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Abstract. We prove that TR is corepresentable by the reduced topological Hochschild homology
of the flat affine line SŒt � as a functor defined on the1-category of cyclotomic spectra with values
in the1-category of spectra with Frobenius lifts, refining a result of Blumberg–Mandell. We define
the notion of an integral topological Cartier module using Barwick’s formalism of spectral Mackey
functors on orbital1-categories, extending the work of Antieau–Nikolaus in the p-typical setting.
As an application, we show that TR evaluated on a connective E1-ring admits a description in terms
of the spectrum of curves on algebraic K-theory, generalizing the work of Hesselholt and Betley–
Schlichtkrull.
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1. Introduction

Topological cyclic homology provides an effective tool for studying the invariant deter-
mined by algebraic K-theory by means of the cyclotomic trace. The classical construc-
tion of topological cyclic homology using equivariant stable homotopy theory given by
Bökstedt–Hsiang–Madsen [18] is facilitated by another invariant called TR together with
the additional structure of an operator referred to as the Frobenius. In [59], Nikolaus–
Scholze demonstrate that the construction of topological cyclic homology admits a dras-
tic simplification bypassing the use of equivariant stable homotopy theory, and Bhatt–
Morrow–Scholze [12] use the foundational work of Nikolaus–Scholze to construct mot-
ivic filtrations on topological Hochschild homology and its variants identifying the graded
pieces with completed prismatic cohomology in the sense of Bhatt–Scholze [13]. The
invariant given by TR carries important arithmetic information by itself. The calcula-
tions of the p-adic K-theory of local fields obtained by Hesselholt–Madsen [41, 42] and
Geisser–Hesselholt [30] rely on the relationship between TR and the de Rham–Witt com-
plex with log poles. In particular, Hesselholt–Madsen [41] confirmed the Lichtenbaum–
Quillen conjecture for p-adic fields prior to the work of Rost–Voevodsky on the Bloch–
Kato conjecture [66, 67]. These calculations are in turn based on the previous work of
Hesselholt [38] and Hesselholt–Madsen [40].

1.1. Statement of results

If I � A is a two-sided ideal of a ring A, then the relative algebraic K-theory spectrum
K.A; I / is defined as the fiber of the map of spectra K.A/! K.A=I / induced by the
canonical ring homomorphism A! A=I . The starting point of this paper is the following
result of Hesselholt [38, Theorem 3.1.10], which asserts that ifR is a commutative Z=pj -
algebra for some integer j � 1, then there is a natural equivalence of p-complete spectra

TR.R/ ' lim
 �

�K.RŒt �=tn; .t//:

The inverse limit appearing on the right hand side of the equivalence is referred to as the
spectrum of curves on the algebraic K-theory of R, and was defined by Hesselholt [38]
based on previous work of Bloch [14] on the relationship between crystalline cohomology
and algebraic K-theory. Betley–Schlichtkrull [11, Theorem 1.3] extend the result above
to associative rings after profinite completion, where TR is replaced by TC. In this case,
the inverse limit defining the spectrum of curves on K-theory is replaced by a limit over a
diagram which additionally encodes the transfer maps RŒt�=tm ! RŒt�=tmn determined
by t 7! tn. We recall the following notation:

Notation 1.1.1. In the following, we will let SŒt � denote the E1-ring defined by SŒt � D
†1CZ�0. Note that SŒt � is not the free E1-ring on one generator, but the underlying E1-
ring of SŒt � is the free E1-ring on one generator since Z�0 is the free E1-monoid on one
generator in the 1-category of spaces. Let SŒt �=tn denote the E1-ring defined by the
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following pushout of E1-rings:

SŒt � SŒt �

S SŒt �=tn

t 7!tn

t 7!0

If R is a connective E1-ring, then we define the E1-ring RŒt�=tn by RŒt�=tn D

R ˝ SŒt �=tn, and we find that ��.RŒt �=tn/ ' .��R/Œt �=t
n. We obtain a map of con-

nective E1-rings RŒt�=tn ! R such that the kernel of the induced ring homomorphism

�0.RŒt �=t
n/ ' .�0R/Œt �=t

n
! �0R

is given by the nilpotent ideal .t/. If E W Algcn
! Sp is a functor, then we will let

E.RŒt �=tn; .t// denote the fiber of the induced map of spectra E.RŒt �=tn/ ! E.R/.
In the following, we will be interested in the situation where E D K or E D TC.

Remark 1.1.2. If R is a discrete HZ-algebra, then R ˝ SŒt �=tn is discrete and satisfies
�0.R˝ SŒt �=tn/' RŒt�=tn. In general, if R is a connective E1-ring, then R˝ SŒt �=tn is
not necessarily discrete.

As an application of the formalism developed in this paper, we obtain a common
generalization of the results of Hesselholt and Betley–Schlichtkrull discussed above (see
Corollary 4.2.5).

Theorem A. If R is a connective E1-ring, then there is a natural equivalence of spectra

TR.R/ ' lim
 �

�K.RŒt �=tn; .t//:

Note that in the setting of Theorem A, there is an equivalence of spectra

lim
 �

�K.RŒt �=tn; .t// ' lim
 �

�TC.RŒt �=tn; .t//

by virtue of the Dundas–Goodwillie–McCarthy theorem [28]. The results of Betley–
Schlichtkrull and Hesselholt discussed above rely on this equivalence combined with an
analysis of the fixed points of THH.RŒt �=tn/ by finite cyclic groups using [40]. In fact, the
Frobenius endomorphism of TR can be expressed in terms of certain transfer maps on the
spectrum of curves on K-theory under the equivalence of Theorem A (cf. Remark 4.2.6).
The proof of Theorem A proceeds by completely different methods which we summarize
below.

1.2. Methods

The main technical contribution of this paper is a construction of TR which bypasses
the use of equivariant stable homotopy theory. This is analogous to the construction
of topological cyclic homology recently given by Nikolaus–Scholze [59] under suitable
boundedness assumptions. We will begin by briefly reviewing the classical construction
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of TR following [17, 40], and refer the reader to §3.3 for a comprehensive account of the
classical construction.

Construction 1.2.1. A genuine cyclotomic spectrum is a genuine T-spectrum X with
respect to the family of finite cyclic subgroups Ck of T together with compatible equiv-
alences XˆCk ' X for every k � 1, where XˆCk denotes the geometric fixedpoints for
the action of Ck onX . For instance, ifR is a connective E1-ring, then THH.R/ admits the
structure of a genuine cyclotomic spectrum [18,40]. If .m; n/ is a pair of positive integers
with m D ln, then the restriction map R W XCm ! XCn is the map of genuine T-spectra
defined by

XCm ' .XCl /Cn ! .XˆCl /Cn ' XCn ;

where the final equivalence is induced by the genuine cyclotomic structure ofX . We have

TR.X/ D limn;R X
Cn ;

where the limit is indexed over the set of positive integers regarded as a poset under
divisibility. The collection of genuine cyclotomic spectra assemble into an 1-category
CycSpgen (see Definition 3.3.1), and there is a canonical functor of1-categories CycSpgen

! CycSp which restricts to an equivalence on the full subcategories of those objects
whose underlying spectrum is bounded below [59]. Consequently, if X is a cyclo-
tomic spectrum whose underlying spectrum is bounded below, then we may evaluate
TR W CycSpgen

! Sp on X using this equivalence.

Throughout this paper, we will be interested in the reduced topological Hochschild
homology of the E1-ring SŒt �, whose construction we briefly recall. The map of E1-
rings SŒt � ! S given by t 7! 0 induces a map of cyclotomic spectra THH.SŒt �/ ! S,
where the sphere spectrum S is equipped with the trivial cyclotomic structure. The reduced
topological Hochschild homology of the E1-ring SŒt � is the cyclotomic spectrum defined
by

eTHH.SŒt �/ D fib.THH.SŒt �/! S/:

The cyclotomic structure of the reduced topologogical Hochschild homology of SŒt �
admits a more refined structure, namely the structure of a spectrum with Frobenius lifts.1

Informally, the datum of a spectrum with Frobenius lifts is given by a spectrum X with
an action of T together with a collection of compatible T-equivariant maps of spectra

 k W X ! XhCk

for every integer k � 1. Note that for every prime p, the T-equivariant map of spectra

X
 p

��! XhCp
can
��! X tCp

1This is referred to as a cyclotomic spectrum with Frobenius lifts in [3, 49, 59] (cf. Warn-
ing 2.3.2).
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endows the underlying spectrum with T-action of X with the structure of a cyclotomic
spectrum. The notion of a p-typical spectrum with Frobenius lift was introduced by
Nikolaus–Scholze [59] and Antieau–Nikolaus [3]. In the p-typical situation we only
require the existence of the map  p in sharp contrast to the integral situation, where we
also require coherences between these maps. Returning to eTHH.SŒt �/, there is an equiva-
lence of cyclotomic spectra

eTHH.SŒt �/ '
M
i�1

†1C .S
1=Ci /;

where S1=Ci denotes the quotient space whose T-action is given by x 7! �x for every
element � of T, and the cyclotomic structure of the right hand side of the equivalence
above is induced by the following T-equivariant map of spaces:

S1=Ci
x 7! p
p
x

�����! †1C .S
1=Cpi /

hCp

for every prime p (cf. Example 2.2.9). Consequently, the cyclotomic Frobenius map of
eTHH.SŒt �/ is canonically equivalent to the following T-equivariant composite map of

spectra:
eTHH.SŒt �/

 p

��! eTHH.SŒt �/hCp
can
��! eTHH.SŒt �/tCp

for every prime p. A substantial part of this paper is devoted to making the discussion
above precise. To that end, we introduce the following notions:

� The Witt monoid is the E1-monoid defined by the semidirect product W D T Ì N�,
where the multiplicative monoid N� acts on the circle T by covering maps of posi-
tive degree (see Construction 2.1.1). Let BW denote the 1-category with one object
and W as endomorphisms. We will define the notion of a spectrum with Frobenius
lifts as a spectrum with a right action of the Witt monoid W, which in turn is the
datum of a functor of1-categories BWop ! Sp. This precisely encodes the datum of
a spectrum X with an action of the circle T together with compatible T-equivariant
maps  k W X ! XhCk for every integer k � 1. The collection of spectra with Frobe-
nius lifts assemble into an1-category SpFr and we prove that the reduced topological
Hochschild homology of the E1-ring SŒt � refines to an object of this 1-category.
Furthermore, there is a canonical functor of 1-categories SpFr

! CycSp which is
described informally above. The insight that the Witt monoid parametrizes Frobenius
lifts is present in the unpublished work of Goodwillie [35] on the cyclotomic trace.

� We prove that BW is an orbital1-category in the sense of [9], and we define the notion
of an integral topological Cartier module as a spectral Mackey functor on BW in the
sense of Barwick [8]. This precisely encodes the datum of a spectrumM with an action
of the circle T together with compatible T-equivariant factorizations

MhCk
!M !M hCk

of the norm map for the cyclic group Ck for every integer k � 1. This extends the
definition of a p-typical topological Cartier module given by Antieau–Nikolaus [3]
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to the integral situation. The collection of topological Cartier modules assemble into
an1-category TCart, and we will prove that TR refines to a functor with values in this
1-category.

In general, there is a forgetful functor of1-categories TCart! SpFr, and it follows
that we may regard TR.X/ as a spectrum with Frobenius lifts for every cyclotomic spec-
trum X , where each Frobenius lift of TR.X/ is given by the T-equivariant map of spectra

TR.X/ ' TR.X/Ck ! TR.X/hCk :

Finally, the mapping spectrum mapCycSp. eTHH.SŒt �/;X/ refines to a spectrum with Frobe-
nius lifts using the fact that the reduced topological Hochschild homology of SŒt �
admits the structure of a bimodule over SŒW� by left and right multiplication (see
Example 2.2.10). With these notions in place, we state the following result (see Theo-
rem 3.3.12 and Proposition 2.4.3).

Theorem B. For every cyclotomic spectrum X whose underlying spectrum is bounded
below, there is a natural equivalence of spectra with Frobenius lifts

TR.X/ ' mapCycSp. eTHH.SŒt �/; X/:

Furthermore, there is an adjunction of1-categories

SpFr CycSp;
TR

where the left adjoint is given by the canonical functor SpFr
! CycSp.

We remark that a variant of Theorem B above was previously obtained by Blumberg–
Mandell [17] using point-set models for genuine cyclotomic spectra. More precisely,
Blumberg–Mandell show that the functor TR W CycSpgen

! Sp is corepresentable by
eTHH.SŒt �/. Theorem B above asserts that TR is additionally corepresentable as a func-

tor defined on the 1-category of cyclotomic spectra with values in the 1-category of
spectra with Frobenius lifts. The adjunction above was previously established by Krause–
Nikolaus [49] for p-typical TR.

Remark 1.2.2. Theorem B can be regarded as an analogue of the result of Nikolaus–
Scholze [59] which asserts that there is an equivalence of spectra

TC.X/ ' mapCycSp.S; X/

for every cyclotomic spectrum X whose underlying spectrum is bounded below. This
corepresentability result for topological cyclic homology was conjectured by Kaledin [46]
and established by Blumberg–Mandell [17] after p-completion prior to the work of
Nikolaus–Scholze.

Remark 1.2.3. In this paper, the1-category of topological Cartier modules will mostly
function as a convenient formalism for proving Theorem B. However, we believe that
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the notion of a topological Cartier module is important in its own right. For instance,
the notion of a topological Cartier module formalizes additional structure present on the
rational Witt vectors and cyclic K-theory. An extensive treatment of the 1-category of
topological Cartier modules extending the result of Antieau–Nikolaus [3] to the integral
situation will appear in forthcoming work.

We prove Theorem B by showing that the functors given by X 7! TR.X/ and X 7!
mapCycSp. eTHH.SŒt �/; X/ both determine right adjoints of the canonical functor

SpFr
! CycSp

when restricted to the full subcategories of those objects whose underlying spectrum is
bounded below. This relies on a genuine version of the Tate orbit lemma [59, Lemma I.2.1]
established by Antieau–Nikolaus [3] together with an explicit description of the free
topological Cartier module on a spectrum with Frobenius lifts. The latter we deduce
from a general version of the Segal–tom Dieck splitting for spectral Mackey functors
on orbital 1-categories (see Proposition 3.2.11). We deduce Theorem A from the cele-
brated Dundas–Goodwillie–McCarthy theorem [28] and the following result (see Theo-
rem 4.2.3).

Theorem C. There is a natural equivalence of spectra

TR.X/ ' lim
 �

�TC.X ˝ eTHH.SŒt �=tn//

for every cyclotomic spectrum X whose underlying spectrum is bounded below.

The crucial observation is that there is an equivalence of spectra with T-action

mapSp. eTHH.SŒt �/;S/ '
Y
n�1

†1�1C .S1=Cn/;

where the mapping spectrum on the left carries the residual T-action. We deduce Theo-
rem C from Theorem B by exploiting the equalizer formula for the mapping spectrum in
the1-category of cyclotomic spectra obtained by Nikolaus–Scholze [59] together with a
careful analysis of the cyclotomic structure of lim

 �
eTHH.SŒt �=tn/. This observation is due

to Achim Krause.

2. Spectra with Frobenius lifts and TR

The main goal of this section is to construct the reduced topological Hochschild homology
of the E1-ring SŒt � as a spectrum with Frobenius lifts, and provide an alternative con-
struction of TR bypassing the otherwise instrumental use of equivariant stable homotopy
theory. In §2.1, we define the notion of an object with Frobenius lifts in any1-category,
and prove that the geometric realization of a presheaf on the epicyclic category with values
in an1-category which admits geometric realizations refines to an object with Frobenius
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lifts. In §2.2, we will discuss the 1-category of spaces with Frobenius lifts, and con-
struct a refinement of the cyclic bar construction which automatically carries Frobenius
lifts. We use this to produce examples of spaces with Frobenius lifts which will play an
essential role throughout this exposition. In §2.3, we discuss the 1-category of spectra
with Frobenius lifts, and construct the canonical functor from the1-category of spectra
with Frobenius lifts to the1-category of cyclotomic spectra. Finally, in §2.4 we provide
an alternative construction of TR and establish descent properties of this construction,
deferring the comparison with the classical construction of TR to §3.

2.1. The epicyclic category

We introduce the1-category of objects with Frobenius lifts in an1-category, and des-
cribe these in terms of presheaves on the epicyclic category. The following construction
will play an important role throughout this paper.

Construction 2.1.1. We define a monoid which we will refer to as the Witt monoid fol-
lowing [5].

(1) The multiplicative monoid N� of positive integers acts on the circle group T by the
assignment x 7! xk for every integer k � 1, and the Witt monoid is the topologi-
cal monoid defined by W D T Ì N�, where N� is regarded as a discrete topological
monoid. The underlying space of the Witt monoid is given by T �N�, and the multi-
plication is given by

.�; k/ � .�; l/ D .��k ; kl/

for any elements .�; k/ and .�; l/ of the underlying space of W. It will be convenient
to regard the Witt monoid as an object of the 1-category Alg.�/ of E1-monoids.
We will let BW denote the 1-category with one object and the Witt monoid W as
endomorphisms.

(2) For every prime p, the multiplicative monoid �pN D ¹1; p; p2; : : :º acts on the cir-
cle group T by restriction along the canonical inclusion of multiplicative monoids
�pN ,! N�, and the p-typical Witt monoid is the topological monoid defined by
WpN D T Ì�pN , where �pN is regarded as a discrete topological monoid. We will let
BWpN denote the1-category with one object and the p-typical Witt monoid WpN as
endomorphisms.

The Witt monoid also appears in the unpublished work of Goodwillie [35] on the
cyclotomic trace, where the insight that it parametrizes Frobenius lifts was already
present. The following definition also appears in the work of Ayala–Mazel-Gee–
Rozenblyum [5–7].

Definition 2.1.2. The1-category of objects with Frobenius lifts in an1-category C is
defined by

CFr
D Fun.BWop;C/ D PC.BW/:
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Remark 2.1.3. There is a fiber sequence of1-categories

BT ' .BT/op
! .BW/op

! .BN�/op;

and the functor BW! BN� is a cocartesian fibration. There is a functor of1-categories

CFr
! CBT

which regards an object with Frobenius lifts as an object with T-action. If X is an object
with Frobenius lifts, then there is a morphism  k W X ! X in C determined by the action
of .1; k/ on the underlying object of X for every integer k � 1. We have

.�k ; 1/ � .1; k/ D .1; k/ � .�; 1/

for every element � of T, which precisely encodes the fact that  k is T-equivariant with
respect to the degree k action on the source. We conclude that an object with Frobenius
lifts in an1-category C is given by an object X of C with T-action together with com-
patible T-equivariant maps

 k W X ! XhCk ;

for every positive integer k, where the target carries the residual T=Ck ' T-action. For
instance, if .k; l/ is a pair of positive integers, then the following diagram commutes:

X XhCk

XhCl .XhCk /hCl .XhCl /hCk

 k

 l  
hCk
l

 
hCl
k '

In §2.2 and §2.3 we discuss the1-category of spaces with Frobenius lifts and the1-
category of spectra with Frobenius lifts in more detail. Presently, we discuss Goodwillie’s
epicyclic category which provides a formalism for constructing objects with Frobenius
lifts in the sense of Definition 2.1.2. We begin by reviewing the cyclic category follow-
ing [59, Appendix B].

Definition 2.1.4. A parasimplex is a nonempty linearly ordered set I equipped with an
action of the group Z of integers denoted C W I � Z! I , such that the following condi-
tions are satisfied:

(1) For every pair of elements � and �0 of I , the set ¹� 2 I j � � � � �0º is finite.

(2) If � is an element of I , then � < �C 1.

A paracyclic morphism is a morphism of sets f W I ! J which is nondecreasing and
Z-equivariant. The paracyclic category ƒ1 is defined as the category whose objects are
given by the parasimplices and whose morphisms are given by the paracyclic morphisms.

Example 2.1.5. For every positive integer n, the set 1
n

ZD ¹m
n
jm 2Zº can be regarded as

a parasimplex with respect to its usual ordering and the action of Z given by addition. We
will denote this particular parasimplex by Œn�ƒ. Conversely, if I is a parasimplex, then
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there is an isomorphism of parasimplices I ' Œn�ƒ for a uniquely determined positive
integer n, which can be characterized as the cardinality of the set ¹x 2 I j y � x < y C 1º
for any element y of I .

Example 2.1.6. If S is an object of the simplex category �, then the product S � Z can
be regarded as a parasimplex with respect to the lexicographic ordering and the action
of Z given by the formula mC .s; n/ D .s; mC n/. The assignment S 7! S � Z defines
a faithful functor �! ƒ1 which is essentially surjective since there is an isomorphism
of parasimplices Œn� � Z ' ŒnC 1�ƒ for every integer n � 0.

The cyclic category is defined as follows:

Definition 2.1.7. The cyclic category ƒ is the category whose objects are parasimplices,
where the set of morphisms between a pair of parasimplices I and J is defined by

Homƒ.I; J / D Homƒ1.I; J /=Z;

where Z acts on the set of paracyclic morphisms Homƒ1.I;J / by the formula .f Cn/.�/
D f .�/C n.

Remark 2.1.8. The action of Z on Homƒ1.I; J / in the definition of the cyclic cat-
egory determines a strict action of the simplicial abelian group BZ on the simplicial
set N.ƒ1/, which in turn induces an action of the circle T on N.ƒ1/. Note that N.ƒ/'
N.ƒ1/BZ ' N.ƒ1/hT since the action of BZ on N.ƒ1/ is free. Consequently, there is
a fiber sequence

N.ƒ1/! N.ƒ/! BT;

where the map N.ƒ/! BT is both a cartesian and a cocartesian fibration.

We will now define the epicyclic category. The assignment I 7! I=Z determines a
functor

ƒ! Cat;

where the parasimplex I is regarded as a poset, and I=Z denotes the quotient in Cat. We
regard Cat as a 1-category. Let Œn� Qƒ denote the category defined by Œn� Qƒ D Œn�ƒ=Z for
every n � 1.

Definition 2.1.9. The epicyclic category Qƒ is the subcategory of Cat on those categories
which are isomorphic to Œn� Qƒ for some integer n � 1, and those functors which are essen-
tially surjective.

The epicyclic category was introduced by Goodwillie in an unpublished letter to Wald-
hausen, and Burghelea–Fiedorowicz–Gajda [21] give a combinatorial description of the
epicyclic category similar to the combinatorial description of the cyclic category [25].
Kaledin [47] studies a variant of the epicyclic category which is referred to as the cyclo-
tomic category. Ayala–Mazel-Gee–Rozenblyum [5] describe the epicyclic category in
terms of stratified 1-manifolds and disk refinements. The definition of the epicyclic cat-
egory given in Definition 2.1.9 is due to Nikolaus. Note that the functor ƒ ! Qƒ is
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essentially surjective and faithful by construction. To see that this functor is not full, we
give a geometric description of the morphisms inƒ and Qƒ in the following examples. We
may regard the object Œn�ƒ of ƒ as a cyclic graph with n vertices, or equivalently as a
configuration of n marked points on S1.

Example 2.1.10. The datum of a morphism Œm�ƒ ! Œn�ƒ in the cyclic category ƒ is
equivalent to the datum of a self-map of S1 of degree 1 which preserves markings and
is such that the induced self-map on universal covers is nondecreasing. For example, the
morphism �n W Œn�ƒ ! Œn�ƒ defined by �n.i/ D i C 1 corresponds to the self-map of S1

given by rotation through 2�=n, where the configuration of S1 is given by ¹1;�; : : : ; �n�1º
for a primitive nth root of unity �. Note that the morphism �n is an automorphism of Œn�ƒ,
and there is a group isomorphism

Z=.nC 1/Z! Autƒ.Œn�ƒ/

given by sending the generator of the cyclic group Z=.nC 1/Z to the automorphism �n. In
conclusion, the group of automorphisms of Œn�ƒ in ƒ is cyclic of order nC 1 generated
by �n. In contrast, the group of automorphisms of an object of the simplex category is
trivial.

Example 2.1.11. The datum of a morphism Œm� Qƒ ! Œn� Qƒ in the epicyclic category Qƒ is
equivalent to the datum of a self-map of S1 of positive degree which preserves markings
and is such that the induced self-map on universal covers is nondecreasing. If ˛ is a
morphism in Qƒ, then the degree of ˛ is defined as the degree of the induced self-map
of S1. There is a map

deg W N. Qƒ/! BN�

given by sending a morphism of Qƒ to its degree, and this is a cartesian fibration which
classifies the canonical action of the multiplicative monoid N� on the cyclic category ƒ.
As an example, the map pk W S1! S1 given by pk.x/ D xk corresponds to a morphism
˛k W Œkn� Qƒ ! Œn� Qƒ in Qƒ of degree k, where the source of pk carries the configuration
consisting of kn preimages of the n marked points on the target. The morphism ˛k does
not exist in the cyclic category, which means that the functor ƒ! Qƒ is not full. Further-
more, for every morphism f W Œn� Qƒ ! Œn� Qƒ in Qƒ of degree k, there exists a morphism
f 0 W Œn� Qƒ ! Œkn� Qƒ in Qƒ of degree 1 such that f D ˛k ı f 0.

The epicyclic category Qƒ admits an alternative description in terms of a right action
of the Witt monoid on the paracyclic category which we now address.

Construction 2.1.12. In the following, we will regard the Witt monoid as the monoid
BZ Ì N� in Cat. The action of Z on Homƒ1.I;J / given by addition as in Definition 2.1.7
defines an action of BZ on the paracyclic category ƒ1. The action of n 2 N� on ƒ1
is given by the assignment I 7! nI , where nI denotes the parasimplex with the same
underlying linearly ordered set as I but whose Z-action is given by restricting the Z-
action on I along the homomorphism Z! Z given by multiplication by n. This defines
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a right action of BZ Ì N� on the paracyclic category ƒ1, so we obtain a right action of
the Witt monoid W on N.ƒ1/.

In the following, we will employ the formalism of lax limits and colimits in the sense
of Gepner–Haugseng–Nikolaus [32]. Recall that if F W BM op ! Cat1 denotes a functor
which defines a right action of an E1-monoid M on an1-category C, then the lax coin-
variants is the cartesian fibration p WC`M !BM classified byF . The lax fixed points C`M

is the1-category of sections of p which carry every arrow in BM to a p-cartesian edge.

Lemma 2.1.13. There is an equivalence of1-categories2

N.ƒ1/`W ' N. Qƒ/;

where the Witt monoid acts on the paracyclic category ƒ1 as in Construction 2.1.12.

Proof. There is an equivalence of1-categories

N.ƒ1/`W ' .N.ƒ1/`T/`N� ' .N.ƒ1/hT/`N� ;

using BW ' .BT/`N� , and N.ƒ1/`T ' N.ƒ1/hT since T is a group. It follows from
Remark 2.1.8 that N.ƒ1/hT ' N.ƒ/, so we conclude that there is an equivalence

N.ƒ1/`W ' N.ƒ/`N� ;

which shows that N.ƒ1/`W is equivalent to a 1-category. Recall from Example 2.1.11
that the canonical action of N� on the cyclic category N.ƒ/ is classified by the cartesian
fibration

deg W N. Qƒ/! BN�;

which shows that N.ƒ/`N� ' N. Qƒ/. This yields the desired statement.

Recall that the geometric realization of a cyclic object admits a canonical action of
the circle group, as observed by Connes [25]. Similarly, we introduce the formalism of
epicyclic objects and show that the geometric realization of an epicyclic object canoni-
cally admits Frobenius lifts, that is, a right action of the Witt monoid.

Definition 2.1.14. The1-category of epicyclic objects in an1-category C is defined by

PC. Qƒ/ D Fun.N. Qƒop/;C/:

The1-category of epicyclic objects in the1-category of spaces is denoted by P. Qƒ/.

Assume that X is an epicyclic object in an 1-category C which admits geometric
realizations. The geometric realization of X is defined as the colimit of the underlying
simplicial object

N.�op/! N.ƒop
1/! N.ƒop/! N. Qƒop/! C:

2Note that N.ƒ1/`W is a priori a 2-category but the result asserts that it is in fact equivalent to
a 1-category.



On curves in K-theory and TR 13

Let jX j denote the geometric realization of X , and note that there is a functor of 1-
categories

PC. Qƒ/! C

determined by the assignment X 7! jX j. Burghelea–Fiedorowicz–Gajda [21] prove that
the geometric realization of an epicyclic object admits the structure of an object with
Frobenius lifts using an explicit combinatorial description of the epicyclic category. We
present a proof of this result using the language employed in this paper.

Proposition 2.1.15. If C is an1-category which admits geometric realizations, then the
assignment X 7! jX j admits a canonical refinement to a functor of1-categories

PC. Qƒ/! CFr

such that the following diagram commutes:

PC. Qƒ/ CFr

PC.ƒ/ CBT

Proof. The functor N.�op/! N.ƒop
1/ is cofinal by virtue of [59, Theorem B.3], hence

the geometric realization of an epicyclic object of C is equivalent to the colimit of the
paracyclic object

N.ƒop
1/! N.ƒop/! N. Qƒop/! C:

There is an adjunction of1-categories

PC.ƒ1/ C;
j�j

ı�

where the right adjoint ı� is given by precomposition with the terminal functor ı WN.ƒop
1/

! �0 which is equivariant with respect to the left W-action on N.ƒop
1/ defined in Con-

struction 2.1.12, and the trivial left W-action on �0. This in turn means that the right
adjoint ı� is equivariant with respect to the induced right action of W on PC.ƒ1/ and
the trivial right action of W on C. Consequently, the left adjoint canonically refines to a
functor of1-categories

j � j W PC.ƒ1/
`W
! CFr;

where .�/`W denotes the lax fixed points of the right action of the Witt monoid on
PC.ƒ1/. Additionally, we have used the equivalence CFr ' C`W since the action of the
Witt monoid on C is trivial. The desired functor is given by composing the functor above
with the canonical functor

PC. Qƒ/! PC.ƒ1/
`W;

where we have used the equivalence N.ƒ1/`W ' N. Qƒ/ by Lemma 2.1.13. The final
assertion follows by a similar argument using the equivalences .�/`T ' .�/hT and .�/`T

' .�/hT since T is a group.
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2.2. Spaces with Frobenius lifts

Using the formalism of epicyclic spaces discussed in §2.1, we give a more comprehensive
treatment of the 1-category of spaces with Frobenius lifts. We construct an epicyclic
variant of the cyclic bar construction and use this to produce examples of spaces with
Frobenius lifts which will play an important role throughout this paper. Recall that the
1-category of spaces with Frobenius lifts is defined by �Fr D P.BW/. We summarize
the salient features of this1-category.

Proposition 2.2.1. The 1-category of spaces with Frobenius lifts is a presentable 1-
category, and the forgetful functor �Fr ! �BT is conservative and preserves small limits
and colimits.

Alternatively, the 1-category of spaces with Frobenius lifts is equivalent to the full
subcategory of �=BW spanned by those maps over BW which are right fibrations [53, Sec-
tion 2.2]. In practice, we will make use of the formalism of epicyclic spaces as discussed
in §2.1 to construct examples of spaces with Frobenius lifts.

Example 2.2.2. LetX denote an object of the1-category of spaces. The free loop space
L.X/ of X is the geometric realization of the epicyclic space given by the assignment

Œn� Qƒ 7! Map� .jŒn� Qƒj; X/ ' L.X/;

so we may regard the free loop space L.X/ as a space with Frobenius lifts by Proposi-
tion 2.1.15. For concreteness, we note that the self-map of L.X/ determined by the cyclic
operator �n is induced by the self-map of S1 given by rotation with 2�=n. The self-map
of L.X/ determined by the epicyclic operator ˛k is induced by the self-map of S1 given
by the kth power map.

An important class of examples of spaces with Frobenius lifts arises by evaluating
the cyclic bar construction on an E1-monoid. Using the combinatorial description of the
epicyclic category, Burghelea–Fiedorowicz–Gajda [21] prove that the cyclic space whose
geometric realization defines the cyclic bar construction further refines to an epicyclic
space. A similar result was obtained by Schlichtkrull [60]. More recently, Nikolaus–
Scholze [59] construct the individual Frobenius lifts on the cyclic bar construction using
the space-valued diagonal. For instance, if M is the E1-monoid given by �X for a
connected pointed space X , then BcycM ' L.X/. In fact, this equivalence refines to
an equivalence of spaces with Frobenius lifts, where we regard L.X/ as a space with
Frobenius lifts as in Example 2.2.2 (see Corollary 2.2.8). We proceed by introducing an
epicyclic bar construction following an idea of Nikolaus.

Construction 2.2.3. Let TAss denote the Lawvere theory of monoids [51]. By definition,
the opposite of TAss is the full subcategory of the category of monoids spanned by those
monoids which are free on a finite set. We construct a functor j W Qƒ! Top

Ass which infor-
mally is given by sending an object Œn� Qƒ of the epicyclic category to the free monoid on



On curves in K-theory and TR 15

the set ¹1; : : : ; nº. First note that there is a functor of1-categories

N. Qƒ/! Cat�
1

1

cofib
��! .Cat1/�

determined by sending an object Œn� Qƒ of the epicyclic category Qƒ to the cofiber of the
canonical functor Œn�ds

Qƒ
,! Œn� Qƒ which exhibits the source as the discrete category on

the set of objects of Œn� Qƒ. The space of endomorphisms of the canonical basepoint of
the cofiber Œn� Qƒ=Œn�

ds
Qƒ

is equivalent to a discrete monoid which is free on the finite set
¹1; : : : ; nº, so we obtain a functor

j W N. Qƒ/! N.Top
Ass/

defined by j.Œn� Qƒ/ D EndŒn� Qƒ=Œn�ds
Qƒ

.�/, where � denotes the canonical basepoint of the

cofiber Œn� Qƒ=Œn�
ds
Qƒ

.

The datum of an E1-monoid in the sense of [54] is equivalently specified by the
datum of a functor N.TAss/ ! � which preserves finite products as explained in [26]
or [31, Appendix B]. We define the epicyclic bar construction of an E1-monoid using
Construction 2.2.3.

Definition 2.2.4. The epicyclic bar construction BepiM of an E1-monoid M is defined
by forming the geometric realization of the epicyclic space given by

N. Qƒop/
j op

��! N.TAss/
M
�! � :

The assignment M 7! BepiM determines a functor of1-categories

Bepi
W Alg.�/! �Fr:

Remark 2.2.5. If M is an E1-monoid, then the geometric realization of the cyclic space

N.ƒop/! N. Qƒop/
j op

��! N.TAss/
M
�! �

is canonically equivalent to the cyclic bar construction BcycM regarded as an object
of �BT.

We introduce an epicyclic variant of topological Hochschild homology of a small1-
category as a refinement of the unstable topological Hochschild homology introduced by
Nikolaus [43].

Definition 2.2.6. The epicyclic topological Hochschild homology THHepi.C/ of a small
1-category C is defined as the geometric realization of the epicyclic space given by the
assignment

Œn� Qƒ 7! Fun.Œn� Qƒ;C/
':

The assignment C 7! THHepi.C/ determines a functor of1-categories

THHepi
W Cat1 ! �Fr:
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It will be convenient to work with both the epicyclic bar construction and the epicyclic
topological Hochschild homology, so we show that they coincide as spaces with Frobenius
lifts for E1-monoids. The author learned the proof of the following result from Nikolaus,
and a proof of a similar result appears in Krause–Nikolaus [49, Proposition 8.1].

Proposition 2.2.7. LetM be an E1-monoid, and let BM denote the1-category with one
object and M as endomorphisms. There is an equivalence of spaces with Frobenius lifts

BepiM ! THHepi.BM/:

Proof. Let Cn denote the cofiber of the functor .Œn�ds
Qƒ
/C ,! .Œn� Qƒ/C in .Cat1/�, and note

that Cn is equivalent to the pointed 1-category Bj.Œn� Qƒ/, where j.Œn� Qƒ/ denotes the
monoid discussed in Construction 2.2.3. There is a fiber sequence of epicyclic spaces

Fun�.Cn;BM/' ! Fun.Œn� Qƒ;BM/' ! .BM�/n;

where M� denotes the group of units of M , and the epicyclic space on the left is equiva-
lent to the epicyclic space defining BepiM since Fun�.Cn;BM/' ' Map� .Œn� Qƒ;M/. As
a consequence, we obtain a map of spaces with Frobenius lifts

BepiM ! THHepi.BM/

obtained as the geometric realization of the first map in the fiber sequence above, and
we show that this map is an equivalence. Note that the space Fun�.Cn; BM/' admits
a canonical action of the epicyclic group given by G� W Œn� Qƒ 7! .M�/n, and the first
map in the fiber sequence exhibits Fun.Œn� Qƒ;BM/' as the homotopy coinvariants of this
action in the1-category P. Qƒ/. In other words, the map BepiM ! THHepi.BM/ above
is equivalent to the composite

BepiM ! .BepiM/hjG�j
'
�! THHepi.BM/;

where jG�j denotes the geometric realization of the epicyclic group G�. Note that the
geometric realization jG�j of G� is contractible since the underlying simplicial object
of G� admits an extra degeneracy, so the map BepiM ! .BepiM/hjG�j is an equivalence,
which proves the claim.

Consequently, we obtain the following result which allows us to explicitly identify the
Frobenius lifts on the epicyclic bar construction in certain examples. This result was first
obtained by Goodwillie [34], Burghelea–Fiedorowicz [20], and Jones [45] ignoring the
epicyclic structure, and by Burghelea–Fiedorowicz–Gajda [21] in the epicyclic case.

Corollary 2.2.8. Let X denote an object of the 1-category of spaces regarded as an
1-category. There is an equivalence of spaces with Frobenius lifts

THHepi.X/ ' L.X/;

where L.X/ is regarded as a space with Frobenius lifts as in Example 2.2.2.
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Proof. For every integer n � 1, there is an equivalence of spaces

Fun.Œn� Qƒ; X/
'
' Map� .jŒn� Qƒj; X/ ' L.X/;

which shows that the underlying simplicial object of THHepi.X/ is constant with
value L.X/. The assertion now follows from Example 2.2.2.

Finally, using the material discussed above we present further examples of spaces with
Frobenius lifts which will play an important role throughout this paper.

Example 2.2.9. There is an equivalence of spaces with Frobenius lifts BepiZ' L.S1/ by
virtue of Proposition 2.2.7 and Corollary 2.2.8. For every integer i , we will let

L.S1/i D ¹f 2 L.S1/ j deg.f / D iº

denote the space of self-maps of S1 of degree i . Note that the map

S1=Ci ! L.S1/i

given by Œx� 7! .t 7! .tx/i / is an equivalence of spaces with T-action provided that we
regard the left hand side as a space with T-action given by the formula � � Œx�D Œ�x�. The
pth Frobenius lift of L.S1/ is induced by the T-equivariant map of spaces

L.S1/i ! .L.S1/pi /hCp

given by f 7! f ı .�/p , where .L.S1/pi /hCp carries the residual T=Cp ' T-action.
Using the equivalence described above, this map corresponds to the T-equivariant map of
spaces

S1=Ci ! .S1=Cpi /
hCp

given by x 7! p
p
x, where the residual action of T=Cp on .S1=Cpi /hCp is given by

Œ�� � Œx� D Œ�x�. Under the isomorphism T ' T=Cp given by the pth root, the action
of T on .S1=Cpi /hCp is given by � � Œx�D Œ p

p
�x�. In conclusion, there is an equivalence

of spaces with Frobenius lifts

BepiZ '
a
i2Z

S1=Cji j;

where the pth Frobenius lift is determined by the T-equivariant map

S1=Ci ! .S1=Cpi /
hCp ; x 7! p

p
x:

Furthermore, there is an equivalence of spaces with T-action

BepiZ�0 ' �q
a
i�1

S1=Ci ;

where the Frobenius lifts are described as above. This identification is originally due to
Hesselholt [38, Lemma 2.2.3]. We will let zBepiZ�0 denote the space with Frobenius lifts
given by

zBepiZ�0 '
a
i�1

S1=Ci ;

and we refer to zBepiZ�0 as the reduced epicyclic bar construction of Z�0.
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Example 2.2.10. The Witt monoid admits the structure of W-W-bimodule by left and
right multiplication, so we may regard the Witt monoid as a space with Frobenius lifts.
Furthermore, there is an equivalence of W-W-bimodules in spaces

zBepiZ�0 'W

by Example 2.2.9. Explicitly, under this equivalence, the action of an element � of T
is given by left multiplication by .�; 1/ in the Witt monoid. The pth Frobenius lift is
given by right multiplication by .1; p/ in the Witt monoid. As a consequence, the Yoneda
embedding BW! �Fr is determined by the assignment � 7! zBepiZ�0.

2.3. Spectra with Frobenius lifts

Next, we discuss the1-category of spectra with Frobenius lifts in further detail, and con-
struct the canonical functor from the 1-category of spectra with Frobenius lifts to the
1-category of cyclotomic spectra as an instance of the stable nerve-realization adjunc-
tion. Recall that the 1-category of spectra with Frobenius lifts is defined by SpFr

D

PSp.BW/. We will start by summarizing the salient features of the1-category of spectra
with Frobenius lifts.

Proposition 2.3.1. The1-category SpFr of spectra with Frobenius lifts is a presentable
and stable1-category, and the forgetful functor

SpFr
! SpBT

is conservative and preserves small limits and colimits.

Warning 2.3.2. The notion of a spectrum with Frobenius lifts in the sense of Defini-
tion 2.1.2 is referred to as a cyclotomic spectrum with Frobenius lifts in the literature
(cf. [3, 49, 59]). More precisely, Nikolaus–Scholze [59] and Antieau–Nikolaus [3] study
the notion of a p-typical cyclotomic spectrum with Frobenius lift which we briefly recall
in Remark 2.3.3. In [49], Krause–Nikolaus study an integral version of cyclotomic spectra
with Frobenius lifts. A variant of Definition 2.1.2 features in the work of Ayala–Mazel-
Gee–Rozenblyum [5–7] under the name of an unstable cyclotomic object. We have opted
for the present terminology to avoid confusion in later parts of the present exposition,
where we will have the chance to consider objects in the1-category of cyclotomic spec-
tra with an additional action of the Witt monoid (cf. Construction 2.3.7).

Remark 2.3.3. We recall the p-typical variant of the notion of a spectrum with Frobe-
nius lifts as previously considered by Nikolaus–Scholze [59] and Antieau–Nikolaus [3].
A p-typical spectrum with Frobenius lift3 is a spectrum X with T-action together with a
T-equivariant map of spectra

 p W X ! XhCp ;

3Referred to as a p-typical cyclotomic spectrum with Frobenius lift by Nikolaus–Scholze and
Antieau–Nikolaus.
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where the target carries the residual T=Cp ' T-action. The1-category SpFr
p of p-typical

spectra with Frobenius lift is defined by the following pullback of1-categories:

SpFr
p .SpBT/�

1

SpBT SpBT
� SpBT.id;.�/hCp /

The canonical map of Witt monoids WpN !W induces a canonical functor of1-cate-
gories

SpFr
! PSp.BWpN/

'
�! SpFr

p ;

where the equivalence is induced by the universal property of SpFr
p as the pullback above.

Informally, the functor above is given by only remembering the pth Frobenius lift.

In practice, it is difficult to specify the datum of a spectrum with Frobenius lifts due to
the infinite hierarchy of coherences that needs to be specified. However, there is a functor

�Fr
! SpFr

given by postcomposition with†1C W � ! Sp, and we will mostly be interested in spectra
with Frobenius lifts contained in the essential image of this functor. In this situation, the
formalism of epicyclic spaces as discussed in §2.1 allows us to effectively control the
coherences.

Example 2.3.4. The suspension spectrum†1C
zBepiZ�0 admits the structure of a spectrum

with Frobenius lifts. There is an equivalence of spectra with Frobenius lifts

†1C zB
epiZ�0 '

M
i�1

†1C .S
1=Ci /;

and the kth Frobenius lift is induced by the T-equivariant map of spaces S1=Ci !
.S1=Cki /

hCk as described in Example 2.2.9. The coherences are encoded by the epicyclic
bar construction as in §2.2. Additionally, there is an equivalence of SŒW�-SŒW�-bimodules
in spectra †1C zB

epiZ�0 ' SŒW� by Example 2.2.10.

Informally, ifX denotes a spectrum with Frobenius lifts, then the underlying spectrum
with T-action admits the structure of a cyclotomic spectrum, where the pth cyclotomic
Frobenius is given by the T-equivariant composite map of spectra X ! XhCp ! X tCp

for every prime p. We show that this construction refines to a functor of1-categories

SpFr
! CycSp

as an instance of the stable nerve-realization adjunction. The stable nerve-realization
adjunction appears in the work of Dwyer–Kan [29] in the unstable context of G-spaces,
and we refer the reader to [4, Appendix A] for a systematic treatment phrased in the
language of1-categories.
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Definition 2.3.5. Let C be a small 1-category. The stable realization of a functor F W
C! D with values in a stable and presentable1-category D is the functor

j � jF W PSp.C/! D

defined by the left Kan extension of F along the stable Yoneda embedding yst W C !

PSp.C/.

Proposition 2.3.6. Let C be a small 1-category, and let F W C! D be a functor with
values in a stable and presentable 1-category D. The stable realization of F admits a
right adjoint

NF W D! PSp.C/

determined by the assignment d 7! mapD.F.�/; d/.

Proof. Let LyF denote the left Kan extension of F along the Yoneda embedding y W C!
P.C/, and note that it suffices to show that LyF admits a right adjoint determined by the
assignment d 7! MapD.F.�/; d/. It follows from [53, Theorem 5.1.5.6] that there is an
adjoint equivalence

FunL.P.C/;D/ Fun.C;D/
y�

where the right adjoint is determined by the assignment F 7! LyF , so we conclude that
LyF admits a right adjoint by [53, Corollary 5.5.2.9]. The left adjoint is described by the
following coend formula (a reference for this is [4, Appendix A] as cited above Defini-
tion 2.3.5):

.LyF /.X/ '
Z c2C

MapP.C/.y.c/; X/˝ F.c/

for every presheaf X on C, where we have used the fact that D is canonically tensored
over the 1-category of spaces. For every object d of D, there is a sequence of natural
equivalences

MapD..LyF /.X/; d/ ' MapD

�Z c2C

MapP.C/.y.c/; X/˝ F.c/; d
�

'

Z
c2C

MapD.X.c/˝ F.c/; d/

'

Z
c2C

Map� .X.c/;MapD.F.c/; d//

' MapP.C/.X;MapD.F.�/; d//;

which finishes the proof.

We construct a functor BW ! CycSp which encodes the cyclotomic structure of
†1C
zBepiZ�0, which will allow us to define the canonical functor from the 1-category

of spectra with Frobenius lifts to the1-category of cyclotomic spectra.
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Construction 2.3.7. Following Nikolaus–Scholze [59] and Antieau–Nikolaus [3], the
1-category of p-typical spaces with Frobenius lift is defined by the following pullback
of1-categories:

�Fr
p .�BT/�

1

�BT �BT � �BT.id;.�/hCp /

Consider the following sequence of functors of1-categories:

�Fr
p ! SpFr

p ! CycSpp;

where the first functor is induced by the suspension spectrum functor †1C W � ! Sp, and
the second functor is induced by the natural transformation .�/hCp ! .�/tCp . Since there
is an equivalence of1-categories P.BWpN/ ' �Fr

p , we obtain a sequence of functors of
1-categories

BW! �Fr
! �Fr

p ! CycSpp

for every prime number p, where the first functor is given by the Yoneda embedding
which we described explicitly in Example 2.2.10, and the second functor is induced by
the canonical map of E1-monoids WpN !W. Consequently, we obtain a functor of1-
categories

BW! CycSp

by virtue of the universal property of CycSp as a lax equalizer (cf. [59, Definition II.1.4]).
This functor carries the unique object of BW to †1C zB

epiZ�0 ' SŒW�, and we note that
the T-action on †1C zB

epiZ�0 is the usual T-action which is unstably given by � � .x; n/ D
.�x; n/ for every element � of T. The stable realization of the functor BW ! CycSp
defines a functor of1-categories

SpFr
! CycSp;

which we will refer to as the canonical functor.

The canonical functor SpFr
! CycSp does not exhibit the1-category of spectra with

Frobenius lifts as a subcategory of the 1-category of cyclotomic spectra, that is, the
Frobenius lifts are structure and not a property. We establish the main result of this section.

Theorem 2.3.8. There is an adjunction of1-categories

SpFr CycSp;

where the right adjoint is determined by the assignment X 7! mapCycSp. eTHH.SŒt �/; X/,
and the left adjoint is given by the canonical functor constructed above.

Proof. There is an equivalence of cyclotomic spectra eTHH.SŒt �/ ' †1C zB
epiZ�0, so the

claim follows by combining Proposition 2.3.6 and Construction 2.3.7.



J. McCandless 22

2.4. Topological restriction homology

We present an alternative definition of TR as a functor on the1-category of cyclotomic
spectra valued in the 1-category of spectra with Frobenius lifts inspired by a result of
Blumberg–Mandell [17]. Additionally, we study TR as a localizing invariant and discuss
various descent properties of TR.

Definition 2.4.1. If X is a cyclotomic spectrum, then TR.X/ is defined by

TR.X/ D mapCycSp. eTHH.SŒt �/; X/ ' mapCycSp

�M
i�1

†1C .S
1=Ci /; X

�
:

The construction X 7! TR.X/ determines a functor of1-categories TR W CycSp! Sp.

Notation 2.4.2. If C is a stable1-category, then TR.C/D TR.THH.C//. In particular, if
R is an E1-ring, then TR.R/ D THH.PerfR/ ' TR.THH.R//.

Definition 2.4.1 is based on a result of Blumberg–Mandell [17, Theorem 6.11] which
asserts that the classical construction of TR as considered by [17,18,40] is corepresentable
by the reduced topological Hochschild homology of the flat affine line SŒt � as a functor
on the homotopy category of genuine cyclotomic spectra with values in the homotopy
category of spectra. In §3, we prove that the definition of TR given above recovers the
classical definition of TR in the bounded below case (see Theorem 3.3.12). The following
result is now an immediate consequence of the formalism developed in §2.3.

Proposition 2.4.3. The functor TR W CycSp! Sp refines to a functor of1-categories

TR W CycSp! SpFr

which is a right adjoint of the canonical functor SpFr
! CycSp.

Proof. Combine Theorem 2.3.8 and Definition 2.4.1.

Krause–Nikolaus [49, Proposition 10.3] prove that the construction given by p-typical
TR determines a right adjoint of the canonical functor SpFr

p ! CycSpp , and Proposi-
tion 2.4.3, extends this result to the integral situation.

Remark 2.4.4. Nikolaus–Scholze [59] prove that for every cyclotomic spectrum whose
underlying spectrum is bounded below, there is a natural equivalence of spectra

TC.X/ ' mapCycSp.S; X/;

where TC.X/ denotes Goodwillie’s integral topological cyclic homology. This was con-
jectured by Kaledin [46] and proven by Blumberg–Mandell [17] after p-completion.
Definition 2.4.1 provides a similar description of TR in the bounded below case removing
the otherwise instrumental use of equivariant stable homotopy theory in the construction
of TR.
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Remark 2.4.5. An advantage of Definition 2.4.1 is that we obtain an explicit equalizer
formula for TR. Let X be a cyclotomic spectrum whose underlying spectrum is bounded
below, and note that XhCi ' mapSpBT.†1C .S

1=Ci /; X/ for every i � 1. Consequently,

TR.X/ ' Eq
� Y
i�1

XhCi

Y
p

Y
i�1

.X tCp /hCi

�
;

where the top map is induced by X ! X tCp , and the bottom map is induced by the
composite

XhCi ' .XhCp /hCi=p
canhCi=p

������! .X tCp /hCi=p

provided that p divides i . This is a consequence of the formula for the mapping spectrum
in the1-category CycSp obtained in [59, Proposition II.1.5].

There is a construction of p-typical TR due to Nikolaus–Scholze [59] which only
relies on the Borel equivariant homotopy theory of cyclotomic spectra, which we recall
for completeness.

Remark 2.4.6. For every p-typical cyclotomic spectrum X , we let TRnC1.X; p/ denote
the following iterated pullback in the1-category of spectra with T-action:

XhCpn
�
.X tCp /

hC
pn�1 X

hC
pn�1 �

.X tCp /
hC

pn�2 � � � �.X tCp /hCp X
hCp �X tCp X

for each n � 0. The maps from the left factors to the right factors are induced by the
canonical map XhCp ! X tCp , and the maps from the right factors to the left factors are
induced by cyclotomic Frobenius X ! X tCp . In fact, if the underlying spectrum of X
is bounded below, then the underlying spectrum of X admits the structure of a genuine
T-spectrum with respect to the family of finite p-subgroups of T, such that there is an
equivalence TRnC1.X; p/ ' XCpn for each n � 0. For each n � 1, there is a map of
spectra with T-actionR WTRnC1.X;p/!TRn.X;p/ induced by forgetting the first factor
in the iterated pullback defining TRnC1.X;p/, and there is an equivalence of spectra with
T-action

TR.X; p/ ' lim
 �
n

TRnC1.X; p/:

Krause–Nikolaus [49, Definition 9.5] give a description of integral TR by similar meth-
ods. However, it becomes complicated to specify coherences between the Frobenius lifts
using this description. By similar methods to those used in this paper, it is possible to
show that there is a natural equivalence of p-typical cyclotomic spectra with Frobenius
lift

TR.X; p/ ' mapCycSpp

�M
i�0

†1C .S
1=Cpi /; X

�
for every p-typical cyclotomic spectrumX whose underlying spectrum is bounded below.
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As an application, we describe TR as a localizing invariant. Let Catperf
1 denote the1-

category of small idempotent-complete stable 1-categories and exact functors between
them. Recall that an exact sequence in Catperf

1 is a sequence which is both a fiber sequence
and a cofiber sequence. Following Tamme [63], a localizing invariant with values in a
stable1-category D is a functor E W Catperf

1 !D which carries exact sequences in Catperf
1

to fiber sequences in D. Blumberg–Gepner–Tabuada [15] additionally require that local-
izing invariants preserve filtered colimits.

Corollary 2.4.7. The functor Catperf
1

THH
��! CycSp

TR
�! SpFr is a localizing invariant.

Proof. The functor THH W Catperf
1 ! CycSp is a localizing invariant by Blumberg–

Mandell [16], and the functor TR W CycSp ! SpFr preserves limits by virtue of
Proposition 2.4.3.

Remark 2.4.8. We extend the definition of TR to schemes. Let PerfX denote the 1-
category of perfect OX -modules for a scheme X , and define TR.X/ D TR.PerfX /. Con-
sequently, the assignment X 7! TR.X/ satisfies Nisnevich descent on quasi-compact
quasi-separated schemes by a result of Thomason [64] since TR is a localizing invari-
ant.

We end by discussing various descent properties for TR, building on the work of [3,
12, 22, 24, 48]. In the following, we will let CAlg~ denote the category of discrete com-
mutative rings.

Corollary 2.4.9. The assignment R 7! TR.R/ determines a functor of1-categories

TR W CAlg~ ! SpFr

which is a sheaf for the fpqc topology on CAlg~.

Proof. We first show that the functor THH W CAlg~! CycSp is an fpqc sheaf on CAlg~.
As a consequence of the construction of the1-category CycSp as a lax equalizer it suf-
fices to show that the functors THH W CAlg~ ! SpBT and THHtCp W CAlg~ ! SpBT are
fpqc sheaves for every prime p. This follows from [12, Corollary 3.4 and Remark 3.5]
since limits in SpBT are computed pointwise. This shows the desired statement since
TR W CycSp! SpFr preserves limits.

The proof of Corollary 2.4.9 above shows that every descent result for THH regarded
as a functor with values in the 1-category of cyclotomic spectra yields a correspond-
ing descent statement for TR. In [48], Keenan extends the result of Bhatt–Morrow–
Scholze [12] on fpqc descent for THH to connective E1-rings, and Antieau–Nikolaus [3]
prove that THH is a hypercomplete sheaf with values in the 1-category of cyclotomic
spectra for the pro-étale topology on CAlg~. In [22], Clausen–Mathew prove that THH is
a Postnikov complete sheaf for the étale topology on E2-rings, extending their previous
work with Naumann and Noel [24].
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3. Comparison with genuine TR

In this section, we establish the main technical result of this paper which asserts that the
classical construction of TR agrees with the construction of TR considered in §2.4. In
§3.1, we review the formalism of Mackey functors defined on orbital 1-categories fol-
lowing Barwick [8], and employ this to construct the 1-category of genuine T-spectra
following Barwick–Glasman [10]. In §3.2, we define the notion of a topological Cartier
modules, and obtain an explicit description of the free topological Cartier module on a
spectrum with Frobenius lifts as an instance of the Segal–tom Dieck splitting for Mackey
functors defined on orbital 1-categories. In §3.3, we briefly recall the classical con-
struction of TR following Blumberg–Mandell [17], and prove that this coincides with
the construction of TR considered in §2.4 in the bounded below case.

3.1. Equivariant stable homotopy theory

In this section, we briefly review the notions from equivariant stable homotopy theory
that will play an important role in this paper. In [37], Guillou–May establish a model
for the homotopy theory of G-spectra in the sense of [44, 52, 55] for a finite group
G, in terms of spectral Mackey functors, and Barwick [8] developed an 1-categorical
approach to Mackey functors on orbital1-categories. Barwick–Dotto–Glasman–Nardin–
Shah revisit the result of Guillou–May in the general context of parametrized homotopy
theory [9, 57]. Our goal in this section is to briefly review the formalism of Mackey
functors following [8], and use this to construct the 1-category of genuine T-spectra
following Barwick–Glasman [10].

Definition 3.1.1. The finite coproduct completion FinT of a small 1-category T is the
smallest full subcategory of P.T / which contains the essential image of the Yoneda
embedding and which is closed under finite coproducts. A small1-category T is orbital
if the finite coproduct completion of T admits pullbacks.

Remark 3.1.2. Definition 3.1.1 was introduced by Barwick–Dotto–Glasman–Nardin–
Shah [9]. Note that the finite coproduct completion of an orbital1-category is disjunctive
in the sense of Barwick [8]. Additionally, the epiorbital1-categories in the sense of Glas-
man [33] are examples of orbital1-categories.

For instance, if G is a finite group, then the finite coproduct completion of the orbit
category ofG is equivalent to the category of finiteG-sets, since every finiteG-set admits
a unique decomposition as a disjoint union of orbits. In other words, the orbit category
of G is orbital in the sense of Definition 3.1.1.

Remark 3.1.3. The finite coproduct completion of a small1-category T is characterized
by a universal property: For every 1-category D which admits finite coproducts, the
Yoneda embedding j W T ! FinT induces an equivalence of1-categories

Funq.FinT ;D/! Fun.T;D/;
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where Funq.FinT ;D/ denotes the full subcategory of Fun.FinT ;D/ spanned by those
functors which preserve finite coproducts. This follows from [53, Proposition 5.3.6.1] by
taking K D Fin and R D ¿. Note that the inverse is determined by forming the left Kan
extension along the Yoneda embedding.

Let T be an orbital1-category, and let Span.FinT / denote the1-category of spans
in the finite coproduct completion of T . Concretely, the objects of Span.FinT / are given
by the objects of FinT , and a morphism from X to X 0 in Span.FinT / is given by a span

Y

X X 0

in FinT . Additionally, if X 0  Y 0 ! X 00 is a morphism from X 0 to X 00 in Span.FinT /,
then composition is defined by forming a pullback in FinT

P

Y Y 0

X X 0 X 00

which exists by virtue of the assumption that T is an orbital 1-category. The reader
is invited to consult [8, Proposition 3.4] for a precise construction of Span.FinT / as a
complete Segal space.

Construction 3.1.4. Let T be an orbital 1-category. There is a functor i W Finop
T !

Span.FinT / which is the identity on objects, and determined by the following assignment
on morphisms:

.X ! X 0/ 7! .X 0  X
id
�! X/:

Consequently, we obtain a functor T op ! Span.FinT / given by precomposing the func-
tor i with the opposite of the canonical functor T ! FinT . Similarly, there is a functor
i 0 W FinT ! Span.FinT / which is the identity on objects, and determined by the following
assignment on morphisms:

.X ! X 0/ 7! .X
id
 � X ! X 0/:

We obtain a functor T ! Span.FinT / given by precomposing the functor i 0 above with
the canonical functor T ! FinT . See [8, Notation 3.9] for a formal description of these
functors.

If T is an orbital 1-category, then the 1-category Span.FinT / is semiadditive and
the sum is given by the coproduct in FinT (cf. [8, Proposition 4.3]). Consequently, the
1-category of Mackey functors on an orbital 1-category is defined as follows (cf. [8,
Definition 6.1]):
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Definition 3.1.5. Let T denote an orbital1-category, and let D denote an additive1-
category. The1-category of D-valued Mackey functors on T is defined by

MackD.T / D Fun�.Span.FinT /;D/;

where Fun�.Span.FinT /; D/ denotes the full subcategory of Fun.Span.FinT /; D/
spanned by those functors which preserve products. If D D Sp is the 1-category of
spectra, then we write Mack.T / instead of MackSp.T /, and refer to the former as the
1-category of spectral Mackey functors on T .

Example 3.1.6. The orbit category of a finite group G is an example of an orbital 1-
category. The 1-category of spectral Mackey functors on OrbG is equivalent to the
1-category of genuine G-spectra by the work of Guillou–May [37]. By the1-category
of genuine G-spectra we mean the underlying1-category of the category of orthogonal
G-spectra equipped with the model structure established by Mandell–May [55]. Alter-
natively, we refer to Nardin [57, Theorem A.4] or Clausen–Mathew–Naumann–Noel [23,
Appendix A] for a direct comparison using Barwick’s model of spectral Mackey functors.

We construct the 1-category of genuine T-spectra with respect to the family of
finite cyclic subgroups of T using the formalism of spectral Mackey functors on orbital
1-categories following Barwick–Glasman [10]. An alternative construction has been
obtained by Ayala–Mazel-Gee–Rozenblyum [7], and we refer the reader to the foun-
dational work of Lewis–May–Steinberger [52] and Mandell–May [55] for the classical
approach.

Definition 3.1.7. The orbit1-category OrbT of the circle is defined as the full subcate-
gory of the1-category �BT spanned by those spaces with T-action of the form T=Cn for
every n � 1.

The orbit1-category of the circle is equivalent to the cyclonic category of Barwick–
Glasman [10, Definition 1.10] as explained in [10, Remark 1.13], so we conclude that the
orbit1-category OrbT is orbital by virtue of Barwick–Glasman [10, Proposition 1.25.1].

Definition 3.1.8. The1-category of genuine T-spectra is defined by SpTDMack.OrbT/.

Remark 3.1.9. The1-category of genuine T-spectra is equivalent to the underlying1-
category of orthogonal T-spectra with respect to the family of finite subgroups of T,
equipped with the stable model structure established by Mandell–May [55]. This is proved
by Barwick–Glasman [10, Theorem 2.8], where SpT is referred to as the1-category of
cyclonic spectra.

We construct an action of the multiplicative monoid N� on the 1-category SpT of
genuine T-spectra, which in turn is determined by an action of N� on the orbit1-cate-
gory OrbT.

Construction 3.1.10. Let OrbT denote the category whose objects are given by the orbits
T=Cn for every integer n � 1, and whose morphisms are given by T-equivariant maps.
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For every pair of positive integers m and n, there is a canonical bijection

HomOrbT.T=Cm;T=Cn/ ' .T=Cn/
Cm ;

where the right hand side is equipped with the canonical topology. As a consequence,
we may regard OrbT as a topological category. The underlying 1-category of OrbT is
equivalent to the orbit1-category OrbT as defined in Definition 3.1.7. Indeed, note that
there is an essentially surjective functor of 1-categories OrbT ! OrbT which is fully
faithful since the canonical map

.T=Cn/Cm ! .T=Cn/hCm

is an equivalence of spaces for every pair of positive integers m and n. The analogous
statement for higher-dimensional Lie groups fails. For every integer k � 1, the assignment
T=Cn 7! T=Ckn determines a functor of topological categories ik WOrbT!OrbT which
in turn defines an action of the multiplicative monoid N� on OrbT. This defines an action
of N� on the orbit 1-category OrbT which is determined by a functor of 1-categories
BN� ! Cat1.

The following result is due to Barwick–Glasman [10, Lemma 3.2].

Lemma 3.1.11. For every positive integer k, there is an adjunction of1-categories

FinOrbT FinOrbT ;
Fin.ik/

pk

where the left adjoint Fin.ik/ additionally preserves finite coproducts. The action of the
multiplicative monoid N� on the1-category OrbT extends to an action on the1-cate-
gory SpT.

The action of the multiplicative monoid N� on the 1-category SpT of genuine T-
spectra afforded by Lemma 3.1.11 determines a functor of1-categories

F‰ W BN� ! Cat1

which is determined by sending k 2 N� to the endofunctor of the1-category SpT deter-
mined by the assignment X 7! XCk . Furthermore, there is an action of the multiplicative
monoid N� on the 1-category SpT given by the geometric fixed points construction
.�/ˆCk . We briefly discuss this, and refer the reader to [10, Notation 3.4] for a complete
treatment.

Example 3.1.12. For every positive integer k, there is an adjunction of1-categories

SpT SpT;
.�/ˆCk

Span.pk/
�

where the left adjoint .�/ˆCk is defined by left Kan extension along Span.pk/�, where
pk denotes a right adjoint of Fin.ik/ as in Lemma 3.1.11. Consequently, there is an action
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of the multiplicative monoid N� on SpT by functoriality, and there is a functor of 1-
categories

Fˆ W BN� ! Cat1

which is determined by sending k 2 N� to the endofunctor of the1-category of genuine
T-spectra determined by the assignment X 7! XˆCk .

3.2. Topological Cartier modules

We introduce the notion of an integral topological Cartier module using the formalism
of spectral Mackey functors on orbital 1-categories as reviewed in §3.1, extending the
work of Antieau–Nikolaus [3] in the p-typical situation. Furthermore, we prove a gen-
eral version of the Segal–tom Dieck splitting for spectral Mackey functors on orbital
1-categories, and use this to obtain an explicit formula for the free topological Cartier
module on a spectrum with Frobenius lifts. The starting point is the following result:

Lemma 3.2.1. The 1-category BW is orbital, and there is an equivalence of 1-cate-
gories

BW ' .OrbT/hN� ;

where the multiplicative monoid N� acts on the orbit1-category OrbT as in Construc-
tion 3.1.10.

Proof. We first prove that the1-category BW is orbital. Let Mfldc1 denote the topological
category whose objects are given by compact oriented 1-manifolds and whose space of
morphisms between a pair of compact oriented 1-manifolds is given by the set of covering
maps of positive degree equipped with the compact-open topology. In the following, we
will let Mfldc1 denote the underlying1-category of the topological category Mfldc1. The
assignment � 7! S1 determines a functor of1-categories BW ,! Mlfdc1 which is fully
faithful since there is an equivalence of E1-monoids W ' EndMfldc

1
.S1/. We obtain a

coproduct-preserving functor of1-categories

FinBW ! Mfldc1

given by forming the left Kan extension of the functor BW ,! Mfldc1 along the Yoneda
embedding BW ! FinBW by virtue of Remark 3.1.3, and this functor is given by the
assignment � q � � � q � 7! S1 q � � � q S1. Consequently, it suffices to show that the
1-category Mfldc1 admits pullbacks since the functor FinBW ! Mfldc1 reflects pullbacks.
To this end, it suffices to show that the diagram

S1

S1 S1

˛m

˛n

admits a pullback in Mfldc1, where ˛k denotes the kth power map of S1 for every integer
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k � 1. Let g D gcd.m; n/ denote the greatest common divisor of m and n. Then the
diagram

S1 q � � � q S1 S1

S1 S1

˛n=gı.g˛g/

˛m=gı.g˛g/ ˛m

˛n

is a pullback of the diagram above in the1-category Mfldc1, where g˛g denotes the self-
map of the g-fold coproduct of S1 with itself defined by the formula g˛g D ˛g q� � �q˛g .
This proves that the 1-category BW is orbital, so it remains to prove that there is an
equivalence of1-categories BW ' .OrbT/hN� . Let E denote the 2-category defined as
follows:

� An object of E is given by an object T=Cn of OrbT.

� A morphism from T=Cm to T=Cn in E is given by a pair .k; f / consisting of an ele-
ment k of N� and a morphism f W T=Ckm ! T=Cn in OrbT. If .l; g/ is an additional
morphism from T=Cn to T=Cr , then .l; g/ ı .k;f /D .lk; h/, where h is the morphism
in OrbT given by

T=Clkm
il .f /
���! T=Cln

g
�! T=Cr :

� Let .k0; f 0/ denote an additional morphism from T=Cm to T=Cn in E. If k D k0, then

HomHomE.T=Cm;T=Cn/..k; f /; .k
0; f 0// D HomHomOrbT .T=Ckm;T=Cn/.f; g/

and empty otherwise. We have used the fact that OrbT is equivalent to a 2-category.

The assignment .k; f / 7! k determines a functor p W E! BN� which is a cocartesian
fibration classifying the action of the multiplicative monoid N� on OrbT. The fact that p
is a cocartesian fibration follows from [10, Lemmas 3.10 and 3.11]. Consequently, there
is an equivalence

.OrbT/hN� ' EŒcocart�1�

by [53, Corollary 3.3.4.3], where EŒcocart�1� denotes the localization at the set of p-
cocartesian edges of E. We prove that there is an equivalence of1-categories EŒcocart�1�
' BW. For every pair of elements k and m of N�, the pair .k; id/ defines a morphism
T=Cm ! T=Ckm which is a p-cocartesian edge of E. Indeed, if .l; f / is an additional
morphism T=Cm ! T=Cn in E such that l D kr for some r 2 N�, then the pair .r; f /
defines a morphism T=Ckm! T=Cn in E such that .l; f /D .r;f / ı .k; id/. In fact, every
p-cocartesian edge of E is of this form. Consider the assignment which regards T=Cn as
an object of the1-category Mfldc1, and which carries a morphism .k;f / WT=Cm!T=Cn
in E to the map

T=Cm
k
p
�

���! T=Ckm
f
�! T=Cn;

where the first map is given by Œx� 7! Œ k
p
x�. We claim that this assignment determines

a functor W W E ! Mfldc1. Indeed, this assignment is compatible with composition: if
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.l; g/ W T=Cn ! T=Cr is an additional morphism in E, then the composite

T=Cm
lk
p
�

���! T=Clkm
il .f /
���! T=Cln

g
�! T=Cr

is canonically equivalent to the composite

T=Cm
k
p
�

���! T=Ckm
f
�! T=Cn

l
p
�

��! T=Cln
g
�! T=Cr :

since the morphism il .f / is given by T=Clkm
.�/l

���!T=Ckm
f
�!T=Cn

l
p
�

��!T=Cln. Conse-
quently, we obtain a functor of1-categories W W E!Mfldc1. Note that the map T=Cm!
T=Ckm is an equivalence in Mfldc1, so the functor W carries every p-cocartesian edge of
E to an equivalence in Mfldc1. Hence, the functor W W E! Mfldc1 canonically extends to
a functor of1-categories

.OrbT/hN� ' EŒcocart�1�! Mfldc1:

This functor is fully faithful, so .OrbT/hN� is equivalent to the1-category with a single
object T=C1, and End.OrbT/hN�

.T=C1/ ' EndMfldc
1
.S1/ ' W. This proves the desired

statement.

We define the1-category of topological Cartier modules as follows:

Definition 3.2.2. The1-category of D-valued topological Cartier modules is defined by

TCartD D MackD.BW/ D Fun�.Span.FinBW/;D/;

where D denotes an additive1-category. If D D Sp, then we will write TCart instead of
TCartSp, and refer to the former as the1-category of topological Cartier modules.

Remark 3.2.3. The functor BWop ! Span.FinBW/ induces a functor of1-categories

TCart! SpFr

which regards the underlying spectrum of a topological Cartier module as a spectrum
with Frobenius lifts, where the underlying spectrum of a topological Cartier module is
defined as the spectrum with T-action obtained by precomposing the functor above with
the forgetful functor SpFr

! SpBT. The functor BW! Span.FinBW/ induces a functor of
1-categories

TCart! Fun.BW;Sp/;

so as a consequence, if M is a topological Cartier module, then for each integer k � 1,
there is a T-equivariant map of spectra Vk W MhCk

! M , which we will refer to as the
kth Verschiebung map of M .

Remark 3.2.4. Antieau–Nikolaus [3, Definition 3.1] define a p-typical topological
Cartier module as a spectrum M with T-action equipped with the datum of a T-
equivariant factorization

MhCp

V
�!M

F
�!M hCp
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of the norm map for the cyclic group Cp . In Remark 3.2.9, we make the discussion in
Remark 3.2.3 precise by showing that the underlying spectrum of a topological Cartier
module in the sense of Definition 3.2.2 canonically admits the structure of a p-typical
topological Cartier module for every prime number p.

Example 3.2.5. If M denotes a topological Cartier module, then the abelian group �0M
comes equipped with a pair of endomorphism Vk D i

0.k/ and Fk D i.k/ for every pos-
itive integer k, where i 0 and i denote the functors defined in Construction 3.1.4. Let
g D gcd.m;n/ denote the greatest common divisor of the positive integersm and n. Then
the commutative diagram

� q � � � q � �

� �

n
g ı.g �id/

m
g ı.g �id/ m

n

is a pullback in the finite coproduct completion FinBW, so we conclude that FmVn D
gcd.m; n/Vn=gFm=g . In particular, we have FkVk D k � id for every positive integer k,
and if gcd.m; n/ D 1, then FmVn D VnFm. We will refer to this as a Cartier module
structure on �0M (see Zink [68]). This structure arises frequently in algebra; for instance
if R is a commutative ring, then the ring of big Witt vectorsW.R/ and the ring of rational
Witt vectors Wrat.R/ both admit the structure of a Cartier module in this sense.

We show that the 1-category of topological Cartier modules is equivalent to the
1-category of genuine topological Cartier modules as defined by Antieau–Nikolaus [3,
Definition 5.1].

Definition 3.2.6. The1-category of genuine topological Cartier modules is defined by

TCartgen
D lim.F‰ W BN� ! Cat1/ D .SpT/

hN� ;

where the multiplicative monoid N� acts on the1-category SpT as in Lemma 3.1.11.

Remark 3.2.7. Unwinding the definition, we see that an object of TCartgen is given by a
genuine T-spectrum M with compatible equivalences of genuine T-spectra M ' MCk

for every k � 1.

Proposition 3.2.8. There is an equivalence of1-categories TCart ' TCartgen.

Proof. There is a sequence of equivalences of1-categories

TCart D Mack.BW/
'
�! Mack..OrbT/hN�/ ' Mack.OrbT/

hN�
D TCartgen

by virtue of Lemmas 3.2.1 and 3.1.11.

Antieau–Nikolaus prove that there is an equivalence TCartp ' TCartgen
p [3, Propo-

sition 5.5], and Proposition 3.2.8 provides an integral version of this result. Note that
these comparison results hold unconditionally in contrast to the comparison between the
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1-category of cyclotomic spectra and the 1-category of genuine cyclotomic spectra
established by Nikolaus–Scholze [59], where it is crucial to restrict to the bounded below
case.

Remark 3.2.9. There is a canonical sequence of functors of1-categories

TCart! SpT ! PSp.OrbT/! SpBT;

where the first functor exists by virtue of Proposition 3.2.8. In particular, if M is a topo-
logical Cartier module, then there is a commutative diagram of spectra with T-action

MhCk
M MˆCk

MhCk
M hCk M tCk

'

NmCk can

for every positive integer k, where we have used the equivalence MCk ' M in SpT.
This diagram was introduced by Hesselholt–Madsen [40] building on work of Greenlees–
May [36], and is commonly referred to as the isotropy-separation diagram. Note that the
commutative square on the left in the diagram above exhibits the underlying spectrum
with T-action of M as a p-typical topological Cartier module for every prime number p
in the sense of Antieau–Nikolaus [3].

Remark 3.2.10. A detailed treatment of the1-category of topological Cartier modules
extending the results of Antieau–Nikolaus [3] to the integral situation will be the content
of forthcoming work.

We obtain an explicit identification of the topological Cartier module obtained from a
spectrum with Frobenius lifts by freely adjoining Verschiebung maps. It follows formally
from [8, Proposition 6.5] that there is an adjunction of1-categories

SpFr TCart;
Free

(1)

where Free denotes a left adjoint of the forgetful functor TCart! SpFr. Antieau–Nikolaus
[3] give a direct construction of the p-typical analogue of Free, but this is not a viable
approach in the integral situation due to the infinite hierarchy of coherences that need to
be specified to define such a functor. We will resolve this issue by establishing a gen-
eral version of the Segal–tom Dieck splitting for spectral Mackey functors on orbital
1-categories. We will begin by recalling the usual Segal–tom Dieck splitting [52, 65]
in equivariant stable homotopy theory (see [61] for a classical treatment). For a finite
group G, there is an adjunction

PSp.OrbG/ SpG
F

(2)

where the right adjoint is obtained by restricting along the functor Orbop
G ! Span.FinG/,

and the left adjoint F is given by sending a spectral presheaf X on OrbG to the genuine



J. McCandless 34

G-spectrum with
F.X/G '

M
.H/

.XH /hWG.H/;

where the sum is indexed by conjugacy classes of subgroups of G, and WG.H/ is the
Weyl group. In general, if Y is a spectral presheaf on OrbG , then we define YH D
Y.G=H/ for every subgroup H of G. The idea is to regard the adjunction in (1) as an
instance of this adjunction, where we replace the role of the orbit category of G above by
the Witt monoid. Let T denote an orbital1-category, and note that there is an adjunction
of1-categories

Fun.T op;Sp/ Mack.T / D Fun�.Span.FinT /;Sp/;
L

where the right adjoint is the forgetful functor. In Proposition 3.2.11 below, we obtain an
explicit formula for the left adjoint L above which we regard as a version of the Segal–
tom Dieck splitting for spectral Mackey functors defined on the orbital 1-category T .
In [8, Theorem A.9], Barwick proves a similar result establishing a version of the Segal–
tom Dieck splitting for coherent topoi.

Proposition 3.2.11. If X is a presheaf on an orbital 1-category T with values in the
1-category of spectra, then there is a natural equivalence of spectra

.LX/.t/ ' colim.t 0!t/2.T=t /
' X.t 0/

for every object t of T .

Proof. Consider the following pair of adjunctions of1-categories:

Fun.T op;Sp/ Fun.Span.FinT /;Sp/ Fun�.Span.FinT /;Sp/;
jŠ p

j� �

where jŠ denotes the functor given by forming the left Kan extension along j W T op !

Span.FinT /, and p denotes a left adjoint of the inclusion � which exists by virtue of [8,
Proposition 6.5]). Let u D j �� denote the right adjoint of L ' pjŠ. Let X W T op ! Sp
denote a presheaf on T with values in the1-category of spectra. If t is an object of T ,
then there is a natural equivalence of spectra

.j �jŠX/.t/ ' colim.Span.FinT /=t �Span.FinT / T
op
! T op X

�! Sp/;

by virtue of the pointwise formula for the left Kan extension. Consequently, the canonical
functor T ! Span.FinT / induces a natural map colim.t 0!t/2.T=t /

' X.t 0/! .j �jŠX/.t/.
The unit id! �p induces a natural transformation j �jŠX ! j ��pjŠX ' uLX , and hence
a natural map of spectra

colim.t 0!t/2.T=t /
' X.t 0/! .j �jŠX/.t/! .uLX/.t/

for every object t of T . Additionally, this map is natural in X . Consequently, it suffices to
prove the assertion of Proposition 3.2.11 for a presheaf on an orbital1-category T with
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values in the1-category of connective spectra since the general case follows by passing
to stabilizations. The forgetful functor Fun�.Span.FinT /;�/! Fun.T op;�/ admits a left
adjoint which is canonically equivalent to the following composite of left adjoint functors
of1-categories:

Fun.T op; �/
FreeE1
����! Fun.T op;MonE1.�//

L0

�! Fun�.Span.FinT /;MonE1.�//;

where we have used the fact that the forgetful functor MonE1.�/! � induces an equiv-
alence

Fun�.Span.FinT /;MonE1.�// ' Fun�.Span.FinT /; �/

since the1-category Span.FinT / is semiadditive (cf. [31, Corollary 2.5]). Let GrpE1.�/

denote the full subcategory of MonE1.�/ spanned by the grouplike E1-monoids, and
recall that there is an equivalence GrpE1.�/ ' Sp�0 by [56]. The following diagram of
left adjoints commutes:

Fun.T op;MonE1.�// Fun�.Span.FinT /;MonE1.�//

Fun.T op;GrpE1.�// Fun�.Span.FinT /;GrpE1.�//

L0

.�/grp .�/grp

L

since the corresponding diagram of right adjoints commutes. The functors denoted by
.�/grp in the diagram above are induced by the group completion functor MonE1.�/!

GrpE1.�/ which preserves finite products. If X W T op ! Sp�0 is a presheaf on T with
values in the 1-category of connective spectra, then we want to show that the map of
connective spectra

colim.t 0!t/2.T=t /
' X.t 0/! .LX/.t/

is an equivalence for every object t of T . Note that X ' colimn †
1�n�1�nX , and

each presheaf �1�nX is canonically a colimit of representable presheaves of the form
MapT .�; s/, so we may assume that X D †1C MapT .�; s/ for an object s of T since
both the domain and codomain of the map above preserve colimits in X . Equivalently,
we may assume that X is given by the presheaf of grouplike E1-monoids on T given by
the formula X D .FreeE1 MapT .�; s//

grp. There is a natural equivalence of functors of
1-categories

LX ' .L0MapT .�; s//
grp
' MapSpan.FinT /

.s;�/grp
W Span.FinT /! GrpE1.�/

by the commutative square above, where the last equivalence follows by the Yoneda
lemma. In this case, the map under consideration,

F W colim.t 0!t/2.T=t /
' MapT .t

0; s/! MapSpan.Fin/T .s; t/;

is induced by the map of spaces

MapT .t
0; s/! MapSpan.FinT /

.s; t/;
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determined by the assignment .t 0! s/ 7! .s t 0! t / for every object t 0! t of .T=t /'.
Note that the map F above is an equivalence, since the map of spaces

MapSpan.FinT /
.s; t/! colim.t 0!t/2.T=t /

' MapT .t
0; s/

determined by the assignment .s  t 0 ! t / 7! .t 0 ! s/ is an inverse. Using the fact
that MapSpan.FinT /

.s; t/ admits the structure of an E1-monoid since Span.FinT / is semi-
additive, and that both FreeE1 and .�/grp preserve colimits, we conclude that the map
of grouplike E1-monoids

colim.t 0!t/2.T=t /
'.FreeE1 MapT .t

0; s//grp
! MapSpan.FinT /

.s; t/grp

is an equivalence, which proves the desired statement.

Example 3.2.12. Let G be a finite group, and consider the adjunction in (2). If X W
Orbop

G ! Sp is a spectral presheaf on the orbit category of G, then there is an equiva-
lence

F.X/G ' colimG=H!G=G2..OrbG/=.G=G//
' X.G=H/ '

M
.H/

.XH /hWG.H/;

by Proposition 3.2.11. This is precisely the classical Segal–tom Dieck splitting as dis-
cussed above.

Recall that there is an adjunction of1-categories

SpFr TCart;
Free

where Free denotes a left adjoint of the forgetful functor. As a consequence of Proposi-
tion 3.2.11, we obtain an explicit description of Free which we will use in the proof of
Theorem 3.3.12, where we show that the classical definition of TR coincides with the
definition considered in §2.4 in the bounded below case.

Corollary 3.2.13. If X is a spectrum with Frobenius lifts, then there is an equivalence of
spectra with T-action

Free.X/ '
M
n�1

XhCn
;

The kth Verschiebung map of Free.X/ is given by the canonical inclusion

Free.X/hCk
'

M
n�1

XhCkn
,!

M
n�1

XhCn
' Free.X/

for every integer k � 1, where the Verschiebung maps of X are defined in Remark 3.2.3.

Proof. The first assertion follows directly from Proposition 3.2.11, so it remains to iden-
tify the Verschiebung maps of Free.X/. We begin by identifying the pth Verschiebung
map of Free.X/ for a prime p. Let Freep denote a left adjoint of the forgetful functor
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TCartp ! SpFr
p . If X is a p-typical spectrum with Frobenius lift, then there is an equiva-

lence of spectra with T-action

Freep.X/ '
M
i�0

XhC
pi

by virtue of [3, Lemma 4.1], where the pth Verschiebung of Freep.X/ is given by the
canonical inclusion under this identification. Since the following diagram commutes:

TCart TCartp

SpFr SpFr
p

we obtain a canonical map of p-typical topological Cartier modules Freep.X/! Free.X/
for every spectrumX with Frobenius lifts, such that the underlying map of spectra with T-
action is given by the canonical inclusion. This identifies the pth Verschiebung of Free.X/
as wanted. The general case follows by prime decomposition. Indeed, if k D pq, then

Free.X/hCpq
' .Free.X/hCp

/hCq

.Vp/hCq

�����! Free.X/hCq

Vq

�! Free.X/:

Remark 3.2.14. The functor Free restricts to a functor of1-categories

Free W SpFr
[ ! TCart[;

where the decoration .�/[ denotes the full subcategory spanned by those objects whose
underlying spectrum is bounded below, since the functor .�/hCk

preserves connectivity
for every integer k � 1.

3.3. Genuine cyclotomic spectra and genuine TR

We recall the construction of TR based on the notion of a genuine cyclotomic spectrum
following Hesselholt–Madsen [40] and Blumberg–Mandell [17]. We establish an adjunc-
tion between the1-category of topological Cartier modules as introduced in §3.2 and the
1-category of genuine cyclotomic spectra whose right adjoint is given by TR. Finally,
we prove Theorem 3.3.12 which asserts that the classical construction of TR agrees with
the construction discussed in §2.4 in the bounded below case.

Definition 3.3.1. The1-category of genuine cyclotomic spectra is defined by

CycSpgen
D lim.Fˆ W BN� ! Cat1/ D .SpT/

hN� ;

where the multiplicative monoid N� acts on the1-category SpT as in Example 3.1.12.

Remark 3.3.2. Unwinding the definition, we see that an object of the 1-category
CycSpgen is given by a genuine T-spectrum X with compatible equivalences of genuine
T-spectra X ' XˆCk for every integer k � 1.
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The notion of a genuine cyclotomic spectrum was introduced by Hesselholt–Madsen
[40] building on ideas introduced by Bökstedt–Hsiang–Madsen [18]. The homotopy the-
ory of genuine cyclotomic spectra was first studied by Blumberg–Mandell [17], and later
by Kaledin [46, 47], Barwick–Glasman [10], Nikolaus–Scholze [59], and Ayala–Mazel-
Gee–Rozenblyum [5–7].

Remark 3.3.3. There is a canonical sequence of functors of1-categories

CycSpgen
! SpT ! SpBT

which extracts the underlying spectrum with T-action of a genuine cyclotomic spec-
trum. Let X denote a genuine cyclotomic spectrum. For every prime number p, the
T-equivariant map

X ! XˆCp ! X tCp

exhibits the underlying spectrum with T-action ofX as a cyclotomic spectrum in the sense
of Nikolaus–Scholze [59]. The main result of Nikolaus–Scholze [59, Theorem II.6.9]
asserts that the construction above determines a functor of1-categories

CycSpgen
! CycSp

which restricts to an equivalence on the full subcategories of those objects whose under-
lying spectrum is bounded below.

Remark 3.3.4. If R is a connective E1-ring, then Bökstedt–Hsiang–Madsen [18] and
Hesselholt–Madsen [40] prove that THH.R/ admits the structure of a genuine cyclotomic
spectrum by using the Bökstedt construction. Angeltveit–Blumberg–Gerhardt–Hill–
Lawson–Mandell [1] construct the genuine cyclotomic structure on THH.R/ using the
Hill–Hopkins–Ravenel norm [44], and these constructions are equivalent by the work
of Dotto–Malkiewich–Patchkoria–Sagave–Woo [27]. Nikolaus–Scholze [59] construct a
cyclotomic structure on THH.R/ using the Tate-valued diagonal.

We recall the classical construction of TR following Blumberg–Mandell [17].

Construction 3.3.5. Let X be a genuine cyclotomic spectrum. For every pair of positive
integer .m; n/ with m D ln, the restriction map Rl W XCm ! XCn is the map of genuine
T-spectra given by

Rl W X
Cm ' .XCl /Cn ! .XˆCl /Cn

'
�! XCn ;

where the final equivalence is induced by the genuine cyclotomic structure of X . Further-
more, the assignment n 7! XCn determines a functor of1-categories

XC.�/ W .N; div/! SpT;

where .N; div/ denotes the set of natural numbers regarded as a poset with respect to the
divisibility relation, which means that there is a morphismm! n precisely if n dividesm.
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Definition 3.3.6. Let TRgen denote the functor of1-categories

TRgen
W CycSpgen

! SpT

determined by the assignment X 7! lim.N;div/X
C.�/ .

Remark 3.3.7. The assignment X 7! TRgen canonically refines to a functor of1-cate-
gories

TRgen
W CycSpgen

! TCart;

where we have used Proposition 3.2.8 and the fact that the functor .�/Ck preserves limits
for every k � 1. Additionally, the functor TRgen

W CycSpgen
! TCart restricts to a functor

TRgen
W CycSp[

'
�! CycSpgen

[
! TCart[;

where the decoration .�/[ denotes the full subcategory spanned by those objects whose
underlying spectrum is bounded below, and the first equivalence follows from Nikolaus–
Scholze [59].

We recall an important construction due to Antieau–Nikolaus [3, Example 3.5]. If M
is a p-typical topological Cartier module, then there is a cofiber sequence of spectra with
T-action

MhCp

V
�!M !M=V;

and the cofiberM=V canonically admits the structure of a p-typical cyclotomic spectrum.
The assignment M 7!M=V determines a functor of1-categories

.�/=V W TCartp ! CycSpp;

which admits a right adjoint given by p-typical TR by Antieau–Nikolaus [3, Proposition
3.17] using Krause–Nikolaus [49, Proposition 10.3]. We obtain an integral version of
the functor .�/=V . Note that if we regard M as a genuine p-typical topological Cartier
module, then the underlying spectrum with T-action of MˆCp is equivalent to M=V by
the isotropy-separation sequence.

Construction 3.3.8. Let M be a genuine topological Cartier module. For every pair of
positive integers .m; n/ with m D ln, consider the map of genuine T-spectra defined by

MˆCn
'
�! .MCl /ˆCn !MˆCm ;

where the first equivalence is induced by the genuine topological Cartier module structure
of M . Furthermore, the assignment n 7!MˆCn determines a functor of1-categories

MˆC.�/ W .N; div/op
! SpT

as in Construction 3.3.5.
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Remark 3.3.9. The assignment M 7! colim.N;div/opMˆC.�/ refines to a functor of 1-
categories

L W TCart! CycSpgen;

where we have used Proposition 3.2.8 and the fact that the functor .�/ˆCk preserves
colimits for every k � 1. Additionally, the functor L W TCart! CycSpgen restricts to a
functor of1-categories

L W TCart[ ! CycSpgen
[

'
�! CycSp[

as in Remark 3.3.7.

Remark 3.3.10. Let .N;�/ denote the set of natural numbers regarded as a poset with
respect to the usual ordering, which means that there is a morphism m! n in .N;�/
precisely if n�m. The functor .N;�/! .N;div/ determined by the assignment n 7! nŠ is
initial.4 Consequently, if X is a genuine cyclotomic spectum, then there is an equivalence
of topological Cartier modules

TRgen.X/ ' lim
 �
.� � � ! XC3Š ! XC2Š ! X/;

where the maps are given by

XC.nC1/Š ' .XCnC1/CnŠ ! .XˆCnC1/CnŠ ' XCnŠ :

On the other hand, if M is a topological Cartier module, then there is an equivalence of
genuine cyclotomic spectra

L.M/ ' lim
�!
.M !MˆC2Š !MˆC3Š ! � � � /;

where the maps are given by

MˆCnŠ ' .MCnC1/ˆCnŠ ! .MˆCnC1/ˆCnŠ 'MˆC.nC1/Š :

Using Remark 3.3.10, we show that the functors L and TRgen form an adjunction. We
adapt the proof given by Antieau–Nikolaus [3, Proposition 5.2] to the integral situation.
We begin by reviewing the 1-category of coalgebras for a family of endofunctors fol-
lowing [59, Section II.5]. If F W C! C is a functor, then the1-category coAlgF .C/ of
F -coalgebras in C is defined by

coAlgF .C/ D LEq
�
C C

�
;

id

F

where LEq.�/ denotes the lax equalizer (see [59, Definition II.1.4]). Unwinding the def-
inition, we see that an object of coAlgF .C/ consists of an object X of C together with a
morphism X ! FX . Let ¹Fkºk�1 be a family of commuting endofunctors of C. There is
a functor of1-categories

coAlgF1
.C/! coAlgF1

.C/

4The author learned this observation from Markus Land.
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determined by the assignment X 7! F2X , where F2X is considered as an F1-coalgebra
using the map F2X ! F2F1X ' F1F2X (cf. [59, Construction II.5.2]). The1-category
of coalgebras for the family of commuting endofunctors ¹Fkºk�1 of C is defined by

coAlg¹Fkº
.C/ D lim

 �
n

coAlg¹F1;:::;Fnº
.C/;

where coAlg¹F1;:::;Fnº
.C/ D coAlgFn

.coAlg¹F1;:::;Fn�1º
.C//. Unwinding the definition,

we see that an object of the 1-category coAlg¹Fkº
.C/ consists of an object X of C

together with compatible maps X ! FkX for every k � 1. Let Fix¹Fkº
.C/ denote the

full subcategory of coAlg¹Fkº
.C/ spanned by those objects where the map X ! FkX is

an equivalence for each k � 1. Dually, there is an1-category of algebras for a family of
commuting endofunctors ¹Gkºk�1 of C which we will denote by Alg¹Gkº

.C/. An object
of Alg¹Gkº

.C/ consists of an object of C together with compatible maps GkX ! X for
every k � 1. We have the following result:

Proposition 3.3.11. There is an adjunction of1-categories

TCart CycSpgen:
L

TRgen

Proof. In the following, we will implicitly employ the equivalence TCart ' TCartgen

established in Proposition 3.2.8. Let X be a genuine cyclotomic spectrum and let M be a
topological Cartier module. There is a natural transformation � W id! TRgen

ı L induced
by the canonical map

M ' limm2NM
CmŠ ! limm2N.colimn2NM

ˆCnŠ/CmŠ ;

by virtue of Remark 3.3.10, and we show that � induces an equivalence of spaces

MapCycSpgen.L.M/;X/! MapTCart.M;TRgen.X//:

There is an equivalence of1-categories CycSpgen
' Fix

¹.�/ˆCkŠ º
.SpT/ by [59, Lemma

II.5.9], so we obtain a fully faithful functor of1-categories

CycSpgen ,! coAlg
¹.�/ˆCkŠ º

.SpT/

which admits a left adjoint given byX 7! colimn2NX
ˆCnŠ by [59, Section II.5]. It follows

that
MapCycSpgen.L.M/;X/ ' MapcoAlg

¹.�/
ˆCkŠ º

.SpT/
.M;X/;

whereM is regarded as a coalgebra using the mapM 'MCkŠ !MˆCkŠ for each k � 1.
Similarly, we find that there is a fully faithful functor of1-categories

TCart ,! Alg
¹.�/CkŠ º

.SpT/

which admits a right adjoint given by M 7! limm2NM
CmŠ . We conclude that

MapTCart.M;TRgen.X// ' MapAlg
¹.�/

CkŠ º
.SpT/

.M;X/;
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where X is regarded as an algebra using the map XCkŠ ! XˆCkŠ ' X for each k � 1.
In other words, we have reduced to showing that � W id! TRgen

ı L induces a natural
equivalence of spaces

MapcoAlg
¹.�/

ˆCkŠ º
.SpT/

.M;X/ ' MapAlg
¹.�/

CkŠ º
.SpT/

.M;X/:

Using [59, Proposition II.1.5], we see that

MapcoAlg
¹.�/ˆC1Š ;:::;.�/

ˆC.kC1/Š º
.SpT/

.M;X/

is given by the equalizer

MapcoAlg
¹.�/ˆC1Š ;:::;.�/

ˆCkŠ º
.SpT/

.M;X/

!
! MapcoAlg

¹.�/ˆC1Š ;:::;.�/
ˆCkŠ º

.SpT/
.M;XˆC.kC1/Š/;

where M ! X is carried to M ! X ' XˆC.kC1/Š by the top map, and
to M ' MC.kC1/Š ! MˆC.kC1/Š by the bottom map. Similarly, we find that
MapAlg

¹.�/C1Š ;:::;.�/
C.kC1/Š º

.SpT/
.M;X/ is given by the equalizer

MapAlg
¹.�/C1Š ;:::;.�/

CkŠ º
.SpT/

.M;X/!! MapcoAlg
¹.�/C1Š ;:::;.�/

CkŠ º
.SpT/

.MC.kC1/Š ; X/;

where M ! X is carried to MC.kC1/Š ! M ! X by the top map, and to MC.kC1/Š !

MˆC.kC1/Š 'M by the bottom map. By induction, we conclude that these two equalizers
are equivalent using the compatible equivalences MCk ' M and XˆCk ' X for each
k � 1.

We prove the main result of this section. As mentioned previously, this result is
inspired by the result of Blumberg–Mandell [17] which asserts that TRgen is corepre-
sentable by the reduced topological Hochschild homology eTHH.SŒt �/ as a functor defined
on the homotopy category of the1-category of genuine cyclotomic spectra with values
in the homotopy category of spectra (see [17, Theorem 6.12]).

Theorem 3.3.12. There is a natural equivalence of spectra with Frobenius lifts

TRgen.X/ ' mapCycSp. eTHH.SŒt �/; X/

for every cyclotomic spectrum X whose underlying spectrum is bounded below.

The proof of Theorem 3.3.12 relies on a genuine version of the Tate orbit lemma [59,
Lemma I.2.1] obtained by Antieau–Nikolaus [3, Lemma 5.3]:

Lemma 3.3.13. If Y is a genuine T-spectrum, then the canonical map

.Y Cp /ˆCp ! Y
ˆC

p2

is an equivalence in the1-category SpT for every prime p.
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Proof of Theorem 3.3.12. First note that the composite

SpFr
[

Free
��! TCart[

L
�! CycSpgen

[

'
�! CycSp[

is equivalent to the canonical functor SpFr
[ !CycSp[ as a consequence of Corollary 3.2.13

combined with the formula for the functor L. Indeed, we have

L Free.X/ ' lim
�!

�M
k�1

XhCk

pr
�!

M
k�1
2−k

XhCk

pr
�!

M
k�1
2;3−k

XhCk

pr
�! � � �

�
' X

by Lemma 3.3.13, thus it follows that L Free.X/ ' X as objects of the 1-category
CycSpgen. Now, since every functor in the composite above is a left adjoint, we conclude
that the composite

CycSp[
'
�! CycSpgen

[

TRgen

���! TCart[ ! SpFr
[

determines a right adjoint of the canonical functor SpFr
[ ! CycSp[, which shows the

desired conclusion by virtue of Proposition 2.4.3.

4. Applications to curves on K-theory

We discuss an application of Theorem 3.3.12. Specifically, we prove that TR evaluated
on a connective E1-ring R admits a description in terms of the spectrum of curves on the
algebraic K-theory ofR, extending work of Hesselholt [38] and Betley–Schlichtkrull [11].

4.1. Topological Hochschild homology of truncated polynomial algebras

In this section, we obtain a convenient description of the cyclotomic structure on
lim
 �

eTHH.SŒt �=tn/ which will be instrumental in §4.2. Concretely, we compute the
Hochschild homology of ZŒt �=tn as a commutative differential graded algebra, and
deduce a connectivity estimate for THH.SŒt �=tn/. Similar computations have previously
been obtained by Hesselholt–Madsen [39, 40] building on the work of [19, 50]. We refer
the reader to Speirs [62] for a summary of these computations. We will begin by reviewing
the notion of a graded object in a symmetric monoidal1-category.

Notation 4.1.1. Let Zds
�0 denote the set of nonnegative integers regarded as a discrete

category, and let C denote a presentable symmetric monoidal1-category.

(1) The1-category of graded objects of C is defined by

Gr.C/ D Fun.Zds
�0;C/;

which we regard as a symmetric monoidal 1-category using the Day convolution
symmetric monoidal structure coming from the symmetric monoidal structure on Zds

�0
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given by multiplication. We will denote an object X of Gr.C/ by ¹Xiºi�0. For every
integer n � 0, the inclusion ¹nº ,! Zds

�0 induces an evaluation functor

evn W Gr.C/! C

which is determined by the assignment ¹Xiºi�0 7! Xn.

(2) The projection Zds
�0 ! ¹0º induces a functor C! Gr.C/ which admits a left adjoint

und W Gr.C/! C

determined by forming the left Kan extension along the projection Zds
�0 ! ¹0º. Con-

cretely, the functor und W Gr.C/ ! C is determined by the assignment ¹Xiºi�0 7!L
i�0 Xi . The functor C! Gr.C/ canonically admits a symmetric monoidal struc-

ture since the projection Zds
�0 ! ¹0º is a map of commutative monoids, so the left

adjoint und W Gr.C/! C canonically refines to a symmetric monoidal functor of1-
categories (see [58, Corollary 3.8]).

Remark 4.1.2. If ¹Xiºi�0 is a graded spectrum, then the underlying spectrum X D

und.¹Xiºi�0/ of ¹Xiºi�0 carries an additional grading on its homotopy groups using the
formula

��.X/ '
M
i�0

��.Xi /:

If x 2 ��.Xi /, then we will write w.x/ D i , and think of this as the horizontal grading
direction. See Example 4.1.8 and the discussion following the proof of Proposition 4.1.10.

A pointed monoid is a monoid object in the category of pointed sets equipped with the
smash product symmetric monoidal structure. For every n 2 N [ ¹1º, we will let …n D

¹0;1; t; : : : ; tn�1º denote the pointed monoid with 0 as basepoint and whose multiplication
is determined by tn D 0. In the following, we will regard the pointed monoid …n as an
object of the 1-category CAlg.��/ of pointed E1-monoids, where the 1-category ��
of pointed spaces is equipped with the smash product symmetric monoidal structure. The
1-category CAlg.��/ inherits the structure of a symmetric monoidal1-category whose
unit is given by the pointed monoid ¹0; 1º.

Example 4.1.3. In this example, we endow the underlying pointed space of…1 with two
distinct graded pointed E1-monoid structures:

(1) The functor Zds
�0 ! �� defined by i 7! ¹0; t iº endows the underlying pointed space

of …1 with the structure of an object of the 1-category Gr.��/ of graded pointed
spaces with t in grading degree 1, and we will denote this object by…w.t/D1

1 . We find
that …w.t/D1

1 canonically refines to an object of the 1-category CAlg.Gr ��/ since
the grading is compatible with the monoid structure on …1.

(2) The functor Zds
�0 ! �� defined by i 7! ¹0; tj º if i D jn and by i 7! ¹0º if n does

not divide i , endows the underlying pointed space of …1 with the structure of an
object of the 1-category Gr.��/ with t in grading degree n, and we will similarly
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denote this object by …w.t/Dn
1 . As before, …w.t/Dn

1 canonically refines to an object
of CAlg.Gr ��/.

For every integer n � 1, the assignment t 7! tn determines a map of pointed monoids
…1 ! …1 which canonically refines to a map of E1-algebras …w.t/Dn

1 ! …
w.t/D1
1 in

graded pointed spaces. We have the following result which will play an important role in
the following.

Lemma 4.1.4. The following square is a pushout of E1-algebras in graded pointed
spaces:

…
w.t/Dn
1 …

w.t/D1
1

¹0; 1º …
w.t/D1
n

t 7!tn

t 7!0

Proof. We first prove the following general assertion: Assume that M is a …1-module
in ��, and let M 0 denote the cofiber of the endomorphism of M given by multiplication
by t . Then the canonical map M !M 0 induces an equivalence of …1-modules

M ˝…1 ¹0; 1º !M 0:

We may assume thatM D…1 since the unit…1 generates the1-category Mod…1.��/
under colimits, and in this case the assertion is true by inspection. To prove the assertion
of the lemma, we note that it suffices to prove that the diagram above is a pushout of
E1-algebras in �� after applying the forgetful functor CAlg.Gr ��/! CAlg.��/. In this
case, the pushout is given by…1˝…1 ¹0; 1º, where the…1-module structure on…1 is
obtained by restriction of scalars along the map …1 ! …1 in CAlg.��/ determined by
t 7! tn. Consequently,…1˝…1 ¹0;1º is equivalent to the cofiber of the map…1!…1
given by multiplication by tn, which proves the assertion.

There is a functor of 1-categories †1 W Gr.��/! GrSp obtained by composition
with the reduced suspension spectrum functor. This functor canonically refines to a func-
tor of1-categories

†1 W CAlg.Gr ��/! CAlg.GrSp/

since †1 W �� ! Sp and thus †1 W Gr �� ! GrSp admits the structure of a symmet-
ric monoidal functor. It is a consequence of Lemma 4.1.4 that the following square is a
pushout of E1-algebras in the1-category of graded spectra

SŒs� SŒt �

S SŒt �=tn

s 7!tn

s 7!0

where s is in grading degree n and t is in grading degree 1. The E1-algebra SŒt �=tn in
GrSp is defined by SŒt �=tn D †1…

w.t/D1
n . We conclude that the diagram obtained by

applying the functor und W GrSp! Sp to the diagram above is a pushout of E1-rings.
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Example 4.1.5. By the discussion above, there is an equivalence of E1-rings

SŒt �=tn D S˝SŒs� SŒt �;

for every integer n� 1, where SŒt � is a module over SŒs� by restriction of scalars along the
map of E1-rings SŒs�! SŒt � given by s 7! tn. There is an isomorphism of commutative
rings

�0.SŒt �=tn/ ' �0.S/˝�0.SŒs�/ �0.SŒt �/ ' Z˝ZŒs� ZŒt � ' ZŒt �=tn

by virtue of [54, Corollary 7.2.1.23] since both S and SŒt � are connective.

Presently, we discuss a graded refinement of cyclotomic spectra following [2]. The
assignment ¹Xiºi 7! ¹X

tCp

pi ºi determines an endofunctor Fp of the1-category GrSpBT

of graded spectra with T-action for every prime p, where X tCp

pi is equipped with the
residual T=Cp ' T-action.

Definition 4.1.6. The1-category of graded cyclotomic spectra is defined as the pullback

GrCycSp
Q
p.GrSpBT/�

1

GrSpBT Q
p.GrSpBT

� GrSpBT/

.ev0;ev1/

.id;Fp/

It follows from Definition 4.1.6 that a graded cyclotomic spectrum is given by a graded
spectrum with T-action ¹Xiº�0 together with a T-equivariant map

'p;i W Xi ! X
tCp

pi

for every prime number p and integer i � 0, where the target carries the residual
T=Cp ' T-action. Informally, the cyclotomic Frobenius multiplies the grading degree
by p. If R is an E1-algebra in the1-category of graded spectra, then there is a functor of
1-categories

THHgr
W Alg.GrSp/! GrCycSp

obtained by applying the cyclic bar construction in the1-category GrSp of graded spec-
tra. We will refer to the functor THHgr as graded topological Hochschild homology,
and refer the reader to [2, Appendix A] for the details of this construction. As in Nota-
tion 4.1.1, there is a functor

GrCycSp! CycSp

determined by the assignment ¹Xiºi�0 7!
L
i�0Xi , and this functor preserves colimits.

We find that the following diagram of1-categories commutes:

Alg.GrSp/ GrCycSp

Alg CycSp

und

THHgr

und

THH
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where we have used the fact that the underlying functor GrSp! Sp of Notation 4.1.1
admits a canonical symmetric monoidal structure.

Definition 4.1.7. Let ¹Riºi�0 denote an E1-algebra in GrSp withR' und.¹Riºi�0/, and
define

THH.R/i D evi THHgr.¹Riºi�0/

for every integer i � 0. By definition, there is an equivalence of cyclotomic spectra

THH.R/ ' und THHgr.¹Riºi�0/ '
M
i�0

THH.R/i :

Example 4.1.8. There is an isomorphism of graded rings

THH�.SŒt �/ ' S�Œt; dt �=.dt2 D �tdt/;

where � 2 �1S denotes the Hopf element and jdt j D 1. We may regard THH�.SŒt �/ as a
graded abelian group with w.t/ D w.dt/ D 1 using the fact that the underlying E1-ring
of THHgr.†1…

w.t/D1
1 / is equivalent to THH.SŒt �/. We have the following picture:

1 t t2 t3 : : :

0 dt tdt t2dt : : :

0 1 2 3 : : :

0

1

w

degree

Alternatively, we may regard THH�.SŒt �/ as a graded abelian group with w.t/ D

w.dt/ D n, and in this case we have the following picture:

1 0 : : : 0 t 0 : : : 0 t2 0 : : :

0 0 : : : 0 dt 0 : : : 0 tdt 0 : : :

0 1 : : : n � 1 n nC 1 : : : 2n � 1 2n 2nC 1 : : :

0

1

w

degree

As in Definition 4.1.7 above, there is an equivalence of cyclotomic spectra

THH.SŒt �=tn/ ' und THHgr.†1…w.t/D1
n / '

M
i�0

THH.SŒt �=tn/i :

Hesselholt–Madsen [39] determine the T-equivariant homotopy type of THH.SŒt �=tn/i
for every i � 0 by analyzing the facet structure of regular cyclic polytopes. Using Ex-
ample 4.1.8, we obtain the following special case of the result of Hesselholt–Madsen.
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Proposition 4.1.9. For every integer n � 1, there is an equivalence of spectra with T-
action

THH.SŒt �=tn/ '
M
i�0

THH.SŒt �=tn/i ;

where THH.SŒt �=tn/0 ' S and THH.SŒt �=tn/i ' †1C .S
1=Ci / for 1 � i � n � 1.

Proof. It remains to show that THH.SŒt �/0 ' S and THH.SŒt �=tn/i ' †1C .S
1=Ci / for

1 � i � n � 1 by the discussion above. There is an equivalence of cyclotomic spectra

THH.SŒt �/ ' und THHgr.†1…w.t/D1
1 / '

M
i�0

THH.SŒt �/i ;

where THH.SŒt �/0 ' S and THH.SŒt �/i ' †1C .S
1=Ci / for every i � 1, thus we want to

prove that there is an equivalence of spectra with T-action

THH.SŒt �=tn/i ' THH.SŒt �/i

for every 0 � i � n � 1. Note that the square

THHgr.SŒs�/ THHgr.SŒt �/

S THHgr.SŒt �=tn/

s 7!tn

s 7!0

is a pushout in the 1-category of graded cyclotomic spectra, where w.s/ D n and
w.t/ D 1. Indeed, it suffices to prove that the square is a pushout in the 1-category
of cyclotomic spectra after applying the underlying functor GrCycSp! CycSp. This is a
consequence of Lemma 4.1.4 since both und WAlg.GrSp/!Alg and THH WAlg!CycSp
preserve pushouts. Using Example 4.1.8, we conclude that there is an equivalence of spec-
tra with T-action

THH.SŒt �=tn/i ' THH.SŒt �/i

for every 0 � i � n � 1 as desired.

We will not need to determine the T-equivariant homotopy type of THH.SŒt �=tn/i
for i � n as in Hesselholt–Madsen [39] (see Remark 4.1.12). Instead, we will only need
a connectivity estimate for THH.SŒt �=tn/i for i � n, which we deduce from a calcula-
tion of the Hochschild homology groups of truncated polynomial rings over the integers.
This computation was previously obtained by Guccione–Guccione–Redondo–Solotar–
Villamayor [19]. We will let Zhyi denote the free divided power algebra which has
generators yŒ1�; yŒ2�; : : : with y D yŒ1� and the relations that yŒi�yŒj � D

�
iCj
i

�
yŒiCj � for

every pair of positive integers i and j . We have the following result:

Proposition 4.1.10. For every integer n � 1, the Hochschild homology HH.ZŒt �=tn/ is
equivalent to the E1-algebra given by the differential graded algebra

.ZŒt �=tn ˝ƒ.dt/˝ Zhyi; @/;
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with jdt j D 1 and jyj D 2, whose differential is determined by @.yŒi�/ D ntn�1yŒi�1�dt
and @.dt/ D 0.

Proof. The following square is a pushout of E1-algebras over Z:

HH.ZŒs�/ HH.ZŒt �/

Z HH.ZŒt �=tn/

s 7!tn

s 7!0

since the functor � ˝ Z W CAlg! CAlgZ preserves colimits and THH.SŒt �=tn/˝ Z '
HH.ZŒt �=tn/. Recall that the pushout of E1-algebras over Z above is calculated by
the relative tensor product. The Hochschild homology HH.ZŒs�/ is 1-truncated since
HH�.ZŒs�/ ' H�.ZŒs� ˝ ƒ.ds// by virtue of the Hochschild–Kostant–Rosenberg the-
orem, and the map HH�.ZŒs�/! HH�.ZŒt �/ is given by s 7! tn and ds 7! ntn�1dt . The
Hochschild homology HH.ZŒs�/ is equivalent to the 1-truncation of the free E1-Z-algebra
on the generators s and ds, so we conclude that HH.ZŒs�/'ZŒs�˝ƒ.ds/. Additionally, it
follows from the homology statement above that the map HH.ZŒs�/! HH.ZŒt �/ is given
by s 7! tn and ds 7! ntn�1dt under these identifications since there is an equivalence

Map��1Alg.Sp/.HH.ZŒs�/;HH.ZŒt �// ' MapAlg.Sp/.HH.ZŒs�/;HH.ZŒt �//;

where ��1Alg.Sp/ denotes the full subcategory of Alg.Sp/ spanned by those E1-rings
which are 1-truncated. In other words, we conclude that HH.ZŒt �=tn/ is given by the
pushout

ZŒs�˝ƒ.ds/ ZŒt �˝ƒ.dt/

Z HH.ZŒt �=tn/

s 7!0

s 7!tn; ds 7!ntn�1dt

Note that the Z in the lower left corner is equivalent to the commutative differential graded
algebra given by ZŒs�˝ƒ.ds/˝ƒ."/˝ Zhyi with jdsj D j"j D 1 and jyj D 2, whose
differential is determined by @."/ D s and @.yŒi�/ D yŒi�1�ds. Since the ring homomor-
phism ZŒs�! ZŒt � given by s 7! tn is flat, we conclude that HH.ZŒt �=tn/ is given by the
pushout of the following diagram of commutative differential graded algebras:

ZŒs�˝ƒ.ds/ ZŒt �˝ƒ.dt/

ZŒs�˝ƒ.ds/˝ƒ."/˝ Zhyi

s 7!tn; ds 7!ntn�1dt

which is equivalent to the commutative differential graded algebra given by ZŒt �=tn ˝
ƒ.dt/˝ Zhyi with jdt j D 1 and jyj D 2, whose differential is determined by @.dt/ D 0
and @.yŒi�/ D ntn�1yŒi�1�dt , where we have used the fact that " does not contribute to
the pushout since ZŒs�! ZŒt � given by s 7! tn is injective and @."/ D s.
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There is an equivalence of spectra with T-action

HH.ZŒt �=tn/ '
M
i�0

HH.ZŒt �=tn/i ;

where HH.ZŒt �=tn/i ' THH.SŒt �=tn/i ˝ Z. Using Proposition 4.1.10, we may regard
HH�.ZŒt �=tn/ as a graded abelian group with w.t/ D w.dt/ D 1 and w.y/ D n. As in
Example 4.1.8 above, we have the following picture:

1 t : : : tn�1 0 0 : : : 0 0 0 : : :

0 dt : : : tn�2dt tn�1dt 0 : : : 0 0 0 : : :

0 0 : : : 0 y yt : : : ytn�1 0 0 : : :

0 0 : : : 0 0 ydt : : : ytn�2dt ytn�1dt 0 : : :

0 0 : : : 0 0 0 : : : 0 yŒ2� yŒ2�t : : :

0 0 : : : 0 0 0 : : : 0 0 yŒ2�dt : : :

:::
:::

: : : :::
:::

:::
: : : :::

:::
:::

: : :

0 1 : : : n � 1 n nC 1 : : : 2n � 1 2n 2nC 1 : : :

0

1

2

3

4

5

:::

w

deg

As a consequence, we obtain the following result from the diagram above, which was
previously obtained by Hesselholt–Madsen [40, §7.3] and Hesselholt [38, Lemma 3.1.6].

Corollary 4.1.11. For every n � 1 and every i � 1, the spectrum THH.SŒt �=tn/i is 2`-
connective, where ` D b i�1

n
c denotes the largest integer less than or equal to i�1

n
.

Proof. It suffices to prove the assertion for HH.ZŒt �=tn/i . Note that if n divides i , then
HH.ZŒt �=tn/i is concentrated in degree 2`C 1 and 2`C 2. If n does not divide i , then
HH.ZŒt �=tn/i is concentrated in degree 2` and 2`C 1. We conclude that HH.ZŒt �=tn/i
is 2`-connective for every i � 1, which shows the desired statement by Hurewicz since
THH.SŒt �=tn/i ˝ Z ' HH.ZŒt �=tn/i .

Remark 4.1.12. We will identify the underlying spectrum of THH.SŒt �=tn/ using Propo-
sition 4.1.10. The homology of HH.ZŒt �=tn/kn is given by the homology of the complex

� � � ! 0! ZŒ2k�
n
�! ZŒ2k � 1�! 0! � � �

for every integer k � 1. It follows that there is an equivalence of spectra

THH.SŒt �=tn/kn ' S=nŒ2k � 1�
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since the Moore spectrum S=n is uniquely characterized by ��.S=n ˝ Z/ ' Z=nŒ0�.
Additionally, we recall that †1C S

1 ' S˚ SŒ1�. Using the picture following the proof of
Proposition 4.1.10, we conclude that there is an equivalence of spectra

THH.SŒt �=tn/ ' S˚
�M
i�0

�n�1M
jD1

.S˚ SŒ1�/Œ2i �
�
˚ S=nŒ2i C 1�

�
:

In fact, one can determine the underlying spectrum with T-action of THH.SŒt �=tn/. Such
an identification will be useful for computing the topological Hochschild homology of
truncated polynomial rings over the integers or a perfectoid base ring.

Example 4.1.13. In this example, we describe a cyclotomic structure on the productY
n�1

X ˝†1C .S
1=Cn/;

where X denotes a cyclotomic spectrum whose underlying spectrum is bounded below,
as follows: Using [3, Lemma 2.11], we conclude that the canonical map of spectra with
T-action �Y

n�1

X ˝†1C .S
1=Cn/

�tCp

!

Y
n�1

.X ˝†1C .S
1=Cn//

tCp

is an equivalence for every prime number p. As a consequence, we may regard the
product above as a cyclotomic spectrum whose cyclotomic Frobenius is induced by the
T-equivariant map

X ˝†1C .S
1=Cn/

id˝ p

����! X ˝†1C .S
1=Cpn/

tCp
'p˝id
����! X tCp ˝†1C .S

1=Cpn/
tCp

`
�! .X ˝†1C .S

1=Cpn//
tCp

where ` denotes the map induced by the canonical lax symmetric monoidal structure of
the Tate construction (see [59, Theorem I.3.1]).

Finally, we obtain a convenient description of the cyclotomic structure of lim
 �
.X ˝

eTHH.SŒt �=tn// for every cyclotomic spectrum X whose underlying spectrum is bounded
below, using the connectivity result obtained in Corollary 4.1.11.

Proposition 4.1.14. There is an equivalence of cyclotomic spectra

lim
 �
.X ˝ eTHH.SŒt �=tn// '

Y
n�1

X ˝†1C .S
1=Cn/

for every cyclotomic spectrumX whose underlying spectrum is bounded below, where the
cyclotomic structure on the product is described in Example 4.1.13.

Proof. For every integer n � 2, we let eTHH.SŒt �/<n denote the cyclotomic spectrum
defined by

eTHH.SŒt �/<n D
n�1M
iD1

†1C .S
1=Ci /;
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whose cyclotomic Frobenius is induced by †1C .S
1=Ci /! †1C .S

1=Cpi /
hCp for pi �

n � 1, and by †1C .S
1=Ci /! 0 for pi � n. By construction, the canonical projection

eTHH.SŒt �=tn/! eTHH.SŒt �/<n

determines a map of cyclotomic spectra such that the following diagram commutes:

eTHH.SŒt �=tnC1/ eTHH.SŒt �/<nC1

eTHH.SŒt �=tn/ eTHH.SŒt �/<n

where the left vertical map is induced by the canonical map …nC1 ! …n of pointed
monoids, and the right vertical map is given by the projection. We obtain a map of cyclo-
tomic spectra

lim
 �
.X ˝ eTHH.SŒt �=tn//! lim

 �
.X ˝ eTHH.SŒt �/<n/ (3)

for every cyclotomic spectrum X whose underlying spectrum is bounded below, and we
show that this map is an equivalence of cyclotomic spectra. First note that the forgetful
functor CycSp! SpBT preserves both of the limits appearing in (3) by virtue of Corol-
lary 4.1.11 and the assumption that the underlying spectrum of X is bounded below.
Consequently, it suffices to show that the map of spectra with T-action

lim
 �
.X ˝ eTHH.SŒt �/<n/! lim

 �
.X ˝ eTHH.SŒt �=tn//

induced by the inclusion eTHH.SŒt �/<n ,! eTHH.SŒt �=tn/ is an equivalence. There is a
commutative diagram of cofiber sequences of spectra with T-action

X ˝ eTHH.SŒt �/<nC1 X ˝ eTHH.SŒt �=tnC1/ X ˝
M
i�nC1

eTHH.SŒt �=tnC1/i

X ˝ eTHH.SŒt �/<n X ˝ eTHH.SŒt �=tn/ X ˝
M
i�n

eTHH.SŒt �=tn/i

where the right vertical map is induced by the composite

eTHH.SŒt �=tnC1/i ! eTHH.SŒt �=tn/i ,! eTHH.SŒt �=tn/:

Thus, it suffices to show that

lim
 �
n

M
i�n

.X ˝ eTHH.SŒt �=tn/i / ' 0;

which now follows from Corollary 4.1.11. Indeed, we have

lim
 �
n

M
i�n

.X ˝ eTHH.SŒt �=tn/i / ' lim
 �
n

�
lim
 �
m

M
i�m

.X ˝ eTHH.SŒt �=tn/i /
�



On curves in K-theory and TR 53

since the diagonal N! N � N is an initial functor, and using Corollary 4.1.11, we con-
clude that the limit appearing in the parenthesis on the right hand side above vanishes. In
conclusion, we have proved that the map appearing in (3) is an equivalence. To finish the
proof, we show that the map of cyclotomic spectraY

n�1

X ˝†1C .S
1=Cn/! lim

 �
.X ˝ eTHH.SŒt �/<n/

induced by the projection maps is an equivalence, where the cyclotomic structure on the
product is defined in Example 4.1.13. This follows from the fact that if

� � �
proj
��! A1 ˚ A2 ˚ A3

proj
��! A1 ˚ A2

proj
��! A1

is a tower of abelian groups, then the limit is given by the product
Q
n�1An.

4.2. Curves on K-theory

As an application of Theorem 3.3.12 and Proposition 4.1.14, we obtain the desired
description of TR evaluated on a connective E1-ring R in terms of the spectrum of curves
on K.R/, extending work of Hesselholt [38] and Betley–Schlichtkrull [11]. We will begin
by recalling the following notation (see the discussion following Lemma 4.1.4).

Notation 4.2.1. Recall that for every integer n � 1, the following square is a pushout of
E1-rings:

SŒt � SŒt �

S SŒt �=tn

t 7!tn

t 7!0

In particular, there is a map of E1-rings SŒt �=tn ! S determined by the assignment
t 7! 0. If R is a connective E1-ring, then we define the E1-ring RŒt�=tn by RŒt�=tn D
R˝ SŒt �=tn, and we see that ��.RŒt �=tn/' .��R/Œt �=tn. We obtain a map of connective
E1-rings RŒt�=tn ! R such that the kernel of the induced ring homomorphism

�0.RŒt �=t
n/ ' .�0R/Œt �=t

n
! �0R

is given by the nilpotent ideal .t/. If E W Algcn
! Sp is a functor, then we will let

E.RŒt �=tn; .t// denote the fiber of the induced map of spectra E.RŒt �=tn/! E.R/.

We recall the definition of the spectrum of curves on algebraic K-theory following
Hesselholt [38], which is based on a previous variant studied by Bloch [14] in his work
on the relationship between algebraic K-theory and crystalline cohomology.

Definition 4.2.2. The spectrum of curves on K-theory is defined by

C.R/ D lim
 �

�K.RŒt �=tn; .t//

for every connective E1-ring R.



J. McCandless 54

A fundamental result of Hesselholt [38, Theorem 3.1.10] asserts that if R is a dis-
crete commutative Z=pj -algebra for some j � 1, then there is a natural equivalence of
spectra TR.R/ ' C.R/. As a consequence, Hesselholt [38, Theorem C] proves that the
homotopy groups of the p-typical summand of C.A/ is isomorphic to the de Rham–Witt
complex W��A in the case where A is a smooth algebra over a perfect field of charac-
teristic p. In [11, Theorem 1.3], Betley–Schlichtkrull establish a variant of the result of
Hesselholt for topological cyclic homology on discrete associative rings after profinite
completion, where the inverse limit in the definition of the spectrum of curves on K-
theory is replaced by a limit over a diagram which additionally encodes the transfer maps
RŒt�=tm ! RŒt�=tmn determined by t 7! tn. Our main result is the following:

Theorem 4.2.3. There is a natural equivalence of spectra

TR.X/ ' lim
 �

�TC.X ˝ eTHH.SŒt �=tn//

for every cyclotomic spectrum X whose underlying spectrum is bounded below.

In the course of the proof of Theorem 4.2.3, we will need the following result:

Lemma 4.2.4 (Speirs [62, Lemma 8]). If X is a spectrum with T-action, then the T-
equivariant map of spectra

X tCp ˝†1C .S
1=Cn/

id˝.can ı p/
��������! X tCp ˝†1C .S

1=Cpn/
tCp

`
�! .X ˝†1C .S

1=Cpn//
tCp

is an equivalence for every prime p and every integer n � 1, where ` denotes the map
induced by the lax symmetric monoidal structure on the Tate construction .�/tCp .

Proof of Theorem 4.2.3. There is a natural equivalence of spectra

TR.X/ ' mapCycSp. eTHH.SŒt �/; X/

by virtue of Theorem 3.3.12, so we conclude that

TR.X/' Eq
�

mapSpBT

�M
n�1

†1C .S
1=Cn/; X

�
!
!

Y
p

mapSpBT

�M
n�1

†1C .S
1=Cn/; X

tCp

��
' Eq

�Y
n�1

mapSpBT.†1C .S
1=Cn/; X/!!

Y
p

Y
n�1

mapSpBT.†1C .S
1=Cn/; X

tCp /
�

by [59, Proposition II.1.5], where the top map is induced by the cyclotomic structure of
eTHH.SŒt �/, and the bottom map is induced by the cyclotomic structure of X . Note that
†1C .S

1=Cn/ is dualizable regarded as a spectrum with T-action for every n � 1. Indeed,
T-equivariant Atiyah duality identifies its dual with†1�1C .S1=Cn/, and the T-equivariant
map

X tCp ˝†1�1C .S1=Cn/
id˝.can ı p/
��������! X tCp ˝†1�1C .S1=Cpn/

tCp

`
�! .X ˝†1�1C .S1=Cpn//

tCp
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is an equivalence for every prime p and every integer n � 1 by virtue of Lemma 4.2.4.
It follows that the second equalizer above is equivalent to

Eq
�Y
n�1

mapSpBT.S; X ˝†1�1C .S1=Cn//!!

Y
p

Y
n�1

mapSpBT.S; .X ˝†1�1C .S1=Cpn//
tCp /

�
;

where the top map is induced by the trivial cyclotomic structure of the sphere spectrum S,
and the bottom map carries f W S! X ˝†1�1C .S1=Cn/ to the T-equivariant map

S
f
�! X ˝†1�1C .S1=Cn/

'p

�! X tCp ˝†1�1C .S1=Cn/
'
�! .X ˝†1�1C .S1=Cpn//

tCp :

As in Example 4.1.13, the canonical map of spectra with T-action�Y
n�1

X ˝†1�1C .S1=Cpn/
�tCp

!

Y
n�1

.X ˝†1�1C .S1=Cpn//
tCp

is an equivalence, so we conclude that the equalizer above is equivalent to

Eq
�

mapSpBT

�
S;
Y
n�1

X ˝†1�1
C .S1=Cn/

�
!
!

Y
p

mapSpBT

�
S;
�Y

n�1

X ˝†1�1
C .S1=Cpn/

�tCp
��

' Eq
�

mapSpBT

�
S;
Y
n�1

X ˝†1�1
C .S1=Cn/

�
!
!

Y
p

mapSpBT

�
S;
�Y

n�1

X ˝†1�1
C .S1=Cn/

�tCp
��
;

where the equivalence uses the fact that .X ˝†1C .S
1=Cn//

tCp ' 0 provided that p does
not divide n. Finally, using Proposition 4.1.14, we conclude that TR.X/ is equivalent to
the following spectrum

lim
 �

�Eq
�

mapSpBT
�
S;X ˝ eTHH.SŒt �=tn/

�
!
!

Y
p

mapSpBT
�
S; .X ˝ eTHH.SŒt �=tn//tCp

��
;

where the top map is induced by the trivial cyclotomic structure of the sphere spectrum
S, and the bottom map is induced by the cyclotomic structure of X ˝ eTHH.SŒt �=tn/. We
conclude that

TR.X/ ' lim
 �

�mapCycSp.S; X ˝ eTHH.SŒt �=tn// ' lim
 �

�TC.X ˝ eTHH.SŒt �=tn//;

which shows the desired statement.

Using Theorem 4.2.3, we obtain the following result:

Corollary 4.2.5. If R is a connective E1-ring, then there is a natural equivalence of
spectra

TR.R/ ' lim
 �

�TC.RŒt �=tn; .t//:

In particular, there is a natural equivalence of spectra TR.R/ ' C.R/.

Proof. If R is a connective E1-ring, then there is an equivalence of cyclotomic spectra

THH.R/˝ eTHH.SŒt �=tn/ ' eTHH.RŒt �=tn/
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since THH is a symmetric monoidal functor, so the first assertion follows readily from
Theorem 4.2.3. Furthermore, there is a natural equivalence

lim
 �

�TC.RŒt �=tn; .t// ' lim
 �

�K.RŒt �=tn; .t//

by virtue of the Dundas–Goodwillie–McCarthy theorem [28], which shows the desired
statement.

Remark 4.2.6. In Corollary 4.2.5, the Frobenius endomorphism of TR.R/ can be
expressed in terms of suitable transfer maps on the spectrum of curves on K-theory.
More precisely, the kth Frobenius endomorphism of TR.R/ is induced by the transfer
mapK.RŒt �=tn/! K.RŒt �=tkn/ determined by the assignment t 7! tk . In [11], Betley–
Schlichtkrull work with a refined version of the spectrum of curves on K-theory which
additionally takes these transfer maps into account. Consequently, they obtain a formula
for TC evaluated on a discrete ring in terms of this variant of the spectrum of curves on
K-theory after profinite completion (cf. [11, Theorem 1.3]).
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