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Let G be a finite group and let F be a family of subgroups 
of G. We introduce a class of G-equivariant spectra that we 
call F -nilpotent. This definition fits into the general theory 
of torsion, complete, and nilpotent objects in a symmetric 
monoidal stable ∞-category, with which we begin. We then 
develop some of the basic properties of F -nilpotent G-spectra, 
which are explored further in the sequel to this paper.
In the rest of the paper, we prove several general structure 
theorems for ∞-categories of module spectra over objects 
such as equivariant real and complex K-theory and Borel-
equivariant MU . Using these structure theorems and a 
technique with the flag variety dating back to Quillen, we then 
show that large classes of equivariant cohomology theories for 
which a type of complex-orientability holds are nilpotent for 
the family of abelian subgroups. In particular, we prove that 
equivariant real and complex K-theory, as well as the Borel-
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Real K-theory equivariant versions of complex-oriented theories, have this 
property.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Quillen’s theorem

This is the first in a series of papers whose goal is to investigate certain phenomena in 
equivariant stable homotopy theory revolving around the categorical notion of nilpotence. 
Our starting point is the classical theorem of Quillen [63] on the cohomology of a finite 
group G, which describes H∗(BG; k) for k a field of characteristic p > 0 up to a relation 
called F-isomorphism.

This result is as follows. Given a cohomology class x ∈ Hr(BG; k), it determines 
for each elementary abelian p-subgroup A � G, a cohomology class xA ∈ Hr(BA; k) via 
restriction. These classes {xA}A≤G are not arbitrary; they satisfy the following two basic 
relations:

1. If A, A′ � G are a pair of elementary abelian p-subgroups which are conjugate 
by an element g ∈ G, then xA maps to xA′ under the isomorphism H∗(BA; k) ∼=
H∗(BA′; k) induced by conjugation by g.

2. If A � A′ is an inclusion of elementary abelian subgroups of G, then xA′ maps to 
xA under the restriction map H∗(BA′; k) → H∗(BA; k).

Let Ep(G) denote the family of elementary abelian p-subgroups of G and consider the 
subring

R ⊆
∏

A∈Ep(G)

H∗(BA; k)

of all tuples {xA ∈ H∗(BA; k)}A∈Ep(G) which satisfy the two conditions above. The 
product of the restriction maps lifts to a ring homomorphism

H∗(BG; k) ψ→ R, x �→ {xA}A∈Ep(G) . (1.1)

Quillen’s F-isomorphism theorem states roughly that (1.1) is an isomorphism modulo 
nilpotence. More precisely:

Theorem 1.2 ([63, Theorem 7.1]). The map ψ is a uniform Fp-isomorphism: in other 
words, there exist integers m and n such that

1. For every x ∈ kerψ, xm = 0.
2. For every x ∈ R, xpn belongs to the image of ψ.

Theorem 1.2 establishes the fundamental role of elementary abelian groups in the co-
homology of finite groups, and is extremely useful in calculations, especially since there 
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are large known classes of groups for which (1.1) is an injection (or at least an injection 
when one uses the larger class of all abelian subgroups); see for instance [62, Prop. 3.4, 
Cor. 3.5]. Since the cohomology of elementary abelian groups is known, Theorem 1.2
enables one to, for example, determine the Krull dimension of H∗(BG; k) [63, Theo-
rem 7.7].

1.2. Descent up to nilpotence

Theorem 1.2 by itself is a computational result about cohomology. However, as the 
authors learned from [19,7], it can be interpreted as a consequence of a more precise 
homotopical statement. In the homotopy theory Fun(BG, Mod(k)) of k-module spectra 
equipped with a G-action (equivalently, the derived category of k[G]-modules), the com-
mutative algebra objects {kG/A}A∈Ep(G) satisfy a type of descent up to nilpotence: more 
precisely, the thick ⊗-ideal they generate is all of Fun(BG, Mod(k)). From this, using a 
descent type spectral sequence, it is not too difficult to extract Theorem 1.2 (compare 
[51, §4.2]). However, the descent-up-to-nilpotence statement is much more precise and 
has additional applications.

The purpose of these two papers is, first, to formulate a general categorical definition 
that encompasses the Carlson–Balmer interpretation of Theorem 1.2. Our categorical def-
inition lives in the world of genuine equivariant stable homotopy theory, and, for a finite 
group G, isolates a class of G-equivariant spectra for which results such as Theorem 1.2
hold with respect to a given family of subgroups. The use of genuine G-equivariant 
theories allows for additional applications. For instance, our application to equivariant 
complex K-theory gives a homotopical lifting of Artin’s theorem and gives a categorical 
explanation of results of Bojanowska [13,14] and Bojanowska–Jackowski [15] on equiv-
ariant K-theory of finite groups. This application, which relies on an analysis of the 
descent spectral sequence, will appear in the second paper [54]. In addition, the methods 
of F -nilpotence can be applied to equivariant versions of algebraic K-theory, which leads 
to Thomason-style descent theorems in the algebraic K-theory of ring spectra. We will 
return to this in a third paper [22].

We will give numerous examples of equivariant cohomology theories that fulfill this 
criterion. The specialization to Borel-equivariant mod p cohomology will recover re-
sults such as Theorem 1.2, as well as versions of Theorem 1.2 where k is replaced by 
any complex-oriented theory. Indeed, the second purpose of these papers is to prove 
F-isomorphism theorems generalizing Theorem 1.2, using a careful analysis of the rele-
vant descent spectral sequences.

1.3. F -nilpotence

We now summarize the contents of this paper. The present paper is almost exclusively 
theoretical, and the computational results (i.e., analogs of Theorem 1.2) will be the focus 
of the sequel [54], so we refer to the introduction of the sequel for further discussion.
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Let C be a presentable stable ∞-category with a compatible symmetric monoidal 
structure, i.e., such that ⊗ preserves colimits in each variable. Given an algebra object 
A of C, one says, following Bousfield, that an object of C is A-nilpotent if it belongs to 
the thick ⊗-ideal generated by A.

The following is the main definition of this series of papers.

Definition (See Definition 6.36 below). Let G be a finite group, and let SpG denote the 
∞-category of G-spectra (see Definition 5.10). Let F be a family of subgroups of G. We 
say that M ∈ SpG is F -nilpotent if it is nilpotent with respect to the algebra object ∏

H∈F F (G/H+, S0
G) ∈ CAlg(SpG).

We will especially be interested in this definition for a ring G-spectrum R (up to 
homotopy, not necessarily structured). In this case, we will see that R is F -nilpotent if 
and only if the geometric fixed points ΦHR are contractible for any subgroup H ≤ G

which does not belong to F (Theorem 6.41). In the sequel to this paper, we will show 
that if R ∈ SpG is a ring G-spectrum which is F -nilpotent, then the R-cohomology of 
any G-space satisfies an analog of Theorem 1.2 (with the elementary abelian subgroups 
replaced by those subgroups in F ).

The first goal of this paper is to develop the theory of nilpotence in an appropri-
ately general context. We have also taken the opportunity to discuss certain general 
features of symmetric monoidal stable ∞-categories, such as a general version of Dwyer–
Greenlees theory [26], due to Hovey–Palmieri–Strickland [38], yielding an equivalence 
between complete and torsion objects. Similar ideas have also been explored in recent 
work of Barthel–Heard–Valenzuela [10]. This material is largely expository, but certain 
aspects (in particular, decompositions such as Theorem 2.30 and Theorem 3.20 below) 
rely on the theory of ∞-categories and have not always been documented in the classical 
literature on triangulated categories. Our presentation is intended to make it clear that 
the notion of F -nilpotence is a natural generalization of a bounded torsion condition.

Let R ∈ Alg(SpG) be an associative algebra, and suppose that R is F -nilpotent. 
A major consequence of F -nilpotence is an associated decomposition (Theorem 6.42) of 
the ∞-category of R-module G-spectra.

Theorem. Suppose R ∈ Alg(SpG) is F -nilpotent. Let OF (G) be the category of G-sets 
of the form G/H, H ∈ F . Then there is an equivalence of ∞-categories

ModSpG
(R) 
 lim←−−

G/H∈OF (G)op
ModSpH

(ResGHR).

If R is an E∞-algebra object, then the above equivalence is (canonically) symmetric 
monoidal too.
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We expect the decomposition given above to have future applications, as in most 
practical situations where F -nilpotence arises, it is easier to study modules in SpH over 
ResGHR (for H ∈ F ) than to study modules over R itself.

1.4. Equivariant module spectra

In the rest of this paper, we take a somewhat different direction, albeit with a view 
towards proving F -nilpotence results. We analyze the structure of modules over certain 
equivariant ring spectra. These results generalize work of Greenlees–Shipley [31] in the 
rational setting.

Our first results concern the structure of the ∞-category Fun(BG, Mod(R)) where R
is a complex-oriented E∞-ring and G is a connected compact Lie group. The application 
of these results to F -nilpotence statements will come from embedding a finite group 
in a unitary group. In case G is a product of copies of tori or unitary groups (see 
Theorem 7.37 for precise conditions), we describe Fun(BG, Mod(R)) as an ∞-category 
of complete modules over a (non-equivariant) ring spectrum. For instance, we prove the 
following result.

Theorem 1.3. Let R be an even periodic E∞-ring. Then we have an equivalence of sym-
metric monoidal ∞-categories,

Fun(BU(n),Mod(R)) 
 Mod(F (BU(n)+, R))cpl,

where on the right we consider modules complete with respect to the augmentation ideal 
in π0(F (BU(n)+, R)) 
 π0(R)[[c1, . . . , cn]].

One can think of Theorem 1.3 as a homotopy-theoretic (complex-orientable) version 
of the Koszul duality between DG modules over an exterior algebra (which is replaced 
by the group algebra R ∧ U(n)+) and DG modules over a polynomial algebra (which is 
replaced by F (BU(n)+, R)). Rationally, these results are due to Greenlees–Shipley [31]. 
Theorem 1.3 is useful because it is generally much easier to work with modules over the 
non-equivariant ring spectrum F (BU(n)+, R) than to analyze U(n)-actions directly.

The unitary group is especially well-behaved because its cohomology is torsion-free. 
A more general result (Theorem 7.35 below) runs as follows:

Theorem 1.4. Let R be an E∞-ring and let G be a compact, connected Lie group. Suppose 
H∗(BG; π0R) 
 H∗(BG; Z) ⊗Zπ0R and that this is a polynomial ring over π0R; suppose 
furthermore that the cohomological R-based Atiyah–Hirzebruch spectral sequence (AHSS) 
for BG degenerates (e.g., π∗(R) is torsion-free). Then there is an equivalence of sym-
metric monoidal ∞-categories between Fun(BG, Mod(R)) and the symmetric monoidal 
∞-category of R-complete F (BG+, R)-modules.
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Let (C, ⊗, 1) be a presentable, symmetric monoidal ∞-category where the tensor prod-
uct commutes with colimits in each variable. Then there is an adjunction of symmetric 
monoidal ∞-categories between Mod(End(1)) and C, and we will discuss general crite-
ria for this adjunction to be a localization. We call such C unipotent. When applied to 
∞-categories of the form Fun(BG, Mod(R)), these general criteria will recover results 
such as Theorem 1.4.

We will then explain that results such as Theorem 1.3 lead to very quick and explicit 
proofs (via the flag variety) of results including the following:

Theorem 1.5. Let R be a complex-orientable E∞-ring. Then, if G is a finite group, the 
Borel-equivariant G-spectrum associated to R is F -nilpotent for F the family of abelian 
subgroups.

We will prove more precise results for particular complex-orientable theories in the 
sequel to this paper. The main observation is that the (very nontrivial) action of the 
unitary group U(n) on the flag variety F = U(n)/T becomes trivialized after smash-
ing with a complex-oriented theory; the trivialization is a consequence of Theorem 1.3
(though can also be proved by hand). The use of the flag variety in this setting is of 
course classical, and the argument is essentially due to Quillen (albeit stated in a slightly 
different form).

Finally, we shall treat the cases of equivariant real and complex K-theory. Here again, 
we make a study of their module categories in the case of compact, connected Lie 
groups. Our main result is that, once again, under certain conditions the symmetric 
monoidal ∞-category of modules (in equivariant spectra) over equivariant real and com-
plex K-theory can be identified with the symmetric monoidal ∞-category of modules 
over a non-equivariant E∞-ring spectrum.

Theorem 1.6. Let G be a compact, connected Lie group with π1(G) torsion-free. Then 
the respective symmetric monoidal ∞-categories ModSpG

(KUG) and ModSpG
(KOG) are 

equivalent to the symmetric monoidal ∞-categories of modules (in the ∞-category of 
spectra) over the categorical fixed points of KUG and KOG respectively.

For equivariant complex K-theory, these results use (and give a modern perspective 
on) the theory of Künneth spectral sequences in equivariant K-theory developed by 
Hodgkin [34], Snaith [70], and McLeod [57]. By embedding a finite group in a unitary 
group, one obtains a quick proof that equivariant K-theory is nilpotent for the family of 
abelian subgroups; in the sequel we shall see that it is actually nilpotent for the family 
of cyclic subgroups. The condition that π1(G) should be torsion-free does not rule out 
torsion in H∗(G; Z) (e.g., G = Spin(n)) and that the conclusion holds in these cases is a 
special feature of K-theory.

To obtain the result for equivariant real K-theory, we prove a version of the theorem 
of Wood KO ∧ Σ−2CP2 
 KU in the equivariant setting (Theorem 9.8) below.
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Theorem 1.7. Let G be any compact Lie group. Then there is an equivalence of 
KOG-modules KOG ∧ Σ−2CP2 
 KUG.

Here CP2 is considered as a pointed space with trivial G-action. We then develop an 
analogous Z/2-Galois descent picture from equivariant complex to real K-theory (which 
is due to Rognes [65] for G = 1). In particular, we show that (for any compact Lie 
group G) the map KOG → KUG of E∞-algebras in SpG is a faithful Z/2-Galois exten-
sion. The Galois descent or homotopy fixed point spectral sequence is carefully analyzed; 
here the trichotomy of irreducible representations into real, complex, and quaternionic 
plays a fundamental role.

1.5. Notation

We will freely use the theory of ∞-categories (quasi-categories) as treated in [44] and 
the theory of symmetric monoidal ∞-categories, as well as that of rings and modules in 
them, developed in [48]. Note that we will identify the E1 and associative ∞-operads. In a 
symmetric monoidal ∞-category, we will let DA denote the dual of a dualizable object A. 
We refer to [48, §4.6.1] for a treatment of duality and dualizable objects. Homotopy limits 
and colimits in an ∞-category will be written as lim←−− and lim−−→. We will abuse notation 
and often identify an ordinary category C with the associated quasi-category N(C). In 
addition, we will frequently identify abelian groups (resp. commutative rings) with their 
associated Eilenberg–MacLane spectra when confusion is unlikely to arise.

Throughout, we will write S for the ∞-category of spaces and Sp for the ∞-category 
of spectra. For G a compact Lie group, the G-equivariant analogs will be denoted SG

and SpG. We will also write BG for both the classifying space of G and its associ-
ated ∞-category (∞-groupoid), so that, for an ∞-category C, Fun(BG, C) denotes the 
∞-category of objects in C equipped with a G-action.

Part 1. Generalities on symmetric monoidal ∞-categories

2. Complete objects

Consider the ∞-category Mod(Z) of modules over the Eilenberg–MacLane spec-
trum HZ, or equivalently the (unbounded) derived ∞-category [48, §1.3.5] of the cate-
gory of abelian groups. Fix a prime number p. Then there are four stable subcategories 
of Mod(Z) that one can define.

1. The subcategory (Mod(Z))p−tors of p-torsion Z-modules: that is, the smallest lo-
calizing1 subcategory of Mod(Z) containing Z/p. An object of Mod(Z) belongs to 
(Mod(Z))p−tors if and only if all of its homotopy groups are p-power torsion.

1 Recall that a subcategory of a presentable stable ∞-category is said to be localizing if it is a stable 
subcategory closed under colimits.
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2. The subcategory ModZ[p−1] of Z[p−1]-modules: that is, those objects M ∈ Mod(Z)
such that M ⊗N is contractible for every N ∈ (Mod(Z))p−tors. This subcategory is 
closed under both arbitrary limits and colimits.

3. The subcategory (Mod(Z))p−cpl of p-complete Z-modules: that is, those M such 
that for any N ∈ ModZ[p−1], the space of maps HomMod(Z)(N, M) is contractible. 
This subcategory is closed under arbitrary limits and ℵ1-filtered colimits (but not 
all colimits).

4. The subcategory (Mod(Z))p−nil consisting of those M ∈ Mod(Z) such that some 
power of p annihilates M : that is, such that 1M ∈ π0HomMod(Z)(M, M) is p-power 
torsion. This subcategory is only closed under finite limits and colimits, as well as 
retracts.

The first three subcategories satisfy a number of well-known relationships. For in-
stance:

1. There is a completion (or Z/p-localization) functor Mod(Z) → (Mod(Z))p−cpl.
2. There is an acyclization or colocalization functor Mod(Z) → (Mod(Z))p−tors.
3. There is a localization functor L : Mod(Z) → ModZ[p−1].

Dwyer–Greenlees theory [26] implies that p-adic completion induces an equivalence

(Mod(Z))p−tors 
 (Mod(Z))p−cpl.

Moreover, there is an arithmetic square for building any object X of Mod(Z) from X[p−1], 
the p-adic completion X̂p, and a compatibility map. Namely, any X ∈ Mod(Z) fits into 
a pullback square

X X̂p

X[p−1] (X̂p)[p−1].

(2.1)

This picture and its generalizations (for instance, its version in chromatic homotopy 
theory) are often extremely useful in understanding how to build objects. The fourth 
subcategory (Mod(Z))p−nil does not fit into such a functorial picture, but every object 
here is both p-torsion and p-complete, and the p-torsion is bounded.

Let (C, ⊗, 1) be a presentable, symmetric monoidal, stable ∞-category where the 
tensor product commutes with colimits in each variable. Let A be an associative algebra 
object in C. In the next two sections, we briefly review an axiomatic version of the above 
picture in C with respect to A. The main focus of this paper is the fourth subcategory of 
nilpotent objects in equivariant stable homotopy theory. We emphasize that these ideas 
are by no means new, and have been developed by several authors, including [18,33,38,
26,29,45,10].
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2.1. The Adams tower and the cobar construction

As usual, let (C, ⊗, 1) be a presentable, symmetric monoidal stable ∞-category where 
the tensor product commutes with colimits. Let A ∈ Alg(C) be an associative algebra 
object of C. We begin with a basic construction.

Construction 2.2 (The Adams tower). Let M ∈ C. Then we can form a tower in C

· · · → T2(A,M) → T1(A,M) → T0(A,M) 
 M (2.3)

as follows:

1. T1(A, M) is the fiber of the map M → A ⊗M induced by the unit 1 → A, so that 
T1(A, M) maps naturally to M .

2. More generally, Ti(A, M) := T1(A, Ti−1(A, M)) with its natural map to Ti−1(A, M).

Inductively, this defines the functors Ti and the desired tower. We will call this the 
A-Adams tower of M . Observe that the A-Adams tower of M is simply the tensor 
product of M with the A-Adams tower of 1.

We can write the construction of the Adams tower in another way. Let I = fib(1 → A), 
so that I is a nonunital associative algebra in C equipped with a map I → 1. We have 
a tower

· · · → I⊗n → I⊗(n−1) → · · · → I⊗2 → I → 1,

and this is precisely the A-Adams tower {Ti(A,1)}i≥0. The A-Adams tower for M is 
obtained by tensoring this with M .

Example 2.4. Take C = Mod(Z) and A = Z/p. Then the Adams tower {Ti(Z/p,M)} of 
an object M ∈ Mod(Z) is given by

· · · → M
p→ M

p→ M.

The A-Adams tower has two basic properties:

Proposition 2.5.
1. For each i, the cofiber of Ti(A, M) → Ti−1(A, M) admits the structure of an 

A-module (internal to C).
2. Each map Ti(A, M) → Ti−1(A, M) becomes nullhomotopic after tensoring with A.

Proof. Suppose i = 1. In this case, the cofiber of T1(A, M) → M is precisely A ⊗M by 
construction. We have a cofiber sequence
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T1(A,M) → M → A⊗M,

and the last map admits a section after tensoring with A. Therefore, the map 
T1(A, M) → M must become nullhomotopic after tensoring with A. Since Ti(A, M) =
T1(A, Ti−1(A, M)), the general case follows. �
Corollary 2.6. Suppose M ∈ C is an A-module up to homotopy. Then the successive maps 
Ti(A, M) → Ti−1(A, M) in the Adams tower are nullhomotopic.

Proof. If M = A ⊗ N , then we just saw that each of the maps in the Adams tower 
is nullhomotopic. If M is an A-module up to homotopy, then M is a retract (in C) of 
A ⊗M , so each of the maps in the Adams tower {Ti(A,M)} must be nullhomotopic as 
well. �

The construction of the Adams tower can be carried out even if A is only an algebra 
object in the homotopy category of C: that is, one does not need the full strength of the 
associative algebra structure in C. However, we will also need the following construction 
that does use this extra (homotopy coherent) structure.

Construction 2.7. Given A ∈ Alg(C), we can form a cosimplicial object in C,

CB•(A) =
{
A ⇒ A⊗A

→
→
→

. . .
}
∈ Fun(Δ, C),

called the cobar construction on A. The cobar construction extends to an augmented 
cosimplicial object

CB•
aug(A) : N(Δ+) → C,

(where Δ+ is the augmented simplex category of finite ordered sets), where the augmen-
tation is from the unit object 1. The augmented cosimplicial object CB•

aug(A) admits a 
splitting [48, §4.7.3] after tensoring with A: that is, the augmented cosimplicial object 
CB•

aug(A) ⊗A is split.

Although the cobar construction in the 1-categorical context is classical, for precision 
we spell out the details of how one may extract the cobar construction using the formal-
ism of [48, §2.1–2.2]. By definition, since C is a symmetric monoidal ∞-category, one has 
an ∞-category C⊗ together with a cocartesian fibration C⊗ → N(Fin∗) where Fin∗ is the 
category of pointed finite sets. The underlying ∞-category C is obtained as the fiber over 
the pointed finite set {0} ∪ {∗}. The associative operad has an operadic nerve N⊗(E1)
which maps to N(Fin∗), and the algebra object A defines a morphism φA : N⊗(E1) → C⊗

over N(Fin∗). The crucial point is that we have a functor N(Δ+) → N⊗(E1) whose def-
inition we will now recall.
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To understand this functor, recall that the operadic nerve N⊗(E1) (recall that we 
identify E1 and the associative operad) comes from the (ordinary) category described as 
follows:

1. The objects are finite pointed sets S ∈ Fin∗.
2. Given S, T , to give a morphism S → T in N⊗(E1) amounts to giving a morphism 

ρ : S → T in Fin∗ and an ordering on each of the sets ρ−1(t) for t ∈ T \ {∗}.

We now obtain a functor N(Δ+) → N⊗(E1) which sends a finite ordered set S to 
S � {∗}; a morphism S → T in Δ+ clearly induces a morphism N⊗(E1) (using the 
induced ordering on the preimages). Composing, we obtain a functor

ψA : N(Δ+) → N⊗(E1)
φA→ C⊗.

Now, let Finac
∗ ⊂ Fin∗ be the (non-full) subcategory with the same objects, but such 

that morphisms of pointed sets ρ : S → T are required to be active, i.e., such that 
ρ−1(∗) = ∗. Observe that ψA factors (canonically) over C⊗ ×N(Fin∗) N(Finac

∗ ).
Finally, since C is a symmetric monoidal ∞-category, we have a functor

⊗
: C⊗ ×N(Fin∗) N(Finac

∗ ) → C

that, informally, tensors together a tuple of objects. To obtain this, observe that for any 
object S ∈ Finac

∗ , there is a natural map fS : S → {0} ∪ {∗} such that f−1
S (0) = S \ {∗}. 

(The naturality holds on Finac
∗ , not on the larger category Fin∗.) The functor 

⊗
is the 

cocartesian lift of this natural transformation. Now, the (augmented) cobar construction 
is the composition

CB•
aug(A) : N(Δ+) ψA→ C⊗ ×N(Fin∗) N(Finac

∗ )
⊗
→ C.

Our first goal is to demonstrate the connection between the Adams tower and the 
cobar construction. Given a functor X• : Δ → C, we recall that Totn(X•) is defined 
to be the homotopy limit of X•|Δ≤n for Δ≤n ⊂ Δ the full subcategory spanned by 
{[0], [1], . . . , [n]}. We will need the following important result. The notion of stability is 
self-dual, so we have dualized the statement in the cited reference.

Theorem 2.8 (Lurie [48, Th. 1.2.4.1]; ∞-categorical Dold–Kan correspondence). Let C
be a stable ∞-category. Then the functor

Fun(Δ, C) → Fun(Zop
≥0, C), X• �→ {Totn(X•)}n≥0

establishes an equivalence between cosimplicial objects in C and towers in C.
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In particular, we will show (Proposition 2.14) that under the ∞-categorical Dold–Kan 
correspondence, the cobar construction and the Adams tower correspond to one another. 
This result is certainly not new, but we have included it for lack of a convenient reference.

Definition 2.9. Given a finite nonempty set S, we will let P(S) denote the partially 
ordered set of nonempty subsets of S ordered by inclusion. We will let P+(S) denote the 
partially ordered set of all subsets of S ordered by inclusion.

Construction 2.10. Suppose given morphisms fs : Xs → Ys ∈ C for each s ∈ S. Then we 
obtain a functor

F+({fs}) : P+(S) → C

whose value on a subset S′ ⊂ S is given by

F+({fs})(S′) =
⊗
s1 /∈S′

Xs1 ⊗
⊗
s2∈S′

Ys2 .

We will let F ({fs}) : P(S) → C denote the restriction of F+({fs}).

Our first goal is to give a formula for the inverse limit of these functors F ({fs}). 
This will be important in determining the partial totalizations of the Adams tower 
(Proposition 2.14 below).

Proposition 2.11. Let S be a finite nonempty set and suppose given morphisms fs : Xs →
Ys in C for each s ∈ S. Form a functor F ({fs}) : P(S) → C as in Construction 2.10. 
Then there is an identification, functorial in 

∏
s∈S Fun(Δ1, C),

lim←−−
P(S)

F ({fs}) 
 cofib
(⊗

s∈S

fib(Xs → Ys) →
⊗
s∈S

Xs

)
.

Proof. We first explain the map. Let Fun(Δ1, C) denote the ∞-category of arrows in C; 
it is itself a stable ∞-category. Observe that any object X → Y of Fun(Δ1, C) fits into 
a cofiber sequence

(fib(X → Y ) → 0) → (X → Y ) → (Y → Y ). (2.12)

Given an S-indexed family of objects {fs : Xs → Ys} of Fun(Δ1, C), we have associated 
an object F+({fs}) ∈ Fun(P+(S), C). We obtain a functor∏

s∈S

Fun(Δ1, C) → Fun(P+(S), C)

which is exact in each variable. Therefore, using (2.12), we obtain a natural morphism
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F+({fib(Xs → Ys) → 0}) → F+({fs}),

in Fun(P+(S), C). Taking the cofiber of this morphism yields an object of Fun(P+(S), C)
where the initial vertex is mapped precisely to cofib

(⊗
s∈S fib(Xs → Ys) →

⊗
s∈S Xs

)
and whose restriction to P(S) is identified with F ({fs}).

By the universal property of the homotopy limit (since P+(S) is the cone on P(S)), 
this gives a natural morphism

cofib
(⊗

s∈S

fib(Xs → Ys) →
⊗
s∈S

Xs

)
→ lim←−−

P(S)
F ({fs}) ∈ C. (2.13)

We need to argue that this morphism (2.13) is an equivalence. We first claim that if 
one of the morphisms fs : Xs → Ys is an equivalence, then (2.13) is an equivalence, i.e., 
that

F+({fs}) : P+(S) → C

is a limit diagram. However, this follows from the dual of [48, Lem. 1.2.4.15] applied to 
K = P(S \ {s}) as K� = P+(S \ {s}) and K� × Δ1 = P+(S); the fiber of the natural 
map of diagrams K� → C thus obtained is contractible. Here K� is the left cone over 
K [44, Notation 1.2.8.4].

Now, to show that (2.13) is an equivalence, we observe that both sides are exact 
functors in each Fun(Δ1, C) variable. We use induction on the number of fs : Xs → Ys

with Ys noncontractible. If all the Ys = 0, both sides of (2.13) are contractible. Now 
suppose n of the Ys’s are not zero, and choose s1 ∈ S with Ys1 �= 0. In this case, we 
use the cofiber sequence (2.12). In order to show that (2.13) is an equivalence, it suffices 
to show that (2.13) becomes an equivalence after we replace fs1 either by Ys1

id→ Ys1 or 
fib(Xs1 → Ys1) → 0. We have treated the first case in the previous paragraph, and the 
second case follows by the inductive hypothesis. �
Proposition 2.14. The tower associated (via the Dold–Kan correspondence) to the cosim-
plicial object CB•(A) is precisely the tower

{cofib(Tn+1(A,1) → 1)}.

In other words, we have equivalences Totn(CB•(A)) 
 cofib(I⊗(n+1) → 1).

Proof. We compute Totn(CB•(A)). For this, we let P([n]) denote the partially ordered 
set of nonempty subsets of [n]. There is a natural functor

P([n]) → Δ≤n

which is right cofinal by [48, Lem. 1.2.4.17]. We can describe the composite functor
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P([n]) → Δ≤n CB•(A)−→ C

as follows: it is obtained by considering the unit maps fs : 1 → A for each s ∈ [n] and 
forming F ({fs}) as in Construction 2.10. Now, the homotopy limit is thus computed by 
Proposition 2.11 and it is as desired. The maps in the tower, too, are seen to be the 
natural ones. �
2.2. Complete objects

We review rudiments of the theory of Bousfield localization [18] in our setting. As 
before, (C, ⊗, 1) is a presentable, symmetric monoidal stable ∞-category where ⊗ com-
mutes with colimits in each variable, and A ∈ Alg(C).

Definition 2.15. We say that an object X ∈ C is A-complete or A-local if, for any Y ∈ C
with Y ⊗A 
 0, the space of maps HomC(Y, X) is contractible. The A-complete objects 
of C span a full subcategory CA−cpl ⊂ C.

Example 2.16. A motivating example to keep in mind throughout is C = Mod(Z) and 
A = Z/p. Here, the A-complete objects of Mod(Z) are referred to as p-adically complete.

Example 2.17. Suppose A has the property that tensoring with A is conservative. For 
instance, a duality argument shows that this holds if A is dualizable (cf. [48, §4.6.1]) and 
DA generates C as a localizing subcategory. Then every object of C is A-complete.

Example 2.18. Suppose M ∈ C admits the structure of an A-module. Then M is 
A-complete. In fact, suppose X ∈ C is such that A ⊗X is contractible. Then

HomC(X,M) 
 HomModC(A)(A⊗X,M) 
 HomModC(A)(0,M) 
 0.

It follows formally from the definitions that CA−cpl is closed under all limits in C. The 
subcategory CA−cpl can equivalently be described as consisting of those objects X ∈ C
such that if Y → Y ′ is a map that becomes an equivalence after tensoring with A, then 
HomC(Y ′, X) → HomC(Y, X) is an equivalence.

We invoke here the theory of Bousfield localization in the ∞-categorical context [44, 
§5.5.4]. In particular, we let S be the collection of morphisms Y → Y ′ in C which 
become an equivalence after tensoring with A. By [44, Prop. 5.5.4.16], this class S, as 
a strongly saturated class ([44, Def. 5.5.4.5]) is of small generation. We now invoke the 
basic existence result [44, Prop. 5.5.4.15], which implies that CA−cpl is a presentable 
∞-category, and that the inclusion CA−cpl ⊂ C has a left adjoint.

Definition 2.19. We will let LA : C → CA−cpl denote the left adjoint to the inclusion 
CA−cpl ⊂ C and refer to LA as A-completion. We will also abuse notation and use LA to 

denote the composition C LA→ CA−cpl ⊂ C when confusion is unlikely to arise.
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When regarded as a functor LA : C → C (as CA−cpl ⊂ C is a full subcategory), we have 
a natural transformation X → LAX for any X, with the properties:

1. The map X → LAX becomes an equivalence after tensoring with A.
2. The object LAX is A-complete.

Remark 2.20. We recall that colimits in CA−cpl are computed by first computing the 
colimit in C and then applying localization LA again. In particular, while the inclusion 
CA−cpl ⊂ C need not preserve colimits, the composition CA−cpl ⊂ C ⊗A→ C does.

Suppose φ : X → Y is a map in C such that φ ⊗1A : X⊗A → Y ⊗A is an equivalence. 
Then for any Z, the map φ ⊗ 1Z has the same property. In view of [48, Prop. 2.2.1.9], 
CA−cpl inherits the structure of a symmetric monoidal ∞-category such that the functor 
LA : C → CA−cpl is symmetric monoidal.

In this subsection, we will review several characterizations of A-complete objects, 
and describe the subcategory of complete objects as a homotopy limit of presentable 
∞-categories. Throughout, the assumption that A is dualizable will be critical as it 
implies that tensoring with A commutes with homotopy limits. The first basic result is 
as follows.

Proposition 2.21. Suppose A is dualizable. For any object M ∈ C, the map M → Tot(M⊗
CB•(A)) exhibits the target as the A-completion of M .

Proof. In fact, the map M → Tot(M ⊗CB•(A)) becomes an equivalence after tensoring 
with A. This follows because M ⊗ CB•

aug(A) becomes a split augmented cosimplicial 
object after tensoring with A. In addition, we use the fact that tensoring with A com-
mutes with arbitrary homotopy limits (as A is dualizable). Moreover, Tot(M ⊗CB•(A))
is A-complete as it is the homotopy limit of a diagram of objects, each of which is an 
A-module and therefore A-complete (Example 2.18). �

In view of Proposition 2.14, we find (with I = fib(1 → A)) an equivalence

LAM 
 lim←−−
n

[
cofib(I⊗n+1 → 1) ⊗M

]
. (2.22)

This recovers the familiar formula for p-adic completion in Mod(Z), for example.
We now obtain the following criteria for A-completeness.

Proposition 2.23. The following are equivalent for an object M ∈ C and for A ∈ Alg(C), 
assumed dualizable in C.

1. The object M is A-complete.
2. The homotopy limit of the Adams tower {Ti(A,M)}i≥0 is contractible.
3. The augmented cosimplicial object CB•

aug(A) ⊗M is a limit diagram.
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Proof. (1) ⇔ (3). This follows from Proposition 2.21.
To see that (1) ⇔ (2), one can use the comparison between the Adams tower and 

the cobar construction (Proposition 2.14) and conclude. One can also argue directly; we 
leave this to the reader. �
Corollary 2.24. If X ∈ C is A-complete and Y ∈ C is dualizable, then X⊗Y is A-complete.

Construction 2.25. The object DA ∈ C admits the structure of an A-module. In fact, we 
have a map A ⊗DA → DA which is (doubly) adjoint to the multiplication map A ⊗A → A

which makes A into an A-module. Alternatively, the module structure on DA comes from 
applying the right adjoint HomC(A, ·) of the forgetful functor ModC(A) → C to 1 ∈ C.

It will now be convenient to make the following further hypotheses on C and A, which 
will be in effect until the end of the subsection.

Hypotheses 2.26. (C, ⊗, 1) is a presentable, symmetric monoidal stable ∞-category where 
⊗ commutes with colimits in each variable. We assume furthermore that:

1. The unit 1 is compact.
2. The object A is dualizable (as already assumed).
3. The ∞-category C is generated as a localizing subcategory by dualizable objects.

Recall that in this setting, compactness of the unit implies compactness of all dualiz-
able objects.

Proposition 2.27. Let D be a family of dualizable generators for C. Then the objects 
{DA ⊗X}X∈D form a system of compact generators for CA−cpl.

Proof. Fix X ∈ D. By Construction 2.25, DA ⊗X belongs to CA−cpl as it is an A-module. 
We show that DA ⊗X is compact in CA−cpl. Indeed,

HomC(DA⊗X,Y ) 
 HomC(X,A⊗ Y ),

and we observe that the functor CA−cpl → C, Y �→ A ⊗ Y , commutes with colimits 
(Remark 2.20). Since X is compact in C, we can now conclude that DA ⊗X is compact 
in CA−cpl.

To show that the {DA ⊗X}X∈D generate CA−cpl, it suffices (Lemma 7.6) to show that 
if Y ∈ CA−cpl is arbitrary and HomC(DA ⊗X, Y ) is contractible for all X ∈ D, then Y is 
contractible. But this means that HomC(X, A ⊗ Y ) is contractible for all X ∈ D. Thus 
A ⊗ Y is contractible, so Y in turn is contractible by A-completeness. �

Next, we include a result that describes complete objects for a tensor product of 
algebras. This result (and its variants for torsion and nilpotent objects) will be useful in 
the sequel.
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Proposition 2.28. Suppose A, B ∈ Alg(C) are dualizable in C. Then an object X ∈ C is 
(A ⊗B)-complete if and only if X is both A-complete and B-complete.

Proof. Suppose X is (A ⊗ B)-complete. Then X 
 Tot(X ⊗ CB•(A ⊗ B)). Each term 
in this totalization is an A-module, and therefore A-complete. Thus, the homotopy limit 
X is A-complete too. Similarly, X is B-complete.

Conversely, suppose X is both A-complete and B-complete. Then consider the bi-
cosimplicial diagram

X ⊗ CB•(A) ⊗ CB•(B) : Δ × Δ → C. (2.29)

Since A⊗k⊗X is B-complete for any k (Corollary 2.24), and since X is A-complete, one 
sees that the homotopy limit of the bicosimplicial diagram (2.29) is X itself: indeed, one 
computes the bitotalization one factor at a time. However, every term in the bicosim-
plicial diagram (2.29) is an (A ⊗ B)-module and thus (A ⊗ B)-complete. Thus, X is 
(A ⊗B)-complete itself. �

The final goal of this section is to describe the ∞-category CA−cpl as a homotopy 
limit, via descent theory, when A is actually a commutative algebra object, so that the 
cobar construction takes values in commutative algebra objects.2 This is the one part of 
the present section where the language of ∞-categories is necessary, and the result will 
be useful to us in the sequel.

Consider the augmented cobar construction CB•
aug(A) : Δ+ → CAlg(C). Taking mod-

ule ∞-categories everywhere, we obtain a cosimplicial diagram of symmetric monoidal 
stable ∞-categories

ModC(A) ⇒ ModC(A⊗A)
→
→
→

. . .

receiving an augmentation from C.

Theorem 2.30. If A ∈ CAlg(C) is dualizable in C, then CA−cpl can be recovered as the 
homotopy limit

CA−cpl 
 Tot
(
ModC(A) ⇒ ModC(A⊗A)

→
→
→

. . .
)
,

in the ∞-category of symmetric monoidal ∞-categories.

Proof. We have an adjunction

(F,G) : C � ModC(A)

2 The cobar construction on an associative algebra object does not live in the ∞-category of algebra 
objects.
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where F (X) = A ⊗X and G forgets the A-module structure. This adjunction descends 
to a similar adjunction

(F ′, G′) : CA−cpl � ModC(A),

with the same formulas. As a result, the coaugmentation from C of the cosimplicial 
symmetric monoidal ∞-category ModC(CB•(A)) descends to a coaugmentation from 
CA−cpl, leading to the natural functor

CA−cpl → Tot
(
ModC(A) ⇒ ModC(A⊗A)

→
→
→

. . .
)
. (2.31)

We want to see that this functor is an equivalence of symmetric monoidal ∞-categories. 
This is a descent argument using the ∞-categorical monadicity theorem and an identi-
fication of the above homotopy limit, which appears in the proof of [47, Prop. 6.18].

For this, we consider the map (2.31) and replace all ∞-categories with their opposites 
to obtain a new map

(CA−cpl)op → Tot
(
ModC(A)op ⇒ ModC(A⊗A)op

→
→
→

. . .
)
. (2.32)

It suffices to show that (2.32) is an equivalence. For this, we invoke [48, Cor. 4.7.6.3]. The 
necessary condition on left adjointability is satisfied in view of [47, Lem. 6.15]. In order 
to apply [48, Cor. 4.7.6.3], it therefore suffices to show that tensoring with A, as a functor 
CA−cpl → ModC(A), preserves A-split totalizations and is conservative. However, since 
A is dualizable, tensoring with A preserves all limits, and it is conservative on CA−cpl
(since any object X ∈ CA−cpl with X ⊗A 
 0 must be contractible itself). Therefore, we 
can apply the comonadicity theorem and complete the proof. �

We emphasize that the above argument is standard [47, §6] in ∞-categorical descent 
theory. The main use of it here is to identify an ∞-category of complete objects with 
respect to a dualizable algebra object.

Example 2.33. Suppose A has the property that tensoring with A is conservative on C. 
In this case, one sees easily that CA−cpl = C and the above result, Theorem 2.30, is 
a descent theorem for C itself as a homotopy limit of modules over the tensor powers 
{A⊗(n+1)}n≥0. In fact, by [51, Th. 3.36], the commutative algebra object A is descendable
in C, i.e., the thick ⊗-ideal it generates is all of C. In particular, this descent theorem 
is [51, Prop. 3.21]. While the decomposition of C as a homotopy limit does not require 
compactness of the unit, the additional conclusion of descendability of A does.

3. A-torsion objects and A−1-local objects

In this section, we describe the theory of torsion objects with respect to the algebra ob-
ject A ∈ Alg(C), and the dual theory of A−1-local objects. The main results are a general 
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version (Theorem 3.9) of the Dwyer–Greenlees [26] equivalence between complete and 
torsion objects, which is due to Hovey–Palmieri–Strickland [38, Th. 3.3.5] and a version 
of the arithmetic square (Theorem 3.20). We continue to work under Hypotheses 2.26.

3.1. Torsion objects

Definition 3.1. The subcategory CA−tors of A-torsion objects in C is the smallest localizing 
subcategory of C containing A ⊗X, for X ∈ C dualizable.

As with CA−cpl, our first goal is to make CA−tors explicit.

Construction 3.2. By [48, Cor. 1.4.4.2], CA−tors is a presentable ∞-category. In particular, 
by the adjoint functor theorem [44, Cor. 5.5.2.9], the fully faithful inclusion CA−tors ⊂ C
is a left adjoint and admits a right adjoint

ACA : C → CA−tors,

which is called the A-acyclization functor. For any object X ∈ C, there is a natural 
(counit) map ACA(X) → X in C.

Our first goal is to get a handle on ACA. We begin by showing that CA−tors is a 
⊗-ideal (Definition 4.1).

Proposition 3.3. If Y ∈ CA−tors and X ∈ C, then X ⊗ Y ∈ CA−tors.

Proof. Consider the collection of X ∈ C such that X ⊗ Y ∈ CA−tors. By definition, this 
collection is localizing, so to show that it is all of C, it suffices to show that it contains 
all X dualizable. So, we may assume that X is dualizable.

Fix a dualizable X. Consider the collection of all Y ′ ∈ CA−tors such that X ⊗ Y ′ ∈
CA−tors. The collection of such Y ′ is localizing, so to show that it is all of CA−tors, it 
suffices to consider the case where Y ′ = A ⊗ Y ′′ for Y ′′ ∈ C dualizable. But in this case 
X ⊗ Y ′ = X ⊗ A ⊗ Y ′′ clearly belongs to CA−tors: in fact, it is one of the generating 
objects. �

As a result, we find that CA−tors is also the localizing ⊗-ideal generated by A. We will 
now write down an explicit formula for ACA(X).

Construction 3.4. Recall the Adams tower

· · · → T2(A,1) → T1(A,1) → T0(A,1) 
 1

of the unit object 1. As A is dualizable, each of the objects in this tower is dualizable, 
so we can form the dual tower
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1 → U1 → U2 → . . . ,

where Ui := D(Ti(A, 1)). We define UA = lim−−→Ui and let VA be the fiber of 1 → UA.
Equivalently, let CB•(A) : Δ → C denote the cobar construction on A and form the 

pointwise dual

D(CB•(A)) : Δop → C,

which maps via an augmentation to D(1) 
 1. Then VA = |D(CB•(A))|.

Proposition 3.5. For any X ∈ C, we have a natural equivalence ACA(X) 
 VA ⊗ X. 
Therefore, X ∈ CA−tors if and only if the natural map VA ⊗X → X is an equivalence.

Proof. We have a natural map VA ⊗X → X. In order to show that VA ⊗X is identified 
with ACA(X), we need to show two things:

1. VA ⊗X belongs to CA−tors.
2. For any Y ∈ CA−tors, we have that HomC(Y, UA ⊗X) is contractible.

The latter condition comes from the natural cofiber sequence VA ⊗X → X → UA ⊗X. 
We now prove these claims.

1. It suffices to show that VA ∈ CA−tors, by Proposition 3.3. For this, it suffices to 
show that the cofiber of each map 1 → Ui belongs to CA−tors. By induction and the 
octahedral axiom, it suffices to show that for each i ≥ 0, the cofiber of Ui → Ui+1
belongs to CA−tors. But this map is the dual to the map Ti+1(A, 1) → Ti(A, 1), and 
the fiber of this map is of the form A ⊗ M for a dualizable object M . Now any 
object of the form D(A ⊗M) 
 DA ⊗DM belongs to CA−tors as DA is an A-module 
(Construction 2.25) and thus a retract of A ⊗ DA. Thus, the cofiber of Ui → Ui+1
belongs to CA−tors.

2. Fix X arbitrary. The collection of Y for which HomC(Y, UA ⊗X) is contractible is 
localizing, so it suffices to prove the claim for Y = A ⊗Y ′ with Y ′ dualizable. In this 
case, we have

HomC(Y,UA ⊗X) 
 HomC(Y ′,DA⊗ UA ⊗X).

Now the tower {A ⊗ Ti(A, 1)} has the property that every map is null (Proposi-
tion 2.5), so by duality, every map Ui ⊗ DA → Ui+1 ⊗ DA is nullhomotopic. In 
particular, DA ⊗ UA is contractible, which proves the claim. �

Example 3.6. We consider C = Mod(Z), A = Z/p. In this case, the sequence 1 → U1 →
U2 → . . . becomes the sequence
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Z
p→ Z

p→ . . . ,

so that UZ/p = Z[p−1] and VZ/p = Σ−1(Z[p−1]/Z).

Proposition 3.7. Let D be a collection of dualizable generators for C. Then the objects 
{DA ⊗X}X∈D form a system of compact generators for CA−tors.

Proof. These objects are A-modules by Construction 2.25, so they belong to CA−tors; 
since they are compact in C, they are compact in CA−tors. It suffices to show that they 
are generators. Here the argument proceeds as in Proposition 2.27: it reduces to showing 
that if Y ∈ CA−tors and A ⊗ Y is contractible, then Y is contractible. But in this case, 
Q ⊗ Y is contractible for any A-module Q. It follows that Q′ ⊗ Y is contractible for any 
Q′ ∈ CA−tors, in particular, for Q′ = VA, so that VA⊗Y is contractible. But VA⊗Y 
 Y

as Y ∈ CA−tors. Therefore, Y is contractible. �
Next, we include an analog of Proposition 2.28 for torsion objects.

Proposition 3.8. Let A, B ∈ Alg(C) be dualizable in C. Then an object X ∈ C is 
(A⊗B)-torsion if and only if it is both A-torsion and B-torsion.

Proof. If X is (A ⊗ B)-torsion, then we know that X belongs to the localizing ⊗-ideal 
(see Definition 4.1) generated by A ⊗B. Therefore, X belongs to the localizing ⊗-ideal 
generated by A and is consequently A-torsion. Similarly, X must be B-torsion.

Suppose now that X is both A-torsion and B-torsion. Then VA ⊗ X 
 X and 
VB ⊗X 
 X, so VA ⊗ VB ⊗ X 
 X. It suffices to show, as a result, that VA ⊗ VB

is (A ⊗B)-torsion. For this, we construct sequences

1 → U
(A)
1 → U

(A)
2 → . . . and 1 → U

(B)
1 → U

(B)
2 → . . .

as in Construction 3.4, such that VA 
 fib
(
1 → lim−−→U

(A)
i

)
and VB 
 fib

(
1 → lim−−→U

(B)
i

)
. 

To show that VA ⊗ VB is (A ⊗ B)-torsion, we first observe that, for each i, j, 
cofib

(
U

(A)
i → U

(A)
i+1

)
⊗ cofib

(
U

(B)
j → U

(B)
j+1

)
is an (A ⊗ B)-module and hence

(A⊗B)-torsion. The claim for VA ⊗ VB now follows by induction. �
We now state and briefly prove a version of [26, Th. 2.1], due to Hovey–Palmieri–

Strickland in our context.

Theorem 3.9 (Cf. [38, Th. 3.3.5]). The functor of A-completion establishes an equivalence 
of ∞-categories LA : CA−tors 
 CA−cpl (whose inverse is given by ACA).

Proof. Let X ∈ C be a dualizable object. Then DA ⊗X ∈ C belongs to both the subcate-
gories CA−tors and CA−cpl. Moreover, the DA ⊗X form a family of compact generators (as 
X ranges over the dualizable objects) for both subcategories CA−tors, CA−cpl, in view of 
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Proposition 2.27 and Proposition 3.7. Since LA carries DA ⊗X to itself (as any A-module 
is A-complete), it follows formally that LA induces an equivalence as stated.

In more detail, we let C′
A ⊂ C denote the thick subcategory (Definition 4.1) generated 

by the {DA⊗X} for the X ∈ C dualizable. Then C′
A ⊂ CA−tors ∩ CA−cpl and identifies 

with a system of compact generators of each. Therefore, we have equivalences CA−tors 

Ind(C′

A), CA−cpl 
 Ind(C′
A) by [44, Prop. 5.3.5.11]. The functor LA : CA−tors → CA−cpl

preserves colimits, as the composition of the inclusion CA−tors ⊂ C and LA : C → CA−cpl. 
It also takes the compact generators DA ⊗X to compact objects of CA−cpl. It is therefore 
induced by left Kan extension of the identity C′

A → C′
A ⊂ Ind(C′

A) [44, Lem. 5.3.5.8] and 
is therefore an equivalence. �
3.2. A−1-local objects and fracture squares

We keep the notation of the previous subsection.

Definition 3.10. We say that an object X ∈ C is A−1-local if, for any object Y ∈ CA−tors, 
we have HomC(Y, X) 
 0. We let C[A−1] ⊂ C denote the full subcategory spanned by 
the A−1-local objects.

This condition (for a fixed X) is preserved under colimits in Y . It follows that:

Proposition 3.11. An object X ∈ C is A−1-local if and only if A ⊗X is contractible.

Proof. This follows easily from duality. In fact, A ⊗ X is contractible if and only if 
HomC(Y, A ⊗ X) is contractible for all dualizable Y , and this holds if and only if 
HomC(Y ⊗DA, X) is contractible for such Y . This is equivalent to the condition that X
be A−1-local. �

In particular, an object is A−1-local if and only if it is S-local as S ranges over the 
collection of maps DA ⊗ X → 0 for X a dualizable object of C. It follows by general 
theory that one can construct an A−1-localization of any object in C. However, we can 
do so directly:

Construction 3.12. Recall (Construction 3.4) the sequence 1 → U1 → U2 → . . . and the 
cofiber sequence

VA → 1 → UA,

with UA = lim−−→Ui. Recall also that the cofiber of each Ui → Ui+1 admits the structure 
of an A-module.

For any X ∈ C, we consider the morphism X → X[A−1] := X ⊗UA. As shown in the 
proof of Proposition 3.5, the object X[A−1] is indeed A−1-local. Moreover, if Y is any 
A−1-local object, the natural map HomC(X[A−1], Y ) → HomC(X, Y ) is an equivalence; 
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this follows because the fiber is HomC(VA⊗X, Y ) and VA⊗X belongs to CA−tors (compare 
Proposition 3.5).

It follows from this that X → X[A−1] is precisely A−1-localization, i.e., the left 
adjoint to the inclusion C[A−1] ⊂ C. Note that, unlike A-completion, A−1-localization is 
smashing: it is given by tensoring with 1[A−1] 
 UA.

Example 3.13. If C = Mod(Z) and A = Z/p, then A−1-localization is precisely 
p−1-localization, i.e., tensoring with Z[p−1].

Remark 3.14. These types of localizations are called finite localizations in [33]; here we 
are localizing away from the compact objects DA ⊗X for X dualizable. We refer also to 
[38, §3.3] for a discussion of finite localizations.

Our final goal in this section is to develop the theory of fracture squares, and to 
show that C can be described using a combination of the A-complete and the A−1-local 
categories. We begin by checking that equivalences can be detected after tensoring with 
A and after A−1-localization.

Proposition 3.15. Let f : X → Y be a morphism in C. Then f is an equivalence if and 
only if both 1A ⊗ f : A ⊗X → A ⊗ Y and f [A−1] : X[A−1] → Y [A−1] are equivalences.

Proof. We prove the non-obvious implication. Let f : X → Y be a morphism such that 
1A ⊗ f and f [A−1] are equivalences. Consider the localizing subcategory A of all Z ∈ C
such that 1Z ⊗ f is an equivalence. By hypothesis, A contains A and UA. To show 
that it contains 1 (which is what we want), it suffices to show that VA ∈ A. But VA

belongs to the smallest localizing subcategory containing the A ⊗ X for X dualizable. 
The hypotheses imply that A ⊗X ∈ A for any X ∈ C, so that VA ∈ A as desired. �

We are now ready to set up the arithmetic square. Compare [26, Prop. 4.13].

Construction 3.16. For any X ∈ C, we have a commutative square

X LAX

X[A−1] (LAX)[A−1].

(3.17)

We will call this the A-arithmetic fracture square of X.

Proposition 3.18. The fracture square (3.17) is cartesian.

Proof. In fact, one checks that the square is cartesian after tensoring with A (which 
annihilates the domain and codomain of the bottom horizontal arrow, both of which are 
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A−1-local), and one checks that the square is cartesian after applying A−1-localization. 
Thus, by Proposition 3.15 we find that (3.17) is cartesian. �

In particular, any object X ∈ C can be recovered from the A-localization LAX, the 
A−1-localization X[A−1], and the morphism X[A−1] → (LAX)[A−1]. Our next goal is 
to promote this to an equivalence of stable ∞-categories.

Construction 3.19. Let FracSquareA be the stable ∞-category defined by the homotopy 
fiber product FracSquareA = Fun(Δ1, C[A−1]) ×C[A−1] CA−cpl. Here:

1. The functor Fun(Δ1, C[A−1]) → C[A−1] is given by evaluation at the vertex 1.
2. The functor CA−cpl → C[A−1] is given by applying A−1-localization.

In other words, to give an object in FracSquareA amounts to giving a map of A−1-local 
objects X1 → X2, an A-complete object X0, and an equivalence X2 
 X0[A−1].

We thus obtain a functor C → FracSquareA sending X to the associated fracture 
square.

Theorem 3.20. The functor C → FracSquareA that sends X ∈ C to the associated arith-
metic square is an equivalence of ∞-categories.

Proof. We first check full faithfulness. For ease of notation, we will write XtA :=
(LAX)[A−1]. Consider the triple (X[A−1] → XtA, LAX, id : (LAX)[A−1] 
 XtA) ∈
FracSquareA associated to X ∈ C.

Fix a triple (Y1 → Y2, Y0, φ : Y0[A−1] 
 Y2) in FracSquareA and an object X ∈ C. 
Then the space of maps between the object of FracSquareA associated to X and this 
triple is computed as the homotopy fiber product

(
HomC(X[A−1], Y1) ×HomC(X[A−1],Y2) HomC(XtA, Y2)

)
×HomC(XtA,Y2) HomC(LAX,Y0).

Using the identifications HomC(X[A−1], Yi) 
 HomC(X, Yi) for i = 1, 2 and
HomC(LAX, Y0) 
 HomC(X, Y0), we identify this fiber product with

HomC(X,Y1) ×HomC(X,Y2) HomC(X,Y0) 
 HomC(X,Y1 ×Y2 Y0),

It follows that the functor C → FracSquareA sending X ∈ C to the associated arith-
metic square admits a right adjoint G that sends a triple (Y1 → Y2, Y0, Y0[A−1] 
 Y2)
to the pullback Y1 ×Y2 Y0. As the composition C → FracSquareA → C is homotopic to 
the identity by Proposition 3.18, we find that the left adjoint C → FracSquareA is fully 
faithful. In order to show that we have an equivalence of ∞-categories, it therefore suf-
fices to show that the right adjoint is conservative, since we have a colocalization. This 
is checked as follows: given (Y1 → Y2, Y0, Y0[A−1] 
 Y2), we find that
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(Y1 ×Y2 Y0)[A−1] 
 Y1, LA(Y1 ×Y2 Y0) 
 Y0, Y2 
 (LA(Y1 ×Y2 Y0)) [A−1].

In particular, Y0, Y1, Y2 can be recovered from the pullback, which implies that G is 
conservative as desired. �
Remark 3.21. We have tacitly used the following two standard facts about ∞-categories. 
Given a (homotopy) fiber product A = A1 ×A3 A2, then we can compute mapping 
spaces in A as the homotopy fiber product of mapping spaces in A1, A2, A3. Second, 
in Fun(Δ1, B) for an ∞-category B, we can compute maps between a pair of objects 
(X1 → X2), (Y1 → Y2) via the homotopy fiber product HomB(X2, Y2) ×HomB(X1,Y2)
HomB(X1, Y1).

4. Nilpotence

Let C be a symmetric monoidal, stable ∞-category whose tensor product functor is 
exact in each variable. Let A ∈ C be an algebra object. In this subsection, we develop 
the theory of nilpotence: that is, the generalization to our setting of those objects in 
Mod(Z) annihilated by a power of the prime number p. For the moment, we do not
assume anything as strong as Hypotheses 2.26.

Recall that:

Definition 4.1. A full stable subcategory C′ ⊂ C is called thick if C′ is also idempotent-
complete, i.e., every idempotent endomorphism induces a splitting. A subcategory I ⊂ C
is called a ⊗-ideal if whenever X ∈ I and Y ∈ C, we have X ⊗ Y ∈ I. One then obtains 
the notion of a thick ⊗-ideal, which is a full subcategory that is both a thick subcategory 
and a ⊗-ideal.

We list some common sources of thick ⊗-ideals.

Example 4.2. If Z ∈ C, the collection of X ∈ C such that X ⊗Z is contractible is a thick 
⊗-ideal. Of course, in this case the collection is actually a localizing ⊗-ideal too.

Example 4.3. Let f : B → C be a morphism. Consider the collection of all X ∈ C such 
that 1X ⊗f⊗n : X⊗B⊗n → X⊗C⊗n is nullhomotopic for n � 0. This is a thick ⊗-ideal 
(which is generally not a localizing subcategory).

We can now make the main definition of this section.

Definition 4.4. Let C be as above and let A ∈ Alg(C).

1. We will say that an object of C is A-nilpotent ([18, Def. 3.7]) if it belongs to the 
thick ⊗-ideal generated by A (i.e., the smallest thick ⊗-ideal containing A). We will 
let NilA ⊂ C be the full subcategory spanned by the A-nilpotent objects.
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2. We will say that A is descendable (see [7] and [51, §3]) if the thick ⊗-ideal generated 
by A is all of C.

Example 4.5. A is descendable if and only if the unit object 1 is A-nilpotent.

Example 4.6. Let M be an A-module in C. Then M is A-nilpotent. In fact, M is a retract 
(in C) of A ⊗M .

We now give an important characterization of A-nilpotence in terms of the Adams 
tower.

Proposition 4.7. The following are equivalent for an object M ∈ C and A ∈ Alg(C):

1. M is A-nilpotent.
2. For all N � 0, the maps TN (A, M) → M in the Adams tower are nullhomotopic.
3. There exists a finite tower in C

T ′
N → · · · → T ′

2 → T ′
1 → T ′

0 
 M,

with the properties that:
• For each i, the cofiber of T ′

i → T ′
i−1 admits the structure of an A-module object 

in C.
• The composite map T ′

N → T ′
0 is nullhomotopic (in C).

If we write I = fib(1 → A) as before, then the conditions state that M is A-nilpotent 
if and only if for some N , the map M ⊗ I⊗N → M is nullhomotopic. Note that fits into 
Example 4.3.

Proof. We will prove the implications cyclically.
(1) =⇒ (2). Suppose M is A-nilpotent; then we want to show that the maps 

TN (A, M) → M are nullhomotopic for N � 0. Observe that the collection of M ∈ C
for which this satisfied is a ⊗-ideal, since we have natural isomorphisms Ti(A, M) 

Ti(A, 1) ⊗M . It is easy to see that the collection of such M is in addition thick, since 
the passage from M to its Adams tower commutes with cofiber sequences and retracts. 
Therefore, the collection of M with the desired property is a thick ⊗-ideal. To show that 
it contains every A-nilpotent object, it suffices to show that it contains A itself. In other 
words, we need to show that the A-based Adams tower has this property for A. But in 
this case, the map T1(A, A) → T0(A, A) is already nullhomotopic as it is the fiber of the 
map A → A ⊗A (which has a section). This completes the proof that (1) =⇒ (2).

(2) =⇒ (3). We can take the Adams tower, in view of Proposition 2.5 and the 
hypotheses.

(3) =⇒ (1). In this case, the cofiber of each map T ′
i → T ′

i−1 is A-nilpotent since 
it admits the structure of an A-module (Example 4.6). Using the octahedral axiom 



A. Mathew et al. / Advances in Mathematics 305 (2017) 994–1084 1021
and induction, it follows that the cofiber of T ′
N → T ′

0 is A-nilpotent, since the class of 
A-nilpotent objects is closed under cofiber sequences. Since this map is nullhomotopic, 
it follows that M 
 T ′

0 is a retract of the cofiber of T ′
N → T ′

0 and is thus A-nilpotent 
itself. �

The above result enables one to quantify the notion of A-nilpotence.

Definition 4.8. Suppose M is A-nilpotent. We will write expA(M) for the smallest integer 
N ≥ 0 such that TN (A, M) = I⊗N⊗M → M is nullhomotopic and call it the A-exponent 
of M .

Using the axioms and Proposition 2.14, one sees easily the following result (whose 
proof we leave to the reader).

Proposition 4.9.
1. If M is A-nilpotent and M ′ is a retract of M , then expA(M ′) ≤ expA(M).
2. If M ′ → M → M ′′ is a cofiber sequence of A-nilpotent objects, then expA(M) ≤

expA(M ′) + expA(M ′′).
3. The exponent expA(M) is the smallest choice of N that one can take in the second 

(or third) condition of Proposition 4.7.
4. The exponent expA(M) is the smallest N ≥ 0 such that the map M → TotN−1(M ⊗

CB•(A)) admits a retraction.

Remark 4.10. The quantification of nilpotence in this way is a special case of older ideas. 
For example, it can be obtained as a special case of the discussion in [6, Sec. 2]. In fact, 
we see that if A is the full subcategory of C consisting of objects of the form A ⊗X, X ∈ C, 
then expA(M) is precisely the A-level [6, Def. 2.3] of M .

The idea also appears (earlier) in [21] as follows. When A is dualizable, one has a 
stable projective class (cf. [21, Sec. 2.3]) given by the pair (A, I) where A is in the 
previous paragraph and I consists of all maps X → Y such that X ⊗ A → Y ⊗ A is 
null. To see this, we observe that for any X ∈ A, we have that DA ⊗ X ∈ A and the 
map DA ⊗X → X splits after tensoring with A, as one sees by dualizing the fact that 
1 → A splits after tensoring with A. Using duality, one sees also that for any X ∈ A and 
f : Y → Z in I, the map π∗HomA(X, Y ) → π∗HomA(X, Z) is zero. From this, it is easy 
to verify that one has a projective class, via [21, Lem. 3.2]. The collection of objects of 
A-nilpotence at most n is precisely An in the sense of [21, Sec. 3.2].

Example 4.11. Consider the usual test example of C = Mod(Z) and A = Z/p. In this case, 
an object X is A-nilpotent if and only if multiplication by pn annihilates it for some n: 
that is, if pn : X → X is nullhomotopic for some n. This follows from Proposition 4.7 in 
view of the explicit description of the Adams tower in this case (Example 2.4). Moreover, 
one sees that expA(M) is the smallest n such that pn annihilates M . Note that in this 
case, the Adams spectral sequence is precisely the Bockstein spectral sequence.
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The theory of exponents leads to an exhaustive filtration of the ∞-category NilA ⊂ C
of A-nilpotent objects,

Nil(0)A ⊂ Nil(1)A ⊂ Nil(2)A ⊂ · · · ⊂
⋃
i

Nil(i)A = NilA,

where an object X ∈ NilA belongs to Nil(i)A if and only if expA(X) ≤ i. It is easy to 
see that Nil(i)A ⊂ C is a stable full subcategory which is closed under retracts, arbitrary 
direct sums (although NilA is only closed under finite direct sums), and tensoring with 
arbitrary elements of C. For example, Nil(0)A = {0} and Nil(1)A consists of the retracts of 
A-modules. Moreover, the cofiber of a map from an object in Nil(i)A to an object in Nil(j)A

belongs to Nil(i+j)
A .

Corollary 4.12. Given C and A as above, the collection of A-nilpotent objects is the thick 
subcategory generated by those objects in C which admit the structure of an A-module.

Proof. This follows from the third property in Proposition 4.7. �
Corollary 4.13. Let (C, ⊗, 1) and (D, ⊗, 1) be symmetric monoidal stable ∞-categories 
where the tensor structure is compatible with colimits. Let F : C → D be a lax symmetric 
monoidal, exact functor. Let A ∈ Alg(C) and let M ∈ C. Then if M is A-nilpotent, F (M)
is F (A)-nilpotent, and in fact, one has expF (A)(F (M)) ≤ expA(M).

Proof. The first assertion follows from the third condition of Proposition 4.7, since that 
condition is preserved under any exact lax symmetric monoidal functor. The second 
assertion follows using Proposition 4.9.3. �

We now prove another characterization of A-nilpotence. In classical terms, this char-
acterization states the A-Adams filtration on HomC(·, M) should have a uniform bound 
(namely, the A-exponent of M).

Proposition 4.14. The following are equivalent for M ∈ C:

1. M is A-nilpotent.
2. There exists an integer N such that given any sequence in C

MN
φN→ MN−1

φN−1→ · · · φ2→ M1
φ1→ M,

such that each φi becomes nullhomotopic after tensoring with A, the composition 
φ1 ◦ · · · ◦ φN : MN → M is nullhomotopic.

If M is A-nilpotent, the smallest N satisfying condition 2. is expA(M).
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Proof. (2) =⇒ (1). Take the Adams tower of M , {Ti(A,M)}. Each successive map 
in this tower becomes null after tensoring with A. Therefore, there is a composition 
TN (A, M) → M for N � 0 which is nullhomotopic, which by Proposition 4.7 implies 
that M is A-nilpotent.

(1) =⇒ (2). Consider the map M1
φ1→ M → A ⊗M . It fits into a commutative square

M1
φ1

M

A⊗M1
1A⊗φ1

A⊗M.

By assumption, the bottom horizontal map is nullhomotopic. It follows that the compo-
sition M1 → A ⊗M is nullhomotopic, and in particular we have a commutative diagram

T1(A,M)

M1
φ1

φ1

M,

i.e., φ1 lifts to T1(A, M).
Now, it follows that φ1 ◦ φ2 : M2 → M lifts to T1(A, M) as well, via φ1 ◦ φ2. The 

map φ1 ◦ φ2 becomes nullhomotopic after tensoring with A since φ2 does. Therefore, 
φ1 ◦ φ2 lifts to T2(A, M). Similarly, φ1 ◦ · · · ◦ φk lifts to Tk(A, M). If k � 0, the map 
Tk(A, M) → M is nullhomotopic, so φ1 ◦ · · · ◦ φk must be nullhomotopic.

We leave the identification of the smallest such choice of N and expA(M) to the 
reader. �
Corollary 4.15. Suppose C is a closed symmetric monoidal ∞-category. Suppose M ∈ C
is A-nilpotent and X ∈ C is arbitrary. Then the internal mapping object Hom(X, M) is 
A-nilpotent. That is, NilA is closed under cotensors.

Proof. By Corollary 4.12, it suffices to consider the case where M is an A-module. 
But in this case, the internal mapping object Hom(X, M) also inherits the struc-
ture of an A-module and is therefore A-nilpotent. (In fact, this argument shows that 
expA Hom(X, M) ≤ expA(M); when X = M this implies that the A-exponent of M is 
equal to the A-exponent of its endomorphism algebra.) �

Next, we show that whether or not an A-nilpotent object belongs to a thick ⊗-ideal 
can be tested after tensoring with A: a sort of descent property.

Proposition 4.16. Let M ∈ C be A-nilpotent and let I ⊂ C be any thick ⊗-ideal. Then we 
have A ⊗M ∈ I if and only if M ∈ I.
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Proof. We will prove the non-trivial implication. The hypotheses imply that Q ⊗M ∈ I
for any A-module object Q. Consider the Adams tower {Ti(A,M)} 
 {Ti(A,1) ⊗M}. 
The cofiber of each map Ti(A, M) → Ti−1(A, M) is of the form Q ⊗M where Q admits the 
structure of an A-module. In particular, it belongs to I. Since I is a thick subcategory, 
it follows that the cofiber of each Tk(A, M) → M belongs to I and, since these maps are 
null for k � 0, it follows that M ∈ I too. �

We now include the analog of Propositions 2.28, 3.8 in the nilpotent case.

Proposition 4.17. Let A, B ∈ Alg(C) be algebra objects and let X ∈ C. Then X is (A ⊗
B)-nilpotent if and only if it is both A-nilpotent and B-nilpotent.

Proof. Suppose X is both A-nilpotent and B-nilpotent. Then we want to show that 
X is (A ⊗ B)-nilpotent. This is a straightforward application of Proposition 4.16 with 
I = NilA⊗B . Indeed, since X is B-nilpotent, we find that X ∈ NilA⊗B if and only if 
B ⊗X ∈ NilA⊗B . Since B ⊗X is A-nilpotent, we find that B ⊗X ∈ NilA⊗B if and only 
if A ⊗ B ⊗X ∈ NilA⊗B . But A ⊗ B ⊗X is an (A ⊗ B)-module and clearly belongs to 
NilA⊗B . This proves that X is (A ⊗ B)-nilpotent. We leave the other (easier) direction 
to the reader. �

We now prove some (slightly) less formal results about A-nilpotence. In the rest of 
this section, the compactness and dualizability hypotheses will become important. In 
particular, for the rest of this section, we assume Hypotheses 2.26.

Proposition 4.18. Let C, A satisfy Hypotheses 2.26 (so that in particular, C is pre-
sentable). Let M ∈ C be compact. Then the following are equivalent:

1. M is A-nilpotent.
2. M is A-torsion.

Proof. If M is A-torsion, then M is a compact object of CA−tors (since M is compact 
in C), which means that it belongs to the thick subcategory generated by the com-
pact generators DA ⊗ X for X ∈ C dualizable: in fact, CA−tors is equivalent to the 
Ind-completion of precisely this thick subcategory. This implies that M is A-nilpotent. 
The other direction is evident. �
Theorem 4.19. Suppose C, A satisfy Hypotheses 2.26. Let X ∈ C be such that X admits 
a unital multiplication in Ho(C). Then the following are equivalent:

1. X is A-nilpotent.
2. X is A-torsion (equivalently, X[A−1] is contractible).
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Proof. We establish the non-obvious implication. Since X is A-torsion, the sequence 
1 
 U0 → U1 → . . . with colimit UA has the property that UA ⊗ X 
 0, so that in 
particular, the map 1 → X → UA ⊗X is nullhomotopic. Since 1 is compact, this means 
that the composition φN : 1 → UN → UN ⊗X is nullhomotopic for N � 0. As a result, 
the map ψN : X → UN ⊗ X must be nullhomotopic too, for such N , as one sees using 
the unitary multiplication on X. So X is a retract of VN ⊗X, which is A-nilpotent. �
Remark 4.20. Theorem 4.19 corresponds to the following simple observation: given a 
(discrete) unital ring R which is all p-power torsion, there exists a uniform n such that 
pnR = 0 (namely, we can take n so large that pn.1 = 0 ∈ R).

We now include a result that describes thick ⊗-ideals generated by a single dualizable 
object in terms of nilpotence.

Proposition 4.21. Let Y ∈ C be dualizable and let X ∈ C be arbitrary. Let R = Y ⊗ DY

be the internal ring of endomorphisms of Y , so R ∈ Alg(C). Then X belongs to the thick 
⊗-ideal generated by Y if and only if X is R-nilpotent.

Proof. Let I be the thick ⊗-ideal generated by Y . We want to show that an object 
belongs to I if and only if it is R-nilpotent. To show that Z ∈ I implies Z is R-nilpotent, it 
suffices to consider the case Z = Y . In this case, Y is an R-module and hence R-nilpotent.

Finally, to show that every R-nilpotent object belongs to I, it suffices to show that 
R does. But R 
 DY ⊗ Y and thus clearly belongs to I. �

Finally, we treat a special class of examples, where every torsion object is nilpotent. 
We will encounter this in the sequel to this paper when we discuss F -nilpotence results. 
The main result is that such phenomena only arise when one has an idempotent splitting 
of the unit, so that the ∞-category itself decomposes as a product.

Proposition 4.22. The following are equivalent for a dualizable algebra object A ∈ Alg(C):

1. We have an equality CA−tors = CA−cpl of subcategories of C (i.e., an object is 
A-torsion if and only if it is A-complete).

2. The inclusion NilA ⊂ CA−tors is an equality.
3. The inclusion NilA ⊂ CA−cpl is an equality.
4. The map 1 → LA1 × 1[A−1] is an equivalence and the symmetric monoidal 

∞-category C decomposes as a product C 
 CA−cpl × C[A−1].
5. The localization (LA1)[A−1] is contractible.

Proof. We first show that (2) implies (1). Every torsion object is A-complete, since nilpo-
tent objects are complete. To see that conversely, an A-complete object X is A-torsion, 
recall the equivalence LA : CA−tors ∼= CA−cpl to write X ∼= LA(L−1

A (X)) ∼= L−1
A (X), 

where the second equivalence follows because the torsion object L−1
A (X) is nilpotent, 

and LA acts as the identity on nilpotent objects.
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Again via the equivalence LA between CA−tors and CA−cpl (which acts as the identity 
of NilA), one sees easily that (2) and (3) are equivalent. Moreover, (3) implies that LA1
is A-torsion, so that (5) holds; if conversely (5) holds, the algebra LA1 is A-torsion and 
therefore A-nilpotent by Theorem 4.19, and any A-complete object, as a module over 
LA1, is also A-nilpotent, so that (3) holds.

We now show that (3) implies (4). Consider the natural map φ : 1 → LA1 × 1[A−1]. 
Observe that LA1 is A-complete by definition, so it is A-torsion by assumption. Thus, φ
becomes an equivalence after A−1-localizing since the first factor on the right-hand side 
has trivial A−1-localization. Moreover, φ also becomes an equivalence after tensoring 
with A (this does not use any of our assumptions). As a result, φ is an equivalence by 
Proposition 3.15. It follows easily that one gets a decomposition of C as desired. (Note 
that the above decomposition of C also follows from Theorem 3.20.)

To see that (4) implies (1), observe that X ∈ C is A-torsion if and only if its image in 
C[A−1] is contractible, if and only if, by the decomposition in (4), X is A-complete.

Finally, (1) implies (5) because LA1 is A-complete, hence A-torsion, so that 
(LA1)[A−1] ∼= ∗. �
Part 2. G-equivariant spectra and F -nilpotence

5. G-spectra

Let G be a compact Lie group. In this section, we quickly review the basic facts about 
the homotopy theory SpG of (genuine) G-spectra, which we will treat as an ∞-category. 
Since a full exposition of SpG using ∞-categories rather than model categories has not 
yet appeared in the literature, we have included a discussion, beginning with a review 
of the relationship between model and ∞-categories. This is by no means intended to 
be a treatment of the classical theory and we refer to sources such as [55,42,71,50,1] for 
introductions to equivariant stable homotopy theory.

For our purposes, we will take SpG to be the ∞-category associated to the symmetric 
monoidal model category of orthogonal G-spectra. Although it is possible to construct 
SpG purely ∞-categorically via the theory of spectral Mackey functors (cf. [11]), we will 
need to use the existence of models of certain E∞-algebras in SpG (namely, equivariant 
real and complex K-theory), even though an ∞-categorical treatment (and new con-
struction) is to appear in Lurie’s forthcoming work on elliptic cohomology (see [43] for 
a survey).

5.1. Model categories and ∞-categories

In this subsection, we begin by recalling how one passes from (symmetric monoidal) 
model categories to (symmetric monoidal) ∞-categories. Suppose that C is a model 
category with weak equivalences W.
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Construction 5.1. Let Cc ⊂ C be the full subcategory spanned by the cofibrant objects. 
The model category C presents an ∞-category C which, by definition, is the ∞-categorical 
localization C := Cc[W−1] [48, Def. 1.3.4.15].

In case C is a simplicial model category, one knows that the localization C = Cc[W−1]
can also be described as the homotopy coherent nerve of the fibrant simplicial category 
spanned by the cofibrant-fibrant objects of C [48, Th. 1.3.4.20]. Given a Quillen equiva-
lence (F, G) : C � D between model categories admitting functorial cofibrant and fibrant 
replacements, the induced functor F : C → D (obtained via universal properties) is an 
equivalence of ∞-categories in view of [48, Lem. 1.3.4.21]. Note that the cited theorem 
assumes that C and D are in addition combinatorial, but only uses the functorial fibrant 
and cofibrant replacement functors. We recall that if C, D are cofibrantly generated, then 
the existence of functorial factorizations is well-known. In fact, such factorizations are so 
fundamental to the theory they are sometimes part of the definition of a model category 
[37]. For a modern reference, see [64, §12.1].

Example 5.2. Let Top denote the model category of compactly generated topological 
spaces (i.e., weak Hausdorff k-spaces) with the Quillen model structure (where weak 
equivalences are weak homotopy equivalences and fibrations are Serre fibrations). Then 
Top is the ∞-category S of spaces.

We next recall the construction of symmetric monoidal ∞-categories from symmetric 
monoidal model categories. We begin with some preliminaries.

Definition 5.3 ([67]). Let (C, ⊗, 1) be a model category with a closed symmetric monoidal 
structure. Suppose the unit is cofibrant and that for cofibrations c → c′, d → d′, the 
natural pushout-product map

c⊗ d′ �c⊗d c
′ ⊗ d → c′ ⊗ d′

is a cofibration, and a weak equivalence if either of the maps c → c′ or d → d′ is a weak 
equivalence. In this case, (C, ⊗, 1) is called a symmetric monoidal model category.

This definition appears in [67], which replaces cofibrancy of the unit with a slightly 
weaker condition. In the case where C has a symmetric monoidal model structure, this 
can be used to construct symmetric monoidal ∞-categories.

Construction 5.4 ([48, Prop. 4.1.3.4]). Suppose (C, ⊗, 1) is a symmetric monoidal model 
category. As before, let Cc ⊂ C be the full subcategory spanned by the cofibrant objects 
(so that Cc is a monoidal subcategory) and W the class of weak equivalences in Cc. 
Then, since the class W is compatible with the symmetric monoidal structure on Cc, the 
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∞-categorical localization C = Cc[W−1] inherits a symmetric monoidal structure such 
that Cc → C is symmetric monoidal.3

In case C is a simplicial symmetric monoidal category, there is an equivalent version 
of this construction that is often easier to work with.

Construction 5.5. Suppose (C, ⊗, 1) is a simplicial symmetric monoidal model category. 
Let Ccf ⊂ C denote the full subcategory spanned by the cofibrant-fibrant objects. Con-
sider the colored operad in simplicial sets whose objects are ordered tuples of the objects 
of Ccf and such that the morphisms between {X1, . . . , Xn} ∈ Ccf and Y ∈ Ccf are given 
by the simplicial mapping object MapC(X1 ⊗ · · · ⊗ Xn, Y ). The associated ∞-operad 
defines a symmetric monoidal structure on the homotopy coherent nerve of Ccf which 
is canonically equivalent to the symmetric monoidal structure on C = Cc[W−1] from 
Construction 5.4 [48, Prop. 4.1.3.10, Cor. 4.1.3.16].

We note also that this construction is functorial in symmetric monoidal Quillen ad-
junctions. If (C, ⊗, 1C) and (D, ⊗, 1D) are symmetric monoidal model categories and if 
F : C → D is a symmetric monoidal left Quillen functor, then F induces a symmetric 
monoidal functor of ∞-categories

F : C → D,

by the universal property of localization.

Example 5.6. Let Top∗ denote the model category of pointed compactly generated topo-
logical spaces with the usual Quillen model structure. Then Top∗ is a symmetric monoidal 
model category with the smash product. We have a symmetric monoidal equivalence 
S∗ 
 Top∗.

5.2. G-spaces and G-spectra

We will now review the ∞-categories of G-spaces and G-spectra, and some of the 
basic functoriality in G that they possess.

Construction 5.7. Let G be a compact Lie group. Let Top∗,G denote the category of 
pointed compactly generated topological spaces equipped with a G-action (fixing the 
basepoint). We regard Top∗,G as a model category where a morphism X → Y is a weak 
equivalence (resp. fibration) if and only if for each closed subgroup H ≤ G, XH → Y H

is a weak homotopy equivalence (resp. Serre fibration). The generating cofibrations in 
Top∗,G are the morphisms (G/H × Sn−1)+ → (G/H ×Dn)+ for n ≥ 0. Via the smash 

3 In practice, C is frequently a simplicial model category. However, in this construction, one considers Cc

as a discrete category with weak equivalences, and ignoring the simplicial structure.
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product of pointed G-spaces, this is a symmetric monoidal model category (with unit 
given by S0). We refer to [50, III.1] for a treatment of this model category.

Similarly, there is a model category TopG of (unpointed) compactly generated topo-
logical spaces equipped with a G-action, where the weak equivalences and fibrations are 
detected on fixed points for closed subgroups. Via the cartesian product of G-spaces, 
this is a symmetric monoidal model category.

Definition 5.8. The ∞-category SG of G-spaces is the symmetric monoidal ∞-category 
associated to the symmetric monoidal model category TopG of Construction 5.7. We 
define SG∗ similarly from Top∗,G and call it the ∞-category of pointed G-spaces.

We now discuss the analog for G-spectra.

Example 5.9. The category OrthSpecG of orthogonal G-spectra [50], equipped with the 
stable model structure and the smash product, is an example of a symmetric monoidal 
model category. The pushout-product axiom is [50, III.7.5], and the unit is cofibrant 
(“q-cofibrant”) as well.

Definition 5.10. The symmetric monoidal ∞-category SpG of G-spectra is the symmetric 
monoidal ∞-category associated to the symmetric monoidal model category OrthSpecG
of Example 5.9. As is customary, we will denote the monoidal product by ∧ and the unit 
by either S0 or S0

G (depending on whether the group is clear from the context). We will 
also write F (X, Y ) for the internal mapping object for X, Y ∈ SpG (i.e., the function 
spectrum).

One has a symmetric monoidal left Quillen functor

Σ∞ : Top∗,G → OrthSpecG,

and as a result one obtains a symmetric monoidal left adjoint functor

Σ∞ : SG∗ → SpG,

with right adjoint Ω∞.

Example 5.11. For H ≤ G a closed subgroup, we consider the G-space G/H and the 
pointed G-space G/H+. The suspension spectra {Σ∞

+ G/H ∈ SpG}H≤G form a system of 
compact generators of SpG as a localizing subcategory. This is the assertion (or defini-
tion) that a G-spectrum M is weakly contractible if and only if its H-homotopy groups 
πH
∗ (M) := π∗HomSpG

(Σ∞
+ G/H, M) (for H ≤ G an arbitrary closed subgroup) all vanish, 

and that these homotopy groups commute with arbitrary wedges. For simplicity, we will 
often write G/H+ for Σ∞

+ G/H.
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Remark 5.12. For convenience we remark that the above ∞-categories are presentable 
and hence admit presentations by combinatorial model categories. In the case of SG and 
SG∗ this follows from the well known fact that the transitive orbit spaces form a set of 
compact projective generators for these categories and [44, Prop. 5.5.8.25]. The same 
argument applies to SpG, but one can more easily apply [48, Cor. 1.4.4.2].

Next, we review the interaction between SpG and the ∞-categories of genuine equiv-
ariant spectra for subgroups. Let G be a compact Lie group. Let H ≤ G be a closed 
subgroup. There is a symmetric monoidal, colimit-preserving functor

ResGH : SpG → SpH (5.13)

given by restriction. This arises from a symmetric monoidal, left adjoint functor of re-
striction on the category of equivariant orthogonal spectra.

We will use the following properties of restriction and its adjoints.

Proposition 5.14. Let H ≤ G be a closed subgroup. The restriction functors

ResGH : SpG → SpH

admit left adjoints IndG
H and right adjoints CoindG

H . For a sequence of subgroup in-
clusions K ≤ H ≤ G there are natural equivalences IndG

H ◦ IndH
K

∼= IndG
K and 

CoindG
H ◦ CoindH

K
∼= CoindG

K .
Moreover, for X ∈ SpG, Y ∈ SpH , there are natural equivalences:

(CoindG
HY ) ∧X 
 CoindG

H(Y ∧ ResGHX) (5.15)

(IndG
H Y ) ∧X 
 IndG

H(Y ∧ ResGHX) (5.16)

IndG
H S0

H 
 Σ∞
+ G/H. (5.17)

If G is finite, then we have a natural equivalence

IndG
H Y 
 CoindG

HY. (5.18)

Proof. At the level of the homotopy category, these properties are classical. We briefly 
describe how to upgrade them to ∞-categorical equivalences, although knowing this 
is not critical for the rest of the paper. Since we are working with presentable stable
∞-categories, the existence of a left or right adjoint to an exact functor can be checked 
at the level of the homotopy category: the condition is that said functor should preserve 
arbitrary coproducts (resp. products) [48, Prop. 1.4.4.1]. So, IndG

H , CoindG
H exist at the 

∞-categorical level for purely abstract reasons, once one knows about their existence at 
the homotopy category level (although one can write down strict models for these as well; 
see [49, §9.2] for the finite group case). The property (5.15) comes from a natural map 
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(from left to right) at the level of ∞-categories. Checking this map is an equivalence is 
done at the level of homotopy categories. The remaining claims are checked in the same 
way.

Finally, (5.18) is a special case of the Wirthmüller isomorphism (for compact Lie 
groups, see [42, II.6]). Once again, the map arises from universal properties, as explained 
in [27]. Namely, once we know that IndG

H(S0
H) 
 CoindG

H(S0
H), then we get a natural 

map in SpG,

S0
G → CoindG

H(S0
H) 
 IndG

H(S0
H).

Thus, for any Z ∈ SpG, we have natural transformations

Z 
 Z ∧ S0
G → Z ∧ IndG

H(S0
H) 
 IndG

H(ResGH(Z)), (5.19)

where we used the projection formula (5.16) in the last step. Taking Z = CoindG
H(Y ) for 

Y ∈ SpH , we get a natural map

CoindG
H(Y ) → IndG

H(ResGH(CoindG
H(Y ))) → IndG

H(Y ), (5.20)

where the last map comes from the adjunction (ResGH , CoindG
H). The map (5.20) is the 

natural transformation that implements the Wirthmüller isomorphism. This is explained 
in [27] at the level of homotopy categories, but it makes sense at the ∞-categorical 
level. �
5.3. Restriction as base-change

Let G, H be finite groups. We will now present another point of view on the restriction 
functor ResGH : SpG → SpH , as a sort of base change. This point of view is due (albeit 
in the setting of the homotopy category) to Balmer [8] and Balmer–Dell’Ambrogio–
Sanders [9].

We begin with some generalities. Let (C, ⊗, 1C), (D, ⊗, 1D) be presentable, symmetric 
monoidal stable ∞-categories where the tensor structures commute with colimits, and 
let L : C → D be a cocontinuous, symmetric monoidal functor. Then its right adjoint R
is naturally lax symmetric monoidal. Since L (resp. R) is symmetric monoidal (resp. lax 
symmetric monoidal), we obtain induced functors at the level of commutative algebra 
objects

L : CAlg(C) → CAlg(D), R : CAlg(D) → CAlg(C). (5.21)

Proposition 5.22. The induced pair of functors (5.21) form an adjoint pair. (This would 
work for any ∞-operad replacing the commutative one.)

Proof. This is the analog of [28, Prop. A.5.11] for symmetric ∞-operads. Their proof 
applies essentially without change here. �
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We will now derive a new adjunction from the above data.

Construction 5.23. From (5.21), we obtain a commutative algebra structure on R(1D) ∈ C
which, thanks to the lax symmetric monoidal structure on R, naturally acts on R(Y )
for any Y ∈ D. Thus, we get a functor R : D → ModC(R(1D)), fitting into a commuting 
square

ModC(R(1D))

D

R

R C.

The functor R is limit-preserving, and we see that the composite functor

L : ModC(R(1D)) L→ ModD(LR(1D))
⊗(

LR(1D)
)1D

−−−−−−−−→ D

is left adjoint to R by inspection. The first functor here (written L as well) takes a 
R(1D)-module (in C) and applies L to obtain a LR(1D)-module in D. The second functor 
is base-change along the morphism of commutative algebra objects LR(1D) → 1D in D. 
Note that this composite functor L is symmetric monoidal (as the composite of symmetric 
monoidal functors), and R therefore acquires a lax symmetric monoidal structure.

We thus get a new adjunction

(L,R) : ModC(R(1D)) � D. (5.24)

Example 5.25. For instance, we see that L carries the “induced” R(1D)-module R(1D) ⊗
X, for X ∈ C, to

L (R(1D) ⊗X) 
 1D ⊗LR(1D) L(R(1D) ⊗X) 
 L(X) ∈ D. (5.26)

Our first goal in this subsection is to give a simple set of criteria for when the adjunc-
tion (L, R) is an equivalence.

Definition 5.27. We say that the adjunction (L, R) satisfies the projection formula if, for 
X ∈ C, Y ∈ D, the natural map

R(Y ) ⊗X → R(Y ⊗ L(X)), (5.28)

adjoint to the map

L(R(Y ) ⊗X) 
 LR(Y ) ⊗ L(X)
counit⊗1L(X)−−−−−−−−−→ Y ⊗ L(X),

is an equivalence in C.
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Proposition 5.29. Suppose we have an adjunction (L, R) : C � D; here as above C, D are 
presentable, symmetric monoidal stable ∞-categories such that the tensor structure on 
each commutes with colimits in each variable, and L is a symmetric monoidal functor. 
Suppose the adjunction has the following three properties:

1. The adjunction (L, R) satisfies the projection formula.
2. The right adjoint R commutes with arbitrary colimits.
3. The right adjoint R is conservative.

Then the new adjunction (L, R) : ModC(R(1D)) � D of Construction 5.23 is an inverse 
equivalence of symmetric monoidal ∞-categories.

Proof. Consider the collection of objects X ∈ ModC(R(1D)) such that X → RL(X)
is an equivalence. We would like to show that this collection contains every object of 
ModC(R(1D)). By hypothesis 2, this class of objects forms a localizing subcategory, so 
it suffices to show that these maps are equivalences for the generators X = R(1D) ⊗X ′, 
X ′ ∈ C. In this case, we have by (5.26), a map

R(1D) ⊗X ′ → RL(X) 
 R(L(X ′)) 
 R(1D) ⊗X ′,

using the projection formula. The composite map is an equivalence, and it follows that 
the unit map is always an equivalence.

It follows from this that the left adjoint L is fully faithful. In fact, L is necessarily a 
colocalization, and if Y ∈ D, then the cofiber C of the map LR(Y ) → Y has the property 
that the space of maps HomD(LX, C) is contractible for any X ∈ ModC(R(1D)). There-
fore, RC is contractible and hence RC is contractible. By assumption R is conservative, 
so C is contractible. In particular, the counit maps of the adjunction (L, R) are also 
equivalences. �

We now specialize to the case of interest, that of the adjunction (ResGH , CoindG
H) :

SpG � SpH for a finite group G and a subgroup H ≤ G. Recall that ResGH is a sym-
metric monoidal functor, so that this does fit into the preceding discussion. We begin by 
identifying the relevant commutative algebra object R(1D).

Construction 5.30. Given any finite G-set T , the function spectrum F (T+, S0
G) inherits 

a natural commutative algebra structure in SpG since T is tautologically a commutative 
coalgebra in G-spaces. This construction sends finite coproducts of G-sets to products in 
CAlg(SpG), and it carries a point to the unit S0

G. It is also compatible with restriction 
to subgroups. Note that as G-spectra, F (T+, S0

G) 
 T+.
In case T = G/H+, we would like to identify F (G/H+, S0

G) ∈ CAlg(SpG) with 
CoindG

H(S0
H) (which acquires a commutative algebra structure since CoindG

H is lax 
symmetric monoidal). To do this, recall that giving a map of commutative alge-
bra objects F (G/H+, S0

G) → CoindG
H(S0

H) in CAlg(SpG) amounts to giving a map 
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ResGH(F (G/H+, S0
G)) → S0

H in CAlg(SpH). But this map can be obtained by using the 
fact that G/H has a natural H-fixed point, which gives (as in the previous paragraph) 
a decomposition of ResGHF (G/H+, S0

G) as a product of S0
H and another commutative al-

gebra object. The map ResGH(F (G/H+, S0
G)) → S0

H is the projection onto the S0
H piece. 

One now checks (at the level of underlying equivariant spectra) that the adjoint map 
gives an equivalence

F (G/H+, S
0
G) 
 CoindG

H(S0
H) ∈ CAlg(SpG). (5.31)

The functor CoindG
H : SpH → SpG is lax symmetric monoidal, and therefore there is 

a natural lax symmetric monoidal lifting

ModSpG
(F (G/H+, S

0
G))

SpH

CoindG
H SpG

where ModSpG
(F (G/H+, S0

G)) denotes the symmetric monoidal ∞-category of modules 
in SpG over F (G/H+, S0

G) 
 CoindG
H(S0

H).

Theorem 5.32 (Cf. Balmer–Dell’Ambrogio–Sanders [9]). The functor SpH →
ModSpG

(F (G/H+, S0
G)) is an equivalence of symmetric monoidal ∞-categories.

Proof. This is a consequence of Proposition 5.29:
Firstly, we already observed that our adjunction satisfies the projection formula 

in (5.15).
Secondly, by the Wirthmüller isomorphism (5.18), CoindG

H 
 IndG
H is both a left and 

a right adjoint, so it preserves all limits and colimits.
Finally, we need to see that CoindG

H is conservative. Suppose Y ∈ SpH is such that 
CoindG

H(Y ) is contractible. It follows that ResGHCoindG
H(Y ) is contractible. Since G is 

finite, this contains Y as a retract, so Y is contractible. �
Warning. Just as in [9, Lem. 3.3] the above argument still goes through for an arbitrary 
compact Lie group G if we assume that H is a closed finite index subgroup of G. However, 
for more general H the functor CoindG

H(·) fails to be conservative.
For example, consider the C2-spectrum X constructed as the image of the idempotent 

1−τ
2 on (C2)+ ⊗Q, where τ ∈ C2 is the nontrivial element. The C2-fixed point spectrum 

of (KUC2 ∧X ⊗Q) is contractible while (KUC2 ∧X ⊗Q) is non-equivariantly noncon-
tractible. If we embed C2 into U(1) we obtain a coinduced KUU(1)-module spectrum 

CoindU(1)
C2

(KUC2 ∧X ⊗Q) whose U(1)-fixed points are contractible. However, it follows 
from Theorem 8.2 that the coinduced spectrum is contractible. Hence CoindU(1)

C2
(·) is not 

conservative.
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Theorem 5.32 is both philosophically and practically important to us: it lets us identify 
the main concern in this paper (descent with respect to the commutative algebra objects 
F (G/H+, S0

G) ∈ CAlg(SpG)) as a form of descent with respect to restriction of subgroups. 
It will also enable us to recast some of our results in terms of restriction to subgroups.

6. Completeness, torsion, and descent in SpG

Let G be a finite group, and consider the symmetric monoidal, stable ∞-category 
SpG of G-spectra. In this section, we will consider the phenomena of completeness, 
torsion, and descent (formulated abstractly in the earlier sections) in SpG with respect 
to commutative algebra objects of the form 

{
F (G/H+, S

0
G)

}
as H ranges over a family 

(Definition 6.1) of subgroups of G. We will see that this theory is closely related to 
the Lewis–May geometric fixed point functors. Next, we treat the decomposition of the 
∞-categories of F -complete spectra as a homotopy limit over the F -orbit category. 
We then make the primary definition (Definition 6.36) of this paper by introducing the 
notion of nilpotence with respect to a family of subgroups.

6.1. Families of subgroups and F -spectra

We now review some further relevant terminology from equivariant homotopy theory. 
Let G be a finite group.

Definition 6.1. A family of subgroups of G is a nonempty collection F of subgroups of 
G such that if H ∈ F and if H ′ ≤ G is subconjugate to H, then H ′ ∈ F . Given a 
family F , we will let AF =

∏
H∈F F (G/H+, S0

G) ∈ CAlg(SpG).

Important examples of families (which will arise in practice) include the families of 
p-subgroups, abelian subgroups, elementary abelian subgroups, etc.

Definition 6.2. Fix a family of subgroups F . Then:

1. A G-spectrum is F -torsion (or an F -spectrum) if it belongs to the smallest localizing 
subcategory4 of SpG containing the 

{
F (G/H+, S

0
G) 
 G/H+

}
H∈F

. In other words, 
the G-spectrum is AF -torsion.

2. A G-spectrum is F -complete if it is AF -complete.
3. A G-spectrum is F−1-local if it is A−1

F -local.
4. The F -completion, F -acyclization, and F−1-localization functors (on SpG) respec-

tively are the AF -completion, AF -acyclization, and A−1
F -localization functors.

4 In this case, this is equivalent to the smallest localizing ⊗-ideal.
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Definition 6.2 is certainly not new. Before we get to our main goal (Definition 6.36
below), we write down the localization, completion, and acyclization functors explicitly 
(compare [42, II.2, II.9] and [50, Def. IV.6.1]). In doing so, the following construction 
will be useful.

Construction 6.3. We associate to F a G-space EF and a pointed G-space ẼF which 
are determined up to weak equivalence by the following properties [55, §V.4]:

EFK 

{
∗ if K ∈ F

∅ otherwise
, ẼFK 


{
∗ if K ∈ F

S0 otherwise.
(6.4)

The relevance of this definition to us is given in the following proposition.

Proposition 6.5. The F−1-localization S0
G[A−1

F ] ∈ SpG is given by the suspension spec-
trum Σ∞ẼF . The F -acyclization ACAF (S0

G) is given by Σ∞
+ EF .

Proof. It suffices to prove the second claim because there is a fiber sequence of G-spectra 
Σ∞

+ EF −→ S0
G −→ Σ∞ẼF . The (unpointed) G-space EF admits a cell decomposition 

with cells of the form G/H for H ∈ F , so Σ∞
+ EF is AF -torsion. Now, it suffices 

to show that the map Σ∞
+ EF → S0

G becomes an equivalence after tensoring with AF . 
Equivalently, in view of Theorem 5.32, it should become an equivalence after restricting to 
any subgroup H ∈ F . However, EF is equivariantly contractible after such a restriction, 
so the claim follows. �

Note also that the classical simplicial model of EF as the geometric realization |X•+1|
for X = �H∈F G/H reproduces the simplicial model of the AF -acyclization as given in 
Construction 3.4.

Similarly, one sees easily that:

Proposition 6.6. The F -completion of a G-spectrum X is given by the internal mapping 
spectrum F (EF+, X).

By Theorem 3.9, we have an equivalence of ∞-categories between F -torsion spectra 
and F -complete spectra (given by F -completion).

6.2. Geometric fixed points

The purpose of this subsection is to review the relationship between the Lewis–May 
geometric fixed points functor and the theory of A−1-localization. Recall first that SpG

is a presentable, symmetric monoidal, stable ∞-category. As such, it receives a canonical 
symmetric monoidal, colimit-preserving functor

i∗ : Sp → SpG.
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Definition 6.7. The lax symmetric monoidal functor SpG → Sp right adjoint to i∗ is 
called the functor of categorical fixed points, and will be denoted by X �→ XG or i∗GX. 

More generally, given a subgroup H ≤ G, the composition SpG

ResGH−−−−→ SpH

(·)H−−−→ Sp is 
called the functor of categorical H-fixed points, and is denoted X �→ XH or i∗HX.

Remark 6.8. The same notation is used when G is a compact Lie group (so that H is 
now required to be a closed subgroup).

The fixed point functors i∗H , for H ≤ G, are corepresented by G/H+; for H = G

this follows because S0
G is the unit, and in general it follows by the adjunction between 

induction and restriction. Since all ∞-categories in question are compactly generated, 
and i∗ preserves compact objects (the sphere is compact in SpH too), it follows that the 
functor of categorical fixed points (for any subgroup H ≤ G) preserves colimits. As right 
adjoints, the functors {i∗H}H≤G of course preserve limits. We note also the relation

(CoindG
HX)G 
 XH , X ∈ SpH , (6.9)

which follows easily by universal properties.
The functor i∗G = (·)G is only lax symmetric monoidal, and has a nontrivial value on 

G+ (in fact, by (6.9), one sees easily (G+)G 
 S0). To obtain a fixed point functor with 
the expected geometric properties, we first force the non-trivial orbits to be contractible 
via localization before taking categorical fixed points.

Construction 6.10. Let PG denote the family of proper subgroups of G. Consider as before 
APG

=
∏

H�G F (G/H+, S0
G) ∈ CAlg(SpG) and form the A−1

PG
-localization SpG[PG

−1], 
which receives a symmetric monoidal functor SpG → SpG[PG

−1] that annihilates the 
G/H+ for H � G.

An important result in the theory [42, Cor. II.9.6] is that the localization SpG[PG
−1]

recovers the ordinary ∞-category of non-equivariant spectra.

Theorem 6.11. The composite functor Sp i∗−→ SpG

(·)[A−1
PG

]
−−−−−−→ SpG[PG

−1] is an equivalence 
of symmetric monoidal ∞-categories, with inverse given by the fully faithful embedding 
SpG[PG

−1] ⊂ SpG followed by categorical fixed points.

Proof. Observe that, as a localization of SpG, the ∞-category SpG[PG
−1] is generated as 

a localizing subcategory by the images of {G/H+}H≤G. By definition, however, we have 
forced the non-trivial orbits to be contractible. In other words, SpG[PG

−1] is generated 
as a localizing subcategory by the unit Σ∞ẼPG, which is the A−1

PG
-localization of the 

equivariant sphere by Proposition 6.5. In particular, SpG[PG
−1] is a symmetric monoidal, 

stable ∞-category where the unit object is a compact generator.
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By the symmetric monoidal version of the Schwede–Shipley theorem [48, Prop. 7.1.2.7], 
it suffices to show that the categorical fixed points of Σ∞ẼPG are S0. Here we use that 
Σ∞ẼPG is the suspension spectrum of a space, so i∗GẼPG is connective and we have 
equivalences of spaces

Ω∞i∗GẼPG = HomSpG
(S0

G,Σ∞ẼPG) 
 lim−−→
V

HomSG∗(SV ,ΣV ẼPG),

where V ranges over finite-dimensional orthogonal representations of G and SV denotes 
the one-point compactification of V . However, for any V , with fixed vectors V0 = V G, 
we have homotopy equivalences of mapping spaces

HomSG∗(SV ,ΣV ẼPG) 
 HomSG∗(SV0 ,ΣV ẼPG)


 HomSG∗(SV0 ,ΣV0ẼPG) = HomS∗(SV0 , SV0),

as the pointed G-space ẼPG has contractible H-fixed points for H �= G. In particular, 
we find that the natural map of spectra S0 → i∗GẼPG is an equivalence. �
Definition 6.12. The composition

SpG

(·)[AP−1
G

]
−−−−−−→ SpG[P−1

G ] ⊆ SpG

(·)G−−−→ Sp,

is called the geometric fixed points functor and is denoted ΦG.
By construction, ΦG is a symmetric monoidal, colimit-preserving functor ΦG :

SpG → Sp. More generally, for H ≤ G, we define a symmetric monoidal functor 

SpG

ResGH−−−−→ SpH
ΦH

−−→ Sp, which we will write as ΦH and call the geometric H-fixed 
points functor.

We thus recover the following classical result.

Proposition 6.13. A G-spectrum M is contractible if and only if ΦHM ∈ Sp is contractible 
for every subgroup H ≤ G.

Proof. Suppose ΦHM is contractible for each H ≤ G. By induction on G, we may assume 
that ResGHM is contractible for every H � G. If we let APG

=
∏

H�G F (G/H+, S0
G) as 

before, then we have that M ∧ APG
∈ SpG is contractible, using Theorem 5.32. Our 

assumption ΦGM ∼= ∗ implies via Theorem 6.11 that M [A−1
PG

] is contractible, so that M
must be contractible too (Proposition 3.15). �
6.3. Example: Borel-equivariant spectra

Our next goal is to identify the ∞-categories of F -complete objects as a certain limit. 
We begin with the most basic case, when the family consists only of the trivial subgroup.
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Definition 6.14. A G-spectrum M ∈ SpG is said to be Borel-equivariant (or Borel-
complete or cofree) if it is complete with respect to the trivial family F = {{1}}, i.e., 
complete for the algebra object F (G+, S0

G) ∈ SpG. Equivalently, by Proposition 6.6, M
is Borel-equivariant if and only if the natural map

M → F (EG+,M)

is an equivalence in SpG. The Borel-equivariant G-spectra span a full subcategory 
(SpG)Borel ⊂ SpG.

Proposition 6.15. A G-spectrum M ∈ SpG is Borel-equivariant if and only if for every 
X ∈ SpG which is nonequivariantly contractible,5 we have HomSpG

(X, M) 
 ∗.

Proof. Indeed, for X ∈ SpG being nonequivariantly contractible is equivalent to the 
condition that G+ ∧X ∈ SpG is contractible in view of Theorem 5.32. As a result, the 
condition that HomSpG

(X, M) 
 ∗ for every nonequivariantly contractible X is precisely
the condition of A{1} = F (G+, S0

G)-completeness. �
Proposition 6.16. Suppose M ∈ SpG is Borel-equivariant. Then for all H ≤ G, ResGHM ∈
SpH is Borel-equivariant.

Proof. Using Proposition 6.15 we need to show that for every X ∈ SpH with 
ResH{1}X ∼= ∗, the mapping space HomSpH

(X, ResGHM) is contractible.
This mapping space is always equivalent to HomSpG

(IndG
H X, M) and since

ResG{1} IndG
H X is a wedge of copies of ResH{1}X, and hence contractible, the lastly 

displayed mapping space is indeed contractible, using the assumption that M is Borel-
equivariant and Proposition 6.15 again. �

The main result is that the ∞-category of Borel-equivariant spectra can be described 
as the ∞-category of spectra with a G-action.

Proposition 6.17. We have a canonical equivalence of symmetric monoidal ∞-categories 
(SpG)Borel 
 Fun(BG, Sp).

Proof. By Theorem 2.30 for C = SpG and A = F (G+, S0
G), we know that we have an 

equivalence

(SpG)Borel 
 Tot
(
ModSpG

(F (G+, S
0
G)) ⇒ ModSpG

(F ((G×G)+, S0
G))

→
→
→

. . .
)
.

5 That is, such that ResG{1}X ∈ Sp is contractible.
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However, we know by Theorem 5.32 that ModSpG
(F (G+, S0

G)) 
 Sp. Similarly, we obtain 
that ModSpG

(F ((Gn)+, S0
G)) can be identified with ModSp(F (Gn−1

+ , S0)) 

∏

Gn−1 Sp. 
Unwinding the definitions, we find that (SpG)Borel is identified with a totalization

(SpG)Borel 
 Tot
(

Sp ⇒
∏
G

Sp
→
→
→

. . .

)
,

which recovers precisely the functor category Fun(BG, Sp) for the standard simplicial 
decomposition of BG. �

Stated more informally, a Borel-equivariant spectrum is determined by its restriction 
to Sp (i.e., its underlying spectrum) together with the induced G-action on it.

Remark 6.18. Another way to think of this result, in view of the equivalence (The-
orem 3.9) between torsion and complete objects, is to observe that (SpG)Borel has a 
compact generator given by G+ itself. The endomorphism algebra of G+ (in view of the 
universal property of induction) is given by the group algebra of G, Σ∞

+ G ∈ Alg(Sp). 
Similarly, the induced object G+ in Fun(BG, Sp) has endomorphisms given by Σ∞

+ G. As 
a result, both ∞-categories are identified with ModSp(Σ∞

+ G) by Lurie’s version of the 
Schwede–Shipley theorem [48, Th. 7.1.2.1].

The symmetric monoidal equivalence of Proposition 6.17 shows also that, for a Borel-
equivariant G-spectrum, the categorical fixed points can be identified with the homotopy 
fixed points of the underlying object of Fun(BG, Sp). In fact, if X is any G-spectrum, 
then X defines an underlying spectrum Xu = ResG{e}X with a G-action, and we have a 
natural map

XG → XhG
u 
 F (EG+, X)G.

Proposition 6.19. Suppose X is a G-spectrum with underlying spectrum with G-action 
Xu ∈ Fun(BG, Sp). Then the following are equivalent:

1. X is Borel-equivariant.
2. For each subgroup H ≤ G, the map XH → XhH

u is an equivalence of spectra.

In particular, the notion of “Borel-equivariance” can be useful for formulating descent 
questions.

Proof. This follows from the fact that X is Borel-equivariant if and only if the Borel-
completion map X → F (EG+, X) is an equivalence of G-spectra (i.e., induces an 
equivalence on H-fixed points for each H ≤ G), and the H-fixed points of F (EG+, X)
are given by XhH

u for H ≤ G. �
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Example 6.20. Given a spectrum M and a finite group G, we define the Borel-
equivariant G-spectrum M ∈ SpG to be F (EG+, i∗M). By construction, M is the genuine 
G-spectrum that represents Borel-equivariant M -cohomology on G-spaces as one sees by 
calculating maps in the ∞-category Fun(BG, Sp). Under the correspondence of Propo-
sition 6.17, M corresponds to the spectrum M with trivial G-action.

As another consequence, we note also that the theory of modules over the Borel-
equivariant form of a non-equivariant ring spectrum R is closely related to ∞-categories 
of the form Fun(BG, Mod(R)) where Mod(R) is the ∞-category of left R-modules. This 
result connects the analysis of “representation” ∞-categories such as Fun(BG, Mod(R))
to the genuinely equivariant analysis we are carrying out here.

Corollary 6.21. Let R ∈ Alg(Sp) be an E1-algebra. Then the functor

ModSpG
(R) → Fun(BG,Mod(R)),

is fully faithful when restricted to the compact objects.

Proof. This follows because the compact objects in ModSpG
(R) (which form the thick 

subcategory generated by R ∧ G/H+ for H ≤ G) are automatically Borel-complete 
themselves. �

Borel-equivariant spectra will yield most of the examples that we apply the 
F -nilpotence theory to in this paper and the next. As a result, we now describe several 
important cases. Many deep theorems in algebraic topology state that specific equiv-
ariant spectra are, in fact, Borel-complete. Let (C, ⊗, 1) be a presentable symmetric 
monoidal, stable ∞-category whose tensor product preserves colimits in each variable. 
Given a finitely generated ideal I = (x1, . . . , xn) ⊂ π0HomC(1, 1), we can form the 
I-adic completion of an object X in C following techniques of [45]: it is the limit of the 
cofibers X/(xk

1 , . . . , x
k
n) or, alternatively, the Bousfield localization of X with respect to ⊗n

i=1 1/xi. For example, given an E∞-algebra R in SpG and a finitely generated ideal 
I ⊂ π0R

G, we can form the I-adic completion of R.

Example 6.22. The Atiyah–Segal completion theorem [4] states that the Borel-completion 
of equivariant K-theory KUG ∈ SpG is equivalent to the completion of KUG at the 
augmentation ideal I ⊂ π0i

∗
GKUG 
 R(G) (the complex representation ring).

Example 6.23. The Segal conjecture, proved by Carlsson in [20], states that the Borel-
completion of the sphere spectrum S0 ∈ SpG is the completion at the augmentation ideal 
in π0i

∗
G(S0

G), which is the Burnside ring.

This point of view on completion theorems has been articulated, for instance, by 
Greenlees–May in [30].
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6.4. Example: genuine Cp-spectra

In this subsection (which may be skipped without loss of continuity), we digress to 
give a decomposition of the ∞-category of Cp-spectra using the material of the pre-
vious subsection together with the theory of fracture squares. This decomposition is a 
well-known folklore result, but we have included it for expository purposes.

First, let G be a finite group and let F be a family of subgroups. Given any X ∈ SpG, 
we have an arithmetic square

X X̂F

X[F−1] XtF :=
(
X̂F

)
[F−1],

which allows us to recover X from its F -completion X̂F := F (EF+, X), its 
F−1-localization X[F−1] := X[A−1

F ], and its F -Tate construction XtF :=
(
X̂F

)
[F−1]. 

Using Theorem 3.20, we can obtain a decomposition of the ∞-category SpG.
Suppose now G = Cp for some prime p and F = {{1}}. In this case, we have two 

simplifications. First, we know that the F−1-local objects are given by the ∞-category 
of spectra (Theorem 6.11) and that the F -complete objects are given by Fun(BCp, Sp)
(by Proposition 6.17). As a result, we deduce:

Theorem 6.24. We have an equivalence of ∞-categories:

SpCp

 Fun(Δ1, Sp) ×Sp Fun(BCp, Sp),

where:

1. The functor Fun(Δ1, Sp) → Sp is evaluation at the terminal vertex 1.
2. The functor Fun(BCp, Sp) → Sp is the Tate construction.

Stated informally: to give a Cp-spectrum is equivalent to giving an object X ∈
Fun(BCp, Sp), an object Y ∈ Sp, and a map Y → XtCp

.

6.5. Decomposition of the ∞-category of F -complete spectra

Let G be a finite group and let F be a family of subgroups. We denote by O(G)
the orbit category of G, i.e., the category of finite transitive G-sets. The purpose of this 
subsection is to prove a generalization of Proposition 6.17: We identify the ∞-category 
of F -complete objects in SpG with a (homotopy) limit over a subcategory of the orbit 
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category. This gives a generalization of Proposition 6.17 which will, however, require 
additional effort to set up.

First, observe that we have a functor

O(G)op → CAlg(SpG), G/H �→ F (G/H+, S
0
G).

Definition 6.25. We let OF (G) ⊆ O(G) denote the full subcategory spanned by the 
G-sets with isotropy in F , i.e., the G-sets {G/H}H∈F .

Let Cat⊗∞ be the ∞-category of symmetric monoidal ∞-categories and symmetric 
monoidal functors. We now obtain a functor

O(G)op → Cat⊗∞, G/H �→ ModSpG
(F (G/H+, S

0
G)) 
 SpH ,

where the last equivalence comes from Theorem 5.32. Note that O(G)op has an initial 
object G/G = ∗, which is mapped by the above functor to SpG. As a result, for any 
subcategory I ⊂ O(G)op, we obtain a symmetric monoidal functor

SpG → lim←−−
G/H∈I

SpH . (6.26)

We can now state our main result, which gives a decomposition of the ∞-category 
(SpG)F−compl of F -complete spectra (generalizing Proposition 6.17).

Theorem 6.27. The above functor (6.26) with I = OF (G)op factors through the 
F -completion of SpG and gives an equivalence of symmetric monoidal ∞-categories

(SpG)F−compl 
 lim←−−
G/H∈OF (G)op

SpH .

Theorem 2.30 already gives a decomposition of the ∞-category of F -complete (i.e., 
AF -complete) G-spectra; however, it is indexed over Δ. In order to deduce Theorem 6.27, 
we shall need some general preliminaries on cofinality.6 These arguments are not new 
and appear, for instance, in the proof of [47, Prop. 5.7], which is closely related. Note 
also that this recovers Proposition 6.17 as the special case F = {{1}}.

Let C be an ∞-category and X ∈ C. Suppose that the products Xn, n ≥ 1 exist in C. 
In this case, we can form a simplicial object X•+1 ∈ Fun(Δop, C),

X•+1 =
(
. . . X ×X ×X

→
→
→
X ×X ⇒ X

)
.

To construct this object, we adjoin a terminal object ∗ to C; in this case the above 
simplicial object is the Čech nerve of X → ∗.

6 We will use the convention, following [44], that cofinality of a functor refers to the invariance of colimits.



1044 A. Mathew et al. / Advances in Mathematics 305 (2017) 994–1084
Proposition 6.28. Let C be an ∞-category and let X ∈ C be an object such that the 
products Xn exist for n ≥ 1. Suppose that every object Y ∈ C admits a map Y → X. 
Then the functor X•+1 : Δop → C is cofinal.

Proof. Let F : A → B be a functor of ∞-categories. The ∞-categorical version of Quil-
len’s Theorem A [44, Thm. 4.1.3.1] (due to Joyal) states that F is cofinal if and only if 
the fiber product A ×B BB/ is contractible for each B ∈ B. Recall that the left fibration 
BB/ → B classifies the corepresentable functor fB = HomB(B, ·) : B → S, so the colimit 
of fB ◦ F is given by the homotopy type of A ×B BB/ in view of the computability of 
colimits in S via the Grothendieck construction [44, Cor. 3.3.4.6]. It follows from this 
that F is cofinal if and only if for every corepresentable functor f : B → S, the colimit 
of f ◦ F : A → S is contractible.

Now, let Y ∈ C be arbitrary. In order to prove cofinality, we need to show that the 
geometric realization 

∣∣HomC(Y,X•+1)
∣∣ is weakly contractible. However, this geometric 

realization can be identified with the geometric realization 
∣∣HomC(Y,X)•+1

∣∣, which is 
contractible as HomC(Y, X) is nonempty by assumption. �

We now review some further ∞-categorical preliminaries on colimits. Compare [44, 
Remark 5.3.5.9].

Construction 6.29. If C′ is an ∞-category, then there exists an ∞-category C containing 
C′ as a full subcategory such that C admits finite coproducts and is initial with respect 
to this property. For an ∞-category D with finite coproducts, one has an equivalence

Fun(C′,D) 
 Fun�(C,D),

where Fun�(C, D) denotes the subcategory spanned by those functors preserving finite 
coproducts. This equivalence is given by left Kan extension.

As a result, the objects of C are given by formal finite coproducts of objects in C′. The 
∞-category C can be explicitly constructed as the smallest subcategory of the presheaf 
∞-category P(C′) containing C′ and closed under finite coproducts.

Lemma 6.30. Suppose C is an ∞-category with finite coproducts and f : C → D is a 
functor, where D has all colimits. Suppose f preserves finite coproducts. Let C′ ⊂ C be a 
full subcategory such that C is obtained by freely adjoining finite coproducts to C′ as in 
Construction 6.29. Then the natural map in D

lim−−→
C′

f → lim−−→
C

f

is an equivalence.

Proof. It follows that f is the left Kan extension of f |C′ , which forces the map on colimits 
to be an equivalence. �
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Proof of Theorem 6.27. We take C to be the category of all finite G-sets all of whose 
isotropy groups lie in F , so that C is obtained by freely adjoining finite coproducts to 
OF (G). We now consider the functor

M : Cop → Cat⊗∞, T �→ ModSpG
(F (T+, S

0
G)).

This functor sends finite coproducts in C to products in Cat⊗∞. Let U ∈ C be the G-set 
�H∈F G/H. Observe that any G-set in C admits a map to U . We have a functor Δop → C
given by the simplicial object . . .

→
→
→
U × U ⇒ U , which is cofinal in view of Proposi-

tion 6.28. Therefore, dualizing the cofinality statement, we find that

(SpG)F−compl 
 lim←−−
Δ

M ◦ f 
 lim←−−
C

M,

where the first equivalence is Theorem 2.30 (in fact, the cosimplicial diagram M ◦ f is 
precisely the cobar construction) and the second equivalence follows by cofinality. Finally, 
we use Lemma 6.30 to identify lim←−−Cop M with lim←−−OF (G)op M |OF (G)op . �

It will also be convenient to have a slight refinement of Theorem 6.27 based on a 
further cofinality argument. For this, we consider a collection A of subgroups in F such 
that every subgroup in F is contained in an element of A. We assume that A is closed 
under conjugation and intersections. As before, we let OA(G) be the subcategory of the 
orbit category of G spanned by the G-sets {G/H}H∈A. We have an inclusion

OA(G) ⊂ OF (G).

Proposition 6.31. Let A be a collection of subgroups in F such that every subgroup in 
F is contained in an element of A. We assume that A is closed under conjugation and 
intersections. Then the inclusion OA(G) → OF (G) is cofinal.

Proof. This follows from [43, Cor. 4.1.3.3]. In fact, we need to show that for any 
G/H ∈ OF (G), the category OA(G)(G/H)/ has weakly contractible nerve. In fact, the 
category OA(G)(G/H)/ is equivalent to the opposite of the poset P of subgroups of A
that contain H. To see this, observe that an object in OA(G)(G/H)/ is given by a map of 
G-sets G/H → G/K for some K ∈ A, which is given by multiplication by some g ∈ G. 
By conjugating, we observe that this object is isomorphic to a map G/H → G/K ′ given 
by multiplication by 1, so that K ′ ⊂ H. Thus, the objects up to isomorphism can be put 
in correspondence with P; one checks that the morphisms can as well. The hypotheses 
imply that P has a minimal element and is therefore weakly contractible. �

Combining with Theorem 6.27, we then obtain:

Corollary 6.32. Suppose A is as above. We then obtain an equivalence of symmetric 
monoidal ∞-categories
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(SpG)F−compl 
 lim←−−
G/H∈OA(G)op

SpH .

Example 6.33. Suppose G is a p-group and F is the family of proper subgroups. Then, 
one can take A to be the collection of proper subgroups of G which contain the Frattini 
subgroup.

We note an important special case of Corollary 6.32, which is deduced by taking 
A = {H} for H � G normal:

Corollary 6.34. Suppose H � G is a normal subgroup. Then there is a natural 
G/H-action on the symmetric monoidal ∞-category SpH together with a symmetric 
monoidal functor

SpG → (SpH)hG/H

which exhibits (SpH)hG/H as the F -completion of SpG for F the family of subgroups of 
G that are contained in H.

Remark 6.35. Let G be a finite group. In this case, one can give an inductive decompo-
sition of SpG as a homotopy limit of ∞-categories of the form Fun(BG′, Sp) (for various 
finite groups G′) using Theorem 6.27 and the arithmetic square (3.17).

6.6. F -nilpotence

We keep the notation AF from Definition 6.1.

Definition 6.36. Given a family F of subgroups of G, we will let FNil ⊂ SpG denote 
the subcategory of AF -nilpotent objects, or equivalently the thick ⊗-ideal generated by 
{(G/H)+}H∈F . We will say that a G-spectrum X is F -nilpotent if it belongs to FNil. 
In this case, we will refer to the integer expF (X) := expAF

(X) as the F -exponent of X.

Clearly, F -nilpotent G-spectra are both F -torsion and F -complete, i.e., if X ∈ FNil, 
then

EF+ ∧X 
 X 
 F (EF+, X).

As we discuss in the sequel [54], F -nilpotence is equivalent to F -completeness together 
with the very rapid convergence of the associated homotopy limit spectral sequence based 
on a cellular decomposition of EF+.

We now discuss some of the first properties of F -nilpotent spectra. Combining Propo-
sition 4.14 with Theorem 5.32, we find the following criterion for FNil:
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Proposition 6.37. An object X ∈ SpG belongs to FNil if and only if there exists an integer 
N ∈ Z≥0 such that whenever

Y1 → Y2 → · · · → YN → X

are maps in SpG whose restriction to SpH is nullhomotopic for each H ∈ F , then the 
composition Y1 → · · · → X is nullhomotopic (in SpG). If this is the case, the minimal 
such N is expF (X).

Next, we show that F -nilpotence can be descended under restriction and ascended 
under induction.

Proposition 6.38. Suppose H ≤ G and let F be a family of subgroups of G. Let FH be 
the family of those subgroups of H which belong to F .

1. If X ∈ SpG is F -nilpotent, then ResGHX ∈ SpH is FH-nilpotent.
2. If Y ∈ SpH is FH-nilpotent, then CoindG

HX 
 IndG
H X ∈ SpG is F ′-nilpotent for 

any family F ′ containing FH . In particular CoindG
HX is F -nilpotent.

Proof. Both assertions follow by applying Corollary 4.13. �
Proposition 6.39. Let F , F ′ be two families of subgroups of G. Then a G-spectrum is 
(F ∩ F ′)-nilpotent if and only if it is both F -nilpotent and F ′-nilpotent.

Proof. This follows from Proposition 4.17. While it is not true that AF ∧AF ′ 
 AF∩F ′ , 
one sees easily that AF ∧ AF ′ admits the structure of a module over AF∩F ′ , and that 
a G-spectrum is nilpotent for AF∩F ′ if and only if it is AF ∧AF ′ -nilpotent. �

We next show that all F -nilpotence questions can be reduced to the case where the 
family F is the family of proper subgroups.

Proposition 6.40. A G-spectrum X ∈ SpG is F -nilpotent if and only if for every subgroup 
H ≤ G with H /∈ F , the restriction ResGHX ∈ SpH is nilpotent with respect to the family 
of proper subgroups of H.

Proof. The “only if” direction follows from Proposition 6.38. Therefore, it suffices to 
show that if ResGHX ∈ SpH is nilpotent for the family of proper subgroups for each 
H /∈ F , then X is F -nilpotent.

Without loss of generality, G /∈ F . For each H ≤ G, let FH denote the family of 
subgroups of H which belong to F . Then, by induction on |G|, we may assume that for 
every H � G, we have that the H-spectrum ResGHX is FH -nilpotent. Inducing, it follows 
that IndG

H ResGHX 
 X ∧ G/H+ is F -nilpotent for each H � G (Proposition 6.38). In 
particular, if A =

∏
H�G F (G/H+, S0

G), we find that X ∧A is F -nilpotent. But since X
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is A-nilpotent by hypothesis (as X is nilpotent for the family of proper subgroups), we 
conclude that X is F -nilpotent by Proposition 4.16. �

Using this, we can give a criterion for when a G-ring spectrum is nilpotent for a family 
of subgroups.

Theorem 6.41. Let R ∈ SpG be a G-ring spectrum (up to homotopy). Then R ∈ FNil if 
and only if for all H /∈ F , the geometric fixed point spectrum ΦHR is contractible.

Proof. By Proposition 6.40, we can assume F is the family of all proper subgroups of G. 
In this case, we know by Theorem 4.19 that R ∈ FNil if and only if R is F -torsion, 
which happens if and only if the F−1-localization ΦGR is contractible. �

Given a G-ring spectrum which is nilpotent for a family of subgroups, any module 
spectrum over it has the same nilpotence property. As a result, we can obtain a decom-
position of the module ∞-category:

Theorem 6.42. Suppose R is an En-algebra in SpG which is F -nilpotent. Let A ⊂ F be a 
collection of subgroups of G closed under conjugation and intersection, and such that any 
subgroup of F is contained in a subgroup belonging to A. Then there is an equivalence 
of En−1-monoidal ∞-categories

ModSpG
(R) 
 lim←−−

G/H∈OA(G)op
ModSpH

(ResGHR).

Proof. For any ∞-operad O, the association C �→ AlgO(C) sends homotopy limits in 
symmetric monoidal ∞-categories C to homotopy limits of ∞-categories.

For the convenience of the reader, we give a brief explanation of this fact. Recall that 
[48, §2.1] to every symmetric monoidal ∞-category C one has an ∞-category C⊗ equipped 
with a map q : C⊗ → N(Fin∗), where Fin∗ is the category of pointed finite sets. In addi-
tion, the ∞-operad O determines an ∞-category O⊗ and a functor p : O⊗ → N(Fin∗). 
Given a diagram indexed over an ∞-category I of symmetric monoidal ∞-categories 
Ci, i ∈ I, we have a symmetric monoidal ∞-category lim←−−i∈I Ci such that (lim←−−i∈I Ci)⊗ =
lim←−−i∈I(C⊗

i ). Finally, AlgO(C) is a full subcategory of FunN(Fin∗)(O⊗, C⊗). This con-
struction sends homotopy limits in C to homotopy limits of ∞-categories (as C �→ C⊗

does), and one checks that the condition that describes AlgO(C) as a full subcategory of 
FunN(Fin∗)(O⊗, C⊗) is compatible with homotopy limits too.

Given a system of symmetric monoidal ∞-categories Ci indexed by an ∞-category I
and an algebra object A = {Ai} ∈ Alg(lim←−− Ci), we obtain a decomposition of ∞-categories

Mod(
lim←−−i∈I

Ci

)(A) 
 lim←−−
i∈I

ModCi
(Ai).

This follows similarly using the ∞-operads controlling modules [48, §4.2].
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Therefore, setting C = SpF , CG/H = SpH , and AG/H = ResGHR as G/H ranges 
over OA(G)op, Corollary 6.32 gives the desired decomposition for the ∞-category of 
R-modules in SpG which are F -complete, i.e.,

Mod(SpG)F
(R) 
 lim←−−

G/H∈OA(G)op
ModSpH

(ResGHR).

Here (SpG)F is the ∞-category of F -complete G-spectra. However, every R-module is 
automatically F -complete since R is F -nilpotent. This gives the desired claim. �
Part 3. Unipotence for equivariant module spectra

7. U(n)-unipotence and the flag variety

In this section, we prove several results on actions of compact Lie groups on modules 
over a complex-oriented ring spectrum. Our main results state that actions of the unitary 
group are determined by their homotopy fixed points. For example, to give a KU -module 
equipped with a U(n)-action is equivalent to giving a F (BU(n)+, KU)-module which 
is complete with respect to the augmentation ideal in π0F (BU(n)+, KU). We will use 
these techniques to prove that the Borel-equivariant forms of such theories are nilpotent 
for the family of abelian subgroups.

For our nilpotence statements, the strategy of our argument, which goes back to 
ideas of Quillen [63] and is used prominently by Hopkins–Kuhn–Ravenel [36], is that of 
complex-oriented descent. Let G be a finite group, and embed G ≤ U(n). The flag variety 
U(n)/T defines a G-space with abelian stabilizers and which thus has a cell decomposi-
tion in terms of the orbits G/A+, A ≤ G abelian. We will show that in equivariant stable 
homotopy theory, over a base such as Borel-equivariant MU , the flag variety actually 
splits up as a sum of copies of the unit. This is easily seen to imply the desired nilpotence 
statement.

7.1. Unipotence

We begin with some generalities on symmetric monoidal stable ∞-categories. Note 
that we do not assume additional hypotheses such as the compactness of the unit here.

Definition 7.1. Let (C, ⊗, 1) be a presentable symmetric monoidal, stable ∞-category 
where the tensor product commutes with colimits in each variable. We say that C is 
weakly unipotent if the unit 1 generates C as a localizing subcategory.

Example 7.2. The module ∞-category Mod(R) for an E∞-ring R is weakly unipotent. In 
fact, by the symmetric monoidal version of Schwede–Shipley theory [48, Prop. 7.1.2.7], 
it is the basic example of a weakly unipotent ∞-category: more precisely, any weakly 
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unipotent (symmetric monoidal, stable, etc.) ∞-category where the unit is compact is 
equivalent to Mod(R) for R the E∞-ring of endomorphisms of the unit.

Example 7.3. Consider Fun(BG, Mod(R)) for G a finite group and R an E∞-ring. This 
is generally not weakly unipotent: unless (for some prime p) G is a p-group and p is 
nilpotent in π0R, the induced object F (G+, R) 
 R∧G+ cannot belong to the localizing 
subcategory generated by the unit R for purely algebraic reasons.

In fact, if there exists a prime number q | |G| such that q is not nilpotent in R, let 
Gq ≤ G be a q-Sylow subgroup. Given any M ∈ Fun(BG, Mod(R)) that belongs to the 
localizing subcategory generated by the unit, one sees by considering long exact sequences 
that π∗(M)[q−1] must have trivial Gq-action (equivalently, 

∑
g∈Gq

g is an isomorphism 
on π∗(M)[q−1]). However, this is not the case for the induced object R ∧G+.

The compactness of the unit is crucial in Example 7.2, and we do not know how to 
classify weakly unipotent symmetric monoidal ∞-categories C in general. As a result, 
the following definition (Definition 7.7) will play more of a role for us. Recall first that if 
C is as above, and R = EndC(1) is the E∞-ring of endomorphisms of the unit, then one 
has a basic adjunction

(⊗R1,HomC(1, ·)) : Mod(R) � C, (7.4)

where the left adjoint Mod(R) → C is determined by the condition that it sends the unit 
to the unit (in fact, it canonically becomes a symmetric monoidal functor). This adjunc-
tion is not an equivalence in general, but it restricts to an equivalence between perfect 
R-modules and the thick subcategory of C generated by the unit. Recall [48, Def. 7.2.4.1]
that the ∞-category of perfect R-modules is the thick subcategory of Mod(R) generated 
by the unit.

Proposition 7.5. C is weakly unipotent if and only if HomC(1, ·) : C → Mod(R) is conser-
vative.

This follows from the following more general lemma.

Lemma 7.6. Let C be a presentable stable ∞-category. Consider a set {Xα}α∈A of objects 
in C. Then the following are equivalent:

1. Given Y ∈ C, Y is contractible if and only if HomC(Xα, Y ) ∈ Sp is contractible for 
each α ∈ A.

2. The smallest localizing subcategory containing the {Xα}α∈A is all of C.

Proof. Assume the second condition, and let Y ∈ C be an object such that HomC(Xα, Y )
is contractible for each α ∈ A. Consider now the collection of X ∈ C such that 
HomC(X, Y ) is contractible; it is seen to be a localizing subcategory, and since it contains 
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the {Xα}, it contains all of C. In particular, HomC(Y, Y ) is contractible, which implies 
that Y is contractible.

Conversely, assume the first condition, i.e. that the HomC(Xα, ·) (α ∈ A) are jointly 
conservative. The localizing subcategory C′ ⊂ C generated by the {Xα}α∈A is presentable 
[48, Cor. 1.4.4.2] (note that C is itself presentable, so the hypotheses of that corollary are 
met), so that the inclusion C′ → C has a right adjoint B by the adjoint functor theorem 
[44, Cor. 5.5.2.9]. It follows that if X ∈ C, then one has a natural fiber sequence

F (X) → B(X) → X,

where B(X) → X is the counit of the adjunction and F (X) is defined to be the fiber. 
One sees that for any Y ∈ C′, the spectrum HomC(Y, F (X)) is contractible. Taking in 
particular Y = Xα for α ∈ A, we find that F (X) is contractible by hypothesis and that 
B(X) → X is an equivalence, so X belongs to the localizing subcategory generated by 
the {Xα}. �
Definition 7.7. C is unipotent if the adjunction (7.4) is a localization, i.e., if HomC(1, ·)
is fully faithful.

Remark 7.8. We do not know whether there exists a symmetric monoidal, presentable 
stable ∞-category C which is weakly unipotent but not unipotent.

More generally, one can ask the following question. Let D be a presentable stable 
∞-category and let X ∈ D be a generator, i.e., an object such that HomD(X, ·) : D → Sp
is conservative. By Lemma 7.6, this is equivalent to supposing that the localizing sub-
category generated by X is all of D. In this case, one obtains an adjunction

Mod(EndD(X)) � D, (7.9)

where the right adjoint is conservative.

Question 7.10. If X generates D as a localizing subcategory, is (7.9) a localization?

The answer to the abelian analog of Question 7.10 (in the Grothendieck case) is 
affirmative in view of the Gabriel–Popescu theorem [61]. However, in general the answer 
to Question 7.10 can be no.

Example 7.11. Let C = D(Zp) be the derived ∞-category of modules over the p-adic 
integers Zp. We claim that the object X = Qp ⊕ Fp generates C. In fact, the cofiber 
sequence

Zp → Qp → Qp/Zp
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shows easily that the localizing subcategory generated by X contains Zp, since the lo-
calizing subcategory generated by Fp contains Qp/Zp. However, we claim that the map

HomC(X,Zp) ⊗HomC(X,X) X → Zp (7.12)

is not an equivalence, so the associated adjunction (7.9) is not a localization.
Indeed, if (7.12) were an equivalence, then writing HomC(X, Zp) as a filtered colimit 

(over some filtered ∞-category J ) of perfect HomC(X, X)-modules, one would conclude 
that Zp = lim−−→J Yj , where each Yj belongs to the thick subcategory of C generated by 
X. Since Zp ∈ C is compact, it follows that Zp is a retract of some Yj . However, the 
functor C �→ C given by X �→ (X̂p)[1/p] annihilates X (and thus anything in the thick 
subcategory that X generates) but does not annihilate Zp, a contradiction.

We now state and prove the basic criterion we will use throughout to prove that 
∞-categories are unipotent.

Proposition 7.13 (Unipotence criterion). Let C be a presentable, stable, symmetric 
monodical ∞-category where the tensor commutes with colimits in each variable, as 
above. Suppose C contains an algebra object A ∈ Alg(C) with the following properties:

1. A is compact and dualizable in C.
2. DA generates C as a localizing subcategory.
3. A belongs to the thick subcategory generated by the unit.

Then C is unipotent. More precisely, if R = EndC(1), then the natural adjunction (7.4)
exhibits C as the completion of Mod(R) at HomC(1, A) ∈ Alg(Mod(R)).

Proof. Let AR := HomC(1, A). Since the adjunction (7.4) establishes an equivalence 
between perfect R-modules and the thick subcategory of C generated by the unit, it 
follows using hypothesis 3, that AR ∈ Mod(R) is a perfect (equivalently, dualizable) 
algebra object. Moreover, we have A 
 AR ⊗R 1 ∈ C.

We claim that the adjunction (7.4) factors through the AR-completion of Mod(R). 
To see this, it suffices to show that if M ∈ Mod(R) is AR-acyclic, then M ⊗R 1 ∈ C is 
contractible. But we know that (M ⊗R AR) ⊗R 1 ∈ C is contractible, so the equivalent 
object (M ⊗R 1) ⊗ A ∈ C is too. Thus, M ⊗R 1 ∈ C is contractible since the second 
assumption implies that tensoring with A is conservative on C.

Therefore, by the universal property of the AR-completion (as a Bousfield localiza-
tion), we get a new adjunction

Mod(R)AR−cpl � C, (7.14)

which we claim is an inverse equivalence. To see this, we observe that DAR is a compact 
generator for Mod(R)AR−cpl by Proposition 2.27. Its image, DA, is a compact generator 
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for C by assumption. However, the left adjoint of the adjunction (7.14) is fully faithful 
on the thick subcategory generated by DAR (as the left adjoint in (7.4) is fully faithful 
on the thick subcategory generated by the unit).

Therefore, the left adjoint carries the compact generator DAR to a compact generator 
of C, and is fully faithful on the thick subcategory generated by DAR. It follows that 
the adjunction (7.14) is an equivalence as desired: both ∞-categories are equivalent to 
Mod(EndR(DAR)). �

We will also need the following criterion for unipotence. Although this criterion re-
quires more hypotheses than Proposition 7.13, these additional hypotheses will easily be 
verified in the case of interest. The main benefit to the next criterion is that A is not 
assumed to belong to the thick subcategory generated by the unit: instead, this is de-
duced from the assumptions. In our main application, the last hypothesis will translate 
into the relevance of the Eilenberg–Moore spectral sequence.

Proposition 7.15 (Second unipotence criterion). Let C be as above, and let R = EndC(1) ∈
CAlg(Sp). Suppose C contains an algebra object A ∈ Alg(C) with the following properties:

1. A is compact and dualizable in C.
2. DA is compact and generates C as a localizing subcategory.
3. The ∞-category ModC(A) is generated as a localizing subcategory by the A-module 

A itself, and A is a compact object in ModC(A).
4. The natural map of R-module spectra

HomC(1, A) ⊗R HomC(1, A) → HomC(1, A⊗A) (7.16)

is an equivalence.

Then the conclusion of Proposition 7.13 holds.

Proof. We claim that the natural map

HomC(1,M) ⊗R HomC(1, N) → HomC(1,M ⊗N) (7.17)

is an equivalence for any M, N ∈ C which are A-nilpotent. It suffices to prove this for 
M, N ∈ ModC(A) in view of Corollary 4.12. But for M, N ∈ ModC(A), both sides of 
(7.17) commute with arbitrary colimits in M, N by the assumption that A is compact in 
ModC(A). It thus suffices (since ModC(A) is generated as a localizing subcategory by A) 
to see that (7.17) is an equivalence for M, N = A, which we have assumed as part of 
the hypotheses. The natural equivalence in (7.17) implies the R-module HomC(1, A) is 
dualizable (i.e., perfect) in Mod(R) since A is dualizable in C. More generally, if X is any 
dualizable object in C which is A-nilpotent, then HomC(1, X) ∈ Mod(R) is dualizable.
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Let D ⊂ C denote the thick subcategory generated by the unit and each A ⊗X for 
X ∈ C a dualizable object. Observe that D is closed under duality as DA is a retract of 
A ⊗ DA (see Construction 2.25). Moreover, the natural map (7.17) is an equivalence if 
M, N ∈ D.

Let Modω(R) denote the ∞-category of perfect R-modules. As a result, we can restrict 
the adjunction Mod(R) � C to a new adjunction

Modω(R) � D.

The right adjoint in this adjunction is strictly symmetric monoidal, so by Lemma 7.18 be-
low, we can conclude that D 
 Modω(R) and that D ⊆ C is in fact the thick subcategory 
generated by the unit. In particular, A ∈ C therefore belongs to the thick subcategory 
generated by the unit. We can now apply Proposition 7.13 to conclude. �
Lemma 7.18. Let D1, D2 be symmetric monoidal ∞-categories. Suppose every object of 
D1, D2 is dualizable. Suppose we have a symmetric monoidal functor F : D1 → D2 with 
a strictly symmetric monoidal right adjoint H. Then the adjunction (F, H) is an inverse 
equivalence of symmetric monoidal ∞-categories.

Proof. We first show that H is a fully faithful functor. To see this, we fix X, Y ∈ D2 and 
use

HomD2(X,Y ) 
 HomD2(1,DX ⊗ Y )


 HomD1(1, H(DX ⊗ Y ))


 HomD1(1, H(DX) ⊗H(Y ))


 HomD1(1,DH(X) ⊗H(Y ))


 HomD1(H(X), H(Y )),

as desired. Dualizing this argument, we can also conclude that F is fully faithful. There-
fore, the adjunction is an inverse equivalence. �

The preceding lemma is presumably well-known to category theorists. We will also 
need a converse of sorts to these results:

Corollary 7.19. Let C be as above with R = EndC(1). Suppose that C is unipotent. Then 
any compact object of C belongs to the thick subcategory generated by the unit. In partic-
ular, if X, Y ∈ C are two compact objects, then the natural map

HomC(1, X) ⊗R HomC(1, Y ) → HomC(1, X ⊗ Y )

is an equivalence.
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Proof. The second assertion clearly follows from the first since it is true for X = Y = 1
and those pairs (X, Y ) satisfying the assertion form a thick subcategory in each variable.

Now suppose X ∈ C. Then since C is unipotent, we know that the natural map

HomC(1, X) ⊗R 1 → X

is an equivalence.
Now, by the theory of Ind-objects in ∞-categories [44, §5.3], we can write the 

R-module HomC(1, X) as a filtered colimit of perfect R-modules. That is, there exists a 
filtered ∞-category I and a functor f : I → Mod(R) such that:

1. For each i ∈ I, f(i) ∈ Mod(R) is a perfect R-module.
2. HomC(1, X) is identified with lim−−→i∈I f(i).

Therefore, we find that

X 
 lim−−→
i∈I

(f(i) ⊗R 1) ,

where each f(i) ⊗R 1 ∈ C belongs to the thick subcategory generated by the unit. When 
X is compact, it follows that X is a retract of f(i) ⊗R1 for some i, proving the claim. �
7.2. The Eilenberg–Moore spectral sequence

We now connect the abstract discussion of unipotence above to a very classical ques-
tion when C = Fun(X, Mod(R)) for X a connected space and R an E∞-ring, so that C
parametrizes (by definition) local systems of R-modules on X.

Definition 7.20 (Cf. [46, §1.1]). Choose a basepoint ∗ ∈ X, and consider the pullback 
square

ΩX ∗

∗ X,

(7.21)

and the induced square of E∞-rings

F (X+, R) R

R F (ΩX+, R).

(7.22)
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We say that the R-based Eilenberg–Moore spectral sequence (EMSS) is relevant for X if 
(7.22) is a pushout of E∞-rings, i.e., if the induced morphism

R⊗F (X+,R) R → F (ΩX+, R) (7.23)

is an equivalence. If so, we obtain a strongly convergent Tor-spectral sequence

E2
p,q = Torπ∗(F (X+,R))

p,q (π∗(R), π∗(R)) =⇒ π∗(F (ΩX+, R)), (7.24)

which we call the R-based Eilenberg–Moore spectral sequence (EMSS).

If the R-based EMSS is relevant, the spectral sequence (7.24) reduces to the classical 
(cohomological) Eilenberg–Moore spectral sequence in case R = Hk for k a field and if 
X has finitely generated homology in each degree.

Construction 7.25. We now give another interpretation of the R-based EMSS. Observe 
that the pullback square (7.21) can be interpreted as a square in S/X , the ∞-category 
of spaces over X. Recall that there is an equivalence of ∞-categories

S/X 
 Fun(X,S) 
 Fun(Xop,S),

by the Grothendieck construction [44, §2.1].
Here, since X is a connected space, Fun(X, S) 
 Fun(BΩX, S) can be identified with 

the ∞-category of spaces equipped with an action of ΩX (where, as before, we implicitly 
choose a basepoint of X). In particular, when one works in Fun(X, S), one has the 
pullback square

ΩX × ΩX ΩX

ΩX ∗,

(7.26)

where ΩX is given the action of ΩX by left multiplication; this corresponds to ∗ ∈ S/X in 
view of the fiber sequence ΩX → ∗ → X. This pullback square in Fun(X, S) corresponds 
via the Grothendieck construction to the cartesian square (7.21) in S/X .

Consider now the functor Sop → CAlgR/, Y �→ F (Y+, R). We apply it to (7.26). We 
obtain a commutative algebra object A ∈ Fun(X, Mod(R)) given by F (ΩX+, R) with 
the natural ΩX-action. In particular, we obtain a square in CAlg(Fun(X, Mod(R))),

F (∗+, R) F (ΩX+, R)

F (ΩX+, R) F ((ΩX × ΩX)+, R).

(7.27)
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When we apply the lax symmetric monoidal functor HomC(1, ·) : Fun(X, Mod(R)) →
Mod(F (X+, R)) to (7.27), we obtain (7.22), in view of the correspondence between (7.26)
and (7.21).

Suppose now ΩX has the homotopy type of a finite cell complex. Then F ((ΩX ×
ΩX)+, R) 
 A ⊗A ∈ Fun(X, Mod(R)), i.e., (7.27) is a pushout of commutative algebra 
objects in C. We thus obtain:

Proposition 7.28. Suppose ΩX has the homotopy type of a finite cell complex. Let A ∈
C = Fun(X, Mod(R)) be the commutative algebra object A = F (ΩX+, R). Then the 
R-based EMSS is relevant for X if and only if the natural map of F (X+, R)-modules

HomC(1, A) ⊗F (X+,R) HomC(1, A) → HomC(1, A⊗A),

is an equivalence.

Proof. The square in (7.27) is a pushout in CAlg(Fun(X, Mod(R)) since ΩX has the 
homotopy type of a finite cell complex. By applying the lax symmetric monoidal functor

HomC(1, ·) : Fun(X,Mod(R)) → Mod(F (X+, R))

to this pushout we obtain (7.22). Hence the R-based EMSS is relevant for X if and only 
if HomC(1, ·) takes this particular pushout to a pushout. �

We are now ready for the main result of this subsection.

Theorem 7.29. Let G be a compact Lie group and R an E∞-ring. Then the R-based 
EMSS is relevant for BG if and only if the symmetric monoidal ∞-category C =
Fun(BG, Mod(R)) is unipotent. In this case, the F (BG+, R)-module R is perfect, and 
Fun(BG, Mod(R)) is identified with the symmetric monoidal ∞-category of R-complete 
F (BG+, R)-modules.

Proof. As above, we consider the algebra object A = F (G+, R) ∈ C. Using equivariant 
Atiyah duality (see [42, Th. III.5.1] for the genuinely equivariant result), one sees that A
is some suspension of the induced object R∧G+ = DA. Since the induced object R∧G+
is a compact generator for C, it follows that A is a compact generator as well.

Suppose C is unipotent. Then we apply Corollary 7.19 to conclude that A be-
longs to the thick subcategory generated by the unit and that HomC(1, A) ⊗F (X+,R)
HomC(1, A) → HomC(1, A ⊗A) is an equivalence. It follows by Proposition 7.28 that the 
R-based EMSS is relevant for BG. The remaining assertions now follow from Proposi-
tion 7.13 applied to A.

Conversely, if HomC(1, A) ⊗F (X+,R) HomC(1, A) → HomC(1, A ⊗A) is an equivalence, 
we want to apply Proposition 7.15 to conclude that C is unipotent. In order to do this, 
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we need to analyze A-modules in C. To do this, consider the inclusion ∗ → BG and the 
induced adjunction

C = Fun(BG,Mod(R)) � Mod(R),

where the left adjoint restricts to a basepoint and the right adjoint sends M ∈ Mod(R)
to the coinduced object F (G+, M). In particular, the right adjoint carries the unit of 
Mod(R) to A ∈ C. Using Proposition 5.29, it follows that we have an equivalence of 
symmetric monoidal ∞-categories ModC(A) 
 Mod(R), so that ModC(A) has A as 
compact generator. Therefore, we have all the ingredients to apply Proposition 7.15 and 
conclude the argument. �
Corollary 7.30. Suppose the R-based EMSS is relevant for BG for G a compact Lie group. 
Then it is relevant for R′ if R′ is any E∞-ring such that there exists a map of E1-rings 
R → R′.

Proof. We use Theorem 7.29. As the EMSS is relevant for BG, it follows that C =
Fun(BG, Mod(R)) is unipotent, and the coinduced object F (G+, R) belongs to the thick 
subcategory generated by the unit by Corollary 7.19. By base-change to R′, we find 
that F (BG+, R′) ∈ Fun(BG, Mod(R′)) belongs to the thick subcategory generated by 
R′ with trivial G-action. Now we can apply Proposition 7.13 to C′ = Fun(BG, Mod(R′))
to obtain that C′ is unipotent too, so that the R′-based EMSS is relevant for BG. �
Proposition 7.31. Let R → R′ be a descendable morphism of E∞-rings (i.e., R is de-
scendable as a commutative algebra in Mod(R), cf. Definition 4.4). Suppose the map 
F (BG+, R) ⊗RR′ → F (BG+, R′) is an equivalence. Then the R-based EMSS is relevant 
for BG if and only if the R′-based EMSS is relevant.

Proof. The “only if” implication is given by Corollary 7.30. For the converse, we want to 
show that the natural map R⊗F (BG+,R)R → F (G+, R) is an equivalence. To do so, since 
R → R′ is descendable, it suffices to show that the base-change to R′ is an equivalence. 
But by hypothesis (and the fact that G is a compact Lie group), this is precisely the 
map R′ ⊗F (BG+,R′) R

′ → F (G+, R′). �
Corollary 7.32. Let R → R′ be a descendable morphism of E∞-rings such that R′ is a 
perfect R-module, and let G be a compact Lie group. Then the R-based EMSS is relevant 
for BG if and only if the R′-based one is.

Proof. In fact, since R′ is a perfect R-module, the map F (BG+, R) ⊗RR′ → F (BG+, R′)
is an equivalence, so we can apply Proposition 7.31. �

The relevance of the EMSS, especially over HZ and HFp, has been treated classically 
in numerous sources, e.g., [24,25], and is discussed for complex K-theory in [40]. A more 
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recent development is the ambidexterity theory of Hopkins–Lurie [35]. For example, in 
[35, Th. 5.4.3], they show (as a special case) that for G a p-group the ∞-category of 
K(n)-local modules over Morava E-theory with G-action (at the prime p) is unipotent; 
the analogous assertion about the EMSS is earlier work of Bauer [12].

7.3. The categorical argument

In Theorem 7.29, we saw that the unipotence of ∞-categories of the form
Fun(BG, Mod(R)), for G a compact Lie group and R an E∞-ring, is equivalent to 
the relevance of the R-based EMSS for the space BG.

The purpose of this subsection is to obtain a basic and easily checked sufficient crite-
rion for relevance of the EMSS. For a given compact connected Lie group G, this criterion 
will always be applicable to E∞-rings such that π∗(R) is torsion-free away from a finite 
number of primes (compare Theorem 7.40 below). Therefore, we will be able to prove 
that several such ∞-categories are unipotent.

In the next subsection, we shall give a slightly different (and more geometric) variant 
of the following argument. We have included both arguments in this paper. The present 
argument seems to be more widely applicable. However, the geometric one generalizes 
better to the genuinely equivariant setting.

Proposition 7.33. Suppose G is a compact, connected Lie group. Then the Z-based EMSS 
is relevant for BG (and thus, by Corollary 7.30, the R-based EMSS is relevant for BG

if R is any discrete E∞-ring).

Proof. Using Proposition 7.13 with C = Fun(BG, Mod(Z)) and A = F (G+, Z), it suffices 
to show that the induced object G+ ∧ Z ∈ Fun(BG, Mod(Z)) belongs to the thick sub-
category generated by the unit. This follows easily by working up the (finite) Postnikov 
decomposition of G+ ∧Z: each of the successive cofibers has trivial G-action, because G
is connected, and finitely generated homotopy. �
Remark 7.34. Using a similar argument, combined with the fact that nontrivial represen-
tations of p-groups in characteristic p always have nontrivial fixed points, one can argue 
that if π0(G) is a p-group, then the Fp-based EMSS is relevant for BG. As a result, we 
have an equivalence of symmetric monoidal ∞-categories between Fun(BG, Mod(Fp))
and complete modules over F (BG+, Fp) (cf. Theorem 7.29).

Here is our main result:

Theorem 7.35. Let R be an E∞-ring and let G be a compact, connected Lie group. 
Suppose H∗(BG; π0R) 
 H∗(BG; Z) ⊗Zπ0R and this is a polynomial ring over π0R. Sup-
pose moreover that the cohomological R-based AHSS for BG degenerates (e.g., π∗(R) is 
torsion-free). Then the R-based EMSS for BG is relevant, so that Fun(BG, Mod(R))
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is unipotent and equivalent to the symmetric monoidal ∞-category of R-complete 
F (BG+, R)-modules.

Proof of Theorem 7.35. Without loss of generality, we may assume that R is connective 
by Corollary 7.30 and replacing R by τ≥0R if necessary. Choose classes x1, . . . , xr ∈
H∗(BG; π0R) which form a system of polynomial generators, so that H∗(BG; π0R) 

π0R[x1, . . . , xr]. Let ki = |xi|. Choose lifts y1, . . . , yr ∈ R̃∗(BG), which we can by the de-
generation of the AHSS. For each i, yi classifies a self-map Σ−kiR → R in the ∞-category 
Fun(BG, Mod(R)).

Consider the coinduced object F (G+, R) ∈ CAlg(Fun(BG, Mod(R))). One has a unit 
map R → F (G+, R). Observe also that the homotopy fixed points of F (G+, R) are given 
by R itself. As a result, for each i, the composite map

Σ−kiR
yi→ R → F (G+, R)

is nullhomotopic; this follows because yi restricts to zero in π∗(R) = π∗F (∗+, R). In 
particular, for each i we obtain maps in Fun(BG, Mod(R)),

R/yi → F (G+, R).

On homotopy fixed points, these classify maps of F (BG+, R)-modules

F (BG+, R)/yi → R

that extend the map F (BG+, R) → R given by evaluating at a point. Using the 
E∞-structure on F (G+, R), we obtain a map

r⊗
i=1

R/yi → F (G+, R). (7.36)

We claim that (7.36) is an equivalence. In order to see this, it suffices (as the underlying 
R-modules of both objects are bounded below) to base change along the map R → π0R, 
so that we may assume that R is discrete. In this case, it suffices to see that the map 
(7.36) induces an equivalence on homotopy fixed points by Proposition 7.33. But this is 
the claim that we have an equivalence of F (BG+, π0R)-modules

F (BG+, π0R)/(x1, . . . , xr) 
 π0R,

which we have assumed. As a result, it follows that the coinduced object F (G+, R) ∈
Fun(BG, Mod(R)) belongs to the thick subcategory generated by the unit, so we may 
apply Proposition 7.13 and conclude unipotence. �
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We now obtain a basic result for unipotence for actions of the classical compact Lie 
groups (with 2 inverted for the SO(n) family). A classic textbook reference for the 
calculations of the cohomology of the relevant classifying spaces is [58].

Theorem 7.37. Suppose R is an E∞-ring with π∗(R) torsion-free. Then Fun(BG, Mod(R))
is unipotent if G is a product of copies of U(n), SU(n), Sp(n) for some n. If 2 is invert-
ible in R, then one can also include factors of SO(n), Spin(n). In particular, we have 
an equivalence of symmetric monoidal ∞-categories

Fun(BG,Mod(R)) 
 Mod(F (BG+, R))cpl,

where on the right we consider F (BG+, R)-modules which are complete with respect to 
the F (BG+, R)-module R.

We also include a counterexample to show the necessity of inverting 2 in the presence 
of SO(n)-factors.

Example 7.38. The ∞-category Fun(BSO(3), Mod(KU)) is not unipotent. When one 
works 2-adically, KU∗(BSO(3)) is a power series ring on one variable, but KU∗(SO(3))
has 2-torsion, and the EMSS does not converge (compare the remark at the end of 
[40, §4]).

On the other hand, we shall see that Fun(BG, Mod(KU)) is unipotent if G has no 
torsion in π1. So, there are other examples of unipotence not covered by Theorem 7.37
(such as G = Spin(n), n ≥ 4).

Finally, we note that we can recover results of Greenlees–Shipley [31].

Example 7.39. Let G be a connected compact Lie group. Then (by Proposition 7.33) 
for R = Q, the ∞-category Fun(BG, Mod(Q)) is unipotent. Therefore, we find that 
Fun(BG, Mod(Q)) is equivalent, as a symmetric monoidal ∞-category, to modules over 
F (BG+, Q) which are complete with respect to the augmentation ideal. This is closely 
related to the main result of [31].

Strictly speaking, Greenlees–Shipley work in the genuine equivariant setting in 
[31]; however, they work with free G-spectra, so that it is equivalent to work in 
Fun(BG, Mod(Q)). Moreover, they use torsion instead of complete F (BG+, Q)-modules. 
Note also that F (BG+, Q) is equivalent to a free E∞-ring over Q on a finite number of 
generators, since H∗(BG; Q) is a polynomial ring.

Fix a compact connected Lie group G. In order to make the assumptions of The-
orem 7.35 more explicit, we now determine the minimal integer n with respect to 
divisibility such that H∗(BG; Z[1/n]) is a polynomial algebra. To formulate the result, 
recall that G contains a maximal semi-simple subgroup Gss ⊂ G, and that G is homeo-
morphic to Gss×T for a torus T ⊂ G. The group Gss in turn is uniquely a finite product 
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of simple groups, the simply-connected covers of which are simply connected, simple Lie 
groups; these are classified by their Lie algebras. We refer to the finite list of Lie algebras 
thus associated with G as the types occurring in G.

Theorem 7.40. Let G be a compact connected Lie group and n ≥ 1 an integer. Then the 
following are equivalent:

1. The Z[1/n]-algebra H∗(BG, Z[1/n]) is polynomial.
2. The Z[1/n]-algebra H∗(G, Z[1/n]) is exterior.
3. The integer n is divisible by each of the following primes p:

• Each p which occurs as the order of an element of π1(G).
• The prime p = 2 if G contains a factor of type Spin(N) for some N ≥ 7, G2, F4, 

E6, E7 or E8.
• The prime p = 3 if G contains a factor of type F4, E6, E7 or E8.
• The prime p = 5 if G contains a factor of type E8.

Example 7.41. The conditions in Theorem 7.40 depend on G only through Gss. The al-
gebra H∗(BG; Z) itself is polynomial if and only if the semi-simple part of G is simply 
connected and contains none of the types listed; this holds for example for G = U(N). 
The minimal n such that H∗(BSO(N); Z[1/n]) is polynomial is n = 2: The cover 
Spin(N) → SO(N) is simple and simply connected, and the map has degree 2.

Proof of Theorem 7.40. We first show the equivalence of 2. and 3. Using the obvious 
generalization from Z- to Z[1/n]-coefficients of [17, Proposition 1.2] for X = G, we see 
that H∗(G; Z[1/n]) is exterior if and only if it is torsion-free, i.e., if and only if n is 
divisible by all primes p such that H∗(G; Z) has non-trivial p-torsion. As G 
 Gss × T , 
these are exactly the torsion primes of H∗(Gss; Z). By [17, Lemme 3.3], passage from 
Gss to its simply connected cover exactly picks up those p which divide the (finite) order 
of π1(Gss). Finally, for the semi-simple, simply connected case, the torsion primes are 
listed in [17, Théorème 2.5]. To see that 1. is equivalent to 3., we observe that by [17, 
Théorème 4.5], condition 3. in Theorem 7.40 is also equivalent to H∗(BG, Z[1/n]) being 
torsion free. By the natural adaptation of [16, Th. 19.1] to Z[1/n]-coefficients, we find 
that H∗(BG; Z[1/n]) is a polynomial algebra as desired in precisely these cases. �
7.4. The geometric argument

Let E be an E∞-ring which is complex-orientable as an E1-ring; as shown in Proposi-
tion 7.42 this condition is often satisfied in practice. In this subsection, we shall describe 
actions of compact Lie groups G on E-modules where G is a product of unitary groups. 
Rather than going through the EMSS as in the previous subsection, we shall use complex-
orientability instead and Proposition 7.13. The use of complex-orientability also appears 
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in [32], and our methods are closely related to theirs. However, our results will be strictly 
contained in Theorem 7.37.

Proposition 7.42. Suppose that E is an E2-ring and π∗E is concentrated in even degrees. 
Then there is a morphism MU → E of E1-rings.

Proof. By passing to connective covers we can assume E is connective. Using the obstruc-
tion theory of [2], it suffices to show that the composite f : BU

J→ BGL1S → BGL1E

of based spaces is null-homotopic. For this purpose, we fix a cell structure on BU

using only even dimensional cells and inductively extend a null-homotopy over the 
skeleta of BU . Since E is E2, BGL1E is a loop space and hence simple so we 
can apply elementary obstruction theory [56, §18.5]. The relevant obstructions lie in 
H̃2n+2(BU ; π2n+2BGL1E) ∼= H̃2n+2(BU ; π2n+1E) = 0 for n ≥ 0. This builds a compat-
ible sequence of based null-homotopies Hn : BU2n ∧ I+ → BGL1E and taking colimits 
gives the desired null-homotopy of f . �

For simplicity, we begin with the case of G = U(1). Choose a complex ori-
entation x : Σ−2BU(1) → E. Observe that π∗(F (BU(1)+, E)) 
 π∗(E)[[x]] :=
lim←−−π∗(E)[x]/xn where x ∈ π−2(F (BU(1)+, E)) is a class that maps to zero under 
the map F (BU(1)+, E) → E given by evaluation at a point.

We will now give a geometric proof of unipotence in the case of U(1)-actions.

Theorem 7.43. The ∞-category Fun(BU(1), Mod(E)) is unipotent. The functor of ho-
motopy fixed points is fully faithful and embeds Fun(BU(1), Mod(E)) as the subcategory 
of x-complete objects in Mod(F (BU(1)+, E)).

Proof. Let V be the standard one-dimensional complex representation of U(1). Consider 
the Euler cofiber sequence of pointed spaces with an U(1)-action

S(V )+ → S0 → SV . (7.44)

Here S(V ) denotes the unit sphere in V and SV denotes the one-point compactification 
of V . Note that S(V )+ is induced from the trivial group: it is just U(1)+ with the action 
by translation. After smashing with E, we get a cofiber sequence in Fun(BU(1), Mod(E))
given by

E ∧ U(1)+ → E → E ∧ SV . (7.45)

Now, we use the E1-complex orientation of E to give the equivalence

E ∧ SV 
 Σ2E ∈ Fun(BU(1),Mod(E)), (7.46)
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in view of the theory of orientations of [2]. This argument is crucial. To see (7.46), 
it suffices to take E = MU , and in this case one knows that MU ∧ Σ−2SV ∈
Fun(BU(1), Mod(MU)) factors through Fun(BU(1), BGL1(MU)) via the composition

BU(1) → BU
J→ BGL1(S0) → BGL1(MU),

for J the complex J-homomorphism. The composition is nullhomotopic, which implies 
that the local system of MU -modules Σ−2SV ∧ MU over BU(1) is trivial; this is the 
claim of (7.46).

Finally, in view of (7.45) and (7.46), we find that the induced object E∧U(1)+ belongs 
to the thick subcategory generated by the unit. Dualizing, we find that the coinduced 
object A = F (U(1)+, E) belongs to the thick subcategory generated by the unit. Now, 
applying Proposition 7.13, we conclude that Fun(BU(1), Mod(E)) is unipotent and is 
equivalent to the ∞-category of modules over F (BU(1)+, E) which are complete with 
respect to the F (BU(1)+, E)-module E. Since E 
 F (BU(1)+, E)/x, this completes the 
proof. �

We now give the analog for any of the unitary or special unitary groups.

Theorem 7.47. If G = U(n), SU(n), then the ∞-category Fun(BG, Mod(E)) is unipo-
tent and equivalent (via homotopy fixed points) to the ∞-category of E-complete 
EBG-modules.

Proof. We consider the case G = U(n). We will use the criterion of Proposition 7.13. 
It suffices to show that the induced object E ∧ U(n)+ belongs to the thick subcategory 
generated by the unit.

Here we can work by induction on n. Suppose the induced object E ∧ U(n − 1)+ ∈
Fun(BU(n − 1), Mod(E)) belongs to the thick subcategory generated by the unit. Let 
V be the standard representation of U(n) on Cn. Now we have a cofiber sequence as 
in (7.44), in pointed U(n)-spaces. It reads

U(n)/U(n− 1)+ → S0 → SV .

Smashing with E, we get a cofiber sequence

E ∧ U(n)/U(n− 1)+ → E → Σ2nE, (7.48)

where we used the same “untwisting” argument as in Theorem 7.43 to identify E ∧ SV

with Σ2nE.
Now, by the inductive hypothesis, the induced object E ∧ U(n − 1)+ ∈

Fun(BU(n −1), Mod(E)) belongs to the thick subcategory generated by the unit. Induc-
ing upwards to U(n), it follows that the induced object E∧U(n)+ ∈ Fun(BU(n), Mod(E))
belongs to the thick subcategory generated by E ∧ U(n)/U(n − 1)+. However, (7.48)
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shows that E∧U(n)/U(n −1)+ belongs to the thick subcategory generated by the unit in 
Fun(BU(n), Mod(E)). Therefore, by transitivity, the induced object E ∧U(n)+ belongs 
to the thick subcategory generated by the unit, and we can apply Proposition 7.13 to 
conclude the proof. �
7.5. The flag variety

In this subsection, we include the principal applications of our general categorical 
machinery to nilpotence results.

Let T ⊂ U(n) be a maximal torus, and let F 
 U(n)/T be the flag variety
of Cn. Observe that F has an action of U(n), as a topological space. Therefore, 
F+ ∈ Fun(BU(n), Sp). Our goal is to show that this action can actually be trivialized 
over a complex-oriented base. These ideas go back to [63,36].

Proposition 7.49. Let E be an E∞-ring which admits an E1-complex orientation. Then 
we have an equivalence E∧F+ 


⊕n!
i=1 Σk(i)E of objects in Fun(BU(n), Mod(E)), where 

the k(i) are even integers.

Proof. It suffices to prove this with F+ replaced by its Spanier–Whitehead dual DF+. 
Since F 
 U(n)/T , the Spanier–Whitehead dual DF+ is the coinduction of the unit from 
Fun(BT, Sp) to Fun(BU(n), Sp). Let C = Fun(BU(n), Mod(E)). Now,

HomC(1,DF+ ∧ E) 
 F (BT+, E) ∈ Mod(F (BU(n)+, E))

and this is a free F (BU(n)+, E)-module of rank n! as E∗(BT ) is a free E∗(BU(n))-module 
of rank n! with generators in even degrees by the general theory of complex-oriented 
ring spectra. By unipotence of Fun(BU(n), Mod(E)) (Theorem 7.37), this is enough to 
prove the claim. �

Although we included the general unipotence results for their own interest, Propo-
sition 7.49 can be seen directly. Consider the ∞-category Modω(E), where E ∈ SpG

is the Borel-equivariant form of E. It suffices to prove that E ∧ DF+ is a free module 
over E; this amounts to checking that the homotopy groups of E ∧ DF+ are free over 
the homotopy groups of E, for each subgroup H ⊂ G (cf. Recollection 9.11 below). This, 
however, is the formula for the complex-oriented cohomology of a flag bundle (cf. [36, 
Prop. 2.4]). We leave the details to the reader.

Theorem 7.50. Let E be an E∞-ring which admits an E1-complex orientation. Let G
be any compact Lie group. Then the thick subcategory of Fun(BG, Mod(E)) generated 
by the E ∧ G/A+, as A ≤ G ranges over the abelian subgroups, contains the unit E ∈
Fun(BG, Mod(E)).
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Proof. Embed G ≤ U(n) for some n and consider the flag variety F . As an E-module 
with U(n)-action, we saw in Proposition 7.49 that the unit is a retract of E ∧ F+ in 
Fun(BU(n), Mod(E)). Therefore, if we restrict to G and consider E ∧ F+ as an object 
in Fun(BG, Mod(E)), it contains the unit as a retract. But F , as a space with G-action, 
has abelian stabilizers and thus admits a finite cell decomposition with cells of the 
form G/A ×Dn by the equivariant triangulation theorem [39]. In particular, E ∧ F+ ∈
Fun(BG, Mod(E)) belongs to the stable subcategory generated by the G/A+ as A ≤ G

ranges over the abelian subgroups. This proves the result. �
Here again there is a variant for the orthogonal groups. Let T ⊂ SO(n) be a maximal 

torus, and let F ′ = SO(n)/T be the real flag variety. One has:

Theorem 7.51. Let E be an E∞-ring such that 2 is invertible in π0(E) and π∗(E) is 
torsion-free. Then, as an object in Fun(BSO(n), Mod(E)), the flag variety F ′

+ ∧ E is 
equivalent to a direct sum of copies of shifts of the unit.

Proof. We know by Theorem 7.37 that Fun(BSO(n), Mod(E)) is equivalent to the 
∞-category of complete modules over F (BSO(n)+, E). The hypotheses imply that the 
AHSS for E∗(BSO(n)) degenerates (as the differentials are torsion valued) and we have 
that

E∗(BSO(n)) 
 π∗(E)[u1, . . . , um], E∗(BT ) 
 π∗(E)[t1, . . . , tm],

where m is the rank of SO(n). Moreover, E∗(BT ) is a free module over E∗(BSO(n)), 
so that the same reasoning as in Proposition 7.49 can be applied. �
8. Equivariant complex K-theory

In this section, we will study the ∞-category of modules over U(n)-equivariant 
K-theory KUU(n) in the ∞-category of genuine U(n)-spectra. Our main result will 
show that the symmetric monoidal ∞-category ModSpU(n)(KUU(n)) is equivalent to the 
∞-category of modules in spectra over its categorical fixed points. More generally, we 
will be able to replace U(n) with any compact Lie group G with π1(G) torsion-free for 
this. This is a unipotence result for modules over equivariant K-theory. Note that the 
unit is compact in the genuine equivariant setting, so the completeness and convergence 
issues of the previous section do not arise.

This result (which was known to Greenlees–Shipley for G a torus) gives a new point of 
view on the classical question, considered by Hodgkin, McLeod, and Snaith, of Künneth 
spectral sequences in equivariant complex K-theory. In the following section, we will 
also treat the case of equivariant real K-theory using Galois descent. For the purposes 
of nilpotence, it gives (when combined with the equivariant K-theory of the flag variety) 
an “explicit” proof of nilpotence with respect to the family of abelian groups (as in 
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the previous section). In the sequel [54] to this paper, we shall in fact see that in this 
result, abelian subgroups can be replaced by the family of cyclic subgroups. However, 
the reduction to the abelian case is in some sense the most important (and the one that 
generalizes).

Remark 8.1. We will generally write KOG, KUG ∈ SpG for the G-spectra represent-
ing G-equivariant K-theory. When the group is clear, we will sometimes simply write 
KO, KU (especially when we want to describe the equivariant K-theory of a space).

8.1. The case of a torus

We begin with the (simpler) case of a torus. We will need to use the existence of 
E∞-structures on equivariant real and complex K-theory. These E∞-structures are es-
tablished in work of Joachim [41], and appear in Schwede’s theory of global spectra [66]. 
These results are also a consequence of forthcoming work of Lurie on elliptic cohomology 
announced in [43].

We begin with the following special case. Most of the ideas (if not the statement) 
appear in [32], and the result was known to Greenlees–Shipley.

Theorem 8.2. Let T be a torus. Then the symmetric monoidal ∞-category ModSpT
(KUT )

of modules (in T -equivariant spectra SpT ) over KUT is equivalent to Mod(i∗TKUT ).

Proof. By the Thom isomorphism, KUT is what Greenlees–Shipley [32] call complex-
stable: that is, given a representation sphere SV (for a complex representation V of the 
torus), we have an equivalence of KUT -modules SV ∧KUT 
 KUT . By [32, Lem. 4.4], 
we are done. �

For the reader’s convenience, we recall the method of argument in the case that T =
U(1). Recall that the ∞-category of U(1)-spectra is generated as a localizing subcategory 
by the U(1)/H+ as H ≤ U(1) ranges over the closed subgroups. The only possibilities are 
H = U(1) (in which case U(1)/H+ is the unit) or H = μn for some n, the group of nth 
roots of unity. In this case, one considers the one-dimensional complex representation 
Vn of U(1) given by the character z �→ zn. The unit sphere S(Vn)+ gives precisely 
(U(1)/μn)+. The cofiber sequence S(Vn)+ → S0 → SVn now shows that the ∞-category 
of U(1)-spectra is generated as a localizing subcategory by the representation spheres 
SV for V a complex representation of U(1). When one works over KUT , though, the 
complex stability enables us to include only the unit.

8.2. The general case

The purpose of this section is to give the proof of our main unipotence result for 
equivariant complex K-theory.
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Theorem 8.3. Suppose G is a compact, connected Lie group such that π1(G) is 
torsion-free. Then ModSpG

(KUG) is canonically equivalent, as a symmetric monoidal 
∞-category, to the ∞-category of module spectra over the categorical fixed points i∗GKUG.

To appreciate the possible simplification this result brings about for studying 
ModSpG

(KUG), we briefly remark on the structure of the (non-equivariant) E∞-ring 
A := i∗GKUG: it is even periodic with π1(A) = 0 and π0(A) = R(G). Landweber exactness 
shows that as a multiplicative cohomology theory, one has A∗(−) = KU∗(−) ⊗Z R(G). 
It seems an interesting question to ask if the E∞-ring A can be built from KU in a 
similarly transparent fashion.

Theorem 8.3 is equivalent, by Morita theory, to the assertion that ModSpG
(KUG) is 

generated, as a localizing subcategory, by the unit. When G is a product of copies of 
U(1) (i.e., a torus), we have already seen the proof of this (Theorem 8.2). The general 
case proceeds by restriction to a maximal torus.

The key ingredient for the general case is given by:

Lemma 8.4. Let G be a compact connected Lie group with π1(G) torsion-free. Let T ⊂ G

be a maximal torus and let F = G/T be the flag variety of G. Let X be a finite G-cell 
complex. Then KU∗

G(F ) 
 KU∗
T (∗) is a free R(G)[β±1

2 ] = KU∗
G(∗)-module, and the 

canonical map

KU∗
G(X) ⊗KU∗

G(∗) KU∗
G(F ) → KU∗

G(X × F ) ∼= KU∗
T (X) (8.5)

is an isomorphism.

Proof. Lemma 8.4 follows by combining work of Hodgkin, Snaith, and McLeod. By 
[70, Th. 3.6], the construction in [34] of a Künneth spectral sequence is relevant (i.e., 
converges to the desired limit) for π1(G) torsion-free if the natural map R(G) ⊗R(T )
R(G)[β±1

2 ] → KU∗
T (G/T ) is an isomorphism. The main result of [57] shows that this is 

in fact the case if π1(G) is torsion-free, so there is a Künneth spectral sequence with an 
edge map of the form appearing in (8.5). This implies that (8.5) is an isomorphism once 
we know that the representation ring R(T ) is free over R(G); this is a theorem of Pittie 
[60, Thm. 1]. �

The map (8.5) can be rewritten as follows. As before, we let i∗G denote categorical 
fixed points i∗G : SpG → Sp. The equivariant K-theory of a finite G-cell complex X is 
obtained as

KU∗
G(X) = π−∗i

∗
G(DX+ ∧KUG),

where X+ denotes the suspension spectrum of X in SpG and D denotes Spanier–
Whitehead duality. We will need this in the following form.
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Lemma 8.6. Let G be a compact connected Lie group with π1(G) torsion-free and let 
T ⊂ G and F = G/T be as above. Then for any M ∈ ModSpG

(KUG), the map

R(T ) ⊗R(G) π∗i
∗
GM → π∗i

∗
TM 
 π∗i

∗
G (M ∧ DF+) (8.7)

is an isomorphism.

The last map in (8.7) is an isomorphism for tautological reasons: M ∧ DF+ is the 
coinduction of the restriction of M to SpT in view of the projection formula.

Proof. We observe that there is a natural map, since the right-hand side is linear 
over R(T ). It is a natural transformation of homology theories in ModSpG

(KUG), and 
Lemma 8.4 implies that it is an isomorphism if M is the Spanier–Whitehead dual of 
the suspension spectrum of a finite G-cell complex. This implies that it is true in gen-
eral, since the duals of suspension spectra of finite G-cell complexes generate SpG under 
colimits. �
Proof of Theorem 8.3. Let G be as hypothesized. If G is a torus, we are already done. 
Let M ∈ ModSpG

(KUG). Suppose that i∗GM = 0; we want to show that M is itself 
contractible. If we can prove this, then we will have proved Theorem 8.3 because as 
i∗G(−) 
 HomModSpG

(KUG)(KUG, −) we will then know that the compact unit 1 generates 
ModSpG

(KUG) as a localizing subcategory.
Choose a maximal torus T ⊂ G. By Lemma 8.6, we find that π∗(i∗TM) = 0. In 

view of Theorem 8.2, this implies that the restriction of M to T (i.e., as an object of 
ModSpT

(KUT )) is contractible. Since restriction is symmetric monoidal, it follows that 
for any G-space X, the restriction of M ∧X+ to SpT is contractible; in particular, for 
any such X,

i∗T (M ∧X+) = 0.

But by Lemma 8.6 again, this implies that

i∗G(M ∧X+) = 0,

and since we had this for any X, we find that M = 0 itself, as the Spanier–Whitehead 
duals of the finite G-cell complexes X generate SpG as a localizing subcategory. �
Remark 8.8. Our analysis relied on deep work of Hodgkin, Snaith, and McLeod. In the 
case when G is a product of unitary groups (which is the essential case for nilpotence 
results), the results needed are much more elementary. Namely, instead of Lemma 8.6, 
one can use:
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Lemma 8.9 ([68, Prop. 3.9]). Let X be a finite G-cell complex and let V be any complex 
G-representation. Let P(V ) be the projectivization of V considered as a G-space. Then 
KU∗

G(P(V )) is a free R(G)[β±1
2 ] = KU∗

G(∗)-module, and the map

KU∗
G(X) ⊗KU∗

G(∗) KU∗
G(P(V )) → KU∗

G(X × P(V )) (8.10)

is an isomorphism.

One can carry out the above strategy of proof, using Lemma 8.9 to replace a copy of 
U(n) by a copy of U(n − 1) × U(1).

Although our analysis relied on classical work on the equivariant Künneth spectral 
sequence, the main result (Theorem 8.3) gives a new interpretation of this spectral 
sequence. Namely, let G be a compact, connected Lie group with π1(G) torsion-free. If 
X is a finite G-cell complex, then one has KU∗

G(X) 
 π∗i
∗
G(KUG ∧DX+). In particular, 

to every such X, we can associate the KUG-module KUG∧DX+ and its categorical fixed 
points MX := i∗G(KUG ∧DX+) ∈ Mod(i∗GKUG). The homotopy groups of the spectrum 
MX give precisely the equivariant K-theory of X.

Since we have seen a symmetric monoidal equivalence ModSpG
(KUG) 
 Mod(i∗GKUG)

(where the latter takes place in the world of nonequivariant spectra), it follows that the 
association X �→ MX ∈ Mod(i∗GKUG) is symmetric monoidal. The Künneth spectral 
sequence can thus be recovered as the classical Tor-spectral sequence for modules over 
the (nonequivariant) E∞-ring spectrum i∗GKUG.

Let G be a general compact connected Lie group. In this generality, we do not know 
how to describe the ∞-category ModSpG

(KUG). However, we note that:

Proposition 8.11. If G is connected, the flag variety KUG∧(G/T )+ is a compact generator 
of ModSpG

(KUG).

The argument presented here shows that the above result is a consequence of 
Atiyah’s “holomorphic transfer” [3]. The identification of the holomorphic transfer and 
a spectrum-level transfer as a consequence of index theory is discussed in [23, §4.3] for 
the unitary group. See also [59] for a discussion of these transfer maps. We have spelled 
out the details for the convenience of the reader.

Proof. The key step is to show that the unit KUG is a retract of KUG ∧ (G/T )+. Let 
τ denote the tangent bundle of the flag variety F = G/T and let F τ denote its Thom 
space, the latter considered as a pointed G-space. Since G/T is a complex manifold, we 
have a Thom isomorphism

G/T+ ∧KUG 
 F τ ∧KUG ∈ ModSpG
(KUG).

It suffices now to show that the unit is a retract of F τ ∧KUG.
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To see this, embed the flag variety F ⊂ W for W a real G-representation. As a result, 
we have an embedding τ ⊂ TW 
 W ⊗RC and a consequent Pontryagin–Thom collapse 
map

SW⊗RC → F τ+ν ,

for ν the normal bundle of τ ⊂ TW . After smashing with K-theory, we obtain a map 
KUG → F ν+τ ∧KUG 
 F τ ∧KUG by the Thom isomorphism. We will show that there 
exists a map F τ → KUG such that the induced composite KUG → F τ ∧KUG → KUG

is an equivalence. In other words, we will produce a class in K̃U
0
G(F τ ) whose pullback 

to K̃U
0
G(SW⊗RC) 
 R(G) is a unit.

Indeed, the pull-back map K̃U
0
G(F τ ) → K̃U

0
G(SW⊗RC) is given by the analytic index

by the Atiyah–Singer index theorem [5]. As a result, one has to produce a G-equivariant 
elliptic differential operator (or complex) on F whose index in R(G) is one-dimensional. 
We can take the Dolbeaut complex of the complex manifold F . By a special case of the 
Borel–Weil–Bott theorem, the coherent cohomology H∗(F, O) is one-dimensional and 
concentrated in degree zero (with trivial G-action). It follows that the associated class 
in K̃U

0
G(F τ ) (which is the Thom class of the complex tangent bundle) has the desired 

property, and we get the splitting.
As a result, for any KUG-module M , the natural map π∗i∗GM → π∗i∗TM is canoni-

cally a (split) injection. We now leave it to the reader to show, imitating the proof of 
Theorem 8.3, that if M is such that π∗i∗TM = 0, then M itself is contractible: in other 
words, the flag variety is a compact generator. �

The above argument with the holomorphic transfer underscores the importance of the 
flag variety in proving the above statements: in fact, the argument in [70] regarding the 
Künneth spectral sequence goes through the holomorphic transfer too.

Remark 8.12. We can translate the proof of the main result of [70] into our language, too. 
Suppose π1(G) is torsion-free, so that R(T ) ⊗R(G) R(T )[β±1

2 ] 
 KU∗
G(G/T ×G/T ) and 

R(T ) is free over R(G) (by [57] and [60]). We apply Lemma 7.18 now to the thick subcat-
egory of ModSpG

(KUG) generated by the unit and the flag variety (which is self-dual by 
the Wirthmüller isomorphism). It follows from Lemma 7.18 that this thick subcategory 
is generated by the unit. However, Proposition 8.11 implies that this thick subcategory 
consists precisely of the compact objects, so ModSpG

(KUG) is unipotent as desired.

8.3. The Borel-completion

We can Borel-complete Theorem 8.3 to obtain a strengthening of our “Koszul duality” 
result Theorem 7.37 in the case of (nonequivariant) K-theory. We find:



1072 A. Mathew et al. / Advances in Mathematics 305 (2017) 994–1084
Theorem 8.13. Let G be a compact, connected Lie group with π1(G) torsion-free. Then the 
∞-category Fun(BG, Mod(KU)) is unipotent and equivalent as a symmetric monoidal 
∞-category to KU -complete modules over F (BG+, KU).

Proof. Let R̂(G), R̂(T ) be the completions of the representation rings R(G), R(T ) at the 
respective augmentation ideals IG ⊂ R(G), IT ⊂ R(T ). By the Atiyah–Segal completion 
theorem [4], these give precisely π0 of F (BG+, KU) and F (BT+, KU). Note that the 
map R(G) → R(T ) exhibits R(T ) as a finite module over R(G) by [69, Prop. 3.2], and 
that the IT -adic topology on R(T ) is equivalent to the IG-adic one [69, Cor. 3.9]. In any 
event, we find that

R̂(G) ⊗R(G) R(T ) → R̂(T ) (8.14)

is an isomorphism.
By Proposition 7.13, it suffices to show that the induced object KU ∧ G+ ∈

Fun(BG, Mod(KU)) belongs to the thick subcategory generated by the unit. Inducing 
upwards from Fun(BT, Mod(KU)) (where we already know the result by Theorem 7.35), 
we see that it belongs to the thick subcategory generated by KU ∧ (G/T )+, so it suffices 
to show that the flag variety G/T+ belongs to the thick subcategory generated by the 
unit. Note first that the flag variety is self-dual in Fun(BG, Mod(KU)) in view of the 
Wirthmüller isomorphism and complex orientability. As a result, Lemma 7.18 shows that 
it suffices to prove that the natural map

(KU ∧ F+)hG ⊗F (BG+,KU) (KU ∧ F+)hG → (KU ∧ F+ ∧ F+)hG (8.15)

is an equivalence. Indeed, we can then apply Lemma 7.18 for C = Modω(F (BG+, KU))
the ∞-category of perfect F (BG+, KU)-modules, and D the thick subcategory of 
Fun(BG, Mod(KU)) generated by the unit and KU ∧F+; the result implies that C = D.

However, in view of the discussion in (8.14), it is a consequence of the Atiyah–Segal 
completion theorem and Lemma 8.4 that (8.15) is an equivalence. �
8.4. Applications to nilpotence

As before, we can obtain:

Corollary 8.16. Let G be a compact, connected Lie group with torsion-free π1 and let T ⊂
G be a maximal torus. Let F = G/T . Then we have an equivalence in ModSpG

(KUG),

KUG ∧ DF+ 

⊕
m

KUG

for some integer m.
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Proof. This follows from Theorem 8.3 and the fact (due to [60]) that the KU∗
G(F ) 


R(T )[t±1] is a free module over R(G)[t±1]. �
Applying Theorem 8.13, one obtains:

Corollary 8.17. Let G be a compact connected Lie group with torsion-free π1 and let 
F = G/T be the flag variety as before. Then, as an object of Fun(BG, Mod(KU)), 
F+ ∧KU is a direct sum of copies of the unit.

Finally, as before we can obtain the nilpotence statement. Again, the full strength of 
unipotence is not really necessary for this argument: the freeness of the flag variety is 
equivalent to the projective bundle formula in equivariant K-theory.

Corollary 8.18. If G is a finite group, then KUG ∈ SpG is nilpotent for the family of 
abelian subgroups.

Proof. Embed G ≤ U(n) and consider the action of G on F = U(n)/T for T ⊂ U(n) a 
maximal torus. We have DF+ ∧ KUU(n) 


⊕n!
1 KUU(n) by Corollary 8.16. Restricting 

down to G, we have ResU(n)
G KUU(n) 
 KUG and we get

DF+ ∧KUG 

n!⊕
1

KUG.

Choosing a triangulation of F with abelian stabilizers in G, we can conclude the proof 
as before. �
9. Equivariant real K-theory

Let G be a compact Lie group. In this section, we will analyze G-equivariant real
K-theory. Our main goal is to extend the results in the previous section to KOG-modules 
in SpG, as well as to develop a Galois descent picture for equivariant K-theory. In 
particular, we will obtain an F -nilpotence result for KOG for G finite (for F the family 
of abelian subgroups).

Our main tool, which we will start with, is an equivariant version of the equivalence 
KO∧Σ−2CP2 
 KU . This will enable us to “descend” (via thick subcategory arguments) 
many results for KUG to KOG. As a result, we will prove a similar unipotence result 
for KOG-modules. When combined with techniques from [53] for G = U(n), we will 
be able to prove that the equivariant complexification map KOG → KUG is a faithful 
C2-Galois extension of E∞-rings in SpU(n) (which we will then deduce for any compact 
Lie group G). The Galois picture was first developed nonequivariantly by Rognes [65]
and has numerous applications.
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9.1. Complexification in equivariant K-theory

The key ingredient in the proof below of the equivariant version of Wood’s theorem 
(Theorem 9.8) is an analysis of the complexification map

K̃O
∗
G(CP2) → K̃U

∗
G(CP2).

This mostly reduces to a purely non-equivariant calculation, since CP2 is regarded here 
as a space with trivial G-action. First of all, by [68, Prop. 2.2], we have a natural 
isomorphism K̃U

∗
G(CP2) 
 R(G) ⊗ K̃U

∗
(CP2). However, the picture is somewhat more 

complicated for equivariant KO. In this subsection, we discuss the equivariant real and 
complex K-theory of spaces with trivial G-action and give a complete analysis of the 
(equivariant) complexification map.

Definition 9.1. Given an irreducible representation V of G over C, recall that there are 
three possibilities:

1. The representation V is not self dual as a G-representation over C. In this case, the 
real representation V |R underlying V is irreducible, and EndG,R(V |R) 
 C.

2. The underlying real representation V |R is not irreducible as a real representation. 
Thus, V contains an R-subspace VR ⊂ V which is G-stable. One has VR ⊗R C 
 V . 
As a complex representation, we have V 
 V ∗. Moreover, EndG(VR) 
 R.

3. The representation V is self-dual as a G-representation over C, but V |R is irreducible. 
In this case, EndG,R(V |R) 
 H.

Given an irreducible representation W of G over R, there are three corresponding 
possibilities:

1. There is an isomorphism EndG(W ) 
 C, and W arises as the restriction of an 
irreducible complex representation V of type 1. If it arises as the restriction of V , it 
equivalently arises as the restriction of V ∗. In this case, W is called complex.

2. There is an isomorphism W 
 VR for an irreducible V of type 2. In this case, 
EndG(W ) = R. In this case, W is called real.

3. The representation W is the restriction of some V of type 3; in this case EndG(W ) =
H and W is called quaternionic.

Definition 9.2. Given a compact Lie group, we let RO(G) denote the Grothendieck group 
of real finite-dimensional G-representations, as usual. Thus, RO(G) is a free abelian 
group on the isomorphism classes of irreducible G-representations over R.

We let ROR(G) ⊂ RO(G) denote the subgroup spanned by the classes of those 
representations which are real (in the sense of Definition 9.1), ROC(G) ⊂ RO(G) the sub-
group spanned by the classes of those representations which are complex, and ROH(G)
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. 
the subgroup spanned by those that are quaternionic. We thus obtain a decomposition 
RO(G) = ROR(G) ⊕ROC(G) ⊕ROH(G).

We now need the following result, in which KSp denotes symplectic or quaternionic 
K-theory.

Proposition 9.3 ([68, pp. 133–134]). Let X be a finite CW complex given trivial G-action. 
Then we have natural isomorphisms

KU∗
G(X) 
 R(G) ⊗KU∗(X), (9.4)

KO∗
G(X) 
 ROR(G) ⊗KO∗(X) ⊕ROC(G) ⊗KU∗(X) ⊕ROH(X) ⊗KSp∗(X). (9.5)

We note that the first isomorphism is C2-equivariant for the complex conjugation on 
all sides: in particular, including the C2-action on R(G). The second decomposition arises 
as follows in degree zero (by suspending and using periodicity, one gets the general case). 
Given a complex G-representation V and a complex vector bundle W on X, we form 
the G-equivariant real vector bundle V ⊗C W. The other two summands are interpreted 
similarly.

We will need to describe the complexification map KO∗
G(X) → KU∗

G(X) with re-
spect to the above decompositions. Without loss of generality (up to replacing X by a 
suspension), we take ∗ = 0.

1. On ROR(G) ⊗ KO0(X), the complexification map behaves as follows: given a real 
G-representation V and a real vector bundle W ∈ KO0(X), the class [V ] ⊗ [W] maps 
to [VC] ⊗ [WC].

2. On ROC(G) ⊗KU0(X), the complexification map behaves as follows: given a complex 
G-representation V and a complex vector bundle W ∈ KU0(X), the class [V ] ⊗ [W]
maps to [V ] ⊗ [W] + [V ∗] ⊗ [W∗]. This follows from unwinding the definitions: one 
has to complexify the G-equivariant real vector bundle (which is the restriction of a 
G-equivariant complex vector bundle) V ⊗C W.

3. On ROH(G) ⊗KSp0(X), the complexification map is the most complicated. Given 
a quaternionic representation V (where we interpret the H action on the right) and 
a quaternionic vector bundle W on X, the associated equivariant real vector bundle 
is V ⊗H W.
The complexification is therefore the equivariant complex vector bundle VC ⊗H⊗RC WC

Here VC has a right action of H ⊗RC 
 M2(C) and WC has a left action of M2(C). In 
general, we recall that the category of left (resp. right) M2(C)-modules is equivalent 
to the category of C-vector spaces, and the M2(C)-linear tensor product between 
a right and left M2(C)-module corresponds to the C-linear tensor product between 
vector spaces.
In particular, we can describe the equivariant C-vector bundle VC ⊗H⊗RC WC as fol-
lows. The M2(C)-module with G-action VC corresponds to a complex representation 
V ′ of G, and the M2(C)-bundle WC over X corresponds to a C-vector bundle W ′
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over X. It is easy to see that V ′ satisfies V ′ 
 (V ′)∗ and the underlying real repre-
sentation V (which is still irreducible) is the underlying real representation of V ′. In 
any event, the complexification carries [V ] ⊗ [W] �→ [V ′] ⊗ [W ′].

In order to make this useful, we will need to describe more explicitly the map 
φ : KSp0(X) → KU0(X) (which sends an H-bundle W to the complex vector bundle 
associated to the M2(C)-bundle WC via the Morita equivalence between M2(C) and C). 
In particular, we will need to know that the following diagram is commutative

KSp0(X)




φ
KU0(X)




KO4(X) KU4(X).

(9.6)

Here, the vertical arrows are Bott periodicity and the bottom horizontal map is the usual 
complexification from real to complex K-theory.

To see the commutativity of this diagram, we use the fact that the natural transfor-
mation KSp0 → KU0 comes from a map of KO-module spectra KSp 
 Σ4KO → KU . 
Since this map, for X = ∗, carries the class of the H-module H to the class of the 
C-module C2, it induces multiplication by 2 in π0. Therefore, one sees that the induced 
map of KO-module spectra Σ4KO → KU is the complexification map Σ4KO → Σ4KU

followed by Bott periodicity Σ4KU 
 KU .

9.2. The equivariant Wood theorem

We recall first:

Theorem 9.7 (Wood). One has an equivalence of KO-module spectra KU 
 KO ∧
Σ−2CP2.

A proof of this result (as well as an analog for TMF ) can be found in [52]. In [52], 
the strategy is to take the C2-action on KU given by complex conjugation and define
KO 
 KUhC2 . Wood’s theorem is proved by showing that KU ∧Σ−2CP2, as a spectrum 
with C2-action, is the coinduced object F (C2+, KU).

The main goal of this subsection is to prove an equivariant analog of Theorem 9.7:

Theorem 9.8. Let G be a compact Lie group. One has an equivalence of KOG-modules 
in SpG, KOG ∧ Σ−2CP2 
 KUG.

We note that the CP2 that enters here is the ordinary one: that is, it is treated as 
a pointed space with trivial G-action. As in Theorem 9.7, the C2-action on KUG will 
play an important role in this analysis. However, unlike in the setting of Theorem 9.7, 
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we do not want to assume an equivalence of the form KOG 
 KUhC2
G in SpG; we will 

instead prove this as a corollary. Our strategy instead is to build on the known result 
(Theorem 9.7) and analyze directly the map

KOG ∧ D(CP2) → KUG ∧ D(CP2) (9.9)

in homotopy. It will be convenient to work with the (equivalent, up to a shift) 
Spanier–Whitehead duals, since this amounts to understanding the map K̃O

∗
G(CP2) →

K̃U
∗
G(CP2). Our goal is to show that this map is injective with image the C2-invariants 

in K̃U
∗
G(CP2).

To begin with the proof of Theorem 9.8, we give a description of the equivariant real 
K-theory of CP2. Our technical tool is the following:

Proposition 9.10. Let G be a compact Lie group. Then for any i, K̃O
i

G(CP2) →
K̃U

i

G(CP2) is injective with image the C2-invariants in K̃U
i

G(CP2).

Proof. Consider the space CP2. We denote by ψ the complex conjugation action. Then 
we will need to use the following facts from nonequivariant K-theory:

1. K̃O
i
(CP2) = Z for i even and vanishes for i odd. For i even, we let zi ∈ K̃O

i
(CP2)

be a generator.
2. For i even, K̃U

i
(CP2) 
 Z2, generated by classes xi, yi with ψxi = yi. For i odd, 

K̃U
i
(CP2) = 0.

3. Under complexification, the map K̃O
i
(CP2) → K̃U

i
(CP2) is injective with image 

precisely the C2-invariants. That is, (up to multiplying by a sign) complexification 
maps zi �→ xi + yi.

Observe first that by 2., we know that K̃U
∗
G(CP2) 
 R(G) ⊗K̃U

∗
(CP2) is a coinduced 

C2-representation. As a C2-representation, R(G) is a direct sum of copies of Z (one for 
each irreducible G-representation over C of type 1 or 3 in the sense of Definition 9.1) 
and Z[C2] (one for each irreducible representation of type 2).

Now, we analyze the complexification map

c : K̃O
i

G(CP2) → K̃U
i

G(CP2),

which is the effect of (9.9) in homotopy. For i odd, both sides vanish, so we may consider 
only the case i even. Using Proposition 9.3 applied to the suspensions of CP2, we obtain 
a decomposition of the left-hand-side into three pieces that we analyze separately, using 
the discussion in the previous subsection.

1. On ROR(G) ⊗ K̃O
i
(CP2), c is an injection with image given by Rreal(G) ⊗

Z {xi + yi} ⊂ K̃U
0
G(CP2). Here Rreal(G) denotes the free abelian group on the com-
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plex irreducible representations of type 2 in Definition 9.1. The map carries the class 
of [V ] ⊗ zi to [VC] ⊗ (xi + yi).

2. On ROC(G) ⊗ K̃U
i
(CP2), c behaves as follows. If [V ] ∈ ROC(G) is the class of an 

irreducible representation of G obtained as the restriction of a complex irreducible 
W , then c acts on the classes [V ] ⊗ xi, [V ] ⊗ yi as:

c([V ] ⊗ xi) = [W ] ⊗ xi + [W ∗] ⊗ yi, c([V ] ⊗ yi) = [W ] ⊗ yi + [W ∗] ⊗ xi.

3. Consider finally ROH(G) ⊗ K̃Sp
0
(CP2). Let V be a C-representation whose restric-

tion to R is an irreducible quaternionic representation, denoted the same. Given a 

generator wi ∈ K̃Sp
i
(CP2), the associated class in K̃U

i
(CP2) (obtained by complex-

ification together with Morita equivalence) is xi + yi, thanks to (9.6). Therefore, we 
have

c([V ] ⊗ wi) = [V ] ⊗ (xi + yi).

From this, and the description of R(G) as a C2-representation, the proposition fol-
lows. �

The proof of Theorem 9.8 will require a little bookkeeping, and we begin with some 
recollections on equivariant homotopy groups.

Recollection 9.11. Let G be a compact Lie group. Let A ∈ Alg(SpG) be an associative 
algebra in SpG. For each H ≤ G, we define πH

∗ (A) = π∗HomSpG
(G/H+, A) = π∗i∗HA. 

Each πH
∗ (A) is a ring, and as H varies these rings are equipped with restriction homo-

morphisms

ResH
′

H : πH′

∗ A → πH
∗ A.

Given a module M ∈ ModSpG
(A), we can define the homotopy groups {πH

∗ (M)}H≤G, 
which come with restriction homomorphisms of their own and form a module over {
πH
∗ (A)

}
.

Note that the maps of A-modules A → M are classified by the elements of πG
0 (M). 

Suppose for instance that there exist elements x1, . . . , xn ∈ πG
0 (M) such that for each 

H ≤ G, the 
{
ResGHxi

}
⊂ πH

0 (M) form a basis for the πH
∗ (A)-module πH

∗ (M). In this 
case, we get maps xi : A → M which yield an equivalence of A-modules An 
 M .

Proof of Theorem 9.8. Recall that K̃U
0
G(CP2) 
 R(G) ⊗Z Z {x, y} for classes x, y which 

are interchanged under complex conjugation. We have an equivalence of KUG-modules

KUG ∨KUG 
 KUG ∧ D(CP2) (9.12)
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classified by the elements x, y: the elements x, y produce a map, and it is an equivalence 
because the restrictions of x, y to K̃U

∗
H(CP2) form an R(H)-basis for any H ≤ G. As a 

result, we can consider a map

f : KUG ∧ D(CP2) → KUG,

which, on homotopy, sends x �→ 1 and y �→ 0. For each subgroup H ≤ G, one sees that 
the induced map

(
πH
∗ (KUG ∧ D(CP2))

)C2 → πH
∗ (KUG ∧ D(CP2)) 
 K̃U

∗
H(CP2) → πH

∗ (KUG)

is an isomorphism. It follows easily that the composition

KOG ∧ D(CP2) → KUG ∧ D(CP2) 
 KUG ∨KUG
f→ KUG

is an equivalence, by comparing with Proposition 9.10. �
As a result, we can also obtain the homotopy fixed point relation between real and 

complex K-theory, equivariantly.

Corollary 9.13. The natural map KOG → KUhC2
G in SpG is an equivalence.

Proof. It suffices to show that the natural map KOG ∧ D(CP2) → (KUG ∧ D(CP2))hC2

is an equivalence, because the thick subcategory that Σ∞CP2 generates is all of finite 
spectra by the nilpotence of η. This in turn can be checked on πH

∗ for each subgroup 
H ≤ G. Now the map πH

∗ (KOG ∧ D(CP2)) → πH
∗ (KUG ∧ D(CP2)) is injective and has 

image the C2-invariants in the target, by Proposition 9.10. However, we have

πH
∗ ((KUG ∧ D(CP2))hC2) 
 πH

∗ (KUG ∧ D(CP2))C2

because the homotopy fixed point spectral sequence degenerates: the C2-representation 
is induced. �
9.3. Unipotence and nilpotence results

Using Theorem 9.8, we will now prove an analog of Theorem 8.3 for KO.

Theorem 9.14. Suppose G is a compact, connected Lie group such that π1(G) is 
torsion-free. Then ModSpG

(KOG) is canonically equivalent, as a symmetric monoidal 
∞-category, to the ∞-category of module spectra over the categorical fixed points i∗GKOG.

Proof. Suppose M is a KOG-module (in SpG) whose categorical fixed points are trivial, 
i.e., i∗GM is contractible. We need to show that M is contractible; by Lemma 7.6, this 
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will suffice for the theorem. To see this, we observe that if i∗G(M) is contractible, then 
i∗G(M ∧ D(CP2)) is contractible as well. However, M ∧ D(CP2) is a KUG-module by 
Theorem 9.8, so by Theorem 8.3, it follows that M ∧ D(CP2) is contractible. Now, the 
thick subcategory that D(CP2) generates in finite spectra contains the sphere S0 by the 
nilpotence of η, so that M is contractible itself. �

Using similar logic, one easily obtains:

Proposition 9.15. Let G be a finite group and F a family of subgroups of G. Then KOG ∈
FNil if and only if KUG ∈ FNil. In particular, KOG is nilpotent for the family of abelian 
subgroups.

Remark 9.16. In the sequel [54] to this paper, we will give another approach to the 
F -nilpotence of KOG using the spin orientation. We will actually show that KOG is 
nilpotent for the family of cyclic subgroups.

9.4. The Galois picture

Let G be a compact Lie group. In the theory of structured ring spectra, it is known 
by work of Rognes [65] that the complexification map KO → KU is a faithful C2-Galois 
extension: that is, it behaves like a C2-torsor in ordinary algebraic geometry. As a conse-
quence, it is for instance possible to carry out a form of Galois descent along KO → KU . 
In this final subsection, we prove that an analogous picture holds equivariantly. We refer 
to [51] for preliminaries on Galois theory in a symmetric monoidal, stable ∞-category.

Theorem 9.17. The natural map KOG → KUG, together with the C2-action on KUG, 
exhibits KUG as a faithful C2-Galois extension of KOG in SpG.

Proof. Choose an embedding G ≤ U(n). In this case, one obtains a symmetric 
monoidal, cocontinuous functor ResU(n)

G : SpU(n) → SpG that carries KOU(n), KUU(n)
to KOG, KUG. As a result, it suffices to show that KOU(n) → KUU(n) is a faithful 
C2-Galois extension in SpU(n).7

In this case, the equivalence of Theorem 9.14 shows that it suffices to prove that if 
A = i∗U(n)KUU(n), then the natural map

AhC2 → A, (9.18)

exhibits A as a faithful C2-Galois extension of A (in the category of non-equivariant 
spectra).We will prove this using the affineness machinery of [53]; one can also argue 
directly using Theorem 9.7.

7 Recall that faithful Galois extensions are preserved by symmetric monoidal left adjoints.
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Observe that A is an even periodic E∞-ring, with π0(A) 
 R(U(n)), with a 
C2-action. It follows that we can associate to A a formal group over R(U(n)), 
given by SpfA0(CP∞) 
 SpfR(U(n))[[x]]. One sees that the associated formal group 
law over SpecR(U(n)) is isomorphic to Ĝm (i.e., A∗(CP∞) = KU∗

U(n)(CP
∞) =

R(U(n))⊗̂KU∗(CP∞), etc.). One concludes that the unique map of schemes

SpecR(U(n)) → SpecZ

is such that the formal group SpfA0(CP∞) over SpecR(U(n)) is pulled back from Ĝm

over SpecZ.
Now, A has a C2-action. Thus, SpecR(U(n)) has a C2-action from complex conjuga-

tion, and the formal group over SpfA0(CP∞) has one too. In the language of [53], we 
obtain a diagram

SpecR(U(n))/C2 → SpecZ/C2 → MFG,

for MFG the moduli stack of formal groups. Observe now that the first map 
SpecR(U(n))/C2 → SpecZ/C2 is affine (as the C2-quotient of the affine map 
SpecR(U(n)) → SpecZ) and the map (SpecZ)/C2 → MFG is affine. Therefore, the 
composition SpecR(U(n))/C2 → SpecZ/C2 → MFG is affine. By [53, Th. 5.8] (see also 
[53, §2.5]), we obtain that the map (9.18) exhibits A as a faithful C2-Galois extension 
of AhC2 . �
Example 9.19. We briefly calculate the homotopy fixed point spectral sequence (HFPSS) 
for πG

∗ KOG 
 πG
∗ (KUG)hC2 as a modification of the (classical) computation when G = 1. 

First of all, we know that πG
∗ KUG 
 R(G)[β±1

2 ] where |β2| = 2. The C2-action on R(G)
is such that

R(G) =
⊕
V

Z⊕
⊕
V ′

Z⊕
⊕
W

Z[C2].

Here V ranges over isomorphism classes of irreducible C-representations of type 2 
(in the sense of Definition 9.1), V ′ ranges over isomorphism classes of irreducible 
C-representations of type 3. Finally, W ranges over isomorphism classes of complex 
representations of type 1, up to the action W �→ W ∗. Moreover, the C2-action on the 
Bott element is by the sign representation.

It follows easily that, at the E2-page the HFPSS for πG
∗ (KOG) is a direct sum of 

copies of the HFPSS for π∗(KO), one for each V and V ′, together with a sum of copies, 
one for each W , of Z[β±1

2 ] concentrated on the 0-line. Observe that the last component 
is necessarily given by permanent cycles because these classes come from KO∗

G(∗).
We now analyze the remaining classes. Recall first that the E2-page for π∗(KO)

is given by Z[β±2, η]/(2η) where β has bidegree (s, t) = (0, 2) and η has bidegree 
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(s, t) = (1, 2). It follows that the E2-page for πG
∗ (KOG), when we ignore the contri-

butions from W ’s, is given by the free module over Z[β±2, η]/(2η) · [1]

E∗,∗
2 = Z[β±2, η]/(2η) {[V ], [V ′]} .

We conclude that d2 = 0 holds for degree reasons. In the spectral sequence for π∗(KO), 
it is well-known that one has the differential d3(β2) = η3. This differential must happen 
here, too, i.e. we have d3(β2 · [1]) = η3 · [1]. The classes [V ] survive to KO0

G(∗) = RO(G)
and are therefore permanent cycles and by multiplicativity one has d3(β2 · [V ]) = η3 · [V ]. 
However, the classes [V ′] do not survive to KO0

G(∗) and necessarily support differentials. 
Since β2 · [V ′] survives to KO−4

G (∗) (thanks to (9.6)), we find that β2 · [V ′] is a permanent 
cycle. Using multiplicativity again, we get d3([V ′]) = η3β−2 · [V ′]. This determines the 
entire spectral sequence as being the direct sum of shifts by 0 and 4 of the π∗(KO)-HFPSS 
as well as the degenerate components coming from complex representations.
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