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CONJUGATION SPACES ARE COHOMOLOGICALLY PURE

WOLFGANG PITSCH, NICOLAS RICKA, AND JÉRÔME SCHERER

Abstract. Conjugation spaces are equipped with an involution such that the

fixed points have the same mod 2 cohomology (as a graded vector space, a ring,

and even an unstable algebra) but with all degrees divided by 2, generalizing the

classical examples of complex projective spaces under complex conjugation. Using

tools from stable equivariant homotopy theory we provide a characterization of

conjugation spaces in terms of purity. This conceptual viewpoint, compared to the

more computational original definition, allows us to recover all known structural

properties of conjugation spaces.

1. Introduction

Given a pointed space X with an involution, i.e. an action of C2, the cyclic group

of order 2, a classical way to understand X is by relating the cohomology of X , of its

fixed point space XC2, of the orbit space X/C2 and of the space of homotopy orbits,

or (reduced) Borel construction XhC2
= (EC2+ ∧X)/C2, where C2 acts diagonally

on EC2+ ∧ X (see for instance [2]). Here we assume that X has a chosen base

point, fixed by the involution τ . The space EC2 is a contractible space with a free

C2-action, and its quotient is the classifying space BC2, also known as the infinite

real projective space RP∞.

A conjugation space, as introduced by Hausmann, Holm, and Puppe in [12], is an

instance where this relationship is particularly well-behaved. Let us denote by H the

Eilenberg-MacLane spectrum representing ordinary cohomology with coefficients in

the field F of two elements. To emphasize the role of the spectrum in the definition

of cohomology, as this will be central later on, we will denote by H∗(X) the ordinary

reduced mod 2 cohomology group of X . The Borel cohomology H∗(XhC2
) comes

with two natural restriction morphisms :

• restriction to ordinary cohomology ρ : H∗(XhC2
) → H∗(X) induced by the

natural inclusion C2+ ∧X →֒ EC2+ ∧X .
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• restriction to the Borel cohomology of the fixed points

r : H∗(XhC2
) → H∗((XC2)hC2

).

Since C2 acts trivially on the fixed points XC2 , the Borel construction (XC2)hC2

is the smash product BC2+ ∧XC2, and the classical Künneth theorem tells us that

the Borel cohomology H∗((XC2)hC2
), as a graded ring, is isomorphic to H∗(XC2)[b],

a polynomial ring in one variable b of cohomological degree 1 with coefficients in

the ordinary cohomology of XC2. The original definition by Hausmann, Holm, and

Puppe reads now as follows when adapted to our pointed setup.

Definition 1.1. [12, Section 3.1] A conjugation space is a C2-space equipped with

an H∗-frame (κ0, σ), i.e.

a) an additive isomorphism κ0 : H
2∗(X) → H∗(XC2) dividing degrees by 2,

b) an additive section σ : H2∗(X) → H2∗(XhC2
) of the restriction map

ρ : H2∗(XhC2
) → H2∗(X),

which satisfy the conjugation equation:

r ◦ σ(x) = κ0(x)b
m + ltm

for all x ∈ H2m(X) and all m ∈ N, where ltm is a polynomial in the variable b of

degree strictly less than m.

The H∗-frame has many nice properties, as explained in the first sections of [12]:

(1) The morphisms κ0 and σ in an H∗-frame are ring homomorphisms.

(2) The H∗-frame is functorial for maps between conjugation spaces; in particu-

lar, if it exists, a frame is unique.

Even more is true. Let us expand the conjugation equation by explicitly labeling

its coefficients for x a cohomological class of degree 2m:

r ◦ σ(x) =
m∑

i=0

κi(x)b
m−i.

Franz and Puppe studied in [8] the behavior of the frame under the action the

Steenrod algebra. They obtained two formulas, first for any x ∈ H2m(X ;F) and

any ℓ ≥ 0, one has κ0(Sq
2ℓx) = Sqℓκ0(x). In the second they expressed the higher

classes κi(x) in terms of κ0(x) and Steenrod operations, namely κℓ(x) = Sqℓκ0(x),

see [8, Theorem 1.3].

This compatibility has many interesting properties, for instance it implies that for

a conjugation manifold M the non-equivariant cobordism class of M is determined

by that of its real locus MC2 . More precisely the Stiefel-Whitney classes of M and

of MC2 determine each other as investigated in [30, Theorem A.1].
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In this article we address the question whether a conjugation frame is purely al-

gebraic or if the maps κ0 and σ have some geometric meaning. Even if one can

construct “exotic” conjugation spaces, which we do in a separate paper [31], the

best known and most common examples of conjugation spaces are cellular, in the

sense that they arise from conjugation spheres, [12, Example 3.6], by attaching con-

jugation cells. The two-dimensional sphere S1+α is the one-point compactification of

the field of complex numbers C endowed with complex conjugation and higher, even

dimensional, conjugation spheres are obtained analogously from Cn. Conjugation

cells are simply unit balls in Cn and attaching maps are required to be equivari-

ant. Such cellular conjugation spaces are called spherical in [12, Section 5.2]. For

instance the classifying space BU with the complex conjugation is a spherical con-

jugation complex, and this allowed us to rather straightforwardly develop a theory

of equivariant Stiefel-Whitney classes for Real vector bundles, [30].

To understand how close arbitrary conjugation spaces are from being spherical,

we follow the guiding principle brought by the second author and recast the defini-

tion of conjugation spaces in the equivariant stable world. The main advantage of

this approach is that the various restriction maps, the halving isomorphism κ0, and

the section σ, are directly encoded in the graded Mackey functor structure of equi-

variant mod 2 cohomology. Our main references are Hill, Hopkins, and Ravenel’s

[15], Greenlees and May’s [11], and [27]. We work with the equivariant Eilenberg-

Mac Lane spectrum HF, associated to the Mackey functor F and whose associated

cohomology theory is called ordinary equivariant cohomology. Recall that for any

space X the smash product X ∧H splits as a wedge of Eilenberg-Mac Lane spectra,

[1, Lemma II.6.1]. Moving to the equivariant world, this is still the case for finite

C2-spaces as shown by C. May in [26]. We follow [15, Definition 4.56] and introduce

the notion of purity.

Definition 5.1. An equivariant space is homologically pure if there exist a set I,

natural numbers ni for any i ∈ I, and a weak equivalence of right HF-modules

X ∧HF ≃
∨

i∈I

Σni(1+α) HF .

The main result of the present work is a stable equivariant characterization of

conjugation spaces in terms of purity. We impose a mild finiteness condition: We

say that a space is of finite type if its ordinary mod 2 cohomology is finitely generated

in each degree.

Theorem 7.1. Let X be a C2-space of finite type. Then X is a conjugation space

if and only if it is homologically pure.
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In this definition there is no mention of the section σ, the degree halving isomor-

phism κ0 or the conjugation equation. We will show that both maps are in fact in-

duced by precise geometric maps in equivariant cohomology, which explains geomet-

rically the unicity in the conjugation frame. The compatibility of these maps with co-

homological operations in HF-cohomology that preserve the line {m(1+α | m ∈ Z)}

implies their compatibility with Steenrod squares. This provides a conceptual proof

of the Franz-Puppe result mentioned above. Following an indication by Lannes we

also show that for a conjugation space X , the Borel cohomology H∗(XhC2
) is func-

torially determined by H∗(XC2). Let us conclude this introduction by mentioning

Olbermann’s alternative definition of conjugation spaces in [29, Remark 2.4]. He

refers to this as a definition without a conjugation equation, as it does not refer

explicitly to the existence of an H∗-frame. Whereas his viewpoint is algebraic ours

is more geometric.

Here is a short outline of this paper. We recall in Section 2 some features of

equivariant spectra and equivariant cohomology theories. Here and in the next two

short sections we fix various notations, and present results about the geometric fixed

points, as well as Stong’s computation of the coefficients of C2-equivariant ordinary

cohomology. We present the stable equivariant background in some details because

the literature on conjugation spaces has been mostly written unstably up to now.

These first sections can be safely skipped by equivariant experts, but they will be

useful to other readers and save them the need to go through many references. Then

in Section 5 we show the first half of our result, namely that homologically pure

spaces of finite type are conjugation spaces. In Section 6 we prove the reverse impli-

cation for finite type conjugation spaces. Finally in Section 7 we use our definition

to exhibit some properties of conjugation spaces, we prove in particular the compat-

ibility of the conjugation frame with Steenrod operations and show that H∗(XhC2
)

and H∗(X) are related via the “derived functor of the destabilization functor” of

Lannes-Zarati [17]. The results of this last section depend on explicit computations

involving the equivariant Steenrod algebra which might be of independent interest

and are the subject of Appendix A.

Acknowledgments. During the years that lead to the present work, we where en-

couraged by a number of people. We specially thank J.-C. Hausmann and I. Ham-

bleton for their continued interest and support, J. Lannes for kindly pointing out to

us the relationship between conjugations spaces and his work on the derived functor

of the destabilization, and I. Patchkoria for enlightening discussions about geometric

fixed points and Steenrod operations.

We warmly thank the referee for pointing out several important issues and indi-

cating useful references, his remarks lead us to greatly improve the exposition.
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2. Equivariant spectra and cohomology

In all this work we will denote by C2 = {e, τ} the cyclic group of order two,

where e stands for the neutral element, and by F the field with two elements. By

convention a C2-space X is a topological space with a specific choice of an involution

given by the action of the generator τ . By analogy with the conjugation action on

the complex numbers, the subspace of fixed points XC2 will be called the real locus

of X .

We have tried to follow a coherent notation in this article. We have been helped

by Greenlees’s [9], even if the encounter of stable equivariant homotopy theory with

conjugation spaces sometimes lead us to make different choices.

2.1. Equivariant spectra. We take a stable approach to (ordinary) cohomology

since Brown Representability says precisely that a generalized cohomology theory is

represented by a spectrum, see [37, Theorem 9.27]. Identifying homotopy equivalent

spectra is then a natural step as they represent the same cohomology theory.

Let us denote by T the category of pointed topological spaces, by Sp the pointed

category of spectra. By construction the categories of topological spaces and of

spectra are related by a pair of adjoint functors:

Σ∞ : T ⇆ Sp : Ω∞.

Let us turn to the equivariant case. Everything will be stated for the group C2

but almost all the aspects we discuss here are true in a much larger generality, see for

instance the nice introduction by Greenlees and May to the subject in the Handbook

[10], the monograph on Tate cohomology by the same authors, [11], or the classical

[20].

Denote by C2T the category of pointed topological spaces endowed with a C2-

action, where the morphisms are the equivariant maps, and the weak equivalences

are the equivariant weak equivalences as defined in Definition 2.6. A new feature of

the equivariant category C2T is that there is more than one equivariant sphere in

each dimension with respect to which one may suspend.

Definition 2.1. Given any finite dimensional orthogonal representation V , the rep-

resentation sphere SV is the one point compactification of V . If Rn is a trivial

representation then we simply write Sn for SRn

.

By S(V ) we denote the unit sphere in V , endowed with the restriction of the

action of C2 on V .

The space SV is a sphere of dimension dimV , with a canonical base point, namely

the image of 0, which is fixed under the action of C2. For each such sphere and

any C2-space X we may consider the smash product SV ∧X with diagonal action.

Like in the non-equivariant case the passage from C2T to equivariant spectra C2Sp
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amounts to inverting all operations SV ∧ − : C2T → C2T . The categories of

equivariant pointed topological spaces and spectra are again related by a pair of

adjoint functors:

Σ∞
C2

: T ⇄ Sp : Ω∞
C2
.

In the development of stable homotopy theory much effort has been put in pro-

viding structured models for the homotopy category of spectra. The symmetric

monoidal closed structure on spaces (either equivariant or non-equivariant) induces

a symmetric monoidal closed structure on the chosen categorical model for equivari-

ant spectra (see [23, 24]). Whenever explicitly needed we will use in this work the

model of orthogonal spectra, see [35, Definition III.1.7].

Definition 2.2. We denote by ∧ and FC2
(−,−) the monoidal product and the

equivariant function spectrum respectively. For non-equivariant spectra, we denote

simply by F (−,−) the function spectrum.

Since ∧ endows the stable category with a symmetric closed monoidal product,

it makes sense to talk about ring objects, i.e. spectra R with a multiplication

R ∧R → R making the usual diagrams commute, and (right) R-module spectra M

endowed with an action M ∧ R → M . Observe in particular that for any spectrum

M the multiplication in R gives M ∧R a canonical R-module structure.

Definition 2.3. Let E be a ring spectrum. We denote by E-mod the category

of (right) E-modules. If E is commutative, the smash product of spectra induces a

symmetric monoidal closed structure on E-mod. We denote by ∧E and FE-mod(−,−)

the corresponding tensor product and internal hom respectively.

There are two functors that help us to relate the equivariant stable homotopy

category with the standard one. We have first the restriction functor we get by

forgetting the action:

C2Sp −→ Sp

X 7−→ Xu

and the trivial action functor which allows us to include ordinary spectra into equi-

variant ones:
Sp −→ C2Sp

X 7−→ ιX

Both functors induce triangulated functors on the homotopy category and preserve

the smash product, i.e. they are strongly monoidal. They also preserve compact

objects and products, [20, Section II.4]. As a consequence, see [20], or the derived

and very general viewpoint [4, Theorem 1.7], both functors are part of a series of

adjunctions. Most notably, we have a first series of adjunctions:

(2.4) C2+ ∧ − ⊣ (−)u ⊣ F (C2+,−).
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The leftmost adjoint is the free action functor:

Sp −→ C2Sp
X 7−→ C2+ ∧X

where the action is induced by the left action on C2+, and the right adjoint:

Sp −→ C2Sp

X 7−→ F (C2+, X)

is given by the function spectrum on which C2 acts on the left through its right

action on itself, [20, Section II.4].

The functor ι also admits both left and right adjoints. That the right adjoint

(2.5) ι ⊣ (−)C2 .

can be identified with a fixed-point functor is a result of Lewis [21]. The left adjoint

can not be identified with taking the orbits in general, as is the case for spaces. It

is the case in some very specific situations, see [22, Chapter II]. We will need this in

one such circumstance, and come to this at the appropriate time.

One of the subtleties in the theory is the interaction of these functors with the

monoidal structure. Most notably the fixed points functor and the equivariant sus-

pension Σ∞
C2

do not commute, even for the sphere by tom Dieck’s splitting Theorem

(see the original reference [39, Satz 2], or [22, Section V]). The introduction of the

geometric fixed points, see Definition 3.4 below, is useful to tackle this issue.

2.2. Mackey-valued cohomology. Given an ordinary spectrum E we denote the

associated cohomology and homology theories evaluated at a spectrum X by

E∗(X) = [S−∗ ∧X,E] and E∗(X) = [S∗, X ∧ E]

where ∗ ∈ Z, and [−,−] denotes stable homotopy classes of maps. If X is a space

we will freely confuse it with its suspension spectrum Σ∞X if this is clear from the

context.

There is a conceptual explanation stemming from the structure of the homotopy

category hSp as to why ordinary cohomology takes value in abelian groups and

this is related to the t-structure arising from the notion of connectivity. Denote by

hSp≥0 the subclass of connective spectra, i.e. such that πn(X) = 0 for n < 0, and by

hSp≤−1 the co-connective spectra. Then the heart of this structure hSp≥0∩ΣhSp≤−1

is isomorphic to the category of abelian groups. The spectrum corresponding to the

abelian group A is the Eilenberg-MacLane spectrum HA, characterized by the fact

that:

πn(HA) =

{
A if n = 0,

0 if n 6= 0.

The same construction holds true in essence when taking into account a C2-action.
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Definition 2.6. [20, Definition I.4.4] A map f : X → Y ∈ C2Sp is a weak equiva-

lence in C2Sp if for any n ∈ Z the morphisms

(1) πC2

n (f) : πC2

n (X) = [Sn, X ]C2 → [Sn, Y ]C2 = πC2

n (Y ), and

(2) πen(f) : π
e
n(X) = [C2+ ∧ Sn, X ]C2 → [C2+ ∧ Sn, Y ]C2 = πen(Y ),

are both isomorphisms, where [−,−]C2 indicates homotopy classes of equivariant

maps.

For each n the functors πC2

n and πen are part of a richer structure, namely a

Mackey functor πn, which we will introduce below in Subsection 2.3. Notice that

πC2

n (X) ∼= πnX
C2 since the sphere Sn is endowed with the trivial action, see (2.5),

and πen(X) ∼= πnX
u by the free-forgetful adjunction (2.4). As in the non-equivariant

case, define an equivariant spectrum to be k-connected if, for any n ≥ k, we have

πn(X) = 0, and k-coconnected if for any n ≤ k, we have πn(X) = 0. Then, exactly

as for ordinary spectra, one can identify the heart of the associated t-structure, see

[20, Proposition I.7.14].

Proposition 2.7. The heart of the t-structure determined by the classes of con-

nective C2hSp≥0 and coconnective C2hSp≤−1 spectra is isomorphic to the abelian

category of Mackey functors M.

In particular we have an Eilenberg-Mac Lane functor H: M → C2hSp, taking

an abelian group valued Mackey functor to an equivariant spectrum. Let us now

explain briefly what Mackey functors are.

2.3. Mackey functors. The theory of Mackey functors is very rich and we refer

the interested reader for instance to [38]; here we will only recall the specifics of

Mackey functors for the cyclic group C2; this simpler description is extracted from

the “elementary approach” given by Ferland and Lewis [7, Section 1.1]. Consider

the additive category O, whose objects consists in the two transitive C2-sets, namely

C2/C2 = pt, and C2/e = C2.

The abelian groups of morphisms are generated by the identities, a transfer map

tr : C2 → pt, a restriction morphism ρ : pt → C2, and θ : C2 → θ, pictured as

follows, in what one can call a Lewis diagram:

pt

ρ

��
C2

tr

FF

θ
VV

The map θ is given by the transitive action. They are subject to the following

relations:

(1) tr θ = tr,
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(2) θρ = ρ,

(3) θ2 = Id,

(4) ρ tr = 1 + θ.

Definition 2.8. A Mackey functor (for the cyclic group C2) is an additive functor

M : O → Ab with values in the category of abelian groups.

Note that because of (3), the groupM(C2) is aC2-module, and (1) and (2) express

the fact that ρ and tr are C2-equivariant, where M(pt) has a trivial action. Finally,

from (4) we recover from the restriction and transfer the action of C2 on M(C2)

since θ is given by the map ρ tr−1. For this reason we omit the action of the map

θ in the description of the Mackey functors in Section 4 hereafter.

Example 2.9. The equivariant homotopy groups we have introduced above form a

Mackey functor πn. Explicitly, (πn)pt(X) = πC2

n (X) = [Sn, X ]C2 and (πn)C2
(X) =

πen(X) = [Sn, Xu]. The restriction morphism is given by forgetting the C2-action.

This integral grading can be extended to an RO(C2)-grading by setting πC2

V (X) =

[SV , X ]C2 and πeV (X) = [SdimV , Xu] for any V ∈ RO(C2).

Convention 2.10. (1) We will denote by 1 the trivial representation and by α

the sign representation of C2. These two representations freely generate the

representation ring RO(C2) as an abelian group.

(2) Given an element n+mα ∈ RO(C2), its dimension is the integer n+m.

(3) In general an RO(C2)-grading of an object will be emphasized by ⋆ and

an integral grading by ∗. For any homogeneous element x, its degree will be

denoted by |x|, similarly for n+mα ∈ RO(C2), its dimension will be denoted

by |n+mα|.

Definition 2.11. Given a spectrum E ∈ C2Sp, the associated E-cohomology theory

it represents is denoted E and given as follows: for X ∈ C2Sp, ⋆ ∈ RO(C2)

(1) E⋆
pt(X) = [S−⋆ ∧X,E]C2 , and

(2) E⋆
C2
(X) = [S−⋆ ∧X ∧C2+, E]

C2 = [S−|⋆| ∧X,Eu].

From now on we will denote simply E⋆(−) = E⋆
pt(−).

3. Geometric fixed points

A basic tool in equivariant homotopy theory is the “isotropy separation sequence”,

[15, (2.44)], which we review first. The rest of the section is then devoted to geometric

fixed points and a-periodicity.
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3.1. Isotropy separation sequence. For each n ∈ N we have a morphism of

cofiber sequences in C2T , see Definition 2.1 for the notation we use for spheres:

(3.1) S(nα)+

��

// S0 // Snα

��

S((n+ 1)α)+ // S0 // S(n+1)α

The action on S0 is trivial and vertical colimits fit into a cofiber sequence:

EC2+ → S0 −→ ẼC2

Remark 3.2. The spaces ẼC2 and EC2 are characterized by the following universal

properties:

(EC2)
u ≃ pt, ECC2

2 = ∅ and ẼC2

u

≃ pt, ẼC2

C2

= S0.

In particular this characterization implies that ẼC2 ∧ ẼC2 ≃ ẼC2 and we can use

the equivalence to define a multiplication turning ẼC2 into a ring spectrum.

By smashing the above cofiber sequence with a space X ∈ C2T , we obtain a new

cofibration sequence.

Lemma 3.3. For any C2-space X there is a cofibration sequence

EC2+ ∧X → X −→ ẼC2 ∧X

and for any map f : X → Y in C2T , the map obtained by forgetting the action

fu : Xu → Y u is a weak equivalence in T if and only if EC2+∧f is a weak equivalence

in C2T . �

Pushing the cofiber sequence given by the previous lemma in C2Sp we get the

isotropy separation sequence. For any X ∈ C2Sp there is a cofiber sequence:

EC2+ ∧X → X −→ ẼC2 ∧X

The isotropy separation sequence in C2Sp has the key property that it separates

a space into a free part and a singular part, this is the slogan in [10, page 2]. Indeed,

since after forgetting the C2-action EC2 is contractible, and the forgetful functor

sends cofiber sequences to cofiber sequences, for any X ∈ C2Sp, (ẼC2 ∧ X)u is

contractible, and given any morphism f : ẼC2 ∧ X → Y in C2Sp, f is a weak

equivalence if and only if fC2 : (ẼC2 ∧X)C2 → Y C2 is a weak equivalence in Sp.

3.2. Geometric Fixed points. The fixed-points functor is not monoidal on spec-

tra, but there is a better behaved related functor, namely the so-called geometric

fixed point functor, see [15, Subsection 2.5.2].
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Definition 3.4. The geometric fixed points functor ΦC2 : C2Sp −→ Sp is given by

ΦC2(X) = (ẼC2 ∧X)C2.

The associated derived functor ΦC2 : hC2Sp −→ hSp is abusively denoted by the

same symbol and this is the one we will systematically use in this article. It enjoys

many nice properties.

Proposition 3.5. The functor ΦC2 has the following properties:

(1) ΦC2 sends weak equivalences to weak equivalences and commutes with filtered

colimits.

(2) A map f : X → Y in C2Sp is a weak equivalence if and only if ΦC2(f) and

fu are weak equivalences.

(3) For any X ∈ C2T we have ΦC2(Σ∞
C2
X) ≃ Σ∞(XC2).

(4) For any X, Y ∈ Sp we have ΦC2(X ∧ Y ) ≃ ΦC2(X) ∧ ΦC2(Y ).

Proof. Properties (1), (3), (4) are directly taken from [15, (Proposition 2.45)]. The

characterization of weak equivalences is a consequence of [15, (Remark 2.46)]. �

3.3. Periodic modules. The inclusion of fixed points gives a map S0 → Sα into

the sign representation sphere, hence an element a ∈ π0(S
α). The name of this map

is aα in [15, Definition 3.11] or aσ in [14].

This element is killed by the map (1+θ), which corresponds to the element [C2] in

A(C2) ∼= πC2

0 (S0) under the isomorphism obtained by Segal, [36], a particular case

of the tom Dieck splitting, [40, Satz 2]. Indeed we know that this action is given by

tr ρ− 1 (see 2.3). The equality (1 + θ)a = 0 now follows from the commutativity of

the diagram

S0

t

��

1+θ

!!❈
❈

❈

❈

❈

❈

❈

❈

❈

C2+

ρ
// S0 a // Sα

where the bottom row is a cofiber sequence.

Smashing the map a : S0 → Sα with any equivariant spectrum gives us a map

E → Sα ∧ E.

Definition 3.6. A spectrum E is a-periodic if and only if the map a∧E : E → Sα∧E

is a weak equivalence.

Remark 3.7. The class of a-periodic spectra appears in the literature in different

forms. For instance, it corresponds to spectra which are local with respect to the

trivial subgroup in the sense of [25, Section 6].

The cohomology of an a-periodic spectrum is then also a-periodic, in the sense

that the action of a on the cohomology, decreasing the RO(C2)-bidegree by α, is an
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isomorphism. By construction, the prototypical example of an a-periodic spectrum is

ẼC2; and indeed it is the source of all a-periodic spectra as the next two propositions

show:

Proposition 3.8. The spectrum ẼC2 is a-periodic, and as a consequence for any

X ∈ C2Sp, both ẼC2 ∧ X and the functional spectrum FC2
(ẼC2, X) are also a-

periodic.

Proof. The first statement follows from the description of ẼC2 as a colimit and the

second from the first. To prove the third observe that Sα is a finiteC2-CW-spectrum,

hence strongly dualizable by [27, Theorem XVI.7.4], and its dual is S−α. Therefore

the duality map is an equivalence and we have

Sα ∧ FC2
((ẼC2, X) ≃ FC2

(DSα, FC2
(ẼC2, X)) ≃ FC2

(S−α ∧ ẼC2, X)

where we used [27, Corollary XVI.7.5] for the first equivalence and the second is by

adjunction. �

Proposition 3.9. Let E ∈ C2Sp. Then the following are equivalent:

(i) E is a-periodic.

(ii) The canonical map coming from the isotropy separation sequence E → ẼC2∧E

is an equivalence.

(iii) The underlying non-equivariant spectrum Eu is contractible.

(iv) Multiplication by a is an isomorphism on the RO(C2)-graded abelian group

πC2

⋆ (E).

Proof. The equivalence (i) ⇔ (ii) is an immediate consequence of the description of

ẼC2 as a homotopy colimit:

S0 a
−→ Sα

a
−→ S2α → · · · → Snα

a
−→ S(n+1)α → · · ·

To prove (ii) ⇔ (iii), observe that if E → ẼC2 ∧ E is an equivalence, then, as

(ẼC2∧E)
u is contractible, see Remark 3.2, so isEu. Conversely we want to show that

E → ẼC2∧E is an equivalence. By assumption Eu → (ẼC2∧E)
u is an equivalence,

and since S0∧ ẼC2
∼
→ ẼC2∧ ẼC2, we certainly have ΦC2(E) ≃ ΦC2(ẼC2∧E). We

conclude by Proposition 3.5 (2).

Finally, condition (iii) is equivalent to (i) which implies (iv), since a weak equiv-

alence induces an isomorphism of homotopy groups. Conversely, if (iv) holds, apply

the functor [−, E] to the cofiber sequence ΣnC2+ → Sn → Sn+α from (3.1) where

the unit sphere S(α) has been identified with C2. This yields a long exact sequence

· · ·
a
→ πC2

n (E) → πen(E) → πC2

n−1+α(E)
a
→ · · · .

Consequently, (iv) implies that πen(E) = 0 for all n. �
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We have seen in Remark 3.2 that, by construction, ẼC2 is a ring spectrum and we

can consider the category of ẼC2-modules. The following corollary of Proposition 3.9

gives an interpretation of the a-periodization in these terms.

Corollary 3.10. The full subcategory C2Sp[a
−1] of a-periodic C2-equivariant spectra

is equivalent to that of ẼC2-modules. The a-periodization functor, left adjoint to the

forgetful functor, is given by smashing with ẼC2.

Proof. An a-periodic spectrum is an ẼC2-module up to homotopy by Proposi-

tion 3.9 (ii). The adjunction we are studying here is thus simply the free-forgetful

adjunction S0 −mod ⇄ ẼC2 −mod. �

We have an equivalence (ẼC2 ∧X)∧HF ≃ ẼC2 ∧ (X ∧HF) for any spectrum X

by associativity of the smash product. In other words:

Lemma 3.11. The a-periodization functor commutes with the free (right) HF-

module functor. �

4. The structure of HF

In this article we work with ordinary equivariant cohomology with constant co-

efficients F, which means that we will use as our cohomology-defining spectrum

the Eilenberg- Mac Lane spectrum HF, where F is the Mackey functor with Lewis

diagram:

F

=
��

F

0

DD

We record in this section some of its most relevant properties for the present work

for future reference and completeness. The proofs are classical.

Proposition 4.1. (1) There are weak equivalences (HF)C2 ≃ H and (HF)u ≃ H.

(2) There is a unique map HF∧HF → HF giving HF the structure of a com-

mutative ring spectrum.

We prepare now for the computation of the coefficients HF⋆, the RO(C2)-graded

value of the Mackey functor at the trivial orbit pt, evaluated on S0. Together with

the Euler class a introduced in Section 3.3, the orientation class will help us organize

the data.

Definition 4.2. The orientation class is the only non-trivial element u ∈ HFα−1 =

[S1−α,HF]C2 ∼= F.

The orientation class is the mod 2 analog of the class called uα in [15, Defini-

tion 3.12], where it is constructed at the level of equivariant cellular chains.
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Let us now recall some known facts about the algebraic structure of the ring HF⋆

and the Mackey functor HF⋆. The first proposition highlights the role played by the

two classes a and u for the structure of the ring HF⋆. From now on, we identify

the element a with the element also denoted by a in HF−α that corresponds to the

composite S0 → HF ≃ S0 ∧ HF
a∧HF

−−−→ Sα ∧ HF. There is also a more geometric

approach in [14]. Recall that if R is a commutative ring and M an R-module the

square-zero extension of R by M is the ring whose underlying R-module is M ⊕ R

with ring structure given by (m, r) · (n, s) = (rn+ sm, rs).

Proposition 4.3. [16, Proposition 6.2] The ring HF⋆ has the structure of a square-

zero extension of the polynomial ring F[a, u] by its module M = u−2F[a−1, u−1].

Proposition 4.3 gives the structure of the ring HF⋆
pt
. To identify the Mackey

functor restriction for HF we use the free-forgetful adjunction (2.4).

Lemma 4.4. The restriction ρ : HF⋆

pt
(X) → HF⋆

C2

(X) coincides with the morphism

induced by forgetting the action HF⋆(X) → HF|⋆|(Xu). As a ring HF⋆
C2

(X) ∼=

HF∗(Xu)[u±1].

Proof. By definition HF⋆

C2

(X) = [S−⋆ ∧ X ∧ C2+,HF]
C2 . Since the shearing map

S−⋆ ∧X ∧C2+ → (S−⋆ ∧X)u ∧C2+ is an equivariant weak equivalence, we can use

the above mentioned adjunction and Proposition 4.1(1) to identify

HF⋆

C2

(X) ∼= [(S−⋆ ∧X)u ∧C2+,HF]
C2 ∼= [(S−⋆ ∧X)u,H]

The ring structure comes for free since u lives in degree 1− α and the map induced

by u after forgetting the action is non-trivial, hence represented by the only available

unit map S0 → H. �

Except for the more modern notation F, we use the same symbols as in [7] for the

four Mackey functors that will appear in the next proposition:

Functor symbol • F L L−

Lewis diagram F





F

=




F

0




0




0

II

F

II

F

=

II

F

II

This computation appears there in homology as [7, Proposition 1.7 (b)], see also

Lewis’ [18, Theorem 2.1], where he attributes this to unpublished work of Stong.

Proposition 4.5. The RO(C2)-graded Mackey functor HF⋆ is represented in Fig-

ure 1. A vertical line represents the product with the Euler class a : S0 →֒ Sα, which
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increases degree by α. This product induces one of the following Mackey functor

maps:

- the identity between • functors,

- the unique non-trivial morphism F → •,

- the unique non-trivial morphism • →֒ L.

−10 −8 −6 −4 −2 2 4 6 8

−10

−8

−6

−4

−2

2

4

6

8

0
F

L
L
L
L
L
L
L
L
L

F

F

F

F

F

F

F

F

F

F

F

F

1

α

Figure 1. Structure of HF⋆

Observe in particular that at each RO(C2)-degree, the ring HF⋆ is at most one

dimensional over F, therefore this ring admits a unique homogeneous basis h⋆, as

an RO(C2)-graded vector space, with |h⋆| = ⋆. In terms of the preferred elements

a and u, we have h−n+(n+k)α = akun. If X is a space, or a spectrum, with trivial

action, then the non-equivariant Z-graded cohomology ring HF∗(X) is a subring of

HF⋆(X). The following proposition explains how this subring, together with the

coefficients HF⋆, determines the full RO(C2)-graded cohomology ring HF⋆(X), and

even more for any equivariant spectrum it determines HF⋆(Y ∧X) as a function of

HF⋆(Y ).
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Proposition 4.6. Let X be a C2-space with trivial action and Y be any C2-spectrum.

There is an isomorphism

HF⋆(Y )⊗F H∗(X) ∼= HF⋆(Y ∧X).

Proof. Since theC2-spaceX has a trivial action, all maps ΣnX → HF factor through

the fixed points of the spectrum HF, giving cohomology classes [ΣnX,H], see (2.5).

Thus, we have an isomorphism

H∗(X) → HF∗+0α(X),

where HF∗+0α(X) denotes the graded abelian subgroup of HF⋆(X) consisting in

classes whose degree is a multiple of the trivial representation.

The smash product of maps and the pairing from Proposition 4.1(2), gives a

comparison morphism

HF⋆(Y )⊗F H∗(X) → HF⋆+∗(Y ∧X).

Fixing the virtual representation ⋆ and the spectrum Y this is a natural transforma-

tion between cohomology theories on spaces. For x = S0, it is clearly the identity on

HF⋆(Y ) and we conclude that this is an isomorphism for any X from the Eilenberg-

Steenrod axioms. �

When X is a finite C2-space, one could alternatively prove the statement using the

dual Künneth spectral sequence [19, Theorem 1.6] studied by Lewis and Mandell.

Here is an example of a computation with the geometric fixed points functor; it

is certainly a folklore result but since we need it explicitly we provide a complete

proof, which is a mod 2 analog of the proof of [15, Proposition 3.18]. This splitting

also appears in Behrens and Wilson’s [5, Section 2].

Proposition 4.7. There is an H-linear splitting of the geometric fixed points of the

Eilenberg-Mac Lane spectrum HF:

H[b] := ΦC2(HF) ≃
∨

k∈N

Sk ∧H.

Proof. Proposition 4.1(1) identifies the fixed points of HF as ιH and we choose a

cellular model to make sure that ΦC2(ιH) ≃ H by [15, Proposition B.182]. The

inclusion of fixed points ιH → HF can then be seen as a map of (right) ιH-modules,

hence becomes after applying ΦC2 a map of H-modules.

Robinson, [33], proved that H-modules split as products of Eilenberg-Mac Lane

spectra. It is thus enough to compute the homotopy groups π∗(Φ
C2(HF)) to identify

the homotopy type of ΦC2(HF). Let k be an integer. We use first the adjunction(2.5),

πk(Φ
C2(HF)) = [Sk, (ẼC2∧HF)

C2] ∼= [ιSk, ẼC2∧HF]
C2 = [ιSk, colimn S

nα∧HF]C2 .
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We then pull out the colimit by compactness and get

colimn[ιS
k, Snα ∧HF]C2 ∼= colimi[S

k−(k+i)α,HF]C2 ∼= F{bk} ∼= F for k ≥ 0,

where we observe that all morphisms in the colimit are isomorphisms for i ≥ 0 and

the last identification follows from the computation of HF⋆ in Proposition 4.5. The

meaning of the symbol bk is explained in the next remark. �

Remark 4.8. A more complete computation, as carried out in [5, Section 2] for

instance, shows that

πC2

⋆ (ΦC2(HF)) ∼= F[a±1, u].

In integral degree we have thus π∗(Φ
C2(HF)) ∼= F[a−1u], and here the degree is

homological, hence a−1u has degree one. The element bk in our proof stands for

(a−1u)k, and is, as expected, a polynomial generator.

We record also from the above computation and for future use that, for any i ≥ 0,

the class h(k+i)α−k = aiuk ∈ HF−k+(k+i)α corresponds to the summand in degree k in

the wedge decomposition ΦC2(HF) ≃
∨
k∈N S

k∧H in the sense that when we consider

aiuk as a map Sk−(k+i)α → HF, the geometric fixed points ΦC2(aiuk) : Sk → H[b] is

the non-trivial map that picks up the component in degree k.

5. Homologically pure equivariant spaces

Inspired by the definition of purity given by Hill, Hopkins, and Ravenel in [15,

Definition 4.56], we define homologically pure C2-equivariant spaces in this section

and proceed to show that they are conjugation spaces. This means that we have to

explain how to construct a conjugation frame out of the equivariant data at hand.

5.1. Definition and basic properties. Recall that a space X is of finite type if

its cohomology H∗(X) is of finite type.

Definition 5.1. An equivariant space is homologically pure if there exist a set I,

natural numbers ni for any i ∈ I, and a weak equivalence of HF-modules

X ∧HF ≃
∨

i∈I

Σni(1+α) HF .

We say moreover that X is of finite type if the set {i ∈ I | ni = n} is finite for each

natural number n.

In other words X ∧HF splits as a wedge of pure slices, and if of finite type, there

are finitely many in each degree. For a more thorough discussion of freeness and

finite type see [14, Definition 2.27]. Observe that a homologically pure space is a

space such that the free HF-module it generates is built out of conjugation spheres.
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Example 5.2. Spherical conjugation spaces as introduced in [12, Section 5.2] are

examples of pure spaces. Indeed, if X is a spherical conjugation space, one can

consider the spectral sequence associated with the cellular decomposition of X , that

is the skeletal filtration, which computes equivariant homology. This is the spectral

sequence considered in [16, 2.24]. It collapses for degree reasons, since the homol-

ogy of a point is zero in the quadrant n + mα, for n,m > 0, see Proposition 4.5.

Consequently, (X ∧ HF)⋆ is free over HF⋆, and the classical argument from [1,

Lemma II.11.1] shows that the spectrum X ∧HF splits as a wedge of suspensions of

HF by multiples of the regular representation.

Alternatively, when X is finite, one could use first the very general splitting re-

sult [26, Theorem 6.13] and identify afterwards the bidegrees of the corresponding

representation spheres.

Let us first list basic properties of homologically pure spaces.

Lemma 5.3. Let X be a homologically pure space of finite type, with X ∧ HF ≃∨
i∈I Σ

ni(1+α) HF. Then

(1) for any ⋆ ∈ RO(C2) we have an equivalence of function spectra:

FC2
(S−⋆ ∧X,HF) ≃

∨

i∈I

FC2
(S−⋆+ni(1+α),HF)

(2) the ordinary mod 2 cohomology of the space Xu is concentrated in even de-

grees 2ni;

(3) we have an isomorphism HF⋆(X) ∼=
⊕

i∈I HF
⋆{xi}, where |xi| = ni(1 + α);

(4) the restriction map in the Mackey functor structure induces an isomorphism

HF∗(1+α)(X) → H2∗(Xu).

Proof. (1) Since X is homologically pure and HF is a ring spectrum, we use first the

free-forgetful adjunction:

FC2
(S−⋆∧X,HF) ≃ FHF−mod(Σ

−⋆HF∧X,HF) ≃ FHF−mod(
∨

i∈I

S−⋆+ni(1+α)∧HF,HF)

We go back via the free-forgetful adjunction and get:

FC2
(
∨

i∈I

S−⋆+ni(1+α),HF) ≃
∏

i∈I

FC2
(S−⋆+ni(1+α),HF)

The finite type assumption finally allows us to identify the product with a wedge∨
i∈I FC2

(S−⋆+ni(1+α),HF) since the homotopy groups of the summands are non-

trivial only for finitely many of them in any given bidegree.

(2) The forgetful functor is monoidal, therefore the splitting of a homologically

pure space yields in particular a splitting Xu ∧ H ≃
∨
i∈I Σ

2niH. In particular the

ordinary homology, and hence the cohomology are concentrated in even degrees 2ni.

(3) Follows from (1) since HF⋆(X) ∼= π−⋆FC2
(X,HF).
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(4) Restriction is given by forgetting the action as we have seen in Lemma 4.4 and

the splitting used in (2) yields a commutative diagram

HF⋆(X)
∼ //

ρ

��

⊕
i∈I HF

⋆(Sni(1+α))

ρ

��

H|⋆|(Xu)
∼ //

⊕
i∈I H

|⋆|(S2ni).

Let us concentrate on degrees of the form ni(1 + α). The top right part is a direct

sum of copies of HFni(1+α)(Sni(1+α)) ∼= HF0(S0) ∼= F and the bottom right part is

H2ni(S2ni) ∼= H0(S0) ∼= F. The vertical arrow is the restriction and is an isomorphism

by definition of the Mackey functor F. �

Let us stress that the key structural property of conjugation spaces is (4). As we

will see, the section σ and the various maps κi are defined for any C2-space, with the

caveat that their natural source is an equivariant cohomology group HFn(α+1)(X)

and not ordinary cohomology. It is only through the isomorphism (4) that these

maps descend to H2∗(Xu).

5.2. The degree halving isomorphism of a homologically pure space. The

first ingredient in a cohomology frame is the degree halving isomorphism κ0 between

the cohomology of the C2-equivariant space and that of the fixed points. It is

convenient to define first a global map κT , where the letter T stands for “total”,

that encodes the conjugation equation. The halving isomorphism κ0 appearing in

Definition 1.1 will be recovered from κT .

Definition 5.4. Let X be a C2-space. Then the inclusion of fixed points XC2 → X

induces κT : HF∗(1+α)(X) −→ HF∗(1+α)(XC2).

If X is homologically pure, we can precompose this map by the isomorphism from

Lemma 5.3 (4) to obtain a map we denote still by κT :

H2∗(Xu)
ρ−1

−−→ HF∗(1+α)(X)
κT−→ HF∗(1+α)(XC2).

Remember from Proposition 4.6 that HF⋆(XC2) ∼= HF⋆⊗H∗(XC2). In particular, if

we start with a class x ∈ HFn(1+α)(X), we obtain from the structure of the coefficient

ring HF⋆ a decomposition of κT (x) as
∑n

i=0 a
n−iui⊗κei (x). Recall that a

n−iui belongs

to HFnα−i.

Definition 5.5. Let X be a C2-space and x ∈ HFn(1+α)(X). Then the equivariant

κ-classes are the elements κei (x) ∈ Hn+i(XC2).

Before we show that the degree halving isomorphism κ0 can be chosen to be κe0
we need a small lemma:
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Lemma 5.6. Let X be any C2-space, then the inclusion of fixed points XC2 → X

induces an equivalence of equivariant spectra

ẼC2 ∧ Σ∞(XC2) → ẼC2 ∧ Σ∞
C2
X.

Proof. Observe firstly that the underlying non-equivariant spectra on both sides are

contractible by Remark 3.2. Secondly, taking fixed points on both sides coincides

by definition with taking geometric fixed points of Σ∞(XC2) and Σ∞
C2
X respectively.

We conclude by Proposition 3.5 (4) that they agree with Σ∞(XC2). �

For any C2-space X denote by κ the following composite map, where in step 3

and 5 we use the tensor-hom adjunction for modules over the ring spectrum ẼC2,

see Remark 3.2 and the first map is induced by S0 → ẼC2:

HFn(1+α)(X) = [S−n(1+α) ∧X,HF]C2

→ [S−n(1+α) ∧X, ẼC2 ∧ HF]C2

∼= [ẼC2 ∧ S
−n(1+α) ∧X, ẼC2 ∧ HF]C2

∼= [ẼC2 ∧ (S−n(1+α) ∧X)C2, ẼC2 ∧HF]C2

by Lemma 5.6

∼= [ι(S−n(1+α) ∧X)C2, ẼC2 ∧ HF]C2

∼= [(S−n(1+α) ∧X)C2, (ẼC2 ∧HF)C2]

by the ι ⊣ (−)C2 adjunction

∼= [S−n ∧XC2, (ẼC2 ∧ HF)C2 ]

∼= [S−n ∧XC2,
∨

k∈N

Sk ∧H]

by Proposition 4.7, and then, as
∨
k∈N S

k →֒
∏

k∈N S
k is an equivalence

∼= [S−n ∧XC2,
∏

k∈N

Sk ∧H]

∼=
∏

k∈N

[S−n ∧XC2 , Sk ∧H] ։ Hn(XC2)

where we finally project on the factor k = 0. To sum up, the map κ consists in rep-

resenting a cohomology class whose degree is a multiple of the regular representation

by a map S−n(1+α)∧X → HF and taking then its geometric fixed points. Since X is

a space, ΦC2(S−n(1+α) ∧X) ≃ S−n ∧XC2 and the splitting of ΦC2 HF into a wedge

of suspended copies of H allows us to project onto one factor, the zeroth one in this

case. More generally:
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Lemma 5.7. Let pri :
∨
b∈N S

b∧H → Si∧H denote the projection on the i-th wedge

summand. For any x ∈ HFn(1+α)(X), the cohomology class κei (x) ∈ Hn+i(XC2)

coincides with pri ◦ Φ
C2(x). In particular the maps κe0 and κ above coincide.

Proof. If we represent x by a map S−n(1+α) ∧ X → HF, then κT (x) is obtained by

precomposing with the fixed point inclusion XC2 →֒ X . We have already seen that

this map decomposes as a sum of products of classes κei (x) ∈ Hn+i(XC2) with an−iui.

In other words κT (x) can be written as a sum of classes of maps

S−n(1+α) ∧XC2 ≃ Si−nα ∧ S−n−i ∧XC2

an−iui∧κei (x) // HF∧H
µ

// HF

We apply now geometric fixed points. Since ΦC2 is additive and monoidal, and from

Lemma 5.6, we get a sum of maps

S−n ∧XC2 ≃ Si ∧ S−n−i ∧XC2

bi∧κei (x) // H[b] ∧H
µ

// H[b]

The inclusion H → HF induces on geometric fixed points the bottom summand

inclusion H → H[b] by H-linearity, see Proposition 4.7. Thus projection on the j-th

summand of µ ◦ (bi ∧ κei (x)) is trivial for j 6= i and κei (x) when j = i. �

We finally come back to homologically pure spaces. Just like with the map κT , we

still denote by κe0 : H
2∗(X) → H∗(XC2) the precomposition of κe0 by the isomorphism

H2∗(X)
∼=
→ HF∗(1+α)(X) when X is pure.

Proposition 5.8. Let X be a homologically pure space of finite type. Then the

morphism κe0 : H
2∗(X) → H∗(XC2) is an isomorphism.

Proof. Because the “a-periodization” and the “free HF-module” functors commute,

see Lemma 3.11, the same computation as in Lemma 5.3(1) shows that we have an

equivalence of function spectra:

FC2
(S−⋆ ∧X, ẼC2 ∧ HF) ≃

∨

i∈I

FC2
(S−⋆ ∧ Sni(1+α), ẼC2 ∧HF)
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As a consequence, fixing an integer m ∈ N, the following diagram defining κe0 for X

and for a wedge of spheres commutes:

HF2m(X)
∼= // [S−m(1+α) ∧X,HF]C2

∼=
��

// [S−m(1+α) ∧X, ẼC2 ∧ HF]C2

∼=
��

// · · ·

⊕
i∈I [S

(ni−m)(1+α),HF]C2 //
⊕

i∈I [S
(ni−m)(1+α), ẼC2 ∧HF]C2 // · · ·

· · · // [S−m ∧XC2 ,H[b]] // //

∼=
��

[S−m ∧XC2 ,H]

∼=
��

· · · //
⊕

i∈I [S
(ni−m),H[b]] // //

⊕
i∈I [S

(ni−m),H]

Because the definition of the map κe0 only involves adjunctions and operations on the

second variable in the homotopy classes of maps, it is immediate that it is an additive

map; in other words the bottom line above respects the direct sum decomposition.

Hence it is enough to show the proposition for a single conjugation sphere Sn(1+α),

in which case the only non-trivial statement is when m = n, i.e. S(n−m) = S0.

Let us examine the definition of κe0 in this case. By the computation of the

coefficient ring HF⋆ we have a generator in degree zero that is divisible by a (see

Proposition 4.5), and the first arrow is an isomorphism. So is the second one because

H is an Eilenberg-Mac Lane spectrum. �

5.3. The section of a homologically pure space. This map is comparatively

easier to define. We start with a short computation.

Lemma 5.9. The cohomology of the universal C2-space is HF⋆(EC2+) ∼= F[a, u±1].

As a consequence, for any C2-space X, HF⋆(EC2+ ∧X) ∼= H |⋆|(EC2+ ∧C2
X).

Proof. To compute the cohomology of EC2+ ≃ colimn S(nα)+, we first compute the

cohomology of the spheres S(nα+). An easy induction argument on n using the

cofibration sequence:

S(nα) → S((n+ 1)α) → C2+ ∧ Sn

shows that HF⋆(S(nα+)) ∼= F[a, u±1]/an (see [26, Section 3] for details). The Milnor

sequence gives then the result.

For the second part, observe that the homotopical uniqueness of the space EC2+

implies that, by smashing and using the ring structure of HF, HF⋆(EC2+ ∧ X) is

and HF(EC2+)-module. In particular multiplication by u±1 is an isomorphism in

HF⋆(EC2+ ∧X). Hence multiplication by u−m induces an isomorphism:

HFn+mα(EC2+ ∧X) ∼= HFn+m(EC2+ ∧X)
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and it is enough to show the result in integral grading. This is now a particular case of

[22, Chap II. Thm 8.1]. Briefly, one the one hand, the restriction map of the Mackey

functor F is an isomorphism. In particular, the morphism ι : ιH → HF, adjoint to

the identity map on H (remember that (HF)C2 ≃ H by Proposition 4.1(1)), is a

non-equivariant weak equivalence. By [11, Lemma 0.4] this property is equivalent to

HF being a split spectrum, which is well known, and used for instance in [16, proof

of Proposition 6.2].

On the other hand, (the suspension spectrum of) EC2+ ∧X is the paradigm of a

free C2-spectrum. Because of this last fact:

H∗(EC2+ ∧C2
X) = [S−∗ ∧ (EC2+ ∧X)C2

,H] ∼= [S−∗ ∧ EC2+ ∧X, ιH]C2 .

We can compose further with the map ι

[S−∗ ∧ EC2+ ∧X, ιH]C2 → [S−∗ ∧ EC2+ ∧X,HF]C2 .

which is an isomorphism since ι is an underlying equivalence and therefore induces an

equivalence of function spectra FC2
(EC2+, ι) by [11, Proposition 1.1]. This concludes

the proof. �

When X is a finite C2-space, the last computation is more direct, see for example

Hazel’s [13, Lemma 3.1]. We are now ready to define the section of the cohomology

frame.

Definition 5.10. Let X be a C2-space. The equivariant map EC2+ ∧X → S0 ∧X

induces a global section σT : HF∗(1+α)(X) −→ HF∗(1+α)(EC2+ ∧X).

When X is a homologically pure space, Lemma 5.3.(4) allows us to identify the

source with ordinary cohomology and Lemma 5.9 identifies the target with Borel

cohomology.

Definition 5.11. Let X be a homologically pure space. The section σ is the com-

posite:

H2∗(Xu) ∼= HF∗(1+α)(X)
σT−→ HF∗(1+α)(EC2+ ∧X) ∼= H2∗(EC2+ ∧C2

X)

Lemma 5.12. Let X be a homologically pure space. The morphism σ is a section

of the restriction ρ : H∗(EC2+ ∧C2
X) → H∗(X).

Proof. The morphism σ is induced by EC2+∧X → X , up to natural isomorphisms.

This map induces a morphism of Mackey functors HF⋆(X) → HF⋆(EC2+∧X), and

in particular, it is compatible with the restriction morphisms. Consequently, the

following square commutes:

HF∗(1+α)(X) //

ρ ∼=
��

HF∗(1+α)(EC2+ ∧X)

ρ

��
H2∗(Xu)

∼= // H2∗((EC2+ ∧X)u)
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where the vertical maps are the restrictions of the corresponding Mackey func-

tors, identified in Lemma 4.4. The left hand side one is the isomorphism given by

Lemma 5.3.(4) and used in the definition of σ, the bottom map is an isomorphism

since (EC2)
u ≃ pt. �

5.4. The cohomology frame of a homologically pure space. We are finally

ready to prove the main result of this section. As we already have constructed a

halving isomorphism and a section of the restriction map, it only remains to check

the conjugation equation.

Theorem 5.13. Let X be a homologically pure space of finite type, then it is a

conjugation space of finite type.

Proof. Observe that trivially a homologically pure space of finite typeX has ordinary

cohomology H∗(X) of finite type. We must show that the maps κe0 and σ defined

above satisfy the conjugation equation. The commutative square :

EC2+ ∧XC2 //

��

XC2

��
EC2+ ∧X // X

induces a commutative square:

HF∗(1+α)(X)
σ //

κT

��

HF∗(1+α)(EC2+ ∧X)

��

HF∗(1+α)(XC2) // HF∗(1+α)(EC2+ ∧XC2).

To understand where the conjugation equation comes from it is enough to understand

the bottom line. Since X is pure of finite type, the fixed points space XC2 has finite

type, so that Proposition 4.6 applies: The target coincides with the degree ∗(1 + α)

part of HF⋆(EC2+)⊗H∗(XC2). The decomposition of κT (x) in terms of κei (x)’s is

thus preserved by this map.

But since HF⋆(EC2+) ∼= π−⋆(FC2
(EC2+,HF)) the computation that has been

used in Proposition 4.3 shows that κT (x) =
∑n

i=0 a
n−iui⊗κei (x) is sent to the corre-

sponding sum in HF⋆(EC2+)⊗H
∗(XC2). The identification with the non-equivariant

cohomology is obtained by u-periodicity, as mentioned in the introduction of Sub-

section 5.3. Hence we push this element by multiplying by u−n so as to have a sum∑n

i=0(au
−1)n−i ⊗ κei (x), where the degree one element au−1 identifies with the only

non zero element in H1(BC2+), i.e. the polynomial generator b. This concludes the

proof. �
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6. Conjugation spaces are pure

We prove in this section that any conjugation space is homologically pure. This

provides the characterization of conjugation spaces in terms of purity, our main

contribution in this paper. We start with a lemma.

Lemma 6.1. Let X be a conjugation space. For any class x ∈ H2n(Xu), there

is a class x̃ ∈ HFn(1+α)(X) such that the restriction ρ(x̃) = unx ∈ HF⋆

C2

(X) ∼=

H∗(Xu)[u±1].

Proof. The isotropy separation and the inclusion XC2 → X provide a commutative

diagram

XC2

��

EC2+ ∧XC2

��

oo Σ−1ẼC2 ∧X
C2

��

oo

X EC2+ ∧Xoo Σ−1ẼC2 ∧Xoo

In terms of Mackey functors, this yields a commutative diagram of RO(C2)-graded

groups:

H∗(XC2)[u±1]
∼= //

tr &&

H∗(XC2)[u±1]

tr ((

// 0

''
HF⋆(XC2) //

ρgg

H∗(XC2)[a, u±1]

ρhh

// HF⋆−1(ẼC2 ∧X
C2)

hh

H∗(X)[u±1]
∼= //

tr ''

OO

H∗(X)[u±1]

tr ((

//

OO

0

''

OO

HF⋆(X)

ρgg

//

OO

HF⋆(EC2+ ∧X)

ρhh

δ

//

rC2

OO

HF⋆−1(ẼC2 ∧X)

hh =

OO

where the front face corresponds to the evaluation at C2. As for the back face,

corresponding to the evaluation at the trivial subgroup, the two zero entries come

from the fact that ẼC2

u

is contractible and on the left hand side we incorporated

the identification from Lemma 4.4, which explains also the isomorphism between

the middle and left entries, since there is also a non-pictured zero on the left of the

diagram.

The last group we have to identify is HF⋆(EC2+ ∧ XC2), sitting in the middle

of the top row in the front face. We first use Proposition 4.6 to identify it with

HF⋆(EC2+)⊗ H∗(XC2). We obtain the claimed isomorphism with H∗(XC2)[a, u±1]

since HF⋆(EC2+) ∼= F[a, u±1] by Lemma 5.9.

For any element x ∈ H2n(Xu), consider the element unx ∈ Hn(1+α)(X)[u±1] in the

back lower left corner of the diagram. We will exhibit a lift x̃ ∈ HFn(1+α)(X) of this
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element (that is an element x̃ such that ρ(x̃) = unx).

By hypothesis, X being a conjugation space, the restriction ρ : HF∗(EC2+∧X) ∼=
H∗(EC2+ ∧C2

X) → H∗(X) is surjective in integral grading, where the isomor-

phism has been established in Lemma 5.9. Hence, by u-periodicity, surjectivity

holds true in arbitrary RO(C2)-grading. In particular unx admits a lift uns(x) in

HFn(1+α)(EC2+ ∧X).

Now, by commutativity of the front diagram, δ is the composite

HF⋆(EC2+ ∧X)
rC2−→ HF⋆(EC2+)⊗HF∗(XC2) → HF⋆−1(ẼC2 ∧X

C2),

where, by construction, the first map is given by the conjugation equation:

rC2
[uns(x)] = un(

∑
κi(x)(au

−1)n−i) = anκ0(x) +
n∑

i=1

κi(x)u
ian−i

As observed in the proof of Theorem 5.13, the polynomial generator denoted by u in

[12] is au−1 here. The sum above defines actually an element in HF⋆⊗HF∗(XC2),

hence is sent to zero in HFn(α)+n−1(ẼC2 ∧X).

Thus, δ(uns(x)) = 0 and there is a lift x̃ ∈ HFn(1+α)(X) of the element uns(x).

By naturality, ρ(x̃) is identified with ρ[uns(x)] = unx since s is a section of ρ. �

The above proof gives in fact a bit more.

Proposition 6.2. Let X be a conjugation space and x ∈ H2n(Xu). The classes κi(x)

coming from the conjugation equation coincide with the classes κei (x̃).

Proof. We constructed for x a lift x̃ ∈ HFn(1+α)(X) and restriction to the fixed points

XC2 gives us classes
n∑

i=0

κei (x̃)u
ian−i ∈ HFn(1+α)(XC2)

Commutativity of the front left-hand square in the diagram above yields, by con-

struction of x̃, the equality:
n∑

i=0

κei (x̃)u
ian−i =

n∑

i=0

κi(x)u
ian−i

hence both types of κ classes coincide. �

Theorem 6.3. If X is a conjugation space of finite type, then it is homologically

pure of finite type.

Proof. Fix a basis of H2∗(X), finite in any given degree by assumption, and lift each

basis element xi, say of degree 2ni, to an element

x̃i ∈ HFni(1+α)(X) = [S−ni(1+α) ∧X,HF]C2 ∼= [X,Sni(1+α) ∧ HF]C2
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Realize each such element by a map X → Sni(1+α) ∧HF. By additivity we assemble

them into a map of equivariant spectra:

X →
∨

i∈I

Sni(1+α) ∧HF

which we extend by linearity into a map of HF-modules:

f : X ∧ HF →
∨

i∈I

Sni(1+α) ∧ HF .

Let us now check that f is an equivalence, which will prove that X is homologically

pure and automatically of finite type. By construction it is an equivalence after

forgetting the action. It is thus enough to show that it is an equivalence on geometric

fixed points by Proposition 3.5.(2). We use the computation ΦC2(HF) = H[b] done

in Proposition 4.7.

ΦC2(f) : XC2 ∧ H[b] →
∨

i∈I

Sni ∧ H[b].

On homotopy groups, we get a map of π∗(H [b]) = F2[b]-modules:

ΦC2

∗ (f) : H∗(X
C2)[b] →

⊕

i∈I

H∗(S
ni)[b].

After modding out by the maximal ideal (b), we are left with a homomorphism

H∗(X
C2) →

⊕
i∈I H∗(S

ni) which, by Lemma 5.7 is nothing but the map induced in

homotopy by summing the maps κe0(x̃i). Proposition 6.2 shows that these classes

are in fact the classes κ0(xi) and κ0 : H
2∗(X) → H∗(XC2) is an isomorphism by

(conjugation) assumption. We conclude by Nakayama’s Lemma that ΦC2

∗ is an

isomorphism. Notice that we needed the finite type assumption to apply Nakayama’s

Lemma, or rather a classical consequence of it, see for example [3, Proposition 2.8].

�

7. Properties of conjugation spaces

The main result of the previous part can be rephrased as follows.

Theorem 7.1. Let X be a C2-space of finite type. Then X is a conjugation space

if and only if it is homologically pure of finite type.

This formulation hints at the fact that being a conjugation space is a property,

and not some additional structure on X . Actually, this (and more) is true. It has

been shown that if a C2-space X admits a conjugation frame, then this structure is

unique, functorial, and it preserves the multiplicative structure by [12, Theorem 3.3,

Corollary 3.12]). It is also compatible with the action of the Steenrod operations

by work of Franz and Puppe, [8]. Although these results are already known, the

proofs are quite computational, and we will see how to benefit from the definition
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we advertise here to recover these results in a straightforward, conceptual, and more

illuminating fashion.

7.1. Uniqueness of the conjugation frame and direct consequences. We offer

for completeness a proof of the uniqueness of the conjugation frame. The argument

is similar to that of [12, Corollary 3.12]).

Proposition 7.2. Let X be a conjugation space. The conjugation frame (κ, σ) is

unique.

Proof. Let us assume that X is connected, for simplicity, and consider (κ, σ) and

(κ′, σ′), two conjugation frames on X . We have already shown in Proposition 6.2,

that κ = κe0 = κ0. Let us show that σ = σ′.

Since ρσ = idH∗(X) = ρσ′ we have

σ(x) = σ′(x) + higher terms in u

for all x ∈ H2k(X), for all k ≥ 1. Thus, for degree reasons, we can write σ(x) as

σ(x) = σ′(x) + σ′(d2k−2)u
2 + . . .+ σ′(d0)u

2k

for elements di in degree i. In particular, if |x| = 0, then σ(x) = σ′(x). The proof

follows then by induction on the degree of x. �

In particular, for a cohomologically pure space, the frame constructed in Section 5

is the unique one. The naturality of this construction implies directly the following.

Proposition 7.3. The conjugation frame is functorial, and multiplicative.

Proof. This in now immediate since the H-frame is induced by maps of spectra. �

7.2. Compatibility with the action of the Steenrod algebra. The idea is to

compare the action of the equivariant Steenrod algebra on the cohomology of X

with the action of the ordinary Steenord algebra on Xu and XC2. As for ordinary

cohomology theories one can consider the set of equivariant cohomology operations

in HF⋆-cohomology, which is again a Hopf algebröıd. The structure of this algebra

has been determined by Hu and Kriz [16]. We briefly recall their main theorem

and refer also to recent work of Hill [14]. As customary let us adopt the following

notation:

A⋆ = [HF,HF]⋆

A⋆ = HF⋆(HF)

The relation between these two objects is via duality, as there is an isomorphism of

left HF-modules:

HomHF⋆
(A⋆,HF⋆)

∼= A⋆
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Theorem 7.4. (Hu-Kriz, [16, Theorem 6.41]) The HF⋆-algebra A⋆ admits the fol-

lowing presentation:

A⋆
∼= HF⋆[ξi+1, τi | i ≥ 0]/(τ 2i + aτi+1 + (aτ0 + u)ξi+1)

with degrees

|ξi| = (2i − 1)(1 + α) |τi| = (2i − 1)(1 + α) + 1.

Moreover A⋆ has a comodule structure given by the following applications:

(1) a right unit ηR : HF⋆ → A⋆ given by ηR(a) = a and ηR(u) = aτ0 + σ−1;

(2) a left unit map ηL : HF⋆ → A⋆ given by the standard inclusion;

(3) a counit ε : A⋆ → HF⋆ uniquely determined by requiring that εηL = Id and

ε(a) = ε(u) = 0;

(4) A coproduct ∆: A⋆ → A⋆ ⊗HF⋆
A⋆ given by:

∆(ξi) =
i∑

j=0

ξ2
j

i−j ⊗ ξj

∆(τi) =

i∑

j=0

ξ2
j

i−j ⊗ τj + τi ⊗ 1

and for h ∈ HF⋆ ∆(h) = ηL(h)⊗ 1.

Our first, trivial, observation concerns the compatibility of the equivariant Steen-

rod operations with the map κT introduced in Definition 5.4 and the section σ from

Definition 5.10.

Proposition 7.5. Let θ ∈ A⋆ be a cohomology operation that preserves the diagonal,

i.e. of degree n(α + 1) for some integer n. Then

κT θ = θκT and σθ = θσ.

Proof. Both morphisms are induced by continuous maps, namely the inclusion of

fixed points κT : HF∗(1+α)(X) → HF∗(1+α)(XC2) and the map collapsing the con-

tractible space EC2 to a point σT : HF∗(1+α)(X) → HF∗(1+α)(EC2+ ∧ X). We

conclude by naturality. �

Our understanding of the action of the Steenrod algebra on the ordinary mod 2

cohomology comes from the action of the operations that are dual to the ξi1’s on

the equivariant cohomology. These operations “lift” the non-equivariant operation

Sq2i, in the following sense. For any equivariant space X we have a commutative

diagram:

HF⋆(X)
(ξi

1
)∨

//

ρ

��

HF⋆+i(1+α)(X)

ρ

��

H|⋆|(Xu)
Sq2i

// H|⋆|+2i(X)
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Likewise the operation τ∨0 lifts the Bockstein Sq1. Both statements follow from Hu

and Kriz’s computations, and we refer to the appendix, Section A.1 for a short

explanation of this fact. We denote by Sq the total Steenrod square
∑
Sqℓ.

Proposition 7.6. (Franz-Puppe, [8, Theorem 1.3]) Let X be a conjugation space

and x ∈ H2∗(X). We have an equality

Sq(κ0(x)) = κ0(Sq(x)),

where κ0 is the isomorphism H2∗(X) ∼= H∗(XC2), part of the conjugation frame.

Equivalently κ0(Sq
2ℓx) = Sqℓκ0(x) for any integer ℓ.

Proof. Consider the equivariant cohomology class x̃ ∈ HFn(1+α)(X) lifting x as in

Lemma 6.1. Then (ξℓ1)
∨(x̃) has degree (n+ ℓ)(1+α). On the one hand κT ((ξ

ℓ
1)

∨(x̃))

decomposes as a sum, see Definition 5.4, which reduces modulo u to a single term

an+ℓκe0((ξ
ℓ
1)

∨(x̃)) = an+ℓκ0(ρ[(ξ
ℓ
1)

∨(x̃)]), where the equality comes from Proposi-

tion 6.2. By the lifting property described in the above commutative square we

obtain finally, modulo u, that

κT ((ξ
ℓ
1)

∨(x̃)) = an+ℓκ0(Sq
2ℓρ(x̃)) = an+ℓκ0(Sq

2ℓx).

On the other hand we can perform the computation by using first Proposition 7.5,

modulo u:

κT ((ξ
ℓ
1)

∨(x̃)) = (ξℓ1)
∨(κT (x̃)) = (ξℓ1)

∨(

n∑

j=0

an−jujκej(x̃)) = (ξℓ1)
∨(

n∑

j=0

an−jujκj(x))

where the last equality follows from Lemma 6.1. Hence

κT ((ξ
ℓ
1)

∨(x̃)) =

n∑

j=0

an−j(ξℓ1)
∨(ujκj(x)) by a-linearity

=
n∑

j=0

an−j
ℓ∑

i=0

(ξi1)
∨(uj)(ξℓ−i1 )∨(κj(x)) by Cartan formula modulo u

=

n∑

j=0

an−juj(ξℓ1)
∨(κj(x)) by Lemma A.2

= an(ξℓ1)
∨(κ0(x)) modulo u.

We infer by Lemma A.5 that κT ((ξ
ℓ
1)

∨(x̃)) = anaℓSqℓ(κ0(x)), modulo u. Comparing

both terms we conclude that κ0(Sq
2ℓx) = Sqℓκ0(x). �

7.3. Identification of the conjugation equation. Let us now exploit similarly

the action of (ξℓ1τ0)
∨.
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To begin with, observe that if X is a conjugation space, then HFn(1+α)+1(X) = 0

for any integer n. Indeed, smash the cofibration C2+ → S0 → Sα with X and

consider the associated long exact sequence in HF-cohomology:

HFn(1+α)(X) → H2n(X) → HFn(1+α)+1(X) → HF(n+1)(1+α)(X) → H2(n+1)(X)

The two outermost arrows are restriction homomorphisms, see Lemma 4.4. As they

are isomorphisms by Lemma 5.3(4), we get the vanishing result, which can be com-

pared with a homological version in [14, Corollary 3.9]. Thus, applying the above

operations of degree ℓ(1 + α) + 1 actually kills any class x̃ in HFn(1+α)(X).

Proposition 7.7. (Franz-Puppe, [8, Theorem 1.1]) Let X be a conjugation space

and x ∈ H2n(X). Then κℓ(x) = Sqℓκ0(x) for any ℓ ≥ 0.

Proof. The statement is obvious for ℓ = 0. Let us fix ℓ ≥ 0 and prove the statement

for ℓ+ 1. Our starting point is that (ξℓ1τ0)
∨(x̃) = 0, hence that

(ξℓ1τ0)
∨(κT (x̃)) = κT ((ξ

ℓ
1τ0)

∨(x̃)) = 0.

As above we use a-linearity to get 0 =
∑n

j=0 a
n−j(ξℓ1τ0)

∨(ujκej(x̃)) and use the Cartan

formula:

0 =

n∑

j=0

an−j

(
ℓ∑

k=0

(ξk1τ0)
∨(uj)(ξℓ−k1 )∨(κej(x̃)) + (ξℓ−k1 )∨(uj)(ξk1τ0)

∨(κej(x̃))

+

ℓ−1∑

k=0

a(ξk1τ0)
∨(uj)(ξℓ−1−k

1 τ0)
∨(κej(x̃))

)
.

We apply now Lemma A.5 to compute the action of the equivariant Steenrod oper-

ations on the equivariant κei classes and identify the latter with κi(x) by Proposi-

tion 6.2:

0 =

n∑

j=0

ℓ∑

k=0

an−j+ℓ−k(ξk1τ0)
∨(uj)Sqℓ−k(κj(x)) +

n∑

j=0

ℓ∑

k=0

an−j+k(ξℓ−k1 )∨(uj)Sqk(κj(x))

+

n∑

j=0

ℓ−1∑

k=0

an−j+ℓ−k(ξk1τ0)
∨(uj)Sqℓ−k(κj(x))

Between the first and third sum all terms cancel two by two but for the terms in the

first sum for which k = ℓ. In the second sum, since we compute modulo u, only the

term for which j = 0 = ℓ− k survive by Lemma A.2 so that:

0 =

n∑

j=0

an−j(ξℓ1τ0)
∨(uj)κj(x) + anaℓSqℓ+1κ0(x).

Finally in the first sum, modulo u, only the term for which ℓ = j − 1 remains by

Lemma A.2 again and we are left with 0 = an+ℓκℓ+1(x) + an+ℓSqℓ+1κ0(x). �
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Observe that, together with Proposition 7.6, this shows that for any conjugation

space X the following composite operation on the fixed point set is independent of

X as it coincides with Sqℓ:

κℓ ◦ κ
−1
0 : H∗(XC2) −→ H∗(XC2).

7.4. Wrap up with the Steinberg map. Our final aim is to consider all proper-

ties that the cohomology frame of a conjugation space enjoys to express the property

of being a conjugation space in structured algebraic terms. We will use common no-

tation in the study of modules over the Steenrod algebra, see for example Schwartz’s

book [34]. In particular U denotes the category of unstable modules over the Steen-

rod algebra and Φ: U → U is the “doubling” functor such that (ΦM)2n = Mn for

any unstable module M and the action of A is defined by Sq2nΦx = ΦSqnx.

Let us write P = H∗(BC2) ∼= F[b] as in Lannes and Zarati’s [17]. The F-linear

Steinberg map St : M → P ⊗M is defined by the following formula for any element

x of degree n:

St(x) =
n∑

j=0

bn−j ⊗ Sqjx

Corollary 7.8. Let X be a conjugation space and x ∈ H2n(X). Then

r ◦ σ(x) =
n∑

j=0

bn−jSqj(κ0(x)).

i.e., the conjugation equation is given by the Steinberg map. �

In [17], Lannes and Zarati studied the derived functor of the destabilization map.

In particular they show that the Steinberg map defines a functor R: U → U , in the

sense that, for an unstable module M , RM is the P -module generated by the image

of St. Moreover the Steinberg map is injective, so:

Corollary 7.9. Given a conjugation space X, there is an isomorphism

H∗(XhC2
) ∼= RH∗(XC2)

of unstable algebras over the Steenrod algebra, i.e., the Borel cohomology of the

equivariant space X is determined by the cohomology of the fixed points. �

This means concretely the following. Let us package the whole structure of a

conjugation space into a square:

H∗(X)

r

��

σ
,,

κT ((❘❘❘
❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

H∗(XhC2
)

r

��

oo

H∗(XC2) H∗(XC2)⊗H∗(BC2)oo
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where the horizontal and the vertical arrows are the two kinds of restriction maps

introduced in Borel cohomology, except for the section σ, and the diagonal map

κT summarizes the conjugation equation. Observe the following consequence of the

Leray-Hirsch Theorem. We have an isomorphism H∗(XhC2
) ∼= H∗(X)⊗H∗(BC2) as

H∗(BC2)-modules, and the fact that the section σ is a ring map, implies that this

is even an isomorphism of algebras. Also, the conjugation equation together with

the fact that the leading term κ0 is a isomorphism implies that the vertical map

r : H∗(XhC2
) → H∗(XC2)⊗ H∗(BC2) is injective.

The above diagram coincides then with the following one:

ΦH∗(XC2)

Sq0
�� St ))❘❘❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

RH∗(XC2)
� _

ρ

��

ρ1oo

H∗(XC2) H∗(XC2)⊗ H∗(BC2)oo

where ρ1 is defined in terms of the doubling functor, [17, Proposition 4.2.6]. We

point out that all maps and objects are functorially determined by H∗(XC2) and

Sq0 sends Φx to Sq|x|x.

Appendix A. Some computations of cohomology operations

As it is known since the classical work of Milnor [28], it is easier to understand the

co-action of the dual algebra of cohomology operations than the action, essentially

because the dual algebra of cohomology operations is a commutative algebra. In this

appendix we describe how to switch from the co-action formulas to their duals. A

general discussion on stable operations in generalized cohomology theories and how

to go back and forth between actions and co-.actions can be found in Boardman’s

contribution to the Handbook of algebraic topology [6], which we use as our main

reference here. Let us also mention Wilson’s explicit computations in [41]. We fix

first some notation.

Denote by A∗ = [H,H ]∗ the mod 2 Steenrod algebra and by A∗ its dual algebra

with respect to H∗ = F. Likewise A⋆ = [HF,HF]⋆ is the equivariant mod 2 Steenrod

algebra and A⋆ is its HF
⋆-dual. Given an element x in an algebra and an element ξ

in the dual, we denote by 〈x, ξ〉 = ξ(x) the evaluation map. By [28], we know that

A∗ is isomorphic to a polynomial algebra F2[ζi, i ≥ 1] on classes ζi of degree 2i − 1.

The equivariant Steenrod algebra, although more complicated, is still a commu-

tative algebra, as we saw from the computations of Hu and Kriz in Theorem 7.4. It

is generated by the elements ξj and τj (where it is sometimes handy to set ξ0 = 1).

Definition A.1. The set MB = {ξℓjτi, ξ
ℓ
j | j ≥ 0, i ≥ 0} forms an HF⋆-basis of the

algebra A⋆ which refer to as the monomial basis. The dual elements in A⋆ will be

denoted by (ξℓjτi)
∨ and (ξℓj)

∨ respectively.
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A.1. Forgetting the action. Evaluating along the structural map ρ in Mackey

functors over C2, we get a map

A⋆ = HF⋆[τi, ξi+1]/(τ
2
i + aτi+1 + (aτ0 + u)ξi+1) −→ F2[ζi] = A∗.

The structure of the coefficients HF⋆ recorded in Proposition 4.5 implies that the

class a restricts to zero and the class u restricts to the unique non-trivial class

in [(S−1+α)u,HFu] = [S0,H] ∼= F. In particular the map above factors through

(HF⋆)C2
[τi, ξi+1]/(τ

2
i = uξi+1), which we can identify by the above discussion with

F[τi]. For degree reasons, τ1 can only map to 0 or ζ1, and the computation of the

action of Hu and Kritz [16, Lemma 6.27] on the space BZ′
2 shows that the action

is not trivial. As Sq1 is the dual of ζ1 this shows that the dual τ∨1 lifts indeed Sq1;

then ξ∨1 lifts the dual of the image of ξ1 = τ 21 which is ζ21 , and the dual of this last

map is indeed Sq2. The same argument shows, since we have an algebra map, that

(ξj1τ
ε
1 )

∨ lifts the dual of the image of τ 2j1 τ
ε
1 where ε = 0 or 1. This is ζ2j+ε1 , whose

dual in turn is Sq2j+ε.

A.2. Cartan formulas and the action on the coefficients. The Cartan formula

describes the action of a cohomology operation θ on the cup product of classes. A

general explanation of the Cartan formula can be found in [6, Section 12]. Since the

right unit ηR in A⋆ encodes the action on the coefficients, and is not the identity,

contrary to what happens with the non-equivariant Steenrod algebra, A⋆ does act

on the coefficients. To understand this action it is enough to compute it on the basis

elements (ξℓ1τ0)
∨ and (ξℓ1)

∨. In general, for such a basis element (θ)∨ the Cartan

formula reads as follows:

∇((θ)∨) =
∑

(h,xα,xβ)

hx∨α ⊗ x∨β ,

where the sum is taken over the triples (h, xα, xβ) ∈ HF⋆×MB × MB such that

〈θ∨, xaxb〉 = ηR(h).

Because of the relation τ 20 = aτ1 + (aτ0 + u)ξ1 and ηR(a) = a η(u) = aτ0 + u we

have:

∇((ξℓ1)
∨) =

ℓ∑

j=0

(ξj1)
∨ ⊗ (ξ

(ℓ−j)
1 )∨ +

ℓ−1∑

j=0

u(ξj1τ0)
∨ ⊗ (ξ

(ℓ−1−j)
1 τ0)

∨

and

∇((ξℓ1τ0)
∨) =

ℓ∑

j=0

(ξj1τ0)
∨ ⊗ (ξ

(ℓ−j)
1 )∨ + (ξ

(ℓ−j)
1 )∨ ⊗ (ξj1τ0)

∨

+
ℓ−1∑

j=0

a(ξj1τ0)
∨ ⊗ (ξ

(ℓ−1−j)
1 τ0)

∨.
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As explained in [6, Lemma 12.6], the coaction of A⋆ on HF⋆ is encoded in the

right unit ηR. From ηR(a) = a we get that all elements of A⋆ are F2[a]-morphisms.

From ηR(u) = aτ0+u we get τ∨0 (u) = a and (ξℓ1)
∨(u) = 0. We apply next the Cartan

formula to compute

(ξℓ1)
∨(uk+1) =

ℓ∑

j=0

(ξj1)
∨(uk)(ξ

(ℓ−j)
1 )∨(u) +

ℓ−1∑

j=0

u(ξj1τ0)
∨(uk)(ξ

(ℓ−1−j)
1 τ0)

∨(u)

= u(ξℓ1)
∨(uk) + au(ξℓ−1

1 τ0)
∨(uk),

and analogously

(ξℓ1τ0)
∨(uk+1) =

ℓ∑

j=0

(ξj1τ0)
∨(uk)(ξ

(ℓ−j)
1 )∨(u) + (ξ

(ℓ−j)
1 )∨(uk)(ξj1τ0)

∨(u)

+

ℓ−1∑

j=0

a(ξj1τ0)
∨(uk)(ξ

(ℓ−1−j)
1 τ0)

∨(u)

= u(ξℓ1τ0)
∨(uk) + a(ξℓ1)

∨(uk) + a2(ξℓ−1
1 τ0)

∨(uk)

These formulas suffice to derive an exact computation by induction, but for our

present purposes we only need the computation modulo u, which is now almost

immediate.

Lemma A.2. For any k ≥ 1 and ℓ ≥ 0

(ξℓ+1
1 )∨(uk) = 0 mod u

(ξℓ1τ0)
∨(uk) =

{
0 mod u if ℓ 6= k − 1

a2k−1 if ℓ = k − 1

A.3. Action on trivial spaces. We proved in Proposition 4.6 that the equivari-

ant cohomology of a spectrum Y with trivial action is determined by the ordinary

cohomology. Our aim here is to understand to what extent the action of the sta-

ble cohomology operations on HF⋆(ιY ) is determined by the action of the ordinary

Steenrod algebra on H∗Y . Recall, e.g. from [6], that the action of the Steenrod alge-

bra is encoded in the coaction by the dual Steenrod algebra. By [32, Definition C.3]

it decomposes as:

HF∗⊗H∗Y
1⊗λ
−→ HF∗⊗A∗ ⊗H∗Y

Ψ⊗1
−→ A⋆ ⊗ H∗Y ∼= A⋆ ⊗H∗ H∗ ⊗ H∗Y

where λ is the non-equivariant coaction map, and Ψ is the HF⋆-module map con-

structed as follows. Let ε : ιH → HF be the left adjoint to the identity map

H → (HF)C2 . Given a non-equivariant spectrum Y ∈ Sp, Proposition 4.6 says

that we have an equivariant equivalence HF∧ιHιH ∧ ιY
∼

−→ HF∧ιY . The case

Y = ιH gives us a map:

Ψ: HF∧ιHι(H ∧ H) → HF∧ιH
Id∧ε
−→ HF∧HF
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which in homotopy induces:

Ψ: HF⋆⊗A∗ → A⋆

and encodes precisely the way A⋆ co-acts on the cohomology of a trivial spectrum

through the coaction of the non-equivariant A∗. By linearity it is thus enough to

compute the restriction ψ : A∗ → A⋆, which has been done explicitly by Ricka [32].

The images of Milnor’s polynomial generators suffice to describe ψ.

Proposition A.3. [32, Theorem D.3] The algebra map ψ : A∗ → A⋆ is determined

by the formula:

ψ(ζn) = a2
n−1ξn +

n∑

i=1

a2
n−2iηr(u)

2i−1−1ξ2
i−i

n−i τn−1.

We want to compute the elements 〈(ξi1τ0)
∨, ψ(θ)〉, 〈(ξi1)

∨, ψ(θ)〉 ∈ HF⋆ for arbitrary

θ ∈ A⋆. An inspection of the formula in Proposition A.3 shows that the monomials

ξi1 or ξi1τ0 can appear in the expansion of ψ(ζkn) if and only if n = 1, so it is enough

to compute the elements

Ck
j = 〈(ξj1)

∨, ψ(ζk1 )〉 ∈ HF⋆,

Dk
j = 〈(ξj1)

∨, ψ(ζk1 )〉 ∈ HF⋆ .

In particular in the target of the map ψ we may work modding out the elements ξk
for k ≥ 2 and τk for k ≥ 1. Let us set

A⋆ = A⋆/(τk, ξk+1; k ≥ 1) ∼= HF⋆[τ0, ξ1]/(τ
2
0 + aξ1τ0 + uξ1).

Proposition A.3 implies that the induced map A∗ → A⋆ factors through the quotient

A∗/(ζk, k ≥ 2), more precisely we have a commutative diagram:

F2[ζ1] //

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

A∗

��

ψ
// A⋆

��

A∗/(ζk, k ≥ 2)
ψ

// A⋆

By construction the map ψ : A∗/(ξk, k ≥ 2) → A⋆ is again an algebra map. An

element in A⋆ can be written in a unique way as a sum of two polynomials, one in

ξ1, the other one in ξ1 times τ0. Let us thus define two sequences of polynomials Pn
and Qn in ξ1 by the rule:

ψ(ζn1 ) = Pn +Qnτ0.

According to Proposition A.3, ψ(ζ1) = aξ1 + τ0, so P1 = aξ1 and Q1 = 1. As ψ is an

algebra map, ψ(ζn+1
1 ) = ψ(ζn1 )ψ(ζ1) and we get an inductive formula for any n:

Pn+1 = aξ1Pn + uξ1Qn and Qn+1 = Pn.
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More compactly, ψ(ζn+1
1 ) = Pn+1 + Pnτ0, where the polynomials Pn are determined

by P0 = 1, P1 = aξ1, and inductively, for any n ≥ 0,

Pn+2 = aξ1Pn+1 + uξ1Pn.

By construction we have the equality 〈(ξi1)
∨, ψ(ζk1 )〉 = 〈(ξi1)

∨, Pk〉 in HF⋆ and

Dk
j = 〈(ξj1τ0)

∨, Qkτ0〉 = 〈(ξj1τ0)
∨, Qkτ0〉 = 〈(ξj1)

∨, Pk−1〉 = Ck−1
j .

Moreover, the inductive relation Ck+1
j+1 = aCk

j + uCk−1
j follows from the ones estab-

lished for the Pn’s. An easy induction gives then an explicit description.

Lemma A.4. For any i ≥ 0 and k ≥ 0, Ck
i = 〈(ξi1)

∨, ψ(ζk1 )〉 =
(
i

k−i

)
a2i−ku(k−i).

Since ζk1 is the dual element to the Steenrod square Sqk, the above lemma and the

way ψ encodes the action of Steenrod algebra yields for any y ∈ Hn(Y ):

(ξi1)
∨(y) =

2i∑

k=i

(
i

k − i

)
a2i−ku(k−i)Sqk(y)

(ξi1τ0)
∨(y) =

2i+1∑

k=i+1

(
i

k − 1− i

)
a2i−k−1u(k−i−1)Sqk(y)

The change of variables j = k − i in the first sum and j = k − i − 1 in the sec-

ond provides us finally with the formulas we were looking for. The action of the

cohomology operations (ξi1)
∨ and (ξi1τ0)

∨ on the equivariant cohomology of a trivial

C2-spectrum Y are entirely determined by the following formulas.

Lemma A.5. Let Y be a trivial C2-spectrum and y ∈ Hn(Y ). Then

(ξi1)
∨(y) =

i∑

j=0

(
i

j

)
Sqi+j(y)ujai−j and (ξi1τ0)

∨(y) =
i∑

j=0

(
i

j

)
Sqi+j+1(y)ujai−j.
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