonconnective spectral Deligne-
Mumford stacks. Then the pushforward functor f, restricts to a colimit-preserving functor

fx : QCoh(X) — QCoh(Y). Moreover, for every pullback diagram

X ——=X

-

Y Y,

the induced diagram

QCoh(Y) — > QCoh(X)

o

QCoh(Y") —— QCoh(X’)

is right adjointable.

Proof. Combine Proposition [2.5.4.3] Proposition [2.5.4.5] and Example [2.5.4.2 O
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2.5.5 Categorical Digression

If f:(X,0x)— (Y, Oy) is an arbitrary morphism of spectrally ringed oo-topoi, then
the direct image functor fi : Modg, — Modg,, is lax symmetric monoidal. This is a
consequence of the following general categorical observation:

Proposition 2.5.5.1. Let F : C® — D® be a symmetric monoidal functor between sym-
metric monoidal c0-categories, and suppose that the underlying functor f : C — D admits a
right adjoint g. Then g is lax symmetric monoidal: that is, it extends naturally to a map of
w-operads G : D® — C9.

Proof. Consider the diagram

Finy .

For every object (n) € Finy, the induced map C?@ — D?@ can be identified with f™:(C" —
D", and therefore admits a right adjoint ¢g" : D™ — C". Since F' carries p-coCartesian
morphisms to g-coCartesian morphisms, Proposition HA.7.3.2.6 guarantees the existence of
a functor G : D® — C® which is a right adjoint of F relative to Fin,. In particular, G|p is
a right adjoint to f and we may therefore assume that G|p = ¢g. To see that G is a map of
o-operads, it suffices to observe that for every injection (m)° < (n)°, the diagram

C?’l 4>1Dn

L

cm——D"m
is right adjointable. O
Remark 2.5.5.2. In the situation of Proposition[2.5.5.1], F' and G determine adjoint functors
CAlg(C)=—=CAlg(D).

Corollary 2.5.5.3. Let F : C® — D® be a symmetric monoidal functor between symmetric
monoidal c0-categories, and suppose that the underlying functor f : C — D admits a right
adjoint g; let G : D® — C® be the resulting map of co-operads. Then:

(1) If 1 denotes the unit object of D, then A = g(1) has the structure of a commutative
algebra object of C.

(2) The functor G factors as a composition

D® ~ Mod; (D)® — Mod(C)® — C®.
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Example 2.5.5.4. Let f : X — Y be a morphism of spectrally ringed co-topoi. Then the
direct image functor f. : Mods, — Modg, is lax symmetric monoidal, and therefore factors
as a composition

Modﬁx — MOdf* Ox — MOd@Y .

If X and Y are spectral Deligne-Mumford stacks and f is relatively scalloped, then the
induced map fi : QCoh(X) — QCoh(Y) is lax symmetric monoidal, and canonically factors
as a composition QCoh(X) — Mody, ¢, (QCoh(Y)) — QCoh(Y).

2.5.6 The Quasi-Affine Case

We now describe some consequences of Proposition [2.5.4.5|in the case where f: X —» Y
is a quasi-affine morphism of spectral Deligne-Mumford stacks.

Proposition 2.5.6.1. Let f : X = (X, 0x) — Y be a quasi-affine map of spectral Deligne-
Mumford stacks. Then the induced functor QCoh(X) — Mody, ¢, (QCoh(Y)) is an equiva-
lence of co-categories.

Proof. The assertion is local on Y. We may therefore assume that Y = Spét R is affine, so
that X is quasi-affine and the desired result follows from Proposition [2.4.1.4 ]

Proposition 2.5.6.2. Let f: X — Y be a quasi-affine morphism between spectral Deligne-
Mumford stacks, and let F be a quasi-coherent sheaf on X. Then F belongs to QCoh(X)<o
if and only if the direct image fi F belongs to QCoh(Y)<o.

Proof. Since the pullback functor f* is right t-exact, the right adjoint fy is left t-exact.
Consequently, the “only if” direction is tautological (and does not require the assumption
that f is quasi-affine). Conversely, suppose that f,.# belongs to QCoh(Y)<o; we wish to
show that .# belongs to QCoh(X)<g. By virtue of Proposition we can work locally
on Y and thereby reduce to the case where Y = Spét A for some connective Eq-ring A. Since
f is quasi-affine, we can factor f as a composition

x L5 spét B L5 Spét A

for some connective Ey-ring B, where f’ is a quasi-compact open immersion. Since the
functor f} is t-exact and conservative, it follows that f} .%# belongs to QCoh(Spét B)<o.
Because f’ is an open immersion, the diagram

id

X——X

b

X —t> spét B
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is a pullback square. Applying Proposition [2.5.4.5, we deduce that % can be identified
with the pullback f*fi .%, and therefore belongs to f"* QCoh(Spét B)<o < QCoh(X)<o as
desired. ]

Corollary 2.5.6.3. Let f : X = Y be a quasi-affine morphism between spectral Deligne-
Mumford stacks. Then QCoh(X)™ is the smallest full subcategory of QCoh(X) which is closed
under colimits and extensions and contains the pullback f* . F for each F € QCoh(Y)™.

Proof. By virtue of Proposition HA.1.4.4.11, the co-category QCoh(X) admits a t-structure
(QCoh’(X), QCoh” (X)), where QCoh’(X) is the smallest full subcategory of QCoh(X) which
is closed under colimits and extensions and contains f* QCoh(Y)™, and QCoh”(X) is the full
subcategory of QCoh(X) spanned by those sheaves ¢4 having the property that the groups
Extdconx) (f*#,¥) vanish for n < 0 and every connective object .# € QCoh(Y). Using
the identification Extacoh(x)(f* F,9G) ~ Extgcoh(y) (ZF, [+9), we deduce that ¢ belongs to
QCoh”(X) if and only if fi ¥ € QCoh(Y)<o. Applying Proposition we deduce that
QCoh”(X) = QCoh(X)<q, so that the t-structure (QCoh’(X), QCoh”(X)) coincides with the
t-structure of Proposition and therefore QCoh’(X) = QCoh(X)™. O

Corollary 2.5.6.4. Let X = (X,0x) be a quasi-affine spectral Deligne-Mumford stack.
Then QCoh(X)™ is the smallest full subcategory of QCoh(X) which contains the unit object
O x and is closed under colimits and extensions.

Proof. Apply Corollary in the special case where Y = Spét S, where S denotes the
sphere spectrum. O

2.5.7 Compositions of Quasi-Affine Morphisms

We now show that the collection of quasi-affine morphisms is closed under composition.

Lemma 2.5.7.1. Let f : X —> Y be a quasi-affine morphism of spectral Deligne-Mumford
stacks, and set of = T>0f« Ox. Then the canonical map X — Spec\éfﬁ% (see Construction
is a quasi-compact open immersion.

Proof. The assertion is local on Y. We may therefore assume that Y is affine, in which case
the desired result follows from Proposition [2.4.1.3| (and the proof of Proposition [2.4.2.3]). [

Lemma 2.5.7.2. Let f : X = Y be an affine morphism of spectral Deligne-Mumford stacks.
If Y is quasi-affine, then X is quasi-affine.
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Proof. Set A =T(Y;0v) and B = I'(X; Ox), so that we have a commutative diagram of
nonconnective spectral Deligne-Mumford stacks o :

X —% Spét B
lf J«

go ,
Y — Spét A.

Note that B can be identified with the image of f, O'x under the equivalence QCoh(Y) ~
Mod 4 of Proposition [2.5.6.1f Write Y = (), Ov). For every affine object U € ), we obtain

an equivalence
Ox(f*U) = (f« Ox)(U) ~ Ox(U) ®a B,

so that the outer rectangle in the associated diagram

X xy Yy —= X —% Spét B

b,

Yo Y —%2 Spét A

is a pullback square, where Yy = (¥ 17, Oy |v). Allowing U to vary, we deduce that o is a
pullback square. Since the map g is a quasi-compact open immersion (Proposition [2.4.1.3)),
it follows that ¢ is a quasi-compact open immersio, so that X is quasi-affine as desired. [

Proposition 2.5.7.3. Let f : X = Y be a morphism of spectral Deligne-Mumford stacks.
Suppose that Y is quasi-affine and that f is quasi-affine. Then X is quasi-affine.

Proof. Set of = 1>0f« Ox. Regard & as a a commutative algebra object of QCoh(Y)",
and set X' = Spéty &7 (see Construction [2.5.1.3)). Lemma [2.5.7.1| implies that the canonical

map X — X' is a quasi-compact open immersion. It will therefore suffice to show that X' is
quasi-affine, which follows from Lemma [2.5.7.2 ]

Proposition 2.5.7.4. Suppose we are given a commutative diagram of spectral Deligne-

Mumford stacks
Y
VN
h

where g is quasi-affine. Then f is quasi-affine if and only if h is quasi-affine.

X

Z,

Proof. Suppose first that f is quasi-affine; we wish to show that h is quasi-affine. Equivalently,
we wish to show that for every map Spét R — Z, the fiber product Spét R xz X is quasi-
affine. Our hypothesis on g guarantees that Spét R xz Y is quasi-affine. The projection
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map Spét R xz X — Spét R xz Y is a pullback of f and is therefore quasi-affine, so that
Spét R xz X is quasi-affine by virtue of Proposition [2.5.7.3

Now suppose that h is quasi-affine; we wish to show that f has the same property.
Choose a map 7 : Spét R — Y; we wish to show that the fiber product Spét R xy X is
quasi-affine. Our hypotheses on ¢ and h imply that the fiber products Xg = Spét R xz X
and Yp = Spét R xz Y are quasi-affine, and we have a pullback diagram

SpétR Xy X— SpétR

| l

Xp Yg.

Since YR is quasi-affine, the right vertical map is affine. It follows that the left vertical map
is also affine, so that Spét R xy X is quasi-affine by virtue of Lemma [2.5.7.2] O

2.5.8 Pushforwards of Truncated Quasi-Coherent Sheaves

If we are willing to restrict our attention to truncated quasi-coherent sheaves on spectral
Deligne-Mumford stacks, then we can verify the quasi-coherence of direct images under
conditions much weaker than those of Proposition

Theorem 2.5.8.1. Let f : (V,0y) — (X,0x) be a map of spectral Deligne-Mumford
stacks which is c0-quasi-compact. Then the induced functor fi : Modg,, — Modg, carries
QCoh(Y)<o into QCoh(X)<o.

The proof of Theorem [2.5.8.1| will require the following somewhat technical definition:

Definition 2.5.8.2. Let X = (X, O x) be a spectral Deligne-Mumford stack. We let Modgx
denote the heart of the co-category Modg,: it can be identified with (the nerve of) the
abelian category of sheaves of discrete modules over my 0 y. We will say that an object
of Modgx is quasi-coherent if it belongs to QCoh(X)¥ = QCoh(X) n Modgx. We will say
that an object % € Modzx is semicoherent if, for every affine object U € X, there exists a
composition series

0=Fg>F 1> - —>F,=F|y

such that each quotient .#;/.%,_1 is a subobject of some quasi-coherent object ¥; €
QCoh(U)?, where U = (X7, Ox [v).
Theorem admits the following refinement:

Theorem 2.5.8.3. Let f: (YV,0y) — (X,0x) be an n-quasi-compact morphism between
spectral Deligne-Mumford stacks. Let F € (Modgy,)<o be sheaf of Oy-modules satisfying the
following conditions:
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(a) For0<i<n, m_;.% is quasi-coherent.
(b) The sheaf w_,, .F is semicoherent.
Then the direct image fi.F also satisfies conditions (a) and (b).

Proof of Theorem[2.5.8.1. Combine Theorem [2.5.8.3 with the quasi-coherence criterion of
Proposition [2.2.6.1} O

The proof of Theorem will require a few preliminaries. Let X = (X, 0x) be a
spectral Deligne-Mumford stack. Since the t-structure on Mods, restricts to a t-structure
on the full subcategory QCoh(X), we can identify QCoh(X)? with a full subcategory of
the abelian category Modgx which is closed under the formation of kernels, cokernels, and
extensions. Our first goal is to extend these observations to semicoherent sheaves.

Lemma 2.5.8.4. Let X = (X, 0) be a spectral Deligne-Mumford stack, and suppose we are
given a morphism o : F — 4 in the abelian category Modg. If F is quasi-coherent and 4
is semicoherent, then the kernel ker(a) and the image im(«) (formed in the abelian category
Modg ) are quasi-coherent.

Proof. The assertion is local on X’; we may therefore assume that X is affine so that there
exists a finite filtration

R

such that each quotient ¢; /%;_; is a subobject of a quasi-coherent object .#; € QCoh(X)?.
Let IC; denote the kernel of the composite map

F59G-9/9;.
For each index i, a induces a monomorphism
Ki/Kicv > Yi/Gi1— ;.

Thus K;_1 can be identified with the kernel of a map K; — ;. Note that IC,, ~ % is
quasi-coherent. It follows by descending induction on 4 that each KC; is quasi-coherent. In
particular, oy = ker(«) is quasi-coherent. Using the exact sequence

0 — ker(a) - .# — im(a) — 0,
we see that im(«) is quasi-coherent as well. O

Lemma 2.5.8.5. Let X = (X, 0) be a spectral Deligne-Mumford stack, and suppose we are
given an exact sequence
0>F -7 7" >0

. . Q
in the abelian category Mod ;.
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(a) If F' and F" are psuedo-coherent, then F is semicoherent.
(b) If F is semicoherent, then F' is semicoherent.
(¢) If F' is quasi-coherent and F is semicoherent, then F" is semicoherent.

Proof. Assertion (a) follows immediately from the definitions. We next prove (b). Without
loss of generality, we may assume that X is affine. Then % admits a finite filtration

0=Fge> > Fp=F

and a collection of monomorphisms .%; / #;_1 < ¥;, where ¢, € QCoh(X)Q. Let us regard
Z; and F' as subobjects of ., and set .#; = .%; n.#'. Then we have a filtration

0=F(—> > F =F

where each quotient .7, /. Z’_| is equivalent to a subobject of .%; /.%;_1, and therefore to a
subobject of ¢;. This proves that .#’ is semicoherent.

It remains to prove (¢). Again we may assume without loss of generality that X is
affine, so that .% and .#' admit composition series as indicated above. We first prove by
descending induction on i that each .#7 is quasi-coherent. The result is obvious for i = n,
since Z#, ~ .Z'. For the inductive step, we note that .#/ can be described as the kernel of a
map F;, — Fiv1/Fi — ¥, and is therefore quasi-coherent. It follows that each of the
quotients .7} / F'_, is quasi-coherent. Form a short exact sequence

0 T )T | > G — H;— 0,

so that each #; is quasi-coherent. Let .Z! denote the image of Z; in .#”. Then we have a
finite filtration
— y//

For each index i, the monomorphism .%; / #;_1 — ¥, induces a monomorphism .%; / #;_; —

;. Tt follows that .#” is semicoherent, as desired. O

Lemma 2.5.8.6. Let f : (J,0y) — (X,0x) be an affine morphism between spectral
Deligne-Mumford stacks. Let & € (MOdﬁy)g() be such that mo.F is semicoherent. Then
(f«Z) e (Modg,)<o, and mo(fx.F) is semicoherent.

Proof. We first note that the pushforward functor fi is left t-exact. Let % € (Modg,,)<o be
such that 7y % is semicoherent; we wish to prove that 7y(f« %) is semicoherent. Since f is
left t-exact, the map fi(7>0.%) — f« % induces an equivalence 7 f«(7>0 %) — ([« F).
We may therefore replace .% by 7> .%# and thereby reduce to the case .F € Modgy. We may
assume without loss of generality that (X, O y) is affine. Since f is affine, we deduce that
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(Y, Oy) is affine, so that .# ~ my.# admits a composition series .# ~ my.# is semicoherent,
we can choose a composition series

0=Fg> > Fp~F

where each quotient admits a monomorphism .%; /. %, 1 — ¥, foe some quasi-coherent
object ¥, € Modzy. Since fy is left t-exact, we get an induced filtration

0=mofuFo— o> mofu Fn=m0fsxF
where each successive quotient (mo fx -Z)/(m0 f« Fi—1) admits a monomorphism
(mofs Fi)/(mofs Fi1) = w0 fu(Fi | Fic1) = Tofe G-
It now suffices to observe that 7 fx ¢4, is a quasi-coherent & y-module (Corollary . O

Proof of Theorem[2.5.8.3. Without loss of generality, we may assume that (X, 0'y) is affine.
We proceed by induction on n. Then the oco-topos ) is n-coherent, and in particular
quasi-compact. We may therefore choose an effective epimorphism u : Uy — 1 in Y, where
1 denotes the final object and (Y1, Oy |Up) is affine. Let U, denote the Cech nerve of
u. For each k > 0, let f* : Y, Oy |Ug) — (X,0x) be the map induced by f, and let
@k = f5(F |U) € (Modg,)<o. We obtain a cosimplicial object 4* of (Modg, )<o whose
totalization is equivalent to fy % . Applying Proposition HA.1.2.4.5 and Variant HA.1.2.4.9,
we deduce the existence of a spectral sequence {EP?,d,},>; in the abelian category Modgx
with the following properties:

(i) We have B ~ 7_, 4P for p,q > 0, and E"? ~ 0 otherwise.
(ii) The differentials d, have bidegree (r,1 — r): that is, they carry EP¢ into EPTT4—"+1,

(¢73) The spectral sequence {EPY, d,},>1 converges to m_p_q fi -# in the following sense: for
every integer k > 0, there exists a finite filtration

0= F_lﬂ_k(f* F) ‘—>F07r_k(f* F) > > Fkﬂ—k(f*gz) =7 i(fs F)

in the abelian category ModZX such that each successive quotient F97o( fs .F)/Fi o (fs F)
is isomorphic to E¥~%4 for r » 0.

Since ) is n-coherent, each of the objects U, € ) is (n — 1)-coherent. Using the inductive
hypothesis and (i), we deduce:

(iv) The objects E"? are quasi-coherent for ¢ < n — 1 and semicoherent for ¢ = n — 1.

When p = 0 we can do a bit better: since (Y1, Oy |Up) is affine, Lemma [2.5.8.6| gives:
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(v) The objects EY? are quasi-coherent for ¢ < n and semicoherent for ¢ = n.
We now prove the following statement by induction on 7:
(#) The object EPY is psuedo-coherent if p + ¢ = n, and quasi-coherent if p + ¢ < n.

In the case r = 1, assertion (x) follows from (iv), (v), and (7). In the general case, we can
describe EP? as the cohomology of a cochain complex

p—rg+r—1 o ppq B pptrg-r+l
E— - EN S ETD .
so that we have an exact sequence

0 — im(a) — ker(5) — EPY — 0.

If p+ g < n, then E?? and E’f:f’qﬂfl are quasi-coherent and Efff’qfrﬂ is semicoherent
(by the inductive hypothesis). It follows that im(«) and ker(() are quasi-coherent (Lemma
, so that EP'? is quasi-coherent. If p+ ¢ = n, then the inductive hypothesis guarantees
instead that Ef:?q“_l is quasi-coherent and EP'? is semicoherent. Lemma then
guarantees that im(«) is quasi-coherent and Lemma guarantees that ker(5) is
semicoherent, so that EP? is semicoherent by Lemma [2.5.8.5]

Using (*) and (3), we deduce that 7m_jf..# admits a finite filtration by objects of
ModZX which are quasi-coherent if k < n and semicoherent if £ = n. Since the classes of
quasi-coherent and semicoherent objects of Modgx are stable under extensions (Lemma
, we conclude that m_j fyx % is quasi-coherent for k& < n and semicoherent for k = n,

as desired. O

2.5.9 Connectivity Hypotheses

We conclude this section with a few remarks about the behavior of the pushforward
functor fy in the case where f : X — Y is a “highly connected” affine morphism.

Proposition 2.5.9.1. Let X = (X,0x) and Y = (Y, Oy) be spectral Deligne-Mumford
stacks. Let f : X =Y be an affine morphism, let n = 0 be an integer, and suppose that the
fiber of the map Oy — fi Ox is n-connective. Then:

(1) The pushforward functor fi : QCoh(X)Z),, — QCoh(Y)Z,, is fully faithful.

<n
(2) The pushforward functor fi : QCoh(X)Z,_; — QCoh(Y)Z),_; is an equivalence of

0-categories.

Proof. The assertion is local on Y, so we may assume without loss of generality that Y is
affine. Write Y = Spét A for some connective Ey-ring A. Since f is affine, we can assume
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X = Spét B for some connective A-algebra B. Let u : A — B denote the underlying map of
E-rings, so that fib(u) is an n-connective spectrum. To prove (1), we must show that the
forgetful functor ¢, : (Mod$') <, — (Mod}') <y, is fully faithful. We observe that ¢,, has a left
adjoint 1, given by M — 7<,(B®4 M). We wish to show that the counit map 1, 0 ¢, — id
is an equivalence. Unwinding the definitions, we must show that if M € (Mod%')<y, then
the canonical map 0 : B&®y M — M exhibits M as an n-truncation of B ®4 M. Since M is
n-truncated, this is equivalent to the requirement that fib(6) is (n + 1)-connective. Let 6y be
the multiplication map B ®4 B — B, so that fib(#) ~ fib(6p) ®p M. Since M is connective,
it will suffice to show that fib(6y) is (n + 1)-connective. Note that 6y admits a section s, so
we can identify fib(6p) with the cofib(s) = B ®4 cofib(u). We complete the proof of (1) by
observing that cofib(u) = ¥ fib(u) is (n + 1)-connective.

We now prove (2). Let ¢,—1 and ¢,_1 be defined as above; we wish to show that
the unit map id — ¢,_1 0 9,1 is an equivalence. In other words, we wish to show that
if N € (Mod%')<n—1, then the canonical map N — B ®4 N induces an isomorphism
N — m;(B®a N) for i <n. We have a long exact sequence

mi(fib(u) ®4 N) - mN — mi(B®a N) — m—1(fib(u) ®4 N).

It therefore suffices to show that the homotopy groups m;(fib(u) ®4 N) vanish for i < n.
This is clear, since fib(u) is n-connective and N is connective. O

Corollary 2.5.9.2. Let X = (X,0x) and Y = (), Oy) be spectral Deligne-Mumford stacks.
Let f : X = Y be a morphism 