STABLE SPLITTINGS DERIVED FROM THE STEINBERG MODULE

Stepifen A. Mitchell \dagger and Stewart B. Priddy +

(Received 15 September 1982)
IN THIS PAPER we construct a new class of stable splittings for certain classifying spaces, including $B(\mathbb{Z} / p)^{k}$. Our results involve symmetric products of the sphere spectrum and are based on the fundamental Steinberg module of modular representation theory. Splitting theorems have long played an important role in homotopy theory, see [1-4], one reason being that an equivalence $X \xrightarrow{\cong} \vee X_{i}$ enables one to construct maps $X_{i} \rightarrow X$ which were a priori inaccessible. Examples include Mahowald's maps $\eta_{j}[5]$ based on Snaith's splittings and, more recently, certain maps used in Kuhn's proof of the Whitehead conjecture[6, 7]. These latter maps are based on our splitting of $B(\mathbb{Z} / 2)^{k}$.

Our main result shows that the suspension spectrum of a product of lens spaces $B(\mathbb{Z} / p)^{k}$ can be split using the Steinberg idempotent of $\mathbb{F}_{p}\left[G L_{k}\left(\mathbb{F}_{p}\right)\right]$. Let $S p^{n}\left(S^{\circ}\right)$ denote the n-fold symmetric product of the sphere spectrum. We recall $S p^{x}\left(S^{c}\right)=K(\mathbb{Z})$ by the Dold-Thom theorem. Let $D(k)$ be the cofiber of the diagonal map $d: S p^{p^{k-1}}\left(S^{\circ}\right) \rightarrow S p^{p^{k}}\left(S^{\circ}\right)$. Then $D(\infty)=K(\mathbb{Z} / p)$. Let $M(k)=\Sigma^{-k} D(k) / D(k-1)$. In mod- p cohomology $H^{*}(M(k))$ has a basis consisting of admissible Steenrod operations of length exactly k.

Theorem A. Stably, $B(\mathbb{Z} / p)^{k}$ contains $p^{\left(\frac{k}{2}\right)}$ summands each equivalent to $M(k)$. These summands correspond to the $p^{\left(\frac{k}{2}\right)}$ summands of the Steinberg module in $\mathbb{F}_{p} G L_{k}\left(\mathbb{F}_{p}\right)$.

Here and throughout, all spaces are localized at p. Let $L(k)=\Sigma^{-k} S p^{p^{k}}\left(S^{\circ}\right) / S p^{p^{k}-1}\left(S^{\circ}\right)$. A simple argument shows that $L(k)$ is also a summand of $B(\mathbb{Z} / p)^{k}$; in fact, $M(k)=L(k) \vee L(k-1)$.

Let $\int^{k} \mathbb{Z} / p$ denote the k-fold wreath product. Using the transfer $t: B\left(f^{k} \mathbb{Z} / p\right) \rightarrow B(\mathbb{Z} / p)^{k}$ and the double coset formula we prove

Theorem B. $M(k)$ is a stable summand in $B\left(\int^{k} \mathbb{Z} / p\right)$. Let $O(k)$ be the real orthogonal
Let $O(k)$ be the real orthogonal group. Using Becker-Gottlieb transfer for the fibration $O(k) /(\mathbb{Z} / 2)^{k} \rightarrow B(\mathbb{Z} / 2)^{k} \rightarrow B O(k)$ we prove

Theorem C. $M(k)$ is a stable summand in $B O(k)$.

Let $T^{k}=\left(S^{1}\right)^{k}$ be the k-torus. We construct a spectrum $B P(k)$ such that $H^{*} B P(k)$ has a basis consisting of admissible Steenrod operations in the reduced powers of length exactly k. Using a lifting of the Steinberg idempotent to $G L_{k}\left(\mathbb{Z}_{p}\right)$ we show

Theorem D. Completed at $p, B T^{k}$ contains $p^{(k)}$ stable summands each equivalent to $B P(k)$. Further, $B P(k)$ is a stable summand of $B U(k)$.

This paper is organized as follows: The brief §l contains a few remarks about the length filtration of the Steenrod algebra. In $\S 2$ we give an account of those facts about $G L_{n}\left(\mathbb{F}_{p}\right)$
+Partially supported by an Achievement Rewards for College Scientists Fellowship.
\ddagger Partially supported by NSF Grant number MCS-7827592.
and the Steinberg module needed for our subsequent constructions. Sections 3 and 4 are devoted to the construction and properties of various spectra including Thom spectra and symmetric product spectra. The proof of Theorem A is given in $\S 5$. Section 6 contains proofs of Theorems B and C. Finally the construction of $B P(k)$ and the proof of Theorem D is given in $\$ 7$.

§1. PRELIMINARIES ON THE STEENROD ALGEBRA

Let A denote the Steenrod algebra, and let A_{n} denote the subalgebra generated by β, $P^{1}, \ldots P^{p-1}$. (For $p=2, \beta=S q^{1}$ and $P^{i}=S q^{2 i}$.) If I is a finite sequence ($\epsilon_{0}, r_{1}, \epsilon_{1}, r_{2}, \ldots$),
 I is admissible if $r_{i} \geq p r_{i+1}+\epsilon_{i}$ for all i. By a classical theorem of Cartan and Serre, the admissible θ^{\prime} are a basis for A. The length $l(I)$ is defined by $l(I)=n$ if $r_{i}=0$ for $i>n$ and $\epsilon_{i}=0$ for $i \geq n$. Thus we obtain vector space filtrations on A defined by $F_{n}=\left\langle\theta^{\prime}: l(I) \leq n\right\rangle$ and $G_{n}=\left\langle\theta^{l}: I\right.$ admissible, $\left.l(I)>n\right\rangle$. Finally, we recall that A_{n} contains an exterior algebra on primitive elements Q_{0}, \ldots, Q_{n-1}, where $Q_{0}=\beta$ and $Q_{k+1}=\left[P^{p^{k}}, Q_{k}\right]$.

Proposition 1.1. (a) F_{n} is spanned by the admissible $\theta^{\prime}, l(I) \leq n$; (b) F_{n} is a subcoalgebra of A; (c) F_{n} is a left A_{n-1} submodule of A. Moreover F_{n} is free over $E\left[Q_{0}, \ldots, Q_{n-1}\right]$ on $\left\{P^{I}: I\right.$ admissible, $\left.l(I) \leq n\right\}$; (d) G_{n} is a left ideal. Moreover $A / G_{n}=F_{n}$ as A_{n-1} modules.

Proof: (a) follows from the Adem relations, and (b) is obvious. The first part of (c) also follows from the Adem relations, using induction on n. For the second part, note that the $E\left[Q_{0}, \ldots, Q_{n-1}\right]$ submodule of F_{n} generated by $\left\{P^{\prime}: I\right.$ admissible, $\left.l(I) \leq n\right\}$ is indeed free as claimed; this follows from Milnor[8], Theorem 4(a). Hence this module has Poincaré series $\prod_{0}^{n-1}\left(1+t^{2 p^{t}-1}\right) / \prod_{1}^{n}\left(1-t^{2\left(\sigma^{i}-1\right)}\right.$, which is precisely the Poincaré series of F_{n} (by (a)). Finally, (d) also follows from the Adem relations; alternatively, it is a consequence of (3.5) below.

§2. $G L_{\wedge} F_{q}$ AND THE STEINBERG MODULE

Let V^{n} be a vector space over the finite field $\mathbb{F}_{q}, q=p^{r}$, with basis y_{1}, \ldots, y_{n}. Then $G L_{n} \mathbb{F}_{q}$ is the automorphism group of V^{n}, acting on the right. $G L_{n} \mathbb{F}_{q}$ has order $q^{\left(\frac{n}{2}\right.} \prod_{i=1}^{n}\left(q^{i}-1\right)$, and contains the following distinguished subgroups:
$\Sigma_{n}=$ symmetric group (permutation matrices).
$D_{n}=$ diagonal matrices.
$B_{n}=$ Borel subgroup $=$ upper triangular matrices.
$U_{n}=$ unipotent subgroup $=$ upper triangular matrices with all diagonal entries equal to 1 .
(Note U_{n} is a p-Sylow subgroup.)
In addition we will need to consider

$$
\begin{aligned}
& A_{n}=\text { top row subgroup }=\left\{g \in B_{n}: y_{i} g=y_{i}, \forall i>1\right\} . \\
& T_{n}=\text { cyclic subgroup of } \Sigma_{n} \text {, of order } n \text { generated by }(1,2, \ldots, n) .
\end{aligned}
$$

Throughout this paper, we regard V^{k} as the subspace $\left\langle y_{n-k+1}, \ldots, y_{n}\right\rangle$ of V^{n}; this convention determines inclusions $G L_{k} \mathbb{F}_{q} \subseteq G L_{n} \mathbb{F}_{q}$, etc. Note that many of our subgroups fit together as semi-direct products, e.g. $\Sigma_{n} \tilde{\times} D_{n}, D_{n} \tilde{\times} U_{n}=B_{n}$, and the "maximal parabolic sübgroup" $G L_{n-1} \tilde{\times} A_{n}$.

We digress briefly to review some general facts from representation theory (see [9]). All modules are understood to be right modules. Let R be any finite-dimensional algebra over
a field K. Then there is a unique set of indecomposable two-sided ideals B_{1}, \ldots, B_{r}, called blocks, such that $R=\Pi B_{i}$ (as algebras). Each B_{i} corresponds to a central idempotent f_{i} such that $B_{i}=R f_{i}=f_{i} R_{i}$; the f_{i} are orthogonal and $\Sigma f_{i}=1$. A nonzero right R-module M is said to belong to the block B_{i} (alternatively, B_{i} "contains M ") if $M f_{j}=0 \forall j \neq i$. If M is indecomposable, then obviously M belongs to a unique block. Now if R is semisimple, then each block is a matrix algebra. More generally, suppose R is a "quasi-Frobenius" algebra, i.e. every projective over R is injective. (For example, group algebras are quasi-Frobenius). Then:

Proposition 2.1. If R is quasi-Frobenius, a block B of R is a matrix algebra if and only if B contains a projective irreducible module.

Proof. First recall (see [9], p. 378) that two indecomposables U, V are linked if there is a finite sequence $U=U_{0}, U_{1}, \ldots, U_{n}=V$ of indecomposables such that U_{i} and U_{i+1} have a common irreducible constituent (i.e. composition factor) for each i. (Curtis and Reiner use only "principal" indecomposables, but this makes no difference.) This defines an equivalence relation on the set of indecomposable modules. Moreover it is true (over any finite-dimensional algebra) that U and V are linked if and only if they belong to the same block ([9], Theorem 55.2).

Now suppose B contains a projective irreducible N. Since N is also injective, it is a direct summand of any module in which it occurs as a composition factor. Hence the linking class of N consists solely of N itself. But this means every B-module is a direct sum of copies of N, and the classical Artin-Wedderburn theory then implies B is a matrix algebra over some K-central division algebra.

The converse is a standard fact.
Now take $R=\mathbb{F}_{p}\left[G L_{n} \mathbb{F}_{q}\right]$. If H is a subgroup of $G L_{n} \mathbb{F}_{q}$, we let $\bar{H}=\sum_{h \in H} h$ (if $H \nsubseteq \Sigma_{n}$) and $\bar{H}=\sum_{h \in H} \epsilon(h) h\left(\right.$ if $\left.H \subseteq \Sigma_{n}\right)$; here $\epsilon: \Sigma_{n} \rightarrow\{ \pm 1\}$ is the usual map.

Definition 2.2. The Steinberg idempotent e_{n} is defined by $e_{n}=\bar{B}_{n} \Sigma_{n} /\left[G L_{n}: U_{n}\right]$; the corresponding module $S t=e_{n} R$ is called the Steinberg module.

Theorem 2.3. (Steinberg[10]), (a) e_{n} is idempotent; (b) St is projective and absolutely irreducible $;(c)$ as a U_{n}-module, St is the regular representation. In particular $\operatorname{dim} S t=q q^{\left(\frac{1}{2}\right)}$ with basis $\left\{e_{n} u: u \in U_{n}\right\}$.

Remark 2.4. By Proposition 2.1, the block $B_{S t}$ containing $S t$ is a matrix algebra over \mathbb{F}_{p} of degree q. ${ }^{()^{2}}$.

Remark. Steinberg originally defined $S t$ as a certain composition factor of the permutation representation obtained from the action of $G L_{n}$ on the flag complex $F\left(V^{n}\right)$. Later, Solomon and Tits showed that $F\left(V^{n}\right)$ has the homotopy type of a wedge of $q^{\left(\frac{1}{2}\right)}(n-2)$-spheres, and that $S t$ is the representation of $G L_{n}$ on the cohomology group $N^{n-2}\left(V^{n}\right)$. Yet another description of $S t$ is given in (5.12) below.

Now suppose $K \subseteq H \subseteq G L_{n}, H \nsubseteq \Sigma_{n}$, and let $H=\cup h_{i} K$ (left coset decomposition). Then clearly $\bar{H}=\left(\Sigma h_{i}\right) \bar{K}$. If K is normal in H, then also ($\left.\Sigma h_{i}\right) \bar{K}=\bar{K}\left(\Sigma h_{i}\right)$. Similar remarks apply if $H \subseteq \Sigma_{n}$. For example, $\bar{B}_{n}=\bar{A}_{n} \bar{B}_{n-1}=\bar{B}_{n-1} \bar{A}_{n}, \Sigma_{n}=\Sigma_{n-1} \bar{T}_{n}, \bar{B}_{n}=\bar{D}_{n} \bar{U}_{n}=\bar{U}_{n} \bar{D}_{n}$, and $\bar{A}_{n} \bar{\Sigma}_{n-1}=\bar{\Sigma}_{n-1} \bar{A}_{n}$. The following inductive formula is then immediate:

Proposition 2.5. $e_{n}=e_{n-1} \bar{A}_{n} \bar{T}_{n} /\left(q^{n}-1\right)$.

Our last proposition will be needed in Section 6. Let $e_{n}^{\prime}=\bar{\Sigma}_{n} \bar{B}_{n} /\left[G L_{n}: U_{n}\right]$.

Proposition 2.6. (a) e_{n}^{\prime} is a primitive idempotent belonging to the Steinberg block $B_{S t}$. For any M belonging to $B_{s t}, M e_{n}^{\prime}=M^{B_{n}}$; (b) for any $G L_{n}$-module W, there are vector space isomorphisms $W e_{n} \xrightarrow{\cong} W e_{n}^{\prime}$ and $W e_{n}^{\prime} \xrightarrow{\approx} W e_{n}$ given by \bar{B}_{n}, Σ_{n} (respectively).

Proof. Since e_{n}^{\prime} is the conjugate of e_{n} in the Hopf algebra $\mathbb{F}_{p}\left[G L_{n}\right]$, e_{n}^{\prime} is a primitive idempotent. Now by Theorem 2.3, $S t^{B_{n}}$ is equal to $S t \bar{B}_{n}=\left\langle e_{n} \bar{B}\right\rangle$ and has dimension one. Thus e_{n}^{\prime} is the identity on $S t^{B_{n}}$. In particular $S t e_{n}^{\prime} \neq 0$, so e_{n}^{\prime} belongs to $B_{S t}$. This also shows $M e_{n}^{\prime}=M^{B_{n}}$ for M belonging to $B_{S t}$, since such an M is just a direct sum of copies of $S t$ (by Remark 2.4). (b) is obvious.

§3. $B(\mathbb{Z} / p)^{r}$ AND ASSOCIATED SPECTRA

Let $L^{2 n+1}$ denote the lens manifold $S^{2 n+1} /(\mathbb{Z} / p)$. We identify $B \mathbb{Z} / p$ with $L^{x}=\lim _{n} L^{2 n+1}$ and $B(\mathbb{Z} / p)^{n}$ with $\prod_{1}^{n} B \mathbb{Z} / p$. The canonical complex line bundle λ over $B \mathbb{Z} / p$ is $S^{\infty} \times{ }_{\mathbb{Z} i p} \mathbb{C}$, where \mathbb{Z} / p acts on \mathbb{C} via the standard inclusion $\mathbb{Z} / p \subset S^{1}$. Let $P_{n}=H^{*} B(\mathbb{Z} / p)^{n}$. Then, at odd primes, $P_{1}=E[x] \otimes \mathbb{Z} / p[y]$, where $y=c_{1}(\lambda)$ and $\beta x=y$. From the Künneth theorem we then have

$$
\begin{equation*}
P_{n}=E\left[x_{1}, \ldots, x_{n}\right] \otimes \mathbb{Z} / p\left[y_{1}, \ldots, y_{n}\right] . \tag{3.1}
\end{equation*}
$$

For $p=2, P_{n}=\mathbb{Z} / 2\left[x_{1}, \ldots, x_{n}\right]$. However, in order to avoid separating cases, we will make use of the following device: Let $y_{i}=x_{i}^{2}$, and replace P_{n} by the quotients of the filtration

$$
0 \rightarrow P_{n}^{2} \rightarrow P_{n} \rightarrow P_{n} / P_{n}^{2} \rightarrow 0
$$

where $P_{n}{ }^{2}$ denotes the subring of squares. Then (3.1) becomes valid for all primes. In particular (3.1) describes P_{n} as a module over the Steenrod algebra.

Now $G L_{n}=G L_{n} \mathbb{Z} / p$ acts on $(\mathbb{Z} / p)^{n}$ and hence on the homotopy type $B(\mathbb{Z} / p)^{n}$ (on the left). The resulting right action on P_{n} is then the obvious one implied by (3.1) (with our usual proviso for $p=2$). As explained in $[11, \S 1]$, for each idempotent $e \in \mathbb{Z} / p\left[G L_{n}\right]$ we obtain a stable summand X of $B(\mathbb{Z} / p)^{n}$ with cohomology $P_{n} e$. We will use the notation $e \cdot B(\mathbb{Z} / p)^{n}$ for X. For example, let $d_{n}=\bar{D}_{n} /(p-1)^{n}$, where D_{n} is the diagonal subgroup and $\bar{D}_{n}=\sum_{g \in D_{n}} g$. Then d_{n} is idempotent and we have the following well known fact:

Proposition 3.2. The map $B(\mathbb{Z} / p)^{n} \rightarrow B\left(\Sigma_{p}\right)^{n}$ induced by the inclusion $(\mathbb{Z} / p)^{n} \subset\left(\Sigma_{p}\right)^{n}$ restricts to an equivalence $d_{n} \cdot B(\mathbb{Z} / p)^{n} \xlongequal{\cong} B\left(\Sigma_{p}\right)^{n}$.

The transfer provides an explicit inverse. Note that

$$
H^{*} B\left(\Sigma_{p}\right)^{n}=P_{n}^{D_{n}}=E\left[x_{1} y_{1}{ }^{p-2}, \ldots, x_{n} y_{n}^{p-2}\right] \otimes \mathbb{Z} / p\left[y_{1}^{p-1}, \ldots, y_{n}^{p-1}\right] .
$$

3.3 Thom spectra

We will need to consider various Thom spectra, and quotients of Thom spectra, over these classifying spaces. The following notation is very convenient: For any finite group G and representation θ of G, we use the same letter θ to denote the corresponding vector bundle over $B G$. In fact in place of θ, we could take any element of the complex representation ring
$R_{\mathbb{C}}(G)$. For example, if α is the reduced regular representation of $(\mathbb{Z} / p)^{n}$ (i.e. the regular representation minus a trivial one-dimensional representation), then $\left(B(\mathbb{Z} / p)^{n}\right)^{x}$ is the Thom spectrum of the sum of all the nontrivial line bundles over $B(\mathbb{Z} / p)^{n}$. When $n=1$ and λ : $\mathbb{Z} / p \rightarrow S^{1}$ is the standard representation mentioned above, we write $L_{2 k}^{\infty}$ for $(B \mathbb{Z} / p)^{k \lambda}(k \in \mathbb{Z})$ and $L_{2 k+1}^{\infty}$ for $L_{2 k}^{\infty} / S^{2 k}$. When $\beta: \Sigma_{p} \rightarrow U(p-1)$ is the reduced standard representation; we write $P_{k q}^{\infty}$ for $\left(B \Sigma_{p}\right)^{k \beta}(q=2(p-1))$ and $\left.P_{(k+1)-1}^{\infty}\right)^{\infty}$ for $P_{k q}^{\infty} / S^{k q}$. (Note that $P_{k q}^{\infty}$ has cells only in dimensions congruent to 0 or $-1 \bmod q=2(p-1)$. Note also that for $p=2$, this definition of $P_{k}{ }^{\infty}$ agrees with the usual one based on the canonical real line bundie.) In this notation, we have $B(\mathbb{Z} / p)_{+}^{n}=\Lambda^{n} L_{0}^{\infty}, B\left(\Sigma_{p}\right)_{+}^{n}=\Lambda^{n} P_{0}{ }^{\infty}$, etc.

The cohomology of these spectra is very easy to describe. Let S_{n} denote the localization of P_{n} obtained by inverting all nonzero linear forms in y_{1}, \ldots, y_{n} (i.e. all elements of $V^{n}-0$). By a theorem of Wilkerson[12], S_{n} has a unique A-module structure extending that of P_{n}. Then the cohomology of virtually every spectrum considered in this paper can be regarded in a natural way as an A-submodule of S_{n}. For example, if $\left.\theta \in R_{C}(\mathbb{Z} / p)^{n}\right)$ then θ has an "Thom class' $e(\theta) \in S_{n}$, and $H^{*}\left(B(\mathbb{Z} / p)^{n}\right)^{\theta}$ is the (free) P_{n}-submodule of S_{n} generated by $e(\theta)$. (Note this is also an A-submodule). We list here a few explicit descriptions that we will need; further examples are left to the reader.

Examples 3.4
(a) $H^{*} L_{2 k+c}^{\infty}\left(\epsilon=0\right.$ or 1) is the P_{1}-submodule of S_{1} generated by y^{k} (or $x y^{k}, y^{k+1}$ if $\epsilon=1$).
(b) $H^{*}\left(B(\mathbb{Z} / p)^{n}\right)^{-\alpha}$ is the P_{n}-submodule of S_{n} generated by l_{n}^{-1}, where $l_{n}=\prod_{a \in V_{-}} a$ is the Euler class of α.
(c) $H^{*} \Lambda^{n} P_{-1}^{\infty}$ is the $H^{*} B\left(\Sigma_{p}\right)^{n}$-submodule of S_{n} generated by $X_{n} Y_{n}^{-1}$, where $X_{n}=x_{1} \ldots x_{n}$ and $Y_{n}=y_{1} \ldots y_{n}$.

We emphasize that in all of these examples the A-module structure follows from the Cartan formula together with the action of A on the "Thom class" in the lowest dimension. This in turn is determined by the standard formulas, $P^{i} y^{k}=\binom{k}{i} y^{k+i(p-1)}, \beta x=y$ where $\operatorname{dim} x=1, \operatorname{dim} y=2$ and k is allowed to be negative. In fact, we make no essential use of Wilkerson's result, since all of our A-modules will actually be submodules of the A-module of example (b).

Of particular importance for us is the A-submodule M_{n} of $H^{*} \Lambda^{n} P_{-1}^{\infty}$ generated by $X_{n} Y_{n}{ }^{-1}$.

Proposition 3.5. $M_{n}=\Sigma^{-n} A / G_{n}$. Moreover $M_{n} \cap P_{n}$ has basis $\left\{\theta^{I}\left(X_{n} Y_{n}^{-1}\right)\right.$: I admissible, $l(I)=n\}$.

Proof. Define a filtration ω on $H^{*} \Lambda^{n} P_{-1}^{\infty}$ as follows: given an n-tuple $\left(a_{1}, \ldots, a_{n}\right)$, $a_{i} \geq-1$. let $z \in \omega\left(a_{1}, \ldots, a_{n}\right)$ iff
(1) $z=x_{1}^{e_{1}} \ldots x_{n}^{e_{n}} y_{1}^{f_{n}} \ldots y_{n}^{f_{n}}, e_{i} \in\{0,1\}, f_{i} \geq-1$ and $\left(f_{1}, \ldots, f_{n}\right) \leq\left(a_{1}, \ldots, a_{n}\right)$ in the lexicographical order (starting at the left), or
(2) z is a linear combination of monomials, each of which is in $\omega\left(a_{1}, \ldots, a_{n}\right)$.

Then $\omega\left(a_{1}, \ldots, a_{n}\right) \subset \omega\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$ if $\left(a_{1}, \ldots, a_{n}\right) \leq\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$.
Now for $I=\left(\epsilon_{0}, r_{1}, \epsilon_{1}, r_{2}, \ldots, \epsilon_{n-1}, r_{n}\right)$ define $Y_{n}{ }^{I}=y_{1}{ }_{1}^{k_{1}}, \ldots, y_{n}^{k_{n}}$, where $k_{i}=r_{i}(p-1)+\epsilon_{i-1}$, and $X_{n}{ }^{I}=x_{1}^{1-\epsilon_{0}}, \ldots, x_{n}^{1-} \epsilon_{n-1}$.

Lemma 3.6. If I is admissible and $l(I) \leq n, \theta^{I}\left(X_{n} Y_{n}{ }^{-1}\right)= \pm X_{n}{ }^{I} Y_{n}{ }^{I}$ modulo terms of lower filtration $\left(X^{I} Y^{l} \in \omega\left(k_{1}, \ldots, k_{n}\right)\right.$).

Proof of Lemma. For $n=1$, the lemma is clear; suppose inductively it is true for $n-1$. By the Cartan formula $\theta^{\prime}\left(X_{n} Y_{n}^{-1}\right)=\Sigma \pm \theta^{J_{1}}\left(x_{1} y_{1}{ }^{-1}\right), \ldots, \theta^{J_{n}}\left(x_{n} y_{n}^{-1}\right)$ where the sum is taken over all sequences J_{1}, \ldots, J_{n} with $\Sigma J_{i}=I$. Those terms with $J_{1}=\left(\epsilon_{0}, r_{1}\right)$ can be
grouped as $\theta^{\left(\epsilon_{0}, r_{1}\right)}\left(x_{1} y_{1}^{-1}\right) \theta^{r}\left(X_{n-1} Y_{n-1}^{-1}\right)$ where $I^{\prime}=\left(\epsilon_{1}, r_{2}, \ldots, \epsilon_{n-1}, r_{n}\right)$. By induction the sum of these terms equals $\pm X_{n-1}^{T} Y_{n-1}^{T}$ mod elements of lower filtration. It remains to consider terms with $l\left(J_{1}\right)>1$. For such admissible $J_{1}, \theta^{J_{1}}\left(x_{1} y_{1}{ }^{-1}\right)=0$ for dimensional reasons. For such inadmissible J_{1} write $J_{1}=\left(\epsilon_{0}^{\prime}, r_{1}^{\prime}, \ldots, \epsilon_{n-1}^{\prime}, r_{n}^{\prime}\right)$. The Adem relations show that the only admissible summand of length 1 in $\theta^{J_{1}}$ is $c \beta^{c} P^{r}$ where $c \in \mathbb{Z} / p, \epsilon=1$ if $\Sigma \epsilon_{i}^{\prime}=1$, $\epsilon=0$ if $\Sigma \epsilon_{i}^{\prime}=0 \bmod 2$ and $r=\Sigma r_{i}^{\prime}\left(\right.$ note that $c=0$ if $\left.\Sigma \epsilon_{i}^{\prime}>1\right)$. If $\Sigma \epsilon_{i}^{\prime}=0$ then

$$
c=\binom{\left(r_{2}^{\prime}+\cdots+r_{n}^{\prime}\right)(p-1)-1}{r_{1}^{\prime}}\binom{\left(r_{3}^{\prime}+\cdots+r_{n}^{\prime}\right)(p-1)-1}{r_{2}^{\prime}} \cdots\binom{r_{n}^{\prime}(p-1)-1}{r_{n-1}^{\prime}}
$$

and $c \neq 0$ implies $r_{i}^{\prime}<\left(r_{i+1}^{\prime}+\cdots+r_{n}^{\prime}\right)(p-1)$. Hence $\Sigma r_{i}^{\prime}<p^{n-1} r_{n}^{\prime} \leq p^{n-1} r_{n} \leq r_{1}$ and so
 similar. This completes the proof of the lemma.

From the lemma it is immediate that the set $\left\{\theta^{I}\left(X_{n} Y_{n}{ }^{-1}\right), I\right.$ admissible and $\left.l(I) \leq n\right\}$ is independent. Moreover it is easy to see that $l(I)=n$ iff $\theta^{l}\left(X_{n} Y_{n}^{-1}\right) \in P_{n}$. It then follows for dimensional reasons that the ideal G_{n} annihilates $X_{n} Y_{n}{ }^{-1}$.

3.7 Transfer

We conclude this section with a discussion of the various transfer maps that we will need. Suppose X is a $C W$-complex, η is an n-dimensional complex vector bundle over X and ξ is a stable complex vector bundle over X (i.e. a map to $B U$). Then the inclusion of ξ in the Whitney sum $\eta \oplus \xi$ induces a map of Thom spectra $X^{\xi} \rightarrow X^{n \oplus \xi}$; this is the transfer associated to η, ξ. (A quite general discussion of transfer maps can be found in [13]. We leave it to the reader to discover in what sense the construction described here is a special case of that of [13].) The following is well known:

Proposition 3.8. The following diagram commutes

where $\cup e(\eta)$ denotes cup product with the $\bmod p$ Euler class $e(\eta)$ and the vertical maps are Thom isomorphisms.

Remark 3.9. The proposition is in fact true for any cohomology theory E such that η and ξ are E-oriented.

Example 3.10. There is a transfer $\left(B(\mathbb{Z} / p)^{n}\right)^{-x} \xrightarrow{t} B(\mathbb{Z} / p)^{n}$. The map $t^{*}: P_{n} \rightarrow P_{n} \cdot l_{n}^{-1}$ is the obvious one, by (3.8).

Example 3.11. $(B \mathbb{Z} / p)^{-x} \rightarrow(B \mathbb{Z} / p)^{-\lambda}=L_{-2}^{\infty}$. Again the map $t^{*}: P_{1} \cdot y^{-1} \rightarrow P_{1} \cdot y^{-(p-1)}$ is the obvious one.

Composing with the quotient map $L_{-2}^{\infty} \rightarrow L_{-1}^{\infty}$ in example (3.11), we obtain a map $(B \mathbb{Z} / p)^{-\infty} \rightarrow L_{-1}^{\infty}$. Maps of this type will also be referred to as "transfers".

Note that $G L_{\mathbb{Z}} \mathbb{Z} / p$ acts on $(B(\mathbb{Z} / p))^{-\alpha}$, and that β (of 3.3) restricted to \mathbb{Z} / p is α. The final result of this section is straightforward; its proof will be left to the reader.

Proposition 3.12. The induced map of Thom spectra $\phi:(B \mathbb{Z} / p)^{-x} \rightarrow\left(B \Sigma_{p}\right)^{-\beta}=P_{-q}^{\infty}$
restricts to an equivalence $d_{1} \cdot(B \mathbb{Z} / p)^{-\alpha} \cong P_{-q}^{\alpha}$. Moreover there is a commutative diagram
where t is the transfer and the unlabelled maps are the obvious ones. Moreover ψ and ψ are stable retractions; in particular P_{-1}^{α} is a summand of L_{-1}^{∞}.

Of course ψ is just the retraction of (3.2).

§4. SYMMETRIC PRODUCT SPECTRA

If X is a space and H is a subgroup of $\Sigma_{n}, S p^{H} X$ is the orbit space X^{n} / H. If $H=\Sigma_{n}$, we write $S p^{n}$ in place of $S p^{H}$. If $X=\left\{X_{k}, \epsilon_{k}\right\}$ is a spectrum with structure maps $\epsilon_{k}: S^{1} \wedge X_{k} \rightarrow X_{k+1}$, then $S p^{H} X$ is the spectrum $\left\{S p^{H} X_{k}, S p^{H}\left(\epsilon_{k}\right) \rho_{k}\right\}$, where f_{k} : $S^{1} \wedge S p^{H} X_{k} \rightarrow S p^{H}\left(S^{1} \wedge X_{k+1}\right)$ is defined by $f_{k}\left(t \wedge\left(x_{1} \ldots x_{n}\right)\right)=\left(t \wedge x_{1} \ldots t \wedge x_{n}\right)$. Thus $S p^{H}$ becomes a functor on the stable category; for further details the reader may consult [14].

The natural inclusions $S p^{n} X \subseteq S p^{n+1} X$ allow us to define $S p^{\infty} X=\lim S p^{n} X$ for a spectrum X. By the Dold-Thom theorem, $S p^{\infty} S^{0}=K \mathbb{Z}$; in particular $H^{*} S p^{\infty} S^{0}=A / A \beta$.

Theorem 4.1. (Nakaoka[15]). The inclusions $S p^{n} S^{0} \rightarrow S p^{\infty} S^{0}$ are surjective on cohomology. Moreover $H^{*} S p^{p^{n}} S^{0}$ has basis $\left\{\theta^{l}: I\right.$ admissible, $\left.l(I) \leq n, \theta^{\prime} \notin A \beta\right\}$.

4.2 The spectrum $D(n)$

If $M \mathbb{Z} / p$ is the $\bmod p$ Moore spectrum, then $S p^{\infty} M \mathbb{Z} / p=K \mathbb{Z} / p$. In view of Theorem (4.1) it is natural to ask whether the finite symmetric products $S p^{p^{n}} M \mathbb{Z} / p$ realize the Cartan-Serre filtration G_{n} on $A=H^{*} K \mathbb{Z} / p$. The answer is no; it can easily be seen from Remark (4.5) that the filtration provided by the $S p^{p^{n}} M \mathbb{Z} / p$ is slightly different. Instead we use the following construction: On the space level there are obvious p-fold diagonal maps $S p^{p^{n-1}} S^{k} \rightarrow S p^{p^{n}} S^{k}$; these induce maps of spectra $S p^{p^{n-1}} S^{0} \xrightarrow{d} S p^{p^{n}} S^{0}$. Let $D(n)$ denote the cofibre of d. Now clearly d^{*} is zero on $H^{0} S p^{p^{n}} S^{0}$; hence by (4.1) d^{*} is zero on all of H^{*}. In other words, the cofibration $S p^{p^{n}} S^{0} \rightarrow D(n) \rightarrow \Sigma S p^{p^{n-1}} S^{0}$ has a short exact cohomology sequence. Letting $u_{n} \in H^{0} D(n)$ denote a generator, the following proposition is now evident:

Proposition 4.3. There are commutative diagrams

$$
\begin{gathered}
D(n-1) \xrightarrow{j_{n}} D(n) \\
i_{n-1} \backslash i_{n} \\
K \mathbb{Z} / p
\end{gathered}
$$

such that i_{n}^{*} is surjective with kernel G_{n} for all n. In particular, $H^{*} D(n)$ has basis $\left\{\theta^{\prime}\left(u_{n}\right)\right.$:I admissible, $l(I) \leq n\}$.

Frequently, the generator u_{n} will be omitted from the notation. Note that $H^{*} D(1)=H^{*} \Sigma P_{-1}^{x}$ as A-modules. In fact:

PRoposition $4.4 \Sigma P^{x} \underset{1}{ } \cong D(1)$.

Proof. Note that it is enough to exhibit a map $\Sigma L_{-2}^{x} \xrightarrow{f} D(1)$ which is nonzero on H^{0}. since we can then use the following composite g :

$$
\Sigma P_{-q}^{x} \stackrel{i}{\rightarrow} \Sigma B(\mathbb{Z} / p)^{-x} \xrightarrow{\prime} \Sigma L_{-1}^{x} \xrightarrow{f} D(1)
$$

Here i is the inclusion of ΣP_{-q}^{∞} as a stable summand, as in (3.12) and t is the transfer. The induced map $\bar{g}: \Sigma P_{-1}^{\infty}=\Sigma P_{-q}^{\infty} / S^{-q+1} \rightarrow D(1)$ is then clearly an equivalence.

Now let $-\lambda_{n}$ denote the complement in \mathbb{C}^{n+1} of the canonical complex line bundle λ_{n} over $L^{2 n+1}$. Thus $-\lambda_{n}$ has total space $\{([x], v):\langle x, v\rangle=0\}$ where $x \in S^{2 n+1}$, [] denotes equivalence class in $L^{2 n+1}$, and \langle,$\rangle is the usual Hermitian inner product on \mathbb{C}^{n+1}$. Now if L_{x} is the complex line spanned by x, and $|v| \leq 1$, then $L_{x}+v$ intersects $S^{2 n+1}$ in a circle of radius $\sqrt{ }\left(1-|v|^{2}\right)$. Hence we may define a map \tilde{f}_{n} from the unit disc bundle $D\left(-\lambda_{n}\right)$ to $S p^{p} S^{2 n+1}$ by $\tilde{f}_{n}([x], v)=\left(\sqrt{ }\left(1-|v|^{2}\right) x+v, \quad \sqrt{ }\left(1-|v|^{2}\right) a x+v, \ldots, \quad \sqrt{ }\left(1-|v|^{2}\right) a^{p-1} x+v, \quad\right.$ where $a=\exp (2 \pi i / p)$. (In fact \tilde{f}_{n} is well defined as a map into the cyclic product $S p^{\text {Zip }} S^{2 n+1}$). Moreover, if $S\left(-\lambda_{n}\right)$ is the unit sphere bundle, we have a commutative diagram of cofibrations:

$$
\begin{gathered}
S\left(-\lambda_{n}\right) \rightarrow S^{2 n+1} \\
\downarrow \\
\downarrow d \\
D\left(-\lambda_{n}\right) \xrightarrow{I_{n}} S p^{p} S^{2 n+1} \\
\downarrow \\
\downarrow \\
\left(L^{2 n+1}\right)^{-i_{n}} \xrightarrow{f_{n}} \\
S p^{p} S^{2 n+1} / d\left(S^{2 n+1}\right) .
\end{gathered}
$$

The maps f_{n} fit together to yield a map of spectra $\Sigma(B \mathbb{Z} / p)^{-\lambda}=\Sigma L_{-2}^{\infty} \xrightarrow{f} M(1)$. To show f^{*} is an isomorphism on H^{0}, it is enough to show $\left(f_{n}\right)_{*}$ is an isomorphism on $H_{2 n+1}$. Consider the restriction of \tilde{f}_{n} to the zero section $L^{2 n+1}: \tilde{f}_{n}([x])=\left(x, a x, \ldots, a^{p-1} x\right)$. There is a commutative diagram

$$
\begin{gathered}
S^{2 n+1} \xrightarrow[\rightarrow]{F} S p^{\rho} S^{2 n+1} \\
\pi \underset{L^{2 n+1}}{\nearrow \tilde{f}_{n}}
\end{gathered}
$$

where F is the composite

$$
S^{2 n+1} \xrightarrow{\Delta}\left(S^{2 n+1}\right)^{p} \xrightarrow{1 \times a \times \cdots \times a p-1}\left(S^{2 n+1}\right)^{p} \rightarrow S p^{p} S^{2 n+1} .
$$

Now π_{*} is multiplication by p on $H_{2 n+1}(\cdot ; \mathbb{Z})$. Since $a^{k}: S^{2 n+1} \rightarrow S^{2 n+1}$ has degree one, F_{*} is also multiplication by p. Hence $\left(\tilde{f_{n}}\right)_{*}$ is an isomorphism on $H_{2 n+1}$, and the proposition follows.

Remark 4.5. By a theorem of Kan and Whitehead ([16], see also [14]) the functors $S p^{H}$ preserve cofibrations in the category of spectra. An equivalent statement is that the natural $\operatorname{map} S p^{H} S^{0} \wedge X \rightarrow S p^{H} X$ is an equivalence. Now if H is a wreath product $K \int L$, it is easy to see that $S p^{H} X \cong S p^{K}\left(S p^{L} X\right)$ (on the space level, this is actually a homeomorphism). Combining these remarks, we see that if $H_{n}=\int^{n} \Sigma_{p}$, then $S p^{H_{n}} S^{0} \cong \Lambda^{n} S p^{p} S^{0}$.

If $D^{\prime}(n)$ is the cofibre of the diagonal $S p^{H_{n-1}} S^{0} \rightarrow S p^{H_{n}} S^{0}$, as in the definition (4.2) of $D(n)$, there is an analogous equivalence $D^{\prime}(n) \cong \Lambda^{n} D^{\prime}(1) \cong \Lambda^{n} \Sigma P_{-1}^{x}$ (by 4.4). Although we make no essential use of these facts, they are very helpful for understanding symmetric product spectra.

§5. PROUF OF THEOREM A

Let $M(n)=\Sigma^{-n}(D(n) / D(n-1))$. It follows from Proposition 4.3 that $H^{*}(M(n)$ has basis $\left\{\theta^{\prime}: I\right.$ admissible, $\left.I(I)=n\right\}$.

Theorem A is a consequence of the following:

Theorem 5.1. There is a map $g:\left(B(\mathbb{Z} / p)^{n} \rightarrow M(n)\right.$ such that on modp cohomology, g^{*} is an isomorphism onto $\left[H^{*} B(\mathbb{Z} / p)^{n}\right] c_{n}$.

For it follows that g restricts to an equivalence $e_{n} \cdot B(\mathbb{Z} / p)^{n} \xrightarrow{\cong} M(n)$.
Since the Steinberg block $B_{S t}$ is a matrix algebra of degree $p^{\left(\frac{n}{2}\right)}$ over \mathbb{F}_{p}, the corresponding central idempotent decomposes into the sum of $p^{\left(\frac{n}{2}\right)}$ primitive orthogonal idempotents one of which is e. The corresponding summands of $B(\mathbb{Z} / p)^{n}$ are equivalent [11, 1.6]. Thus Theorem A follows from Theorem 5.1.

In fact the map is a very natural one, as we proceed to explain (see [11]). There are maps (of spaces) $S p^{i} S^{m} \wedge S p^{i} S^{n} \rightarrow S p^{i j} S^{m+n}$ defined by $\left(x_{1} \cdot x_{2} \ldots x_{i}\right) \wedge\left(y_{1} \cdot y_{2} \ldots y_{j}\right) \rightarrow$ $\left(x_{1} \wedge y_{1} \cdot x_{1} \wedge y_{2} \ldots x_{i} \wedge x_{j}\right)$. These yield a map of spectra $S p^{i} S^{0} \wedge S p^{j} S^{0} \rightarrow S p^{i j} S^{0}$ and by iteration a map $\mu_{0}: \Lambda^{n} S p^{p} S^{0} \rightarrow S p^{\rho^{n}} S^{0}$. As noted in [11], by factoring out the appropriate subspectra we obtain a commutative diagram

$$
\begin{gather*}
\Lambda^{n} S p^{n} S^{0_{0}} \rightarrow S p^{m^{n}} S^{0} \\
\stackrel{\downarrow}{\Lambda^{n} S p^{p} S^{0_{0}} \rightarrow \stackrel{\downarrow}{\rightarrow} \stackrel{\downarrow}{p^{m}} S^{0}} \tag{5.2}
\end{gather*}
$$

where $\overline{S p^{p^{n}}} S^{n}=S p^{p^{n}} S^{0} / S p^{p^{n-1}} S^{0}$.
From the definition of $M(n)$, it is clear on inspection that (5.2) yields a further commutative diagram

$$
\begin{gather*}
\Lambda^{n} D(1) \stackrel{\mu}{\rightarrow} D(n) \tag{5.3}\\
\downarrow \\
\Lambda^{n}(\Sigma M(1)) \stackrel{\mu}{\rightarrow} \stackrel{\Sigma^{n}}{ } M(n) .
\end{gather*}
$$

Remark 5.4. In view of the Dold-Thom theorem, the maps μ_{0}, μ can be viewed as filtrations of the ring spectrum multiplication on $K \mathbb{Z}, K \mathbb{Z} / p$. For another interpretation, see Remark (5.7) below.

Finally, from the results of $\S 3$ we obtain our main commutative diagram

Here we recall that

$$
\Lambda^{n} L_{0}^{x}=B(\mathbb{Z} p)_{+}^{n} \quad \quad P_{-1}^{x} \cong \Sigma^{-1} D(1), \quad \Lambda^{n} P_{0}^{x}=B\left(\Sigma_{p}\right)_{+}^{n}, \quad \text { and } P_{0}^{x} \cong M(1) .
$$

Let $f=\mu\left(\Lambda^{n} \psi\right), g=\bar{\mu}\left(\Lambda^{n} \bar{\psi}\right)$; we will show that g is the required map of Theorem 5.1. Let $R_{n}=H^{*} \Lambda^{n} L_{-1}^{x} \subseteq S_{n}, P_{n}=H^{*} \Lambda^{n} L_{0}^{x} \subseteq R_{n}$, and $M_{n}=A$-submodule of R_{n} generated by the bottom class $X_{n} Y_{n}{ }^{-1}$.
 $H^{*} M(n) \rightarrow M_{n} \cap P_{n}$.

Proof. Since $f^{*}\left(u_{n}\right)=X_{n} Y_{n}^{-1}$, (a) is immediate from (3.5) and (4.3). Moreover we have seen in (3.5) that $M_{n} \cap P_{n}$ is precisely $\left\langle\theta^{I}\left(X_{n} Y_{n}^{-1}\right)\right.$: I admissible and $\left.l(I)=n\right\rangle$. (b) then follows from (a), using (5.5).

Remark 5.7. Since our proof of (5.6) relies on Nakaoka's calculation of $H^{*} S p^{p^{n}} S^{0}$, in a sense it puts the cart before the horse. In fact one can show directly that $\mu_{0}: \Lambda^{n} S p^{p} S^{0} \rightarrow S p^{p^{n}} S^{0}$ is injective in cohomology, and indeed this is essentially equivalent to a key step in Nakaoka's original proof: As remarked in Section 4, $\left.\Lambda^{n} S p^{p} S^{0} \cong S p^{p}\left(S p^{p}\left(\ldots S p^{p} S^{0}\right)\right) \ldots\right) \cong S p^{H} S^{0}$, where $H=\int^{n} \Sigma_{p}$. Moreover, it is easy to see that the resulting map $S p^{H} S^{0} \xrightarrow{\pi} S p^{p^{n}} S^{0}$ corresponding to μ_{0} is the obvious "projection" associated to the inclusion $H \subseteq \Sigma_{p^{n}}$. Now algebraically one can define a transfer t^{*} : $H^{*} S p^{H} S^{0} \rightarrow H^{*} S p^{p^{n}} S^{0}$ enjoying the usual properties, e.g. $t^{*} \pi^{*}=$ multiplication by the index [$\left.\Sigma_{p} n: H\right]$. But $\left[\Sigma_{p} n: H\right]$ is prime to p, which shows μ_{0}^{*} is injective.

Lemma (5.6) reduces Theorem (5.1) to the following purely algebraic result:
Theorem 5.8. $R_{n} e_{n}=M_{n}$.
For then $P_{n} e_{n}=P_{n} \cap R_{n} e_{n}=P_{n} \cap M_{n}=I m{ }^{*}$ by 5.6 b . (As usual, we are regarding R_{n} as embedded in S_{n}). The proof of Theorem (5.8) is based on the following curious lemma, which relates the action of the Steenrod algebra on R_{n} to the action of $G L_{n} F_{p}$.

Lemma 5.9. Let $J=\left(j_{0}, \ldots, j_{n-1}\right), j=\Sigma j_{i}, j_{i}=0$ or 1 , and let I be any multiindex of length $\leq n-1$. Then

$$
\left(x_{1} y_{1}^{-1} Q^{J} P^{\prime}\left(X_{n-1} Y_{n-1}^{-1}\right)\right) e_{n}=(-1)^{\prime} Q^{J} P^{I}\left(X_{n} Y_{n}^{-1}\right)
$$

Proof of Theorem 5.8. Taking $Q^{J} P^{\prime}=1$ in the lemma we have $\left(X_{n} Y_{n}^{-1}\right) e_{n}=X_{n} Y_{n}^{-1}$, so $M_{n} \subseteq R_{n} e_{n}$. To show $R_{n} e_{n}=M_{n}$ we use induction on n. For $n=1$ this is clear (see 3.4). Now suppose we have shown $R_{n-1} e_{n-1}=M_{n-1}$. From (2.5) we have $e_{n}=-e_{n-1} \bar{A}_{n} \bar{T}_{n}$ and hence

$$
R_{n} e_{n}=\left(R_{1} \otimes R_{n-1} e_{n-1}\right) \bar{A}_{n} \bar{T}_{n}=\left(R_{1} \otimes M_{n-1}\right) \bar{A}_{n} \bar{T}_{n}=\left(R_{1} \otimes M_{n-1}\right) e_{n}
$$

Let $R_{1}^{\prime}=H^{*} P_{-1}^{\infty}=H^{*}\left(\Sigma^{-1} D(1)\right)$ (see Prop. 4.3, Ex. 3.4 (iii)). Since A_{n} contains the diagonal matrices $F_{p}^{*} \times I_{n-1}$ we have $\left(R_{1} \otimes M_{n-1}\right) e_{n}=\left(R_{1}^{\prime} \otimes M_{n-1}\right) e_{n}$. Further for any A-module $N, R_{1}^{\prime} \otimes N$ is generated by $x_{1} y_{1}^{-1} \otimes N$. Hence it is enough to show $\left(x_{1} y_{1}{ }^{-1} \otimes M_{n-1}\right) e_{n} \subseteq M_{n}$. But this is immediate from the lemma together with (1.1(c)).

Recall V^{n} is the vector space $\left\langle y_{1}, \ldots, y_{n}\right\rangle$. To prove the lemma we will need:
Proposition 5.10. Let $\alpha_{n, k}=\sum_{a \in V^{n}} a^{k}$. Then if $k=i p^{r}$ with $0 \leq i<p^{n}-p^{n-1}, \alpha_{n, k}=0$.
Proof. It is enough to prove the case $r=0$. Clearly $\alpha_{n, k}$ is a $G L_{n}$ invariant. But by a classical theorem of Dickson[17], the smallest nonzero dimension in which such an invariant occurs is $2\left(p^{n}-p^{n-1}\right)$ for p odd and 2^{n-1} for $p=2$.

Proof of Lemma 5.9. Fix $p>2$. For $n=1$ the lemma merely states that $\left(x_{1} y_{1}^{-1}\right) e_{1}=x_{1} y_{1}^{-1}$; this is clear since $e_{1}=d_{1}$. From now on we assume $n>1$. We consider first the case $Q^{J}=1$. Suppose inductively we have shown the special case $\left(X_{n-1} Y_{n-1}^{-1}\right) e_{n-1}=X_{n-1} Y_{n-1}^{-1}$. Let $\pi_{i}: V^{n} \rightarrow F_{p}$ denote the coordinate projections. Then

$$
\begin{aligned}
x_{1} y_{1}^{-1} P^{\prime}\left(X_{n-1} Y_{n-1}^{-1}\right) e_{n} & =-x_{1} y_{1}^{-1} P^{\prime}\left(X_{n-1} Y_{n-1}^{-1}\right) \bar{A}_{n} \bar{T}_{n}(\text { by (2.5) and inductive hypothesis) } \\
& =-X_{n} L_{1}^{\prime-1} P^{\prime}\left(Y_{n-1}^{-1}\right) \bar{A}_{n} \bar{T}_{n} \\
& =-X_{n} \sum_{i=1}^{n} \sum_{a \in V^{n}-0} \pi_{i}(a) a^{-1} P^{\prime}\left(y_{1}^{-1} \ldots \hat{y}_{i}^{-1} \ldots y_{n}^{-1}\right) \\
& =-X_{n} \sum_{a \in V^{n}-0} a^{-1} \sum_{i=1}^{n} \pi_{i}(a) P^{\prime}\left(y_{1}^{-1} \ldots \hat{y}_{i}^{-1} \ldots y_{n}^{-1}\right) \\
& =-X_{n} \sum_{a \in V^{n}-0} a^{-1} P^{\prime}\left(a Y_{n}^{-1}\right) .
\end{aligned}
$$

Now $\Delta P^{\prime}=\Sigma \theta_{j}^{\prime} \otimes \theta_{j}^{\prime \prime}$ with $l\left(\theta_{j}^{\prime}\right), l\left(\theta_{j}^{\prime \prime}\right) \leq n-1$. Hence $P^{\prime}\left(a Y_{n}^{-1}\right)=\sum_{k=0}^{n-1} a^{p^{k}} \theta_{k}\left(Y_{n}^{-1}\right)$ for certain θ_{k} independent of a, with $\theta_{0}=P^{\prime}$. We then have

$$
\begin{aligned}
-X_{n} \sum_{a \in V^{n}-0} a^{-1} P^{\prime}\left(a Y_{n}^{-1}\right) & =-X_{n} \sum_{a \in V^{n}-0} a^{-1} \sum_{k=0}^{n-1} a^{p^{k}} \theta_{k}\left(Y_{n}^{-1}\right) \\
& =-X_{n} P^{\prime} Y_{n}^{-1}\left(\sum_{a \in V^{n}-0} a^{0}\right)-X_{n} \sum_{k=1}^{n-1} \theta_{k} Y_{n}^{-1}\left(\alpha_{n, p} k_{-1}\right) \\
& =P^{\prime}\left(X_{n} Y_{n}^{-1}\right) .(\text { Using } 5.10) .
\end{aligned}
$$

For the general case consider the equation

$$
\begin{equation*}
\left(x_{1} y_{1}^{-1} \theta\left(X_{n-1} Y_{n-1}^{-1}\right)\right) \bar{A}_{n} \bar{T}_{n}= \pm \theta\left(X_{n} Y_{n}^{-1}\right), \quad \theta \in A \tag{5.11}
\end{equation*}
$$

Then it is enough to show that if (5.11) holds for θ, then it holds for $Q_{i} \theta$ if $0 \leq i \leq n-2$ (but with opposite sign). Since Q_{i} is primitive, by applying Q_{i} to both sides of 5.11 we are reduced to showing $\left(\left(Q_{i} x_{1} y_{1}^{-1}\right) \theta\left(X_{n-1} Y_{n-1}^{-1}\right)\right) \bar{A}_{n} \bar{T}_{n}=0$. But in fact

$$
\begin{aligned}
\left(\left(Q_{i} x_{1} y_{1}{ }^{-1}\right) \theta\left(X_{n-1} Y_{n-1}^{-1}\right)\right) \bar{A}_{n}=\left(y_{1}{ }^{p-1} \theta\left(X_{n-1} Y_{n-1}^{-1}\right)\right) \bar{A}_{n}= & \left(\alpha_{n, p^{i}-1}-\alpha_{n-1, p^{i}-1}\right) \theta\left(X_{n-1} Y_{n-1}^{-1}\right) \\
& =0 .
\end{aligned}
$$

By (5.10). This completes the proof if $p>2$. The proof for $p=2$ is similar but easier if we use the elements $S q^{\prime}$. Then

$$
\begin{aligned}
x_{1}^{-1} S q^{\prime}\left(X_{n-1}^{-1}\right) e_{n}=x_{1}^{-1} S q^{\prime}\left(X_{n-1}^{-1}\right) \bar{A}_{n} \bar{T}_{n} & =\sum_{i=1}^{n} \sum_{a \in W^{\prime n}-0} \pi_{i}(a) a^{-1} S q^{\prime}\left(x_{1} \ldots \hat{x}_{i}^{-1} \ldots x_{n}\right) \\
& =\sum_{a \in W^{n}-0} a^{-1} S q^{I}\left(a X_{n}^{-1}\right)=S q^{I}\left(X_{n}^{-1}\right)
\end{aligned}
$$

where W^{n} is the vector space $\left\langle x_{1}, \ldots, x_{n}\right\rangle$. This finishes the proof of the lemma, and the proof of Theorem 5.8 .

Remark 5.12. Lemma (5.9) shows ($X_{n} Y_{n}^{-1}$) is fixed by e_{n} (over any finite field \mathbb{F}_{q}). It follows that the Steinberg module can be described as the $G L_{n} \mathbb{F}_{q}$ submodule of $E\left[x_{1}, \ldots x_{n}\right] \otimes \mathbb{Z} ; p\left(y_{1}, \ldots y_{n}\right)$ generated by $X_{n} Y_{n}{ }^{-1}$.

Remark 5.13. Theorem 5.8 determines the multiplicity of the Steinberg module in $E\left[x_{1}, \ldots, x_{n}\right] \otimes \mathbb{Z} p\left[r_{1} \ldots \ldots, r_{n}\right]$. Let $f(s, t)=\Sigma a_{i,} s^{i} t^{j}$ where $a_{i j}$ is the multiplicity of S_{t} in
$E\left[x_{1}, \ldots, x_{n}\right]_{n-i} \otimes \mathbb{Z} / p\left[y_{1}, \ldots, y_{n}\right]_{j}$. Then using (5.8) we obtain

$$
f(s, t)=t^{-n} \frac{\prod_{i=0}^{n-2}\left(1+s t^{2 p^{i}-2}\right)}{\prod_{i=1}^{n}\left(1-t^{2\left(n^{i}-1\right)}\right)}\left(s t^{2 p^{n-1}-2}+t^{2\left(p^{n}-1\right)}\right)
$$

Remark 5.14. Since $B\left(\Sigma_{p}\right)^{n} \cong d_{n} \cdot B(\mathbb{Z} / p)^{n}$, and d_{n} commutes with \bar{U}_{n} and $\bar{\Sigma}_{n}, e_{n}$ restricts naturally to a self-map of $B\left(\Sigma_{p}\right)^{n}$. Hence $M(n)$ is a stable summand of $B\left(\Sigma_{p}\right)^{n}$.

Let $L(n)=\Sigma^{-n} S p^{p^{n}}\left(S^{0}\right)$. We conclude this section by proving

PROPOSITION 5.15. $M(n) \cong L(n) \vee L(n-1)$.

Proof. By definition, there is a cofibration $L(n) \rightarrow M(n) \rightarrow L(n-1)$, with the resulting cohomology sequence short exact (§4). Hence it will be enough to produce a map h : $M(n) \rightarrow L(n)$ such that h^{*} is an isomorphism onto $\left\langle\theta^{\prime}: \epsilon_{n-1}=0\right\rangle$. Let H be the composite $\Lambda^{n} \Sigma P_{0}^{\infty} \rightarrow \Lambda^{n} \Sigma P_{1}^{\infty} \xrightarrow{\bar{\mu}_{0}} \overline{S p^{p^{n}}} S^{0}$, where $\bar{\mu}_{0}$ is as in (5.2) (recall $\Sigma P_{1}^{\infty} \cong \overline{S p^{p}} S^{0}$). By Theorem (5.1) and Remark 5.14, $M(n)$ is a stable summand of $\Lambda^{n} \Sigma P_{0}^{\infty}$. From diagram (5.2), it is clear that a map h with the desired property is obtained by restricting H to $M(n)$.

§6. SPLITTING $B\left(\int^{n} \mathbb{Z} / / p\right)$ AND $B O(n)$

Regarding $\Sigma_{p^{n}}$ as the permutation group of the set $\mathbb{F}_{p}{ }^{n}$, one obtains an embedding of the affine group $A f f_{n}\left(\mathbb{F}_{p}\right)=G L_{n} \mathbb{F}_{p} \tilde{x}_{\mathbb{F}_{p}}{ }^{n}$ in $\Sigma_{p^{n}}$. In particular this defines an inclusion $j: \mathbb{F}_{p}{ }^{n} \rightarrow \Sigma_{p^{n}}$ (as the group of translations) with Weyl group $W_{\Sigma_{p^{n}}}\left(\mathbb{F}_{p}{ }^{n}\right)=G L_{n}$. Now the wreath product embeds $\int^{n} \mathbb{Z} / p \subset \Sigma_{p^{n}}$ as a p-Sylow subgroup and factors j

This embedding can be chosen so that $A f f_{n} \cap \int^{n} \mathbb{Z} / p=U_{n} \tilde{\times} \mathbb{F}_{p}^{n}$, and $W_{\rho n \mathbb{Z} / p}\left(\mathbb{F}_{p}{ }^{n}\right)=U_{n}$. Similarly, $\int^{n} \Sigma_{p} \subset \Sigma_{p^{n}}$ and $A f f_{n} \cap \int^{n} \Sigma_{p}=B_{n} \tilde{x}^{\mathbb{F}_{p}}$; then $W_{\int^{n} \Sigma_{p}}\left(\mathbb{F}_{p}{ }^{n}\right)=B_{n}$. Letting $t: B \int^{n} \mathbb{Z} / p \rightarrow B(\mathbb{Z} / p)^{n}$ denote the transfer associated to j^{\prime} we then have the following easy consequence of the double coset formula (see [11], Proposition 1.4).

Lemma 6.1. $j^{\prime *} t^{*}=\bar{U}_{n}$.
Proof of Theorem B. From the lemma and (2.6(b)), we see that $t j^{\prime}$ restricts to an equivalence $e_{n}^{\prime} \cdot B(\mathbb{Z} / p)^{n} \xrightarrow{\cong} e_{n} \cdot B(\mathbb{Z} / p)^{n}$. Hence Theorem B follows from Theorem A.

Remark. Since e_{n} and e_{n}^{\prime} commute with d_{n}, it follows that the summand $M(n)$ of $B \int^{n} \mathbb{Z} / p$ actually is a summand of $B \int^{n} \Sigma_{p}$.

Proof of Theorem C. The inclusion of $(\mathbb{Z} / 2)^{n}$ in $0(n)$ as the diagonal matrices yields a map $B(\mathbb{Z} / 2)^{n} \rightarrow B 0(n)$ with fibre the flag manifold $0(n) /(\mathbb{Z} / 2)^{n}$. Let $t: B 0(n) \rightarrow B(\mathbb{Z} / 2)^{n}$ be the associated Becker-Gottlieb transfer.

Lemma 6.2. $i^{*} t^{*}=\bar{\Sigma}_{n}[18]$.

As in the proof of Theorem B, it follows that $t i$ restricts to an equivalence $e_{n} \cdot B(\mathbb{Z} / 2)^{n} \xlongequal{\leftrightharpoons} e_{n}^{\prime} \cdot B(\mathbb{Z} / 2)^{n}$. Hence Theorem C follows from Theorem A .
§7. SPLITTING $B T^{\prime \prime} A N D B U(n)$
In this section all spectra are completed at p. We begin by observing that $G L_{n}\left(\mathbb{Z}_{p}\right)$ acts on $T^{n}=B\left(\mathbb{Z}_{p}\right)^{n}, B T^{n}$, and hence diagonally on $T_{+}^{n} \wedge B T_{+}^{n}=\left(T^{n} \times B T^{n}\right)_{+}$. In mod-p cohomology

$$
H^{*}\left(T^{n} \times B T^{n}\right)_{+}=E\left[x_{1}, \ldots, x_{n}\right] \otimes \mathbb{Z} / p\left[y_{1}, \ldots, y_{n}\right]
$$

where $x_{i}=1 \otimes \ldots \otimes x \otimes \ldots \otimes 1 \in H^{1} T^{n}$ and $y_{i}=c_{1}\left(\pi_{i}\right)$ where $\pi_{i}: T^{n} \rightarrow S^{1}$ is the i-th projection map. This notation is chosen to agree with that of (3.1) since $H^{*}\left(T^{n} \times B T^{n}\right)_{+} \approx H^{*}(B \mathbb{Z} / p)_{+}^{n}$ as $G L_{n}\left(\mathbb{F}_{p}\right)$ modules. Here $G L_{n}\left(\mathbb{Z}_{p}\right)$ acts via mod p reduction $G L_{n}\left(\mathbb{Z}_{p}\right) \rightarrow G L_{n}\left(\mathbb{F}_{p}\right)$.

Since $\bmod p$ reduction is surjective, we can choose $\hat{e}_{n} \in \mathbb{Z}_{p}\left[G L_{n}\left(\mathbb{Z}_{p}\right)\right]$ which projects to the Steinberg idempotent $e_{n} \in \mathbb{F}_{p}\left[G L_{n}\left(\mathbb{F}_{p}\right)\right]$; hence \hat{e}_{n} defines a map

$$
\hat{e}_{n}:\left(T^{n}+B T^{n}\right)_{+} \rightarrow\left(T^{n} \times B T^{n}\right)_{+}
$$

which induces action by e_{n} on $H^{*}\left(T^{n} \times B T^{n}\right)_{+}$. As explained in $\S 3, \hat{e}_{n}$ splits $\left(T^{n} \times B T^{n}\right)_{+}$; however, we wish to split $B T^{n}$ at least up to suspension. Hence we define

$$
\tilde{e}_{n}: S^{n} \wedge B T_{+}^{n} \xrightarrow{i \wedge 1} T_{+}^{n} \wedge B T_{+}^{n} \xrightarrow{\hat{e}_{n}} T_{+}^{n} \wedge B T_{+}^{n} \xrightarrow{p \wedge 1} S^{n} \wedge B T_{+}^{n}
$$

where i and p are inclusion and projection on the top cell. We shall see that \tilde{e}_{n} is an idempotent in cohomology and hence splits $S^{n} \wedge B T^{n}$.

Definition. $B P(n)=\Sigma^{n} \tilde{e}_{n}\left(S^{n} \wedge B T_{+}^{n}\right)$.
Proof of Theorem D. First we show that $B P(n)$ has the correct cohomology. We proceed to consider some complex analogues of our previous constructions. Let η be the canonical line bundle over $B S^{1}$ and write $\mathbb{C} P_{2 k}^{\infty}, k \in \mathbb{Z}$ for the Thom spectrum $\left(B S^{1}\right)^{k n}$. Then $\Lambda^{n} \mathbb{C} P_{0}=B T_{+}^{n}$ and we let $P_{n}=H^{*}\left(T^{n} \wedge B T^{n}\right)_{+}, S_{n}=P_{n}\left[l_{n}{ }^{-1}\right]$ where l_{n} is the product of all non-zero linear forms in $y_{1}, y_{2}, \ldots, y_{n}$. Let $R_{n}=H^{*}\left(T_{+}^{n} \wedge \Lambda^{n} \mathbb{C} P_{-2}^{\infty}\right) \subset S_{n}$ and let M be the $P=A /(\beta)$ module generated by $X_{n} Y_{n}^{-1}$ where $X_{n}=x_{1} \ldots x_{n}, Y_{n}=y_{1} \ldots y_{n}$. Then $M_{n} \cong \Sigma^{n}\left(P / P \cap G_{n}\right)$ as in Prop. 3.5. Further, $R_{n} e_{n}=M_{n}$ as in Theorem 5.8. Thus $P_{n} e_{n}=P_{n} \cap R_{n} e_{n}=P_{n} \cap M_{n}$ which has the required basis $\Sigma^{n}\left\{P^{\prime}\left(X_{n} Y_{n}^{-1}\right)\right.$: I admissible, $\left.l(I)=n\right\}$ as in Prop. 3.5.

It is now clear that \tilde{e}_{n} is an idempotent in cohomology since X_{n} represents the top cell in S^{n}.
To see that $B T^{n}$ contains $p^{\left({ }^{(3)}\right)}$ copies of $B P(n)$ we note that lifting orthogonal idempotents of $\mathbb{F}_{p}\left[G L_{n}\left(\mathbb{F}_{p}\right)\right]$ to $\mathbb{Z}_{p}\left[G L_{n}\left(\mathbb{Z}_{p}\right)\right]$ results in self maps of $\left(T^{n} \wedge B T^{n}\right)_{+}$which give orthogonal idempotents in cohomology.

The proof that $B U(n)$ splits is analogous to that of $B 0(n)$, Theorem $C(6.1)$. One uses the fibration $U(n) / T^{n} \rightarrow B T^{n} \rightarrow B U(n)$ and Becker-Gottlieb transfer.

REFERENCES

1. J. F. Adams. Lectures on generalized cohomology. Lecture Notes in Math. Vol. 99, pp. 1-138. SpringerVerlag (1969).
2. D. Quillen, On the formal group laws of unoriented and complex cobordism theory. Bull. Am. Math. Soc. 75, 1293-1298 (1969).
3. D. Kahn and S. Priddy, The transfer and stable homotopy theory. Math. Proc. Camb. Math. Soc. 83, 102-111 (1978).
4. V. Snalth. A stable decomposition for $\Omega^{n} \Sigma^{n} X$. J. London Math. Soc. 7, 577-583 (1974).
5. M. Mahowald, A new infinite family in ${ }_{2} \pi^{s}$. Topology 16, 249-254 (1971).
6. N. J. Kuhn, A Kahn-Priddy sequence and a conjecture of G. W. Whitehead. Math. Proc. Camb. Phil. Soc. 92, 467-483 (1982).
7. N. J. Kuhn, S. Mitchell and S. Priddy. The Whitehead conjecture and splitting $B(\mathbb{Z} 2)^{k}$. Bull. Amer. Math. Soc. 7. 255-258 (1982).
8. J. Milnor. The Steenrod algebra and its dual. Annals of Math. 150-171 (1958).
9. C. Curtis and I. Reiner. Representation Theory of Finite Groups and Associative Algebras. Interscience Publishers. New York (1962).
10. R. Steinberg. Prime power representations of finite linear groups II. Can. J. Math. 18, 580-591 (1956).
11. S. Mitchell and S. Priddy, Symmetric product spectra and splittings of classifying spaces. Am. J. Math. (to appear).
12. C. Wilkerson. Classifying spaces, Steenrod operations and algebraic closure. Topology 16. 227-237 (1977).
13. B. Mann, E. Miller and H. Miller, S^{1}-equivariant function spaces and characteristic classes. Trans. Am. Math. Soc. (to appear).
14. P. Welcher, Symmetric products and the stable Hurewicz homomorphism. Ill. J. Math. 24. 527-542 (1980).
15. M. Nakaoka, Cohomology mod p of symmetric products of spheres. J. Inst. Poly., Osaka City Unir. 9, 1-18 (1958).
16. D. Kan and G. Whitehead, The reduced join of two spectra. Topology 3, Suppl. 2, 239-261 (1965).
17. L. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem. Trans. Am. Math. Soc. 12, 75-98 (1911).
18. M. Feshbach, The transfer and compact Lic groups. Trans. Am. Math. Soc. 251, 139-169 (1979).

Massachusetts Institute of Technology

Cambridge, MA 02139, U.S.A.
Northwestern University
Evanston, IN 60201, U.S.A.

