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The circle action on topological Hochschild homology
of complex cobordism and the Brown–Peterson spectrum

John Rognes

Abstract

We specify exterior generators in π∗THH(MU) = π∗(MU) ⊗ E(λ′
n | n � 1) and π∗THH(BP ) =

π∗(BP ) ⊗ E(λn | n � 1), and calculate the action of the σ-operator on these graded rings.
In particular, σ(λ′

n) = 0 and σ(λn) = 0, while the actions on π∗(MU) and π∗(BP ) are
expressed in terms of the right units ηR in the Hopf algebroids (π∗(MU), π∗(MU ∧MU)) and
(π∗(BP ), π∗(BP ∧BP )), respectively.

1. Introduction

Let S be the sphere spectrum. For any (associative) S-algebra R, the topological Hochschild
homology spectrum THH(R) is the geometric realization of a cyclic spectrum [q] �→
THH(R)q = R ∧R∧q, see [9, 19]. The skeleton filtration of THH(R) leads to a spectral
sequence

E1
q,∗ = πq+∗(skqTHH(R), skq−1THH(R)) =⇒ πq+∗THH(R),

whose (E1, d1)-term is the normalized chain complex associated to the simplicial graded abelian
group

[q] �→ π∗THH(R)q = π∗(R ∧R∧q).

The cyclic structure specifies a natural circle action on THH(R), which we shall treat as
a right action. The cofiber sequence 1+ → S1

+ → S1 is split by a retraction S1
+ → 1+ and a

stable section S1 → S1
+. We write σ for the composite map THH(R) ∧ S1 → THH(R) ∧ S1

+ →
THH(R) and call the induced homomorphism σ : π∗THH(R) → π∗+1THH(R) the (right) σ-
operator. It satisfies σ2 = ησ, where η ∈ π1(S) is the complex Hopf map, so if multiplication
by η acts trivially on π∗THH(R) then σ is a differential.

There is a spectral sequence

E2
∗,∗ = Ĥ−∗(S1;π∗THH(R)) = Z[t, t−1] ⊗ π∗THH(R) =⇒ π∗THH(R)tS

1
(1.1)

converging to the homotopy of the circle Tate construction on THH(R), see [20], more recently
known [23] as the periodic topological cyclic homology π∗TP (R). Its initial differential is given
by

d2(tn · x) =

{
tn+1 · σ(x) for n even
tn+1 · (σ(x) + ηx) for n odd.
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Knowledge of the σ-operator therefore leads to knowledge of the E3 = E4-term of this spectral
sequence. When η acts trivially on π∗THH(R) we can write

E4
∗,∗ = Z[t, t−1] ⊗H(π∗THH(R), σ).

In this paper, we determine the σ-operator on π∗THH(MU) and π∗THH(BP ), where MU
is the complex cobordism E∞ ring spectrum [33, 37, 40] and BP is the Brown–Peterson E4

ring spectrum [5, 12]. In these cases THH(R) is an E∞, respectively, E3, ring spectrum by
[13], σ is a (right) derivation by [2], and the skeleton and Tate spectral sequences are algebra
spectral sequences [22].

In Sections 2 and 3, we review the connection between complex cobordism and formal group
laws, and their p-typical variants, including some explicit formulae in the Hopf algebroids

(π∗(MU), π∗(MU ∧MU)) ∼= (L,LB) ∼= (L,LC)

and

(π∗(BP ), π∗(BP ∧BP )) ∼= (V, V T ).

We follow the expositions by Adams [1] and Landweber [27, 28] of Quillen’s theory [42], adding
some less familiar details about the parametrization of strict isomorphisms of formal group laws
by ‘moving coordinates’ using (L,LC), in place of ‘absolute coordinates’ using (L,LB).

In Section 4, we obtain isomorphisms of simplicial commutative rings

π∗THH(MU)• ∼= π∗(MU) ⊗ β(B)• ∼= π∗(MU) ⊗ β(C)•,

in the spirit of the equivalence THH(MU) 	 MU ∧BBU+ of Blumberg, Cohen and
Schlichtkrull [6]. Here, β(B)• denotes the simplicial bar construction [q] �→ β(B)q = B⊗q, and
similarly for β(C)•. We also obtain analogous information for π∗THH(BP )•.

In Section 5, we recognize the circle action on the 0-simplices in THH(MU) and THH(BP )
as being given by the right units ηR : L → LB ∼= LC and ηR : V → V T , respectively, and
use this to determine the action of the σ-operator on π∗THH(MU) and π∗THH(BP ).
More precisely, in Proposition 5.1 we prove that for x ∈ π∗(R) the homotopy class σ(x) ∈
π∗+1THH(R) is detected in E∞

1,∗ of the skeleton spectral sequence by the class of (1 ∧ π)ηR(x) ∈
π∗(R ∧R/S) = E1

1,∗. Here, ηR : R ∼= S ∧R → R ∧R and π : R → R/S are the evident maps.
According to McClure and Staffeld [34], who credit Andy Baker and Larry Smith, there are

isomorphisms

π∗THH(MU) ∼= π∗(MU) ⊗ E(λ′
n | n � 1)

with λ′
n in degree 2n + 1, and

π∗THH(BP ) ∼= π∗(BP ) ⊗ E(λn | n � 1)

with λn in degree 2pn − 1, at each prime p. We strengthen these results, in Theorems 5.3
and 5.6, to show that the exterior generators λ′

n and λn can be chosen so that σ(λ′
n) = 0 and

σ(λn) = 0, for all n � 1. These choices are naturally connected to the moving coordinates on
strict isomorphisms between formal group laws, or p-typical formal group laws, as made precise
in Propositions 4.4 and 4.6. On the other hand, we show in Theorem 5.4 that σ(e3) and σ(e4)
are nonzero for the alternative sequence of exterior generators en of π∗THH(MU) associated,
as in Proposition 4.5, to absolute coordinates.

We can summarize Proposition 4.6, Theorem 5.6 and equations (3.1) and (5.1) as follows.

Theorem 1.1. Let π∗(BP ) = Z(p)[vn | n � 1] where the vn are the Hazewinkel generators.
The σ-operator σ : π∗THH(BP ) → π∗+1THH(BP ) is a (right) derivation acting on

π∗THH(BP ) = π∗(BP ) ⊗ E(λn | n � 1).
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It satisfies σ(λn) = 0 for all n � 1, while σ(vn) is recursively determined by the equation

pλn = σ(vn) +
n−1∑
i=1

(
vp

i

n−iλi + (pi�i)v
pi−1
n−i σ(vn−i)

)
.

Here, pi�i ∈ π∗(BP ) is recursively determined by

p�n =
n−1∑
i=0

�iv
pi

n−i = vn + �1v
p
n−1 + · · · + �n−1v

pn−1

1 .

In Section 6, we evaluate the d2-differential in the circle Tate spectral sequences for MU
and BP , in a finite range of degrees, and use this to calculate the resulting E3 = E4-term. For
example

E4 = Z[t, t−1] ⊗H(π∗THH(BP ), σ) =⇒ π∗THH(BP )tS
1

where

H(π∗THH(BP ), σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z(p){1} for ∗ = 0,

Z/p{vi−1
1 λ1} for ∗ = i(2p− 2) + 1, 1 � i � p− 1,

Z/p2{vp−1
1 λ1} for ∗ = 2p2 − 2p + 1,

Z/p2{λ2} for ∗ = 2p2 − 1,

Z(p)/p
2(p + 2){v2λ1 + v1λ2} for ∗ = 2p2 + 2p− 3,

Z/p{λ1λ2} for ∗ = 2p2 + 2p− 2,

0 for the remaining ∗ � 2p2 + 4p− 6.

This appears as Theorem 6.6 in the body of the paper. In particular, we see that while
H(π∗THH(BP ), σ) is concentrated in odd degrees for 0 < ∗ < 2p2 + 2p− 2, this ceases to
be true in degree |λ1λ2| = 2p2 + 2p− 2.

The cyclic structure on THH(R) suffices to define the circle homotopy fixed points
THH(R)hS

1
and the circle Tate construction THH(R)tS

1
. When enriched to a cyclotomic

structure [9, 39], these data suffice to define the topological cyclic homology TC(R), which is a
powerful invariant [17] of the algebraic K-theory K(R), especially for connective S-algebras R.
The graded rings π∗THH(Fp) and π∗THH(Z) were calculated by Bökstedt, and formed the
basis for calculations of TC(Fp) and TC(Z), see [24] for the case of the prime field Fp, [10, 11]
for the integers localized at an odd prime p, and [45–48] for the integers localized at p = 2. The
topological Hochschild homology of R = � (the Adams summand in p-local connective complex
K-theory) was worked out for p � 5 in [34] and promoted to a calculation of TC(�) in [4]. In
all of these cases, the σ-operator acts trivially on π∗THH(R).

When R = S the circle action on THH(R) = S is trivial, so the d2-differential in the circle
Tate spectral sequence alternates between zero and multiplication by η in π∗THH(R) = π∗(S).
The resulting Tate spectral sequence agrees with the Atiyah–Hirzebruch spectral sequence for
StS1 	 Σ2CP∞

−∞. Knowledge of the attaching maps in complex projective spaces translates
to substantial knowledge [38] of the differential patterns in this spectral sequence. However,
the limits on our knowledge of π∗(S) put bounds on how well we can understand TC(S)
and K(S) by this approach. Explicit calculations in low degrees were made in [7, 49, 50],
but it would be desirable to place these in a context of systematic patterns, similar to the
chromatic filtration in stable homotopy theory [36, 44]. By the descent results of [18], a good
understanding of π∗TC(MU ∧ · · · ∧MU) (with one or more copies of MU) will also determine
π∗TC(S), through a homotopy limit or descent spectral sequence. The problem of determining
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TC(MU) and K(MU) has therefore been frequently considered, for example, by Ausoni and
the author at the time when [4] was completed. In this case the σ-operator acts nontrivially
on π∗THH(MU), but precise formulae seem not to have been worked out before this paper.

The author has also pursued a homological approach [14] to the calculations of THH(R)hS
1

and THH(R)tS
1

for S-algebras such as R = MU , working with continuous homology in the
category of completed A∗-comodule algebras. This led, in [8, 31, 32], to a proof that there are
p-adic equivalences

THH(MU)hS
1 Γ←− TF (MU ; p) Γ̂−→ THH(MU)tS

1
,

where TF (MU ; p) = holimn THH(MU)Cpn . This provides the foundation for a calculation
of π∗THH(MU)Cpn by induction on n. We plan to discuss the homological approach to
THH(MU)tS

1
in a future paper.

2. Formal group laws and moving coordinates

2.1. Formal group laws and complex cobordism

The universal (commutative, 1-dimensional) formal group law

F (x, y) = x + y +
∑
i,j�1

aijx
iyj

is defined over the Lazard ring L = Z[aij | i, j � 1]/I where

I = (a12 − a21, a13 − a31, a14 − a41, a23 − a32, . . . ,

2a11a12 + 3a13 − 2a22, 2a2
12 + 3a11a13 + 4a14 − 2a23,

a2
11a12 + 3a2

12 + 6a11a13 − a11a22 + 6a14 − 3a23, . . . )

is the ideal generated by the coefficients of xiyj in F (x, y) − F (y, x) and of xiyjzk in
F (F (x, y), z) − F (x, F (y, z)). Each ring homomorphism θ : L → R determines a formal group
law

(θ∗F )(x, y) = x + y +
∑
i,j�1

θ(aij)xiyj

defined over R, and this specifies a natural bijection between ring homomorphisms L → R and
formal group laws defined over R. We say that L classifies, or corepresents, formal group laws.
We give L the grading where aij has degree 2(i + j − 1). Lazard [29] proved that L ∼= Z[xn |
n � 1] where xn has degree 2n. Following Adams [1, p. 57], augmented with a little computer
algebra, we can take

x1 = a11

x2 = a12

x3 = a22 − a13

x4 = a14

as the first four generators of the Lazard ring. Quillen [42, Theorem 2] showed that the tensor
product formula for the first Chern class in complex cobordism theory specifies a formal group
law over π∗(MU), and that the homomorphism L → π∗(MU) that classifies this formal group
law is an isomorphism.
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2.2. Strict isomorphisms

Let F and F ′ be formal group laws defined over R. A strict isomorphism f : F → F ′ over R is
a formal power series

f(x) = x +
∑
n�1

bnx
n+1

with bn ∈ R, such that f(F (x, y)) = F ′(f(x), f(y)). If R is torsion-free then there is at most
one strict isomorphism from F to F ′. Let B = Z[bn | n � 1], graded so that bn has degree 2n.
The tensor product LB = L⊗B then classifies diagrams

F
f−→ F ′

where F and F ′ are formal group laws and f is a strict isomorphism. Restriction along the
inclusions ηL : L → LB and ι : B → LB lets us recover F and f , respectively, while restriction
along the right unit ηR : L → LB classifies F ′. Continuing Adams’ calculations [1, p. 63], we
have

ηR(a11) = a11 + 2b1

ηR(a12) = a12 + a11b1 + (3b2 − 2b21)

ηR(a13) = a13 + a11(2b2 − 2b21) + (4b3 − 8b1b2 + 4b31)

ηR(a22) = a22 + (2a12 + a2
11)b1 + a11(6b2 − 3b21) + (6b3 − 6b1b2 + 2b31)

ηR(a14) = a14 − a13b1 + a12(b2 − b21) + a11(3b3 − 8b1b2 + 5b31)

+ (5b4 − 14b1b3 − 6b22 + 25b21b2 − 10b41)

ηR(a23) = a23 + a13b1 + 2a11a12b1 + a12(8b2 − 6b21) + a2
11(3b2 − 2b21)

+ a11(12b3 − 16b1b2 + 6b31) + (10b4 − 16b1b3 − 3b22 + 14b21b2 − 4b41),

where we have corrected a (rare) typographical error in Adams’ formula for ηR(a22). It follows
that

ηR(x1) = x1 + 2b1

ηR(x2) = x2 + x1b1 + (3b2 − 2b21)

ηR(x3) = x3 + (2x2 + x2
1)b1 + x1(4b2 − b21) + (2b3 + 2b1b2 − 2b31)

ηR(x4) = x4 + (2x1x2 − 2x3)b1 + x2(b2 − b21) + x1(3b3 − 8b1b2 + 5b31)

+ (5b4 − 14b1b3 − 6b22 + 25b21b2 − 10b41).

(2.1)

2.3. Hopf algebroids

The formal group laws and strict isomorphisms defined over R form the objects and morphisms
of a small groupoid G(R), depending functorially on the commutative ring R. The identity
morphism idF : F → F is the formal power series idF (x) = x, which is classified by an
augmentation ε : LB → L. It has the form id⊗ ε, where ε : B → Z maps each bn to zero. The
composite of two strict isomorphisms f : F → F ′ and f ′ : F ′ → F ′′ is a strict isomorphism
f ′f : F → F ′′. The composition pairing ◦ is a natural function

G(R)(F ′, F ′′) × G(R)(F, F ′) −→ G(R)(F, F ′′)

◦ : (f ′, f) −→ f ′f.
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The opposite pairing • : (f, f ′) �→ f ′f is classified by a coproduct ψ : LB → LB ⊗L LB, where
L acts through ηR on the left-hand tensor factor and through ηL on the right-hand tensor
factor. When composed with the obvious isomorphism LB ⊗L LB ∼= L⊗B ⊗B it takes the
form id⊗ ψ, where ψ : B → B ⊗B defines the coproduct in a Hopf algebra structure on B. In
low degrees,

ψ(b1) = b1 ⊗ 1 + 1 ⊗ b1

ψ(b2) = b2 ⊗ 1 + 2b1 ⊗ b1 + 1 ⊗ b2

ψ(b3) = b3 ⊗ 1 + (b21 + 2b2) ⊗ b1 + 3b1 ⊗ b2 + 1 ⊗ b3

ψ(b4) = b4 ⊗ 1 + (2b1b2 + 2b3) ⊗ b1 + (3b21 + 3b2) ⊗ b2 + 4b1 ⊗ b3 + 1 ⊗ b4,

see [1, p. 91]. The inverse f−1 : F ′ → F of a strict isomorphism f : F → F ′ is classified by
a homomorphism χ : LB → LB. Its restriction along ηL : L → LB is ηR, while its restriction
along ι : B → LB is ιχ, where χ : B → B is the conjugation in the Hopf algebra structure on B.
Following [1, p. 65], for f(x) = x +

∑
n�1 bnx

n+1 we have

f−1(x) = x +
∑
n�1

b̄nx
n+1,

where b̄n = χ(bn) is given in low degrees by

b̄1 = −b1

b̄2 = 2b21 − b2

b̄3 = −5b31 + 5b1b2 − b3

b̄4 = 14b41 − 21b21b2 + 3b22 + 6b1b3 − b4.

One might now like to say that L, LB, ηL, ηR and ψ classify the objects, morphisms, sources,
targets and composition in the groupoid G(R), but due to the reversal of ordering in the pairing
•, this is not quite correct. Instead, L and LB classify the objects and morphisms in the opposite
groupoid, Gop(R). A homomorphism LB → R corresponds to a diagram f : F → F ′, as above,
which we can view as a morphism in Gop(R) with source F ′ and target F . Then ηL and ηR
classify the target and source, respectively, and ψ classifies the composition (f, f ′) �→ f • f ′

in Gop(R), where f ′ : F ′ → F ′′ is as before.
Alternatively, we can focus on the inverse strict isomorphism φ = f−1 : F ′ → F , in place of

f : F → F ′. We think of L as classifying formal group laws in the same way as before, but now
we think of LB as classifying diagrams

F
φ←− F ′,

where F and F ′ are formal group laws and φ is the strict isomorphism

φ(x) = x +
∑
n�1

b̄nx
n+1

with b̄n ∈ B included by ι : B → LB. The b̄n provide a second polynomial basis for LB over L,
so that LB ∼= LB̄ = L[b̄n | n � 1]. Then L and LB corepresent the objects and morphisms in
G(R), ηL and ηR corepresent the target and source of a morphism, in that order, ε corepresents
the identity morphism, ψ corepresents the composition pairing

G(R)(F ′, F ) × G(R)(F ′′, F ′) −→ G(R)(F ′′, F )

◦ : (φ, φ′) −→ φφ′,

and χ corepresents passage to the inverse of a morphism.
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Novikov [41] and Landweber [26] studied the cohomology operations in complex cobordism,
which are represented by classes in MU∗(MU). Turning instead to homology, Adams
[1, Lemma 4.5(ii)] showed that

π∗(MU ∧MU) ∼= π∗(MU)[bn | n � 1]

for specific classes bn ∈ π∗(MU ∧MU), so that Quillen’s isomorphism L ∼= π∗(MU) extends
to an isomorphism LB ∼= π∗(MU ∧MU). By the results of [1, § 11], the left and right
units ηL, ηR : L → LB correspond to the homomorphisms induced by the maps MU ∼= MU ∧
S → MU ∧MU and MU ∼= S ∧MU → MU ∧MU , respectively. Likewise, the augmentation
ε : LB → L is induced by the multiplication MU ∧MU → MU . The coproduct ψ : LB →
LB ⊗L LB is induced by the map MU ∧MU ∼= MU ∧ S ∧MU → MU ∧MU ∧MU , via the
isomorphism

π∗(MU ∧MU) ⊗π∗(MU) π∗(MU ∧MU)
∼=−→ π∗(MU ∧MU ∧MU).

Finally, the conjugation χ : LB → LB is induced by the twist map τ : MU ∧MU ∼= MU ∧MU .
In all cases, the unlabeled map S → MU is the unit map in the ring spectrum structure. Using
the terminology introduced by Haynes Miller [35], (L,LB) and (π∗(MU), π∗(MU ∧MU)) are
isomorphic as Hopf algebroids.

2.4. Moving coordinates

So far we have classified strict isomorphisms f(x) = x +
∑

n�1 bnx
n+1 or φ(x) = x +∑

n�1 b̄nx
n+1 in a way that is independent of the source and target of f and φ. Such

‘absolute coordinates’ exist, because the Hopf algebroid (L,LB) is split. Following Araki
[3, Proposition 2.10] and Landweber [28], we can instead classify strict isomorphisms in terms
of ‘moving coordinates’. This will lead to nicer formulae for the σ-operator in π∗THH(MU).
The strict isomorphism

F
φ←− F ′

can be uniquely written as a formal sum

φ(x) = x +F

∑
n�1

F
cnx

n+1,

with respect to the target formal group law, for a sequence of elements cn ∈ LB with cn in
degree 2n. (In spite of the notation, these are essentially unrelated to the Chern classes.) In
low degrees,

c1 = b̄1

c2 = −a11b̄1 + b̄2

c3 = −a12b̄1 + a2
11b̄1 − a11b̄2 + b̄3

c4 = (a2
11 − a12)b̄21 − (a3

11 − 2a11a12 + a13)b̄1 + (a2
11 − a11b̄1 − a12)b̄2 − a11b̄3 + b̄4

so that

c1 = −b1

c2 = a11b1 + (2b21 − b2)

c3 = a12b1 − a2
11b1 + a11(b2 − 2b21) + (−5b31 + 5b1b2 − b3)

c4 = 14b41 + (a2
11 − a12)b21 − 21b21b2 + (a2

11 + a11b1 − a12)(2b21 − b2)

+ a11(5b31 − 5b1b2 + b3) + (a3
11 − 2a11a12 + a13)b1 + 3b22 + 6b1b3 − b4.
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Hence,

c1 = −b1

c2 = x1b1 + (2b21 − b2)

c3 = x2b1 − x2
1b1 + x1(b2 − 2b21) + (−5b31 + 5b1b2 − b3)

c4 = 14b41 + (x2
1 − x2)b21 − 21b21b2 + (x2

1 + x1b1 − x2)(2b21 − b2)

+ x1(5b31 − 5b1b2 + b3) + (x3
1 − 4x1x2 + 2x3)b1 + 3b22 + 6b1b3 − b4.

(2.2)

The moving coordinates cn form yet another polynomial basis for LB over L, so that
LB ∼= LC = L[cn | n � 1]. This specifies an isomorphism of Hopf algebroids (L,LB) ∼= (L,LC).
The left unit ηL : L → LC is given by the evident inclusion, and the augmentation ε : LC → L
sends each cn to zero, for n � 1. The right unit ηR : L → LC corepresents the source F ′ of
the strict isomorphism φ : F ′ → F defined as above. In the next subsection, we shall obtain a
useful formula for this right unit homomorphism.

2.5. Logarithms

The additive formal group law Fa is defined by Fa(x, y) = x + y. Working over L⊗ Q ∼=
π∗(MU) ⊗ Q there is a unique strict isomorphism

Fa
log←− F

from the universal formal group law to the additive one, which we can write as

log(x) = x +
∑
n�1

mnx
n+1

for unique elements mn ∈ L⊗ Q, with mn in degree 2n. See [1, Corollary 7.15] or [43, The-
orem A2.1.6]. Let exp(x) = x +

∑
n�1 m̄nx

n+1 be the inverse strict isomorphism, from Fa

to F . Then logF (x, y) = log(x) + log(y) and

F (x, y) = exp(log(x) + log(y))

over L⊗ Q. We can express the m̄n, the aij and the xn as integer polynomials in the logarithmic
coefficients mn. In low degrees,

m̄1 = −m1

m̄2 = 2m2
1 −m2

m̄3 = −5m3
1 + 5m1m2 −m3

m̄4 = 14m4
1 − 21m2

1m2 + 3m2
2 + 6m1m3 −m4

and

a11 = −2m1

a12 = 4m2
1 − 3m2

a13 = −8m3
1 + 12m1m2 − 4m3

a22 = −20m3
1 + 24m1m2 − 6m3

a14 = 16m4
1 − 36m2

1m2 + 9m2
2 + 16m1m3 − 5m4

a23 = 72m4
1 − 132m2

1m2 + 27m2
2 + 44m1m3 − 10m4.
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Hence,

x1 = −2m1

x2 = 4m2
1 − 3m2

x3 = −12m3
1 + 12m1m2 − 2m3

x4 = 16m4
1 − 36m2

1m2 + 9m2
2 + 16m1m3 − 5m4.

(2.3)

The resulting homomorphism L → Z[mn | n � 1] then induces an isomorphism L⊗ Q ∼=
Q[mn | n � 1], so after rationalization the classes mn serve as another set of polynomial
generators for L ∼= Z[xn | n � 1]. The rational classes mn are canonically defined, as opposed
to the integral classes xn.

The right unit ηR : L → LB can be calculated using the identity

∑
n�0

ηR(mn) =
∑
i�0

mi

⎛
⎝∑

j�0

b̄j

⎞
⎠

i+1

(2.4)

in LB ⊗ Q, where m0 = 1, b̄0 = 1 and ηR(mn) is equal to the degree 2n part of either side of
the formula. See [1, Proposition 9.4] or [43, Theorem A2.1.16]. Working instead with moving
coordinates we obtain the following formula, which does not seem to appear in the standard
references.

Proposition 2.1. The right unit ηR : L → LC is determined by the formula

ηR(mn) =
∑

(i+1)(j+1)=n+1

mic
i+1
j

in LC ⊗Q, where m0 = 1 and c0 = 1. The sum runs over the indices i, j� 0 with
(i+ 1)(j + 1) =n+ 1.

Proof. The proofs of [1, Theorem 16.1(i); 28, Theorem 3(i)] readily carry over from the
p-typical situation to the general one. The formal sum

φ(x) =
∑
n�0

F
cnx

n+1

defines a strict isomorphism

(ηL)∗(F )
φ←− (ηR)∗(F )

of formal group laws over LC. The strict isomorphism log : F → Fa over L⊗ Q induces strict
isomorphisms

(ηL)∗(log) : (ηL)∗(F ) −→ (ηL)∗(Fa) = Fa

(ηR)∗(log) : (ηR)∗(F ) −→ (ηR)∗(Fa) = Fa

over LC ⊗ Q. By their uniqueness we must have

(ηR)∗(log) = (ηL)∗(log) ◦ φ.
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Hence,

∑
n�0

ηR(mn)xn+1 = log

⎛
⎝∑

j�0

F
cjx

j+1

⎞
⎠ =

∑
j�0

log(cjxj+1) =
∑
i,j�0

mi(cjxj+1)i+1.

Concentrating on the coefficients of xn+1 yields the formula. �

3. The p-typical case

Let p be any prime. A (1-dimensional, commutative) formal group law F over a torsion-free
Z(p)-algebra R is p-typical [15, 16; 43, Definition A2.1.17] if its logarithmic coefficients satisfy
mn = 0 unless n + 1 is a power of p. In other words,

log(x) = x +
∑
n�1

�nx
pn

for a sequence of coefficients �n ∈ R⊗ Q, with �n in degree 2(pn − 1). There is a universal
p-typical formal group law F , defined over the Z(p)-subalgebra V ⊂ Q[�n | n � 1] generated by
the coefficients of the formal power series

F (x, y) = log−1(log(x) + log(y)).

By the universal property of the Lazard ring, there is a ring homomorphism α : L⊗ Z(p) → V
classifying the underlying formal group law of F . Conversely, each formal group law over a
Z(p)-algebra is strictly isomorphic to a unique p-typical one. Hence, there is a ring homomor-
phism β : V → L⊗ Z(p) classifying the p-typification of the universal formal group law. The
composite αβ : V → L⊗ Z(p) → V is the identity, and the composite e = βα : L⊗ Z(p) → V →
L⊗ Z(p) is (the Quillen) idempotent. After rationalization, e(mn) = mn if n + 1 is a power
of p, and e(mn) = 0 otherwise. It follows that

V = Z(p)[vn | n � 1],

with vn in degree 2(pn − 1), and V ⊗ Q → Q[�n | n � 1] is an isomorphism. One choice of
generators vn, due to Hazewinkel [21, (4.3.1)], is recursively defined by

p�n =
n−1∑
i=0

�iv
pi

n−i = vn + �1v
p
n−1 + · · · + �n−1v

pn−1

1 . (3.1)

Here, �0 = 1. In low degrees,

p�1 = v1

p2�2 = pv2 + vp+1
1

p3�3 = p2v3 + p(v1v
p
2 + vp

2

1 v2) + vp
2+p+1

1 .

(3.2)

These formulae exhibit one advantage of the p-typical context over the general one. We do not
have similar formulae characterizing polynomial generators xn ∈ L in terms of the logarithmic
coefficients mn ∈ L⊗ Q.

Lemma 3.1. pn�n ∈ V for each n � 1.

Proof. This follows from (3.1) by induction on n. �

Quillen [42, Theorem 4] constructed the Brown–Peterson spectrum BP with maps
α : MU(p) → BP and β : BP → MU(p), such that αβ is homotopic to the identity and βα
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induces the idempotent e on homotopy. The resulting formal group law over π∗(BP ) is then
p-typical, and the homomorphism V → π∗(BP ) that classifies this p-typical formal group law
is an isomorphism.

Consider a strict isomorphism

F
φ←− F ′

given in moving coordinates by

φ(x) =
∑
n�0

F
cnx

n+1.

By Araki [3, Theorem 3.6] and Landweber [28, Lemma 1], F ′ is p-typical if and only if cn = 0
unless n + 1 is a power of p. In other words,

φ(x) =
∑
n�0

F
tnx

pn

for a sequence of coefficients tn, with t0 = 1. Let

T = Z(p)[tn | n � 1]

and V T = V ⊗ T , with tn in degree 2(pn − 1). Then V and V T corepresent the objects and
morphisms in the full subgroupoid T (R) ⊂ G(R) of p-typical formal group laws and their
strict isomorphisms. The inclusion ηL : V → V T and a right unit homomorphism ηR : V → V T
classify the target F and the source F ′. The augmentation ε : V T → V mapping each tn to zero
classifies the identity morphism. A coproduct ψ : V T → V T ⊗V V T classifies the composition

◦ : T (R)(F ′, F ) × T (R)(F ′′, F ′) −→ T (R)(F ′′, F ),

and a conjugation χ : V T → V T classifies the function sending φ to φ−1 : F → F ′. The
pair (V, V T ), equipped with these structure maps, is then a Hopf algebroid, corepresenting
T (R) as a functor of commutative Z(p)-algebras. The full inclusion T (R) ⊂ G(R) and the
p-typification functor G(R) → T (R) are classified by morphisms α : (L,LC) ⊗ Z(p) → (V, V T )
and β : (V, V T ) → (L,LC) ⊗ Z(p) of Hopf algebroids. Here, α : L⊗ Z(p) → V is given rationally
by α(mn) = 0 if n + 1 is not a power of p and α(mn) = �i if n + 1 = pi. Similarly, α(cn) = 0
if n + 1 is not a power of p and α(cn) = ti if n + 1 = pi. Conversely, β(�i) = mpi−1 and
β(ti) = cpi−1.

Adams [1, Theorem 16.1(ii)] showed that

π∗(BP ∧BP ) ∼= π∗(BP )[tn | n � 1]

for specific classes tn ∈ π∗(BP ∧BP ), so that Quillen’s isomorphism V ∼= π∗(BP ) extends
to an isomorphism V T ∼= π∗(BP ∧BP ). Adams showed that the formulae for the flat Hopf
algebroid (π∗(BP ), π∗(BP ∧BP )), associated to the (homotopy commutative or better) ring
spectrum BP , agree with those specified by Quillen. Landweber [28, § 3] then verified that
these agree with the structure maps of (V, V T ), corepresenting T (R).

In particular, [1, Theorem 16.1(i); 42, Theorem 5(iii)] gave a formula for the right
unit ηR : V → V T after rationalization, which in our notation reads

ηR(�n) =
∑

i+j=n

�it
pi

j = �n + �n−1t
pn−1

1 + · · · + �1t
p
n−1 + tn (3.3)

for n � 1. When combined with (3.1), this will give us good formulae for the σ-operator in
π∗THH(BP ).
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4. Topological Hochschild homology and the bar construction

4.1. Chains of composable strict isomorphisms

Recall that THH(MU)• is a simplicial (E∞ ring) spectrum [q] �→ THH(MU)q. We shall
analyze the simplicial graded commutative ring [q] �→ π∗THH(MU)q in terms of the Hopf
algebroids (L,LB) and (L,LC). We emphasize the latter case, since it is closer to the Hopf
algebroid (V, V T ) that we need to consider in the p-typical case. However, we shall also state
some of the results for (L,LB), in part to illustrate the advantage of using moving coordinates
for these calculations.

The product map

L⊗ L⊗q = π∗(MU) ⊗ π∗(MU)⊗q −→ π∗(MU ∧MU∧q) = π∗THH(MU)q

is not an isomorphism (for q � 1), but becomes one after rationalization. Since LB ∼= LC is
flat over L, we can rewrite its target as

π∗((MU ∧MU) ∧MU · · · ∧MU (MU ∧MU)) ∼= LC ⊗L · · · ⊗L LC,

with q copies of MU ∧MU and LC. Here, LC ⊗L · · · ⊗L LC ∼= L⊗ C⊗q by iterated use of
standard isomorphisms of the form X ⊗L L⊗ Y ∼= X ⊗ Y , for suitable X and Y . The tensor
product π∗THH(MU)q ∼= L⊗ C⊗q classifies chains

(F0;φ1, . . . , φq) = (F0
φ1←− F1 ←− . . .

φq←− Fq)

of q composable strict isomorphisms between formal group laws, with L classifying the formal
group law F0 and the ith copy of C classifying the strict isomorphism φi : Fi → Fi−1, presented
in moving coordinates with respect to its target. The composite homomorphism L⊗ L⊗q →
L⊗ C⊗q classifies the function taking (F0;φ1, . . . , φq) to the (1 + q)-tuple of formal group laws
(F0, F1, . . . , Fq).

The ith face map di : π∗THH(MU)q+1 → THH(MU)q is a homomorphism L⊗ C⊗q+1 →
L⊗ C⊗q. When 0 � i � q it is induced by the multiplication MU ∧MU → MU of the ith and
(i + 1)th copies of MU (counting from zero), and is compatible with the multiplication L⊗ L →
L of the ith and (i + 1)th copies of L in L⊗ L⊗q+1. Hence, it corepresents the function taking
(F0;φ1, . . . , φq) to a chain where Fi has been duplicated in the ith and (i + 1)th positions. Since
the only strict automorphism of a formal group law over a torsion-free ring is the identity, the
chain of composable strict isomorphisms must be of the form

(F0;φ1, . . . , φi, id, φi+1, . . . , φq),

where id : Fi → Fi denotes the identity isomorphism of the repeated formal group law. The
last face map, with i = q + 1, is induced by multiplying the final and initial copies of MU . It is
compatible with the multiplication of the final and initial copies of L, and therefore corepresents
the function taking (F0;φ1, . . . , φq) to a chain where a copy of F0 has been added at the end.
This chain must have the form

(F0;φ1, . . . , φq, (φ1 · · ·φq)−1),

where (φ1 · · ·φq)−1 : F0 → Fq.
The jth degeneracy map sj : π∗THH(MU)q−1 → THH(MU)q is a homomorphism L⊗

C⊗q−1 → L⊗ C⊗q. It is induced by inserting the unit map S → MU between the jth
and (j + 1)th copies of MU (counting from zero), and is compatible with the unit map
Z → L to the (j + 1)th copy of L in L⊗ L⊗q. It therefore corepresents the function taking
(F0;φ1, . . . , φq) to a chain where Fj+1 has been omitted. For 0 � j � q − 2 this is the chain
(F0;φ1, . . . , φj+1φj+2, . . . , φq), while for j = q − 1 we obtain (F0;φ1, . . . , φq−1).
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4.2. Strict isomorphisms with common target

Let β(C)• be the simplicial bar construction

[q] �→ β(C)q = C⊗q

on the augmented algebra C. The homology of its normalized chain complex Nβ(C)∗ calculates

TorC∗ (Z,Z) = E([cn] | n � 1),

since C is flat over Z. Here, [cn] is the class in TorC1 (Z,Z) = I(C)/I(C)2 of the bar 1-cycle
cn ∈ I(C), where I(C) = ker(C → Z) ∼= cok(Z → C) is the positive-degree part of C, and E(−)
denotes the exterior algebra on the indicated generators.

Then L⊗ β(C)• is a simplicial graded commutative ring with

[q] �→ L⊗ β(C)q = L⊗ C⊗q,

and the homology of L⊗Nβ(C)∗ calculates L⊗ TorC∗ (Z,Z). We think of L⊗ β(C)q = L⊗ C⊗q

as classifying a q-tuple

(F0; γ1, . . . , γq) = (F0
γi←− Fi)

q
i=1

of strict isomorphisms γi : Fi → F0 in moving coordinates, all with the same target.
The ith face map di : L⊗ C⊗q+1 → L⊗ C⊗q is given for i = 0 by the augmentation C → Z

of the first copy of C, for 1 � i � q by the multiplication C ⊗ C → C of the ith and (i + 1)th
copy of C (counting from one), and for i = q + 1 by the augmentation of the last copy of C.
This corepresents the function that takes (F0; γ1, . . . , γq) to (F0; id, γ1, . . . , γq) for i = 0, to
(F0; γ1, . . . , γi, γi, . . . , γq) for 1 � i � q, and to (F0; γ1, . . . , γq, id) for i = q + 1. In the first and
last cases, id : F0 → F0 refers to the identity isomorphism for F0.

The jth degeneracy map sj : L⊗ C⊗q−1 → L⊗ C⊗q, for 0 � j � q − 1, is induced by the
unit Z → C to the (j + 1)th copy of C (counting from one). It corepresents the function
that omits γj+1 : Fj+1 → F0 from the q-tuple of strict isomorphisms with target F0, leaving
(F0; γ1, . . . , γj , γj+2, . . . , γq).

4.3. A shearing isomorphism

To each chain of q composable strict isomorphisms

F0
φ1←− F1

φ2←− . . .
φq←− Fq

we can associate a q-tuple of strict isomorphisms

(F0
γi←− Fi)

q
i=1,

having the same underlying sequence F0, F1, . . . , Fq of formal group laws. This one-to-one
correspondence is classified by the following isomorphism.

Proposition 4.1. There is an isomorphism of simplicial graded commutative rings

L⊗ β(C)•
∼=−→ π∗THH(MU)•

that, in degree q, classifies the bijection

(F0;φ1, . . . , φq)
∼=�−→ (F0; γ1, . . . , γq),

where γi = φ1 · · ·φi for 1 � i � q. Its inverse is given by φ1 = γ1 and φi = γ−1
i−1γi for 2 � i � q.
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Proof. The stated bijection is natural (in the ring over which the formal group laws and
the strict isomorphisms are defined), hence is corepresented by an isomorphism

L⊗ β(C)q = L⊗ C⊗q ∼=−→ L⊗ C⊗q ∼= π∗THH(MU)q.

This is the identity for q = 0 and q = 1, but has a more complex expression for q � 2, which
we do not need to make explicit.

It remains to verify that these isomorphisms L⊗ β(C)q ∼= π∗THH(MU)q are compatible
with the simplicial structure maps. This follows from the explicit descriptions given in the
previous two subsections: On both sides of the isomorphism the ith face map, except for the
last one, classifies the function that repeats Fi in the underlying sequence of formal group
laws. Similarly, on both sides the last face map classifies the function that appends F0 to the
underlying sequence. This ensures that all face maps are compatible under these isomorphisms.
Finally, on both sides the jth degeneracy map classifies the function that omits Fj+1 from the
underlying sequence. This ensures that all degeneracy maps are compatible. �

Turning to the split case, we have an isomorphism

π∗THH(MU)q ∼= LB ⊗L · · · ⊗L LB ∼= L⊗B⊗q

and L⊗B⊗q classifies chains

(F0; f1, . . . , fq) = (F0
f1−→ F1 −→ . . .

fq−→ Fq)

of q composable strict isomorphisms. On the other hand, L⊗ β(B)q = L⊗B⊗q classifies q-
tuples

(F0, g1, . . . , gq) = (F0
gi−→ Fi)

q
i=1

of strict isomorphisms, all with the same source.

Proposition 4.2. There is an isomorphism of simplicial graded commutative rings

L⊗ β(B)•
∼=−→ π∗THH(MU)•

that, in degree q, classifies the bijection

(F0; f1, . . . , fq)
∼=�−→ (F0; g1, . . . , gq)

where gi = fi · · · f1 for 1 � i � q. Its inverse is given by f1 = g1 and fi = gig
−1
i−1 for 2 � i � q.

Proof. The proof follows the same lines in the split case as for moving coordinates. One
difference is that in the split case the isomorphism

L⊗ β(B)q = L⊗B⊗q ∼= L⊗B⊗q ∼= π∗THH(MU)q

can easily be made explicit as the tensor product of the identity on L and an isomorphism
B⊗q ∼= B⊗q, given by the (q + 1 − i)-fold coproduct

B −→ B⊗q+1−i

from the ith copy of B, followed by a permutation and the i-fold product

B⊗i −→ B

to the ith copy of B. �

In the p-typical case, the product map

V ⊗ V ⊗q = π∗(BP ) ⊗ π∗(BP )⊗q −→ π∗(BP ∧BP∧q) = π∗THH(BP )q
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becomes an isomorphism after rationalization. Since V T is flat over V we can rewrite the target
as

π∗((BP ∧BP ) ∧BP · · · ∧BP (BP ∧BP )) ∼= V T ⊗V · · · ⊗V V T.

There is an evident isomorphism

V T ⊗V · · · ⊗V V T ∼= V ⊗ T⊗q,

and V ⊗ T⊗q classifies chains

(F0;φ1, . . . , φq) = (F0
φ1←− F1 ←− . . .

φq←− Fq)

of q composable strict isomorphisms between p-typical formal group laws. On the other hand,
V ⊗ β(T )q = V ⊗ T⊗q classifies q-tuples

(F0, γ1, . . . , γq) = (F0
γi←− Fi)

q
i=1

of strict isomorphisms between p-typical formal group laws, all with the same target.

Proposition 4.3. There is an isomorphism of simplicial graded commutative rings

V ⊗ β(T )•
∼=−→ π∗THH(BP )•

that, in degree q, classifies the bijection

(F0;φ1, . . . , φq)
∼=�−→ (F0; γ1, . . . , γq)

where γi = φ1 · · ·φi for 1 � i � q. Its inverse is given by φ1 = γ1 and φi = γ−1
i−1γi for 2 � i � q.

Proof. The proof is the same as for π∗THH(MU)• with moving coordinates, except that
all formal group laws in sight are p-typical. �

4.4. The skeleton spectral sequence

We return to MU with moving coordinates.

Proposition 4.4. The skeleton spectral sequence for π∗THH(MU) collapses at the E2-
term

E2 = E∞ ∼= L⊗ TorC∗ (Z,Z).

For each n � 1 there is a unique class λ′
n ∈ π2n+1THH(MU) detected by [cn] in E∞

1,2n, and

π∗THH(MU) ∼= π∗(MU) ⊗ E(λ′
n | n � 1).

Proof. The isomorphism of simplicial commutative rings

π∗THH(MU)• ∼= L⊗ β(C)•

induces an isomorphism

E1 = Nπ∗THH(MU)∗ ∼= L⊗Nβ(C)∗

of normalized differential graded algebras, hence also of homology algebras

E2 ∼= L⊗ TorC∗ (Z,Z) = L⊗ E([cn] | n � 1).

The skeleton spectral sequence is a multiplicative first quadrant spectral sequence. It
follows that it collapses at the E2-term, since the algebra generators are concentrated in
filtrations 0 and 1.
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The class [cn] ∈ E2
1,2n = E∞

1,2n detects a class λ′
n in the image of

π2n+1(sk1THH(MU)) −→ π2n+1THH(MU)

and is well-defined modulo the image of

π2n+1(sk0THH(MU)) −→ π2n+1THH(MU).

Since π2n+1(sk0THH(MU)) = π2n+1(MU) = 0, the class λ′
n ∈ π2n+1THH(MU) is in fact

well defined by this condition. (We could also have used the fact that MU splits off from
THH(MU), using the augmentation THH(MU) → MU , to arrange that λ′

n maps to zero
under the augmentation, but this method of normalization is irrelevant for the current
investigation.)

Since each λ′
n is in an odd degree, and π∗THH(MU) is graded-commutative, it follows that

the λ′
n for n � 1 freely generate π∗THH(MU) over L ∼= π∗(MU), concluding the proof. �

Here is the split analogue.

Proposition 4.5. The skeleton spectral sequence for π∗THH(MU) collapses at the E2-
term

E2 = E∞ ∼= L⊗ TorB∗ (Z,Z).

For each n � 1 there is a unique class en ∈ π2n+1THH(MU) detected by [bn] in E∞
1,2n, and

π∗THH(MU) = L⊗ E(en | n � 1).

The expressions (2.2) for the cn in terms of the absolute coordinates in LB lead to relations
in L⊗ TorB∗ (Z,Z) which detect the following identities in π∗THH(MU):

λ′
1 = −e1

λ′
2 = x1e1 − e2

λ′
3 = (x2 − x2

1)e1 + x1e2 − e3

λ′
4 = (2x3 − 4x1x2 + x3

1)e1 + (x2 − x2
1)e2 + x1e3 − e4.

Here is the p-typical statement.

Proposition 4.6. The skeleton spectral sequence for π∗THH(BP ) collapses at the E2-
term

E2 = E∞ ∼= V ⊗ TorT∗ (Z(p),Z(p)).

For each n � 1 there is a unique class λn ∈ π2pn−1THH(BP ) detected by [tn] in E∞
1,2pn−2,

and

π∗THH(BP ) ∼= π∗(BP ) ⊗ E(λn | n � 1).

The proof is the same as for MU .

Remark 4.7. Following Andy Baker and Larry Smith, Jim McClure and Ross Staffeldt
[34, Remark 4.3] calculated π∗THH(MU) ∼= π∗(MU) ⊗ E(λ′

n | n � 1) and π∗THH(BP ) ∼=
π∗(BP ) ⊗ E(λn | n � 1) as graded rings, where the classes λ′

n in degree 2n + 1 and λn in
degree 2pn − 1 were only specified in terms of their mod p Hurewicz images. Our choices of
generators λ′

n and λn are uniquely defined, and have the feature that σ(λ′
n) = 0 and σ(λn) = 0.
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5. The circle action and the right unit

For any S-algebra R, the cyclic structure on THH(R)• induces a circle action on its realization.
Its restriction

R ∧ S1
+ −→ THH(R) ∧ S1

+ −→ THH(R)

to the 0-skeleton R = sk0THH(R) ⊂ THH(R) factors through the 1-skeleton sk1THH(R) ⊂
THH(R) as the map induced by the right unit ηR : R ∼= S ∧R → R ∧R, from the pushout
R ∧ S1

+
∼= R ∧ (Δ1/∂Δ1)+ of the maps

R ←− R ∧ ∂Δ1
+ −→ R ∧ Δ1

+

to the pushout sk1THH(R) of the maps

R ←− (R ∧R ∧ ∂Δ1
+) ∪ (R ∧ S ∧ Δ1

+) −→ R ∧R ∧ Δ1
+.

This follows from the definition of the circle action, which for a 0-simplex x traces out the loop
given by the 1-simplex t1s0(x). Hence, we have a map of horizontal cofiber sequences

where the right-hand vertical map is the suspension of the composite

R ∼= S ∧R
ηR−→ R ∧R

1∧π−→ R ∧R/S.

Using the splitting of the upper row, we see that the right-hand vertical map is also the
composite

ΣR
σ−→ sk1THH(R) → Σ(R ∧R/S).

This proves the following result.

Proposition 5.1. For x ∈ π∗(R) the homotopy class σ(x) ∈ π∗+1THH(R) is detected in
E∞

1,∗ of the skeleton spectral sequence by the class of the infinite cycle

(1 ∧ π)ηR(x) ∈ π∗(R ∧R/S) = E1
1,∗.

We now specialize to R = MU . In terms of moving coordinates, the maps ηR and π induce
the homomorphisms

L
ηR−→ LC = L⊗ C

1⊗π−→ L⊗ I(C),

where ηR is the right unit and π : C → I(C) is the projection away from Z → C. We can also
view LC → L⊗ I(C) as the cokernel of the left unit ηL : L → LC. The split case is practically
the same.

Proposition 5.2. The rationalized σ-operator

π∗(MU) ⊗ Q −→ π∗+1THH(MU) ⊗ Q

is the (right) derivation given by

σ(mn) = λ′
n.
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Proof. By Propositions 2.1 and 5.1, σ(mn) is detected in E∞
1,∗ ⊗ Q by the image of

ηR(mn) =
∑

(i+1)(j+1)=n+1

mic
i+1
j

under the projections

L⊗ C ⊗ Q −→ L⊗ I(C) ⊗ Q −→ L⊗ I(C)/I(C)2 ⊗ Q = L⊗ TorC1 (Z,Z) ⊗ Q.

The term with j = 0 maps to zero in L⊗ I(C) ⊗ Q, and the terms with i � 1 map to zero
in L⊗ I(C)/I(C)2 ⊗ Q, so only the term with i = 0 and j = n remains. Hence, σ(mn) is
detected by [cn] in E∞

1,∗ ⊗ Q = L⊗ TorC1 (Z,Z) ⊗ Q, and this characterizes the homotopy class
λ′
n ∈ π2n+1THH(MU) ⊂ π2n+1THH(MU) ⊗ Q. �

Theorem 5.3. The σ-operator

σ : π∗THH(MU) −→ π∗+1THH(MU)

is the (right) Z-linear derivation acting on

π∗THH(MU) ∼= π∗(MU) ⊗ E(λ′
n | n � 1)

by taking x ∈ L ∼= π∗(MU) ⊂ π∗THH(MU) to the homotopy class σ(x) ∈ π∗+1THH(MU)
detected by the image of ηR(x) ∈ LC in L⊗ TorC1 (Z,Z) = E∞

1,∗, while

σ(λ′
n) = 0

for all n � 1. In low degrees,

σ(x1) = −2λ′
1

σ(x2) = −4x1λ
′
1 − 3λ′

2

σ(x3) = −(4x2 + 5x2
1)λ

′
1 − 6x1λ

′
2 − 2λ′

3

σ(x4) = −4(2x3 − x1x2)λ′
1 − 3(2x2 + x2

1)λ
′
2 − 8x1λ

′
3 − 5λ′

4.

Proof. The general statements summarize Propositions 4.4, 5.1 and 5.2. We know that
σ(λ′

n) = σ2(mn) = 0 in π∗THH(MU) ⊗ Q, since σ acts as a differential. Hence, σ(λ′
n) = 0 in

π∗THH(MU), since these groups are torsion-free.
For the explicit formulae, we first calculate in π∗THH(MU) ⊗ Q ∼= L⊗ E(λ′

n | n � 1) ⊗ Q,
using the expressions (2.3) for the xn in terms of the mn, and applying the derivation σ:

σ(x1) = −2λ′
1

σ(x2) = 8m1λ
′
1 − 3λ′

2

σ(x3) = 12(m2 − 3m2
1)λ

′
1 + 12m1λ

′
2 − 2λ′

3

σ(x4) = 8(8m3
1 − 9m1m2 + 2m3)λ′

1 + 18(m2 − 2m2
1)λ

′
2 + 16m1λ

′
3 − 5λ′

4.

The asserted formulae in π∗THH(MU) ∼= L⊗ E(λ′
n | n � 1) then follow, by rewriting the

polynomials in the mn as elements of L. �

Here is the analogous result in the split case. We do not have a closed formula for σ(en).

Theorem 5.4. The σ-operator σ : π∗THH(MU) → π∗+1THH(MU) is the (right) Z-linear
derivation acting on

π∗THH(MU) ∼= π∗(MU) ⊗ E(en | n � 1)
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by taking x ∈ L ∼= π∗(MU) ⊂ π∗THH(MU) to the homotopy class σ(x) ∈ π∗+1THH(MU)
detected by the image of ηR(x) ∈ LB in L⊗ TorB1 (Z,Z) = E∞

1,∗. The classes σ(en) are
inductively determined by the relation σ2(xn) = 0. In low degrees,

σ(x1) = 2e1

σ(x2) = x1e1 + 3e2

σ(x3) = (2x2 + x2
1)e1 + 4x1e2 + 2e3

σ(x4) = (2x1x2 − 2x3)e1 + x2e2 + 3x1e3 + 5e4

and

σ(e1) = 0

σ(e2) = 0

σ(e3) = e1e2

σ(e4) = 2e1e3.

Proof. For xn we use (2.1) to calculate

(1 ⊗ π)ηR(x1) = 2b1

(1 ⊗ π)ηR(x2) = x1b1 + (3b2 − 2b21)

(1 ⊗ π)ηR(x3) = (2x2 + x2
1)b1 + x1(4b2 − b21) + (2b3 + 2b1b2 − 2b31)

(1 ⊗ π)ηR(x4) = (2x1x2 − 2x3)b1 + x2(b2 − b21) + x1(3b3 − 8b1b2 + 5b31)

+ (5b4 − 14b1b3 − 6b22 + 25b21b2 − 10b41)

in E1
1,∗ = L⊗ I(B). Hence, σ(xn) is detected by

[(1 ⊗ π)ηR(x1)] = 2[b1]

[(1 ⊗ π)ηR(x2)] = x1[b1] + 3[b2]

[(1 ⊗ π)ηR(x3)] = (2x2 + x2
1)[b1] + 4x1[b2] + 2[b3]

[(1 ⊗ π)ηR(x4)] = (2x1x2 − 2x3)[b1] + x2[b2] + 3x1[b3] + 5[b4]

in E∞
1,∗ = L⊗ TorB1 (Z,Z). Since en ∈ π2n+1THH(MU) is characterized by being detected

by [bn] ∈ E1
1,2n, the stated formulae for σ(xn) hold. Furthermore, σ2 = 0 when acting on

π∗THH(MU), and the en generate an exterior algebra, so it follows that

0 = σ(2e1) = 2σ(e1)

0 = σ(x1e1 + 3e2) = 3σ(e2)

0 = σ((2x2 + x2
1)e1 + 4x1e2 + 2e3) = −2e1e2 + 2σ(e3)

0 = σ((2x1x2 − 2x3)e1 + x2e2 + 3x1e3 + 5e4) = −10e1e3 + 5σ(e4).
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Here, we have used the form of the Leibniz rule that is appropriate for right actions, that
is, σ(xy) = xσ(y) + (−1)|y|σ(x)y. Since π∗THH(MU) is torsion-free, this implies the stated
formulae for σ(en). �

We now turn to the p-typical case.

Proposition 5.5. The rationalized σ-operator π∗(BP ) ⊗ Q → π∗+1THH(BP ) ⊗ Q is the
(right) derivation given by

σ(�n) = λn.

Proof. By (3.3) and Proposition 5.1, σ(�n) is detected in E∞
1,∗ ⊗ Q by the image of

ηR(�n) =
∑

i+j=n

�it
pi

j

under the projections

V ⊗ T ⊗ Q −→ V ⊗ I(T ) ⊗ Q −→ V ⊗ I(T )/I(T )2 ⊗ Q = V ⊗ TorT1 (Z(p),Z(p)) ⊗ Q.

The term with j = 0 maps to zero in V ⊗ I(T ) ⊗ Q, and the terms with i � 1 map to zero in
V ⊗ I(T )/I(T )2 ⊗ Q, so only the term with i = 0 and j = n remains. Hence, σ(�n) is detected
by [tn] in E∞

1,∗ ⊗ Q = V ⊗ TorT1 (Z(p),Z(p)) ⊗ Q, and this characterizes the homotopy class
λn ∈ π2pn−1THH(BP ) ⊂ π2pn−1THH(BP ) ⊗ Q. �

Theorem 5.6. The σ-operator

σ : π∗THH(BP ) −→ π∗+1THH(BP )

is the (right) Z(p)-linear derivation acting on

π∗THH(BP ) ∼= π∗(BP ) ⊗ E(λn | n � 1)

by taking x ∈ V ∼= π∗(BP ) ⊂ π∗THH(BP ) to the class σ(x) ∈ π∗+1THH(BP ) detected by
the image of ηR(x) ∈ V T in V ⊗ TorT1 (Z(p),Z(p)) = E∞

1,∗, while

σ(λn) = 0

for all n � 1. In low degrees,

σ(v1) = pλ1

σ(v2) = pλ2 − (p + 1)vp1λ1

σ(v3) = pλ3 − (pv1v
p−1
2 + vp

2

1 )λ2 − (vp2 − (p + 1)vp+1
1 vp−1

2 + p2vp
2−1

1 v2 + pvp
2+p

1 )λ1.

Proof. The general results are proved as for MU with moving coordinates. For the explicit
formulae, we apply the derivation σ to (3.1), to obtain

pλn = σ(vn) +
n−1∑
i=1

(
vp

i

n−iλi + (pi�i)v
pi−1
n−i σ(vn−i)

)
. (5.1)

Here, pi�i lies in V by Lemma 3.1, and is listed in low degrees in (3.2). This leads to

pλ1 = σ(v1)

pλ2 = σ(v2) + (vp1λ1 + v1v
p−1
1 σ(v1))

pλ3 = σ(v3) + (vp2λ1 + v1v
p−1
2 σ(v2)) + (vp

2

1 λ2 + (pv2 + vp+1
1 )vp

2−1
1 σ(v1))

which we can rewrite as stated. �
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6. The circle Tate construction

We can now calculate the d2-differential and E3 = E4-term of the circle Tate spectral sequence

E2
∗,∗ = Z[t, t−1] ⊗ π∗THH(MU) =⇒ π∗THH(MU)tS

1
,

in the first few degrees. Since η acts trivially on π∗THH(MU), the d2-differential is given by
the σ-operator, and

E3
∗,∗ = E4

∗,∗ = Z[t, t−1] ⊗H(π∗THH(MU), σ).

Let us first note that after rationalization the spectral sequence collapses after the
d2-differential.

Proposition 6.1. Rationally,

π∗(MU) ⊗ Q ∼= Q[mn | n � 1]

π∗THH(MU) ⊗ Q ∼= Q[mn | n � 1] ⊗ E(λ′
n | n � 1)

H(π∗THH(MU), σ) ⊗ Q ∼= Q.

Proof. We know that π∗(MU) ⊗ Q ∼= L⊗ Q ∼= Q[mn | n � 1] and

π∗THH(MU) ⊗ Q ∼= π∗(MU) ⊗ E(λ′
n | n � 1) ⊗ Q ∼= Q[mn | n � 1] ⊗ E(λ′

n | n � 1),

with σ(mn) = λ′
n. Here, H(Q[mn] ⊗ E(λ′

n), σ) = Q, for each n � 1, so the near-vanishing of
H(π∗THH(MU) ⊗ Q, σ) follows by the Künneth theorem. �

Integrally, the situation is more complicated.

Theorem 6.2.

H(π∗THH(MU), σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z{1} for ∗ = 0,

0 for ∗ = 1, 2, 4, 6, 8,

Z/2{λ′
1} for ∗ = 3,

Z/4{x1λ
′
1} ⊕ Z/3{λ′

2} for ∗ = 5,

Z/4{λ′
3} ⊕ Z/3{2x2

1λ
′
1} for ∗ = 7,

Z/16{(x3 − 2x1x2)λ′
1 + x1λ

′
3}

⊕ Z/6{(x2
1 − x2)λ′

2} ⊕ Z/5{λ′
4} for ∗ = 9,

Z/2{λ′
1λ

′
3} for ∗ = 10.

Proof. Additively,

π∗THH(MU) = (Z{1}, 0,Z{x1},Z{λ′
1},Z{x2

1, x2},Z{x1λ
′
1, λ

′
2},

Z{x3
1, x1x2, x3},Z{x2

1λ
′
1, x2λ

′
1, x1λ

′
2, λ

′
3},Z{λ′

1λ
′
2, . . . }, . . . ).

As a cochain complex with differential given by the σ-operator, this breaks up as a direct sum
of the shorter complexes

Z{1}

Z{x1}
(
−2

)

−→ Z{λ′
1}
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Z{x2
1, x2}

⎛
⎝−4 −4

0 −3

⎞
⎠

−→ Z{x1λ
′
1, λ

′
2}

Z{x3
1, x1x2, x3}

⎛
⎜⎜⎜⎜⎜⎝

−6 −4 −5
0 −2 −4
0 −3 −6
0 0 −2

⎞
⎟⎟⎟⎟⎟⎠

−→ Z{x2
1λ

′
1, x2λ

′
1, x1λ

′
2, λ

′
3}

(
0 −3 2 0

)

−→ Z{λ′
1λ

′
2}

and

Z{x4
1, x

2
1x2, x1x3, x

2
2, x4}

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−8 −4 −5 0 0
0 −4 −4 −8 4
0 0 −2 0 −8
0 −3 −6 0 −3
0 0 0 −6 −6
0 0 −2 0 −8
0 0 0 0 −5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−→

Z{x3
1λ

′
1, x1x2λ

′
1, x3λ

′
1, x

2
1λ

′
2, x2λ

′
2, x1λ

′
3, λ

′
4}

⎛
⎝0 −3 −6 4 4 0 0

0 0 −2 0 0 2 0

⎞
⎠

−→

Z{x1λ
′
1λ

′
2, λ

′
1λ

′
3}.

By rational considerations, σ acts injectively on the remaining summand

Z{x5
1, x

3
1x2, . . . , x2x3, x5}

of π10THH(MU). The result then follows by comparing images and kernels in these
complexes. �

Here is the same calculation in absolute coordinates.

Theorem 6.3.

H(π∗THH(MU), σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z{1} for ∗ = 0,

0 for ∗ = 1, 2, 4, 6, 8,

Z/2{e1} for ∗ = 3,

Z/12{e2} for ∗ = 5,

Z/12{e′3} for ∗ = 7,

Z/240{e′4} ⊕ Z/2{e′′4} for ∗ = 9,

Z/2{e1e3} for ∗ = 10,

where

e′3 = e3 + 2x1e2 + x2e1

e′4 = e4 − x2
1e2 − x3e1

e′′4 = x1x2e1 + 3x2e2.
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Proof. Additively,

π∗THH(MU) = (Z{1}, 0,Z{x1},Z{e1},Z{x2
1, x2},Z{x1e1, e2},

Z{x3
1, x1x2, x3},Z{x2

1e1, x2e1, x1e2, e3},Z{e1e2, . . . }, . . . ).
The cochain complex (π∗THH(MU), σ) breaks up as the direct sum of the complexes

Z{1}

Z{x1}
(
2
)

−→ Z{e1}

Z{x2
1, x2}

⎛
⎝4 1

0 3

⎞
⎠

−→ Z{x1e1, e2}

Z{x3
1, x1x2, x3}

⎛
⎜⎜⎜⎜⎜⎝

6 1 1
0 2 2
0 3 4
0 0 2

⎞
⎟⎟⎟⎟⎟⎠

−→ Z{x2
1e1, x2e1, x1e2, e3}

(
0 3 −2 1

)

−→ Z{e1e2}
and

Z{x4
1, x

2
1x2, x1x3, x

2
2, x4}

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 1 1 0 0
0 4 2 2 2
0 0 2 0 −2
0 3 4 0 0
0 0 0 6 1
0 0 2 0 3
0 0 0 0 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−→

Z{x3
1e1, x1x2e1, x3e1, x

2
1e2, x2e2, x1e3, e4}

⎛
⎝0 3 4 −4 −1 1 0

0 0 2 0 0 −2 2

⎞
⎠

−→

Z{x1e1e2, e1e3}.
The result then follows by comparing images and kernels. �

Remark 6.4. Ignoring decomposables, one might have expected that the σ-operator acts
on π∗THH(MU) by σ(xn) = dnen, where dn = p if n + 1 is a power of a prime p and dn = 1
otherwise, and that σ(en) = 0. This would alter the group structure of H(π∗THH(MU), σ)
in degree 7 to Z/2{e3} ⊕ Z/6{x2

1e1}, and in degree 9 to Z/120 ⊕ (Z/2)2, and is therefore not
a permissible simplification. Any expectation that H(π∗THH(MU), σ) might be trivial in all
positive even degrees, or cyclic in all positive odd degrees, is also dispelled by these calculations.

We can also calculate the d2-differential and E3 = E4-term of the circle Tate spectral
sequence

E2
∗,∗ = Z[t, t−1] ⊗ π∗THH(BP ) =⇒ π∗THH(BP )tS

1
,

in the first few degrees. Since η acts trivially on π∗THH(BP ), the d2-differential is given by
the σ-operator, and

E3
∗,∗ = E4

∗,∗ = Z[t, t−1] ⊗H(π∗THH(BP ), σ).
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Rationally, this spectral sequence collapses after the d2-differential.

Proposition 6.5.

π∗(BP ) ⊗ Q ∼= Q[�n | n � 1]

π∗THH(BP ) ⊗ Q ∼= Q[�n | n � 1] ⊗ E(λn | n � 1)

H(π∗THH(BP ), σ) ⊗ Q ∼= Q.

The proof is the same as for Proposition 6.1.

Theorem 6.6.

H(π∗THH(BP ), σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z(p){1} for ∗ = 0,

Z/p{vi−1
1 λ1} for ∗ = i(2p− 2) + 1, 1 � i � p− 1,

Z/p2{vp−1
1 λ1} for ∗ = 2p2 − 2p + 1,

Z/p2{λ2} for ∗ = 2p2 − 1,

Z(p)/p
2(p + 2){v2λ1 + v1λ2} for ∗ = 2p2 + 2p− 3,

Z/p{λ1λ2} for ∗ = 2p2 + 2p− 2,

0 for the remaining ∗ � 2p2 + 4p− 6.

The group in degree ∗ = 2p2 + 2p− 3 is Z/p2 for p odd, and Z/16 for p = 2.

Proof. The cochain complex (π∗THH(BP ), σ) is the direct sum of a sequence of smaller
complexes, which begin with

Z(p){1}

Z(p){v1}
(
p
)

−→ Z(p){λ1}

Z(p){v2
1}

(
2p

)

−→ Z(p){v1λ1}

...

Z(p){vp1}
(
p2

)

−→ Z(p){vp−1
1 λ1}

Z(p){vp+1
1 , v2}

⎛
⎝p(p + 1) −(p + 1)

0 p

⎞
⎠

−→ Z(p){vp1λ1, λ2}

and

Z(p){vp+2
1 , v1v2}

⎛
⎜⎜⎝
p(p + 2) −(p + 1)

0 p
0 p

⎞
⎟⎟⎠

−→ Z(p){vp+1
1 λ1, v2λ1, v1λ2}

(
0 p −p

)

−→ Z(p){λ1λ2}.

It is elementary to calculate the cohomology of these complexes. �
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7. Algebraic de Rham cohomology

For any ring R there is a linearization map π∗THH(R) → HH∗(R) to Hochschild homology,
which is a rational isomorphism. If R is commutative, then there is also a multiplicative
homomorphism Ω∗

R → HH∗(R) from the algebra of de Rham forms to Hochschild homology,
which by the Hochschild–Kostant–Rosenberg theorem [25] is an isomorphism when R is
smooth. The σ-operator on π∗THH(R) is compatible with the Connes B-operator acting
on HH∗(R) and the exterior differential d acting on Ω∗

R, as proved by Loday–Quillen
[30, Proposition 2.2]. Hence, the linearization map from the Tate spectral sequence (1.1) for
THH(R) to the corresponding spectral sequence

E2
∗,∗ = Z[t, t−1] ⊗HH∗(R) =⇒ HP∗(R), (7.1)

converging to the periodic cyclic homology HP∗(R), becomes an isomorphism after rational-
ization. In particular, the map of E3-terms

Z[t, t−1] ⊗H(π∗THH(R), σ) −→ Z[t, t−1] ⊗H(HH∗(R), B)

is a rational isomorphism. Furthermore, the induced homomorphism

H∗
dR(R) = H(Ω∗

R, d) −→ H(HH∗(R), B)

from the algebraic de Rham cohomology of R is an isomorphism for R smooth. It is known
[30, Theorem 2.9] that after rationalization the spectral sequence (7.1) collapses after the
d2-differentials, so that E3 ⊗ Q = E∞ ⊗ Q.

In view of these classical results, it would be interesting to obtain a more intrin-
sic algebraic description of the E3-terms Z[t, t−1] ⊗H(π∗THH(MU), σ) and Z[t, t−1] ⊗
H(π∗THH(BP ), σ) of the Tate spectral sequences (1.1) converging to π∗THH(MU)tS

1

and π∗THH(BP )tS
1
, respectively, than those offered in Theorems 6.2 and 6.6. As first

approximations to such descriptions we observe below that there are natural homomorphisms

H∗
dR(π∗(MU)) −→ H(π∗THH(MU), σ) −→ H∗

dR(H∗(MU))

and

H∗
dR(π∗(BP )) −→ H(π∗THH(BP ), σ) −→ H∗

dR(H∗(BP )),

relating the de Rham cohomology of the graded commutative rings π∗(MU) ∼= L, H∗(MU) ∼=
C, π∗(BP ) ∼= V and H∗(BP ) ∼= T to the E3-terms of interest. These are rational isomorphisms,
in a trivial way, but fail to be integral isomorphisms. Finally, we observe that the Tate spectral
sequences (1.1) for MU and BP do not collapse after the d2-differential, due to the presence
of nonzero d4-differentials for THH(MU)tS

1
and nonzero d2p-differentials for THH(BP )tS

1
.

7.1. The Hurewicz homomorphism

Let HR denote the Eilenberg–Mac Lane ring spectrum of a ring R. There is a unique map
MU → HZ of E∞ ring spectra, and a unique map BP → HZ(p) of E4 ring spectra. The
following two lemmas are well known.
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Lemma 7.1. There is a commutative diagram of graded commutative rings

where LB → H∗(MU) is the surjective homomorphism

π∗(MU ∧MU) −→ π∗(HZ ∧MU) = H∗(MU)

induced by MU → HZ. The composition h : π∗(MU) = L → H∗(MU) is the Hurewicz homo-
morphism, and h⊗ Q sends mn ∈ L⊗ Q to the image of b̄n ∈ B in H∗(MU) ⊗ Q. There is a
similar commutative diagram with C and LC in place of B and LB, where h⊗ Q sends mn to
the image of cn ∈ C.

Proof. The Hurewicz homomorphism h : π∗(MU) → H∗(MU) is induced by the composi-
tion

MU ∼= S ∧MU −→ MU ∧MU −→ HZ ∧MU.

The first map induces the right unit ηR : L → LB. The second map induces the surjective
homomorphism

LB −→ Z ⊗L LB ∼= π∗(HZ ∧MU (MU ∧MU)) ∼= π∗(HZ ∧MU),

where we use that LB ∼= π∗(MU ∧MU) is flat as a (left) module over L ∼= π∗(MU). The
composition B → LB → Z ⊗L LB is evidently an isomorphism, and similarly for C → LC →
Z ⊗L LC.

Using (2.4) and Proposition 2.1, we see that the image of ηR(mn) in H∗(MU) ⊗ Q is equal
to the images of b̄n ∈ B and cn ∈ C, since the remaining terms in each sum are sent to zero
under π∗(MU ∧MU) → π∗(HZ ∧MU). �

Lemma 7.2. There is a commutative diagram of graded commutative Z(p)-algebras

where V T → H∗(BP ) is the surjective homomorphism

π∗(BP ∧BP ) −→ π∗(HZ(p) ∧BP ) = H∗(BP )

induced by BP → HZ(p). The composition h : π∗(BP ) = V → H∗(BP ) is the Hurewicz
homomorphism, and h⊗ Q sends �n ∈ V ⊗ Q to the image of tn ∈ T in H∗(BP ) ⊗ Q.

Proof. The proof is similar to that of Lemma 7.1, using (3.3) to calculate the image of h(�n)
in Z(p) ⊗V V T ⊗ Q ∼= H∗(BP ) ⊗ Q. �
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7.2. Algebraic de Rham complexes

The Hurewicz homomorphism h : π∗(MU) → H∗(MU) maps π∗(MU) ∼= L = Z[xn | n � 1]
injectively to H∗(MU) ∼= C = Z[cn | n � 1]. Let

Ω1
L
∼= L{dxn | n � 1} ∼= L⊗ TorL1 (Z,Z)

be the module of Kähler differentials of L over Z, and let Ω∗
L be the algebraic de Rham complex,

with Ωq
L
∼= L⊗ TorLq (Z,Z) in codegree q. The exterior differential d : Ωq

L → Ωq+1
L is given by

d(xn0 dxn1 · · · dxnq
) = dxn0dxn1 · · · dxnq

. Let us view

π∗THH(MU) ∼= L⊗ TorC∗ (Z,Z)

as a cohomologically graded object (in addition to the internal, homotopical grading), with
L⊗ TorCq (Z,Z) in codegree q. Let σ′(x) = (−1)|x|σ(x) denote the left derivation associated
to σ. We then have inclusions

(Ω∗
L, d) −→ (π∗THH(MU), σ′) −→ (Ω∗

C , d)

of cocomplexes, given in codegree q by

L⊗ TorLq (Z,Z) ⊂ L⊗ TorCq (Z,Z) ⊂ C ⊗ TorCq (Z,Z).

The first inclusion maps dxn ∈ Ω1
L to σ′(xn) ∈ π∗THH(MU), while the second inclusion maps

λ′
n ∈ π∗THH(MU) to dcn ∈ Ω1

C , which corresponds to [cn] ∈ TorC1 (Z,Z).
Similarly, π∗(BP ) ∼= V = Z(p)[vn | n � 1] maps injectively by the Hurewicz homomorphism

to H∗(BP ) ∼= T = Z(p)[tn | n � 1]. We view

π∗THH(BP ) ∼= V ⊗ TorT∗ (Z(p),Z(p))

as a cohomologically graded object, with V ⊗ TorTq (Z(p),Z(p)) in codegree q. We then have
inclusions

(Ω∗
V , d) −→ (π∗THH(BP ), σ′) −→ (Ω∗

T , d)

of cocomplexes, given in codegree q by

V ⊗ TorVq (Z(p),Z(p)) ⊂ V ⊗ TorTq (Z(p),Z(p)) ⊂ T ⊗ TorTq (Z(p),Z(p)).

The first inclusion sends dvn ∈ Ω1
V to σ′(vn) ∈ π∗THH(BP ), while the second inclusion sends

λn ∈ π∗THH(BP ) to dtn ∈ Ω1
T , which corresponds to [tn] ∈ TorT1 (Z(p),Z(p)).

Hence, (π∗THH(MU), σ′) is bracketed between the de Rham complexes (Ω∗
L, d) and

(Ω∗
C , d), while (π∗THH(BP ), σ′) is bracketed between (Ω∗

V , d) and (Ω∗
T , d). The induced

homomorphisms in cohomology

H∗
dR(L) =

⊕
q

Hq(Ω∗
L, d) −→ H(π∗THH(MU), σ) −→

⊕
q

Hq(Ω∗
C , d) = H∗

dR(C)

and

H∗
dR(V ) =

⊕
q

Hq(Ω∗
V , d) −→ H(π∗THH(BP ), σ) −→

⊕
q

Hq(Ω∗
T , d) = H∗

dR(T )

are, however, far from isomorphisms.

7.3. Further differentials

The E∞ ring spectrum map MU → HZ induces a homomorphism (π∗THH(MU), σ) →
(π∗THH(Z), σ) of differential graded algebras, sending λ′

1 ∈ π3THH(MU) ∼= Z to a generator
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g3 ∈ π3THH(Z) ∼= Z/2. In the circle Tate spectral sequence for THH(Z) there is a nonzero
differential

d4(t−1) = tg3,

see [45, Theorem 1.3; 47, Theorem 1.9(2)]. By naturality, it follows that there is a nonzero
differential

d4(t−1) = tλ′
1

in the circle Tate spectral sequence for THH(MU). It also follows that there are nonzero
differentials

d4(tiλ′
3) = ti+2λ′

1λ
′
3,

for all i of one parity.
Similarly, the E4 ring spectrum map BP → HZ(p) induces a differential graded algebra

homomorphism (π∗THH(BP ), σ) → (π∗THH(Z(p)), σ) sending λ1 ∈ π2p−1THH(BP ) ∼= Z(p)

to a generator g2p−1 ∈ π2p−1THH(Z(p)) ∼= Z/p. In the circle Tate spectral sequence for
THH(Z(p)) there is a nonzero differential

d2p(t1−p) .= tg2p−1

(see [10, p. 100] in the odd case), hence there is a nonzero differential

d2p(t1−p) .= tλ1

in the circle Tate spectral sequence for THH(BP ). It follows that there are also nonzero
differentials

d2p(tiλ2)
.= ti+pλ1λ2,

for i in all but one congruence class of integers modulo p.
These observations show that after the d2-differentials given by the σ-operator there will also

be later differentials in these Tate spectral sequences, originating not only on the horizontal
axis. To determine the precise differential structure will require other methods than those of
the present paper. A good beginning would be given by determining the differentials in the
Cp-Tate spectral sequence

E2
∗,∗ = Ĥ−∗(Cp, π∗THH(MU)) =⇒ π∗THH(MU)tCp ,

where we know by [31] that the target is p-adically equivalent to THH(MU).
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16. P. Cartier, ‘Modules associés à un groupe formel commutatif. Courbes typiques’, C. R. Acad. Sci. Paris
Sér. A-B 265 (1967) A129–A132 (French).

17. B. I. Dundas, T. G. Goodwillie and R. McCarthy, The local structure of algebraic K-theory, Algebra
and Applications 18 (Springer London, Ltd., London, 2013) xvi+435.

18. B. I. Dundas and J. Rognes, ‘Cubical and cosimplicial descent’, J. Lond. Math. Soc. (2) 98 (2018)
439–460.

19. A. D. Elmendorf, I. Kriz, M. A. Mandell and J. P. May, ‘Rings, modules, and algebras in stable
homotopy theory’, Mathematical Surveys and Monographs 47, With an appendix by M. Cole (American
Mathematical Society, Providence, RI, 1997) xii+249.

20. J. P. C. Greenlees and J. P. May, ‘Generalized Tate cohomology’, Mem. Amer. Math. Soc. 113 (1995)
viii+178.

21. M. Hazewinkel, ‘Constructing formal groups. I. The local one dimensional case’, J. Pure Appl. Algebra
9 (1976/77) 131–149.

22. A. Hedenlund and J. Rognes, Multiplicative Tate spectral sequences for compact Lie group actions, in
preparation.

23. L. Hesselholt, ‘Topological Hochschild homology and the Hasse-Weil zeta function’, An alpine bouquet
of algebraic topology, Contemporary Mathematics 708 (American Mathematical Society, Providence, RI,
2018) 157–180.

24. L. Hesselholt and I. Madsen, ‘On the K-theory of finite algebras over Witt vectors of perfect fields’,
Topology 36 (1997) 29–101.

25. G. Hochschild, B. Kostant and A. Rosenberg, ‘Differential forms on regular affine algebras’, Trans.
Amer. Math. Soc. 102 (1962) 383–408. MR142598.

26. P. S. Landweber, ‘Cobordism operations and Hopf algebras’, Trans. Amer. Math. Soc. 129 (1967) 94–110.
27. P. S. Landweber, ‘Associated prime ideals and Hopf algebras’, J. Pure Appl. Algebra 3 (1973) 43–58.
28. P. S. Landweber, ‘BP∗(BP) and typical formal groups’, Osaka J. Math. 12 (1975) 357–363.
29. M. Lazard, ‘Sur les groupes de Lie formels à un paramètre’, Bull. Soc. Math. France 83 (1955) 251–274

(French).
30. J.-L. Loday and D. Quillen, ‘Cyclic homology and the Lie algebra homology of matrices’, Comment.

Math. Helv. 59 (1984) 569–591. MR 780077.
31. S. Lunøe-Nielsen and J. Rognes, ‘The Segal conjecture for topological Hochschild homology of complex

cobordism’, J. Topol. 4 (2011) 591–622.
32. S. Lunøe-Nielsen and J. Rognes, ‘The topological Singer construction’, Doc. Math. 17 (2012) 861–909.
33. J. P. May, E∞ ring spaces and E∞ ring spectra, Lecture Notes in Mathematics 577, With contributions

by Frank Quinn, Nigel Ray and Jørgen Tornehave (Springer, Berlin, 1977).
34. J. E. McClure and R. E. Staffeldt, ‘On the topological Hochschild homology of bu. I’, Amer. J. Math.

115 (1993) 1–45.
35. H. R. Miller, ‘Some algebraic aspects of the Adams–Novikov spectral sequence’, PhD Thesis, Princeton

University, ProQuest LLC, Ann Arbor, MI, 1975.
36. H. R. Miller, D. C. Ravenel and W. S. Wilson, ‘Periodic phenomena in the Adams-Novikov spectral

sequence’, Ann. of Math. (2) 106 (1977) 469–516.
37. J. Milnor, ‘On the cobordism ring Ω∗ and a complex analogue. I’, Amer. J. Math. 82 (1960) 505–521.
38. R. E. Mosher, ‘Some stable homotopy of complex projective space’, Topology 7 (1968) 179–193.
39. T. Nikolaus and P. Scholze, ‘On topological cyclic homology’, Acta Math. 221 (2018) 203–409.
40. S. P. Novikov, ‘Some problems in the topology of manifolds connected with the theory of Thom spaces’,

Soviet Math. Dokl. 1 (1960) 717–720.
41. S. P. Novikov, ‘Rings of operations and spectral sequences of Adams type in extraordinary cohomology

theories. U -cobordism and K-theory’, Dokl. Akad. Nauk SSSR 172 (1967) 33–36 (Russian).
42. D. Quillen, ‘On the formal group laws of unoriented and complex cobordism theory’, Bull. Amer. Math.

Soc. 75 (1969) 1293–1298.
43. D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied

Mathematics 121 (Academic Press Inc., Orlando, FL, 1986) xx+413.
44. D. C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies

128, Appendix C by Jeff Smith (Princeton University Press, Princeton, NJ, 1992) xiv+209.
45. J. Rognes, ‘Trace maps from the algebraic K-theory of the integers (after Marcel Bökstedt)’, J. Pure

Appl. Algebra 125 (1998) 277–286.
46. J. Rognes, ‘The product on topological Hochschild homology of the integers with mod 4 coefficients’, J.

Pure Appl. Algebra 134 (1999) 211–218.



968 JOHN ROGNES

47. J. Rognes, ‘Topological cyclic homology of the integers at two’, J. Pure Appl. Algebra 134 (1999) 219–286.
48. J. Rognes, ‘Algebraic K-theory of the two-adic integers’, J. Pure Appl. Algebra 134 (1999) 287–326.
49. J. Rognes, ‘Two-primary algebraic K-theory of pointed spaces’, Topology 41 (2002) 873–926.
50. J. Rognes, ‘The smooth Whitehead spectrum of a point at odd regular primes’, Geom. Topol. 7 (2003)

155–184.

John Rognes
Department of Mathematics
University of Oslo
Box 1053, Blindern
NO–0316 Oslo
Norway

rognes@math.uio.no

The Journal of Topology is wholly owned and managed by the London Mathematical Society, a not-for-profit
Charity registered with the UK Charity Commission. All surplus income from its publishing programme is used
to support mathematicians and mathematics research in the form of research grants, conference grants, prizes,
initiatives for early career researchers and the promotion of mathematics.

mailto:rognes@math.uio.no

	1. Introduction
	2. Formal group laws and moving coordinates
	3. The p-typical case
	4. Topological Hochschild homology and the bar construction
	5. The circle action and the right unit
	6. The circle Tate construction
	7. Algebraic de Rham cohomology
	References

