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PREFACE

Homotopical algebra or non-linear homological algebra is the generalization
of homological algebra to arbltrary categories which results by considering a
simplicial object as being a generallzation of a chain complex. The first step in
the theory was presented in [Dol58|, [DP61], where the derived functors ofa non-
additive funftor from an abelian category A with enough projectives to another
category B were constructed. This construction generalizes to the case where
A is a category closed under finite limits having sufficiently many projectives
objects, and these dereived functors can be used to give a uniform definition
of cohomology for universal algebras.In order to compute this cohomology for
commutative rings, the author was led to consider the simplicial Objects over A
as forming the objects of a homotopy theory analogous to the homotopy theory
of algebraic topology, then using the analogy as a source of intuition for simplicial
objects.Ibis was suggested by the theorem of Kan [Kan58a| that the homotopy
theory of simplicial groups is equivalent to the homotopy theory of connected
pointed spaces and by the derived category (|Har66|, [Ver]) of an abelian category.
The analogy turned out to be very fruitful; but there were a large number of
arguments which were formally similar to well-known ones in algebraic topology
so it was decided to define the notion of a homotopy theory in sufficient generality
to cover in a uniform way the different homotopy theories encountered. This is

what is done in the present paper applications are reserved for the future.

7



8 CONTENTS

The following is a brief outline of the contents of this paper; for a more
complete discussion see chapter introductions. Chapter 1 contains an axiomatic
devolopment of homotopy theory patterned on the derived category of an abelian
category, In Chapter 2 we give various examples of homotopy theories that arise
from these axioms, in particular we show that the category of simplicial objects in
a category A satisfying suitable conditions gives rise to a homotopy theory. Also
in §2.5 we give a unifonn description of homology and cohomology in a homo-
topy theory as the “linearizatlon” or “ abelianization” of the non-linear homotopy
situation, and we indicate how in the case of algebras this yields a reasonable
cohomology theory.

The author extends his thanks to S. Lichtenbaum and M. Schlesinger who
suggested the original problem on co tative ring cohomology, to Robin Hartshorne
whose seminar [Har66] on Grothendleck’s duality theory introduced the author
to the derived category, and to Daniel Kan for many conversations during which
the author learned about simplicial methods and formulated many of the ideas

in this paper.



PREFACE TO THE NEW TYPESETTING

The book was TeX’d up by the Texromancers, a latexing group. The credits
for the typesetting of this book go to: Aareyan Manzoor, Jonas Hardt, Evelyn
Koo, Yohan Wittgenstein, Grisha Taroyan and others.

Here is a link to a dyslexic friendly version of the book: https://aareya
nmanzoor.github.io/assets/books/homotopical-algebra-dyslexic.pdf .
Here is a link to our BWTEX: https://github.com/AareyanManzoor/Quillen-H
omotopical-Algebra

We added citations and references with hyperlinks. References to e.g. the-
orems/lemmas in the book are in blue, while citations to the bibliography is in
red. The bibliography also has URLs now, for easy access. Some of the books in
the bibliography had newer editions, so we went with those.

We also added a small index. This is minimalist as of now, if the reader
feels more words should be added to it, please let us know. Also please report
typos or anything else to us, readers taking the time to help the proofreading is
appreciated. This can be reported at amanzool@asu.edu.

We changed some notations, particularly for the name of categories. (sets) is
now Set for example. Underlining is also a relic of the typewritter era, so those
were replaced with bolded text, same for category names. For example category
C in the original book is now C.

All diagrams are redrawn in tikz or tikzcd.
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1. AXIOMATIC HOMOTOPY THEORY

1.0 Introduction

Chapter 1 is an attempt to define what is meant by a “homotopy theory” in a
way sufficiently general for various applications. The basic definition is that of a
model category which is a category endowed with three distinguished families
of maps called cofibrations, fibrations, and weak equivalences satisfying certain

axioms, the most important being the following two:
M1 Given a commutative solid arrow diagram

— X

A
».-7
B Y

_—

where i is a cofibration, p is a fibration, and either ¢ or p is also a weak
equivalence, there exists a dotted arrow such that the total diagram is

commutative.

M2 Any map f may be factored f = pi and f = p'i’ where ¢,7 are cofibrations,
where p, p’ are fibrations and where p and i’ are also weak equivalences. It
should be noticed that we do not assume the existence of a path or cylinder

functor; in fact the homotopy relation for maps may be recovered as follows:

11



CHAPTER 1: AXIOMATIC HOMOTOPY THEORY

Call an object cofibrant if the map ) — X is a cofibration (hence in the
category of simplicial groups the cofibrant objects are the free simplicial
groups) and fibrant if the map X — e is a fibration (hence in the category
of simplicial sets the fibrant objects are the Kan complexes). Then two
maps f,g from a cofibrant object A to a fibrant object B are said to be

homotopic if there exists a commutative diagram

Ava—1t9 . p

id+id boti

A A

where V denotes direct sum, f + g is the map with components f and g,

and where o is a weak equivalence.

Given a model category C, the homotopy category Ho C is obtained from
C by formally inverting all the weak equivalences. The resulting “localization”
v : C — HoC is in general not calculable by left or right fractions [GZ67] but is
rather a mixture of both. The main result of §1.1 is that Ho C is equivalent to
the category mC.s whose objects are the cofibrant and fibrant objects of C and
whose morphisms are homotopy classes of maps in C. If C is a pointed category
then in §§1.2-1.3 we construct the loop and suspension functors and the families
of fibration and cofibration sequences in the homotopy category. If one defines
a cylinder object for a cofibrant object A to be an object A’ together with a
cofibration ig+1i; and a weak equivalence o as in diagram I, then the constructions
are the same as in the ordinary homotopy theory except that, since a cylinder
object of A is neither unique nor functorial in A, one has to be careful that things
are well-defined. This is done by defining operations in two ways using the left

(cofibration) structure and the right (fibration) structure, and showing that the
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SECTION 1.1: THE AXIOMS

two definitions coincide.

)

The term “model category” is short for “a category of models for a homo-
topy theory”, where the homotopy theory associated to a model category C is
defined to be the homotopy category Ho C with the extra structure defined in
§1.2-1.3 on this category when C is pointed. The same homotopy theory may
have several different models, e.g. ordinary homotopy theory with basepoint is
([Kan58al, [Mil57]) the homotopy theory of each of the following model cate-
gories: 0—connected pointed topological spaces, reduced simplicial sets, and sim-
plicial groups. In section 1.4 we present an abstract form of this result which
asserts that two model categories have the same homotopy theory provided there
are a pair of adjoint functors between the categories satisfying certain conditions.

This definition of the homotopy theory associated a model category is ob-
viously unsatisfactory. In effect, the loop and suspension functors are a kind of
primary structure on Ho C, and the families of fibration and cofibration sequences
are a kind of secondary structure since they determine the Toda bracket (see §1.3)
and are equivalent to the Toda bracket when Ho C is additive. (This last remark
is a result of Alex Heller.) Presumably there is higher order structure ([Ger65],
[Spa63]) on the homotopy category which forms part of the homotopy theory of a
model category, but we have not been able to find an inclusive general definition
of this structure with the property that this structure is preserved when there
are adjoint functors which establish an equivalence of homotopy theories.

In section 1.5 we define a closed model category which has the desirable
property that a map is a weak equivalence if and only if it becomes an isomor-

phism in the homotopy category.

1.1 The axioms

All diagrams are assumed to be commutative unless stated otherwise.

13



CHAPTER 1: AXIOMATIC HOMOTOPY THEORY

Definition 1.1.1. By a model category we mean a category together with
three classes of maps in %, called the fibrations, cofibrations, and weak equiva-

lences, satisfying the following axioms.

MO % is closed under finite projective and inductive limits.

M1 Given a solid arrow diagram

A— 4 X

/7(
{ /// lp (1)
B— vy

where i is a cofibration, p is a fibration, and where either i or p is a weak

equivalence, then the dotted arrow exists.

M2 Any map f may be factored f = pi where ¢ is a cofibration and weak
equivalence and p is a fibration. Also f = pi where i is a cofibration and p

is a fibration and weak equivalence.

M3 Fibrations are stable under composition and base change. Any isomorphism

is a fibration.

Cofibrations are stable under composition and co-base change. Any iso-

morphism is a cofibration.

M4 The bases extension of a map which is both a fibration and a weak equiva-
lence is a weak equivalence. The co-base extension of a map which is both

a cofibration and a weak equivalence is a weak equivalence.

M5 The bases extension of a map which is both a fibration and a weak equiva-
lence is a weak equivalence. The co-base extension of a map which is both

a cofibration and a weak equivalence is a weak equivalence.

14



SECTION 1.1: THE AXIOMS

M6 Let X 15V % Z be maps in €. Then if two of the maps f, g, and gf are

weak equivalences, so is the third. Any isomorphism is a weak equivalence.

Examples. A. Let ¥ be the category of topological spaces and continuous
maps. Let fibrations in % be fibrations in the sense of Serre, let cofibra-
tions be maps having the lifting property of axiom M1 whenever p is both
a Serre fibration and a weak homotopy equivalence, and finally let weak
equivalences in ¢ be weak homotopy equivalences (maps inducing isomor-
phism for the functions [K, —] where K is a finite complex). Then the

axioms are satisfied. (This is proved in §2.3.)

B. Let &7 be an abelian category with sufficiently many projectives and let
¢ = C () be the category of complexes K = {K,, d: K — Ky_1} of
objects of &/ which are bounded below (K, =0 if ¢ < 0). Then % is a
model category where weak equivalences are maps inducing isomorphisms
on homology, where fibrations re the epimorphisms in ¢, and where the
cofibrations are maps ¢ which are injective such that Cokeri is a complex

having a projective object of &/ in each dimension.

C. Let € be the category of semi-simplicial sets and let fibrations in € be
the Kan fibrations, cofibrations be injective maps, and let the weak equiv-
alences be maps which become homotopy equivalences when the geometric

realizations functor is applied. Then € is a model category (§2.3).
For the rest of this section € will denote a fixed model category.

Definition 1.1.2. Let & (resp. e) denote “the” initial (resp. final) object of the
category €). (These exist by M0.) An object X will be called cofibrant if

@ — X is a cofibration and fibrant if X — e is a fibration. A map which
is a fibration (resp. cofibration) and a weak equivalence will be called a trivial

fibration (resp. trivial cofibration.)
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CHAPTER 1: AXIOMATIC HOMOTOPY THEORY

Remark. In example A. every object is fibrant and the class of cofibrant objects
include CW complexes, and more generally any spaces that is constructed by a
well ordered succession of attaching cells. In example B. every object is fibrant
and the cofibrant objects are the projective complexes (that is, complexes con-
sisting of projective objects — these are not projective objects in C;()). In
example C. every object is cofibrant and the fibrant objects are those s.s. sets

satisfying the extension condition.

Before stating the next definition we recall some standard notation concern-
ing the fibre products and introduce some not-so-standard notation for cofibre

products. Given a diagram

ALX
la l @)
B—2% vy

there is a unique map A — B Xy X denotes (a, )y or simply (a, ) such
that pry(o,8) = « and pry(a, 8) = B, where pr; : B xy X — B and pr, :
B xy X — X are the canonical projections. Also (2) is said to be cartesian
if (o, B) is an isomorphism. We shall denote the cofibre product of B and X
under A by B V4 X and the two canonical maps by iny : B — B V4 X and
ing : X — BV 4 X. The unique map BV 4 X Y with wing; = § and wing = ¥
will be denoted § + 4 v or simply & + v, and (2) will be called co-cartesian if
0 + v is an isomorphism. Finally given a map f : X — Y there is the diagonal
map

Af = (idx,idx) X — X XyX

16



SECTION 1.1: THE AXIOMS

and the codiagional map
Vi=idy+idy : Y Vx Y — Y

of f. We write Ax (resp. Vy) if Y =e (resp. X = ©).
Definition 1.1.3. Let f,g: A = B be maps. We say that f is left-homotopic

to g notation f L g) if there is a diagram of the form

Ava—I . p

v Mo |, 3)

where o is a weak equivalence. Dually we say that f is right-homotopic to g

(notation: f < g) if there is a diagram of the form

S

B+——— B
k/l\ (do,d1) ‘A (4)
A— BxB

(f:9)

where s is a weak equivalence.

Remark. In example A. above two maps of spaces which are homtopic in the
usual sences are both left and right homotopic as one sees by taking A=AxI

and B = BT where I is the unit interval. In fact we have the implications:
homotopic = right homotopic = left homotopic (5)

where the last implication comes from the dual of lemma 1.1.5(i) below and the

fact that every space is fibrant. if A is cofibrant (e.g. a CW complex) then the

17



CHAPTER 1: AXIOMATIC HOMOTOPY THEORY

three notation coincide, but in general it seems that the implication (5) are strict.

Definition 1.1.4. By cylinder object for an object A we mean an object A x I
together with maps

A\/AM)AXILA with 0(9p+ 01) = V4

such that dy + J; is a cofibration and o is a weak equivalence. Dually, a path

object for B shall be an object B! together with a factorization

BBl Y poup of Ap
where s is a weak equivalence and (dg,d;) is a fibration. By a left homotopy
from f: A — Btog: A — B we mean a diagram (3) where dy + 0; is a
cofibration and hence 4 is a cylinder object for A. Similarly a right homotopy
from f to g is a diagram (4) where B is a path object for B.

Remark. 1. Ax I is not the product of A and an object I nor is it a functor
of A. In example A., the product of a space A and the unit interval is not

necessarily a cylinder object of A unless A is cofibrant.

2. Since the dual of a model category is again a model category in an evident
way there is a corresponding dual assertion for every assertion we make. In
the following we will often give only one form and leave the formulation of

the dual assertion to the reader.

Lemma 1.1.1. If f g € Hom(A4, B) and f L g, then there is a left homotopy
h:AxI— B from f tog.

Proof. Given diagram (3) use M2 to factor 9y + 9y into AV A ke Ny TNy

where 9}, + 91 is a trivial cofibration and p is a trivial fibration. By M5

18



SECTION 1.1: THE AXIOMS

o' =op: A" — Ais a weak equivalences so A’ with 9}, 9, and ¢’ is a cylinder

object for A. ' = hp: A’ — B is the desired left homotopy from f to g. O

Lemma 1.1.2. Let A be a cofibrant object and let A x I be a cylinder object
for A. Then
Op:A— AxTand d;: A— A x I are trivial cofibrations.

Proof. in; : A — AV A is a commutativ by the coase change assertion in M3,
hence dp = (9 + 01)iny is a cofibration. 09y = id4 ands M5 imply that Jy is

also a weak equivalence. Similarly 0y is a trivial cofibration. O

Corollary (Covering Homotopy theorem). Let A be cofibrant and let

p: X — Y be a fibration, let o : A — X, and let h: Ax I — Y be a left
homotopy with hdy = pa. Then there is a left homotopy H : A x I — X with
HJy = a and pH = h.

Proof. By M1, H exists in

—

A & X
//7
60‘ 1:[// ‘p
Y

Ax[ﬁ

The dual assertion is the homotopy extension theorem. O

Lemma 1.1.3. Let A be cofibrant and let A x I and A x I’ be two cylinder
objects for A. Then the result of “gluing” A x I to A x I’ by the identification

19



CHAPTER 1: AXIOMATIC HOMOTOPY THEORY

01 A = 0| A, defined precisely to be the object A in the co-Cartesian diagram

A%  Laxr

o ins (6)
Ax] ———— 3 A
ing
is also a cylinder object A x I"” for A with
9 =iny 0y, 0y =ingd;, o’ iny =0, o¢"ing=0".

Proof. M4 and Lemma 1.1.2 show that in; and ins are weak equivalences; as 9} =
iny 8y, o”"9 = ida we have by M5 that o” : A — Ais a weak equivalence.
A +8): AVA — Ais the composition of AV A I Vida, (AxI)V A, which is
the co-base extension of dy by A I, AV Ay, and the map (AxI)VA M ;1,
which is the co-base extension of 9) + 9] by AV A Qutida, (AxI)v A. By M3

Al + 0} is a cofibration and hence A is a cylinder object for A. O

Lemma 1.1.4. If A is cofibrant, then Lisan equivalence relation in Hom(A, B).

Proof. The relation is reflexive since if f = g we may take A=Aand h = fin
(3) and it is symmetric since given (3) we may interchange 9y and 9;. Finally
given fo, f1, fo € Hom(A, B) and a left homotopy h : A x I — B from fj to
f1 and a left homotopy A’ : A x I’ — B from fy to f; and a left homotopy
h' : Ax I' — B we obtain by Lemma 1.1.3 a left homotopy h"” : A x I — B
from fy to fo by setting h”in; = h and h” ing = K. O

Lemma 1.1.5. Let A be cofibrant and let f, g € Hom(A, B). Then

(i) frg = flg

20



SECTION 1.1: THE AXIOMS

(i) f ~ g = there exists a right homotopy k : A — B! from f to g with

s: B — BT a trivial cofibration.

(iii) fu: B — C, then f ~ g = uf ~ ug.

Proof. (i) By Lemma 1.1.1 there is a left homotopy h: A x I — B from f to
g and by M2 there is a path object B! for B. By Lemma 1.1.2 and M1 the

dotted arrow K exists in

A—> L pr
/)l
60 K///// (do,dl) (7)

Ax] —— Bx B
(fo,h)

and k = K0, : A — B! is the desired right homotopy from f to g.

(ii) Let &’ : A — BT be a right homotopy from f to g and let B — B -2, BT
be a factorization of s : B — B!’ into a trivial cofibration followed by a
fibration. By M5 p is a weak equivalence. Let
(do,dy) = (djy,d})p : B — B x B so that (do,dy) is a fibration by M3 and
hence B with dy,d1, and s is a path object for B. By M1 there is a dotted

arrow k in
g —— Bl

ATBI,

and k gives the desired homotopy from f to g.

(iii) Let k be as in (ii) and let C be a path object for C. By M1 it is possible

21



CHAPTER 1: AXIOMATIC HOMOTOPY THEORY

to lift in
B—= !
P
s ¢ (do.dy) (9)

Bl — s CxC

(dou,dl u)

and k¢ : A — C! is a right homotopy from uf to ug.
O

If A and B are objects of € we let 77 (A, B) (resp. ©'(A, B)) be the set of
equivalence classes of Hom(A, B) with respect to the equivalence relation gener-
ated by ~ (resp. AlJ) When A cofibrant and B is fibrant, in which case L and
~ coincide and are already equivalence relations by Lemmas 1.1.4, 1.1.5(i) and
their duals, we shall denote the relation by ~, call it homotopy and let my(A, B)

or simply m(A, B) be the set of equivalence classes.

Lemma 1.1.6. If A is cofibrant, then composition in % induces a map

7" (A, B) x 7"(B,C) — 7" (A, B).

Proof. Tt suffices to show that if f,g € Hom(A, B), u € Hom(B,C) and f ~ ¢

then uf ~ ug, which is Lemma 1.1.5(iii), and that if u,v € Hom(B, C),

f € Hom(A, B), and u ~ v, then uf ~ vf, which is immediate from the definition.
O

Lemma 1.1.7. Let A be cofibrant and let p : X — Y be a trivial fibration.
Then p induces a bijection p, : 7/(A4, X) — 7! (A,Y).

Proof. The map is well-defined since f B g = pf ~ pg is immediate from the
definition. The map is surjective by M1. By Lemma 1.1.4 if f, g € Hom(A4, X)
and pf, pg represent the same element of 7!(A,Y’), then there is a left homotopy

22



SECTION 1.1: THE AXIOMS

h:AxI—Y from pf to pg. If H is a lifting in

Ava—Tt9 o x

Bo+01 I{// P (10)

Ax] — N Ly

then H is a left homotopy from f to g. This shows that p, is injective. O

Let €., €, and 6.¢ be the full subcategories consisting of the cofibrant,
fibrant, and both fibrant and cofibrant objects of 4 respectively. By Lemma 1.1.6
we may define a category 7%, with the same objects as €., with
Hom,¢ (A, B) = 7"(A, B) and with the composition induced from that of €.
If we denote the right homotopy class of a map f : A — B by f we obtain a
functor ¢, — 7€, given by X — X, f — f. Similarly largely by the dual of
Lemma 1.1.6 we may define 7% (resp. m%,y) to be the category with the same
objects as €y and with 7!(A, B) (resp. 7(A, B)) as maps from A to B.

Definition 1.1.5. Let ¥ be an arbitrary subcategory and let S be a subclass
of the class of maps of €. By the localization of ¢ with respect to S we mean
a category ST!%¥ together with a functor v : ¥ — S~'% having the following
universal property: For every s € S, y(s) is an isomorphism; given any functor
F: % — % with F(s) an isomorphism for all s € S, there is a unique functor

0:81¢ — % such that oy = F.

Except for set-theoretic difficulties the category S—!¥ exists and may be
constructed by mimicking the construction of the free group (see Gabriel-Zisman

[GZ67)).

Definition 1.1.6. Let % be a model category. Then the homotopy category

of & is the localization of ¥ with respect to the class of weak equivalences and

23



CHAPTER 1: AXIOMATIC HOMOTOPY THEORY

is denoted by v : ¢ — Ho¥¢. ~v.:%. — Ho%é. (resp. v : €y — Ho &)
will denote the localization of €. with respect to the class of maps in €, (resp.
%) which are weak equivalences in 4. We sometimes use the notation [X, Y] for

Homyo (X, Y).

Lemma 1.1.8. (i) Let F' : ¥ — 2 carry weak equivalences in € into iso-

morphisms in A. If f & gor f~ g, then F(f) = F(g) in 4.

(ii) Let F : 6. — 2B carry weak equivalences in %, into isomorphisms in 2.

If f~ g, then F(f) = F(g) in &.

Proof. (i) Let h: Ax I — B be a left homotopy from f to g. As o is a weak

equivalence, F'(o) is an isomorphism. As
F(0)F(0y) = F(0)F(01) =ida = F(0y) = F (1)

and so

F(f) = F(h)F(0) = F(h)F (1) = F(g).

(ii) The proof is the same same as (i) since by Lemma 1.1.4 (ii) we may assume
that s : B — B! is a cofibration and hence B! is in ..

O

By Lemma, 1.1.8 the functors ., v¢, v induce functors 7. : 76, — Ho €., 75 :
76y — Ho%€y and 7 : 76,y — Ho¢, provided these localizations exist. The
following result shows that the homotopy category Ho % as defined in Definition 6

is equivalent to the more concrete category m%. .

Theorem 1’. Ho ¥ exists and the functor 7 : 76,y — Ho ¥ is an equivalence

of categories.

This is included in the following more complex assertion which is presented

for the purpose of comparison with (Gabriel-Zisman [GZ67]).
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Theorem 1.1. The categories Ho ¢, Ho €., Ho € exist and there is a diagram

of functors B
6, —2— Ho%,

76— Ho% (11)

chf L HO%f

where —— denotes a full embedding and — denotes an equivalence of categories.

1

Furthermore, if (7)~! is a quasi—inverse for 7, then the fully faithful functor

Ho%., = Ho¥ o, TCef — T6,

is right adjoint to 7. and the fully faithful functor

-1
Ho%¢y — Ho¥ o, TCef — w6

~

is left adjoint to 7.

Proof. For each object X choose a trivial fibration px : Q(X) — X with Q(X)
cofibrant and a trivial fibration ix : X — R(X) with R(X) fibrant. We assume
that Q(X) = X and px =idx (resp. X = R(X) and ix = idyx) if X is already
cofibrant (resp. fibrant). For each map f : X — Y we may choose by M1 a
map Q(f) : Q(X) — Q(Y) (resp. R(f)ix = iy f) which is unique up to left
(resp. right) homotopy by Lemma 1.1.7. It follows that Q(gf) L Q(9)Q(f) and
Q(idx) ~ idg(x), hence Q(gf) ~ Q(9)Q(f) and Q(idx) ~ idg(x) by Lemma 1.1.4(i)
and therefore X — Q(X), f — Q(f) is a well-defined functor which we shall
denote @ : ¢ — 7%,. Similarly there is a functor R : € — 7%.
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If X is cofibrant, f,g € Hom(X,Y), and f ~ g, then by Lemma 1.1.4(iii)
iy f ~iyg and hence R(f) ~ R(g) by the dual of Lemma 1.1.7. Tt follows that R
restricted to 4. induces a functor 76, — 76,5 and that there is a well-defined

functor RQ : C — 7%,.; given by X — RQX, f — RQ(f).

Let Ho & be the category having the same objects as € with
Hompo (X, Y) = Homzg,, (RQX, RQY) = n(RQX, RQY)

and the obvious composition. Let v : ¥ — Ho% be given by v(X) = X,
v(f) = RQ(f). As RQ(X) = X if X is in €.y, it is clear that the functor
7 : 76,y — Ho % induced by < is fully faithful. By Lemma 1.1.7 and its dual,
trivial fibrations and trivial cofibration in ¢y become isomorphisms in 7%.y;
hence any weak equivalence in %,y becomes an isomorphism in 7%,y by M2 and
M5. If f: X — Y is a weak equivalence in 4, then fpx = pyQ(f) and
M5 imply that Q(f) is a weak equivalence in %, and similarly RQ(f) is a weak
equivalence in €.y; hence v(f) = RQ(f) is an isomorphism. It follows that for
any X the maps

X & (x) 2%, pox

yield an isomorphism of X and RQ(X) in Ho%¢ and hence 7%, T, Ho¥ is an

equivalence of categories.

We now show that v : € — Ho% has the required universal property of
Definition 1.1.5. As mentioned above v carries weak equivalences in ¢ into
isomorphisms in Ho%. Let F : ¥ — 2% do the same. Define § : Ho4 — %
by 8(X) = F(X) and for @ € Homp,%(X,Y) choose f : RQ(X) — RQ(Y)

26



SECTION 1.1: THE AXIOMS

representing « and let 6(a) be given by the diagram

F(X) —-mm F(Y)
F(px)|~ ~| F(py)
F(QX) F(QY) (12)
Fligx) |~ ~| Fligy)
F(f)

F(RQX) —— 5 F(RQY)

By Lemma 1.1.8(i), 6(«) is independent of the choice of f and it is then clear
that 6 is a functor, in fact the unique functor with # o v = F. This proves the
existence of Ho% and also the horizontal equivalence in (11).

The existence of Ho ¢ and the equivalence 7%, s —~ Ho %, can be proved in
the same way using the functor 4. — 7%, induced by R and Lemma 1.1.8(ii).
The last assertion of the theorem results from the fact that the inclusion functor
TCef — T, is right adjoint to the functor R : 7%, — T6.f, since
(X,Y) = n(RX,Y) if X is in €, and Y is in 4.y by Lemma 1.1.7, and from
the fact that up to the equivalence Ho 6, = Ho¢ = n%6.¢, 7. : 6. — Ho €. “is”
the functor R'. O

Corollary 1. If A is cofibrant and B is fibrant, then
Homp, % (A, B) = (A, B)
Proof.
Hompy, (A, B) = 7(RQA, RQB) = m1(RA,QB) = n(A,QB) = n(A, B)

by Lemma 1.1.7 and its dual. O
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Corollary 2. The functor 7. : 7%, — Ho %, permits calculations by left frac-
tions and the functor 7y : 76, f — Ho % permits calculation by right fractions.

Proof. This follows from the first chapter of [GZ67], since 7. has a fully faithful
right adjoint. O

Remarks. 1. In general the localization ¥ — Ho % cannot be calculated by

either left or right fractions.

2. In example A., ¢ = %€ and the usual homotopy relation on maps coincides
with homotopy in the sense of Definition 1.1.5 on ¢.. Thus 7€,y = 7%,
is the homotopy category of cofibrant spaces which in turn is equivalent to
the usual homotopy category of CW complexes. In example B., ¢ = %
and homotopy on %, coincides with the chain homotopy relation. Hence
m6. = m%6.s is what is denoted by K~ (P) is Harshorne [Har66] where P
is the additive sub—category of projectives in &, while Ho % is the derived
category D~ (&) or Dy ().

3. The following example shows that although Ho% is determined by the
category € and the class of weak equivalences, the model structure on &
isn’t. Let 7 be an abelian category of finite homological dimension hav-
ing enough projectives and injectives. Then € = ¢,(«) the category of
bounded complexes is what one should call a full sub-model category of
¢+ (&) as in example B.. The dual of example B. gives the structure of a
model category on c_ (&), the category of complexes bounded above, where
cofibrations are injections, fibrations are surjective maps with injective ker-
nels, and weak equivalences are homology isomorphisms. Again ¢, (&) is a
full-sub—model category of c¢_ (/) and we obtain different model structures

on ¢, (&) with the same family of weak equivalences.
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1.2 The loop and suspension functors

Homotopy theory is concerned not only with the category Ho % as a category
but also with certain extra structure which comes from performing constructions
in . In this section we will be concerned with one aspect of this extra structure—
the loop and suspension functors.

% denotes a mixed model category and f,g: A = B two maps in ¥ where A is
cofibrant and B is fibrant.

Definition 1.2.1. Let h: A x I — B and h’': A x I' — B be two left homo-

topies from f to g. By a left homotopy from h to A’ we mean a diagram

AxI v AxD — M g
AVA
oo’ Jo+i1 H (1)
A AxJ

where jo+j1 is a a cofibration and 7 is a weak equivalence. (Here A x I A\/AA x I
v

is the cofibre product of the maps 0y + 91: AVA — A x I and

Oy +01: AVA— AxI'.) Wesay h is left homotopic to &’ (notation L) if

such a left homotopy exists.

Remarks. 1. Asin §1.1, the symbol A x J will denote an object of € together
with a cofibration jg + j; and weak equivalence 7 as in (1). A x J is not

generally the product of A and an object “.J”.

2. There is a dual notion of right homotopy of right homotopies whose

formulation we will leave to the reader.

Definition 1.2.2. Let h: A x I — B be a left homotopy from f to g and let

k: A — BT be a right homotopy from f to g. By a correspondence between h
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and k we mean a map H: Ax I — B! such that HOy = k, HO, = sg, dyH = h,
and di H = go. We say that h and k correspond if such a correspondence exists.
It will be useful to use the following diagrams to indicate a left homotopy h, a

right homotopy k, and a correspondence H between h and k respectively.

g g go g
f h g
. . k k H 59
h g
f f @)

Lemma 1.2.1. Given A x I and a right homotopy k: A — B’ there is a left
homotopy h: A x I — B corresponding to k. Dually given B’ and h, there is a

k corresponding to h.

Proof. Same of that as Lemma 1.1.5(ii). O

Lemma 1.2.2. Suppose that h: A x I — B and h’': A x I' — B are two
left homotopies from f to ¢ and that k: A — B’ is a right homotopy from f
to g. Suppose that h and k correspond. Then A’ and k correspond iff A’ is left

homotopic to h.

Proof. Let H: A x I — BT be a correspondence between h and k, and let
H': Ax I — B’ be a correspondence between h’ and k. Let A x J, jo+ j1, and

7 be as in Remark 1. The dotted arrow K exists in
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AxI v Axp —HH"  p1
AVA

Jotjr .-

AxJ 7 B
and doK: A x J — B is a left homotopy from h to h'. Conversely suppose
given H: A x I — B! and a left homotopy K: A x J — B from h to h/. Then
jo: Ax I — A x Jis a cofibration by M3 since it’s the composition of jy + 71
and

inlexI—>A><IA\v/AA><I/

which is the cobase extension of dy + 01. Also jg is trivial by M5 since 7jy = o.

Therefore the dotted arrow ¢ exists in

Ax] —H 4 Bl
x
. o
Jo Je (do,d1)
T (K1)

AxJ —=- 3 Bx B

and pj;: A x I' — B is a correspondence between h’ and k. O

Corollary. “is left homotopic to” is an equivalence relation on the class of left
homotopies from f to g and the equivalence classes form a set 7! (A, B; f, g).
Dually right homotopy classes of right homotopies form a set 7] (A, B; f, g). Cor-
respondence yields a bijection 7 (A, B; f, g) ~ 7} (A, B; f, g)

Proof. Lemma 1.2.2 yields the equivalence relation assertion while Lemma 1.2.1
shows that every h is equivalent to a k: A — B with fixed B’ and hence the
equivalence classes form a set. The last assertion is clear from Lemma 1.2.2 and

its dual. O

By the corollary we may drop the “I” and “r” and write 71 (A4, B; f,g) and

refer to an element of this set as a homotopy class of homotopies from f to g.
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Again let € be a fixed model category, let A be a cofibrant object of €, and
let B be a fibrant object.

Definition 1.2.3. Let fi, fo, f3 € Hom(A, B), let h: A x I — B be a left
homotopy from f; to fo and let h': A x I’ — B be a left homotopy from f5
to f3. By the composition of h and I/, denoted h - h/, we mean the homotopy
h': AxI" — B given by h”iny = h, h”iny = b/ where A x I"" is the path object
constructed in Lemma 1.1.3. If f,g € Hom(A, B) and h: A x I — B is a left
homotopy from f to g, then by the inverse of h, denoted h~! we mean the left
homotopy h': A x I' — B from g to f, where A x I’ is the path object for A
given by Ax I' = Ax I, 8 = 01, 9] = 0y, 0/ = o and where b/ = h.

The following pictures for h - b’ and h~! will be used.

fi h fa W f3

. . 3)

Composition and inverses for right homotopies are defined dually and will be

pictured by diagrams like (3) but where the lines run vertically.

Proposition 1.2.1. Composition of left homotopies induces maps

(A, B; f1, f2) x T (A, B; fo, f3) — 7t (A, B; f1, f3) and similarly for right ho-
motopies. Composition of left and right homotopies is compatible with the cor-
respondence bijection of the corollary of Lemma 1.2.2. Finally the category with
objects Hom(A, B), with a morphism from f to g defined to be an element of
m1 (A4, B; f, g), and with composition of morphisms defined to be induced by com-
position of homotopies, is a groupoid, the inverse of an element of 7} (A, B; f, g)

represented by h being represented by h~!.
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Proof. Let h (resp. k) be a left (resp. right) homotopy from f; to fs, let A’ (resp.
k') be a left (resp. right) homotopy from fy to f5, and let H (resp. H') be a
correspondence between h and k (resp b’ and k’). Then we have the following

correspondence between h - h' and k- k.

f30 fzo

K Ko K H' s'f3
fao n

k H sf2 sh/ sf3
h n

Taking Lemma 1.2.2 into consideration this proves the first two assertions of the
proposition.
Composition is associative because (h - h') - A" and h - (b - h”) are both

represented by the picture

Ifh: AxI — B from f togand H: A x I — B’ is a correspondence of h
with some right homotopy k& then the diagrams
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go go go go
k ko k H Y k H 59 sgo 59
fo h h go

and Lemma 1.2.2 give fo-h ~ h, h - go ~ h, proving the existence of iden-
tities and hence Hom(A, B) is a category. Finally let H': A x I’ — B be
H: AxI — B! where A x I' is A x I with 9) = 9, 0] = 0y, and o’ = o,
and let H”: A x I' — B! be a correspondence of h™': A x I’ — B with
some k": A — B! and let H: A x I — B be H”. Then the diagrams

go go fo fo
59 H’ k H 59 sf " k" H" sf
9 At f h 9 f h 9 At f

show that h='-h ~ go and h-h~!' ~ fo providing the last assertion of Proposition

1.2.1. O

It is clear that if i: A” — A is a map of cofibrant objects, then there is
a functor ¢*: Hom(A, B) — Hom(A’, B) which sends f into fi and a right
homotopy k: A — B! into ki: A’ — B!. Similarly if j: B — B’ is a map of
fibrant objects there is a function j,.: Hom(A, B) — Hom(A, B).

Lemma 1.2.3. The diagram

ﬂ-l(Aan fag) Z4*> 7.(-1("4?vi7'7g7')
Jx J

™ (A, B;jf,jg) ——— m (A, B, jfi,jgi)
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commutes.

Proof. Let a € m1(A, B; f, g) and represent o with h: AxB — B, k: A — B,
and let H be a correspondence between h and k. By Lemma 1.1.5(ii) and Lemma
1.2.1 we may assume that 0: A x I — A is a trivial cofibration. By M1 we can

choose dotted arrows in

/.
s

oi+011
Ay A O B— (B
P M
o e
o+o; - o s v (dhd})
T " (jdo.jd
AT — pl _U%dh) g

Then H is a correspondence between jh and ¥k; hence 1k represents j.« and so
ki represents i*j,«. Similarly H is a correspondence between ki and hy; hence
hip represents ¢*a and so jhe represents j.i*a. Finally ¥ Hp is a correspondence

between ©¥ki and jhy which shows that i*j.a = j.i*a. O

Definition 1.2.4. A pointed category is a category ./ in which “the” initial
object and final object exist and are isomorphic. We shall denote this object by
x and call it the null-object of o7. If X and Y are arbitrary objects of & we
denote by 0 € Hom (X,Y") the composition X — x — Y. If f: X — Y is a
map in %, then we define the fibre of f to be the fibre product * xy X and the
cofibre of f to be the fibre product *x Vx Y.

By a pointed model category we mean a model category ¥ which is also a
pointed category. If A is in 6, and B in €, then we will abbreviate (4, B;0,0)
to m1 (A, B). m1 (A, B) is a group by the above proposition.

Theorem 1.2. Let ¥ be a pointed model category. Then there is a functor
A, B — [A, B)]; from (Ho%¢)° x Ho ¢ to Grp! which is determined up to canon-
ical isomorphism by [A, B]; = m1(A, B) if A is cofibrant and B is fibrant. Fur-

thermore, there are two functors from Ho% to Ho %, the suspension functor X

Lcategory of groups and homomorphisms
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and the loop functor 2 and canonical isomorphisms
[XA,B] ~ [A,B]; ~ [A,QB]

of functors (Ho%)° x Ho4 — Set? where [X,Y] = Hompy,(X,Y)

Proof. Let A be cofibrant; choose a cylinder object A x I and let A x I — XA
be the cofibre of 9y + d1: AVA — A x 1. By M3 XA is cofibrant. We shall
define a bijection

p: m(XA,B) = m1(A, B) (4)

which is a natural transformation of functors to Set as B runs over €. Let
¢: XA — B be a map and let p(p) be the element of 71 (A, B) represented
by om: Ax I — B. If p,¢’ € Hom(XA, B) and ¢ ~ ¢, then there is a right
homotopy h: YA — B! from ¢ to ¢'. Let H: AxI — B’ be a correspondence

of ¢'m with some right homotopy & from 0 to 0 and consider the diagram

Oc

k H 50
oy

s0 hm s0
o

2Category of sets and functions
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This shows that ¢ commutes with s0-k and ¢’ corresponds to k, as s0-k and k
represents the same element of 71 (A, B) so do ¢ and ¢’ and hence p(¢) = p(¢').
This shows that p (4) is well-defined. p is surjective by Lemma 1.2.1. Finally,
if p(¢) = p(¢’), then, with the notation from Definition 1.2.1, there is a left
homotopy H: A x J — B from o7 to ¢'m. Let H': A x J — B be given by
H'jo = H'j; = om and let K be the dotted arrow in

Ax] — " . pl
21
K .-
Jo e (do,d1)
7 (HH)

AxJ—="1 4 (B, B)

(jo was shown to be a trivial cofibration in proof of Lemma 1.2.2.) Then
Kji: AxI — Bl is aright homotopy from ¢ to ¢'7 such that K7j;(9p+0;) = 0
and so induces a right homotopy 0A — B! from ¢ to ¢’. This shows p is
injective and proves (4).

Dually if we choose a path object B! and let QB be the fibre of
(do,d1): Bl — B x B, then QB is fibrant and there is a bijection

m(A,QB) —— (A, B) (5)

which is a natural transformation of functors as A runs over %¢.

Lemma 1.1.3 shows that A, B — w1 (A, B) is a functor (6¢)° x €y to Grp.
(4) and (5) combined with Theorem 1.1 and its first corollary show that this
functor induces a functor (Ho €¢)° x Ho ¢} to Grp, which then by Theorem 1.1
may be extended to a functor A, B — [A, B]; from (Ho%)° x Ho % to groups,
not uniquely but unique up to canonical isomorphism. By the first corollary of
Theorem 1.1 and (4) and (5) the bifunctor [-,-]; is representable in the first and

second variables which proves the theorem. O
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Remark. 1. ¥ and 2 are adjoint functors on Ho% and are unique up to
canonical isomorphism. Also for any X, ¥"X n > 1 is a cogroup object

(resp. Q"X is a group object) in Ho %, which is commutative for n > 2.

2. We shall indulge in the abuse of notation of writing 3 for both the functors
on Ho % of Theorem 1.2 and writing o A for the cofibre of AVA — A X1
when A is in €. If we should encounter a situation where this would lead
to confusion we shall denote the former use of ¥ by LY because it’s kind of
a left-derived functor in the sense of §1.4 below. Similarly RS2 will be used

for the loop functor on Ho ¥ if necessary.

1.3 Fibration and Cofibration Sequences

In this section we develop another part of the extra structure on Ho ¢, namely
the long exact sequences for fibrations and cofibrations and the Toda bracket

operation.
% denotes a fixed pointed model category in the following.

Let p: E — B be a fibration where B is fibrant and let i : F' — FE be the
inclusion of the fibre of p into F. F and E are fibrant by M3. Let

B s” BI (d(l)g7dis)

B x B

be a factorization of Apg into a weak equivalence followed by a fibration. We shall
construct an object E! which is nicely related to BY.

Let E xp B (resp. B! xp E) denote the fibre product of p : E — B and
df : Bl — B (resp. dP : Bl — B), and let the fibre product sign x B! to
the left (resp. Bxp to the right) of B! denote fibre products with d¥ (resp.

38



SECTION 1.3: FIBRATION AND COFIBRATION SEQUENCES

dP) in what follows. Let
E I JE
EiElMl—)—)EXBBI XBE

be a factorization of (idg, sZp,idg) into a weak equivalence followed by a fibra-

tion. The notation E, s, etc. is justified because s

is a weak equivalence
and (d¥,d¥) is a fibration by M3 since it is the composition of (df’, p!,d¥) and
(pry,prs) : Exp Bl xp E — E x E, which is the base extension of (d¥,d?) by
p x p. A similar argument shows that (d¥,p!) : B! — E x5 B! and (p!,d¥)

are fibrations.
The map pr; : E xg B! — E is the base extension of d§ by p and hence is
a trivial fibration by M3 and M4. Hence by M5 the fibration
(d¥,p") : Bl — E xp B! is trivial since idg = pr; o(d¥’, p’) o sp. The diagram
FxpBE'xgF —22 B!
n (do,p") (1)

FxOBe—" | ExpB!

is Cartesian where 7 = (pry,j 'p! pry) and where j : QB — B! is as in §1.2
the fiber of (d¥,d?). Here we are using the following convention which will be

used many times in this section.

Convention. If ¢ : X — Y is a monomorphism in a category and §: Z — Y
is a map, then by a~!/3 we mean the unique map v : Z — X with a oy = 3, if

such a map exists.

Returning to the cartesian diagram (1) we have that 7 is a trivial fibration
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by M4 and hence in Ho % (in fact in Ho 6%) there is a map

m:FxQB—F (2)

5 .
given by the composition F' x QB ) FPxpEl xpF 2r), g

Proposition 1.3.1. The map m is independent of the choice of P! : BT — B'
and is a right action of the group object QB on F in Ho%.

We first show that m may be defined in another way.

Recall that [X,Y] = Hompo«(X,Y) and [X,Y]; = D X,Y] = [X,QY]
where these are the same respectively as 7(X,Y) and 7 (X,Y) if X and cofibrant
and Y is fibrant.

Proposition 1.3.2. Let A be cofibrant and let the map

my : [A F] x [A4,QB] — [A, F] be denoted by a,A\ — a -\ If a € [A,F]
is represented by v : A — F, if A € [A,QB] = [A4, B]; is represented by
h:AxI— B with h(9y + 01) =0, and if A is a dotted arrow in

A
la
X

then « - is represented by i 'h'0; : A — F.

u

//7
o }f//// ‘/1’ (3)

AxI —" B

Proof. Let H: A x I — B be a correspondence of h with k : A — BT. Let

K be a lifting in
sEh'61

A jol
//W
.
o1 /,// (dfvpl)
il
AxT " LBl
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Picture:
0 0o d1 K0y di1 K h'oy
pI
k H sBO Kao K sEh’81
0 h A% h h’81

Now K0y : A — E' induces a map K9y : A — F xg E! xg F such that
wK0y = (u,j'k) (see (1)) and hence by the definition of m we have that a- X is
represented by i 1dF¥ K9y : A — F. But i 'd¥K : A x [ — F is a homotopy
from i~1d¥ K9y to i~1h'd; and this proves the Proposition. O

Proof of Prop. 1.3.1. Diagram (3) is clearly independent of p’ so m is indepen-
dent of p’ by Prop 1.3.2. On the other hand, let o, A, u, h, ' be as in Prop 1.3.2,
let Ay € [A, B]; be represented by hy : A x I — B and let b be a dotted arrow

in the first diagram

A—>E A4>E
‘ hll// ‘ ‘ h,hll// ‘
Ax[—>B Ax[’ ' B

so that i~'h}d; represents (a-\)- A1 by Prop. 1.3.2. As the composite homotopy
h-hy represents - \q, the second diagram and Prop. 1.3.2 show that i~*(h/-h})d;
represents a - (A - A1). But (R’ - h])0; = h)0; hence (a-A) - A\ =a- (A- A1) and

m is an action as claimed.
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Definition 1.3.1. By a fibration sequence in Ho% we mean a diagram in
Ho % of the form
X—Y —Z7 XxQZ —X

which for some fibration p : E — B in ¢ is isomorphic to the diagram

m

F-~“E2B FxQBF (4)
constructed above.

Remark 1. By dualizing the above construction one may construct a diagram
A— X —C C—CVXA

starting from a cofibration u in %, where v : X — C'is the cofibre of v and n is
a right co-action of the cogroup ¥ A on C, and define the notion of a cofibration

sequence in Ho%.

Proposition 1.3.3. If (4) is a fibration sequence so is
oB-%F - E QBxQF - QB (5)

where 9 is the composition 2B Y P« QB ™ F and where

ns @ [A,QB] x [A,QFE] — [AQB] is given by (A\,u) — ((Qp).u)~! -\

Proof. We may assume that (4) is the sequence constructed above from a fibration
p. Let p! : ET — B’ be as in the definition of m. Then
pr; : E xp B xp () — E is the base extension of (d¥,d?) by

(p,0) : E — B x B and hence is a fibration; so we get a fibration sequence

(0,5,0)
-y

OB ExpBxp(x) 25 E QB xQFE - QB. (6)
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We calculate n by Proposition 1.3.2; let A € [A, QB] be represented by
u:A— QB,let € [A,QE] be represented by h : Ax I — E and let (h, H,0)
be a lifting in

. Oc
A0 g xp Bl xp (%)
>
) ////// T ] H
© T ao) P Ju O
AxT h E
ph

where H : A x I — B! is pictured at the right. By Prop. 1.3.2, j~'Ho,
represents n.(\, 1) in [A,QB]. Letting H : A x I — B! be a correspondence

of H); with h' : A x I — B, we obtain the correspondence

Oc Oc
Ju H H' sB0
ph h'

of ju with ph - h’, which shows that

A= () n () or ma(Ag) = [(p)er] "\

Thus the map n in (6) is the same as that in (5).

The map f (600), E xp B! x g (¥) is a weak equivalence by M5 since it may

sTii
be factored F' LoTid), El xg F = E! xp (*) — E xp B! xp () where the
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. . . . dg ,p"
second map is a trivial fibration (base extension of E' M E xp B! and
where the first map is a section of the trivial fibration B! xp F 22, F (base

extension of d¥’.) We shall show that the diagram in Ho%

QB

/ \<> (7)
(4,0,0)
_

F EXBBIXB(*)

commutes. Let A € [A, QB] be represented by k: A — B! and let
H : AxI — B’ be a correspondence of k with h. Then d,a = 0-« is represented

by i 'h/0; : A — F where A’ is the dotted arrow in

A
\a
X

So (4,0,0),04 A is represented by

—_

0
F
A
Y
o /// p

Ax] —" B

A —>(h 51,00) FE XB BI XB (*),

(0,4,0).A\ is represented by A ALLONS > xp BT xp (), and

(', H,0): A%l — E xpg B! xp (%)

is a left homotopy between these maps, showing that the triangle (7) commutes in
Ho%. As pry o(i,0,0) = i we see that idgpg, (¢,0,0), and idg give as isomorphism
of (5) with the fibration sequence (6), and so by definition (5) is a fibration

sequence. L]
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Proposition 1.3.4. Let (4) be a fibration sequence in Ho %, let 0 : QB — F
be defined as in Propostion 1.3.3 and let A be any object of Ho%. Then the

sequence

— A, B % 14 o] @5 14 qag) WP

A 0B 0B P (A F] s (A E] s (A, B]

is exact in the following sense:
(i) (p«) {0} =Imi,
(ii) 1405 = 0 and i,y = ixa0 <= a2 = aq - A for some A € [A, QB]
(i) 0x(Q)x = 0 and O 1 = D da <= Ao = (Qp)wpu - A1 for some pu € [A, QF)]

(iv) The sequence of group homomorphisms from [A4, QE] to the left is exact in

the usual sense.
The dual proposition for cofibration sequences is

Proposition 1.3.4°. Let
ASLX 50 CHCOA) A

be a cofibration sequence in Ho% and let 9 : C' — Y A be (ide +0)on. If B is
any object in Ho %', then the sequence

=90 s x, B] = (x4, B) 2 [€,B] - [X, B] —“ [A, B]
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is exact in the sense that (i) - (iv) hold with i, p., 0. replaced by v*,u*, 9* and
where the - in (ii) refers to the right action n* : [C, B] x [>_ A, B] — [C, B].

Proof if Prop. 1.3.4. We may assume (4) is the sequence constructed from the

fibration p.

(i)

(iii)
(iv)

Clearly pi = 0. If p,ao =0 represennt a by u: A — E,let h: AxI — B
be such that hdy = pu, hd = 0. By the covering homotopy theorem (dual
of Corrolary of Lemma 1.1.2) we may cover h by k : A x I — E with
Ook = u. Then if 3 is represented by i~'kd; we have .3 = a.

With the notation of Prop. 1.3.2, we have that h’ is a homotopy from iu
which represents i,a to h'9; which represents i, (a-\). Hence i, (- \) = i,
and in particular

is0 N =1i,(0-\) =4,0 =0,

so 140, = 0. Conversely given ajas with i,a1 = i,aa, represent a; by
u;, i = 1,2, let h : A x I — E be such that h0y = iuy, hd; = iuy whence
if A is the class of ph,a; - A = ag by Prop 1.3.2.

follows from (ii) and Proposition 1.3.3

follows by repeated use of Proposition 3.

O

Proposition 1.3.5. The class of fibration sequences in Ho % has the following

properties:

(i) Any map f: X — Y may be embedded in a fibration sequence

F—Xx-Lv FxQv-—F

7
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(ii) Given a diagram of solid arrows

F d E P B F x QOB m F
i'y B @ i’yXQa i'v
P N T SN Fx QB

where the rows are fibration sequences, the dotted arrow ~y exists.

(iii) In any diagram (8) where the rows are fibration sequences, if « and § are

isomorphisms so is 7.
(iv) Proposition 1.3.3.

Remark 2. Proposition 1.3.4 gives the analogues for fibration sequences of
all non-trivial axioms for the triangles in a triangulated category (see [Ver| or
[Har66]) except the octahedral axiom. The analogue of that axiom holds also,
but as far as the author knows, it’s not worth the trouble required to write it

down.
Proof. (i) Any map in Ho% is isomorphic to a fibration of objects in %;.
(iii) If A is any object in Ho ¢, then Prop. 1.3.4 gives a diagram
[A,QF] —— [A,QB] —— [A,F] —— [A,E] —— [A, B]
s s Y, s s
[A,QF] —— [A,QB'] —— [A,F'] —— [A,E'] —— [A, B’]

where the rows are “exact” in the sense that (i)-(iii) of Prop. 1.3.4 hold.
However this is enough to conclude by the usual 5-lemma argument that

v : [A, F] — [A, F’] is a bijection for all A and hence  is an isomorphism.
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(ii) We may suppose by replacing the diagram (8) by an isomorphic diagram if
necessary that the rows are constructed in the standard way from fibrations
p and p’ in €. Let B - B be a trivial fibration with B cofibrant and let
E -2 Exg B be a trivial fibration with E cofibrant. By M4
pry : Exp B — E is a trivial fibration and pry : Exp B — Biis a fibration

so we obtain a diagram

F d E—2" B
‘5 pr; v ‘u
F ; E m B

in ¥, where pr; v and u are weak equivalences. It follows easily from the

calculation given in Prop. 1.3.2, that

FxQOB —™ L F

FxOB —2 & F

commutes. Hence by (iii) the sequence ~ is isomorphic to first row of (8)
and so we may suppose that the rows of (8) are not only constructed in the
standard way form fibrations p and p’ but that E and B are in 6,¢. Then by
Theorem 1.1 o and 8 are represented by maps v and v in € with p’v ~ up.
As FE is cofibrant, we may by the corollary of Lemma 1.1.2, modify v, so
that p’v = up. Then we may take v : F — F’ in (8) to be the map in ¢
induced by v. The first part of (8) commutes clearly and the second square

may be shown to commute in Ho % by use of Proposition 1.3.2. This proves

(i) O
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The dual proposition for cofibration sequences is left to the reader.

The following proposition will be used in the definition of the Toda bracket.

Proposition 1.3.6. Let

<

A u X v C YA C— " _LCOVYXA
N
OB 9 F U E L4 B FxQB —™ L F

(9)
be a solid arrow diagram in Ho% where the first row except & is a cofibration
sequence, and where the second row except for 0 is a fibration sequence. We
suppose that 8’ = (id¢ +0) on and d = mo (0,idgp) as in Proposition 1.3.4 and
1.3.4°. Suppose that fu = 0 and pf = 0. Then dotted arrow «, 3,7, exist and
the set of possibilities for « formas a left Qp.[A, QFE] - right «*[X,QB] double
coset in [A,QB] and the set of possibilities for § forms a left (Ju)*[XX, B] -
right p.[XA, E] double coset in [¥A, B]. Furthermore under the identification
[A,QB] = [XA, B] the first coset is the inverse of the second.

Proof. By Prop. 1.3.4
pf=0=3: X — F

with f = i8. Similarly ifu = 0 = Ja with da = Su. Hence «, 8 exist. Suppose
that o', 3" are other maps. By the exact sequence of Prop. 1.3.4 8/ = - X for
some A € [X,QB]. More precisely 3/ =m o (8, A) hence

0a' = f'u=mo (B, \)u =m(Bu, A\u) = m(da, \u) = dar- (Mu) = (0- @) - du = 0(a - Au) = d(a - Au).

By exactness

o = (Qp)up- o du= () - a-u™ ()
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and so ' lies in the double coset Qp.[A, QF] - o - v*[X,QB]. As p and A may
be arbitrary we see that any element of this double coset may be an . Dual

assertions hold for v and ¢ and so the first statement of the proposition is proved.

To prove the second assertion we must construct «, 3,7,d so that a corre-
sponds to §~!. We may assume that u is a cofibration of cofibrant objects, that p
is a fibration of fibrant objects and that the top and bottom rows of (1) are con-
structed as above. In this case Theorem 1.1 shows that the map f in Ho % may
be represented by a map in € which we shall denote again by f. Now pf ~ 0 and
as X is cofibrant and u is a fibration we may by the corrollary to Lemma 1.1.2 lift
this homotopy to E and so assume that pf=0. (We may not, however, simultane-
ously assume that fu =0.) Let h: A x I — F be such that hdy = fu, hdy =0

and consider the following diagram

A u X — ™ XVaAXTV4(x) — 0 ya
if ! f+h+0 phg—t  (10)
F E u B

where g : A x [ — ¥ A is the cokernel of AV A — A x I and where we extend
to epimorphisms the convention for morphisms introduced at the beginning of

~1 is the unique map such that (phq=')q = ph. Now the

this section so that phq
top line of (10) is isomorphic in Ho% to the top line of the first part of (9) —
see the proof of Proposition 1.3.3 especially the homotopy commutativity of (7)
for the dual considerations. Consequently by means of this isomorphism we may

define 3 in (9) to be represented by i~ f, v by f + h + 0, and § by phqg~!. But
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we also have the diagram

A
la
X
which by Prop. 1.3.2 shows that Su -6 = 0 since i~! fu represents Bu in (1).
Hence fu=0-6"1 = 9(67!) and we may take o in (1) to be 6~ 1. O

u

|

! E
o h ‘/p7 h@lzo

ph B

AxIT

|

Definition 1.3.2. Let A > X <~ E *~ B be three maps in Ho € such that

fu=pf =0. Form a solid arrow diagram

A u X v 9 YA C "5 CVXA

& €--rpmm- Q

N E

(11)
by choosing by Prop. 1.3.5(i) for the first row a cofibration sequence containing
u, and then fill in the dotted arrows as in Prop. 1.3.6. The set of possibilities for
0 is as in Prop. 1.3.6 a left (Xu)*[XX, B] -right p.[Z A, E] double coset in [X A, B]

which is called Toda bracket of u, f, and p, and is denoted (u, f, p).

Remark 3. 1. The Toda bracket is independent of the choice of the top row
of (3) by Prop. 1.3.5(ii) and (iii).

2. The Toda bracket (u, f, p) may also be computed by choosing a solid arrow
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diagram
—
Q% 9 ,? : E L B FxQOB -5 F

(12)
where the bottom row comes from a fibration sequence, and filling in the

dotted arrows. By Proposition 1.3.6 we have

(Su)*[2Y, B]-a~ !, p.YA, B] C [2A, B].

1.4 Equivalences of homotopy theories

We begin with some general categorical considerations.

Definition 1.4.1. Let v: A — A’ and F : A — B be two functors. By the
left-derived functor of F' with respect to v we mean a functor LYF : A’ — B
with a natural transformation € : LYF oy — F having the following universal
property: Given any G : A’ — B and natural transformation ( : Goy — F

there is a unique natural transformation © : G — L7 F such that

Govy

commutes.

Remark. 1. L7F is the functor from A’ to B such that L7F o+ is closest
to F' from the left. Similarly we may define the right-derived functor

52



SECTION 1.4: EQUIVALENCES OF HOMOTOPY THEORIES

of F' with respect to v to be “the” functor R'F : A’ — B with a natural

transformation n : ' — RYF o« which is closest to F' from the right.

2. The terminology left-derived functor comes from Verdier’s treatment of
homological algebra[Ver|. In that case A is the category K(A), where A is
an abelian category, 7 is the localization K(A) — D(A), F: K(A) — B
is a cohomological functor from K (A) to an abelian category B and L7 F,

RYF are what Verdier calls the left and right derived functors of F.

3. We shall be concerned only with the case where A is a model category C
and -y is the localization functor v : C — Ho C. In this case we will write

just LF.

4. If C is a model category and F' : C — B is a functor then it is clear
that € : LF oy — F is an isomorphism if and only if F' carries weak
equivalences in C into isomorphisms in B. In this case we may assume that
LF is induced by F in the sense that LF is the unique functor HoC — B
with LF o~ = F. Moreover RF' = LF.

Proposition 1.4.1. Let F : C — B be a functor where C is a model cate-
gory. Suppose that F' carries weak equivalences in C¢ into isomorphisms in B.
Then LF' : HoC — B exists. Furthermore ¢(X) : LF(X) — F(X) is an

isomorphism if X is cofibrant.

Proof. Let X — Q(X), f — Q(f), px : Q(X) — (X) be as in the proof
of theorem 1.1, so that Q induces a well-defined functor Q : C — 7C¢. By
Lemma 1.1.8(ii), X — FQX, f — FQ(f) is a functor FQ : C — B which
induces a functor LF : Ho C — B since Q(f) is a weak equivalence if f is. Let
€: LF oy — F be the natural transformation given by

e(X) = F(px) : FQX — FX. To show that ¢ has the universal property of
definition 1.4.1, let ( : Goy — F where G : HoC — B. Define
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O(X) : G(X) — LF(X) to be the composition

Gv(px)~"
_

G(X) GQX S FQX = LF(X).

It is clear that © is a natural transformation G oy — LF o+, and since every
map is HoC¢ is a finite composition of maps v(f) or v(s)~!, © is a natural

transformation © : G — LF. The diagram

—1
ax GO0 qox ¢ FQX —~ 5 LF(X)
SO F(px)
¢

GX ————— FX

shows that £(© % v) = (. The uniqueness of © : G — LF is clear since it is
determined by on HoC¢ = Ho C and so ¢ has the required universal property.

Finally if X is cofibrant LFX = FQX = FX and ¢(X) = idp(x). O

Definition 1.4.2. Let F' : C — C’ be a functor where C and C’ are model
categories. By the total left-derived functor of F' we mean the functor
LF : HoC — HoC’ given by LF = L7(y' o F) where v : C — HoC and

v : C' — Ho C’ are the localization functors.

Remark. The diagram

HoC —X . HoC’

does not commute, but rather there is a natural transformation
€ : LF oy — 4’ o F such that the pair (LF,e) comes as close to making (1)

commutative as possible.
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Corollary. If I carries weak equivalence in C, into weak equivalences C’, then
LF : HoC — HoC' exists and ¢(X) : L(X) — F(X) is an isomorphism in
Ho C’ for X cofibrant.

Proposition 1.4.2. Let C and C’ be pointed model categories with suspension
functors ¥ and X/ on Ho C and Ho C’, respectively. Let F' : C — C’ be a functor
which is right exact (i.e. compatible with finite inductive limits), which carries
cofibrations in C into cofibrations in C’, and which carries weak equivalences in
C. into weak equivalences in C’. Then LF is compatible with finite direct sums,
there is a canonical isomorphism of functors LF o X ~ ' o LF, and with respect
to this isomorphism LF' carries cofibration sequences in Ho C into cofibration

sequences in Ho C’.

Proof. LF exists by proposition 1.4.1 and we may assume that LF(A) = F(A) if
A is cofibrant. If A; and A, are in C, then AV A, the direct sum of A; and A,
in C, is also the direct sum of A; and A in Ho C. By assumption F(C.) C C,

and so
LF(A1V Ay) =F(A1 V Ay) = F(A;) V F(Ay) =LF(A;) VLF(A)

where the last v means direct sum in Ho C’. This proves the first assertion about
F.
Next observe that if A is cofibrant, then for a given object A x I we have that

F(o)

FOITEO), g4 1) £2, pa)

F(A)Vv F(A)
is a factorization of Vg4 into the cofibration F(9y) + F(01) = F (9o + 01)
followed by the weak equivalence F'(0). Hence F(A x I) = F(A) x I and since
F is compatible with cofibre products F(XA) = ZF(A). As F(A) is cofibrant
Y(F(A)) represents X(F(A)) in HoC and so the second assertion is proved.
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ixI

Finally note that if : : A — B is a cofibration in C, and A x I —— B x [
is a compatible choice in the dual sense that p’ : Ef — BT was a compatible
choice in §1.3, then F(A x I) — F(B x I) is also a compatible choice for
FAXx I — FB x I. It follows that F carries the diagram in C,

A-L B4 ¢ C’i*an\éBxI\éC’iC\/A

where ¢ is a weak equivalence into a similar diagram with A replaced by F'A, etc.

This proves the last assertion about LF'. O

Theorem 1.3. Let C and C’ be model categories and let

L
4

C C’
~_ R -~
be a pair of adjoint functors, L being the left and R the right adjoint functor.
Suppose that L preserves cofibrations and that L carries weak equivalences in
C. into weak equivalences in C’. Also suppose that R preserves fibrations and

that R carries weak equivalences in C} into weak equivalences in C. Then the

functors
L(L)

are canonically adjoint.

Suppose in addition for X in C. and Y in Cy that a map LX — Y is a weak
equivalence if and only if the associated map X — RY is a weak equivalence.
Then the adjunction morphisms id — L(L) o R(R) and R(R) o L(L) — id are
isomorphisms so the categories Ho C and Ho C’ are equivalent. Furthermore if C
and C’ are pointed then these equivalences L(L) and R(R) are compatible with

the suspension and loop functors and the fibration and cofibration sequences in
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HoC and Ho C'.

Proof. For simplicity we write L instead of L(L) and we use Grothendieck’s
notation v’ : X — RY (resp. v* : LX — Y) to denote the map corresponding
tou: LX — Y (respv: X — RY). If X isin C, and Y is in Cy, then we
saw in the proof of proposition 1.4.1 that L(X x I) = LX x I. Hence to any left
homotopy h : X x I — RY between f and g there corresponds the homotopy
H° : LX x I — Y between f* and ¢* and so [X,RY] = [LX,Y]. Hence if
X — Q(X) etc. is as in the proof of theorem 1.1 and Y — R'(Y), f — R'(f),
iy : Y — R/(Y) is the functor-up-to-homotopy of theorem 1.1 for the category

C’ we have the isomorphisms:
HOl’IlH0 (el (L)(7 Y) >~ [LQX, R,Y} >~ [QX, RR/Y] ~ HOIIlHO C (X, RY), (3)

where the first and last isomorphisms come from the construction of L and R
given above in proposition 1.4.1. The isomorphisms (3) are clearly functorial as
(X,Y) runs over C° x C!, and hence as every map in Ho C is a finite composition
of maps of the form v(f) or v(s)~!, (3) is functorial as (X,Y) runs over
(HoC)° x (HoC’) proving that L and R are adjoint.

Suppose now that for X in C, and Y in C'f, f X — RY is a weak
equivalence iff ff: LX — Y is a weak equivalence so X M RR(LX) is a
weak equivalence. But by propostion 1.4.1, RR'LX = RLX and by examining
(3) we see that y((irx)’) : X — RR'(LX) is the adjunction map X — RLX.
Hence X — RLX for all X in HoC, and hence in Ho C. Similarly LR - id
which proves the second assertion of the theorem.

If C and C’ are pointed we have by proposition 1.4.2 and its dual LY ~ Y'L
and QR ~ R(Y,. Hence

RY ~ RY'LR ~ RLEXR ~ YR
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and similarly L preserves loop functors. Also by proposition 1.4.2 L preserves

cofibration sequences and R preserves fibration sequences. Suppose that
e={F - E-2 B QBxF - F}

is a fibration sequence in Ho C. Then we may embed the map LE — LB in a
fibration sequence ¢’ of Ho C’ by proposition 1.3.5 (i) and the image Re’ of the
sequence under R is a fibration seuqnece which is isomorphic to € by Proposition
1.3.5, (ii) and (iii). Hence ¢’ ~ Le and L preserves fibration sequences. Similarly

R preserves cofibration sequences. O]

Examples. 1. Let A be an abelian category with enough projectives and
injectives and let C and C’ be the two model categories which have C(A)
as underlying category described in Remark 3 following theorem 1.1. Then

the identity functor gives a pair of adjoint functor

C/—\)C,
\\_/

satisfying the conditions of the theorem. The theorem implies that cofi-
bration and fibration sequences constructed from both categories coincide

which is clear since they coincide with Verdier’s triangles.

2. Let C’ = (spaces) C = (ss sets) as in examples A. and C. and let L be the
geometric realization functor, and R the singular complex functor. Then
theorem 1.3 applies because of [Mil57] and so the cofibration sequences in
the homotopy categories of ss sets of spaces coincide. This is not entirely
trivial since the singular functor does not commute with the operation of

taking the cofibre of a map.

Remark. We recall our vague definition of the homotopy theory associated to a
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model category, namely the category Ho C with all extra structure which comes
by performing constructions in C. In §1.2 and §1.3 we gave the most important
examples of that extra structure and Theorem 1.3 gives a criterion which shows
when the homotopy theories coming from different model categories coincide, at
least when only the structure of §1.2 and §1.3 is concerned. There are other kinds
of structure, e.g. higher order ([Ver],[Spa63]) operations, which ate not included
in theorem 1.3, and it seems reasonable to conjecture that this extra structure is

preserved under the conditions of theorem 1.3.

1.5 Closed model categories

We will say that a map i : A — B has the left lifting property with
respect to a class S of maps in a category C if the dotted arrow exists in any

diagram of the form
_

A X
//Z
{ //’/ lf (1)

B——Y

where f is in the class S. Similarly f has the right lifting property with
respect to S if the dotted arrow exists in any diagram of the form (1) where 7 is

in S.

Definition 1.5.1. A model category C is said to be closed if it satisfies the

axiom

M6 Any two of the following classes of maps in C — the fibrations, cofibrations,

and weak equivalences — determine the third by the following rules:

(a) A map is a fibration <= it has the right lifting property with respect

to the maps which are both cofibrations and weak equivalences
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(b) A map is a cofibration <= it has the left lifting property with respect

to the maps which are both fibrations and weak equivalences.

(¢) A map f is a weak equivalence <= f = wv where v has the left
lifting property with respect to the class of fibrations and u has the

right lifting property with respect to the class of cofibrations.

Remarks. 1. It is clear that M6 implies M1, M3, and M4. Hence a closed
model category may be defined using axioms M0, M2, M5, and M6.

2. Examples A., B. and C. of §1.1 are all closed model categories (see proposi-
tion 1.5.2 below). Model categories which are not closed may be constructed
by reducing the class of cofibrations but keeping M2, M3 and M4 valid. For
example, take example B., §1.1, where A is the category of left R modules,
R aring, and define cofibrations to be injective maps f in Cy (A) such that

Coker f is a complex of free R modules.

In the following C is a fixed model category and we retain the notations of

the previous sections.
Lemma 1.5.1. Let p: X — Y be a fibration C.¢. The following are equivalent.
(i) p has the right lifting property with respect to the cofibrations.

(ii) p is the dual of a strong deformation retract map in the following prcise
sense: there is a map ¢t : Y — X with pt = idy and there is a homotopy

h:X x I — X from tp to idx with ph = po.

(iii) (p) is an isomorphism.

Proof.
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(i) = (ii) One lifts successively in

tp+idx

XvXX ——

X X
‘ 0o+01 ‘/
Y Y

X><I—>

"<<7s

—
4>

(i) = (i) Let p! : X! — 4! be a compatible choice of path objects for X
and Y as in the beginning of §1.2 and let @ be a lifting in

X s~ x!
o 5 (dg p",di)
(h,s¥ ,po,o) I
XX] ——5 X xy Y xy X

Then k = Q0 : X — X! is a right homotopy from tp to idx with
p'k = s¥p. Given the first diagram

A
B’
the dotted arrow ¢ may be constructed by choosing a dotted arrow H in

the second and setting ¢ = dy* H.

— ke X!

X A

/7
‘ l (dg .p")
Y Bt P

Y
t,& B) XXA/’}/

T {

(il) = (iii) t is a homotopy inverse for p, hence p is a homotopy equivalence

and ~(p) is an isomorphism.

(ili) = (ii) By Theorem 1.1 «(p) an isomorphism = p is a homotopy

equivalence and there is a map t : Y — X with pt ~ idy and tp ~ idx.
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By the covering homotopy theorem we may assume that pt = idy. Let
q: X x I — X be a left homotopy from ¢p to idx. Then the composite

1

homotopy ¢~* - tpq : X x I' — X from idx to tp covers the composite

homotopy (pq)~!-pq: X x I' — Y from p to p. However proposition

1

1.2.1 implies that (pg)~"' - (pq) is left homotopic to po : X x I — Y, that

is, there exists H : X x J — Y with Hjy = po and Hj; = (pq)~* - pq
where X X J, jo, j1, T are as in (1) with A replaced by X. By a covering

homotopy argument which takes the form
“1
X x T (pa)™"-(pa) X
Ji W f

XXJTY

we obtain a left homotopy Kjg : X xI — Y from idx to tp with pK jo = po

whose inverse is the desired homotopy h.
O

Definition. A map f: X — Y is said to be a retract of a map f': X' — Y’

if there is a diagram

X

e
=]
Y/

!
f,\

X
! f
idy \ v

Proposition 1.5.1. Let C be a closed model category and let f be a map in C.

Then ~(f) is an isomorphism iff f is a weak equivalence.
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Proof. The direction < is the basic property of v, so we suppose that v(f) is an
isomorphism. By M5 and M2 we reduce to the case where f is a fibration C.r

whence the result follows from the above lemma and M6(c). O

Proposition 1.5.2. Let C be a model category. Then C is closed if and only
if each of the classes of fibrations, cofibrations, and weak equivalences has the

property that any retract of a member of the class is again a member.
Proof.

<= Let p: X — Y have the lifting property (1) whenever i is a trivial cofi-
bration. By M2 we may factor p into X ' Z . Y where i is a trivial
cofibration and u is a fibration. By the property of p there is a dotted arrow

s in

— X

X id

A
li 8. lp
Z Y

u
—

Tt follows that p is a) retract of the fibration u and hence that p is a fibration.
This proves a since M1 gives the = direction of M6 a), and the proof of
b) is similar. Suppose that f = wv as in c¢. Then by the above argument
u is a retract of a trivial cofibration and hence by assumption is a weak
equivalence. Similarly v is a weak equivalence and so f is also. This proves

¢ since the implication = is contained in M2, M5, and M1. So C is closed.

= It is immediate that a retract of a map with a lifting propety of the kind in
M6 a) b) ¢) again has that lifting property. Thus the classes of fibrations
and cofibrations, are closed under retracts. Let v : C — HoC be the

canonical localization functor and suppose that f is a retract of a weak
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equivalence. Then ~v(f) is a retract of an isomorphism and hence is an

isomorphism so f is a weak equivalence by proposition 1.5.1.
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2. EXAMPLES OF SIMPLICIAL HOMOTOPY THE-

ORIES

2.0 Introduction

The first four sections of Chapter II give some examples of model categories.
In §2.3 it is shown how the categories of topological spaces, simplicial groups, and
simplicial sets form model categories, and in §2.4 this result is extended to the
category sA of simplicial objects over a category A, where A is a category closed
under finite limits having sufficiently many projective objects and satisfying one

of the following additional assumptions:
(i) A has sufficiently many cogroup objects,

(ii) A is closed under arbitrary inductive limits and has a set of small projective

generators.

The proofs for topological spaces, simplicial groups, and sA when A satisfies (ii)
are similar and fairly simple, since every object in the model category is fibrant.
For simplicial sets we were unable to find a really elementary proof; the argument
given, which we think is the simplest, uses the classification theory of minimal
fibrations [BGM59]. It is possible to give another argument using the functor

Ex of Kan [Kan57aJand a variant of this argument is used for sA in case (ii).
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All of these categories are what we call simplicial categories, i.e. categories
C endowed with a simplicial set “function complex” Homc(X,Y") for each pair
of objects X and Y satisfying suitable conditions. In §2.1 we define simpli-
cial categories and the generalized path and cylinder functors X, K — X ® K,
Y, K — Y%, K asimplicial set , by the formulas

Homg (K Hom, (X,Y)) = Hom s (X ® K,Y) = Hom,a (X, Y5)

where S is the category of simplicial sets. In §2.2 we define closed simpli-
cial model category which is a category having the structures of a simplicial
category and a closed model category compatibly related. All the examples of
Chapter 2 are closed simplicial model categories; moreover, for these model cat-
egories there are canonically adjoint path and cylinder functors, so much of the
work of the first chapter simplifies considerably (see [Kan57b]). However, there
are certain categories of differential graded algebras that do not seem to have
natural simplicial structures but which are model categories, which is the main

reason for the generality in Chapter 1.

In §2.5 we show under suitable assumptions how homology and cohomology
for model categories may be defined using abelian group objects and the abelian-
ization functor. In particular, we define cohomology groups of an object X with
values in an abelian group object A of a model category C. When C is the cat-
egory of simplicial objects in a category A and X and A are constant simplicial
objects, we show that these cohomology groups are equivalent to those obtained
from suitable cotriples and Grothendieck sheaves. We also indicate how this co-
homology gives a cohomology theory for arbitrary universal algebras coinciding
up to a dimension shift with usual cohomology in the case of groups, and Lie

algebras and associative algebras over a field.

In §2.6 we show that the category of simplicial modules over a simplicial ring
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forms a model category and use this to derive several Kunneth spectral sequences
which will be used in later applications.

The present framework for homotopical algebra is not the most general that
can be imagined. We have restricted ourselves to categories A closed under finite
limits and having sufficiently many projective objects. The sheaf cohomology
of Grothendieck is defined much more generally and Artin-Mazur [AMG67] have
shown in the case of the etale topology for preschemes that it gives rise to an
analogue of ordinary homotopy theory using pro-objects in a homotopy category.
It would also be nice to weaken the hypothesis that finite limits exist on a model
category so the category of 2-connected pointed topological spaces would become
a model category. Finally further generalization might eliminate the following
inadequacy of this theory, that although derived functors may be defined for any
category A with finite limits and enough projectives, the category sA does not

form a model category without additional assumptions.

2.1 Simplicial categories
Simp will denote the category of (semi-) simplicial sets (see [GZ67]).

Definition 2.1.1. A simplicial category is a category C endowed with the

following structure:
(i) a functor X, Y — Homc(X,Y) from C°? x C to Simp,

(ii) maps in Simp

Hom¢(X,Y) X Hom¢ (Y, Z) — Homc(X, Z)

f,g—gof

called composition defined for each triple X, Y, Z of objects of C,
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(iii) an isomorphism

Homg(X,Y) = Homc(X,Y),

Uur—u

of functors from C° x C to Set.
This structure is subject to the following two conditions:

(1) If f € Home(X,Y),, g € Home(Y, Z),, and h € Homc(Z, W), then
(hog)of=ho(gof)

(2) Ifu € Home(X,Y) and f € Homc(Y, Z), then fosju = Homcg(u, Z),(f).
Also s2U o g = Homg (W, u),(9) if g € Homg (W, X),,.

Definition 2.1.2. Let C; and Cy be simplicial categories. By a simplicial
functor F': C; — C3 we mean a functor F' from C; to Cy together with maps
Homc, (X,Y) — Homgc, (FX, FY), denoted f — F(f), such that

F(f og) = F(f) o F(g) and F(ii) = F(u).

Example. If X and Y are simplicial sets, let Homg;mp(X,Y") or simply Hom(X,Y)
be the “function complex” simplicial set of maps from X to Y. There is a canon-

ical “evaluation map”

ev: X x Hom(X,Y) — Y (1)
giving rise to isomorphisms
Hom(K, Hom(X,Y)) - Hom(X x K,Y) (2)

for all K € Ob Simp, where #(u) = evo(id, xu). The map

ev X id

X x Hom(X,Y) x Hom(Y, Z) &5 Y x Hom(Y, Z) =% Z
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thereby determines a composition map (ii), while taking K = A(0), the final
object of Simp, in (2) yields an isomorphism (iii). It is easily seen that Simp is
a simplicial category.

If X is a fixed object of Simp then the functor Y — Hom(X,Y) is a simpli-
cial functor A, where h*: Hom(Y,Z) — Hom(Hom(X,Y), Hom(X, 7)) is
given by #(h*X) = composition.

In the following C denotes a simplicial category. When convenient we will
identify Homg(X,Y) with Homg(X,Y ) and drop the “~” notation. Also we
will often write Hom(X,Y) instead of Homg(X,Y).

Definition 2.1.3. Let X € ObSimp. By X ® K we shall denote an object of
C with a distinguished map a: K — Homc (X, X ® K) such that

¢: Homc (X ® K, Y) = HomSimp(K7 Homc (X7 Y)) (3)

for all Y € Ob C, where #(¢) is the map

axid

KxHom(X®K,Y) % Hom(X, X® K)x Hom(X®K,Y) — Hom(X,Y).

By XX we denote an object of C with a map #: K — Homg (XX, X) such
that
¢: Homg (Y, X*) - Homgimp (K, Homg(Y, X)) (4)

for all Y € Ob C, where #(v) is the composite
K x Hom(Y, X*) P27P) gom (v, X5) x Hom(XX, X) - Hom(Y, X).

Example. If C = Simp, then X x K together with the map
a: K — Hom(X,X x K) such that #(a) = idxxx is an object X ® K.
Hom(K, X) with the map f: K — Hom(Hom(K, X), X) such that #3 = the
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composite
Hom(K, X) x K 22", g Hom(K, X) <% X

is an object XX,

Proposition 2.1.1. If X € ObC and K, L € Ob Simp, then there are canonical

isomorphisms

XX XxL)~(XoK)oL (XK)E~ xExL
when all the objects are defined.
Proof.

Hom(X ® (K x L),Y) ~ Hom(K x L,Hom(X,Y))

(
~ Hom(L, Hom(K,Hom(X,Y)))
~ Hom(L, Hom(X ® K,Y))

(

~ Hom((X ® K)® L,Y).

This yields the first isomorphism; the second is proved similarly.
Remarks.

1. The degree-0 part of (3) yields the formula

Homc(X ® K,Y) ~ Homgimp (K, Homc(X,Y)).

(6)

The difference between (6) and (3) is roughly the first isomorphism of (5)

as on sees by analyzing the proof of (5). In practice (see Prop. 2.1.2 below)

one defines an operation X ® K satisfying (6) and (5) and then proves (3)
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by inverting the proof of (5).

2. The objects X ® K and XX have the following interpretation whose de-
tails we leave to the reader. The functor ¥ — Hom(X,Y') is a simplicial
functor hX from C to Simp in a natural way. Call a simplicial func-
tor F: C — Simp representable if it is isomorphic to h*X for some
X € ObC. (Yoneda’s lemma holds: Homp (h™, F) ~ F(X) where F is the
simplicial category of simplicial functors from C to Simp.) Then X ® K
represents the simplicial functor ¥ — Hom (K, Hom(X,Y)).

Let mo(K) be the set of components of the simplicial set K so that we have

adjoint functors
Homgimp (K, K(5,0)) >~ Homget (70 (K), S) (7)

where if S is a set K(.9,0) denotes the constant simplicial set which is S in each
dimension and has all simplicial operators = idg. If z,y € Ky we say that z is
strictly homotopic to y if there is a z in K7 with d1z = x and dyz = y and that
z is homotopic to y if x and y are equivalent with respect to the equivalence
relation generated by the relation “is strictly homotopic to”. mo(K) is the quotient

of Ky by the relation “is homotopic to” and hence
7T0(K><L) L?TQ(K) X7T0(L). (8)

Let J denote a generalized unit interval, that is, a simplicial set which is
a string of copies of A(1) joined end to end. Let {0} C J and {1} C J be the
subcomplexes generated by the first and last vertices of J. A typical J may be

pictured
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and it is clear that two simplices  and y of K are homotopic if there exists a

generalized unit interval J and a map u: J — K with «(0) = = and u(1) = y.

Definition 2.1.4. Let X, Y be two objects of C and f, g two maps from X
to Y. We say that f is strictly homotopic (resp. homotopic) to g if this is
the case when f and g are regarded as 0-simplices of Hom(X,Y). By a strict
homotopy (resp. homotopy) from f to g we mean an element i~ € Hom(X,Y'),
with dih = f and doh = g (resp. a map u: J — Hom(X,Y) with «(0) = f and
u(1) = g). Let mo(X,Y) = mo Hom(X,Y) be the homotopy classes of maps from
X to Y. We define the category m9C to be the category with the same objects
as C, with Hom,,c(X,Y) = m9(X,Y), and with composition induced from the

composition in C (this is legitimate by (8)).

When objects X ® K and XX exist in C, then a homotopy from f to g is
the same as amap H: X ® J — Y with Hiyg = f and Hi; = g. Here J is a
generalized unit interval and i.: X — X ® J denotes the map induced by the
0-simplex e of J where e = 0 or 1. The homotopy may also be identified with a
map H': Y — Y7 with joH' = f and j; H' = g where j.: X’/ — X is induced
by e € Jy. The reader will note that we have changed notation from 0, d of Ch. 1
to ¢, 5. This is because dy corresponds to i;1. However we will retain the notation
s: X — X7 and 0: X ® J — X to denote the constant homotopy of idx.
These are the maps induced by the unique map J — A(0).

Let A be a category and let sA be the category of simplicial objects over
A, that is, contravariant functors A — A, where A is the category having for
objects the ordered sets [n] = {0,1,...,n} for each integer n > 0, and where a
map ¢: [p] — [g] in A is a (weakly) monotone map. If X is an object of sA,
we write X, instead of X[n] and ¢% (or simply ¢*) for X (¢) when ¢ is a map in
A. If X, Y are objects of sA and if K is a simplicial set, then ([0],[5]) a map
f: X x K — Y is defined to be a collection of maps f(o): X, — Y, one for
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each ¢ > 0 and 0 € K, such that ¢} f(0) = f(¢)o)d% for any map ¢ in A.
X x K is not to be understood as an object of sA and f is not a morphism in a
category. Letting Map(X x K,Y') be the set of maps f: X x K — Y we obtain
a functor

(sA)? x Simp” x (sA) — Set

and hence a functor X, Y — Homga (X,Y) from (sA)° x (sA) to Simp given
by
Homga (X,Y),, = Map(X x A(n),Y)

with simplicial operator ¢* = Map(X x 5, Y). Here A(n) is the “standard n-
simplex” simplicial set, which is the functor A°? — Set represented by [n], and
for any simplicial set K and o € K,, we let 6: A(n) — K be the unique map
in Simp with & (idp,)) = 0.

If X,Y,Z € Ob sA and K is a simplicial set, then we map define the composite
gofoftwomaps f: XxK —Yand g: Y x K — Z by (go f)(o) = g(o)f(0).
This yields a composition operations as in (ii) of Def. 2.1.1, and (iii) comes from
the fact that A(0), consists of exactly one element for each ¢. It is clear that
sA thereby becomes a simplicial category. Also if the functor F': A — B is
extended degree-wise to sF': sA — sB, then sF' is a simplicial functor where if

f: X XK —Y welet
(sF)(f): F(X)x K — F(Y), [(sF)(f)l(c) = F(f()).

Recall that a simplicial set is said to be finite if it has only finitely many
non-degenerate simplices. A finite simplicial set is always a simplicial finite set,

i.e. a simplicial object over the category of finite sets, but not conversely.

Proposition 2.1.2. Let A be a category and let X be a simplicial object over
A. If A is closed under (finite) direct sums, then X ® K exists in sA for every
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simplicial (finite) set K. If A is closed under (finite) projective limits, then X

exists for every (finite) simplicial set K.

Proof. Let

(XRK), = \/ Xn with ¢kgp =Y ing: o) ok
ockK, o
Here \/,.; X; denotes the direct sum of an indexed family {X;;i € I'} of objects of
A, in;: X; — \/ X is the injection of the ith component, and > f;: \/ X; — Y
is the unique map with (3 f;)in; = f; forall je I if {f;: X; — Y,i€ I} isa
family of maps in A. These direct sums exist by the assumptions on A and K.

Let £: X x K — XXK be given by £(0) = in,. Finally let
ev': X x Homga (X,Y) — Y, ev(fn) = Jn(idp)) s X — Y.
Then there are isomorphisms
Homgimp (K, Homga (X,Y)) #T/> Map(X x K,Y) <§—: Homga (XXK,Y)

where #' is induced by ev’ and £* by €. Letting # = (£*) "o (#') it is clear that
# is functorial as X, Y run over sA and K varies over the category of simplicial
(finite) sets. If L is another simplicial (finite) set, then there is a canonical
isomorphism

0: XR(K x L) = (XRK)XL

given by

0, = E in;in, .

(o,7)E(KXL)y

Now if a: K — Hom(X, XKK) is given by #(a) = idygg, then XKK
with a is an object X ® K. In effect letting ¢ be the map (3) determined by a,
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we have the diagram

Hom (L, Hom(XXK,Y)) AN Hom(L, Hom(K,Hom(X,Y)))

#|~

#|~ Hom(K x L,Hom(X,Y))
#|~
Hom((X®K)XL,Y) +—2%— Hom(XR(K x L),Y)

which may be shown to be commutative by a straightforward analysis of the
definitions. Taking L = A(n) for each n we see that ¢ is an isomorphism and

hence the first part of the proposition is proved.

Let A’ be the category of functors A’ — Set and let X — hX be the
canonical fully faithful functor (this forces us to leave the haven of our universe).

Denoting the degree-wise extension of h by h: sA — sA’, one sees that
MapsA (X7 Y) = MapsA(hX X Kv hY)7

SO

Homg;a (X,Y) ~ Homga/ (hX,hY) 9)

and h is a “fully faithful” simplicial functor. Now if ' € ObsA’, then F¥ exists
and is given by FX(A) = F(A)K for all A € ObA, where we have identified
sA’ with the category of functors A°? — Simp in the natural way. One sees
immediately from (9) that X% exists if and only if (hX)¥ is isomorphic to hZ
for some Z € ObsA, or equivalently if [(hX)%],, is a representable functor for

each n. There is a cokernel diagram in Simp

V Alg) == \/ Api) — K x A(n)

jeJg iel
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where if K is finite so is K x A(n) and hence I and J are finite sets. But the

functor
A [(hX)5],(A) = Homgimp (K x A(n), hX (A))
- Ker{H X, (A) = [ X, (A)}
I J
_ hKer{H WXy, = [[ h X, }(A)
I J
is representable by the assumptions made on A. O

Corollary. If F: A — B commutes with (finite) direct sums (resp. projective
limits), then F(X) ® K — F(X ® K) for all X € ObsA and simplicial (finite)
sets K (resp. F(XE) =5 F(X)X for all X and (finite) simplicial sets K).

This is immediate from the formulas for X ® K and X obtained in the proof
of Prop. 2.1.2.

Remark. The corollary implies that if G is a simplicial group then the underlying
simplicial set of G¥ is (underlying simplicial set of G)¥, and similarly for any

other algebraic species.

2.2 Closed simplicial model categories

A(n) for n > 0 (resp. V(n, k) for 0 < k < n > 0) denotes the simplicial subset
of A(n) which is the union of the images of the faces 9;: A(n —1) — A(n) for
0<i<mn (resp. 0<i<m,i#k). A(D) = @ the initial object in S. In the

following, RLP (resp. LLP) stands for right (resp. left) lifting property ( §1.5).
Proposition 2.2.1. The following are equivalent for a map f in S.

(i) f has the RLP with respect to A(n) — A(n) for all n
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(ii) f has the RLP with respect to any injective (i.e. injective in each degree)

map of simplicial sets.

This follows immediately from the skeletal decomposition of an injective map
(see [GZ67, Ch. II, 3.8]). The following is proved in [GZ67, Ch. IV, §2.1].
{e} € A(1) denotes the subcomplex consisting of the degeneracies of the vertex

e, where e = 0, 1.

Proposition 2.2.2. The following are equivalent for a map f in S.
(i) f has the RLP with respect to V(n,k) — for 0 <k <n >0
(ii) f has the RLP with respect to

A(n) x A(1)UA(n) x {e} — A(n) x A(1)

forn >0 and e =0, 1.

(iii) f has the RLP with respect to

LxAQUK x {e} — K x A(1)

for all injective maps L — K in S and e = 0, 1.

Definition 2.2.1. A map of simplicial sets will be called a trivial fibration
(resp. fibration) if it satisfies the equivalent conditions in Proposition 2.2.1

(resp. Proposition 2.2.2).

Thus a fibration is a fiber map in the sense of Kan. It is easy to see that a

trivial fibration is a fibration whose fibers are contractible.

Definition 2.2.2. By a closed simplicial model category we mean a closed
model category C which is also a simplicial category satisfying the following two

conditions:

7



CHAPTER 2: EXAMPLES OF SIMPLICIAL HOMOTOPY THEORIES

SMO If X € ObC, then the objects X ® K and X* exist for any finite simplicial
set K.

SM7 Ifi: A — B is a cofibration and p: X — Y is a fibration, then

Hom(B, X) ">, Hom(4,X) x Hom(B,Y) (1)
Hom(A,Y)

Convention. It will be convenient to use the notation Hom(é, p) for the target

of the map (1).

Proposition 2.2.3. Suppose that C is a simplicial category satisfying M0 and
SMO with four distinguished classes of maps—fibrations, cofibrations, trivial fi-
brations, and trivial cofibration—such that the first and fourth (resp. second and
third) determine each other by lifting properties as in M6(a) and (b). (This holds
in particular if C is a closed simplicial model category). Then SM7 is equivalent

separately to each of the following:

SM7(a) If X — Y is a fibration (resp. trivial fibration), then

YAm) _, xaAln) o yAm)
yaln
is a fibration (resp. trivial fibration) and X2 — Xx{e} x Y{E}YA(U is a

trivial fibration for e = 0, 1.
SM7(b) If A — B is a cofibration (resp. trivial cofibration), then

A®A(n) vV B&A(n) — BaAn)

A®A(n)

is a cofibration (resp. trivial cofibration, and

A®A®) v Be{e— BoA)
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is a trivial cofibration for e = 0, 1).

Proof. To show that XX — X% xy. Y¥ is a fibration where L — K is a
map of simplicial sets, it suffices to show that it has the RLP with respect to any
trivial cofibration A — B. By the definition of the object X ¥ this is equivalent
to showing that

Hom(B, X) — Hom(A4, X) X Hom(B,Y)
Hom(A,Y)

has the RLP with respect to L — K. Manipulating in this way one proves the

proposition. U

Remark. It is clear that SM7(a) holds for the fibrations and trivial fibrations in
S.

For the rest of this section C denotes a closed simplicial model category. We
shall be concerned with relating the simplicial homotopy structure of C with the
left and right homotopy structure of Ch. 1. Let f % g (resp. f < g) mean f
is strictly (simplicially) homotopic (resp. (simplicially) homotopic) to g. The
following is the covering homotopy extension theorem for simplicial homotopies.
It should be noted how much stronger it is when than the Cor. of Lemma 1.1.2

and Lemma 1.1.7.

Proposition 2.2.4. Let i: A — B be a cofibration and let p: X — Y be a
fibration. Let h: A®@ J — X and h: B® J — Y be simplicial homotopies
compatible with ¢ and p in the sense that pk = h(i ® id).

(1) If : B — X satisfies p§ = hjg, 6i = kip, then there is a homotopy
H:B®.J— X with Hig =0, pH = h, and H(i ®idy) = k.

(2) If either ¢ or p is trivial and if 0.: B — X satisfies pf. = hi., 0i = ki,
e =0, 1, then there is a homotopy H: B&® J — X with Hi, =60.,e=0,1,
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pH =h,and H(i ®idy) = k.
Proof. This follows immediately from SM7 by an induction on the length of J. O

Corollary. Let i: A — B be a cofibration of fibrant objects. Then i is trivial
iff ¢ is a strong deformation retract map (i.e. there exists r: B — A,

h: B A(1) — B with 7 = id, ho = idg, hy = ir, h(i ® A(1)) = ic)). Dually
if p: X — Y is a fibration of cofibrant objects, then p is trivial iff there are
maps s: Y — X, h: X ® A(1) — X with ps = idy, hy = idx, h1 = sp,
ph=o(p® A(1)).

Proof. (=) r and h may be obtained by lifting successively in

A id A A £ B[
o~ P
i f// fL// (do,d1)
. ~(idp,ir)
B—e B Bx B
(<) is clear from Proposition 2.2.4 O

Proposition 2.2.5. (1) If f,g: X = Y are two maps in C, then

fRrg = f~yg

and f ~ g. If X cofibrant and Y is fibrant, then the strict simplicial, left,
and right homotopy relations on Hom(X,Y") coincide and are equivalence

relations.

(2) The conclusions of Theorem 1.1,§1.1 remain valid if 7C¢, 7Cy, and 7Cgy
are replaced by m(C.), mo(Cy), and mo(Cey), respectively.

Proof.  (2) The inclusion {0} C J has the LLP with respect to fibrations in S,
hence if X is cofibrant one finds, as in the proof of Prop. 2.2.3(b), that
i9p: X — X ® J is a trivial cofibration. By M5 the mapo: X ® J — X
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is a weak equivalence. also by Prop 2.2.3(b) X v X Lt X @ Jis a
cofibration and so X ® J is a cylinder object for J. It follows as in the
proof of Lemma 1.1.8 that if f,g: X = Y are two maps in C. and f ~ g,
then v.(f) = 7.(g9) and hence ~. induces 7. : 79C. — Ho C,. Similarly
one shows that 7, 75 as in Theorem 1.1, exist with 7 replaced by my. Next
note that the “quasi-” functors X — Q(X) and X — R(X) of the proof of
this theorem yield functors Q : 70C — myC,, R : myC — moCy in virtue
of Prop. 2.2.4 (2) above. The rest of the proof of Theorem 1.1 goes through

without change so (2) follows.

The quasi-inverse of 7 : m9C.y — Ho C constructed in the proof of Theo-

rem 1.1 is induced by RQ : C — moCcy. But we have just seen that

f~g = RQ(f) ~ RQ(g)

and therefore we conclude that

fRg = () =09

Now if J is a generalized unit interval, there is a canonical homotopy
h:JxJ— J with h(id; x0) = id; and h(id; xI) = id; where
e: A(0) — J is the map with e(idg) = e, e = 0,1 and o is the unique

map J — A(0). This homotopy in a representative case may be pictured

where the arrows denote the direction of each 1 simplex of J x J and where
a simplex of J x J labelled as sga goes to sga in J under h. Consequently if
X is any object of C, 0 : X ® J — X is a simplicial homotopy equivalence
and therefore (o) is an isomorphism. By 1.5.1, ¢ is a weak equivalence
and therefore f ~ g = f L g. Similarly X — X7 is a weak equivalence

forall X in Cso f X g => f ~ g; thus this first part of (1) is proved. The
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1 sol sol 1
Sob Sob
b 801
Slb Sob
) h 0 a b 1
s1b Sob
a sol
Slb 81b
0 a ’ b 1

last assertion follows from Lemma 1.2.1 which shows when X is cofibrant
and Y is fibrant the cylinder object X ® A(1) (see proof of (2) above) may
be used to represent any left homotopy from f to g and from Lemma 1.1.4.

O

Remark. Propostion 2.2.5 shows that the simplicial homotopy relation of
Hom(X,Y) is finer than either left or right homotopy, but when X is cofibrant and
Y is fibrant the three relations coincide. One may compare the constructions of
§1.2 and 1.3 with the correspending well-known simplicial constructions and show
that the resulting structure on Ho C is the same. This the fundamental groupoid
of the Kan complex Hom(X,Y) coincides with the one constructed in §1.2, and
if & — B is a fibration in C; where C is pointed, then the long exact sequence
of homotopy groups arising from the fibration Hom(A, F) — Hom(A, B) (SM7
when A € Ob C,) coincides with that of §1.3.

Proposition 2.2.6. If C is a closed simplicial model category, then in a natural

way so are the dual C° and the category C/X of the objects of C over a fixed
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object X.

Proof. The assertion about C°? is trivial. If A and B are two objects of C/X,
we let Homg, x (A, B) be the subcomplex of Homg(A, B) consisting of elements
fn of dimension n with (sf}) o f = sju, where u: A — X and v: B — X are
the structural maps. With the induced composition C/X becomes a simplicial
category closed under finite limits. If K is a finite simplicial set, then the object
(A 2% X)®K in C/X is the map A9K Y, X whereo : X®K — X is the
map corresponding to the map K — Hom(X, X) sending all elements of K to
degeneracies of idx. The objects (A —— X )& in C/X is the map pr, : A¥ x xx X,
whose source is the fiber product of «* and the map s : X — XX corresponding
to o. Thus C/X satisfies SMO.

A map in C/X will be called a fibration, cofibration or weak equivalence if
it is so in C. Axioms M2 and M5 are clear if i : A — A’ and p: B — B
are maps in C/X, then the map Homg,x (A", B') — Homg/x (i,p) is the base
extension by the structural map A(0) — Homeg(A’, X) of the map
Homeg(A', B') — Homg (4, p). Hence SMT holds, hence also M1. To obtain M6
argue as follows: Supposing a map f in C/X has the LLP with respect to the
fibrations in C/X, factor f = pi where i is a trivial cofibration and p is a fibration
C/X; Then f is a retract of ¢ hence is a trivial cofibration in C and hence in

C/X. The other cases of M6 are similar. O

2.3 Topological spaces, simplicial sets, and simplicial groups

Let Top be the category of topological spaces and continuous maps. If X and

Y are spaces, define the function complex Hom(X,Y) by

Hom(X,Y),, = Hom(X x |A(n)],Y)
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with natural simplical operations, where | | denotes geometric realisation. If

f € Hom(X,Y), and g € Hom(Y, Z), let g o f be the composite map

X % |A(n)] L2 X x |A®n)| x |AM)| 224 Y x |A(n)] - Z.

Top thereby becomes a simplical category where X ® K = X x |K| and
X* = the function space X %I,

A map f: X — Y in Top will be called a fibration if it is a fiber map in the
sense of Serre and a weak equivalence if it is a weak homotopy equivalence (i.e.
(X, z) — 7y (Y, fz) for all z € X and ¢ > 0). Finally a map will be called a
cofibration if it has the LLP with respect to all trivial fibrations.

Theorem 2.1. With these definitions the category Top of topological spaces is
a closed simplical model category.

Let Sing: Top — Simp be the singular complex functor so that
Homgimp (K, Sing X') = Hommep (| K|, X) (1)

(Actually Sing and | | are adjoint simplical functors which means that Hom can
be replaced by Hom in (1).)
Lemma 2.3.1. The following are equivalent for a map f in Top.

(i) f is a fibration.

(ii) Sing f is a fibration in Simp.

(iii) f has the RLP with respect to |V (n, k)| — |A(n)| for 0 <k <n > 0.

Proof. (ii) and (iii) are equivalent by (1), and (i) and (iii) are equivalent since

|V (n, k)| = |A(n)| is isomorphic in Top to "~ x 0 —— ™. O

Lemma 2.3.2. The following are equivalent for a map f in Top.
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(i) f is a trivial fibration.
(ii) Sing f is a trivial fibration in Simp.
(iii) f has the RLP with respect to A(gp) — |A(n)| for n > 0.

Proof. (ii) and (ii) are equivalent by (1). As A(gp) < |A(n)| is isomorphic in
Top to S"~! C D" (where S™! = ¢ if n = 0), the equivalence of (i) and (iii)

becomes a standard obstruction theory argument which we omit. O

Corollary. In Top every object is fibrant and the fibrations and trivial fibrations
satisfy SM7(a).

Proof. Since Sing(X 1) = (Sing X)X, SM7(a) for Simp implies SM7(a) for Top.
O

Lemma 2.3.3. Any map f may be factored f = pi where ¢ is a cofibration and

p is a trivial fibration.

Proof. Letting f: X — Y we construct a diagram

X Jo 70 J1 71

as follows. Let Z=! = X and p_; = f, and having obtained Z"!, consider the
set D of all diagrams D of the form

|A(gp)| —F— 2"
Pn—1

Bp
|A(gp)] ———— Y

and define j,: Z"~! — Z" by a co—cartesian diagram
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V 1A@D) ——— V [Alg)]
DeD DeD

Yap ing

L1 Jn=in1 o

Define p,,: Z" — Y by pnjn = Pn-1, Pnine = 0‘%, let Z =limZz", p = limp,
and i = lim j, o... 0 jo. By Lemma 2.3.1 j, has the LLP with respect to trivial
fibrations, hence i does too and so i is a cofibration. Now as A(:;D) is compact
any map «: A(:]D) — Z factors through Z™ for m sufficiently large. In effect
the well-known argument works because all the points of Z — i(X) are closed.
Hence given a: A(:]D) — Z, B:]A(n)] — Y with pa = the restriction of 3,
there is an m with Ima C Z™, and hence by the construction of Z™*! a map
v :|A(n)| — Z™*! C Z such that pa = B and a = the restriction of 7 to A(:]D).

By Lemma 2.3.1, p is a trivial fibration. [

Remark. The argument used to prove Lemma 2.3.3 relied primarily on the fact
that Hom(A(;D),HLQZm) = @Hom(A(;D),Z’”) and may be used to prove
factorization whenever the fibrations (or trivial fibrations) are characterized by
the RLP with respect to a set of maps {A4; — B;} where each 4; is “sequentially
small” in the sense that Hom(A;, ) commutes with sequential inductive limits.
We will have further occasions to use this argument and will refer to it as the

small object argument.

Lemma 2.3.4. The following are equivalent for a map i: A — B.
(i) ¢ is a trivial cofibration.
(ii) 4 has the LLP with respect to the fibrations.

(iii) ¢ is a cofibration and a strong deformation retract map.
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Proof. (ili) = (i) since a strong deformatino retract map is a homotopy equiv-

alence and hence a weak homotopy equivalence.

(i) == (iii). Any trivial fibration is a fibration so i is a cofibration. The

retract and strong deformation may be constructed by lifting in

A
B
which is possible since A — e and B! — B x B are fibrations by the corollary to

Lemma 2.3.2.

BI

B A

T
‘ ‘/ (Jo,g1)
e B ——

—>
-7 ’LT‘ldB) Bx B
—>

(iii) = (ii). A lifting in the first diagram, where p is a fibration, may be

constructed by lifting in the second

A [e3
A
-
-
. u 7
K3 Pid
-
L
L
-
B
B

and setting u = j1 H. Here r and h are the retract and strong deformation for ¢
and lifting in the second diagram is possible because (jo,p’) is a trivial fibration
by the corollary of Lemma 2.3.2.

(i) = (iii). Consider the following factorization of i

AXBBI
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which is the dual of the mapping cylinder construction. j is a strong deformation
map, hence a weak equivalence, and p is a fibration. But i is a weak equivalence
and so p is a trivial fibration. As i is a cofibration there is a section u of p with

ui = j. Hence i is a retract of j and so ¢ is a strong deformation retract map. [

Proof of Theorem 2.1. Axioms M0, SMO0, and M5 are clear. Axiom M6 follows
immediately from definitions and lemmas 2.3.1, 2.3.2, 2.3.4. M6 and the corollary
to Lemma 2.3.2 yield SM7. Lemma 2.3.3 gives one case of M2; to obtain the other,
take f: X — Y and factor it X Jx xy Y? 25 Y where p is a fibration and j
is a weak equivalence. Then factor j = gi by Lemma 2.3.3 where ¢ is a cofibration
and ¢ is a trivial fibration. By M5 ¢ is a trivial cofibration hence f = (gp)i is the

desired factorization. This proves M2 and hence the theorem. [

Let SimpGrp be the category of simplicial groups endowed with its natural
simplicial structure (see §2.1). Then G ® K and G¥ exists if G € Ob SimpGrp

and K is a simplicial set. In fact (G ®@ K), =V G4 with natural simplicial

oceK,

operations and G¥ is the function complex Homgimp(K,G) with its natural

group structure. Define the normalization of SimpGrp by

Ny(G) = [ker(d; : Gy — Gq—1) (= Gp if ¢ =0)

i>0
d: Ny(G) — N,;—1(G) induced by dy. (=0if ¢ =0)
and the (Moore) homotopy groups of G by

_ ker(d: NG — N,_1G)
- Im(d: Nyy1G — N,G)’

74(G)

Then 7,(G) is abelian for ¢ > 1 and 7o(G) is the set of components of G as a

simplical set.
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A map in SimpGrp will be called a weak equivalence if it induces isomor-
phisms for the functor m,. A map will be called a fibration if it is a fibration as a
map of simplicial sets and a cofibration if it has the LLP with respect to trivial

fibrations.

Theorem 2.2. With these definitions the category SimpGrp of simplicial groups
is a closed simplicial model category.

The proof will be exactly the same as for topological spaces once we get the
corollary of Lemma 2.3.2 for SimpGrp and the homotopy axiom for the functor

Te-

Proposition 2.3.1. The following are equivalent for a map f : G — H of

simplicial groups.
(i) f is a fibration in Simp (hence in SimpGrp).
(ii) Ngf : NgG — Ny H is surjective for ¢ > 0.
(i) G U g X i (mo,0) K (0 G, 0) is surjective (in each dimension).

Here if A is a group we let K (A, 0) be the constant simplicial group which is A
in each degree and which has all p* =id 4. It is readily verified that G — 7o (G)
is adjoint to A — K(A,0), that is

HomSimpGrp(G, K(A, O)) = HomGrp(ﬂ'o(G), A)
and ¢ : G — K(mpG,0) is the adjunction map. The above proposition is
essentially an elaboration of the following well-known fact which we shall assume.

Corollary Moore. A simplical group is a Kan complexes.

We shall also need the following fact which may be proved in exactly the same

way as [DP61].
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Lemma 2.3.5. f: G — H is surjective (resp. injective) iff Nf : NG — NH

is surjective (resp. injective).

Proof of proposition 2.3.1. (i) = (ii) since (ii) is equivalent to lifting in any
diagram of the form

V(0 —2% G
1

A(n) —— H
where 0 denotes the map sending all simplicies to the identity elements of SimpGrp.
(i) = (iii). By Lemma 2.3.5 it suffices to show that N(f,¢) is surjective.
As N is left exact and N; K (A,0) = {1} for j > 0 and A if j = 0, we find that
N; (H X g (no 11,0) K (70G,0)) = N;H for j > 0, and hence N;(f,e) is surjective for
j > 0. It remains to show that Go — Hy X5, m moG is surjective which follows

immediately by diagram chasing in the diagram

NG d Gy oG 1

N, H d H, o —— 1.

(ili) = (i). First suppose f : G — H is surjective. Given
u:V(n,k) — G covering v : A(n) — H we may extend u to a map
u' : A(n) — G by the corollary. We may solve the lifting problem for u and v
iff we may solve it for 0: V(n,k) — G and v - (fu')~! : A(n) — H. Hence we
reduce to the case u = 0. As f is surjective when there is a map w : A(n) — G
with fw = v. Then w|y(, k) maps V(n, k) to ker f and by the corollary there is
a z: A(n) — ker f with 2|y 5) = W[y (nk). Then w-27": A(n) — G satisfies

(w-z"Y|vmr =0=wuand fo(w-z~') = fow = v, thus providing the desired
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lifting. Hence any surjective map of simplicial groups is a fibration.

Returning to the general case we consider the diagram

(f:¢)

G H XK(TI’QH,O) K(’IT()G,O) L H

K (710G, 0) K(wof.0)

K(7TOH, O)

where the square is cartesian. K (7o f,0) is clearly a fibration hence so is pry, and

(f,€) being surjective is a fibration. Hence f = pr,(f,¢) is a fibration. O
Corollary. f is surjective iff f is a fibration and mo(f) is surjective.
Proposition 2.3.2. The following are equivalent for a map f in SimpGrp.
(i) f is a trivial fibration in Simp.
(ii) f is a trivial fibration in SimpGrp.
(iii) f is surjective and me(ker f) = 0.

Proof. (ii) <= (iii). First of all the above corollary shows that f is surjective in
case (ii). Letting K be the kernel of f we have the exact sequence of non-abelian

group complexes

1— N(K)— N(G) — NH) —1

where exactness at N(K) and N(G) is because N is left exact and exactness at
N(H) comes from lemma 2.3.5. From this one gets by the usual diagram chasing

a long exact sequence

- —m(G) — m(H) — 7o(K) — m9(G) — mo(H) — 1
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which shows that 7e(K) = 0 iff 7 (f) is an isomorphism.

(i) = (iii). First of all a trivial fibration is surjective in dimension 0 since it
has the RLP with respect to AZO) C A(0); hence by the Corollary of Proposition
2.3.1 f is surjective. Next if o € my(ker f) we represent a by « € K, with d;z =0
for 0 < j < g and define u : A(q.—i— 1) — ker f by sending all faces to the identity

element of ker f except the 0-th which goes to x. Lifting in
G
lf
H

we obtain y € Ngi1(Ker f) with dy = = showing that o = 0.

Alg+1) ———

A(g+1) -9

(i) + (ili)) = (i). Given u: A(n) — G covering v: A(n) — H we may
lift if n = 0 since f is surjective. If n > 0, then as f is a fibration we may
find w: A(n) — G with w|y(,,0) = ©|lv(n,0) and fw = w. Lifting for u and v
is equivalent to lifting for v - w™! and 0 so we reduce to the case v = 0 and
u|V(n,0) = 0. Then w applied to the 0-th face of Azn) is an element x of
(Ker f)n—1 with all faces the identity element. As mq(Ker f) = 0, there is a
z € Np(Ker f) with dz = . Then Z: A(n) — G satisfies 2|A(.n) =wuand fZ =0,

hence z is the desired lifting. O

Corollary. Every object of SimpGrp is fibrant and the fibrations and trivial
fibrations of SimpGrp satisfy SM7(a)

Lemma 2.3.6. If f,g: G = H are homotopic maps in SimpGrp, then
To(f) = Ta(9): Te(G) — ma(H).

Proof. We may assume that f is strictly homotopic to g. Let h: G x A(1) — H
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be a homotopy with hig = f,hi; = g. Then h = {h,} where o is a simplex of
A1), hy: Gy — H, is a group homomorphism and ¢ is the degree of 0. ¢ may
be identified with the sequence (00, ...,0q), which is a sequence (0...0,1...1).
Let hi: G4 — H, be h, where o has i +1 zeroes and ¢ — 1 ones. Then h_; = f
and hy = g in degree q. If « € m;G, represent o by x € Gywithd;z =1,0 < j <gq,

and set

21 = (hosox) - (hisiz) ... (hgsqr) ™D’

29 = (fsox) - (fs1x)™ ... (fsqx)(_l)q,

Then 212, ' € Nyp1 H and d(2125 ') = ga - (fx)~! showing that 7,(f)a = m,4(g)a
O

Proof of Theorem 2.2. : We first note that Lemma 2.3.4 holds in SimpGrp. In
effect (iii) = (i) because a homotopy equivalence is a weak equivalence by
Lemma 2.3.6 and the rest of the proof used only the definition of cofibration and
the corollary to Lemma 2.3.2 which for SimpGrp is replaced by the corollary
to Prop. 2. The factorization axiom Lemma 2.3.2 may be proved by the small
object argument since trivial fibrations are characterized by the RLP with respect

to FA(n) — FA(n) (F = free group functor), and since FFA(n) is small. The
rest of the proof follows that of Theorem 2.1. O

Let the category of Simp of simplicial sets be considered as a simplicial cat-
egory as in §2.1. Define fibrations and trivial fibrations as in §2.2 and call a map
a cofibration (resp. trivial cofibration) if it has the LLP with respect to the class
of trivial fibrations (resp. fibrations). Finally define a weak equivalence in Simp
to be a map f which may be factored f = pi where i is a trivial cofibration and

p is a trivial fibration.
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Theorem 2.3. With these definitions the category Simp of simplicial sets is a

closed simplicial model category.

Proof. First note that “trivial” has its customary meaning in the sense that a
map is a trivial cofibration (resp. fibration) iff it is a cofibration (resp. fibration)
and a weak equivalence. Indeed the direction ( =) is clear. If f: A — Bis a

cofibration and

is a factorization of f, where ¢ is a trivial cofibration and p is a trivial fibration,
then there exists a section s of p with sf = i. Hence f is a retract of ¢ and so f
is a trivial cofibration. Fibrations are handled similarly.

The factorization axiom M2 may be proved by the small object argument
using Prop 2.2.1(i) and 2.2.2(i) and the fact that Azn) and V(n,k) are small.
This actually proves that any map f may be factored f = pi where p is a trivial
fibration (resp. fibration) and where i is a sequential composition of cobase
extensions of direct sums of the maps Azn) — A(n) (resp. V(n, k) — A(n)).
In particular i is injective (resp. an “anodyne extension” in the terminology of
Gabriel-Zisman). If f is already a cofibration (resp. trivial cofibration), then as

above (see (2)) f is a retract of 4, hence is injective (resp. an “anodyne extension”).

The converse is also true (2.1.1 and [GZ67, p. 3.1]). Hence: O

Proposition 2.3.3. In Simp the cofibrations are the injective maps and the

trivial cofibrations are the anodyne extensions. Any object of Simp is cofibrant.

All of the axioms except M5 are now clear. MO, SMO are trivial and M6
is true by the way things have been defined. M2 follows from the small object
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argument, and as the fibrations and trivial fibrations of Simp satisfies SM7(a),
M6 implies that SM7 holds.

The fibrant objects of Simp are the Kan complexes. If F is a Kan complex
and A is a simplicial set, then by SM7 Hom(A, F) is a Kan complex so “is strictly
homotopic to” is an equivalence relation on Hom(A, E). Let
[A, E] = mp Hom(A, E) denote the equivalence classes. Then M5 follows imme-

diately from:

Proposition 2.3.4. A map f: X — Y in Simp is a weak equivalence if and

only if for all Kan complexes E, [f, E]: [Y, E] — [X, E] is bijective.
Proof.

(=) If f is a trivial cofibration then this follows from the covering homotopy
extension theorem (Prop 2.2.4) which depends only on SM7. If f is a trivial
fibration then as every simplicial set is cofibrant one sees by the dual of the
argument used to prove (ii) = (iii) in Lemma 2.3.3 that f is the dual of a
strong deformation retract map. In particular f is a homotopy equivalence
so [f, E] is bijective. If f is a weak equivalence then f is the composition

of a trivial cofibration and a trivial fibration so [f, E] is bijective.

(<) Factoring f = pi where i is a cofibration and p is a trivial fibration we have
[p, E] bijective by the above so we reduce to the case where f is a cofibration.

In this case f is a trivial cofibration by the following two lemmas.

O

Lemma 2.3.7. If i is a cofibration and [i, €] is bijective for all Kan complexes

FE, then ¢ has the LLP with respect to all fibrations of Kan complexes.

Lemma 2.3.8. If a cofibration ¢ has the LLP with respect to all fibrations of
Kan complexes, then it has the LLP with respect to all fibrations and so is a

trivial cofibration.

95



CHAPTER 2: EXAMPLES OF SIMPLICIAL HOMOTOPY THEORIES

Proof of Lemma 2.3.7. We begin by showing that if p: X — Y is a fibration
of Kan complexes, then p is a trivial fibration if and only if p is a homotopy
equivalence. The direction =— has been proved above. To prove <= let s be
a homotopy inverse for p. By lifting the homotopy from ps to idy we may assume
that ps = idy. Then idx and sp are homotopic and as X is a Kan complex we
may choose h: X x A(1) — X with hig = sp and

hi1 = idy. Now

Hom(X,p): Hom(X,X) — Hom(X,Y)

is a fibration and the [-simplicies h and sph define amap a: V(2,0) — Hom(X, X)
which covers the map : A(2) — Hom(X, X) given by the 2-simplex s;(ph).
Hence there is a map v: A(2) — Hom(X, X) which covers the map 8 and
restricts to «; the 0-th face of y(id) is a homotopy k: X x A(1) — X from idx
to sp which is fiber-wise, i.e. pk = o(p x A(1)). This shows that p: X — Y
is a fibration and the dual of a strong deformation retract and hence is a trivial

fibration.

Now let i: A — B and E be as in the statement of Lemma 2.3.7 and apply
this fact to the fibration

Hom(i, E): Hom(B, F) — Hom(A, E).

If K is any simplicial set, then [K,Hom(B, F)] — [K,Hom(A4, F)] may be
identified with [B,Hom(K,FE)] — [A,Hom(K, E)| which is bijective since
Hom(K, E) is a Kan complex and the assumption on i. Hence Hom(i, E) is

a trivial fibration.

Let p: X — Y be a fibration in Simp where Y and hence X is a Kan
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complex and consider the diagram

Hom(B, X) "%~ Hom(A, X) Xtom(a.y) Hom(B,Y) —2 Hom(4, X)

pry Hom(A,p)

Hom(:,Y)

Hom(B,Y) Hom(A,Y)

where the square is cartesian. We have just shown that Hom(i,Y") is a trivial

fibration and hence so is pr;. Thus pr; and
pry(i*,ps) = 1 = Hom(i, X)

are trivial fibrations, hence homotopy equivalences, and so (i*, p,) is a fibration
(SMT) it is a trivial fibration hence surjective in dimension zero and so ¢ has the

LLP with respect to p. O

Proof of Lemma 2.3.8. If p: X — Y is an arbitrary fibration in Simp, then
by [BGM59] there is a minimal fibration ¢: Z — Y such that Z is a strong
deformation retract of X over Y (i.e. the homotopies are fiber-wise). As i is a
cofibration SM7 implies that ¢ has the LLP with respect to p iff ¢ has the LLP
with respect to q. But ¢ is induced from a fibration of Kan complexes. To see
this we may suppose Y is connected and let F' be the fiber of ¢ over a 0-simplex

of Y. Then by [BGM59] there is a cartesian square
X —— W(AutF) xautr F
hq T
Y —  W(AutF)

where 7 is a fibration and W(Aut F) is a Kan complex. As i has the LLP
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with respect to r it does so also for ¢, and hence 7 is a trivial cofibration. This

completes the proof of Lemma 2.3.8 and hence also of Theorem 2.3. O

Combining Prop 2.3.2 with Prop 1.5.1 we obtain

Corollary. The anodyne extensions are precisely the injective maps in Simp

which become isomorphisms in the homotopy category.

Remark. We have presented what we consider to be the next elementary proof
of Theorem 2.3. The problem is to characterize the weak equivalences in some
way so that Mb becomes clear. We now present a list of different characterizations
of the weak equivalences. Some of these may be used to give alternative proofs

of M5 and will be useful later.

Proposition 2.3.5. The following assertions are equivalent for a map f: X —

Y of simplicial sets:
(i) f is a weak equivalence (isomorphism in homotopy category).
(i) Y, E] = [X, E] for all Kan complexes E.
(iii) |X| — |Y] is a homotopy equivalence in T
(iv) Ex* X — Ex*Y is a homotopy equivalence in Simp.

(v) HY(Y,S) = H°(X,S) for any set S, H'(Y,G) = H'(X,G) for any group
G,and HY(Y,L) = H9(X, f*L) for any local coefficient system L of abelian
groups on Y and ¢q > 0.

(vi) 10X = moY, m (X, x) = m (Y, fz) for any z € X,, and
HI(Y,L) = HY(X, f*L) where L, q are as in (v).

Proof. (i) <= (ii) is Proposition 2.3.4. (ii) <= (ili) <= (iv) are proved
in [Kan57b]. Here X — Ex* X is the functorial embedding of X into a Kan

complex constructed by Kan.

98



SECTION 2.3: TOPOLOGICAL SPACES, SIMPLICIAL SETS, AND SIMPLICIAL
GROUPS

(v) <= (vi). Here
HO(X,S):HOIH(WOX,S), Hl(XvG):[XaW(G)]a

and 71 (X, x) is the fundamental group of X at = calulated by the method of the
maximal tree. The first assertion of (v) and (vi) are equivalent and we may assume
X and Y are connected. Let z € Xo. Then [X, W(G)] = Homg,p(m1 (X, 2), G)c
where G acts on a homomorphism ¥ by (g - ¥)(\) = g¥(A)g~!. In other words,
[X,W(G)] is the set of homomorphisms from 71 (X, ) to G in the category of
groups up to inner automorphisms, so the second condition of (v) means that
m1(X,z) — m (Y, fz) is an isomorphism in this category. But this is clearly the
same as 71 (X,z) — (Y, fx) being an isomorphism of groups, and so we see
that the second conditions of (v) and (vi) are equivalent. Thus (v) and (vi) are

equivalent.

(i) = (vi). As mo|X| = mpX we may assume that X and Y are connected.
As 71 (|X|,2) = (X, z) we conclude that 7 (X, z) = 7,(Y, fx) for all x € X.
Let 2 be a fixed 0-simplex of X, let yo = fzo and let 7 = 7 (X, z0) — 71 (Y, %0)-
Let p: (X,2) — (X, 2) (vesp. q: (Y, 50) — (Y,0)) be the universal coverings

and }:: X — Y be the unique map covering f with }fo = Yo.

If L is a local coefficient system on Y, then there is a morphism of Cartan-

Leray spectral sequences

EP" = HP (7, HY(Y , ¢* L)) =——— H?™4(Y,L)

B} = HP(zr, H1(X,p* fL)) =—— HP*9(X, f*L)

As|X| and |Y| are the universal coverings of X and Y, (iii) = |f] is a homotopy
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equivalence. As H*(|X|, A) = H*(X, A) for any abelian group A we see that the
map on the Fs is an isomorphism and so (vi) is proved.

(vi) = (iii). We may assume X and Y are connected and we let X, Y,
etc., be as above. By a theorem of Whitehead it suffices to prove that
7,(|X |, w0) = 74(|Y],y0) for all g. For ¢ = 1, this comes from
m1(|X|,20) = m1(X,z0) and the similar assertion for Y. For ¢ > 1 it suffices
to prove m is a homotopy equivalence or equivalently, since |)~( | and |)~’| are 1-
connected, that H*(Y, A) =5 H*(X, A) for any abelian group A. But the Leray

spectral sequences for p and ¢ degenerate giving a diagram

H"(Y, q., A) «——=—— H"(Y, 4)

fr fr
H™(X,p., A) ——— H"(X,A)

where p, A, q. A are the local coefficient systems of the cohomology of the fiber,
and where f* is the map on cohomology coming from f*(¢.A) = p.A. By (vi)

f* is an isomorphism and so we are finished. O

2.4 sA as a model category

Let A be a category closed under finite limits. A map f: X — Y is said o

be an effective epimorphism if for any object T the diagram of sets

* pr;
Hom(Y,T) —— Hom(X,T) —= Hom(X xy X,T)
pry
is exact. We shall say that an object P of A is projective if
Hom(P, X) — Hom(P,Y) is surjective whenever X — Y is an effective epi-

morphism and that A has sufficiently many projectives if for any object X
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there is a projective P and an effective epimorphism P — X. If A is closed
under inductive limits, we call an object X small if Hom(X, —) commutes with
filtered inductive limits, and call a class U of objects of A a class of generators
if for every object X there is an effective epimorphism @ — X, where @ is a

direct sum of copies of members of U.

Theorem 2.4. Let A be a category closed under finite limits and having suffi-
ciently many projectives. Let sA be the simplicial category of simplicial objects
over A. Define a map f in sA to be a fibration (resp. weak equivalence) if
Hom(P, f) is a fibration (resp. weak equivalence) in Simp for each projective
object P of A, and a cofibration if f has the LLP with respect to the class of
trivial fibrations. Then sA is a closed simplicial model category if A satisfies one

of the following extra conditions:
(¥) Every object of sA is fibrant.

(#%) A is closed under inductive limits and has a set of small projective genera-

tors.

Here, and in the following, objects of A will be identified with constant sim-
plicial objects. For the rest of this section A will denote a category closed under
finite limits and having sufficiently many projectives. We will not use conditions
(%) and (**) until we absolutely have to. We first make some remarks about the

theorem.

Proposition 2.4.1. Suppose that every object X of A is a quotient of a cogroup

object C (i.e. there exists an effective epimorphism C' — X). Then A satisfies

().

Proof. Given X € ObsA and a projective object P of A, choose an effective

epimorphism C — P where C is a cogroup object. Then P is a retract of
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C, so Hom(P, X) is a retract of Hom(C, X) which is a group complex. By
Moore, Hom(C, X) is a Kan complex hence so is Hom(P, X), and hence X is
fibrant. O

Remarks. 1. By a theorem of Lawvere [Law63| a category closed under in-
ductive limits and having a single small projective generator U is equivalent
to the category of universal algebras with a specified set of finitary opera-
tions and identities in such a way that U corresponds to the free algebra on
one generator. Hence the theorem applies when A is the category of rings,
monoids, etc. One may show that effective epimorphism = set-theoretically

surjective map in this case.

2. The category of profinite groups satisfies (x) but not (xx). The free profinite
group generated by a profinite set is both projective and a cogroup object

in this category and every object is a quotient of such an object.
The rest of this section contains the proof of Theorem 2.4.

Proposition 2.4.2. Let A be a category closed under finite limits and having
sufficiently many projectives. Then X — Y is effective epimorphism <=

Hom(P, X) — Hom(P,Y) is surjective for every projective object P.

Proof. (=) is by definition. For ( <= ) we first establish three properties of
effective epimorphisms which hold without assuming A has enough projectives.
It is clear that f: X — Y is an effective epimorphism iff for any object T" and
map «: X — T there is a unique g: Y — T with S8f = «a provided « satisfies
the necessary condition that au = av whenever u,v: S = X are two maps such

that fu = fo.

(1) If f: X — Y has a section s: Y — X with fs = id,, then f is an

effective epimorphism.
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In effect, given a: X — T satisfying the necessary condition let
B=as:Y — T. As sf,idx: X = X are two maps with f(sf) = f(idx) we

have Sf = asf = a. f is clearly unique.

(2) If X Ty 9. Z are maps, where gf is an effective epimorphism and f is

an epimorphism, then g is an effective epimorphism.

Given a: Y — T with au = av whenever u,v: § — Y and gu = gv, it
follows that af : X — T has the property that a.fu = o fv, whenever u,v: S —
Y and gfu = gfv. As gf is an effective epimorphism, there is a unique map

B: Z — T with 45 = af. As f is an epimorphism g = .

(3) It X Loy 2 Z are maps, where g is an effective epimorphism and f has

a section s, then ¢gf is an effective epimorphism.

In effect given a: X — T satisfying the necessary conditions that it factors
through gf, it in particular satisfies the necessary conditions for factoring through
f. By (1). there is a unique 8 with 5f = « given by 8 = as. Suppose u,v: S =Y
are such that gu = gv. Then gfsu = gfsv so asu = asv or 8, = (B,. Hence
since g is an effective epimorphism there is a unique v with vg = 8 and hence a

unique v with vgf = «. Thus ¢gf is an effective epimorphism.

Now suppose that f: X — Y has Hom(P, X) — Hom(P,Y) surjective for
all projective objects P. Choose an effective epimorphism w: P — X with P
projective. As fu has the same property as f we are reduced by (2). to the case
where X is projective. Choose an effective epimorphism v: @ — Y with @
projective. As X is projective there is a map a: X — @Q with va = f and by
the property of f there is a map : Q@ — X with f8 = v. The maps a and 8
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yield sections of the maps pr; and pr, in

X><yQ—>Q

pry ‘
Y

X —
By (1). and (3). vpr, = fpr; is an effective epimorphism and so by (2). f is
an effective epimorphism. O

Corollary. The class of effective epimorphisms in A is closed under composition
and base change and it contains all isomorphisms. If gf is an effective epimor-

phism so is g.
In particular, the effective epimorphisms are universally effective.

Proposition 2.4.3. Any map f may be factored f = pi where i is a cofibration

and where p is a trivial fibration.

Proof. Given f: X — Y construct a diagram

X Jo 70 J1 71 J2

Po

Y

as follows. Let Z=' = X, p~! = f and having obtained p,_;: Z" ! — Y,

choose a projective object P, of A and a map («, ) so that

A(n) n—1yin .
@RS amy L (greryal )

P,V (Zn—l)A(n)
yan)

L[]
is an effective epimorphism in dimension 0, where i,: A(n) — A(n) is the
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canonical inclusion. Now define the map j,, by a cocartesian diagram

Py ® A(n) —2E 5 P, ® An)

Zn—l zn

ing1=jn

and let p,: Z™ — Y be the unique map with p,j, = p,—1 and p, ins = a.

As iy AZn) — A(n) is an isomorphism in dimensions < n so is j,, hence
@Z" = 7 exists and we may define map X Sz 2y by ¢ = lim J, ... Jy,
p = limp,. It is clear that P, ®1, in (2) is a cofibration, hence each j, and hence
1 is a cofibration. To see that p is a trivial fibration it suffices to show that

(PA(’rL) Zin): ZA(’!L) _ YA(n) X . (anl)A(n)
’ Y A(n)

is an effective epimorphism in dimension 0. Consider the diagram

P,V (anl)A(n) YA(n) % . (anl)A(.n)
Y A(n)

. ]
B+is™ (id,k2(m)

n—1

(Zn)A(n) ZA(n) YA(n) % R ZA(n)
kA () (P2 Zin) yan)
where the top map is the effective epimorphism (1), and where k; = lim j,, . .. jg41.
kq+1 is an isomorphism in dimension < 7, hence (id,kfﬁ)) is an isomorphism

in dimension zero. By the corollary of Prop. 2.4.2, (pA(”), Zin) is an effective

epimorphism in dimension 0. O

Proof of Theorem 2.4. () This is exactly the same as the proof in §2.3 for Top

and SimpGrp, so we present an outline only. If f: A — B is a map, then as

105



CHAPTER 2: EXAMPLES OF SIMPLICIAL HOMOTOPY THEORIES

A and B are fibrant, A A x5 Bl 25 B is a factorization of f into a strong
deformation retract map followed by a fibration. The homotopy equivalence i in
sA is carried by Hom(P, —) into a homotopy equivalence in Simp; hence i is
a weak equivalence in sA. If f has the LLP with respect to fibrations, f is a
cofibration and a retract of 7; hence f is a trivial cofibration. Conversely, if f is a
trivial cofibration, M5 implies p is a trivial fibration so f is a retract of i; hence
f is a strong deformation retract map, so by SM7(a), f has the LLP with respect
to the fibrations. With this we have M6, hence SM7. Finally, M2 results from
Prop. 2.4.3 for the cofibration—trivial fibration case and for the other case one
uses this case to write i = ¢j, j cofibration, ¢ trivial fibration, whence f = (pq)j

is a factorization where j is a trivial cofibration and pgq is a fibration.

(xx) Let U be a set of small projective generators for A. Then the retract
argument used in the proof of Prop. 2.4.1 shows that a map f in sA is a fibration
or weak equivalence iff Hom(P, f) is so is Simp for all P € U. In particular,
the fibrations are characterized by the RLP with respect to the set of maps
P®V(nk) — P ®A(n) for each P € U and 0 < k < n > 0. However
P®V(n,k)is small in sA since P is small in A, hence the small object argument
implies that any map f may be factored f = pi where p is a fibration and ¢ has

the LLP with respect to all fibrations. We must show that i is a weak equivalence.

For this purpose, we shall use Kan’s Ex* functor [Kan57a]. We recall that
(Ex K),, is the projective limit in the category of sets of a finite diagram involving
K,,, K,—1 and the face operators of K. AS A is closed under finite limits, we
may define Ex: sA — sA by the formula

Hom(A,Ex X) = ExHom(A4, X) (3)

for all A € ObA, X € ObsA. The natural map K — Ex K in Simp extends
to a map X — Ex X, and hence we may define Ex™(X) = lim Ex"(X) and a
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map ex: X — Ex™(X). If P € U, then as P is small

Hom(P,Ex> X) = Ex* Hom(P, X).

Therefore Ex* X is fibrant and ex: X — Ex™ X is a weak equivalence.
Now suppose that i: A — B has the LLP with respect to fibrations. Then

we may lift successively in

A A ™A A sepl (Ex™ B)A()

o~ oy
z‘ u l { H (jo.j1)
B ¢ B (Ex™® B) x (Ex™ B)

(eB,(Ex®® 1)u)

obtaining the formulas ui = €4, (Ex™ i)u ~ &, egi = (Ex*i)es. Let P € U
and apply the functor v o Hom(P, —) where ~ is the canonical localization map
Simp — Ho Simp. It follows that vy Hom(P, 7) is an isomorphism hence (Prop.
1.5.1) Hom(P, i) is a weak equivalence. Thus ¢ is a weak equivalence and we
have proved that a map with the LLP with respect to the fibrations is a trivial
cofibration. Conversely if f is a trivial cofibration we may factor f = pi where p
is a fibration and ¢ has the LLP with respect to the fibrations; by what we have
just shown i is a weak equivalence, hence p is trivial, so f is a retract of ¢ and
hence has the LLP with respect to the fibrations. This proves half of M6 and
M2; the other is similar using Prop. 2.4.3. M6 implies SM7 and M5 is clear, so

the theorem is proved. O

Remarks. 1. Some extra conditions on A like (%) or (x*) is necessary since
the category of simplicial finite sets fails to satisfy M2. In effect there are

simplicial finite sets with infinite homotopy groups.

2. If the map @ — X in sA is factored @ s 7 2, X where p is a trivial
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fibration and 7 is a cofibration, then it is easily seen by using Prop. 2.2.4
that this factorization is unique up to simplicial homotopy over X. Now
for Z — X to be a trivial fibration is the analogue of Z being a resolution
of X, while for Z to be cofibrant is the analogue of Z being a complex
of projective objects. Hence Prop. 2.4.3 asserts for sA the existence of
projective resolutions and so one may define derived functors for A even

when A does not satisfy () or (sx).

3. It is worthwhile noting that (X A(.”))o = (cosky,—1 X ), where cosk, is the
g-th coskeleton functor of Verdier [Ver|. Consequently a trivial fibration
X — A where A is an object of A is the same as hypercovering of A for
the Grothendieck topology whose covering families consist of single maps
{v — u} which are effective epimorphisms. We will discuss this in the

next section.

4. When A is a category of universal algebras (see Remark 1 after Prop. 2.4.1),
then the P, in the proof of Prop. 2.4.3 may be chosen to be free algebras,
and so the map X ', Z is free in the following sense: there are subsets

C, C Z, for each ¢ such that

(i) n*Cp C Cy whenever 7: [q] — [p] is a surjective monotone map,

(i) fq+9q: XqV FCy, — Z, is an isomorphism for all ¢, where FC, is
the free algebra generated by C, and g¢,: F'C;, — Z, is the unique
algebra map which is the identity on Cj,.

Conversely, one may show [Kan57b, Thm. 6.1] that any free map X -z
may be factored

X—2 -z - ... —Z

where there are co-cartesian squares (2) with P, free and hence any free

map is a cofibration. Furthermore given a cofibration f we may factor it
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f = pi where i is free and p is a trivial fibration: then f is a retract of 4

hence a map is a cofibration iff it is a retract of a free map.

5. If A is an abelian category with sufficiently many projective objects, then
Theorem 2.4 endows sA with the structure of a closed model category. On
the other hand by Dold—Puppe [DP61] the normalization functor
N:sA — Ch A, the category of chain complexes in A is an equivalence
of categories, and moreover the simplicial homotopy relation on maps in
sA corresponds to the chain homotopy relation on maps in Ch A. The cor-
responding closed model category structure on Ch A may be described as
follows: Weak equivalences are maps inducing isomorphisms on homology
groups (since H(NX) = 7X) and fibrations are maps which are epimor-
phisms in positive degrees (straightforward generalization of Prop. 2.3.1 to
abelian categories). Finally cofibrations are monomorphisms whose cock-
erels are dimension-wise projective. In effect what is called the fundamental
theorem of homological algebra amounts essentially to the following: (i) any
monomorphism with dimension-wise projective cokernel has the LLP with
respect to trivial fibrations and (ii) any map f may be factored f = pi
where p is a trivial fibration and 7 is a monomorphism with dimension-wise

projective cokernel.

As the class of monomorphisms with dimension-wise projective cokernels is
closed under retracts, it is seen to be the class of cofibrations by a retract

argument.

2.5 Homology and cohomology

If homotopical algebra is thought of as “non-linear” or “non-additive” homo-
logical algebra, then it is natural to ask what is the “linearization” or “abelion-

aization” of this non-linear situation. This leads to a uniform description of
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homology and cohomology for model categories and in the case of sA the result-
ing cohomology agrees with the cohomology constructed using suitable cotriples
and Grothendieck topologies.

Let C be a model category and let C,, be the category of abelian group
objects in C. We assume that the abelionaization X, of any object X of C
exists so that there are adjoint functors

C === Cy, (1)

—

3

where i is the faith inclusion functor. We also assume that C,; is a model category
in such a way that these adjoint functors satisfy the conditions of the first part

of 1.3, so that there are adjoint functors

Lab
HoC);:i?:iHoCab (2)

[X,Ri(A)] = [Lab(X), A]

Finally we shall assume that Ho C,; satisfies the following two condition:

A. The Adjunction map 6: A = QX A is an isomorphism for all objects A.

B. If

A Al s

is a cofibration sequence, then

971

)0 Ly B I USLIN )|

is a fibration sequence (Note that as Ho C_,; is additive the action
F x QB ™ F is determined by 0 = m(0,id) : 8B — F via the rule
m(a,\) =a+0Aifa: T — Fand \: T — QB).
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These conditions hold for example if C,, = sA, where A is an abelian category
with enough projectives and if C,; is the model category of simplicial modules

over a simplicial ring (see following section.)

We define the cohomology groups of an object X of Ho C with coefficients
an object A of Ho Cg to be

H{,(X,A) = [Lab(X), TNy N 4]

where N is an integer > 0 with ¢ + N > 0. By (A) it does not matter what N

we choose. Suppose now that C is pointed. Then

H{ (X, A) = [Lab(2X), Q7™ V2N A] = [ELab(X), Q1" VxN 4]

= [Lab(X), QN+ N Al = HIT (X, A)

Using this and the fact that L ab preserves cofibration sequence, we find that if

X — Y — C, etc. is a cofibration sequence, then there is a long exact sequence
e H (O, A) — H (Y, A) — Hip (X, A) = i (C.A) — -
From (B) it follows that if
A —A— A —3TA
is a cofibration sequence in Ho C,; then there is a long exact sequence

s HL(X,A') — HY (X, A) — HL(X,A") > HIP (X, A) — -

It is reasonable to call an object of Ho C of the form Ri(A) a generalized
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Eilenberg-Maclane object and to call L ab(X) the homology of X. In effect
H3 (X, A) = [Lab(X), A]

is a universal coefficient theorem while
Hy (X, A) = [X, Ri(4)]

is representability theorem for cohomology.

Examples. 1. C = Simp so that Simp,, = s(Ab) the category of simpli-
cial abelian groups and X,;, = ZX ,the free abelian group functor applied
dimension-wise to X. The assumption on Simp and S,; hold and as every

object of Simp is cofibrant L ab(X) = X. Hence

H].M<X7K(R’0)) = H.(XaR)v

the usual cohomology of X with values in the abelian group R. Also
To(Xap) = He(X,Z)

which partially justifies calling X,; the homology of X.

2. Let C = SimpGrp so that SimpGrp,;, = s(Ab) and G, = G/[G, G].

Then Lab(G) = Gg if G is a free simplicial group and so by a result of
[Kan58b] (See also (16))

0 q<0

HTY(WG,R) ¢>0
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where WG is the “classifying space” simplicial set of G. Also

m4(Lab(GQ)) = Hy (WG, Z).

These formulas are seen to hold for any simplicial group G since to calculate

L ab(G) we may replace G by a free simplicial group.

We now show how these model cohomology groups compare with other kinds

of cohomology. In the following A denotes a category closed under finite projec-

tive limits, X is an object of A, and A is an abelian group object in A/X. We

consider four definitions of cohomology of X with values in A.

(1)

Suppose that the effective epimorphisms of A are universal effective epi-
morphisms (which is the case if A has sufficiently many projectives— Cor.
to Prop. 2). We define a Grothendieck topology on A ([Art62]) by defining
a covering of an object Y to be a family consisting of a single map U — Y
which is an effective epimorphism. The induced topology on A /X is coarser
than the canonical topology so the representable functor h4 is a sheaf of
abelian groups; hence sheaf cohomology groups, which we shall denote by
Hgp (X, A), are defined. Thus HL,(X,A) = HY(I'(X)) where I’ is an

injective resolution of h4 in the category of abelian sheaves on X.
Suppose that there are adjoint functors

A#B

Homa (FB,Y) = Homg(B, SY) (3)

Such that (i) FSY — Y is an effective epimorphisms for all Y € Ob A, (ii)
F'B is projective for all B € ObB. these adjoint functors define a cotriple
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(see [BB66]) and hence cohomology groups H(,

cot

(X, A) defined by

Hioh (X, A) = H'[ha(Co(X))]

where Co(X) is the simplicial object of A/X with Cy(X) = (FS)4T(X)
with face and degeneracy operators coming from the adjunction maps

id — SF, F'S — id.

Suppose that A is closed under finite limits and has sufficiently many pro-
jective objects. Regarding X as a constant simplicial object there exists
by Prop 2.4.3 a trivial fibration P, — X, Where P, is cofibrant, which is
unique up to homotopy over X. The group H[h4(P,)] is therefore inde-
pendent of the choice of P, and we denote it by R%h4(X).

Suppose that A satisfies the conditions of theorem 2.4, §2.4 that the abelian-
ization functor ab : A/X — (A/X)q exists, and that (A/X)y is an
abelian category. Then the model category C = s(A/X) satisfies the
assumption made at the beginning of this section and hence cohomology
groups Hj,; (X, A) are defined, where X and A are identified with constant

simplicial objects.

Theorem 2.5. When each of groups Hj, (X, A), HL (X, A), and R%"a(X) is

defined, it is canonically isomorphic with the Grothendieck sheaf cohomology

group Hl. (X, A).

Proof. We begin by showing that H,(X,A) = R4 (X). Let F be the abelian

category (A/X)ap. F has enough projectives, namely those of the form P,;, where

P is a projective object A/X. Hence sF and Ch(F) are model categories (see

Remark 5 at the end of §2.4) and N : sF — Ch(F) is an equivalence of model

categories. The loop and suspension functors on Ho(ChF) are given very simply
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by functors 2 and ¥ on ChF defined by the formulas

Xq-1 ¢>0 dXX = —-XdX
(ZX)q =

0 q=0

Xon1 ¢>0  dOX = —QdX
(QX)q =
Ker{d: X; — Xo} ¢=0

Let A[g] be the chain complex in F which is A in dimension ¢ and 0 elsewhere

(Alg] if ¢ < 0). As
NEK(A,0) = A[0], NQUNENK(A,0) = Alg],
hence

H{ (X,A) = [Lab(X),Q" VSN K(A,0)] = mo((Pe)ap, QTSN K (A, 0))
= W(N(Po)aln A[q]) = Hq HOIIIF(]V(P.)ab7 A)

= HY(Homp ((Pa)ap, A)) = Hha(P.) = R%h4(X).

To finish the theorem we need some results about Grothendieck sheaves
(J[Art62], [Ver]). Let T denote a Grothendieck topology whose underlying cate-
gory is closed under finite projective limits and has sufficiently many projectives,
and where a covering of an object Y in T is a family U = (Z — Y') consisting
of a single effective epimorphism. Eventually we will let T be A/X. A presheaf
of sets (resp. abelian groups) is a functor T® — Set(resp Ab) and a presheaf of

sets (resp. abelian groups) is a presheaf F' such that for any effective epimorphism
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Z — Y the diagram
FY)—FZ)= F(ZXyvZ)
is exact.

Letting Pr and Sh (resp. Prab and Shab) denote the categories of presheaves
and sheaves of sets (resp. abelian groups) we have the diagram

ShiPr

7

z||i AR (4)

Shab —"—— Prab

?

Here 7 and j are inclusion functors which are right adjoint functors and the other
functors are left adjoint functors. The square of left (resp. right) adjoint functors

commutes up to canonical isomorphisms.

We recall the construction of a, the associated sheaf functor. If FF € ObPr
(resp. ObPrab), then the 0—th (resp. g—th) Cech cohmology presheaf of F is
defined by

H°(F)(Y) =lim H°(U, F)
U

(resp. HY(F)(Y) = 1%n HY(U, F))

where the limit is taken over the category coverings U = (U — Y) of Y and
where

H°((U —Y),F)=Ker{F(U) = F(U xy U)}

(resp. HI((U — Y),F) = the g—th cohomology of the cosimplicial abelian
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group
F(U):iF(UXyU)SF(UXyUXyU) )

Then aF = H°H°(F). Given Y, choose an effective epimorphism P — Y with
P projective; it follows that (P — Y') is cofinal in the category of coverings of
Y and hence

H°(F)(Y) = Ker{F(P) = F(P xy P)}

In particular H°(F)(P) = F(P) if P is projective, and hence
(aF)(P) = F(P) (5)
If Y is arbitrary choose effective epimorphism Py — Y, P, — Py Xy Py, whence

a(F)(Y) = Ker{(aF)(Fy) = (aF)(P)}

= Ker{F(Py) = F(P)}

It follows that for F € Ob Prab, aF' = 0 if and only if F'(P) = 0 for all projective
P. Now if F/ = F - F” are maps in Shab with vu = 0, then this sequence
is exact iff aH = 0 where H = Kerv/Imw in the category Prab. Hence we have

proved

Lemma 2.5.1. A sequence F/ — F — F” of abelian sheaves is exact iff

F'(P) — F(P) — F"(P) is exact for all projective objects P.

Let Z(S) denote the free abelian group generated by a set S. Then the
abelianization functor Z for presheaves is given by (ZF)(Y) = Z(F(Y)) for all Y

hence combining (5) and the commutativity of (5) we obtain
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Lemma 2.5.2. If F is a sheaf of sets, then its abelianization ZF' is such that

for all projectives P.

Let H? : Shab — Prab be the g—th cohomology presheaf functors. Then
H? ¢ > 0 are the right derived functors of i : Simp — P and
H*(F)(Y) = H*(Y, F) is the cohomology of F over Y. We define a weak equiv-
alence in sT to be a map Z, — Y, such that for any projective object P,
Hom(P,Y,) — Hom(P, Z,) is a weak equivalence in Simp. This agrees with

the definition in §2.4.
Proposition 2.5.1. The following are equivalent for a sheaf of abelian groups:
(i) HY(F)=0 ¢ >0.
(ii) HI(U —Y),F) =0 ¢ > 0 for all effective epimorphisms U — Y.
(iii) For any weak equivalence Z, — Y, in sT

H*(F(Ys)) — H*(F(Z.))

A sheaf satisfying the equivalent conditions of Prop. 1 will be called flask.
By (i) any injective sheaf is flask.

Proof. (i) = (iii). Let hy : T — Set be the functor repesented by Y’; then
hy is a sheaf. Let Zy = Zhy so that

HOIIIShab(Zy7 F) = F(Y)
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Let I*® be an injective resolution of F' in Shab so that HI(I*(Y)) = HI(Y,F) =0
for all Y. Then

HYH!Hom(Zy,I*) = H’H(Y,,F) =
HYHY Hom(Zy,, 1*) = H Hom(H,(Zy, ), I*) = Ext” (H,(Zy, ), F)
and so we obtain a spectral sequence
E} = Ext?(H,(Zy,), F) — HP"(F(Y,)

and a similar spectral sequence for Z,. Hence we are reduced to showing that
H.(Zz,) — H.(Zy,). By Lemmas 2.5.1 and 2.5.2 we are reduced to showing
that ZHom(P, Z,) — ZHom(P,Y,) is a weak equivalence of simplicial abelian
groups for each projective P, But this is clear since Hom(P, Z,) — Hom(P,Y,)
is a weak equivalence and since 7,(ZK,), the homology of a simplicial set K,, is

a weak homotopy invariant.

(ii) = (i). There is a Carten-Leray spectral sequence
EP? = HP(HYF) = HPTIF [Art62, 3.5, Ch.1]. By assumption E2° = HPF = (

for p > 0 hence by induction on n one sees that H" F' = 0.

(iil) = (ii). HI(U — Y),F) = HY(F(Z,)) where Z, is the object of sT
with
Zeg=Uxy...xy U.
g+1 times
Regarding Y as a constant simplicial object, Z, — Y is a weak equivalence. In

effect if P is projective Hom (P, U) — Hom(P,Y) is surjective; denoting this by
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S — T we have that Hom(P, Z,) — Hom(P,Y,) is the map

s s S x 8 s
e —

N
T ——= T —=37

which is a homotopy equivalence by the cone construction. O

Lemma 2.5.3. With the notations of (2.5.2) Co(X) — X is a weak equivalence.

Proof. Let P be projective, as FSP — P is an effective epimorphism it follows

that P is a retract of F'SF'. It suffices to show therefore that
Homa (FB,Ce(X)) — Homa (FB, X)

or

Hompg(B,SC.(X)) — Homg(B,SX)

is a weak equivalence of simplicial sets. However SCq(X) — SX is a homotopy

equivalence by the “cone construction”. O

We can now finish the proof of the theorem. Let T = A/X and let I*® be a
flask resolution of the sheaf h4 and let P, — X be a weak equivalence where

each P, is projective. For the double complex I*(P,) we have

rmare(pyy = 4 E)0=0_ P Her (A
0 ¢>0 0 qg>0
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by Prop. 2.5.1 and

HgHZ(I.(P.>) _ Hp(hA(P')) q:O _ Rpha(X) q:O

0 q>0 0 q>0

by Lemma 2.5.1. Thus the two spectral sequences of a double complex degen-
erate giving Ho.p (X, A) ~ HY (X, A) by Lemma 2.5.3 and condition (ii) on the

cot

functors (3). O

Examples. Let A = Grp and let G be a group. Then any abelian group object
in A/G is of the form M xr G P2, G where M is a G module and M xr G
denotes the semi-direct product of M and G. Hence (A/G),p is the abelian cat-
egory of G modules. Moreover if X — G is a group over G, then

Homa (X, M x7 G) = Der(X, M), the derivative of X with values in M re-
garded as an X module via the map X — G. For each group X over G, let
C%X, M) = Homget (X7, M) be the group of g cochain of X with values in M
and let § : C9(X, M) — C9t1(X, M) be the usual coboundary operator. Then

0 — Der(, M) — C'(-, M) -2 C2(-, M) %5 ...
is a flask resolution of the sheaf hy;x,.¢ on A/G. In effect any weak equivalence
of simplicial groups is a homotopy equivalence of sets and the functor C4(X, M)
depend only on the underlying set of X; hence C?(-, M) is flask by Prop. 2.5.1(iii).
On the other hand the sequence is exact by Lemma 2.5.1 and the fact that

cohomology of a free group vanishes in dimension > 2. Thus we find that

. . . HY G, M) ¢>1
HGT(GvM) = Hcot(GvM) = HH(GaM) =

Der(G,M) ¢=0
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where H*(G, M) is the ordinary group cohomology.

Remarks. (i) The preceding example generalizes immediately to cover the
usual cohomology of Lie algebras and associative algebras over a field ([BB66]).
Moreover one is lead to the following general picture for cohomology of any
kind of universal algebras. Letting A be a category of universal algebras
and X € Ob A, then an X-module is an abelian group object A in A/X,
and the cohomology of X with values in A may be defined to be either
Hy (X, A), H.p(X, A), or H?

cot

(X, A) where the cotriple is for example the
“underlying set” and “free algebra” functors A < Set. A cochain com-
plex for computing this cohomology is just a flask resolution of the sheaf

hA on A/X

(ii) The isomorphism Hg,(X,A) = H*(ha(P,)) is a special case of a gen-
eral theorem of Verdier that the Grothendieck sheaf cohomology group
HY(X,F) may be computed as limg H*(U, F') where U runs over the
category of hypercoverings of X for the topology. In effect P, — X is
cofinal in this category of hypercoverings. See [GV72] especially, exposé V,

appendice.

2.6 Modules over a simplicial ring

In this section we show how the category Mg of left simplicial modules over a
simplicial ring forms closed simplicial model category. M g occurs as the category
(sA/X)ap where X is a non-constant simplicial object in sA and hence is worth
studying in virtue of §2.5. We also derive Kunneth spectral sequences which are
useful in applications. Some applications to simplicial groups are given.

In this section a ring is always associative with unit, not necessarily commu-

tative, and left or right modules are always unitary.

122



SECTION 2.6: MODULES OVER A SIMPLICIAL RING

Let R be a simplicial ring. By a left simplicial R-module we mean a
simplicial abelian group M together with a map R x M — M of simplicial sets
which for each ¢ makes M, into a left R,-module. The left simplicial R-modules
form an abelian category My where a sequence is exact iff it is exact in each
dimension. The category of right simplicial R-modules is the category M gop
where R°P is the simplicial ring which is the simplicial abelian group R with the

multiplication opposed to that of R.

If X,Y € ObMg, let Hompg(X,Y), = Homm, (X ®z ZA(n),Y) with the
simplicial operator ¢*® induced by q~b in the obvious way. Here ZK denotes the
simplicial abelian group obtained by applying the free abelian group functor
dimension-wise to the simplicial set K and ® denotes dimension-wise tensor prod-

uct. There is a bilinear map
Hompg(X,Y)® Homg(Y,Z) — Hompg(X, 2) (1)

defined by letting go f for f: X ® ZA(n) — Y and g : Y ® ZA(n) — Z be

the map

X ® ZA(n) 422, X @ ZA(n) @ ZA(n) 224 Y @ ZA(n) — Z.

It is clear that My is a simplicial category with Homy, (X,Y) is equal to the
underlying simplicial set of set of Hompg(X,Y) and with composition induced
by (1). If K is a simplicial set, let X ®7 ZK and Homg(K,Y') be considered as

simplicial R-modules in the natural way. Then there are canonical isomorphisms

Homg(K,Hompg(X,Y)) = Homm, (X ®7z ZK,Y) = Homp, (X, Homg (K, X))
X®zZ(K xL)=(X®zZK)®zZL (2)

Homg(K x L,Y) = Homg (L, Homg(K,Y))
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which may be used in the proof of Prop. 2.1.2 to show that X ®7z ZK is an object
X ® K and that Homg(K,Y) is an object Y in the simplicial category Mg.
We will use the notation X ® ZK instead of X ® K in the following.

Define a map in Mg to be a fibration (resp. weak equivalence) if it is so as
a map in S, and call a map a cofibration if it has the LLP with respect to the
trivial fibrations. The proof that My is a closed simplicial model category follows
that for SimpGrp (§2.3) and sA in the case (x) (§2.4); in effect every object
is fibrant and factorization axiom may be proved by the small object argument.

The following descriptions hold: A map f: X — Y in Mgy is a fibration if
(fag) X —Y X K (70Y,0) K(F0X70>

is surjective, a weak equivalence if 7o f : Te.X — 7,Y, and a trivial fibration if f
is a surjective weak equivalence. f is a cofibration iff it is a retract of a free map,
and a trivial cofibration iff f is a cofibration and a strong deformation retract
map. Here f: X — Y is said to be free if there are subsets C, C Y, for each ¢
such that C, is stable under the degeneracy operators of Y and X,® R,C, — Y,

for each gq.

If A is a ring, M4 is the category of left A modules, and R is the constant
simplicial ring obtained from A, then Mg = s(My4) and the above structure of
a closed simplicial model category on Mp is the same as that defined in §2.4.
Moreover if Ch(My4) denotes the category of chain complexes in M 4, then the
normalization functor N : M — Ch(My,) is an equivalence of closed model
categories. Here Ch(M,) is defined to be a closed model category by a slight

modification of example B.. The following fact is of course clear for Ch(IM4).

Proposition 2.6.1. Let 2 and ¥ be the loop and suspension functors in the

124



SECTION 2.6: MODULES OVER A SIMPLICIAL RING

category Ho(Mpg). Then

0: M= QXM
SOM 5 M <= mgM =0
where the maps are adjunction morphisms. Furthermore if

6

A alar Lo

is a cofibration sequence in Ho(Mpg), then
0530/ (R Ay AN U Y/

is a fibration sequence.

Proof. For any simplicial left R module X there are canonical exact sequences in

Mg

0 —X—CX —XX —0 (3)

0— QX — AX — X — K(mX,0) — 0 (4)
which in more detail are the maps

X 5 X @ZA1)/X @ Z{0} — X @ ZA(1)/X @ ZA(1)
0xy X2M %0 Mg x x XAM) Jipra =5 K(mX,0)
Here K (mpX, 0) is the simplicial R module which is the constant simplicial abelian

group of mpX with R module structure determined via ¢ : R — K(mR,0)

and the natural myR action on moX, and ¢ : X — K(mX,0) is the canonical
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augmentation. The exactness of (3) is clear dimension-wise and (4) is exact
for simplicial groups hence also for My, since X2() is calculated in My as in
SimpGrp. The canonical homotopy A : A(1) x A(1) — A(1) with hiy = igo
and hi; = id induces a homotopy H : CX ® ZA(1) — CX with Hip = 0 and
Hi, = id and a homotopy K : AX ® ZA(1) — AX with Kip =0 and Ki; = id.
Hence n(CX) = n(AX) = 0.

The functor Q on Mg defined by (4) actually becomes the functor  in
Ho(Mpg), since every X in My is fibrant and so X)) is a path object for
X. Similarly one sees that X represents the suspension of X in Ho(Mg) pro-
vided X is cofibrant. However if Y — X is a trivial fibration with Y cofibrant
we obtain a map into (3) of the corresponding sequence for Y, so by the homo-
topy long exact sequence and the 5 lemma XY — 3 X is a weak equivalence.
Therefore X represents the suspension of X in Ho(Mpg) for all X.

If m1gX = 0, then the diagram

0— QX —— (00X ——— 30X —— 0

0 — QX NX X 0

where u and v are induced by the contracting homotopy K of AX described
above, and the five lemma show that v is a weak equivalence. However v is
the adjunction map for the adjoint functors ¥ and €2 in Mg and hence also
in Ho(Mg), so the direction <= of the second assertion of the proposition is
proved. The direction = results from the formula 7y(XX) = 0 which follows
since (XX)g = 0. The first assertion of the proposition may be proved by a
diagram similar to (5). For the last assertion of the proposition we may assume
that ¢ : A — A’ is a cofibration of cofibrant objects, that A” is the cone on 1,

that j is the embedding of A as the base of this cone, and finally that ¢ is the
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cokernel of j. As Mp is abelian 0 is a fibration with fiber j : A — A” and there

is a diagram

A i A J A" ) N A

|
B
-
—
—

OSA 0y A A5y

where 0 is the boundary operator of the fibration sequence associated to d. For the
commutativity of the first square see proof of Prop. 1.3.6. As € is an isomorphism

we find that @ = —i6~! and so the proposition is proved. O

Kunneth spectral sequences. If X and Y are simplicial abelian groups

and if z € X, y € Y,, the the element 2 Ay € (X ® Y)p44 is defined by the

formula
xAy= Z e(p,v)s,T @ s,y (6)
(,v)
where (u, ) runs over all (p, ¢) shuffles, i.e., permutations (u1, ..., fp, ¥1,...,Vq)

of {0,...,p+ ¢+ 1} such that p; < --- < pp and v1 < -+ < vy, where (p,v) is

the sign of the permutation, and where
SuY = Su, Sy, Syl = Sy, Sy, T
The following properties of the operation A are well known.
(1) xze NX,ye NY = 2y NX®Y)
(2) d(z Ay) =dx Ay + (—1)Px A dy where p = degree x and d = >_(—1)%d;.

B) zA(yAz)=(xAy) Az
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(4) If7: X®Y 5 Y ® X is the isomorphism 7(z ® y) = y ® x, then
T(z Ay) = (=1)M7(y Ax)
if p = degree xz, ¢ = degree y.

If R is a simplicial ring, then these properties show that A induces on N R the
structure of a differential graded ring which is anti-commutative if R is commuta-
tive. In fact N R is even strictly anti-commutative (z? = 0 if degree x is odd) when
R is commutative as one sees directly from (6). Consequently meR = Ho(INR)
is a graded ring which is strictly anti-commutative if R is commutative. If X is
a left (resp. right) simplicial R module then by virtue of ®, NX is a left (resp.
right) differential graded N R module, and so me¢X is a left (resp. right) graded
Te R module.

By a projective resolution of a left simplicial R module X we mean a
trivial fibration v : P — X in Mg such that P is cofibrant. By Prop. 2.2.4 u is
unique up to homotopy over X, and moreover if we choose projective resolutions
py : Q(Y) — Y foreach Y € ObMp and a map Q(f) for eachmap f: Y — Y’
such that Py/Q(f) = fpy, then we obtain a functor mo(Mg) — mo(Mp,) right
adjoint to the inclusion functor. Hence projective resolution is up to homotopy
a homotopy preserving functor of X.

If X is a right simplicial R module and Y is a left simplicial R module, and if
P - X and Q == Y are projective resolutions of X and Y in Mpger and Mp
respectively, then the abelian group P ® g @ is independent up to homotopy over
X ®grY of the choices of u and v. We denote P ®p @ by X é@R Y and call it the
derived tensor product of X and Y since in the terminology of §1.4, it is the

total left derived functor of @ g : M pger X Mg —> My,

Theorem 2.6. Let R be a simplicial ring and let X (resp. Y') be a left (resp.

128



SECTION 2.6: MODULES OVER A SIMPLICIAL RING

right) simplicial R module. Then there are canonical first quadrant spectral

sequences
(a) B2, — mp(Torf(X,Y)) = mpg(X @ Y)
(b) E2, = Tor}*(nM,7N)q = Tpsq(X @R Y)
(c) B2, =mp(mgX @rY) = Tp1o(X ®RY)
(d) B}, =mp(X @rmgY) = Tp1o(X ®rY)
which are functorial in R, X, Y.

In (a) Toqu(X, Y’) denotes the simplicial abelian group obtained by apply-
ing the functor Tor, (—, —) to R, X,Y dimension-wise. In (b) Tor;rR(wM, wN),
denotes the homogeneous submodule of degree in ¢ in TOI‘;R(TFM ,mN) which is
naturally graded since the ring 7R and the modules 7M, 7N are graded. In (c)
7y X is an abbreviation for the constant simplicial abelian group K (7,X, 0) which
becomes a right R module via the augmentation R — K (m R, 0) and the action

mgX ® mpR — 7y X induced by A. Similarly for 7Y in (d).
Proof. (a) Construct recursively an exact sequence in Mg
— P —Pp—X—0 (7)

by letting Xog = X, P, — X, be the projective resolution of X, and
Xq+1 = ker(P; — X;). Then nP, = 0 for ¢ > 0 so P, — 0 is a weak
equivalence of cofibrant objects and hence a homotopy equivalence. Hence there

is a map h : P, ®z ZA(1) — P, with h(id ®ip) = id and h(id ®i;) = 0. Thus

(P, ®rY) ®z ZA(1) 229 P @r Y
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is a contracting homotopy of P, @z Y and so (P, ®g Y) = 0. Think of the
simplicial operators in (7) as being vertical and consider the double complex
NY(P, ®p Y) obtained by applying the normalization to the functor to the
simplicial structure. Then H'HY = 0 for ¢ > 0 and = m,(Py ®p Y) if ¢ = 0. As
the cofibrant simplicial R module P, is a direct summand of a free simplicial R
module, (P,), is projective over R,, for each n, and so in simplicial dimension n

(7) is a projective resolution of the R,, module X,,. Hence
HINY(Py @pY) = NYH!Py @r Y) = Ny, Tory™ (X, Ys),

where we have used that N is an exact functor from the simplicial abelian groups

to chain complexes.

Thus we obtain the spectral sequence
qu :WP(TOI‘(II%<X7Y)) :>7Tp+q(PO ®R Y) (8)

having the edge homomorphism 7,(Py ® g Y) — m,(X ®r Y induced by the
map Py — X. By repeating this procedure with Y instead of X we obtain a

spectral sequence
Ezgq = WP(Torf(Xa Y)) = Tp4q(X ®r Qo) (9)

where Qg — Y is a projective resolution of Y, whose edge homomorphism
Tn(X ®r Qo) — 7n(X ®r Y) is induced by v. Substituting Py for X in (9), it
degenerates showing that Py ®r Qo — Py®grY is a weak equivalence and hence
that 7(X (}L?R Y) =m(Py®gY). Substituting this into (8) we obtain the spectral

sequence (a) and the following fact which will be used later.

L
Corollary. The edge homomorphism 7(X ®gY) — 7(X ®g Y) of spectral
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L
sequence (a) is induced by the canonical map X ® g Y — X ®z Y. This map is

a weak equivalence if Torf;”" (Xn,Yn)=0forg>0,n>0.

To prove (a) is functorial let R, XY — R/, X', Y’ be a map and suppose
that a sequence (7)’ corresponding to (7) has been constructed. As a map of
simplicial sets, the maps Pé — X ('1 are trivial fibrations as maps in M go». Hence
we may construct a map 6 from (7) to (7)’ covering the given map X — X' by

inductively defining 6, : P, — P, by lifting in

0 P’
a1
0, .-~
h e (10)
e 9q71 ,
Py —— Xy — X

We then obtain a map of the spectral sequence (8) into the corresponding one (8)’
which is independent of the choice of # because its E? term is clearly independent
and the map Py — PJ covering X — X' is unique upto homotopy. Conse-
quently there is a canonical map from spectral sequence (a) to the corresponding
one (a)’ and this proves the functoriality of (a) as well as its independence of the
choices made for its construction.

(b) We need two lemmas.

Lemma 2.6.1. Suppose that P is a cofibrant right simplicial R module such
that me P is a free graded me R module. Then for any left simplicial R module Y’
the map

TeP Qr g TeY — (P QR Y)

induced by A is an isomorphism.

Lemma 2.6.2. Suppose P is as in Lemma 2.6.1 and let f : X — Y be a
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fibration in Mpgep such that mef : m¢X — meY is surjective. Then given any
map u: P — Y thereisav: P — X with fo=u.

Proof. Let RS™ = Coker(R ® ZA(n)) n > 1 considered as a right simplicial R
module in the obvious way, let ¢, € (RS™), be the residue class of the element

1 ®idy,), and let u, be the element of 7, (RS™) represented by ¢,. We claim that
A. m(RS™) is a free right graded 7R module generated by wu,,.
B. The map m(RS™)®,gmY — 7(RS"®rY") induced by A is an isomorphism.

Indeed there is an exact sequence of right simplicial R modules
0 — RS™ -4 RD" L5 RS™ — 0 (11)

where RD"™ = Coker(R ® ZV(n,0) — R ® ZA(n)), where 7 is induced by
do: A(n —1) — A(n) and j is the canonical surjection. Moreover 0 — RD"
is a trivial cofibration because it is a cobase extension of the map

R ® ZV(n,0) — R ® ZA(n), which is a trivial cofibration by SM7 since R is
cofibrant. Hence RD™ is contractible and the long exact sequence in homotopy

yields an isomorphism

ro(rsmy 2, | T BT a1
0 q=0.

such that Ou,, = u,_1. By property 2 of A 0 is an isomorphism

m(RS™) — Sr(RS™1) of right graded 7 R modules, where if M is a right graded
module over a graded ring S, we defined ¥M to be the right graded R module
with (XM) = Mg_1 and (¥m)s = 3X(ms); here if m € My_1, ¥m denotes m as
an delement of (XM),. A then follows by induction on n. To obtain B note that

(11) splits in each dimension so it remains exact after tensoring with Y over R.
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The resulting long exact homotopy sequence yields the bottom isomorphism in

the square

T(RS™) @rp 1Y —2Z% 5 Sr(RS"™Y) @up 7Y

m(RS" @rY) — 2 Sx(RS" ! @x 1Y)

where the vertical arrows come from A and the diagram commutes by property
2 of A. Induction on n then proves B.

If P is as in Lemma 2.6.1 choose elements x1 € P,,,i € I whose represen-
tatives in wP form a free basis over 7R and let ¥: @ RS™ — P the map of
right simplicial R modules sending ¢,, to ;. By the assumption on P and A
U is a weak equivalence hence a homotopy equivalence since both are cofibrant.
Lemma 2.6.1 then reduces to the case P = RS™ in which case it follows from B.

To prove Lemma 2.6.2 we reduce by the covering homotopy theorem to the
case P = RS™, and we must show that Z,f: Z,X — Z,Y is surjective where
Zy, denotes the group of n cycles in the normalization. As f is a fibration N; f is

surjective j > 0 and as 7 f is surjective one sees easily that Zf is surjective. [

To obtain (b) construct an exact sequence
— P — P — X —0 (12)

of right simplicial R modules by setting Xo = X, X,11 = Ker(uy: P, — X))
where u, is surjective, mu, is surjective, and 7F, is a free graded right 7R
module. u,; may be obtained by choosing generators {a;} for 7X, over 7R,
letting v: @, RS™ — X, be a map sending t,, onto a representative for

oy and then factoring v = wu,i where u, is a fibration and ¢ is a trivial fibra-
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tion. If Q — Y is a projective resolution of Y, consider the double complex
NY (P, ®r Q) where v refers to the (vertical) simplicial structure. By Lemma
2.6.1 (P, ®r Q) = 7P, @z 7Q and by the construction of (12), 7(P,) is a free

mR resolution of 7.X. Thus
HI'HY(No(Po @R Q)) = H) (7Py @rp 7Q)q = Tory (X, 7Q),.
On the other hand, @) is projective over R in each dimension, hence
HYH}(No(Ps ®p Q) = HUNLH] (Py ® Q) =0

N L
if ¢ > 0and m(X ®r Q) if ¢ = 0. As 7(X ®r Q) = 7(X ®r Y) by the
above corollary and 7(Q) = w(Y") we obtain spectral sequence (b) as well as its
independence of (12) may be proved in exactly the same was as for (a), except

the lifting analogous to (10) is constructed via Lemma 2.6.2.

(c) These are derived by the Serre-Postnikov method. In effect we have (see

Prop 2.6.1 (4)) canonical exact sequences
0—>QX—>/\X—>X—>7T0X—>O (13)

in M go», where A X is contractible and where m X is short for the right simplicial
R module which is the constant simplicial abelian group K (m, X,0), and whose
R module comes via the augmentation e: R — K (mR,0) from the map

moX ® mgR — mpX induced by A. From the long exact homotopy sequence we

have

7g(X) 5 7 1(QX) ¢ >0 (14)

where d(a - p) = (0av), if p € TR. Hence substituting Q¥ X into we obtain exact
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sequences
0— Y — NOX — "X —mX —0 k>0 (15)

where 7 X stands for the right simplicial R module as described in the theorem.
Letting Q — Y be a projective resolution of Y, ® @ is exact and A Q*X ®r Q

is contractible, hence from (15) we obtain exact sequences
— T 1 (X @RQ) — 7, (WX DRQ) — T (M XDRQ) — T 2 (T X@RQ) — ...

for k£ > 0. By the corollary — ® g Q may be replaced by — ®LR Y and so we obtain
an exact couple (D2, B2 ) with B2, = m,(7, X ®LR Y) and D2, = m,(Q29X ®LR Y)
and hence the spectral sequence (c). It is clearly canonical and functorial since
the only only choice made was that of (Q which is unique and functorial up to
homotopy. Spectral sequence (d) is proved similarly. There is no sign trouble
from the fact that 9: 7,Y — 7,1 (QY) satisfies d(pa) = (—1)kp-daif p € T, R
because only £ = 0 occurs when we consider 7Y as a left simplicial R module.

Theorem 2.6 is now proved. O

Applications to simplicial groups. Let G be a simplicial group. If M
is a simplicial G module we call Ho(G, M) = 7(Z ®;G M) the homology of
G with coefficients in M. Here Z is short for K(Z,0) with trivial G action.
To calculate the homology we choose a projective resolutive of Z as a right ZG
module, e.g. ZWG where WG — WG is the universal principal G bundle,
whence H(G, M) = n(ZWG ®zg M). If M is an abelian group on which 7oG
acts and we consider M as a constant simplicial G module, then it follows that
Ho(G, M) is the homology of the simplicial set WG with values in the local
coefficient system defined by M. In particular when G is a constant simplicial

group and M is a G module H(G, M) in the above sense coincides with the
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ordinary group homology of G with values in M.

If F is a free group, then

7 q=20
Tor?*(2,2) =< F,y q=1

0 q>=2.

hence if G is a simplicial group which is free in each dimension spectral sequence

(a) degenerates giving

H,(G,Z) = z n=0 (16)

anl(Gab) n > 0.

which is a formula due to [Kan57a] when G is a free simplicial group.

Let f: G — H be a weak equivalence of simplicial groups. Then f is a weak
equivalence in Simp and as every object of Simp is cofibrant f is a homotopy
equivalence in Simp. Thus ZG — ZH is a homotopy equivalence of simplicial
abelian groups and so 7ZG = nZH. From spectral sequence (b) we deduce that
Ho(G,7) = H4(H,Z) which shows that homology is a weak homotopy invariant.

Suppose now that

l1—K—G—H—1

is an exact sequence of simplicial groups and that M is a simplicial G module.

Let P — M be a projective resolution of M as on left ZG module. Then
Z ®z76 M = Z®zq — 7 Rz (ZH @z P).

and

7(ZH @z P) = 74(Z @z P) = Hy(K, M).
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Substituting R =ZH, X = Z,Y = Z ®zx P in spectral sequence (d) we obtain a

spectral sequence
Ez%q = Hy(H,Hy(K,M)) = Hpq(G, M) (17)

which generalizes the Hoschild-Serre spectral sequence for group homology and
the Serre spectral sequence for the fibration WK — WG — WH.
Spectral sequence (a) with R = ZG,X = Z,Y = Z has the edge homomor-
phism
H,.(G,Z) — 7p—1(Gap) n > 0.

which is an isomorphism for n = 1 in general and for all n if G is free. So we

obtain Poincare’s theorem
Hl(G,Z) = (WOG)ab-

Now by the method of [Ser53] it is possible to start from this fact and the spec-
tral sequence (17) and prove directly the Hurewicz and Whitehead theorems for

simplicial groups. We leave the details to the reader.
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cartesian, 16
closed model category, 13, 59

closed simplicial model category, 66, 77

co-cartesian, 16
cochain complex, 122
codiagional, 17
cofibrant, 12, 15
cofibration sequence, 42
cofibre, 35

cofibre product, 16
composition, 32, 67
constant homotopy, 72
correspondence, 29
cylinder object, 12, 18

derived tensor product, 128
diagonal, 16

fibrant, 12, 15

— co, 12, 15
fibration, 77

— trivial, 15

— trivial co, 15
fibration sequence, 42
fibre, 35
finite simplicial set, 73
flask, 118

generalized unit interval, 71

homotopy, 12, 71
— category, 12, 23
— constant, 72
— left, 18, 29
— right, 18, 29
— strict, 71, 72

inverse, 32

INDEX

left homotopy, 18

left lifting property, 59

left-derived functor, 52
— total, 54

left-homotopic, 17
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— closed, 59
module, 122
Moore homotopy groups, 88

null-object, 35

path object, 18

pointed category, 35
pointed model category, 35
presheaf, 115

projective resolution, 128

representable, 71

right homotopy, 18
right-derived functor, 52
right-homotopic, 17

simplicial categories, 66
simplicial functor, 68
simplicial set

— finite, 73
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Toda bracket, 51
total left-derived functor, 54
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