
CO40 9383183 43 @Cl-c .oO 
Pergmon Press Lrd 

STABLE SPLITTINGS DERIVED FROM THE 
STEINBERG MODULE 

STEPHEN A. MITCHELL? and STEWART B. PRIDDY~ 

(Received I5 Seplemher 1982) 

IN THIS PAPER we construct a new class of stable splittings for certain classifying spaces, 
including B(Z/p)‘. Our results involve symmetric products of the sphere spectrum and are 
based on the fundamental Steinberg module of modular representation theory. Splitting 
theorems have long played an important role in homotopy theory, see [l-4], one reason 

being that an equivalence X2 v X, enablesone to construct maps X,+X which were apriori 

inaccessible. Examples include Mahowald’s maps ~,[5] based on Snaith’s splittings and, 
more recently, certain maps used in Kuhn’s proof of the Whitehead conjecture[6, 71. These 
latter maps are based on our splitting of B(Z/2)k. 

Our main result shows that the suspension spectrum of a product of lens spaces B(E/P)~ 
can be split using the Steinberg idempotent of F,,[GL,(ff,,)]. Let Sp”(S”) denote the n-fold 
symmetric product of the sphere spectrum. We recall Sp”(S”) = K(Z) by the Dold-Thorn 
theorem. Let D(k) be the cofiber of the diagonal map d: SpP”-‘(S’)+SpJ’“(S”). Then 
D(co) = K(Z/p). Let M(k) = X-‘-o(k)/D(k - 1). In mod-p cohomology H*(M(k)) has a 
basis consisting of admissible Steenrod operations of length exactly k. 

THEOREM A. Stably, B(Z/p)’ contains p(i) summands each equivalent to M(k). These 
summands correspond to the p’i’ summands of the Steinberg module in IF,GL,(E&. 

Here and throughout, all spaces are localized at p. Let L(k) = ~-kSpp”(So)/Spp”-‘(So). 

A simple argument shows that L(k) is also a summand of B(Z/p)‘; in fact, 
M(k) = L(k) v L(k - 1). 

Let s” Z/p denote the k-fold wreath product. Using the transfer t: B(r Z!/~)+B(Z/P)~ 
and the double coset formula we prove 

THEOREM B. M(k) is a stable summand in B(p Z/p). Let O(k) be the real orthogonal 

Let O(k) be the real orthogonal group. Using Becker-Gottlieb transfer for the fibration 
0(k)/(H/2)k+B(Z/2)k+BO(k) we prove 

THEOREM C. M(k) is a stable summand in BO(k). 

Let T” = (S’)’ be the k-torus. We construct a spectrum BP(k) such that H*BP(k) has 
a basis consisting of admissible Steenrod operations in the reduced powers of length 
exactly k. Using a lifting of the Steinberg idempotent to GL,(Z,) we show 

THEOREM D. Completed at p, BT“ contains p(i) stable summands each equivalent to 
BP(k). Further, BP(k) is a stable summand of BU(k). 

This paper is organized as follows: The brief $1 contains a few remarks about the length 
filtration of the Steenrod algebra. In $2 we give an account of those facts about GL,(lFp) 
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and the Steinberg module needed for our subsequent constructions. Sections 3 and 4 are 
devoted to the construction and properties of various spectra including Thorn spectra and 
symmetric product spectra. The proof of Theorem A is given in $5. Section 6 contains 
proofs of Theorems B and C. Finally the construction of BP(k) and the proof of Theorem 
D is given in $7. 

Il. PRELIMINARIES ON THE STEENROD ALGEBRA 

Let A denote the Steenrod algebra, and let A, denote the subalgebra generated by j?, 
P’, . . Pp-‘. (For p = 2, /3 = Sq’ and P’ = Sq”.) If I is a finite sequence (to, I,, e,, r2, . . .), 
ri 2 0, E, = 0, 1, then 8’= fi%PrlflL~P’*. . . ; if ci = 0 for all i we write P’ for 0’. As usual, 
Z is admissible if ri 2 pri+ , + 6, for all i. By a classical theorem of Cartan and Serre, the 
admissible 8’ are a basis for A. The length Z(Z) is defined by Z(Z) = n if ri = 0 for i > n and 
6, = 0 for i 2 n. Thus we obtain vector space filtrations on A defined by F, = (8’: I(Z) I n) 
and G, = (0’: Zadmissible, Z(Z) > n). Finally, we recall that A, contains an exterior algebra 
on primitive elements Q,, . . . , Qn_ ,, where Q,, = j? and Qk + , = [Pfl, QJ. 

PROPOSITION 1.1. (a) F, is spanned by the admissible 8’, f(Z) I n; (b) F, is a subcoalgebra 
of A ; (c) ‘F, is a left A,_, submodule of A. Moreover F, is free over EIQo, . . . , Qn _ ,] on 
{P’: Z admissible, Z(Z) I n >; (d) G, is a left ideal. Moreover A /G, = F, as A, _ , modules. 

Proof: (a) follows from the Adem relations, and (b) is obvious. The first part of (c) 
also follows from the Adem relations, using induction on n. For the second part, note that 
the E[Q,, . . . , Qn_ ,] submodule of F,, generated by {P’: Z admissible, Z(Z) I rz} is indeed 
free as claimed; this follows from Milnor[8], Theorem 4(a). Hence this module has 

n-l 
Poincari series II (1 + r@‘-[)/I? (1 - t’@‘-‘), which is precisely the Poincare series of [, 

(by (a)). Finally, (od) also follows’from the Adem relations; alternatively, it is a consequence 
of (3.5) below. 

$2. GLJqANDTHESTEINBERG MODULE 

Let V” be a vector space over the finite field [F,, q = p’, with basis y,, . . . , y,. Then GL,IF, 

is the automorphism group of V”, acting on the right. GL,ff, has order q(2) l? (q’ - 1), and 
contains the following distinguished subgroups: 

r=l 

C, = symmetric group (permutation matrices). 
D, = diagonal matrices. 
B,, = Bore1 subgroup = upper triangular matrices. 
U, = unipotent subgroup = upper triangular matrices with all diagonal entries equal to 1. 

(Note U, is a p-Sylow subgroup.) 

In addition we will need to consider 

A, = top row subgroup = {gEB,,: y,g = yi, Vi > 1). 
T, = cyclic subgroup of &, of order n generated by (1,2, . . . , n). 

Throughout this paper, we regard Vk as the subspace (Y”_~+ ,, . . . , yn) of V”; this 
convention determines inclusions GLkIF, E GL,[F,, etc. Note that many of our subgroups fit 
together as semi-direct products, e.g. X,, x’ D,, D, 2 U,, = B,,, and the “maximal parabolic 
subgroup” CL,_, x’ A,. 

We digress briefly to review some general facts from representation theory (see [9]). All 
modules are understood to be right modules. Let R be any finite-dimensional algebra over 
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a field K. Then there is a unique set of indecomposable two-sided ideals B,, . . . , B,, called 
blocks, such that R = TIB; (as algebras). Each Bi corresponds to a central idempotentf; such 
that B, = Rf =f;R,; theJ are orthogonal and Cl; = 1. A nonzero right R-module M is said 
to belong to the block B, (alternatively, B, “contains M”) if MJ = 0 Vj #i. If M is 
indecomposable, then obviously M belongs to a unique block. Now if R is semisimple, then 
each block is a matrix algebra. More generally, suppose R is a “quasi-Frobenius” algebra, 
i.e. every projective over R is injective. (For example, group algebras are quasi-Frobenius). 
Then: 

PROPOSITION 2.1. If R is quasi-Frobenius, a block B of R is a matrix algebra if and only 
tf B contains a projective irreducible module. 

Proof First recall (see [9], p. 378) that two indecomposables U, V are linked if there is 
a finite sequence U = U,, U,, . , . , U, = V of indecomposables such that U, and Vi + , have a 
common irreducible constituent (i.e. composition factor) for each i. (Curtis and Reiner use 
only “principal” indecomposables, but this makes no difference.) This defines an equiv- 
alence relation on the set of indecomposable modules. Moreover it is true (over any 
finite-dimensional algebra) that U and V are linked if and only if they belong to the same 
block ([9], Theorem 55.2). 

Now suppose B contains a projective irreducible N. Since N is also injective, it is a direct 
summand of any module in which it occurs as a composition factor. Hence the linking class 
of N consists solely of N itself. But this means every B-module is a direct sum of copies of 
N, and the classical Artin-Wedderburn theory then implies B is a matrix algebra over some 
K-central division algebra. 

The converse is a standard fact. 
Now take R = ~,,[GL,IF,]. If H is a subgroup of GLJF,, we let If = c h (if H $ Z,,) and 

R = c c(h)h (if H c Z,); here 6: C,+( + 1) is the usual map. hcH 

hcH 

Definition 2.2. The Steinberg idempotent e, is defined by e, = &$,/[GL,: U,]; the corre- 
sponding module St = e,R is called the Steinberg module. 

THEOREM 2.3. (Steinberg[lO]), (a) e, is idempotent; (b) St is projective and absolutely 
irreducible; (c) as a U,,-module, St is the regular representation. In particular dim St = 9’;) with 
basis { e,u : u E Un}. 

Remark 2.4. By Proposition 2.1, the block Bs, containing St is a matrix algebra over 5p 
of degree 98. 

Remark. Steinberg originally defined St as a certain composition factor of the per- 
mutation representation obtained from the action of GL, on the flag complex F( V”). Later, 
Solomon and Tits showed that F(V) has the homotopy type of a wedge of 
q’?(n - 2)-spheres, and that St is the representation of GL, on the cohomology group 
JJ’“-‘(V”). Yet another description of St is given in (5.12) below. 

Now suppose K c H E GL,, H $ Z,, and let H = u hiK (left coset decomposition). Then 
I 

clearly R = (Ch,)K. If K is normal in H, then also (Chi)K = K(Chi). Similar remarks apply 
if HcZ,. For example, &=&&_,=&_,&, z,=c,,_,r,,, 8,=&,,=0,& and 
.Q” _ , = c, _ ,&. The following inductive formula is then immediate: 

PROPOSITION 2.5. e,= e,_,&,TJ(q” - 1). 
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Our last proposition will be needed in Section 6. Let ei = &l?,/[GL,: U,]. 

PRows~no~ 2.6. (a) e; is a primitive idempotent belonging to the Steinberg block Bs,. 
For any M belonging to BB, Mei = MB,; (b) for any G&-module W, there are vector space 

isomorphisms We,: We; and WeA: We, given by & 2, (respectively). 

Proof. Since e; is the conjugate of e, in the Hopf algebra ff&GL,], ei is a primitive 
idempotent. Now by Theorem 2.3, StBn is equal to St& = (e,& and has dimension one. 
Thus e: is the identity onSt4. In particular Ste; # 0, so e; belongs to Bsl. This also shows 
MeA = MB” for M belonging to Bs,, since such an M is just a direct sum of copies of St (by 
Remark 2.4). (b) is obvious. 

53. B(Z/p)" AND ASSOCIATED SPECTRA 

Let Lz” + ’ denote the lens manifold Sz” + ’ /(Z/p). We identify BZ/p with L * = lip L’“+ ’ 

and B(Z/p)” with $ BE/p. The canonical complex line bundle 1 over BZ/p is S” x r,,@, 

where Z/p acts on @ via the standard inclusion Z/p c S’. Let P,, = H*B(Z/p)“. Then, at odd 
primes, P, = E[x] 0 iZ/pfy], where y = c,(J) and fix = y. From the Kiinneth theorem we 
then have 

P” = E[x,, . . .,-%1O~/PLY,,...7Y,l. (3.1) 

For p = 2, P, = Z/2[x,, . . . ,xJ. However, in order to avoid separating cases, we will 
make use of the following device: Let yi = x:, and replace P, by the quotients of the filtration 

where P.’ denotes the subring of squares. Then (3.1) becomes valid for all primes. In 
particular (3.1) describes P, as a module over the Steenrod algebra. 

Now GL n = GL,Z/p acts on (E/p)” and hence on the homotopy type B(Z/p>” (on the left). 
The resulting right action on P,, is then the obvious one implied by (3.1) (with our usual 
proviso for p = 2). As explained in [ 11, $11, for each idempotent e EZ/P[GL,] we obtain a 
stable summand Xof B(Z/p)” with cohomology P,e. We will use the notation e . B(Z/p)” for 

X. For example, let d, = D,/(p - l)“, where D, is the diagonal subgroup and D, = 1 g. 
&XD” 

Then d,, is idempotent and we have the following well known fact: 

PROPOSITION 3.2. The map B(Z/p)“+B(E,)” induced by the inclusion (Z/p)” c (C,) 

restricts to an equivalence d, . B(Z/p)“: B(Z,)“. 

The transfer provides an explicit inverse. Note that 

Zf*B(X,)” = P%= E[x&-‘, . . . ,~fi,“-‘]@z/p~,~-‘, . . . ,y,p-‘1. 

3.3 Thorn spectra 
We will need to consider various Thorn spectra, and quotients of Thorn spectra, over 

these classifying spaces. The following notation is very convenient: For any finite group G 
and representation 0 of G, we use the same letter 0 to denote the corresponding vector bundle 
over BG. In fact in place of 8, we could take any element of the complex representation ring 
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grouped as i3 ,Lo.“,(x,y, - ‘)L?‘(X,_, Y,-_,,) where I’ = (E,, r2, . . . , t,_ ,, r,). By induction the 
sum of these terms equals &Xfi_, Yf;_, mod elements of lower filtration. It remains to 
consider terms with /(J,) > 1. For such admissible J,, &‘(~,y, -‘) = 0 for dimensional 
reasons. For such inadmissible J, write J, = (c& r;, . . . , E;_ ,, r;). The Adem relations show 
that the only admissible summand of length 1 in tiJ, is c/?‘P’ where ccZ/p, 6 = 1 if X6: = 1, 
~=Oif&~=Omod2andr=&-:(notethatc=Oif%:>l). IfC&:=Othen 

(6 + c = ( . ..+r.)(p - l)- 1 

6 )( 

(r;+...+rA)@ - l)- 1 

r ; 
)...(r~@----;-l) 

and c # 0 implies ri < (r-i+, +. . . + ri)(p - 1). Hence Zr: < p”-‘r; <p”-‘r, 5 r, and so 
B’,(x,y, - ‘) . . . O’~(X,J~-‘) has filtration less than that of XrY’. The case of 5: = 1 is 
similar. This completes the proof of the lemma. 

From the lemma it is immediate that the set {@(X,,Y,-‘), I admissible and f(Z) I n} 
is independent. Moreover it is easy to see that I(I) = n iff e’(X,Y,,-,)EP,. It then follows 
for dimensional reasons that the ideal G, annihilates X,Y,,-‘. 

3.1 Transfer 
We conclude this section with a discussion of the various transfer maps that we will 

need. Suppose X is a CW-complex, rl is an n-dimensional complex vector bundle over X 
and g is a stable complex vector bundle over X (i.e. a map to BU). Then the inclusion 
of 5 in the Whitney sum q 0 5 induces a map of Thorn spectra _V&*x’,@‘; this is the 
transfer associated to rl, 5. (A quite general discussion of transfer maps can be found in 
[13]. We leave it to the.reader to discover in what sense the construction described here 
is a special case of that of [13].) The following is well known: 

PROPOSITION 3.8. The following diagram commutes 

I* 

H*X’- H*X”@t 

z r ,J+l) tz 
H*X - H*X 

where Ue(q) denotes cup product with 
Thorn isomorphisms. 

the modp Euler class e(n) and the vertical maps are 

Remark 3.9. The proposition is in 
and 5 are E-oriented. 

fact true for any cohomology theory E such that q 

Example 3.10. There is a transfer (B(Z/p)“)-“A B(Z/p)“+. The map t*: P,+P, . I,-’ is 
the obvious one, by (3.8). 

Example 3.11. (BZ/p)-“-!+(L3Z/p)-” = LZ,. Again themap t*: P, .y-‘-+P, .y-@-“is 
the obvious one. 

Composing with the quotient map LP_2-*L”_, in example (3.1 l), we obtain a map 
(BZ/p)-@+L”_,. Maps of this type will also be referred to as “transfers”. 

Note that GL,iZ/p acts on (&?/I,))-“, and that p (of 3.3) restricted to Z/p is cx. The 
final result of this section is straightforward; its proof will be left to the reader. . 

PROPOSITION 3.12. The induced map of Thorn spectra 4: (BZ/p)-“+(BC,)-8= P?, 
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restricts to an equivalence d, . (BZ/p)-” z P”,. Moreover there is a commutative diagram 

where t is the transfer and the unlabelled maps are the obvious ones. Moreover i,k and $ are 
stable retractions; in particular P”_, is a summand of L”_ ,. 

Of course $ is just the retraction of (3.2). 

$4. SYMMETRIC PRODUCTSPECTRA 

If X is a space and H is a subgroup of Z,,, Sp”X is the orbit space X*/H. If H = Z,, we 
write Sp” in place of SpH. If X = {Xk, Q) is a spectrum with structure maps 

Q.: S’ A x,+x,+ ,, then SpHX is the spectrum {SpHXk, Spn(e&f,>, where fk: 
S’ A SpHX,-+SpH(S1 A X,,,) is defined byfk(t A (x, . . . x,)) = (t A x1 . . . t A x,). Thus SpH 
becomes a functor on the stable category; for further details the reader may consult [14]. 

The natural inclusions Sp”X E Sp”+‘X allow us to define SpmX = lim Sp”X for a 

spectrum X. By the Dold-Thorn theorem, SpaSo = KZ; in particular H*Sp”S’ = A/A/?. 

THEOREM 4.1. (Nakaoka [15]). ‘The inclusions SpnSo+SpmSo are surjective on co- 
homologJ1. Moreover H*Spp”So has basis (8’: I admissible, I(I) I n, e’#Afi). 

4.2 The spectrum D(n) 
If ME/p is the modp Moore spectrum, then Sp”MZ/p = U/p. In view of 

Theorem (4.1) it is natural to ask whether the finite symmetric products Spr”MZ/p realize 
the Cartan-Serre filtration G,, on A = H*KZ/p. The answer is no; it can easily be seen from 
Remark (4.5) that the filtration provided by the Spt’“Mh/p is slightly different. Instead we 
use the following construction: On the space level there are obvious p-fold diagonal maps 

SpP”-‘SbSpP”Sk; these induce maps of spectra Sp J’“-‘S”iSpP”So. Let D(n) denote the 

cofibre of d. Now clearly d* is zero on H”Spp”So; hence by (4.1) d* is zero on all of H*. In 
other words, the cofibration SpP”SO+D(n)+ZSp p”-‘SO has a short exact cohomology 
sequence. Letting u,,E HOD(n) denote a generator, the following proposition is now evident: 

PROPOSITION 4.3. There are commutative diagrams 

D(n - 1)$0(n) 

in-,\ Ji, 

KVP 

such that i,* is surjective with kernel G, for all n. In particular, H*D(n) has basis {e’(u,): I 
admissible. 1(Z) -< n}. 

Frequently. the generator u, will be omitted from the notation. Note that 
H*D( 1) = H*CPX, as A -modules. In fact: 

PROPOSITION 4.4 ZP:, z D(1). 
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If D’(n) is the cofibre of the diagonal SP “n lS”+.Sp H4’1, as in the definition (4.2) of 

D(n). there is an analogous equivalence D’(n) E AnD’(l) z A”CP?, (by 4.4). Although we 
make no essential use of these facts, they are very helpful for understanding symmetric 
product spectra. 

55. PROOF OF THEOREM A 

Let M(rz) = Y”(D(n)/D(n - 1)). It follows from Proposition 4.3 that H*(M(n) has 

basis (0’: I admissible, I(I) = n). 
Theorem A is a consequence of the following: 

THEOREM 5.1. There is a map g: (B(Z/p)“+M( n such that on modp cohomology, g* ) 
is an isomorphism onto [H * B(Z/p )“]e,. 

For it follows that g restricts to an equivalence e, . B(h/p)“EM(n). 
Since the Steinberg block B,, is a matrix algebra of degreep’? over E,,. the corresponding 

central idempotent decomposes into the sum of p(2) primitive orthogonal idempotents one 
of which is e. The corresponding summands of B(Z/p)” are equivalent [I 1, 1.61. Thus 
Theorem A follows from Theorem 5.1. 

In fact the map is a very natural one, as we proceed to explain (see [ 111). There are maps 
(of spaces) SP’S” A SP’S~+SP”S”‘+~ defined by (x, .x2.. x,) A (y, . y2.. y,) + 

(.\-, A J’, s, A J’? s, A s,). These yield a map of spectra Sp’SO A Sp~S”+SpvSo and by 
iteration a map p,,: A”SppS”+Spf”So. As noted in [l I], by factoring out the appropriate 
subspectra we obtain a commutative diagram 

fwppsO: spp”so 

l-1 
A”@‘S”-r Sp S PO--p 0 

(5.2) 

where Spr”S” = Spp”S”ISpp” ‘S”. 
From the definition of M(n), it is clear on inspection that (5.2) yields a further 

commutative diagram 

A”D(l)LD(n) 

1 1 
A”(CM(l))~Z”M(n). 

(5.3) 

Remark 5.4. In view of the Dold-Thorn theorem, the maps k, p can be viewed as 
filtrations of the ring spectrum multiplication on KZ, KiZ/p. For another interpretation, see 
Remark (5.7) below. 

Finally. from the results of $3 we obtain our main commutative diagram 

A”L” ,- “* A”P: ,AZ. -“D(n) 

1 1 1 
/,“&?_/,“p; 1: M(n). 

Here we recall that 

(5.5) 

A”L,: = B(Z,p)“_. P?, 2 C’D(1). A”P; = B(X,,)“,. and PC z M(1). 
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Letf = p(A”$), g = P(AV>; we will show that g is the required map of Theorem 5.1. Let 

R, = H*(\“L?, E S,, P,, = H*A”L$ s R,, and M, = A-submodule of R, generated by the 
bottom class X, Y, - ‘. 

LEMMA 5.6. (a) f* is an isomorphism H*C-“D(n)+M,,. (b) g* is an isomorphism 
H*M(n)+M,fl P,,, 

Proof. Sincef*(u,) = X,,Y,-‘, (a) is immediate from (3.5) and (4.3). Moreover we have 
seen in (3.5) that M,,II P, is precisely (@(X, Y,- ,): ladmissible and I(I) = n). (b) then follows 
from (a), using (5.5). 

Remark 5.7. Since our proof of (5.6) relies on Nakaoka’s calculation of H*SpP”SO, in a 
sense it puts the cart before the horse. In fact one can show directly that po: A”SppS”+Spp”So 
is injective in cohomology, and indeed this is essentially equivalent to a key step in 
Nakaoka’s original proof: As remarked in Section 4, 
A”SppSo 2 Spp(Spp(. . . SppSo)) . . .) s SpHSo, where H = p Ep. Moreover, it is easy to see 

that the resulting map SpHSo:SpP”So corresponding to ,u,, is the obvious “projection” 
associated to the inclusion H g &. Now algebraically one can define a transfer t*: 
H*SpHSo+H*Spp”So enjoying the usual properties, e.g. t *II* = multiplication by the index 
[Z&n: H]. But [E:,n: H] is prime to p, which shows p$ is injective. 

Lemma (5.6) reduces Theorem (5.1) to the following purely algebraic result: 

THEOREM 5.8. Rnen = M,. 
For then P,e, = P,,n R,e,, = P,,n M, = Img* by 5.6b. (As usual, we are regarding R, as 

embedded in S,). The proof of Theorem (5.8) is based on the following curious lemma, 
which relates the action of the Steenrod algebra on R, to the action of GL,Ep. 

LEMMA~.~. LetJ=Ci, ,..., j”_,),j = Cj,, j, = 0 or 1, and let I be any multiindex of length 
In-l. Then 

(x,y,-‘Q’P’(X,_, Y,-_!,))e, = (- lyQ’P’(X,Y,-‘). 

Proof of Theorem 5.8. Taking Q’P’ = 1 in the lemma we have (X,, Y,, - ‘)e, = X, Y,, - ‘, so 
M, G R,e,. To show Rnen = M, we use induction on n. For n = 1 this is clear (see 3.4). Now 
suppose we have shown R, _ ,e, _ , = M,, _ , From (2.5) we have e, = - e, _ ,&ii, and hence 

Let R; = H*P?Z, =H*(Z-‘D(1)) ( see Prop. 4.3, Ex. 3.4 (iii)). Since A, contains the 

diagonal matrices FF x I,, _ , we have (R, 0 M, _ ,)e, = (R; 0 M, _ Je,. Further for any 

A-module N, R; @ N is generated by x,y, -, @ N. Hence it is enough to show 
(x,y, - , @ M,, _ ,)e, E IV,. But this is immediate from the lemma together with (1.1(c)). 

Recall V” is the vector space (y,, . . , y”). To prove the lemma we will need: 

PROPOSITION 5.10. Let a,,k = C a k. Then ifk=ip’ with O<i<p”--p”-‘, a,.k=O. 
(IE V” 

Proof: It is enough to prove the case r = 0. Clearly an.k is a GL, invariant. But by a 
classical theorem of Dickson[l7], the smallest nonzero dimension in which such an 
invariant occurs is 2(p” - p"-') for p odd and 2”-’ for p = 2. 

Proof of Lemma 5.9. Fix p > 2. For n = 1 the lemma merely states that 
(x,y, - ‘)e, = x,y, - ‘; this is clear since e, = d, . From now on we assume n > 1. We consider 
first the case Q’= 1. Suppose inductively we have shown the special case 

(X, _ , Y,-_, ,)e, _ , = X,_ , Y,-f , . Let 71,: V” +F, denote the coordinate projections. Then 
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-v~.v-‘P’(X,_ I Y;J,)e,, = - x-~~~-‘P’(X,_, Y;l,)J,,Fn (by (2.5) and inductive hypothesis) 

=-x, i c n,(a)a-‘P’C~?,-‘...~,-‘.. .y,-‘) 
,= I osv-0 

=-x, c ~~~,~_ou-‘;~,n,(u)P’Cil-‘...i,-’ . ..y.-‘) 

= -x, c a-‘P’(aY,-‘). 
eel”-0 

n-l 
Now API= X6?; @ 0; with l(kJ;), l(t?:) I n - 1. Hence P’(uY,,-‘) = E apkOk( Y,-‘) for 

k=O 

certain 8, independent of a, .with 8, = P’. We then have 

-xn c a -‘P’(uY,-‘) = 
llEV”-0 

= 

For the general case consider the equation 

n-l 
-X, 1 u-’ 

(IEv”-o 
k;O uPkek( yn - ‘> 

n-l 

-X,P’Y,-’ - xn c ekyn-‘(an&l) 
k=l 

P’(X,Y,-‘). (Using 5.10). 

(x,y,-‘e(x,_,y,-~,))A;,~~ = f e(x,y,-I), ed. (5.11) 

Then it is enough to show that if (5.11) holds for 8, then it holds for QJ if 0 2 i 5 n - 2 

(but with opposite sign). Since Qi is primitive, by applying Q, to both sides of 5.11 we are 
reduced to showing ((Q,x,y,-‘)0(X,,_, Y;_‘,))&Fn = 0. But in fact 

((Q,x,J~, -‘)e(x,_, Y;J,))A;, = t~v,p'-le(x,_, Y;J,))A;, = (a,,pz_, - a,_,,pd_,)e(Xn_, Y;_‘,) 
= 0. 

By (5.10). This completes the proof if p > 2. The proof for p = 2 is similar but easier if 
we use the elements Sq’. Then 

x, - ‘Sq’(X;Y,)e, = x, - ‘Sq’(X;$inTn = i c 7c,(u)u-‘Sq’(x,. . .i,-‘. .X”) 
I= I CIEW-0 

= ..:-ou - ‘Sq’(uX, ‘) = Sq’(X, - ‘) 

where W” is the vector space (x,. . . . , x”). This finishes the proof of the lemma, and the 
proof of.Theorem 5.8. 

Remark 5.12. Lemma (5.9) shows (X, Y,-‘) is fixed by e, (over any finite field E,). It 
follows that the Steinberg module can be described as the GL,[F, submodule of 
E[r,. . s,,] 0 E :p (_l., . . J.,) generated by X, Y,, - ‘. 

Remark 5.13. Theorem 5.8 determines the multiplicity of the Steinberg module in 
E[s,. . s,,] 0 Z p [i,,. . _I,,,]. Let .N.s. t) = Zu,,.r’t’ where a,, is the multiplicity of St in 
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‘q-q,. . . , .~,ln-,O~/pIv,, . . . , y,],. Then using (5.8) we obtain 

yj2 (1 + st2P’-2) 

f(S,t)=t-“~;” (St 2p”-i-2 + t2’P”-l) 
1. 

iG (1 - t2~-‘V 

Remark 5.14. Since B(C,)” s d,, . B(Z/p)“, and d, commutes with 0” and c,,, e, restricts 
naturally to a self-map of B(X,,)“. Hence M(n) is a stable summand of B&J”. 

Let L(n) = C-“$““(SO). We conclude this section by proving 

PROPOSITION 5.15. M(n) z L(n) v L(n - 1). 

Proof. By definition, there is a cofibration L(n)-+M(n)+L(n - l), with the resulting 
cohomology sequence short exact ($4). Hence it will be enough to produce a map h: 
M(n)+L(n) such that h* is an isomorphism onto (0’: c,,_, = 0). Let H be the composite 

A”XPP+A’ZP;“~&?S”, where &, is as in (5.2) (recall CPy z @So). By Theorem (5.1) 

and Remark 5.14, M(n) is a stable summand of A”EP;. From diagram (5.2) it is clear 
that a map h with the desired property is obtained by restricting H to M(n). 

$6. SPLITTING &I” H//p) AND BO(n) 

Regarding C, as the permutation group of the set ffp”, one obtains an embedding of the 

affine group Afln(F,) = GL,F, G Fp” in &. In particular this defines an inclusionj: F~“+& (as 

the group of translations) with Weyl group W,(Fpn) = GL,. Now the wreath product embeds 
ph/p c Z$, as a p-Sylow subgroup and factors j 

This embedding can be chosen so that A,& il YE/p = U,, g Fp,“, and Wlnzip( Ep”) = U,, . Similarly, 

s “Zp c Z, and Aff,flpE,, = B, c [Fp”; then Wy,p(F~n) = B,. Letting t: B f Z/p+B(Z/p)” de- 
note the transfer associated to j’ we then have the following easy consequence of the double 
coset formula (see [I I], Proposition 1.4). 

LEMMA 6.1. j’*t* = 0”. 

Proof of Theorem B. From the lemma and (2.6(b)), we see that tj’ restricts to an equiv- 

alence e;. B(L/p)“~e,, . B(Z/p)“. Hence Theorem B follows from Theorem A. 

Remark. Since e, and e: commute with d,, it follows that the summand M(n) of B p Z/p 
actually is a summand of B p X,. 

Proof of Theorem C. The inclusion of (H/2)” in O(n) as the diagonal matrices yields a map 

B(Z/2)“: BO(n) with fibre the flag manifold O(n)/(Z/2>“. Let t: BO(n)+ B(Z/2)” be the associ- 

ated Becker-Gottlieb transfer. 

LEMMA 6.2. i*t* = %,[18]. 
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As in the proof of Theorem B, it follows that ti restricts to an equivalence 
e,, . B(Z/2)“%ei. B(E/2)“. Hence Theorem C follows from Theorem A. 

57. SPLITTING BT’ AND B&I) 

In this section all spectra are completed atp. We begin by observing that CL,,(&) acts on 
T” = B(Z,)“, BT”, and hence diagonally on T: A BT; = (T” x BT”), . In mod-p co- 
homology 

H*(T” x BT”), =E[x,, . . . ,x,l@Z/~Lv,, . . . ,y,] 

wherex,=l@... 0 x @ . . . @I 1 EH’T” andy, = c,(rri) where K,: T*+S’ is the i-th projection 
map. This notation is chosen to agree with that of (3.1) since H*(T” x BT”), x H*(BZ/p); 

as GL,(lF,) modules. Here GL,(&,) acts via mod p reduction GL,(~~)+GL,(E,,). 
Since mod p reduction is surjective, we can choose &,E~~[GZ&,)] which projects to the 

Steinberg idempotent e,E F~[GL,(F&]; hence & defines a map 

t$: (T” + BT”)++(T” x ST”), 

which induces action by e, on H*(T” x BT”),. As explained in $3, & splits (T” x BT”),; 
however, we wish to split BT” at least up to suspension. Hence we define 

ihl 

I?“,: S” A ST’+ - T”, ABT& T; ABF, “I -S” ABT”, 

where iandp are inclusion and projection on the top cell. We shall see that En is an idempotent 
in cohomology and hence splits s” A BT”, . 

Dejinition. BP(n) = XV”(S” A BT’,). 

Proof of Theorem D. First we show that BP(n) has the correct cohomology. We proceed 
to consider some complex analogues of our previous constructions. Let q be the canonical line 
bundle over BS’ and write @P$, k EZ for the Thorn spectrum (BS’)b. Then A”CP, = BT: 
and we let P,, = H*(Tn A BT”),, S, = P,[1,- ‘1 where In is the product of all non-zero linear 
formsiny,,Y2,. . . ,y,.LetR,=H*(T; AA”@P?,)cS,andletMbetheP=A/(~)module 
generated by X, Y, - ’ where X, = x, . . . x,,, Y, = y, . . . y,. Then M. z C”(P/P fl G,) as in Prop. 
3.5. Further, R,e, = M, as in Theorem 5.8. Thus P,e,, = P,,Cl R,e,, = P,nM,, which has the 
required basis C”{ P’(X, Y,- ‘): Z admissible, Z(Z) = n} as in Prop. 3.5. 

It is now clear that & is an idempotent in cohomology since X, represents the top cell in S”. 
To see that BT” containsp8 copies of BP(n) we note that lifting orthogonal idempotents 

of lF,[Gt,(F,)] to Zp[GL,(~p)] results in self maps of (T” A BT”), which give orthogonal 
idempotents in cohomology. 

The proof that BU(n) splits is analogous to that of BO(n), Theorem C (6.1). One uses the 
fibration U(n)/T”+BT”+BU(n) and Becker-Gottlieb transfer. 
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